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Preface

When O’Reilly first approached me about writing a book on Java performance tun‐
ing, I was unsure. Java performance, I thought—aren’t we done with that? Yes, I still
work on improving the performance of Java (and other) applications on a daily basis,
but I like to think that I spend most of my time dealing with algorithmic inefficien‐
cies and external system bottlenecks rather than on anything directly related to Java
tuning.

A moment’s reflection convinced me that I was (as usual) kidding myself. It is cer‐
tainly true that end-to-end system performance takes up a lot of my time, and that I
sometimes come across code that uses an O n2  algorithm when it could use one with
O(logN) performance. Still, it turns out that every day I think about garbage collec‐
tion (GC) performance, or the performance of the JVM compiler, or how to get the
best performance from Java APIs.

That is not to minimize the enormous progress that has been made in the perfor‐
mance of Java and JVMs over the past 20-plus years. When I was a Java evangelist at
Sun during the late 1990s, the only real “benchmark” available was CaffeineMark 2.0
from Pendragon software. For a variety of reasons, the design of that benchmark
quickly limited its value; yet in its day, we were fond of telling everyone that Java 1.1.8
performance was eight times faster than Java 1.0 performance based on that bench‐
mark. And that was true—Java 1.1.8 had an actual just-in-time compiler, whereas Java
1.0 was pretty much completely interpreted.

Then standards committees began to develop more rigorous benchmarks, and Java
performance began to be centered around them. The result was a continuous
improvement in all areas of the JVM—garbage collection, compilations, and within
the APIs. That process continues today, of course, but one of the interesting facts
about performance work is that it gets successively harder. Achieving an eightfold
increase in performance by introducing a just-in-time compiler was a straightforward
matter of engineering, and even though the compiler continues to improve, we’re not
going to see an improvement like that again. Parallelizing the garbage collector was a
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huge performance improvement, but more recent changes have been more
incremental.

This is a typical process for applications (and the JVM itself is just another applica‐
tion): in the beginning of a project, it’s easy enough to find architectural changes (or
code bugs) that, when addressed, yield huge performance improvements. In a mature
application, finding such performance improvements is rare.

That precept was behind my original concern that, to a large extent, the engineering
world might be done with Java performance. A few things convinced me I was wrong.
First is the number of questions I see daily about how this or that aspect of the JVM
performs under certain circumstances. New engineers come to Java all the time, and
JVM behavior remains complex enough in certain areas that a guide to its operation
is still beneficial. Second is that environmental changes in computing seem to have
altered the performance concerns that engineers face today.

Over the past few years, performance concerns have become bifurcated. On the one
hand, very large machines capable of running JVMs with very large heaps are now
commonplace. The JVM has moved to address those concerns with a new garbage
collector (G1), which—as a new technology—requires a little more hand-tuning than
traditional collectors. At the same time, cloud computing has renewed the impor‐
tance of small, single-CPU machines: you can go to Oracle or Amazon or a host of
other companies and cheaply rent a single CPU machine to run a small application
server. (You’re not actually getting a single-CPU machine: you’re getting a virtual OS
image on a very large machine, but the virtual OS is limited to using a single CPU.
From the perspective of Java, that turns out to be the same as a single-CPU machine.)
In those environments, correctly managing small amounts of memory turns out to be
quite important.

The Java platform also continues to evolve. Each new edition of Java provides new
language features and new APIs that improve the productivity of developers—if not
always the performance of their applications. Best practice use of these language fea‐
tures can help differentiate between an application that sizzles and one that plods
along. And the evolution of the platform brings up interesting performance ques‐
tions: there is no question that using JSON to exchange information between two
programs is much simpler than coming up with a highly optimized proprietary pro‐
tocol. Saving time for developers is a big win—but making sure that productivity win
comes with a performance win (or at least breaks even) is the real goal.
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Who Should (and Shouldn’t) Read This Book
This book is designed for performance engineers and developers who are looking to
understand how various aspects of the JVM and the Java APIs impact performance.

If it is late Sunday night, your site is going live Monday morning, and you’re looking
for a quick fix for performance issues, this is not the book for you.

If you are new to performance analysis and are starting that analysis in Java, this book
can help you. Certainly my goal is to provide enough information and context that
novice engineers can understand how to apply basic tuning and performance princi‐
ples to a Java application. However, system analysis is a broad field. There are a num‐
ber of excellent resources for system analysis in general (and those principles, of
course, apply to Java), and in that sense, this book will ideally be a useful companion
to those texts.

At a fundamental level, though, making Java go really fast requires a deep under‐
standing of how the JVM (and Java APIs) actually work. Hundreds of Java tuning
flags exist, and tuning the JVM has to be more than an approach of blindly trying
them and seeing what works. Instead, my goal is to provide detailed knowledge about
what the JVM and APIs are doing, with the hope that if you understand how those
things work, you’ll be able to look at the specific behavior of an application and
understand why it is performing badly. Understanding that, it becomes a simple (or at
least simpler) task to get rid of undesirable (badly performing) behavior.

One interesting aspect to Java performance work is that developers often have a very
different background than engineers in a performance or QA group. I know develop‐
ers who can remember thousands of obscure method signatures on little-used Java
APIs but who have no idea what the flag -Xmn means. And I know testing engineers
who can get every last ounce of performance from setting various flags for the
garbage collector but who can barely write a suitable “Hello, World” program in Java.

Java performance covers both of these areas: tuning flags for the compiler and
garbage collector and so on, and best-practice uses of the APIs. So I assume that you
have a good understanding of how to write programs in Java. Even if your primary
interest is not in the programming aspects of Java, I do spend a fair amount of time
discussing programs, including the sample programs used to provide a lot of the data
points in the examples.

Still, if your primary interest is in the performance of the JVM itself—meaning how
to alter the behavior of the JVM without any coding—then large sections of this book
should still be beneficial to you. Feel free to skip over the coding parts and focus on
the areas that interest you. And maybe along the way, you’ll pick up some insight into
how Java applications can affect JVM performance and start to suggest changes to
developers so they can make your performance-testing life easier.
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What’s New in the Second Edition
Since the first edition, Java has adopted a six-month release cycle with periodic long-
term releases; that means the current supported releases that coincide with publica‐
tion are Java 8 and Java 11. Although the first edition covered Java 8, it was quite new
at the time. This edition focuses on a much more mature Java 8 and Java 11, with
major updates to the G1 garbage collector and Java Flight Recorder. Attention is also
given to changes in the way Java behaves in containerized environments.

This edition covers new features of the Java platform, including a new microbe‐
nchmarking harness (jmh), new just-in-time compilers, application class data sharing,
and new performance tools—as well as coverage of new Java 11 features like compact
strings and string concatenation.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a summary of main points.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ScottOaks/JavaPerformanceTuning.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
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need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Java Performance by Scott Oaks
(O’Reilly). Copyright 2020 Scott Oaks, 978-1-492-05611-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at http://oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/java-performance-2e.
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Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank everyone who helped me as I worked on this book. In many
ways, this book is an accumulation of knowledge gained over my past 20 years in the
Java Performance Group and other engineering groups at Sun Microsystems and
Oracle, so the list of people who have provided positive input into this book is quite
broad. To all the engineers I have worked with during that time, and particularly to
those who patiently answered my random questions over the past year, thank you!

I would especially like to thank Stanley Guan, Azeem Jiva, Kim LiChong, Deep Singh,
Martijn Verburg, and Edward Yue Shung Wong for their time reviewing draft copies
and providing valuable feedback. I am sure that they were unable to find all my
errors, though the material here is greatly improved by their input. The second edi‐
tion was improved greatly by the thorough and thoughtful help offered by Ben Evans,
Rod Hilton, and Michael Hunger. My colleagues Eric Caspole, Charlie Hunt, and
Robert Strout in the Oracle HotSpot performance group patiently helped me with a
variety of issues in the second edition as well.

The production staff at O’Reilly was, as always, very helpful. I was privileged to work
with editor Meg Blanchette on the first edition, and Amelia Blevins thoughtfully and
carefully guided the second edition. Thanks for all your encouragement during the
process! Finally, I must thank my husband, James, for putting up with the long nights
and those weekend dinners where I was in a continual state of distraction.

xiv | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


CHAPTER 1

Introduction

This is a book about the art and science of Java performance.

The science part of this statement isn’t surprising; discussions about performance
include lots of numbers and measurements and analytics. Most performance engi‐
neers have a background in the sciences, and applying scientific rigor is a crucial part
of achieving maximum performance.

What about the art part? The notion that performance tuning is part art and part sci‐
ence is hardly new, but it is rarely given explicit acknowledgment in performance dis‐
cussions. This is partly because the idea of “art” goes against our training. But what
looks like art to some people is fundamentally based on deep knowledge and experi‐
ence. It is said that magic is indistinguishable from sufficiently advanced technolo‐
gies, and certainly it is true that a cell phone would look magical to a knight of the
Round Table. Similarly, the work produced by a good performance engineer may look
like art, but that art is really an application of deep knowledge, experience, and
intuition.

This book cannot help with the experience and intuition part of that equation, but it
can provide the deep knowledge—with the view that applying knowledge over time
will help you develop the skills needed to be a good Java performance engineer. The
goal is to give you an in-depth understanding of the performance aspects of the Java
platform.

This knowledge falls into two broad categories. First is the performance of the Java
Virtual Machine (JVM) itself: the way that the JVM is configured affects many
aspects of a program’s performance. Developers who are experienced in other lan‐
guages may find the need for tuning to be somewhat irksome, though in reality tun‐
ing the JVM is completely analogous to testing and choosing compiler flags during
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compilation for C++ programmers, or to setting appropriate variables in a php.ini file
for PHP coders, and so on.

The second aspect is to understand how the features of the Java platform affect per‐
formance. Note the use of the word platform here: some features (e.g., threading and
synchronization) are part of the language, and some features (e.g., string handling)
are part of the standard Java API. Though important distinctions exist between the
Java language and the Java API, in this case they will be treated similarly. This book
covers both facets of the platform.

The performance of the JVM is based largely on tuning flags, while the performance
of the platform is determined more by using best practices within your application
code. For a long time, these were considered separate areas of expertise: developers
code, and the performance group tests and recommends fixes for performance issues.
That was never a particularly useful distinction—anyone who works with Java should
be equally adept at understanding how code behaves in the JVM and what kinds of
tuning are likely to help its performance. As projects move to a devops model, this
distinction is starting to become less strict. Knowledge of the complete sphere is what
will give your work the patina of art.

A Brief Outline
First things first, though: Chapter 2 discusses general methodologies for testing Java
applications, including pitfalls of Java benchmarking. Since performance analysis
requires visibility into what the application is doing, Chapter 3 provides an overview
of some of the tools available to monitor Java applications.

Then it is time to dive into performance, focusing first on common tuning aspects:
just-in-time compilation (Chapter 4) and garbage collection (Chapter 5 and Chap‐
ter 6). The remaining chapters focus on best-practice uses of various parts of the Java
platform: memory use with the Java heap (Chapter 7), native memory use (Chap‐
ter 8), thread performance (Chapter 9), Java server technology (Chapter 10), database
access, (Chapter 11), and general Java SE API tips (Chapter 12).

Appendix A lists all the tuning flags discussed in this book, with cross-references to
the chapter where they are examined.

Platforms and Conventions
While this book is about the performance of Java, that performance will be influenced
by a few factors: the version of Java itself, of course, as well as the hardware and soft‐
ware platforms it is running on.
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1 Rarely, differences between the two exist; for example, the AdoptOpenJDK versions of Java contain new
garbage collectors in JDK 11. I’ll point out those differences when they occur.

Java Platforms
This book covers the performance of the Oracle HotSpot Java Virtual Machine (JVM)
and the Java Development Kit (JDK), versions 8 and 11. This is also known as Java,
Standard Edition (SE). The Java Runtime Environment (JRE) is a subset of the JDK
containing only the JVM, but since the tools in the JDK are important for perfor‐
mance analysis, the JDK is the focus of this book. As a practical matter, that means it
also covers platforms derived from the OpenJDK repository of that technology,
which includes the JVMs released from the AdoptOpenJDK project. Strictly speaking,
the Oracle binaries require a license for production use, and the AdoptOpenJdK
binaries come with an open source license. For our purposes, we’ll consider the two
versions to be the same thing, which we’ll refer to as the JDK or the Java platform.1

These releases have gone through various bug fix releases. As I write this, the current
version of Java 8 is jdk8u222 (version 222), and the current version of Java 11 is
11.0.5. It is important to use at least these versions (if not later), particularly in the
case of Java 8. Early releases of Java 8 (through about jdk8u60) do not contain many
of the important performance enhancements and features discussed throughout this
book (particularly so with regard to garbage collection and the G1 garbage collector).

These versions of the JDK were selected because they carry long-term support (LTS)
from Oracle. The Java community is free to develop their own support models but so
far have followed the Oracle model. So these releases will be supported and available
for quite some time: through at least 2023 for Java 8 (via AdoptOpenJDK; later via
extended Oracle support contracts), and through at least 2022 for Java 11. The next
long-term release is expected to be in late 2021.

For the interim releases, the discussion of Java 11 obviously includes features that
were first made available in Java 9 or Java 10, even though those releases are unsup‐
ported both by Oracle and by the community at large. In fact, I’m somewhat impre‐
cise when discussing such features; it may seem that I’m saying features X and Y were
originally included in Java 11 when they may have been available in Java 9 or 10. Java
11 is the first LTS release that carries those features, and that’s the important part:
since Java 9 and 10 aren’t in use, it doesn’t really matter when the feature first
appeared. Similarly, although Java 13 will be out at the time of this book’s release,
there isn’t a lot of coverage of Java 12 or Java 13. You can use those releases in produc‐
tion, but only for six months, after which you’ll need to upgrade to a new release (so
by the time you’re reading this, Java 12 is no longer supported, and if Java 13 is sup‐
ported, it will be soon replaced by Java 14). We’ll peek into a few features of these
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interim releases, but since those releases are not likely to be put into production in
most environments, the focus remains on Java 8 and 11.

Other implementations of the Java Language specification are available, including
forks of the open source implementation. AdoptOpenJDK supplies one of these
(Eclipse OpenJ9), and others are available from other vendors. Although all these
platforms must pass a compatibility test in order to be able to use the Java name, that
compatibility does not always extend to the topics discussed in this book. This is par‐
ticularly true of tuning flags. All JVM implementations have one or more garbage col‐
lectors, but the flags to tune each vendor’s GC implementation are product-specific.
Thus, while the concepts of this book apply to any Java implementation, the specific
flags and recommendations apply only to the HotSpot JVM.

That caveat is applicable to earlier releases of the HotSpot JVM—flags and their
default values change from release to release. The flags discussed here are valid for
Java 8 (specifically, version 222) and 11 (specifically, 11.0.5). Later releases could
slightly change some of this information. Always consult the release notes for impor‐
tant changes.

At an API level, different JVM implementations are much more compatible, though
even then subtle differences might exist between the way a particular class is imple‐
mented in the Oracle HotSpot Java platform and an alternate platform. The classes
must be functionally equivalent, but the actual implementation may change. Fortu‐
nately, that is infrequent, and unlikely to drastically affect performance.

For the remainder of this book, the terms Java and JVM should be understood to
refer specifically to the Oracle HotSpot implementation. Strictly speaking, saying
“The JVM does not compile code upon first execution” is wrong; some Java imple‐
mentations do compile code the first time it is executed. But that shorthand is much
easier than continuing to write (and read), “The Oracle HotSpot JVM…”

JVM tuning flags
With a few exceptions, the JVM accepts two kinds of flags: boolean flags, and flags
that require a parameter.

Boolean flags use this syntax: -XX:+FlagName enables the flag, and -XX:-FlagName
disables the flag.

Flags that require a parameter use this syntax: -XX:FlagName=something, meaning to
set the value of FlagName to something. In the text, the value of the flag is usually ren‐
dered with something indicating an arbitrary value. For example, -XX:NewRatio=N
means that the NewRatio flag can be set to an arbitrary value N (where the implica‐
tions of N are the focus of the discussion).
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The default value of each flag is discussed as the flag is introduced. That default is
often based on a combination of factors: the platform on which the JVM is running
and other command-line arguments to the JVM. When in doubt, “Basic VM Infor‐
mation” on page 60 shows how to use the -XX:+PrintFlagsFinal flag (by default,
false) to determine the default value for a particular flag in a particular environ‐
ment, given a particular command line. The process of automatically tuning flags
based on the environment is called ergonomics.

The JVM that is downloaded from Oracle and AdoptOpenJDK sites is called the
product build of the JVM. When the JVM is built from source code, many builds can
be produced: debug builds, developer builds, and so on. These builds often have addi‐
tional functionality. In particular, developer builds include an even larger set of tun‐
ing flags so that developers can experiment with the most minute operations of
various algorithms used by the JVM. Those flags are generally not considered in this
book.

Hardware Platforms
When the first edition of this book was published, the hardware landscape looked dif‐
ferent than it does today. Multicore machines were popular, but 32-bit platforms and
single-CPU platforms were still very much in use. Other platforms in use today—vir‐
tual machines and software containers—were coming into their own. Here’s an over‐
view of how those platforms affect the topics of this book.

Multicore hardware
Virtually all machines today have multiple cores of execution, which appear to the
JVM (and to any other program) as multiple CPUs. Typically, each core is enabled for
hyper-threading. Hyper-threading is the term that Intel prefers, though AMD (and
others) use the term simultaneous multithreading, and some chip manufactures refer
to hardware strands within a core. These are all the same thing, and we’ll refer to this
technology as hyper-threading.

From a performance perspective, the important thing about a machine is its number
of cores. Let’s take a basic four-core machine: each core can (for the most part) pro‐
cess independently of the others, so a machine with four cores can achieve four times
the throughput of a machine with a single core. (This depends on other factors about
the software, of course.)

In most cases, each core will contain two hardware or hyper-threads. These threads
are not independent of each other: the core can run only one of them at a time. Often,
the thread will stall: it will, for example, need to load a value from main memory, and
that process can take a few cycles. In a core with a single thread, the thread stalls at
that point, and those CPU cycles are wasted. In a core with two threads, the core can
switch and execute instructions from the other thread.
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So our four-core machine with hyper-threading enabled appears as if it can execute
instructions from eight threads at once (even though, technically, it can execute only
four instructions per CPU cycle). To the operating system—and hence to Java and
other applications—the machine appears to have eight CPUs. But all of those CPUs
are not equal from a performance perspective. If we run one CPU-bound task, it will
use one core; a second CPU-bound task will use a second core; and so on up to four:
we can run four independent CPU-bound tasks and get our fourfold increase in
throughput.

If we add a fifth task, it will be able to run only when one of the other tasks stalls,
which on average turns out to happen between 20% to 40% of the time. Each addi‐
tional task faces the same challenge. So adding a fifth task adds only about 30% more
performance; in the end, the eight CPUs will give us about five to six times the per‐
formance of a single core (without hyper-threading).

You’ll see this example in a few sections. Garbage collection is very much a CPU-
bound task, so Chapter 5 shows how hyper-threading affects the parallelization of
garbage collection algorithms. Chapter 9 discusses in general how to exploit Java’s
threading facilities to best effect, so you’ll see an example of the scaling of hyper-
threaded cores there as well.

Software containers
The biggest change in Java deployments in recent years is that they are now fre‐
quently deployed within a software container. That change is not limited to Java, of
course; it’s an industry trend hastened by the move to cloud computing.

Two containers here are important. First is the virtual machine, which sets up a com‐
pletely isolated copy of the operating system on a subset of the hardware on which
the virtual machine is running. This is the basis of cloud computing: your cloud com‐
puting vendor has a data center with very large machines. These machines have
potentially 128 cores, though they are likely smaller because of cost efficiencies. From
the perspective of the virtual machine, that doesn’t really matter: the virtual machine
is given access to a subset of that hardware. Hence, a given virtual machine may have
two cores (and four CPUs, since they are usually hyper-threaded) and 16 GB of
memory.

From Java’s perspective (and the perspective of other applications), that virtual
machine is indistinguishable from a regular machine with two cores and 16 GB of
memory. For tuning and performance purposes, you need only consider it in the
same way.

The second container of note is the Docker container. A Java process running inside a
Docker container doesn’t necessarily know it is in such a container (though it could
figure it out by inspection), but the Docker container is just a process (potentially
with resource constraints) within a running OS. As such, its isolation from other
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processes’ CPU and memory usage is somewhat different. As you’ll see, the way Java
handles that differs between early versions of Java 8 (up until update 192) and later
version of Java 8 (and all versions of Java 11).

Virtual Machine Oversubscription
Cloud vendors have the option of oversubscribing the virtual machines on a physical
box. Let’s say the physical box has 32 cores; the cloud vendor will usually choose to
deploy eight 4-core virtual machines on that box so that each virtual machine has the
four dedicated cores it expects.

To save money, the vendor could choose to deploy 16 4-core virtual machines. The
theory here is that all 16 virtual machines are unlikely to be busy at the same time; as
long as only half of them are busy, there will be enough physical cores to satisfy them.
If too many of them are busy, though, they will compete for CPU cycles, and their
performance will suffer.

Similarly, cloud vendors can choose to throttle the CPU used by a virtual machine:
they may allow the virtual machine to run bursts during which it consumes the CPU
it is allocated, but not to maintain that usage over time. This is frequently seen in free
or trial offerings, where you have a different expectation of performance.

These things obviously affect performance a great deal, but the effect isn’t limited to
Java, nor does it impact Java any differently than anything else running in the virtual
machine.

By default, a Docker container is free to use all of the machine’s resources: it can use
all the available CPUs and all the available memory on the machine. That’s fine if we
want to use Docker merely to streamline deployment of our single application on the
machine (and hence the machine will run only that Docker container). But frequently
we want to deploy multiple Docker containers on a machine and restrict the resour‐
ces of each container. In effect, given our four-core machine with 16 GB of memory,
we might want to run two Docker containers, each with access to only two cores and
8 GB of memory.

Configuring Docker to do that is simple enough, but complications can arise at the
Java level. Numerous Java resources are configured automatically (or ergonomically)
based on the size of the machine running the JVM. This includes the default heap size
and the number of threads used by the garbage collector, explained in detail in Chap‐
ter 5, and some thread pool settings, mentioned in Chapter 9.

If you are running a recent version of Java 8 (update version 192 or later) or Java 11,
the JVM handles this as you would hope: if you limit the Docker container to use
only two cores, the values set ergonomically based on the CPU count of the machine
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2 You can specify fractional values for CPU limits in Docker. Java rounds up all fractional values to the next
highest integer.

will be based on the limit of the Docker container.2 Similarly, heap and other settings
that by default are based on the amount of memory on a machine are based on any
memory limit given to the Docker container.

In earlier versions of Java 8, the JVM has no knowledge of any limits that the con‐
tainer will enforce: when it inspects the environment to find out how much memory
is available so it can calculate its default heap size, it will see all the memory on the
machine (instead of, as we would prefer, the amount of memory the Docker con‐
tainer is allowed to use). Similarly, when it checks how many CPUs are available to
tune the garbage collector, it will see all the CPUs on the machine, rather than the
number of CPUs assigned to the Docker container. As a result, the JVM will run sub‐
optimally: it will start too many threads and will set up too large a heap. Having too
many threads will lead to some performance degradation, but the real issue here is
the memory: the maximum size of the heap will potentially be larger than the mem‐
ory assigned to the Docker container. When the heap grows to that size, the Docker
container (and hence the JVM) will be killed.

In early Java 8 versions, you can set the appropriate values for the memory and CPU
usage by hand. As we come across those tunings, I’ll point out the ones that will need
to be adjusted for this situation, but it is better simply to upgrade to a later Java 8
version (or Java 11).

Docker containers provide one additional challenge to Java: Java comes with a rich set
of tools for diagnosing performance issues. These are often not available in a Docker
container. We’ll look at that issue a little more in Chapter 3.

The Complete Performance Story
This book is focused on how to best use the JVM and Java platform APIs so that pro‐
grams run faster, but many outside influences affect performance. Those influences
pop up from time to time in the discussion, but because they are not specific to Java,
they are not necessarily discussed in detail. The performance of the JVM and the Java
platform is a small part of getting to fast performance.

This section introduces the outside influences that are at least as important as the Java
tuning topics covered in this book. The Java knowledge-based approach of this book
complements these influences, but many of them are beyond the scope of what we’ll
discuss.
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Write Better Algorithms
Many details about Java affect the performance of an application, and a lot of tuning
flags are discussed. But there is no magical -XX:+RunReallyFast option.

Ultimately, the performance of an application is based on how well it is written. If the
program loops through all elements in an array, the JVM will optimize the way it per‐
forms bounds checking of the array so that the loop runs faster, and it may unroll the
loop operations to provide an additional speedup. But if the purpose of the loop is to
find a specific item, no optimization in the world is going to make the array-based
code as fast as a different version that uses a hash map.

A good algorithm is the most important thing when it comes to fast performance.

Write Less Code
Some of us write programs for money, some for fun, some to give back to a commu‐
nity, but all of us write programs (or work on teams that write programs). It is hard to
feel like you’re making a contribution to a project by pruning code, and some manag‐
ers still evaluate developers by the amount of code they write.

I get that, but the conflict here is that a small well-written program will run faster
than a large well-written program. This is generally true for all computer programs,
and it applies specifically to Java programs. The more code that has to be compiled,
the longer it will take until that code runs quickly. The more objects that have to be
allocated and discarded, the more work the garbage collector has to do. The more
objects that are allocated and retained, the longer a GC cycle will take. The more
classes that have to be loaded from disk into the JVM, the longer it will take for a
program to start. The more code that is executed, the less likely that it will fit in the
hardware caches on the machine. And the more code that has to be executed, the
longer that execution will take.

I think of this as the “death by 1,000 cuts” principle. Developers will argue that they
are just adding a very small feature and it will take no time at all (especially if the
feature isn’t used). And then other developers on the same project make the same
claim, and suddenly the performance has regressed by a few percent. The cycle is
repeated in the next release, and now program performance has regressed by 10%. A
couple of times during the process, performance testing may hit a certain resource
threshold—a critical point in memory use, a code cache overflow, or something like
that. In those cases, regular performance tests will catch that particular condition, and
the performance team can fix what appears to be a major regression. But over time, as
the small regressions creep in, it will be harder and harder to fix them.
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3 There is some dispute over who said this originally, Donald Knuth or Topy Hoare, but it appears in an article
by Knuth entitled “Structured Programming with goto Statements.” And in context, it is an argument for opti‐
mizing code, even if it requires inelegant solutions like a goto statement.

We Will Ultimately Lose the War
One aspect of performance that can be counterintuitive (and depressing) is that the
performance of every application can be expected to decrease over time—meaning
over new release cycles of the application. Often, that performance difference is not
noticed, because hardware improvements make it possible to run the new programs
at acceptable speeds.

Think what it would be like to run the Windows 10 interface on the same computer
that used to run Windows 95. My favorite computer ever was a Mac Quadra 950, but
it couldn’t run macOS Sierra (and it if did, it would be so very, very slow compared to
Mac OS 7.5). On a smaller level, it may seem that Firefox 69.0 is faster than earlier
versions, but those are essentially minor release versions. With its tabbed browsing
and synced scrolling and security features, Firefox is far more powerful than Mosaic
ever was, but Mosaic can load basic HTML files located on my hard disk about 50%
faster than Firefox 69.0.

Of course, Mosaic cannot load actual URLs from almost any popular website; it is no
longer possible to use Mosaic as a primary browser. That is also part of the general
point here: particularly between minor releases, code may be optimized and run
faster. As performance engineers, that’s what we can focus on, and if we are good at
our job, we can win the battle.

That is a good and valuable thing; my argument isn’t that we shouldn’t work to
improve the performance of existing applications. But the irony remains: as new fea‐
tures are added and new standards adopted—which is a requirement to match com‐
peting programs—programs can be expected to get larger and slower.

I’m not advocating that you should never add a new feature or new code to your
product; clearly benefits result from enhancing programs. But be aware of the trade-
offs you are making, and when you can, streamline.

Oh, Go Ahead, Prematurely Optimize
Donald Knuth is widely credited with coining the term premature optimization,
which is often used by developers to claim that the performance of their code doesn’t
matter, and if it does matter, we won’t know that until the code is run. The full quote,
if you’ve never come across it, is “We should forget about small efficiencies, say about
97% of the time; premature optimization is the root of all evil.”3
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The point of this dictum is that in the end, you should write clean, straightforward
code that is simple to read and understand. In this context, optimizing is understood
to mean employing algorithmic and design changes that complicate program struc‐
ture but provide better performance. Those kinds of optimizations indeed are best
left undone until such time as the profiling of a program shows that a large benefit is
gained from performing them.

What optimization does not mean in this context, however, is avoiding code con‐
structs that are known to be bad for performance. Every line of code involves a
choice, and if you have a choice between two simple, straightforward ways of pro‐
gramming, choose the better-performing one.

At one level, this is well understood by experienced Java developers (it is an example
of their art, as they have learned it over time). Consider this code:

log.log(Level.FINE, "I am here, and the value of X is "
        + calcX() + " and Y is " + calcY());

This code does a string concatenation that is likely unnecessary, since the message
won’t be logged unless the logging level is set quite high. If the message isn’t printed,
unnecessary calls are also made to the calcX() and calcY() methods. Experienced
Java developers will reflexively reject that; some IDEs will even flag the code and sug‐
gest it be changed. (Tools aren’t perfect, though: the NetBeans IDE will flag the string
concatenation, but the suggested improvement retains the unneeded method calls.)

This logging code is better written like this:

if (log.isLoggable(Level.FINE)) {
    log.log(Level.FINE,
            "I am here, and the value of X is {} and Y is {}",
            new Object[]{calcX(), calcY()});
}

This avoids the string concatenation altogether (the message format isn’t necessarily
more efficient, but it is cleaner), and there are no method calls or allocation of the
object array unless logging has been enabled.

Writing code in this way is still clean and easy to read; it took no more effort than
writing the original code. Well, OK, it required a few more keystrokes and an extra
line of logic. But it isn’t the type of premature optimization that should be avoided; it’s
the kind of choice that good coders learn to make.

Don’t let out-of-context dogma from pioneering heroes prevent you from thinking
about the code you are writing. You’ll see other examples of this throughout this
book, including in Chapter 9, which discusses the performance of a benign-looking
loop construct to process a vector of objects.
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Look Elsewhere: The Database Is Always the Bottleneck
If you are developing standalone Java applications that use no external resources, the
performance of that application is (mostly) all that matters. Once an external resource
(a database, for example) is added, the performance of both programs is important.
And in a distributed environment—say with a Java REST server, a load balancer, a
database, and a backend enterprise information system—the performance of the Java
server may be the least of the performance issues.

This is not a book about holistic system performance. In such an environment, a
structured approach must be taken toward all aspects of the system. CPU usage, I/O
latencies, and throughput of all parts of the system must be measured and analyzed;
only then can we determine which component is causing the performance bottleneck.
Excellent resources are available on that subject, and those approaches and tools are
not specific to Java. I assume you’ve done that analysis and determined that it is the
Java component of your environment that needs to be improved.

Bugs and Performance Issues Aren’t Limited to the JVM
The performance of the database is the example used in this section, but any part of
the environment may be the source of a performance issue.

I once had a customer that installed a new version of an application server, and then
testing showed that the requests sent to the server took longer and longer over time.
Applying Occam’s razor led me to consider all aspects of the application server that
might be causing the issue.

After those were ruled out, the performance issue remained, and we had no backend
database to blame. The next most likely issue, therefore, was the test harness, and
profiling determined that the load generator—Apache JMeter—was the source of the
regression: it was keeping every response in a list, and when a new response came in,
it processed the entire list in order to calculate the 90th% response time (if that term
is unfamiliar, see Chapter 2).

Performance issues can be caused by any part of the entire system where an applica‐
tion is deployed. Common case analysis says to consider the newest part of the system
first (which is often the application in the JVM), but be prepared to look at every pos‐
sible component of the environment.

On the other hand, don’t overlook that initial analysis. If the database is the bottle‐
neck (and here’s a hint: it is), tuning the Java application accessing the database won’t
help overall performance at all. In fact, it might be counterproductive. As a general
rule, when load is increased into a system that is overburdened, performance of that
system gets worse. If something is changed in the Java application that makes it more
efficient—which only increases the load on an already overloaded database—overall
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performance may actually go down. The danger is then reaching the incorrect
conclusion that the particular JVM improvement shouldn’t be used.

This principle—that increasing load to a component in a system that is performing
badly will make the entire system slower—isn’t confined to a database. It applies when
load is added to a server that is CPU-bound or if more threads start accessing a lock
that already has threads waiting for it or any number of other scenarios. An extreme
example of this that involves only the JVM is shown in Chapter 9.

Optimize for the Common Case
It is tempting—particularly given the “death by 1,000 cuts” syndrome—to treat all
performance aspects as equally important. But we should focus on the common use
case scenarios. This principle manifests itself in several ways:

• Optimize code by profiling it and focusing on the operations in the profile taking
the most time. Note, however, that this does not mean looking at only the leaf
methods in a profile (see Chapter 3).

• Apply Occam’s razor to diagnosing performance problems. The simplest explana‐
tion for a performance issue is the most conceivable cause: a performance bug in
new code is more likely than a configuration issue on a machine, which in turn is
more likely than a bug in the JVM or operating system. Obscure OS or JVM bugs
do exist, and as more credible causes for a performance issue are ruled out, it
does become possible that somehow the test case in question has triggered such a
latent bug. But don’t jump to the unlikely case first.

• Write simple algorithms for the most common operations in an application. Say a
program estimates a mathematical formula, and the user can choose whether to
get an answer within a 10% margin of error or a 1% margin. If most users will be
satisfied with the 10% margin, optimize that code path—even if it means slowing
down the code that provides the 1% margin of error.

Summary
Java has features and tools that make it possible to get the best performance from a
Java application. This book will help you understand how best to use all the features
of the JVM in order to end up with fast-running programs.

In many cases, though, remember that the JVM is a small part of the overall perfor‐
mance picture. A systemic approach to performance is required in Java environments
where the performance of databases and other backend systems is at least as impor‐
tant as the performance of the JVM. That level of performance analysis is not the
focus of this book—it is assumed due diligence has been performed to make sure that
the Java component of the environment is the important bottleneck in the system.
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However, the interaction between the JVM and other areas of the system is equally
important—whether that interaction is direct (e.g., the best way to make database
calls) or indirect (e.g., optimizing native memory usage of an application that shares a
machine with several components of a large system). The information in this book
should help solve performance issues along those lines as well.
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CHAPTER 2

An Approach to Performance Testing

This chapter discusses four principles of getting results from performance testing: test
real applications; understand throughput, batching, and response time; understand
variability; and test early and often. These principles form the basis of the advice
given in later chapters. The science of performance engineering is covered by these
principles. Executing performance tests on applications is fine, but without scientific
analysis behind those tests, they can too often lead to incorrect or incomplete analy‐
sis. This chapter covers how to make sure that testing produces valid analysis.

Many of the examples given in later chapters use a common application that emulates
a system of stock prices; that application is also outlined in this chapter.

Test a Real Application
The first principle is that testing should occur on the actual product in the way the
product will be used. Roughly speaking, three categories of code can be used for per‐
formance testing: microbenchmarks, macrobenchmarks, and mesobenchmarks. Each
has its own advantages and disadvantages. The category that includes the actual
application will provide the best results.

Microbenchmarks
A microbenchmark is a test designed to measure a small unit of performance in order
to decide which of multiple alternate implementations is preferable: the overhead in
creating a thread versus using a thread pool, the time to execute one arithmetic algo‐
rithm versus an alternate implementation, and so on.

Microbenchmarks may seem like a good idea, but the features of Java that make it
attractive to developers—namely, just-in-time compilation and garbage collection—
make it difficult to write microbenchmarks correctly.
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Microbenchmarks must use their results
Microbenchmarks differ from regular programs in various ways. First, because Java
code is interpreted the first few times it is executed, it gets faster the longer it is exe‐
cuted. For this reason, all benchmarks (not just microbenchmarks) typically include a
warm-up period during which the JVM is allowed to compile the code into its opti‐
mal state.

That optimal state can include a lot of optimizations. For example, here’s a seemingly
simple loop to calculate an implementation of a method that calculates the 50th
Fibonacci number:

public void doTest() {
    // Main Loop
    double l;
    for (int i = 0; i < nWarmups; i++) {
        l = fibImpl1(50);
    }
    long then = System.currentTimeMillis();
    for (int i = 0; i < nLoops; i++) {
        l = fibImpl1(50);
    }
    long now = System.currentTimeMillis();
    System.out.println("Elapsed time: " + (now - then));
}

This code wants to measure the time to execute the fibImpl1() method, so it warms
up the compiler first and then measures the now-compiled method. But likely, that
time will be 0 (or more likely, the time to run the for loop without a body). Since the
value of l is not read anywhere, the compiler is free to skip its calculation altogether.
That depends on what else happens in the fibImpl1() method, but if it’s just a simple
arithmetic operation, it can all be skipped. It’s also possible that only parts of the
method will be executed, perhaps even producing the incorrect value for l; since that
value is never read, no one will know. (Details of how the loop is eliminated are given
in Chapter 4.)

There is a way around that particular issue: ensure that each result is read, not simply
written. In practice, changing the definition of l from a local variable to an instance
variable (declared with the volatile keyword) will allow the performance of the
method to be measured. (The reason the l instance variable must be declared as
volatile can be found in Chapter 9.)
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Threaded Microbenchmarks
The need to use a volatile variable in this example applies even when the
microbenchmark is single-threaded.

Be especially wary when thinking of writing a threaded microbenchmark. When sev‐
eral threads are executing small bits of code, the potential for synchronization bottle‐
necks (and other thread artifacts) is quite large. Results from threaded
microbenchmarks often lead to spending a lot of time optimizing away synchroniza‐
tion bottlenecks that will rarely appear in real code—at a cost of addressing more
pressing performance needs.

Consider the case of two threads calling a synchronized method in a microbe‐
nchmark. Most of it will execute within that synchronized method, because the
benchmark code is small. Even if only 50% of the total microbenchmark is within the
synchronized method, the odds are high that as few as two threads will attempt to
execute the synchronized method at the same time. The benchmark will run slowly as
a result, and as more threads are added, the performance issues caused by the
increased contention will get even worse. The net is that the test ends up measuring
how the JVM handles contention rather than the goal of the microbenchmark.

Microbenchmarks must test a range of input
Even then, potential pitfalls exist. This code performs only one operation: calculating
the 50th Fibonacci number. A smart compiler can figure that out and execute the
loop only once—or at least discard some iterations of the loop since those operations
are redundant.

Additionally, the performance of fibImpl1(1000) is likely to be very different from
the performance of fibImpl1(1); if the goal is to compare the performance of differ‐
ent implementations, a range of input values must be considered.

A range of inputs could be random, like this:

for (int i = 0; i < nLoops; i++) {
    l = fibImpl1(random.nextInteger());
}

That likely isn’t what we want. The time to calculate the random numbers is included
in the time to execute the loop, so the test now measures the time to calculate a Fibo‐
nacci sequence nLoops times, plus the time to generate nLoops random integers.
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It is better to precalculate the input values:

int[] input = new int[nLoops];
for (int i = 0; i < nLoops; i++) {
    input[i] = random.nextInt();
}
long then = System.currentTimeMillis();
for (int i = 0; i < nLoops; i++) {
    try {
        l = fibImpl1(input[i]);
    } catch (IllegalArgumentException iae) {
    }
}
long now = System.currentTimeMillis();

Microbenchmarks must measure the correct input
You probably noticed that now the test has to check for an exception when calling the
fibImpl1() method: the input range includes negative numbers (which have no
Fibonacci number) and numbers greater than 1,476 (which yield a result that cannot
be represented as a double).

When that code is used in production, are those likely input values? In this example,
probably not; in your own benchmarks, your mileage may vary. But consider the
effect here: let’s say that you are testing two implementations of this operation. The
first is able to calculate a Fibonacci number fairly quickly but doesn’t bother to check
its input parameter range. The second immediately throws an exception if the input
parameter is out of range, but then executes a slow, recursive operation to calculate
the Fibonacci number, like this:

public double fibImplSlow(int n) {
    if (n < 0) throw new IllegalArgumentException("Must be > 0");
    if (n > 1476) throw new ArithmeticException("Must be < 1476");
    return recursiveFib(n);
}

Comparing this implementation to the original implementation over a wide range of
input values will show this new implementation is much faster than the original one
—simply because of the range checks at the beginning of the method.

If, in the real world, users are always going to pass values less than 100 to the method,
that comparison will give us the wrong answer. In the common case, the fibImpl1()
method will be faster, and as Chapter 1 explained, we should optimize for the com‐
mon case. (This is obviously a contrived example, and simply adding a bounds test to
the original implementation makes it a better implementation anyway. In the general
case, that may not be possible.)
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Microbenchmark code may behave differently in production
So far, the issues we’ve looked at can be overcome by carefully writing our microbe‐
nchmark. Other things will affect the end result of the code after it is incorporated
into a larger program. The compiler uses profile feedback of code to determine the
best optimizations to employ when compiling a method. The profile feedback is
based on which methods are frequently called, the stack depth when they are called,
the actual type (including subclasses) of their arguments, and so on—it is dependent
on the environment in which the code actually runs.

Hence, the compiler will frequently optimize code differently in a microbenchmark
than it optimizes that same code when used in a larger application.

Microbenchmarks may also exhibit very different behavior in terms of garbage col‐
lection. Consider two microbenchmark implementations: the first one produces fast
results but also produces many short-lived objects. The second is slightly slower but
produces fewer short-lived objects.

When we run a small program to test these, the first will likely be faster. Even though
it will trigger more garbage collections, they will be quick to discard the short-lived
objects in collections of the young generation, and the faster overall time will favor
that implementation. When we run this code in a server with multiple threads exe‐
cuting simultaneously, the GC profile will look different: the multiple threads will fill
up the young generation faster. Hence, many of the short-lived objects that were
quickly discarded in the case of the microbenchmark may end up getting promoted
into the old generation when used in the multithreaded server environment. This, in
turn, will lead to frequent (and expensive) full GCs. In that case, the long times spent
in the full GCs will make the first implementation perform worse than the second,
“slower” implementation that produces less garbage.

Finally, there is the issue of what the microbenchmark actually means. The overall
time difference in a benchmark such as the one discussed here may be measured in
seconds for many loops, but the per iteration difference is often measured in nano‐
seconds. Yes, nanoseconds add up, and “death by 1,000 cuts” is a frequent perfor‐
mance issue. But particularly in regression testing, consider whether tracking
something at the nanosecond level makes sense. It may be important to save a few
nanoseconds on each access to a collection that will be accessed millions of times (for
example, see Chapter 12). For an operation that occurs less frequently—for example,
maybe once per request for a REST call—fixing a nanosecond regression found by a
microbenchmark will take away time that could be more profitably spent on optimiz‐
ing other operations.

Still, for all their pitfalls, microbenchmarks are popular enough that the OpenJDK
has a core framework to develop microbenchmarks: the Java Microbenchmark Har‐
ness (jmh). jmh is used by the JDK developers to build regression tests for the JDK
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itself, as well as providing a framework for the development of general benchmarks.
We’ll discuss jmh in more detail in the next section.

What About a Warm-Up Period?
One of the performance characteristics of Java is that code performs better the more it
is executed, a topic that is covered in Chapter 4. For that reason, microbenchmarks
must include a warm-up period, which gives the compiler a chance to produce opti‐
mal code.

The advantages of a warm-up period are discussed in depth later in this chapter. For
microbenchmarks, a warm-up period is required; otherwise, the microbenchmark is
measuring the performance of compilation rather than the code it is attempting to
measure.

Macrobenchmarks
The best thing to use to measure performance of an application is the application
itself, in conjunction with any external resources it uses. This is a macrobenchmark. If
the application normally checks the credentials of a user by making calls to a direc‐
tory service (e.g., via Lightweight Directory Access Protocol, or LDAP), it should be
tested in that mode. Stubbing out the LDAP calls may make sense for module-level
testing, but the application must be tested in its full configuration.

As applications grow, this maxim becomes both more important to fulfill and more
difficult to achieve. Complex systems are more than the sum of their parts; they will
behave quite differently when those parts are assembled. Mocking out database calls,
for example, may mean that you no longer have to worry about the database perfor‐
mance—and hey, you’re a Java person; why should you have to deal with the DBA’s
performance problem? But database connections consume lots of heap space for their
buffers; networks become saturated when more data is sent over them; code is opti‐
mized differently when it calls a simpler set of methods (as opposed to the complex
code in a JDBC driver); CPUs pipeline and cache shorter code paths more efficiently
than longer code paths; and so on.

The other reason to test the full application is one of resource allocation. In a perfect
world, there would be enough time to optimize every line of code in the application.
In the real world, deadlines loom, and optimizing only one part of a complex envi‐
ronment may not yield immediate benefits.

Consider the data flow shown in Figure 2-1. Data comes in from a user, a proprietary
business calculation is made, data based on that is loaded from the database, more
proprietary calculations are made, changed data is stored back to the database, and an
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answer is sent back to the user. The number in each box is the number of requests per
second (RPS) that the module can process when tested in isolation.

From a business perspective, the proprietary calculations are the most important
thing; they are the reason the program exists, and the reason we are paid. Yet making
them 100% faster will yield absolutely no benefit in this example. Any application
(including a single, standalone JVM) can be modeled as a series of steps like this,
where data flows out of a box (module, subsystem, etc.) at a rate determined by the
efficiency of that box. Data flows into a subsystem at a rate determined by the output
rate of the previous box.

Figure 2-1. Typical program flow

Assume that an algorithmic improvement is made to the business calculation so that
it can process 200 RPS; the load injected into the system is correspondingly increased.
The LDAP system can handle the increased load: so far, so good, and 200 RPS will
flow into the calculation module, which will output 200 RPS.

But the data loading can still process only 100 RPS. Even though 200 RPS flow into
the database, only 100 RPS flow out of it and into the other modules. The total
throughput of the system is still only 100 RPS, even though the efficiency of the busi‐
ness logic has doubled. Further attempts to improve the business logic will prove
futile until time is spent improving other aspects of the environment.

The time spent optimizing the calculations in this example isn’t entirely wasted: once
effort is put into the bottlenecks elsewhere in the system, the performance benefit will
finally be apparent. Rather, it is a matter of priorities: without testing the entire appli‐
cation, it is impossible to tell where spending time on performance work will pay off.

Full-System Testing with Multiple JVMs
One particularly important case of testing a full application occurs when multiple
applications are run at the same time on the same hardware. Many aspects of the JVM
are tuned by default to assume that all machine resources are available to them, and if
those JVMs are tested in isolation, they will behave well. If they are tested when other
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applications are present (including, but not limited to, other JVMs), their perfor‐
mance will be quite different.

Examples of this are given in later chapters, but here is one quick preview: when exe‐
cuting a GC cycle, one JVM will (in its default configuration) drive the CPU usage on
a machine to 100% of all processors. If CPU is measured as an average during the
program’s execution, the usage may average out to 40%—but that really means that
the CPU is 30% busy at some times and 100% busy at other times. When the JVM is
run in isolation, that may be fine, but if the JVM is running concurrently with other
applications, it will not be able to get 100% of the machine’s CPU during GC. Its per‐
formance will be measurably different than when it was run by itself.

This is another reason why microbenchmarks and module-level benchmarks cannot
necessarily give you the full picture of an application’s performance.

Mesobenchmarks
Mesobenchmarks are tests that occupy a middle ground between a microbenchmark
and a full application. I work with developers on the performance of both Java SE and
large Java applications, and each group has a set of tests they characterize as microbe‐
nchmarks. To a Java SE engineer, that term connotes an example even smaller than
that in the first section: the measurement of something quite small. Application
developers tend to use that term to apply to something else: benchmarks that meas‐
ure one aspect of performance but that still execute a lot of code.

An example of an application microbenchmark might be something that measures
how quickly the response from a simple REST call can be returned from a server. The
code for such a request is substantial compared to a traditional microbenchmark:
there is a lot of socket-management code, code to read the request, code to write the
answer, and so on. From a traditional standpoint, this is not microbenchmarking.

This kind of test is not a macrobenchmark either: there is no security (e.g., the user
does not log in to the application), no session management, and no use of a host of
other application features. Because it is only a subset of an actual application, it falls
somewhere in the middle—it is a mesobenchmark. That is the term I use for bench‐
marks that do some real work but are not full-fledged applications.

Mesobenchmarks have fewer pitfalls than microbenchmarks and are easier to work
with than macrobenchmarks. Mesobenchmarks likely won’t contain a large amount
of dead code that can be optimized away by the compiler (unless that dead code exists
in the application, in which case optimizing it away is a good thing). Mesobench‐
marks are more easily threaded: they are still more likely to encounter more synchro‐
nization bottlenecks than the code will encounter when run in a full application, but
those bottlenecks are something the real application will eventually encounter on
larger hardware systems under larger load.
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Still, mesobenchmarks are not perfect. A developer who uses a benchmark like this to
compare the performance of two application servers may be easily led astray. Con‐
sider the hypothetical response times of two REST servers shown in Table 2-1.

Table 2-1. Hypothetical response times for two REST servers

Test Server 1 Server 2
Simple REST call 19 ± 2.1 ms 50 ± 2.3 ms

REST call with authorization 75 ± 3.4 ms 50 ± 3.1 ms

The developer who uses only a simple REST call to compare the performance of the
two servers might not realize that server 2 is automatically performing authorization
for each request. They may then conclude that server 1 will provide the fastest perfor‐
mance. Yet if their application always needs authorization (which is typical), they will
have made the incorrect choice, since it takes server 1 much longer to perform that
authorization.

Even so, mesobenchmarks offer a reasonable alternative to testing a full-scale applica‐
tion; their performance characteristics are much more closely aligned to an actual
application than are the performance characteristics of microbenchmarks. And there
is, of course, a continuum here. A later section in this chapter presents the outline of a
common application used for many of the examples in subsequent chapters. That
application has a server mode (for both REST and Jakarta Enterprise Edition servers),
but those modes don’t use server facilities like authentication, and though it can
access an enterprise resource (i.e., a database), in most examples it just makes up ran‐
dom data in place of database calls. In batch mode, it mimics some actual (but quick)
calculations: for example, no GUI or user interaction occurs.

Mesobenchmarks are also good for automated testing, particularly at the module
level.

Quick Summary

• Good microbenchmarks are hard to write without an appro‐
priate framework.

• Testing an entire application is the only way to know how code
will actually run.

• Isolating performance at a modular or operational level—via a
mesobenchmark—offers a reasonable approach but is no sub‐
stitute for testing the full application.
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Understand Throughput, Batching, and Response Time
The second principle is to understand and select the appropriate test metric for the
application. Performance can be measured as throughput (RPS), elapsed time (batch
time), or response time, and these three metrics are interrelated. Understanding those
relationships allows you to focus on the correct metric, depending on the goal of the
application.

Elapsed Time (Batch) Measurements
The simplest way to measure performance is to see how long it takes to accomplish a
certain task. We might, for example, want to retrieve the history of 10,000 stocks for a
25-year period and calculate the standard deviation of those prices, produce a report
of the payroll benefits for the 50,000 employees of a corporation, or execute a loop
1,000,000 times.

In statically compiled languages, this testing is straightforward: the application is
written, and the time of its execution is measured. The Java world adds a wrinkle to
this: just-in-time compilation. That process is described in Chapter 4; essentially it
means that it takes anywhere from a few seconds to a few minutes (or longer) for the
code to be fully optimized and operate at peak performance. For that (and other) rea‐
sons, performance studies of Java are concerned about warm-up periods: perfor‐
mance is most often measured after the code in question has been executed long
enough for it to have been compiled and optimized.

Other Factors for a Warm Application
Warming up an application is most often discussed in terms of waiting for the com‐
piler to optimize the code in question, but other factors can affect the performance of
code based on how long it has run.

The Java (or Jakarta) Persistence API (JPA), for example, will typically cache data it
has read from the database (see Chapter 11); the second time that data is used, the
operation will often be faster because the data can be obtained from the cache rather
than requiring a trip to the database. Similarly, when an application reads a file, the
operating system typically pages that file into memory. A test that subsequently reads
the same file (e.g., in a loop to measure performance) will run faster the second time,
since the data already resides in the computer’s main memory and needn’t be read
from disk.

In general, there can be many places—not all of them obvious—where data is cached
and where a warm-up period matters.

24 | Chapter 2: An Approach to Performance Testing



On the other hand, in many cases the performance of the application from start to
finish is what matters. A report generator that processes ten thousand data elements
will complete in a certain amount of time; to the end user, it doesn’t matter if the first
five thousand elements are processed 50% more slowly than the last five thousand
elements. And even in something like a REST server—where the server’s performance
will certainly improve over time—the initial performance matters. It will take some
time for a server to reach peak performance; to the users accessing the application
during that time, the performance during the warm-up period does matter.

For those reasons, many examples in this book are batch-oriented (even if that is a
little uncommon).

Throughput Measurements
A throughput measurement is based on the amount of work that can be accomplished
in a certain period of time. Although the most common examples of throughput
measurements involve a server processing data fed by a client, that is not strictly nec‐
essary: a single, standalone application can measure throughput just as easily as it
measures elapsed time.

In a client/server test, a throughput measurement means that clients have no think
time. If there is a single client, that client sends a request to the server. When the cli‐
ent receives a response, it immediately sends a new request. That process continues;
at the end of the test, the client reports the total number of operations it achieved.
Typically, the client has multiple threads doing the same thing, and the throughput is
the aggregate measure of the number of operations all clients achieved. Usually, this
number is reported as the number of operations per second, rather than the total
number of operations over the measurement period. This measurement is frequently
referred to as transactions per second (TPS), requests per second (RPS), or operations
per second (OPS).

The configuration of the client in client/server tests is important; you need to ensure
that the client can send data quickly enough to the server. This may not occur because
there aren’t enough CPU cycles on the client machine to run the desired number of
client thread, or because the client has to spend a lot of time processing the request
before it can send a new request. In those cases, the test is effectively measuring the
client performance rather than the server performance, which is usually not the goal.

This risk depends on the amount of work that each client thread performs (and the
size and configuration of the client machine). A zero-think-time (throughput-
oriented) test is more likely to encounter this situation, since each client thread is per‐
forming more requests. Hence, throughput tests are typically executed with fewer
client threads (less load) than a corresponding test that measures response time.
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Tests that measure throughput also commonly report the average response time of
requests. That is an interesting piece of information, but changes in that number
don’t indicate a performance problem unless the reported throughput is the same. A
server that can sustain 500 OPS with a 0.5-second response time is performing better
than a server that reports a 0.3-second response time but only 400 OPS.

Throughput measurements are almost always taken after a suitable warm-up period,
particularly because what is being measured is not a fixed set of work.

Response-Time Tests
The last common test is one that measures response time: the amount of time that
elapses between the sending of a request from a client and the receipt of the response.

The difference between a response-time test and a throughput test (assuming the lat‐
ter is client/server based) is that client threads in a response-time test sleep for a
period of time between operations. This is referred to as think time. A response-time
test is designed to mimic more closely what a user does: the user enters a URL in a
browser, spends time reading the page that comes back, clicks a link in the page,
spends time reading that page, and so on.

When think time is introduced into a test, throughput becomes fixed: a given number
of clients executing requests with a given think time will always yield the same TPS
(with slight variance; see the following sidebar). At that point, the important meas‐
urement is the response time for the request: the effectiveness of the server is based
on how quickly it responds to that fixed load.

Think Time and Throughput
The throughput of a test in which the clients include think time can be measured in
two ways. The simplest way is for clients to sleep for a period of time between
requests:

while (!done) {
    executeOperation();
    Thread.currentThread().sleep(30*1000);
}

In this case, the throughput is somewhat dependent on the response time. If the
response time is 1 second, it means that the client will send a request every 31 sec‐
onds, which will yield a throughput of 0.032 OPS. If the response time is 2 seconds,
each client will send a request every 32 seconds, yielding a throughput of 0.031 OPS.

The other alternative is known as cycle time (rather than think time). Cycle time sets
the total time between requests to 30 seconds, so that the time the client sleeps
depends on the response time:
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while (!done) {
    time = executeOperation();
    Thread.currentThread().sleep(30*1000 - time);
}

This alternative yields a fixed throughput of 0.033 OPS per client regardless of the
response time (assuming the response time is always less than 30 second in this
example).

Think times in testing tools often vary by design; they will average a particular value
but use random variation to better simulate what users do. In addition, thread sched‐
uling is never exactly real-time, so the actual time between the requests a client sends
will vary slightly. As a result, even when using a tool that provides a cycle time instead
of a think time, the reported throughput between runs will vary slightly. But if the
throughput is far from the expected value, something has gone wrong in the execu‐
tion of the test.

We can measure response time in two ways. Response time can be reported as an
average: the individual times are added together and divided by the number of
requests. Response time can also be reported as a percentile request; for example, the
90th% response time. If 90% of responses are less than 1.5 seconds and 10% of
responses are greater than 1.5 seconds, then 1.5 seconds is the 90th% response time.

One difference between average response time and a percentile response time is in
the way outliers affect the calculation of the average: since they are included as part of
the average, large outliers will have a large effect on the average response time.

Figure 2-2 shows a graph of 20 requests with a somewhat typical range of response
times. The response times range from 1 to 5 seconds. The average response time (rep‐
resented by the lower heavy line along the x-axis) is 2.35 seconds, and 90% of the
responses occur in 4 seconds or less (represented by the upper heavy line along the
x-axis).

This is the usual scenario for a well-behaved test. Outliers can skew that analysis, as
the data in Figure 2-3 shows.

This data set includes a huge outlier: one request took one hundred seconds. As a
result, the positions of the 90th% and average response times are reversed. The aver‐
age response time is a whopping 5.95 seconds, but the 90th% response time is 1.0 sec‐
ond. Focus in this case should be given to reducing the effect of the outlier (which
will drive down the average response time).
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1 Not that garbage collection should be expected to introduce a hundred-second delay, but particularly for tests
with small average response times, the GC pauses can introduce significant outliers.

Figure 2-2. Typical set of response times

Figure 2-3. Set of response times with an outlier

Outliers like that can occur for multiple reasons, and they can more easily occur in
Java applications because of the pause times introduced by GC.1 In performance test‐
ing, the usual focus is on the 90th% response time (or even the 95th% or 99th%
response time; there is nothing magical about 90%). If you can focus on only one
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number, a percentile-based number is the better choice, since achieving a smaller
number there will benefit a majority of users. But it is even better to look at both the
average response time and at least one percentile-based response time, so you do not
miss cases with large outliers.

Load Generators
Many open source and commercial load-generating tools exist. The examples in this
book utilize Faban, an open source, Java-based load generator. This is the code that
forms the basis of load drivers for commercial benchmarks like SPECjEnterprise by
the SPEC organization.

Faban comes with a simple program (fhb) that can be used to measure the perfor‐
mance of a simple URL:

% fhb -W 1000 -r 300/300/60 -c 25  http://host:port/StockServlet?stock=SDO
ops/sec: 8.247
% errors: 0.0
avg. time: 0.022
max time: 0.045
90th %: 0.030
95th %: 0.035
99th %: 0.035

This example measures 25 clients (-c 25) making requests to the stock servlet
(requesting symbol SDO); each request has a 1-second cycle time (-W 1000). The
benchmark has a 5-minute (300-second) warm-up period, followed by a 5-minute
measurement period and a 1-minute ramp-down period (-r 300/300/60). Follow‐
ing the test, fhb reports the OPS and various response times for the test (and because
this example includes think time, the response times are the important metric, while
the OPS will be more or less constant).

fhb is good for simple tests like this (utilizing a single command-line). A variety of
more complex load-generating tools are available: Apache JMeter, Gatling, Micro
Focus LoadRunner, and a host of others.

Quick Summary

• Batch-oriented tests (or any test without a warm-up period)
have been infrequently used in Java performance testing but
can yield valuable results.

• Other tests can measure either throughput or response time,
depending on whether the load comes in at a fixed rate (i.e.,
based on emulating think time in the client).
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Understand Variability
The third principle is to understand how test results vary over time. Programs that
process exactly the same set of data will produce a different answer each time they are
run. Background processes on the machine will affect the application, the network
will be more or less congested when the program is run, and so on. Good bench‐
marks also never process exactly the same set of data each time they are run; random
behavior will be built into the test to mimic the real world. This creates a problem:
when comparing the result from one run to the result from another run, is the differ‐
ence due to a regression or to the random variation of the test?

This problem can be solved by running the test multiple times and averaging those
results. Then when a change is made to the code being tested, the test can be rerun
multiple times, the results averaged, and the two averages compared. It sounds so
easy.

Unfortunately, it isn’t as simple as that. Understanding when a difference is a real
regression and when it is a random variation is difficult. In this key area, science leads
the way, but art will come into play.

When averages in benchmark results are compared, it is impossible to know with
absolute certainty whether the difference in the averages is real or due to random
fluctuation. The best that can be done is to hypothesize that “the averages are the
same” and then determine the probability that such a statement is true. If the state‐
ment is false with a high degree of probability, we are comfortable believing the dif‐
ference in the averages (though we can never be 100% certain).

Testing code for changes like this is called regression testing. In a regression test, the
original code is known as the baseline, and the new code is called the specimen. Take
the case of a batch program in which the baseline and specimen are each run three
times, yielding the times given in Table 2-2.

Table 2-2. Hypothetical times to execute two tests

Baseline Specimen
First iteration 1.0 second 0.5 second

Second iteration 0.8 second 1.25 seconds

Third iteration 1.2 seconds 0.5 second

Average 1 second 0.75 second

The average of the specimen indicates a 25% improvement in the code. How confi‐
dent can we be that the test really reflects a 25% improvement? Things look good: two
of the three specimen values are less than the baseline average, and the size of the
improvement is large. Yet when the analysis described in this section is performed on
those results, it turns out that the probability of the specimen and the baseline having
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2 And though three data points makes it easier to understand an example, it is too small to be accurate for any
real system.

3 Student, by the way, is the pen name of the scientist who first published the test; it isn’t named that way to
remind you of graduate school, where you (or at least I) slept through statistics class.

the same performance is 43%. When numbers like these are observed, 43% of the
time the underlying performance of the two tests are the same, and performance is
different only 57% of the time. This, by the way, is not exactly the same thing as say‐
ing that 57% of the time the performance is 25% better, but you’ll learn more about
that later in this section.

The reason these probabilities seem different than might be expected is due to the
large variation in the results. In general, the larger the variation in a set of results, the
harder it is to guess the probability that the difference in the averages is real or due to
random chance.2

This number—43%—is based on the result of Student’s t-test, which is a statistical
analysis based on the series and their variances.3 The t-test produces a number called
the p-value, which refers to the probability that the null hypothesis for the test is true.

The null hypothesis in regression testing is the hypothesis that the two tests have equal
performance. The p-value for this example is roughly 43%, which means the confi‐
dence we can have that the series converge to the same average is 43%. Conversely,
the confidence we have that the series do not converge to the same average is 57%.

What does it mean to say that 57% of the time, the series do not converge to the same
average? Strictly speaking, it doesn’t mean that we have 57% confidence that there is a
25% improvement in the result—it means only that we have 57% confidence that the
results are different. There may be a 25% improvement, there may be a 125%
improvement; it is even conceivable that the specimen has worse performance than
the baseline. The most probable likelihood is that the difference in the test is similar
to what has been measured (particularly as the p-value goes down), but certainty can
never be achieved.

The t-test is typically used in conjunction with an α-value, which is a (somewhat arbi‐
trary) point at which the result is assumed to have statistical significance. The α-value
is commonly set to 0.1—which means that a result is considered statistically signifi‐
cant if the specimen and baseline will be the same only 10% (0.1) of the time (or con‐
versely, that 90% of the time the specimen and baseline differ). Other commonly used
α-values are 0.05 (95%) or 0.01 (99%). A test is considered statistically significant if
the p-value is larger than 1 – α-value.

Understand Variability | 31



Statistics and Semantics
The correct way to present results of a t-test is to phrase a statement like this: there is
a 57% probability that the specimen differs from the baseline, and the best estimate of
that difference is 25%.

The common way to present these results is to say that there is a 57% confidence level
that there is a 25% improvement in the results. Though that isn’t exactly the same
thing and will drive statisticians crazy, it is easy shorthand to adopt and isn’t that far
off the mark. Probabilistic analysis always involves uncertainty, and that uncertainty
is better understood when the semantics are precisely stated. But particularly in an
arena where the underlying issues are well understood, semantic shortcuts will inevi‐
tably creep in.

Hence, the proper way to search for regressions in code is to determine a level of stat‐
istical significance—say, 90%—and then to use the t-test to determine if the specimen
and baseline are different within that degree of statistical significance. Care must be
taken to understand what it means if the test for statistical significance fails. In the
example, the p-value is 0.43; we cannot say that there is statistical significance within
a 90% confidence level that the result indicates that the averages are different. The
fact that the test is not statistically significant does not mean that it is an insignificant
result; it simply means that the test is inconclusive.

Statistically Important
Statistical significance does not mean statistical importance. A baseline with little var‐
iance that averages 1 second and a specimen with little variance that averages 1.01
seconds may have a p-value of 0.01: there is a 99% probability that there is a differ‐
ence in the result.

The difference itself is only 1%. Now say a different test shows a 10% regression
between specimen and baseline, but with a p-value of 0.2: not statistically significant.
Which test warrants the most precious resource of all—additional time to investigate?

Although there is less confidence in the case showing a 10% difference, time is better
spent investigating that test (starting, if possible, with getting additional data to see if
the result is actually statistically significant). Just because the 1% difference is more
probable doesn’t mean that it is more important.

The usual reason a test is statistically inconclusive is that the samples don’t have
enough data. So far, our example has looked at a series with three results in the base‐
line and the specimen. What if three additional results are added, yielding the data in
Table 2-3?
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Table 2-3. Increased sample size of hypothetical times

Baseline Specimen
First iteration 1.0 second 0.5 second

Second iteration 0.8 second 1.25 second

Third iteration 1.2 seconds 0.5 second

Fourth iteration 1.1 seconds 0.8 second

Fifth iteration 0.7 second 0.7 second

Sixth iteration 1.2 seconds 0.75 second

Average 1 second 0.75 second

With the additional data, the p-value drops from 0.43 to 0.11: the probability that the
results are different has risen from 57% to 89%. The averages haven’t changed; we just
have more confidence that the difference is not due to random variation.

Running additional tests until a level of statistical significance is achieved isn’t always
practical. It isn’t, strictly speaking, necessary either. The choice of the α-value that
determines statistical significance is arbitrary, even if the usual choice is common. A
p-value of 0.11 is not statistically significant within a 90% confidence level, but it is
statistically significant within an 89% confidence level.

Regression testing is important, but it’s not a black-and-white science. You cannot
look at a series of numbers (or their averages) and make a judgment that compares
them without doing some statistical analysis to understand what the numbers mean.
Yet even that analysis cannot yield a completely definitive answer, because of the laws
of probabilities. The job of a performance engineer is to look at the data, understand
the probabilities, and determine where to spend time based on all the available data.

Quick Summary

• Correctly determining whether results from two tests are dif‐
ferent requires a level of statistical analysis to make sure that
perceived differences are not the result of random chance.

• The rigorous way to accomplish that is to use Student’s t-test
to compare the results.

• Data from the t-test tells us the probability that a regression
exists, but it doesn’t tell us which regressions should be
ignored and which must be pursued. Finding that balance is
part of the art of performance engineering.
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Test Early, Test Often
Fourth and, finally, performance geeks (including me) like to recommend that per‐
formance testing be an integral part of the development cycle. In an ideal world, per‐
formance tests would be run as part of the process when code is checked into the
central repository; code that introduces performance regressions would be blocked
from being checked in.

Some inherent tension exists between that recommendation and other recommenda‐
tions in this chapter—and between that recommendation and the real world. A good
performance test will encompass a lot of code—at least a medium-sized mesobench‐
mark. It will need to be repeated multiple times to establish confidence that any dif‐
ference found between the old code and the new code is a real difference and not just
random variation. On a large project, this can take a few days or a week, making it
unrealistic to run performance tests on code before checking it into a repository.

The typical development cycle does not make things any easier. A project schedule
often establishes a feature-freeze date: all feature changes to code must be checked
into the repository at an early point in the release cycle, and the remainder of the
cycle is devoted to shaking out any bugs (including performance issues) in the new
release. This causes two problems for early testing:

• Developers are under time constraints to get code checked in to meet the sched‐
ule; they will balk at having to spend time fixing a performance issue when the
schedule has time for that after all the initial code is checked in. The developer
who checks in code causing a 1% regression early in the cycle will face pressure to
fix that issue; the developer who waits until the evening of the feature freeze can
check in code that causes a 20% regression and deal with it later.

• Performance characteristics of code will change as the code changes. This is the
same principle that argued for testing the full application (in addition to any
module-level tests that may occur): heap usage will change, code compilation will
change, and so on.

Despite these challenges, frequent performance testing during development is impor‐
tant, even if the issues cannot be immediately addressed. A developer who introduces
code causing a 5% regression may have a plan to address that regression as develop‐
ment proceeds: maybe the code depends on an as-yet-to-be integrated feature, and
when that feature is available, a small tweak will allow the regression to go away.
That’s a reasonable position, even though it means that performance tests will have to
live with that 5% regression for a few weeks (and the unfortunate but unavoidable
issue that said regression is masking other regressions).

On the other hand, if the new code causes a regression that can be fixed with only
architectural changes, it is better to catch the regression and address it early, before
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the rest of the code starts to depend on the new implementation. It’s a balancing act,
requiring analytic and often political skills.

Early, frequent testing is most useful if the following guidelines are followed:

Automate everything
All performance testing should be scripted (or programmed, though scripting is
usually easier). Scripts must be able to install the new code, configure it into the
full environment (creating database connections, setting up user accounts, and so
on), and run the set of tests. But it doesn’t stop there: the scripts must be able to
run the test multiple times, perform t-test analysis on the results, and produce a
report showing the confidence level that the results are the same, and the meas‐
ured difference if they are not the same.

The automation must make sure that the machine is in a known state before tests
are run: it must check that no unexpected processes are running, that the OS
configuration is correct, and so on. A performance test is repeatable only if the
environment is the same from run to run; the automation must take care of that.

Measure everything
The automation must gather every conceivable piece of data that will be useful
for later analysis. This includes system information sampled throughout the run:
CPU usage, disk usage, network usage, memory usage, and so on. It includes logs
from the application—both those the application produces, and the logs from the
garbage collector. Ideally, it can include Java Flight Recorder (JFR) recordings
(see Chapter 3) or other low-impact profiling information, periodic thread
stacks, and other heap analysis data like histograms or full heap dumps (though
the full heap dumps, in particular, take a lot of space and cannot necessarily be
kept long-term).

The monitoring information must also include data from other parts of the sys‐
tem, if applicable: for example, if the program uses a database, include the system
statistics from the database machine as well as any diagnostic output from the
database (including performance reports like Oracle’s Automatic Workload
Repository, or AWR, reports).

This data will guide the analysis of any regressions that are uncovered. If the CPU
usage has increased, it’s time to consult the profile information to see what is tak‐
ing more time. If the time spent in GC has increased, it’s time to consult the heap
profiles to see what is consuming more memory. If CPU time and GC time have
decreased, contention somewhere has likely slowed performance: stack data can
point to particular synchronization bottlenecks (see Chapter 9), JFR recordings
can be used to find application latencies, or database logs can point to something
that has increased database contention.
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When figuring out the source of a regression, it is time to play detective, and the
more data that is available, the more clues there are to follow. As discussed in
Chapter 1, it isn’t necessarily the case that the JVM is the regression. Measure
everything, everywhere, to make sure the correct analysis can be done.

Run on the target system
A test that is run on a single-core laptop will behave differently than a test run on
a machine with 72 cores. That should be clear in terms of threading effects: the
larger machine is going to run more threads at the same time, reducing conten‐
tion among application threads for access to the CPU. At the same time, the large
system will show synchronization bottlenecks that would be unnoticed on the
small laptop.

Other performance differences are just as important, even if they are not as
immediately obvious. Many important tuning flags calculate their defaults based
on the underlying hardware the JVM is running on. Code is compiled differently
from platform to platform. Caches—software and, more importantly, hardware—
behave differently on different systems and under different loads. And so on…

Hence, the performance of a particular production environment can never be
fully known without testing the expected load on the expected hardware.
Approximations and extrapolations can be made from running smaller tests on
smaller hardware, and in the real world, duplicating a production environment
for testing can be quite difficult or expensive. But extrapolations are simply pre‐
dictions, and even in the best case, predictions can be wrong. A large-scale sys‐
tem is more than the sum of its parts, and there can be no substitute for
performing adequate load testing on the target platform.

Quick Summary

• Frequent performance testing is important, but it doesn’t
occur in a vacuum; there are trade-offs to consider regarding
the normal development cycle.

• An automated testing system that collects all possible statistics
from all machines and programs will provide the necessary
clues to any performance regressions.

Benchmark Examples
Some examples in this book use jmh to provide a microbenchmark. In this section,
we’ll look in depth at how one such microbenchmark is developed as an example of
how to write your own jmh benchmark. But many examples in this book are based on
variants of a mesobenchmark—a test that is complex enough to exercise various JVM
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features but less complex than a real application. So following our exploration of jmh,
we’ll look through some of the common code examples of the mesobenchmark used
in later chapters so that those examples have some context.

Java Microbenchmark Harness
jmh is a set of classes that supply a framework for writing benchmarks. The m in jmh
used to stand for microbenchmark, though now jmh advertises itself as suitable for
nano/micro/milli/macro benchmarks. Its typical usage, though, remains small
(micro) benchmarks. Although jmh was announced in conjunction with Java 9, it isn’t
really tied to any specific Java release, and no tools in the JDK support jmh. The class
libraries that make up jmh are compatible with JDK 8 and later releases.

jmh takes some of the uncertainty out of writing a good benchmark, but it is not a
silver bullet; you still must understand what you’re benchmarking and how to write
good benchmark code. But the features of jmh are designed to make that easier.

jmh is used for a few examples in the book, including a test for JVM parameters that
affect string interning presented in Chapter 12. We’ll use that example here to under‐
stand how to write a benchmark using jmh.

It is possible to write a jmh benchmark from scratch, but it is easier to start with a
jmh-provided main class and write only the benchmark-specific code. And while it is
possible to get the necessary jmh classes by using a variety of tools (and even certain
IDEs), the basic method is to use Maven. The following command will create a
Maven project that we can add our benchmark code to:

$ mvn archetype:generate \
      -DinteractiveMode=false \
      -DarchetypeGroupId=org.openjdk.jmh \
      -DarchetypeArtifactId=jmh-java-benchmark-archetype \
      -DgroupId=net.sdo \
      -DartifactId=string-intern-benchmark \
      -Dversion=1.0

This creates the Maven project in the string-intern-benchmark directory; there, it cre‐
ates a directory with the given groupId name, and a skeleton benchmark class called
MyBenchmark. There’s nothing special about that name; you can create a different (or
several different) classes, since jmh will figure out which classes to test by looking for
an annotation called Benchmark.

We’re interested in testing the performance of the String.intern() method, so the
first benchmark method we would write looks like this:

import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.infra.Blackhole;

public class MyBenchmark {
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    @Benchmark
    public void testIntern(Blackhole bh) {
        for (int i = 0; i < 10000; i++) {
            String s = new String("String to intern " + i);
            String t = s.intern();
            bh.consume(t);
        }
    }
}

The basic outline of the testIntern() method should make sense: we are testing the
time to create 10,000 interned strings. The Blackhole class used here is a jmh feature
that addresses one of the points about microbenchmarking: if the value of an opera‐
tion isn’t used, the compiler is free to optimize out the operation. So we make sure
that the values are used by passing them to the consume() method of the Blackhole.

In this example, the Blackhole isn’t strictly needed: we’re really interested in only the
side effects of calling the intern() method, which is going to insert a string into a
global hash table. That state change cannot be compiled away even if we don’t use the
return value from the intern() method itself. Still, rather than puzzle through
whether it’s necessary to consume a particular value, it’s better to be in the habit of
making sure the operation will execute as we expect and consume calculated values.

To compile and run the benchmark:

$ mvn package
... output from mvn...
$ java -jar target/benchmarks.jar
# Warmup: 5 iterations, 10 s each
# Measurement: 5 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Throughput, ops/time
# Benchmark: net.sdo.MyBenchmark.testIntern

# Run progress: 0.00% complete, ETA 00:08:20
# Fork: 1 of 5
# Warmup Iteration   1: 189.999 ops/s
# Warmup Iteration   2: 170.331 ops/s
# Warmup Iteration   3: 195.393 ops/s
# Warmup Iteration   4: 184.782 ops/s
# Warmup Iteration   5: 158.762 ops/s
Iteration   1: 182.426 ops/s
Iteration   2: 172.446 ops/s
Iteration   3: 166.488 ops/s
Iteration   4: 182.737 ops/s
Iteration   5: 168.755 ops/s

# Run progress: 20.00% complete, ETA 00:06:44
# Fork: 2 of 5
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.... similar output until ...

Result "net.sdo.MyBenchmark.testIntern":
  177.219 ±(99.9%) 10.140 ops/s [Average]
  (min, avg, max) = (155.286, 177.219, 207.970), stdev = 13.537
  CI (99.9%): [167.078, 187.359] (assumes normal distribution)

Benchmark                Mode  Cnt    Score    Error  Units
MyBenchmark.testIntern  thrpt   25  177.219 ± 10.140  ops/s

From the output, we can see how jmh helps avoid the pitfalls that we discussed earlier
in this chapter. First, see that we execute five warm-up iterations of 10 seconds each,
followed by five measurement iterations (also of 10 seconds each). The warm-up iter‐
ations allow the compiler to fully optimize the code, and then the harness will report
information from only the iterations of that compiled code.

Then see that there are different forks (five in all). The harness is repeating the test
five times, each time in a separate (newly forked) JVM in order to determine the
repeatability of the results. And each JVM needs to warm up and then measure the
code. A forked test like this (with warm-up and measurement intervals) is called a
trial. In all, each test takes one hundred seconds for 5 warm-up and 5 measurement
cycles; that is all repeated 5 times, and the total execution time is 8:20 minutes.

Finally, we have the summary output: on average, the testIntern() method exe‐
cuted 177 times per second. With a confidence interval of 99.9%, we can say that the
statistical average lies between 167 and 187 operations per second. So jmh also helps
us with the necessary statistical analysis we need to understand if a particular result is
running with acceptable variance.

JMH and parameters
Often you want a range of input for a test; in this example, we’d like to see the effect of
interning 1 or 10,000 (or maybe even 1 million) strings. Rather than hardcoding that
value in the testIntern() method, we can introduce a parameter:

@Param({"1","10000"})
private int nStrings;

@Benchmark
public void testIntern(Blackhole bh) {
    for (int i = 0; i < nStrings; i++) {
        String s = new String("String to intern " + i);
        String t = s.intern();
        bh.consume(t);
    }
}

Now jmh will report results for both values of the parameter:
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$ java -jar target/benchmarks.jar
...lots of output...
Benchmark               (nStrings)   Mode  Cnt        Score        Error  Units
MyBenchmark.testMethod           1  thrpt   25  2838957.158 ± 284042.905  ops/s
MyBenchmark.testMethod       10000  thrpt   25      202.829 ±     15.396  ops/s

Predictably, with a loop size of 10,000, the number of times the loop is run per second
is reduced by a factor of 10,000. In fact, the result for 10,000 strings is less than some‐
thing around 283 as we might hope, which is due to the way the string intern table
scales (which is explained when we use this benchmark in Chapter 12).

It’s usually easier to have a single simple value for the parameter in the source code
and use that for testing. When you run the benchmark, you can give it a list of values
to use for each parameter, overriding the value that is hardcoded in the Java code:

$ java -jar target/benchmarks.jar -p nStrings=1,1000000

Comparing tests
The genesis of this benchmark is to figure out if we can make string interning faster
by using different JVM tunings. To do that, we’ll run the benchmark with different
JVM arguments by specifying those arguments on the command line:

$ java -jar target/benchmarks.jar
... output from test 1 ...
$ java -jar target/benchmarks.jar -jvmArg -XX:StringTableSize=10000000
... output from test 2 ...

Then we can manually inspect and compare the difference the tuning has made in
our result.

More commonly, you want to compare two implementations of code. String interning
is fine, but could we do better by using a simple hash map and managing that? To test
that, we would define another method in the class and annotate that with the Bench
mark annotation. Our first (and suboptimal) pass at that would look like this:

private static ConcurrentHashMap<String,String> map = new ConcurrentHashMap<>();
@Benchmark
public void testMap(Blackhole bh) {
    for (int i = 0; i < nStrings; i++) {
        String s = new String("String to intern " + i);
        String t = map.putIfAbsent(s, s);
        bh.consume(t);
    }
}

jmh will run all annotated methods through the same series of warm-up and meas‐
urement iterations (always in newly forked JVMs) and produce a nice comparison:

Benchmark               (nStrings)   Mode  Cnt    Score     Error  Units
MyBenchmark.testIntern       10000  thrpt   25  212.301 ± 207.550  ops/s
MyBenchmark.testMap          10000  thrpt   25  352.140 ±  84.397  ops/s
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Managing the interned objects by hand has given a nice improvement here (though
beware: issues with the benchmark as written remain; this isn’t the final word).

Setup code

The previous output is abbreviated for this format, but when you run jmh tests, you’ll
see a long caveat before the results are printed. The gist of this caveat is “just because
you put some code into jmh, don’t assume you’ve written a good benchmark: test your
code and make sure it’s testing what you expect.”

Let’s look again at the benchmark definition. We wanted to test how long it took to
intern 10,000 strings, but what we are testing is the time it takes to create (via concat‐
enation) 10,000 strings plus the time it takes to intern the resulting strings. The range
of those strings is also fairly limited: they are the same initial 17 characters followed
by an integer. In the same way we pre-created input for the handwritten Fibonacci
microbenchmark, we should pre-create input in this case.

It could be argued that the range of strings doesn’t matter to this benchmark and the
concatenation is minor and that hence the original test is completely accurate. That is
possibly true, but proving that point requires some work. Better just to write a bench‐
mark where those questions aren’t an issue than to make assumptions about what’s
going on.

We also have to think deeply about what is going on in the test. Essentially, the table
holding the interned strings is a cache: the interned string might be there (in which
case it is returned), or it might not (in which case it is inserted). And now we have a
problem when we compare the implementations: the manually managed concurrent
hash map is never cleared during a test. That means that during the first warm-up
cycle, the strings are inserted into the map, and in subsequent measurement cycles,
the strings are already there: the test has a 100% hit rate on the cache.

The string intern table doesn’t work that way: the keys in the string intern table are
essentially weak references. Hence, the JVM may clear some or all entries at any point
in time (since the interned string goes out of scope immediately after it is inserted
into the table). The cache hit rate in this case is indeterminate, but it is likely not any‐
where close to 100%. So as it stands now, the intern test is going to do more work,
since it has to update the internal string table more frequently (both to delete and
then to re-add entries).

Both of these issues will be avoided if we pre-create the strings into a static array and
then intern them (or insert them into the hash map). Because the static array main‐
tains a reference to the string, the reference in the string table will not be cleared.
Then both tests will have a 100% hit rate during the measurement cycles, and the
range of strings will be more comprehensive.

Benchmark Examples | 41



We need to do this initialization outside the measurement period, which is accom‐
plished using the Setup annotation:

private static ConcurrentHashMap<String,String> map;
private static String[] strings;

@Setup(Level.Iteration)
public void setup() {
    strings = new String[nStrings];
    for (int i = 0; i < nStrings; i++) {
        strings[i] = makeRandomString();
    }
    map = new ConcurrentHashMap<>();
}

@Benchmark
public void testIntern(Blackhole bh) {
    for (int i = 0; i < nStrings; i++) {
        String t = strings[i].intern();
        bh.consume(t);
    }
}

The Level value given to the Setup annotation controls when the given method is
executed. Level can take one of three values:

Level.Trial

The setup is done once, when the benchmark code initializes.

Level.Iteration

The setup is done before each iteration of the benchmark (each measurement
cycle).

Level.Invocation

The setup is done before each time the test method is executed.

Setup Code and Low-Level Tests
Some of the jmh tests in later chapters will report that particular operations differ by
only a few nanoseconds. Those tests are not really measuring individual operations
and reporting something that took nanoseconds; they are measuring a lot of opera‐
tions and reporting the average (within statistical variance). jmh manages all of that
for us.

This leads to an important caveat: when there is setup code to execute on every invo‐
cation, jmh can have a lot of difficulty performing this average invocation analysis. For
that (and other) reasons, it is recommended to use the Level.Invocation annotation
rarely, and only for test methods that themselves take a long period of time.
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A similar Teardown annotation could be used in other cases to clear state if required.

jmh has many additional options, including measuring single invocations of a method
or measuring average time instead of throughput, passing additional JVM arguments
to a forked JVM, controlling thread synchronization, and more. My goal isn’t to pro‐
vide a complete reference for jmh; rather, this example ideally shows the complexity
involved even in writing a simple microbenchmark.

Controlling execution and repeatability
Once you have a correct microbenchmark, you’ll need to run it in such a way that the
results make statistical sense for what you are measuring.

As you’ve just seen, by default jmh will run the target method for a period of 10 sec‐
onds by executing it as many times as necessary over that interval (so in the previous
example, it was executed an average of 1,772 times over 10 seconds). Each 10-second
test is an iteration, and by default there were five warm-up iterations (where the
results were discarded) and five measurement iterations each time a new JVM was
forked. And that was all repeated for five trials.

All of that is done so jmh can perform the statistical analysis to calculate the confi‐
dence interval in the result. In the cases presented earlier, the 99.9% confidence inter‐
val has a range of about 10%, which may or may not be sufficient when comparing to
other benchmarks.

We can get a smaller or larger confidence interval by varying these parameters. For
example, here are the results from running the two benchmarks with a low number of
measurement iterations and trials:

Benchmark               (nStrings)   Mode  Cnt    Score     Error  Units
MyBenchmark.testIntern       10000  thrpt    4  233.359 ±  95.304  ops/s
MyBenchmark.testMap          10000  thrpt    4  354.341 ± 166.491  ops/s

That result makes it look like using the intern() method is far worse than using a
map, but look at the range: it is possible that the real result of the first case is close to
330 ops/s, while the real result of the second case is close to 200 ops/s. Even if that’s
unlikely, the ranges here are too broad to conclusively decide which is better.

That result is from having only two forked trials of two iterations each. If we increase
that to 10 iterations each, we get a better result:

MyBenchmark.testIntern       10000  thrpt   20  172.738 ± 29.058  ops/s
MyBenchmark.testMap          10000  thrpt   20  305.618 ± 22.754  ops/s

Now the ranges are discrete, and we can confidently conclude that the map technique
is superior (at least with respect to a test with a 100% cache hit-rate and 10,000
unchanging strings).
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There is no hard-and-fast rule as to how many iterations, how many forked trials, or
what length of execution will be needed to get enough data so that the results are clear
like this. If you are comparing two techniques that have little difference between
them, you’ll need a lot more iterations and trials. On the other hand, if they’re that
close together, perhaps you’re better off looking at something that will have a greater
impact on performance. This again is a place where art influences science; at some
point, you’ll have to decide for yourself where the boundaries lie.

All of these variables—number of iterations, length of each interval, etc.—are con‐
trolled via command-line arguments to the standard jmh benchmark. Here are the
most relevant ones:

-f 5

Number of forked trials to run (default: 5).

-wi 5

Number of warm-up iterations per trial (default: 5).

-i 5

Number of measurement iterations per trial (default: 5).

-r 10

Minimum length of time (in seconds) of each iteration; an iteration may run
longer than this, depending on the actual length of the target method.

Increasing these parameters will generally lower the variability of a result until you
have the desired confidence range. Conversely, for more stable tests, lowering these
parameters will generally reduce the time required to run the test.

Quick Summary

• jmh is a framework and harness for writing microbenchmarks
that provides help to properly address the requirements of
such benchmarks.

• jmh isn’t a replacement for deeply thinking about writing the
code that you measure; it’s simply a useful tool in its
development.

Common Code Examples
Many of the examples in this book are based on a sample application that calculates
the “historical” high and low price of a stock over a range of dates, as well as the stan‐
dard deviation during that time. Historical is in quotes here because in the applica‐
tion, all the data is fictional; the prices and the stock symbols are randomly generated.
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The basic object within the application is a StockPrice object that represents the
price range of a stock on a given day, along with a collection of option prices for that
stock:

public interface StockPrice {
    String getSymbol();
    Date getDate();
    BigDecimal getClosingPrice();
    BigDecimal getHigh();
    BigDecimal getLow();
    BigDecimal getOpeningPrice();
    boolean isYearHigh();
    boolean isYearLow();
    Collection<? extends StockOptionPrice> getOptions();
}

The sample applications typically deal with a collection of these prices, representing
the history of the stock over a period of time (e.g., 1 year or 25 years, depending on
the example):

public interface StockPriceHistory {
    StockPrice getPrice(Date d);
    Collection<StockPrice> getPrices(Date startDate, Date endDate);
    Map<Date, StockPrice> getAllEntries();
    Map<BigDecimal,ArrayList<Date>> getHistogram();
    BigDecimal getAveragePrice();
    Date getFirstDate();
    BigDecimal getHighPrice();
    Date getLastDate();
    BigDecimal getLowPrice();
    BigDecimal getStdDev();
    String getSymbol();
}

The basic implementation of this class loads a set of prices from the database:

public class StockPriceHistoryImpl implements StockPriceHistory {
    ...
    public StockPriceHistoryImpl(String s, Date startDate,
        Date endDate, EntityManager em) {
        Date curDate = new Date(startDate.getTime());
        symbol = s;
        while (!curDate.after(endDate)) {
            StockPriceImpl sp = em.find(StockPriceImpl.class,
                         new StockPricePK(s, (Date) curDate.clone()));
            if (sp != null) {
                Date d = (Date) curDate.clone();
                if (firstDate == null) {
                    firstDate = d;
                }
                prices.put(d, sp);
                lastDate = d;
            }
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            curDate.setTime(curDate.getTime() + msPerDay);
        }
    }
    ...
}

The architecture of the samples is designed to be loaded from a database, and that
functionality will be used in the examples in Chapter 11. However, to facilitate run‐
ning the examples, most of the time they will use a mock entity manager that gener‐
ates random data for the series. In essence, most examples are module-level
mesobenchmarks that are suitable for illustrating the performance issues at hand—
but we would have an idea of the actual performance of the application only when the
full application is run (as in Chapter 11).

One caveat is that numerous examples are therefore dependent on the performance
of the random number generator in use. Unlike the microbenchmark example, this is
by design, as it allows the illustration of several performance issues in Java. (For that
matter, the goal of the examples is to measure the performance of an arbitrary thing,
and the performance of the random number generator fits that goal. That is quite dif‐
ferent from a microbenchmark, where including the time for generating random
numbers would affect the overall calculation.)

The examples also heavily depend on the performance of the BigDecimal class,
which is used to store all the data points. This is a standard choice for storing cur‐
rency data; if the currency data is stored as primitive double objects, rounding of
half-pennies and smaller amounts becomes quite problematic. From the perspective
of writing examples, that choice is also useful as it allows some “business logic” or
lengthy calculation to occur—particularly in calculating the standard deviation of a
series of prices. The standard deviation relies on knowing the square root of a
BigDecimal number. The standard Java API doesn’t supply such a routine, but the
examples use this method:

public static BigDecimal sqrtB(BigDecimal bd) {
    BigDecimal initial = bd;
    BigDecimal diff;
    do {
        BigDecimal sDivX = bd.divide(initial, 8, RoundingMode.FLOOR);
        BigDecimal sum = sDivX.add(initial);
        BigDecimal div = sum.divide(TWO, 8, RoundingMode.FLOOR);
        diff = div.subtract(initial).abs();
        diff.setScale(8, RoundingMode.FLOOR);
        initial = div;
    } while (diff.compareTo(error) > 0);
    return initial;
}

This is an implementation of the Babylonian method for estimating the square root of
a number. It isn’t the most efficient implementation; in particular, the initial guess
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could be much better, which would save some iterations. That is deliberate because it
allows the calculation to take some time (emulating business logic), though it does
illustrate the basic point made in Chapter 1: often the better way to make Java code
faster is to write a better algorithm, independent of any Java tuning or Java coding
practices that are employed.

The standard deviation, average price, and histogram of an implementation of the
StockPriceHistory interface are all derived values. In different examples, these val‐
ues will be calculated eagerly (when the data is loaded from the entity manager) or
lazily (when the method to retrieve the data is called). Similarly, the StockPrice
interface references a StockOptionPrice interface, which is the price of certain
options for the given stock on the given day. Those option values can be retrieved
from the entity manager either eagerly or lazily. In both cases, the definition of these
interfaces allows these approaches to be compared in different situations.

These interfaces also fit naturally into a Java REST application: users can make a call
with parameters indicating the symbol and date range for a stock they are interested
in. In the standard example, the request will go through a standard calling using the
Java API for RESTful Web Services (JAX-RS) call that parses the input parameters,
calls an embedded JPA bean to get the underlying data, and forwards the response:

    @GET
    @Produces(MediaType.APPLICATION_JSON)
    public JsonObject getStockInfo(
        @DefaultValue("" + StockPriceHistory.STANDARD)
              @QueryParam("impl") int impl,
        @DefaultValue("true") @QueryParam("doMock") boolean doMock,
        @DefaultValue("") @QueryParam("symbol") String symbol,
        @DefaultValue("01/01/2019") @QueryParam("start") String start,
        @DefaultValue("01/01/2034") @QueryParam("end") String end,
        @DefaultValue("0") @QueryParam("save") int saveCount
        ) throws ParseException {

        StockPriceHistory sph;
        EntityManager em;
        DateFormat df = localDateFormatter.get();  // Thread-local
        Date startDate = df.parse(start);
        Date endDate = df.parse(end);

        em = // ... get the entity manager based on the test permutation
        sph = em.find(...based on arguments...);
        return JSON.createObjectBuilder()
                .add("symbol", sph.getSymbol())
                .add("high", sph.getHighPrice())
                .add("low", sph.getLowPrice())
                .add("average", sph.getAveragePrice())
                .add("stddev", sph.getStdDev())
                .build();
    }
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This class can inject different implementations of the history bean (for eager or lazy
initialization, among other things); it will optionally cache the data retrieved from the
backend database (or mock entity manager). Those are the common options when
dealing with the performance of an enterprise application (in particular, caching data
in the middle tier is sometimes considered the big performance advantage of an
application server). Examples throughout the book examine those trade-offs as well.

Summary
Performance testing involves trade-offs. Making good choices among competing
options is crucial to successfully tracking the performance characteristics of a system.

Choosing what to test is the first area where experience with the application and intu‐
ition will be of immeasurable help when setting up performance tests.
Microbenchmarks are helpful to set a guideline for certain operations. That leaves a
broad continuum of other tests, from small module-level tests to a large, multitiered
environment. Tests all along that continuum have merit, and choosing the tests along
that continuum is one place where experience and intuition will come into play. How‐
ever, in the end there can be no substitute for testing a full application as it is
deployed in production; only then can the full effect of all performance-related issues
be understood.

Similarly, understanding what is and is not an actual regression in code is not always
a black-and-white issue. Programs always exhibit random behavior, and once ran‐
domness is injected into the equation, we will never be 100% certain about what data
means. Applying statistical analysis to the results can help turn the analysis to a more
objective path, but even then some subjectivity will be involved. Understanding the
underlying probabilities and what they mean can help to reduce that subjectivity.

Finally, with these foundations in place, an automated testing system can be set up to
gather full information about everything that occurred during the test. With the
knowledge of what’s going on and what the underlying tests mean, the performance
analyst can apply both science and art so that the program can exhibit the best possi‐
ble performance.
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CHAPTER 3

A Java Performance Toolbox

Performance analysis is all about visibility—knowing what is going on inside an
application and in the application’s environment. Visibility is all about tools. And so
performance tuning is all about tools.

In Chapter 2, we looked at the importance of taking a data-driven approach to perfor‐
mance: you must measure the application’s performance and understand what those
measurements mean. Performance analysis must be similarly data-driven: you must
have data about what, exactly, the program is doing in order to make it perform bet‐
ter. How to obtain and understand that data is the subject of this chapter.

Hundreds of tools can provide information about what a Java application is doing,
and looking at all of them would be impractical. Many of the most important tools
come with the Java Development Kit (JDK), and although those tools have other
open source and commercial competitors, this chapter focuses mostly on the JDK
tools as a matter of expedience.

Operating System Tools and Analysis
The starting point for program analysis is not Java-specific at all: it is the basic set of
monitoring tools that come with the operating system. On Unix-based systems, these
are sar (System Accounting Report) and its constituent tools like vmstat, iostat,
prstat, and so on. Windows has graphical resource monitors as well as command-
line utilities like typeperf.

Whenever performance tests are run, data should be gathered from the operating sys‐
tem. At a minimum, information on CPU, memory, and disk usage should be collec‐
ted; if the program uses the network, information on network usage should be
gathered as well. If performance tests are automated, this means relying on
command-line tools (even on Windows). But even if tests are running interactively, it
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is better to have a command-line tool that captures output, rather than eyeballing a
GUI graph and guessing what it means. The output can always be graphed later when
doing analysis.

CPU Usage
Let’s look first at monitoring the CPU and what it tells us about Java programs. CPU
usage is typically divided into two categories: user time and system time (Windows
refers to this as privileged time). User time is the percentage of time the CPU is execut‐
ing application code, while system time is the percentage of time the CPU is executing
kernel code. System time is related to the application; if the application performs I/O,
for example, the kernel will execute the code to read the file from disk, or write the
buffered data to the network, and so on. Anything that uses an underlying system
resource will cause the application to use more system time.

The goal in performance is to drive CPU usage as high as possible for as short a time
as possible. That may sound a little counterintuitive; you’ve doubtless sat at your
desktop and watched it struggle because the CPU is 100% utilized. So let’s consider
what the CPU usage actually tells us.

The first thing to keep in mind is that the CPU usage number is an average over an
interval—5 seconds, 30 seconds, perhaps even as little as 1 second (though never
really less than that). Say that the average CPU usage of a program is 50% for the 10
minutes it takes to execute. This means that the CPU is idle for half the time; if we
can restructure the program to not have idle patches (nor other bottlenecks), we can
double the performance and run in 5 minutes (with the CPU 100% busy).

If then we improve the algorithm used by the program and double performance
again, the CPU will still be at 100% during the 2.5 minutes it takes the program to
complete. The CPU usage number is an indication of how effectively the program is
using the CPU, and so the higher the number, the better.

If I run vmstat 1 on my Linux desktop, I will get a series of lines (one every second)
that look like this:

% vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa
 2  0      0 1797836 1229068 1508276 0    0     0     9 2250 3634 41  3 55  0
 2  0      0 1801772 1229076 1508284 0    0     0     8 2304 3683 43  3 54  0
 1  0      0 1813552 1229084 1508284 0    0     3    22 2354 3896 42  3 55  0
 1  0      0 1819628 1229092 1508292 0    0     0    84 2418 3998 43  2 55  0

This example comes from running an application with one active thread—that makes
the example easier to follow—but the concepts apply even if there are multiple
threads.
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During each second, the CPU is busy for 450 ms (42% of the time executing user
code, and 3% of the time executing system code). Similarly, the CPU is idle for 550
ms. The CPU can be idle for multiple reasons:

• The application might be blocked on a synchronization primitive and unable to
execute until that lock is released.

• The application might be waiting for something, such as a response to come back
from a call to the database.

• The application might have nothing to do.

These first two situations are always indicative of something that can be addressed. If
contention on the lock can be reduced or the database can be tuned so that it sends
the answer back more quickly, then the program will run faster, and the average CPU
use of the application will go up (assuming, of course, that there isn’t another such
issue that will continue to block the application).

That third point is where confusion often lies. If the application has something to do
(and is not prevented from doing it because it is waiting for a lock or another
resource), then the CPU will spend cycles executing the application code. This is a
general principle, not specific to Java. Say that you write a simple script containing an
infinite loop. When that script is executed, it will consume 100% of a CPU. The fol‐
lowing batch job will do just that in Windows:

ECHO OFF
:BEGIN
ECHO LOOPING
GOTO BEGIN
REM We never get here...
ECHO DONE

Consider what it would mean if this script did not consume 100% of a CPU. It would
mean that the operating system had something it could do—it could print yet another
line saying LOOPING—but it chose instead to be idle. Being idle doesn’t help anyone in
that case, and if we were doing a useful (lengthy) calculation, forcing the CPU to be
periodically idle would mean that it would take longer to get the answer we are after.

If you run this command on a single-CPU machine or container, much of the time
you are unlikely to notice that it is running. But if you attempt to start a new pro‐
gram, or time the performance of another application, then you will certainly see the
effect. Operating systems are good at time-slicing programs that are competing for
CPU cycles, but less CPU will be available for the new program, and it will run more
slowly. That experience sometimes leads people to think it would be a good idea to
leave some idle CPU cycles just in case something else needs them.

But the operating system cannot guess what you want to do next; it will (by default)
execute everything it can rather than leaving the CPU idle.

Operating System Tools and Analysis | 51



Limiting CPU for a Program
Running a program whenever CPU cycles are available maximizes the performance
of that program. At times you might not want that behavior. If, for example, you run
SETI@home, it will consume all available CPU cycles on your machine. That may be
fine when you aren’t working, or if you’re just surfing the web or writing documents,
but it could otherwise hamper your productivity. (And let’s not consider what might
happen if you are playing a CPU-intensive game!)

Several operating-system-specific mechanisms can artificially throttle the amount of
CPU that a program uses—in effect, forcing the CPU to leave idle cycles just in case
something might want to take advantage of them. The priority of processes can also
be changed so that those background jobs don’t take CPU from what you want to run
but still don’t leave idle CPU cycles. Those techniques are beyond the scope of our
discussion (and for the record, SETI@home will let you configure those; it won’t really
take up all the spare cycles on your machine unless you tell it to do so).

Java and single-CPU usage
To return to the discussion of the Java application—what does periodic, idle CPU
mean in that case? It depends on the type of application. If the code in question is a
batch-style application that has a fixed amount of work, you should never see idle
CPU, because that would mean there is no work to do. Driving the CPU usage higher
is always the goal for batch jobs, because the job will be completed faster. If the CPU
is already at 100%, you can still look for optimizations that allow the work to be com‐
pleted faster (while trying also to keep the CPU at 100%).

If the measurement involves a server-style application that accepts requests from a
source, idle time may occur because no work is available: for example, when a web
server has processed all outstanding HTTP requests and is waiting for the next
request. This is where the average time comes in. The sample vmstat output was
taken during execution of a server that was receiving one request every second. It
took 450 ms for the application server to process that request—meaning that the CPU
was 100% busy for 450 ms, and 0% busy for 550 ms. That was reported as the CPU
being 45% busy.

Although it usually happens at a level of granularity that is too small to visualize, the
expected behavior of the CPU when running a load-based application is to operate in
short bursts like this. The same macro-level pattern will be seen from the reporting if
the CPU received one request every half-second and the average time to process the
request was 225 ms. The CPU would be busy for 225 ms, idle for 275 ms, busy again
for 225 ms, and idle for 275 ms: on average, 45% busy and 55% idle.
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If the application is optimized so that each request takes only 400 ms, the overall CPU
usage will also be reduced (to 40%). This is the only case where driving the CPU
usage lower makes sense—when a fixed amount of load is coming into the system
and the application is not constrained by external resources. On the other hand, that
optimization also gives you the opportunity to add more load into the system, ulti‐
mately increasing the CPU utilization. And at a micro level, optimizing in this case is
still a matter of getting the CPU usage to 100% for a short period of time (the 400 ms
it takes to execute the request)—it’s just that the duration of the CPU spike is too
short to effectively register as 100% using most tools.

Java and multi-CPU usage
This example has assumed a single thread running on a single CPU, but the concepts
are the same in the general case of multiple threads running on multiple CPUs. Mul‐
tiple threads can skew the average of the CPU in interesting ways—one such example
is shown in Chapter 5, which shows the effect of the multiple GC threads on CPU
usage. But in general, the goal for multiple threads on a multi-CPU machine is still to
drive the CPU higher by making sure individual threads are not blocked, or to drive
the CPU lower (over a long interval) because the threads have completed their work
and are waiting for more work.

In a multithreaded, multi-CPU case, there is one important addition regarding when
CPUs could be idle: CPUs can be idle even when there is work to do. This occurs if no
threads are available in the program to handle that work. The typical case is an appli‐
cation with a fixed-size thread pool running various tasks. Tasks for the threads get
placed onto a queue; when a thread is idle and a task in the queue, the thread picks up
that task and executes it. However, each thread can execute only one task at a time,
and if that particular task blocks (e.g., is waiting for a response from the database),
the thread cannot pick up a new task to execute in the meantime. Hence, at times we
may have periods where there are tasks to be executed (work to be done) but no
thread available to execute them; the result is idle CPU time.

In that specific example, the size of the thread pool should be increased. However,
don’t assume that just because idle CPU is available, the size of the thread pool should
be increased in order to accomplish more work. The program may not be getting
CPU cycles for the other two reasons previously mentioned—because of bottlenecks
in locks or external resources. It is important to understand why the program isn’t
getting CPU before determining a course of action. (See Chapter 9 for more details
on this topic.)

Looking at the CPU usage is a first step in understanding application performance,
but it is only that: use it to see if the code is using all the CPU that can be expected, or
if it points to a synchronization or resource issue.
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The CPU Run Queue
Both Windows and Unix systems allow you to monitor the number of threads that
can be run (meaning that they are not blocked on I/O, or sleeping, and so on). Unix
systems refer to this as the run queue, and several tools include the run queue length
in their output. That includes the vmstat output in the previous section: the first
number in each line is the length of the run queue. Windows refers to this number as
the processor queue and reports it (among other ways) via typeperf:

C:> typeperf -si 1 "\System\Processor Queue Length"
"05/11/2019 19:09:42.678","0.000000"
"05/11/2019 19:09:43.678","0.000000"

There is an important difference in this output: the run queue length number on a
Unix system (which was either 1 or 2 in the sample vmstat output) is the number of
all threads that are running or that could run if there were an available CPU. In that
example, there was always at least one thread that wanted to run: the single thread
doing application work. Hence, the run queue length was always at least 1. Keep in
mind that the run queue represents everything on the machine, so sometimes there
are other threads (from completely separate processes) that want to run, which is why
the run queue length sometimes was 2 in that sample output.

In Windows, the processor queue length does not include the number of threads that
are currently running. Hence, in the typeperf sample output, the processor queue
number was 0, even though the machine was running the same single-threaded appli‐
cation with one thread always executing.

If there are more threads to run than available CPUs, performance begins to degrade.
In general, then, you want the processor queue length to be 0 on Windows and equal
to (or less than) the number of CPUs on Unix systems. That isn’t a hard-and-fast rule;
system processes and other things will come along periodically and briefly raise that
value without any significant performance impact. But if the run queue length is too
high for any significant period of time, it’s an indication that the machine is overloa‐
ded, and you should look into reducing the amount of work the machine is doing
(either by moving jobs to another machine or by optimizing the code).

Quick Summary

• CPU time is the first thing to examine when looking at the
performance of an application.

• The goal in optimizing code is to drive the CPU usage up (for
a shorter period of time), not down.

• Understand why CPU usage is low before diving in and
attempting to tune an application.
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Disk Usage
Monitoring disk usage has two important goals. The first pertains to the application
itself: if the application is doing a lot of disk I/O, that I/O can easily become a
bottleneck.

Knowing when disk I/O is a bottleneck is tricky, because it depends on the behavior
of the application. If the application is not efficiently buffering the data it writes to
disk (an example is in Chapter 12), the disk I/O statistics will be low. But if the appli‐
cation is performing more I/O than the disk can handle, the disk I/O statistics will be
high. In either situation, performance can be improved; be on the lookout for both.

The basic I/O monitors on some systems are better than on others. Here is partial
output of iostat on a Linux system:

% iostat -xm 5
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          23.45    0.00   37.89    0.10    0.00   38.56

          Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s
          sda               0.00    11.60    0.60   24.20     0.02

          wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
          0.14    13.35     0.15    6.06    5.33    6.08   0.42   1.04

This application is writing data to disk sda. At first glance, the disk statistics look
good. The w_await—the time to service each I/O write—is fairly low (6.08 ms), and
the disk is only 1.04% utilized. (The acceptable values for that depend on the physical
disk, but the 5200 RPM disk in my desktop system behaves well when the service
time is under 15 ms.) But a clue is indicating that something is wrong: the system is
spending 37.89% of its time in the kernel. If the system is doing other I/O (in other
programs), that’s one thing; but if all that system time is from the application being
tested, something inefficient is happening.

The fact that the system is doing 24.2 writes per second is another clue: that is a lot
when writing only 0.14 MB per second (MBps). I/O has become a bottleneck, and the
next step would be to look into how the application is performing its writes.

The other side of the coin comes if the disk cannot keep up with the I/O requests:

% iostat -xm 5
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          35.05    0.00    7.85   47.89    0.00    9.20

          Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s
          sda               0.00     0.20    1.00  163.40     0.00

          wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
          81.09  1010.19   142.74  866.47   97.60  871.17   6.08 100.00
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The nice thing about Linux is that it tells us immediately that the disk is 100% uti‐
lized; it also tells us that processes are spending 47.89% of their time in iowait (that
is, waiting for the disk).

Even on other systems with only raw data available, that data will tell us something is
amiss: the time to complete the I/O (w_await) is 871 ms, the queue size is quite large,
and the disk is writing 81 MB of data per second. This all points to disk I/O as a prob‐
lem and that the amount of I/O in the application (or, possibly, elsewhere in the sys‐
tem) must be reduced.

A second reason to monitor disk usage—even if the application is not expected to
perform a significant amount of I/O—is to help monitor if the system is swapping.
Computers have a fixed amount of physical memory, but they can run a set of appli‐
cations that use a much larger amount of virtual memory. Applications tend to
reserve more memory than they need, and they usually operate on only a subset of
their memory. In both cases, the operating system can keep the unused parts of mem‐
ory on disk, and page it into physical memory only if it is needed.

For the most part, this kind of memory management works well, especially for inter‐
active and GUI programs (which is good, or your laptop would require much more
memory than it has). It works less well for server-based applications, since those
applications tend to use more of their memory. And it works particularly badly for
any kind of Java application (including a Swing-based GUI application running on
your desktop) because of the Java heap. More details about that appear in Chapter 5.

System tools can also report if the system is swapping; for example, the vmstat output
has two columns (si, for swap in, and so, for swap out) that alert us if the system is
swapping. Disk activity is another indicator that swapping might be occurring. Pay
close attention to those, because a system that is swapping—moving pages of data
from main memory to disk, and vice versa—will have quite bad performance. Sys‐
tems must be configured so that swapping never occurs.

Quick Summary

• Monitoring disk usage is important for all applications. For
applications that don’t directly write to disk, system swapping
can still affect their performance.

• Applications that write to disk can be bottlenecked both
because they are writing data inefficiently (too little through‐
put) or because they are writing too much data (too much
throughput).
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Network Usage
If you are running an application that uses the network—for example, a REST
server—you must monitor the network traffic as well. Network usage is similar to
disk traffic: the application might be inefficiently using the network so that band‐
width is too low, or the total amount of data written to a particular network interface
might be more than the interface is able to handle.

Unfortunately, standard system tools are less than ideal for monitoring network traf‐
fic because they typically show only the number of packets and number of bytes that
are sent and received over a particular network interface. That is useful information,
but it doesn’t tell us if the network is under- or overutilized.

On Unix systems, the basic network monitoring tool is netstat (and on most Linux
distributions, netstat is not even included and must be obtained separately). On
Windows, typeperf can be used in scripts to monitor the network usage—but here is
a case where the GUI has an advantage: the standard Windows resource monitor will
display a graph showing what percentage of the network is in use. Unfortunately, the
GUI is of little help in an automated performance-testing scenario.

Fortunately, many open source and commercial tools monitor network bandwidth. 
On Unix systems, one popular command-line tool is nicstat, which presents a sum‐
mary of the traffic on each interface, including the degree to which the interface is
utilized:

% nicstat 5
Time      Int       rKB/s   wKB/s   rPk/s   wPk/s   rAvs    wAvs   %Util  Sat
17:05:17  e1000g1   225.7   176.2   905.0   922.5   255.4   195.6  0.33   0.00

The e1000g1 interface is a 1,000 MB interface; it is not utilized very much (0.33%) in
this example. The usefulness of this tool (and others like it) is that it calculates the
utilization of the interface. In this output, 225.7 Kbps of data are being written, and
176.2 Kbps of data are being read over the interface. Doing the division for a 1,000
MB network yields the 0.33% utilization figure, and the nicstat tool was able to fig‐
ure out the bandwidth of the interface automatically.

Tools such as typeperf or netstat will report the amount of data read and written,
but to figure out the network utilization, you must determine the bandwidth of the
interface and perform the calculation in your own scripts. Be sure to remember that
the bandwidth is measured in bits per second (bps), although tools generally report
bytes per second (Bps). A 1,000-megabit network yields 125 megabytes (MB) per sec‐
ond. In this example, 0.22 MBps are read and 0.16 MBps are written; adding those
and dividing by 125 yields a 0.33% utilization rate. So there is no magic to nicstat
(or similar) tools; they are just more convenient to use.

Operating System Tools and Analysis | 57

http://sourceforge.net/projects/nicstat


Networks cannot sustain a 100% utilization rate. For local-area Ethernet networks, a
sustained utilization rate over 40% indicates that the interface is saturated. If the net‐
work is packet-switched or utilizes a different medium, the maximum possible sus‐
tained rate will be different; consult a network architect to determine the appropriate
goal. This goal is independent of Java, which will simply use the networking parame‐
ters and interfaces of the operating system.

Quick Summary

• For network-based applications, monitor the network to make
sure it hasn’t become a bottleneck.

• Applications that write to the network can be bottlenecked
because they are writing data inefficiently (too little through‐
put) or because they are writing too much data (too much
throughput).

Java Monitoring Tools
To gain insight into the JVM itself, Java monitoring tools are required. These tools
come with the JDK:

jcmd

Prints basic class, thread, and JVM information for a Java process. This is suitable
for use in scripts; it is executed like this:

% jcmd process_id command optional_arguments

Supplying the command help will list all possible commands, and supplying
help <command> will give the syntax for a particular command.

jconsole

Provides a graphical view of JVM activities, including thread usage, class usage,
and GC activities.

jmap

Provides heap dumps and other information about JVM memory usage. Suitable
for scripting, though the heap dumps must be used in a postprocessing tool.

jinfo

Provides visibility into the system properties of the JVM, and allows some system
properties to be set dynamically. Suitable for scripting.

jstack

Dumps the stacks of a Java process. Suitable for scripting.
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jstat

Provides information about GC and class-loading activities. Suitable for
scripting.

jvisualvm

A GUI tool to monitor a JVM, profile a running application, and analyze JVM
heap dumps (which is a postprocessing activity, though jvisualvm can also take
the heap dump from a live program).

All of these tools are easy to run from the same machine as the JVM. If the JVM is
running inside a Docker container, the nongraphical tools (i.e., those except jcon
sole and jvisualvm) can be run via the docker exec command, or if you use nsen
ter to enter the Docker container. However, either case assumes that you have
installed those tools into the Docker image, which is definitely recommended. It’s
typical to pare down Docker images to the bare necessities of your application and
hence to include only the JRE, but sooner or later in production you will need insight
into that application, so it’s better to have the necessary tools (which are bundled with
the JDK) within the Docker image.

jconsole requires a fair amount of system resources, so running it on a production
system can interfere with that system. You can set up jconsole so that it can be run
locally and attach to a remote system, which won’t interfere with that remote system’s
performance. In a production environment, that requires installing certificates to
enable jconsole to run over SSL, and setting up a secure authentication system.

These tools fits into these broad areas:

• Basic VM information
• Thread information
• Class information
• Live GC analysis
• Heap dump postprocessing
• Profiling a JVM

As you likely noticed, there is no one-to-one mapping here; many tools perform
functions in multiple areas. So rather than exploring each tool individually, we’ll take
a look at the functional areas of visibility that are important to Java and discuss how
various tools provide that information. Along the way, we’ll discuss other tools (some
open source, some commercial) that provide the same basic functionality but have
advantages over the basic JDK tools.
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Basic VM Information
JVM tools can provide basic information about a running JVM process: how long it
has been up, what JVM flags are in use, JVM system properties, and so on:

Uptime
The length of time the JVM has been up can be found via this command:

% jcmd process_id VM.uptime

System properties
The set of items in System.getProperties() can be displayed with either of
these commands:

% jcmd process_id VM.system_properties

or

% jinfo -sysprops process_id

This includes all properties set on the command line with a -D option, any prop‐
erties dynamically added by the application, and the set of default properties for
the JVM.

JVM version
The version of the JVM is obtained like this:

% jcmd process_id VM.version

JVM command line
The command line can be displayed in the VM summary tab of jconsole, or via
jcmd:

% jcmd process_id VM.command_line

JVM tuning flags
The tuning flags in effect for an application can be obtained like this:

% jcmd process_id VM.flags [-all]

Working with tuning flags
A lot of tuning flags can be given to a JVM, and many of those flags are a major focus
of this book. Keeping track of those flags and their default values can be a little daunt‐
ing; those last two examples of jcmd are useful in that regard. The command_line
command shows which flags were specified directly on the command line. The flags
command shows which flags were set on the command line, plus some flags that were
set directly by the JVM (because their value was determined ergonomically). Includ‐
ing the -all option lists every flag within the JVM.
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Hundreds of JVM tuning flags exist, and most are obscure; it is recommended that
most of them never be changed (see “Too Much Information?” on page 62). Figuring
out which flags are in effect is a frequent task when diagnosing performance issues,
and the jcmd commands can do that for a running JVM. Often, you’d rather figure
out the platform-specific defaults for a particular JVM, in which case using the
-XX:+PrintFlagsFinal option on the command line is more useful. This easiest way
to do that is to execute this command:

% java other_options -XX:+PrintFlagsFinal -version
...Hundreds of lines of output, including...
uintx InitialHeapSize                          := 4169431040     {product}
intx InlineSmallCode                           = 2000            {pd product}

You should include any other options you intend to use on the command line because
setting some options (particularly when setting GC-related flags) will affect the final
value of other options. This will print out the entire list of JVM flags and their values
(the same as is printed via the VM.flags -all option to jcmd for a live JVM).

Flag data from these commands is printed in one of the two ways shown. The colon
in the first line of included output indicates that a nondefault value is in use for the
flag in question. This can happen for the following reasons:

• The flag’s value was specified directly on the command line.
• Some other option indirectly changed that option.
• The JVM calculated the default value ergonomically.

The second line (without a colon) indicates that value is the default value for this ver‐
sion of the JVM. Default values for some flags may be different on different plat‐
forms, which is shown in the final column of this output. product means that the
default setting of the flag is uniform across all platforms; pd product indicates that
the default setting of the flag is platform-dependent.

Other possible values for the last column include manageable (the flag’s value can be
changed dynamically during runtime) and C2 diagnostic (the flag provides diag‐
nostic output for the compiler engineers to understand how the compiler is
functioning).

Yet another way to see this information for a running application is with jinfo. The
advantage of jinfo is that it allows certain flag values to be changed during execution
of the program.

Here is how to retrieve the values of all the flags in the process:

% jinfo -flags process_id

With the -flags option, jinfo will provide information about all flags; otherwise, it
prints only those specified on the command line. The output from either of these
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commands isn’t as easy to read as that from the -XX:+PrintFlagsFinal option, but
jinfo has other features to keep in mind.

jinfo can inspect the value of an individual flag:

% jinfo -flag PrintGCDetails process_id
-XX:+PrintGCDetails

Although jinfo does not itself indicate whether a flag is manageable, flags that are
manageable (as identified when using the PrintFlagsFinal argument) can be turned
on or off via jinfo:

% jinfo -flag -PrintGCDetails process_id  # turns off PrintGCDetails
% jinfo -flag PrintGCDetails process_id
-XX:-PrintGCDetails

Too Much Information?
The PrintFlagsFinal command will print out hundreds of available tuning flags for
the JVM (there are 729 possible flags in JDK 8u202, for example). The vast majority
of these flags are designed to enable support engineers to gather more information
from running (and misbehaving) applications. It is tempting, upon learning that there
is a flag called AllocatePrefetchLines (which has a default value of 3), to assume
that value can be changed so that instruction prefetching might work better on a par‐
ticular processor. But that kind of hit-or-miss tuning is not worthwhile in a vacuum;
none of those flags should be changed without a compelling reason to do so. In the
case of the AllocatePrefetchLines flag, that would include knowledge of the appli‐
cation’s prefetch performance, the characteristics of the CPU running the application,
and the effect that changing the number will have on the JVM code itself.

Be aware that in JDK 8, jinfo can change the value of any flag, but that doesn’t mean
that the JVM will respond to that change. For example, most flags that affect the
behavior of a GC algorithm are used at startup time to determine various ways that
the collector will behave. Altering a flag later via jinfo does not cause the JVM to
change its behavior; it will continue executing based on how the algorithm was ini‐
tialized. So this technique works only for those flags marked manageable in the out‐
put of the PrintFlagsFinal command. In JDK 11, jinfo will report an error if you
attempt to change the value of a flag that cannot be changed.
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Quick Summary

• jcmd can be used to find the basic JVM information—includ‐
ing the value of all the tuning flags—for a running application.

• Default flag values can be found by including -XX:+Print
FlagsFinal on a command line. This is useful for determining
the default ergonomic settings of flags on a particular
platform.

• jinfo is useful for inspecting (and in some cases changing)
individual flags.

Thread Information
jconsole and jvisualvm display information (in real time) about the number of
threads running in an application. It can be useful to look at the stack of running
threads to determine if they are blocked. The stacks can be obtained via jstack:

% jstack process_id
... Lots of output showing each thread's stack ...

Stack information can also be obtained from jcmd:

% jcmd process_id Thread.print
... Lots of output showing each thread's stack ...

See Chapter 9 for more details on monitoring thread stacks.

Class Information
Information about the number of classes in use by an application can be obtained
from jconsole or jstat. jstat can also provide information about class compilation.

See Chapter 12 for more details on class usage by applications, and see Chapter 4 for
details on monitoring class compilation.

Live GC Analysis
Virtually every monitoring tool reports something about GC activity. jconsole dis‐
plays live graphs of the heap usage; jcmd allows GC operations to be performed; jmap
can print heap summaries or information on the permanent generation or create a
heap dump; and jstat produces a lot of views of what the garbage collector is doing.

See Chapter 5 for examples of how these programs monitor GC activities.

Java Monitoring Tools | 63



1 Still, you must profile: how else will you know if the cat inside your program is still alive?

Heap Dump Postprocessing
Heap dumps can be captured from the jvisualvm GUI or from the command line
using jcmd or jmap. The heap dump is a snapshot of the heap that can be analyzed
with various tools, including jvisualvm. Heap dump processing is one area where
third-party tools have traditionally been a step ahead of what comes with the JDK, so
Chapter 7 uses a third-party tool—the Eclipse Memory Analyzer Tool (mat)—to pro‐
vide examples of how to postprocess heap dumps.

Profiling Tools
Profilers are the most important tool in a performance analyst’s toolbox. Many profil‐
ers are available for Java, each with its own advantages and disadvantages. Profiling is
one area where it often makes sense to use different tools—particularly if they are
sampling profilers. Sampling profilers tend to show issues differently, so one may pin‐
point performance issues better on some applications and worse on others.

Many common Java profiling tools are themselves written in Java and work by
“attaching” themselves to the application to be profiled. This attachment is via a
socket or via a native Java interface called the JVM Tool Interface (JVMTI). The tar‐
get application and the profiling tool then exchange information about the behavior
of the target application.

This means you must pay attention to tuning the profiling tool just as you would tune
any other Java application. In particular, if the application being profiled is large, it
can transfer quite a lot of data to the profiling tool, so the profiling tool must have a
sufficiently large heap to handle the data. It is often a good idea to run the profiling
tool with a concurrent GC algorithm as well; ill-timed full GC pauses in the profiling
tool can cause the buffers holding the data to overflow.

Sampling Profilers
Profiling happens in one of two modes: sampling mode or instrumented mode. Sam‐
pling mode is the basic mode of profiling and carries the least amount of overhead.
That’s important, since one of the pitfalls of profiling is that by introducing
measurement into the application, you are altering its performance characteristics.1

Limiting the impact of profiling will lead to results that more closely model the way
the application behaves under usual circumstances.

Unfortunately, sampling profilers can be subject to all sorts of errors. Sampling profil‐
ers work when a timer periodically fires; the profiler then looks at each thread and
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determines which method the thread is executing. That method is then charged with
having been executed since the timer previously fired.

The most common sampling error is illustrated by Figure 3-1. The thread here is
alternating between executing methodA (shown in the shaded bars) and methodB
(shown in the clear bars). If the timer fires only when the thread happens to be in
methodB, the profile will report that the thread spent all its time executing methodB; in
reality, more time was actually spent in methodA.

Figure 3-1. Alternate method execution

This is the most common sampling error, but it is by no means the only one. The way
to minimize this error is to profile over a longer period of time and to reduce the time
interval between samples. Reducing the interval between samples is counterproduc‐
tive to the goal of minimizing the impact of profiling on the application; there is a
balance here. Profiling tools resolve that balance differently, which is one reason that
one profiling tool may happen to report much different data than another tool.

That kind of error is inherent to all sampling profilers, but is worse in many Java pro‐
filers (particularly older ones). This is due to safepoint bias. In the common Java
interface for profilers, the profiler can get the stack trace of a thread only when the
thread is at a safepoint. Threads automatically go into a safepoint when they are:

• Blocked on a synchronized lock
• Blocked waiting for I/O
• Blocked waiting for a monitor
• Parked
• Executing Java Native Interface (JNI) code (unless they perform a GC locking

function)

In addition, the JVM can set a flag asking for threads to go into a safepoint. Code to
check this flag (and go to a safepoint if necessary) is inserted into the JVM code at key
locations, including during certain memory allocations and at loop or method transi‐
tions in compiled code. No specification indicates when these safepoint checks occur,
and they vary between releases.
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The effect of this safepoint bias on sampling profilers can be profound: because the
stack can be sampled only when the thread is at a safepoint, the sampling becomes
even less reliable. In Figure 3-1, it would be unlikely that a random profiler without
safepoint bias would fire the thread samples only during the execution of methodB.
But with safepoint bias, it is easier to see scenarios where methodA never goes to a
safepoint and all work is therefore charged to methodB.

Java 8 provides a different way for tools to gather stack traces (which is one reason
older tools have safepoint bias, and newer tools tend not to have safepoint bias,
though that does require that the newer tool be rewritten to use the new mechanism).
In programmatic terms, this is done by using the AsyncGetCallTrace interface. Pro‐
filers that use this interface tend to be called async profilers. The async here refers to
the way the JVM provides the stack information, and not anything about how the
profiling tool works; it’s called async because the JVM can provide the stack at any
point in time, without waiting for the thread to come to a (synchronous) safepoint.

Profilers that use this async interface hence have fewer sampling artifacts than other
sampling profilers (though they’re still subject to errors like that in Figure 3-1). The
async interface was made public in Java 8 but existed as a private interface well before
that.

Figure 3-2 shows a basic sampling profile taken to measure the performance of a
REST server that provides sample stock data from the application described in Chap‐
ter 2. The REST call is configured to return a byte stream containing the compressed,
serialized form of the stock object (part of an example we’ll explore in Chapter 12).
We’ll use that sample program for examples throughout this section.

Figure 3-2. A sample-based profile

This screenshot is from the Oracle Developer Studio profiler. This tool uses the async
profiling interface, though it is not usually called an async profiler (likely for histori‐
cal reasons, since it began using that interface when the interface was private and
hence predates the popular use of the async profiler term). It provides various views
into the data; in this view, we see the methods that consumed the most CPU cycles.
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2 You’ll see references to native C++ code like InstanceKlass::oop_push_contents; we’ll look at that more in
the next section.

Several of those methods are related to object serialization (e.g., the
ObjectOutputStream.writeObject0() method), and many are related to calculating
the actual data (e.g., the Math.pow() method).2 Still, the object serialization is domi‐
nating this profile; to improve performance, we’ll need to improve the serialization
performance.

Note carefully the last statement: it is the performance of serialization that must be
improved, and not the performance of the writeObject0() method itself. The com‐
mon assumption when looking at a profile is that improvements must come from
optimizing the top method in the profile. However, that approach is often too limit‐
ing. In this case, the writeObject0() method is part of the JDK; its performance isn’t
going to be improved without rewriting the JVM. But we do know from the profile
that the serialization path is where our performance bottleneck lies.

So the top method(s) in a profile should point you to the area in which to search for
optimizations. Performance engineers aren’t going to attempt to make JVM methods
faster, but they can figure out how to speed up object serialization in general.

We can visualize the sampling output in two additional ways; both visually display the
call stack. The newest approach is called a flame graph, which is an interactive dia‐
gram of the call stacks within an application.

Figure 3-3 shows a portion of a flame graph from using the open source async-
profiler project. A flame graph is a bottom-up diagram of the methods using the
most CPU. In this section of the graph, the getStockObject() method is taking all
the time. Roughly 60% of that time is spent in the writeObject() call, and 40% of the
time in the constructor of the StockPriceHistoryImpl object. Similarly, we can read
up the stack of each of those methods and locate our performance bottlenecks. The
graph itself is interactive, so you can click lines and see information about the
method—including the full name where that gets cut off, the CPU cycles, and so on.

The older (though still useful) approach to visualizing the performance is a top-down
approach known as the call tree. Figure 3-4 shows an example.
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Figure 3-3. A flame graph from a sampling profiler

Figure 3-4. A call tree from a sampling profiler

In this case, we have similar data starting with the top: of 100% of time, 44% was
spent by the Errors.process() method and its descendants. Then we drill into a par‐
ent and see where its children are spending time. For example, of the 17% of total
time spent in the getStockObject() method, 10% of that time was spent in
writeObject0 and 7% in the constructor.

Quick Summary

• Sampling-based profilers are the most common kind of pro‐
filer.

• Because of their relatively low performance impact, sampling
profilers introduce fewer measurement artifacts.

• Sampling profilers that can use asynchronous stack collection
will have fewer measurement artifacts.

• Different sampling profiles behave differently; each may be
better for a particular application.
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Instrumented Profilers
Instrumented profilers are much more intrusive than sampling profilers, but they can
also give more beneficial information about what’s happening inside a program.

Instrumented profilers work by altering the bytecode sequence of classes as they are
loaded (inserting code to count the invocations, and so on). They are much more
likely to introduce performance differences into the application than are sampling
profilers. For example, the JVM will inline small methods (see Chapter 4) so that no
method invocation is needed when the small-method code is executed. The compiler
makes that decision based on the size of the code; depending on how the code is
instrumented, it may no longer be eligible to be inlined. This may cause the instru‐
mented profiler to overestimate the contribution of certain methods. And inlining is
just one example of a decision that the compiler makes based on the layout of the
code; in general, the more the code is instrumented (changed), the more likely it is
that its execution profile will change.

Because of the changes introduced into the code via instrumentation, it is best to limit
its use to a few classes. This means it is best used for second-level analysis: a sampling
profiler can point to a package or section of code, and then the instrumented profiler
can be used to drill into that code if needed.

Figure 3-5 uses an instrumenting profiler (which is not using the async interfaces) to
look at the sample REST server.

Figure 3-5. An instrumented profile

A few things are different about this profiler. First, the dominant time is attributed to
the writeObject() method and not the writeObject0() method. That’s because pri‐
vate methods are filtered out of the instrumentation. Second, a new method from the
entity manager appears; this didn’t appear earlier because it was inlined into the con‐
structor in the sampling case.

But the more important thing about this kind of profile is the invocation count: we
executed a whopping 33 million calls to that entity manager method, and 166 million
calls to calculate a random number. We can have a much greater performance impact
by reducing the total number of calls to these methods rather than speeding up their
implementations, but we wouldn’t necessarily know that without the instrumentation
count.
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Is this a better profile than the sampled version? It depends; there is no way to know
in a given situation which is the more accurate profile. The invocation count of an
instrumented profile is certainly accurate, and that additional information is often
helpful in determining where the code is spending more time and which things are
more fruitful to optimize.

In this example, both the instrumented and sampled profiles point to the same gen‐
eral area of the code: object serialization. In practice, it is possible for different profil‐
ers to point to completely different areas of the code. Profilers are good estimators,
but they are only making estimates: some of them will be wrong some of the time.

Quick Summary

• Instrumented profilers yield more information about an appli‐
cation but could have a greater effect on the application than a
sampling profiler.

• Instrumented profilers should be set up to instrument small
sections of the code—a few classes or packages. That limits
their impact on the application’s performance.

Blocking Methods and Thread Timelines
Figure 3-6 shows the REST server using a different instrumented profiling tool: the
profiler built into jvisualvm. Now the execution time is dominated by the select()
methods (and to a lesser extent, the run() methods of the TCPTransport connection
handler).

Figure 3-6. A profile with blocked methods

Those methods (and similar blocking methods) do not consume CPU time, so they
are not contributing to the overall CPU usage of the application. Their execution can‐
not necessarily be optimized. Threads in the application are not spending 673 sec‐
onds executing code in the select() method; they are spending 673 seconds waiting
for a selection event to occur.
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For that reason, most profilers will not report methods that are blocked; those threads
are shown as being idle. In this particular example, that is a good thing. Threads wait
in the select() method because no data is flowing into the server; they are not being
inefficient. That is their normal state.

In other cases, you do want to see the time spent in those blocking calls. The time that
a thread spends inside the wait() method—waiting for another thread to notify it—
is a significant determinant of the overall execution time of many applications. Most
Java-based profilers have filter sets and other options that can be tweaked to show or
hide these blocking calls.

Alternately, it is usually more fruitful to examine the execution patterns of threads
rather than the amount of time a profiler attributes to the blocking method itself.
Figure 3-7 shows a thread display from the Oracle Developer Studio profiling tool.

Figure 3-7. A thread timeline profile

Each horizontal area here is a different thread (so the figure shows nine threads:
thread 1.14 to thread 1.22). The colored (or different grayscale) bars represent
execution of different methods; blank areas represent places where the thread is not
executing. At a high level, observe that thread 1.14 executed code and then waited for
something.

Notice too the blank areas where no thread appears to be executing. The image shows
only nine of many threads in the application, so it is possible that these threads are
waiting for one of those other threads to do something, or the thread could be exe‐
cuting a blocking read() (or similar) call.
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3 This particular graph is again from the Oracle Developer Studio tool, though async-profiler produced the
identical set of native calls.

Quick Summary

• Threads that are blocked may or may not be a source of a per‐
formance issue; it is necessary to examine why they are
blocked.

• Blocked threads can be identified by the method that is block‐
ing or by a timeline analysis of the thread.

Native Profilers
Tools like async-profiler and Oracle Developer Studio have the capability to profile
native code in addition to Java code. This has two advantages.

First, significant operations occur in native code, including within native libraries and
native memory allocation. In Chapter 8, we’ll use a native profiler to see an example
of a native memory allocation that caused a real-world issue. Using the native profiler
to track memory usage quickly pinpointed the root cause.

Second, we typically profile to find bottlenecks in application code, but sometimes
the native code is unexpectedly dominating performance. We would prefer to find
out our code is spending too much time in GC by examining GC logs (as we’ll do in
Chapter 6), but if we forget that path, a profiler that understands native code will
quickly show us we’re spending too much time in GC. Similarly, we would generally
limit a profile to the period after the program has warmed up, but if compilation
threads (Chapter 4) are running and taking too much CPU, a native-capable profiler
will show us that.

When you looked at the flame graph for our sample REST server, I showed only a
small portion for readability. Figure 3-8 shows the entire graph.

At the bottom of this graph are five components. The first two (from JAX-RS code)
are application threads and Java code. The third, though, is the GC for the process,
and the fourth is the compiler.3
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Figure 3-8. A flame graph including native code

Quick Summary

• Native profilers provide visibility into both the JVM code and
the application code.

• If a native profiler shows that time in GC dominates the CPU
usage, tuning the collector is the right thing to do. If it shows
significant time in the compilation threads, however, that is
usually not affecting the application’s performance.
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Java Flight Recorder
Java Flight Recorder (JFR) is a feature of the JVM that performs lightweight perfor‐
mance analysis of applications while they are running. As its name suggests, JFR data
is a history of events in the JVM that can be used to diagnose the past performance
and operations of the JVM.

JFR was originally a feature of the JRockit JVM from BEA Systems. It eventually
made its way into Oracle’s HotSpot JVM; in JDK 8, only the Oracle JVM supports JFR
(and it is licensed for use only by Oracle customers). In JDK 11, however, JFR is avail‐
able in open source JVMs including the AdoptOpenJDK JVMs. Because JFR is open
source in JDK 11, it is possible for it to be backported in open source to JDK 8, so
AdoptOpenJDK and other versions of JDK 8 may someday include JFR (though that
is not the case at least through 8u232).

The basic operation of JFR is that a set of events is enabled (for example, one event is
that a thread is blocked waiting for a lock), and each time a selected event occurs,
data about that event is saved (either in memory or to a file). The data stream is held
in a circular buffer, so only the most recent events are available. Then you can use a
tool to display those events—either taken from a live JVM or read from a saved file—
and you can perform analysis on those events to diagnose performance issues.

All of that—the kind of events, the size of the circular buffer, where it is stored, and so
on—is controlled via various arguments to the JVM, or via tools, including jcmd
commands as the program runs. By default, JFR is set up so that it has very low over‐
head: an impact below 1% of the program’s performance. That overhead will change
as more events are enabled, as the threshold at which events are reported is changed,
and so on. The details of all that configuration are discussed later in this section, but
first we’ll examine what the display of these events look like, since that makes it easier
to understand how JFR works.

Java Mission Control
The usual tool to examine JFR recordings is Java Mission Control (jmc), though other
tools exist, and you can use toolkits to write your own analysis tools. In the shift to a
full open source JVM, jmc was moved out of the OpenJDK source base and into a
separate project. This allows jmc to evolve on a separate release schedule and path,
though at first it can be a little confusing to deal with the separate releases.

In JDK 8, jmc version 5 is bundled with Oracle’s JVM (the only JVM for which JFR is
available). JDK 11 can use jmc version 7, though for now, the binaries for that must be
obtained from the OpenJDK project page. The plan is that eventually JDK builds will
consume and bundle the appropriate jmc binaries.
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The Java Mission Control program (jmc) starts a window that displays the JVM pro‐
cesses on the machine and lets you select one or more processes to monitor. 
Figure 3-9 shows the Java Management Extensions (JMX) console of Java Mission
Control monitoring our example REST server.

Figure 3-9. Java Mission Control monitoring

This display shows basic information that Java Mission Control is monitoring: CPU
usage, heap usage, and GC time. Note, though, that the CPU graph includes the total
CPU on the machine. The JVM itself is using about 38% of the CPU, though all pro‐
cesses on the machine are consuming about 60% of the CPU. That is a key feature of
the monitoring: via the JMX console, Java Mission Control has the ability to monitor
the entire system, not just the JVM that has been selected. The upper dashboard can
be configured to display JVM information (all kinds of statistics about GC,
classloading, thread usage, heap usage, and so on) as well as OS-specific information
(total machine CPU and memory usage, swapping, load averages, and so on).

Like other monitoring tools, Java Mission Control can make Java Management
Extensions calls into whatever managed beans the application has available.
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JFR Overview
With the appropriate tool, we can then look into how JFR works. This example uses a
JFR recording taken from our REST server over a 6-minute period. As the recording
is loaded into Java Mission Control, the first thing it displays is a basic monitoring
overview (Figure 3-10).

Figure 3-10. Java Flight Recorder general information

This display is similar to what Java Mission Control displays when doing basic moni‐
toring. Above the gauges showing CPU and heap usage is a timeline of events (repre‐
sented by a series of vertical bars). The timeline allows us to zoom into a particular
region of interest; although in this example the recording was taken over a 6-minute
period, I zoomed into a 38-second interval near the end of the recording.

This graph for CPU usage more clearly shows what is going on: the REST server is
the bottom portion of the graph (averaging about 20% usage), and the machine is
running at 38% CPU usage. Along the bottom, other tabs allow us to explore infor‐
mation about system properties and how the JFR recording was made. The icons that
run down the left side of the window are more interesting: those icons provide visibil‐
ity into the application behavior.
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JFR Memory view
The information gathered here is extensive. Figure 3-11 shows just one panel of the
Memory view.

Figure 3-11. Java Flight Recorder Memory panel

This graph shows that memory is fluctuating fairly regularly as the young generation
is cleared (and we see that the heap overall is growing during this time: it started at
about 340 MB and ends about at 2 GB). The lower-left panel shows all the collections
that occurred during the recording, including their duration and type of collection
(always a ParallelScavenge in this example). When one of those events is selected,
the bottom-right panel breaks that down even further, showing all the specific phases
of that collection and how long each took.

The various tabs on this page provide a wealth of other information: how long and
how many reference objects were cleared, whether there are promotion or evacuation
failures from the concurrent collectors, the configuration of the GC algorithm itself
(including the sizes of the generations and the survivor space configurations), and
even information on the specific kinds of objects that were allocated. As you read
through Chapters 5 and 6, keep in mind how this tool can diagnose the problems that
are discussed there. If you need to understand why the G1 GC collector bailed out
and performed a full GC (was it due to promotion failure?), how the JVM has
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adjusted the tenuring threshold, or virtually any other piece of data about how and
why GC behaved as it did, JFR will be able to tell you.

JFR Code view
The Code page in Java Mission Control shows basic profiling information from the
recording (Figure 3-12).

Figure 3-12. Java Flight Recorder Code panel

The first tab on this page shows an aggregation by package name, which is an inter‐
esting feature not found in many profilers. At the bottom, other tabs present the tra‐
ditional profile views: the hot methods and call tree of the profiled code.

Unlike other profilers, JFR offers other modes of visibility into the code. The Excep‐
tions tab provides a view into the exception processing of the application (Chapter 12
discusses why excessive exception processing can be bad for performance). Other
tabs provide information on what the compiler is doing, including a view into the
code cache (see Chapter 4).

On the other hand, note that the packages here didn’t really show up in the previous
profiles we looked at; conversely, the previous hot spots we saw don’t appear here.
Because it is designed to have very low overhead, the profile sampling of JFR (at least
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in the default configuration) is quite low, and so the profiles are not as accurate as
what we’d see from a more intrusive sampling.

There are other displays like this—for threads, I/O, and system events—but for the
most part, these displays simply provide nice views into the actual events in the JFR
recording.

Overview of JFR events
JFR produces a stream of events that are saved as a recording. The displays seen so far
provide views of those events, but the most powerful way to look at the events is on
the Event panel itself, as shown in Figure 3-13.

Figure 3-13. Java Flight Recorder Event panel

The events to display can be filtered in the left panel of this window; here,
application-level and JVM-level events are selected. Be aware that when the recording
is made, only certain kinds of events are included in the first place: at this point, we
are doing postprocessing filtering (the next section shows how to filter the events
included in the recording).

Within the 34-second interval in this example, the application produced 878 events
from the JVM and 32 events from the JDK libraries, and the event types generated in
that period are shown near the bottom of the window. When we looked at this exam‐
ple with profilers, we saw why the thread-park and monitor-wait events for this
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example will be high; those can be ignored (and the thread park events are filtered
out here in the left panel). What about the other events?

Over the 34-second period, multiple threads in the application spent 34 seconds read‐
ing from sockets. That number doesn’t sound good, particularly because it will show
up in JFR only if the socket read takes longer than 10 milliseconds. We need to look at
that further, which can be done by visiting the log tab shown in Figure 3-14.

Figure 3-14. Java Flight Recorder Event Log panel

It is worthwhile to look at the traces involved with those events, but it turns out that
several threads use blocking I/O to read administrative requests that are expected to
arrive periodically. Between those requests—for long periods of time—the threads sit
blocked on the read() method. So the read time here turns out to be acceptable: just
as when using a profiler, it is up to you to determine whether a lot of threads blocked
in I/O is expected or indicates a performance issue.

That leaves the monitor-blocked events. As discussed in Chapter 9, contention for
locks goes through two levels: first the thread spins waiting for the lock, and then it
uses (in a process called lock inflation) some CPU- and OS-specific code to wait for
the lock. A standard profiler can give hints about that situation, since the spinning
time is included in the CPU time charged to a method. A native profiler can give
information about the locks subject to inflation, but that can be hit or miss. The JVM,
though, can provide all this data directly to JFR.
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An example of using lock visibility is shown in Chapter 9, but the general takeaway
about JFR events is that, because they come directly from the JVM, they offer a level
of visibility into an application that no other tool can provide. In Java 11, about 131
event types can be monitored with JFR. The exact number and types of events will
vary slightly depending on release, but the following list details some of the more use‐
ful ones.

Each event type in the following list displays two bullet points. Events can collect
basic information that can be collected with other tools like jconsole and jcmd; that
kind of information is described in the first bullet. The second bullet describes infor‐
mation the event provides that is difficult to obtain outside JFR.

Classloading
• Number of classes loaded and unloaded
• Which classloader loaded the class; time required to load an individual class

Thread statistics
• Number of threads created and destroyed; thread dumps
• Which threads are blocked on locks (and the specific lock they are blocked on)

Throwables
• Throwable classes used by the application
• Number of exceptions and errors thrown and the stack trace of their creation

TLAB allocation
• Number of allocations in the heap and size of thread-local allocation buffers

(TLABs)
• Specific objects allocated in the heap and the stack trace where they are allocated

File and socket I/O
• Time spent performing I/O
• Time spent per read/write call, the specific file or socket taking a long time to

read or write

Monitor blocked
• Threads waiting for a monitor
• Specific threads blocked on specific monitors and the length of time they are

blocked
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Code cache
• Size of code cache and how much it contains
• Methods removed from the code cache; code cache configuration

Code compilation
• Which methods are compiled, on-stack replacement (OSR) compilation (see

Chapter 4), and length of time to compile
• Nothing specific to JFR, but unifies information from several sources

Garbage collection
• Times for GC, including individual phases; sizes of generations
• Nothing specific to JFR, but unifies the information from several tools

Profiling
• Instrumenting and sampling profiles
• Not as much as you’d get from a true profiler, but the JFR profile provides a good

high-order overview

Enabling JFR
JFR is initially disabled. To enable it, add the flag -XX:+FlightRecorder to the com‐
mand line of the application. This enables JFR as a feature, but no recordings will be
made until the recording process itself is enabled. That can occur either through a
GUI or via the command line.

In Oracle’s JDK 8, you must also specify this flag (prior to the FlightRecorder flag):
-XX:+UnlockCommercialFeatures (default: false).

If you forget to include these flags, remember that you can use jinfo to change their
values and enable JFR. If you use jmc to start a recording, it will automatically change
these values in the target JVM if necessary.

Enabling JFR via Java Mission Control
The easiest way to enable recording of a local application is through the Java Mission
Control GUI (jmc). When jmc is started, it displays a list of all the JVM processes
running on the current system. The JVM processes are displayed in a tree-node con‐
figuration; expand the node under the Flight Recorder label to bring up the flight
recorder window shown in Figure 3-15.
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Figure 3-15. JFR Start Flight Recording window

Flight recordings are made in one of two modes: either for a fixed duration (1 minute
in this case) or continuously. For continuous recordings, a circular buffer is utilized;
the buffer will contain the most recent events that are within the desired duration and
size.

To perform proactive analysis—meaning that you will start a recording and then gen‐
erate some work or start a recording during a load-testing experiment after the JVM
has warmed up—a fixed-duration recording should be used. That recording will give
a good indication of how the JVM responded during the test.

The continuous recording is best for reactive analysis. This lets the JVM keep the
most recent events and then dump out a recording in response to an event. For exam‐
ple, the WebLogic application server can trigger that a recording be dumped out in
response to an abnormal event in the application server (such as a request that takes
more than 5 minutes to process). You can set up your own monitoring tools to dump
out the recording in response to any sort of event.

Enabling JFR via the command line

After enabling JFR (with the -XX:+FlightRecorder option), there are different ways
to control how and when the actual recording should happen.
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In JDK 8, the default recording parameters can be controlled when the JVM starts by
using the -XX:+FlightRecorderOptions=string parameter; this is most useful for
reactive recordings. The string in that parameter is a list of comma-separated name-
value pairs taken from these options:

name=name

The name used to identify the recording.

defaultrecording=<true|false>

Whether to start the recording initially. The default value is false; for reactive
analysis, this should be set to true.

settings=path

Name of the file containing the JFR settings (see the next section).

delay=time

The amount of time (e.g., 30s, 1h) before the recording should start.

duration=time

The amount of time to make the recording.

filename=path

Name of the file to write the recording to.

compress=<true|false>

Whether to compress (with gzip) the recording; the default is false.

maxage=time

Maximum time to keep recorded data in the circular buffer.

maxsize=size

Maximum size (e.g., 1024K, 1M) of the recording’s circular buffer.

-XX:+FlightRecorderOptions only sets the defaults for any options; individual
recordings can override those settings.

In both JDK 8 and JDK 11, you can start a JFR when the program initially begins by
using the -XX:+StartFlightRecording=string flag with a similar comma-separated
list of options.

Setting up a default recording like that can be useful in some circumstances, but for
more flexibility, all options can be controlled with jcmd during a run.

To start a flight recording:

% jcmd process_id JFR.start [options_list]
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The options_list is a series of comma-separated name-value pairs that control how
the recording is made. The possible options are exactly the same as those that can be
specified on the command line with the -XX:+FlightRecorderOptions=string flag.

If a continuous recording has been enabled, the current data in the circular buffer can
be dumped to a file at any time via this command:

% jcmd process_id JFR.dump [options_list]

The list of options includes the following:

name=name

The name under which the recording was started (see the next example for
JFR.check).

filename=path

The location to dump the file to.

It is possible that multiple JFR recordings have been enabled for a given process. To
see the available recordings:

% jcmd 21532 JFR.check [verbose]
21532:
Recording 1: name=1 maxsize=250.0MB (running)

Recording 2: name=2 maxsize=250.0MB (running)

In this example, process ID 21532 has two active JFR recordings that are named 1 and
2. That name can be used to identify them in other jcmd commands.

Finally, to abort a recording in process:

% jcmd process_id JFR.stop [options_list]

That command takes the following options:

name=name

The recording name to stop.

discard=boolean

If true, discard the data rather than writing it to the previously provided file‐
name (if any).

filename=path

Write the data to the given path.

In an automated performance-testing system, running these command-line tools and
producing a recording is useful when it comes time to examine those runs for 
regressions.
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4 That’s why the JFR profile we looked at didn’t necessarily match the more intrusive profiles from previous
sections.

Selecting JFR Events
As mentioned earlier, JFR supports many events. Often, these are periodic events:
they occur every few milliseconds (e.g., the profiling events work on a sampling
basis). Other events are triggered only when the duration of the event exceeds a cer‐
tain threshold (e.g., the event for reading a file is triggered only if the read() method
has taken more than a specified amount of time).

Other JFR Events
JFR is extensible: applications can define their own events. Hence, your JFR imple‐
mentation may show many more available event types depending on the application
in question. For example, the WebLogic application server enables multiple applica‐
tion server events: JDBC operations, HTTP operations, and so on. These events are
treated just like the other JFR events discussed here: they can be individually enabled,
may have a threshold associated with them, and so on. Similarly, later versions of the
JVM may have additional events that are not discussed here.

Consult the up-to-date product documentation for the most detailed information.

Collecting events naturally involves overhead. The threshold at which events are col‐
lected—since it increases the number of events—also plays a role in the overhead that
comes from enabling a JFR recording. In the default recording, not all events are col‐
lected (the six most-expensive events are not enabled), and the threshold for the
time-based events is somewhat high. This keeps the overhead of the default recording
to less than 1%.

Sometimes extra overhead is worthwhile. Looking at TLAB events, for example, can
help you determine if objects are being allocated directly to the old generation, but
those events are not enabled in the default recording. Similarly, the profiling events
are enabled in the default recording, but only every 20 ms—that gives a good over‐
view, but it can also lead to sampling errors.4

The events (and the threshold for events) that JFR captures are defined in a template
(which is selected via the settings option on the command line). JFR ships with two
templates: the default template (limiting events so that the overhead will be less than
1%) and a profile template (which sets most threshold-based events to be triggered
every 10 ms). The estimated overhead of the profiling template is 2% (though, as
always, your mileage may vary, and typically overhead is lower than that).
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Templates are managed by the jmc template manager; you may have noticed a button
to start the template manager in Figure 3-15. Templates are stored in two locations:
under the $HOME/.jmc/<release> directory (local to a user) and in the
$JAVA_HOME/jre/lib/jfr directory (global for a JVM). The template manager allows
you to select a global template (the template will say that it is “on server”), select a
local template, or define a new template. To define a template, cycle through the avail‐
able events, and enable (or disable) them as desired, optionally setting the threshold
at which the event kicks in.

Figure 3-16 shows that the File Read event is enabled with a threshold of 15 ms: file
reads that take longer than that will cause an event to be triggered. This event has also
been configured to generate a stack trace for the File Read events. That increases the
overhead—which in turn is why taking a stack trace for events is a configurable
option.

Figure 3-16. A sample JFR event template

The event templates are simple XML files, so the best way to determine which events
are enabled in a template (and their thresholds and stack-trace configurations) is to
read the XML file. Using an XML file also allows the local template file to be defined
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on one machine and then copied to the global template directory for use by others on
the team.

Quick Summary

• Java Flight Recorder provides the best possible visibility into
the JVM, since it is built into the JVM itself.

• Like all tools, JFR introduces some level of overhead into an
application. For routine use, JFR can be enabled to gather a
substantial amount of information with low overhead.

• JFR is useful in performance analysis, but it is also useful when
enabled on a production system so that you can examine the
events that led up to a failure.

Summary
Good tools are key to good performance analysis; in this chapter, we’ve just scratched
the surface of what tools can tell us. Here are the key things to keep in mind:

• No tool is perfect, and competing tools have relative strengths. Profiler X may be
a good fit for many applications, but in some cases it will miss something that
Profiler Y points out quite clearly. Always be flexible in your approach.

• Command-line monitoring tools can gather important data automatically; be
sure to include gathering this monitoring data in your automated performance
testing.

• Tools rapidly evolve: some of the tools mentioned in this chapter are probably
already obsolete (or at least have been superseded by new, superior tools). Keep‐
ing up-to-date in this area is important.
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CHAPTER 4

Working with the JIT Compiler

The just-in-time (JIT) compiler is the heart of the Java Virtual Machine; nothing con‐
trols the performance of your application more than the JIT compiler.

This chapter covers the compiler in depth. It starts with information on how the
compiler works and discusses the advantages and disadvantages of using a JIT com‐
piler. Until JDK 8 came along, you had to choose between two Java compilers. Today,
those two compilers still exist but work in concert with each other, though in rare
cases choosing one is necessary. Finally, we’ll look at some intermediate and advanced
tunings of the compiler. If an application is running slowly without any obvious rea‐
son, those sections can help you determine whether the compiler is at fault.

Just-in-Time Compilers: An Overview
We’ll start with some introductory material; feel free to skip ahead if you understand
the basics of just-in-time compilation.

Computers—and more specifically CPUs—can execute only a relatively few, specific
instructions, which are called machine code. All programs that the CPU executes must
therefore be translated into these instructions.

Languages like C++ and Fortran are called compiled languages because their pro‐
grams are delivered as binary (compiled) code: the program is written, and then a
static compiler produces a binary. The assembly code in that binary is targeted to a
particular CPU. Complementary CPUs can execute the same binary: for example,
AMD and Intel CPUs share a basic, common set of assembly language instructions,
and later versions of CPUs almost always can execute the same set of instructions as
previous versions of that CPU. The reverse is not always true; new versions of CPUs
often introduce instructions that will not run on older versions of CPUs.
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Languages like PHP and Perl, on the other hand, are interpreted. The same program
source code can be run on any CPU as long as the machine has the correct interpreter
(that is, the program called php or perl). The interpreter translates each line of the
program into binary code as that line is executed.

Each system has advantages and disadvantages. Programs written in interpreted lan‐
guages are portable: you can take the same code and drop it on any machine with the
appropriate interpreter, and it will run. However, it might run slowly. As a simple
case, consider what happens in a loop: the interpreter will retranslate each line of
code when it is executed in the loop. The compiled code doesn’t need to repeatedly
make that translation.

A good compiler takes several factors into account when it produces a binary. One
simple example is the order of the binary statements: not all assembly language
instructions take the same amount of time to execute. A statement that adds the val‐
ues stored in two registers might execute in one cycle, but retrieving (from main
memory) the values needed for the addition may take multiple cycles.

Hence, a good compiler will produce a binary that executes the statement to load the
data, executes other instructions, and then—when the data is available—executes the
addition. An interpreter that is looking at only one line of code at a time doesn’t have
enough information to produce that kind of code; it will request the data from mem‐
ory, wait for it to become available, and then execute the addition. Bad compilers will
do the same thing, by the way, and it is not necessarily the case that even the best
compiler can prevent the occasional wait for an instruction to complete.

For these (and other) reasons, interpreted code will almost always be measurably
slower than compiled code: compilers have enough information about the program
to provide optimizations to the binary code that an interpreter simply cannot
perform.

Interpreted code does have the advantage of portability. A binary compiled for an
ARM CPU obviously cannot run on an Intel CPU. But a binary that uses the latest
AVX instructions of Intel’s Sandy Bridge processors cannot run on older Intel pro‐
cessors either. Hence, commercial software is commonly compiled to a fairly old ver‐
sion of a processor and does not take advantage of the newest instructions available
to it. Various tricks around this exist, including shipping a binary with multiple
shared libraries that execute performance-sensitive code and come with versions for
various flavors of a CPU.

Java attempts to find a middle ground here. Java applications are compiled—but
instead of being compiled into a specific binary for a specific CPU, they are compiled
into an intermediate low-level language. This language (known as Java bytecode) is
then run by the java binary (in the same way that an interpreted PHP script is run by
the php binary). This gives Java the platform independence of an interpreted
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language. Because it is executing an idealized binary code, the java program is able to
compile the code into the platform binary as the code executes. This compilation
occurs as the program is executed: it happens “just in time.”

This compilation is still subject to platform dependencies. JDK 8, for example, cannot
generate code for the latest instruction set of Intel’s Skylake processors, though JDK
11 can. I’ll have more to say about that in “Advanced Compiler Flags” on page 105.

The manner in which the Java Virtual Machine compiles this code as it executes is the
focus of this chapter.

HotSpot Compilation
As discussed in Chapter 1, the Java implementation discussed in this book is Oracle’s
HotSpot JVM. This name (HotSpot) comes from the approach it takes toward
compiling the code. In a typical program, only a small subset of code is executed fre‐
quently, and the performance of an application depends primarily on how fast those
sections of code are executed. These critical sections are known as the hot spots of the
application; the more the section of code is executed, the hotter that section is said to
be.

Hence, when the JVM executes code, it does not begin compiling the code immedi‐
ately. There are two basic reasons for this. First, if the code is going to be executed
only once, then compiling it is essentially a wasted effort; it will be faster to interpret
the Java bytecodes than to compile them and execute (only once) the compiled code.

But if the code in question is a frequently called method or a loop that runs many
iterations, then compiling it is worthwhile: the cycles it takes to compile the code will
be outweighed by the savings in multiple executions of the faster compiled code. That
trade-off is one reason that the compiler executes the interpreted code first—the
compiler can figure out which methods are called frequently enough to warrant their
compilation.

The second reason is one of optimization: the more times that the JVM executes a
particular method or loop, the more information it has about that code. This allows
the JVM to make numerous optimizations when it compiles the code.

Those optimizations (and ways to affect them) are discussed later in this chapter, but
for a simple example, consider the equals() method. This method exists in every
Java object (because it is inherited from the Object class) and is often overridden.
When the interpreter encounters the statement b = obj1.equals(obj2), it must look
up the type (class) of obj1 in order to know which equals() method to execute. This
dynamic lookup can be somewhat time-consuming.

Over time, say the JVM notices that each time this statement is executed, obj1 is of
type java.lang.String. Then the JVM can produce compiled code that directly

Just-in-Time Compilers: An Overview | 91



calls the String.equals() method. Now the code is faster not only because it is
compiled but also because it can skip the lookup of which method to call.

It’s not quite as simple as that; it is possible the next time the code is executed that
obj1 refers to something other than a String. The JVM will create compiled code
that deals with that possibility, which will involve deoptimizing and then reoptimiz‐
ing the code in question (you’ll see an example in “Deoptimization” on page 101).
Nonetheless, the overall compiled code here will be faster (at least as long as obj1
continues to refer to a String) because it skips the lookup of which method to exe‐
cute. That kind of optimization can be made only after running the code for a while
and observing what it does: this is the second reason JIT compilers wait to compile
sections of code.

Registers and Main Memory
One of the most important optimizations a compiler can make involves when to use
values from main memory and when to store values in a register. Consider this code:

public class RegisterTest {
    private int sum;

    public void calculateSum(int n) {
        for (int i = 0; i < n; i++) {
     sum += i;
 }
    }
}

At some point, the sum instance variable must reside in main memory, but retrieving a
value from main memory is an expensive operation that takes multiple cycles to com‐
plete. If the value of sum were to be retrieved from (and stored back to) main memory
on every iteration of this loop, performance would be dismal. Instead, the compiler
will load a register with the initial value of sum, perform the loop using that value in
the register, and then (at an indeterminate point in time) store the final result from
the register back to main memory.

This kind of optimization is very effective, but it means that the semantics of thread
synchronization (see Chapter 9) are crucial to the behavior of the application. One
thread cannot see the value of a variable stored in the register used by another thread;
synchronization makes it possible to know exactly when the register is stored to main
memory and available to other threads.

Register usage is a general optimization of the compiler, and typically the JIT will
aggressively use registers. We’ll discuss this more in-depth in “Escape Analysis” on
page 110.
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Quick Summary

• Java is designed to take advantage of the platform independ‐
ence of scripting languages and the native performance of
compiled languages.

• A Java class file is compiled into an intermediate language
(Java bytecodes) that is then further compiled into assembly
language by the JVM.

• Compilation of the bytecodes into assembly language per‐
forms optimizations that greatly improve performance.

Tiered Compilation
Once upon a time, the JIT compiler came in two flavors, and you had to install differ‐
ent versions of the JDK depending on which compiler you wanted to use. These com‐
pilers are known as the client and server compilers. In 1996, this was an important
distinction; in 2020, not so much. Today, all shipping JVMs include both compilers
(though in common usage, they are usually referred to as server JVMs).

Compiler Flags
In older versions of Java, you would specify which compiler you wanted to use via a
flag that didn’t follow the normal convention for JVM flags: you would use -client
for the client compiler and either -server or -d64 for the server compiler.

Because developers don’t change scripts unnecessarily, you are bound to run across
scripts and other command lines that specify either -client or -server. But just
remember that since JDK 8, those flags don’t do anything. That is also true of many
earlier JDK versions: if you specified -client for a JVM that supported only the
server compiler, you’d get the server compiler anyway.

On the other hand, be aware that the old -d64 argument (which was essentially an
alias for -server) has been removed from JDK 11 and will cause an error. Using that
argument is a no-op on JDK 8.

Despite being called server JVMs, the distinction between client and server compilers
persists; both compilers are available to and used by the JVM. So knowing this differ‐
ence is important in understanding how the compiler works.

Historically, JVM developers (and even some tools) sometimes referred to the com‐
pilers by the names C1 (compiler 1, client compiler) and C2 (compiler 2, server
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compiler). Those names are more apt now, since any distinction between a client and
server computer is long gone, so we’ll adopt those names throughout.

The primary difference between the two compilers is their aggressiveness in compil‐
ing code. The C1 compiler begins compiling sooner than the C2 compiler does. This
means that during the beginning of code execution, the C1 compiler will be faster,
because it will have compiled correspondingly more code than the C2 compiler.

The engineering trade-off here is the knowledge the C2 compiler gains while it waits:
that knowledge allows the C2 compiler to make better optimizations in the compiled
code. Ultimately, code produced by the C2 compiler will be faster than that produced
by the C1 compiler. From a user’s perspective, the benefit to that trade-off is based on
how long the program will run and how important the startup time of the program is.

When these compilers were separate, the obvious question was why there needed to
be a choice at all: couldn’t the JVM start with the C1 compiler and then use the C2
compiler as code gets hotter? That technique is known as tiered compilation, and it is
the technique all JVMs now use. It can be explicitly disabled with the
-XX:-TieredCompilation flag (the default value of which is true); in “Advanced
Compiler Flags” on page 105, we’ll discuss the ramifications of doing that.

Common Compiler Flags
Two commonly used flags affect the JIT compiler; we’ll look at them in this section.

Tuning the Code Cache
When the JVM compiles code, it holds the set of assembly-language instructions in
the code cache. The code cache has a fixed size, and once it has filled up, the JVM is
not able to compile any additional code.

It is easy to see the potential issue here if the code cache is too small. Some hot meth‐
ods will get compiled, but others will not: the application will end up running a lot of
(very slow) interpreted code.

When the code cache fills up, the JVM spits out this warning:

Java HotSpot(TM) 64-Bit Server VM warning: CodeCache is full.
         Compiler has been disabled.
Java HotSpot(TM) 64-Bit Server VM warning: Try increasing the
         code cache size using -XX:ReservedCodeCacheSize=

It is sometimes easy to miss this message; another way to determine if the compiler
has ceased to compile code is to follow the output of the compilation log discussed
later in this section.

94 | Chapter 4: Working with the JIT Compiler



There really isn’t a good mechanism to figure out how much code cache a particular
application needs. Hence, when you need to increase the code cache size, it is sort of a
hit-and-miss operation; a typical option is to simply double or quadruple the default.

The maximum size of the code cache is set via the -XX:ReservedCodeCacheSize=N
flag (where N is the default just mentioned for the particular compiler). The code
cache is managed like most memory in the JVM: there is an initial size (specified
by -XX:InitialCodeCacheSize=N). Allocation of the code cache size starts at the ini‐
tial size and increases as the cache fills up. The initial size of the code cache is 2,496
KB, and the default maximum size is 240 MB. Resizing the cache happens in
the background and doesn’t really affect performance, so setting the
ReservedCodeCacheSize size (i.e., setting the maximum code cache size) is all that is
generally needed.

Is there a disadvantage to specifying a really large value for the maximum code cache
size so that it never runs out of space? It depends on the resources available on the
target machine. If a 1 GB code cache size is specified, the JVM will reserve 1 GB of
native memory. That memory isn’t allocated until needed, but it is still reserved,
which means that sufficient virtual memory must be available on your machine to
satisfy the reservation.

Reserved Versus Allocated Memory
It is important to understand the distinction between how the JVM reserves memory
and how it allocates memory. This difference applies to the code cache, the Java heap,
and various other native memory structures of the JVM.

For details on this subject, see “Footprint” on page 249.

In addition, if you still have an old Windows machine with a 32-bit JVM, the total
process size cannot exceed 4 GB. That includes the Java heap, space for all the code of
the JVM itself (including its native libraries and thread stacks), any native memory
the application allocates (either directly or via the New I/O [NIO] libraries), and of
course the code cache.

Those are the reasons the code cache is not unbounded and sometimes requires tun‐
ing for large applications. On 64-bit machines with sufficient memory, setting the
value too high is unlikely to have a practical effect on the application: the application
won’t run out of process space memory, and the extra memory reservation will gener‐
ally be accepted by the operating system.
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In Java 11, the code cache is segmented into three parts:

• Nonmethod code
• Profiled code
• Nonprofiled code

By default, the code cache is sized the same way (up to 240 MB), and you can still
adjust the total size of the code cache by using the ReservedCodeCacheSize flag. In
that case, the nonmethod code segment is allocated space according to the number of
compiler threads (see “Compilation Threads” on page 107); on a machine with four
CPUs, it will be about 5.5 MB. The other two segments then equally divide the
remaining total code cache—for example, about 117.2 MB each on the machine with
four CPUs (yielding 240 MB total).

You’ll rarely need to tune these segments individually, but if so, the flags are as
follows:

• -XX:NonNMethodCodeHeapSize=N: for the nonmethod code
• -XX:ProfiledCodeHapSize=N for the profiled code
• -XX:NonProfiledCodeHapSize=N for the nonprofiled code

The size of the code cache (and the JDK 11 segments) can be monitored in real time
by using jconsole and selecting the Memory Pool Code Cache chart on the Memory
panel. You can also enable Java’s Native Memory Tracking feature as described in
Chapter 8.

Quick Summary

• The code cache is a resource with a defined maximum size
that affects the total amount of compiled code the JVM can
run.

• Very large applications can use up the entire code cache in its
default configuration; monitor the code cache and increase its
size if necessary.

Inspecting the Compilation Process
The second flag isn’t a tuning per se: it will not improve the performance of an appli‐
cation. Rather, the -XX:+PrintCompilation flag (which by default is false) gives us
visibility into the workings of the compiler (though we’ll also look at tools that pro‐
vide similar information).
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If PrintCompilation is enabled, every time a method (or loop) is compiled, the JVM
prints out a line with information about what has just been compiled.

Most lines of the compilation log have the following format:

timestamp compilation_id attributes (tiered_level) method_name size deopt

The timestamp here is the time after the compilation has finished (relative to 0, which
is when the JVM started).

The compilation_id is an internal task ID. Usually, this number will simply increase
monotonically, but sometimes you may see an out-of-order compilation ID. This
happens most frequently when there are multiple compilation threads and indicates
that compilation threads are running faster or slower relative to each other. Don’t
conclude, though, that one particular compilation task was somehow inordinately
slow: it is usually just a function of thread scheduling.

The attributes field is a series of five characters that indicates the state of the code
being compiled. If a particular attribute applies to the given compilation, the charac‐
ter shown in the following list is printed; otherwise, a space is printed for that
attribute. Hence, the five-character attribute string may appear as two or more items
separated by spaces. The various attributes are as follows:

%

The compilation is OSR.

s

The method is synchronized.

!

The method has an exception handler.

b

Compilation occurred in blocking mode.

n

Compilation occurred for a wrapper to a native method.

The first of these attributes refers to on-stack replacement (OSR). JIT compilation is
an asynchronous process: when the JVM decides that a certain method should be
compiled, that method is placed in a queue. Rather than wait for the compilation, the
JVM then continues interpreting the method, and the next time the method is called,
the JVM will execute the compiled version of the method (assuming the compilation
has finished, of course).

But consider a long-running loop. The JVM will notice that the loop itself should be
compiled and will queue that code for compilation. But that isn’t sufficient: the JVM
has to have the ability to start executing the compiled version of the loop while the
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loop is still running—it would be inefficient to wait until the loop and enclosing
method exit (which may not even happen). Hence, when the code for the loop has
finished compiling, the JVM replaces the code (on stack), and the next iteration of
the loop will execute the much faster compiled version of the code. This is OSR.

The next two attributes should be self-explanatory. The blocking flag will never be
printed by default in current versions of Java; it indicates that compilation did not
occur in the background (see “Compilation Threads” on page 107 for more details).
Finally, the native attribute indicates that the JVM generated compiled code to facili‐
tate the call into a native method.

If tiered compilation has been disabled, the next field (tiered_level) will be blank.
Otherwise, it will be a number indicating which tier has completed compilation.

Next comes the name of the method being compiled (or the method containing the
loop being compiled for OSR), which is printed as ClassName::method.

Next is the size (in bytes) of the code being compiled. This is the size of the Java
bytecodes, not the size of the compiled code (so, unfortunately, this can’t be used to
predict how large to size the code cache).

Finally, in some cases a message at the end of the compilation line will indicate that
some sort of deoptimization has occurred; these are typically the phrases made not
entrant or made zombie. See “Deoptimization” on page 101 for more details.

Inspecting Compilation with jstat
Seeing the compilation log requires that the program be started with the
-XX:+PrintCompilation flag. If the program was started without that flag, you can
get limited visibility into the working of the compiler by using jstat.

jstat has two options to provide information about the compiler. The -compiler
option supplies summary information about the number of methods compiled (here
5003 is the process ID of the program to be inspected):

% jstat -compiler 5003
Compiled Failed Invalid   Time   FailedType FailedMethod
     206      0       0     1.97          0

Note this also lists the number of methods that failed to compile and the name of the
last method that failed to compile; if profiles or other information lead you to suspect
that a method is slow because it hasn’t been compiled, this is an easy way to verify that
hypothesis.

Alternately, you can use the -printcompilation option to get information about the
last method that is compiled. Because jstat takes an optional argument to repeat its
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operation, you can see over time which methods are being compiled. In this example,
jstat repeats the information for process ID 5003 every second (1,000 ms):

% jstat -printcompilation 5003 1000
Compiled  Size  Type Method
     207     64    1 java/lang/CharacterDataLatin1 toUpperCase
     208      5    1 java/math/BigDecimal$StringBuilderHelper getCharArray

The compilation log may also include a line that looks like this:

timestamp compile_id COMPILE SKIPPED: reason

This line (with the literal text COMPILE SKIPPED) indicates that something has gone
wrong with the compilation of the given method. In two cases this is expected,
depending on the reason specified:

Code cache filled
The size of the code cache needs to be increased using the ReservedCodeCache
flag.

Concurrent classloading
The class was modified as it was being compiled. The JVM will compile it again
later; you should expect to see the method recompiled later in the log.

In all cases (except the cache being filled), the compilation should be reattempted. If
it is not, an error prevents compilation of the code. This is often a bug in the com‐
piler, but the usual remedy in all cases is to refactor the code into something simpler
that the compiler can handle.

Here are a few lines of output from enabling PrintCompilation on the stock REST
application:

  28015  850       4     net.sdo.StockPrice::getClosingPrice (5 bytes)
  28179  905  s    3     net.sdo.StockPriceHistoryImpl::process (248 bytes)
  28226   25 %     3     net.sdo.StockPriceHistoryImpl::<init> @ 48 (156 bytes)
  28244  935       3     net.sdo.MockStockPriceEntityManagerFactory$\
                             MockStockPriceEntityManager::find (507 bytes)
  29929  939       3     net.sdo.StockPriceHistoryImpl::<init> (156 bytes)
 106805 1568   !   4     net.sdo.StockServlet::processRequest (197 bytes)

This output includes only a few of the stock-related methods (and not necessarily all
of the lines related to a particular method). A few interesting things to note: the first
such method wasn’t compiled until 28 seconds after the server was started, and 849
methods were compiled before it. In this case, all those other methods were methods
of the server or JDK (filtered out of this output). The server took about 2 seconds to
start; the remaining 26 seconds before anything else was compiled were essentially
idle as the application server waited for requests.
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The remaining lines are included to point out interesting features. The process()
method is synchronized, so the attributes include an s. Inner classes are compiled just
like any other class and appear in the output with the usual Java nomenclature:
outer-classname$inner-classname. The processRequest() method shows up
with the exception handler as expected.

Finally, recall the implementation of the StockPriceHistoryImpl constructor, which
contains a large loop:

public StockPriceHistoryImpl(String s, Date startDate, Date endDate) {
    EntityManager em = emf.createEntityManager();
    Date curDate = new Date(startDate.getTime());
    symbol = s;
    while (!curDate.after(endDate)) {
         StockPrice sp = em.find(StockPrice.class, new StockPricePK(s, curDate));
         if (sp != null) {
            if (firstDate == null) {
                firstDate = (Date) curDate.clone();
            }
            prices.put((Date) curDate.clone(), sp);
            lastDate = (Date) curDate.clone();
        }
        curDate.setTime(curDate.getTime() + msPerDay);
    }
}

The loop is executed more often than the constructor itself, so the loop is subject to
OSR compilation. Note that it took a while for that method to be compiled; its compi‐
lation ID is 25, but it doesn’t appear until other methods in the 900 range are being
compiled. (It’s easy to read OSR lines like this example as 25% and wonder about the
other 75%, but remember that the number is the compilation ID, and the % just signi‐
fies OSR compilation.) That is typical of OSR compilation; the stack replacement is
harder to set up, but other compilation can continue in the meantime.

Tiered Compilation Levels
The compilation log for a program using tiered compilation prints the tier level at
which each method is compiled. In the sample output, code was compiled either at
level 3 or 4, even though we’ve discussed only two compilers (plus the interpreter) so
far. It turns out that there are five levels of compilation, because the C1 compiler has
three levels. So the levels of compilation are as follows:

0
Interpreted code

1
Simple C1 compiled code
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2
Limited C1 compiled code

3
Full C1 compiled code

4
C2 compiled code

A typical compilation log shows that most methods are first compiled at level 3: full
C1 compilation. (All methods start at level 0, of course, but that doesn’t appear in the
log.) If a method runs often enough, it will get compiled at level 4 (and the level 3
code will be made not entrant). This is the most frequent path: the C1 compiler waits
to compile something until it has information about how the code is used that it can
leverage to perform optimizations.

If the C2 compiler queue is full, methods will be pulled from the C2 queue and com‐
piled at level 2, which is the level at which the C1 compiler uses the invocation and
back-edge counters (but doesn’t require profile feedback). That gets the method com‐
piled more quickly; the method will later be compiled at level 3 after the C1 compiler
has gathered profile information, and finally compiled at level 4 when the C2 com‐
piler queue is less busy.

On the other hand, if the C1 compiler queue is full, a method that is scheduled for
compilation at level 3 may become eligible for level 4 compilation while still waiting
to be compiled at level 3. In that case, it is quickly compiled to level 2 and then transi‐
tioned to level 4.

Trivial methods may start in either level 2 or 3 but then go to level 1 because of their
trivial nature. If the C2 compiler for some reason cannot compile the code, it will also
go to level 1. And, of course, when code is deoptimized, it goes to level 0.

Flags control some of this behavior, but expecting results when tuning at this level is
optimistic. The best case for performance happens when methods are compiled as
expected: tier 0 → tier 3 → tier 4. If methods frequently get compiled into tier 2 and
extra CPU cycles are available, consider increasing the number of compiler threads;
that will reduce the size of the C2 compiler queue. If no extra CPU cycles are avail‐
able, all you can do is attempt to reduce the size of the application.

Deoptimization
The discussion of the output of the PrintCompilation flag mentioned two cases of
the compiler deoptimizing the code. Deoptimization means that the compiler has to
“undo” a previous compilation. The effect is that the performance of the application
will be reduced—at least until the compiler can recompile the code in question.
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Deoptimization occurs in two cases: when code is made not entrant and when code
is made zombie.

Not entrant code
Two things cause code to be made not entrant. One is due to the way classes and
interfaces work, and one is an implementation detail of tiered compilation.

Let’s look at the first case. Recall that the stock application has an interface
StockPriceHistory. In the sample code, this interface has two implementations: a
basic one (StockPriceHistoryImpl) and one that adds logging (StockPriceHistory
Logger) to each operation. In the REST code, the implementation used is based on
the log parameter of the URL:

StockPriceHistory sph;
String log = request.getParameter("log");
if (log != null && log.equals("true")) {
    sph = new StockPriceHistoryLogger(...);
}
else {
    sph = new StockPriceHistoryImpl(...);
}
// Then the JSP makes calls to:
sph.getHighPrice();
sph.getStdDev();
// and so on

If a bunch of calls are made to http://localhost:8080/StockServlet (that is, without the
log parameter), the compiler will see that the actual type of the sph object is
StockPriceHistoryImpl. It will then inline code and perform other optimizations
based on that knowledge.

Later, say a call is made to http://localhost:8080/StockServlet?log=true. Now the
assumption the compiler made regarding the type of the sph object is incorrect; the
previous optimizations are no longer valid. This generates a deoptimization trap, and
the previous optimizations are discarded. If a lot of additional calls are made with
logging enabled, the JVM will quickly end up compiling that code and making new
optimizations.

The compilation log for that scenario will include lines such as the following:

 841113   25 %           net.sdo.StockPriceHistoryImpl::<init> @ -2 (156 bytes)
                                 made not entrant
 841113  937  s          net.sdo.StockPriceHistoryImpl::process (248 bytes)
                                 made not entrant
1322722   25 %           net.sdo.StockPriceHistoryImpl::<init> @ -2 (156 bytes)
                                 made zombie
1322722  937  s          net.sdo.StockPriceHistoryImpl::process (248 bytes)
                                 made zombie
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Note that both the OSR-compiled constructor and the standard-compiled methods
have been made not entrant, and some time much later, they are made zombie.

Deoptimization sounds like a bad thing, at least in terms of performance, but that
isn’t necessarily the case. Table 4-1 shows the operations per second that the REST
server achieves under deoptimization scenarios.

Table 4-1. Throughput of server with deoptimization

Scenario OPS
Standard implementation 24.4

Standard implementation after deopt 24.4

Logging implementation 24.1

Mixed impl 24.3

The standard implementation will give us 24.4 OPS. Suppose that immediately after
that test, a test is run that triggers the StockPriceHistoryLogger path—that is the
scenario that ran to produce the deoptimization examples just listed. The full output
of PrintCompilation shows that all the methods of the StockPriceHistoryImpl
class get deoptimized when the requests for the logging implementation are started.
But after deoptimization, if the path that uses the StockPriceHistoryImpl imple‐
mentation is rerun, that code will get recompiled (with slightly different assump‐
tions), and we will still end up still seeing about 24.4 OPS (after another warm-up
period).

That’s the best case, of course. What happens if the calls are intermingled such that
the compiler can never really assume which path the code will take? Because of the
extra logging, the path that includes the logging gets about 24.1 OPS through the
server. If operations are mixed, we get about 24.3 OPS: just about what would be
expected from an average. So aside from a momentary point where the trap is pro‐
cessed, deoptimization has not affected the performance in any significant way.

The second thing that can cause code to be made not entrant is the way tiered compi‐
lation works. When code is compiled by the C2 compiler, the JVM must replace the
code already compiled by the C1 compiler. It does this by marking the old code as not
entrant and using the same deoptimization mechanism to substitute the newly com‐
piled (and more efficient) code. Hence, when a program is run with tiered compila‐
tion, the compilation log will show a slew of methods that are made not entrant.
Don’t panic: this “deoptimization” is, in fact, making the code that much faster.

The way to detect this is to pay attention to the tier level in the compilation log:

  40915   84 %     3       net.sdo.StockPriceHistoryImpl::<init> @ 48 (156 bytes)
  40923 3697       3       net.sdo.StockPriceHistoryImpl::<init> (156 bytes)
  41418   87 %     4       net.sdo.StockPriceHistoryImpl::<init> @ 48 (156 bytes)
  41434   84 %     3       net.sdo.StockPriceHistoryImpl::<init> @ -2 (156 bytes)
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                                      made not entrant
  41458 3749       4       net.sdo.StockPriceHistoryImpl::<init> (156 bytes)
  41469 3697       3       net.sdo.StockPriceHistoryImpl::<init> (156 bytes)
                                      made not entrant
  42772 3697       3       net.sdo.StockPriceHistoryImpl::<init> (156 bytes)
                                      made zombie
  42861   84 %     3       net.sdo.StockPriceHistoryImpl::<init> @ -2 (156 bytes)
                                      made zombie

Here, the constructor is first OSR-compiled at level 3 and then fully compiled also at
level 3. A second later, the OSR code becomes eligible for level 4 compilation, so it is
compiled at level 4 and the level 3 OSR code is made not entrant. The same process
then occurs for the standard compilation, and finally the level 3 code becomes a
zombie.

Deoptimizing zombie code
When the compilation log reports that it has made zombie code, it is saying that it has
reclaimed previous code that was made not entrant. In the preceding example, after a
test was run with the StockPriceHistoryLogger implementation, the code for the
StockPriceHistoryImpl class was made not entrant. But objects of the
StockPriceHistoryImpl class remained. Eventually all those objects were reclaimed
by GC. When that happened, the compiler noticed that the methods of that class were
now eligible to be marked as zombie code.

For performance, this is a good thing. Recall that the compiled code is held in a fixed-
size code cache; when zombie methods are identified, the code in question can be
removed from the code cache, making room for other classes to be compiled (or lim‐
iting the amount of memory the JVM will need to allocate later).

The possible downside is that if the code for the class is made zombie and then later
reloaded and heavily used again, the JVM will need to recompile and reoptimize the
code. Still, that’s exactly what happened in the previous scenario, where the test was
run without logging, then with logging, and then without logging; performance in
that case was not noticeably affected. In general, the small recompilations that occur
when zombie code is recompiled will not have a measurable effect on most
applications.
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Quick Summary

• The best way to gain visibility into how code is being compiled
is by enabling PrintCompilation.

• Output from enabling PrintCompilation can be used to make
sure that compilation is proceeding as expected.

• Tiered compilation can operate at five distinct levels among
the two compilers.

• Deoptimization is the process by which the JVM replaces pre‐
viously compiled code. This usually happens in the context of
C2 code replacing C1 code, but it can happen because of
changes in the execution profile of an application.

Advanced Compiler Flags
This section covers a few other flags that affect the compiler. Mostly, this gives you a
chance to understand even better how the compiler works; these flags should not
generally be used. On the other hand, another reason they are included here is that
they were once common enough to be in wide usage, so if you’ve encountered them
and wonder what they do, this section should answer those questions.

Compilation Thresholds
This chapter has been somewhat vague in defining just what triggers the compilation
of code. The major factor is how often the code is executed; once it is executed a cer‐
tain number of times, its compilation threshold is reached, and the compiler deems
that it has enough information to compile the code.

Tunings affect these thresholds. However, this section is really designed to give you
better insight into how the compiler works (and introduce some terms); in current
JVMs, tuning the threshold never really makes sense.

Compilation is based on two counters in the JVM: the number of times the method
has been called, and the number of times any loops in the method have branched
back. Branching back can effectively be thought of as the number of times a loop has
completed execution, either because it reached the end of the loop itself or because it
executed a branching statement like continue.

When the JVM executes a Java method, it checks the sum of those two counters and
decides whether the method is eligible for compilation. If it is, the method is queued
for compilation (see “Compilation Threads” on page 107 for more details about queu‐
ing). This kind of compilation has no official name but is often called standard
compilation.
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Similarly, every time a loop completes an execution, the branching counter is incre‐
mented and inspected. If the branching counter has exceeded its individual threshold,
the loop (and not the entire method) becomes eligible for compilation.

Tunings affect these thresholds. When tiered compilation is disabled, standard com‐
pilation is triggered by the value of the -XX:CompileThreshold=N flag. The default
value of N is 10,000. Changing the value of the CompileThreshold flag will cause the
compiler to choose to compile the code sooner (or later) than it normally would have.
Note, however, that although there is one flag here, the threshold is calculated by
adding the sum of the back-edge loop counter plus the method entry counter.

You can often find recommendations to change the CompileThreshold flag, and sev‐
eral publications of Java benchmarks use this flag (e.g., frequently after 8,000 itera‐
tions). Some applications still ship with that flag set by default.

But remember that I said this flag works when tiered compilation is disabled—which
means that when tiered compilation is enabled (as it normally is), this flag does noth‐
ing at all. Use of this flag is really just a holdover from JDK 7 and earlier days.

This flag used to be recommended for two reasons: first, lowering it would improve
startup time for an application using the C2 compiler, since code would get compiled
more quickly (and usually with the same effectiveness). Second, it could cause some
methods to get compiled that otherwise never would have been compiled.

That last point is an interesting quirk: if a program runs forever, wouldn’t we expect
all of its code to get compiled eventually? That’s not how it works, because the coun‐
ters the compilers use increase as methods and loops are executed, but they also
decrease over time. Periodically (specifically, when the JVM reaches a safepoint), the
value of each counter is reduced.

Practically speaking, this means that the counters are a relative measure of the recent
hotness of the method or loop. One side effect is that somewhat frequently executed
code may never be compiled by the C2 compiler, even for programs that run forever. 
These methods are sometimes called lukewarm (as opposed to hot). Before tiered
compilation, this was one case where reducing the compilation threshold was
beneficial.

Today, however, even the lukewarm methods will be compiled, though perhaps they
could be ever-so-slightly improved if we could get them compiled by the C2 compiler
rather than the C1 compiler. Little practical benefit exists, but if you’re really interes‐
ted, try changing the flags -XX:Tier3InvocationThreshold=N (default 200) to get
C1 to compile a method more quickly, and -XX:Tier4InvocationThreshold=N
(default 5000) to get C2 to compile a method more quickly. Similar flags are available
for the back-edge threshold.
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Quick Summary

• The thresholds at which methods (or loops) get compiled are
set via tunable parameters.

• Without tiered compilation, it sometimes made sense to adjust
those thresholds, but with tiered compilation, this tuning is no
longer recommended.

Compilation Threads
“Compilation Thresholds” on page 105 mentioned that when a method (or loop)
becomes eligible for compilation, it is queued for compilation. That queue is pro‐
cessed by one or more background threads.

These queues are not strictly first in, first out; methods whose invocation counters are
higher have priority. So even when a program starts execution and has lots of code to
compile, this priority ordering helps ensure that the most important code will be
compiled first. (This is another reason the compilation ID in the PrintCompilation
output can appear out of order.)

The C1 and C2 compilers have different queues, each of which is processed by
(potentially multiple) different threads. The number of threads is based on a complex
formula of logarithms, but Table 4-2 lists the details.

Table 4-2. Default number of C1 and C2 compiler threads for tiered compilation

CPUs C1 threads C2 threads
1 1 1

2 1 1

4 1 2

8 1 2

16 2 6

32 3 7

64 4 8

128 4 10

The number of compiler threads can be adjusted by setting the
-XX:CICompilerCount=N flag. That is the total number of threads the JVM will use to
process the queue(s); for tiered compilation, one-third (but at least one) will be used
to process the C1 compiler queue, and the remaining threads (but also at least one)
will be used to process the C2 compiler queue. The default value of that flag is the
sum of the two columns in the preceding table.
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If tiered compilation is disabled, only the given number of C2 compiler threads are
started.

When might you consider adjusting this value? Because the default value is based on
the number of CPUs, this is one case where running with an older version of JDK 8
inside a Docker container can cause the automatic tuning to go awry. In such a cir‐
cumstance, you will need to manually set this flag to the desired value (using the tar‐
gets in Table 4-2 as a guideline based on the number of CPUs assigned to the Docker
container).

Similarly, if a program is run on a single-CPU virtual machine, having only one com‐
piler thread might be slightly beneficial: limited CPU is available, and having fewer
threads contending for that resource will help performance in many circumstances.
However, that advantage is limited only to the initial warm-up period; after that, the
number of eligible methods to be compiled won’t really cause contention for the CPU.
When the stock batching application was run on a single-CPU machine and the num‐
ber of compiler threads was limited to one, the initial calculations were about 10%
faster (since they didn’t have to compete for CPU as often). The more iterations that
were run, the smaller the overall effect of that initial benefit, until all hot methods
were compiled and the benefit was eliminated.

On the other hand, the number of threads can easily overwhelm the system, particu‐
larly if multiple JVMs are run at once (each of which will start many compilation
threads). Reducing the number of threads in that case can help overall throughput
(though again with the possible cost that the warm-up period will last longer).

Similarly, if lots of extra CPU cycles are available, then theoretically the program will
benefit—at least during its warm-up period—when the number of compiler threads is
increased. In real life, that benefit is extremely hard to come by. Further, if all that
excess CPU is available, you’re much better off trying something that takes advantage
of the available CPU cycles during the entire execution of the application (rather than
just compiling faster at the beginning).

One other setting that applies to the compilation threads is the value of the
-XX:+BackgroundCompilation flag, which by default is true. That setting means
that the queue is processed asynchronously as just described. But that flag can be set
to false, in which case when a method is eligible for compilation, code that wants to
execute it will wait until it is in fact compiled (rather than continuing to execute in
the interpreter). Background compilation is also disabled when -Xbatch is specified.
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Quick Summary

• Compilation occurs asynchronously for methods that are
placed on the compilation queue.

• The queue is not strictly ordered; hot methods are compiled
before other methods in the queue. This is another reason
compilation IDs can appear out of order in the compilation
log.

Inlining
One of the most important optimizations the compiler makes is to inline methods.
Code that follows good object-oriented design often contains attributes that are
accessed via getters (and perhaps setters):

public class Point {
    private int x, y;

    public void getX() { return x; }
    public void setX(int i)  { x = i; }
}

The overhead for invoking a method call like this is quite high, especially relative to
the amount of code in the method. In fact, in the early days of Java, performance tips
often argued against this sort of encapsulation precisely because of the performance
impact of all those method calls. Fortunately, JVMs now routinely perform code
inlining for these kinds of methods. Hence, you can write this code:

Point p = getPoint();
p.setX(p.getX() * 2);

The compiled code will essentially execute this:

Point p = getPoint();
p.x = p.x * 2;

Inlining is enabled by default. It can be disabled using the -XX:-Inline flag, though
it is such an important performance boost that you would never actually do that (for
example, disabling inlining reduces the performance of the stock batching test by
over 50%). Still, because inlining is so important, and perhaps because we have many
other knobs to turn, recommendations are often made regarding tuning the inlining
behavior of the JVM.

Unfortunately, there is no basic visibility into how the JVM inlines code. If you com‐
pile the JVM from source, you can produce a debug version that includes the flag
-XX:+PrintInlining. That flag provides all sorts of information about the inlining
decisions that the compiler makes.) The best that can be done is to look at profiles of
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the code, and if any simple methods near the top of the profiles seem like they should
be inlined, experiment with inlining flags.

The basic decision about whether to inline a method depends on how hot it is and its
size. The JVM determines if a method is hot (i.e., called frequently) based on an inter‐
nal calculation; it is not directly subject to any tunable parameters. If a method is eli‐
gible for inlining because it is called frequently, it will be inlined only if its bytecode
size is less than 325 bytes (or whatever is specified as the -XX:MaxFreqInlineSize=N
flag). Otherwise, it is eligible for inlining only if it is smaller than 35 bytes (or what‐
ever is specified as the -XX:MaxInlineSize=N flag).

Sometimes you will see recommendations that the value of the MaxInlineSize flag be
increased so that more methods are inlined. One often overlooked aspect of this rela‐
tionship is that setting the MaxInlineSize value higher than 35 means that a method
might be inlined when it is first called. However, if the method is called frequently—
in which case its performance matters much more—then it would have been inlined
eventually (assuming its size is less than 325 bytes). Otherwise, the net effect of tun‐
ing the MaxInlineSize flag is that it might reduce the warm-up time needed for a
test, but it is unlikely that it will have a big impact on a long-running application.

Quick Summary

• Inlining is the most beneficial optimization the compiler can
make, particularly for object-oriented code where attributes
are well encapsulated.

• Tuning the inlining flags is rarely needed, and recommenda‐
tions to do so often fail to account for the relationship between
normal inlining and frequent inlining. Make sure to account
for both cases when investigating the effects of inlining.

Escape Analysis
The C2 compiler performs aggressive optimizations if escape analysis is enabled
(-XX:+DoEscapeAnalysis, which is true by default). For example, consider this class
to work with factorials:

public class Factorial {
    private BigInteger factorial;
    private int n;
    public Factorial(int n) {
        this.n = n;
    }
    public synchronized BigInteger getFactorial() {
        if (factorial == null)
            factorial = ...;
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        return factorial;
    }
}

To store the first 100 factorial values in an array, this code would be used:

ArrayList<BigInteger> list = new ArrayList<BigInteger>();
for (int i = 0; i < 100; i++) {
    Factorial factorial = new Factorial(i);
    list.add(factorial.getFactorial());
}

The factorial object is referenced only inside that loop; no other code can ever
access that object. Hence, the JVM is free to perform optimizations on that object:

• It needn’t get a synchronization lock when calling the getFactorial() method.
• It needn’t store the field n in memory; it can keep that value in a register. Simi‐

larly, it can store the factorial object reference in a register.
• In fact, it needn’t allocate an actual factorial object at all; it can just keep track of

the individual fields of the object.

This kind of optimization is sophisticated: it is simple enough in this example, but
these optimizations are possible even with more-complex code. Depending on the
code usage, not all optimizations will necessarily apply. But escape analysis can deter‐
mine which of those optimizations are possible and make the necessary changes in
the compiled code.

Escape analysis is enabled by default. In rare cases, it will get things wrong. That is
usually unlikely, and in current JVMs, it is rare indeed. Still, because there were once
some high-profile bugs, you’ll sometimes see recommendations for disabling escape
analysis. Those are likely not appropriate any longer, though as with all aggressive
compiler optimizations, it’s not out of the question that disabling this feature could
lead to more stable code. If you find this to be the case, simplifying the code in ques‐
tion is the best course of action: simpler code will compile better. (It is a bug, how‐
ever, and should be reported.)

Quick Summary

• Escape analysis is the most sophisticated of the optimizations
the compiler can perform. This is the kind of optimization that
frequently causes microbenchmarks to go awry.
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CPU-Specific Code
I mentioned earlier that one advantage of the JIT compiler is that it could emit code
for different processors depending on where it was running. This presumes that the
JVM is built with the knowledge of the newer processor, of course.

That is exactly what the compiler does for Intel chips. In 2011, Intel introduced 
Advanced Vector Extensions (AVX2) for the Sandy Bridge (and later) chips. JVM
support for those instructions soon followed. Then in 2016 Intel extended this to
include AVX-512 instructions; those are present on Knights Landing and subsequent
chips. Those instructions are not supported in JDK 8 but are supported in JDK 11.

Normally, this feature isn’t something you worry about; the JVM will detect the CPU
that it is running on and select the appropriate instruction set. But as with all new
features, sometimes things go awry.

Support for AVX-512 instructions was first introduced in JDK 9, though it was not
enabled by default. In a couple of false starts, it was enabled by default and then dis‐
abled by default. In JDK 11, those instructions were enabled by default. However,
beginning in JDK 11.0.6, those instructions are again disabled by default. Hence, even
in JDK 11, this is still a work in progress. (This, by the way, is not unique to Java;
many programs have struggled to get the support of the AVX-512 instructions exactly
right.)

So it is that on some newer Intel hardware, running some programs, you may find
that an earlier instruction set works much better. The kinds of applications that bene‐
fit from the new instruction set typically involve more scientific calculations than Java
programs often do.

These instruction sets are selected with the -XX:UseAVX=N argument, where N is as
follows:

0
Use no AVX instructions.

1
Use Intel AVX level 1 instructions (for Sandy Bridge and later processors).

2
Use Intel AVX level 2 instructions (for Haswell and later processors).

3
Use Intel AVX-512 instructions (for Knights Landing and later processors).

The default value for this flag will depend on the processor running the JVM; the
JVM will detect the CPU and pick the highest supported value it can. Java 8 has no
support for a level of 3, so 2 is the value you’ll see used on most processors. In Java 11
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on newer Intel processors, the default is to use 3 in versions up to 11.0.5, and 2 in
later versions.

This is one of the reasons I mentioned in Chapter 1 that it is a good idea to use the
latest versions of Java 8 or Java 11, since important fixes like this are in those latest
versions. If you must use an earlier version of Java 11 on the latest Intel processors,
try setting the -XX:UseAVX=2 flag, which in many cases will give you a performance
boost.

Speaking of code maturity: for completeness, I’ll mention that the -XX:UseSSE=N flag
supports Intel Streaming SIMD Extensions (SSE) one to four. These extensions are
for the Pentium line of processors. Tuning this flag in 2010 made some sense as all the
permutations of its use were being worked out. Today, we can generally rely on the
robustness of that flag.

Tiered Compilation Trade-offs
I’ve mentioned a few times that the JVM works differently when tiered compilation is
disabled. Given the performance advantages it provides, is there ever a reason to turn
it off?

One such reason might be when running in a memory-constrained environment. 
Sure, your 64-bit machine probably has a ton of memory, but you may be running in
a Docker container with a small memory limit or in a cloud virtual machine that just
doesn’t have quite enough memory. Or you may be running dozens of JVMs on your
large machine. In those cases, you may want to reduce the memory footprint of your
application.

Chapter 8 provides general recommendations about this, but in this section we’ll look
at the effect of tiered compilation on the code cache.

Table 4-3 shows the result of starting NetBeans on my system, which has a couple
dozen projects that will be opened at startup.

Table 4-3. Effect of tiered compilation on the code cache

Compiler mode Classes compiled Committed code cache Startup time
+TieredCompilation 22,733 46.5 MB 50.1 seconds

-TieredCompilation 5,609 10.7 MB 68.5 seconds

The C1 compiler compiled about four times as many classes and predictably required
about four times as much memory for the code cache. In absolute terms, saving 34
MB in this example is unlikely to make a huge difference. Saving 300 MB in a pro‐
gram that compiles 200,000 classes might be a different choice on some platforms.
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What do we lose by disabling tiered compilation? As the table shows, we do spend
more time to start the application and load all project classes. But what about a long-
running program, where you’d expect all the hot spots to get compiled?

In that case, given a sufficiently long warm-up period, execution should be about the
same when tiered compilation is disabled. Table 4-4 shows the performance of our
stock REST server after warm-up periods of 0, 60, and 300 seconds.

Table 4-4. Throughput of server applications with tiered compilation

Warm-up period -XX:-TieredCompilation -XX:+TieredCompilation

0 seconds 23.72 24.23

60 seconds 23.73 24.26

300 seconds 24.42 24.43

The measurement period is 60 seconds, so even when there is no warm-up, the com‐
pilers had an opportunity to get enough information to compile the hot spots; hence,
there is little difference even when there is no warm-up period. (Also, a lot of code
was compiled during the startup of the server.) Note that in the end, tiered compila‐
tion is still able to eke out a small advantage (albeit one that is unlikely to be noticea‐
ble). We discussed the reason for that when discussing compilation thresholds: there
will always be a small number of methods that are compiled by the C1 compiler when
tiered compilation is used that won’t be compiled by the C2 compiler.

The javac Compiler
In performance terms, compilation is really about the JIT built into the JVM. Recall,
though, that the Java code first is compiled into bytecodes; that occurs via the javac
process. So we’ll end this section by mentioning a few points about it.

Most important is that the javac compiler—with one exception—doesn’t really affect
performance at all. In particular:

• The -g option to include additional debugging information doesn’t affect
performance.

• Using the final keyword in your Java program doesn’t produce faster compiled
code.

• Recompiling with newer javac versions doesn’t (usually) make programs any
faster.

These three points have been general recommendations for years, and then along
came JDK 11. JDK 11 introduces a new way of doing string concatenation that can be
faster than previous versions, but it requires that code be recompiled in order to take
advantage of it. That is the exception to the rule here; in general, you never need to
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recompile to bytecodes in order to take advantage of new features. More details about
this are given in “Strings” on page 363.

The GraalVM
The GraalVM is a new virtual machine. It provides a means to run Java code, of
course, but also code from many other languages. This universal virtual machine can
also run JavaScript, Python, Ruby, R, and traditional JVM bytecodes from Java and
other languages that compile to JVM bytecodes (e.g., Scala, Kotlin, etc.). Graal comes
in two editions: a full open source Community Edition (CE) and a commercial Enter‐
prise Edition (EE). Each edition has binaries that support either Java 8 or Java 11.

The GraalVM has two important contributions to JVM performance. First, an add-
on technology allows the GraalVM to produce fully native binaries; we’ll examine
that in the next section.

Second, the GraalVM can run in a mode as a regular JVM, but it contains a new
implementation of the C2 compiler. This compiler is written in Java (as opposed to
the traditional C2 compiler, which is written in C++).

The traditional JVM contains a version of the GraalVM JIT, depending on when the
JVM was built. These JIT releases come from the CE version of GraalVM, which are
slower than the EE version; they are also typically out-of-date compared to versions
of GraalVM that you can download directly.

Within the JVM, using the GraalVM compiler is considered experimental, so to
enable it, you need to supply these flags: -XX:+UnlockExperimentalVMOptions,
-XX:+EnableJVMCI, and -XX:+UseJVMCICompiler. The default for all those flags is
false.

Table 4-5 shows the performance of the standard Java 11 compiler, the Graal compiler
from EE version 19.2.1, and the GraalVM embedded in Java 11 and 13.

Table 4-5. Performance of Graal compiler

JVM/compiler OPS
JDK 11/Standard C2 20.558

JDK 11/Graal JIT 14.733

Graal 1.0.0b16 16.3

Graal 19.2.1 26.7

JDK 13/Standard C2 21.9

JDK 13/Graal JIT 26.4
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1 One benefit of AOC compilation is faster startup, but application class data sharing gives—at least for now—a
better benefit in terms of startup performance and is a fully supported feature; see “Class Data Sharing” on
page 377 for more details.

This is once again the performance of our REST server (though on slightly different
hardware than before, so the baseline OPS is only 20.5 OPS instead of 24.4).

It’s interesting to note the progression here: JDK 11 was built with a pretty early ver‐
sion of the Graal compiler, so the performance of that compiler lags the C2 compiler.
The Graal compiler improved through its early access builds, though even its latest
early access (1.0) build wasn’t as fast as the standard VM. Graal versions in late 2019
(released as production version 19.2.1), though, got substantially faster. The early
access release of JDK 13 has one of those later builds and achieves close to the same
performance with the Graal compiler, even while its C2 compiler is only modestly
improved since JDK 11.

Precompilation
We began this chapter by discussing the philosophy behind a just-in-time compiler.
Although it has its advantages, code is still subject to a warm-up period before it exe‐
cutes. What if in our environment a traditional compiled model would work better:
an embedded system without the extra memory the JIT requires, or a program that
completes before having a chance to warm up?

In this section, we’ll look at two experimental features that address that scenario.
Ahead-of-time compilation is an experimental feature of the standard JDK 11, and
the ability to produce a fully native binary is a feature of the Graal VM.

Ahead-of-Time Compilation
Ahead-of-time (AOT) compilation was first available in JDK 9 for Linux only, but in
JDK 11 it is available on all platforms. From a performance standpoint, it is still a
work in progress, but this section will give you a sneak peek at it.1

AOT compilation allows you to compile some (or all) of your application in advance
of running it. This compiled code becomes a shared library that the JVM uses when
starting the application. In theory, this means the JIT needn’t be involved, at least in
the startup of your application: your code should initially run at least as well as the C1
compiled code without having to wait for that code to be compiled.

In practice, it’s a little different: the startup time of the application is greatly affected
by the size of the shared library (and hence the time to load that shared library into
the JVM). That means a simple application like a “Hello, world” application won’t run
any faster when you use AOT compilation (in fact, it may run slower depending on
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the choices made to precompile the shared library). AOT compilation is targeted
toward something like a REST server that has a relatively long startup time. That way,
the time to load the shared library is offset by the long startup time, and AOT pro‐
duces a benefit. But remember as well that AOT compilation is an experimental fea‐
ture, and smaller programs may see benefits from it as the technology evolves.

To use AOT compilation, you use the jaotc tool to produce a shared library contain‐
ing the compiled classes that you select. Then that shared library is loaded into the
JVM via a runtime argument.

The jaotc tool has several options, but the way that you’ll produce the best library is
something like this:

$ jaotc --compile-commands=/tmp/methods.txt \
    --output JavaBaseFilteredMethods.so \
    --compile-for-tiered \
    --module java.base

This command will use a set of compile commands to produce a compiled version of
the java.base module in the given output file. You have the option of AOT compiling
a module, as we’ve done here, or a set of classes.

The time to load the shared library depends on its size, which is a factor of the num‐
ber of methods in the library. You can load multiple shared libraries that pre-compile
different parts of code as well, which may be easier to manage but has the same per‐
formance, so we’ll concentrate on a single library.

While you might be tempted to precompile everything, you’ll obtain better perfor‐
mance if you judiciously precompile only subsets of the code. That’s why this recom‐
mendation is to compile only the java.base module.

The compile commands (in the /tmp/methods.txt file in this example) also serve to
limit the data that is compiled into the shared library. That file contains lines that
look like this:

compileOnly java.net.URI.getHost()Ljava/lang/String;

This line tells jaotc that when it compiles the java.net.URI class, it should include
only the getHost() method. We can have other lines referencing other methods from
that class to include their compilation as well; in the end, only the methods listed in
the file will be included in the shared library.

To create the list of compile commands, we need a list of every method that the appli‐
cation actually uses. To do that, we run the application like this:

$ java -XX:+UnlockDiagnosticVMOptions -XX:+LogTouchedMethods \
      -XX:+PrintTouchedMethodsAtExit <other arguments>

When the program exits, it will print lines of each method the program used in a for‐
mat like this:
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java/net/URI.getHost:()Ljava/lang/String;

To produce the methods.txt file, save those lines, prepend each with the compileOnly
directive, and remove the colon immediately preceding the method arguments.

The classes that are precompiled by jaotc will use a form of the C1 compiler, so in a
long-running program, they will not be optimally compiled. So the final option that
we’ll need is --compile-for-tiered. That option arranges the shared library so that
its methods are still eligible to be compiled by the C2 compiler.

If you are using AOT compilation for a short-lived program, it’s fine to leave out this
argument, but remember that the target set of applications is a server. If we don’t
allow the precompiled methods to become eligible for C2 compilation, the warm per‐
formance of the server will be slower than what is ultimately possible.

Perhaps unsurprisingly, if you run your application with a library that has tiered com‐
pilation enabled and use the -XX:+PrintCompilation flag, you see the same code
replacement technique we observed before: the AOT compilation will appear as
another tier in the output, and you’ll see the AOT methods get made not entrant and
replaced as the JIT compiles them.

Once the library has been created, you use it with your application like this:

$ java -XX:AOTLibrary=/path/to/JavaBaseFilteredMethods.so <other args>

If you want to make sure that the library is being used, include the -XX:+PrintAOT
flag in your JVM arguments; that flag is false by default. Like the
-XX:+PrintCompilation flag, the -XX:+PrintAOT flag will produce output when‐
ever a precompiled method is used by the JVM. A typical line looks like this:

    373  105     aot[ 1]   java.util.HashSet.<init>(I)V

The first column here is the milliseconds since the program started, so it took 373
milliseconds until the constructor of the HashSet class was loaded from the shared
library and began execution. The second column is an ID assigned to the method,
and the third column tells us which library the method was loaded from. The index
(1 in this example) is also printed by this flag:

18    1     loaded    /path/to/JavaBaseFilteredMethods.so  aot library

JavaBaseFilteredMethods.so is the first (and only) library loaded in this example, so its
index is 1 (the second column) and subsequent references to aot with that index refer
to this library.

GraalVM Native Compilation
AOT compilation was beneficial for relatively large programs but didn’t help (and
could hinder) small, quick-running programs. That is because it’s still an experimen‐
tal feature and because its architecture has the JVM load the shared library.
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The GraalVM, on the other hand, can produce full native executables that run
without the JVM. These executables are ideal for short-lived programs. If you ran the
examples, you may have noticed references in some things (like ignored errors) to
GraalVM classes: AOT compilation uses GraalVM as its foundation. This is an Early
Adopter feature of the GraalVM; it can be used in production with the appropriate
license but is not subject to warranty.

The GraalVM produces binaries that start up quite fast, particularly when comparing
them to the running programs in the JVM. However, in this mode the GraalVM does
not optimize code as aggressively as the C2 compiler, so given a sufficiently long-
running application, the traditional JVM will win out in the end. Unlike AOT compi‐
lation, the GraalVM native binary does not compile classes using C2 during
execution.

Similarly, the memory footprint of a native program produced from the GraalVM
starts out significantly smaller than a traditional JVM. However, by the time a pro‐
gram runs and expands the heap, this memory advantage fades.

Limitations also exist on which Java features can be used in a program compiled into
native code. These limitations include the following:

• Dynamic class loading (e.g., by calling Class.forName()).
• Finalizers.
• The Java Security Manager.
• JMX and JVMTI (including JVMTI profiling).
• Use of reflection often requires special coding or configuration.
• Use of dynamic proxies often requires special configuration.
• Use of JNI requires special coding or configuration.

We can see all of this in action by using a demo program from the GraalVM project
that recursively counts the files in a directory. With a few files to count, the native
program produced by the GraalVM is quite small and fast, but as more work is done
and the JIT kicks in, the traditional JVM compiler generates better code optimiza‐
tions and is faster, as we see in Table 4-6.

Table 4-6. Time to count files with native and JIT-compiled code

Number of files Java 11.0.5 Native application
7 217 ms (36K) 4 ms (3K)

271 279 ms (37K) 20 ms (6K)

169,000 2.3 s (171K) 2.1 s (249K)

1.3 million 19.2 s (212K) 25.4 s (269K)
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The times here are the time to count the files; the total footprint of the run (measured
at completion) is given in parentheses.

Of course, the GraalVM itself is rapidly evolving, and the optimizations within its
native code can be expected to improve over time as well.

Summary
This chapter contains a lot of background about how the compiler works. This is so
you can understand some of the general recommendations made in Chapter 1
regarding small methods and simple code, and the effects of the compiler on
microbenchmarks that were described in Chapter 2. In particular:

• Don’t be afraid of small methods—and, in particular, getters and setters—because
they are easily inlined. If you have a feeling that the method overhead can be
expensive, you’re correct in theory (we showed that removing inlining signifi‐
cantly degrades performance). But it’s not the case in practice, since the compiler
fixes that problem.

• Code that needs to be compiled sits in a compilation queue. The more code in
the queue, the longer the program will take to achieve optimal performance.

• Although you can (and should) size the code cache, it is still a finite resource.
• The simpler the code, the more optimizations that can be performed on it. Profile

feedback and escape analysis can yield much faster code, but complex loop struc‐
tures and large methods limit their effectiveness.

Finally, if you profile your code and find some surprising methods at the top of your
profile—methods you expect shouldn’t be there—you can use the information here to
look into what the compiler is doing and to make sure it can handle the way your
code is written.
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CHAPTER 5

An Introduction to Garbage Collection

This chapter covers the basics of garbage collection within the JVM. Short of rewrit‐
ing code, tuning the garbage collector is the most important thing that can be done to
improve the performance of a Java application.

Because the performance of Java applications depends heavily on garbage collection
technology, it is not surprising that quite a few collectors are available. The OpenJDK
has three collectors suitable for production, another that is deprecated in JDK 11 but
still quite popular in JDK 8, and some experimental collectors that will (ideally) be
production-ready in future releases. Other Java implementations such as Open J9 or
the Azul JVM have their own collectors.

The performance characteristics of all these collectors are quite different; we will
focus only on those that come with OpenJDK. Each is covered in depth in the next
chapter. However, they share basic concepts, so this chapter provides a basic overview
of how the collectors operate.

Garbage Collection Overview
One of the most attractive features of programming in Java is that developers needn’t
explicitly manage the life cycle of objects: objects are created when needed, and when
the object is no longer in use, the JVM automatically frees the object. If, like me, you
spend a lot of time optimizing the memory use of Java programs, this whole scheme
might seem like a weakness instead of a feature (and the amount of time I’ll spend
covering GC might seem to lend credence to that position). Certainly it can be con‐
sidered a mixed blessing, but I still recall the difficulties of tracking down null point‐
ers and dangling pointers in other languages. I’d strongly argue that tuning garbage
collectors is far easier (and less time-consuming) than tracking down pointer bugs.

121



At a basic level, GC consists of finding objects that are in use and freeing the memory
associated with the remaining objects (those that are not in use). This is sometimes
described as finding objects that no longer have any references to them (implying that
references are tracked via a count). That sort of reference counting is insufficient,
though. Given a linked list of objects, each object in the list (except the head) will be
pointed to by another object in the list—but if nothing refers to the head of the list,
the entire list is not in use and can be freed. And if the list is circular (e.g., the tail of
the list points to the head), every object in the list has a reference to it—even though
no object in the list can actually be used, since no objects reference the list itself.

So references cannot be tracked dynamically via a count; instead, the JVM must peri‐
odically search the heap for unused objects. It does this by starting with objects that
are GC roots, which are objects that are accessible from outside the heap. That pri‐
marily includes thread stacks and system classes. Those objects are always reachable,
so then the GC algorithm scans all objects that are reachable via one of the root
objects. Objects that are reachable via a GC root are live objects; the remaining
unreachable objects are garbage (even if they maintain references to live objects or to
each other).

When the GC algorithm finds unused objects, the JVM can free the memory occu‐
pied by those objects and use it to allocate additional objects. However, it is usually
insufficient simply to keep track of that free memory and use it for future allocations;
at some point, memory must be compacted to prevent memory fragmentation.

Consider the case of a program that allocates an array of 1,000 bytes, then one of 24
bytes, and repeats that process in a loop. When that process fills up the heap, it will
appear like the top row in Figure 5-1: the heap is full, and the allocations of the array
sizes are interleaved.

When the heap is full, the JVM will free the unused arrays. Say that all the 24-byte
arrays are no longer in use, and the 1,000-byte arrays are still all in use: that yields the
second row in Figure 5-1. The heap has free areas within it, but it can’t allocate any‐
thing larger than 24 bytes—unless the JVM moves all the 1,000-byte arrays so that
they are contiguous, leaving all the free memory in a region where it can be allocated
as needed (the third row in Figure 5-1).

The implementations are a little more detailed, but the performance of GC is domi‐
nated by these basic operations: finding unused objects, making their memory avail‐
able, and compacting the heap. Different collectors take different approaches to these
operations, particularly compaction: some algorithms delay compaction until abso‐
lutely necessary, some compact entire sections of the heap at a time, and some com‐
pact the heap by relocating small amounts of memory at a time. These different
approaches are why different algorithms have different performance characteristics.
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Figure 5-1. Idealized GC heap during collection

It is simpler to perform these operations if no application threads are running while
the garbage collector is running. Java programs are typically heavily multithreaded,
and the garbage collector itself often runs multiple threads. This discussion considers
two logical groups of threads: those performing application logic (often called muta‐
tor threads, since they are mutating objects as part of the application logic) and those
performing GC. When GC threads track object references or move objects around in
memory, they must make sure that application threads are not using those objects.
This is particularly true when GC moves objects around: the memory location of the
object changes during that operation, and hence no application threads can be access‐
ing the object.

The pauses when all application threads are stopped are called stop-the-world pauses.
These pauses generally have the greatest impact on the performance of an application,
and minimizing those pauses is one important consideration when tuning GC.

Generational Garbage Collectors
Though the details differ somewhat, most garbage collectors work by splitting the
heap into generations. These are called the old (or tenured) generation and the young
generation. The young generation is further divided into sections known as eden and
the survivor spaces (though sometimes, eden is incorrectly used to refer to the entire
young generation).
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The rationale for having separate generations is that many objects are used for a very
short period of time. Take, for example, the loop in the stock price calculation that
sums the square of the difference of price from the average price (part of the calcula‐
tion of standard deviation):

sum = new BigDecimal(0);
for (StockPrice sp : prices.values()) {
    BigDecimal diff = sp.getClosingPrice().subtract(averagePrice);
    diff = diff.multiply(diff);
    sum = sum.add(diff);
}

Like many Java classes, the BigDecimal class is immutable: the object represents a
particular number and cannot be changed. When arithmetic is performed on the
object, a new object is created (and often, the previous object with the previous value
is then discarded). When this simple loop is executed for a year’s worth of stock pri‐
ces (roughly 250 iterations), 750 BigDecimal objects are created to store the inter‐
mediate values just in this loop. Those objects are discarded on the next iteration of
the loop. Within add() and other methods, the JDK library code creates even more
intermediate BigDecimal (and other) objects. In the end, a lot of objects are created
and discarded quickly in this small amount of code.

This kind of operation is common in Java, so the garbage collector is designed to take
advantage of the fact that many (and sometimes most) objects are only used tem‐
porarily. This is where the generational design comes in. Objects are first allocated in
the young generation, which is a subset of the entire heap. When the young genera‐
tion fills up, the garbage collector will stop all the application threads and empty out
the young generation. Objects that are no longer in use are discarded, and objects that
are still in use are moved elsewhere. This operation is called a minor GC or a young
GC.

This design has two performance advantages. First, because the young generation is
only a portion of the entire heap, processing it is faster than processing the entire
heap. The application threads are stopped for a much shorter period of time than if
the entire heap were processed at once. You probably see a trade-off there, since it
also means that the application threads are stopped more frequently than they would
be if the JVM waited to perform GC until the entire heap were full; that trade-off will
be explored in more detail later in this chapter. For now, though, it is almost always a
big advantage to have the shorter pauses even though they will be more frequent.

The second advantage arises from the way objects are allocated in the young genera‐
tion. Objects are allocated in eden (which encompasses the vast majority of the young
generation). When the young generation is cleared during a collection, all objects in
eden are either moved or discarded: objects that are not in use can be discarded, and
objects in use are moved either to one of the survivor spaces or to the old generation.
Since all surviving objects are moved, the young generation is automatically
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compacted when it is collected: at the end of the collection, eden and one of the survi‐
vor spaces are empty, and the objects that remain in the young generation are com‐
pacted within the other survivor space.

Common GC algorithms have stop-the-world pauses during collection of the young
generation.

As objects are moved to the old generation, eventually it too will fill up, and the JVM
will need to find any objects within the old generation that are no longer in use and
discard them. This is where GC algorithms have their biggest differences. The simpler
algorithms stop all application threads, find the unused objects, free their memory,
and then compact the heap. This process is called a full GC, and it generally causes a
relatively long pause for the application threads.

On the other hand, it is possible—though more computationally complex—to find
unused objects while application threads are running. Because the phase where they
scan for unused objects can occur without stopping application threads, these algo‐
rithms are called concurrent collectors. They are also called low-pause (and sometimes,
incorrectly, pauseless) collectors since they minimize the need to stop all the applica‐
tion threads. Concurrent collectors also take different approaches to compacting the
old generation.

When using a concurrent collector, an application will typically experience fewer
(and much shorter) pauses. The biggest trade-off is that the application will use more
CPU overall. Concurrent collectors can also be more difficult to tune in order to get
their best performance (though in JDK 11, tuning concurrent collectors like the G1
GC is much easier than in previous releases, which reflects the engineering progress
that has been made since the concurrent collectors were first introduced).

As you consider which garbage collector is appropriate for your situation, think
about the overall performance goals that must be met. Trade-offs exist in every situa‐
tion. In an application (such as a REST server) measuring the response time of indi‐
vidual requests, consider these points:

• The individual requests will be impacted by pause times—and more importantly
by long pause times for full GCs. If minimizing the effect of pauses on response
times is the goal, a concurrent collector may be more appropriate.

• If the average response time is more important than the outliers (i.e., the 90th%)
response time), a nonconcurrent collector may yield better results.

• The benefit of avoiding long pause times with a concurrent collector comes at the
expense of extra CPU usage. If your machine lacks the spare CPU cycles needed
by a concurrent collector, a nonconcurrent collector may be the better choice.

Similarly, the choice of garbage collector in a batch application is guided by the fol‐
lowing trade-off:
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• If enough CPU is available, using the concurrent collector to avoid full GC pau‐
ses will allow the job to finish faster.

• If CPU is limited, the extra CPU consumption of the concurrent collector will
cause the batch job to take more time.

Quick Summary

• GC algorithms generally divide the heap into old and young
generations.

• GC algorithms generally employ a stop-the-world approach to
clearing objects from the young generation, which is usually a
quick operation.

• Minimizing the effect of performing GC in the old generation
is a trade-off between pause times and CPU usage.

GC Algorithms
OpenJDK 12 provides a variety of GC algorithms with varying degrees of support in
earlier releases. Table 5-1 lists these algorithms and their status in OpenJDK and
Oracle Java releases.

Table 5-1. Support level of various GC algorithmsa

GC algorithm Support in JDK 8 Support in JDK 11 Support in JDK 12
Serial GC S S S

Throughput (Parallel) GC S S S

G1 GC S S S

Concurrent Mark-Sweep (CMS) S D D

ZGC - E E

Shenandoah E2 E2 E2

Epsilon GC - E E
a (S: Fully Supported D: Deprecated E: Experimental E2: Experimental; in OpenJDK builds but not Oracle builds)

A brief description of each algorithm follows; Chapter 6 provides more details on
tuning them individually.

The serial garbage collector
The serial garbage collector is the simplest of the collectors. This is the default collec‐
tor if the application is running on a client-class machine (32-bit JVMs on Windows)
or on a single-processor machine. At one point, the serial collector seemed like it was
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destined for the trash can, but containerization has changed that: virtual machines
and Docker containers with one core (even a hyper-threaded core that appears as two
CPUs) have made this algorithm more relevant again.

The serial collector uses a single thread to process the heap. It will stop all application
threads as the heap is processed (for either a minor or full GC). During a full GC, it
will fully compact the old generation.

The serial collector is enabled by using the -XX:+UseSerialGC flag (though usually it
is the default in those cases where it might be used). Note that unlike with most JVM
flags, the serial collector is not disabled by changing the plus sign to a minus sign (i.e.,
by specifying -XX:-UseSerialGC). On systems where the serial collector is the
default, it is disabled by specifying a different GC algorithm.

The throughput collector
In JDK 8, the throughput collector is the default collector for any 64-bit machine with
two or more CPUs. The throughput collector uses multiple threads to collect the
young generation, which makes minor GCs much faster than when the serial collec‐
tor is used. This uses multiple threads to process the old generation as well. Because it
uses multiple threads, the throughput collector is often called the parallel collector.

The throughput collector stops all application threads during both minor and full
GCs, and it fully compacts the old generation during a full GC. Since it is the default
in most situations where it would be used, it needn’t be explicitly enabled. To enable it
where necessary, use the flag -XX:+UseParallelGC.

Note that old versions of the JVM enabled parallel collection in the young and
old generations separately, so you might see references to the flag
-XX:+UseParallelOldGC. This flag is obsolete (though it still functions, and you
could disable this flag to collect only the young generation in parallel if for some rea‐
son you really wanted to).

The G1 GC collector
The G1 GC (or garbage first garbage collector) uses a concurrent collection strategy to
collect the heap with minimal pauses. It is the default collector in JDK 11 and later for
64-bit JVMs on machines with two or more CPUs.

G1 GC divides the heap into regions, but it still considers the heap to have two gener‐
ations. Some of those regions make up the young generation, and the young genera‐
tion is still collected by stopping all application threads and moving all objects that
are alive into the old generation or the survivor spaces. (This occurs using multiple
threads.
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In G1 GC, the old generation is processed by background threads that don’t need to
stop the application threads to perform most of their work. Because the old genera‐
tion is divided into regions, G1 GC can clean up objects from the old generation by
copying from one region into another, which means that it (at least partially) com‐
pacts the heap during normal processing. This helps keep G1 GC heaps from becom‐
ing fragmented, although that is still possible.

The trade-off for avoiding the full GC cycles is CPU time: the (multiple) background
threads G1 GC uses to process the old generation must have CPU cycles available at
the same time the application threads are running.

G1 GC is enabled by specifying the flag -XX:+UseG1GC. In most cases, it is the default
in JDK 11, and it is functional in JDK 8 as well—particularly in later builds of JDK 8,
which contains many important bug fixes and performance enhancements that have
been back-ported from later releases. Still, as you’ll see when we explore G1 GC in
depth, one major performance feature is missing from G1 GC in JDK 8 that can make
it unsuitable for that release.

The CMS collector
The CMS collector was the first concurrent collector. Like other algorithms, CMS
stops all application threads during a minor GC, which it performs with multiple
threads.

CMS is officially deprecated in JDK 11 and beyond, and its use in JDK 8 is discour‐
aged. From a practical standpoint, the major flaw in CMS is that it has no way to
compact the heap during its background processing. If the heap becomes fragmented
(which is likely to happen at some point), CMS must stop all application threads and
compact the heap, which defeats the purpose of a concurrent collector. Between that
and the advent of G1 GC, CMS is no longer recommended.

CMS is enabled by specifying the flag -XX:+UseConcMarkSweepGC, which is false by
default. Historically, CMS used to require setting the -XX:+UseParNewGC flag as well
(otherwise, the young generation would be collected by a single thread), though that
is obsolete.

Experimental collectors
Garbage collection continues to be fertile ground for JVM engineers, and the latest
versions of Java come with the three experimental algorithms mentioned earlier. I’ll
have more to say about those in the next chapter; for now, let’s continue with a look at
choosing among the three collectors supported in production environments.
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Causing and Disabling Explicit Garbage Collection
GC is typically caused when the JVM decides GC is necessary: a minor GC will be
triggered when the new generation is full, a full GC will be triggered when the old
generation is full, or a concurrent GC (if applicable) will be triggered when the heap
starts to fill up.

Java provides a mechanism for applications to force a GC to occur: the System.gc()
method. Calling that method is almost always a bad idea. This call always triggers a
full GC (even if the JVM is running with G1 GC or CMS), so application threads will
be stopped for a relatively long period of time. And calling this method will not make
the application any more efficient; it will cause a GC to occur sooner than might have
happened otherwise, but that is really just shifting the performance impact.

There are exceptions to every rule, particularly when doing performance monitoring
or benchmarking. For small benchmarks that run a bunch of code to properly warm
up the JVM, forcing a GC before the measurement cycle may make sense. (jmh
optionally does this, though usually it is not necessary.) Similarly, when doing heap
analysis, it is usually a good idea to force a full GC before taking the heap dump. Most
techniques to obtain a heap dump will perform a full GC anyway, but you also can
force a full GC in other ways: you can execute jcmd <process id> GC.run, or you
can connect to the JVM using jconsole and click the Perform GC button in the
Memory panel.

Another exception is Remote Method Invocation (RMI), which calls System.gc()
every hour as part of its distributed garbage collector. That timing can be
changed by setting a different value for these two system properties:
-Dsun.rmi.dgc.server.gcInterval=N and -Dsun.rmi.dgc.client.gcInterval=N.
The values for N are in milliseconds, and the default value is 3600000 (one hour).

If you end up running third-party code that incorrectly calls the System.gc()
method, those GCs can be prevented by including -XX:+DisableExplicitGC in the
JVM arguments; by default, that flag is false. Applications like Java EE servers often
include this argument to prevent the RMI GC calls from interfering with their
operations.
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Quick Summary

• The supported GC algorithms take different approaches
toward minimizing the effect of GC on an application.

• The serial collector makes sense (and is the default) when only
one CPU is available and extra GC threads would interfere
with the application.

• The throughput collector is the default in JDK 8; it maximizes
the total throughput of an application but may subject individ‐
ual operations to long pauses.

• G1 GC is the default in JDK 11 and beyond; it concurrently
collects the old generation while application threads are run‐
ning, potentially avoiding full GCs. Its design makes it less
likely to experience full GCs than CMS.

• The CMS collector can concurrently collect the old generation
while application threads are running. If enough CPU is avail‐
able for its background processing, this can avoid full GC
cycles for the application. It is deprecated in favor of G1 GC.

Choosing a GC Algorithm
The choice of a GC algorithm depends in part on the hardware available, in part on
what the application looks like, and in part on the performance goals for the applica‐
tion. In JDK 11, G1 GC is often the better choice; in JDK 8, the choice will depend on
your application.

We will start with the rule of thumb that G1 GC is the better choice, but there are
exceptions to every rule. In the case of garbage collection, these exceptions involve
the number of CPU cycles the application needs relative to the available hardware,
and the amount of processing the background G1 GC threads need to perform. If you
are using JDK 8, the ability of G1 GC to avoid a full GC will also be a key considera‐
tion. When G1 GC is not the better choice, the decision between the throughput and
serial collectors is based on the number of CPUs on the machine.

When to use (and not use) the serial collector
On a machine with a single CPU, the JVM defaults to using the serial collector. This
includes virtual machines with one CPU, and Docker containers that are limited to
one CPU. If you limit your Docker container to a single CPU in early versions of JDK
8, it will still use the throughput collector by default. In that environment, you should
explore using the serial collector (even though you’ll have to set it manually).

130 | Chapter 5: An Introduction to Garbage Collection



In these environments, the serial collector is usually a good choice, but at times G1
GC will give better results. This example is also a good starting point for understand‐
ing the general trade-offs involved in choosing a GC algorithm.

The trade-off between G1 GC and other collectors involves having available CPU
cycles for G1 GC background threads, so let’s start with a CPU-intensive batch job. In
a batch job, the CPU will be 100% busy for a long time, and in that case the serial
collector has a marked advantage.

Table 5-2 lists the time required for a single thread to compute stock histories for
100,000 stocks over a period of three years.

Table 5-2. Processing time on a single CPU for different GC algorithms

GC algorithm Elapsed time Time paused for GC
Serial 434 seconds 79 seconds

Throughput 503 seconds 144 seconds

G1 GC 501 seconds 97 seconds

The advantage of the single-threaded garbage collection is most readily apparent
when we compare the serial collector to the throughput collector. The time spent
doing the actual calculation is the elapsed time minus the time spent paused for GC.
In the serial and throughput collectors, that time is essentially the same (roughly 355
seconds), but the serial collector wins because it spends much less time paused for
garbage collection. In particular, the serial collector takes on average 505 ms for a full
GC, whereas the throughput collector requires 1,392 ms. The throughput collector
has a fair amount of overhead in its algorithm—that overhead is worthwhile when
two or more threads are processing the heap, but it just gets in the way when only a
single thread is available.

Now compare the serial collector to G1 GC. If we eliminate the pause time when run‐
ning with G1 GC, the application takes 404 seconds for its calculation—but we know
from the other examples that it should take only 355 seconds. What accounts for the
other 49 seconds?

The calculation thread can utilize all available CPU cycles. At the same time, back‐
ground G1 GC threads need CPU cycles for their work. Because there isn’t enough
CPU to satisfy both, they end up sharing the CPU: the calculation thread will run
some of the time, and a background G1 GC thread will run some of the time. The net
effect is the calculation thread cannot run for 49 seconds because a “background” G1
GC thread is occupying the CPU.

That’s what I mean when I say that when you choose G1 GC, sufficient CPU is needed
for its background threads to run. With a long-running application thread taking the
only available CPU, G1 GC isn’t a good choice. But what about something different,
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like a microservice running simple REST requests on the constrained hardware?
Table 5-3 shows the response time for a web server that is handling roughly 11
requests per second on its single CPU, which takes roughly 50% of the available CPU
cycles.

Table 5-3. Response times for a single CPU with different GC algorithms

GC algorithm Average response time 90th% response time 99th% response time CPU utilization
Serial 0.10 second 0.18 second 0.69 second 53%

Throughput 0.16 second 0.18 second 1.40 seconds 49%

G1 GC 0.13 second 0.28 second 0.40 second 48%

The default (serial) algorithm still has the best average time, by 30%. Again, that’s
because the collections of the young generation by the serial collector are generally
faster than those of the other algorithms, so an average request is delayed less by the
serial collector.

Some unlucky requests will get interrupted by a full GC of the serial collector. In this
experiment, the average time for a full GC by the serial collector took 592 milli‐
seconds, and some took as long as 730 milliseconds. The result is that 1% of the
requests took almost 700 milliseconds.

That’s still better than the throughput collector can do. The full GCs of the through‐
put collector averaged 1,192 milliseconds with a 1,510-millisecond maximum. Hence
the 99th% response time of the throughput collector is twice that of the serial collec‐
tor. And the average time is skewed by those outliers as well.

G1 GC sits somewhere in the middle. In terms of average response time, it is worse
than the serial collector, because the simpler serial collector algorithm is faster. In this
case, that applies primarily to the minor GCs, which took on average 86 milliseconds
for the serial collector but required 141 milliseconds for G1 GC. So an average
request will get delayed longer in the G1 GC case.

Still, G1 GC has a 99th% response time that is significantly less than that of the serial
collector. In this example, G1 GC was able to avoid full GCs, so it had none of the
more than 500-millisecond delays of the serial collector.

There’s a choice of what to optimize here: if average response time is the most impor‐
tant goal, the (default) serial collector is the better choice. If you want to optimize for
the 99th% response time, G1 GC wins. It’s a judgment call, but to me, the 30 ms dif‐
ference in the average time is not as important as the 300 ms difference in the 99th%
time—so in this case G1 GC makes sense over the platform’s default collector.

This example is GC intensive; in particular, the non-concurrent collectors each have
to perform a significant amount of full GC operations. If we tweak the test such that
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all objects can be collected without requiring a full GC, the serial algorithm can
match G1 GC, as Table 5-4 shows.

Table 5-4. Response times for a single CPU with different GC algorithms (no full GCs)

GC algorithm Average response time 90th% response time 99th% response time CPU utilization
Serial 0.05 second 0.08 second 0.11 second 53%

Throughput 0.08 second 0.09 second 0.13 second 49%

G1 GC 0.05 second 0.08 second 0.11 second 52%

Because there are no full GCs, the advantage of the serial collector to G1 GC is elimi‐
nated. When there is little GC activity, the numbers are all in the same range, and all
the collectors perform about the same. On the other hand, having no full GCs is
pretty unlikely, and that’s the case where the serial collector will do best. Given suffi‐
cient CPU cycles, G1 GC will generally be better even where the serial collector is the
default.

Single hyper-threaded CPU hardware.    What about a single-core machine or Docker
container where the CPU is hyper-threaded (and hence appears to the JVM as a two-
CPU machine)? In that case, the JVM will not use the serial collector by default—it
thinks there are two CPUs, so it will default to the throughput collector in JDK 8 and
G1 GC in JDK 11. But it turns out that the serial collector is often advantageous on
this hardware as well. Table 5-5 shows what happens when we run the previous batch
experiment on a single hyper-threaded CPU.

Table 5-5. Processing time on a single hyper-threaded CPU for different GC algorithms

GC algorithm Elapsed time Time paused for GC
Serial 432 seconds 82 seconds

Throughput 478 seconds 117 seconds

G1 GC 476 seconds 72 seconds

The serial collector won’t run multiple threads, so its times are essentially unchanged
from our previous test. The other algorithms have improved, but not by as much as
we might hope—the throughput collector will run two threads, but instead of cutting
the pause time in half, the pause time has been reduced by about 20%. Similarly, G1
GC still cannot get enough CPU cycles for its background threads.

So at least in this case—a long-running batch job with frequent garbage collection—
the default choice by the JVM will be incorrect, and the application will be better off
using the serial collector despite the presence of “two” CPUs. If there were two actual
CPUs (i.e., two cores), things would be different. The throughput collector would
take only 72 seconds for its operations, which is less than the time required by the
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serial collector. At that point, the usefulness of the serial collector wanes, so we’ll drop
it from future examples.

One other point about the serial collector: an application with a very small heap (say,
100 MB) may still perform better with the serial collector regardless of the number of
cores that are available.

When to use the throughput collector
When a machine has multiple CPUs available, more-complex interactions can occur
between GC algorithms, but at a basic level, the trade-offs between G1 GC and the
throughput collector are the same as we’ve just seen. For example, Table 5-6 shows
how our sample application works when running either two or four application
threads on a machine with four cores (where the cores are not hyper-threaded).

Table 5-6. Batch processing time with different GC algorithms

Application threads G1 GC Throughput
Two 410 seconds (60.8%) 446 seconds (59.7%)

Four 513 seconds (99.5%) 536 seconds (99.5%)

The times in this table are the number of seconds required to run the test, and the
CPU utilization of the machine is shown in parentheses. When there are two applica‐
tion threads, G1 GC is significantly faster than the throughput collector. The main
reason is that the throughput collector spent 35 seconds paused for full GCs. G1 GC
was able to avoid those collections, at the (relatively slight) increase in CPU time.

Even when there are four application threads, G1 still wins in this example. Here, the
throughput collector paused the application threads for a total of 176 seconds. G1 GC
paused the application threads for only 88 seconds. The G1 GC background threads
did need to compete with the application threads for CPU cycles, which took about
65 seconds away from the application threads. That still meant G1 GC was 23 seconds
faster.

When the elapsed time of an application is key, the throughput collector will be
advantageous when it spends less time pausing the application threads than G1 GC
does. That happens when one or more of these things occur:

• There are no (or few) full GCs. Full GC pauses can easily dominate the pause
times of an application, but if they don’t occur in the first place, the throughput
collector is no longer at a disadvantage.

• The old generation is generally full, causing the background G1 GC threads to
work more.

• The G1 GC threads are starved for CPU.
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In the next chapter, which details how the various algorithms work, the reasons
behind these points will be clearer (as well as ways to tune the collectors around
them). For now, we’ll look at a few examples that prove the point.

First, let’s look at the data in Table 5-7. This test is the same code we used before for
batch jobs with long calculations, though it has a few modifications: multiple applica‐
tion threads are doing calculations (two, in this case), the old generation is seeded
with objects to keep it 65% full, and almost all objects can be collected directly from
the young generation. This test is run on a system with four CPUs (not hyper-
threaded) so that there is sufficient CPU for the G1 GC background threads to run.

Table 5-7. Batch processing with long-lived objects

Metric G1 GC Throughput
Elapsed time 212 seconds 193 seconds

CPU usage 67% 51%

Young GC pauses 30 seconds 13.5 seconds

Full GC pauses 0 seconds 1.5 seconds

Because so few objects are promoted to the old generation, the throughput collector
paused the application threads for only 15 seconds, and only 1.5 seconds of that was
to collect the old generation.

Although the old generation doesn’t get many new objects promoted into it, the test
seeds the old generation such that the G1 GC threads will scan it for garbage. This
makes more work for the background GC threads, and it causes G1 GC to perform
more work collecting the young generation in an attempt to compensate for the fuller
old generation. The end result is that G1 GC paused the application for 30 seconds
during the two-thread test—more than the throughput collector did.

Another example: when there isn’t sufficient CPU for the G1 GC background thread
to run, the throughput collector will perform better, as Table 5-8 shows.

Table 5-8. Batch processing with busy CPUs

Metric G1 GC Throughput
Elapsed time 287 seconds 267 seconds

CPU usage 99% 99%

Young GC pauses 80 seconds 63 seconds

Full GC pauses 0 seconds 37 seconds
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This is really no different than the case with a single CPU: the competition for CPU
cycles between the G1 GC background threads and the application threads means
that the application threads were effectively paused even when GC pauses weren’t
happening.

If we’re more interested in interactive processing and response times, the throughput
collector has a harder time beating G1 GC. If your server is short of CPU cycles such
that the G1 GC and application threads compete for CPU, then G1 GC will yield
worse response times (similar to the cases we’ve already seen). If the server is tuned
such that there are no full GCs, then G1 GC and the throughput collector will gener‐
ally turn out similar results. But the more full GCs that the throughput collector has,
the better the G1 GC average, 90th%, and 99th% response times will be.

Average CPU Usage and GC
Looking at only the average CPU during a test misses the interesting picture of what
happens during GC cycles. The throughput collector will (by default) consume 100%
of the CPU available on the machine while it runs, so a more accurate representation
of the CPU usage during the test with two application threads is shown in Figure 5-2.

Most of the time, only the application threads are running, consuming 50% of the
total CPU. When GC kicks in, 100% of the CPU is consumed. Hence, the actual CPU
usage resembles the sawtooth pattern in the graph, even though the average during
the test is reported as the value of the straight dashed line.

Figure 5-2. Actual versus average CPU usage (throughput)

The effect is different in a concurrent collector, when background threads are run‐
ning concurrently with the application threads. In that case, a graph of the CPU looks
like Figure 5-3.
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Figure 5-3. Actual versus average CPU usage (G1 GC)

The application thread starts by using 50% of the total CPU. Eventually, it has created
enough garbage for a G1 GC background thread to kick in; that thread also consumes
an entire CPU, bringing the total up to 75%. When that thread finishes, CPU usage
drops to 50%, and so on. Note that there are no 100% peak-CPU periods, which is a
little bit of a simplification: there will be very short spikes to 100% CPU usage during
the G1 GC young generation collections, but those are short enough that we can
ignore them for this discussion. (Those really short spikes occur for the throughput
collector as well.)

Multiple background threads can exist in a concurrent collector, but the effect is simi‐
lar: when those background threads run, they will consume CPU and drive up the
long-term CPU average.

This can be important when you have a monitoring system triggered by CPU usage
rules: you want to make sure CPU alerts are not triggered by the 100% CPU usage
spikes in a full GC or the much longer (but lower) spikes from background concur‐
rent processing threads. These spikes are normal occurrences for Java programs.
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Quick Summary

• G1 GC is currently the better algorithm to choose for a major‐
ity of applications.

• The serial collector makes sense when running CPU-bound
applications on a machine with a single CPU, even if that sin‐
gle CPU is hyper-threaded. G1 GC will still be better on such
hardware for jobs that are not CPU-bound.

• The throughput collector makes sense on multi-CPU
machines running jobs that are CPU bound. Even for jobs that
are not CPU bound, the throughput collector can be the better
choice if it does relatively few full GCs or if the old generation
is generally full.

Basic GC Tuning
Although GC algorithms differ in the way they process the heap, they share basic
configuration parameters. In many cases, these basic configurations are all that is
needed to run an application.

Sizing the Heap
The first basic tuning for GC is the size of the application’s heap. Advanced tunings
affect the size of the heap’s generations; as a first step, this section will discuss setting
the overall heap size.

Like most performance issues, choosing a heap size is a matter of balance. If the heap
is too small, the program will spend too much time performing GC and not enough
time performing application logic. But simply specifying a very large heap isn’t neces‐
sarily the answer either. The time spent in GC pauses is dependent on the size of the
heap, so as the size of the heap increases, the duration of those pauses also increases.
The pauses will occur less frequently, but their duration will make the overall perfor‐
mance lag.

A second danger arises when very large heaps are used. Computer operating systems
use virtual memory to manage the physical memory of the machine. A machine may
have 8 GB of physical RAM, but the OS will make it appear as if much more memory
is available. The amount of virtual memory is subject to the OS configuration, but say
the OS makes it look like there is 16 GB of memory. The OS manages that by a pro‐
cess called swapping (or paging, though there is a technical difference between those
two terms that isn’t important for this discussion). You can load programs that use up
to 16 GB of memory, and the OS will copy inactive portions of those programs to
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disk. When those memory areas are needed, the OS will copy them from disk to
RAM (usually, it will first need to copy something from RAM to disk to make room).

This process works well for a system running lots of applications, because most of the
applications are not active at the same time. It does not work so well for Java applica‐
tions. If a Java program with a 12 GB heap is run on this system, the OS can handle it
by keeping 8 GB of the heap in RAM and 4 GB on disk (that simplifies the situation a
little, since other programs will use part of RAM). The JVM won’t know about this;
the swapping is transparently handled by the OS. Hence, the JVM will happily fill up
all 12 GB of heap it has been told to use. This causes a severe performance penalty as
the OS swaps data from disk to RAM (which is an expensive operation to begin with).

Worse, the one time this swapping is guaranteed to occur is during a full GC, when
the JVM must access the entire heap. If the system is swapping during a full GC, pau‐
ses will be an order of magnitude longer than they would otherwise be. Similarly,
when you use G1 GC and the background thread sweeps through the heap, it will
likely fall behind because of the long waits for data to be copied from disk to main
memory—resulting in an expensive concurrent mode failure.

Hence, the first rule in sizing a heap is never to specify a heap that is larger than the
amount of physical memory on the machine—and if multiple JVMs are running, that
applies to the sum of all their heaps. You also need to leave some room for the native
memory of the JVM, as well as some memory for other applications: typically, at least
1 GB of space for common OS profiles.

The size of the heap is controlled by two values: an initial value (specified with -XmsN)
and a maximum value (-XmxN). The defaults vary depending on the operating system,
the amount of system RAM, and the JVM in use. The defaults can be affected by
other flags on the command line as well; heap sizing is one of the JVM’s core ergo‐
nomic tunings.

The goal of the JVM is to find a “reasonable” default initial value for the heap based
on the system resources available to it, and to grow the heap up to a “reasonable”
maximum if (and only if) the application needs more memory (based on how much
time it spends performing GC). Absent some of the advanced tuning flags and details
discussed later in this and the next chapters, the default values for the initial and max‐
imum sizes are given in Table 5-9. The JVM will round these values down slightly for
alignment purposes; the GC logs that print the sizes will show that the values are not
exactly equal to the numbers in this table.
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Table 5-9. Default heap sizes

Operating system and JVM Initial heap (Xms) Maximum heap (Xmx)
Linux Min (512 MB, 1/64 of physical memory) Min (32 GB, 1/4 of physical memory)

macOS 64 MB Min (1 GB, 1/4 of physical memory)

Windows 32-bit client JVMs 16 MB 256 MB

Windows 64-bit server JVMs 64 MB Min (1 GB, 1/4 of physical memory)

On a machine with less than 192 MB of physical memory, the maximum heap size
will be half of the physical memory (96 MB or less).

Note that the values in Table 5-9 are one of those tunings that will be incorrect for
Docker containers in versions of JDK 8 prior to update 192 that specify a memory
limit: the JVM will use the total amount of memory on the machine to calculate the
default sizes. In later JDK 8 versions and JDK 11, the JVM will use the memory limit
of the container.

Having an initial and maximum size for the heap allows the JVM to tune its behavior
depending on the workload. If the JVM sees that it is doing too much GC with the
initial heap size, it will continually increase the heap until the JVM is doing the “cor‐
rect” amount of GC, or until the heap hits its maximum size.

For applications that don’t need a large heap, that means a heap size doesn’t need to be
set at all. Instead, you specify the performance goals for the GC algorithm: the pause
times you are willing to tolerate, the percentage of time you want to spend in GC, and
so on. The details will depend on the GC algorithm used and are discussed in the
next chapter (though even then, the defaults are chosen such that for a wide range of
applications, those values needn’t be tuned either).

In a world where JVMs run in isolated containers, you will usually need to specify a
maximum heap. On a virtual machine running primarily a single JVM, the default
initial heap will be only one-quarter of the memory assigned to the virtual machine.
Similarly, in a JDK 11 Docker container with a memory limit, you typically want the
heap to consume most of that memory (leaving headroom as mentioned earlier). The
defaults here are better tailored to systems running a mix of applications rather than
containers dedicated to a specific JVM.

No hard-and-fast rule determines the size for the maximum heap value (other than
not specifying a size larger than the machine can support). A good rule of thumb is to
size the heap so that it is 30% occupied after a full GC. To calculate this, run the appli‐
cation until it has reached a steady-state configuration: a point at which it has loaded
anything it caches, has created a maximum number of client connections, and so on.
Then connect to the application with jconsole, force a full GC, and observe how
much memory is used when the full GC completes. (Alternately, for throughput GC,
you can consult the GC log if it is available.) If you take that approach, make sure to

140 | Chapter 5: An Introduction to Garbage Collection



size your container (if applicable) to have an additional 0.5–1 GB of memory for non‐
heap needs of the JVM.

Be aware that automatic sizing of the heap occurs even if you explicitly set the maxi‐
mum size: the heap will start at its default initial size, and the JVM will grow the heap
in order to meet the performance goals of the GC algorithm. There isn’t necessarily a
memory penalty for specifying a larger heap than is needed: it will grow only enough
to meet the GC performance goals.

On the other hand, if you know exactly what size heap the application needs, you may
as well set both the initial and maximum values of the heap to that value (e.g.,
-Xms4096m -Xmx4096m). That makes GC slightly more efficient, because it never needs
to figure out whether the heap should be resized.

Quick Summary

• The JVM will attempt to find a reasonable minimum and
maximum heap size based on the machine it is running on.

• Unless the application needs a larger heap than the default,
consider tuning the performance goals of a GC algorithm
(given in the next chapter) rather than fine-tuning the heap
size.

Sizing the Generations
Once the heap size has been determined, the JVM must decide how much of the heap
to allocate to the young generation and how much to allocate to the old generation.
The JVM usually does this automatically and usually does a good job in determining
the optimal ratio between young and old generations. In some cases, you might hand-
tune these values, though mostly this section is here to provide an understanding of
how garbage collection works.

The performance implication of different generation sizes should be clear: if there is a
relatively larger young generation, young GC pause times will increase, but the young
generation will be collected less often, and fewer objects will be promoted into the old
generation. But on the other hand, because the old generation is relatively smaller, it
will fill up more frequently and do more full GCs. Striking a balance is key.

Different GC algorithms attempt to strike this balance in different ways. However, all
GC algorithms use the same set of flags to set the sizes of the generations; this section
covers those common flags.
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The command-line flags to tune the generation sizes all adjust the size of the young
generation; the old generation gets everything that is left over. A variety of flags can
be used to size the young generation:

-XX:NewRatio=N

Set the ratio of the young generation to the old generation.

-XX:NewSize=N

Set the initial size of the young generation.

-XX:MaxNewSize=N

Set the maximum size of the young generation.

-XmnN

Shorthand for setting both NewSize and MaxNewSize to the same value.

The young generation is first sized by the NewRatio, which has a default value of 2.
Parameters that affect the sizing of heap spaces are generally specified as ratios; the
value is used in an equation to determine the percentage of space affected. The
NewRatio value is used in this formula:

Initial Young Gen Size = Initial Heap Size / (1 + NewRatio)

Plugging in the initial size of the heap and the NewRatio yields the value that becomes
the setting for the young generation. By default, then, the young generation starts out
at 33% of the initial heap size.

Alternately, the size of the young generation can be set explicitly by specifying the
NewSize flag. If that option is set, it will take precedence over the value calculated
from the NewRatio. There is no default for this flag since the default is to calculate it
from NewRatio.

As the heap expands, the young generation size will expand as well, up to the maxi‐
mum size specified by the MaxNewSize flag. By default, that maximum is also set using
the NewRatio value, though it is based on the maximum (rather than initial) heap
size.

Tuning the young generation by specifying a range for its minimum and maximum
sizes ends up being fairly difficult. When a heap size is fixed (by setting -Xms equal to
-Xmx), it is usually preferable to use -Xmn to specify a fixed size for the young genera‐
tion as well. If an application needs a dynamically sized heap and requires a larger (or
smaller) young generation, then focus on setting the NewRatio value.
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Adaptive sizing
The sizes of the heap, the generations, and the survivor spaces can vary during execu‐
tion as the JVM attempts to find the optimal performance according to its policies
and tunings. This is a best-effort solution, and it relies on past performance: the
assumption is that future GC cycles will look similar to the GC cycles in the recent
past. That turns out to be a reasonable assumption for many workloads, and even if
the allocation rate suddenly changes, the JVM will readapt its sizes based on the new
information.

Adaptive sizing provides benefits in two important ways. First, it means that small
applications don’t need to worry about overspecifying the size of their heap. Consider
the administrative command-line programs used to adjust the operations of things
like a Java NoSQL server—those programs are usually short-lived and use minimal
memory resources. These applications will use 64 (or 16) MB of heap even though
the default heap could grow to 1 GB. Because of adaptive sizing, applications like that
don’t need to be specifically tuned; the platform defaults ensure that they will not use
a large amount of memory.

Second, it means that many applications don’t really need to worry about tuning their
heap size at all—or if they need a larger heap than the platform default, they can just
specify that larger heap and forget about the other details. The JVM can autotune the
heap and generation sizes to use an optimal amount of memory, given the GC algo‐
rithm’s performance goals. Adaptive sizing is what allows that autotuning to work.

Still, adjusting the sizes takes a small amount of time—which occurs for the most part
during a GC pause. If you have taken the time to finely tune GC parameters and the
size constraints of the application’s heap, adaptive sizing can be disabled. Disabling
adaptive sizing is also useful for applications that go through markedly different pha‐
ses, if you want to optimally tune GC for one of those phases.

At a global level, adaptive sizing can be disabled by turning off the
-XX:-UseAdaptiveSizePolicy flag (which is true by default). With the exception of
the survivor spaces (which are examined in detail in the next chapter), adaptive sizing
is also effectively turned off if the minimum and maximum heap sizes are set to the
same value, and the initial and maximum sizes of the new generation are set to the
same value.

To see how the JVM is resizing the spaces in an application, set the -XX:+PrintAdap
tiveSizePolicy flag. When a GC is performed, the GC log will contain information
detailing how the various generations were resized during a collection.
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Quick Summary

• Within the overall heap size, the sizes of the generations are
controlled by how much space is allocated to the young
generation.

• The young generation will grow in tandem with the overall
heap size, but it can also fluctuate as a percentage of the total
heap (based on the initial and maximum size of the young
generation).

• Adaptive sizing controls how the JVM alters the ratio of young
generation to old generation within the heap.

• Adaptive sizing should generally be kept enabled, since adjust‐
ing those generation sizes is how GC algorithms attempt to
meet their pause-time goals.

• For finely tuned heaps, adaptive sizing can be disabled for a
small performance boost.

Sizing Metaspace
When the JVM loads classes, it must keep track of certain metadata about those
classes. This occupies a separate heap space called the metaspace. In older JVMs, this
was handled by a different implementation called permgen.

To end users, the metaspace is opaque: we know that it holds a bunch of class-related
data and that in certain circumstances the size of that region needs to be tuned.

Note that the metaspace does not hold the actual instance of the class (the Class
objects), or reflection objects (e.g., Method objects); those are held in the regular heap. 
Information in the metaspace is used only by the compiler and JVM runtime, and the
data it holds is referred to as class metadata.

There isn’t a good way to calculate in advance the amount of space a particular pro‐
gram needs for its metaspace. The size will be proportional to the number of classes it
uses, so bigger applications will need bigger areas. This is another area where changes
in JDK technology have made life easier: tuning the permgen used to be fairly com‐
mon, but tuning the metaspace is fairly rare these days. The main reason is that the
default values for the size of the metaspace are very generous. Table 5-10 lists the
default initial and maximum sizes.
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Table 5-10. Default sizes of the metaspace

JVM Default initial size Default maximum size
32-bit client JVM 12 MB Unlimited

32-bit server JVM 16 MB Unlimited

64-bit JVM 20.75 MB Unlimited

The metaspace behaves similarly to a separate instance of the regular heap. It is sized
dynamically based on an initial size (-XX:MetaspaceSize=N) and will increase as
needed to a maximum size (-XX:MaxMetaspaceSize=N).

Metaspace Too Big?
Because the default size of metaspace is unlimited, an application (particularly in a
32-bit JVM) could run out of memory by filling up metaspace. The Native Memory
Tracking (NMT) tools discussed in Chapter 8 can help diagnose that case. If meta‐
space is growing too big, you can set the value of MaxMetaspaceSize lower—but then
the application will eventually get an OutOfMemoryError when the metaspace fills up.
Figuring out why the class metadata is too large is the real remedy in that case.

Resizing the metaspace requires a full GC, so it is an expensive operation. If there are
a lot of full GCs during the startup of a program (as it is loading classes), it is often
because permgen or metaspace is being resized, so increasing the initial size is a good
idea to improve startup in that case. Servers, for example, typically specify an initial
metaspace size of 128 MB, 192 MB, or more.

Java classes can be eligible for GC just like anything else. This is a common occur‐
rence in an application server, which creates new classloaders every time an applica‐
tion is deployed (or redeployed). The old classloaders are then unreferenced and
eligible for GC, as are any classes that they defined. Meanwhile, the new classes of the
application will have new metadata, and so there must be room in the metaspace for
that. This often causes a full GC because the metaspace needs to grow (or discard old
metadata).

One reason to limit the size of the metaspace is to guard against a classloader leak:
when the application server (or other program like an IDE) continually defines new
classloaders and classes while maintaining references to the old classloaders. This has
the potential to fill up the metaspace and consume a lot of memory on the machine.
On the other hand, the actual classloader and class objects in that case are also still in
the main heap—and that heap is likely to fill up and cause an OutOfMemoryError
before the memory occupied by the metaspace becomes a problem.
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Heap dumps (see Chapter 7) can be used to diagnose what classloaders exist, which in
turn can help determine if a classloader leak is filling up metaspace. Otherwise, jmap
can be used with the argument -clstats to print out information about the
classloaders.

Quick Summary

• The metaspace holds class metadata (not class objects) and
behaves like a separate heap.

• The initial size of this region can be based on its usage after all
classes have been loaded. That will slightly speed up startup.

• Applications that define and discard a lot of classes will see an
occasional full GC when the metaspace fills up and old classes
are removed. This is particularly common for a development
environment.

Controlling Parallelism
All GC algorithms except the serial collector use multiple threads. The number of
these threads is controlled by the -XX:ParallelGCThreads=N flag. The value of this
flag affects the number of threads used for the following operations:

• Collection of the young generation when using -XX:+UseParallelGC
• Collection of the old generation when using -XX:+UseParallelGC
• Collection of the young generation when using -XX:+UseG1GC
• Stop-the-world phases of G1 GC (though not full GCs)

Because these GC operations stop all application threads from executing, the JVM
attempts to use as many CPU resources as it can in order to minimize the pause time.
By default, that means the JVM will run one thread for each CPU on a machine, up to
eight. Once that threshold has been reached, the JVM adds a new thread for only
every 1.6 CPUs. So the total number of threads (where N is the number of CPUs) on a
machine with more than eight CPUs is shown here:

ParallelGCThreads = 8 + ((N - 8) * 5 / 8)

Sometimes this number is too large. An application using a small heap (say, 1 GB) on
a machine with eight CPUs will be slightly more efficient with four or six threads
dividing up that heap. On a 128-CPU machine, 83 GC threads is too many for all but
the largest heaps.

If you run the JVM inside a Docker container that has a CPU limit, that CPU limit is
used for this calculation.
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Additionally, if more than one JVM is running on the machine, it is a good idea to
limit the total number of GC threads among all JVMs. When they run, the GC
threads are quite efficient, and each will consume 100% of a single CPU (this is why
the average CPU usage for the throughput collector was higher than expected in
previous examples). In machines with eight or fewer CPUs, GC will consume 100% of
the CPU on the machine. On machines with more CPUs and multiple JVMs, too
many GC threads will still be running in parallel.

Take the example of a 16-CPU machine running four JVMs; each JVM will have by
default 13 GC threads. If all four JVMs execute GC at the same time, the machine will
have 52 CPU-hungry threads contending for CPU time. That results in a fair amount
of contention; limiting each JVM to four GC threads will be more efficient. Even
though it may be unlikely for all four JVMs to perform a GC operation at the same
time, one JVM executing GC with 13 threads means that the application threads in
the remaining JVMs now have to compete for CPU resources on a machine where 13
of 16 CPUs are 100% busy executing GC tasks. Giving each JVM four GC threads
provides a better balance in this case.

Note that this flag does not set the number of background threads used by G1 GC
(though it does affect that). Details are given in the next chapter.

Quick Summary

• The basic number of threads used by all GC algorithms is
based on the number of CPUs on a machine.

• When multiple JVMs are run on a single machine, that num‐
ber will be too high and must be reduced.

GC Tools
Since GC is central to the performance of Java, many tools monitor its performance.
The best way to see the effect that GC has on the performance of an application is to
become familiar with the GC log, which is a record of every GC operation during the
program’s execution.

The details in the GC log vary depending on the GC algorithm, but the basic manage‐
ment of the log is the same for all algorithms. The log management is not the same,
however, between JDK 8 and subsequent releases: JDK 11 uses a different set of
command-line arguments to enable and manage the GC log. We’ll discuss the man‐
agement of GC logs here, and more details on the contents of the log are given in the
algorithm-specific tuning sections in the next chapter.
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Enabling GC Logging in JDK 8
JDK 8 provides multiple ways to enable the GC log. Specifying either of the flags
-verbose:gc or -XX:+PrintGC will create a simple GC log (the flags are aliases for
each other, and by default the log is disabled). The -XX:+PrintGCDetails flag will
create a log with much more information. This flag is recommended (it is also false
by default); it is often too difficult to diagnose what is happening with GC using only
the simple log.

In conjunction with the detailed log, it is recommended to include
-XX:+PrintGCTimeStamps or -XX:+PrintGCDateStamps so that the time between GC
operations can be determined. The difference in those two arguments is that the
timestamps are relative to 0 (based on when the JVM starts), while the date stamps
are an actual date string. That makes the date stamps ever-so-slightly less efficient as
the dates are formatted, though it is an infrequent enough operation that its effect is
unlikely to be noticed.

The GC log is written to standard output, though that location can (and usually
should) be changed with the -Xloggc:filename flag. Using -Xloggc automatically
enables the simple GC log unless PrintGCDetails has also been enabled.

The amount of data that is kept in the GC log can be limited using log rotation; this is
useful for a long-running server that might otherwise fill up its disk with logs over
several months. Logfile rotation is controlled with these flags:
-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=N -XX:GCLogFileSize=N. By
default, UseGCLogFileRotation is disabled. When that flag is enabled, the default
number of files is 0 (meaning unlimited), and the default logfile size is 0 (meaning
unlimited). Hence, values must be specified for all these options in order for log rota‐
tion to work as expected. Note that a logfile size will be rounded up to 8 KB for values
less than that.

Putting that all together, a useful set of flags for logging is as follows:

-Xloggc:gc.log -XX:+PrintGCTimeStamps -XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFile=8 -XX:GCLogFileSize=8m

That will log GC events with timestamps to correlate to other logs and limit the
retained logs to 64 MB in eight files. This logging is minimal enough that it can be
enabled even on production systems.

Enabling GC Logging in JDK 11
JDK 11 and later versions use Java’s new unified logging feature. This means that all
logging—GC related or not—is enabled via the flag -Xlog. Then you append various
options to that flag that control how the logging should be performed. In order to
specify logging similar to the long example from JDK 8, you would use this flag:
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-Xlog:gc*:file=gc.log:time:filecount=7,filesize=8M

The colons divide the command into four sections. You can run java -Xlog:help:
to get more information on the available options, but here’s how they map for this
string.

The first section (gc*) specifies which modules should enable logging; we are ena‐
bling logging for all GC modules. There are options to log only a particular section
(e.g., gc+age will log information about the tenuring of an object, a topic covered in
the next chapter). Those specific modules often have limited output at the default log‐
ging level, so you might use something like gc*,gc+age=debug to log basic (info-
level) messages from all gc modules and debug-level messages from the tenuring
code. Typically, logging all modules at info level is fine.

The second section sets the destination of the logfile.

The third section (time) is a decorator: that decorator says to log messages with a
time-of-day stamp, the same as we specified for JDK 8. Multiple decorators can be
specified.

Finally, the fourth section specifies output options; in this case, we’ve said to rotate
logs when they hit 8 MB, keeping eight logs altogether.

One thing to note: log rotation is handled slightly differently between JDK 8 and JDK
11. Say that we have specified a log name of gc.log and that three files should be
retained. In JDK 8, the logs will be written this way:

1. Start logging to gc.log.0.current.
2. When full, rename that to gc.log.0 and start logging to gc.log.1.current.
3. When full, rename that to gc.log.1 and start logging to gc.log.2.current.
4. When full, rename that to gc.log.2, remove gc.log.0, and start logging to a new

gc.log.0.current.
5. Repeat this cycle.

In JDK 11, the logs will be written this way:

1. Start logging to gc.log.
2. When that is full, rename it to gc.log.0 and start a new gc.log.
3. When that is full, rename it to gc.log.1 and start a new gc.log.
4. When that is full, rename it to gc.log.2 and start a new gc.log.
5. When that is full, rename it to gc.log.0, removing the old gc.log.0, and start a new

gc.log.
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If you are wondering why we specified seven logs to retain in the previous JDK 11
command, this is why: there will be eight active files in this case. Also note in either
case that the number appended to the file doesn’t mean anything about the order in
which the files were created. The numbers are reused in a cycle, so there is some
order, but the oldest logfile could be any one in the set.

The gc log contains a lot of information specific to each collector, so we’ll step
through the details in the next chapter. Parsing the logs for aggregate information
about your application is also useful: how many pauses it had, how long they took on
average and in total, and so on.

Unfortunately, not a lot of good open source tools are available to parse logfiles. As
with profilers, commercial vendors have stepped in to provide support, like the offer‐
ings from jClarity (Censum) and GCeasy. The latter has a free service for basic log
parsing.

For real-time monitoring of the heap, use jvisualvm or jconsole. The Memory
panel of jconsole displays a real-time graph of the heap, as shown in Figure 5-4.

Figure 5-4. Real-time heap display

This particular view shows the entire heap, which is periodically cycling between
using about 100 MB and 160 MB. jconsole can instead display only eden, the survi‐
vor spaces, the old generation, or the permanent generation. If I’d selected eden as the
region to chart, it would have shown a similar pattern, as eden fluctuated between 0
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MB and 60 MB (and, as you can guess, that means if I’d charted the old generation, it
would have been essentially a flat line at 100 MB).

For a scriptable solution, jstat is the tool of choice. jstat provides nine options to
print different information about the heap; jstat -options will provide the full list.
One useful option is -gcutil, which displays the time spent in GC as well as the
percentage of each GC area that is currently filled. Other options to jstat will display
the GC sizes in terms of KB.

Remember that jstat takes an optional argument—the number of milliseconds to
repeat the command—so it can monitor over time the effect of GC in an application.
Here is some sample output repeated every second:

% jstat -gcutil 23461 1000
  S0     S1     E      O      P     YGC     YGCT    FGC    FGCT     GCT
 51.71   0.00  99.12  60.00  99.93     98    1.985     8    2.397    4.382
  0.00  42.08   5.55  60.98  99.93     99    2.016     8    2.397    4.413
  0.00  42.08   6.32  60.98  99.93     99    2.016     8    2.397    4.413
  0.00  42.08  68.06  60.98  99.93     99    2.016     8    2.397    4.413
  0.00  42.08  82.27  60.98  99.93     99    2.016     8    2.397    4.413
  0.00  42.08  96.67  60.98  99.93     99    2.016     8    2.397    4.413
  0.00  42.08  99.30  60.98  99.93     99    2.016     8    2.397    4.413
 44.54   0.00   1.38  60.98  99.93    100    2.042     8    2.397    4.439
 44.54   0.00   1.91  60.98  99.93    100    2.042     8    2.397    4.439

When monitoring of process ID 23461 started, the program had already performed
98 collections of the young generation (YGC), which took a total of 1.985 seconds
(YGCT). It had also performed eight full GCs (FGC) requiring 2.397 seconds (FGCT);
hence the total time in GC (GCT) was 4.382 seconds.

All three sections of the young generation are displayed here: the two survivor spaces
(S0 and S1) and eden (E). The monitoring started just as eden was filling up (99.12%
full), so in the next second there was a young collection: eden reduced to 5.55% full,
the survivor spaces switched places, and a small amount of memory was promoted to
the old generation (O), which increased to using 60.98% of its space. As is typical, lit‐
tle or no change occurred in the permanent generation (P) because all necessary
classes have already been loaded by the application.

If you’ve forgotten to enable GC logging, this is a good substitute to watch how GC
operates over time.
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Quick Summary

• GC logs are the key piece of data required to diagnose GC
issues; they should be collected routinely (even on production
servers).

• A better GC logfile is obtained with the PrintGCDetails flag.
• Programs to parse and understand GC logs are readily avail‐

able; they are helpful in summarizing the data in the GC log.
• jstat can provide good visibility into GC for a live program.

Summary
Performance of the garbage collector is one key feature of the overall performance of
any Java application. For many applications, though, the only tuning required is to
select the appropriate GC algorithm and, if needed, to increase the heap size of the
application. Adaptive sizing will then allow the JVM to autotune its behavior to pro‐
vide good performance using the given heap.

More-complex applications will require additional tuning, particularly for specific
GC algorithms. If the simple GC settings in this chapter do not provide the perfor‐
mance an application requires, consult the tunings.
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CHAPTER 6

Garbage Collection Algorithms

Chapter 5 examined the general behavior of all garbage collectors, including JVM
flags that apply universally to all GC algorithms: how to select heap sizes, generation
sizes, logging, and so on. The basic tunings of garbage collection suffice for many cir‐
cumstances. When they do not, it is time to examine the specific operation of the GC
algorithm in use to determine how its parameters can be changed to minimize the
impact of GC on the application.

The key information needed to tune an individual collector is the data from the GC
log when that collector is enabled. This chapter starts, then, by looking at each algo‐
rithm from the perspective of its log output, which allows us to understand how the
GC algorithm works and how it can be adjusted to work better. Each section then
includes tuning information to achieve that better performance.

This chapter also covers the details of some new, experimental collectors. Those col‐
lectors may not be 100% solid at the time of this writing but will likely become full-
fledged, production-worthy collectors by the time the next LTS version of Java is
released (just as G1 GC began as an experimental collector and is now the default in
JDK 11).

A few unusual cases impact the performance of all GC algorithms: allocation of very
large objects, objects that are neither short- nor long-lived, and so on. Those cases are
covered at the end of this chapter.

Understanding the Throughput Collector
We’ll start by looking at the individual garbage collectors, beginning with the
throughput collector. Although we’ve seen that the G1 GC collector is generally pre‐
ferred, the details of the throughput collector are easier and make a better foundation
for understanding how things work.
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1 Actually, 227,893 KB is only 222 MB. For ease of discussion, I’ll truncate the KBs by 1,000 in this chapter;
pretend I am a disk manufacturer.

Recall from Chapter 5 that garbage collectors must do three basic operations: find
unused objects, free their memory, and compact the heap. The throughput collector
does all of those operations in the same GC cycle; together those operations are
referred to as a collection. These collectors can collect either the young generation or
the old generation during a single operation.

Figure 6-1 shows the heap before and after a young collection.

Figure 6-1. A throughput GC young collection

A young collection occurs when eden has filled up. The young collection moves all
objects out of eden: some are moved to one of the survivor spaces (S0 in this dia‐
gram), and some are moved to the old generation, which now contains more objects.
Many objects, of course, are discarded because they are no longer referenced.

Because eden is usually empty after this operation, it may seem unusual to consider
that it has been compacted, but that’s the effect here.

In the JDK 8 GC log with PrintGCDetails, a minor GC of the throughput collector
appears like this:

17.806: [GC (Allocation Failure) [PSYoungGen: 227983K->14463K(264128K)]
             280122K->66610K(613696K), 0.0169320 secs]
      [Times: user=0.05 sys=0.00, real=0.02 secs]

This GC occurred 17.806 seconds after the program began. Objects in the young gen‐
eration now occupy 14,463 KB (14 MB, in the survivor space); before the GC, they
occupied 227,983 KB (227 MB).1 The total size of the young generation at this point is
264 MB.

Meanwhile, the overall occupancy of the heap (both young and old generations)
decreased from 280 MB to 66 MB, and the size of the entire heap at this point was
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613 MB. The operation took less than 0.02 seconds (the 0.02 seconds of real time at
the end of the output is 0.0169320 seconds—the actual time—rounded). The pro‐
gram was charged for more CPU time than real time because the young collection
was done by multiple threads (in this configuration, four threads).

The same log in JDK 11 would look something like this:

[17.805s][info][gc,start       ] GC(4) Pause Young (Allocation Failure)
[17.806s][info][gc,heap        ] GC(4) PSYoungGen: 227983K->14463K(264128K)
[17.806s][info][gc,heap        ] GC(4) ParOldGen: 280122K->66610K(613696K)
[17.806s][info][gc,metaspace   ] GC(4) Metaspace: 3743K->3743K(1056768K)
[17.806s][info][gc             ] GC(4) Pause Young (Allocation Failure)
                                          496M->79M(857M) 16.932ms
[17.086s][info][gc,cpu         ] GC(4) User=0.05s Sys=0.00s Real=0.02s

The information here is the same; it’s just a different format. And this log entry has
multiple lines; the previous log entry is actually a single line (but that doesn’t repro‐
duce in this format). This log also prints out the metaspace sizes, but those will never
change during a young collection. The metaspace is also not included in the total
heap size reported on the fifth line of this sample.

Figure 6-2 shows the heap before and after a full GC.

Figure 6-2. A throughput full GC

The old collection frees everything out of the young generation. The only objects that
remain in the old generation are those that have active references, and all of those
objects have been compacted so that the beginning of the old generation is occupied,
and the remainder is free.

The GC log reports that operation like this:

64.546: [Full GC (Ergonomics) [PSYoungGen: 15808K->0K(339456K)]
          [ParOldGen: 457753K->392528K(554432K)] 473561K->392528K(893888K)
   [Metaspace: 56728K->56728K(115392K)], 1.3367080 secs]
   [Times: user=4.44 sys=0.01, real=1.34 secs]
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The young generation now occupies 0 bytes (and its size is 339 MB). Note in the dia‐
gram that means the survivor spaces have been cleared as well. The data in the old
generation decreased from 457 MB to 392 MB, and hence the entire heap usage has
decreased from 473 MB to 392 MB. The size of the metaspace is unchanged; it is not
collected during most full GCs. (If the metaspace runs out of room, the JVM will run
a full GC to collect it, and you will see the size of the metaspace change; I’ll show that
a little further on.) Because there is substantially more work to do in a full GC, it has
taken 1.3 seconds of real time, and 4.4 seconds of CPU time (again for four parallel
threads).

The similar JDK 11 log is this:

[63.205s][info][gc,start       ] GC(13) Pause Full (Ergonomics)
[63.205s][info][gc,phases,start] GC(13) Marking Phase
[63.314s][info][gc,phases      ] GC(13) Marking Phase 109.273ms
[63.314s][info][gc,phases,start] GC(13) Summary Phase
[63.316s][info][gc,phases      ] GC(13) Summary Phase 1.470ms
[63.316s][info][gc,phases,start] GC(13) Adjust Roots
[63.331s][info][gc,phases      ] GC(13) Adjust Roots 14.642ms
[63.331s][info][gc,phases,start] GC(13) Compaction Phase
[63.482s][info][gc,phases      ] GC(13) Compaction Phase 1150.792ms
[64.482s][info][gc,phases,start] GC(13) Post Compact
[64.546s][info][gc,phases      ] GC(13) Post Compact 63.812ms
[64.546s][info][gc,heap        ] GC(13) PSYoungGen: 15808K->0K(339456K)
[64.546s][info][gc,heap        ] GC(13) ParOldGen: 457753K->392528K(554432K)
[64.546s][info][gc,metaspace   ] GC(13) Metaspace: 56728K->56728K(115392K)
[64.546s][info][gc             ] GC(13) Pause Full (Ergonomics)
                                            462M->383M(823M) 1336.708ms
[64.546s][info][gc,cpu         ] GC(13) User=4.446s Sys=0.01s Real=1.34s

Quick Summary

• The throughput collector has two operations: minor collec‐
tions and full GCs, each of which marks, frees, and compacts
the target generation.

• Timings taken from the GC log are a quick way to determine
the overall impact of GC on an application using these
collectors.

Adaptive and Static Heap Size Tuning
Tuning the throughput collector is all about pause times and striking a balance
between the overall heap size and the sizes of the old and young generations.

There are two trade-offs to consider here. First, we have the classic programming
trade-off of time versus space. A larger heap consumes more memory on the
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machine, and the benefit of consuming that memory is (at least to a certain extent)
that the application will have a higher throughput.

The second trade-off concerns the length of time it takes to perform GC. The number
of full GC pauses can be reduced by increasing the heap size, but that may have the
perverse effect of increasing average response times because of the longer GC times.
Similarly, full GC pauses can be shortened by allocating more of the heap to the
young generation than to the old generation, but that, in turn, increases the frequency
of the old GC collections.

The effect of these trade-offs is shown in Figure 6-3. This graph shows the maximum
throughput of the stock REST server running with different heap sizes. With a small
256 MB heap, the server is spending a lot of time in GC (36% of total time, in fact);
the throughput is restricted as a result. As the heap size is increased, the throughput
rapidly increases—until the heap size is set to 1,500 MB. After that, throughput
increases less rapidly: the application isn’t really GC-bound at that point (about 6% of
time in GC). The law of diminishing returns has crept in: the application can use
additional memory to gain throughput, but the gains become more limited.

After a heap size of 4,500 MB, the throughput starts to decrease slightly. At that point,
the application has reached the second trade-off: the additional memory has caused
much longer GC cycles, and those longer cycles—even though they are less
frequent—can reduce the overall throughput.

The data in this graph was obtained by disabling adaptive sizing in the JVM; the min‐
imum and maximum heap sizes were set to the same value. It is possible to run
experiments on any application and determine the best sizes for the heap and for the
generations, but it is often easier to let the JVM make those decisions (which is what
usually happens, since adaptive sizing is enabled by default).

Figure 6-3. Throughput with various heap sizes
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Adaptive sizing in the throughput collector will resize the heap (and the generations)
in order to meet its pause-time goals. Those goals are set with these flags:
-XX:MaxGCPauseMillis=N and -XX:GCTimeRatio=N.

The MaxGCPauseMillis flag specifies the maximum pause time that the application is
willing to tolerate. It might be tempting to set this to 0, or perhaps a small value like
50 ms. Be aware that this goal applies to both minor and full GCs. If a very small
value is used, the application will end up with a very small old generation: for exam‐
ple, one that can be cleaned in 50 ms. That will cause the JVM to perform very, very
frequent full GCs, and performance will be dismal. So be realistic: set the value to
something that can be achieved. By default, this flag is not set.

The GCTimeRatio flag specifies the amount of time you are willing for the application
to spend in GC (compared to the amount of time its application-level threads should
run). It is a ratio, so the value for N takes a little thought. The value is used in the fol‐
lowing equation to determine the percentage of time the application threads should
ideally run:

ThroughputGoal = 1 − 1
1 + GCTimeRatio

The default value for GCTimeRatio is 99. Plugging that value into the equation yields
0.99, meaning that the goal is to spend 99% of time in application processing, and
only 1% of time in GC. But don’t be confused by how those numbers line up in the
default case. A GCTimeRatio of 95 does not mean that GC should run up to 5% of the
time: it means that GC should run up to 1.94% of the time.

It’s easier to decide the minimum percentage of time you want the application to per‐
form work (say, 95%) and then calculate the value of the GCTimeRatio from this
equation:

GCTimeRatio = Throughput
1 − Throughput

For a throughput goal of 95% (0.95), this equation yields a GCTimeRatio of 19.

The JVM uses these two flags to set the size of the heap within the boundaries estab‐
lished by the initial (-Xms) and maximum (-Xmx) heap sizes. The MaxGCPauseMillis
flag takes precedence: if it is set, the sizes of the young and old generations are adjus‐
ted until the pause-time goal is met. Once that happens, the overall size of the heap is
increased until the time-ratio goal is met. Once both goals are met, the JVM will
attempt to reduce the size of the heap so that it ends up with the smallest possible
heap that meets these two goals.
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Because the pause-time goal is not set by default, the usual effect of automatic heap
sizing is that the heap (and generation) sizes will increase until the GCTimeRatio goal
is met. In practice, though, the default setting of that flag is optimistic. Your experi‐
ence will vary, of course, but I am much more used to seeing applications that spend
3% to 6% of their time in GC and behave quite well. Sometimes I even work on appli‐
cations in environments where memory is severely constrained; those applications
end up spending 10% to 15% of their time in GC. GC has a substantial impact on the
performance of those applications, but the overall performance goals are still met.

So the best setting will vary depending on the application goals. In the absence of
other goals, I start with a time ratio of 19 (5% of time in GC).

Table 6-1 shows the effects of this dynamic tuning for an application that needs a
small heap and does little GC (it is the stock REST server that has few long-lived
objects).

Table 6-1. Effect of dynamic GC tuning

GC settings End heap size Percent time in GC OPS
Default 649 MB 0.9% 9.2

MaxGCPauseMillis=50ms 560 MB 1.0% 9.2

Xms=Xmx=2048m 2 GB 0.04% 9.2

By default, the heap will have a 64 MB minimum size and a 2 GB maximum size
(since the machine has 8 GB of physical memory). In that case, the GCTimeRatio
works just as expected: the heap dynamically resized to 649 MB, at which point the
application was spending about 1% of total time in GC.

Setting the MaxGCPauseMillis flag in this case starts to reduce the size of the heap in
order to meet that pause-time goal. Because the garbage collector has so little work to
perform in this example, it succeeds and can still spend only 1% of total time in GC,
while maintaining the same throughput of 9.2 OPS.

Finally, notice that more isn’t always better. A full 2 GB heap does mean that the
application can spend less time in GC, but GC isn’t the dominant performance factor
here, so the throughput doesn’t increase. As usual, spending time optimizing the
wrong area of the application has not helped.

If the same application is changed so that the previous 50 requests for each user are
saved in a global cache (e.g., as a JPA cache would do), the garbage collector has to
work harder. Table 6-2 shows the trade-offs in that situation.
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Table 6-2. Effect of heap occupancy on dynamic GC tuning

GC settings End heap size Percent time in GC OPS
Default 1.7 GB 9.3% 8.4

MaxGCPauseMillis=50ms 588 MB 15.1% 7.9

Xms=Xmx=2048m 2 GB 5.1% 9.0

Xmx=3560M; MaxGCRatio=19 2.1 GB 8.8% 9.0

In a test that spends a significant amount of time in GC, the GC behavior is different.
The JVM will never be able to satisfy the 1% throughput goal in this test; it tries its
best to accommodate the default goal and does a reasonable job, using 1.7 GB of
space.

Application behavior is worse when an unrealistic pause-time goal is given. To ach‐
ieve a 50 ms collection time, the heap is kept to 588 MB, but that means that GC now
becomes excessively frequent. Consequently, the throughput has decreased signifi‐
cantly. In this scenario, the better performance comes from instructing the JVM to
utilize the entire heap by setting both the initial and maximum sizes to 2 GB.

Finally, the last line of the table shows what happens when the heap is reasonably
sized and we set a realistic time-ratio goal of 5%. The JVM itself determined that
approximately 2 GB was the optimal heap size, and it achieved the same throughput
as the hand-tuned case.

Quick Summary

• Dynamic heap tuning is a good first step for heap sizing. For a
wide set of applications, that will be all that is needed, and the
dynamic settings will minimize the JVM’s memory use.

• It is possible to statically size the heap to get the maximum
possible performance. The sizes the JVM determines for a rea‐
sonable set of performance goals are a good first start for that
tuning.

Understanding the G1 Garbage Collector
G1 GC operates on discrete regions within the heap. Each region (there are by default
around 2,048) can belong to either the old or new generation, and the generational
regions need not be contiguous. The idea behind having regions in the old generation
is that when the concurrent background threads look for unreferenced objects, some
regions will contain more garbage than other regions. The actual collection of a
region still requires that application threads be stopped, but G1 GC can focus on the
regions that are mostly garbage and spend only a little bit of time emptying those
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regions. This approach—clearing out only the mostly garbage regions—is what gives
G1 GC its name: garbage first.

That doesn’t apply to the regions in the young generation: during a young GC, the
entire young generation is either freed or promoted (to a survivor space or to the old
generation). Still, the young generation is defined in terms of regions, in part because
it makes resizing the generations much easier if the regions are predefined.

G1 GC is called a concurrent collector because the marking of free objects within the
old generation happens concurrently with the application threads (i.e., they are left
running). But it is not completely concurrent because the marking and compacting of
the young generation requires stopping all application threads, and the compacting of
the old generation also occurs while the application threads are stopped.

G1 GC has four logical operations:

• A young collection
• A background, concurrent marking cycle
• A mixed collection
• If necessary, a full GC

We’ll look at each of these in turn, starting with the G1 GC young collection shown in
Figure 6-4.

Figure 6-4. A G1 GC young collection

Each small square in this figure represents a G1 GC region. The data in each region is
represented by the black area, and the letter in each region identifies the generation to
which the region belongs ([E]den, [O]ld generation, [S]urvivor space). Empty regions
do not belong to a generation; G1 GC uses them arbitrarily for whichever generation
it deems necessary.
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The G1 GC young collection is triggered when eden fills up (in this case, after filling
four regions). After the collection, eden is empty (though regions are assigned to it,
which will begin to fill up with data as the application proceeds). At least one region
is assigned to the survivor space (partially filled in this example), and some data has
moved into the old generation.

The GC log illustrates this collection a little differently in G1 than in other collectors.
The JDK 8 example log was taken using PrintGCDetails, but the details in the log for
G1 GC are more verbose. The examples show only a few of the important lines.

Here is the standard collection of the young generation:

23.430: [GC pause (young), 0.23094400 secs]
...
   [Eden: 1286M(1286M)->0B(1212M)
    Survivors: 78M->152M Heap: 1454M(4096M)->242M(4096M)]
   [Times: user=0.85 sys=0.05, real=0.23 secs]

Collection of the young generation took 0.23 seconds of real time, during which the
GC threads consumed 0.85 seconds of CPU time. 1,286 MB of objects were moved
out of eden (which was adaptively resized to 1,212 MB); 74 MB of that was moved to
the survivor space (it increased in size from 78 M to 152 MB), and the rest were freed.
We know they were freed by observing that the total heap occupancy decreased by
1,212 MB. In the general case, some objects from the survivor space might have been
moved to the old generation, and if the survivor space were full, some objects from
eden would have been promoted directly to the old generation—in those cases, the
size of the old generation would increase.

The similar log in JDK 11 looks like this:

[23.200s][info   ][gc,start     ] GC(10) Pause Young (Normal)
                                           (G1 Evacuation Pause)
[23.200s][info   ][gc,task      ] GC(10) Using 4 workers of 4 for evacuation
[23.430s][info   ][gc,phases    ] GC(10)   Pre Evacuate Collection Set: 0.0ms
[23.430s][info   ][gc,phases    ] GC(10)   Evacuate Collection Set: 230.3ms
[23.430s][info   ][gc,phases    ] GC(10)   Post Evacuate Collection Set: 0.5ms
[23.430s][info   ][gc,phases    ] GC(10)   Other: 0.1ms
[23.430s][info   ][gc,heap      ] GC(10) Eden regions: 643->606(606)
[23.430s][info   ][gc,heap      ] GC(10) Survivor regions: 39->76(76)
[23.430s][info   ][gc,heap      ] GC(10) Old regions: 67->75
[23.430s][info   ][gc,heap      ] GC(10) Humongous regions: 0->0
[23.430s][info   ][gc,metaspace ] GC(10) Metaspace: 18407K->18407K(1067008K)
[23.430s][info   ][gc           ] GC(10) Pause Young (Normal)
                                           (G1 Evacuation Pause)
                                           1454M(4096M)->242M(4096M) 230.104ms
[23.430s][info   ][gc,cpu       ] GC(10) User=0.85s Sys=0.05s Real=0.23s

A concurrent G1 GC cycle begins and ends as shown in Figure 6-5.
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Figure 6-5. Concurrent collection performed by G1 GC

This diagram presents three important things to observe. First, the young generation
has changed its occupancy: there will be at least one (and possibly more) young col‐
lections during the concurrent cycle. Hence, the eden regions before the marking
cycle have been completely freed, and new eden regions have started to be allocated.

Second, some regions are now marked with an X. Those regions belong to the old
generation (and note that they still contain data)—they are regions that the marking
cycle has determined contain mostly garbage.

Finally, notice that the old generation (consisting of the regions marked with an O or
an X) is actually more occupied after the cycle has completed. That’s because the
young generation collections that occurred during the marking cycle promoted data
into the old generation. In addition, the marking cycle doesn’t actually free any data
in the old generation: it merely identifies regions that are mostly garbage. Data from
those regions is freed in a later cycle.

The G1 GC concurrent cycle has several phases, some of which stop all application
threads, and some of which do not. The first phase is called initial-mark (in JDK 8) or
concurrent start (in JDK 11). That phase stops all application threads—partly because
it also executes a young collection, and it sets up the next phases of the cycle.

In JDK 8, that looks like this:

50.541: [GC pause (G1 Evacuation pause) (young) (initial-mark), 0.27767100 secs]
    ... lots of other data ...
    [Eden: 1220M(1220M)->0B(1220M)
     Survivors: 144M->144M Heap: 3242M(4096M)->2093M(4096M)]
    [Times: user=1.02 sys=0.04, real=0.28 secs]

And in JDK 11:

[50.261s][info   ][gc,start      ] GC(11) Pause Young (Concurrent Start)
                                              (G1 Evacuation Pause)
[50.261s][info   ][gc,task       ] GC(11) Using 4 workers of 4 for evacuation
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[50.541s][info   ][gc,phases     ] GC(11)   Pre Evacuate Collection Set: 0.1ms
[50.541s][info   ][gc,phases     ] GC(11)   Evacuate Collection Set: 25.9ms
[50.541s][info   ][gc,phases     ] GC(11)   Post Evacuate Collection Set: 1.7ms
[50.541s][info   ][gc,phases     ] GC(11)   Other: 0.2ms
[50.541s][info   ][gc,heap       ] GC(11) Eden regions: 1220->0(1220)
[50.541s][info   ][gc,heap       ] GC(11) Survivor regions: 144->144(144)
[50.541s][info   ][gc,heap       ] GC(11) Old regions: 1875->1946
[50.541s][info   ][gc,heap       ] GC(11) Humongous regions: 3->3
[50.541s][info   ][gc,metaspace  ] GC(11) Metaspace: 52261K->52261K(1099776K)
[50.541s][info   ][gc            ] GC(11) Pause Young (Concurrent Start)
                                              (G1 Evacuation Pause)
                                              1220M->0B(1220M) 280.055ms
[50.541s][info   ][gc,cpu        ] GC(11) User=1.02s Sys=0.04s Real=0.28s

As in a regular young collection, the application threads were stopped (for 0.28 sec‐
onds), and the young generation was emptied (so eden ends with a size of 0). 71 MB
of data was moved from the young generation to the old generation. That’s a little dif‐
ficult to tell in JDK 8 (it is 2,093 – 3,242 + 1,220); the JDK 11 output shows that more
clearly.

On the other hand, the JDK 11 output contains references to a few things we haven’t
discussed yet. First is that the sizes are in regions and not in MB. We’ll discuss region
sizes later in this chapter, but in this example, the region size is 1 MB. In addition,
JDK 11 mentions a new area: humongous regions. That is part of the old generation
and is also discussed later in this chapter.

The initial-mark or concurrent start log message announces that the background
concurrent cycle has begun. Since the initial mark of the marking cycle phase also
requires all application threads to be stopped, G1 GC takes advantage of the young
GC cycle to do that work. The impact of adding the initial-mark phase to the young
GC wasn’t that large: it used 20% more CPU cycles than the previous collection
(which was just a regular young collection), even though the pause was only slightly
longer. (Fortunately, there were spare CPU cycles on the machine for the parallel G1
threads, or the pause would have been longer.)

Next, G1 GC scans the root region:

50.819: [GC concurrent-root-region-scan-start]
51.408: [GC concurrent-root-region-scan-end, 0.5890230]

[50.819s][info ][gc             ] GC(20) Concurrent Cycle
[50.819s][info ][gc,marking     ] GC(20) Concurrent Clear Claimed Marks
[50.828s][info ][gc,marking     ] GC(20) Concurrent Clear Claimed Marks 0.008ms
[50.828s][info ][gc,marking     ] GC(20) Concurrent Scan Root Regions
[51.408s][info ][gc,marking     ] GC(20) Concurrent Scan Root Regions 589.023ms

This takes 0.58 seconds, but it doesn’t stop the application threads; it uses only the
background threads. However, this phase cannot be interrupted by a young collec‐
tion, so having available CPU cycles for those background threads is crucial. If the
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young generation happens to fill up during the root region scanning, the young col‐
lection (which has stopped all the application threads) must wait for the root scan‐
ning to complete. In effect, this means a longer-than-usual pause to collect the young
generation. That situation is shown in the GC log like this:

350.994: [GC pause (young)
 351.093: [GC concurrent-root-region-scan-end, 0.6100090]
 351.093: [GC concurrent-mark-start],
 0.37559600 secs]

[350.384s][info][gc,marking   ] GC(50) Concurrent Scan Root Regions
[350.384s][info][gc,marking   ] GC(50) Concurrent Scan Root Regions 610.364ms
[350.994s][info][gc,marking   ] GC(50) Concurrent Mark (350.994s)
[350.994s][info][gc,marking   ] GC(50) Concurrent Mark From Roots
[350.994s][info][gc,task      ] GC(50) Using 1 workers of 1 for marking
[350.994s][info][gc,start     ] GC(51) Pause Young (Normal) (G1 Evacuation Pause)

The GC pause here starts before the end of the root region scanning. In JDK 8, the
interleaved output in the GC log indicates that the young collection had to pause for
the root region scanning to complete before it proceeded. In JDK 11, that’s a little
more difficult to detect: you have to notice that the timestamp of the end of the root
region scanning is exactly the same at which the next young collection begins.

In either case, it is impossible to know exactly how long the young collection was
delayed. It wasn’t necessarily delayed the entire 610 ms in this example; for some
period of that time (until the young generation actually filled up), things continued.
But in this case, the timestamps show that application threads waited about an extra
100 ms—that is why the duration of the young GC pause is about 100 ms longer than
the average duration of other pauses in this log. (If this occurs frequently, it is an indi‐
cation that G1 GC needs to be better tuned, as discussed in the next section.)

After the root region scanning, G1 GC enters a concurrent marking phase. This hap‐
pens completely in the background; a message is printed when it starts and ends:

111.382: [GC concurrent-mark-start]
....
120.905: [GC concurrent-mark-end, 9.5225160 sec]

[111.382s][info][gc,marking   ] GC(20) Concurrent Mark (111.382s)
[111.382s][info][gc,marking   ] GC(20) Concurrent Mark From Roots
...
[120.905s][info][gc,marking   ] GC(20) Concurrent Mark From Roots 9521.994ms
[120.910s][info][gc,marking   ] GC(20) Concurrent Preclean
[120.910s][info][gc,marking   ] GC(20) Concurrent Preclean 0.522ms
[120.910s][info][gc,marking   ] GC(20) Concurrent Mark (111.382s, 120.910s)
                                         9522.516ms

Concurrent marking can be interrupted, so young collections may occur during this
phase (so there will be lots of GC output where the ellipses are).
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Also note that in the JDK 11 example, the output has the same GC entry—20—as did
the entry where the root region scanning occurred. We are breaking down the opera‐
tions more finely than the JDK logging does: in the JDK, the entire background scan‐
ning is considered one operation. We’re splitting the discussion into more fine-
grained, logical operations, since, for example, the root scanning can introduce a
pause when the concurrent marking cannot.

The marking phase is followed by a remarking phase and a normal cleanup phase:

120.910: [GC remark 120.959:
 [GC ref-PRC, 0.0000890 secs], 0.0718990 secs]
  [Times: user=0.23 sys=0.01, real=0.08 secs]
120.985: [GC cleanup 3510M->3434M(4096M), 0.0111040 secs]
  [Times: user=0.04 sys=0.00, real=0.01 secs]

[120.909s][info][gc,start     ] GC(20) Pause Remark
[120.909s][info][gc,stringtable] GC(20) Cleaned string and symbol table,
                                           strings: 1369 processed, 0 removed,
                                           symbols: 17173 processed, 0 removed
[120.985s][info][gc            ] GC(20) Pause Remark 2283M->862M(3666M) 80.412ms
[120.985s][info][gc,cpu        ] GC(20) User=0.23s Sys=0.01s Real=0.08s

These phases stop the application threads, though usually for a short time. Next an
additional cleanup phase happens concurrently:

120.996: [GC concurrent-cleanup-start]
120.996: [GC concurrent-cleanup-end, 0.0004520]

[120.878s][info][gc,start      ] GC(20) Pause Cleanup
[120.879s][info][gc            ] GC(20) Pause Cleanup 1313M->1313M(3666M) 1.192ms
[120.879s][info][gc,cpu        ] GC(20) User=0.00s Sys=0.00s Real=0.00s
[120.879s][info][gc,marking    ] GC(20) Concurrent Cleanup for Next Mark
[120.996s][info][gc,marking    ] GC(20) Concurrent Cleanup for Next Mark
                                          117.168ms
[120.996s][info][gc            ] GC(20) Concurrent Cycle 70,177.506ms

And with that, the normal G1 GC background marking cycle is complete—insofar as
finding the garbage goes, at least. But very little has actually been freed yet. A little
memory was reclaimed in the cleanup phase, but all G1 GC has really done at this
point is to identify old regions that are mostly garbage and can be reclaimed (the ones
marked with an X in Figure 6-5).

Now G1 GC executes a series of mixed GCs. They are called mixed because they per‐
form the normal young collection but also collect some of the marked regions from
the background scan. The effect of a mixed GC is shown in Figure 6-6.

As is usual for a young collection, G1 GC has completely emptied eden and adjusted
the survivor spaces. Additionally, two of the marked regions have been collected.
Those regions were known to contain mostly garbage, so a large part of them was
freed. Any live data in those regions was moved to another region (just as live data
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was moved from the young generation into regions in the old generation). This is
how G1 GC compacts the old generation—moving the objects like this is essentially
compacting the heap as G1 GC goes along.

Figure 6-6. Mixed GC performed by G1 GC

The mixed GC operation usually looks like this in the log:

79.826: [GC pause (mixed), 0.26161600 secs]
....
   [Eden: 1222M(1222M)->0B(1220M)
    Survivors: 142M->144M Heap: 3200M(4096M)->1964M(4096M)]
   [Times: user=1.01 sys=0.00, real=0.26 secs]

[3.800s][info][gc,start      ] GC(24) Pause Young (Mixed) (G1 Evacuation Pause)
[3.800s][info][gc,task       ] GC(24) Using 4 workers of 4 for evacuation
[3.800s][info][gc,phases     ] GC(24)   Pre Evacuate Collection Set: 0.2ms
[3.825s][info][gc,phases     ] GC(24)   Evacuate Collection Set: 250.3ms
[3.826s][info][gc,phases     ] GC(24)   Post Evacuate Collection Set: 0.3ms
[3.826s][info][gc,phases     ] GC(24)   Other: 0.4ms
[3.826s][info][gc,heap       ] GC(24) Eden regions: 1222->0(1220)
[3.826s][info][gc,heap       ] GC(24) Survivor regions: 142->144(144)
[3.826s][info][gc,heap       ] GC(24) Old regions: 1834->1820
[3.826s][info][gc,heap       ] GC(24) Humongous regions: 4->4
[3.826s][info][gc,metaspace  ] GC(24) Metaspace: 3750K->3750K(1056768K)
[3.826s][info][gc            ] GC(24) Pause Young (Mixed) (G1 Evacuation Pause)
                                          3791M->3791M(3983M) 124.390ms
[3.826s][info][gc,cpu        ] GC(24) User=1.01s Sys=0.00s Real=0.26s
[3.826s][info][gc,start      ] GC(25) Pause Young (Mixed) (G1 Evacuation Pause)

Notice that the entire heap usage has been reduced by more than just the 1,222 MB
removed from eden. That difference (16 MB) seems small, but remember that some
of the survivor space was promoted into the old generation at the same time; in addi‐
tion, each mixed GC cleans up only a portion of the targeted old generation regions.
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As we continue, you’ll see that it is important to make sure that the mixed GCs clean
up enough memory to prevent future concurrent failures.

In JDK 11, the first mixed GC is labeled Prepared Mixed and immediately follows the
concurrent cleanup.

The mixed GC cycles will continue until (almost) all of the marked regions have been
collected, at which point G1 GC will resume regular young GC cycles. Eventually, G1
GC will start another concurrent cycle to determine which regions in the old genera‐
tion should be freed next.

Although a mixed GC cycle usually says (Mixed) for the GC cause, the young collec‐
tions are sometimes labeled normally following a concurrent cycle (i.e., G1 Evacua
tion Pause). If the concurrent cycle found regions in the old generation that can be
completely freed, those regions are reclaimed during the regular young evacuation
pause. Technically, this is not a mixed cycle in the implementation of the collector.
Logically, though, it is: objects are being freed from the young generation or promo‐
ted into the old generation, and at the same time garbage objects (regions, really) are
being freed from the old generation.

If all goes well, that’s the entire set of GC activities you’ll see in your GC log. But there
are some failure cases to consider.

Sometimes you’ll observe a full GC in the log, which is an indication that more tun‐
ing (including, possibly, more heap space) will benefit the application performance.
This is triggered primarily four times:

Concurrent mode failure
G1 GC starts a marking cycle, but the old generation fills up before the cycle is
completed. In that case, G1 GC aborts the marking cycle:

51.408: [GC concurrent-mark-start]
65.473: [Full GC 4095M->1395M(4096M), 6.1963770 secs]
 [Times: user=7.87 sys=0.00, real=6.20 secs]
71.669: [GC concurrent-mark-abort]

[51.408][info][gc,marking     ] GC(30) Concurrent Mark From Roots
...
[65.473][info][gc             ] GC(32) Pause Full (G1 Evacuation Pause)
                                          4095M->1305M(4096M) 60,196.377
...
[71.669s][info][gc,marking     ] GC(30) Concurrent Mark From Roots 191ms
[71.669s][info][gc,marking     ] GC(30) Concurrent Mark Abort

This failure means that heap size should be increased, the G1 GC background
processing must begin sooner, or the cycle must be tuned to run more quickly
(e.g., by using additional background threads). Details on how to do that follow.
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Promotion failure
G1 GC has completed a marking cycle and has started performing mixed GCs to
clean up the old regions. Before it can clean enough space, too many objects are
promoted from the young generation, and so the old generation still runs out of
space. In the log, a full GC immediately follows a mixed GC:

2226.224: [GC pause (mixed)
 2226.440: [SoftReference, 0 refs, 0.0000060 secs]
 2226.441: [WeakReference, 0 refs, 0.0000020 secs]
 2226.441: [FinalReference, 0 refs, 0.0000010 secs]
 2226.441: [PhantomReference, 0 refs, 0.0000010 secs]
 2226.441: [JNI Weak Reference, 0.0000030 secs]
  (to-space exhausted), 0.2390040 secs]
....
    [Eden: 0.0B(400.0M)->0.0B(400.0M)
     Survivors: 0.0B->0.0B Heap: 2006.4M(2048.0M)->2006.4M(2048.0M)]
    [Times: user=1.70 sys=0.04, real=0.26 secs]
2226.510: [Full GC (Allocation Failure)
 2227.519: [SoftReference, 4329 refs, 0.0005520 secs]
 2227.520: [WeakReference, 12646 refs, 0.0010510 secs]
 2227.521: [FinalReference, 7538 refs, 0.0005660 secs]
 2227.521: [PhantomReference, 168 refs, 0.0000120 secs]
 2227.521: [JNI Weak Reference, 0.0000020 secs]
  2006M->907M(2048M), 4.1615450 secs]
    [Times: user=6.76 sys=0.01, real=4.16 secs]

[2226.224s][info][gc            ] GC(26) Pause Young (Mixed)
                                            (G1 Evacuation Pause)
                                            2048M->2006M(2048M) 26.129ms
...
[2226.510s][info][gc,start      ] GC(27) Pause Full (G1 Evacuation Pause)

This failure means the mixed collections need to happen more quickly; each
young collection needs to process more regions in the old generation.

Evacuation failure
When performing a young collection, there isn’t enough room in the survivor
spaces and the old generation to hold all the surviving objects. This appears in
the GC logs as a specific kind of young GC:

60.238: [GC pause (young) (to-space overflow), 0.41546900 secs]

[60.238s][info][gc,start       ] GC(28) Pause Young (Concurrent Start)
                                          (G1 Evacuation Pause)
[60.238s][info][gc,task        ] GC(28) Using 4 workers of 4
                                          for evacuation
[60.238s][info][gc             ] GC(28) To-space exhausted
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This is an indication that the heap is largely full or fragmented. G1 GC will
attempt to compensate, but you can expect this to end badly: the JVM will resort
to performing a full GC. The easy way to overcome this is to increase the heap
size, though possible solutions are given in “Advanced Tunings” on page 182.

Humongous allocation failure
Applications that allocate very large objects can trigger another kind of full GC in
G1 GC; see “G1 GC allocation of humongous objects” on page 192 for more
details (including how to avoid it). In JDK 8, it isn’t possible to diagnose this sit‐
uation without resorting to special logging parameters, but in JDK 11 that is
shown with this log:

[3023.091s][info][gc,start     ] GC(54) Pause Full (G1 Humongous Allocation)

Metadata GC threshold
As I’ve mentioned, the metaspace is essentially a separate heap and is collected
independently of the main heap. It is not collected via G1 GC, but still when it
needs to be collected in JDK 8, G1 GC will perform a full GC (immediately pre‐
ceded by a young collection) on the main heap:

0.0535: [GC (Metadata GC Threshold) [PSYoungGen: 34113K->20388K(291328K)]
    73838K->60121K(794112K), 0.0282912 secs]
    [Times: user=0.05 sys=0.01, real=0.03 secs]
0.0566: [Full GC (Metadata GC Threshold) [PSYoungGen: 20388K->0K(291328K)]
    [ParOldGen: 39732K->46178K(584192K)] 60121K->46178K(875520K),
    [Metaspace: 59040K->59036K(1101824K)], 0.1121237 secs]
    [Times: user=0.28 sys=0.01, real=0.11 secs]

In JDK 11, the metaspace can be collected/resized without requiring a full GC.

Quick Summary

• G1 has multiple cycles (and phases within the concurrent
cycle). A well-tuned JVM running G1 should experience only
young, mixed, and concurrent GC cycles.

• Small pauses occur for some of the G1 concurrent phases.
• G1 should be tuned if necessary to avoid full GC cycles.

Tuning G1 GC
The major goal in tuning G1 GC is to make sure that no concurrent mode or evacua‐
tion failures end up requiring a full GC. The techniques used to prevent a full GC can
also be used when frequent young GCs must wait for a root region scan to complete.
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Tuning to prevent a full collection is critical in JDK 8, because when G1 GC executes
a full GC in JDK 8, it does so using a single thread. That creates a longer than usual
pause time. In JDK 11, the full GC is executed by multiple threads, leading to a
shorter pause time (essentially, the same pause time as a full GC with the throughput
collector). This difference is one reason it is preferable to update to JDK 11 if you are
using G1 GC (though a JDK 8 application that avoids full GCs will perform just fine).

Secondarily, tuning can minimize the pauses that occur along the way.

These are the options to prevent a full GC:

• Increase the size of the old generation either by increasing the heap space overall
or by adjusting the ratio between the generations.

• Increase the number of background threads (assuming there is sufficient CPU).
• Perform G1 GC background activities more frequently.
• Increase the amount of work done in mixed GC cycles.

A lot of tunings can be applied here, but one of the goals of G1 GC is that it shouldn’t
have to be tuned that much. To that end, G1 GC is primarily tuned via a single flag:
the same -XX:MaxGCPauseMillis=N flag that was used to tune the throughput
collector.

When used with G1 GC (and unlike the throughput collector), that flag does have a
default value: 200 ms. If pauses for any of the stop-the-world phases of G1 GC start to
exceed that value, G1 GC will attempt to compensate—adjusting the young-to-old
ratio, adjusting the heap size, starting the background processing sooner, changing
the tenuring threshold, and (most significantly) processing more or fewer old genera‐
tion regions during a mixed GC cycle.

Some trade-offs apply here: if that value is reduced, the young size will contract to
meet the pause-time goal, but more frequent young GCs will be performed. In addi‐
tion, the number of old generation regions that can be collected during a mixed GC
will decrease to meet the pause-time goal, which increases the chances of a concur‐
rent mode failure.

If setting a pause-time goal does not prevent the full GCs from happening, these vari‐
ous aspects can be tuned individually. Tuning the heap sizes for G1 GC is accom‐
plished in the same way as for other GC algorithms.

Tuning the G1 background threads
You can consider the concurrent marking of G1 GC to be in a race with the applica‐
tion threads: G1 GC must clear out the old generation faster than the application is
promoting new data into it. To make that happen, try increasing the number of back‐
ground marking threads (assuming sufficient CPU is available on the machine).
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Two sets of threads are used by G1 GC. The first set is controlled via the
-XX:ParallelGCThreads=N flag that you first saw in Chapter 5. That value affects the
number of threads used for phases when application threads are stopped: young and
mixed collections, and the phases of the concurrent remark cycle where threads must
be stopped. The second flag is -XX:ConcGCThreads=N, which affects the number of
threads used for the concurrent remarking.

The default value for the ConcGCThreads flag is defined as follows:

ConcGCThreads = (ParallelGCThreads + 2) / 4

This division is integer-based, so there will be one background scanning thread for up
to five parallel threads, two background scanning threads for between six and nine
parallel threads, and so on.

Increasing the number of background scanning threads will make the concurrent
cycle shorter, which should make it easier for G1 GC to finish freeing the old genera‐
tion during the mixed GC cycles before other threads have filled it again. As always,
this assumes that the CPU cycles are available; otherwise, the scanning threads will
take CPU away from the application and effectively introduce pauses in it, as you saw
when we compared the serial collector to G1 GC in Chapter 5.

Tuning G1 GC to run more (or less) frequently
G1 GC can also win its race if it starts the background marking cycle earlier. 
That cycle begins when the heap hits the occupancy ratio specified by
-XX:InitiatingHeapOccupancyPercent=N, which has a default value of 45. This per‐
centage refers to the entire heap, not just the old generation.

The InitiatingHeapOccupancyPercent value is constant; G1 GC never changes that
number as it attempts to meet its pause-time goals. If that value is set too high, the
application will end up performing full GCs because the concurrent phases don’t have
enough time to complete before the rest of the heap fills up. If that value is too small,
the application will perform more background GC processing than it might
otherwise.

At some point, of course, those background threads will have to run, so presumably
the hardware has enough CPU to accommodate them. Still, a significant penalty can
result from running them too frequently, because more small pauses will occur for
those concurrent phases that stop the application threads. Those pauses can add up
quickly, so performing background sweeping too frequently for G1 GC should be
avoided. Check the size of the heap after a concurrent cycle, and make sure that the
InitiatingHeapOccupancyPercent value is set higher than that.
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Tuning G1 GC mixed GC cycles
After a concurrent cycle, G1 GC cannot begin a new concurrent cycle until all previ‐
ously marked regions in the old generation have been collected. So another way to
make G1 GC start a marking cycle earlier is to process more regions in a mixed GC
cycle (so that there will end up being fewer mixed GC cycles).

The amount of work a mixed GC does depends on three factors. The first is how
many regions were found to be mostly garbage in the first place. There is no way to
directly affect that: a region is declared eligible for collection during a mixed GC if it
is 85% garbage.

The second factor is the maximum number of mixed GC cycles over which G1 GC
will process those regions, which is specified by the value of the flag
-XX:G1MixedGCCountTarget=N. The default value for that is 8; reducing that value can
help overcome promotion failures (at the expense of longer pause times during the
mixed GC cycle).

On the other hand, if mixed GC pause times are too long, that value can be increased
so that less work is done during the mixed GC. Just be sure that increasing that num‐
ber does not delay the next G1 GC concurrent cycle too long, or a concurrent mode
failure may result.

Finally, the third factor is the maximum desired length of a GC pause (i.e., the value
specified by MaxGCPauseMillis). The number of mixed cycles specified by the
G1MixedGCCountTarget flag is an upper bound; if time is available within the pause
target, G1 GC will collect more than one-eighth (or whatever value has been speci‐
fied) of the marked old generation regions. Increasing the value of the
MaxGCPauseMillis flag allows more old generation regions to be collected during
each mixed GC, which in turn can allow G1 GC to begin the next concurrent cycle
sooner.
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Quick Summary

• G1 GC tuning should begin by setting a reasonable pause-time
target.

• If full GCs are still an issue after that and the heap size cannot
be increased, specific tunings can be applied for specific
failure:
— To make the background threads run more frequently,

adjust InitiatingHeapOccupancyPercent.
— If additional CPU is available, adjust the number of

threads via the ConcGCThreads flag.
— To prevent promotion failures, decrease the size of

G1MixedGCCountTarget.

Understanding the CMS Collector
Although the CMS collector is deprecated, it is still available in current JDK builds.
So this section covers how to tune it, as well as why it has been deprecated.

CMS has three basic operations:

• Collecting the young generation (stopping all application threads)
• Running a concurrent cycle to clean data out of the old generation
• Performing a full GC to compact the old generation, if necessary

A CMS collection of the young generation appears in Figure 6-7.

Figure 6-7. Young collection performed by CMS
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A CMS young collection is similar to a throughput young collection: data is moved
from eden into one survivor space (and into the old generation if the survivor space
fills up).

The GC log entry for CMS is also similar (I’ll show only the JDK 8 log format):

89.853: [GC 89.853: [ParNew: 629120K->69888K(629120K), 0.1218970 secs]
  1303940K->772142K(2027264K), 0.1220090 secs]
  [Times: user=0.42 sys=0.02, real=0.12 secs]

The size of the young generation is presently 629 MB; after collection, 69 MB of it
remains (in a survivor space). Similarly, the size of the entire heap is 2,027 MB—772
MB of which is occupied after the collection. The entire process took 0.12 seconds,
though the parallel GC threads racked up 0.42 seconds in CPU usage.

A concurrent cycle is shown in Figure 6-8.

CMS starts a concurrent cycle based on the occupancy of the heap. When it is suffi‐
ciently full, the background threads that cycle through the heap and remove objects
are started. At the end of the cycle, the heap looks like the bottom row in this dia‐
gram. Notice that the old generation is not compacted: there are areas where objects
are allocated, and free areas. When a young collection moves objects from eden into
the old generation, the JVM will attempt to use those free areas to hold the objects.
Often those objects won’t fit into one of the free areas, which is why after the CMS
cycle, the high-water mark of the heap is larger.

Figure 6-8. Concurrent collection performed by CMS

In the GC log, this cycle appears as a number of phases. Although a majority of the
concurrent cycle uses background threads, some phases introduce short pauses where
all application threads are stopped.

The concurrent cycle starts with an initial-mark phase, which stops all the application
threads:
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89.976: [GC [1 CMS-initial-mark: 702254K(1398144K)]
  772530K(2027264K), 0.0830120 secs]
  [Times: user=0.08 sys=0.00, real=0.08 secs]

This phase is responsible for finding all the GC root objects in the heap. The first set
of numbers shows that objects currently occupy 702 MB of 1,398 MB of the old gen‐
eration, while the second set shows that the occupancy of the entire 2,027 MB heap is
772 MB. The application threads were stopped for a period of 0.08 seconds during
this phase of the CMS cycle.

The next phase is the mark phase, and it does not stop the application threads. The
phase is represented in the GC log by these lines:

90.059: [CMS-concurrent-mark-start]
90.887: [CMS-concurrent-mark: 0.823/0.828 secs]
  [Times: user=1.11 sys=0.00, real=0.83 secs]

The mark phase took 0.83 seconds (and 1.11 seconds of CPU time). Since it is just a
marking phase, it hasn’t done anything to the heap occupancy, so no data is shown
about that. If there were data, it would likely show a growth in the heap from objects
allocated in the young generation during those 0.83 seconds, since the application
threads have continued to execute.

Next comes a preclean phase, which also runs concurrently with the application
threads:

90.887: [CMS-concurrent-preclean-start]
90.892: [CMS-concurrent-preclean: 0.005/0.005 secs]
  [Times: user=0.01 sys=0.00, real=0.01 secs]

The next phase is a remark phase, but it involves several operations:

90.892: [CMS-concurrent-abortable-preclean-start]
92.392: [GC 92.393: [ParNew: 629120K->69888K(629120K), 0.1289040 secs]
  1331374K->803967K(2027264K), 0.1290200 secs]
  [Times: user=0.44 sys=0.01, real=0.12 secs]
94.473: [CMS-concurrent-abortable-preclean: 3.451/3.581 secs]
  [Times: user=5.03 sys=0.03, real=3.58 secs]

94.474: [GC[YG occupancy: 466937 K (629120 K)]
 94.474: [Rescan (parallel) , 0.1850000 secs]
 94.659: [weak refs processing, 0.0000370 secs]
 94.659: [scrub string table, 0.0011530 secs]
  [1 CMS-remark: 734079K(1398144K)]
  1201017K(2027264K), 0.1863430 secs]
 [Times: user=0.60 sys=0.01, real=0.18 secs]

Wait, didn’t CMS just execute a preclean phase? What’s up with this abortable pre‐
clean phase?

The abortable preclean phase is used because the remark phase (which, strictly speak‐
ing, is the final entry in this output) is not concurrent—it will stop all the application
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threads. CMS wants to avoid the situation where a young generation collection
occurs and is immediately followed by a remark phase, in which case the application
threads would be stopped for two back-to-back pause operations. The goal here is to
minimize pause lengths by preventing back-to-back pauses.

Hence, the abortable preclean phase waits until the young generation is about 50%
full. In theory, that is halfway between young generation collections, giving CMS the
best chance to avoid those back-to-back pauses. In this example, the abortable pre‐
clean phase starts at 90.8 seconds and waits about 1.5 seconds for the regular young
collection to occur (at 92.392 seconds into the log). CMS uses past behavior to calcu‐
late when the next young collection is likely to occur—in this case, CMS calculated it
would occur in about 4.2 seconds. So after 2.1 seconds (at 94.4 seconds), CMS ends
the preclean phase (which it calls aborting the phase, even though that is the only way
the phase is stopped). Then, finally, CMS executes the remark phase, which pauses
the application threads for 0.18 seconds (the application threads were not paused
during the abortable preclean phase).

Next comes another concurrent phase—the sweep phase:

94.661: [CMS-concurrent-sweep-start]
95.223: [GC 95.223: [ParNew: 629120K->69888K(629120K), 0.1322530 secs]
  999428K->472094K(2027264K), 0.1323690 secs]
  [Times: user=0.43 sys=0.00, real=0.13 secs]
95.474: [CMS-concurrent-sweep: 0.680/0.813 secs]
  [Times: user=1.45 sys=0.00, real=0.82 secs]

This phase took 0.82 seconds and ran concurrently with the application threads. It
also happened to be interrupted by a young collection. This young collection had
nothing to do with the sweep phase, but it is left in here as an example that the young
collections can occur simultaneously with the old collection phases. In Figure 6-8,
notice that the state of the young generation changed during the concurrent collec‐
tion—there may have been an arbitrary number of young collections during the
sweep phase (and there will have been at least one young collection because of the
abortable preclean phase).

Next comes the concurrent reset phase:

95.474: [CMS-concurrent-reset-start]
95.479: [CMS-concurrent-reset: 0.005/0.005 secs]
 [Times: user=0.00 sys=0.00, real=0.00 secs]

That is the last of the concurrent phases; the CMS cycle is complete, and the unrefer‐
enced objects found in the old generation are now free (resulting in the heap shown
in Figure 6-8). Unfortunately, the log doesn’t provide any information about how
many objects were freed; the reset line doesn’t give any information about the heap
occupancy. To get an idea of that, look to the next young collection:

98.049: [GC 98.049: [ParNew: 629120K->69888K(629120K), 0.1487040 secs]
  1031326K->504955K(2027264K), 0.1488730 secs]
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2 Similar work could have been done to make CMS full GCs run with parallel threads, but G1 GC work was
prioritized.

Now compare the occupancy of the old generation at 89.853 seconds (before the CMS
cycle began), which was roughly 703 MB (the entire heap occupied 772 MB at that
point, which included 69 MB in the survivor space, so the old generation consumed
the remaining 703 MB). In the collection at 98.049 seconds, the old generation occu‐
pies about 504 MB; the CMS cycle therefore cleaned up about 199 MB of memory.

If all goes well, these are the only cycles that CMS will run and the only log messages
that will appear in the CMS GC log. But there are three more messages to look for,
which indicate that CMS ran into a problem. The first is a concurrent mode failure:

267.006: [GC 267.006: [ParNew: 629120K->629120K(629120K), 0.0000200 secs]
 267.006: [CMS267.350: [CMS-concurrent-mark: 2.683/2.804 secs]
 [Times: user=4.81 sys=0.02, real=2.80 secs]
  (concurrent mode failure):
 1378132K->1366755K(1398144K), 5.6213320 secs]
 2007252K->1366755K(2027264K),
 [CMS Perm : 57231K->57222K(95548K)], 5.6215150 secs]
 [Times: user=5.63 sys=0.00, real=5.62 secs]

When a young collection occurs and there isn’t enough room in the old generation to
hold all the objects that are expected to be promoted, CMS executes what is essen‐
tially a full GC. All application threads are stopped, and the old generation is cleaned
of any dead objects, reducing its occupancy to 1,366 MB—an operation that kept the
application threads paused for a full 5.6 seconds. That operation is single-threaded,
which is one reason it takes so long (and one reason concurrent mode failures are
worse as the heap grows).

This concurrent mode failure is a major reason CMS is deprecated. G1 GC can have a
concurrent mode failure, but when it reverts to a full GC, that full GC occurs in par‐
allel in JDK 11 (though not in JDK 8). A CMS full GC will take many times longer to
execute because it must execute in a single thread.2

The second problem occurs when there is enough room in the old generation to hold
the promoted objects but the free space is fragmented and so the promotion fails:

6043.903: [GC 6043.903:
 [ParNew (promotion failed): 614254K->629120K(629120K), 0.1619839 secs]
 6044.217: [CMS: 1342523K->1336533K(2027264K), 30.7884210 secs]
 2004251K->1336533K(1398144K),
 [CMS Perm : 57231K->57231K(95548K)], 28.1361340 secs]
 [Times: user=28.13 sys=0.38, real=28.13 secs]

Here, CMS started a young collection and assumed that space existed to hold all the
promoted objects (otherwise, it would have declared a concurrent mode failure). That
assumption proved incorrect: CMS couldn’t promote the objects because the old
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generation was fragmented (or, much less likely, because the amount of memory to be
promoted was bigger than CMS expected).

As a result, in the middle of the young collection (when all threads were already stop‐
ped), CMS collected and compacted the entire old generation. The good news is that
with the heap compacted, fragmentation issues have been solved (at least for a while).
But that came with a hefty 28-second pause time. This time is much longer than
when CMS had a concurrent mode failure because the entire heap was compacted;
the concurrent mode failure simply freed objects in the heap. The heap at this point
appears as it did at the end of the throughput collector’s full GC (Figure 6-2): the
young generation is completely empty, and the old generation has been compacted.

Finally, the CMS log may show a full GC without any of the usual concurrent GC
messages:

279.803: [Full GC 279.803:
  [CMS: 88569K->68870K(1398144K), 0.6714090 secs]
  558070K->68870K(2027264K),
  [CMS Perm : 81919K->77654K(81920K)],
  0.6716570 secs]

This occurs when the metaspace has filled up and needs to be collected. CMS does
not collect the metaspace, so if it fills up, a full GC is needed to discard any unrefer‐
enced classes. “Advanced Tunings” on page 182 shows how to overcome this issue.

Quick Summary

• CMS has several GC operations, but the expected operations
are minor GCs and concurrent cycles.

• Concurrent mode failures and promotion failures in CMS are
expensive; CMS should be tuned to avoid these as much as
possible.

• By default, CMS does not collect metaspace.

Tuning to Solve Concurrent Mode Failures
The primary concern when tuning CMS is to make sure that no concurrent mode or
promotion failures occur. As the CMS GC log showed, a concurrent mode failure
occurs because CMS did not clean out the old generation fast enough: when it comes
time to perform a collection in the young generation, CMS calculates that it doesn’t
have enough room to promote those objects to the old generation and instead collects
the old generation first.

The old generation initially fills up by placing the objects right next to each other.
When a certain amount of the old generation is filled (by default, 70%), the
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concurrent cycle begins and the background CMS thread(s) start scanning the old
generation for garbage. At this point, the race is on: CMS must complete scanning the
old generation and freeing objects before the remainder (30%) of the old generation
fills up. If the concurrent cycle loses the race, CMS will experience a concurrent mode
failure.

We can attempt to avoid this failure in multiple ways:

• Make the old generation larger, either by shifting the proportion of the new gen‐
eration to the old generation or by adding more heap space altogether.

• Run the background thread more often.
• Use more background threads.

Adaptive Sizing and CMS
CMS uses the MaxGCPauseMllis=N and GCTimeRatio=N settings to determine how
large the heap and the generations should be.

One significant difference in the approach CMS takes is that the young generation is
never resized unless a full GC occurs. Since the goal of CMS is to never have a full
collection, this means a well-tuned CMS application will never resize its young
generation.

Concurrent mode failures can be frequent during program startup, as CMS adaptively
sizes the heap and the metaspace. It can be a good idea to start CMS with a larger
initial heap size (and larger metaspace), which is a special case of making the heap
larger to prevent those failures.

If more memory is available, the better solution is to increase the size of the heap.
Otherwise, change the way the background threads operate.

Running the background thread more often
One way to let CMS win the race is to start the concurrent cycle sooner. If the concur‐
rent cycle starts when 60% of the old generation is filled, CMS has a better chance of
finishing than if the cycle starts when 70% of the old generation is filled. The easiest
way to achieve that is to set both these flags:

• -XX:CMSInitiatingOccupancyFraction=N

• -XX:+UseCMSInitiatingOccupancyOnly

Using both flags also makes CMS easier to understand: if both are set, CMS deter‐
mines when to start the background thread based only on the percentage of the old
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generation that is filled. (Note that unlike G1 GC, the occupancy ratio here is only the
old generation and not the entire heap.)

By default, the UseCMSInitiatingOccupancyOnly flag is false, and CMS uses a more
complex algorithm to determine when to start the background thread. If the back‐
ground thread needs to be started earlier, it’s better to start it the simplest way possi‐
ble and set the UseCMSInitiatingOccupancyOnly flag to true.

Tuning the value of the CMSInitiatingOccupancyFraction may require a few itera‐
tions. If UseCMSInitiatingOccupancyOnly is enabled, the default value for
CMSInitiatingOccupancyFraction is 70: the CMS cycle starts when the old genera‐
tion is 70% occupied.

A better value for that flag for a given application can be found in the GC log by fig‐
uring out when the failed CMS cycle started in the first place. Find the concurrent
mode failure in the log, and then look back to when the most recent CMS cycle
started. The CMS-initial-mark line will show how full the old generation was when
the CMS cycle started:

89.976: [GC [1 CMS-initial-mark: 702254K(1398144K)]
  772530K(2027264K), 0.0830120 secs]
  [Times: user=0.08 sys=0.00, real=0.08 secs]

In this example, that works out to about 50% (702 MB out of 1,398 MB). That was
not soon enough, so the CMSInitiatingOccupancyFraction needs to be set to some‐
thing lower than 50. (Although the default value for that flag is 70, this example
started the CMS threads when the old generation was 50% full because the
UseCMSInitiatingOccupancyOnly flag was not set.)

The temptation here is just to set the value to 0 or another small number so that the
background CMS cycle runs all the time. That’s usually discouraged, but as long as
you are aware of the trade-offs being made, it may work out fine.

The first trade-off comes in CPU time: the CMS background thread(s) will run con‐
tinually, and they consume a fair amount of CPU—each background CMS thread will
consume 100% of a CPU. There will also be very short bursts when multiple CMS
threads run and the total CPU on the box spikes as a result. If these threads are run‐
ning needlessly, that wastes CPU resources.

On the other hand, it isn’t necessarily a problem to use those CPU cycles. The back‐
ground CMS threads have to run sometimes, even in the best case. Hence, the
machine must always have enough CPU cycles available to run those CMS threads.
So when sizing the machine, you must plan for that CPU usage.

The second trade-off is far more significant and has to do with pauses. As the GC log
showed, certain phases of the CMS cycle stop all the application threads. The main
reason CMS is used is to limit the effect of GC pauses, so running CMS more often
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than needed is counterproductive. The CMS pauses are generally much shorter than a
young generation pause, and a particular application may not be sensitive to those
additional pauses—it’s a trade-off between the additional pauses and the reduced
chance of a concurrent mode failure. But continually running the background GC
pauses will likely lead to excessive overall pauses, which will, in the end, ultimately
reduce the performance of the application.

Unless those trade-offs are acceptable, take care not to set the CMSInitiatingOccupan
cyFraction higher than the amount of live data in the heap, plus at least 10% to 20%.

Adjusting the CMS background threads
Each CMS background thread will consume 100% of a CPU on a machine. If an
application experiences a concurrent mode failure and extra CPU cycles are available, 
the number of those background threads can be increased by setting the
-XX:ConcGCThreads=N flag. CMS sets this flag differently than G1 GC; it uses this
calculation:

ConcGCThreads = (3 + ParallelGCThreads) / 4

So CMS increases the value of ConcGCThreads one step earlier than does G1 GC.

Quick Summary

• Avoiding concurrent mode failures is the key to achieving the
best possible performance with CMS.

• The simplest way to avoid those failures (when possible) is to
increase the size of the heap.

• Otherwise, the next step is to start the concurrent background
threads sooner by adjusting CMSInitiatingOccupancy

Fraction.
• Tuning the number of background threads can also help.

Advanced Tunings
This section on tunings covers some fairly unusual situations. Even though these sit‐
uations are not encountered frequently, many of the low-level details of the GC algo‐
rithms are explained in this section.

Tenuring and Survivor Spaces
When the young generation is collected, some objects will still be alive. This includes
not only newly created objects that are destined to exist for a long time but also
objects that are otherwise short-lived. Consider the loop of BigDecimal calculations
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at the beginning of Chapter 5. If the JVM performs GC in the middle of that loop,
some of those short-lived BigDecimal objects will be unlucky: they will have been just
created and in use, so they can’t be freed—but they aren’t going to live long enough to
justify moving them to the old generation.

This is the reason that the young generation is divided into two survivor spaces and
eden. This setup allows objects to have additional chances to be collected while still in
the young generation, rather than being promoted into (and filling up) the old
generation.

When the young generation is collected and the JVM finds an object that is still alive,
that object is moved to a survivor space rather than to the old generation. During the
first young generation collection, objects are moved from eden into survivor space 0.
During the next collection, live objects are moved from both survivor space 0 and
from eden into survivor space 1. At that point, eden and survivor space 0 are com‐
pletely empty. The next collection moves live objects from survivor space 1 and eden
into survivor space 0, and so on. (The survivor spaces are also referred to as the to
and from spaces; during each collection, objects are moved out of the from space and
into the to space. from and to are simply pointers that switch between the two survi‐
vor spaces on every collection.)

Clearly this cannot continue forever, or nothing would ever be moved into the old
generation. Objects are moved into the old generation in two circumstances. First, the
survivor spaces are fairly small. When the target survivor space fills up during a
young collection, any remaining live objects in eden are moved directly into the old
generation. Second, there is a limit to the number of GC cycles during which an
object can remain in the survivor spaces. That limit is called the tenuring threshold.

Tunings can affect each of those situations. The survivor spaces take up part of the
allocation for the young generation, and like other areas of the heap, the JVM sizes
them dynamically. The initial size of the survivor spaces is determined by the
-XX:InitialSurvivorRatio=N flag, which is used in this equation:

survivor_space_size = new_size / (initial_survivor_ratio + 2)

For the default initial survivor ratio of 8, each survivor space will occupy 10% of the
young generation.

The JVM may increase the survivor spaces size to a maximum determined by the set‐
ting of the -XX:MinSurvivorRatio=N flag. That flag is used in this equation:

maximum_survivor_space_size = new_size / (min_survivor_ratio + 2)

By default, this value is 3, meaning the maximum size of a survivor space will be 20%
of the young generation. Note again that the value is a ratio, so the minimum value of
the ratio gives the maximum size of the survivor space. The name is hence a little
counterintuitive.
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To keep the survivor spaces at a fixed size, set the SurvivorRatio to the desired value
and disable the UseAdaptiveSizePolicy flag (though remember that disabling adap‐
tive sizing will apply to the old and new generations as well).

The JVM determines whether to increase or decrease the size of the survivor spaces
(subject to the defined ratios) based on how full a survivor space is after a GC. The
survivor spaces will be resized so that they are, by default, 50% full after a GC. That
value can be changed with the -XX:TargetSurvivorRatio=N flag.

Finally, there is the question of how many GC cycles an object will remain ping-
ponging between the survivor spaces before being moved into the old generation.
That answer is determined by the tenuring threshold. The JVM continually calculates
what it thinks the best tenuring threshold is. The threshold starts at the value speci‐
fied by the -XX:InitialTenuringThreshold=N flag (the default is 7 for the through‐
put and G1 GC collectors, and 6 for CMS). The JVM will ultimately determine a
threshold between 1 and the value specified by the -XX:MaxTenuringThreshold=N
flag; for the throughput and G1 GC collectors, the default maximum threshold is 15,
and for CMS it is 6.

Always and Never Tenure
The tenuring threshold will always take on a range between 1 and
MaxTenuringThreshold. Even if the JVM is started with an initial tenuring threshold
equal to the maximum tenuring threshold, the JVM may decrease that value.

Two flags can circumvent that behavior at either extreme. If you know that objects
that survive a young collection will always be around for a long time, you can specify
-XX:+AlwaysTenure (by default, false), which is essentially the same as setting the
MaxTenuringThreshold to 0. This is a rare situation; it means that objects will always
be promoted to the old generation rather than stored in a survivor space.

The second flag is -XX:+NeverTenure (also false by default). This flag affects two
things: it behaves as if the initial and max tenuring thresholds are infinity, and it pre‐
vents the JVM from adjusting that threshold down. In other words, as long as there is
room in the survivor space, no object will ever be promoted to the old generation.

Given all that, which values might be tuned under which circumstances? It is helpful
to look at the tenuring statistics; these are not printed using the GC logging com‐
mands we’ve used so far.

In JDK 8, the tenuring distribution can be added to the GC log by including the flag 
-XX:+PrintTenuringDistribution (which is false by default). In JDK 11, it is
added by including age*=debug or age*=trace to the Xlog argument.
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The most important thing to look for is whether the survivor spaces are so small that
during a minor GC, objects are promoted directly from eden into the old generation.
The reason to avoid that is short-lived objects will end up filling the old generation,
causing full GCs to occur too frequently.

In GC logs taken with the throughput collector, the only hint for that condition is this
line:

Desired survivor size 39059456 bytes, new threshold 1 (max 15)
  [PSYoungGen: 657856K->35712K(660864K)]
  1659879K->1073807K(2059008K), 0.0950040 secs]
  [Times: user=0.32 sys=0.00, real=0.09 secs]

The JDK 11 log with age*=debug is similar; it will print the desired survivor size dur‐
ing the collection.

The desired size for a single survivor space here is 39 MB out of a young generation
of 660 MB: the JVM has calculated that the two survivor spaces should take up about
11% of the young generation. But the open question is whether that is large enough to
prevent overflow. This log provides no definitive answer, but the fact that the JVM
has adjusted the tenuring threshold to 1 indicates that it has determined it is directly
promoting most objects to the old generation anyway, so it has minimized the tenur‐
ing threshold. This application is probably promoting directly to the old generation
without fully using the survivor spaces.

When G1 GC is used, more-informative output is obtained in the JDK 8 log:

 Desired survivor size 35782656 bytes, new threshold 2 (max 6)
 - age   1:   33291392 bytes,   33291392 total
 - age   2:    4098176 bytes,   37389568 total

In JDK 11, that information comes by including age*=trace in the logging
configuration.

The desired survivor space is similar to the previous example—35 MB—but the out‐
put also shows the size of all the objects in the survivor space. With 37 MB of data to
promote, the survivor space is indeed overflowing.

Whether this situation can be improved depends on the application. If the objects are
going to live longer than a few more GC cycles, they will eventually end up in the old
generation anyway, so adjusting the survivor spaces and tenuring threshold won’t
really help. But if the objects would go away after just a few more GC cycles, some
performance can be gained by arranging for the survivor spaces to be more efficient.

If the size of the survivor spaces is increased (by decreasing the survivor ratio), mem‐
ory is taken away from the eden section of the young generation. That is where the
objects actually are allocated, meaning fewer objects can be allocated before incurring
a minor GC. So that option is usually not recommended.
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Another possibility is to increase the size of the young generation. That can be coun‐
terproductive in this situation: objects might be promoted less often into the old gen‐
eration, but since the old generation is smaller, the application may do full GCs more
often.

If the size of the heap can be increased altogether, both the young generation and the
survivor spaces can get more memory, which will be the best solution. A good pro‐
cess is to increase the heap size (or at least the young generation size) and to decrease
the survivor ratio. That will increase the size of the survivor spaces more than it will
increase the size of eden. The application should end up having roughly the same
number of young collections as before. It should have fewer full GCs, though, since
fewer objects will be promoted into the old generation (again, assuming that the
objects will no longer be live after a few more GC cycles).

If the sizes of the survivor spaces have been adjusted so that they never overflow,
objects will be promoted to the old generation only after the MaxTenuringThreshold
is reached. That value can be increased to keep the objects in the survivor spaces for a
few more young GC cycles. But be aware that if the tenuring threshold is increased
and objects stay in the survivor space longer, there will be less room in the survivor
space during future young collections: it is then more likely that the survivor space
will overflow and start promoting directly into the old generation again.

Quick Summary

• Survivor spaces are designed to allow objects (particularly
just-allocated objects) to remain in the young generation for a
few GC cycles. This increases the probability the object will be
freed before it is promoted to the old generation.

• If the survivor spaces are too small, objects will promoted
directly into the old generation, which in turn causes more old
GC cycles.

• The best way to handle that situation is to increase the size of
the heap (or at least the young generation) and allow the JVM
to handle the survivor spaces.

• In rare cases, adjusting the tenuring threshold or survivor
space sizes can prevent promotion of objects into the old
generation.

Allocating Large Objects
This section describes in detail how the JVM allocates objects. This is interesting
background information, and it is important to applications that frequently create a

186 | Chapter 6: Garbage Collection Algorithms



3 This is a variation of the way thread-local variables can prevent lock contention (see Chapter 9).

significant number of large objects. In this context, large is a relative term; it depends,
as you’ll see, on the size of a particular kind of buffer within the JVM.

This buffer is known as a thread-local allocation buffer (TLAB). TLAB sizing is a con‐
sideration for all GC algorithms, and G1 GC has an additional consideration for very
large objects (again, a relative term—but for a 2 GB heap, objects larger than 512
MB). The effects of very large objects on G1 GC can be important—TLAB sizing (to
overcome somewhat large objects when using any collector) is fairly unusual, but G1
GC region sizing (to overcome very large objects when using G1) is more common.

Thread-local allocation buffers
Chapter 5 discusses how objects are allocated within eden; this allows for faster allo‐
cation (particularly for objects that are quickly discarded).

It turns out that one reason allocation in eden is so fast is that each thread has a dedi‐
cated region where it allocates objects—a thread-local allocation buffer, or TLAB.
When objects are allocated directly in a shared space such as eden, some synchroni‐
zation is required to manage the free-space pointers within that space. By setting up
each thread with its own dedicated allocation area, the thread needn’t perform any
synchronization when allocating objects.3

Usually, the use of TLABs is transparent to developers and end users: TLABs are
enabled by default, and the JVM manages their sizes and how they are used. The
important thing to realize about TLABs is that they have a small size, so large objects
cannot be allocated within a TLAB. Large objects must be allocated directly from the
heap, which requires extra time because of the synchronization.

As a TLAB becomes full, objects of a certain size can no longer be allocated in it. At
this point, the JVM has a choice. One option is to “retire” the TLAB and allocate a
new one for the thread. Since the TLAB is just a section within eden, the retired
TLAB will be cleaned at the next young collection and can be reused subsequently.
Alternately, the JVM can allocate the object directly on the heap and keep the existing
TLAB (at least until the thread allocates additional objects into the TLAB). Say a
TLAB is 100 KB, and 75 KB has already been allocated. If a new 30 KB allocation is
needed, the TLAB can be retired, which wastes 25 KB of eden space. Or the 30 KB
object can be allocated directly from the heap, and the thread can hope that the next
object that is allocated will fit in the 25 KB of space that is still free within the TLAB.

Parameters can control this (as discussed later in this section), but the key is that the
size of the TLAB is crucial. By default, the size of a TLAB is based on three factors:
the number of threads in the application, the size of eden, and the allocation rate of
threads.
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Hence, two types of applications may benefit from tuning the TLAB parameters:
applications that allocate a lot of large objects, and applications that have a relatively
large number of threads compared to the size of eden. By default, TLABs are enabled;
they can be disabled by specifying -XX:-UseTLAB, although they give such a perfor‐
mance boost that disabling them is always a bad idea.

Since the calculation of the TLAB size is based in part on the allocation rate of the
threads, it is impossible to definitively predict the best TLAB size for an application.
Instead, we can monitor the TLAB allocation to see if any allocations occur outside
the TLABs. If a significant number of allocations occur outside of TLABs, we have
two choices: reduce the size of the object being allocated or adjust the TLAB sizing
parameters.

Monitoring the TLAB allocation is another case where Java Flight Recorder is much
more powerful than other tools. Figure 6-9 shows a sample of the TLAB allocation
screen from a JFR recording.

Figure 6-9. View of TLABs in Java Flight Recorder

In the 5 seconds selected in this recording, 49 objects were allocated outside TLABs;
the maximum size of those objects was 48 bytes. Since the minimum TLAB size is
1.35 MB, we know that these objects were allocated on the heap only because the
TLAB was full at the time of allocation: they were not allocated directly in the heap
because of their size. That is typical immediately before a young GC occurs (as eden
—and hence the TLABs carved out of eden—becomes full).
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The total allocation in this period is 1.59 KB; neither the number of allocations nor
the size in this example is a cause for concern. Some objects will always be allocated
outside TLABs, particularly as eden approaches a young collection. Compare that
example to Figure 6-10, which shows a great deal of allocation occurring outside the
TLABs.

Figure 6-10. Excessive allocation occurring outside TLABs

The total memory allocated inside TLABs during this recording is 952.96 MB, and
the total memory allocated for objects outside TLABs is 568.32 MB. This is a case
where either changing the application to use smaller objects or tuning the JVM to
allocate those objects in larger TLABs can have a beneficial effect. Note that other
tabs can display the actual objects that were allocated out the TLAB; we can even
arrange to get the stacks from when those objects were allocated. If there is a problem
with TLAB allocation, JFR will pinpoint it quickly.

Outside JFR, the best way to look at this is to monitor the TLAB allocation by adding
the -XX:+PrintTLAB flag to the command line in JDK 8 or including tlab*=trace in
the log configuration for JDK 11 (which provides the following information plus
more). Then, at every young collection, the GC log will contain two kinds of lines: a
line for each thread describing the TLAB usage for that thread, and a summary line
describing the overall TLAB usage of the JVM.

The per thread line looks like this:
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TLAB: gc thread: 0x00007f3c10b8f800 [id: 18519] desired_size: 221KB
    slow allocs: 8  refill waste: 3536B alloc: 0.01613    11058KB
    refills: 73 waste  0.1% gc: 10368B slow: 2112B fast: 0B

The gc in this output means that the line was printed during GC; the thread itself is a
regular application thread. The size of this thread’s TLAB is 221 KB. Since the last
young collection, it allocated eight objects from the heap (slow allocs); that was
1.6% (0.01613) of the total amount of allocation done by this thread, and it amounted
to 11,058 KB. 0.1% of the TLAB being “wasted,” which comes from three things:
10,336 bytes were free in the TLAB when the current GC cycle started; 2,112 bytes
were free in other (retired) TLABs, and 0 bytes were allocated via a special “fast”
allocator.

After the TLAB data for each thread has been printed, the JVM provides a line of
summary data (this data is provided in JDK 11 by configuring the log for
tlab*=debug):

TLAB totals: thrds: 66  refills: 3234 max: 105
        slow allocs: 406 max 14 waste:  1.1% gc: 7519856B
        max: 211464B slow: 120016B max: 4808B fast: 0B max: 0B

In this case, 66 threads performed some sort of allocation since the last young collec‐
tion. Among those threads, they refilled their TLABs 3,234 times; the most any par‐
ticular thread refilled its TLAB was 105. Overall, 406 allocations were made to the
heap (with a maximum of 14 done by one thread), and 1.1% of the TLABs were was‐
ted from the free space in retired TLABs.

In the per thread data, if threads show many allocations outside TLABs, consider
resizing them.

Sizing TLABs
Applications that spend a lot of time allocating objects outside TLABs will benefit
from changes that can move the allocation to a TLAB. If only a few specific object
types are always allocated outside a TLAB, programmatic changes are the best
solution.

Otherwise—or if programmatic changes are not possible—you can attempt to resize
the TLABs to fit the application use case. Because the TLAB size is based on the size
of eden, adjusting the new size parameters will automatically increase the size of the
TLABs.

The size of the TLABs can be set explicitly using the flag -XX:TLABSize=N (the default
value, 0, means to use the dynamic calculation previously described). That flag sets
only the initial size of the TLABs; to prevent resizing at each GC, add
-XX:-ResizeTLAB (the default for that flag is true). This is the easiest (and, frankly,
the only useful) option for exploring the performance of adjusting the TLABs.
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When a new object does not fit in the current TLAB (but would fit within a new,
empty TLAB), the JVM has a decision to make: whether to allocate the object in the
heap or whether to retire the current TLAB and allocate a new one. That decision is
based on several parameters. In the TLAB logging output, the refill waste value
gives the current threshold for that decision: if the TLAB cannot accommodate a new
object that is larger than that value, the new object will be allocated in the heap. If the
object in question is smaller than that value, the TLAB will be retired.

That value is dynamic, but it begins by default at 1% of the TLAB size—or, specifi‐
cally, at the value specified by -XX:TLABWasteTargetPercent=N. As each allocation
is done outside the heap, that value is increased by the value of
-XX:TLABWasteIncrement=N (the default is 4). This prevents a thread from reaching
the threshold in the TLAB and continually allocating objects in the heap: as the target
percentage increases, the chances of the TLAB being retired also increases. Adjusting
the TLABWasteTargetPercent value also adjusts the size of the TLAB, so while it is
possible to play with this value, its effect is not always predictable.

Finally, when TLAB resizing is in effect, the minimum size of a TLAB can be specified
with -XX:MinTLABSize=N (the default is 2 KB). The maximum size of a TLAB is
slightly less than 1 GB (the maximum space that can be occupied by an array of inte‐
gers, rounded down for object alignment purposes) and cannot be changed.

Quick Summary

• Applications that allocate a lot of large objects may need to
tune the TLABs (though often using smaller objects in the
application is a better approach).

Humongous objects
Objects that are allocated outside a TLAB are still allocated within eden when possi‐
ble. If the object cannot fit within eden, it must be allocated directly in the old genera‐
tion. That prevents the normal GC life cycle for that object, so if it is short-lived, GC
is negatively affected. There’s little to do in that case other than change the application
so that it doesn’t need those short-lived huge objects.

Humongous objects are treated differently in G1 GC, however: G1 will allocate them
in the old generation if they are bigger than a G1 region. So applications that use a lot
of humongous objects in G1 GC may need special tuning to compensate for that.

G1 GC region sizes
G1 GC divides the heap into regions, each of which has a fixed size. The region size is
not dynamic; it is determined at startup based on the minimum size of the heap (the
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value of Xms). The minimum region size is 1 MB. If the minimum heap size is greater
than 2 GB, the size of the regions will be set according to this formula (using log base
2):

region_size = 1 << log(Initial Heap Size / 2048);

In short, the region size is the smallest power of 2 such that there are close to 2,048
regions when the initial heap size is divided. Some minimum and maximum con‐
straints are in use here too; the region size is always at least 1 MB and never more
than 32 MB. Table 6-3 sorts out all the possibilities.

Table 6-3. Default G1 region sizes

Heap size Default G1 region size
Less than 4 GB 1 MB

Between 4 GB and 8 GB 2 MB

Between 8 GB and 16 GB 4 MB

Between 16 GB and 32 GB 8 MB

Between 32 GB and 64 GB 16 MB

Larger than 64 GB 32 MB

The size of a G1 region can be set with the -XX:G1HeapRegionSize=N flag (the default
is nominally 0, meaning to use the dynamic value just described). The value given
here should be a power of 2 (e.g., 1 MB or 2 MB); otherwise, it is rounded down to
the nearest power of 2.

G1 Region Sizes and Large Heaps
Normally, the G1 GC region size needs to be tuned only to handle humongous object
allocation, but it might need to be tuned in one other case.

Consider an application that specifies a very large heap range; -Xms2G -Xmx32G, for
example. In that case, the region size will be 1 MB. When the heap is fully expanded,
there will be 32,000 G1 GC regions. That is a lot of separate regions to process; the G1
GC algorithm is designed around the idea that the number of regions is closer to
2,048. Increasing the size of the G1 GC region will make G1 GC a little more efficient
in this example; select a value so that there will be close to 2,048 regions at the
expected heap size.

G1 GC allocation of humongous objects
If the G1 GC region size is 1 MB and a program allocates an array of 2 million bytes,
the array will not fit within a single G1 GC region. But these humongous objects must
be allocated in contiguous G1 GC regions. If the G1 GC region size is 1 MB, then to
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allocate a 3.1 MB array, G1 GC must find four regions within the old generation in
which to allocate the array. (The rest of the last region will remain empty, wasting 0.9
MB of space.) This defeats the way G1 GC normally performs compaction, which is
to free arbitrary regions based on how full they are.

In fact, G1 GC defines a humongous object as one that is half of the region size, so
allocating an array of 512 KB (plus 1 byte) will, in this case, trigger the humongous
allocation we’re discussing.

Because the humongous object is allocated directly in the old generation, it cannot be
freed during a young collection. So if the object is short-lived, this also defeats the
generational design of the collector. The humongous object will be collected during
the concurrent G1 GC cycle. On the bright side, the humongous object can be freed
quickly because it is the only object in the regions it occupies. Humongous objects are
freed during the cleanup phase of the concurrent cycle (rather than during a mixed
GC).

Increasing the size of a G1 GC region so that all objects the program will allocate can
fit within a single G1 GC region can make G1 GC more efficient. This means having
a G1 region size of twice the largest object’s size plus 1 byte.

Humongous allocation used to be a far bigger problem in G1 GC because finding the
necessary regions to allocate the object would usually require a full GC (and because
such full GCs were not parallelized). Improvements in G1 GC in JDK 8u60 (and in all
JDK 11 builds) minimize this issue so it isn’t necessarily the critical problem it some‐
times used to be.

Quick Summary

• G1 regions are sized in powers of 2, starting at 1 MB.
• Heaps that have a very different maximum size than initial size

will have too many G1 regions; the G1 region size should be
increased in that case.

• Applications that allocate objects larger than half the size of a
G1 region should increase the G1 region size so that the
objects can fit within a G1 region. An application must allo‐
cate an object that is at least 512 KB for this to apply (since the
smallest G1 region is 1 MB).

AggressiveHeap
The AggressiveHeap flag (by default, false), was introduced in an early version of
Java as an attempt to make it easier to set a variety of command-line arguments—
arguments that would be appropriate for a very large machine with a lot of memory
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running a single JVM. Although the flag has been carried forward since those ver‐
sions and is still present, it is no longer recommended (though it is not yet officially
deprecated).

The problem with this flag is that it hides the actual tunings it adopts, making it hard
to figure out what the JVM is setting. Some of the values it sets are now set ergonomi‐
cally based on better information about the machine running the JVM, so in some
cases enabling this flag hurts performance. I have often seen command lines that
include this flag and then later override values that it sets. (For the record, that works:
later values in the command line currently override earlier values. That behavior is
not guaranteed.)

Table 6-4 lists all the tunings that are automatically set when the AggressiveHeap flag
is enabled.

Table 6-4. Tunings enabled with AggressiveHeap

Flag Value

Xmx The minimum of half of all memory, or all memory: 160 MB

Xms The same as Xmx

NewSize 3/8 of whatever was set as Xmx

UseLargePages true

ResizeTLAB false

TLABSize 256 KB

UseParallelGC true

ParallelGCThreads Same as current default

YoungPLABSize 256 KB (default is 4 KB)

OldPLABSize 8 KB (default is 1 KB)

CompilationPolicyChoice 0 (the current default)

ThresholdTolerance 100 (default is 10)

ScavengeBeforeFullGC false (default is true)

BindGCTaskThreadsToCPUs true (default is false)

Those last six flags are obscure enough that I have not discussed them elsewhere in
this book. Briefly, they cover these areas:

PLAB sizing
PLABs are promotion-local allocation buffers—these are per thread regions used
during scavenging the generations in a GC. Each thread can promote into a spe‐
cific PLAB, negating the need for synchronization (analogous to the way TLABs
work).
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Compilation policies
The JVM ships with alternate JIT compilation algorithms. The current default
algorithm was, at one time, somewhat experimental, but this is now the recom‐
mended policy.

Disabling young GCs before full GCs
Setting ScavengeBeforeFullGC to false means that when a full GC occurs, the
JVM will not perform a young GC before a full GC. That is usually a bad thing,
since it means that garbage objects in the young generation (which are eligible
for collection) can prevent objects in the old generation from being collected.
Clearly, there was a time when that setting made sense (at least for certain bench‐
marks), but the general recommendation is not to change that flag.

Binding GC threads to CPUs
Setting the last flag in that list means that each parallel GC thread is bound to a
particular CPU (using OS-specific calls). In limited circumstances—when the GC
threads are the only thing running on the machine, and heaps are very large—
that makes sense. In the general case, it is better if GC threads can run on any
available CPU.

As with all tunings, your mileage may vary, and if you carefully test the
AggressiveHeap flag and find that it improves performance, then by all means use it.
Just be aware of what it is doing behind the scenes, and realize that whenever the JVM
is upgraded, the relative benefit of this flag will need to be reevaluated.

Quick Summary

• The AggressiveHeap flag is a legacy attempt to set heap
parameters to values that make sense for a single JVM running
on a very large machine.

• Values set by this flag are not adjusted as JVM technology
improves, so its usefulness in the long run is dubious (even
though it still is often used).

Full Control Over Heap Size
“Sizing the Heap” on page 138 discussed the default values for the initial minimum
and maximum sizes of the heap. Those values are dependent on the amount of mem‐
ory on the machine as well as the JVM in use, and the data presented there had a
number of corner cases. If you’re curious about the full details of how the default
heap size is calculated, this section explains. Those details include low-level tuning
flags; in certain circumstances, it might be more convenient to adjust the way those
calculations are done (rather than simply setting the heap size). This might be the
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case if, for example, you want to run multiple JVMs with a common (but adjusted)
set of ergonomic heap sizes. For the most part, the real goal of this section is to com‐
plete the explanation of how those default values are chosen.

The default sizes are based on the amount of memory on a machine, which can be set
with the -XX:MaxRAM=N flag. Normally, that value is calculated by the JVM by inspect‐
ing the amount of memory on the machine. However, the JVM limits MaxRAM to 4 GB
for 32-bit Windows servers and to 128 GB for 64-bit JVMs. The maximum heap size
is one-quarter of MaxRAM. This is why the default heap size can vary: if the physical
memory on a machine is less than MaxRAM, the default heap size is one-quarter of that.
But even if hundreds of gigabytes of RAM are available, the most the JVM will use by
default is 32 GB: one-quarter of 128 GB.

The default maximum heap calculation is actually this:

Default Xmx = MaxRAM / MaxRAMFraction

Hence, the default maximum heap can also be set by adjusting the value of the
-XX:MaxRAMFraction=N flag, which defaults to 4. Finally, just to keep things interest‐
ing, the -XX:ErgoHeapSizeLimit=N flag can also be set to a maximum default value
that the JVM should use. That value is 0 by default (meaning to ignore it); otherwise,
that limit is used if it is smaller than MaxRAM / MaxRAMFraction.

On the other hand, on a machine with a very small amount of physical memory, the
JVM wants to be sure it leaves enough memory for the operating system. This is why
the JVM will limit the maximum heap to 96 MB or less on machines with only 192
MB of memory. That calculation is based on the value of the -XX:MinRAMFraction=N
flag, which defaults to 2:

if ((96 MB * MinRAMFraction) > Physical Memory) {
    Default Xmx = Physical Memory / MinRAMFraction;
}

The initial heap size choice is similar, though it has fewer complications. The initial
heap size value is determined like this:

Default Xms =  MaxRAM / InitialRAMFraction

As can be concluded from the default minimum heap sizes, the default value of the
InitialRAMFraction flag is 64. The one caveat here occurs if that value is less than 5
MB—or, strictly speaking, less than the values specified by -XX:OldSize=N (which
defaults to 4 MB) plus -XX:NewSize=N (which defaults to 1 MB). In that case, the sum
of the old and new sizes is used as the initial heap size.
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Quick Summary

• The calculations for the default initial and maximum heap
sizes are fairly straightforward on most machines.

• Around the edges, these calculations can be quite involved.

Experimental GC Algorithms
In JDK 8 and JDK 11 production VMs with multiple CPUs, you’ll use either the G1
GC or throughput collector, depending on your application requirements. On small
machines, you’ll use the serial collector if that is appropriate for your hardware.
Those are the production-supported collectors.

JDK 12 introduces new collectors. Although these collectors are not necessarily
production-ready, we’ll take a peek into them for experimental purposes.

Concurrent Compaction: ZGC and Shenandoah
Existing concurrent collectors are not fully concurrent. Neither G1 GC nor CMS has
concurrent collection of the young generation: freeing the young generation requires
all application threads to be stopped. And neither of those collectors does concurrent
compaction. In G1 GC, the old generation is compacted as an effect of the mixed GC
cycles: within a target region, objects that are not freed are compacted into empty
regions. In CMS, the old generation is compacted when it becomes too fragmented to
allow new allocations. Collections of the young generation also compact that portion
of the heap by moving surviving objects into the survivor spaces or the old
generation.

During compaction, objects move their position in memory. This is the primary rea‐
son the JVM stops all application threads during that operation—the algorithms to
update the memory references are much simpler if the application threads are known
to be stopped. So the pause times of an application are dominated by the time spent
moving objects and making sure references to them are up-to-date.

Two experimental collectors are designed to address this problem. The first is the Z
garbage collector, or ZGC; the second is the Shenandoah garbage collector. ZGC first
appeared in JDK 11; Shenandoah GC first appeared in JDK 12 but has now been
backported to JDK 8 and JDK 11. JVM builds from AdoptOpenJDK (or that you
compile yourself from source) contain both collectors; builds that come from Oracle
contain only ZGC.

To use these collectors, you must specify the -XX:+UnlockExperimentalVMOptions
flag (by default, it is false). Then you specify either -XX:+UseZGC or
-XX:+UseShenandoahGC in place of other GC algorithms. Like other GC algorithms,
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they have several tunings knobs, but these are changing as the algorithms are in
development, so for now we’ll run with the default arguments. (And both collectors
have the goal of running with minimal tuning.)

Although they take different approaches, both collectors allow concurrent compac‐
tion of the heap, meaning that objects in the heap can be moved without stopping all
application threads. This has two main effects.

First, the heap is no longer generational (i.e., there is no longer a young and old gen‐
eration; there is simply a single heap). The idea behind the young generation is that it
is faster to collect a small portion of the heap rather than the entire heap, and many
(ideally most) of those objects will be garbage. So the young generation allows for
shorter pauses for much of the time. If the application threads don’t need to be
paused during collection, the need for the young generation disappears, and so these
algorithms no longer need to segment the heap into generations.

The second effect is that the latency of operations performed by the application
threads can be expected to be reduced (at least in many cases). Consider a REST call
that normally executes in 200 milliseconds; if that call is interrupted by a young col‐
lection in G1 GC and that collection takes 500 ms, then the user will see that the
REST call took 700 ms. Most of the calls, of course, won’t hit that situation, but some
will, and these outliers will affect the overall performance of the system. Without the
need to stop the application threads, the concurrent compacting collectors will not
see these same outliers.

This simplifies the situation somewhat. Recall from the discussion of G1 GC that the
background threads that marked the free objects in the heap regions sometimes had
short pauses. So G1 GC has three types of pauses: relatively long pauses for a full GC
(well, ideally you’ve tuned well enough for that not to happen), shorter pauses for a
young GC collection (including a mixed collection that frees and compacts some of
the old generation), and very short pauses for the marking threads.

Both ZGC and Shenandoah have similar pauses that fall into that latter category; for
short periods of time, all the application threads are stopped. The goal of these collec‐
tors is to keep those times very short, on the order of 10 milliseconds.

These collectors can also introduce latency on individual thread operations. The
details differ between the algorithms, but in a nutshell, access to an object by an
application thread is guarded by a barrier. If the object happens to be in the process of
being moved, the application thread waits at the barrier until the move is complete.
(For that matter, if the application thread is accessing the object, the GC thread must
wait at the barrier until it can relocate the object.) In effect, this is a form of locking
on the object reference, but that term makes this process seem far more heavyweight
than it actually is. In general, this has a small effect on the application throughput.
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Latency effects of concurrent compaction
To get a feel for the overall impact of these algorithms, consider the data in Table 6-5.
This table shows the response times from a REST server handling a fixed load of 500
OPS using various collectors. The operation here is very fast; it simply allocates and
saves a fairly large byte array (replacing an existing presaved array to keep memory
pressure constant).

Table 6-5. Latency effects of concurrent compacting collectors

Collector Average time 90th% time 99th% time Max time
Throughput GC 13 ms 60 ms 160 ms 265 ms

G1 GC 5 ms 10 ms 35 ms 87 ms

ZGC 1 ms 5 ms 5 ms 20 ms

Shenandoah GC 1 ms 5 ms 5 ms 22 ms

These results are just what we’d expect from the various collectors. The full GC times
of the throughput collector cause a maximum response time of 265 milliseconds and
lots of outliers with a response time of more than 50 milliseconds. With G1 GC, those
full GC times have gone away, but shorter times still remain for the young collections,
yielding a maximum time of 87 ms and outliers of Tabout 10 ms. And with the con‐
current collectors, those young collection pauses have disappeared so that the maxi‐
mum times are now around 20 ms and the outliers only 5 ms.

One caveat: garbage collection pauses traditionally have been the largest contributor
to latency outliers like those we’re discussing here. But other causes exist: temporary
network congestion between server and client, OS scheduling delays, and so on. So
while a lot of the outliers in the previous two cases are because of those short pauses
of a few milliseconds that the concurrent collectors still have, we’re now entering the
realm where those other things also have a large impact on the total latency.

Throughput effects of concurrent compacting collectors
The throughput effects of these collectors is harder to categorize. Like G1 GC, these
collectors rely on background threads to scan and process the heap. So if sufficient
CPU cycles are not available for these threads, the collectors will experience the same
sort of concurrent failure we’ve seen before and end up doing a full GC. The concur‐
rent compacting collectors will typically use even more background processing than
the G1 GC background threads.

On the other hand, if sufficient CPU is available for those background threads,
throughput when using these collectors will be higher than the throughput of G1 GC
or the throughput collector. This again is in line with what you saw in Chapter 5.
Examples from that chapter showed that G1 GC can have higher throughput than the
throughput collector when it offloads GC processing to background threads. The
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concurrent compacting collectors have that same advantage over the throughput col‐
lector, and a similar (but smaller) advantage over G1 GC.

No Collection: Epsilon GC
JDK 11 also contains a collector that does nothing: the epsilon collector. When you use
this collector, objects are never freed from the heap, and when the heap fills up, you
will get an out-of-memory error.

Traditional programs will not be able to use this collector, of course. It is really
designed for internal JDK testing but can conceivably be useful in two situations:

• Very short-lived programs
• Programs carefully written to reuse memory and never perform new allocations

That second category is useful in some embedded environments with limited mem‐
ory. That sort of programming is specialized; we won’t consider it here. But the first
case holds interesting possibilities.

Consider the case of a program that allocates an array list of 4,096 elements, each of
which is a 0.5 MB byte array. The time to run that program with various collectors is
shown in Table 6-6. Default GC tunings are used in this example.

Table 6-6. Performance metrics of a small allocation-based program

Collector Time Heap required
Throughput GC 2.3 s 3,072 MB

G1 GC 3.24 s 4,096 MB

Epsilon 1.6 s 2,052 MB

Disabling garbage collection is a significant advantage in this case, yielding a 30%
improvement. And the other collectors require significant memory overhead: like the
other experimental collectors we’ve seen, the epsilon collector is not generational
(because the objects cannot be freed, there’s no need to set up a separate space to be
able to free them quickly). So for this test that produces an object of about 2 GB, the
total heap required for the epsilon collector is just over that; we can run that case with
-Xmx2052m. The throughput collector needs one-third more memory to hold its
young generation, while G1 GC needs even more memory to set up all its regions.

To use this collector, you again specify the -XX:+UnlockExperimentalVMOptions flag
with -XX:+UseEpsilonGC.

Running with this collector is risky unless you are certain that the program will never
need more memory than you provide it. But in those cases, it can give a nice perfor‐
mance boost.
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Summary
The past two chapters have spent a lot of time delving into the details of how GC (and
its various algorithms) work. If GC is taking longer than you’d like, knowing how all
of that works should aid you in taking the necessary steps to improve things.

Now that you understand all the details, let’s take a step back to determine an
approach to choosing and tuning a garbage collector. Here’s a quick set of questions
to ask yourself to help put everything in context:

Can your application tolerate some full GC pauses?
If not, G1 GC is the algorithm of choice. Even if you can tolerate some full pau‐
ses, G1 GC will often be better than parallel GC unless your application is CPU
bound.

Are you getting the performance you need with the default settings?
Try the default settings first. As GC technology matures, the ergonomic (auto‐
matic) tuning gets better all the time. If you’re not getting the performance you
need, make sure that GC is your problem. Look at the GC logs and see how much
time you’re spending in GC and how frequently the long pauses occur. For a busy
application, if you’re spending 3% or less time in GC, you’re not going to get a lot
out of tuning (though you can always try to reduce outliers if that is your goal).

Are the pause times that you have somewhat close to your goal?
If they are, adjusting the maximum pause time may be all you need. If they aren’t,
you need to do something else. If the pause times are too large but your through‐
put is OK, you can reduce the size of the young generation (and for full GC pau‐
ses, the old generation); you’ll get more, but shorter, pauses.

Is throughput lagging even though GC pause times are short?
You need to increase the size of the heap (or at least the young generation). More
isn’t always better: bigger heaps lead to longer pause times. Even with a concur‐
rent collector, a bigger heap means a bigger young generation by default, so you’ll
see longer pause times for young collections. But if you can, increase the heap
size, or at least the relative sizes of the generations.

Are you using a concurrent collector and seeing full GCs due to concurrent-mode
failures?

If you have available CPU, try increasing the number of concurrent GC threads
or starting the background sweep sooner by adjusting InitiatingHeapOccupan
cyPercent. For G1, the concurrent cycle won’t start if there are pending mixed
GCs; try reducing the mixed GC count target.
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Are you using a concurrent collector and seeing full GCs due to promotion failures?
In G1 GC, an evacuation failure (to-space overflow) indicates that the heap is
fragmented, but that can usually be solved if G1 GC performs its background
sweeping sooner and mixed GCs faster. Try increasing the number of concurrent
G1 threads, adjusting InitiatingHeapOccupancyPercent, or reducing the mixed
GC count target.
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CHAPTER 7

Heap Memory Best Practices

Chapters 5 and 6 discussed the details of how to tune the garbage collector so that it
has as little effect on a program as possible. Tuning the garbage collector is important,
but often better performance gains can be made by utilizing better programming
practices. This chapter discusses some of the best-practice approaches to using heap
memory in Java.

We have two conflicting goals here. The first general rule is to create objects sparingly
and to discard them as quickly as possible. Using less memory is the best way to
improve the efficiency of the garbage collector. On the other hand, frequently re-
creating some kinds of objects can lead to worse overall performance (even if GC per‐
formance improves). If those objects are instead reused, programs can see substantial
performance gains. Objects can be reused in a variety of ways, including thread-local
variables, special object references, and object pools. Reusing objects means they will
be long-lived and impact the garbage collector, but when they are reused judiciously,
overall performance will improve.

This chapter discusses both approaches and the trade-offs between them. First,
though, we’ll look into tools for understanding what is happening inside the heap.

Heap Analysis
GC logs and the tools discussed in Chapter 5 are great at understanding the impact
GC has on an application, but for additional visibility, we must look into the heap
itself. The tools discussed in this section provide insight into the objects that the
application is currently using.

Most of the time, these tools operate only on live objects in the heap—objects that
will be reclaimed during the next full GC cycle are not included in the tools’ output.
In some cases, tools accomplish that by forcing a full GC, so the application behavior
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can be affected after the tool is used. In other cases, the tools walk through the heap
and report live data without freeing objects along the way. In either case, though, the
tools require time and machine resources; they are generally not useful during meas‐
urement of a program’s execution.

Heap Histograms
Reducing memory use is an important goal, but as with most performance topics, it
helps to target efforts to maximize the available benefits. Later in this chapter, you’ll
see an example around lazily initializing a Calendar object. That will save 640 bytes in
the heap, but if the application always initializes one such object, no measurable dif‐
ference in performance will occur. Analysis must be performed to know which kinds
of objects are consuming large amounts of memory.

The easiest way to do that is via a heap histogram. Histograms are a quick way to look
at the number of objects within an application without doing a full heap dump (since
heap dumps can take a while to analyze, and they consume a large amount of disk
space). If a few particular object types are responsible for creating memory pressure
in an application, a heap histogram is a quick way to find that.

Heap histograms can be obtained by using jcmd (here with process ID 8898):

% jcmd 8998 GC.class_histogram
8898:

 num     #instances         #bytes  class name
----------------------------------------------
   1:        789087       31563480  java.math.BigDecimal
   2:        172361       14548968  [C
   3:         13224       13857704  [B
   4:        184570        5906240  java.util.HashMap$Node
   5:         14848        4188296  [I
   6:        172720        4145280  java.lang.String
   7:         34217        3127184  [Ljava.util.HashMap$Node;
   8:         38555        2131640  [Ljava.lang.Object;
   9:         41753        2004144  java.util.HashMap
  10:         16213        1816472  java.lang.Class

In a histogram, we can usually expect to see character arrays ([C) and String objects
near the top, as these are the most commonly created Java objects. Byte arrays ([B)
and object arrays ([Ljava.lang.Object;) are also common, since classloaders store
their data in those structures. If you’re unfamiliar with this syntax, it is described in
the Java Native Interface (JNI) documentation.

In this example, the inclusion of the BigDecimal class is something to pursue: we
know the sample code produces a lot of transient BigDecimal objects, but having so
many stay around in the heap is not what we might ordinarily expect. The output
from GC.class_histogram includes only live objects, as the command normally
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forces a full GC. You can include the -all flag in the command to skip the full GC,
though then the histogram contains unreferenced (garbage) objects.

Similar output is available by running this command:

% jmap -histo process_id

The output from jmap includes objects that are eligible to be collected (dead objects).
To force a full GC prior to seeing the histogram, run this command instead:

% jmap -histo:live process_id

Histograms are small, so gathering one for every test in an automated system can be
helpful. Still, because they take a few seconds to obtain and trigger a full GC, they
should not be taken during a performance measurement steady state.

Heap Dumps
Histograms are great at identifying issues caused by allocating too many instances of
one or two particular classes, but for deeper analysis, a heap dump is required. Many
tools can look at heap dumps, and most of them can connect to a live program to
generate the dump. It is often easier to generate the dump from the command line,
which can be done with either of the following commands:

% jcmd process_id GC.heap_dump /path/to/heap_dump.hprof

or

% jmap -dump:live,file=/path/to/heap_dump.hprof process_id

Including the live option in jmap will force a full GC to occur before the heap is
dumped. That is the default for jcmd, though if for some reason you want those other
(dead) objects included, you can specify -all at the end of the jcmd command line. If
you use the command in a way that forces a full GC, that will obviously introduce a
long pause into the application, but even if you don’t force a full GC, the application
will be paused for the time it takes to write the heap dump.

Either command creates a file named heap_dump.hprof in the given directory; various
tools can then be used to open that file. The most common of these are as follows:

jvisualvm

The Monitor tab of jvisualvm can take a heap dump from a running program or
open a previously produced heap dump. From there, you can browse through the
heap, examining the largest retained objects and executing arbitrary queries
against the heap.
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mat

The open source EclipseLink Memory Analyzer tool (mat) can load one or more
heap dumps and perform analysis on them. It can produce reports that suggest
where problems are likely to be found, and it too can be used to browse through
the heap and execute SQL-like queries into the heap.

The first-pass analysis of a heap generally involves retained memory. The retained
memory of an object is the amount of memory that would be freed if the object itself
were eligible to be collected. In Figure 7-1, the retained memory of the String Trio
object includes the memory occupied by that object as well as the memory occupied
by the Sally and David objects. It does not include the memory used by the Michael
object, since that object has another reference and won’t be eligible for GC if the
String Trio is freed.

Figure 7-1. Object graph of retained memory

Shallow, Retained, and Deep Object Sizes
Two other useful terms for memory analysis are shallow and deep. The shallow size of
an object is the size of the object itself. If the object contains a reference to another
object, the 4 or 8 bytes of the reference is included, but the size of the target object is
not included.

The deep size of an object includes the size of the object it references. The difference
between the deep size of an object and the retained memory of an object lies in
objects that are otherwise shared. In Figure 7-1, the deep size of the Flute Duo object
includes the space consumed by the Michael object, whereas the retained size of the
Flute Duo object does not.
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Objects that retain a large amount of heap space are often called the dominators of the
heap. If the heap analysis tool shows that a few objects dominate the bulk of the heap,
things are easy: all you need to do is create fewer of them, retain them for a shorter
period of time, simplify their object graph, or make them smaller. That may be easier
said than done, but at least the analysis is simple.

More commonly, detective work will be necessary because the program is likely shar‐
ing objects. Like the Michael object in the previous figure, those shared objects are
not counted in the retained set of any other object, since freeing one individual object
will not free the shared object. Also, the largest retained sizes are often classloaders
over which you have little control. As an extreme example, Figure 7-2 shows the top
retained objects of a heap from a version of the stock server that caches items
strongly based on a client connection, and weakly in a global hash map (so that the
cached items have multiple references).

Figure 7-2. Retained Memory view in Memory Analyzer

The heap contains 1.4 GB of objects (that value doesn’t appear on this tab). Even so,
the largest set of objects that is referenced singly is only 6 MB (and is, unsurprisingly,
part of the classloading framework). Looking at the objects that directly retain the
largest amount of memory isn’t going to solve the memory issues.

This example shows multiple instances of StockPriceHistoryImpl objects in this list,
each of which retains a fair amount of memory. It can be deduced from the amount
of memory consumed by those objects that they are the issue. In the general case,
though, objects might be shared in such a way that looking at the retained heap won’t
show anything obvious.

The histogram of objects is a useful second step (see Figure 7-3).
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Figure 7-3. Histogram view in Memory Analyzer

The histogram aggregates objects of the same type, and in this example it is much
more apparent that the 1.4 GB of memory retained by the seven million
TreeMap$Entry objects is the key here. Even without knowing what is going on in the
program, it is straightforward enough to use the Memory Analyzer’s facility to trace
those objects to see what is holding onto them.

Heap analysis tools provide a way to find the GC roots of a particular object (or set of
objects in this case)—though jumping directly to the GC roots isn’t necessarily help‐
ful. The GC roots are the system objects that hold a static, global reference that
(through a long chain of other objects) refers to the object in question. Typically,
these come from the static variables of a class loaded on the system or bootstrap class‐
path. This includes the Thread class and all active threads; threads retain objects
either through their thread-local variables or through references via their target
Runnable object (or, in the case of a subclass of the Thread class, any other references
the subclass has).

In some cases, knowing the GC roots of a target object is helpful, but if the object has
multiple references, it will have many GC roots. The references here are a tree struc‐
ture in reverse. Say that two objects refer to a particular TreeMap$Entry object. Each
of those objects may be referred to by two other objects, each of which may be
referred to by three other objects, and so on. The explosion of references as the roots
are traced back means that multiple GC roots likely exist for any given object.
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Instead, it can be more fruitful to play detective and find the lowest point in the
object graph where the target object is shared. This is done by examining the objects
and their incoming references and tracing those incoming references until the dupli‐
cate path is identified. In this case, references to the StockPriceHistoryImpl objects
held in the tree map have two referents: the ConcurrentHashMap, which holds
attribute data for the session, and the WeakHashMap, which holds the global cache.

In Figure 7-4, the back traces are expanded enough to show only a little data about
the two of them. The way to conclude that it is the session data is to continue to
expand the ConcurrentHashMap path until it becomes clear that path is the session
data. A similar logic applies to the path for the WeakHashMap.

Figure 7-4. Back traces of object references in Memory Analyzer

The object types used in this example made the analysis a little easier than is often the
case. If the primary data in this application had been modeled as String objects
instead of BigDecimal objects, and stored in HashMap objects instead of TreeMap
objects, things would have been more difficult. Hundreds of thousands of other
strings and tens of thousands of other HashMap objects are in the heap dump. Finding
paths to the interesting objects, then, takes some patience. As a general rule of thumb,
start with collection objects (e.g., HashMap) rather than the entries (e.g.,
HashMap$Entry), and look for the biggest collections.

Quick Summary

• Knowing which objects are consuming memory is the first
step in knowing which objects to optimize in your code.

• Histograms are a quick and easy way to identify memory
issues caused by creating too many objects of a certain type.

• Heap dump analysis is the most powerful technique to track
down memory usage, though it requires patience and effort to
be utilized well.
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Out-of-Memory Errors
The JVM throws an out-of-memory error under these circumstances:

• No native memory is available for the JVM.
• The metaspace is out of memory.
• The Java heap itself is out of memory: the application cannot create any addi‐

tional objects for the given heap size.
• The JVM is spending too much time performing GC.

The last two cases—involving the Java heap itself—are more common, but don’t auto‐
matically conclude from an out-of-memory error that the heap is the problem. It is
necessary to look at why the out-of-memory error occurred (that reason is part of the
output of the exception).

Out of native memory
The first case in this list—no native memory available for the JVM—occurs for rea‐
sons unrelated to the heap at all. In a 32-bit JVM, the maximum size of a process is 4
GB (3 GB on some versions of Windows, and about 3.5 GB on some older versions of
Linux). Specifying a very large heap—say, 3.8 GB—brings the application size danger‐
ously close to that limit. Even in a 64-bit JVM, the operating system may not have
sufficient virtual memory for whatever the JVM requests.

This topic is addressed more fully in Chapter 8. Be aware that if the message for the
out-of-memory error discusses allocation of native memory, heap tuning isn’t the
answer: you need to look into whatever native memory issue is mentioned in the
error. For example, the following message tells you that the native memory for thread
stacks is exhausted:

Exception in thread "main" java.lang.OutOfMemoryError:
unable to create new native thread

However, be aware that the JVM will sometimes issue this error for things that have
nothing to do with memory. Users usually have constraints on the number of threads
they can run; this constraint can be imposed by the OS or by a container. For exam‐
ple, in Linux, users are often allowed to create only 1,024 processes (a value you can
check by running ulimit -u). The attempt to create a 1,025th thread will throw that
same OutOfMemoryError, claiming insufficient memory to create the native thread,
when in reality, the OS limit on the number of processes caused the error.
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Out of metaspace memory
An out-of-metaspace memory error is also not associated with the heap—it occurs
because the metaspace native memory is full. Because metaspace has no maximum
size by default, this error typically occurs because you’ve chosen to set the maximum
size (and the reason for doing so will become clear in this section).

This error can have two root causes: The first is simply that the application uses more
classes than can fit in the metaspace you’ve assigned (see “Sizing Metaspace” on page
144). The second case is trickier: it involves a classloader memory leak. This occurs
most frequently in a server that loads classes dynamically. One such example is a Java
EE application server. Each application that is deployed to an app server runs in its
own classloader (which provides isolation so that classes from one application are not
shared with—and do not interfere with—classes from another application). In devel‐
opment, each time the application is changed, it must be redeployed: a new class‐
loader is created to load the new classes, and the old classloader is allowed to go out
of scope. Once the classloader goes out of scope, the class metadata can be collected.

If the old classloader does not go out of scope, the class metadata cannot be freed, and
eventually the metaspace will fill up and throw an out-of-memory error. In this case,
increasing the size of the metaspace will help, but ultimately that will simply postpone
the error.

If this situation occurs in an app server environment, there is little to do but contact
the app server vendor and get them to fix the leak. If you are writing your own appli‐
cation that creates and discards lots of classloaders, ensure that the class loaders
themselves are discarded correctly (in particular, make sure that no thread sets its
context classloader to one of the temporary classloaders). To debug this situation, the
heap dump analysis just described is helpful: in the histogram, find all the instances
of the ClassLoader class, and trace their GC roots to see what is holding onto them.

The key to recognizing this situation is again the full-text output of the out-of-
memory error. If the metaspace is full, the error text will appear like this:

Exception in thread "main" java.lang.OutOfMemoryError: Metaspace

Classloader leaks, by the way, are the reason you should consider setting the maxi‐
mum size of the metaspace. Left unbounded, a system with a classloader leak will
consume all the memory on your machine.

Out-of-heap memory
When the heap itself is out of memory, the error message appears like this:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
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The common cases in which an out-of-memory condition is triggered by a lack of
heap space are similar to the example of the metaspace we just discussed. The appli‐
cation may simply need more heap space: the number of live objects that it is holding
onto cannot fit in the heap space configured for it. Or, the application may have a
memory leak: it continues to allocate additional objects without allowing other
objects to go out of scope. In the first case, increasing the heap size will solve the
issue; in the second case, increasing the heap size will merely postpone the error.

In either case, heap dump analysis is necessary to find out what is consuming the
most memory; the focus can then be on reducing the number (or size) of those
objects. If the application has a memory leak, take successive heap dumps a few
minutes apart and compare them. mat has that functionality built into it: if two heap
dumps are open, mat has an option to calculate the difference in the histograms
between the two heaps.

Automatic Heap Dumps
Out-of-memory errors can occur unpredictably, making it difficult to know when to
get a heap dump. Several JVM flags can help:

-XX:+HeapDumpOnOutOfMemoryError

Turning on this flag (which is false by default) will cause the JVM to create a
heap dump whenever an out-of-memory error is thrown.

-XX:HeapDumpPath=<path>

This specifies the location where the heap dump will be written; the default is
java_pid<pid>.hprof in the application’s current working directory. The path can
specify either a directory (in which case the default filename is used) or the name
of the actual file to produce.

-XX:+HeapDumpAfterFullGC

This generates a heap dump after running a full GC.

-XX:+HeapDumpBeforeFullGC

This generates a heap dump before running a full GC.

When multiple heap dumps are generated (e.g., because multiple full GCs occur), a
sequence number is appended to the heap dump filename.

Try turning on these flags if the application unpredictably throws an out-of-memory
error due to the heap space and you need the heap dump at that point to analyze why
the failure occurred. Just be aware that taking the heap dump(s) will extend the dura‐
tion of the pause, because data representing the heap will be written to disk.
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Figure 7-5 shows the classic case of a Java memory leak caused by a collection class—
in this case, HashMap. (Collection classes are the most frequent cause of a memory
leak: the application inserts items into the collection and never frees them.) This is a
comparison histogram view: it displays the difference in the number of objects in two
heap dumps. For example, 19,744 more Integer objects occur in the target heap
dump compared to its baseline.

The best way to overcome this situation is to change the application logic such that
items are proactively discarded from the collection when they are no longer needed.
Alternatively, a collection that uses weak or soft references can automatically discard
the items when nothing else in the application is referencing them, but those collec‐
tions come with a cost (as is discussed later in this chapter).

Figure 7-5. Histogram comparison

Often when this kind of exception is thrown, the JVM does not exit, because the
exception affects only a single thread in the JVM. Let’s look at a JVM with two
threads performing a calculation. One of them may get the OutOfMemoryError. By
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default, the thread handler for that thread will print out the stack trace, and that
thread will exit.

But the JVM still has another active thread, so the JVM will not exit. And because the
thread that experienced the error has terminated, a fair amount of memory can likely
now be claimed on a future GC cycle: all the objects that the terminated thread refer‐
enced and that weren’t referenced by any other threads. So the surviving thread will
be able to continue executing and will often have sufficient heap memory to complete
its task.

Server frameworks with a thread pool handling requests will work essentially the
same way. They will generally catch the error and prevent the thread from terminat‐
ing, but that doesn’t affect this discussion; the memory associated with the request
that the thread was executing will still become eligible for collection.

So when this error is thrown, it will be fatal to the JVM only if it causes the last non-
daemon thread in the JVM to terminate. That will never be the case in a server frame‐
work and often won’t be the case in a standalone program with multiple threads. And
usually that works out well, since the memory associated with the active request will
often become eligible for collection.

If instead you want the JVM to exit whenever the heap runs out of memory, you can
set the -XX:+ExitOnOutOfMemoryError flag, which by default is false.

GC overhead limit reached
The recovery described for the previous case assumes that when a thread gets the out-
of-memory error, memory associated with whatever that thread is working on will
become eligible for collection and the JVM can recover. That’s not always true, which
leads us to the final case of the JVM throwing an out-of-memory error: when it
determines that it is spending too much time performing GC:

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded

This error is thrown when all of the following conditions are met:

• The amount of time spent in full GCs exceeds the value specified by the
-XX:GCTimeLimit=N flag. The default value is 98 (i.e., if 98% of the time is spent
in GC).

• The amount of memory reclaimed by a full GC is less than the value specified by
the -XX:GCHeapFreeLimit=N flag. The default value is 2, meaning that if less than
2% of the heap is freed during the full GC, this condition is met.

• The preceding two conditions have held true for five consecutive full GC cycles
(that value is not tunable).

• The value of the -XX:+UseGCOverheadLimit flag is true (which it is by default).
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Note that all four of these conditions must be met. It is common to see more than five
consecutive full GCs occur in an application that does not throw an out-of-memory
error. That is because even if the application is spending 98% of its time performing
full GCs, it may be freeing more than 2% of the heap during each GC. Consider
increasing the value of GCHeapFreeLimit in that case.

Note that as a last-ditch effort to free memory, if the first two conditions hold for four
consecutive full GC cycles, then all soft references in the JVM will be freed before the
fifth full GC cycle. That often prevents the error, since that fifth cycle may free more
than 2% of the heap (assuming that the application uses soft references).

Quick Summary

• Out-of-memory errors are thrown for a variety of reasons; do
not assume that the heap space is the problem.

• For both the metaspace and the regular heap, out-of-memory
errors most frequently occur because of memory leaks; heap
analysis tools can help to find the root cause of the leak.

Using Less Memory
The first approach to using memory more efficiently in Java is to use less heap mem‐
ory. That statement should be unsurprising: using less memory means the heap will
fill up less often, requiring fewer GC cycles. The effect can multiply: fewer collections
of the young generation means the tenuring age of an object is increased less often—
meaning that the object is less likely to be promoted into the old generation. Hence,
the number of full GC cycles (or concurrent GC cycles) will be reduced. And if those
full GC cycles can clear up more memory, they will also occur less frequently.

This section investigates three ways to use less memory: reducing object size, using
lazy initialization of objects, and using canonical objects.

Reducing Object Size
Objects occupy a certain amount of heap memory, so the simplest way to use less
memory is to make objects smaller. Given the memory constraints on the machine
running your program, it may not be possible to increase the heap size by 10%, but a
20% reduction of half the objects in the heap can achieve the same goal. As discussed
in Chapter 12, Java 11 has just such an optimization for String objects, which means
that users of Java 11 can frequently set their maximum heap 25% smaller than they
required in Java 8—with no impact on GC or performance.
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The size of an object can be decreased by (obviously) reducing the number of
instance variables it holds and (less obviously) by reducing the size of those variables.
Table 7-1 gives the size of an instance variable of all Java types.

Table 7-1. Size in bytes of Java instance variables

Type Size

byte 1

char 2

short 2

int 4

float 4

long 8

double 8

reference 8 (on 32-bit Windows JVMs, 4)a

a See “Compressed Oops” on page 246 for more
details.

The reference type here is the reference to any kind of Java object—instances of
classes or arrays. That space is the storage only for the reference itself. The size of an
object that contains references to other objects varies depending on whether we want
to consider the shallow, deep, or retained size of the object, but that size also includes
some invisible object header fields. For a regular object, the size of the header fields is
8 bytes on a 32-bit JVM, and 16 bytes on a 64-bit JVM (regardless of heap size). For
an array, the size of the header fields is 16 bytes on a 32-bit JVM or a 64-bit JVM with
a heap of less than 32 GB, and 24 bytes otherwise.

For example, consider these class definitions:

public class A {
    private int i;
}

public class B {
    private int i;
    private Locale l = Locale.US;
}

public class C {
    private int i;
    private ConcurrentHashMap chm = new ConcurrentHashMap();
}

The actual sizes of a single instance of these objects (on a 64-bit JVM with a heap size
of less than 32 GB) is given in Table 7-2.
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Table 7-2. Sizes in bytes of simple objects

Shallow size Deep size Retained size

A 16 16 16

B 24 216 24

C 24 200 200

In class B, defining the Locale reference adds 8 bytes to the object size, but at least in
that example, the Locale object is shared among other classes. If the Locale object is
never needed by the class, including that instance variable will waste only the addi‐
tional bytes for the reference. Still, those bytes add up if the application creates a lot of
instances of class B.

On the other hand, defining and creating a ConcurrentHashMap consumed additional
bytes for the object reference, plus additional bytes for the hash-map object. If the
hash map is never used, instances of class C are wasteful.

Defining only required instance variables is one way to save space in an object. The
less obvious case involves using smaller data types. If a class needs to keep track of
one of eight possible states, it can do so using a byte rather than an int—potentially
saving 3 bytes. Using float instead of double, int instead of long, and so on, can
help save memory, particularly in classes that are frequently instantiated. As dis‐
cussed in Chapter 12, using appropriately sized collections (or using simple instance
variables instead of collections) achieves similar savings.

Object Alignment and Object Sizes
The classes mentioned in Table 7-2 all contain an extra integer field that was not ref‐
erenced in the discussion. Why is that there?

In truth, that variable serves the purpose of making the discussion of those classes
easier to follow: class B contains 8 more bytes than class A, which is what we’d expect
(and which makes the point more clearly).

That glosses over an important detail: object sizes are always padded so that they are a
multiple of 8 bytes. Without the definition of i in class A, instances of A still consume
16 bytes—the 4 bytes are just used for padding the object size to a multiple of 8,
rather than being used to hold the reference to i. Without the definition of i, instan‐
ces of class B would consume only 16 bytes—the same as A, even though B has that
extra object reference. That padding is also why an instance of B is 8 bytes larger than
an instance of A even though it contains only one additional (4-byte) reference.

The JVM will also pad objects that have an uneven number of bytes so that arrays of
that object fit neatly along whatever address boundaries are optimal for the underly‐
ing architecture.
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So eliminating some instance fields or reducing some field sizes in an object may or
may not yield a benefit, but there is no reason not to do it.

The OpenJDK project has a separate downloadable tool called jol that can calculate
object sizes.

Eliminating instance fields in an object can help make the object smaller, but a gray
area exists: what about object fields that hold the result of a calculation based on
pieces of data? This is the classic computer science trade-off of time versus space: is it
better to spend the memory (space) to store the value or better to spend the time
(CPU cycles) to calculate the value as needed? In Java, though, the trade-off applies to
CPU time as well, since the additional memory can cause GC to consume more CPU
cycles.

The hash code for a String, for example, is calculated by summing an equation
involving each character of the string; it is somewhat time-consuming to calculate.
Hence, the String class stores that value in an instance variable so that the hash code
needs to be calculated only once: in the end, reusing that value will almost always
produce better performance than any memory savings from not storing it. On the
other hand, the toString() method of most classes does not cache the string repre‐
sentation of the object in an instance variable, which would consume memory both
for the instance variable and for the string it references. Instead, the time required to
calculate a new string will usually give better performance than the memory required
to keep the string reference around. (It is also the case that the hash value for a
String is used frequently, and the toString() representation of an object is often
used rarely.)

This is definitely a your-mileage-may-vary situation and the point along the time/
space continuum where it makes sense to switch between using the memory to cache
a value and recalculating the value will depend on many factors. If reducing GC is the
goal, the balance will swing more to recalculating.

Quick Summary

• Reducing object sizes can often improve the efficiency of GC.
• The size of an object is not always immediately apparent:

objects are padded to fit on 8-byte boundaries, and object ref‐
erence sizes are different between 32- and 64-bit JVMs.

• Even null instance variables consume space within object
classes.
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Using Lazy Initialization
Much of the time, the decision about whether a particular instance variable is needed
is not as black-and-white as the previous section suggests. A particular class may
need a Calendar object only 10% of the time, but Calendar objects are expensive to
create, and it definitely makes sense to keep that object around rather than re-create it
on demand. This is a case where lazy initialization can help.

So far, this discussion has assumed that instance variables are initialized eagerly. A
class that needs to use a Calendar object (and that doesn’t need to be thread-safe)
might look something like this:

public class CalDateInitialization {
    private Calendar calendar = Calendar.getInstance();
    private DateFormat df = DateFormat.getDateInstance();

    private void report(Writer w) {
        w.write("On " + df.format(calendar.getTime()) + ": " + this);
    }
}

Initializing the fields lazily instead carries a small trade-off in terms of computation
performance—the code must test the state of the variable each time the code is
executed:

public class CalDateInitialization {
    private Calendar calendar;
    private DateFormat df;

    private void report(Writer w) {
        if (calendar == null) {
            calendar = Calendar.getInstance();
            df = DateFormat.getDateInstance();
        }
        w.write("On " + df.format(calendar.getTime()) + ": " + this);
    }
}

Lazy initialization is best used when the operation in question is only infrequently
used. If the operation is commonly used, no memory will be saved (since it will
always be allocated), and there will be that slight performance penalty on a common
operation.

Lazy Initialization Runtime Performance
The usual performance penalty for checking whether lazily initialized variables have
been initialized may not always exist. Consider this example from the JDK’s
ArrayList class. That class maintains an array of the elements it stores, and in older
versions of Java, pseudocode for the class looked like this:
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public class ArrayList {
    private Object[] elementData = new Object[16];
    int index = 0;
    public void add(Object o) {
        ensureCapacity();
        elementData[index++] = o;
    }
    private void ensureCapacity() {
        if (index == elementData.length) {
            ...reallocate array and copy old data in...
        }
    }
}

A few years ago, this class was changed so that the elementData array is initialized
lazily. But because the ensureCapacity() method already needed to check the array
size, the common methods of the class didn’t suffer a performance penalty: the code
to check for initialization is the same as the code to check whether the array size
needs to be increased. The new code uses a static, shared, zero-length array so that
performance is the same:

public class ArrayList {
    private static final Object[] EMPTY_ELEMENTDATA = {} ;
    private Object[] elementData = EMPTY_ELEMENTDATA;
}

That means the ensureCapacity() method can be (essentially) unchanged, since the
index and elementData.length will both start at 0.

When the code involved must be thread-safe, lazy initialization becomes more com‐
plicated. As a first step, it is easiest simply to add traditional synchronization:

public class CalDateInitialization {
    private Calendar calendar;
    private DateFormat df;

    private synchronized void report(Writer w) {
        if (calendar == null) {
            calendar = Calendar.getInstance();
            df = DateFormat.getDateInstance();
        }
        w.write("On " + df.format(calendar.getTime()) + ": " + this);
    }
}

Introducing synchronization into the solution opens up the possibility that the syn‐
chronization will become a performance bottleneck. That case should be rare. The
performance benefit from lazy initialization occurs only when the object in question
will rarely initialize those fields—since if it usually initializes those fields, no memory
has actually been saved. So synchronization becomes a bottleneck for lazily initialized

220 | Chapter 7: Heap Memory Best Practices



fields when an infrequently used code path is suddenly subject to use by a lot of
threads simultaneously. That case is not inconceivable, but it isn’t the most common
case either.

Solving that synchronization bottleneck can happen only if the lazily initialized vari‐
ables are themselves thread-safe. DateFormat objects are not thread-safe, so in the
current example, it doesn’t really matter if the lock includes the Calendar object: if
the lazily initialized objects are suddenly used heavily, the required synchronization
around the DateFormat object will be an issue no matter what. The thread-safe code
would have to look like this:

public class CalDateInitialization {
    private Calendar calendar;
    private DateFormat df;

    private void report(Writer w) {
        unsychronizedCalendarInit();
        synchronized(df) {
            w.write("On " + df.format(calendar.getTime()) + ": " + this);
        }
    }
}

Lazy initialization involving an instance variable that is not thread-safe can always
synchronize around that variable (e.g., using the synchronized version of the method
shown previously).

Consider a somewhat different example, in which a large ConcurrentHashMap is lazily
initialized:

public class CHMInitialization {
    private ConcurrentHashMap chm;

    public void doOperation() {
        synchronized(this) {
            if (chm == null) {
                chm = new ConcurrentHashMap();
                ... code to populate the map ...
            }
        }
        ...use the chm...
    }
}

Because ConcurrentHashMap can be safely accessed by multiple threads, the extra syn‐
chronization in this example is one of the infrequent cases where properly used lazy
initialization could introduce a synchronization bottleneck. (Such a bottleneck
should still be rare, though; if access to the hash map is that frequent, consider
whether anything is really saved by initializing it lazily.) The bottleneck is solved
using the double-checked locking idiom:
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public class CHMInitialization {
    private volatile ConcurrentHashMap instanceChm;

    public void doOperation() {
        ConcurrentHashMap chm = instanceChm;
        if (chm == null) {
            synchronized(this) {
                chm = instanceChm;
                if (chm == null) {
                    chm = new ConcurrentHashMap();
                    ... code to populate the map
                    instanceChm = chm;
                }
            }
            ...use the chm...
        }
    }
}

Important threading issues exist: the instance variable must be declared volatile,
and a slight performance benefit results from assigning the instance variable to a local
variable. More details are given in Chapter 9; in the occasional case where lazy initial‐
ization of threaded code makes sense, this is the design pattern to follow.

Eager deinitialization
The corollary to lazily initializing variables is eagerly deinitializing them by setting
their value to null. That allows the object in question to be collected more quickly by
the garbage collector. While that sounds like a good thing in theory, it is useful in
only limited circumstances.

A variable that is a candidate for lazy initialization might seem like a candidate for
eager deinitialization: in the preceding examples, the Calendar and DateFormat
objects could be set to null upon completion of the report() method. However, if
the variable isn’t going to be used in subsequent invocations of the method (or else‐
where in the class), there is no reason to make it an instance variable in the first place.
Simply create the local variable in the method, and when the method completes, the
local variable will fall out of scope and the garbage collector can free it.

The common exception to the rule about not needing to eagerly deinitialize variables
occurs with classes like those in the Java collection framework: classes that hold refer‐
ences to data for a long time and then are informed that the data in question is no
longer needed. Consider the implementation of the remove() method in the
ArrayList class of the JDK (some code is simplified):

public E remove(int index) {
    E oldValue = elementData(index);
    int numMoved = size - index - 1;
    if (numMoved > 0)
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        System.arraycopy(elementData, index+1,
                         elementData, index, numMoved);
    elementData[--size] = null; // clear to let GC do its work
    return oldValue;
}

The code comment about GC appears in the (otherwise sparsely commented) JDK
source itself: setting the value of a variable to null like that is an unusual enough
operation that some explanation is needed. In this case, trace through what happens
when the last element of the array is removed. The number of items remaining in the
array—the size instance variable—is decremented. Say that size is decremented
from 5 to 4. Now whatever is stored in elementData[4] cannot be accessed: it is
beyond the valid size of the array.

elementData[4] is, in this case, a stale reference. The elementData array is probably
going to remain active for a long time, and so anything that it no longer needs to ref‐
erence needs to be actively set to null.

This notion of stale references is the key: if a long-lived class caches and then discards
object references, care must be taken to avoid stale references. Otherwise, explicitly
setting an object reference to null will offer little performance benefit.

Quick Summary

• Use lazy initialization only when the common code paths will
leave variables uninitialized.

• Lazy initialization of thread-safe code is unusual but can often
piggyback on existing synchronization.

• Use double-checked locking for lazy initialization of code
using thread-safe objects.

Using Immutable and Canonical Objects
In Java, many object types are immutable. This includes objects that have a corre‐
sponding primitive type—Integer, Double, Boolean, and so on—as well as other
numeric-based types, like BigDecimal. The most common Java object, of course, is
the immutable String. From a program design perspective, it is often a good idea for
custom classes to represent immutable objects as well.

When these objects are quickly created and discarded, they have a small effect on
young collections; as you saw in Chapter 5, that impact is limited. But as is true of any
object, if many immutable objects are promoted to the old generation, performance
can suffer.
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Hence, there is no reason to avoid designing and using immutable objects, even if it
may seem a little counterproductive that these objects cannot be changed and must
be re-created. But one optimization that is often possible when handling these objects
is to avoid creating duplicate copies of the same object.

The best example of this is the Boolean class. Any Java application needs only two
instances of the Boolean class: one for true, and one for false. Unfortunately, the
Boolean class is badly designed. Because it has a public constructor, applications can
create as many of these objects as they like, even though they are all exactly the same
as one of the two canonical Boolean objects. A better design would have been for the
Boolean class to have only a private constructor, and static methods to return either
Boolean.TRUE or Boolean.FALSE based on their parameter. If such a model can be
followed for your own immutable classes, you can prevent them from contributing to
the heap usage of your application. (Ideally, it is obvious that you should never create
a Boolean object; you should just use Boolean.TRUE or Boolean.FALSE as necessary.)

These singular representations of immutable objects are known as the canonical ver‐
sion of the object.

Creating canonical objects
Even if the universe of objects for a particular class is practically limitless, using can‐
onical values can often save memory. The JDK provides a facility to do this for the
most common immutable object: strings can call the intern() method to find a can‐
onical version of the string. More details of string interning are examined in Chap‐
ter 12; for now we’ll look at how to accomplish the same thing for custom classes.

To canonicalize an object, create a map that stores the canonical version of the object.
To prevent a memory leak, make sure that the objects in the map are weakly refer‐
enced. The skeleton of such a class looks like this:

public class ImmutableObject {
    private static WeakHashMap<ImmutableObject, ImmutableObject>
        map = new WeakHashMap();

    public ImmutableObject canonicalVersion(ImmutableObject io) {
        synchronized(map) {
            ImmutableObject canonicalVersion = map.get(io);
            if (canonicalVersion == null) {
                map.put(io, new WeakReference(io));
                canonicalVersion = io;
            }
            return canonicalVersion;
        }
    }
}
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In a threaded environment, the synchronization could become a bottleneck. There’s
no easy solution if you stick to JDK classes, since they do not provide a concurrent
hash map for weak references. However, there have been proposals to add a
CustomConcurrentHashMap to the JDK—originally as part of Java Specification
Request (JSR)166—and you can find various third-party implementations of such a
class.

Quick Summary

• Objects that are immutable offer the possibility of special life‐
cycle management: canonicalization.

• Eliminating duplicate copies of immutable objects via canoni‐
calization can greatly decrease the amount of heap an applica‐
tion uses.

Object Life-Cycle Management
The second broad topic of memory management discussed in this chapter is object
life-cycle management. For the most part, Java attempts to minimize the effort devel‐
opers must put into managing the life cycle of objects: the developer creates the
objects when needed, and when they are no longer needed, the objects fall out of
scope and are freed by the garbage collector.

Sometimes this normal life cycle is not optimal. Some objects are expensive to create,
and managing the life cycle of those objects will improve the efficiency of an applica‐
tion, even at the expense of requiring additional work by the garbage collector. This
section explores when and how the normal life cycle of objects should be changed,
either by reusing the objects or by maintaining special references to them.

Object Reuse
Object reuse is commonly achieved in two ways: object pools and thread-local vari‐
ables. GC engineers around the world are now groaning, since either technique ham‐
pers the efficiency of GC. Object pooling, in particular, is widely disliked in GC
circles for that reason, though for that matter, object pools are also widely disliked in
development circles for many other reasons.

At one level, the reason for this position seems obvious: objects that are reused stay
around for a long time in the heap. If the heap has a lot of objects, there is less room
to create new objects, and hence GC operations will occur more frequently. But that is
only part of the story.
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As you saw in Chapter 6, when an object is created, it is allocated in eden. It will
spend a few young GC cycles shuffling back and forth between the survivor spaces,
before finally getting promoted to the old generation. Each time the newly (or
recently) created pooled object is processed, the GC algorithm must perform some
work to copy it and adjust references to it until it finally makes it into the old
generation.

Although that seems like the end of it, once the object is promoted to the old genera‐
tion, it can cause even more performance problems. The length of time it takes to
perform a full GC is proportional to the number of objects that are still alive in the
old generation. The amount of live data is even more important than the size of the
heap; it is faster to process a 3 GB old generation with few surviving objects than to
process a 1 GB old generation where 75% of the objects survive.

GC Efficiency
Just how much does the amount of live data in the heap affect GC times? The answer
can be more than an order of magnitude.

Here’s the output of a GC log from a test on my standard four-core Linux system
using a 4 GB heap (of which 1 GB is the fixed size for the new generation):

[Full GC [PSYoungGen: 786432K->786431K(917504K)]
        [ParOldGen: 3145727K->3145727K(3145728K)]
        3932159K->3932159K(4063232K)
        [PSPermGen: 2349K->2349K(21248K)], 0.5432730 secs]
        [Times: user=1.72 sys=0.01, real=0.54 secs]
...
[Full GC [PSYoungGen: 786432K->0K(917504K)]
        [ParOldGen: 3145727K->210K(3145728K)]
        3932159K->210K(4063232K)
        [PSPermGen: 2349K->2349K(21248K)], 0.0687770 secs]
        [Times: user=0.08 sys=0.00, real=0.07 secs]
...
[Full GC [PSYoungGen: 349567K->349567K(699072K)]
        [ParOldGen: 3145727K->3145727K(3145728K)]
        3495295K->3495295K(3844800K)
        [PSPermGen: 2349K->2349K(21248K)], 0.7228880 secs]
        [Times: user=2.41 sys=0.01, real=0.73 secs]

Notice that middle output: the application cleared most references to things in the old
generation, and hence the data in the old generation after the GC was only 210 KB.
That operation took a mere 70 ms. In the other cases, most of the data in the heap is
still live; the full GC operations, which removed very little data from the heap, took
between 540 ms and 730 ms. And fortunately, four GC threads are running in this
test. On a single-core system, the short GC in this example took 80 ms, and the long
GC required 2,410 ms (more than 30 times longer).
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Using a concurrent collector and avoiding full GCs doesn’t make the situation that
much better, since the time required by the marking phases of the concurrent collec‐
tors similarly depends on the amount of still-live data. And for CMS in particular, the
objects in a pool are likely to be promoted at different times, increasing the chance of
a concurrent failure due to fragmentation. Overall, the longer objects are kept in the
heap, the less efficient GC will be.

So: object reuse is bad. Now we can discuss how and when to reuse objects.

The JDK provides some common object pools: the thread pool, which is discussed in
Chapter 9, and soft references. Soft references, which are discussed later in this sec‐
tion, are essentially a big pool of reusable objects. Java servers, meanwhile, depend on
object pools for connections to databases and other resources. The situation is similar
for thread-local values; the JDK is filled with classes that use thread-local variables to
avoid reallocating certain kinds of objects. Clearly, even Java experts understand the
need for object reuse in some circumstances.

The reason for reusing objects is that many objects are expensive to initialize, and
reusing them is more efficient than the trade-off in increased GC time. That is cer‐
tainly true of things like the JDBC connection pool: creating the network connection,
and possibly logging in and establishing a database session, is expensive. Object pool‐
ing in that case is a big performance win. Threads are pooled to save the time associ‐
ated with creating a thread; random number generators are supplied as thread-local
variables to save the time require to seed them; and so on.

One feature these examples share is that it takes a long time to initialize the object. In
Java, object allocation is fast and inexpensive (and arguments against object reuse
tend to focus on that part of the equation). Object initialization performance depends
on the object. You should consider reusing only objects with a very high initialization
cost, and only then if the cost of initializing those objects is one of the dominant
operations in your program.

Another feature these examples share is that the number of shared objects tends to be
small, which minimizes their impact on GC operations: there aren’t enough of them
to slow down those GC cycles. Having a few objects in a pool isn’t going to affect the
GC efficiency too much; filling the heap with pooled objects will slow down GC
significantly.

Here are just some examples of where (and why) the JDK and Java programs reuse
objects:

Thread pools
Threads are expensive to initialize.

JDBC pools
Database connections are expensive to initialize.
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Large arrays
Java requires that when an array is allocated, all individual elements in the array
must be initialized to a default zero-based value (null, 0, or false as appropri‐
ate). This can be time-consuming for large arrays.

Native NIO buffers
Allocating a direct java.nio.Buffer (a buffer returned from calling the
allocateDirect() method) is an expensive operation regardless of the size of
the buffer. It is better to create one large buffer and manage the buffers from that
by slicing off portions as required and return them to be reused by future
operations.

Security classes
Instances of MessageDigest, Signature, and other security algorithms are
expensive to initialize.

String encoder and decoder objects
Various classes in the JDK create and reuse these objects. For the most part, these
are also soft references, as you’ll see in the next section.

StringBuilder helpers
The BigDecimal class reuses a StringBuilder object when calculating intermedi‐
ate results.

Random number generators
Instances of either the Random or (especially) SecureRandom classes are expensive
to seed.

Names obtained from DNS lookups
Network lookups are expensive.

ZIP encoders and decoders
In an interesting twist, these are not particularly expensive to initialize. They are,
however, expensive to free, because they rely on object finalization to ensure that
the native memory they use is also freed. See “Finalizers and final references” on
page 239 for more details.

Two options (object pools and thread-local variables) have differences in perfor‐
mance. Let’s look at those in more detail.

Object pools
Object pools are disliked for many reasons, only some of which have to do with their
performance. They can be difficult to size correctly. They also place the burden of
object management back on the programmer: rather than simply letting an object go
out of scope, the programmer must remember to return the object to the pool.
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The focus here, though, is on the performance of an object pool, which is subject to
the following:

GC impact
As you’ve seen, holding lots of objects reduces (sometimes drastically) the effi‐
ciency of GC.

Synchronization
Pools of objects are inevitably synchronized, and if the objects are frequently
removed and replaced, the pool can have a lot of contention. The result is that
access to the pool can become slower than initializing a new object.

Throttling
This performance impact of pools can be beneficial: pools allow access to scarce
resources to be throttled. As discussed in Chapter 2, if you attempt to increase
load on a system beyond what it can handle, performance will decrease. This is
one reason thread pools are important. If too many threads run simultaneously,
the CPUs will be overwhelmed, and performance will degrade (an example is
shown in Chapter 9).

This principle applies to remote system access as well and is frequently seen with
JDBC connections. If more JDBC connections are made to a database than it can
handle, performance of the database will degrade. In these situations, it is better
to throttle the number of resources (e.g., JDBC connections) by capping the size
of the pool—even if it means that threads in the application must wait for a free
resource.

Thread-local variables
Reusing objects by storing them as thread-local variables results in various perfor‐
mance trade-offs:

Life-cycle management
Thread-local variables are much easier and less expensive to manage than objects
in a pool. Both techniques require you to obtain the initial object: you check it
out of the pool, or you call the get() method on the thread-local object. But
object pools require that you return the object when you are done with it (other‐
wise no one else can use it). Thread-local objects are always available within the
thread and needn’t be explicitly returned.

Cardinality
Thread-local variables usually end up with a one-to-one correspondence between
the number of threads and the number of saved (reused) objects. That isn’t
strictly the case. The thread’s copy of the variable isn’t created until the first time
the thread uses it, so it is possible to have fewer saved objects than threads. But
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there cannot be any more saved objects than threads, and much of the time it
ends up being the same number.

On the other hand, an object pool may be sized arbitrarily. If a request sometimes
needs one JDBC connection and sometimes needs two, the JDBC pool can be
sized accordingly (with, say, 12 connections for 8 threads). Thread-local variables
cannot do this effectively; nor can they throttle access to a resource (unless the
number of threads itself serves as the throttle).

Synchronization
Thread-local variables need no synchronization since they can be used only
within a single thread; the thread-local get() method is relatively fast. (This
wasn’t always the case; in early versions of Java, obtaining a thread-local variable
was expensive. If you shied away from thread-local variables because of bad per‐
formance in the past, reconsider their use in current versions of Java.)

Synchronization brings up an interesting point, because the performance benefit of
thread-local objects is often couched in terms of saving synchronization costs (rather
than in the savings from reusing an object). For example, Java supplies a
ThreadLocalRandom class; that class (rather than a single Random instance) is used in
the sample stock applications. Otherwise, many of the examples throughout the book
would encounter a synchronization bottleneck on the next() method of the single
Random object. Using a thread-local object is a good way to avoid synchronization
bottlenecks, since only one thread can ever use that object.

However, that synchronization problem would have been solved just as easily if the
examples had simply created a new instance of the Random class each time one was
needed. Solving the synchronization problem that way would not have helped the
overall performance, though: it is expensive to initialize a Random object, and continu‐
ally creating instances of that class would have had worse performance than the syn‐
chronization bottleneck from many threads sharing one instance of the class.

Better performance comes from using the ThreadLocalRandom class, as shown in
Table 7-3. This example calculates the time required to create 10,000 random num‐
bers in each of four threads under three scenarios:

• Each thread constructs a new Random object to calculate the 10,000 numbers.
• All threads share a common, static Random object.
• All threads share a common, static ThreadLocalRandom object.
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Table 7-3. Effect of ThreadLocalRandom on generating 10,000 random numbers

Operation Elapsed time

Create new Random 134.9 ± 0.01 microseconds

ThreadLocalRandom 52.0 ± 0.01 microseconds

Share Random 3,763 ± 200 microseconds

Microbenchmarking threads that contend on a lock is always unreliable. In the last
row of this table, the threads are almost always contending for the lock on the Random
object; in a real application, the amount of contention would be much less. Still, you
can expect to see some contention with a shared object, while creating a new object
every time is more than two times as expensive as using the ThreadLocalRandom
object.

The lesson here—and in general for object reuse—is that when initialization of
objects takes a long time, don’t be afraid to explore object pooling or thread-local
variables to reuse those expensive-to-create objects. As always, though, strike a bal‐
ance: large object pools of generic classes will most certainly lead to more perfor‐
mance issues than they solve. Leave these techniques to classes that are expensive to
initialize and for when the number of the reused objects will be small.

Quick Summary

• Object reuse is discouraged as a general-purpose operation but
may be appropriate for small groups of objects that are expen‐
sive to initialize.

• Trade-offs exist between reusing an object via an object pool
or using a thread-local variable. In general, thread-local vari‐
ables are easier to work with, assuming that a one-to-one cor‐
respondence between threads and reusable objects is desired.

Soft, Weak, and Other References
Soft and weak references in Java also allow objects to be reused, though as developers,
we don’t always think of it in those terms. These kinds of references—which we will
generally refer to as indefinite references—are more frequently used to cache the result
of a long calculation or a database lookup rather than to reuse a simple object. For
example, in the stock server, an indirect reference could be used to cache the result of
the getHistory() method (which entails either a lengthy calculation or a long data‐
base call). That result is just an object, and when it is cached via an indefinite refer‐
ence, we are simply reusing the object because it is otherwise expensive to initialize.
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A Note on Terminology
Discussing soft and weak references can be confusing because so much of the termi‐
nology uses similar words. Here’s a quick primer on that terminology:

Reference
A reference (or object reference) is any kind of reference: strong, weak, soft, and
so on. An ordinary instance variable that refers to an object is a strong reference.

Indefinite reference
This is the term I use for any special kind of references (e.g., soft or weak). An
indefinite reference is actually an instance of an object (e.g., an instance of the
SoftReference class).

Referent
Indefinite references work by embedding another reference (almost always a
strong reference) within an instance of the indefinite reference class. The encap‐
sulated object is called the referent.

Still, to many programmers this “feels” different. In fact, even the terminology reflects
that: no one speaks of “caching” a thread for reuse, but we will explore the reuse of
indefinite references in terms of caching the result of database operations.

The advantage to an indefinite reference over an object pool or a thread-local variable
is that indefinite references will be (eventually) reclaimed by the garbage collector. If
an object pool contains the last 10,000 stock lookups that have been performed and
the heap starts running low, the application is out of luck: whatever heap space
remains after those 10,000 elements are stored is all the remaining heap the applica‐
tion can use. If those lookups are stored via indefinite references, the JVM can free up
some space (depending on the type of reference), giving better GC throughput.

The disadvantage is that indefinite references have a slightly greater effect on the effi‐
ciency of the garbage collector. Figure 7-6 shows a side-by-side comparison of the
memory used without and with an indefinite reference (in this case, a soft reference).

The object being cached occupies 512 bytes. On the left, that’s all the memory con‐
sumed (absent the memory for the instance variable pointing to the object). On the
right, the object is being cached inside a SoftReference object, which adds 40 bytes
of memory consumption. Indefinite references are just like any other object: they
consume memory, and other things (the cachedValue variable on the right side of the
diagram) reference them strongly.

232 | Chapter 7: Heap Memory Best Practices



So the first impact on the garbage collector is that indefinite references cause the
application to use more memory. A second, bigger impact on the garbage collector is
that it takes at least two GC cycles for the indefinite reference object to be reclaimed
by the garbage collector.

Figure 7-6. Memory allocated by indefinite reference

Figure 7-7 shows what happens when a referent is no longer strongly referenced (i.e.,
the lastViewed variable has been set to null). If no references to the StockHistory
object exist, it is freed during the next GC that processes the generation where that
object resides. So the left side of the diagram now consumes 0 bytes.

On the right side of the diagram, memory is still consumed. The exact point at which
the referent gets freed varies by the type of the indefinite reference, but for now let’s
take the case of a soft reference. The referent will stick around until the JVM decides
that the object has not been used recently enough. When that happens, the first GC
cycle frees the referent—but not the indefinite reference object itself. The application
ends up with the memory state shown in Figure 7-8.
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Figure 7-7. Indefinite references retain memory through GC cycles

Figure 7-8. Indefinite references are not cleared immediately
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The indefinite reference object itself now has (at least) two strong references to it: the
original strong reference(s) created by the application, and a new strong reference
(created by the JVM) on a reference queue. All of these strong references must be
cleared before the indefinite reference object itself can be reclaimed by the garbage
collector.

Typically, this cleanup is done by whatever code is processing the reference queue.
That code will get notified that a new object is on the queue and immediately remove
all strong references to that object. Then, during the next GC cycle, the indefinite ref‐
erence object (referent) will get freed. In the worst case, that reference queue will not
be processed immediately, and there can be many GC cycles before everything is
cleaned up. Even in the best case, though, the indefinite reference has to go through
two GC cycles before it is freed.

Depending on the type of indefinite reference, some important variations to this gen‐
eral algorithm exist, but all indefinite references have this penalty to some degree.

GC Logs and Reference Handling
When running an application that uses a lot of indefinite references, consider adding
the -XX:+PrintReferenceGC flag (which is false by default). This allows you to see
how much time is spent processing those references:

[GC[SoftReference, 0 refs, 0.0000060 secs]
        [WeakReference, 238425 refs, 0.0236510 secs]
        [FinalReference, 4 refs, 0.0000160 secs]
        [PhantomReference, 0 refs, 0.0000010 secs]
        [JNI Weak Reference, 0.0000020 secs]
        [PSYoungGen: 271630K->17566K(305856K)]
        271630K->17566K(1004928K), 0.0797140 secs]
        [Times: user=0.16 sys=0.01, real=0.08 secs]

In this case, the use of 238,425 weak references added 23 ms to the young collection.

Soft references
Soft references are used when the object in question has a good chance of being reused
in the future, but you want to let the garbage collector reclaim the object if it hasn’t
been used recently (a calculation that also takes into consideration the amount of
memory the heap has available). Soft references are essentially one large, least
recently used (LRU) object pool. The key to getting good performance from them is
to make sure that they are cleared on a timely basis.

Here is an example. The stock server can set up a global cache of stock histories keyed
by their symbol (or symbol and date). When a request comes in for the stock history
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of TPKS from 9/1/19 to 12/31/19, the cache can be consulted to see if the result from a
similar request is already there.

The reason to cache that data is that requests tend to come in for certain items more
often than for others. If TPKS is the most requested stock, it can be expected to remain
in the soft reference cache. On the other hand, a lone request for KENG will live in the
cache for a while but eventually be reclaimed. This also accounts for requests over
time: a cluster of requests for DNLD can reuse the result from the first request. As users
realize that DNLD is a bad investment, those cached items will eventually age out of the
heap.

When, exactly, is a soft reference freed? First the referent must not be strongly refer‐
enced elsewhere. If the soft reference is the only remaining reference to its referent,
the referent is freed during the next GC cycle only if the soft reference has not
recently been accessed. Specifically, the equation functions like this pseudocode:

long ms = SoftRefLRUPolicyMSPerMB * AmountOfFreeMemoryInMB;
if (now - last_access_to_reference > ms)
   free the reference

This code has two key values. The first value is set by the
-XX:SoftRefLRUPolicyMSPerMB=N flag, which has a default value of 1,000.

The second value is the amount of free memory in the heap (once the GC cycle has
completed). The free memory in the heap is calculated based on the maximum possi‐
ble size of the heap minus whatever is in use.

So how does that all work? Take the example of a JVM using a 4 GB heap. After a full
GC (or a concurrent cycle), the heap might be 50% occupied; the free heap is there‐
fore 2 GB. The default value of SoftRefLRUPolicyMSPerMB (1,000) means that any
soft reference that has not been used for the past 2,048 seconds (2,048,000 ms) will be
cleared: the free heap is 2,048 (in megabytes), which is multiplied by 1,000:

   long ms = 2048000; // 1000 * 2048
   if (System.currentTimeMillis() - last_access_to_reference_in_ms > ms)
       free the reference

If the 4 GB heap is 75% occupied, objects not accessed in the last 1,024 seconds are
reclaimed, and so on.

To reclaim soft references more frequently, decrease the value of the SoftRefLRU
PolicyMSPerMB flag. Setting that value to 500 means that a JVM with a 4 GB heap that
is 75% full will reclaim objects not accessed in the past 512 seconds.

Tuning this flag is often necessary if the heap fills up quickly with soft references. Say
that the heap has 2 GB free and the application starts to create soft references. If it
creates 1.7 GB of soft references in less than 2,048 seconds (roughly 34 minutes),
none of those soft references will be eligible to be reclaimed. There will be only 300
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MB of space left in the heap for other objects; GC will occur frequently as a result
(yielding bad overall performance).

If the JVM completely runs out of memory or starts thrashing too severely, it will
clear all soft references, since the alternative would be to throw an
OutOfMemoryError. Not throwing the error is good, but indiscriminately throwing
away all the cached results is probably not ideal. Hence, another time to lower the
SoftRefLRUPolicyMSPerMB value is when the reference processing GC logs indicates
that a very large number of soft references are being cleared unexpectedly. As dis‐
cussed in “GC overhead limit reached” on page 214, that will occur only after four
consecutive full GC cycles (and if other factors apply).

On the other side of the spectrum, a long-running application can consider raising
that value if two conditions are met:

• A lot of free heap is available.
• The soft references are infrequently accessed.

That is an unusual situation. It is similar to a situation discussed about setting GC
policies: you may think that if the soft reference policy value is increased, you are tell‐
ing the JVM to discard soft references only as a last resort. That is true, but you’ve
also told the JVM not to leave any headroom in the heap for normal operations, and
you are likely to end up spending too much time in GC instead.

The caution, then, is not to use too many soft references, since they can easily fill up
the entire heap. This caution is even stronger than the caution against creating an
object pool with too many instances: soft references work well when the number of
objects is not too large. Otherwise, consider a more traditional object pool with a
bounded size, implemented as an LRU cache.

Weak references
Weak references should be used when the referent in question will be used by several
threads simultaneously. Otherwise, the weak reference is too likely to be reclaimed by
the garbage collector: objects that are only weakly referenced are reclaimed at every
GC cycle.

This means that weak references never get into the state shown (for soft references) in
Figure 7-7. When the strong references are removed, the weak reference is immedi‐
ately freed. Hence, the program state moves directly from Figure 7-6 to Figure 7-8.

The interesting effect here, though, is where the weak reference ends up in the heap.
Reference objects are just like other Java objects: they are created in the young gener‐
ation and eventually promoted to the old generation. If the referent of the weak refer‐
ence is freed while the weak reference itself is still in the young generation, the weak
reference will be freed quickly (at the next minor GC). (This assumes that the
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reference queue is quickly processed for the object in question.) If the referent
remains around long enough for the weak reference to be promoted into the old gen‐
eration, the weak reference will not be freed until the next concurrent or full GC
cycle.

Using the cache of the stock server as an example, let’s say we know that if a particular
client accesses TPKS, they are almost always likely to access it again. It makes sense to
keep the values for that stock as a strong reference based on the client connection: it
will always be there for them, and as soon as they log out, the connection is cleared
and the memory reclaimed.

Now when another user comes along and needs data for TPKS, how will they find it?
Since the object is in memory somewhere, we don’t want to look it up again, but also
the connection-based cache doesn’t work for this second user. So in addition to keep‐
ing a strong reference to the TPKS data based on the connection, it makes sense to
keep a weak reference to that data in a global cache. Now the second user will be able
to find the TPKS data—assuming that the first user has not closed their connection.
(This is the scenario used in “Heap Analysis” on page 203 where the data had two
references and wasn’t easily found by looking at objects with the largest retained
memory.)

This is what is meant by simultaneous access. It is as if we are saying to the JVM:
“Hey, as long as someone else is interested in this object, let me know where it is, but
if they no longer need it, throw it away and I will re-create it myself.” Compare that to
a soft reference, which essentially says: “Hey, try to keep this around as long as there
is enough memory and as long as it seems that someone is occasionally accessing it.”

Not understanding this distinction is the most frequent performance issue that
occurs when using weak references. Don’t make the mistake of thinking that a weak
reference is just like a soft reference except that it is freed more quickly: a softly refer‐
enced object will be available for (usually) minutes or even hours, but a weakly refer‐
enced object will be available for only as long as its referent is still around (subject to
the next GC cycle clearing it).

Indefinite References and Collections
Collection classes are frequently the source of memory leaks in Java: an application
puts objects into (for example) a HashMap object and never removes them. Over time,
the hash map grows ever larger, consuming the heap.

One way developers like to handle this situation is with a collection class that holds
indefinite references. The JDK provides two such classes: WeakHashMap and
WeakIdentityMap. Custom collection classes based on soft (and other) references are
available from many third-party sources (including sample implementations of JSR
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166, such as the one used for the examples of how to create and store canonical
objects).

Using these classes is convenient, but be aware that they have two costs. First, as dis‐
cussed throughout this section, indefinite references can have a negative effect on the
garbage collector. Second, the class itself must periodically perform an operation to
clear all the unreferenced data in the collection (i.e., that class is responsible for pro‐
cessing the reference queue of the indefinite references it stores).

The WeakHashMap class, for instance, uses weak references for its keys. When the
weakly referenced key is no longer available, the WeakHashMap code must clear out the
value in the map that used to be associated with that key. That operation is carried out
every time the map is referenced: the reference queue for the weak key is processed,
and the value associated with any key on the reference queue is removed from the
map.

This has two performance implications. First, the weak reference and its associated
value won’t actually be freed until the map is used again. So if the map is used infre‐
quently, the memory associated with the map won’t be freed as quickly as desired.

Second, the performance of operations on the map is unpredictable. Normally, opera‐
tions on a hash map are fast; that’s why the hash map is so popular. The operation on
a WeakHashMap immediately after a GC will have to process the reference queue; that
operation no longer has a fixed, short time. So even if the keys are freed somewhat
infrequently, performance will be difficult to predict. Worse, if the keys in the map are
freed quite frequently, the performance of the WeakHashMap can be quite bad.

Collections based on indefinite references can be useful, but they should be
approached with caution. If it is feasible, have the application manage the collection
itself.

Finalizers and final references

Every Java class has a finalize() method inherited from the Object class; that
method can be used to clean up data after the object is eligible for GC. That sounds
like a nice feature, and it is required in a few circumstances. In practice, it turns out
to be a bad idea, and you should try hard not to use this method.

Finalizers are so bad that the finalize() method is deprecated in JDK 11 (though
not in JDK 8). We’ll get into the details of why finalizers are bad in the rest of this
section, but first, a little motivation. Finalizers were originally introduced into Java to
address problems that can arise when the JVM manages the life cycle of objects. In a
language like C++, where you must explicitly destroy an object when you no longer
need it, the deconstructor for the object could clean up the state of that object. In
Java, when the object is automatically reclaimed as it goes out of scope, the finalizer
served as the deconstructor.
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The JDK, for example, uses a finalizer in its classes that manipulates ZIP files, because
opening a ZIP file uses native code that allocates native memory. That memory is
freed when the ZIP file is closed, but what happens if the developer forgets to call the
close() method? The finalizer can ensure that the close() method has been called,
even if the developer forgets that.

Numerous classes in JDK 8 use finalizers like that, but in JDK 11, they all use a differ‐
ent mechanism: Cleaner objects. Those are discussed in the next section. If you have
your own code and are tempted to use a finalizer (or are running on JDK 8 where the
cleaner mechanism is not available), read on for ways to cope with them.

Finalizers are bad for functional reasons, and they are also bad for performance.
Finalizers are actually a special case of an indefinite reference: the JVM uses a private
reference class (java.lang.ref.Finalizer, which in turn is a java.lang.ref.Final
Reference) to keep track of objects that have defined a finalize() method. When
an object that has a finalize() method is allocated, the JVM allocates two objects:
the object itself and a Finalizer reference that uses the object as its referent.

As with other indefinite references, it takes at least two GC cycles before the indefi‐
nite reference object can be freed. However, the penalty here is much greater than
with other indefinite reference types. When the referent of a soft or weak reference is
eligible for GC, the referent itself is immediately freed; that leads to the memory use
previously shown in Figure 7-8. The weak or soft reference is placed on the reference
queue, but the reference object no longer refers to anything (that is, its get() method
returns null rather than the original referent). In the case of soft and weak refer‐
ences, the two-cycle penalty for GC applies only to the reference object itself (and not
the referent).

This is not the case for final references. The implementation of the Finalizer class
must have access to the referent in order to call the referent’s finalize() method, so
the referent cannot be freed when the finalizer reference is placed on its reference
queue. When the referent of a finalizer becomes eligible for collection, the program
state is reflected by Figure 7-9.

When the reference queue processes the finalizer, the Finalizer object (as usual) will
be removed from the queue and then be eligible for collection. Only then will the ref‐
erent also be freed. This is why finalizers have a much greater performance effect on
GC than other indefinite references—the memory consumed by the referent can be
much more significant than the memory consumed by the indefinite reference object.
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Figure 7-9. Finalizer references retain more memory

This leads to the functional problem with finalizers, which is that the finalize()
method can inadvertently create a new strong reference to the referent. That again
causes a GC performance penalty: now the referent won’t be freed until it is no longer
strongly referenced again. And functionally it creates a big problem, because the next
time the referent is eligible to be collected, its finalize() method won’t be called,
and the expected cleanup of the referent won’t happen. This kind of error is reason
enough for finalizers to be used as seldom as possible.

As a rule, then, if you are in a situation where a finalizer is unavoidable, make sure
that the memory accessed by the object is kept to a minimum.

An alternative to using finalizers exists that avoids at least some of these problems—
and in particular, allows the referent to be freed during normal GC operations. This is
accomplished by simply using another kind of indefinite reference rather than
implicitly using a Finalizer reference.

It is sometimes recommended to use yet another indefinite reference type for this: the
PhantomReference class. (In fact, that’s what JDK 11 does, and if you’re on JDK 11,
the Cleaner object will be much easier to use than the example presented here, which
is really useful only in JDK 8.) That’s a good choice, because the reference object will
be cleaned up relatively quickly after the referent is no longer strongly referenced,
and while debugging, the purpose of the reference is clear. Still, the same goal can be
achieved with a weak reference (plus, the weak reference can be used in more places).
And in certain circumstances, a soft reference could be used if the caching semantics
of the soft reference match the need of the application.
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To create a substitute finalizer, you must create a subclass of the indefinite reference
class to hold any information that needs to be cleaned up after the referent has been
collected. Then you perform the cleanup in a method of the reference object (as
opposed to defining a finalize() method in the referent class).

Here is the outline of such a class, which uses a weak reference. The constructor here
allocates a native resource. Under normal usage, the setClosed() method is expected
to be called; that will clean up the native memory.

private static class CleanupFinalizer extends WeakReference {

    private static ReferenceQueue<CleanupFinalizer> finRefQueue;
    private static HashSet<CleanupFinalizer> pendingRefs = new HashSet<>();

    private boolean closed = false;

    public CleanupFinalizer(Object o) {
        super(o, finRefQueue);
        allocateNative();
        pendingRefs.add(this);
    }

    public void setClosed() {
        closed = true;
        doNativeCleanup();
    }

    public void cleanup() {
        if (!closed) {
            doNativeCleanup();
        }
    }

    private native void allocateNative();
    private native void doNativeCleanup();
}

However, the weak reference is also placed on a reference queue. When the reference
is pulled from the queue, it can check to make sure the native memory has been
cleaned up (and clean it if it has not).

Processing of the reference queue happens in a daemon thread:

static {
    finRefQueue = new ReferenceQueue<>();
    Runnable r = new Runnable() {
        public void run() {
            CleanupFinalizer fr;
            while (true) {
                try {
                    fr = (CleanupFinalizer) finRefQueue.remove();
                    fr.cleanup();
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                    pendingRefs.remove(fr);
                } catch (Exception ex) {
                    Logger.getLogger(
                           CleanupFinalizer.class.getName()).
                           log(Level.SEVERE, null, ex);
                }
            }
        }
    };
    Thread t = new Thread(r);
    t.setDaemon(true);
    t.start();
}

All of that is in a private static inner class hidden from the developer using the
actual class, which looks like this:

public class CleanupExample {
    private CleanupFinalizer cf;
    private HashMap data = new HashMap();

    public CleanupExample() {
        cf = new CleanupFinalizer(this);
    }

    ...methods to put things into the hashmap...

    public void close() {
        data = null;
        cf.setClosed();
    }
}

Developers construct this object just as they would any other object. They are told to
call the close() method, which will clean up the native memory—but if they don’t,
it’s OK. The weak reference still exists behind the scenes, so the CleanupFinalizer
class has its own chance to clean up that memory when the inner class processes the
weak reference.

The one tricky part of this example is the need for the pendingRefs set of weak refer‐
ences. Without that, the weak references themselves will be collected before there is
the chance to put them onto the reference queue.

This example overcomes two limitations of the traditional finalizer: it offers better
performance, because the memory associated with the referent object (the data hash
map in this case) is released as soon as the referent is collected (rather than doing that
in the finalizer() method), and there is no way for the referent object to be resur‐
rected in the cleanup code, since it has already been collected.
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Still, other objections that apply to the use of finalizers apply to this code as well: you
can’t ensure the garbage collector will ever get around to freeing the referent, nor that
the reference queue thread will ever process any particular object on the queue. If
there are a large number of these objects, processing that reference queue will be
expensive. Like all indefinite references, this example should still be used sparingly.

The Finalizer Queue
The finalizer queue is the reference queue used to process the Finalizer references
when the referent is eligible for GC.

When performing heap dump analysis, it is often convenient to make sure that no
objects are on the finalizer queue: those objects are about to be freed anyway, so elim‐
inating them from the heap dump will make it easier to see what else is occurring in
the heap. You can cause the finalizer queue to be processed by executing this
command:

% jcmd process_id GC.run_finalization

To monitor the finalizer queue to see if it might be an issue for an application, look
for its size (which is updated in real time) on the VM Summary tab of jconsole.
Scripts can gather that information by running this command:

% jmap -finalizerinfo process_id

Cleaner objects

In JDK 11, it’s much easier to use the new java.lang.ref.Cleaner class in place of
the finalize() method. This class uses the PhantomReference class to get notified
when the object is no longer strongly reachable. This follows the same concepts as the
CleanupFinalizer class I just suggested for use in JDK 8, but because it’s a core fea‐
ture of the JDK, developers needn’t worry about setting up thread processing and
their own references: they simply register the appropriate objects that the cleaner
should process and let the core libraries take care of the rest.

From a performance standpoint, the tricky part here is getting the “appropriate”
object to register with the cleaner. The cleaner will keep a strong reference to the reg‐
istered object, so by itself, that object will never become phantom reachable. Instead,
you create a sort of shadow object and register that.

As an example, let’s look at the java.util.zip.Inflater class. This class needs some
sort of cleanup because it must free the native memory it allocated during its process‐
ing. This cleanup code is executed when the end() method is called, and developers
are encouraged to call that method when they are done with the object. But when the
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1 If the end() method is not called eagerly and we rely on GC to clear the native memory, we’ll still have the
appearance of a native memory leak; see Chapter 8 for more details.

object is discarded, we must ensure that the end() method has been called; otherwise,
we’ll end up with a native memory leak.1

In pseudocode, the Inflater class looks like this:

public class java.util.zip.Inflater {
    private static class InflaterZStreamRef implements Runnable {
        private long addr;
        private final Cleanable cleanable;
        InflaterZStreamRef(Inflater owner, long addr) {
            this.addr = addr;
            cleanable = CleanerFactory.cleaner().register(owner, this);
        }

        void clean() {
            cleanable.clean();
        }

        private static native void freeNativeMemory(long addr);
        public synchronized void run() {
            freeNativeMemory(addr);
        }
    }

    private InflaterZStreamRef zsRef;

    public Inflater() {
        this.zsRef = new InflaterZStreamRef(this, allocateNativeMemory());
    }

    public void end() {
        synchronized(zsRef) {
            zsRef.clean();
        }
    }
}

This code is simpler than the actual implementation, which (for compatibility rea‐
sons) has to keep track of subclasses that might override the end() method, and of
course the native memory allocation is more complex. The point to understand here
is that the inner class provides an object that Cleaner can strongly reference. The
outer class (the owner) argument that is also registered with the cleaner provides the
trigger: when it is only phantom reachable, the cleaner is triggered, and it can use the
saved strong reference as the hook to do the cleanup.
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Note that the inner class here is static. Otherwise, it would contain an implicit refer‐
ence to the Inflater class itself, and then the Inflater object could never become
phantom reachable: there would always be a strong reference from the Cleaner to the
InflaterZStreamRef object and a strong reference from that to the Inflater object.
As a rule, the object that will be doing the cleanup cannot contain a reference to the
object that needs to be cleaned up. For that reason, developers are discouraged from
using a lambda rather than a class, as it is again too easy for the lambda to reference
the enclosing class.

Quick Summary

• Indefinite (soft, weak, phantom, and final) references alter the
ordinary life cycle of Java objects, allowing them to be reused
in ways that may be more GC-friendly than pools or thread-
local variables.

• Weak references should be used when an application is inter‐
ested in an object but only if that object is strongly referenced
elsewhere in the application.

• Soft references hold onto objects for (possibly) long periods of
time, providing a simple GC-friendly LRU cache.

• Indefinite references consume their own memory and hold
onto memory of other objects for long periods of time; they
should be used sparingly.

• Finalizers are a special type of reference originally designed for
object cleanup; their use is discouraged in favor of the new
Cleaner class.

Compressed Oops
Using simple programming, 64-bit JVMs are slower than 32-bit JVMs. This perfor‐
mance gap is because of the 64-bit object references: the 64-bit references take up
twice the space (8 bytes) in the heap as 32-bit references (4 bytes). That leads to more
GC cycles, since there is now less room in the heap for other data.

The JVM can compensate for that additional memory by using compressed oops.
Oops stands for ordinary object pointers, which are the handles the JVM uses as object
references. When oops are only 32 bits long, they can reference only 4 GB of memory
(232), which is why a 32-bit JVM is limited to a 4 GB heap size. (The same restriction
applies at the operating system level, which is why any 32-bit process is limited to 4
GB of address space.) When oops are 64 bits long, they can reference exabytes of
memory, or far more than you could ever actually get into a machine.
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There is a middle ground here: what if there were 35-bit oops? Then the pointer
could reference 32 GB of memory (235) and still take up less space in the heap than
64-bit references. The problem is that there aren’t 35-bit registers in which to store
such references. Instead, though, the JVM can assume that the last 3 bits of the refer‐
ence are all 0. Now every reference can be stored in 32 bits in the heap. When the
reference is stored into a 64-bit register, the JVM can shift it left by 3 bits (adding
three zeros at the end). When the reference is saved from a register, the JVM can
right-shift it by 3 bits, discarding the zeros at the end.

This leaves the JVM with pointers that can reference 32 GB of memory while using
only 32 bits in the heap. However, it also means that the JVM cannot access any
object at an address that isn’t divisible by 8, since any address from a compressed oop
ends with three zeros. The first possible oop is 0x1, which when shifted becomes 0x8.
The next oop is 0x2, which when shifted becomes 0x10 (16). Objects must therefore
be located on an 8-byte boundary.

It turns out that objects are already aligned on an 8-byte boundary in the JVM; this is
the optimal alignment for most processors. So nothing is lost by using compressed
oops. If the first object in the JVM is stored at location 0 and occupies 57 bytes, the
next object will be stored at location 64—wasting 7 bytes that cannot be allocated.
That memory trade-off is worthwhile (and will occur whether compressed oops are
used or not), because the object can be accessed faster given that 8-byte alignment.

But that is the reason that the JVM doesn’t try to emulate a 36-bit reference that could
access 64 GB of memory. In that case, objects would have to be aligned on a 16-byte
boundary, and the savings from storing the compressed pointer in the heap would be
outweighed by the amount of memory that would be wasted between the memory-
aligned objects.

This has two implications. First, for heaps that are between 4 GB and 32 GB, use com‐
pressed oops. Compressed oops are enabled using the -XX:+UseCompressedOops flag;
they are enabled by default whenever the maximum heap size is less than 32 GB. (In
“Reducing Object Size” on page 215, it was noted that the size of an object reference
on a 64-bit JVM with a 32 GB heap is 4 bytes—which is the default case since com‐
pressed oops are enabled by default.)

Second, a program that uses a 31 GB heap and compressed oops will usually be faster
than a program that uses a 33 GB heap. Although the 33 GB heap is larger, the extra
space used by the pointers in that heap means that the larger heap will perform more-
frequent GC cycles and have worse performance.

Hence, it is better to use heaps that are less than 32 GB, or heaps that are at least a few
GB larger than 32 GB. Once extra memory is added to the heap to make up for the
space used by the uncompressed references, the number of GC cycles will be reduced.
No hard rule indicates the amount of memory needed before the GC impact of the

Object Life-Cycle Management | 247



uncompressed oops is ameliorated—but given that 20% of an average heap might be
used for object references, planning on at least 38 GB is a good start.

Quick Summary

• Compressed oops are enabled by default whenever they are
most useful.

• A 31 GB heap using compressed oops will often outperform
slightly larger heaps that are too big to use compressed oops.

Summary
Fast Java programs depend crucially on memory management. Tuning GC is impor‐
tant, but to obtain maximum performance, memory must be utilized effectively
within applications.

For a while, hardware trends tended to dissuade developers from thinking about
memory: if my laptop has 16 GB of memory, how concerned need I be with an object
that has an extra, unused 8-byte object reference? In a cloud world of memory-
limited containers, that concern is again obvious. Still, even when we run applications
with large heaps on large hardware, it’s easy to forget that the normal time/space
trade-off of programming can swing to a time/space-and-time trade-off: using too
much space in the heap can make things slower by requiring more GC. In Java, man‐
aging the heap is always important.

Much of that management centers around when and how to use special memory
techniques: object pools, thread-local variables, and indefinite references. Judicious
use of these techniques can vastly improve the performance of an application, but
overuse of them can just as easily degrade performance. In limited quantities—when
the number of objects in question is small and bounded—the use of these memory
techniques can be quite effective.
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CHAPTER 8

Native Memory Best Practices

The heap is the largest consumer of memory in a Java application, but the JVM will
allocate and use a large amount of native memory. And while Chapter 7 discussed
ways to efficiently manage the heap from a programmatic point of view, the configu‐
ration of the heap and how it interacts with the native memory of the operating sys‐
tem is another important factor in the overall performance of an application. There’s
a terminology conflict here, since C programmers tend to refer to portions of their
native memory as the C heap. In keeping with a Java-centric worldview, we’ll con‐
tinue to use heap to refer to the Java heap, and native memory to refer to the non-heap
memory of the JVM, including the C heap.

This chapter discusses these aspects of native (or operating system) memory. We start
with a discussion of the entire memory use of the JVM, with a goal of understanding
how to monitor that usage for performance issues. Then we’ll discuss various ways to
tune the JVM and operating system for optimal memory use.

Footprint
The heap (usually) accounts for the largest amount of memory used by the JVM, but
the JVM also uses memory for its internal operations. This nonheap memory is
native memory. Native memory can also be allocated in applications (via JNI calls to
malloc() and similar methods, or when using New I/O, or NIO). The total of native
and heap memory used by the JVM yields the total footprint of an application.

From the point of view of the operating system, this total footprint is the key to per‐
formance. If enough physical memory to contain the entire total footprint of an
application is not available, performance may begin to suffer. The operative word
here is may. Parts of native memory are used only during startup (for instance, the
memory associated with loading the JAR files in the classpath), and if that memory is
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swapped out, it won’t necessarily be noticed. Some of the native memory used by one
Java process is shared with other Java processes on the system, and some smaller part
is shared with other kinds of processes on the system. For the most part, though, for
optimal performance you want to be sure that the total footprint of all Java processes
does not exceed the physical memory of the machine (plus you want to leave some
memory available for other applications).

Measuring Footprint
To measure the total footprint of a process, you need to use an operating-system-
specific tool. In Unix-based systems, programs like top and ps can show you that data
at a basic level; on Windows, you can use perfmon or VMMap. No matter which tool
and platform are used, you need to look at the actual allocated memory (as opposed
to the reserved memory) of the process.

The distinction between allocated and reserved memory comes about as a result of
the way the JVM (and all programs) manage memory. Consider a heap that is speci‐
fied with the parameters -Xms512m -Xmx2048m. The heap starts by using 512 MB, and
it will be resized as needed to meet the GC goals of the application.

That concept is the essential difference between committed (or allocated) memory
and reserved memory (sometimes called the virtual size of a process). The JVM must
tell the operating system that it might need as much as 2 GB of memory for the heap,
so that memory is reserved: the operating system promises that when the JVM
attempts to allocate additional memory when it increases the size of the heap, that
memory will be available.

Still, only 512 MB of that memory is allocated initially, and that 512 MB is all of the
memory that is being used (for the heap). That (actually allocated) memory is known
as the committed memory. The amount of committed memory will fluctuate as the
heap resizes; in particular, as the heap size increases, the committed memory corre‐
spondingly increases.

Is Over-Reserving a Problem?
When we look at performance, only committed memory really matters: a perfor‐
mance problem never results from reserving too much memory.

However, sometimes you want to make sure that the JVM does not reserve too much
memory. This is particularly true for 32-bit JVMs. Since the maximum process size of
a 32-bit application is 4 GB (or less, depending on the operating system), over-
reserving memory can be an issue. A JVM that reserves 3.5 GB of memory for the
heap is left with only 0.5 GB of native memory for its stacks, code cache, and so on. It
doesn’t matter if the heap expands to commit only 1 GB of memory: because of the
3.5 GB reservation, the amount of memory for other operations is limited to 0.5 GB.

250 | Chapter 8: Native Memory Best Practices



64-bit JVMs aren’t limited that way by the process size, but they are limited by the
total amount of virtual memory on the machine. Say you have a small server with 4
GB of physical memory and 10 GB of virtual memory, and start a JVM with a maxi‐
mum heap size of 6 GB. That will reserve 6 GB of virtual memory (plus more for non‐
heap memory sections). Regardless of how large that heap grows (and the memory
that is committed), a second JVM will be able to reserve only less than 4 GB of mem‐
ory on that machine.

All things being equal, it’s convenient to oversize JVM structures and let the JVM
optimally use that memory. But it isn’t always feasible.

This difference applies to almost all significant memory that the JVM allocates. The
code cache grows from an initial to a maximum value as more code gets compiled.
Metaspace is allocated separately from the heap and grows between its initial (com‐
mitted) size and its maximum (reserved) size.

Thread stacks are an exception to this. Every time the JVM creates a thread, the OS
allocates some native memory to hold that thread’s stack, committing more memory
to the process (until the thread exits at least). Thread stacks, though, are fully alloca‐
ted when they are created.

In Unix systems, the footprint of an application can be estimated by the resident set
size (RSS) of the process as reported by various OS tools. That value is a good esti‐
mate of the amount of committed memory a process is using, though it is inexact in
two ways. First, the few pages that are shared at the OS level between JVM and other
processes (that is, the text portions of shared libraries) are counted in the RSS of each
process. Second, a process may have committed more memory than it paged in at any
moment. Still, tracking the RSS of a process is a good first-pass way to monitor the
total memory use. On more recent Linux kernels, the PSS is a refinement of the RSS
that removes the data shared by other programs.

On Windows systems, the equivalent idea is called the working set of an application,
which is what is reported by the task manager.

Minimizing Footprint
To minimize the footprint used by the JVM, limit the amount of memory used by the
following:

Heap
The heap is the biggest chunk of memory, though surprisingly it may take up
only 50% to 60% of the total footprint. Using a smaller maximum heap (or set‐
ting the GC tuning parameters such that the heap never fully expands) limits the
program’s footprint.
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Thread stacks
Thread stacks are quite large, particularly for a 64-bit JVM. See Chapter 9 for
ways to limit the amount of memory consumed by thread stacks.

Code cache
The code cache uses native memory to hold compiled code. As discussed in
Chapter 4, this can be tuned (though performance will suffer if all the code can‐
not be compiled because of space limitations).

Native library allocations
Native libraries can allocate their own memory, which can sometimes be
significant.

The next few sections discuss how to monitor and reduce these areas.

Quick Summary

• The total footprint of the JVM has a significant effect on its
performance, particularly if physical memory on the machine
is constrained. Footprint is another aspect of performance
tests that should be commonly monitored.

Native Memory Tracking
The JVM provides bounded visibility into how it allocates native memory. It is
important to realize that this tracking applies to the memory allocated by the code
JVM itself, but it does not include any memory allocated by a native library used by
the application. This includes both third-party native libraries and the native libraries
(e.g., libsocket.so) that ship with the JDK itself.

Using the option -XX:NativeMemoryTracking=off|summary|detail enables this visi‐
bility. By default, Native Memory Tracking (NMT) is off. If the summary or detail
mode is enabled, you can get the native memory information at any time from jcmd:

% jcmd process_id VM.native_memory summary

If the JVM is started with the argument -XX:+PrintNMTStatistics (by default,
false), the JVM will print out information about the allocation when the program
exits.

Here is the summary output from a JVM running with a 512 MB initial heap size and
a 4 GB maximum heap size:

Native Memory Tracking:

 Total: reserved=5947420KB, committed=620432KB
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Although the JVM has made memory reservations totaling 5.9 GB, it has used much
less than that: only 620 MB. This is fairly typical (and one reason not to pay particular
attention to the virtual size of the process displayed in OS tools, since that reflects
only the memory reservations).

This memory usage breaks down as follows. The heap itself is (unsurprisingly) the
largest part of the reserved memory at 4 GB. But the dynamic sizing of the heap
meant it grew only to 268 MB (in this case, the heap sizing was -Xms256m -Xmx4g, so
the actual heap usage has expanded only a small amount):

-                 Java Heap (reserved=4194304KB, committed=268288KB)
                            (mmap: reserved=4194304KB, committed=268288KB)

Next is the native memory used to hold class metadata. Again, note that the JVM has
reserved more memory than it used to hold the 24,316 classes in the program. The
committed size here will start at the value of the MetaspaceSize flag and grow as
needed until it reaches the value of the MaxMetaspaceSize flag:

-                     Class (reserved=1182305KB, committed=150497KB)
                            (classes #24316)
                            (malloc=2657KB #35368)
                            (mmap: reserved=1179648KB, committed=147840KB)

Seventy-seven thread stacks were allocated at about 1 MB each:

-                    Thread (reserved=84455KB, committed=84455KB)
                            (thread #77)
                            (stack: reserved=79156KB, committed=79156KB)
                            (malloc=243KB, #314)
                            (arena=5056KB, #154)

Then comes the JIT code cache: 24,316 classes is not very many, so just a small sec‐
tion of the code cache is committed:

-                      Code (reserved=102581KB, committed=15221KB)
                            (malloc=2741KB, #4520)
                            (mmap: reserved=99840KB, committed=12480KB)

Next is the area outside the heap that GC algorithm uses for its processing. The size
of this area depends on the GC algorithm in use: the (simple) serial collector will
reserve far less than the more complex G1 GC algorithm (though, in general, the
amount here will never be very large):

-                        GC (reserved=199509KB, committed=53817KB)
                            (malloc=11093KB #18170)
                            (mmap: reserved=188416KB, committed=42724KB)

Similarly, this area is used by the compiler for its operations, apart from the resulting
code placed in the code cache:
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-                  Compiler (reserved=162KB, committed=162KB)
                            (malloc=63KB, #229)
                            (arena=99KB, #3)

Internal operations of the JVM are represented here. Most of them tend to be small,
but one important exception is direct byte buffers, which are allocated here:

-                  Internal (reserved=10584KB, committed=10584KB)
                            (malloc=10552KB #32851)
                            (mmap: reserved=32KB, committed=32KB)

Symbol table references (constants from class files) are held here:

-                    Symbol (reserved=12093KB, committed=12093KB)
                            (malloc=10039KB, #110773)
                            (arena=2054KB, #1)

NMT itself needs some space for its operation (which is one reason it is not enabled
by default):

-    Native Memory Tracking (reserved=7195KB, committed=7195KB)
                            (malloc=16KB #199)
                            (tracking overhead=7179KB)

Finally, here are some minor bookkeeping sections of the JVM:

-               Arena Chunk (reserved=188KB, committed=188KB)
                            (malloc=188KB)
-                   Unknown (reserved=8192KB, committed=0KB)
                            (mmap: reserved=8192KB, committed=0KB)

Detailed Memory Tracking Information
If the JVM is started with -XX:NativeMemoryTracking=detail, then jcmd (with a
final detail argument) will provide detailed information about the native memory
allocation. That includes a map of the entire memory space, which includes lines like
this:

0x00000006c0000000 - 0x00000007c0000000] reserved 4194304KB for Java Heap
        from [ReservedSpace::initialize(unsigned long, unsigned long,
                            bool, char*, unsigned long, bool)+0xc2]
        [0x00000006c0000000 - 0x00000006fb100000] committed 967680KB
            from [PSVirtualSpace::expand_by(unsigned long)+0x53]
        [0x000000076ab00000 - 0x00000007c0000000] committed 1397760KB
            from [PSVirtualSpace::expand_by(unsigned long)+0x53]

The 4 GB of heap space was reserved in the initialize() function, with two alloca‐
tions from that made in the expand_by() function.

That kind of information is repeated for the entire process space. It provides interest‐
ing clues if you are a JVM engineer, but for the rest of us, the summary information is
useful enough.
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Overall, NMT provides two key pieces of information:

Total committed size
The total committed size of the JVM is (ideally) close to the amount of physical
memory that the process will consume. This, in turn, should be close to the RSS
(or working set) of the application, but those OS-provided measurements don’t
include any memory that has been committed but paged out of the process. In
fact, if the RSS of the process is less than the committed memory, that is often an
indication that the OS is having difficulty fitting all of the JVM in physical
memory.

Individual committed sizes
When it is time to tune maximum values—of the heap, the code cache, and the
metaspace—it is helpful to know how much of that memory the JVM is using.
Overallocating those areas usually leads only to harmless memory reservations,
though when reserved memory is important, NMT can help track down where
those maximum sizes can be trimmed.

On the other hand, as I noted at the beginning of this section, NMT does not provide
visibility into the native memory use of shared libraries, so in some cases the total
process size will be larger than the committed size of the JVM data structures.

NMT over time
NMT also allows you to track how memory allocations occur over time. After the
JVM is started with NMT enabled, you can establish a baseline for memory usage
with this command:

% jcmd process_id VM.native_memory baseline

That causes the JVM to mark its current memory allocations. Later, you can compare
the current memory usage to that mark:

% jcmd process_id VM.native_memory summary.diff
Native Memory Tracking:

Total:  reserved=5896078KB  -3655KB, committed=2358357KB -448047KB

-             Java Heap (reserved=4194304KB, committed=1920512KB -444927KB)
                        (mmap: reserved=4194304KB, committed=1920512KB -444927KB)
....

In this case, the JVM has reserved 5.8 GB of memory and is presently using 2.3 GB.
That committed size is 448 MB less than when the baseline was established. Similarly,
the committed memory used by the heap has declined by 444 MB (and the rest of the
output could be inspected to see where else the memory use declined to account for
the remaining 4 MB).
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1 This is mostly a historical artifact: these libraries were developed before NIO and largely duplicate its func‐
tionality.

This is a useful technique to examine the footprint of the JVM over time.

NMT Auto Disabling
In the NMT output, we saw that NMT itself requires native memory. In addition,
enabling NMT will create background threads that assist with memory tracking.

If the JVM becomes severly stressed for memory or CPU resources, NMT will auto‐
matically turn itself off to save resources. This is usually a good thing—unless the
stressed situation is what you need to diagnose. In that case, you can make sure that
NMT keeps running by disabling the -XX:-AutoShutdownNMT flag (by default, true).

Quick Summary

• Native Memory Tracking (NMT) provides details about the
native memory usage of the JVM. From an operating system
perspective, that includes the JVM heap (which to the OS is
just a section of native memory).

• The summary mode of NMT is sufficient for most analysis
and allows you to determine how much memory the JVM has
committed (and what that memory is used for).

Shared Library Native Memory
From an architectural perspective, NMT is part of HotSpot: the C++ engine that runs
the Java bytecode of your application. That is underneath the JDK itself, so it does not
track allocations by anything at the JDK level. Those allocations come from shared
libraries (those loaded by the System.loadLibrary() call).

Shared libraries are often thought of as third-party extensions of Java: for instance,
the Oracle WebLogic Server has several native libraries that it uses to handle I/O
more efficiently than the JDK.1 But the JDK itself has several native libraries, and like
all shared libraries, these are outside the view of NMT.

Hence, native memory leaks—where the RSS or working set of an application contin‐
ually grows overtime—are usually not detected by NMT. The memory pools that
NMT monitors all generally have an upper bound (e.g., the maximum heap size).
NMT is useful in telling us which of those pools is using a lot of memory (and hence
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which need to be tuned to use less memory), but an application that is leaking native
memory without bound is typically doing so because of issues in a native library.

No Java-level tools can really help us detect where an application is using native
memory from shared libraries. OS-level tools can tell us that the working set of the
process is continually growing, and if a process grows to have a working set of 10 GB
and NMT tells us that the JVM has committed only 6 GB of memory, we know that
the other 4 GB of memory must come from native library allocations.

Figuring out which native library is responsible requires OS-level tools rather than
tools from the JDK. Various debugging versions of malloc can be used for this pur‐
pose. These are useful to a point, though often native memory is allocated via an mmap
call, and most libraries to track malloc calls will miss those.

A good alternative is a profiler that can profile native code as well as Java code. For
example, in Chapter 3 we discussed the Oracle Studio Profiler, which is a mixed-
language profiler. That profiler has an option to trace memory allocations as well—
one caveat is that it can track only the memory allocations of the native code and not
the Java code, but that’s what we’re after in this case.

Figure 8-1 shows the native allocation view within the Studio Profiler.

Figure 8-1. Profiling of native memory

This call graph shows us that the WebLogic native function mapFile has used mmap to
allocate about 150 GB of native memory into our process. This is a little misleading:
multiple mappings to that file exist, and the profiler isn’t quite smart enough to real‐
ize that they are sharing the actual memory: if there were, for example, 100 mappings
of that 15 GB file, the memory usage increases by only 15 GB. (And, to be frank, I
purposely corrupted that file to make it that large; this is in no way reflective of actual
usage.) Still, the native profiler has pointed to the location of the issue.

Within the JDK itself, two common operations can lead to large amounts of native
memory usage: the use of Inflater and Deflater objects, and the use of NIO buf‐
fers. Even without profiling, there are ways to detect if these operations are causing
your native memory growth.
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Native memory and inflaters/deflaters

The Inflater and Deflater classes perform various kinds of compression: zip, gzip,
and so on. They can be used directly or implicitly via various input streams. These
various algorithms use platform-specific native libraries to carry out their operations.
Those libraries can allocate a significant amount of native memory.

When you use one of these classes, you are supposed to—as the documentation says
—call the end() method when the operation is complete. Among other things, that
frees the native memory used by the object. If you are using a stream, you are sup‐
posed to close the stream (and the stream class will call the end() method on its
internal object).

If you forget to call the end() method, all is not lost. Recall from Chapter 7 that all
objects have a cleanup mechanism exactly for this situation: the finalize() method
(in JDK 8) or the Cleaner associated with the object (in JDK 11) can call the end()
method when the Inflater object is collected. So you’re not going to leak native
memory here; eventually, the objects will be collected and finalized, and the native
memory will be freed.

Still, this can take a long time. The size of the Inflater object is relatively small, and
in an application with a large heap that rarely performs a full GC, it’s easy enough for
these objects to get promoted into the old generation and stick around for hours. So
even if there is technically not a leak—the native memory will eventually get freed
when the application performs a full GC—failure to call the end() operation here can
have all the appearances of a native memory leak.

For that matter, if the Inflater object itself is leaking in the Java code, then the native
memory will be actually leaking.

So when a lot of native memory is leaking, it can be helpful to take a heap dump of
the application and look for these Inflater and Deflater objects. Those objects
likely won’t be causing an issue in the heap itself (they are too small for that), but a
large number of them will indicate that there is significant usage of native memory.

Native NIO buffers
NIO byte buffers allocate native (off-heap) memory if they are created via the
allocateDirect() method of the ByteBuffer class or the map() method of the File
Channel class.

Native byte buffers are important from a performance perspective, since they allow
native code and Java code to share data without copying it. Buffers used for filesystem
and socket operations are the most common example. Writing data to a native NIO
buffer and then sending that data to the channel (e.g., the file or socket) requires no
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copying of data between the JVM and the C library used to transmit the data. If a
heap byte buffer is used instead, contents of the buffer must be copied by the JVM.

The allocateDirect() method call is expensive; direct byte buffers should be reused
as much as possible. The ideal situation occurs when threads are independent and
each can keep a direct byte buffer as a thread-local variable. That can sometimes use
too much native memory if many threads need buffers of variable sizes, since eventu‐
ally each thread will end up with a buffer at the maximum possible size. For that kind
of situation—or when thread-local buffers don’t fit the application design—an object
pool of direct byte buffers may be more useful.

Byte buffers can also be managed by slicing them. The application can allocate one
very large direct byte buffer, and individual requests can allocate a portion out of that
buffer by using the slice() method of the ByteBuffer class. This solution can
become unwieldy when the slices are not always the same size: the original byte buffer
can then become fragmented in the same way the heap becomes fragmented when
allocating and freeing objects of different sizes. Unlike the heap, however, the individ‐
ual slices of a byte buffer cannot be compacted, so this solution works well only when
all the slices are a uniform size.

From a tuning perspective, one thing to realize with any of these programming mod‐
els is that the amount of direct byte buffer space that an application can allocate can
be limited by the JVM. The total amount of memory that can be allocated for direct
byte buffers is specified by setting the -XX:MaxDirectMemorySize=N flag. The default
value for this flag in current JVMs is 0. The meaning of that limit has been the subject
of frequent changes, but in later versions of Java 8 (and all versions of Java 11), the
maximum limit is equal to the maximum heap size: if the maximum heap size is 4
GB, you can also create 4 GB of off-heap memory in direct and/or mapped byte buf‐
fers. You can increase the value past the maximum heap value if you need to.

The memory allocated for direct byte buffers is included in the Internal section of
the NMT report; if that number is large, it is almost always because of these buffers. If
you want to know exactly how much the buffers themselves are consuming, mbeans
keep track of that. Inspecting the mbean java.nio.BufferPool.direct.Attributes
or java.nio.BufferPool.mapped.Attributes will show you the amount of memory
each type has allocated. Figure 8-2 shows a case where we’ve mapped 10 buffers total‐
ing 10 MB of space.
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Figure 8-2. Inspecting byte buffer native memory

Linux System Memory Leaking
Large Linux systems can sometimes exhibit a native memory leak due to the design of
their memory allocation libraries. These libraries partition the native memory into
allocation segments, which benefits allocation by multiple threads (since it limits lock
contention).

Native memory, though, is not managed like the Java heap: in particular, native mem‐
ory is never compacted. Hence, allocation patterns in native memory can lead to the
same fragmentation as described in Chapter 5.

It is possible to run out of native memory in Java because of native memory fragmen‐
tation; this occurs most often on larger systems (e.g., those with more than eight
cores) since the number of memory partitions in Linux is a function of the number of
cores in the system.

Two things can help diagnose this problem: first, the application will thrown an
OutOfMemoryError saying it is out of native memory. Second, if you look at the smaps
file of the process, it will show many small (usually 64 KB) allocations. In this case,
the remedy is to set the environment variable MALLOC_ARENA_MAX to a small number
like 2 or 4. The default value of that variable is the number of cores on the system
multiplied by 8 (which is why the problem is more frequently seen on large systems).
Native memory will still be fragmented in this case, but the fragmentation should be
less severe.

Quick Summary

• If an application seems to be using too much native memory, it
is likely from native libraries rather than the JVM itself.

• Native profiles can be effective in pinpointing the source of
these allocations.

• A few common JDK classes can often contribute to native
memory usage; make sure to use these classes correctly.
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JVM Tunings for the Operating System
The JVM can use several tunings to improve the way it uses OS memory.

Large Pages
Discussions about memory allocation and swapping occur in terms of pages. A page
is a unit of memory used by operating systems to manage physical memory. It is the
minimum unit of allocation for the operating system: when 1 byte is allocated, the
operating system must allocate an entire page. Further allocations for that program
come from that same page until it is filled, at which point a new page is allocated.

The operating system allocates many more pages than can fit in physical memory,
which is why there is paging: pages of the address space are moved to and from swap
space (or other storage depending on what the page contains). This means there must
be some mapping between these pages and where they are currently stored in the
computer’s RAM. Those mappings are handled in two ways. All page mappings are
held in a global page table (which the OS can scan to find a particular mapping), and 
the most frequently used mappings are held in translation lookaside buffers (TLBs).
TLBs are held in a fast cache, so accessing pages through a TLB entry is much faster
than accessing it through the page table.

Machines have a limited number of TLB entries, so it becomes important to maxi‐
mize the hit rate on TLB entries (it functions as a least recently used cache). Since
each entry represents a page of memory, increasing the page size used by an applica‐
tion is often advantageous. If each page represents more memory, fewer TLB entries
are required to encompass the entire program, and it is more likely that a page will be
found in the TLB when required. This is true in general for any program, and so is
also true specifically for things like Java application servers or other Java programs
with even a moderately sized heap.

Large pages must be enabled at both the Java and OS levels. At the Java level, the
-XX:+UseLargePages flag enables large page use; by default, this flag is false. Not all
operating systems support large pages, and the way to enable them obviously varies.

If the UseLargePages flag is enabled on a system that does not support large pages,
no warning is given, and the JVM uses regular pages. If the UseLargePages flag is
enabled on a system that does support large pages, but for which no large pages are
available (either because they are already all in use or because the operating system is
misconfigured), the JVM will print a warning.
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Linux huge (large) pages
Linux refers to large pages as huge pages. The configuration of huge pages on Linux
varies somewhat from release to release; for the most accurate instructions, consult
the documentation for your release. But the general procedure is this:

1. Determine which huge page sizes the kernel supports. The size is based on the
computer’s processor and the boot parameters given when the kernel has started,
but the most common value is 2 MB:

# grep Hugepagesize /proc/meminfo
Hugepagesize:       2048 kB

2. Figure out how many huge pages are needed. If a JVM will allocate a 4 GB heap
and the system has 2 MB huge pages, 2,048 huge pages will be needed for that
heap. The number of huge pages that can be used is defined globally in the Linux
kernel, so repeat this process for all the JVMs that will run (plus any other pro‐
grams that will use huge pages). You should overestimate this value by 10% to
account for other nonheap uses of huge pages (so the example here uses 2,200
huge pages).

3. Write out that value to the operating system (so it takes effect immediately):
# echo 2200 > /proc/sys/vm/nr_hugepages

4. Save that value in /etc/sysctl.conf so that it is preserved after rebooting:
sys.nr_hugepages=2200

5. On many versions of Linux, the amount of huge page memory that a user can
allocate is limited. Edit the /etc/security/limits.conf file and add memlock entries
for the user running your JVMs (e.g., in the example, the user appuser):

appuser soft    memlock        4613734400
appuser hard    memlock        4613734400

If the limits.conf file is modified, the user must log in again for the value to take effect.
At this point, the JVM should be able to allocate the necessary huge pages. To verify
that it works, run the following command:

# java -Xms4G -Xmx4G -XX:+UseLargePages -version
java version "1.8.0_201"
Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)

Successful completion of that command indicates that the huge pages are configured
correctly. If the huge page memory configuration is not correct, a warning will be
given:

Java HotSpot(TM) 64-Bit Server VM warning:
Failed to reserve shared memory (errno = 22).

The program runs in that case; it just uses regular instead of large pages.
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Linux transparent huge pages
Linux kernels starting with version 2.6.32 support transparent huge pages. These offer
(in theory) the same performance benefit as traditional huge pages, but they have
some differences from traditional huge pages.

First, traditional huge pages are locked into memory; they can never be swapped. For
Java, this is an advantage, since as we’ve discussed, swapping portions of the heap is
bad for GC performance. Transparent huge pages can be swapped to disk, which is
bad for performance.

Second, allocation of a transparent huge page is also significantly different from a tra‐
ditional huge page. Traditional huge pages are set aside at kernel boot time; they are
always available. Transparent huge pages are allocated on demand: when the applica‐
tion requests a 2 MB page, the kernel will attempt to find 2 MB of contiguous space in
physical memory for the page. If physical memory is fragmented, the kernel may
decide to take time to rearrange pages in a process similar to the by-now-familiar
compacting of memory in the Java heap. This means that the time to allocate a page
may be significantly longer as it waits for the kernel to finish making room for the
memory.

This affects all programs, but for Java it can lead to very long GC pauses. During GC,
the JVM may decide to expand the heap and request new pages. If that page alloca‐
tion takes a few hundred milliseconds or even a second, the GC time is significantly
affected.

Third, transparent huge pages are configured differently at both the OS and Java lev‐
els. The details of that follow.

At the operating system level, transparent huge pages are configured by changing the
contents of /sys/kernel/mm/transparent_hugepage/enabled:

# cat /sys/kernel/mm/transparent_hugepage/enabled
always [madvise] never
# echo always > /sys/kernel/mm/transparent_hugepage/enabled
# cat /sys/kernel/mm/transparent_hugepage/enabled
[always] madvise never

The three choices here are as follows:

always

All programs are given huge pages when possible.

madvise

Programs that request huge pages are given them; other programs get regular
(4 KB) pages.

never

No program gets huge pages, even when they request them.
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Different versions of Linux have a different default value for that setting (and it is
subject to change in future releases). Ubuntu 18.04 LTS, for example, sets the default
to madvise, but CentOS 7 (and vendor releases like Red Hat and Oracle Enterprise
Linux based on that) sets it to always. Be aware also that on cloud machines, the sup‐
plier of the OS image may have changed that value; I’ve seen Ubuntu images that also
set the value to always.

If the value is set to always, no configuration is needed at the Java level: the JVM will
be given huge pages. In fact, all programs that run on the system will run in huge
pages.

If the value is set to madvise and you want the JVM to use huge pages, specify the
UseTransparentHugePages flag (by default, false). Then the JVM will make the
appropriate request when it allocates pages and be given huge pages.

Predictably, if the value is set to never, no Java-level argument will allow the JVM to
get huge pages. Unlike traditional huge pages, though, no warning is given if you
specify the UseTransparentHugePages flag and the system cannot provide them.

Because of the differences in swapping and allocation of transparent huge pages, they
are often not recommended for use with Java; certainly their use can lead to unpre‐
dictable spikes in pause times. On the other hand, particularly on systems where they
are enabled by default, you will—transparently, as advertised—see performance bene‐
fits most of the time when using them. If you want to be sure to get the smoothest
performance with huge pages, though, you are better off setting the system to use
transparent huge pages only when requested and configuring traditional huge pages
for use by your JVM.

Windows large pages
Windows large pages can be enabled on only server-based Windows versions. Exact
instructions for Windows 10 are given here; variations exist among releases:

1. Start the Microsoft Management Center. Click the Start button, and in the Search
box, type mmc.

2. If the left panel does not display a Local Computer Policy icon, select Add/
Remove Snap-in from the File menu and add the Group Policy Object Editor. If
that option is not available, the version of Windows in use does not support large
pages.

3. In the left panel, expand Local Computer Policy → Computer Configuration →
Windows Settings → Security Settings → Local Policies and click the User Rights
Assignment folder.

4. In the right panel, double-click “Lock pages in memory.”
5. In the pop-up, add the user or group.
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6. Click OK.
7. Quit the MMC.
8. Reboot.

At this point, the JVM should be able to allocate the necessary large pages. To verify
that it works, run the following command:

# java -Xms4G -Xmx4G -XX:+UseLargePages -version
java version "1.8.0_201"
Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)

If the command completes successfully like that, large pages are set up correctly. If
the large memory configuration is incorrect, a warning is given:

Java HotSpot(TM) Server VM warning: JVM cannot use large page memory
because it does not have enough privilege to lock pages in memory.

Remember that the command will not print an error on a Windows system (such as
“home” versions) that does not support large pages: once the JVM finds out that large
pages are not supported on the OS, it sets the UseLargePages flag to false, regardless
of the command-line setting.

Quick Summary

• Using large pages will usually measurably speed up
applications.

• Large page support must be explicitly enabled in most operat‐
ing systems.

Summary
Although the Java heap is the memory region that gets the most attention, the entire
footprint of the JVM is crucial to its performance, particularly in relation to the oper‐
ating system. The tools discussed in this chapter allow you to track that footprint over
time (and, crucially, to focus on the committed memory of the JVM rather than the
reserved memory).

Certain ways that the JVM uses OS memory—particularly large pages—can also be
tuned to improve performance. Long-running JVMs will almost always benefit from
using large pages, particularly if they have large heaps.
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CHAPTER 9

Threading and Synchronization
Performance

From its first days, some of Java’s appeal has been because it is multithreaded. Even in
the days before multicore and multi-CPU systems were the norm, the ability to easily
write threaded programs in Java has been considered one of its hallmark features.

In performance terms, the appeal is obvious: if two CPUs are available, an application
might be able to do twice as much work or the same amount of work twice as fast.
This assumes that the task can be broken into discrete segments, since Java is not an
autoparallelizing language that will figure out the algorithmic parts. Fortunately,
computing today is often about discrete tasks: a server handling simultaneous
requests from discrete clients, a batch job performing the same operation on a series
of data, mathematical algorithms that break into constituent parts, and so on.

This chapter explores how to get the maximum performance out of Java threading
and synchronization facilities.

Threading and Hardware
Recall the discussion from Chapter 1 about multicore systems and hyper-threaded
systems. Threading at the software level allows us to take advantage of a machine’s
multiple cores and hyper-threads.

Doubling the cores on a machine allows us to double the performance of our cor‐
rectly written application, though as we discussed in Chapter 1, adding hyper-
threading to a CPU does not double its performance.

Almost all examples in this chapter are run on a machine with four single-threaded
CPUs—the exception being the first example that shows the difference between
hyper-threaded and non-hyper-threaded CPUs. After that, we will look at scaling
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only in terms of single-threaded CPU cores so that we can better understand the per‐
formance effects of adding threads. That is not to say that hyper-threaded CPUs aren’t
important; the 20%–40% performance boost from that extra hardware thread will
certainly improve the overall performance or throughput of your application. From a
Java perspective, we should still consider the hyper-threads as actual CPUs and tune
our application running on a four-core, eight hyper-thread machine as if it had eight
CPUs. But from a measurement perspective, we should be expecting only a five-to-six
times improvement compared to a single core.

Thread Pools and ThreadPoolExecutors
Threads can be managed by custom code in Java, or applications can utilize a thread
pool. Java servers are typically built around the notion of one or more thread pools to
handle requests: each call into the server is handled by a (potentially different) thread
from the pool. Similarly, other applications can use Java’s ThreadPoolExecutor to
execute tasks in parallel.

In fact, some server frameworks use instances of the ThreadPoolExecutor class to
manage their tasks, though many have written their own thread pools (if only because
they predate the addition of ThreadPoolExecutor to the Java API). Although the
implementation of the pools in these cases might differ, the basic concepts are the
same, and both are discussed in this section.

The key factor in using a thread pool is that tuning the size of the pool is crucial to
getting the best performance. Thread pool performance varies depending on basic
choices about thread pool size, and under certain circumstances an oversized thread
pool will be detrimental to performance.

All thread pools work in essentially the same way. Tasks are submitted to a queue
(there can be more than one queue, but the concept is the same). Then a certain
number of threads picks up tasks from the queue and executes them. The result of the
task can be sent back to the client (e.g., in the case of a server), stored in a database,
stored in an internal data structure, or whatever. But after finishing the task, the
thread returns to the task queue to retrieve another job to execute (and if there are no
more tasks to perform, the thread waits for a task).

Thread pools have a minimum and maximum number of threads. The minimum
number of threads is kept around, waiting for tasks to be assigned to them. Because
creating a thread is a fairly expensive operation, this speeds up the overall operation
when a task is submitted: it is expected that an already existing thread can pick it up.
On the other hand, threads require system resources—including native memory for
their stacks—and having too many idle threads can consume resources that could be
used by other processes. The maximum number of threads also serves as a necessary
throttle, preventing too many tasks from executing at once.
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The terminology of the ThreadPoolExecutor and related classes is somewhat differ‐
ent. These classes refer to a core pool size and maximum pool size, and the meaning
of those terms varies depending on how the pool is constructed. Sometimes the core
pool size is the minimum pool size, sometimes it is the maximum pool size, and
sometimes it is ignored altogether. Similarly, sometimes the maximum pool size is the
maximum size, but sometimes it is ignored.

Details are given at the end of this section, but to keep things simple, we’ll set the core
and maximum sizes the same for our tests and refer to only a maximum size. The
thread pools in the examples therefore always have the given number of threads.

Setting the Maximum Number of Threads
Let’s address the maximum number of threads first: what is the optimal maximum
number of threads for a given workload on given hardware? There is no simple
answer; it depends on characteristics of the workload and the hardware on which it is
run. In particular, the optimal number of threads depends on how often each individ‐
ual task will block.

We’ll use a machine with four single-threaded CPUs for this discussion. Note that it
doesn’t matter if the system has only four cores, if it has 128 cores but you want to
utilize only four of them, or if you have a Docker container limiting the CPU usage to
four: the goal is to maximize the usage of those four cores.

Clearly, then, the maximum number of threads must be set to at least four. Granted,
some threads in the JVM are doing things other than processing these tasks, but these
threads will almost never need an entire core. One exception is if a concurrent mode
garbage collector is being used as discussed in Chapter 5—the background threads
there must have enough CPU (cores) to operate, lest they fall behind in processing
the heap.

Does it help to have more than four threads? This is where the characteristics of the
workload come into play. Take the simple case where the tasks are all compute-
bound: they don’t make external network calls (e.g., to a database), nor do they have
significant contention on an internal lock. The stock price history batch program is
such an application (when using a mock entity manager): the data on the entities can
be calculated completely in parallel.

Table 9-1 shows the performance of calculating the history of 10,000 mock stock enti‐
ties using a thread pool set to use the given number of threads on a machine with
four cores. With only a single thread in the pool, 55.2 seconds are needed to calculate
the data set; with four threads, only 13.9 seconds are required. After that, a little more
time is needed as threads are added.
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Table 9-1. Time required to calculate 10,000 mock price histories

Number of threads Seconds required Percent of baseline
1 55.2 ± 0.6 100%

2 28.3 ± 0.3 51.2%

4 13.9 ± 0.6 25.1%

8 14.3 ± 0.2 25.9%

16 14.5 ± 0.3 26.2%

If the tasks in the application were completely parallel, the “Percent of baseline” col‐
umn would show 50% for two threads and 25% for four threads. Such completely lin‐
ear scaling is impossible to come by for several reasons: if nothing else, the threads
must coordinate among themselves to pick a task from the run queue (and in general,
there is usually more synchronization among the threads). By the time four threads
are used, the system is consuming 100% of available CPU, and although the machine
may not be running any other user-level applications, various system-level processes
will kick in and use some CPU, preventing the JVM from utilizing all 100% of the
cycles. Still, this application is doing a good job of scaling, and even if the number of
threads in the pool is overestimated, we have only a slight penalty to pay.

The Effect of Hyper-Threading
What if those four CPUs were hyper-threaded so that we have two cores and four
hardware threads? Table 9-2 shows the same experiment on such a machine. As in the
previous example, this appears to the JVM as a four-core machine, but the scaling of
the benchmark is quite different.

Table 9-2. Time required to calculate 10,000 mock price histories with hyper-threading

Number of threads Seconds required Percent of baseline
1 55.7 ± 0.1 100%

2 28.1 ± 0.4 50.4%

4 25.5 ± 0.4 45.7%

8 25.7 ± 0.2 46.1%

16 26.0 ± 0.2 46.6%

Now the program scales well from one to two CPUs, since they are both full cores.
But adding two hyper-threads gives us only a little benefit. This is the worst-case sce‐
nario; the benefit of hyper-threading is more apparent if the threads pause for I/O or
wait for a lock held by another thread. Still, adding a hyper-thread will usually give
only a 20% improvement.
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In other circumstances, though, the penalty for too many threads can be larger. In the
REST version of the stock history calculator, having too many threads has a bigger
effect, as is shown in Table 9-3. The application server is configured to have the given
number of threads, and a load generator is sending 16 simultaneous requests to the
server.

Table 9-3. Operations per second for mock stock prices through a REST server

Number of threads Operations per second Percent of baseline
1 46.4 27%

4 169.5 100%

8 165.2 97%

16 162.2 95%

Given that the REST server has four available CPUs, maximum throughput is
achieved with that many threads in the pool.

Chapter 1 discussed the need to determine where the bottleneck is when investigating
performance issues. In this example, the bottleneck is clearly the CPU: at four CPUs,
the CPU is 100% utilized. Still, the penalty for adding more threads in this case is
somewhat minimal, at least until there are four times too many threads.

But what if the bottleneck is elsewhere? This example is also somewhat unusual in
that the tasks are completely CPU-bound: they do no I/O. Typically, the threads
might be expected to make calls to a database or write their output somewhere or
even rendezvous with another resource. In that case, the CPU won’t necessarily be the
bottleneck: that external resource might be.

When that is the case, adding threads to the thread pool is detrimental. Although I
said (only somewhat tongue in cheek) in Chapter 1 that the database is always the
bottleneck, the bottleneck can be any external resource.

As an example, consider the stock REST server with the roles reversed: what if the
goal is to make optimal use of the load generator machine (which, after all, is simply
running a threaded Java program)?

In typical usage, if the REST application is run in a server with four CPUs and has
only a single client requesting data, the REST server will be about 25% busy, and the
client machine will be almost idle. If the load is increased to four concurrent clients,
the server will be 100% busy, and the client machine may be only 20% busy.

Looking only at the client, it is easy to conclude that because the client has a lot of
excess CPU, it should be possible to add more threads to the client and improve its
throughput. Table 9-4 shows how wrong that assumption is: when threads are added
to the client, performance is drastically affected.
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Table 9-4. Average response time for calculating mock stock price histories

Number of client threads Average response time Percent of baseline
1 0.022 second 100%

2 0.022 second 100%

4 0.024 second 109%

8 0.046 second 209%

16 0.093 second 422%

32 0.187 second 885%

Once the REST server is the bottleneck in this example (i.e., at four client threads),
adding load into the server is quite harmful.

This example may seem somewhat contrived. Who would add more client threads
when the server is already CPU-bound? But I’ve used this example simply because it
is easy to understand and uses only Java programs. You can run it yourself to under‐
stand how it works, without having to set up database connections and schemas and
whatnot.

The point is that the same principle holds here for a REST server that is sending
requests to a database that is CPU- or I/O-bound. You might look only at the server’s
CPU, see that is it well below 100% and that it has additional requests to process, and
assume that increasing the number of threads in the server is a good idea. That would
lead to a big surprise, because increasing the number of threads in that situation will
actually decrease the total throughput (and possibly significantly), just as increasing
the number of client threads did in the Java-only example.

This is another reason it is important to know where the actual bottleneck in a system
is: if load is increased into the bottleneck, performance will decrease significantly.
Conversely, if load into the current bottleneck is reduced, performance will likely
increase.

This is also why self-tuning of thread pools is difficult. Thread pools usually have
some visibility into the amount of work that they have pending and perhaps even
how much CPU the machine has available—but they usually have no visibility into
other aspects of the entire environment in which they are executing. Hence, adding
threads when work is pending—a key feature of many self-tuning thread pools (as
well as certain configurations of the ThreadPoolExecutor)—is often exactly the
wrong thing to do.

In Table 9-4, the default configuration of the REST server was to create 16 threads on
the four-CPU machine. That makes sense in a general default case, because the
threads can be expected to make external calls. When those calls block waiting for a
response, other tasks can be run, and the server will require more than four threads
in order to execute those tasks. So a default that creates a few too many threads is a
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reasonable compromise: it will have a slight penalty for tasks that are primarily CPU-
bound, and it will allow increased throughput for running multiple tasks that per‐
form blocking I/O. Other servers might have created 32 threads by default, which
would have had a bigger penalty for our CPU-bound test, but also had a bigger
advantage for handling a load that is primarily I/O bound.

Unfortunately, this is also why setting the maximum size of a thread pool is often
more art than science. In the real world, a self-tuning thread pool may get you 80% to
90% of the possible performance of the system under test, and overestimating the
number of threads needed in a pool may exact only a small penalty. But when things
go wrong with this sizing, they can go wrong in a big way. Adequate testing in this
regard is, unfortunately, still a key requirement.

Setting the Minimum Number of Threads
Once the maximum number of threads in a thread pool has been determined, it’s
time to determine the minimum number of threads needed. To cut to the chase, it
rarely matters, and for simplicity sake in almost all cases, you can set the minimum
number of threads to the same value as the maximum.

The argument for setting the minimum number of threads to another value (e.g., 1) is
that it prevents the system from creating too many threads, which saves on system
resources. It is true that each thread requires a certain amount of memory, particu‐
larly for its stack (which is discussed later in this chapter). Again, though, following
one of the general rules from Chapter 2, the system needs to be sized to handle the
maximum expected throughput, at which point it will need to create all those threads.
If the system can’t handle the maximum number of threads, choosing a small mini‐
mum number of threads doesn’t really help: if the system does hit the condition that
requires the maximum number of threads (and which it cannot handle), the system
will certainly be in the weeds. Better to create all the threads that might eventually be
needed and ensure that the system can handle the maximum expected load.

Should You Pre-create Threads?
By default, when you create a ThreadPoolExecutor, it will start with only one thread.
Consider a configuration where the pool asks for eight core threads and sixteen maxi‐
mum threads; in that case, the core setting could be considered a minimum, since
eight threads will be kept running even if they are idle. But those eight threads still
won’t be created when the pool is created; they are created on demand, and then kept
running.

In a server, that means the first eight requests will be slightly delayed while the thread
is created. As you’ve seen in this section, that effect is minor, but you can pre-create
those threads (using the prestartAllCoreThreads() method).
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On the other hand, the downside to specifying a minimum number of threads is
fairly nominal. That downside occurs the first time there are multiple tasks to exe‐
cute: then the pool will need to create a new thread. Creating threads is detrimental to
performance—which is why thread pools are needed in the first place—but this one-
time cost for creating the thread is likely to be unnoticed as long as it then remains in
the pool.

In a batch application, it does not matter whether the thread is allocated when the
pool is created (which is what will occur if you set the minimum and maximum num‐
ber of threads to the same value) or whether the thread is allocated on demand: the
time to execute the application will be the same. In other applications, the new
threads are likely allocated during the warm-up period (and again, the total time to
allocate the threads is the same); the effect on the performance of an application will
be negligible. Even if the thread creation occurs during the measurement cycle, as
long as the thread creation is limited, it will likely not be noticed.

One other tuning that applies here is the idle time for a thread. Say that the pool is
sized with a minimum of one thread and a maximum of four. Now suppose that usu‐
ally one thread is executing a task, and then the application starts a cycle in which
every 15 seconds, the workload has on average two tasks to execute. The first time
through that cycle, the pool will create the second thread—and now it makes sense
for that second thread to stay in the pool for at least a certain period of time. You
want to avoid the situation in which that second thread is created, finishes its task in 5
seconds, is idle for 5 seconds, and then exits—since 5 seconds later, a second thread
will be needed for the next task. In general, after a thread is created in a pool for a
minimum size, it should stick around for at least a few minutes to handle any spike in
load. To the extent that you have a good model of the arrival rate, you can base the
idle time on that. Otherwise, plan on the idle time being measured in minutes, at least
anywhere from 10 to 30.

Keeping idle threads around usually has little impact on an application. Usually, the
thread object itself doesn’t take a very large amount of heap space. The exception to
that rule is if the thread holds onto a large amount of thread-local storage or if a large
amount of memory is referenced through the thread’s runnable object. In either of
those cases, freeing a thread can offer significant savings in terms of the live data left
in the heap (which in turn affects the efficiency of GC).

These cases really should not happen for thread pools, however. When a thread in a
pool is idle, it should not be referencing any runnable object anymore (if it is, a bug
exists somewhere). Depending on the pool implementation, the thread-local variables
may remain in place—but while thread-local variables can be an effective way to pro‐
mote object reuse in certain circumstances (see Chapter 7), the total amount of mem‐
ory those thread-local objects occupy should be limited.
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One important exception to this rule is for thread pools that can grow to be very large
(and hence run on a very large machine). Say the task queue for a thread pool is
expected to average 20 tasks; 20 is then a good minimum size for the pool. Now say
the pool is running on a very large machine and that it is designed to handle a spike
of 2,000 tasks. Keeping 2,000 idle threads around in this pool will affect its perfor‐
mance when it is running only the 20 tasks—the throughput of this pool may be as
much as 50% when it contains 1,980 idle threads, as opposed to when it has only the
core 20 busy threads. Thread pools don’t usually encounter sizing issues like that, but
when they do, that’s a good time to make sure they have a good minimum value.

Thread Pool Task Sizes
The tasks pending for a thread pool are held in a queue or list; when a thread in the
pool can execute a task, it pulls a task from the queue. This can lead to an imbalance,
as the number of tasks on the queue could grow very large. If the queue is too large,
tasks in the queue will have to wait a long time until the tasks in front of them have
completed execution. Imagine a web server that is overloaded: if a task is added to the
queue and isn’t executed for 3 seconds, the user has likely moved on to another page.

As a result, thread pools typically limit the size of the queue of pending tasks. The
ThreadPoolExecutor does this in various ways, depending on the data structure it is
configured with (more on that in the next section); servers usually have a tuning
parameter to adjust this value.

As with the maximum size of the thread pool, no universal rule indicates how this
value should be tuned. A server with 30,000 items in its queue and four available
CPUs can clear the queue in 6 minutes if it takes only 50 ms to execute a task (assum‐
ing no new tasks arrive during that time). That might be acceptable, but if each task
requires 1 second to execute, it will take 2 hours to clear the queue. Once again,
measuring your actual application is the only way to be sure of what value will give
you the performance you require.

In any case, when the queue limit is reached, attempts to add a task to the queue will
fail. A ThreadPoolExecutor has a rejectedExecution() method that handles that
case (by default, it throws a RejectedExecutionException, but you can override that
behavior). Application servers should return a reasonable response to the user (with a
message that indicates what has happened), and REST servers should return a status
code of either 429 (too many requests) or 503 (service unavailable).

Sizing a ThreadPoolExecutor
The general behavior for a thread pool is that it starts with a minimum number of
threads, and if a task arrives when all existing threads are busy, a new thread is started
(up to the maximum number of threads) and the task is executed immediately. If the
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maximum number of threads have been started but they are all busy, the task is
queued, unless many tasks are pending already, in which case the task is rejected.
While that is the canonical behavior of a thread pool, the ThreadPoolExecutor can
behave somewhat differently.

The ThreadPoolExecutor decides when to start a new thread based on the type of
queue used to hold the tasks. There are three possibilities:

SynchronousQueue

When the executor uses SynchronousQueue, the thread pool behaves as expected
with respect to the number of threads: new tasks will start a new thread if all
existing threads are busy and if the pool has less than the number of maximum
threads. However, this queue has no way to hold pending tasks: if a task arrives
and the maximum number of threads is already busy, the task is always rejected.
So this choice is good for managing a small number of tasks, but otherwise may
be unsuitable. The documentation for this class suggests specifying a very large
number for the maximum thread size—which may be OK if the tasks are com‐
pletely I/O-bound but as we’ve seen may be counterproductive in other situa‐
tions. On the other hand, if you need a thread pool in which the number of
threads is easy to tune, this is the better choice.

In this case, the core value is the minimum pool size: the number of threads that
will be kept running even if they are idle. The maximum value is the maximum
number of threads in the pool.

This is the type of thread pool (with an unbounded maximum thread value)
returned by the newCachedThreadPool() method of the Executors class.

Unbounded queues
When the executor uses an unbounded queue (such as LinkedBlockedingQueue),
no task will ever be rejected (since the queue size is unlimited). In this case, the
executor will use at most the number of threads specified by the core thread pool
size: the maximum pool size is ignored. This essentially mimics a traditional
thread pool in which the core size is interpreted as the maximum pool size,
though because the queue is unbounded, it runs the risk of consuming too much
memory if tasks are submitted more quickly than they can be run.

This is the type of thread pool returned by the newFixedThreadPool() and newS
ingleThreadScheduledExecutor() methods of the Executors class. The core (or
maximum) pool size of the first case is the parameter passed to construct the
pool; in the second case, the core pool size is 1.

Bounded queues
Executors that use a bounded queue (e.g., ArrayBlockingQueue) employ a com‐
plicated algorithm to determine when to start a new thread. For example, say that
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the pool’s core size is 4, its maximum size is 8, and the maximum size of
ArrayBlockingQueue is 10. As tasks arrive and are placed in the queue, the pool
will run a maximum of 4 threads (the core pool size). Even if the queue com‐
pletely fills up—so that it is holding 10 pending tasks—the executor will utilize 4
threads.

An additional thread will be started only when the queue is full, and a new task is
added to the queue. Instead of rejecting the task (since the queue is full), the
executor starts a new thread. That new thread runs the first task on the queue,
making room for the pending task to be added to the queue.

In this example, the only way the pool will end up with 8 threads (its specified
maximum) is if there are 7 tasks in progress, 10 tasks in the queue, and a new
task is added to the queue.

The idea behind this algorithm is that the pool will operate with only the core
threads (four) most of the time, even if a moderate number of tasks is in the
queue waiting to be run. That allows the pool to act as a throttle (which is advan‐
tageous). If the backlog of requests becomes too great, the pool then attempts to
run more threads to clear out the backlog (subject to a second throttle, the maxi‐
mum number of threads).

If no external bottlenecks are in the system and CPU cycles are available, every‐
thing here works out: adding the new threads will process the queue faster and
likely bring it back to its desired size. So cases where this algorithm is appropriate
can certainly be constructed.

On the other hand, this algorithm has no idea why the queue size has increased.
If it is caused by an external backlog, adding more threads is the wrong thing to
do. If the pool is running on a machine that is CPU-bound, adding more threads
is the wrong thing to do. Adding threads will make sense only if the backlog
occurred because additional load came into the system (e.g., more clients started
making an HTTP request). (Yet if that is the case, why wait to add threads until
the queue size has reached a certain bound? If the additional resources are avail‐
able to utilize additional threads, adding them sooner will improve the overall
performance of the system.)

There are many arguments for and against each of these choices, but when attempt‐
ing to maximize performance, this is a time to apply the KISS principle: keep it sim‐
ple, stupid. As always, the needs of the application may dictate otherwise, but as a
general recommendation, don’t use the Executors class to provide default, unboun‐
ded thread pools that don’t allow you to control the application’s memory use.
Instead, construct your own ThreadPoolExecutor that has the same number of core
and maximum threads and utilizes an ArrayBlockingQueue to limit the number of
requests that can be held in memory waiting to be executed.
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Quick Summary

• Thread pools are one case where object pooling is a good
thing: threads are expensive to initialize, and a thread pool
allows the number of threads on a system to be easily
throttled.

• Thread pools must be carefully tuned. Blindly adding new
threads into a pool can, in some circumstances, degrade per‐
formance.

• Using simpler options for a ThreadPoolExecutor will usually
provide the best (and most predictable) performance.

The ForkJoinPool
In addition to the general-purpose ThreadPoolExecutors, Java provides a somewhat
special-purpose pool: the ForkJoinPool class. This class looks just like any other
thread pool; like the ThreadPoolExecutor class, it implements the Executor and
ExecutorService interfaces. When those interfaces are used, ForkJoinPool uses an
internal unbounded list of tasks that will be run by the number of threads specified in
its constructor. If no argument is passed to the constructor, the pool will size itself
based on the number of CPUs available on the machine (or based on the CPUs avail‐
able to the Docker container, if applicable).

The ForkJoinPool class is designed to work with divide-and-conquer algorithms:
those where a task can be recursively broken into subsets. The subsets can be pro‐
cessed in parallel, and then the results from each subset are merged into a single
result. The classic example of this is the quicksort sorting algorithm.

The important point about divide-and-conquer algorithms is that they create a lot of
tasks that must be managed by relatively few threads. Say that we want to sort an
array of 10 million elements. We start by creating separate tasks to perform three
operations: sort the subarray containing the first 5 million elements, sort the subarray
containing the second 5 million elements, and then merge the two subarrays.

The sorting of the 5-million-element arrays is similarly accomplished by sorting sub‐
arrays of 2.5 million elements and merging those arrays. This recursion continues
until at some point (e.g., when the subarray has 47 elements), it is more efficient to
use insertion sort on the array and sort it directly. Figure 9-1 shows how that all
works out.

In the end, we will have 262,144 tasks to sort the leaf arrays, each of which will have
47 (or fewer) elements. (That number—47—is algorithm-dependent and the subject
of a lot of analysis, but it is the number Java uses for quicksort.)
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Figure 9-1. Tasks in a recursive quicksort

An additional 131,072 tasks are needed to merge those sorted arrays, 65,536 addi‐
tional tasks to merge the next set of sorted arrays, and so on. In the end, there will be
524,287 tasks.

The larger point here is that none of the tasks can complete until the tasks that they
have spawned have also completed. The tasks directly sorting arrays of fewer than 47
elements must be completed first, and then tasks can merge the two small arrays that
they created, and so on: everything is merged up the chain until the entire array is
merged into its final, sorted value.

It isn’t possible to perform that algorithm efficiently using ThreadPoolExecutor,
because a parent task must wait for its child tasks to complete. A thread inside a
thread-pool executor cannot add another task to the queue and then wait for it to fin‐
ish: once the thread is waiting, it cannot be used to execute one of the subtasks.
ForkJoinPool, on the other hand, allows its threads to create new tasks and then sus‐
pend their current task. While the task is suspended, the thread can execute other
pending tasks.

Let’s take a simple example: say that we have an array of doubles, and the goal is to
count the number of values in the array that are less than 0.5. It’s trivial simply to scan
the array sequentially (and possibly advantageous, as you’ll see later in this section)—
but for now, it is instructive to divide the array into subarrays and scan them in paral‐
lel (emulating the more complex quicksort and other divide-and-conquer algo‐
rithms). Here’s an outline of the code to achieve that with a ForkJoinPool:
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private class ForkJoinTask extends RecursiveTask<Integer> {
    private int first;
    private int last;

    public ForkJoinTask(int first, int last) {
        this.first = first;
        this.last = last;
    }

    protected Integer compute() {
        int subCount;
        if (last - first < 10) {
            subCount = 0;
            for (int i = first; i <= last; i++) {
                if (d[i] < 0.5)
                    subCount++;
            }
        }
        else {
            int mid = (first + last) >>> 1;
            ForkJoinTask left = new ForkJoinTask(first, mid);
            left.fork();
            ForkJoinTask right = new ForkJoinTask(mid + 1, last);
            right.fork();
            subCount = left.join();
            subCount += right.join();
        }
        return subCount;
    }
}

The fork() and join() methods here are the key: we’d be hard-pressed to implement
this sort of recursion without those methods (which are not available in the tasks exe‐
cuted by ThreadPoolExecutor). Those methods use a series of internal, per-thread
queues to manipulate the tasks and switch threads from executing one task to execut‐
ing another. The details are transparent to the developer, though if you’re interested
in algorithms, the code makes fascinating reading. Our focus here is on the perfor‐
mance: what trade-offs exist between the ForkJoinPool and ThreadPoolExecutor
classes?

First and foremost is that the suspension implemented by the fork/join paradigm
allows all the tasks to be executed by only a few threads. Counting the double values
in an array of 2 million elements using this example code creates more than 4 million
tasks, but those tasks are easily executed by only a few threads (even one, if that
makes sense for the machine running the test). Running a similar algorithm using
ThreadPoolExecutor would require more than 4 million threads, since each thread
would have to wait for its subtasks to complete, and those subtasks could complete
only if additional threads were available in the pool. So the fork/join suspension
allows us to use algorithms that we otherwise could not, which is a performance win.
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On the other hand, a simple algorithm like this isn’t particularly well-suited for a real-
world use of the fork-join pool. This pool is ideally suited for the following cases:

• The merge part of the algorithm performs some interesting work (rather than
simply adding two numbers as in this example).

• The leaf calculation of the algorithm performs enough work to offset creating the
task.

Absent these two criteria, it is easy enough to partition the array into chunks and use
ThreadPoolExecutor to have multiple threads scan the array:

public class ThreadPoolTest {
    private double[] d;

    private class ThreadPoolExecutorTask implements Callable<Integer> {
        private int first;
        private int last;

        public ThreadPoolExecutorTask(int first, int last) {
            this.first = first;
            this.last = last;
        }

        public Integer call() {
            int subCount = 0;
            for (int i = first; i <= last; i++) {
                if (d[i] < 0.5) {
                    subCount++;
                }
            }
            return subCount;
        }
    }

    public static void main(String[] args) {
        d = createArrayOfRandomDoubles();
        ThreadPoolExecutor tpe = new ThreadPoolExecutor(4, 4,
                                        Long.MAX_VALUE,
                                        TimeUnit.SECONDS,
                                 new LinkedBlockingQueue());
        Future[] f = new Future[4];
        int size = d.length / 4;
        for (int i = 0; i < 3; i++) {
            f[i] = tpe.submit(
                       new ThreadPoolExecutorTask(i * size, (i + 1) * size - 1);
        }
        f[3] = tpe.submit(new ThreadPoolExecutorTask(3 * size, d.length - 1);
        int n = 0;
        for (int i = 0; i < 4; i++) {
            n += f.get();
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        }
        System.out.println("Found " + n + " values");
    }
}

On a four-CPU machine, this code will fully utilize all available CPUs, processing the
array in parallel while avoiding creating and queuing the 4 million tasks used by the
fork/join example. The performance is predictably faster, as Table 9-5 shows.

Table 9-5. Time to count an array of 2 million elements

Number of threads ForkJoinPool ThreadPoolExecutor

1 125 ± 1 ms 1.731 ± 0.001 ms

4 37.7 ± 1 ms 0.55 ± 0.002 ms

The two tests differ in GC time, but the real difference comes from the divide-and-
conquer, particularly with a leaf value of 10. The overhead of creating and managing
the 4 million task objects hampers the performance of ForkJoinPool. When a similar
alternative is available, it is likely to be faster—at least in this simple case.

Alternatively, we could have required far fewer tasks by ending the recursion earlier.
At one extreme, we could end the recursion when the subarray has 500,000 elements,
which neatly partitions the work into four tasks, which is the same as the thread pool
example does. At that point, the performance of this test would be the same (though
if the work partitions that easily, there’s no reason to use a divide-and-conquer algo‐
rithm in the first place).

For illustrative purposes, we can easily enough mitigate the second point in our crite‐
ria by adding work to the leaf calculation phase of our task:

for (int i = first; i <= last; i++) {
    if (d[i] < 0.5) {
        subCount++;
    }
    for (int j = 0; j < 500; j++) {
        d[i] *= d[i];
    }
}

Now the test will be dominated by the calculation of d[i]. But because the merge
portion of the algorithm isn’t doing any significant work, creating all the tasks still
carries a penalty, as we see in Table 9-6.

Table 9-6. Time to count an array of 2 million elements with added work

Number of threads ForkJoinPool ThreadPoolExecutor

4 271 ± 3 ms 258 ± 1 ms
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Now that the time is dominated by actual calculation in the test, the fork-join pool
isn’t quite as bad compared to a partition. Still, the time to create the tasks is signifi‐
cant, and when the tasks could simply be partitioned (i.e., when no significant work is
in the merge stage), a simple thread pool will be faster.

Work Stealing
One rule about using this pool is to make sure splitting the tasks makes sense. But a
second feature of the ForkJoinPool makes it even more powerful: it implements
work stealing. That’s basically an implementation detail; it means that each thread in
the pool has its own queue of tasks it has forked. Threads will preferentially work on
tasks from their own queue, but if that queue is empty, they will steal tasks from the
queues of other threads. The upshot is that even if one of the 4 million tasks takes a
long time to execute, other threads in the ForkJoinPool can complete any and all of
the remaining tasks. The same is not true of the ThreadPoolExecutor: if one of its
tasks requires a long time, the other threads cannot pick up additional work.

When we added work to the original example, the amount of work per value was
constant. What if that work varied depending on the position of the item in the array?

for (int i = first; i <= last; i++) {
    if (d[i] < 0.5) {
        subCount++;
    }
    for (int j = 0; j < i; j++) {
        d[i] += j;
    }
}

Because the outer loop (indexed by j) is based on the position of the element in the
array, the calculation requires a length of time proportional to the element position:
calculating the value for d[0] will be very fast, while calculating the value for
d[d.length - 1] will take more time.

Now the simple partitioning of the ThreadPoolExecutor test will be at a disadvan‐
tage. The thread calculating the first partition of the array will take a very long time to
complete, much longer than the time spent by the fourth thread operating on the last
partition. Once that fourth thread is finished, it will remain idle: everything must wait
for the first thread to complete its long task.

The granularity of the 4 million tasks in the ForkJoinPool means that although one
thread will get stuck doing the very long calculations on the first 10 elements in the
array, the remaining threads will still have work to perform, and the CPU will be kept
busy during most of the test. That difference is shown in Table 9-7.
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Table 9-7. Time to process an array of 2,000,000 elements with an unbalanced workload

Number of threads ForkJoinPool ThreadPoolExecutor

1 22.0 ± 0.01 seconds 21.7 ± 0.1 seconds

4 5.6 ± 0.01 seconds 9.7 ± 0.1 seconds

When the pool has a single thread, the computation takes essentially the same
amount of time. That makes sense: the number of calculations is the same regardless
of the pool implementation, and since those calculations are never done in parallel,
they can be expected to take the same amount of time (though some small overhead
exists for creating the 4 million tasks). But when the pool contains four threads, the
granularity of the tasks in the ForkJoinPool gives it a decided advantage: it is able to
keep the CPUs busy for almost the entire duration of the test.

This situation is called unbalanced, because some tasks take longer than others (and
hence the tasks in the previous example are called balanced). In general, this leads to
the recommendation that using ThreadPoolExecutor with partitioning will give bet‐
ter performance when the tasks can be easily partitioned into a balanced set, and
ForkJoinPool will give better performance when the tasks are unbalanced.

There is a more subtle performance recommendation here as well: carefully consider
the point at which the recursion for the fork/join paradigm should end. In this exam‐
ple, we’ve arbitrarily chosen it to end when the array size is less than 10. In the bal‐
anced case, we’ve already discussed that ending the recursion at 500,000 would be
optimal.

On the other hand, the recursion in the unbalanced case gives even better perfor‐
mance for smaller leaf values. Representative data points are shown in Table 9-8.

Table 9-8. Time to process an array of 2,000,000 elements with varying leaf values

Target size of leaf array ForkJoinPool

500,000 9,842 ± 5 ms

50,000 6,029 ± 100 ms

10,000 5,764 ± 55 ms

1,000 5,657 ± 56 ms

100 5,598 ± 20 ms

10 5,601 ± 15 ms

With a leaf size of 500,000, we’ve duplicated the thread pool executor case. As the leaf
size drops, we benefit from the unbalanced nature of the test, until between 1,000 and
10,000, where the performance levels off.

This tuning of the leaf value is routinely done in these kind of algorithms. As you saw
earlier in this section, Java uses 47 for the leaf value in its implementation of the
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quicksort algorithm: that’s the point (for that algorithm) at which the overhead of cre‐
ating the tasks outweighs the benefits of the divide-and-conquer approach.

Automatic Parallelization
Java has the ability to automatically parallelize certain kinds of code. This paralleliza‐
tion relies on the use of the ForkJoinPool class. The JVM will create a common fork-
join pool for this purpose; it is a static element of the ForkJoinPoolClass that is sized
by default to the number of processors on the target machine.

This parallelization occurs in many methods of the Arrays class: methods to sort an
array using parallel quicksorting, methods to operate on each individual element of
an array, and so on. It is also used within the streams feature, which allows for opera‐
tions (either sequential or parallel) to be performed on each element in a collection.
Basic performance implications of streams are discussed in Chapter 12; in this sec‐
tion, we’ll look at how streams can automatically be processed in parallel.

Given a collection containing a series of integers, the following code will calculate the
stock price history for the symbol corresponding to the given integer:

List<String> symbolList = ...;
Stream<String> stream = symbolList.parallelStream();
stream.forEach(s -> {
    StockPriceHistory sph = new StockPriceHistoryImpl(s, startDate,
                                     endDate, entityManager);
    blackhole.consume(sph);
});

This code will calculate the mock price histories in parallel: the forEach() method
will create a task for each element in the array list, and each task will be processed by
the common ForkJoinTask pool. That is essentially equivalent to the test at the
beginning of this chapter, which used a thread pool to calculate the histories in paral‐
lel—though this code is much easier to write than dealing with the thread pool
explicitly.

Sizing the common ForkJoinTask pool is as important as sizing any other thread
pool. By default, the common pool will have as many threads as the target machines
has CPUs. If you are running multiple JVMs on the same machine, limiting that
number makes sense so that the JVMs do not compete for CPU against each other.
Similarly, if a server will execute other requests in parallel and you want to make sure
that CPU is available for those other tasks, consider lowering the size of the common
pool. On the other hand, if tasks in the common pool will block waiting for I/O or
other data, the common pool size might need to be increased.

The size can be set by specifying the system property -Djava.util.concurrent.Fork
JoinPool.common.parallelism=N. As usual for Docker containers, it should be set
manually in Java 8 versions prior to update 192.
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Earlier in this chapter, Table 9-1 showed the effect on the performance of the parallel
stock history calculations when the pool had various sizes. Table 9-9 compares that
data to the forEach() construct using the common ForkJoinPool (with the
parallelism system property set to the given value).

Table 9-9. Time required to calculate 10,000 mock price histories

Number of threads ThreadPoolExecutor ForkJoinPool

1 40 ± 0.1 seconds 20.2 ± 0.2 seconds

2 20.1 ± 0.07 seconds 15.1 ± 0.05 seconds

4 10.1 ± 0.02 seconds 11.7 ± 0.1 seconds

8 10.2 ± 0.3 seconds 10.5 ± 0.1 seconds

16 10.3 ± 0.03 seconds 10.3 ± 0.7 seconds

By default, the common pool will have four threads (on our usual four-CPU
machine), so the third line in the table is the common case. The results for a common
pool size of one and two are exactly the sort of result that should give a performance
engineer fits: they seem to be completely out of line because ForkJoinPool is per‐
forming far better than might be expected.

When a test is out of line like that, the most common reason is a testing error. In this
case, however, it turns out that the forEach() method does something tricky: it uses
both the thread executing the statement and the threads in the common pool to pro‐
cess the data coming from the stream. Even though the common pool in the first test
is configured to have a single thread, two threads are used to calculate the result.
Consequently, the time for a ThreadPoolExecutor with two threads and a ForkJoin
Pool with one thread is essentially the same.

If you need to tune the size of the common pool when using parallel stream con‐
structs and other autoparallel features, consider decreasing the desired value by one.

Quick Summary

• The ForkJoinPool class should be used for recursive, divide-
and-conquer algorithms. This class in not suited for cases that
can be handled via simple partitioning.

• Make the effort to determine the best point at which the recur‐
sion of tasks in the algorithm should cease. Creating too many
tasks can hurt performance, but too few tasks will also hurt
performance if the tasks do not take the same amount of time.

• Features that use automatic parallelization will use a common
instance of the ForkJoinPool class. You may need to adjust the
default size of that common instance.
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Thread Synchronization
In a perfect world—or in examples for a book—it is relatively easy for threads to
avoid the need for synchronization. In the real world, things are not necessarily so
easy.

Synchronization and Java Concurrent Utilities
In this section, synchronization refers to code that is within a block where access to a
set of variables appears serialized: only a single thread at a time can access the mem‐
ory. This includes code blocks protected by the synchronized keyword. It also means
code that is protected by an instance of the java.util.concurrent.lock.Lock class,
and code within the java.util.concurrent and java.util.concurrent.atomic
packages.

Strictly speaking, the atomic classes do not use synchronization, at least in CPU pro‐
gramming terms. Atomic classes utilize a Compare and Swap (CAS) CPU instruction,
while synchronization requires exclusive access to a resource. Threads that utilize
CAS instructions will not block when simultaneously accessing the same resource,
while a thread that needs a synchronization lock will block if another thread holds
that resource.

The two approaches have diifferent performance (discussed later in this section).
However, even though CAS instructions are lockless and nonblocking, they still
exhibit most of the behavior of blocking constructs: their end result makes it appear
to the developer that threads can access the protected memory only serially.

Costs of Synchronization
Synchronized areas of code affect performance in two ways. First, the amount of time
an application spends in a synchronized block affects the scalability of an application.
Second, obtaining the synchronization lock requires CPU cycles and hence affects
performance.

Synchronization and scalability
First things first: when an application is split up to run on multiple threads, the 
speedup it sees is defined by an equation known as Amdahl’s law:

Speedup = 1
1 − P + P

N
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P is the amount of the program that is run in parallel, and N is the number of threads
utilized (assuming that each thread always has available CPU). So if 20% of the code
exists in serialized blocks (meaning that P is 80%), the code can be expected to run
(only) 3.33 times faster with eight available CPUs.

One key fact about this equation is that as P decreases—that is, as more code is loca‐
ted within serialized blocks—the performance benefit of having multiple threads also
decreases. That is why limiting the amount of code that lies in the serialized block is
so important. In this example, with eight CPUs available, we might have hoped for an
eight times increase in speed. When only 20% of the code is within a serialized block,
the benefit of having multiple threads was reduced by more than 50% (i.e., the
increase was only 3.3 times).

Costs of locking objects
Aside from its impact on scalability, the operation of synchronization carries two
basic costs.

First, we have the cost of obtaining the synchronization lock. If a lock is uncontended
—meaning that two threads are not attempting to access the lock at the same time—
this cost is minimal. There is a slight difference here between the synchronized key‐
word and CAS-based constructs. Uncontended synchronized locks are known as
uninflated locks, and the cost of obtaining an uninflated lock is on the order of a few
hundred nanoseconds. Uncontended CAS code will see an even smaller performance
penalty. (See Chapter 12 for an example of the difference.)

Contended constructs are more expensive. When a second thread attempts to access
a synchronized lock, the lock becomes (predictably) inflated. This slightly increases
the time to acquire the lock, but the real impact here is that the second thread must
wait for the first thread to release the lock. That waiting time is application-
dependent, of course.

The cost for a contended operation in code using CAS instructions is unpredictable.
The classes that use CAS primitives are based on an optimistic strategy: the thread
sets a value, executes code, and then makes sure that the initial value has not changed.
If it has, the CAS-based code must execute the code again. In the worst case, two
threads could run into an infinite loop as each modifies the CAS-protected value,
only to see that the other thread has modified it simultaneously. In practice, two
threads are not going to get into an infinite loop like that, but as the number of
threads contending for the CAS-based value increases, the number of retries
increases.
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The second cost of synchronization is specific to Java and depends on the Java Mem‐
ory Model. Java, unlike languages such as C++ and C, has a strict guarantee about the
memory semantics around synchronization, and the guarantee applies to CAS-based
protection, to traditional synchronization, and to the volatile keyword.

Uses of volatile in Examples
The double-checked locking example in Chapter 7 required the use of a volatile
variable:

private volatile ConcurrentHashMap instanceChm;
...
public void doOperation() {
    ConcurrentHashMap chm = instanceChm;
    if (chm == null) {
        synchronized(this) {
            chm = instanceChm;
            if (chm == null) {
                chm = new ConcurrentHashMap();
                ... code to populate the map
                instanceChm = chm;
            }
        }
    }
    ...use the chm...
}

The volatile keyword accomplishes two things in this example. First, note that the
hash map is initialized using a local variable first, and only the final (fully initialized)
value is assigned to the instanceChm variable. If the code populating the hash map
were using the instance variable directly, a second thread could see a partially popula‐
ted map. And second, it ensures that when the map is completely initialized, other
threads will immediately see that value stored into the instanceChm variable.

Similarly, Chapter 2 pointed out that in microbenchmarks, one way to make sure a
result is used is to store it into a volatile variable. That store cannot be optimized
out by the compiler, so it ensures that the code that produced the result held in that
variable cannot be optimized out either. The Blackhole class in jmh uses volatile
stores for the same reason (though that class also prevents against some other
microbenchmark effects and is another reason that using jmh is better than writing
your own microbenchmarks from scratch).

The purpose of synchronization is to protect access to values (or variables) in mem‐
ory. As discussed in Chapter 4, variables may be temporarily stored in registers,
which is much more efficient than directly accessing them in main memory. Register
values are not visible to other threads; the thread that modifies a value in a register
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1 Although modern code would use a difference collection class, the example would be the same with a collec‐
tion wrapped via the synchronizedCollection() method, or any other loop with excessive register flushing.

must at some point flush that register to main memory so that other threads can see
the value. The point when the register values must be flushed is dictated by thread
synchronization.

The semantics can get fairly complicated, but the easiest way to think of this is that
when a thread leaves a synchronized block, it must flush any modified variables to
main memory. That means other threads that enter the synchronized block will see
the most recently updated values. Similarly, CAS-based constructs ensure that vari‐
ables modified during their operation are flushed to main memory, and a variable
marked volatile is always consistently updated in main memory whenever it is
changed.

In Chapter 1, I mentioned that you should learn to avoid nonperformant code con‐
structs in Java, even if it seems like that might be “prematurely optimizing” your code
(it isn’t). An interesting case of that—and a real-world example—comes from this
loop:

Vector v;
for (int i = 0; i < v.size(); i++) {
    process(v.get(i));
}

In production, this loop was found to be taking a surprising amount of time, and the
logical assumption was that the process() method was the culprit. But it wasn’t that,
nor was the issue the size() and get() method calls themselves (which had been
inlined by the compiler). The get() and size() methods of the Vector class are
synchronized, and it turned out that the register flushing required by all those calls
was a huge performance problem.1

This isn’t ideal code for other reasons. In particular, the state of the vector can change
between the time a thread calls the size() method and the time it calls the get()
method. If a second thread removes the last element from the vector in between the
two calls made by the first thread, the get() method will throw an
ArrayIndexOutOfBoundsException. Quite apart from the semantic issues in the code,
the fine-grained synchronization was a bad choice here.

One way to avoid that is to wrap lots of successive, fine-grained synchronization calls
within a synchronized block:

synchronized(v) {
    for (int i = 0; i < v.size(); i++) {
        process(v.get(i));
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    }
}

That doesn’t work well if the process() method takes a long time to execute, since
the vector can no longer be processed in parallel. Alternately, it may be necessary to
copy and partition the vector so that its elements can be processed in parallel within
the copies, while other threads can still modify the original vector.

The effect of register flushing is also dependent on the kind of processor the program
is running on; processors that have a lot of registers for threads will require more
flushing than simpler processors. In fact, this code executed for a long time without
problems in thousands of environments. It became an issue only when it was tried on
a large SPARC-based machine with many registers per thread.

Does that mean you are unlikely to see issues around register flushing in smaller
environments? Perhaps. But just as multicore CPUs have become the norm for simple
laptops, more complex CPUs with more caching and registers are also becoming
more commonplace, which will expose hidden performance issues like this.

Quick Summary

• Thread synchronization has two performance costs: it limits
the scalability of an application, and it requires obtaining
locks.

• The memory semantics of synchronization, CAS-based utilit‐
ies, and the volatile keyword can negatively impact perfor‐
mance, particularly on large machines with many registers.

Avoiding Synchronization
If synchronization can be avoided altogether, locking penalties will not affect the
application’s performance. Two general approaches can be used to achieve that.

The first approach is to use different objects in each thread so that access to the
objects will be uncontended. Many Java objects are synchronized to make them
thread-safe but don’t necessarily need to be shared. The Random class falls into that
category; Chapter 12 shows an example within the JDK where the thread-local tech‐
nique was used to develop a new class to avoid the synchronization in that class.

On the flip side, many Java objects are expensive to create or use a substantial amount
of memory. Take, for example, the NumberFormat class: instances of that class are not
thread-safe, and the internationalization required to create an instance makes con‐
structing new objects expensive. A program could get by with a single, shared global
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NumberFormat instance, but access to that shared object would need to be
synchronized.

Instead, a better pattern is to use a ThreadLocal object:

public class Thermometer {
    private static ThreadLocal<NumberFormat> nfLocal = new ThreadLocal<>() {
        public NumberFormat initialValue() {
            NumberFormat nf = NumberFormat.getInstance();
            nf.setMinumumIntegerDigits(2);
            return nf;
        }
    }
    public String toString() {
        NumberFormat nf = nfLocal.get();
        nf.format(...);
    }
}

By using a thread-local variable, the total number of objects is limited (minimizing
the effect on GC), and each object will never be subject to thread contention.

The second way to avoid synchronization is to use CAS-based alternatives. In some
sense, this isn’t avoiding synchronization as much as solving the problem differently.
But in this context, by reducing the penalty for synchronization, it works out to have
the same effect.

The difference in performance between CAS-based protections and traditional syn‐
chronization seems like the ideal case to employ a microbenchmark: it should be triv‐
ial to write code that compares a CAS-based operation with a traditional
synchronized method. For example, the JDK provides a simple way to keep a counter
using CAS-based protection: the AtomicLong and similar classes. A microbenchmark
could then compare code that uses CAS-based protection to traditional synchroniza‐
tion. For example, say a thread needs to get a global index and increment it atomically
(so that the next thread gets the next index). Using CAS-based operations, that’s done
like this:

AtomicLong al = new AtomicLong(0);
public long doOperation() {
    return al.getAndIncrement();
}

The traditional synchronized version of that operation looks like this:

private long al = 0;
public synchronized doOperation() {
    return al++;
}

The difference between these two implementations turns out to be impossible to
measure with a microbenchmark. If there is a single thread (so there is no possibility
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of contention), the microbenchmark using this code can produce a reasonable esti‐
mate of the cost of using the two approaches in an uncontended environment (and
the result of that test is cited in Chapter 12). But that doesn’t provide any information
about what happens in a contended environment (and if the code won’t ever be con‐
tended, it doesn’t need to be thread-safe in the first place).

In a microbenchmark built around these code snippets that is run with only two
threads, an enormous amount of contention will exist on the shared resource. That
isn’t realistic either: in a real application, it is unlikely that two threads will always be
accessing the shared resource simultaneously. Adding more threads simply adds
more unrealistic contention to the equation.

As discussed in Chapter 2, microbenchmarks tend to greatly overstate the effect of
synchronization bottlenecks on the test in question. This discussion ideally elucidates
that point. A much more realistic picture of the trade-off will be obtained if the code
in this section is used in an actual application.

In the general case, the following guidelines apply to the performance of CAS-based
utilities compared to traditional synchronization:

• If access to a resource is uncontended, CAS-based protection will be slightly
faster than traditional synchronization. If the access is always uncontended, no
protection at all will be slightly faster still and will avoid corner-cases like the one
you just saw with the register flushing from the Vector class.

• If access to a resource is lightly or moderately contended, CAS-based protection
will be faster (often much faster) than traditional synchronization.

• As access to the resource becomes heavily contended, traditional synchronization
will at some point become the more efficient choice. In practice, this occurs only
on very large machines running many threads.

• CAS-based protection is not subject to contention when values are read and not
written.

Contended Atomic Classes
Classes in the java.util.concurrent.atomic package use CAS-based primitives
instead of traditional synchronization. As a result, performance of those classes (for
example, the AtomicLong class) tends to be faster than writing a synchronized method
to increment a long variable—at least until the contention for the CAS primitive
becomes too high.

Java has classes to address the situation when too many threads contend for access to
primitive atomic values: atomic adders and accumulators (for example, the LongAdder
class). These classes are more scalable than the traditional atomic classes. When
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multiple threads update a LongAdder, the class can hold the updates separately for
each thread. The threads needn’t wait for each other to complete their operation;
instead, the values are stored in (essentially) an array, and each thread can return
quickly. Later, the values will be added or accumulated when a thread attempts to
retrieve the current value.

Under little or no contention, the value is accumulated as the program runs, and the
behavior of the adder will be the same as that of the traditional atomic class. Under
severe contention, the updates will be much faster, though the instance will start to
use more memory to store the array of values. Retrieval of a value in that case will
also be slightly slower since it must process all the pending updates in the array. Still,
under very contended conditions, these new classes will perform even better than
their atomic counterparts.

In the end, there is no substitute for extensive testing under the actual production
conditions where the code will run: only then can a definite statement be made as to
which implementation of a particular method is better. Even in that case, the definite
statement applies only to those conditions.

Quick Summary

• Avoiding contention for synchronized objects is a useful way
to mitigate their performance impact.

• Thread-local variables are never subject to contention; they
are ideal for holding synchronized objects that don’t actually
need to be shared between threads.

• CAS-based utilities are a way to avoid traditional synchroniza‐
tion for objects that do need to be shared.

False Sharing
One little-discussed performance implication of synchronization involves false shar‐
ing (also known as cache line sharing). It used to be a fairly obscure artifact of threa‐
ded programs, but as multicore machines become the norm—and as other, more
obvious, synchronization performance issues are addressed—false sharing is an
increasingly important issue.

False sharing occurs because of the way CPUs handle their cache. Consider the data
in this simple class:

public class DataHolder {
    public volatile long l1;
    public volatile long l2;
    public volatile long l3;
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    public volatile long l4;
}

Each long value is stored in memory adjacent to one another; for example, l1 could
be stored at memory location 0xF20. Then l2 would be stored in memory at 0xF28,
l3 at 0xF2C, and so on. When it comes time for the program to operate on l2, it will
load a relatively large amount of memory—for example, 128 bytes from location
0xF00 to 0xF80—into a cache line on one of the cores of one of the CPUs. A second
thread that wants to operate on l3 will load that same chunk of memory into a cache
line on a different core.

Loading nearby values like that makes sense in most cases: if the application accesses
one particular instance variable in an object, it is likely to access nearby instance vari‐
ables. If they are already loaded into the core’s cache, that memory access is very, very
fast—a big performance win.

The downside to this scheme is that whenever the program updates a value in its local
cache, that core must notify all the other cores that the memory in question has been
changed. Those other cores must invalidate their cache lines and reload that data
from memory.

Let’s see what happens if the DataHolder class is heavily used by multiple threads:

@State(Scope.Benchmark)
@BenchmarkMode(Mode.AverageTime)
public class ContendedTest {
    private static class DataHolder {
 private volatile long l1 = 0;
 private volatile long l2 = 0;
 private volatile long l3 = 0;
 private volatile long l4 = 0;
    }
    private static DataHolder dh = new DataHolder();

    Thread[] threads;

    @Setup(Level.Invocation)
    public void setup() {
 threads = new Thread[4];
 threads[0] = new Thread(() -> {
  for (long i = 0; i < nLoops; i++) {
   dh.l1 += i;
  }
 });
 threads[1] = new Thread(() -> {
  for (long i = 0; i < nLoops; i++) {
   dh.l2 += i;
  }
 });
 //...similar for 2 and 3...
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    }

    @Benchmark
    public void test(Blackhole bh) throws InterruptedException {
        for (int i = 0; i < 4; i++) {
     threads[i].start();
 }
        for (int i = 0; i < 4; i++) {
     threads[i].join();
 }
   }
}

We have four separate threads, and they are not sharing any variables: each is access‐
ing only a single member of the DataHolder class. From a synchronization stand‐
point, there is no contention, and we might reasonably expect that this code would
execute (on our four-core machine) in the same amount of time regardless of
whether it runs one thread or four threads.

It doesn’t turn out that way. When one particular thread writes the volatile value in
its loop, the cache line for every other thread will get invalidated, and the memory
values must be reloaded. Table 9-10 shows the result: performance gets worse as more
threads are added.

Table 9-10. Time to sum 100,000 values with false sharing

Number of threads Elapsed time
1 0.8 ± 0.001 ms

2 5.7 ± 0.3 ms

3 10.4 ± 0.6 ms

4 15.5 ± 0.8 ms

This test case is constructed to show the most severe penalty for false sharing: essen‐
tially every write invalidates all the other cache lines, and performance is serial.

Strictly speaking, false sharing does not have to involve synchronized (or volatile)
variables: whenever any data value in the CPU cache is written, other caches that hold
the same data range must be invalidated. However, remember that the Java memory
model requires that the data must be written to main memory only at the end of a
synchronization primitive (including CAS and volatile constructs). So that is the
situation where it will be encountered most frequently. If, in this example, the long
variables are not volatile, the compiler will hold the values in registers, and the test
will execute in about 0.7 milliseconds regardless of the number of threads involved.

This is obviously an extreme example, but it brings up the question of how false shar‐
ing can be detected and corrected. Unfortunately, the answer is murky and
incomplete. Nothing in the standard set of tools discussed in Chapter 3 addresses
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false sharing, since it requires specific knowledge about the architecture of a
processor.

If you are lucky, the vendor of the target processor for your application will have a
tool that can be used to diagnose false sharing. Intel, for example, has a program
called VTune Amplifier that can be used to help detect false sharing by inspecting
cache miss events. Certain native profilers can provide information about the number
of clock cycles per instruction (CPI) for a given line of code; a high CPI for a simple
instruction within a loop can indicate that the code is waiting to reload the target
memory into the CPU cache.

Otherwise, detecting false sharing requires intuition and experimentation. If an ordi‐
nary profile indicates that a particular loop is taking a surprising amount of time,
check whether multiple threads may be accessing unshared variables within the loop.
(In the realm of performance tuning as an art rather than a science, even the Intel
VTune Amplifier manual says that the “primary means of avoiding false sharing is
through code inspection.”)

Preventing false sharing requires code changes. An ideal situation is when the vari‐
ables involved can be written less frequently. In the preceding example, the calcula‐
tion could take place using local variables, and only the end result is written back to
the DataHolder variable. The very small number of writes that ensues is unlikely to
create contention for the cache lines, and they won’t have a performance impact even
if all four threads update their results at the same time at the end of the loop.

A second possibility involves padding the variables so that they won’t be loaded on
the same cache line. If the target CPU has 128-byte cache lines, padding like this may
work (but also, it may not):

public class DataHolder {
    public volatile long l1;
    pubilc long[] dummy1 = new long[128 / 8];
    public volatile long l2;
    pubilc long[] dummy2 = new long[128 / 8];
    public volatile long l3;
    pubilc long[] dummy3 = new long[128 / 8];
    public volatile long l4;
}

Using arrays like that is unlikely to work, because the JVM will probably rearrange
the layout of those instance variables so that all the arrays are next to each other, and
then all the long variables will still be next to each other. Using primitive values to
pad the structure is more likely to work, though it can be impractical because of the
number of variables required.

We need to consider other issues when using padding to prevent false sharing. The
size of the padding is hard to predict, since different CPUs will have different cache
sizes. And the padding obviously adds significant size to the instances in question,
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which will have an impact on the garbage collector (depending, of course, on the
number of instances required). Still, absent an algorithmic solution, padding of the
data can sometimes offer significant advantages.

The @Contended Annotation
A feature within the private classes of the JDK can reduce cache contention on speci‐
fied fields (JEP 142). This is achieved by using the @sun.misc.Contended to mark
variables that should be automatically padded by the JVM.

This annotation is meant to be private. In Java 8, it belongs to the sun.misc package,
though nothing prevents you from using that package in your own code. In Java 11, it
belongs to the jdk.internal.vm.annotation package, and with the module system
that Java 11 uses, you cannot compile classes using that package without using the
-add-exports flag to add the package to the set of classes exported by the java.base
module.

By default, the JVM ignores this annotation except within classes in the JDK. To
enable application code to use the annotation, include the -XX:-RestrictContended
flag, which by default is true (meaning that the annotation is restricted to JDK
classes).

On the other hand, to disable the automatic padding that occurs in the JDK, set the
-XX:-EnableContended flag, which by default is true. This will lead to reductions in
the size of the Thread and ConcurrentHashMap classes, which both use this annotation
to pad their implementations in order to guard agaist false sharing.

Quick Summary

• False sharing can significantly slow down performance code
that frequently modifies volatile variables or exits synchron‐
ized blocks.

• False sharing is difficult to detect. When a loop seems to be
taking too long to occur, inspect the code to see if it matches
the pattern where false sharing can occur.

• False sharing is best avoided by moving the data to local vari‐
ables and storing them later. Alternately, padding can some‐
times be used to move the conflicting variables to different
cache lines.
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JVM Thread Tunings
The JVM has a few miscellaneous tunings that affect the performance of threads and
synchronization. These tunings will have a minor impact on the performance of
applications.

Tuning Thread Stack Sizes
When space is at a premium, the memory used by threads can be adjusted. Each
thread has a native stack, which is where the OS stores the call stack information of
the thread (e.g., the fact that the main() method has called the calculate() method,
which has called the add() method).

The size of this native stack is 1 MB (except for 32-bit Windows JVMs, where it is 320
KB). In a 64-bit JVM, there is usually no reason to set this value unless the machine is
quite strained for physical memory and the smaller stack size will prevent applica‐
tions from running out of native memory. This is especially true when running inside
a Docker container in which memory is limited.

As a practical rule, many programs can run with a stack size of 256 KB, and few need
the full 1 MB. The potential downside to setting this value too small is that a thread
with an extremely large call stack will throw a StackOverflowError.

Out of Native Memory
An OutOfMemoryError can occur when there isn’t enough native memory to create
the thread. This can indicate one of three things:

• In a 32-bit JVM, the process is at its 4 GB (or less, depending on the OS) maxi‐
mum size.

• The system has actually run out of virtual memory.
• On Unix-style systems, the user has already created (between all programs they

are running) the maximum number of processes configured for their login. Indi‐
vidual threads are considered a process in that regard.

Reducing the stack size can overcome the first two issues, but it will have no effect on
the third. Unfortunately, there is no way to tell from the JVM error which of these
three cases applies, but consider any of these causes when this error is encountered.

To change the stack size for a thread, use the -Xss=N flag (e.g., -Xss=256k).
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Quick Summary

• Thread stack sizes can be reduced on machines where mem‐
ory is scarce.

Biased Locking
When locks are contended, the JVM (and operating system) have choices about how
the lock should be allocated. The lock can be granted fairly, meaning that each thread
will be given the lock in a round-robin fashion. Alternately, the lock can be biased
toward the thread that most recently accessed the lock.

The theory behind biased locking is that if a thread recently used a lock, the process‐
or’s cache is more likely to still contain data the thread will need the next time it exe‐
cutes code protected by that same lock. If the thread is given priority for reobtaining
the lock, the probability of cache hits increases. When this works out, performance is
improved. But because biased locking requires bookkeeping, it can sometimes be
worse for performance.

In particular, applications that use a thread pool—including some application and
REST servers—often perform worse when biased locking is in effect. In that pro‐
gramming model, different threads are equally likely to access the contended locks. 
For these kinds of applications, a small performance improvement can be obtained by
disabling biased locking via the -XX:-UseBiasedLocking option. Biased locking is
enabled by default.

Thread Priorities
Each Java thread has a developer-defined priority, which is a hint to the operating sys‐
tem about how important the program thinks the particular thread is. If you have dif‐
ferent threads doing different tasks, you might think you could use the thread priority
to improve the performance of certain tasks at the expense of other tasks running on
a lower-priority thread. Unfortunately, it doesn’t quite work like that.

Operating systems calculate a current priority for every thread running on a machine.
The current priority takes into account the Java-assigned priority but also includes
many other factors, the most important of which is how long it has been since the
thread last ran. This ensures that all threads will have an opportunity to run at some
point. Regardless of its priority, no thread will “starve” waiting for access to the CPU.

The balance between these two factors varies among operating systems. On Unix-
based systems, the calculation of the overall priority is dominated by the amount of
time since the thread has last run—the Java-level priority of a thread has little effect.
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On Windows, threads with a higher Java priority tend to run more than threads with
a lower priority, but even low-priority threads get a fair amount of CPU time.

In either case, you cannot depend on the priority of a thread to affect how frequently
it runs. If some tasks are more important than other tasks, application logic must be
used to prioritize them.

Monitoring Threads and Locks
When analyzing an application’s performance for the efficiency of threading and syn‐
chronization, we should look for two things: the overall number of threads (to make
sure it is neither too high nor too low) and the amount of time threads spend waiting
for a lock or other resource.

Thread Visibility
Virtually every JVM monitoring tool provides information about the number of
threads (and what they are doing). Interactive tools like jconsole show the state of
threads within the JVM. On the jconsole Threads panel, you can watch in real time
as the number of threads increases and decreases during the execution of your pro‐
gram. Figure 9-2 shows an example.

Figure 9-2. View of live threads in jconsole
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At one point, the application (NetBeans) was using a maximum of 45 threads. At the
beginning of the graph, we can see a burst where the application was using up to 38,
but it settled on using between 30 and 31. jconsole can also print an individual
thread stack; as the figure shows, the Java2D Disposer thread is presently waiting on a
reference queue lock.

Blocked Thread Visibility
Real-time thread monitoring is useful for a very high-level picture of what threads are
running in the application, but it doesn’t really provide any data on what those
threads are doing. Determining where the threads are spending CPU cycles requires
the use of a profiler, as discussed in Chapter 3. Profilers provide great visibility into
what threads are executing, and they are generally sophisticated enough to guide you
to areas in the code where better algorithms and code choices can speed up overall
execution.

It is more difficult to diagnose threads that are blocked, although that information is
often more important in the overall execution of an application—particularly if that
code is running on a multi-CPU system and is not utilizing all the available CPU.
Three approaches can be used to perform this diagnosis. One approach is again to use
a profiler, since most profiling tools will provide a timeline of thread execution that
allows you to see the points when a thread was blocked. An example was given in
Chapter 3.

Blocked threads and JFR
By far, the best way to know when threads are blocked is to use tools that can look
into the JVM and know at a low level when the threads are blocked. One such tool is
the Java Flight Recorder, introduced in Chapter 3. We can drill into the events that
JFR captures and look for those that are causing a thread to block. The usual event to
look for is threads that are waiting to acquire a monitor, but if we observe threads
with long reads (and rarely, long writes) to a socket, they are likely blocked as well.

These events can be easily viewed on the Histogram panel of Java Mission Control, as
shown in Figure 9-3.

In this sample, the lock associated with the HashMap in the sun.awt.App

Context.get() method was contended 163 times (over 66 seconds), causing an aver‐
age 31 ms increase in the response time of the request being measured. The stack
trace points out that the contention stems from the way the JSP is writing a
java.util.Date object. To improve the scalability of this code, a thread-local date
formatter could be used instead of simply calling the date’s toString() method.
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Figure 9-3. Threads blocked by a monitor in JFR

This process—choosing the blocking event from the histogram and examining the
calling code—works for any kind of blocking event; it is made possible by the tight
integration of the tool with the JVM.

Blocked threads and JStack
If a JFR recording of the program is not available, an alternative is to take a lot of
thread stacks from the program and examine those. jstack, jcmd, and other tools
can provide information about the state of every thread in a VM, including whether
the thread is running, waiting for a lock, waiting for I/O, and so on. This can be quite
useful for determining what’s going on in an application, as long as too much is not
expected from the output.

The first caveat in looking at thread stacks is that the JVM can dump a thread’s stack
only at safepoints. Second, stacks are dumped for each thread one at a time, so it is
possible to get conflicting information from them: two threads can show up holding
the same lock, or a thread can show up waiting for a lock that no other thread holds.

Thread stacks can show how significantly threads are blocked (since a thread that is
blocked is already at a safepoint). If successive thread dumps show many threads
blocked on a lock, you can conclude that the lock in question has significant conten‐
tion. If successive thread dumps show many threads blocked waiting for I/O, you can
conclude that whatever I/O they are reading needs to be tuned (e.g., if they are
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making a database call, the SQL they are executing needs to be tuned, or the database
itself needs to be tuned).

A JStack Profiler
It is tempting to think you can take multiple stack dumps in rapid succession and use
that data as a quick-and-dirty profiler. After all, sampling profilers work in essentially
the same way: they periodically probe the stack a thread is executing and extrapolate
how much time is spent in methods based on that. But between safepoints and incon‐
sistent snapshots, this doesn’t work out too well; you can sometimes get a very high-
level overview of the expensive methods in your application by looking at thread
stacks, but a real profiler will give far more accurate information.

The online examples for this book have a rudimentary parser for jstack output that
can summarize the state of all threads from one or more thread dumps. A problem
with jstack output is that it can change from release to release, so developing a
robust parser can be difficult. There is no guarantee that the parser in the online
examples won’t need to be tweaked for your particular JVM.

The basic output of the jstack parser looks like this:

% jstack pid > jstack.out
% java ParseJStack jstack.out
[Partial output...]
Threads in start Running
    8 threads in java.lang.Throwable.getStackTraceElement(Native
Total Running Threads: 8

Threads in state Blocked by Locks
    41 threads running in
     com.sun.enterprise.loader.EJBClassLoader.getResourceAsStream
 (EJBClassLoader.java:801)
Total Blocked by Locks Threads: 41

Threads in state Waiting for notify
    39 threads running in
     com.sun.enterprise.web.connector.grizzly.LinkedListPipeline.getTask
 (LinkedListPipeline.java:294)
    18 threads running in System Thread
Total Waiting for notify Threads: 74

Threads in state Waiting for I/O read
    14 threads running in com.acme.MyServlet.doGet(MyServlet.java:603)
Total Waiting for I/O read Threads: 14
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The parser aggregates all the threads and shows how many are in various states. Eight
threads are currently running (they happen to be doing a stack trace—an expensive
operation that is better to avoid).

Forty-one threads are blocked by a lock. The method reported is the first non-JDK
method in the stack trace, which in this example is the GlassFish method
EJBClassLoader.getResourceAsStream(). The next step would be to consult the
stack trace, search for that method, and see what resource the thread is blocked on.

In this example, all the threads were blocked waiting to read the same JAR file, and
the stack trace for those threads showed that all the calls came from instantiating a
new Simple API for XML (SAX) parser. It turns out that the SAX parser can be
defined dynamically by listing the resource in the manifest file of the application’s
JAR files, which means that the JDK must search the entire classpath for those entries
until it finds the one the application wants to use (or until it doesn’t find anything and
falls back to the system parser). Because reading the JAR file requires a synchroniza‐
tion lock, all those threads trying to create a parser end up contending for the same
lock, which is greatly hampering the application’s throughput. (To overcome this case,
set the -Djavax.xml.parsers.SAXParserFactory property to avoid those lookups.)

The larger point is that having a lot of blocked threads diminishes performance.
Whatever the cause of the blocking, changes need to be made to the configuration or
application to avoid it.

What about the threads that are waiting for notification? Those threads are waiting
for something else to happen. Often they are in a pool waiting for notification that a
task is ready (e.g., the getTask() method in the preceding output is waiting for a
request). System threads are doing things like RMI distributed GC or JMX monitor‐
ing—they appear in the jstack output as threads that have only JDK classes in their
stack. These conditions do not necessarily indicate a performance problem; it is nor‐
mal for them to be waiting for a notification.

Another problem creeps up in the threads waiting for I/O read: these are doing a
blocking I/O call (usually the socketRead0() method). This is also hampering
throughput: the thread is waiting for a backend resource to answer its request. That’s
the time to start looking into the performance of the database or other backend
resource.
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Quick Summary

• Basic visibility into the threads of a system provides an over‐
view of the number of threads running.

• Thread visibility allows us to determine why threads are
blocked: whether because they are waiting for a resource or for
I/O.

• Java Flight Recorder provides an easy way to examine the
events that caused a thread to block.

• jstack provides a level of visibility into the resources threads
are blocked on.

Summary
Understanding how threads operate can yield important performance benefits.
Thread performance, though, is not so much about tuning—there are relatively few
JVM flags to tweak, and those few flags have limited effects.

Instead, good thread performance is about following best-practice guidelines for
managing the number of threads and for limiting the effects of synchronization. With
the help of appropriate profiling and lock analysis tools, applications can be exam‐
ined and modified so that threading and locking issues do not negatively affect
performance.
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CHAPTER 10

Java Servers

This chapter explores topics around Java server technologies. At their core, these
technologies are all about how to transmit data, usually over HTTP, between clients
and servers. Hence, this chapter’s primary focus is on topics common to general
server technology: how to scale servers using different thread models, asynchronous
responses, asynchronous requests, and efficient handling of JSON data.

Scaling servers is mostly about effective use of threads, and that use requires event-
driven, nonblocking I/O. Traditional Java/Jakarta EE servers like Apache Tomcat,
IBM WebSphere Application Server, and Oracle WebLogic Server have used Java NIO
APIs to do that for quite some time. Current server frameworks like Netty and
Eclipse Vert.x isolate the complexity of the Java NIO APIs to provide easy-to-use
building blocks for building smaller-footprint servers, and servers like Spring Web‐
Flux and Helidon are built on those frameworks (both use the Netty framework) to
provide scalable Java servers.

These newer frameworks offer programming models based on reactive program‐
ming. At its core, reactive programming is based on handling asynchronous data
streams using an event-based paradigm. Though reactive programming is a different
way of looking at the events, for our purposes both reactive programming and asyn‐
chronous programming offer the same performance benefit: the ability to scale pro‐
grams (and in particular, to scale I/O) to many connections or data sources.

Java NIO Overview
If you’re familiar with the way nonblocking I/O works, you can skip to the next sec‐
tion. If not, here’s a brief overview of how it works and why it is important as the
basis of this chapter.
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In early versions of Java, all I/O was blocking. A thread that attempted to read data
from a socket would wait (block) until at least some data was available or the read
timed out. More importantly, there is no way to know if data is available on the socket
without attempting to read from the socket. So a thread that wanted to process data
over a client connection would have to issue a request to read the data, block until
data is available, process the request and send back the response, and then return to
the blocking read on the socket. This leads to the situation outlined in Figure 10-1.

Figure 10-1. Threads blocking on I/O reads from clients

Blocking I/O requires that the server has a one-to-one correspondence between client
connections and server threads; each thread can handle only a single connection.
This is particularly an issue for clients that want to use HTTP keepalive to avoid the
performance impact of creating a new socket with every request. Say that 100 clients
are sending requests with an average 30-second think time between requests, and it
takes the server 500 milliseconds to process a request. In that case, an average of
fewer than two requests will be in progress at any point, yet the server will need 100
threads to process all the clients. This is highly inefficient.

Hence, when Java introduced NIO APIs that were nonblocking, server frameworks
migrated to that model for their client handling. This leads to the situation shown in
Figure 10-2.

Figure 10-2. Threads with event notification for reads
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1 This scheme has many slight variations; you’ll see some of those in the next section.

Now the socket associated with each client is registered with a selector in the server
(the selector here is an instance of the Selector class and handles the interface to the
operating system that provides notifications when data is available on a socket).
When the client sends a request, the selector gets an event from the operating system
and then notifies a thread in the server thread pool that a particular client has I/O
that can be read. That thread will read the data from the client, process the request,
send the response back, and then go back to waiting for the next request.1 And while
we still have N clients in the diagram, they are processed using M threads.

Now that the clients are no longer coupled to a particular server thread, the server
thread pool can be tuned to handle the number of simultaneous requests we expect
the server to handle. In the example we used before, a thread pool with a size of two
would be sufficient to handle the load from all 100 clients. If the requests could arrive
nonuniformly but still within the general parameters of a 30-second think time, we
might need five or six threads to handle the number of simultaneous requests. The
use of nonblocking I/O allows us to use many fewer threads than we have clients,
which is a huge efficiency gain.

Server Containers
Scaling server connections over multiple clients is the first hurdle in server perfor‐
mance, which depends on the server using nonblocking I/O for basic connection
handling. Whether servers use nonblocking APIs for other operations is also impor‐
tant and is discussed later in this chapter, but for now we’ll look at tuning the basic
connection handling.

Tuning Server Thread Pools
In current servers, then, the requests that come from clients are handled by an arbi‐
trary thread in the server thread pool. Tuning that thread pool hence becomes quite
important.

As mentioned in the previous section, server frameworks vary in the way they man‐
age connections and associated thread pool(s). The basic model described there was
to have one or more threads that act as selectors: these threads notify the system call
when I/O is available and are called selector threads. Then a separate thread pool of
worker threads handles the actual request/response to a client after the selector noti‐
fies them that I/O is pending for the client.

The selector and worker threads can be set up in various ways:
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• Selector and worker thread pools can be separate. The selectors wait for notifica‐
tion on all sockets and hand off requests to the worker thread pool.

• Alternately, when the selector is notified about I/O, it reads (perhaps only part
of) the I/O to determine information about the request. Then the selector for‐
wards the request to different server thread pools, depending on the type of
request.

• A selector pool accepts new connections on a ServerSocket, but after the con‐
nections are made, all work is handled in the worker thread pool. A thread in the
worker thread pool will sometimes use the Selector class to wait for pending
I/O about an existing connection, and it will sometimes be handling the notifica‐
tion from a worker thread that I/O for a client is pending (e.g., it will perform the
request/response for the client).

• There needn’t be a distinction at all between threads that act as selectors and
threads that handle requests. A thread that is notified about I/O available on a
socket can process the entire request. Meanwhile, the other threads in the pool
are notified about I/O on other sockets and handle the requests on those other
sockets.

Despite these differences, we should keep two basic things in mind when tuning the
server thread pools. First (and most important) is that we need sufficient worker
threads to handle the number of simultaneous requests (not simultaneous connec‐
tions) that the server can handle. As discussed in Chapter 9, this partly depends on
whether those requests will themselves execute CPU-intensive code or will make
other blocking calls. An additional consideration in this case is what happens if the
server makes additional nonblocking calls.

Consider a REST server that just performs CPU-intensive calculations. Then, like all
CPU-bound cases, there is no need to have more threads than there are virtual CPUs
on the machine or container running the server: we’ll never be able to run more
threads than that.

What if the REST server, in turn, makes outbound calls to another resource—say,
another REST server or a database? Now it depends on whether those calls are block‐
ing or nonblocking. Assume for now that those calls are blocking. Now we’ll need one
thread for every simultaneous outbound blocking call. This threatens to turn our
server back into an inefficient one-thread-per-client model.

Imagine that in order to satisfy a particular client request, the worker thread must
spend 900 ms retrieving data from a database and 100 ms setting up that database call
and processing the data into the response for the client on a system with two non-
hyper-threaded CPUs. That server has enough CPU to process 20 requests per sec‐
ond. If a request comes from each client every 30 seconds, the server can handle 600
clients. Because the client connection handling is nonblocking, we don’t need 600
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threads in the worker thread pool, but we cannot get by with only 2 threads (one per
CPU) either. On average, 20 requests will be blocked at a time, so we’ll need at least
that many threads in the worker thread pool.

Now let’s say that the outbound request is also nonblocking so that during the 900 ms
the database takes to return the answer, the thread making the database call is free to
handle other requests. Now we’re back to needing only two worker threads: they can
spend all their time handling the 100 ms sections it takes to deal with the database
data, keeping the CPUs fully busy and the throughput of our server at the maximum
value.

As usual, this simplifies the discussion somewhat: we need time to read and set up the
requests, and so on. Still, the basic rule holds: you need as many threads in the worker
pool as will be simultaneously executing code and simultaneously blocked on other
resources.

Another tuning consideration here is the number of threads that need to act as selec‐
tors at any given point. You need more than one. A selector thread executes the
select() call in order to find out which of many sockets has I/O available. It must
then spend time processing that data: at the very least, notifying the other worker
threads about which clients have a request to be processed. Then it can return and
call the select() method again. But during the time it processes the results from the
select() call, another thread should be executing the select() call for other sockets
to see when they have available data.

So in frameworks that have a separate pool of threads for selectors, you’ll want to
make sure the pool has at least a few threads (typically, three is the default value for
frameworks). In frameworks where the same pool of threads handles selection and
processing, you’ll want to add a few extra threads than is required based on the
worker guideline we just discussed.

Async Rest Servers
An alternative to tuning the request thread pool of a server is to defer work to
another thread pool. This is an approach taken by the async server implementation of
JAX-RS as well as Netty’s event executor tasks (designed for long-running tasks) and
other frameworks.

Let’s look at this from the perspective of JAX-RS. In a simple REST server, requests
and responses are all handled on the same thread. This throttles the concurrency of
those servers. For instance, the default thread pool for a Helidon server on an eight-
CPU machine is 32. Consider the following endpoint:

    @GET
    @Path("/sleep")
    @Produces(MediaType.APPLICATION_JSON)
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    public String sleepEndpoint(
        @DefaultValue("100") @QueryParam("delay") long delay
        ) throws ParseException {
        try { Thread.sleep(delay); } catch (InterruptedException ie) {}
        return "{\"sleepTime\": \"" + delay + "\"}";
    }

The point of the sleep in this example is just for testing: assume that the sleep is mak‐
ing a remote database call or calling another REST server, and that remote call takes
100 ms. If I run that test in a Helidon server with default configuration, it will handle
32 simultaneous requests. A load generator with a concurrency of 32 will report that
each request takes 100 ms (plus 1–2 ms for processing). A load generator with a con‐
currency of 64 will report that each request takes 200 ms, since each request will have
to wait for another request to finish before it can start processing.

Other servers will have a different configuration, but the effect is the same: there will
be some throttle based on the size of the request thread pool. Often that is a good
thing: if the 100 ms is spent as active CPU time (instead of sleeping) in this example,
then the server won’t really be able to handle 32 requests simultaneously unless it is
running on a very large machine.

In this case, though, the machine is not even close to being CPU-bound; it may take
only 20%–30% of a single core to process the load when there is no processing to be
done (and again, the same amount to process the load if those 100 ms time intervals
are just a remote call to another service). So we can increase the concurrency on this
machine by changing the configuration of the default thread pool to run more calls.
The limit here would be based on the concurrency of the remote systems; we still
want to throttle the calls into those systems so that they are not overwhelmed.

JAX-RS provides a second way to increase the concurrency, and that is by utilizing an
asynchronous response. The asynchronous response allows us to defer the business
logic processing to a different thread pool:

    ThreadPoolExecutor tpe = Executors.newFixedThreadPool(64);
    @GET
    @Path("/asyncsleep")
    @Produces(MediaType.APPLICATION_JSON)
    public void sleepAsyncEndpoint(
        @DefaultValue("100") @QueryParam("delay") long delay,
        @Suspended final AsyncResponse ar
        ) throws ParseException {
        tpe.execute(() -> {
            try { Thread.sleep(delay); } catch (InterruptedException ie) {}
            ar.resume("{\"sleepTime\": \"" + delay + "\"}");
        });
    }
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In this example, the initial request comes in on the server’s default thread pool. That
request sets up a call to execute the business logic in a separate thread pool (called the
async thread pool), and then the sleepAsyncEndpoint() method immediately
returns. That frees the thread from the default thread pool so it can immediately han‐
dle another request. Meanwhile, the async response (annotated with the @Suspended
tag) is waiting for the logic to complete; when that happens, it is resumed with the
response to be sent back to the user.

This allows us to run 64 (or whatever parameter we pass to the thread pool) simulta‐
neous requests before the requests start to back up. But frankly, we haven’t achieved
anything different from resizing the default thread pool to 64. In fact, in this case, our
response will be slightly worse, since the request gets sent to a different thread for
processing, which will take a few milliseconds.

There are three reasons you would use an async response:

• To introduce more parallelism into the business logic. Imagine that instead of
sleeping for 100 ms, our code had to make three (unrelated) JDBC calls to obtain
data needed for the response. Using an async response allows the code to process
each call in parallel, with each JDBC call using a separate thread in the async
thread pool.

• To limit the number of active threads.
• To properly throttle the server.

In most REST servers, if we just throttle the request thread pool, new requests will
wait their turn, and the queue for the thread pool will grow. Often, this queue is
unbounded (or at least has a very large bound) so that the total number of requests
ends up being unmanageable. Requests that spend a long time in a thread pool queue
will often be abandoned by the time they are processed, and even if they are not
abandoned, the long response times are going to kill the total throughput of the
system.

A better approach is to look at the async thread pool status before queueing the
response, and rejecting the request if the system is too busy.

    @GET
    @Path("/asyncreject")
    @Produces(MediaType.APPLICATION_JSON)
    public void sleepAsyncRejectEndpoint(
        @DefaultValue("100") @QueryParam("delay") long delay,
        @Suspended final AsyncResponse ar
        ) throws ParseException {
        if (tpe.getActiveCount() == 64) {
            ar.cancel();
            return;
        }
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        tpe.execute(() -> {
            // Simulate processing delay using sleep
            try { Thread.sleep(delay); } catch (InterruptedException ie) {}
            ar.resume("{\"sleepTime\": \"" + delay + "\"}");
        });
    }

That can be accomplished in many ways, but for this simple example, we’ll look at the
active count running in the pool. If the count is equal to the pool size, the response is
immediately canceled. (A more sophisticated example would set up a bounded queue
for the pool and cancel the request in the thread pool’s rejected execution handler.)
The effect here is that the caller will immediately receive an HTTP 503 Service
Unavailable status, indicating that the request cannot be processed at this time. That
is the preferred way to handle an overloaded server in the REST world, and immedi‐
ately returning that status will reduce the load on our overloaded server, which in the
end will lead to much better overall performance.

Quick Summary

• Nonblocking I/O using Java’s NIO APIs allows servers to scale
by reducing the number of threads required to handle multiple
clients.

• This technique means that a server will need one or more
thread pools to handle the client requests. This pool should be
tuned based on the maximum number of simultaneous
requests the server should handle.

• A few extra threads are then needed for handling selectors
(whether as part of the worker thread pool or a separate thread
pool depending on the server framework).

• Server frameworks often have a mechanism to defer long
requests to a different thread pool, which offers more robust
handling of requests on the main thread pool.

Asynchronous Outbound Calls
The preceding section gave the example of a server with two CPUs that needed a pool
of 20 threads to obtain its maximum throughput. That was because the threads spent
90% of their time blocked on I/O while making an outbound call to another resource.

Nonblocking I/O can help in this instance too: if those outbound HTTP or JDBC
calls are nonblocking, we needn’t dedicate a thread to the call and can reduce the size
of the thread pool accordingly.
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Asynchronous HTTP
HTTP clients are classes that (unsurprisingly) handle HTTP requests to a server.
There are many clients, and they all have different functional as well as performance
characteristics. In this section, we’ll look into the performance characteristics for
common use cases among them.

Java 8 has a basic HTTP client, the java.net.HttpURLConnection class (and for
secure connections, the subclass java.net.HttpsURLConnection). Java 11 adds a
new client: the java.net.http.HttpClient class (which also handles HTTPS).
Other HTTP client classes from other packages include org.apache.http.client
.HttpClient from the Apache Foundation, org.asynchttpclient.AsyncHttpClient
built on top of the Netty Project, and org.eclipse.jetty.client.HttpClient from
the Eclipse Foundation.

Although it is possible to perform basic operations with the HttpURLConnection
class, most REST calls are made using a framework such as JAX-RS. Hence, most
HTTP clients directly implement those APIs (or slight variants), but the default
implementation of JAX-RS also provides connectors for the most popular HTTP cli‐
ents. Hence, you can use JAX-RS with the underlying HTTP client that gives you the
best performance. The JAX-RS and underlying HTTP clients carry two basic perfor‐
mance considerations.

First, the JAX-RS connectors provide a Client object that is used to make the REST
calls; when using the clients directly, they similarly provide a client object with a
name like HttpClient (the HttpURLConnection class is an exception; it cannot be
reused). A typical client would be created and used like this:

private static Client client;
static {
    ClientConfig cc = new ClientConfig();
    cc.connectorProvider(new JettyConnectorProvider());
    client = ClientBuilder.newClient(cc);
}

public Message getMessage() {
    Message m = client.target(URI.create(url)
                  .request(MediaType.APPLICATION_JSON)
                  .get(Message.class);
    return m;
}

The key in this example is that the client object is a static, shared object. All client
objects are threadsafe, and all are expensive to instantiate, so you want only a limited
number of them (e.g., one) in your application.

The second performance consideration is to make sure that the HTTP client properly
pools connections and uses keepalive to keep connections open. Opening a socket for
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HTTP communications is an expensive operation, particularly if the protocol is
HTTPS and the client and server must perform an SSL handshake. Like JDBC con‐
nections, HTTP(S) connections should be reused.

All HTTP clients provide a mechanism to pool them, though the mechanism of pool‐
ing within the HttpURLConnection class is frequently misunderstood. By default, that
class will pool five connections (per server). Unlike a traditional pool, though, the
pool in this class does not throttle connections: if you request a sixth connection, a
new connection will be created and then destroyed when you are finished with it.
That kind of transient connection is not something you see with a traditional connec‐
tion pool. So in the default configuration of the HttpURLConnection class, it’s easy to
see lots of transient connections and assume that the connections are not being
pooled (and the Javadoc isn’t helpful here either; it never mentions the pooling func‐
tionality, though the behavior is documented elsewhere).

You can change the size of the pool by setting the system property
-Dhttp.maxConnections=N, which defaults to 5. Despite its name, this property
applies to HTTPS connections as well. There is no way to have this class throttle con‐
nections, though.

In the new HttpClient class in JDK 11, the pool follows a similar idea, but with two
important differences. First, the default pool size is unbounded, though that can be
set with the -Djdk.httpclient.connectionPoolSize=N system property. That prop‐
erty still doesn’t act as a throttle; if you request more connections than are configured,
they will be created when needed and then destroyed when they are complete. Sec‐
ond, this pool is per HttpClient object, so if you are not reusing that object, you will
not get any connection pooling.

In JAX-RS itself, it is frequently suggested to use a different connector than the
default if you want a connection pool. Since the default connector uses the HttpURL
Connection class, that’s not true: unless you want to throttle the connections, you can
tune the connection size of that class as we’ve just discussed. Other popular connec‐
tors will also pool the connections.

Table 10-1. Tuning the HTTP connection pool of popular clients

Connector HTTP client class Pooling mechanism
Default java.net.HttpURLConnection Setting the maxConnections system property

Apache org.apache.http.
client.HttpClient

Create a PoolingHttpClientConnectionManager

Grizzly com.ning.http.client.
AsyncHttpClient

Pooled by default; can modify configuration

Jetty org.eclipse.jetty.
client.HttpClient

Pooled by default; can modify configuration
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In JAX-RS, the Grizzly connection manager uses the com.ning.http.client

.AsyncHttpClient client. That client has since been renamed to org

.asynchttpclient.AsyncHttpClient; it is the async client built on top of Netty.

Async HTTP clients
Asynchronous (async) HTTP clients, like async HTTP servers, allow for better thread
management in an application. The thread that makes an async call sends the request
to the remote server, and arrangements are made for a different (background) thread
to process the request when it is available.

That statement (“arrangements are made”) is purposely vague here, because the
mechanism in which that is achieved is very different between different HTTP cli‐
ents. But from a performance perspective, the point is that using an async client
increases performance because it defers the response handling to another thread,
allowing more things to run in parallel.

Async HTTP clients are a feature of JAX-RS 2.0, though most standalone HTTP cli‐
ents also support async features directly. In fact, you may have noticed that some of
the clients we looked at had async as part of their name; they are asynchronous by
default. Although they have a synchronous mode, that happens in the implementa‐
tion of the synchronous methods: those methods make an async call, wait for the
response to be complete, and then return that response (synchronously) to the caller.

This async mode is supported by JAX-RS 2.0 implementations, including those in the
reference Jersey implementation. That implementation includes several connectors
that can be used asynchronously, though not all these connectors are truly asynchro‐
nous. In all cases, the response handling is deferred to another thread, but it can
operate in two basic ways. In one case, that other thread can simply use standard,
blocking Java I/O. In that case, the background thread pool needs one thread for
every request to be handled concurrently. That’s the same as with the async server: we
gain concurrency by adding lots of other threads.

In the second case, the HTTP client uses nonblocking I/O. For that kind of process‐
ing, the background thread needs a few (at least one, but typically more) threads to
handle NIO key selection and then some threads to handle responses as they come in.
In many cases, these HTTP clients then use fewer threads overall. NIO is classic
event-driven programming: when data on a socket connection is available to be read,
a thread (usually from a pool) is notified of that event. That thread reads the data,
processes it (or passes the data to yet another thread to be processed), and then
returns to the pool.

Async programming is typically thought of as being event-driven, and so in a strict
sense, the async HTTP clients that use blocking I/O (and pin a thread for the entire
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request) are not asynchronous. The API gives the illusion of asynchronous behavior,
even if the thread scalability will not be what we are expecting.

From a performance perspective, the async client gives us similar benefits as the
async server: we can increase concurrency during a request so that it executes more
quickly, and we can better manage (and throttle) requests by utilizing different thread
pools.

Let’s take a common case for async examples: a REST service that functions as an
aggregator of information from three other REST services. The pseudocode outline
for such a service looks like this:

public class TestResource {
    public static class MultiCallback extends InvocationCallback<Message> {
        private AsyncResponse ar;
        private AtomicDouble total = new AtomicDouble(0);
        private AtomicInteger pendingResponses;
        public MultiCallback(AsyncResponse ar, int targetCount) {
            this.ar = ar;
            pendingResponse = new AtomicInteger(targetCount);
        }
        public void completed(Message m) {
            double d = total.getAndIncrement(Message.getValue());
            if (targetCount.decrementAndGet() == 0) {
                ar.resume("{\"total\": \"" + d + "\"}");
            }
        }
    }

    @GET
    @Path("/aggregate")
    @Produces(MediaType.APPLICATION_JSON)
    public void aggregate(@Suspended final AsyncResponse ar)
                    throws ParseException {
        MultiCallback callback = new MultiCallback(ar, 3);
        target1.request().async().get(callback);
        target2.request().async().get(callback);
        target3.request().async().get(callback);
    }
}

Note that we also use an async response in this example, but we don’t need a separate
pool as before: the request will be resumed in one of the threads that handles the
response.

This introduces the desired concurrency into this operation, but let’s take a little
closer look into the thread usage. Figure 10-3 shows the significant thread usage by
the Helidon server when executing this example.
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Figure 10-3. Simple thread usage of async HTTP clients

At time T1, the request comes in and starts executing on a Helidon request thread.
The thread sets up the three remote calls; each call is actually sent by a thread in the
async client pool. (In the diagram, the three are sent by the same thread, but that is
timing dependent: they may execute on three separate threads depending on how
quickly the requests are made and how long it takes them to send their data.) The
three sockets associated with those calls are also registered on the event queue being
processed by the NIO polling thread. The request thread finishes processing at time
T2.

At time T3, the NIO polling thread gets an event that one of the sockets has data, so it
sets up HTTP client thread #1 to read and process that data. That processing contin‐
ues until time T5. Meanwhile at time T4, the NIO polling thread gets an event that
another socket has data to read, which is then read and processed by HTTP client
thread #2 (which takes until time T7). Then at time T5, the third socket is ready to be
processed. Because HTTP client thread #1 is idle, it can read and process that request,
which finishes at time T8 (and at that point, the resume() method is called on the
response object, and the response is delivered to the client).

The duration of the processing in the client threads is the key here. If the processing
is very fast and the responses staggered well enough, a single thread can handle all the
responses. If the processing takes a long time or the responses are bunched, we’ll need
one thread per request. In the example, we’re in a middle ground: we used fewer
threads than a one-thread-per-request model, but more than one thread. This is a key
difference between a REST server and something like an nginx server of static con‐
tent: ultimately, even in a completely asynchronous implementation, the CPU needs
of the business logic are going to require a fair number of threads in order to get good
concurrency.

This example assumes that the HTTP client is utilizing NIO. If the client uses tradi‐
tional NIO, the figure would be slightly different. When the first async client thread
call is made, that call will last all the way until time T7. The second call on the async
client will need a new thread; that request will last until time T8. And the third async
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client thread will run until time T5 (the clients would not be expected to complete in
the same order as they were started). Figure 10-4 shows the difference.

In either case, the results are the same for the end user: the three requests are handled
in parallel, with the expected gain in performance. But the thread usage (and hence
overall system efficiency) will be quite different.

Figure 10-4. Simple thread usage of blocking HTTP clients

Async HTTP clients and thread usage
These background thread pool(s) will act as throttles, of course, and they must as
usual be tuned so that they are large enough to handle the concurrency that your
application needs, but not too large so as to overwhelm requests to the backend
resource. Often the default settings are sufficient, but if you need to look further into
the different connectors with the reference implementation of JAX-RS and their
background pool, here is some additional information on each of them.

Default connector
The default connector uses blocking I/O. A single async client thread pool in Jer‐
sey (the reference JAX-RS implementation) will handle all requests; the threads
in this pool are named beginning with jersey-client-async-executor. That
pool will need one thread per simultaneous request, as Figure 10-4 showed. By
default, that pool size is unbounded; you can set a bound when the client is con‐
figured by setting this property:

    ClientConfig cc = new ClientConfig();
    cc.property(ClientProperties.ASYNC_THREADPOOL_SIZE, 128);
    client = ClientBuilder.newClient(cc);

Apache connector
Although the Apache libraries have a true asynchronous client (one that uses
NIO for reading the response rather than requiring a dedicated thread), the
Apache connector in Jersey uses the traditional blocking I/O Apache client. With
respect to thread pools, it behaves and is configured just like the default
connector.
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Grizzly connector
The HTTP client used by the Grizzly connector is asynchronous, following the
model in Figure 10-3. Multiple pools are involved: a pool (grizzly-ahc-kernel)
that writes the requests, a pool (nioEventLoopGroup) that waits for NIO events,
and a pool (pool-N) that reads and processes the responses. That latter pool is the
important one to configure for throughput/throttling reasons, and its size is
unbounded; it can be throttled by using the ASYNC_THREADPOOL_SIZE property.

Jetty connector
Jetty uses an asynchronous client. Requests are sent and read from the same
thread pool (and event polling also happens in that pool). In Jersey, that pool is
also configured using the ASYNC_THREADPOOL_SIZE property, though a server
using Jetty has two backend thread pools: the standard pool of jersey-client-
async-executor threads (which handles miscellaneous bookkeeping), and the
pool of threads handling the Jetty clients (those threads are named beginning
with HttpClient). If that property is not set, the size of the HttpClient pool will
be 200.

Quick Summary

• Always make sure that the connection pool for HTTP clients is
set correctly.

• Asynchronous HTTP clients can improve performance by dis‐
tributing work among multiple threads, increasing
concurrency.

• Async HTTP clients built using NIO will require fewer threads
than those built using traditional I/O, but a REST server still
requires a fairly large number of threads to process asynchro‐
nous requests.

Asynchronous database calls
If the outbound call in question is a call to a relational database, making it truly asyn‐
chronous is hard. The standard JDBC API does not lend itself to using nonblocking
I/O, so a general solution will require a new API or new technologies. Various pro‐
posals around such an API have been made and rejected, and current hopes are that a
new lightweight task model known as fibers will make it possible for existing synchro‐
nous APIs to scale well without the need for asynchronous programming. Fibers are
part of the OpenJDK Project Loom, but no target release date has been set (as of this
writing).

Proposals (and implementations) of asynchronous JDBC wrappers often defer the
JDBC work to a separate thread pool. This is similar to the default Jersey
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asynchronous HTTP client from the preceding section: from a programmatic view‐
point, the API looks asynchronous. But in implementation, background threads are
blocked on the I/O channels, so we don’t gain any scalability by going in that direc‐
tion.

Various projects outside the JDK can fill the gap. The most widely used is Spring Data
R2DBC from the Spring project. This requires using a different API, and drivers are
available only for certain databases. Still, for nonblocking access to a relational data‐
base, this is the best game in town.

For NoSQL databases, the story is somewhat similar. On the other hand, no Java stan‐
dard exists for accessing a NoSQL database in the first place, so your programming
depends on a database-proprietary API anyway. So the Spring projects for reactive
NoSQL databases can be used for true asynchronous access.

JSON Processing
Now that we’ve looked at the mechanics of how data is sent in Java servers, let’s delve
into the data itself. In this section, we’ll look primarily at JSON processing. Older Java
programs often use XML (and the processing trade-offs among JSON and XML are
pretty much identical); there are also newer formats like Apache Avro and Google’s
protocol buffers.

JSON Sample Data
The examples in this section are based on the JSON returned from using the eBay
REST service that returns 100 items for sale that match a particular keyword. A por‐
tion of that data looks like this:

{"findItemsByKeywordsResponse": [
    {"ack":["Success"],
     "version":["1.13.0"],
     "timestamp":["2019-08-26T19:48:28.830Z"],
     "searchResult":[
        {"@count":"100",
         "item":[
             {"itemId":["153452538114"],
              "title":["Apple iPhone 6"],
              ... more fields ...
             }
         ],
         ... more items ...
        }
     ]
    }
]}
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An Overview of Parsing and Marshaling
Given a series of JSON strings, a program must convert those strings into data suit‐
able for processing by Java. This is called either marshaling or parsing, depending on
the context and the resulting output. If the output is a Java object, the process is called
marshaling; if the data is processed as it is read, the process is called parsing. The
reverse—producing JSON strings from other data—is called unmarshaling.

We can use three general techniques to handle JSON data:

Pull parsers
The input data is associated with a parser, and the program asks for (or pulls) a
series of tokens from the parser.

Document models
The input data is converted to a document-style object that the application can
then walk through as it looks for pieces of data. The interface here is in terms of
generic document-oriented objects.

Object representations
The input data is converted to one or more Java objects by using a set of prede‐
fined classes that reflect the structure of the data (e.g., a predefined Person class
is for data that represents an individual). These are typically known as plain old
Java objects (POJOs).

These techniques are listed in rough order of fastest to slowest, but again the func‐
tional differences between them are more important than their performance differ‐
ences. Simple scanning is all a parser can do, so they are not ideally suited for data
that must be accessed in random order or examined more than once. To handle those
situations, a program using only a simple parser would need to build an internal data
structure, which is a simple matter of programming. But the document and Java
object models already provide structured data, which will usually be easier than
defining new structures on your own.

This, in fact, is the real difference between using a parser and using a data marshaler.
The first item in the list is a parser, and it is up to the application logic to handle the
data as the parser provides it. The next two are data marshalers: they must use a
parser to process the data, but they provide a data representation that more-complex
programs can use in their logic.

So the primary choice regarding which technique to use is determined by how the
application needs to be written. If a program needs to make one simple pass through
the data, simply using the fastest parser will suffice. Directly using a parser is also
appropriate if the data is to be saved in a simple, application-defined structure; for
example, the prices for the items in the sample data could be saved to an ArrayList,
which would be easy for other application logic to process.

JSON Processing | 323



Using a document model is more appropriate when the format of the data is impor‐
tant. If the format of the data must be preserved, a document format is easy: the data
can be read into the document format, altered in some way, and then the document
format can simply be written to a new data stream.

For ultimate flexibility, an object model provides Java-language-level representation
of the data. The data can be manipulated in the familiar terms of objects and their
attributes. The added complexity in the marshaling is (mostly) transparent to the
developer and may make that part of the application a little slower, but the productiv‐
ity improvement in working with the code can offset that issue.

JSON Objects
JSON data has two object representations. The first is generic: simple JSON objects.
These objects are manipulated via generic interfaces: JsonObject, JsonArray, and so
on. They provide a way to build up or inspect JSON documents without making spe‐
cific class representations of the data.

The second JSON object representation binds the JSON data to a full-fledged Java
class, using JSON bindings (JSON-B) that result in POJO. For example, the item data
in our sample JSON data would be represented by an Item class that has attributes for
its fields.

The difference between the two object representations is that the first is generic and
requires no classes. Given a JsonObject that represents an item in our sample data,
the title of the item would be found like this:

JsonObject jo;
String title = jo.getString("title");

In JSON-B, the title of an item would be available via more intuitive getters and
setters:

Item i;
String title = i.getTitle();

In either case, the object itself is created with an underlying parser, so it is important
to configure the parser for optimal performance. But in addition to parsing the data,
the object implementations allow us to produce a JSON string from the object (i.e., to
unmarshal the object). Table 10-2 shows the performance of those operations.

Table 10-2. Performance of JSON object models

Object model Marshal performance
JSON object 2318 ± 51 μs

JSON-B classes 7071 ± 71 μs

Jackson mapper 1549 ± 40 μs

324 | Chapter 10: Java Servers



Producing a simple JSON object is substantially faster than producing custom Java
classes, though those Java classes will be easier to work with from a programming
perspective.

The Jackson mapper in this table is an alternate approach, which at this point has
pretty much eclipsed other uses. Although Jackson provides an implementation of the
standard JSON parsing (JSON-P) API, they have an alternate implementation that
marshals and unmarshals JSON data into Java objects, but that doesn’t follow JSON-
B. That implementation is built on the ObjectMapper class that Jackson provides. The
JSON-B code to marshal data into an object looks like this:

Jsonb jsonb = JsonbBuilder.create();
FindItemsByKeywordsResponse f =
    jsonb.fromJson(inputStream, FindItemsByKeywordsResponse.class);

The ObjectMapper code is slightly different:

ObjectMapper mapper = new ObjectMapper();
FindItemsByKeywordsResponse f =
    mapper.readValue(inputStream, FindItemsByKeywordsResponse.class);

From a performance perspective, ObjectMapper use has some pitfalls. As the JSON
data is marshaled, the mapper will create a lot of proxy classes that are used to create
the resulting POJO. That in itself is somewhat time-consuming the first time a class is
used. To overcome this, a common mistake—and the second performance issue—is
to create lots of mapper objects (e.g., a static one per class that performs the marshal‐
ing). This often leads to memory pressure, excessive GC cycles, and even OutOfMe
mory errors. There need be only a single ObjectMapper object in an application,
which helps both CPU and memory usage. Even so, an object model representation
of data will consume memory for those objects.

JSON Parsing
Direct parsing of JSON data has two advantages. First, if the JSON object model is
too memory-intensive for your application, directly parsing the JSON and processing
it will save that memory. Second, if the JSON you are dealing with contains a lot of
data (or data that you want in some way to filter), parsing it directly will be more
efficient.

All JSON parsers are pull parsers, which operate by retrieving data from the stream
on demand. The basic pull parser for the tests in this section has this loop as its main
logic:

parser = factory.createParser(inputStream);
int idCount = 0;
while (parser.hasNext()) {
    Event event = parser.next();
    switch (event) {
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        case KEY_NAME:
            String s = parser.getString();
            if (ID.equals(s)) {
                isID = true;
            }
            break;
        case VALUE_STRING:
            if (isID) {
                if (addId(parser.getString())) {
                    idCount++;
                    return;
                }
                isID = false;
            }
            continue;
        default:
            continue;
    }
}

This code pulls tokens from the parser. In the code, most tokens are just discarded.
When a start token is found, the code checks to see if the token is an item ID. If it is,
the next character token will be the ID the application wants to save.

This test also allows us to filter the data; in this case, we are filtering to read only the
first 10 items in the JSON data. That’s done when we process the ID: that ID is saved
via the addItemId() method, which returns true if the desired number of IDs have
been stored. When that happens, the loop can just return and not process the remain‐
ing data in the input stream.

Reusing Factories and Parsers
JSON parser factories are expensive to create. Fortunately, the factories are thread-
safe, so it is easy to store the factory in a global static variable and reuse the factory as
needed.

In general, the actual parsers cannot be reused, nor are they thread-safe. Parsers,
therefore, are usually created on demand.

How do these parsers actually perform? Table 10-3 shows the average time in micro‐
seconds to parse the sample document, assuming parsing stops after 10 items, and to
process the entire document. Predictably, parsing 90% fewer items leads to a 90%
improvement in performance.
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Table 10-3. Performance of pull parsers

Items processed Default parser Jackson parser
10 159 ± 2 us 86 ± 5 μs

100 1662 ± 46 us 770 ± 4 μs

As has been the case for a while, the Jackson parser delivers superior performance
here, but both are quite faster than reading actual objects.

Quick Summary

• There are two options for processing JSON: creating POJOs
objects, and using direct parsing.

• The choice is dependent on the application needs, but direct
parsing offers filtering and general performance opportunities.
Creating JSON objects can often lead to GC issues when the
objects are large.

• The Jackson parser is generally the fastest parser; it should be
preferred over default implementations.

Summary
Nonblocking I/O forms the basics of effective server scaling because it allows servers
to handle a relatively large number of connections with a relatively small number of
threads. Traditional servers utilize this for basic client connection handling, and
newer server frameworks can extend the nonblocking nature up the stack to other
applications.
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CHAPTER 11

Database Performance Best Practices

This chapter investigates the performance of Java-driven database applications.
Applications that access a database are subject to non-Java performance issues: if a
database is I/O-bound or if it is executing SQL queries that require full table scans
because an index is missing, no amount of Java tuning or application coding is going
to solve the performance issues. When dealing with database technologies, be pre‐
pared to learn (from another source) about how to tune and program the database.

This is not to say that the performance of an application that uses a database is insen‐
sitive to things under the control of the JVM and the Java technologies that are used.
Rather, for good performance, it is necessary to ensure that both the database and the
application are correctly tuned and executing the best possible code.

This chapter starts by looking at JDBC drivers, since those influence the data frame‐
works that talk to relational databases. Many frameworks abstract the JDBC details,
including the JPA and the Spring data modules.

SQL and NoSQL
The focus of this chapter is on relational databases and the Java technologies that
access them. There are ways to access nonrelational databases via Java, but they are
not standard. Relational databases adhere to various SQL standards, including the
ANSI/ISO SQL standard (aka SLQ:2003). Adhering to that standard means that the
Java platform itself can provide a standard interface to those databases; that interface
is JDBC (and JPA is built on top of that).

There is no corresponding standard for NoSQL databases, and hence there is no stan‐
dard platform support for accessing them. The forthcoming Jakarta Enterprise Edi‐
tion 9 is expected to include a specification for standard access to NoSQL databases,
though the details are in flux.
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Still, while the examples in this chapter don’t address NoSQL databases, the concepts
definitely do apply to them: things like batching and transaction boundaries have just
as important an effect on NoSQL databases as on relational databases.

Sample Database
The examples in this chapter use a sample database set up to store the data for 256
stock entities for the period of one year. The year has 261 business days.

Prices for the individual stocks are held in a table called STOCKPRICE, which has a
primary key of the stock symbol and the date. There are 66,816 rows in that table
(256 × 261).

Each stock has a set of five associated options, which are also priced daily. The
STOCKOPTIONPRICE table holds that data with a primary key of the symbol, the
date, and an integer representing the option number. There are 334,080 rows in that
table (256 × 261 × 5).

JDBC
This chapter covers database performance from the perspective of JPA version 2.x.
However, JPA uses JDBC under the covers, and many developers still write applica‐
tions directly to the JDBC APIs—so it is important to look at the most important per‐
formance aspects of JDBC also. Even for applications that use JPA (or another
database framework from something like Spring Data), understanding JDBC perfor‐
mance will help get better performance out of the framework.

JDBC Drivers
The JDBC driver is the most important factor in the performance of database applica‐
tions. Databases come with their own set of JDBC drivers, and alternate JDBC drivers
are available for most popular databases. Frequently, the justification for these alter‐
nate drivers is that they offer better performance.

It’s impossible to adjudicate the performance claims of all database drivers, but here
are some things to consider when evaluating drivers.

Where work is performed
JDBC drivers can be written to perform more work within the Java application (the
database client) or to perform more work on the database server. The best example of
this is the thin and thick drivers for Oracle databases. The thin driver is written to
have a fairly small footprint within the Java application: it relies on the database
server to do more processing. The thick driver is just the opposite: it offloads work

330 | Chapter 11: Database Performance Best Practices



1 You might prefer to scale the database instead, but that is often difficult in real-world deployments.

from the database at the expense of requiring more processing and more memory on
the Java client. That kind of trade-off is possible in most databases.

Competing claims disagree on which model gives the better performance. The truth
is that neither model offers an inherent advantage—the driver that will offer the best
performance depends on the specifics of the environment in which it is run. Say an
application host is a small, two-core machine connecting to a huge, well-tuned data‐
base. The CPU of the application host is likely to become saturated well before any
significant load is placed on the database. A thin-style driver will give the better per‐
formance in that case. Conversely, an enterprise that has 100 departments accessing a
single HR database will see the best performance if database resources are preserved
and the clients deploy a thick-style driver.1

This is a reason to be suspicious of any performance claims when it comes to JDBC
drivers: it is easy to pick a driver that is well suited to a particular environment and
show that it is superior to another vendor’s driver that performs badly on the exact
same setup. As always, test in your own environment, and make sure that environ‐
ment mirrors what you will deploy on.

The JDBC driver type
JDBC drivers come in four types (1–4). The driver types in wide use today are type 2
(which uses native code) and type 4 (which is pure Java).

Type 1 drivers provide a bridge between Open Database Connectivity (ODBC) and
JBDC. If an application must talk to a database using ODBC, it must use this driver.
Type 1 drivers generally have quite bad performance; you would choose that only if
you had to talk via the ODBC protocol to a legacy database.

Type 3 drivers are, like type 4 drivers, written purely in Java, but they are designed for
a specific architecture in which a piece of middleware (sometimes, though usually
not, an application server) provides an intermediary translation. In this architecture,
a JDBC client (usually a standalone program, though conceivably an application
server) sends the JDBC protocol to the middleware, which translates the requests into
a database-specific protocol and forwards the request to the database (and performs
the reverse translation for the response).

In some situations, this architecture is required: the middleware can sit in the net‐
work demilitarized zone (DMZ) and provide additional security for connections to
the database. From a performance standpoint, potential advantages and disadvan‐
tages exist. The middleware is free to cache database information, which offloads the
database (making it faster) and returns data to the client sooner (decreasing the
latency of the request). Without that caching, however, performance will suffer, as
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two round-trip network requests are now required to perform a database operation.
In the ideal case, those will balance out (or the caching will be even faster).

As a practical situation, though, this architecture has not really been widely adopted.
It is generally easier to put the server itself in the middle tier (including in the DMZ if
needed). The server can then perform the database operations, but it needn’t provide
a JDBC interface to clients: it is better off providing servlet interfaces, web service
interfaces, and so on—isolating the client from any knowledge of the database.

That leaves type 2 and 4 drivers, both of which are quite popular, and neither of
which has an inherent performance advantage over the other.

Type 2 drivers use a native library to access the database. These drivers are popular
with some database vendors because they allow the Java driver to leverage the years of
work that has been put into writing the C library that other programs use to access
the database. Because they rely on a native library, they are harder to deploy: the data‐
base vendor must provide a platform-specific native library for the driver, and the
Java application must set up environmental variables to use that library. Still, given
the work that the vendor has already put into the C library, type 2 drivers tend to per‐
form very well.

Type 4 drivers are pure Java drivers that implement the wire protocol that the data‐
base vendor has defined for accessing their database. Because they are written com‐
pletely in Java, they are easy to deploy: the application simply needs to add a JAR file
to their classpath. Type 4 drivers typically perform as well as type 2 drivers because
both use the same wire protocol. From the vendor’s perspective, the type 4 driver may
be additional code to write, but from a user’s perspective, they are generally the easi‐
est to use.

Don’t conflate the driver type (2 or 4) with whether the driver is considered thick or
thin, as discussed in the previous section. It is true that type 2 drivers tend to be thick
and type 4 drivers tend to be thin, but that is not a requirement. In the end, whether a
type 2 or type 4 driver is better depends on the environment and the specific drivers
in question. There is really no a priori way to know which will perform better.

Quick Summary

• Spend time evaluating the best JDBC driver for the applica‐
tion.

• The best driver will often vary depending on the specific
deployment. The same application may be better with one
JDBC driver in one deployment and a different JDBC driver in
a different deployment.

• If you have a choice, avoid ODBC and type 1 JDBC drivers.
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JDBC Connection Pools
Connections to a database are time-consuming to create, so JDBC connections are
another prototypical object that you should reuse in Java.

In most server environments, all JDBC connections come from the server’s connec‐
tion pool. In a Java SE environment with JPA, most JPA providers will use a connec‐
tion pool transparently, and you can configure the connection pool within the
persistence.xml file. In a standalone Java SE environment, the connections must be
managed by the application. To deal with that last case, you can use one of several
connection pool libraries that are available from many sources. Often, though, it is
easier to create a connection and store it in a thread-local variable for each thread in a
standalone application.

As usual, it is important to strike the right balance between the memory occupied by
the pooled objects and the amount of extra GC the pooling will trigger. This is partic‐
ularly true because of the prepared statement caches that we’ll examine in the next
section. The actual connection objects may not be very big, but statement caches
(which exist on a per connection basis) can grow to be quite big.

In this case, striking the correct balance applies to the database as well. Each connec‐
tion to the database requires resources on the database (in addition to the memory
held in the application). As connections are added to the database, the database needs
more resources: it will allocate additional memory for each prepared statement used
by the JDBC driver. Database performance can be adversely affected if the application
server has too many open connections.

The general rule of thumb for connection pools is to have one connection for every
thread in the application. In a server, start by applying the same sizing to the thread
pool and the connection pool. In a standalone application, size the connection pool
based on the number of threads the application creates. In a typical case, this will
offer the best performance: no thread in the program will have to wait for a database
connection to be available, and typically there are enough resources on the database
to handle the load imposed by the application.

If the database becomes a bottleneck, however, this rule can become counterproduc‐
tive. Having too many connections to an undersized database is another illustration
of the principle that injecting load into a busy system will decrease its performance.
Using a connection pool to throttle the amount of work that is sent to an undersized
database is the way to improve performance in that situation. Application threads
may have to wait for a free connection, but the total throughput of the system will be
maximized if the database is not overburdened.
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2 Statement pooling is often called statement caching by database vendors.

Quick Summary

• Connections are expensive objects to initialize; they are rou‐
tinely pooled in Java—either in the JDBC driver itself or
within JPA and other frameworks.

• As with other object pools, it is important to tune the connec‐
tion pool so it doesn’t adversely affect the garbage collector. In
this case, it is also necessary to tune the connection pool so it
doesn’t adversely affect the performance of the database itself.

Prepared Statements and Statement Pooling
In most circumstances, code should use a PreparedStatement rather than a
Statement for its JDBC calls. This aids performance: prepared statements allow the
database to reuse information about the SQL that is being executed. That saves work
for the database on subsequent executions of the prepared statement. Prepared state‐
ments also have security and programming advantages, particularly in specifying
parameters to the call.

Reuse is the operative word here: the first use of a prepared statement takes more time
for the database to execute, since it must set up and save information. If the statement
is used only once, that work will be wasted; it’s better to use a regular statement in
that case.

When there are only a few database calls, the Statement interface will let the applica‐
tion finish faster. But even batch-oriented programs may make hundreds or thou‐
sands of JDBC calls to the same few SQL statements; later examples in this chapter
will use a batch program to load the database with its 400,896 records. Batch pro‐
grams that have many JDBC calls—and servers that will service many requests over
their lifetime—are better off using a PreparedStatement interface (and database
frameworks will do that automatically).

Prepared statements provide their performance benefit when they are pooled—that
is, when the actual PreparedStatement object is reused. For proper pooling, two
things must be considered: the JDBC connection pool and the JDBC driver configu‐
ration.2 These configuration options apply to any program that uses JDBC, whether
directly or via a framework.

334 | Chapter 11: Database Performance Best Practices



Setting up the statement pool
Prepared statement pools operate on a per connection basis. If one thread in a pro‐
gram pulls a JDBC connection out of the pool and uses a prepared statement on that
connection, the information associated with the statement will be valid only for that
connection. A second thread that uses a second connection will end up establishing a
second pooled instance of the prepared statement. In the end, each connection object
will have its own pool of all the prepared statements used in the application (assum‐
ing that they are all used over the lifetime of the application).

This is one reason a standalone JDBC application should use a connection pool. It
also means that the size of the connection pool matters (to both JDBC and JPA pro‐
grams). That is particularly true early in the program’s execution: when a connection
that has not yet used a particular prepared statement is used, that first request will be
a little slower.

The size of the connection pool also matters because it is caching those prepared
statements, which take up heap space (and often a lot of heap space). Object reuse is
certainly a good thing in this case, but you must be aware of how much space those
reusable objects take up and make sure it isn’t negatively affecting the GC time.

Managing statement pools
The second thing to consider about the prepared statement pool is what piece of code
will actually create and manage the pool. This is done by using the
setMaxStatements() method of the ConnectionPoolDataSource class to enable or
disable statement pooling. Statement pooling is disabled if the value passed to the set
MaxStatements() method is 0. That interface specifically does not define where the
statement pooling should occur—whether in the JDBC driver or another layer, such
as the application server. And that single interface is insufficient for some JDBC driv‐
ers, which require additional configuration.

So, when writing a Java SE application that uses JDBC calls directly, we have two
choices: either the JDBC driver must be configured to create and manage the state‐
ment pool or the pool must be created and managed within the application code.
When using a framework, the statement pool is often managed by the framework.

The tricky thing is that no standards exist in this area. Some JDBC drivers do not
provide a mechanism to pool statements at all; they expect to be used only within an
application server that is doing the statement pooling and want to provide a simpler
driver. Some application servers do not provide and manage a pool; they expect the
JDBC driver to handle that task and don’t want to complicate their code. Both argu‐
ments have merit (though a JDBC driver that does not provide a statement pool puts
a burden on you if you are the developer of a standalone application). In the end,
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you’ll have to sift through this landscape and make sure that the statement pool is
created somewhere.

Since there are no standards, you may encounter a situation where both the JDBC
driver and the data layer framework are capable of managing the prepared statement
pool. In that case, it is important that only one of them be configured to do so. From
a performance perspective, the better choice will again depend on the exact combina‐
tion of driver and server. As a general rule, you can expect the JDBC driver to per‐
form better statement pooling. Since the driver is (usually) specific to a particular
database, it can be expected to make better optimizations for that database than the
more generic application server code.

To enable statement pooling (or caching) for a particular JDBC driver, consult that
driver’s documentation. In many cases, you need only set up the driver so that the
maxStatements property is set to the desired value (i.e., the size of the statement
pool). Other drivers may require additional settings: for example, the Oracle JDBC
drivers require that specific properties be set to tell it whether to use implicit or
explicit statement caching, and MySQL drivers require that you set a property to
enable statement caching.

Quick Summary

• Java applications will typically execute the same SQL statement
repeatedly. In those cases, reusing prepared statements will
offer a significant performance boost.

• Prepared statements must be pooled on a per connection
basis. Most JDBC drivers and data frameworks can do this
automatically.

• Prepared statements can consume a significant amount of
heap. The size of the statement pool must be carefully tuned to
prevent GC issues from pooling too many very large objects.

Transactions
Applications have correctness requirements that ultimately dictate how transactions
are handled. A transaction that requires repeatable-read semantics will be slower than
a transaction that requires only read-committed semantics, but knowing that is of lit‐
tle practical benefit for an application that cannot tolerate nonrepeatable reads. So
while this section discusses how to use the least intrusive isolation semantics for an
application, don’t let the desire for speed overcome the correctness of the application.

Database transactions have two performance penalties. First, it takes time for the
database to set up and then commit the transaction. This involves making sure that
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changes to the database are fully stored on disk, that the database transaction logs are
consistent, and so on. Second, during a database transaction, it is common for the
transaction to obtain a lock for a particular set of data (not always a row, but I’ll use
that as the example here). If two transactions are contending for a lock on the same
database row, the scalability of the application will suffer. From a Java perspective,
this is exactly analogous to the discussion in Chapter 9 about contended and uncon‐
tended locks.

For optimal performance, consider both of these issues: how to program the transac‐
tions so that the transaction itself is efficient and how to hold locks on the database
during a transaction so that the application as a whole can scale.

JDBC transaction control
Transactions are present within both JDBC and JPA applications, but JPA manages
transactions differently (those details are discussed later in this chapter). For JDBC,
transactions begin and end based on the way the Connection object is used.

In basic JDBC usage, connections have an autocommit mode (set via the
setAutoCommit() method). If autocommit is turned on (and for most JDBC drivers,
that is the default), each statement in a JDBC program is its own transaction. In that
case, a program need take no action to commit a transaction (in fact, if the commit()
method is called, performance will often suffer).

If autocommit is turned off, a transaction implicitly begins when the first call is made
on the connection object (e.g., by calling the executeQuery() method). The transac‐
tion continues until the commit() method (or the rollback() method) is called. A
new transaction will begin when the connection is used for the next database call.

Transactions are expensive to commit, so one goal is to perform as much work in a
transaction as is possible. Unfortunately, that principle is completely at odds with
another goal: because transactions can hold locks, they should be as short as possible.
There is definitely a balance here, and striking the balance will depend on the applica‐
tion and its locking requirements. The next section, on transaction isolation and
locking, covers that in more detail; first let’s look into the options for optimizing the
transaction handling itself.

Consider some sample code that inserts data into a database for use by the stock
application. For each day of valid data, one row must be inserted into the STOCK‐
PRICE table, and five rows into the STOCKOPTIONPRICE table. A basic loop to
accomplish that looks like this:

try (Connection c = DriverManager.getConnection(URL, p)) {
    try (PreparedStatement ps = c.prepareStatement(insertStockSQL);
         PreparedStatement ps2 = c.prepareStatement(insertOptionSQL)) {
        for (StockPrice sp : stockPrices) {
            String symbol = sp.getSymbol();
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            ps.clearParameters();
            ps.setBigDecimal(1, sp.getClosingPrice());
     ... set other parameters ...
            ps.executeUpdate();
            for (int j = 0; j < 5; j++) {
                ps2.clearParameters();
                ps2.setBigDecimal(1,
                    sp.getClosingPrice().multiply(
                        new BigDecimal(1 + j / 100.)));
                ... set other parameters ...
                ps2.executeUpdate();
            }
        }
    }
}

In the full code, the prices are precalculated into the stockPrices array. If that array
represents data for the year 2019, this loop will insert 261 rows into the STOCK‐
PRICE table (via the first call to the executeUpdate() method) and 1,305 rows into
the STOCKOPTIONPRICE table (via the for loop). In the default autocommit mode,
that means 1,566 separate transactions, which will be quite expensive.

Better performance will be achieved if autocommit mode is disabled and an explicit
commit is performed at the end of the loop:

try (Connection c = DriverManager.getConnection(URL, p)) {
    c.setAutoCommit(false);
    try (PreparedStatement ps = c.prepareStatement(insertStockSQL);
         PreparedStatement ps2 = c.prepareStatement(insertOptionSQL)) {
        ... same code as before ....
    }
    c.commit();
}

From a logical point of view, that probably makes sense as well: the database will end
up with either an entire year’s worth of data or no data.

If this loop is repeated for multiple stocks, we have a choice of committing all the data
at once or committing all the data for a symbol at once:

try (Connection c = DriverManager.getConnection(URL, p)) {
    c.setAutoCommit(false);
    String lastSymbol = null;
    try (PreparedStatement ps = c.prepareStatement(insertStockSQL);
         PreparedStatement ps2 = c.prepareStatement(insertOptionSQL)) {
        for (StockPrice sp : stockPrices) {
     String symbol = sp.getSymbol();
     if (lastSymbol != null && !symbol.equals(lastSymbol)) {
  // We are processing a new symbol; commit the previous symbol
         c.commit();
     }
 }
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    }
    c.commit();
}

Committing all the data at once offers the fastest performance. In this example,
though, the application semantics might dictate that each year of data be committed
individually. Sometimes, other requirements intrude on attempts to get the best per‐
formance.

Each time the executeUpdate() method is executed in the preceding code, a remote
call is made to the database and work must be performed. In addition, locking will
occur when the updates are made (to ensure, at least, that another transaction cannot
insert a record for the same symbol and date). The transaction handling can be fur‐
ther optimized in this case by batching the inserts. When inserts are batched, the
JDBC driver holds them until the batch is completed; then all statements are trans‐
mitted in one remote JDBC call.

Here is how batching is achieved:

try (Connection c = DriverManager.getConnection(URL, p)) {
    try (PreparedStatement ps = c.prepareStatement(insertStockSQL);
         PreparedStatement ps2 = c.prepareStatement(insertOptionSQL)) {
        for (StockPrice sp : stockPrices) {
            String symbol = sp.getSymbol();
            ps.clearParameters();
            ps.setBigDecimal(1, sp.getClosingPrice());
     ... set other parameters ...
            ps.addBatch();
            for (int j = 0; j < 5; j++) {
                ps2.clearParameters();
                ps2.setBigDecimal(1,
                    sp.getClosingPrice().multiply(
                        new BigDecimal(1 + j / 100.)));
                ... set other parameters ...
                ps2.addBatch();
            }
        }
 ps.executeBatch();
 ps2.executeBatch();
    }
}

The code could equally well choose to execute each batch on a per stock basis (similar
to the way we committed after each stock symbol change). Some JDBC drivers have a
limitation on the number of statements they can batch (and the batch does consume
memory in the application), so even if the data is committed at the end of the entire
operation, the batches may need to be executed more frequently.

These optimizations can yield very large performance increases. Table 11-1 shows the
time required to insert one year of data for 256 stocks (a total of 400,896 insertions).
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3 In the first edition of this book, when the tests were run on Oracle 11g, that also wasn’t the case; there was a
clear difference between rows 2 and 3 and between rows 5 and 6. These tests were run on Oracle 18c, which
has its own improvements.

Table 11-1. Seconds required to insert data for 256 stocks

Programming mode Time required DB calls DB commits
Autocommit enabled, no batching 537 ± 2 seconds 400,896 400,896

1 commit for each stock 57 ± 4 seconds 400,896 256

1 commit for all data 56 ± 14 seconds 400,448 1

1 batch per commit for each stock 4.6 ± 2 seconds 256 256

1 batch per stock; 1 commit 3.9 ± 0.7 seconds 256 1

1 batch/commit for all data 3.8 ± 1 seconds 1 1

Note one interesting fact about this table that is not immediately obvious: the differ‐
ence between rows 1 and 2 is that autocommit has been turned off and the code is
explicitly calling the commit() method at the end of each while loop. The difference
between rows 1 and 4 is that statements are being batched—but autocommit is still
enabled. A batch is considered one transaction, which is why there is a one-to-one
correspondence between database calls and commits (and eliminating more than
400,000 calls yields that impressive speedup).

It’s also interesting to note that the difference between 400,896 and 256 calls to com‐
mit data (rows 1 and 2) is an order of magnitude, yet the difference between having 1
and 256 commits is not really significant (i.e., the difference between rows 2 and 3, or
the differences between rows 5 and 6). Committing the data is fast enough that when
there are 256 calls, the overhead is just noise; when there are 400,896 of them, it adds
up.3

Transaction isolation and locking
The second factor affecting transaction performance concerns the scalability of the
database as data within transactions is locked. Locking protects data integrity; in
database terms, it allows one transaction to be isolated from other transactions. JDBC
and JPA support the four major transaction isolation modes of databases, though they
differ in the way they accomplish that.

Isolation modes are briefly covered here, though since programming to a correct iso‐
lation mode isn’t really a Java-specific issue, you are urged to consult a database pro‐
gramming book for more information.

Here are the basic transaction isolation modes (in order from most to least
expensive):
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TRANSACTION_SERIALIZABLE
This is the most expensive transaction mode; it requires that all data accessed
within the transaction be locked for the duration of the transaction. This applies
both to data accessed via a primary key and to data accessed via a WHERE clause—
and when there is a WHERE clause, the table is locked such that no new records
satisfying the clause can be added for the duration of the transaction. A serialized
transaction will always see the same data each time it issues a query.

TRANSACTION_REPEATABLE_READ
This requires that all accessed data is locked for the duration of the transaction.
However, other transactions can insert new rows into the table at any time. This
mode can lead to phantom reads: a transaction that reissues a query with a WHERE
clause may get back different data the second time the query is executed.

TRANSACTION_READ_COMMITTED
This mode locks only rows that are written during a transaction. This leads to
nonrepeatable reads: data that is read at one point in the transaction may be dif‐
ferent from data that is read at another point in the transaction.

TRANSACTION_READ_UNCOMMITTED
This is the least expensive transaction mode. No locks are involved, so one trans‐
action may read the written (but uncommitted) data in another transaction. This
is known as a dirty read; the problem here arises because the first transaction may
roll back (meaning the write never actually happens), and hence the second
transaction is operating on incorrect data.

Databases operate in a default mode of transaction isolation: MySQL starts with a
default of TRANSACTION_REPEATABLE_READ; Oracle and IBM Db2 start with a default
of TRANSACTION_READ_COMMITTED; and so on. There are lots of database-specific per‐
mutations here. Db2 calls its default transaction mode CS (for cursor stability) and has
different names for the other three JDBC modes. Oracle doesn’t support either TRANS
ACTION_READ_UNCOMMITTED or TRANSACTION_REPEATABLE_READ.

When a JDBC statement is executed, it uses the database’s default isolation mode.
Alternately, the setTransaction() method on the JDBC connection can be called to
have the database supply the necessary transaction isolation level (and if the database
doesn’t support the given level, the JDBC driver will either throw an exception or
silently upgrade the isolation level to the next strictest level it supports).
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TRANSACTION_NONE and Autocommit
The JDBC specification defines a fifth transaction mode, which is TRANSACTION_NONE.
In theory, this transaction mode cannot be specified via the setTransaction
Isolation() mode, since if a transaction already exists, its isolation level cannot be
set to none. Some JDBC drivers (notably for Db2) do allow that call to be made (and
even default to that mode). Other JDBC drivers will allow an isolation level of none to
be specified in the properties used to initialize the driver.

In a strict sense, a statement executing from a connection with TRANSACTION_NONE
semantics cannot commit data to the database: it must be a read-only query. If data is
written, there must be some locking; otherwise, if one user is writing a long string to a
table using TRANSACTION_NONE semantics, a second user could see a partial string writ‐
ten in the table. Databases could operate in that mode, though that would be uncom‐
mon; at the very least, data written to a single table is expected to be written
atomically. Hence, an operation that writes will in reality have (at least) TRANSAC
TION_READ_UNCOMMITTED semantics.

A TRANSACTION_NONE query cannot be committed, but JDBC drivers that use TRANSAC
TION_NONE may allow queries to be written if autocommit is enabled. This means that
the database is treating each query as a separate transaction. Even so, since the data‐
base is (likely) not allowing other transactions to see partial writes, TRANSAC
TION_READ_UNCOMMITTED semantics are really being used.

For simple JDBC programs, this is sufficient. More commonly—and particularly
when used with JPA—programs may want to mix isolation levels on data within a
transaction. In an application that queries my employee information so as to ulti‐
mately give me a large raise, access to my employee record must be protected: that
data needs to be treated as TRANSACTION_REPEATABLE_READ. But that transaction is
also likely to access data in other tables, such as the table that holds my office ID.
There is no real reason to lock that data during the transaction, so access to that row
could certainly operate as TRANSACTION_READ_COMMITTED (or possibly even lower).

JPA allows you to specify locking levels on a per entity basis (and, of course, an entity
is, at least usually, simply a row in the database). Because getting these locking levels
correct can be difficult, it is easier to use JPA than to perform the locking in JDBC
statements. Still, it is possible to use different locking levels in JDBC applications,
employing the same pessimistic and optimistic locking semantics that JPA uses (and
if you’re not familiar with those semantics, this example should serve as a good
introduction).

At a JDBC level, the basic approach is to set the isolation level of the connection to
TRANSACTION_READ_UNCOMMITTED and then to lock explicitly only that data that needs
to be locked during the transaction:
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try (Connection c = DriverManager.getConnection(URL, p)) {
    c.setAutoCommit(false);
    c.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED);
    try (PreparedStatement ps1 = c.prepareStatement(
        "SELECT * FROM employee WHERE e_id = ? FOR UPDATE")) {
        ... process info from ps1 ...
    }
    try (PreparedStatement ps2 = c.prepareStatement(
           "SELECT * FROM office WHERE office_id = ?")) {
        ... process info from ps2 ...
    }
    c.commit();
}

The ps1 statement establishes an explicit lock on the employee data table: no other
transaction will be able to access that row for the duration of this transaction. The
SQL syntax to accomplish that is nonstandard. You must consult your database ven‐
dor’s documentation to see how to achieve the desired level of locking, but the com‐
mon syntax is to include the FOR UPDATE clause. This kind of locking is called
pessimistic locking. It actively prevents other transactions from accessing the data in
question.

Locking performance can often be improved by using optimistic locking. If the data
access is uncontended, this will be a significant performance boost. If the data is even
slightly contended, however, the programming becomes more difficult.

In a database, optimistic concurrency is implemented with a version column. When
data is selected from a row, the selection must include the desired data plus a version
column. To select information about me, I could issue the following SQL:

SELECT first_name, last_name, version FROM employee WHERE e_id = 5058;

This query will return my names (Scott and Oaks) plus whatever the current version
number is (say, 1012). When it comes time to complete the transaction, the transac‐
tion updates the version column:

UPDATE employee SET version = 1013 WHERE e_id = 5058 AND version = 1012;

If the row in question requires repeatable-read or serialization semantics, this update
must be performed even if the data was only read during the transaction—those iso‐
lation levels require locking read-only data used in a transaction. For read-committed
semantics, the version column needs to be updated only when other data in the row is
also updated.

Under this scheme, if two transactions use my employee record at the same time,
each will read a version number of 1012. The first transaction to complete will suc‐
cessfully update the version number to 1013 and continue. The second transaction
will not be able to update the employee record—there is no longer any record where

JDBC | 343



the version number is 1012, so the SQL update statement will fail. That transaction
will get an exception and be rolled back.

This highlights a major difference between optimistic locking in the database and
Java’s atomic primitives: in database programming, when the transaction gets that
exception, it is not (and cannot be) transparently retried. If you are programming
directly to JDBC, the commit() method will get an SQLException; in JPA, your
application will get an OptimisticLockException when the transaction is
committed.

Depending on your perspective, this is either a good or a bad thing. In Chapter 9, we
looked at the performance of the atomic utilities that use CAS-based features to avoid
explicit synchronization. Those utilities are essentially using optimistic concurrency
with an infinite, automatic retry. Performance in highly contended cases will suffer
when a lot of retries are chewing up a lot of CPU resources, though in practice that
tends not to be an issue. In a database, the situation is far worse, since the code exe‐
cuted in a transaction is far more complicated than simply incrementing the value
held in a memory location. Retrying a failed optimistic transaction in the database
has a far greater potential to lead to a never-ending spiral of retries. Plus, it is often
infeasible to determine automatically what operation(s) to retry.

So not retrying transparently is a good thing (and often the only possible solution),
but on the other hand, that does mean the application is now responsible for han‐
dling the exception. The application can choose to retry the transaction (maybe only
once or twice), it can choose to prompt the user for different data, or it can simply
inform the user that the operation has failed. No one-size-fits-all answer exists.

Optimistic locking works best, then, when there is little chance of a collision between
two sources. Think of a joint checking account: there is a slight chance that my hus‐
band and I may be in different parts of the city withdrawing money from our check‐
ing account at exactly the same time. That would trigger an optimistic lock exception
for one of us. Even if that does happen, asking one of us to try again is not too oner‐
ous, and now the chance of an optimistic lock exception is virtually nil (or so I would
hope; let’s not address how frequently we make ATM withdrawals). Contrast that sce‐
nario to something involving the sample stock application. In the real world, that data
is updated so frequently that locking it optimistically would be counterproductive. In
truth, stock applications would frequently use no locking when possible just because
of the volume of changes, although actual trade updates would require some locking.
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Quick Summary

• Transactions affect the speed of applications in two ways:
transactions are expensive to commit, and the locking associ‐
ated with transactions can prevent database scaling.

• Those two effects are antagonistic: waiting too long to commit
a transaction increases the amount of time that locks associ‐
ated with the transaction are held. Especially for transactions
using stricter semantics, the balance should be toward com‐
mitting more frequently rather than holding the locks longer.

• For fine-grained control of transactions in JDBC, use a default
TRANSACTION_READ_UNCOMMITTED level and explicitly lock data
as needed.

Result Set Processing
Typical database applications will operate on a range of data. The stock application,
for example, deals with a history of prices for an individual stock. That history is
loaded via a single SELECT statement:

SELECT * FROM stockprice WHERE symbol = 'TPKS' AND
 pricedate >= '2019-01-01' AND pricedate <= '2019-12-31';

That statement returns 261 rows of data. If the option prices for the stock are also
required, a similar query would be executed that would retrieve five times that
amount of data. The SQL to retrieve all data in the sample database (256 stocks cover‐
ing one year) will retrieve 400,896 rows of data:

SELECT * FROM stockprice s, stockoptionprice o WHERE
 o.symbol = s.symbol AND s.pricedate >= '2019-01-01'
 AND s.pricedate <= '2019-12-31';

To use this data, code must scroll through the result set:

try (PreparedStatement ps = c.prepareStatement(...)) {
    try (ResultSet rs = ps.executeQuery()) {
        while (rs.next()) {
            ... read the current row ...
        }
    }
}

The question here is where that data for the 400,896 rows lives. If the entire set of
data is returned during the executeQuery() call, the application will have a very
large chunk of live data in its heap, probably causing GC and other issues. Instead, if
only one row of data is returned from the call to the next() method, a lot of
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back-and-forth traffic will occur between the application and the database as the
result set is processed.

As usual, there is no correct answer here; in some cases it will be more efficient to
keep the bulk of the data in the database and retrieve it as needed, while in other cases
it will be more efficient to load all the data at once when the query is executed. To
control this, use the setFetchSize() method on the PreparedStatement object to
let the JDBC driver know how many rows at a time it should transfer.

The default value for this varies by JDBC driver; for example, in Oracle’s JDBC driv‐
ers, the default value is 10. When the executeQuery() method is called in the loop
shown previously, the database will return 10 rows of data, which will be buffered
internally by the JDBC driver. Each of the first 10 calls to the next() method will
process one of those buffered rows. The 11th call will return to the database to
retrieve another 10 rows, and so on.

Other Ways to Set the Fetch Size
I’ve recommended using the setFetchSize() method here on the (prepared) state‐
ment object, but that method also exists on the ResultSet interface. In either case,
the size is just a hint. The JDBC driver is free to ignore that value, round it to another
value, or do anything else it wants to do. There are no assurances either way, but set‐
ting the value before the query is executed (i.e., on the statement object) is more likely
to result in the hint being honored.

Some JDBC drivers also allow you to set a default fetch size when the connection is
created by passing a property to the getConnection() method of the
DriverManager. Consult your vendor’s documentation if that path seems easier to
manage.

Though the value varies, JDBC drivers will typically set the default fetch size to a
fairly small number. That approach is reasonable in most circumstances; in particular,
it is unlikely to lead to any memory issues within the application. If the performance
of the next() method (or the performance of the first getter method on the result
set) is particularly slow every now and then, consider increasing the fetch size.
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Quick Summary

• Applications that process large amounts of data from a query
should consider changing the fetch size of the data.

• A trade-off exists between loading too much data in the appli‐
cation (putting pressure on the garbage collector) and making
frequent database calls to retrieve a set of data.

JPA
The performance of JPA is directly affected by the performance of the underlying
JDBC driver, and most of the performance considerations regarding the JDBC driver
apply to JPA. JPA has additional performance considerations.

JPA achieves many of its performance enhancements by altering the bytecode of the
entity classes. In most server frameworks, this happens transparently. In a Java SE
environment, it is important to make sure that the bytecode processing is set up cor‐
rectly. Otherwise, JPA application performance will be unpredictable: fields that are
expected to be loaded lazily might be loaded eagerly, data saved to the database might
be redundant, data that should be in the JPA cache may need to be refetched from the
database, and so on.

There is no JPA-defined way for the bytecode to be processed. Typically, this is done
as part of compilation—after the entity classes are compiled (and before they are
loaded into JAR files or run by the JVM), they are passed through an
implementation-specific postprocessor that “enhances” the bytecode, producing an
altered class file with the desired optimizations. Hibernate, for example, does this via
a Maven or Gradle plug-in during compilation.

Some JPA implementations also provide a way to dynamically enhance the bytecode
as the classes are loaded into the JVM. This requires running an agent within the
JVM that is notified when classes are loaded; the agent interposes on the classloading
and alters the bytes before they are used to define the class. The agent is specified on
the command line of the application; for example, for EclipseLink you include the
-javaagent:path_to/eclipselink.jar argument.

Optimizing JPA Writes
In JDBC, we looked at two critical performance techniques: reusing prepared state‐
ments and performing updates in batches. It is possible to accomplish both of those
optimizations with JPA, but the way it is done depends on the JPA implementation in
use; there are no calls within the JPA API to do that. For Java SE, these optimizations
typically require setting a particular property in the application’s persistence.xml file.
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Writing Fewer Fields
One common way to optimize writes to a database is to write only those fields that
have changed. The code the HR system uses to double my salary may need to retrieve
20 fields from my employee record, but only one (very important) field needs to be
written back to the database.

JPA implementations should be expected to perform this optimization transparently.
This is one of the reasons JPA bytecode must be enhanced, since that is the process by
which the JPA provider keeps track of when values in the code are changed. When the
JPA code is properly enhanced, the SQL to write my doubled salary back to the data‐
base will update only that single column.

For example, using the JPA EclipseLink reference implementation, statement reuse is
enabled by adding the following property to the persistence.xml file:

      <property name="eclipselink.jdbc.cache-statements" value="true" />

Note that this enables statement reuse within the EclipseLink implementation. If the
JDBC driver is capable of providing a statement pool, it is usually preferable to enable
the statement caching in the driver and to leave this property out of the JPA
configuration.

Statement batching in the reference JPA implementation is achieved by adding these
properties:

      <property name="eclipselink.jdbc.batch-writing" value="JDBC" />
      <property name="eclipselink.jdbc.batch-writing.size" value="10000" />

JDBC drivers cannot automatically implement statement batching, so this is a useful
property to set in all cases. The batch size can be controlled in two ways: first, the
size property can be set, as is done in this example. Second, the application can peri‐
odically call the flush() method of the entity manager, which will cause all batched
statements to be executed immediately.

Table 11-2 shows the effect of the statement reuse and batching to create and write
stock entities into the database.

Table 11-2. Seconds required to insert data for 256 stocks via JPA

Programming mode Time required
No batching, no statement pool 83 ± 3 seconds

No batching, statement pool 64 ± 5 seconds

Batching, no statement pool 10 ± 0.4 seconds

Batching, statement pooling 10 ± 0.3 seconds
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Quick Summary

• JPA applications, like JDBC applications, can benefit from lim‐
iting the number of write calls to the database (with the poten‐
tial trade-off of holding transaction locks).

• Statement caching can be achieved at the JPA layer or the
JDBC layer. Caching at the JDBC layer should be explored
first.

• Batching JPA updates can be done declaratively (in the persis‐
tence.xml file) or programmatically (by calling the flush()
method).

Optimizing JPA Reads
Optimizing when and how JPA reads data from the database is more complicated
than it might seem, because JPA will cache data in the hope that it might be used to
satisfy a future request. That’s usually a good thing for performance, but it means that
the JPA-generated SQL used to read that data may seem, on the face of it, suboptimal.
The data retrieval is optimized to serve the needs of the JPA cache, rather than being
optimized for whatever particular request is in progress.

The details of the cache are covered in the next section. For now, let’s look at the basic
ways to apply database read optimizations to JPA. JPA reads data from the database in
three cases: when the find() method of the EntityManager is called, when a JPA
query is executed, and when code navigates to a new entity using the relationship of
an existing entity. In the stock class, that latter case means calling the getOptions()
method on a Stock entity.

Calling the find() method is the most straightforward case: only a single row is
involved, and (at least) that single row is read from the database. The only thing that
can be controlled is the amount of data retrieved. JPA can retrieve only some of the
fields in the row, it can retrieve the entire row, or it can prefetch other entities related
to the row being retrieved. Those optimizations apply to queries as well.

Two possible paths are available: read less data (because the data won’t be needed) or
read more data at a time (because that data will definitely be needed in the future).

Reading less data
To read less data, specify that the field in question is loaded lazily. When an entity is
retrieved, the fields with a lazy annotation will be excluded from the SQL used to load
the data. If the getter of that field is ever executed, it will mean another trip to the
database to retrieve that piece of data.
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It is rare to use that annotation for simple columns of basic types, but consider using
it if the entity contains large BLOB- or CLOB-based objects:

@Lob
@Column(name = "IMAGEDATA")
@Basic(fetch = FetchType.LAZY)
private byte[] imageData;

In this case, the entity is mapped to a table storing binary image data. The binary data
is large, and the example assumes it shouldn’t be loaded unless it is needed. Not load‐
ing the unneeded data in this case serves two purposes: it makes for faster SQL when
the entity is retrieved, and it saves a lot of memory, leading to less GC pressure.

Fetch Groups
If an entity has fields that are loaded lazily, they are normally loaded one at a time as
they are accessed. What if, say, three fields in an entity are subject to lazy loading, and
if one field is needed, all of them will be needed? Then it is preferable to load all the
lazy fields at once.

That is not possible with standard JPA, but most JPA implementations will allow you
to specify a fetch group to accomplish this. Using fetch groups, it is possible to specify
that certain lazily loaded fields should be loaded as a group whenever one of them is
accessed. Typically, multiple independent groups of fields can be defined; each group
will be loaded as needed.

Because it is not a JPA standard, code using fetch groups will be tied to one particular
JPA implementation. But if it is useful, consult your JPA implementation documenta‐
tion for details.

Note also that the lazy annotation is, in the end, only a hint to the JPA implementa‐
tion. The JPA implementation is free to request that the database eagerly provide that
data anyway.

On the other hand, perhaps other data should be preloaded—for example, when one
entity is fetched, data for other (related) entities should also be returned. That is
known as eager fetching, and it has a similar annotation:

@OneToMany(mappedBy="stock", fetch=FetchType.EAGER)
private Collection<StockOptionPriceImpl> optionsPrices;

By default, related entities are already fetched eagerly if the relationship type is
@OneToOne or @ManyToOne (and so it is possible to apply the opposite optimization to
them: mark them as FetchType.LAZY if they are almost never used).

This also is just a hint to the JPA implementation, but it essentially says that anytime a
stock price is retrieved, make sure also to retrieve all related option prices. Beware
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here: a common expectation about eager relationship fetching is that it will employ a
JOIN in the generated SQL. In typical JPA providers, that is not the case: they will
issue a single SQL query to fetch the primary object, and then one or more SQL com‐
mands to fetch any additional, related objects. From a simple find() method, there is
no control over this: if a JOIN statement is required, you will have to use a query and
program the JOIN into the query.

Using JOIN in queries
The JPA Query Language (JPQL) doesn’t allow you to specify fields of an object to be
retrieved. Take the following JPQL query:

Query q = em.createQuery("SELECT s FROM StockPriceImpl s");

That query will always yield this SQL statement:

SELECT <enumerated list of non-LAZY fields> FROM StockPriceTable

If you want to retrieve fewer fields in the generated SQL, you have no option but to
mark them as lazy. Similarly, for fields that are marked as lazy, there is no real option
for fetching them in a query.

If relationships exist between entities, the entities can be explicitly joined in a query
in JPQL, which will retrieve the initial entities and their related entities in one shot.
For example, in the stock entities, this query can be issued:

Query q = em.createQuery("SELECT s FROM StockOptionImpl s " +
    "JOIN FETCH s.optionsPrices");

That results in an SQL statement similar to this:

SELECT t1.<fields>, t0.<fields> FROM StockOptionPrice t0, StockPrice t1
WHERE ((t0.SYMBOL = t1.SYMBOL) AND (t0.PRICEDATE = t1.PRICEDATE))

Other Mechanisms for a Join Fetch
Many JPA providers allow a join fetch to be specified by setting query hints on a
query. For example, in EclipseLink, this code will produce a JOIN query:

Query q = em.createQuery("SELECT s FROM StockOptionImpl s");
q.setQueryHint("eclipselink.join-fetch", "s.optionsPrices");

Some JPA providers also have a special @JoinFetch annotation that can be used on
the relationship.

The exact SQL will differ among JPA providers (this example is from EclipseLink),
but this is the general process.
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Join fetching is valid for entity relationships regardless of whether they are annotated
as eager or lazy. If the join is issued on a lazy relationship, the lazily annotated entities
that satisfy the query are still retrieved from the database, and if those entities are
later used, no additional trip to the database is required.

When all the data returned by a query using a join fetch will be used, the join fetch
often provides a big improvement in performance. However, a join fetch also inter‐
acts with the JPA cache in unexpected ways. An example is shown in “JPA Caching”
on page 353; be sure you understand those ramifications before writing custom quer‐
ies using a join fetch.

Batching and queries
JPA queries are handled like a JDBC query yielding a result set: the JPA implementa‐
tion has the option of getting all the results at once, getting the results one at a time as
the application iterates over the query results, or getting a few results at a time (analo‐
gous to how the fetch size worked for JDBC).

There is no standard way to control this, but JPA vendors have proprietary mecha‐
nisms to set the fetch size. In EclipseLink, a hint on the query specifies the fetch size:

q.setHint("eclipselink.JDBC_FETCH_SIZE", "100000");

Hibernate offers a custom @BatchSize annotation instead.

If a very large set of data is being processed, the code may need to page through the
list returned by the query. This has a natural relationship to how the data might be
displayed to the user on a web page: a subset of data is displayed (say 100 rows), along
with Next and Previous page links to navigate (page) through the data.

This is accomplished by setting a range on the query:

Query q = em.createNamedQuery("selectAll");
query.setFirstResult(101);
query.setMaxResults(100);
List<? implements StockPrice>  = q.getResultList();

This returns a list suitable for display on the second page of the web application:
items 101–200. Retrieving only the range of data needed will be more efficient than
retrieving 200 rows and discarding the first 100 of them.

Note that this example uses a named query (the createNamedQuery() method)
rather than an ad hoc query (the createQuery() method). In many JPA implemen‐
tations, named queries are faster: the JPA implementation will almost always use a
prepared statement with bind parameters, utilizing the statement cache pool. Nothing
prevents JPA implementations from using similar logic for unnamed, ad hoc queries,
though implementing that is more difficult, and the JPA implementation may simply
default to creating a new statement (i.e., a Statement object) each time.
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Quick Summary

• JPA can perform several optimizations to limit (or increase)
the amount of data read in a single operation.

• Large fields (e.g., BLOBs) that are not frequently used should
be loaded lazily in a JPA entity.

• When a relationship exists between JPA entities, the data for
the related items can be loaded eagerly or lazily. The choice
depends on the needs of the application.

• When eagerly loading relationships, named queries can be
used to issue a single SQL statement using a JOIN statement.
Be aware that this affects the JPA cache; it is not always the
best idea (as the next section discusses).

• Reading data via named queries will often be faster than a reg‐
ular query, since it is easier for the JPA implementation to use
a PreparedStatement for named queries.

JPA Caching
One of the canonical performance-related use cases for Java is to supply a middle tier
that caches data from backend database resources. The Java tier performs architectur‐
ally useful functions (such as preventing clients from directly accessing the database).
From a performance perspective, caching frequently used data in the Java tier can
greatly speed up response times for the clients.

JPA is designed with that architecture in mind. Two kinds of caches exist in JPA. Each
entity manager instance is its own cache: it will locally cache data that it has retrieved
during a transaction. It will also locally cache data that is written during a transaction;
the data is sent to the database only when the transaction commits. A program may
have many entity manager instances, each executing a different transaction, and each
with its own local cache. (In particular, the entity managers injected into Java servers
are distinct instances.)

When an entity manager commits a transaction, all data in the local cache can be
merged into a global cache. The global cache is shared among all entity managers in
the application. The global cache is also known as the Level 2 (L2) cache or the
second-level cache; the cache in the entity manager is known as the Level 1, L1, or first-
level cache.

There is little to tune within an entity manager transaction cache (the L1 cache), and
the L1 cache is enabled in all JPA implementations. The L2 cache is different: most
JPA implementations provide one, but not all of them enable it by default (e.g.,
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Hibernate does not, but EclipseLink does). Once enabled, the way in which the L2
cache is tuned and used can substantially affect performance.

The JPA cache operates only on entities accessed by their primary keys, that is, items
retrieved from a call to the find() method, or items retrieved from accessing (or
eagerly loading) a related entity. When the entity manager attempts to find an object
via either its primary key or a relationship mapping, it can look in the L2 cache and
return the object(s) if they are found there, thus saving a trip to the database.

Items retrieved via a query are not held in the L2 cache. Some JPA implementations
do have a vendor-specific mechanism to cache the results of a query, but those results
are reused only if the exact same query is reexecuted. Even if the JPA implementation
supports query caching, the entities themselves are not stored in the L2 cache and
cannot be returned in a subsequent call to the find() method.

The connections between the L2 cache, queries, and the loading of objects affect per‐
formance in many ways. To examine them, code based on the following loop will be
used:

EntityManager em = emf.createEntityManager();
Query q = em.createNamedQuery(queryName);
List<StockPrice> l = q.getResultList(); 
for (StockPrice sp : l) {
    ... process sp ...
    if (processOptions) {
        Collection<? extends StockOptionPrice> options = sp.getOptions(); 
        for (StockOptionPrice sop : options) {
     ... process sop ...
        }
    }
}
em.close();

SQL Call Site 1

SQL Call Site 2

Because of the L2 cache, this loop will perform one way the first time it is executed,
and another (generally faster) way on subsequent executions. The specific difference
of that performance depends on various details of the queries and the entity relation‐
ships. The next few subsections explain the results in detail.

The differences in this example are based in some cases on different JPA configura‐
tions but also occur because some tests are executed without traversing the relation‐
ship between the Stock and StockOptions classes. In those tests without traversal of
the relationship, the processOptions value in the loop is false; only the StockPrice
objects are actually used.
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Default caching (lazy loading)
In the sample code, the stock prices are loaded via a named query. In the default case,
this simple query is executed to load the stock data:

@NamedQuery(name="findAll",
    query="SELECT s FROM StockPriceImpl s ORDER BY s.id.symbol")

The StockPrice class has a @OneToMany relationship with the StockOptionPrice
class using the optionsPrices instance variable:

@OneToMany(mappedBy="stock")
private Collection<StockOptionPrice> optionsPrices;

@OneToMany relationships are loaded lazily by default. Table 11-3 shows the time to
execute this loop.

Table 11-3. Seconds required to read data for 256 stocks (default configuration)

Test case First execution Subsequent executions
Lazy relationship 22.7 ± 2 seconds (66,817 SQL calls) 1.1 ± 0.7 seconds (1 SQL call)

Lazy relationship, no traversal 2.0 ± 0.3 seconds (1 SQL call) 1.0 ± 0.02 seconds (1 SQL call)

The first time the sample loop is executed in this scenario (for 256 stocks with one
year of data), the JPA code executes one SQL statement in the call to the
executeQuery() method. That statement is executed at SQL Call Site 1 in the code
listing.

As the code loops through the stock and visits each collection of option prices, JPA
will issue SQL statements to retrieve all the options associated with the particular
entity (that is, it retrieves the entire collection for one stock/date combination at
once). This occurs at SQL Call Site 2, and it results in 66,816 individual SELECT state‐
ments during execution (261 days × 256 stocks), yielding 66,817 total calls.

That example takes almost 23 seconds for the first execution of the loop. The next
time that code is executed, it takes only a little more than 1 second. That’s because the
second time the loop is executed, the only SQL executed is the named query. The
entities retrieved via the relationship are still in the L2 cache, so no database calls are
needed in that case. (Recall that the L2 cache works only for entities loaded from a
relationship or a find operation. So the stock option entities can be found in the L2
cache, but the stock prices—since they were loaded from a query—do not appear in
the L2 cache and must be reloaded.)

The second line in Table 11-3 represents the code that does not visit each of the
options in the relationship (i.e., the processOptions variable is false). In that case,
the code is substantially faster: it takes 2 seconds for the first iteration of the loop and
1 second for subsequent iterations. (The difference in performance between those
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two cases is due to the warm-up period of the compiler. Although it wasn’t as noticea‐
ble, that warm-up occurred in the first example as well.)

Caching and eager loading
In the next two experiments, the relationship between the stock prices and option
prices is redefined so that the option prices are loaded eagerly.

When all the data is used (i.e., the first rows in Tables 11-3 and 11-4), the perfor‐
mance of the eager and lazy loading cases is essentially the same. But when the rela‐
tionship data isn’t actually used (the second rows in each table), the lazy relationship
case saves some time—particularly on the first execution of the loop. Subsequent exe‐
cutions of the loop don’t save time since the eager-loading code isn’t reloading the
data in those subsequent iterations; it is loading data from the L2 cache.

Table 11-4. Seconds required to read data for 256 stocks (eager loading)

Test case First execution Subsequent executions
Eager relationship 23 ± 1.0 seconds (66,817 SQL calls) 1.0 ± 0.8 seconds (1 SQL call)

Eager relationship, no traversal 23 ± 1.3 seconds (66,817 SQL calls) 1.0 ± 0.5 seconds (1 SQL call)

Eager Loading of Relationships
Regardless of whether the relationship is fetched lazily or eagerly, this loop will exe‐
cute 66,816 SELECT statements to retrieve the stock options (as the previous section
mentioned, a JOIN will not be used by default).

The difference between eagerly and lazily loading the relationship in this situation
applies to when those SQL statements are executed. If the relationship is annotated to
load eagerly, the result set is processed immediately as the query is executed (within
the call to the getResultList() method). The JPA framework looks at every entity
returned in that call and executes an SQL statement to retrieve their related entities.
All these SQL statements occur at SQL Call Site 1—in the eager relationship case, no
SQL statements are executed at SQL Call Site 2.

If the relationship is annotated to load lazily, only the stock prices are loaded at SQL
Call Site 1 (using the named query). The option prices for individual stocks are
loaded when the relationship traversal occurs at SQL Call Site 2. That loop is executed
66,816 times, resulting in the 66,816 SQL calls.

Regardless of when the SQL is issued, though, the number of SQL statements remains
the same—assuming that all the data is actually used in the lazy-loading example.
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Join fetch and caching
As discussed in the previous section, the query could be written to explicitly use a
JOIN statement:

@NamedQuery(name="findAll",
    query="SELECT s FROM StockPriceEagerLazyImpl s " +
    "JOIN FETCH s.optionsPrices ORDER BY s.id.symbol")

Using that named query (with full traversal) yields the data in Table 11-5.

Table 11-5. Seconds required to read data for 256 stocks (JOIN query)

Test case First execution Subsequent executions
Default configuration 22.7 ± 2 seconds (66,817 SQL calls) 1.1 ± 0.7 seconds (1 SQL call)

Join fetch 9.0 ± 0.3 seconds (1 SQL call) 5.6 ± 0.4 seconds (1 SQL call)

Join fetch with query cache 5.8 ± 0.2 seconds (1 SQL call) 0.001 ± 0.0001 seconds (0 SQL calls)

The first time the loop is executed with a JOIN query, a big performance win results: it
takes only 9 seconds. That is the result of issuing only one SQL request rather than
66,817 of them.

Unfortunately, the next time the code is executed, it still needs that one SQL state‐
ment, since query results are not in the L2 cache. Subsequent executions of the exam‐
ple take 5.6 seconds—because the SQL statement that is executed has the JOIN
statement and is retrieving more than 400,000 rows of data.

If the JPA provider implements query caching, this is clearly a good time to use it. If
no SQL statements are required during the second execution of the code, only 1 ms is
required on the subsequent executions. Be aware that query caching works only if the
parameters used in the query are exactly the same each time the query is executed.

Avoiding queries
If entities are never retrieved via a query, all entities can be accessed through the L2
cache after an initial warm-up period. The L2 cache can be warmed up by loading all
entities, so slightly modifying the previous example gives this code:

EntityManager em = emf.createEntityManager();
ArrayList<String> allSymbols = ... all valid symbols ...;
ArrayList<Date> allDates = ... all valid dates...;
for (String symbol : allSymbols) {
    for (Date date = allDates) {
        StockPrice sp =
            em.find(StockPriceImpl.class, new StockPricePK(symbol, date);
 ... process sp ...
        if (processOptions) {
         Collection<? extends StockOptionPrice> options = sp.getOptions();
     ... process options ...
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 }
    }
}

The results of executing this code are given in Table 11-6.

Table 11-6. Seconds required to read data for 256 stocks (L2 cache used)

Test case First execution Subsequent executions
Default configuration 22.7 ± 2 seconds (66,817 SQL calls) 1.1 ± 0.7 seconds (1 SQL call)

No query 35 ± 3 seconds (133,632 SQL calls) 0.28 ± 0.3 seconds (0 SQL calls)

The first execution of this loop requires 133,632 SQL statements: 66,816 for the call to
the find() method, and an additional 66,816 for the call to the getOptions()
method. Subsequent executions of that code are very fast indeed, since all the entities
are in the L2 cache, and no SQL statements need to be issued.

Warming Up a Test
Java performance tests—and particularly benchmarks—usually have a warm-up
period. As discussed in Chapter 4, that allows the compiler to compile the code
optimally.

Here’s another example where a warm-up period is beneficial. During the warm-up
period of a JPA application, the most-frequently used entities will be loaded into the
L2 cache. The measurement period of the test will see very different performance as
those entities are first loaded. This is particularly true if, as in the previous example,
no queries are used to load entities, but that is generally the difference in all the tables
in this section between first and second executions.

Recall that the sample database includes five option prices for every date and symbol
pair, or a total of 334,080 option prices for 256 stocks over one year of data. When the
five stock options for a particular symbol and date are accessed via a relationship,
they can all be retrieved at once. That’s why only 66,816 SQL statements are required
to load all the option price data. Even though multiple rows are returned from those
SQL statements, JPA is still able to cache the entities—it is not the same thing as exe‐
cuting a query. If the L2 cache is warmed up by iterating through entities, don’t iterate
through related entities individually—do that by simply visiting the relationship.

As code is optimized, you must take into account the effects of the cache (and partic‐
ularly the L2 cache). Even if you think you could write better SQL than what JPA gen‐
erates (and hence should use complex named queries), make sure that code is
worthwhile after the cache comes into play. Even if it seems that using a simple
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named query will be faster to load data, consider what would happen in the long run
if those entities were loaded into the L2 cache via a call to the find() method.

Sizing the JPA cache
As with all cases where objects are reused, the JPA cache has a potential performance
downside: if the cache consumes too much memory, it will cause GC pressure. This
may require that the cache be tuned to adjust its size or that you control the mode in
which entities remain cached. Unfortunately, these are not standard options, so you
must perform these tunings based on which JPA provider you are using.

JPA implementations typically provide an option to set the size of the cache, either
globally or per entity. The latter case is obviously more flexible, though it also
requires more work to determine the optimal size for each entity. An alternative
approach is for the JPA implementation to use soft and/or weak references for the L2
cache. EclipseLink, for example, provides five cache types (plus additional deprecated
types) based on various combinations of soft and weak references. That approach,
while potentially easier than finding optimal sizes for each entity, still requires some
planning: in particular, recall from Chapter 7 that weak references do not really sur‐
vive any GC operation and are hence a questionable choice for a cache.

If a cache based on soft or weak references is used, the performance of the application
will also depend on what else happens in the heap. The examples of this section all
used a large heap so that caching the 400,896 entity objects in the application would
not cause issues with the garbage collector. Tuning a heap when there are large JPA L2
caches is quite important for good performance.

Quick Summary

• The JPA L2 cache will automatically cache entities for an
application.

• The L2 cache does not cache entities retrieved via queries. This
means that in the long run it can be beneficial to avoid queries
altogether.

• Unless query caching is supported by the JPA implementation
in use, using a JOIN query turns out to frequently have a nega‐
tive performance effect, since it bypasses the L2 cache.
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Spring Data
Although JDBC and JPA are standard parts of the Java platform, other third-party
Java APIs and frameworks manage database access. NoSQL vendors all have their
own APIs to access their databases, and various frameworks provide database access
via different abstractions than JPA.

The most-widely used of these is Spring Data, which is a collection of database access
modules for both relational and NoSQL databases. This framework contains several
modules, including these:

Spring Data JDBC
This is designed as a simple alternative to JPA. It provides a similar entity map‐
ping as JPA but without caching, lazy loading, or dirty entity tracking. This sits
on top of standard JDBC drivers so it has wide support. That means you can
track the performance aspects from this chapter in the Spring code: make sure to
use prepared statements for repeated calls, implement the necessary interfaces in
your code to support Spring batched statement models, and/or work directly
with the connection objects to change autocommit semantics.

Spring Data JPA
This is designed as a wrapper around standard JPA. One large benefit is that it
reduces the amount of boilerplate code developers need to write (which is good
for developer performance but doesn’t really impact the performance we’re dis‐
cussing). Because it wraps standard JPA, the JPA performance aspects mentioned
in this chapter all apply: setting up eager versus lazy loading, batching updates
and inserts, and the L2 caches all still apply.

Spring Data for NoSQL
Spring has various connectors for NoSQL (and NoSQL-like) technologies,
including MongoDB, Cassandra, Couchbase, and Redis. This somewhat simpli‐
fies the NoSQL access, since the techniques to access the store are then the same,
though differences in setup and initialization remain.

Spring Data R2DBC
Spring Data R2DBC, mentioned in Chapter 10, allows asynchronous JDBC
access to Postgres, H2, and Microsoft SQL Server databases. It follows the typical
Spring Data programming model rather than direct JDBC, so it is similar to
Spring Data JDBC: access is via simple entities in repositories, though without
the caching, lazy loading, and other features of JPA.
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Summary
Properly tuning JDBC and JPA access to a database is one of the most significant
ways to affect the performance of a middle-tier application. Keep in mind these best
practices:

• Batch reads and writes as much as possible by configuring the JDBC or JPA con‐
figuration appropriately.

• Optimize the SQL the application issues. For JDBC applications, this is a ques‐
tion of basic, standard SQL commands. For JPA applications, be sure to consider
the involvement of the L2 cache.

• Minimize locking where possible. Use optimistic locking when data is unlikely to
be contended, and use pessimistic locking when data is contended.

• Make sure to use a prepared statement pool.
• Make sure to use an appropriately sized connection pool.
• Set an appropriate transaction scope: it should be as large as possible without

negatively affecting the scalability of the application because of the locks held
during the transaction.
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CHAPTER 12

Java SE API Tips

This chapter covers areas of the Java SE API that have implementation quirks affect‐
ing their performance. Many such implementation details exist throughout the JDK;
these are the areas where I consistently uncover performance issues (even in my own
code). This chapter includes details on the best way to handle strings (and especially
duplicate strings); ways to properly buffer I/O; classloading and ways to improve
startup of applications that use a lot of classes; proper use of collections; and JDK 8
features like lambdas and streams.

Strings
Strings are (unsurprisingly) the most common Java object. In this section, we’ll look
at a variety of ways to handle all the memory consumed by string objects; these tech‐
niques can often significantly reduce the amount of heap your program requires.
We’ll also cover a new JDK 11 feature of strings involving concatenation.

Compact Strings
In Java 8, all strings are encoded as arrays of 16-bit characters, regardless of the
encoding of the string. This is wasteful: most Western locales can encode strings into
8-bit byte arrays, and even in a locale that requires 16 bits for all characters, strings
like program constants often can be encoded as 8-bit bytes.

In Java 11, strings are encoded as arrays of 8-bit bytes unless they explicitly need 16-
bit characters; these strings are known as compact strings. A similar (experimental)
feature in Java 6 was known as compressed strings; compact strings are conceptually
the same but differ greatly in implementation.

Hence, the size of an average Java string in Java 11 is roughly half the size of the same
string in Java 8. This generally is a huge savings: on average, 50% of a typical Java
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heap may be consumed by string objects. Programs will vary, of course, but on aver‐
age the heap requirement of such a program running with Java 11 is only 75% of that
same program running in Java 8.

It’s easy enough to construct examples where this has an outsize benefit. One can run
a program in Java 8 that spends an enormous time performing garbage collection.
Running that same program in Java 11 with the same size heap could require virtually
no time in the collector, leading to reported gains of three to ten times in perfor‐
mance. Take claims like that with a grain of salt: you’re typically not going to run any
Java program in such a constrained heap. All things being equal, though, you will see
a reduction in the amount of time spent in garbage collection.

For a well-tuned application, the real benefit is in memory usage: you can immedi‐
ately reduce the maximum heap size of the average program by 25% and still get the
same performance. Conversely, if you leave the heap size unchanged, you should be
able to introduce more load into the application and not experience any GC bottle‐
necks (though the rest of the application must be able to handle the increased load).

This feature is controlled by the -XX:+CompactStrings flag, which is true by default.
But unlike the compressed strings in Java 6, compact strings are robust and well-
performing; you’ll almost always want to keep the default setting. One possible excep‐
tion is in a program in which all the strings require 16-bit encodings: operations on
those strings can be slightly longer in compacted strings than in uncompacted strings.

Duplicate Strings and String Interning
It is common to create many string objects that contain the same sequence of charac‐
ters. These objects unnecessarily take space in the heap; since strings are immutable,
it is often better to reuse the existing strings. We discussed a general case of this in
Chapter 7 for arbitrary objects with a canonical representation; this section expands
on that idea in relation to strings.

Knowing if you have a large number of duplicate strings requires heap analysis. Here’s
one way to do that with the Eclipse Memory Analyzer:

1. Load the heap dump.
2. From the Query Browser, select Java Basics → Group By Value.
3. For the objects argument, type in java.lang.String.
4. Click the Finish button.

The result is shown in Figure 12-1. We have more than 300,000 copies of each of the
strings Name, Memnor, and Parent Name. Several other strings have multiple copies as
well; in all, this heap has more than 2.3 million duplicate strings.
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Figure 12-1. Memory consumed by duplicate strings

The duplicate strings can be removed in three ways:

• Performing automatic deduplication via G1 GC
• Using the intern() method of the String class to create the canonical version of

the string
• Using a custom method to create a canonical version of the string

String deduplication
The simplest mechanism is to let the JVM find the duplicate strings and deduplicate
them: arrange for all references to point to a single copy and then free the remaining
copies. This is possible only when using G1 GC and only when specifying the
-XX:+UseStringDeduplication flag (which by default is false). This feature exists in
Java 8 only after version 20, and all releases of Java 11.

This feature is not enabled by default for three reasons. First, it requires extra pro‐
cessing during the young and mixed phases of G1 GC, making them slightly longer.
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1 Chacun à son goût is (with apologies to Johann Strauss Jr.) the opera-lover’s way of saying YMMV (your mile‐
age may vary).

Second, it requires an extra thread that runs concurrently with the application, poten‐
tially taking CPU cycles away from application threads. And third, if there are few
deduplicated strings, the memory use of the application will be higher (instead of
lower); this extra memory comes from the bookkeeping involved in tracking all the
strings to look for duplications.

This is the sort of option that needs thorough testing before enabling in production:
it may help your application, though in some cases it will make things worse. Odds
are in your favor, though: Java engineers estimate that the expected benefit of ena‐
bling string deduplication is 10%.

If you want to see how string deduplication is behaving in your application, run it
with the -XX:+PrintStringDeduplicationStatistics flag in Java 8, or the
-Xlog:gc+stringdedup*=debug flag in Java 11. The resulting log will look something
like this:

[0.896s][debug][gc,stringdedup]   Last Exec: 110.434ms, Idle: 729.700ms,
                                  Blocked: 0/0.000ms
[0.896s][debug][gc,stringdedup]     Inspected:           62420
[0.896s][debug][gc,stringdedup]       Skipped:               0(  0.0%)
[0.896s][debug][gc,stringdedup]       Hashed:            62420(100.0%)
[0.896s][debug][gc,stringdedup]       Known:                 0(  0.0%)
[0.896s][debug][gc,stringdedup]       New:               62420(100.0%)
                                                         3291.7K
[0.896s][debug][gc,stringdedup]     Deduplicated:        15604( 25.0%)
                                                         731.4K( 22.2%)
[0.896s][debug][gc,stringdedup]       Young:                 0(  0.0%)
                                                         0.0B(  0.0%)
[0.896s][debug][gc,stringdedup]       Old:               15604(100.0%)
                                                         731.4K(100.0%)

This pass of the string deduplication thread lasted 110 ms, during which it found
15,604 duplicated strings (out of the 62,420 strings that had been identified as candi‐
dates for deduplication). The total memory saved from that was 731.4K—around the
10% we would hope for from this optimization.

The code that produced this log was set up so that 25% of the strings were duplicates,
which is what the JVM engineers say is typical for a Java application. (In my experi‐
ence—as I mentioned previously—the proportion of strings in a heap is closer to
50%; chacun à son goût.)1 The reason that we didn’t save 25% of string memory is
that this optimization arranges for only the backing character or byte array of the
string to be shared; the rest of the string object is not shared. A string object has a 24-
to 32-byte overhead for its other fields (the difference is due to platform implementa‐
tions). Hence, two identical strings of 16 characters will occupy 44 (or 52) bytes each
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before they are deduplicated for a total of 80 bytes; after deduplication, they will
occupy 64 bytes. If the strings were interned (as discussed in the following section),
they would occupy only 40 bytes.

As I mentioned, this processing of the strings occurred concurrently with the applica‐
tion threads. But it’s actually the last stage in the process. During a young collection,
all strings in the young generation are examined. Those that are promoted into the
old generation become the candidates that the background thread examines (once the
young collection has completed). In addition, recall the discussion from Chapter 6
about the tenuring of objects within the survivor spaces of the young generation:
objects can ping-pong between the survivor spaces for a while before being promoted
to the old generation. Strings that have a tenuring age of (by default) three—meaning
they have been copied into a survivor space three times—also become candidates for
deduplication and will be processed by that background thread.

This has the effect that short-lived strings are not deduplicated, which is likely
a good thing: you probably don’t want to spend the CPU cycles and memory to dedu‐
plicate something that is about to be thrown away. Like tuning the tenuring cycle
in general, changing the point at which this happens requires a lot of testing and
is done only in unusual circumstances. But for the record, the point at which
the tenured string is eligible for collection is controlled via the
-XX:StringDeduplicationAgeThreshold=N flag, which has a default value of 3.

String interning
The typical way to handle duplicate strings at a programmatic level is to use the
intern() method of the String class.

Like most optimizations, interning strings shouldn’t be done arbitrarily, but it can be
effective if lots of duplicate strings are occupying a significant portion of the heap.
But it does often require special tuning (and in the next section, we’ll explore a cus‐
tom way that is beneficial in some circumstances).

Interned strings are held in a special hash table that is in native memory (though the
strings themselves are in the heap). This hash table differs from the hash table and
hash maps you are familiar with in Java because this native hash table has a fixed size:
60,013 in Java 8 and 65,536 in Java 11. (If you’re on a 32-bit Windows JVM, the size is
1,009.) That means you can store only about 32,000 interned strings before the hash
table starts to have collisions.

The size of this table can be set when the JVM starts by using the flag
-XX:StringTableSize=N (which defaults to 1,009, 60,013, or 65,536 as previously
mentioned). If an application will intern a lot of strings, this number should be
increased. The string intern table will operate most efficiently if that value is a prime
number.
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Fixed-Size Hash Tables
If you’re not familiar with the basic structure of hash tables and hash maps, you may
be wondering what is meant by a fixed-size hash table (particularly since the Java
implementations of those classes are not of fixed size).

Conceptually, a hash table contains an array that can hold a certain number of entries
(each element in the array is called a bucket). When something is stored in a hash
table, the index it is stored at is calculated from its hashCode % numberOfBuckets. It
is quite possible for two objects with different hash values to map to the same bucket
in this scheme, so each bucket is really a linked list of all the stored items that map to
that bucket. When two objects map to the same bucket, it is called a collision.

As more and more objects are inserted into this table, more and more collisions
occur; more items get stored into each linked list. Finding an item then becomes a
matter of searching through a linked list. That can be very slow, particularly as the list
gets longer.

The way around this is to size the hash table so that it has more buckets (and, as a
result, fewer collisions). Many implementations do that dynamically; in fact, that is
the way the Java Hashtable and HashMap classes work.

But other implementations—like the one internal to the JVM being discussed here—
cannot resize themselves; the size of their array is fixed when the map is created.

The performance of the intern() method is dominated by how well the string table
size is tuned. As an example, Table 12-1 shows the total time to create and intern 1
million randomly created strings with and without that tuning.

Table 12-1. Time to intern 1 million strings

Tuning 100% hit rate 0% hit rate
String table size 60013 4.992 ± 2.9 seconds 2.759 ± 0.13 seconds

String table size 1 million 2.446 ± 0.6 seconds 2.737 ± 0.36 seconds

Note the severe penalty for the improperly sized string intern table when there is a
100% hit rate. Once the table is sized according to the expected data, performance is
drastically improved.

The 0% hit rate table may be a little surprising because the performance with and
without the tuning is essentially the same. In this test case, the strings are discarded
immediately after being interned. The internal string table functions as if the keys are
weak references, so when the string is discarded, the string table can clear it. Hence,
in this test case the string table never actually fills up; it ends up having just a few
entries (since only a few strings are strongly held at any time).

368 | Chapter 12: Java SE API Tips



In order to see how the string table is performing, run your application with the
-XX:+PrintStringTableStatistics argument (which is false by default). When the
JVM exits, it will print out a table like this:

StringTable statistics:
Number of buckets       :     60013 =    480104 bytes, avg   8.000
Number of entries       :   2002784 =  48066816 bytes, avg  24.000
Number of literals      :   2002784 = 606291264 bytes, avg 302.724
Total footprint         :           = 654838184 bytes
Average bucket size     :    33.373
Variance of bucket size :    33.459
Std. dev. of bucket size:     5.784
Maximum bucket size     :        60

This output is from the 100% hit rate example. After an iteration of that, there are
2,002,784 interned strings (2 million are from our test with one warm-up and one
measurement cycle; the remainder are from jmh and the JDK classes). The entries
that most concern us are the average and maximum bucket size: we have to traverse
on average 33 and at most 60 entries in a linked list to search an entry in the hash
table. Ideally, the average length should be less than one and the maximum close to
one. That’s what we see in the 0% hit rate case:

Number of buckets       :     60013 =    480104 bytes, avg   8.000
Number of entries       :      2753 =     66072 bytes, avg  24.000
Number of literals      :      2753 =    197408 bytes, avg  71.707
Total footprint         :           =    743584 bytes
Average bucket size     :     0.046
Variance of bucket size :     0.046
Std. dev. of bucket size:     0.214
Maximum bucket size     :         3

Because the strings are quickly freed from the table, we end up with only 2,753 entries
in the table, which is fine for the default size of 60,013.

The number of interned strings an application has allocated (and their total size) can
also be obtained using the jmap command:

% jmap -heap process_id
... other output ...
36361 interned Strings occupying 3247040 bytes.

The penalty for setting the size of the string table too high is minimal: each bucket
takes only 8 bytes, so having a few thousand more entries than optimal is a one-time
cost of a few kilobytes of native (not heap) memory.
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String Interning and Equals
On the topic of interning strings, what about using the intern() method to make the
program run faster, since interned strings can be compared via the == operator? That
is a popular thought, though in most cases it turns out to be a myth. The
String.equals() method is pretty fast. It starts by knowing that unequal-length
strings are never equal, though if the strings have equal length, it must scan the string
and compare all the characters (at least until it finds that the strings do not match).
Comparing strings via the == operation is undeniably faster, but the cost of interning
the string must also be taken into consideration. That requires (among other things)
calculating the string’s hash code, which means scanning the entire string and per‐
forming an operation on each of its characters (just as the equals() method must
do).

The only time a benefit in string comparison can be expected from using the
intern() method is if an application performs a lot of repeated comparisons on a set
of strings of the same length. If both strings have been previously interned, the ==
comparison is faster; the cost of calling the intern() method needn’t be counted
more than once. But in the general case, the costs are mostly the same.

Custom string interning
Tuning a string table is a bit awkward; could we do better by just using a custom
interning scheme that keeps the important strings in a hash map? The code for that
was also outlined in Chapter 2.

Table 12-2 points us to the answer to that question. In addition to using a regular
ConcurrentHashMap to hold the interned strings, that table also shows the use of a
CustomConcurrentHashMap from the extra classes developed as part of JSR166. That
custom map allows us to have weak references for the keys, so its behavior more
closely mimics the string intern table.

Table 12-2. Time to intern 1 million strings via custom code

Implementation 100% hit rate 0% hit rate

ConcurrentHashMap 7.665 ± 6.9 seconds 5.490 ± 2.462 seconds

CustomConcurrentHashMap 2.743 ± 0.4 seconds 3.684 ± 0.5 seconds

In the 100% hit rate test, ConcurrentHashMap suffers from the same issues we saw
with the internal string table: a lot of GC pressure from the entries is building up over
each iteration. This is from a test with a 30 GB heap; smaller heaps will give even
worse results.
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As with all microbenchmarks, think deeply about the use case here. The Concurrent
HashMap can be explicitly managed rather than the setup we have here, which keeps
stuffing newly created strings into it. Depending on the application, that may or may
not be easy to do; if it is easy enough, the ConcurrentHashMap test will show the same
benefits as regular interning or the CustomConcurrentHashMap test. And in a real
application, the GC pressure is really the point: we’re going to use this method only to
remove duplicate strings in an attempt to save GC cycles.

Still, neither case is really better than the test with a properly tuned string table. The
advantage of the custom map is that it didn’t need to have a size set in advance: it
could resize itself as needed. Hence, it is far more adaptable to a range of applications
than using the intern() method and tuning the string table size in an application-
dependent manner.

String Concatenation
String concatenation is another area of potential performance pitfalls. Consider a
simple string concatenation like this:

String answer = integerPart + "." + mantissa;

Special optimizations in Java can handle this construct (though the details differ
between releases).

In Java 8, the javac compiler turns that statement into this code:

String answer = new StringBuilder(integerPart).append(".")
                         .append(mantissa).toString();

The JVM has special code to handle this kind of construct (which is controlled by
setting the -XX:+OptimizeStringConcat flag, which is true by default).

In Java 11, the javac compiler produces quite different bytecode; that code calls a
special method within the JVM itself that optimizes the string concatenation.

This is one of the few times where the bytecode between releases matter. Typically,
when you move to a newer release, there’s no need to recompile old code: the byte‐
code will be the same. (You’ll want to compile new code with the new compiler to use
new language features, of course.) But this particular optimization depends on the
actual bytecode. If you compile code that performs string concatenation with Java 8
and run it with Java 11, the Java 11 JDK will apply the same optimization it did in Java
8. The code will still be optimized and run quite fast.

If you recompile the code under Java 11, though, the bytecode will use the new opti‐
mizations and potentially be even faster.

Let’s consider the following three cases that concatenate two strings:
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@Benchmark
public void testSingleStringBuilder(Blackhole bh) {
    String s = new StringBuilder(prefix).append(strings[0]).toString();
    bh.consume(s);
}

@Benchmark
public void testSingleJDK11Style(Blackhole bh) {
    String s = prefix + strings[0];
    bh.consume(s);
}

@Benchmark
public void testSingleJDK8Style(Blackhole bh) {
    String s = new StringBuilder().append(prefix).append(strings[0]).toString();
    bh.consume(s);
}

The first method is how we would code this operation by hand. The second method
(when compiled with Java 11) will produce the latest optimizations, and the final
method (no matter which compiler is used) will be optimized the same way in Java 8
and Java 11.

Table 12-3 shows the results of these operations.

Table 12-3. Performance of single concatenation

Mode Time per operation
JDK 11 optimization 47.7 ± 0.3 ns

JDK 8 optimization 42.9 ± 0.3 ns

String builder 87.8 ± 0.7 ns

In this case, there’s little real difference between old (Java 8) and new (Java 11) con‐
catenation optimizations; though jmh tells us that the difference is statistically signifi‐
cant, they are not particularly important. The key point is that both optimizations are
better than handcoding this simple case. This is somewhat surprising, since the hand‐
coded case appears to be simpler: it contains one less call to the append() method
than the JDK 8 case and so is performing nominally less work. But the string concate‐
nation optimization within the JVM doesn’t pick up that particular pattern, so it ends
up being slower.

The Java 8 optimization doesn’t carry over for all concatenations, though. We can
slightly alter our tests like this:

@Benchmark
public void testDoubleJDK11Style(Blackhole bh) {
    double d = 1.0;
    String s = prefix + strings[0] + d;
    bh.consume(s);
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}

@Benchmark
public void testDoubleJDK8Style(Blackhole bh) {
    double d = 1.0;
    String s = new StringBuilder().append(prefix).
                   append(strings[0]).append(d).toString();
    bh.consume(s);
}

Now the performance is different, as Table 12-4 shows.

Table 12-4. Performance of concatenation with a double value

Mode Time per operation
JDK 11 optimization 49.4 ± 0.6 ns

JDK 8 optimization 77.0 ± 1.9 ns

The JDK 11 time is similar to the last example, even though we’re appending a new
value and doing slightly more work. But the JDK 8 time is much worse—it is about
50% slower. This is not really because of the extra concatenation; it’s because of the
type of that concatenation. The JDK 8 optimization works well with strings and inte‐
gers, but it cannot handle doubles (and most other kinds of data). In those cases, the
JDK 8 code skips the special optimization and behaves like the previous handcoded
test.

Neither of these optimizations carries over when we do multiple concatenation oper‐
ations, particularly those within a loop. Consider these tests:

    @Benchmark
    public void testJDK11Style(Blackhole bh) {
        String s = "";
        for (int i = 0; i < nStrings; i++) {
            s = s + strings[i];
        }
        bh.consume(s);
    }

    @Benchmark
    public void testJDK8Style(Blackhole bh) {
        String s = "";
        for (int i = 0; i < nStrings; i++) {
            s = new StringBuilder().append(s).append(strings[i]).toString();
        }
        bh.consume(s);
    }

    @Benchmark
    public void testStringBuilder(Blackhole bh) {
        StringBuilder sb = new StringBuilder();
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        for (int i = 0; i < nStrings; i++) {
            sb.append(strings[i]);
        }
        bh.consume(sb.toString());
    }

Now the results favor handcoding, which makes sense. The Java 8 implementation, in
particular, has to create a new StringBuilder operation on each iteration of the loop,
and even in Java 11, the overhead of creating a string on each loop (rather than build‐
ing up in the string builder) takes its toll. These results are in Table 12-5.

Table 12-5. Performance of multiple string concatenations

Mode 10 strings 1,000 strings
JDK 11 code 613 ± 8 ns 2,463 ± 55 μs

JDK 8 code 584 ± 8 ns 2,602 ± 209 μs

String builder 412 ± 2 ns 38 ± 211 μs

Bottom line: Don’t be afraid to use concatenation when it can be done on a single
(logical) line, but never use string concatenation inside a loop unless the concaten‐
ated string is not used on the next loop iteration. Otherwise, always explicitly use a
StringBuilder object for better performance. In Chapter 1, I argued that there are
times to “prematurely” optimize, when that phrase is used in a context meaning sim‐
ply “write good code.” This is a prime example.

Quick Summary

• One-line concatenation of strings yields good performance.
• For multiple concatenation operations, make sure to use
StringBuilder.

• One-line concatenation of strings involving certain types will
be significantly faster when recompiled in JDK 11.

Buffered I/O
When I joined the Java Performance Group in 2000, my boss had just published the
first ever book on Java performance, and one of the hottest topics in those days was
buffered I/O. Fourteen years later, I was prepared to assume the topic was old hat and
leave it out of the first edition of this book. Then, in the week I started the outline for
the first edition, I filed bugs against two unrelated projects in which unbuffered I/O
was greatly hampering performance. A few months later, as I was working on an
example for the first edition, I scratched my head as I wondered why my “optimiza‐
tion” was so slow. Then I realized: stupid, you forgot to buffer the I/O correctly.

374 | Chapter 12: Java SE API Tips



As for the second edition: in the two weeks before I revisited this section, three col‐
leagues came to me who had made the same mistake in buffering I/O as I had in the
example for the first edition.

So let’s talk about buffered I/O performance. The InputStream.read() and
OutputStream.write() methods operate on a single character. Depending on the
resource they are accessing, these methods can be very slow. A FileInputStream
that uses the read() method will be excruciatingly slow: each method invocation
requires a trip into the kernel to fetch 1 byte of data. On most operating systems, the
kernel will have buffered the I/O, so (luckily) this scenario doesn’t trigger a disk read
for each invocation of the read() method. But that buffer is held in the kernel, not
the application, and reading a single byte at a time means making an expensive sys‐
tem call for each method invocation.

The same is true of writing data: using the write() method to send a single byte to a
FileOutputStream requires a system call to store the byte in a kernel buffer. Eventu‐
ally (when the file is closed or flushed), the kernel will write out that buffer to the
disk.

For file-based I/O using binary data, always use BufferedInputStream or
BufferedOutputStream to wrap the underlying file stream. For file-based I/O using
character (string) data, always wrap the underlying stream with BufferedReader or
BufferedWriter.

Although this performance issue is most easily understood when discussing file I/O,
it is a general issue that applies to almost every sort of I/O. The streams returned
from a socket (via the getInputStream() or getOutputStream() methods) operate
in the same manner, and performing I/O one byte at a time over a socket is quite
slow. Here, too, always make sure that the streams are appropriately wrapped with a
buffering filter stream.

There are more subtle issues when using the ByteArrayInputStream and
ByteArrayOutputStream classes. These classes are essentially just big in-memory
buffers to begin with. In many cases, wrapping them with a buffering filter stream
means that data is copied twice: once to the buffer in the filter stream and once to the
buffer in the ByteArrayInputStream (or vice versa for output streams). Absent the
involvement of any other streams, buffered I/O should be avoided in that case.

When other filtering streams are involved, the question of whether to buffer becomes
more complicated. Later in this chapter, you’ll see an example of object serialization
that involves multiple filtering streams using the ByteArrayOutputStream,
ObjectOutputStream, and GZIPOutputStream classes.
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Without the compressing output stream, the filters for that example look like this:

protected void makePrices() throws IOException {
    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    ObjectOutputStream oos = new ObjectOutputStream(baos);
    oos.writeObject(prices);
    oos.close();
}

In this case, wrapping the baos stream in a BufferedOutputStream would suffer a
performance penalty from copying the data one extra time.

Once we add compression, though, the best way to write the code is like this:

protected void makeZippedPrices() throws IOException {
    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    GZIPOutputStream zip = new GZIPOutputStream(baos);
    BufferedOutputStream bos = new BufferedOutputStream(zip);
    ObjectOutputStream oos = new ObjectOutputStream(bos);
    oos.writeObject(prices);
    oos.close();
    zip.close();
}

Now it is necessary to buffer the output stream, because GZIPOutputStream operates
more efficiently on a block of data than it does on single bytes of data. In either case,
ObjectOutputStream will send single bytes of data to the next stream. If that next
stream is the ultimate destination—the ByteArrayOutputStream—no buffering is
necessary. If another filtering stream is in the middle (such as GZIPOutputStream in
this example), buffering is often necessary.

No general rule exists about when to use a buffered stream interposed between two
other streams. Ultimately, it will depend on the type of streams involved, but the
likely cases will all operate better if they are fed a block of bytes (from the buffered
stream) rather than a series of single bytes (from ObjectOutputStream).

The same situation applies to input streams. In this specific case, GZIPInputStream
will operate more efficiently on a block of bytes; in the general case, streams that are
interposed between ObjectInputStream and the original byte source will also be
better off with a block of bytes.

Note that this case applies in particular to stream encoders and decoders. When you
convert between bytes and characters, operating on as large a piece of data as possible
will provide the best performance. If single bytes or characters are fed to encoders
and decoders, they will suffer from bad performance.

For the record, not buffering the gzip streams is exactly the mistake I made when
writing that compression example. It was a costly mistake, as the data in Table 12-6
shows.
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Table 12-6. Time to serialize and deserialize Stock object with compression

Mode Time
Unbuffered compression/decompression 21.3 ± 8 ms

Buffered compression/decompression 5.7 ± 0.08 ms

The failure to properly buffer the I/O resulted in as much as a four times perfor‐
mance penalty.

Quick Summary

• Issues around buffered I/O are common because of the default
implementation of the simple input and output stream classes.

• I/O must be properly buffered for files and sockets, as well as
for internal operations like compression and string encoding.

Classloading
The performance of classloading is the bane of anyone attempting to optimize either
program startup or deployment of new code in a dynamic system.

There are many reasons for that. To begin, the class data (i.e., the Java bytecode) is
typically not quickly accessible. That data must be loaded from disk or from the net‐
work, it must be found in one of several JAR files on the classpath, and it must be
found in one of several classloaders. There are some ways to help this along: some
frameworks cache classes they read from the network into a hidden directory so that
next time it starts the same application, it can read the classes more quickly. Packag‐
ing an application into fewer JAR files will also speed up its classloading performance.

In this section, we’ll look at a new feature of Java 11 to speed up classloading.

Class Data Sharing
Class data sharing (CDS) is a mechanism whereby the metadata for classes can be
shared between JVMs. This can be useful for saving memory when running multiple
JVMs: normally, each JVM would have its own class metadata, and the separate
copies would occupy some physical memory. If that metadata is shared, only one
copy needs to reside in memory.

It turns out that CDS is very useful for single JVMs because it can also improve their
startup time.
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Class data sharing is available in Java 8 (and previous releases), but with the restric‐
tion that it applies only to the classes in rt.jar and only when the serial collector is
used with the client JVM. In other words, it helps somewhat on 32-bit, single-CPU,
Windows desktop machines.

In Java 11, CDS is generally available on all platforms, though it doesn’t work out of
the box because there is no default shared archive of the class metadata. Java 12 does
have a default shared archive of the common JDK classes, so all applications will by
default get some startup (and memory) benefits. In either case, we can do better by
generating a more complete shared archive for our application, because in Java 11,
CDS can work with any set of classes, no matter which classloader loads them and
which JAR or module they are loaded from. One restriction applies: CDS works only
for classes loaded from modules or JAR files. You cannot share (or quickly load)
classes from a filesystem or network URL.

In a sense, this means there are two flavors of CDS: regular CDS (which shares the
default JDK classes) and application class data sharing, which shares any set of classes.
Application class data sharing was actually introduced in Java 10, and it worked dif‐
ferently than regular CDS: there were different command-line arguments for pro‐
grams to use it. That distinction is now obsolete, and CDS in Java 11 and beyond
works the same way regardless of the classes being shared.

The first thing required to use CDS is a shared archive of classes. As I mentioned,
Java 12 comes with a default shared archive of classes, which is located in
$JAVA_HOME/lib/server/classes.jsa (or %JAVA_HOME%\bin\server\classes.jsa on
Windows). That archive has data for 12,000 JDK classes, so its coverage of the core
classes is pretty broad. To generate your own archive, you will first need a list of all
the classes for which you want to enable sharing (and hence fast loading). That list
can include JDK classes and application-level classes.

There are many ways to get such a list, but the easiest is to run your application with
the -XX:+DumpLoadedClassList=filename flag, which will produce (in filename) a
list of all the classes that your application has loaded.

The second step is to use that class list to generate the shared archive like this:

$ java -Xshare:dump -XX:SharedClassListFile=filename \
    -XX:SharedArchiveFile=myclasses.jsa \
    ... classpath arguments ...

This will create a new shared archive file with the given name (here, myclasses.jsa)
based on the list of files. You must also set up the classpath the same as you would to
run the application (i.e., using either the -cp or -jar argument you would normally
use to run the application).
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This command will generate a lot of warnings about classes it cannot find. That is
expected since this command cannot find dynamically generated classes: proxy
classes, reflection-based classes, and so on. If you see a warning for a class you
expected to be loaded, try adjusting the classpath for that command. Not finding all
the classes isn’t a problem; it just means they will be loaded normally (from the class‐
path) rather than from the shared archive. Loading that particular class will hence be
a little slower, but a few such classes like that isn’t going to be noticeable, so don’t
sweat everything at this step.

Finally, you use the shared archive to run the application:

$ java -Xshare:auto -XX:SharedArchiveFile=myclasses.jsa ... other args ...

A few remarks about this command. First, the -Xshare command has three possible
values:

off

Don’t use class data sharing.

on

Always use class data sharing.

auto

Attempt to use class data sharing.

CDS depends on mapping the shared archive into a memory region, and under cer‐
tain (mostly rare) circumstances, that can fail. If -Xshare:on is specified, the applica‐
tion will not run if that happens. Hence, the default value is -Xshare:auto, which
means that CDS will normally be used, but if for some reason the archive cannot be
mapped, the application will proceed without it. Since the default for this flag is auto,
we don’t actually have to specify it in the preceding command.

Second, this command gives the location of the shared archive. The default value for
the SharedArchiveFile flag is the classes.jsa path mentioned earlier (within the JDK
server directory). So in Java 12 (where that file is present), we needn’t give any
command-line arguments if we just want to use the (JDK-only) default shared
archive.

In one common case, loading the shared archive can fail: the classpath used to gener‐
ate the shared archive must be a subset of the classpath used to run an application,
and the JAR files must not have changed since the shared archive was created. So you
don’t want to generate a shared archive of classes other than the JDK and put that in
the default location, since the classpath for arbitrary commands will not match.

Also beware of changing the JAR files. If you use the default setting of -Xshare:auto
and the JAR file is changed, the application will still run, even though the shared
archive is not being used. Worse, there will be no warning about that; the only effect
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you’ll see is that the application starts more slowly. That’s a reason to consider speci‐
fying -Xshare:on instead of the default, though there are other reasons the shared
archive could fail.

To validate that classes are being loaded from the shared archive, include class load‐
ing logging (-Xlog:class+load=info) in your command line; you’ll see the usual
classloading output, and classes that are loaded from the shared archive will show up
like this:

[0.080s][info][class,load] java.lang.Comparable source: shared objects file

Class data sharing benefits
The benefit of class data sharing for startup time depends, obviously, on the number
of classes to be loaded. Table 12-7 shows the time required to start the sample stock
server application in the book examples; that requires loading 6,314 classes.

Table 12-7. Time to start an application with CDS

CDS mode Startup time

-Xshare:off 8.9 seconds

-Xshare:on (default) 9.1 seconds

-Xshare:on (custom) 7.0 seconds

In the default case, we’re using only the shared archive for the JDK; the last row is the
custom shared archive of all the application classes. In this case, CDS saves us 30% in
startup time.

CDS will also save us some memory since the class data will be shared among pro‐
cesses. Overall, as you saw in the examples in Chapter 8, the class data in native mem‐
ory is proportionately small, particularly compared to the application heap. In a large
program with lots of classes, CDS will save more memory, though a large program is
likely to need an even larger heap, making the proportional savings still small. Still, in
an environment where you are particularly starved for native memory and running
multiple copies of the JVM that are using a significant number of the same classes,
CDS will offer some benefit for memory savings as well.

Quick Summary

• The best way to speed up classloading is to create a class data
sharing archive for the application. Luckily, this requires no
programming changes.
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Random Numbers
The next set of APIs we’ll look at involve random number generation. Java comes
with three standard random number generator classes: java.util.Random,
java.util.concurrent.ThreadLocalRandom, and java.security.SecureRandom.
These three classes have important performance differences.

The difference between the Random and ThreadLocalRandom classes is that the main
operation (the nextGaussian() method) of the Random class is synchronized. That
method is used by any method that retrieves a random value, so that lock can become
contended no matter how the random number generator is used: if two threads use
the same random number generator at the same time, one will have to wait for the
other to complete its operation. This is why the thread-local version is available: when
each thread has its own random number generator, the synchronization of the
Random class is no longer an issue. (As discussed in Chapter 7, the thread-local ver‐
sion also provides significant performance benefits because it is reusing an expensive-
to-create object.)

The difference between those classes and the SecureRandom class lies in the algo‐
rithm used. The Random class (and the ThreadLocalRandom class, via inheritance)
implements a typical pseudorandom algorithm. While those algorithms are quite
sophisticated, they are in the end deterministic. If the initial seed is known, it is possi‐
ble to determine the exact series of numbers the engine will generate. That means
hackers are able to look at series of numbers from a particular generator and (eventu‐
ally) figure out what the next number will be. Although good pseudorandom number
generators can emit series of numbers that look really random (and that even fit
probabilistic expectations of randomness), they are not truly random.

The SecureRandom class, on the other hand, uses a system interface to obtain a seed
for its random data. The way that data is generated is operating-system-specific, but
in general this source provides data based on truly random events (such as when the
mouse is moved). This is known as entropy-based randomness and is much more
secure for operations that rely on random numbers.

Java distinguishes two sources of random numbers: one to generate seeds and one to
generate random numbers themselves. Seeds are used to create public and private
keys, such as the keys that you use to access a system via SSH or PuTTY. Those keys
are long-lived, so they require the strongest possible cryptographic algorithm. Secure
random numbers are also used to seed regular random number streams, including
those used by default implementations of Java’s SSL libraries.

On Linux systems, these two sources are /dev/random (for seeds) and /dev/urandom
(for random numbers). These systems are both based on sources of entropy within
the machine: truly random things, such as mouse movement or keyboard strokes.
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The amount of entropy is limited and is regenerated randomly, so it is undependable
as a true source of randomness. The two systems handle that differently: /dev/random
will block until it has enough system events to generate the random data, and /dev/
urandom will fall back to a pseudorandom number generator (PRNG). The PRNG
will have been initialized from a truly random source, so it is usually just as strong as
the stream from /dev/random. However, entropy to generate the seed itself may be
unavailable, in which case the stream from /dev/urandom can theoretically be com‐
promised. There are arguments on both sides of this issue as to strength of this
stream, but the common consensus—use /dev/random for seeds and /dev/urandom
for everything else—is the one adopted by Java.

The upshot is that getting a lot of random number seeds can take a long time. Calls to
the generatedSeed() method of the SecureRandom class will take an indeterminate
amount of time, based on how much unused entropy the system has. If no entropy is
available, the call will appear to hang, possibly as long as seconds at a time, until the
required entropy is available. That makes performance timing quite difficult: the per‐
formance itself becomes random.

On the other hand, the generateSeed() method is used for only two operations.
First, some algorithms use it to get a seed for future calls to the nextRandom()
method. This usually needs to be done only once, or at most periodically during the
lifetime of an application. Second, this method is used when creating a long-lived key,
which also is a fairly rare operation.

Since those operations are limited, most applications will not run out of entropy. Still,
limited entropy can be a problem for applications that create ciphers at startup time,
particularly in cloud environments where the host OS random number device is
shared among a number of virtual machines and/or Docker containers. In that case,
timings of program activities will have a very large amount of variance, and since the
use of secure seeds occurs most often while programs are initializing, the startup of
applications in this sphere can be quite slow.

We have a few ways to deal with this situation. In a pinch, and where the code can be
changed, an alternative to this problem is to run performance tests using the Random
class, even though the SecureRandom class will be used in production. If the perfor‐
mance tests are module-level tests, that can make sense: those tests will need more
random seeds than the production system will need during the same period of time.
But eventually, the expected load must be tested with the SecureRandom class to
determine if the load on the production system can obtain a sufficient number of ran‐
dom seeds.

A second option is to configure Java’s secure random number generator to
use /dev/urandom for seeds as well as for random numbers. This can be accomplished
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2 Because of a bug in earlier versions of Java, it is sometimes recommended to set this flag to /dev/./urandom or
other variations. In Java 8 and later JVMs, you can simply use /dev/urandom.

in two ways: first, you can set the system property -Djava.security

.egd=file:/dev/urandom.2

A third option is to change this setting in $JAVA_HOME/jre/lib/security/java.security:

securerandom.source=file:/dev/random

That line defines the interface used for seeding operations and can be set to /dev/
urandom if you want to ensure that the secure random number generator never
blocks.

However, the better solution is to set up the operating system so that it supplies more
entropy, which is done by running the rngd daemon. Just make sure that the rngd
daemon is configured to use reliable hardware sources of entropy (e.g., /dev/hwrng if
it is available) and not something like /dev/urandom. This solution has the advantage
of solving entropy issues for all programs on the machine, not just Java programs.

Quick Summary

• Java’s default Random class is expensive to initialize, but once
initialized, it can be reused.

• In multithreaded code, the ThreadLocalRandom class is
preferred.

• Sometimes, the SecureRandom class will show arbitrary, com‐
pletely random performance. Performance tests on code using
that class must be carefully planned.

• Issues with the SecureRandom class blocking can be avoided
with configuration changes, but it is better to solve them at the
OS level by adding entropy to the system.

Java Native Interface
Performance tips about Java SE (particularly in the early days of Java) often say that if
you want really fast code, you should use native code. In truth, if you are interested in
writing the fastest possible code, avoid the Java Native Interface (JNI).

Well-written Java code will run at least as fast on current versions of the JVM as cor‐
responding C or C++ code (it is not 1996 anymore). Language purists will continue
to debate the relative performance merits of Java and other languages, and you can
find doubtless examples of an application written in another language that is faster
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than the same application written in Java (though often those examples contain
poorly written Java code). However, that debate misses the point of this section: when
an application is already written in Java, calling native code for performance reasons
is almost always a bad idea.

Still, at times JNI is quite useful. The Java platform provides many common features
of operating systems, but if access to a special, operating-system-specific function is
required, so is JNI. And why build your own library to perform an operation, when a
commercial (native) version of the code is readily available? In these and other cases,
the question becomes how to write the most efficient JNI code.

The answer is to avoid making calls from Java to C as much as possible. Crossing the
JNI boundary (the term for making the cross-language call) is expensive. Because
calling an existing C library requires writing glue code in the first place, take the time
to create new, coarse-grained interfaces via that glue code: perform many, multiple
calls into the C library in one shot.

Interestingly, the reverse is not necessarily true: C code that calls back into Java does
not suffer a large performance penalty (depending on the parameters involved). For
example, consider the following code excerpt:

@Benchmark
public void testJavaJavaJava(Blackhole bh) {
    long l = 0;
    for (int i = 0; i < nTrials; i++) {
        long a = calcJavaJava(nValues);
        l += a / nTrials;
    }
    bh.consume(l);
}

private long calcJavaJava(int nValues) {
    long l = 0;
    for (int i = 0; i < nValues; i++) {
        l += calcJava(i);
    }
    long a = l / nValues;
    return a;
}

private long calcJava(int i) {
    return i * 3 + 15;
}

This (completely nonsensical) code has two main loops: one inside the benchmark
method and then one inside the calcJavaJava() method. That is all Java code, but
we can choose instead to use a native interface and write the outer calculation
method in C:
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@Benchmark
public void testJavaCC(Blackhole bh) {
    long l = 0;
    for (int i = 0; i < nTrials; i++) {
        long a = calcCC(nValues);
        l += 50 - a;
    }
    bh.consume(l);
}

private native long calcCC(int nValues);

Or we could just implement the inner call in C (the code for which should be
obvious).

Table 12-8 shows the performance from various permutations, given 10,000 trials and
10,000 values.

Table 12-8. Time to calculate across the JNI boundary

calculateError Calc Random JNI transitions Total time

Java Java Java 0 0.104 ± 0.01 seconds

Java Java C 10,000,000 1.96 ± 0.1 seconds

Java C C 10,000 0.132 ± 0.01 seconds

C C C 0 0.139 ± 0.01 seconds

Implementing only the innermost method in C provides the most crossings of the
JNI boundary (numberOfTrials × numberOfLoops, or 10 million). Reducing the
number of crossings to numberOfTrials (10,000) reduces that overhead substantially,
and reducing it further to 0 provides the best performance.

JNI code performs worse if the parameters involved are not simple primitives. Two
aspects are involved in this overhead. First, for simple references, an address transla‐
tion is needed. Second, operations on array-based data are subject to special handling
in native code. This includes String objects, since the string data is essentially a char‐
acter array. To access the individual elements of these arrays, a special call must be
made to pin the object in memory (and for String objects, to convert from Java’s
UTF-16 encoding into UTF-8 in JDK 8). When the array is no longer needed, it must
be explicitly released in the JNI code.

While the array is pinned, the garbage collector cannot run—so one of the most
expensive mistakes in JNI code is to pin a string or array in code that is long-running.
That prevents the garbage collector from running, effectively blocking all the applica‐
tion threads until the JNI code completes. It is extremely important to make the criti‐
cal section where the array is pinned as short as possible.
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Often, you will see the term GC Locker Initiated GC in your GC logs. That’s an
indication that the garbage collector needed to run but it couldn’t, because a thread
had pinned data in a JNI call. As soon as that data is unpinned, the garbage collector
will run. If you see this GC cause frequently, look into making the JNI code faster;
your other application threads are experiencing delays waiting for GC to run.

Sometimes, the goal of pinning objects for a short period of time conflicts with the
goal of reducing the calls that cross the JNI boundary. In that case, the latter goal is
more important even if it means making multiple crossings of the JNI boundary, so
make the sections that pin arrays and strings as short as possible.

Quick Summary

• JNI is not a solution to performance problems. Java code will
almost always run faster than calling into native code.

• When JNI is used, limit the number of calls from Java to C;
crossing the JNI boundary is expensive.

• JNI code that uses arrays or strings must pin those objects;
limit the length of time they are pinned so that the garbage
collector is not impacted.

Exceptions
Java exception processing has the reputation of being expensive. It is somewhat more
expensive than processing regular control flows, though in most cases, the extra cost
isn’t worth the effort to attempt to bypass it. On the other hand, because it isn’t free,
exception processing shouldn’t be used as a general mechanism either. The guideline
is to use exceptions according to the general principles of good program design:
mainly, code should throw an exception only to indicate something unexpected has
happened. Following good code design means that your Java code will not be slowed
down by exception processing.

Two things can affect the general performance of exception processing. First is the
code block itself: is it expensive to set up a try-catch block? While that might have
been the case a long time ago, it has not been the case for years. Still, because the
internet has a long memory, you will sometimes see recommendations to avoid
exceptions simply because of the try-catch block. Those recommendations are out-of-
date; modern JVMs can generate code that handles exceptions quite efficiently.

The second aspect is that exceptions involve obtaining a stack trace at the point of the
exception (though you’ll see an exception to that later in this section). This operation
can be expensive, particularly if the stack trace is deep.
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Let’s look at an example. Here are three implementations of a particular method to
consider:

private static class CheckedExceptionTester implements ExceptionTester {
    public void test(int nLoops, int pctError, Blackhole bh) {
        ArrayList<String> al = new ArrayList<>();
        for (int i = 0; i < nLoops; i++) {
            try {
                if ((i % pctError) == 0) {
                    throw new CheckedException("Failed");
                }
                Object o = new Object();
                al.add(o.toString());
            } catch (CheckedException ce) {
                // continue
            }
        }
        bh.consume(al);
    }
}

private static class UncheckedExceptionTester implements ExceptionTester {
    public void test(int nLoops, int pctError, Blackhole bh) {
        ArrayList<String> al = new ArrayList<>();
        for (int i = 0; i < nLoops; i++) {
            Object o = null;
            if ((i % pctError) != 0) {
                o = new Object();
            }
            try {
                al.add(o.toString());
            } catch (NullPointerException npe) {
                // continue
            }
        }
        bh.consume(al);
    }
}

private static class DefensiveExceptionTester implements ExceptionTester {
    public void test(int nLoops, int pctError, Blackhole bh) {
        ArrayList<String> al = new ArrayList<>();
        for (int i = 0; i < nLoops; i++) {
            Object o = null;
            if ((i % pctError) != 0) {
                o = new Object();
            }
            if (o != null) {
                al.add(o.toString());
            }
        }
        bh.consume(al);
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    }
}

Each method here creates an array of arbitrary strings from newly created objects.
The size of that array will vary, based on the desired number of exceptions to be
thrown.

Table 12-9 shows the time to complete each method for 100,000 iterations given the
worst case—a pctError of 1 (each call generates an exception, and the result is an
empty list). The example code here is either shallow (meaning that the method in
question is called when only 3 classes are on the stack) or deep (meaning that the
method in question is called when 100 classes are on the stack).

Table 12-9. Time to process exceptions at 100%

Method Shallow time Deep time
Checked exception 24031 ± 127 μs 30613 ± 329 μs

Unchecked exception 21181 ± 278 μs 21550 ± 323 μs

Defensive programming 21088 ± 255 μs 21262 ± 622 μs

This table presents three interesting points. First, in the case of checked exceptions,
there is a significant difference of time between the shallow case and the deep case.
Constructing that stack trace takes time, which is dependent on the stack depth.

But the second case involves unchecked exceptions, where the JVM creates the excep‐
tion when the null pointer is dereferenced. What’s happening is that at some point,
the compiler has optimized the system-generated exception case; the JVM begins to
reuse the same exception object rather than creating a new one each time it is needed.
That object is reused each time the code in question is executed, no matter what the
calling stack is, and the exception does not actually contain a call stack (i.e., the
printStackTrace() method returns no output). This optimization doesn’t occur
until the full stack exception has been thrown for quite a long time, so if your test
case doesn’t include a sufficient warm-up cycle, you will not see its effects.

Finally, consider the case where no exception is thrown: notice that it has pretty much
the same performance as the unchecked exception case. This case serves as a control
in this experiment: the test does a fair amount of work to create the objects. The dif‐
ference between the defensive case and any other case is the actual time spent creat‐
ing, throwing, and catching the exception. So the overall time is quite small. Averaged
out over 100,000 calls, the individual execution time differences will barely register
(and recall that this is the worst-case example).

So performance penalties for using exceptions injudiciously is smaller than might be
expected, and the penalty for having lots of the same system exception is almost non‐
existent. Still, in some cases you will run into code that is simply creating too many
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3 Or should I say: Chacun à son goût.

exceptions. Since the performance penalty comes from filling in the stack traces, the
-XX:-StackTraceInThrowable flag (which is true by default) can be set to disable
the generation of the stack traces.

This is rarely a good idea: the stack traces are present to enable analysis of what unex‐
pectedly went wrong. That capability is lost when this flag is enabled. And there is
code that actually examines the stack traces and determines how to recover from the
exception based on what it finds there. That’s problematic in itself, but the upshot is
that disabling the stack trace can mysteriously break code.

There are some APIs in the JDK itself where exception handling can lead to perfor‐
mance issues. Many collection classes will throw an exception when nonexistent
items are retrieved from them. The Stack class, for example, throws an
EmptyStackException if the stack is empty when the pop() method is called. It is
usually better to utilize defensive programming in that case by checking the stack
length first. (On the other hand, unlike many collection classes, the Stack class sup‐
ports null objects, so it’s not as if the pop() method could return null to indicate an
empty stack.)

The most notorious example within the JDK of questionable use of exceptions is
in classloading: the loadClass() method of the ClassLoader class throws a
ClassNotFoundException when asked to load a class that it cannot find. That’s not
actually an exceptional condition. An individual classloader is not expected to know
how to load every class in an application, which is why there are hierarchies of
classloaders.

In an environment with dozens of classloaders, this means a lot of exceptions are
created as the classloader hierarchy is searched for the one classloader that knows
how to load the given class. In very large application servers I’ve worked with, disa‐
bling stack trace generation can speed up start time by as much as 3%. Those servers
load more than 30,000 classes from hundreds of JAR files; this is certainly a YMMV
kind of thing.3
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Quick Summary

• Exceptions are not necessarily expensive to process, though
they should be used only when appropriate.

• The deeper the stack, the more expensive to process
exceptions.

• The JVM will optimize away the stack penalty for frequently
created system exceptions.

• Disabling stack traces in exceptions can sometimes help per‐
formance, though crucial information is often lost in the
process.

Logging
Logging is one of those things that performance engineers either love or hate—or
(usually) both. Whenever I’m asked why a program is running badly, the first thing I
ask for are any available logs, with the hope that logs produced by the application will
have clues as to what the application was doing. Whenever I’m asked to review the
performance of working code, I immediately recommend that all logging statements
be turned off.

Multiple logs are in question here. The JVM produces its own logging statements, of
which the most important is the GC log (see Chapter 6). That logging can be directed
into a distinct file, the size of which can be managed by the JVM. Even in production
code, GC logging (even with detailed logging enabled) has such low overhead and
such an expected large benefit if something goes wrong that it should always be
turned on.

HTTP servers generate an access log that is updated on every request. This log gener‐
ally has a noticeable impact: turning off that logging will definitely improve the per‐
formance of whatever test is run against the application server. From a diagnosability
standpoint, those logs are (in my experience) not terribly helpful when something
goes wrong. However, in terms of business requirements, that log is often crucial, in
which case it must be left enabled.

Although it is not a Java standard, many HTTP servers support the Apache
mod_log_config convention, which allows you to specify exactly what information is
logged for each request (and servers that don’t follow the mod_log_config syntax will
typically support another log customization). The key is to log as little information as
possible and still meet the business requirements. The performance of the log is sub‐
ject to the amount of data written.
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In HTTP access logs in particular (and in general, in any kind of log), it is a good idea
to log all information numerically: IP addresses rather than hostnames, timestamps
(e.g., seconds since the epoch) rather than string data (e.g., “Monday, June 3, 2019
17:23:00 -0600”), and so on. Minimize any data conversion that will take time and
memory to compute so that the effect on the system is also minimized. Logs can
always be postprocessed to provide converted data.

We should keep three basic principles in mind for application logs. First is to keep a
balance between the data to be logged and level at which it is logged. The JDK has
seven standard logging levels in the JDK, and loggers by default are configured to
output three of those levels (INFO and greater). This often leads to confusion within
projects: INFO-level messages sound like they should be fairly common and should
provide a description of the flow of an application (“now I’m processing task A,” “now
I’m doing task B,” and so on). Particularly for applications that are heavily threaded
and scalable, that much logging will have a detrimental effect on performance (not to
mention running the risk of being too chatty to be useful). Don’t be afraid to use the
lower-level logging statements.

Similarly, when code is checked into a group repository, consider the needs of the
user of the project rather than your needs as a developer. We’d all like to have a lot of
good feedback about how our code works after it is integrated into a larger system
and run through a battery of tests, but if a message isn’t going to make sense to an
end user or system administrator, it’s not helpful to enable it by default. It is merely
going to slow down the system (and confuse the end user).

The second principle is to use fine-grained loggers. Having a logger per class can be
tedious to configure, but having greater control over the logging output often makes
this worthwhile. Sharing a logger for a set of classes in a small module is a good com‐
promise. Keep in mind that production problems—and particularly production prob‐
lems that occur under load or are otherwise performance related—are tricky to
reproduce if the environment changes significantly. Turning on too much logging
often changes the environment such that the original issue no longer manifests itself.

Hence, you must be able to turn on logging only for a small set of code (and, at least
initially, a small set of logging statements at the FINE level, followed by more at the
FINER and FINEST levels) so that the performance of the code is not affected.

Between these two principles, it should be possible to enable small subsets of mes‐
sages in a production environment without affecting the performance of the system.
That is usually a requirement anyway: the production system administrators probably
aren’t going to enable logging if it slows the system, and if the system does slow down,
then the likelihood of reproducing the issue is reduced.
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The third principle to keep in mind when introducing logging to code is to remember
that it is easy to write logging code that has unintended side effects, even if the
logging is not enabled. This is another case where “prematurely” optimizing code is a
good thing: as the example from Chapter 1 shows, remember to use the
isLoggable() method anytime the information to be logged contains a method call,
a string concatenation, or any other sort of allocation (for example, allocation of an
Object array for a MessageFormat argument).

Quick Summary

• Code should contain lots of logging to enable users to figure
out what it does, but none of that should be enabled by default.

• Don’t forget to test for the logging level before calling the log‐
ger if the arguments to the logger require method calls or
object allocation.

Java Collections API
Java’s collections API is extensive; it has at least 58 collection classes. Using an appro‐
priate collection class—as well as using collection classes appropriately—is an impor‐
tant performance consideration in writing an application.

The first rule in using a collection class is to use one suitable for the algorithmic
needs of an application. This advice is not specific to Java; it is essentially Data Struc‐
tures 101. A LinkedList is not suitable for searching; if access to a random piece of
data is required, store the collection in a HashMap. If the data needs to remain sorted,
use a TreeMap rather than attempting to sort the data in the application. Use an
ArrayList if the data will be accessed by index, but not if data frequently needs to be
inserted into the middle of the array. And so on…the algorithmic choice of which
collection class is crucial, but the choice in Java isn’t different from the choice in any
other programming language.

There are, however, some idiosyncrasies to consider when using Java collections.

Synchronized Versus Unsynchronized
By default, virtually all Java collections are unsynchronized (the major exceptions are
Hashtable, Vector, and their related classes).
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Synchronized Collection Classes
If you’ve ever wondered why the Vector and Hashtable (and related) classes are
synchronized, here’s a bit of history.

In the early days of Java, these were the only collection classes in the JDK. Back then
(before Java 1.2), there was no formal definition of the Collections Framework; these
were just useful classes that the original Java platform provided.

When Java was first released, threading was poorly understood by most developers,
and Java attempted to make it easier for developers to avoid some of the pitfalls of
coding in a threaded environment. Hence, these classes were thread-safe.

Unfortunately, synchronization—even uncontended synchronization—was a huge
performance problem in early versions of Java, so when the first major revision to the
platform came out, the Collections Framework took the opposite approach: all new
collection classes would be unsynchronized by default. Even though synchronization
performance has drastically improved since then, it still is not free, and having the
option of unsynchronized collections helps everyone write faster programs (with the
occasional bug caused by concurrently modifying an unsynchronized collection).

Chapter 9 posited a microbenchmark to compare CAS-based protection to tradi‐
tional synchronization. That proved to be impractical in the threaded case, but what
if the data in question will always be accessed by a single thread—what would be the
effect of not using any synchronization at all? Table 12-10 shows that comparison.
Because there is no attempt to model the contention, the microbenchmark in this
case is valid in this one circumstance: when there can be no contention, and the ques‐
tion at hand is what the penalty is for “oversynchronizing” access to the resource.

Table 12-10. Performance of synchronized and unsynchronized access

Mode Single access 10,000 accesses
CAS operation 22.1 ± 11 ns 209 ± 90 μs

Synchronized method 20.8 ± 9 ns 179 ± 95 μs

Unsynchronized method 15.8 ± 5 ns 104 ± 55 μs

There is a small penalty when using any data protection technique as opposed to sim‐
ple unsynchronized access. As usual with a microbenchmark, the difference is tiny:
on the order of 5–8 nanoseconds. If the operation in question is executed frequently
enough in the target application, the performance penalty will be somewhat noticea‐
ble. In most cases, the difference will be outweighed by far larger inefficiencies in
other areas of the application. Remember also that the absolute number here is com‐
pletely determined by the target machine the test was run on (my home machine with

Java Collections API | 393



an AMD processor); to get a more realistic measurement, the test would need to be
run on hardware that is the same as the target environment.

So, given a choice between a synchronized list (e.g., returned from the synchronized
List() method of the Collections class) and an unsynchronized ArrayList, which
should be used? Access to the ArrayList will be slightly faster, and depending on
how often the list is accessed, a measurable performance difference can result. (As
noted in Chapter 9, excessive calls to the synchronized method can be painful for per‐
formance on certain hardware platforms as well.)

On the other hand, this assumes that the code will never be accessed by more than
one thread. That may be true today, but what about tomorrow? If that might change,
it is better to use the synchronized collection now and mitigate any performance
impact that results. This is a design choice, and whether future-proofing code to be
thread-safe is worth the time and effort will depend on the circumstances of the
application being developed.

Collection Sizing
Collection classes are designed to hold an arbitrary number of data elements and to
expand as necessary, as new items are added to the collection. Sizing the collection
appropriately can be important for their overall performance.

Although the data types provided by collection classes in Java are quite rich, at a basic
level those classes must hold their data using only Java primitive data types: numbers
(integers, doubles, and so on), object references, and arrays of those types. Hence,
an ArrayList contains an actual array:

private transient Object[] elementData;

As items are added and removed from the ArrayList, they are stored at the desired
location within the elementData array (possibly causing other items in the array to
shift). Similarly, a HashMap contains an array of an internal data type called
HashMap$Entry, which maps each key-value pair to a location in the array specified
by the hash code of the key.

Not all collections use an array to hold their elements; a LinkedList, for example,
holds each data element in an internally defined Node class. But collection classes that
do use an array to hold their elements are subject to special sizing considerations. You
can tell if a particular class falls into this category by looking at its constructors: if it
has a constructor that allows the initial size of the collection to be specified, it is inter‐
nally using an array to store the items.

For those collection classes, it is important to accurately specify the initial size. Take
the simple example of an ArrayList: the elementData array will (by default) start
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out with an initial size of 10. When the 11th item is inserted into an ArrayList, the
list must expand the elementData array. This means allocating a new array, copying
the original contents into that array, and then adding in the new item. The data struc‐
ture and algorithm used by, say, the HashMap class is much more complicated, but the
principle is the same: at some point, those internal structures must be resized.

The ArrayList class chooses to resize the array by adding roughly half of the existing
size, so the size of the elementData array will first be 10, then 15, then 22, then 33,
and so on. Whatever algorithm is used to resize the array (see sidebar), this results in
wasted memory (which in turn will affect the time the application spends performing
GC). Additionally, each time the array must be resized, an expensive array copy oper‐
ation must occur to transfer the contents from the old array to the new array.

To minimize those performance penalties, make sure to construct the collection with
as accurate an estimate of its ultimate size as possible.

Data Expansion in Noncollection Classes
Many noncollection classes also store lots of data in an internal array. For example,
the ByteArrayOutputStream class must store all data written to the stream into an
internal buffer; the StringBuilder and StringBuffer classes must similarly store
all their characters in an internal char array.

Most of these classes use the same algorithm to resize the internal array: it is doubled
each time it needs to be resized. This means that, on average, the internal array will be
25% larger than the data it currently contains.

The performance considerations here are similar: the amount of memory used is
larger than in the ArrayList example, and the number of times data must be copied
is fewer, but the principle is the same. Whenever you are given the option to size an
object when it is constructed and it is feasible to estimate how much data the object
will eventually hold, use the constructor that takes a size parameter.

Collections and Memory Efficiency
You’ve just seen one example where the memory efficiency of collections can be sub‐
optimal: there is often some wasted memory in the backing store used to hold the
elements in the collection.

This can be particularly problematic for sparsely used collections: those with one or
two elements. These sparsely used collections can waste a lot of memory if they are
used extensively. One way to deal with that is to size the collection when it is created.
Another way is to consider whether a collection is really needed in that case at all.

Java Collections API | 395



4 Implementations of quicksort will usually use insertion sort for small arrays anyway; in the case of Java, the
implementation of the Arrays.sort() method assumes that any array with fewer than 47 elements will be
sorted faster with insertion sort than with quicksort.

When most developers are asked how to quickly sort any array, they will offer up
quicksort as the answer. Good performance engineers will want to know the size of
the array: if the array is small enough, the fastest way to sort it will be to use insertion
sort.4 Size matters.

Collection Memory Sizes
Because underused collections are problematic in many applications, Java optimized
(starting in Java 8 and late versions of Java 7) the ArrayList and HashMap implemen‐
tations. By default (e.g., when no size parameter is used in the constructor), these
classes do not allocate any backing store for the data. The backing store is allocated
only when the first item is added to the collection.

This is an example of the lazy-initialization technique discussed in Chapter 7, and
when this change was introduced in Java 7, testing of several common applications
resulted in an improvement in performance due to reduced need for GC. These appli‐
cations had a lot of such collections that were never used; lazily allocating the backing
store for those collections was a performance win. Because the size of the backing
store already had to be checked on every access, there was no performance penalty
for checking to see if the backing store had already been allocated (though the time
required to create the initial backing store did move from when the object was created
to when data was first inserted into the object).

Similarly, HashMap is the fastest way to look up items based on a key value, but if
there is only one key, HashMap is overkill compared to using a simple object refer‐
ence. Even if there are a few keys, maintaining a few object references will consume
much less memory than a full HashMap object, with the resulting (positive) effect on
GC.
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Quick Summary

• Carefully consider how collections will be accessed and choose
the right type of synchronization for them. However, the pen‐
alty for uncontended access to a memory-protected collection
(particularly one using CAS-based protections) is minimal;
sometimes it is better to be safe than sorry.

• Sizing of collections can have a large impact on performance:
either slowing down the garbage collector if the collection is
too large or causing lots of copying and resizing if it is too
small.

Lambdas and Anonymous Classes
For many developers, the most exciting feature of Java 8 was the addition of lambdas.
There is no denying that lambdas have a hugely positive impact on the productivity of
Java developers, though of course that benefit is difficult to quantify. But we can
examine the performance of code using lambda constructs.

The most basic question about the performance of lambdas is how they compare to
their replacement, anonymous classes. There turns out to be little difference.

The usual example of how to use a lambda class begins with code that creates anony‐
mous inner classes (the usual example often uses a Stream rather than the iterator
shown here; information about the Stream class comes later in this section):

public void calc() {
    IntegerInterface a1 = new IntegerInterface() {
        public int getInt() {
            return 1;
        }
    };
    IntegerInterface a2 = new IntegerInterface() {
        public int getInt() {
            return 2;
        }
    };
    IntegerInterface a3 = new IntegerInterface() {
        public int getInt() {
            return 3;
        }
    };
    sum = a1.get() + a2.get() + a3.get();
}

That is compared to the following code using lambdas:
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public int calc() {
   IntegerInterface a3 = () -> { return 3; };
   IntegerInterface a2 = () -> { return 2; };
   IntegerInterface a1 = () -> { return 1; };
    return a3.getInt() + a2.getInt() + a1.getInt();
}

The body of the lambda or anonymous class is crucial: if that body performs any sig‐
nificant operations, the time spent in the operation is going to overwhelm any small
difference in the implementations of the lambda or the anonymous class. However,
even in this minimal case, the time to perform this operation is essentially the same,
as Table 12-11 shows, though as the number of expressions (i.e., classes/lambdas)
increases, small differences do emerge.

Table 12-11. Time to execute the calc() method using lambdas and anonymous classes

Implementation 1,024 expressions 3 expressions
Anonymous classes 781 ± 50 μs 10 ± 1 ns

Lambda 587 ± 27 μs 10 ± 2 ns

Static classes 734 ± 21 μs 10 ± 1 ns

One interesting thing about the typical usage in this example is that the code that uses
the anonymous class creates a new object every time the method is called. If the
method is called a lot (as it must be in a benchmark to measure its performance),
many instances of that anonymous class are quickly created and discarded. As you
saw in Chapter 5, that kind of usage often has little impact on performance. There is a
very small cost to allocate (and, more important, to initialize) the objects, and
because they are discarded quickly, they do not really slow down the garbage collec‐
tor. Yet when we’re measuring in the nanosecond range, those small times do add up.

The last row in the table uses preconstructed objects rather than anonymous classes:

private IntegerInterface a1 = new IntegerInterface() {
    public int getInt() {
        return 1;
    }
};
... Similarly for the other interfaces....
public void calc() {
       return a1.get() + a2.get() + a3.get();
   }
}

The typical usage of the lambda does not create a new object on each iteration of the
loop—making this an area where some corner cases can favor the performance of the
lambda usage. Even in this example, though, the differences are minimal.
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Lambdas and Anonymous Classloading
One corner case where this difference comes into play is in startup and classloading.
It is tempting to look at the code for a lambda and conclude that it is syntactic sugar
around creating an anonymous class. But that is not how it works—the code for a
lambda creates a static method that is called through a special helper class. The
anonymous class is an actual Java class; it has a separate class file and will be loaded
from the classloader.

As you saw previously in this chapter, classloading performance can be important,
particularly if there is a long classpath. So startup of programs with lots of anony‐
mous classes (as opposed to lots of lambdas) may show a somewhat wider difference
than you’ve seen here.

Quick Summary

• The choice between using a lambda or an anonymous class
should be dictated by ease of programming, since there is no
difference between their performance.

• Lambdas are not implemented as anonymous classes, so one
exception to that rule is in environments where classloading
behavior is important; lambdas will be slightly faster in that
case.

Stream and Filter Performance
One other key feature of Java 8, and one that is frequently used in conjunction with
lambdas, is the new Stream facility. One important performance feature of streams is
that they can automatically parallelize code. Information about parallel streams can
be found in Chapter 9; this section discusses general performance features of streams
and filters.

Lazy Traversal
The first performance benefit from streams is that they are implemented as lazy data
structures. Say we have a list of stock symbols, and the goal is to find the first symbol
in the list that does not contain the letter A. The code to do that through a stream
looks like this:

@Benchmark
public void calcMulti(Blackhole bh) {
    Stream<String> stream = al.stream();
    Optional<String> t = stream.filter(symbol -> symbol.charAt(0) != 'A').
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        filter(symbol -> symbol.charAt(1) != 'A').
        filter(symbol -> symbol.charAt(2) != 'A').
        filter(symbol -> symbol.charAt(3) != 'A').findFirst();
    String answer = t.get();
    bh.consume(answer);
}

There’s obviously a better way to implement this using a single filter, but we’ll save
that discussion for later in this section. For now, consider what it means for the
stream to be implemented lazily in this example. Each filter() method returns a
new stream, so there are, in effect, four logical streams here.

The filter() method, it turns out, doesn’t really do anything except set up a series of
pointers. The effect of that is when the findFirst() method is invoked on the
stream, no data processing has been performed—no comparisons of data to the char‐
acter A have yet been made.

Instead, findFirst() asks the previous stream (returned from filter 4) for an ele‐
ment. That stream has no elements yet, so it calls back to the stream produced by fil‐
ter 3, and so on. Filter 1 will grab the first element from the array list (from the
stream, technically) and test whether its first character is A. If so, it completes the call‐
back and returns that element downstream; otherwise, it continues to iterate through
the array until it finds a matching element (or exhausts the array). Filter 2 behaves
similarly—when the callback to filter 1 returns, it tests whether the second character
is not A. If so, it completes its callback and passes the symbol downstream; if not, it
makes another callback to filter 1 to get the next symbol.

All those callbacks may sound inefficient, but consider the alternative. An algorithm
to process the streams eagerly would look something like this:

private <T> ArrayList<T> calcArray(List<T> src, Predicate<T> p) {
    ArrayList<T> dst = new ArrayList<>();
    for (T s : src) {
        if (p.test(s))
            dst.add(s);
    }
    return dst;
}

@Benchmark
public void calcEager(Blackhole bh) {
    ArrayList<String> al1 = calcArray(al, 0, 'A');
    ArrayList<String> al2 = calcArray(al1, 1, 'A');
    ArrayList<String> al3 = calcArray(al2, 2, 'A');
    ArrayList<String> al4 = calcArray(al3, 3, 'A');
    String answer = al4.get(0);
    bh.consume(answer);
}
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There are two reasons this alternative is less efficient than the lazy implementation
that Java actually adopted. First, it requires the creation of a lot of temporary instan‐
ces of the ArrayList class. Second, in the lazy implementation, processing can stop as
soon as the findFirst() method gets an element. That means only a subset of the
items must actually pass through the filters. The eager implementation, on the other
hand, must process the entire list several times until the last list is created.

Hence, it should come as no surprise that the lazy implementation is far more per‐
formant than the alternative in this example. In this case, the test is processing a list
of 456,976 four-letter symbols, which are sorted in alphabetical order. The eager
implementation processes only 18,278 of those before it encounters the symbol BBBB,
at which point it can stop. It takes the iterator two orders of magnitude longer to find
that answer, as shown in Table 12-12.

Table 12-12. Time to process lazy versus eager filters

Implementation Seconds

Filter/findFirst 0.76 ± 0.047 ms

Iterator/findFirst 108.4 ± 4 ms

One reason, then, that filters can be so much faster than iterators is simply that they
can take advantage of algorithmic opportunities for optimizations: the lazy filter
implementation can end processing whenever it has done what it needs to do, pro‐
cessing less data.

What if the entire set of data must be processed? What is the basic performance of
filters versus iterators in that case? For this example, we’ll change the test slightly. The
previous example made a good teaching point about how multiple filters worked, but
ideally it was obvious that the code would perform better with a single filter:

@Benchmark
public void countFilter(Blackhole bh) {
    count = 0;
    Stream<String> stream = al.stream();
    stream.filter(
        symbol -> symbol.charAt(0) != 'A' &&
        symbol.charAt(1) != 'A' &&
        symbol.charAt(2) != 'A' &&
        symbol.charAt(3) != 'A').
          forEach(symbol -> { count++; });
    bh.consume(count);
}

This example also changes the final code to count the symbols, so that the entire list
will be processed. On the flip side, the eager implementation can now use an iterator
directly:

Stream and Filter Performance | 401



@Benchmark
public void countIterator(Blackhole bh) {
    int count = 0;
    for (String symbol : al) {
      if (symbol.charAt(0) != 'A' &&
          symbol.charAt(1) != 'A' &&
          symbol.charAt(2) != 'A' &&
          symbol.charAt(3) != 'A')
          count++;
      }
    bh.consume(count);
}

Even in this case, the lazy filter implementation is faster than the iterator (see
Table 12-13).

Table 12-13. Time to process single filter versus an iterator

Implementation Time required
Filters 7 ± 0.6 ms

Iterator 7.4 ± 3 ms

Quick Summary

• Filters offer a significant performance advantage by allowing
processing to end in the middle of iterating through the data.

• Even when the entire data set is processed, a single filter will
slightly outperform an iterator.

• Multiple filters have overhead; make sure to write good filters.

Object Serialization
Object serialization is a way to write out the binary state of an object such that it can
be re-created later. The JDK provides a default mechanism to serialize objects that
implement either the Serializable or Externalizable interface. The serialization
performance of practically every object imaginable can be improved from the default
serialization code, but this is definitely one of those times when it would be unwise to
perform that optimization prematurely. The special code to serialize and deserialize
the object will take a fair amount of time to write, and the code will be harder to
maintain than code that uses default serialization. Serialization code can also be a lit‐
tle tricky to write correctly, so attempting to optimize it increases the risk of produc‐
ing incorrect code.
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Transient Fields
In general, the way to improve object serialization cost is to serialize less data. This is
done by marking fields as transient, in which case they are not serialized by default.
Then the class can supply special writeObject() and readObject() methods to
handle that data. If the data isn’t needed, marking it as transient is sufficient.

Overriding Default Serialization
The writeObject() and readObject() methods allow complete control over how
data is serialized. With great control comes great responsibility: it’s easy to get this
wrong.

To get an idea of why serialization optimizations are tricky, take the case of a simple
Point object that represents a location:

public class Point implements Serializable {
    private int x;
    private int y;
    ...
}

That code could be written to perform special serialization like this:

public class Point implements Serializable {
    private transient int x;
    private transient int y;
    ....
    private void writeObject(ObjectOutputStream oos) throws IOException {
        oos.defaultWriteObject();
 oos.writeInt(x);
 oos.writeInt(y);
    }
    private void readObject(ObjectInputStream ois)
                         throws IOException, ClassNotFoundException {
        ois.defaultReadObject();
 x = ois.readInt();
 y = ois.readInt();
    }
}

In a simple example like this, the more complex code isn’t going to be any faster, but
it is still functionally correct. But beware of using this technique in the general case:

public class TripHistory implements Serializable {
    private transient Point[] airportsVisited;
    ....
    // THIS CODE IS NOT FUNCTIONALLY CORRECT
    private void writeObject(ObjectOutputStream oos) throws IOException {
        oos.defaultWriteObject();
        oos.writeInt(airportsVisited.length);
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        for (int i = 0; i < airportsVisited.length; i++) {
            oos.writeInt(airportsVisited[i].getX());
            oos.writeInt(airportsVisited[i].getY());
        }
    }

    private void readObject(ObjectInputStream ois)
                         throws IOException, ClassNotFoundException {
        ois.defaultReadObject();
        int length = ois.readInt();
        airportsVisited = new Point[length];
        for (int i = 0; i < length; i++) {
            airportsVisited[i] = new Point(ois.readInt(), ois.readInt();
        }
    }
}

Here, the airportsVisited field is an array of all the airports I’ve ever flown to or
from, in the order in which I visited them. So certain airports, like JFK, appear fre‐
quently in the array; SYD appears only once (so far).

Because it is expensive to write object references, this code would certainly perform
faster than the default serialization mechanism for that array: an array of 100,000
Point objects takes 15.5 ± 0.3 ms seconds to serialize on my machine and 10.9 ± 0.5
ms to deserialize. Using this “optimization,” it takes only 1 ± .600 ms seconds to seri‐
alize and 0.85 ± 0.2 μs to deserialize.

This code, however, is incorrect. Before serialization, a single object represents JFK,
and the reference to that object appears multiple times in the array. After the array is
serialized and then deserialized, multiple objects represent JFK. This changes the
behavior of the application.

When the array is deserialized in this example, those JFK references end up as sepa‐
rate, different objects. Now when one of those objects is changed, only that object is
changed, and it ends up with different data than the remaining objects that refer to
JFK.

This is an important principle to keep in mind, because optimizing serialization is
often about performing special handling for object references. Done correctly, that
can greatly increase the performance of serialization code. Done incorrectly, it can
introduce subtle bugs.

With that in mind, let’s explore the serialization of the StockPriceHistory class to
see how serialization optimizations can be made. The fields in that class include the
following:

public class StockPriceHistoryImpl implements StockPriceHistory {
    private String symbol;
    protected SortedMap<Date, StockPrice> prices = new TreeMap<>();
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    protected Date firstDate;
    protected Date lastDate;
    protected boolean needsCalc = true;
    protected BigDecimal highPrice;
    protected BigDecimal lowPrice;
    protected BigDecimal averagePrice;
    protected BigDecimal stdDev;
    private Map<BigDecimal, ArrayList<Date>> histogram;
    ....
    public StockPriceHistoryImpl(String s, Date firstDate, Date lastDate) {
        prices = ....
    }
}

When the history for a stock is constructed for a given symbol s, the object creates
and stores a sorted map of prices keyed by date of all the prices between start and
end. The code also saves the firstDate and the lastDate. The constructor doesn’t
fill in any other fields; they are initialized lazily. When a getter on any of those fields is
called, the getter checks if needsCalc is true. If it is, it calculates the appropriate val‐
ues for the remaining fields if necessary (all at once).

This calculation includes creating the histogram, which records how many days the
stock closed at a particular price. The histogram contains the same data (in terms of
BigDecimal and Date objects) as is found in the prices map; it is just a different
way of looking at the data.

Because all of the lazily initialized fields can be calculated from the prices array, they
can all be marked transient, and no special work is required to serialize or deserial‐
ize them. The example is easy in this case because the code was already doing lazy
initialization of the fields; it can repeat that lazy initialization when receiving the data.
Even if the code eagerly initialized these fields, it could still mark any calculated fields
transient and recalculate their values in the readObject() method of the class.

Note too that this preserves the object relationship between the prices and
histogram objects: when the histogram is recalculated, it will just insert existing
objects into the new map.

This kind of optimization is almost always a good thing, but in some cases it can hurt
performance. Table 12-14 shows the time it takes to serialize and deserialize this case
where the histogram object is transient versus nontransient, as well as the size of the
serialized data for each case.

Table 12-14. Time to serialize and deserialize objects with transient fields

Object Serialization time Deserialization time Size of data
No transient fields 19.1 ± 0.1 ms 16.8 ± 0.4 ms 785,395 bytes

Transient histogram 16.7 ± 0.2 ms 14.4 ± 0.2 ms 754,227 bytes
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So far, the example saves about 15% of the total time to serialize and deserialize the
object. But this test has not actually re-created the histogram object on the receiving
side. That object will be created when the receiving code first accesses it.

Sometimes the histogram object will not be needed; the receiver may be interested in
only the prices on particular days, and not the histogram. That is where the more
unusual case comes in: if the histogram will always be needed and if it takes more
than 2.4 milliseconds to calculate the histogram, then the case with the lazily initial‐
ized fields will actually have a net performance decrease.

In this case, calculating the histogram does not fall into that category—it is a very fast
operation. In general, it may be hard to find a case where recalculating a piece of data
is more expensive than serializing and deserializing that data. But it is something to
consider as code is optimized.

This test is not actually transmitting data; the data is written to and read from preal‐
located byte arrays so that it measures only the time for serialization and deserializa‐
tion. Still, notice that making the histogram field transient has also saved about 13%
in the size of the data. That will be quite important if the data is to be transmitted via
a network.

Compressing Serialized Data
Serialization performance of code can be improved in a third way: compress the seri‐
alized data so it is faster to transmit. In the stock history class, that is done by com‐
pressing the prices map during serialization:

public class StockPriceHistoryCompress
 implements StockPriceHistory, Serializable {

    private byte[] zippedPrices;
    private transient SortedMap<Date, StockPrice> prices;

    private void writeObject(ObjectOutputStream out)
      throws IOException {
        if (zippedPrices == null) {
     makeZippedPrices();
 }
 out.defaultWriteObject();
    }

    private void readObject(ObjectInputStream in)
      throws IOException, ClassNotFoundException {
        in.defaultReadObject();
        unzipPrices();
    }

    protected void makeZippedPrices() throws IOException {
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
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        GZIPOutputStream zip = new GZIPOutputStream(baos);
        ObjectOutputStream oos = new ObjectOutputStream(
  new BufferedOutputStream(zip));
        oos.writeObject(prices);
        oos.close();
        zip.close();
        zippedPrices = baos.toByteArray();
    }

    protected void unzipPrices()
      throws IOException, ClassNotFoundException {
        ByteArrayInputStream bais = new ByteArrayInputStream(zippedPrices);
        GZIPInputStream zip = new GZIPInputStream(bais);
        ObjectInputStream ois = new ObjectInputStream(
  new BufferedInputStream(zip));
        prices = (SortedMap<Date, StockPrice>) ois.readObject();
        ois.close();
        zip.close();
    }
}

The zipPrices() method serializes the map of prices to a byte array and saves the
resulting bytes, which are then serialized normally in the writeObject() method
when it calls the defaultWriteObject() method. (In fact, as long as the serialization
is being customized, it will be ever-so-slightly better to make the zippedPrices array
transient and write out its length and bytes directly. But this example code is a little
clearer, and simpler is better.) On deserialization, the reverse operation is performed.

If the goal is to serialize to a byte stream (as in the original sample code), this is a
losing proposition. That isn’t surprising; the time required to compress the bytes is
much longer than the time to write them to a local byte array. Those times are shown
in Table 12-15.

Table 12-15. Time to serialize and deserialize 10,000 objects with compression

Use case Serialization time Deserialization time Size of data
No compression 16.7 ± 0.2 ms 14.4 ± 0.2 ms 754,227 bytes

Compression/decompression 43.6 ± 0.2 ms 18.7 ± 0.5 ms 231,844 bytes

Compression only 43.6 ± 0.2 ms .720 ± 0.3 ms 231,844 bytes

The most interesting point about this table is the last row. In that test, the data is
compressed before sending, but the unzipPrices() method isn’t called in the
readObject() method. Instead, it is called when needed, which will be the first time
the receiver calls the getPrice() method. Absent that call, there are only a few
BigDecimal objects to deserialize, which is quite fast.
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In this example, the receiver might never need the actual prices: the receiver may
need only to call the getHighPrice() and similar methods to retrieve aggregate
information about the data. As long as those methods are all that is needed, a lot of
time can be saved by lazily decompressing the prices information. This lazy decom‐
pression is also useful if the object in question is being persisted (e.g., if it is HTTP
session state that is being stored as a backup copy in case the application server fails).
Lazily decompressing the data saves both CPU time (from skipping the decompres‐
sion) and memory (since the compressed data takes up less space).

Hence—particularly if the goal is to save memory rather than time—compressing
data for serialization and then lazily decompressing it can be useful.

If the point of the serialization is to transfer data over the network, we have the usual
trade-offs based on the network speed. On a fast network, the time for compression
can easily be longer than the time saved while transmitting less data; on slower net‐
works, the opposite might be true. In this case, we are transferring roughly 500,000
fewer bytes, so we can calculate the penalty or savings based on the average time to
transfer that much data. In this example, we will spend about 40 milliseconds to com‐
press the data, which will mean we have to transmit about 500,000 fewer bytes. A net‐
work with 100 Mbit/second would break even in that case, meaning that slow public
WiFi would benefit with the compression enabled, but faster networks would not.

Keeping Track of Duplicate Objects
“Object Serialization” on page 402 began with an example of how not to serialize data
that contains object references, lest the object references be compromised when the
data is deserialized. However, one of the more powerful optimizations possible in the
writeObject() method is to not write out duplicate object references. In the case of
the StockPriceHistoryImpl class, that means not writing out the duplicate refer‐
ences of the prices map. Because the example uses a standard JDK class for that
map, we don’t have to worry about that: the JDK classes are already written to opti‐
mally serialize their data. Still, it is instructive to look at how those classes perform
their optimizations in order to understand what is possible.

In the StockPriceHistoryImpl class, the key structure is a TreeMap. A simplified
version of that map appears in Figure 12-2. With default serialization, the JVM would
write out the primitive data fields for node A; then it would recursively call the
writeObject() method for node B (and then for node C). The code for node B
would write out its primitive data fields and then recursively write out the data for its
parent field.
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Figure 12-2. Simple TreeMap structure

But wait a minute—that parent field is node A, which has already been written. The
object serialization code is smart enough to realize that: it doesn’t rewrite the data for
node A. Instead, it simply adds an object reference to the previously written data.

Keeping track of that set of previously written objects, as well as all that recursion,
adds a small performance hit to object serialization. However, as demonstrated in the
example with an array of Point objects, it can’t be avoided: code must keep track of
the previously written objects and reconstitute the correct object references. How‐
ever, it is possible to perform smart optimizations by suppressing object references
that can be easily re-created when the object is deserialized.

Different collection classes handle this differently. The TreeMap class, for example,
simply iterates through the tree and writes only the keys and values; serialization dis‐
cards all information about the relationship between the keys (i.e., their sort order).
When the data has been deserialized, the readObject() method then re-sorts the
data to produce a tree. Although sorting the objects again sounds like it would be
expensive, it is not: that process is about 20% faster on a set of 10,000 stock objects
than using the default object serialization, which chases all the object references.

The TreeMap class also benefits from this optimization because it can write out fewer
objects. A node (or in JDK language, an Entry) within a map contains two objects:
the key and the value. Because the map cannot contain two identical nodes, the serial‐
ization code doesn’t need to worry about preserving object references to nodes. In
this case, it can skip writing the node object itself and simply write the key and value
objects directly. So the writeObject() method ends up looking something like this
(syntax adapted for ease of reading):
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private void writeObject(ObjectOutputStream oos) throws IOException {
    ....
    for (Map.Entry<K,V> e : entrySet()) {
        oos.writeObject(e.getKey());
        oos.writeObject(e.getValue());
    }
    ....
}

This looks very much like the code that didn’t work for the Point example. The dif‐
ference in this case is that the code still writes out object when those objects can be
the same. A TreeMap cannot have two nodes that are the same, so there is no need to
write out node references. The TreeMap can have two values that are the same, so the
values must be written out as object references.

This brings us full circle: as I stated at the beginning of this section, getting object
serialization optimizations correct can be tricky. But when object serialization is a
significant bottleneck in an application, optimizing it correctly can offer important
benefits.

What About Externalizable?
Another approach to optimizing object serialization is to implement the
Externalizable interface rather than the Serializable interface.

The practical difference between these two interfaces is in the way they handle non‐
transient fields. The Serializable interface writes out nontransient fields when the
writeObject() method calls the defaultWriteObject() method. The
Externalizable interface has no such method. An Externalizable class must
explicitly write out all fields, transient or not, that it is interested in transmitting.

Even if all the fields in an object are transient, it is better to implement the
Serializable interface and call the defaultWriteObject() method. That path
leads to code that is much easier to maintain as fields are added to (and deleted from)
the code. And there is no inherent benefit to the Externalizable interface from a
performance point of view: in the end, what matters is the amount of data that is
written.
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Quick Summary

• Serialization of data can be a big performance bottleneck.
• Marking instance variables transient will make serialization

faster and reduce the amount of data to be transmitted. Both
are usually big performance wins, unless re-creating the data
on the receiver takes a long time.

• Other optimizations via the writeObject() and readObject()
methods can significantly speed up serialization. Approach
them with caution, since it is easy to make a mistake and
introduce a subtle bug.

• Compressing serialized data is often beneficial, even if the data
will not travel across a slow network.

Summary
This look into key areas of the Java SE JDK concludes our examination of Java perfor‐
mance. One interesting theme of most of the topics of this chapter is that they show
the evolution of the performance of the JDK itself. As Java developed and matured as
a platform, its developers discovered that repeatedly generated exceptions didn’t need
to spend time providing thread stacks; that using a thread-local variable to avoid syn‐
chronization of the random number generator was a good thing; that the default size
of a ConcurrentHashMap was too large; and so on.

This continual process of successive improvement is what Java performance tuning is
all about. From tuning the compiler and garbage collector, to using memory effec‐
tively, to understanding key performance differences in the APIs, and more, the tools
and processes in this book will allow you to provide similar ongoing improvements in
your own code.
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APPENDIX

Summary of Tuning Flags

This appendix covers commonly used flags and gives pointers on when to use them.
Commonly used here includes flags that were commonly used in previous versions of
Java and are no longer recommended; documentation and tips on older versions of
Java may recommend those flags, so they are mentioned here.

Table A-1. Flags to tune the just-in-time compiler

Flag What it does When to use it See also

-server This flag no longer has
any effect; it is silently
ignored.

N/A “Tiered
Compilation” on
page 93

-client This flag no longer has
any effect; it is silently
ignored.

N/A “Tiered
Compilation” on
page 93

-XX:+TieredCompilation Uses tiered
compilation.

Always, unless you are
severely constrained for
memory.

“Tiered
Compilation” on
page 93 and
“Tiered
Compilation Trade-
offs” on page 113

-XX:ReservedCodeCacheSize=<MB> Reserves space for code
compiled by the JIT
compiler.

When running a large
program and you see a
warning that you are out of
code cache.

“Tuning the Code
Cache” on page 94

-XX:InitialCodeCacheSize=<MB> Allocates the initial
space for code
compiled by the JIT
compiler.

If you need to preallocate the
memory for the code cache
(which is uncommon).

“Tuning the Code
Cache” on page 94
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Flag What it does When to use it See also

-XX:CompileThreshold=<N> Sets the number of
times a method or loop
is executed before
compiling it.

This flag is no longer
recommended.

“Compilation
Thresholds” on
page 105

-XX:+PrintCompilation Provides a log of
operations by the JIT
compiler.

When you suspect an
important method isn’t
being compiled or are
generally curious as to what
the compiler is doing.

“Inspecting the
Compilation
Process” on page
96

-XX:CICompilerCount=<N> Sets the number of
threads used by the JIT
compiler.

When too many compiler
threads are being started.
This primarily affects large
machines running many
JVMs.

“Compilation
Threads” on page
107

-XX:+DoEscapeAnalysis Enables aggressive
optimizations by the
compiler.

On rare occasions, this can
trigger crashes, so it is
sometimes recommended to
be disabled. Don’t disable it
unless you know it is causing
an issue.

“Escape Analysis”
on page 110

-XX:UseAVX=<N> Sets the instruction set
for use on Intel
processors.

You should set this to 2 in
early versions of Java 11; in
later versions, it defaults to
2.

“CPU-Specific
Code” on page 112

-XX:AOTLibrary=<path> Uses the specified
library for ahead-of-
time compilation.

In limited cases, may speed
up initial program execution.
Experimental in Java 11 only.

“Ahead-of-Time
Compilation” on
page 116

Table A-2. Flags to choose the GC algorithm

Flag What it does When to use it See also

-XX:+UseSerialGC Uses a simple, single-threaded
GC algorithm.

For single-core virtual
machines and containers, or
for small (100 MB) heaps.

“The serial garbage
collector” on page
126

-XX:+UseParallelGC Uses multiple threads to
collect both the young and old
generations while application
threads are stopped.

Use to tune for throughput
rather than responsiveness;
default in Java 8.

“The throughput
collector” on page
127

-XX:+UseG1GC Uses multiple threads to
collect the young generation
while application threads are
stopped, and background
thread(s) to remove garbage
from the old generation with
minimal pauses.

When you have available CPU
for the background thread(s)
and you do not want long GC
pauses. Default in Java 11.

“The G1 GC collector”
on page 127
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Flag What it does When to use it See also

-XX:+UseConcMarkSweepGC Uses background thread(s) to
remove garbage from the old
generation with minimal
pauses.

No longer recommended; use
G1 GC instead.

“The CMS collector”
on page 128

-XX:+UseParNewGC With CMS, uses multiple
threads to collect the young
generation while application
threads are stopped.

No longer recommended; use
G1 GC instead.

“The CMS collector”
on page 128

-XX:+UseZGC Uses the experimental Z
Garbage Collector (Java 12
only).

To have shorter pauses for
young GC, which is collected
concurrently.

“Concurrent
Compaction: ZGC and
Shenandoah” on page
197

-XX:+UseShenandoahGC Uses the experimental
Shenandoah Garbage Collector
(Java 12 OpenJDK only).

To have shorter pauses for
young GC, which is collected
concurrently.

“Concurrent
Compaction: ZGC and
Shenandoah” on page
197

-XX:+UseEpsilonGC Uses the experimental Epsilon
Garbage Collector (Java 12
only).

If your app never needs to
perform GC.

“No Collection:
Epsilon GC” on page
200

Table A-3. Flags common to all GC algorithms

Flag What it does When to use it See also

-Xms Sets the initial size of
the heap.

When the default initial size
is too small for your
application.

“Sizing the Heap” on
page 138

-Xmx Sets the maximum
size of the heap.

When the default maximum
size is too small (or possibly
too large) for your
application.

“Sizing the Heap” on
page 138

-XX:NewRatio Sets the ratio of the
young generation to
the old generation.

Increase this to reduce the
proportion of the heap given
to the young generation;
lower it to increase the
proportion of the heap given
to the young generation.
This is only an initial setting;
the proportion will change
unless adaptive sizing is
turned off. As the young-
generation size is reduced,
you will see more frequent
young GCs and less frequent
full GCs (and vice versa).

“Sizing the
Generations” on page
141

-XX:NewSize Sets the initial size of
the young
generation.

When you have finely tuned
your application
requirements.

“Sizing the
Generations” on page
141
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Flag What it does When to use it See also

-XX:MaxNewSize Sets the maximum
size of the young
generation.

When you have finely tuned
your application
requirements.

“Sizing the
Generations” on page
141

-Xmn Sets the initial and
maximum size of the
young generation.

When you have finely tuned
your application
requirements.

“Sizing the
Generations” on page
141

-XX:MetaspaceSize=N Sets the initial size of
the metaspace.

For applications that use a
lot of classes, increase this
from the default.

“Sizing Metaspace” on
page 144

-XX:MaxMetaspaceSize=N Sets the maximum
size of the
metaspace.

Lower this number to limit
the amount of native space
used by class metadata.

“Sizing Metaspace” on
page 144

-XX:ParallelGCThreads=N Sets the number of
threads used by the
garbage collectors for
foreground activities
(e.g., collecting the
young generation,
and for throughput
GC, collecting the old
generation).

Lower this value on systems
running many JVMs, or in
Docker containers on Java 8
before update 192. Consider
increasing it for JVMs with
very large heaps on very
large systems.

“Controlling
Parallelism” on page
146

-XX:+UseAdaptiveSizePolicy When set, the JVM
will resize various
heap sizes to attempt
to meet GC goals.

Turn this off if the heap sizes
have been finely tuned.

“Adaptive sizing” on
page 143

-XX:+PrintAdaptiveSizePolicy Adds information
about how
generations are
resized to the GC log.

Use this flag to gain an
understanding of how the
JVM is operating. When
using G1, check this output
to see if full GCs are
triggered by humongous
object allocation.

“Adaptive sizing” on
page 143

-XX:+PrintTenuringDistribution Adds tenuring
information to the GC
logs.

Use the tenuring
information to determine if
and how the tenuring
options should be adjusted.

“Tenuring and
Survivor Spaces” on
page 182

-XX:InitialSurvivorRatio=N Sets the amount of
the young generation
set aside for survivor
spaces.

Increase this if short-lived
objects are being promoted
into the old generation too
frequently.

“Tenuring and
Survivor Spaces” on
page 182

-XX:MinSurvivorRatio=N Sets the adaptive
amount of the young
generation set aside
for survivor spaces.

Decreasing this value
reduces the maximum size
of the survivor spaces (and
vice versa).

“Tenuring and
Survivor Spaces” on
page 182

-XX:TargetSurvivorRatio=N The amount of free
space the JVM
attempts to keep in
the survivor spaces.

Increasing this value reduces
the size of the survivor
spaces (and vice versa).

“Tenuring and
Survivor Spaces” on
page 182
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Flag What it does When to use it See also

-XX:InitialTenuringThreshold=N The initial number of
GC cycles the JVM
attempts to keep an
object in the survivor
spaces.

Increase this number to
keep objects in the survivor
spaces longer, though be
aware that the JVM will
tune it.

“Tenuring and
Survivor Spaces” on
page 182

-XX:MaxTenuringThreshold=N The maximum
number of GC cycles
the JVM attempts to
keep an object in the
survivor spaces.

Increase this number to
keep objects in the survivor
spaces longer; the JVM will
tune the actual threshold
between this value and the
initial threshold.

“Tenuring and
Survivor Spaces” on
page 182

-XX:+DisableExplicitGC> Prevents calls to Sys
tem.gc() from
having any effect.

Use to prevent bad
applications from explicitly
performing GC.

“Causing and
Disabling Explicit
Garbage Collection”
on page 129

-XX:-AggressiveHeap Enables a set of
tuning flags that are
“optimized” for
machines with a
large amount of
memory running a
single JVM with a
large heap.

It is better not to use this
flag, and instead use specific
flags as necessary.

“AggressiveHeap” on
page 193

Table A-4. Flags controlling GC logging

Flag What it does When to use it See also

-Xlog:gc* Controls GC logging in
Java 11.

GC logging should always be
enabled, even in production. Unlike
the following set of flags for Java
8, this flag controls all options to
Java 11 GC logging; see the text for
a mapping of options for this to
Java 8 flags.

“GC Tools” on
page 147

-verbose:gc Enables basic GC logging
in Java 8.

GC logging should always be
enabled, but other, more detailed
logs are generally better.

“GC Tools” on
page 147

-Xloggc:<path> In Java 8, directs the GC
log to a special file rather
than standard output.

Always, the better to preserve the
information in the log.

“GC Tools” on
page 147

-XX:+PrintGC Enables basic GC logging
in Java 8.

GC logging should always be
enabled, but other, more detailed
logs are generally better.

“GC Tools” on
page 147

-XX:+PrintGCDetails Enables detailed GC
logging in Java 8.

Always, even in production (the
logging overhead is minimal).

“GC Tools” on
page 147

-XX:+PrintGCTimeStamps Prints a relative
timestamp for each entry
in the GC log in Java 8.

Always, unless datestamps are
enabled.

“GC Tools” on
page 147
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Flag What it does When to use it See also

-XX:+PrintGCDateStamps Prints a time-of-day stamp
for each entry in the GC
log in Java 8.

Has slightly more overhead than
timestamps, but may be easier to
process.

“GC Tools” on
page 147

-XX:+PrintReferenceGC Prints information about
soft and weak reference
processing during GC in
Java 8.

If the program uses a lot of those
references, add this flag to
determine their effect on the GC
overhead.

“Soft, Weak, and
Other References”
on page 231

-XX:+UseGCLogFileRotation Enables rotations of the GC
log to conserve file space
in Java 8.

In production systems that run for
weeks at a time when the GC logs
can be expected to consume a lot
of space.

“GC Tools” on
page 147

-XX:NumberOfGCLogFiles=N When logfile rotation is
enabled in Java 8,
indicates the number of
logfiles to retain.

In production systems that run for
weeks at a time when the GC logs
can be expected to consume a lot
of space.

“GC Tools” on
page 147

-XX:GCLogFileSize=N When logfile rotation is
enabled in Java 8,
indicates the size of each
logfile before rotating it.

In production systems that run for
weeks at a time when the GC logs
can be expected to consume a lot
of space.

“GC Tools” on
page 147

Table A-5. Flags for the throughput collector

Flag What it does When to use it See also

-XX:MaxGCPauseMillis=N Hints to the throughput collector
how long pauses should be; the
heap is dynamically sized to
attempt to meet that goal.

As a first step in tuning the
throughput collector if the
default sizing it calculates
doesn’t meet application
goals.

“Adaptive and
Static Heap Size
Tuning” on page
156

-XX:GCTimeRatio=N Hints to the throughput collector
how much time you are willing to
spend in GC; the heap is
dynamically sized to attempt to
meet that goal.

As a first step in tuning the
throughput collector if the
default sizing it calculates
doesn’t meet application
goals.

“Adaptive and
Static Heap Size
Tuning” on page
156

Table A-6. Flags for the G1 collector

Flag What it does When to use it See also

-XX:MaxGCPauseMillis=N Hints to the G1
collector how long
pauses should be; the
G1 algorithm is
adjusted to attempt
to meet that goal.

As a first step in tuning
the G1 collector; increase
this value to attempt to
prevent full GCs.

“Tuning G1 GC”
on page 170

-XX:ConcGCThreads=N Sets the number of
threads to use for G1
background scanning.

When lots of CPU is
available and G1 is
experiencing concurrent
mode failures.

“Tuning G1 GC”
on page 170
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Flag What it does When to use it See also

-XX:InitiatingHeapOccupancyPercent=N Sets the point at
which G1 background
scanning begins.

Lower this value if G1 is
experiencing concurrent
mode failures.

“Tuning G1 GC”
on page 170

-XX:G1MixedGCCountTarget=N Sets the number of
mixed GCs over which
G1 attempts to free
regions previously
identified as
containing mostly
garbage.

Lower this value if G1 is
experiencing concurrent
mode failures; increase it
if mixed GC cycles take
too long.

“Tuning G1 GC”
on page 170

-XX:G1MixedGCCountTarget=N Sets the number of
mixed GCs over which
G1 attempts to free
regions previously
identified as
containing mostly
garbage.

Lower this value if G1 is
experiencing concurrent
mode failures; increase it
if mixed GC cycles take
too long.

“Tuning G1 GC”
on page 170

-XX:G1HeapRegionSize=N Sets the size of a G1
region.

Increase this value for
very large heaps, or
when the application
allocates very, very large
objects.

“G1 GC region
sizes” on page
191

-XX:+UseStringDeduplication Allows G1 to
eliminate duplicate
strings.

Use for programs that
have a lot of duplicate
strings and when
interning is impractical.

“Duplicate
Strings and
String
Interning” on
page 364

Table A-7. Flags for the CMS collector

Flag What it does When to use it See also

-XX:CMSInitiating
OccupancyFraction=N

Determines when CMS should
begin background scanning of the
old generation.

When CMS experiences concurrent
mode failures, reduces this value.

“Understanding
the CMS
Collector” on
page 174

-XX:+UseCMSInitiat
ingOccupancyOnly

Causes CMS to use only CMSIni
tiatingOccupancyFrac
tion to determine when to start
CMS background scanning.

Whenever CMSInitiatingOc
cupancyFraction is
specified.

“Understanding
the CMS
Collector” on
page 174

-XX:ConcGCThreads=N Sets the number of threads to use
for CMS background scanning.

When lots of CPU is available and
CMS is experiencing concurrent
mode failures.

“Understanding
the CMS
Collector” on
page 174

-XX:+CMSIncremental
Mode

Runs CMS in incremental mode. No longer supported. N/A
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Table A-8. Flags for memory management

Flag What it does When to use it See also

-XX:+HeapDumpOnOutOfMemoryError Generates a heap dump
when the JVM throws an
out-of-memory error.

Enable this flag if the
application throws out-of-
memory errors due to the
heap space or permgen, so
the heap can be analyzed for
memory leaks.

“Out-of-
Memory Errors”
on page 210

-XX:HeapDumpPath=<path> Specifies the filename
where automatic heap
dumps should be
written.

To specify a path other than
java_pid<pid>.hprof for
heap dumps generated on
out-of-memory errors or GC
events (when those options
have been enabled).

“Out-of-
Memory Errors”
on page 210

-XX:GCTimeLimit=<N> Specifies the amount of
time the JVM can spend
performing GC without
throwing an OutOfMe
moryException.

Lower this value to have the
JVM throw an OOME sooner
when the program is
executing too many GC cycles.

“Out-of-
Memory Errors”
on page 210

-XX:HeapFreeLimit=<N> Specifies the amount of
memory the JVM must
free to prevent throwing
an OutOfMemoryEx
ception.

Lower this value to have the
JVM throw an OOME sooner
when the program is
executing too many GC cycles.

“Out-of-
Memory Errors”
on page 210

-XX:SoftRefLRUPolicyMSPerMB=N Controls how long soft
references survive after
being used.

Decrease this value to clean
up soft references more
quickly, particularly in low-
memory conditions.

“Soft, Weak,
and Other
References” on
page 231

-XX:MaxDirectMemorySize=N Controls how much
native memory can be
allocated via the allo
cateDirect()
method of the Byte
Buffer class.

Consider setting this if you
want to limit the amount of
direct memory a program can
allocate. It is no longer
necessary to set this flag to
allocate more than 64 MB of
direct memory.

“Native NIO
buffers” on
page 258

-XX:+UseLargePages Directs the JVM to
allocate pages from the
operating system’s large
page system, if
applicable.

If supported by the OS, this
option will generally improve
performance.

“Large Pages”
on page 261

-XX:+StringTableSize=N Sets the size of the hash
table the JVM uses to
hold interned strings.

Increase this value if the
application performs a
significant amount of string
interning.

“Duplicate
Strings and
String
Interning” on
page 364

-XX:+UseCompressedOops Emulates 35-bit pointers
for object references.

This is the default for heaps
that are less than 32 GB in
size; there is never an
advantage to disabling it.

“Compressed
Oops” on page
246
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Flag What it does When to use it See also

-XX:+PrintTLAB Prints summary
information about TLABs
in the GC log.

When using a JVM without
support for JFR, use this to
ensure that TLAB allocation is
working efficiently.

“Thread-local
allocation
buffers” on
page 187

-XX:TLABSize=N Sets the size of the
TLABs.

When the application is
performing a lot of allocation
outside TLABs, use this value
to increase the TLAB size.

“Thread-local
allocation
buffers” on
page 187

-XX:-ResizeTLAB Disables resizing of
TLABs.

Whenever TLABSize is
specified, make sure to
disable this flag.

“Thread-local
allocation
buffers” on
page 187

Table A-9. Flags for native memory tracking

Flag What it does When to use it See also

-XX:NativeMemoryTracking=X Enable Native Memory
Tracking.

When you need to see what
memory the JVM is using outside
the heap.

“Native Memory
Tracking” on page
252

-XX:+PrintNMTStatistics Prints Native Memory
Tracking statistics when
the program
terminates.

When you need to see what
memory the JVM is using outside
the heap.

“Native Memory
Tracking” on page
252

Table A-10. Flags for thread handling

Flag What it does When to use it See also

-Xss<N> Sets the size of the native
stack for threads.

Decrease this size to make more
memory available for other parts of
the JVM.

“Tuning Thread Stack
Sizes” on page 299

-XX:-BiasedLocking Disables the biased locking
algorithm of the JVM.

Can help performance of thread pool–
based applications.

“Biased Locking” on
page 300

Table A-11. Miscellaneous JVM flags

Flag What it does When to use it See also

-XX:+CompactStrings Uses 8-bit string
representations when
possible (Java 11 only).

Default; always use. “Compact Strings”
on page 363

-XX:-StackTraceInThrowable Prevents the stack trace
from being gathered
whenever an exception is
thrown.

On systems with very deep
stacks where exceptions are
frequently thrown (and where
fixing the code to throw fewer
exceptions is not a possibility).

“Exceptions” on
page 386

-Xshare Controls class data sharing. Use this flag to make new CDS
archives for application code.

“Class Data
Sharing” on page
377

Summary of Tuning Flags | 421



Table A-12. Flags for Java Flight Recorder

Flag What it does When to use it See also

-XX:+FlightRecorder Enables Java Flight
Recorder.

Enabling Flight Recorder is always
recommended, as it has little
overhead unless an actual recording
is happening (in which case, the
overhead will vary depending on
the features used, but still be
relatively small).

“Java Flight
Recorder” on
page 74

-XX:+FlightRecorderOptions Sets options for a
default recording via
the command line
(Java 8 only).

Control how a default recording can
be made for the JVM.

“Java Flight
Recorder” on
page 74

-XX:+StartFlightRecorder Starts the JVM with
the given Flight
Recorder options.

Control how a default recording can
be made for the JVM.

“Java Flight
Recorder” on
page 74

-XX:+UnlockCommercialFeatures Allows the JVM to
use commercial
(non-open-source)
features.

If you have the appropriate license,
setting this flag is required to
enable Java Flight Recorder in Java
8.

“Java Flight
Recorder” on
page 74
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-XX:-BiasedLocking, 421
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-XX:AOTLibrary=<path>, 414
-XX:CICompilerCount=<N>, 107, 414
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180-182, 419
-XX:CompileThreshold=<N>, 106, 414
-XX:ConcGCThreads=N, 172, 182, 418
-XX:ErgoHeapSizeLimit=N, 196
-XX:G1HeapRegionSize=N, 419
-XX:G1MixedGCCountTarget=N, 173, 419
-XX:GCLogFileSize=N, 148, 418
-XX:GCTimeLimit=<N>, 214, 420
-XX:GCTimeRatio=N, 158-160, 173, 418
-XX:HeapDumpAfterFullGC, 212
-XX:HeapDumpBeforeFullGC, 212
-XX:HeapDumpPath=<path>, 212, 420
-XX:HeapFreeLimit=<N>, 214, 420
-XX:InitialCodeCacheSize=<MB>, 95, 413
-XX:InitialRAMFraction=N, 196
-XX:InitialSurvivorRatio=N, 183, 416
-XX:InitialTenuringThreshold=N, 184, 417
-XX:InitiatingHeapOccupancyPercent=N, 172,

419
-XX:MaxDirectMemorySize=N, 259, 420
-XX:MaxFreqInlineSize=N, 110
-XX:MaxGCPauseMillis=N, 158-160, 171, 173,

180, 418
-XX:MaxInlineSize=N, 110
-XX:MaxMetaspaceSize=N, 416
-XX:MaxNewSize, 142, 416
-XX:MaxRAM=N, 196
-XX:MaxRAMFraction=N, 196
-XX:MaxTenuringThreshold=N, 184, 417
-XX:MetaspaceSize=N, 416
-XX:MinRAMFraction=N, 196
-XX:MinSurvivorRatio=N, 183, 416
-XX:MinTLABSize=N, 191
-XX:NativeMemoryTracking=X, 252, 254, 421
-XX:NewRatio, 142, 415
-XX:NewSize, 142, 415

-XX:NewSize=N, 196
-XX:NumberOfGCLogFiles=N, 148, 418
-XX:OldSize=N, 196
-XX:ParallelGCThreads=N, 146, 172, 416
-XX:ReservedCodeCacheSize=<MB>, 95, 413
-XX:SharedArchiveFile, 379
-XX:SoftRefLRUPolicyMSPerMB=N, 236, 420
-XX:StringDeduplicationAgeThreshold=N, 367
-XX:TargetSurvivorRatio=N, 184, 416
-XX:Tier3InvocationThreshold=N, 106
-XX:Tier4InvocationThreshold=N, 106
-XX:TLABSize=N, 190, 421
-XX:TLABWasteIncrement=N, 191
-XX:TLABWasteTargetPercent=N, 191
-XX:UseAVX=<N>, 112, 414
@Contended annotation, 298

A
adaptive sizing, 143-144
advanced compiler flags

compilation threads, 107-109
compilation thresholds, 105-107
CPU-specific code, 112
escape analysis, 110
inlining, 109

Advanced Vector Extensions (AVX2), 112
ahead-of-time (AOT) compilation, 116-118
allocation

humongous objects, 191
large objects, 186-193
sizing TLABs, 190
thread-local allocation buffers, 187-190

α-value, 31
Amdahl's law, 287
anonymous classes, 397-399
anonymous classloading, 399
AOT (ahead-of-time) compilation, 116-118
async profilers, 66
async REST servers, 311-314
asynchronous database calls, 321
asynchronous HTTP, 315-322

clients, 317-320
clients and thread usage, 320

asynchronous outbound calls, 314-322
atomic classes, 293
automatic parallelization, 285-286
AVX2 (Advanced Vector Extensions), 112
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baseline, 30
benchmarks

common code examples, 44-48
examples, 36-48
macrobenchmarks, 20-21
mesobenchmarks, 22
microbenchmarks, 15-20

biased locking, 300
blocking methods, 70-72
Boolean class, 224
boolean flag syntax, 4
bounded queues, 276
branching back (compiler), 105
buffered I/O, 374-377

C
cache line (false) sharing, 294-298
canonical objects, 223-225

creating, 224
strings, 367

CAS (Compare and Swap), 287, 292-294
class data sharing (CDS), 377-380
class metadata, 144, 377-380
classes

class information, 63
contended atomic classes, 293
synchronized collection classes, 393

classloader memory leaks, 145
classloading, 377-380

class data sharing, 377-380
lambdas and anonymous classloading, 399

Cleaner class, 244-246
cloud vendors, VM oversubscription, 7
CMS garbage collector, 128, 174-182

adaptive sizing and, 180
flags for, 419
tuning to solve concurrent mode failures,

179-182
code cache tuning, 94-96
code compilation (see just-in-time (JIT) com‐

piler)
collection (term), 154
collection classes

with indefinite references, 238
sizing, 394-395
synchronized, 392

committed memory, 250
compact strings, 363

Compare and Swap (CAS), 287, 292-294
compilation thresholds, 105-107
compiled languages, 89
compiler flags, 93
compressed oops, 246
compression, serialized data, 406-408
concatenation, 371-374
concurrent garbage collector, 125, 161

(see also CMS garbage collector; G1 GC)
latency effects of concurrent compaction,

199
throughput effects of concurrent compact‐

ing collectors, 199
Concurrent Mark-Sweep (CMS) (see CMS

garbage collector)
concurrent mode failure, 168
connection pools, JDBC, 333
containers, 6-8
contended atomic classes, 293
CPU run queue, 54
CPU usage, 50-54

GC and, 136-137
Java and multi-CPU usage, 53
Java and single-CPU usage, 52

current priority, 300
cycle time, 26

D
database caching, 353-359

avoiding queries, 357-359
default (lazy loading), 355
eager loading, 356
JOIN FETCH and, 357
sizing, 359

databases, 329-361
as bottleneck, 12-13
asynchronous calls, 321
JDBC, 330-347
JPA, 347-359
Spring Data, 360
SQL/NoSQL, 329

deduplication (String), 365-367
deep object size, 206
Deflater class, 258
deoptimization, 101-105

not-entrant code, 102-104
zombie code, 104

development cycle, performance testing as inte‐
gral part of, 34-36
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disk usage, monitoring, 55-56
Docker container, 6, 59, 108, 113, 127, 140, 269,

285, 299
dominators (memory), 207
drivers, JDBC, 330-332
duplicate objects, 408-410

E
eager deinitialization, 222
eager fetching, 350
eager loading, 356
EclipseLink Memory Analyzer Tool (mat), 206
eden, 123
elapsed time (batch) measurements, 24
Epsilon garbage collector, 200
ergonomics, 5
escape analysis, 110
evacuation failure, 169
events, JFR

overview, 79-82
selecting, 86-88

exception processing, 386-390
Externalizable interface, 410

F
factories, reusing, 326
false sharing, 294-298
fetch groups, 350
filter() method, 400
finalizer queue, 244
finalizers/final references, 239-244
fixed-size hash tables, 368
flags, 4

(see also -XX entries at beginning of index)
advanced compiler flags, 105-113
code cache tuning, 95
compilation inspection, 96-100
compiler flags, 93
JVM and, 60-62
summary of, 413-422

flame graph, 67
footprint, 249-260

measuring, 250
minimizing, 251
Native Memory Tracking, 252-256

ForkJoinPool class, 278-286
automatic parallelization, 285-286
work stealing, 283-285

full GC, 125

G
G1 Evacuation Pause, 162
G1 GC (garbage first garbage collector), 127,

160-174
allocation of humongous objects, 192
allocation of region sizes, 191
flags for, 418
tuning, 170-174
tuning background threads, 171
tuning G1 GC mixed GC cycles, 173
tuning to run more/less frequently, 172

garbage collection (GC), 121-152
algorithms for, 126-130
average CPU usage and, 136-137
basic tuning, 138-147
basics, 121-152
causing/disabling explicit GC, 129
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