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Preface

These days, Python is undoubtedly one of the major strategic technology
platforms in the financial industry. When I started writing the first edition of
this book in 2013, I still had many conversations and presentations in which
I argued relentlessly for Python’s competitive advantages in finance over
other languages and platforms. Toward the end of 2018, this is not a
question anymore: financial institutions around the world now simply try to
make the best use of Python and its powerful ecosystem of data analysis,
visualization, and machine learning packages.

Beyond the realm of finance, Python is also often the language of choice in
introductory programming courses, such as in computer science programs.
Beyond its readable syntax and multiparadigm approach, a major reason for
this is that Python has also become a first class citizen in the areas of
artificial intelligence (AI), machine learning (ML), and deep learning (DL).
Many of the most popular packages and libraries in these areas are either
written directly in Python (such as scikit-learn for ML) or have Python
wrappers available (such as TensorFlow for DL).

Finance itself is entering a new era, and two major forces are driving this
evolution. The first is the programmatic access to basically all the financial
data available — in general, this happens in real time and is what leads to
data-driven finance. Decades ago, most trading or investment decisions
were driven by what traders and portfolio managers could read in the
newspaper or learn through personal conversations. Then came terminals
that brought financial data in real time to the traders’ and portfolio
managers’ desks via computers and electronic communication. Today,
individuals (or teams) can no longer keep up with the vast amounts of
financial data generated in even a single minute. Only machines, with their
ever-increasing processing speeds and computational power, can keep up
with the volume and velocity of financial data. This means, among other



things, that most of today’s global equities trading volume is driven by
algorithms and computers rather than by human traders.

The second major force is the increasing importance of AI in finance. More
and more financial institutions try to capitalize on ML and DL algorithms to
improve operations and their trading and investment performances. At the
beginning of 2018, the first dedicated book on “financial machine learning”
was published, which underscores this trend. Without a doubt, there are
more to come. This leads to what might be called AI-first finance, where
flexible, parameterizable ML and DL algorithms replace traditional
financial theory — theory that might be elegant but no longer very useful in
the new era of data-driven, AI-first finance.

Python is the right programming language and ecosystem to tackle the
challenges of this era of finance. Although this book covers basic ML
algorithms for unsupervised and supervised learning (as well as deep neural
networks, for instance), the focus is on Python’s data processing and
analysis capabilities. To fully account for the importance of AI in finance
— now and in the future — another book-length treatment is necessary.
However, most of the AI, ML, and DL techniques require such large
amounts of data that mastering data-driven finance should come first
anyway.

This second edition of Python for Finance is more of an upgrade than an
update. For example, it adds a complete part (Part IV) about algorithmic
trading. This topic has recently become quite important in the financial
industry, and is also quite popular with retail traders. It also adds a more
introductory part (Part II) where fundamental Python programming and data
analysis topics are presented before they are applied in later parts of the
book. On the other hand, some chapters from the first edition have been
deleted completely. For instance, the chapter on web techniques and
packages (such as Flask) was dropped because there are more dedicated
and focused books about such topics available today.

For the second edition, I tried to cover even more finance-related topics and
to focus on Python techniques that are particularly useful for financial data
science, algorithmic trading, and computational finance. As in the first



edition, the approach is a practical one, in that implementation and
illustration come before theoretical details and I generally focus on the big
picture rather than the most arcane parameterization options of a certain
class, method, or function.

Having described the basic approach for the second edition, it is worth
emphasizing that this book is neither an introduction to Python
programming nor to finance in general. A vast number of excellent
resources are available for both. This book is located at the intersection of
these two exciting fields, and assumes that the reader has some background
in programming (not necessarily Python) as well as in finance. Such readers
learn how to apply Python and its ecosystem to the financial domain.

The Jupyter Notebooks and codes accompanying this book can be accessed
and executed via our Quant Platform. You can sign up for free at
http://py4fi.pqp.io.

My company (The Python Quants) and myself provide many more
resources to master Python for financial data science, artificial intelligence,
algorithmic trading, and computational finance. You can start by visiting the
following sites:

Our company website

My private website

Our Python books website

Our online training website

The Certificate Program website

From all the offerings that we have created over the last few years, I am
most proud of our Certificate Program in Python for Algorithmic Trading.
It provides over 150 hours of live and recorded instruction, over 1,200
pages of documentation, over 5,000 lines of Python code, and over 50
Jupyter Notebooks. The program is offered multiple times per year and we
update and improve it with every cohort. The online program is the first of

http://py4fi.pqp.io/
http://tpq.io/
http://hilpisch.com/
http://books.tpq.io/
http://training.tpq.io/
http://certificate.tpq.io/


its kind, in that successful delegates obtain an official university certificate
in cooperation with htw saar University of Applied Sciences.

In addition, I recently started The AI Machine, a new project and company
to standardize the deployment of automated, algorithmic trading strategies.
With this project, we want to implement in a systematic and scalable
fashion what we have been teaching over the years in the field, in order to
capitalize on the many opportunities in the algorithmic trading field. Thanks
to Python — and data-driven and AI-first finance — this project is possible
these days even for a smaller team like ours.

I closed the preface for the first edition with the following words:

I am really excited that Python has established itself as an important
technology in the financial industry. I am also sure that it will play an
even more important role there in the future, in fields like derivatives and
risk analytics or high performance computing. My hope is that this book
will help professionals, researchers, and students alike make the most of
Python when facing the challenges of this fascinating field.

When I wrote these lines in 2014, I couldn’t have predicted how important
Python would become in finance. In 2018, I am even happier that my
expectations and hopes have been so greatly surpassed. Maybe the first
edition of the book played a small part in this. In any case, a big thank you
is in order to all the relentless open source developers out there, without
whom the success story of Python couldn’t have been written.

http://htwsaar.de/
http://aimachine.io/


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, and email addresses.

Constant width

Used for program listings, as well as within paragraphs to refer to
software packages, programming languages, file extensions, filenames,
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.



Using Code Examples
Supplemental material (in particular, Jupyter Notebooks and Python
scripts/modules) is available for usage and download at http://py4fi.pqp.io.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Python for
Finance, 2nd Edition, by Yves Hilpisch (O’Reilly). Copyright 2019 Yves
Hilpisch, 978-1-492-02433-0.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

http://py4fi.pqp.io/
mailto:permissions@oreilly.com


O’Reilly Safari
NOTE

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning
Paths, interactive tutorials, and curated playlists from over 250 publishers,
including O’Reilly Media, Harvard Business Review, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari


How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/python-
finance-2e.
To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/python-finance-2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
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Part I. Python and Finance

This part introduces Python for finance. It consists of two chapters:
Chapter 1 briefly discusses Python in general and argues in some detail
why Python is well suited to addressing the technological challenges in
the financial industry as well as in financial data analytics.

Chapter 2 is about Python infrastructure; it provides a concise
overview of important aspects of managing a Python environment to
get you started with interactive financial analytics and financial
application development in Python.



Chapter 1. Why Python for
Finance

Banks are essentially technology firms.
Hugo Banziger



The Python Programming Language
Python is a high-level, multipurpose programming language that is used in
a wide range of domains and technical fields. On the Python website you
find the following executive summary:

Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics. Its high-level built in data structures,
combined with dynamic typing and dynamic binding, make it very
attractive for Rapid Application Development, as well as for use as a
scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and
therefore reduces the cost of program maintenance. Python supports
modules and packages, which encourages program modularity and code
reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major platforms,
and can be freely distributed.

This pretty well describes why Python has evolved into one of the major
programming languages today. Nowadays, Python is used by the beginner
programmer as well as by the highly skilled expert developer, at schools, in
universities, at web companies, in large corporations and financial
institutions, as well as in any scientific field.

Among other features, Python is:

Open source
Python and the majority of supporting libraries and tools available are
open source and generally come with quite flexible and open licenses.

Interpreted
The reference CPython implementation is an interpreter of the
language that translates Python code at runtime to executable byte
code.

Multiparadigm

https://www.python.org/doc/essays/blurb


Python supports different programming and implementation
paradigms, such as object orientation and imperative, functional, or
procedural programming.

Multipurpose
Python can be used for rapid, interactive code development as well as
for building large applications; it can be used for low-level systems
operations as well as for high-level analytics tasks.

Cross-platform
Python is available for the most important operating systems, such as
Windows, Linux, and macOS. It is used to build desktop as well as
web applications, and it can be used on the largest clusters and most
powerful servers as well as on such small devices as the Raspberry Pi.

Dynamically typed
Types in Python are in general inferred at runtime and not statically
declared as in most compiled languages.

Indentation aware
In contrast to the majority of other programming languages, Python
uses indentation for marking code blocks instead of parentheses,
brackets, or semicolons.

Garbage collecting
Python has automated garbage collection, avoiding the need for the
programmer to manage memory.

When it comes to Python syntax and what Python is all about, Python
Enhancement Proposal 20 — i.e., the so-called “Zen of Python” —
provides the major guidelines. It can be accessed from every interactive
shell with the command import this:

In [1]: import this 

        The Zen of Python, by Tim Peters 

 

        Beautiful is better than ugly. 

        Explicit is better than implicit. 

        Simple is better than complex. 

        Complex is better than complicated. 

http://www.raspberrypi.org/


        Flat is better than nested. 

        Sparse is better than dense. 

        Readability counts. 

        Special cases aren't special enough to break the rules. 

        Although practicality beats purity. 

        Errors should never pass silently. 

        Unless explicitly silenced. 

        In the face of ambiguity, refuse the temptation to guess. 

        There should be one-- and preferably only one --obvious way to do it. 

        Although that way may not be obvious at first unless you're Dutch. 

        Now is better than never. 

        Although never is often better than *right* now. 

        If the implementation is hard to explain, it's a bad idea. 

        If the implementation is easy to explain, it may be a good idea. 

        Namespaces are one honking great idea -- let's do more of those!



A Brief History of Python
Although Python might still have the appeal of something new to some
people, it has been around for quite a long time. In fact, development efforts
began in the 1980s by Guido van Rossum from the Netherlands. He is still
active in Python development and has been awarded the title of Benevolent
Dictator for Life by the Python community. In July 2018, van Rossum
stepped down from this position after decades of being an active driver of
the Python core development efforts. The following can be considered
milestones in the development of Python:

Python 0.9.0 released in 1991 (first release)

Python 1.0 released in 1994

Python 2.0 released in 2000

Python 2.6 released in 2008

Python 3.0 released in 2008

Python 3.1 released in 2009

Python 2.7 released in 2010

Python 3.2 released in 2011

Python 3.3 released in 2012

Python 3.4 released in 2014

Python 3.5 released in 2015

Python 3.6 released in 2016

Python 3.7 released in June 2018

http://bit.ly/2DYWqCW


It is remarkable, and sometimes confusing to Python newcomers, that there
are two major versions available, still being developed and, more
importantly, in parallel use since 2008. As of this writing, this will probably
keep on for a little while since tons of code available and in production is
still Python 2.6/2.7. While the first edition of this book was based on
Python 2.7, this second edition uses Python 3.7 throughout.



The Python Ecosystem
A major feature of Python as an ecosystem, compared to just being a
programming language, is the availability of a large number of packages
and tools. These packages and tools generally have to be imported when
needed (e.g., a plotting library) or have to be started as a separate system
process (e.g., a Python interactive development environment). Importing
means making a package available to the current namespace and the current
Python interpreter process.

Python itself already comes with a large set of packages and modules that
enhance the basic interpreter in different directions, known as the Python
Standard Library. For example, basic mathematical calculations can be
done without any importing, while more specialized mathematical functions
need to be imported through the math module:

In [2]: 100 * 2.5 + 50 

Out[2]: 300.0 

 

In [3]: log(1)   

 

        ----------------------------------------------------------------- 

        NameError                       Traceback (most recent call last) 

        <ipython-input-3-74f22a2fd43b> in <module> 

        ----> 1 log(1)   

 

        NameError: name 'log' is not defined 

 

In [4]: import math   

 

In [5]: math.log(1)   

Out[5]: 0.0

Without further imports, an error is raised.

After importing the math module, the calculation can be executed.

While math is a standard Python module available with any Python
installation, there are many more packages that can be installed optionally

https://docs.python.org/3/library/index.html


and that can be used in the very same fashion as the standard modules. Such
packages are available from different (web) sources. However, it is
generally advisable to use a Python package manager that makes sure that
all libraries are consistent with each other (see Chapter 2 for more on this
topic).

The code examples presented so far use interactive Python environments:
IPython and Jupyter, respectively. These are probably the most widely used
interactive Python environments at the time of this writing. Although
IPython started out as just an enhanced interactive Python shell, it today has
many features typically found in integrated development environments
(IDEs), such as support for profiling and debugging. Those features missing
in IPython are typically provided by advanced text/code editors, like Vim,
which can also be integrated with IPython. Therefore, it is not unusual to
combine IPython with one’s text/code editor of choice to form the basic
toolchain for a Python development process.

IPython enhances the standard interactive shell in many ways. Among other
things, it provides improved command-line history functions and allows for
easy object inspection. For instance, the help text (docstring) for a
function is printed by just adding a ? before or after the function name
(adding ?? will provide even more information).

IPython originally came in two popular versions: a shell version and a
browser-based version (the Notebook). The Notebook variant proved so
useful and popular that it evolved into an independent, language-agnostic
project now called Jupyter. Given this background, it is no surprise that
Jupyter Notebook inherits most of the beneficial features of IPython — and
offers much more, for example when it comes to visualization.

Refer to VanderPlas (2016, Chapter 1) for more details on using IPython.

http://www.ipython.org/
http://jupyter.org/
http://vim.org/


The Python User Spectrum
Python does not only appeal to professional software developers; it is also
of use for the casual developer as well as for domain experts and scientific
developers.

Professional software developers find in Python all they might require to
efficiently build large applications. Almost all programming paradigms are
supported; there are powerful development tools available; and any task
can, in principle, be addressed with Python. These types of users typically
build their own frameworks and classes, also work on the fundamental
Python and scientific stack, and strive to make the most of the ecosystem.

Scientific developers or domain experts are generally heavy users of certain
packages and frameworks, have built their own applications that they
enhance and optimize over time, and tailor the ecosystem to their specific
needs. These groups of users also generally engage in longer interactive
sessions, rapidly prototyping new code as well as exploring and visualizing
their research and/or domain data sets.

Casual programmers like to use Python generally for specific problems
they know that Python has its strengths in. For example, visiting the gallery
page of matplotlib, copying a certain piece of visualization code provided
there, and adjusting the code to their specific needs might be a beneficial
use case for members of this group.

There is also another important group of Python users: beginner
programmers, i.e., those that are just starting to program. Nowadays,
Python has become a very popular language at universities, colleges, and
even schools to introduce students to programming.1 A major reason for
this is that its basic syntax is easy to learn and easy to understand, even for
the non-developer. In addition, it is helpful that Python supports almost all
programming styles.2



The Scientific Stack
There is a certain set of packages that is collectively labeled the scientific
stack. This stack comprises, among others, the following packages:

NumPy

NumPy provides a multidimensional array object to store homogeneous
or heterogeneous data; it also provides optimized functions/methods to
operate on this array object.

SciPy

SciPy is a collection of subpackages and functions implementing
important standard functionality often needed in science or finance; for
example, one finds functions for cubic splines interpolation as well as
for numerical integration.

matplotlib

This is the most popular plotting and visualization package for Python,
providing both 2D and 3D visualization capabilities.

pandas

pandas builds on NumPy and provides richer classes for the
management and analysis of time series and tabular data; it is tightly
integrated with matplotlib for plotting and PyTables for data storage
and retrieval.

scikit-learn

scikit-learn is a popular machine learning (ML) package that
provides a unified application programming interface (API) for many
different ML algorithms, such as for estimation, classification, or
clustering.

PyTables

PyTables is a popular wrapper for the HDF5 data storage package; it is
a package to implement optimized, disk-based I/O operations based on
a hierarchical database/file format.

http://www.numpy.org/
http://www.scipy.org/
http://www.matplotlib.org/
http://pandas.pydata.org/
http://scikit-learn.org/
http://www.pytables.org/
http://www.hdfgroup.org/HDF5/


Depending on the specific domain or problem, this stack is enlarged by
additional packages, which more often than not have in common that they
build on top of one or more of these fundamental packages. However, the
least common denominator or basic building blocks in general are the NumPy
ndarray class (see Chapter 4) and the pandas DataFrame class (see
Chapter 5).

Taking Python as a programming language alone, there are a number of
other languages available that can probably keep up with its syntax and
elegance. For example, Ruby is a popular language often compared to
Python. The language’s website describes Ruby as:

A dynamic, open source programming language with a focus on
simplicity and productivity. It has an elegant syntax that is natural to read
and easy to write.

The majority of people using Python would probably also agree with the
exact same statement being made about Python itself. However, what
distinguishes Python for many users from equally appealing languages like
Ruby is the availability of the scientific stack. This makes Python not only a
good and elegant language to use, but also one that is capable of replacing
domain-specific languages and tool sets like Matlab or R. It also provides
by default anything that you would expect, say, as a seasoned web
developer or systems administrator. In addition, Python is good at
interfacing with domain-specific languages such as R, so that the decision
usually is not about either Python or something else — it is rather about
which language should be the major one.

http://www.ruby-lang.org/


Technology in Finance
With these “rough ideas” of what Python is all about, it makes sense to step
back a bit and to briefly contemplate the role of technology in finance. This
will put one in a position to better judge the role Python already plays and,
even more importantly, will probably play in the financial industry of the
future.

In a sense, technology per se is nothing special to financial institutions (as
compared, for instance, to biotechnology companies) or to the finance
function (as compared to other corporate functions, like logistics).
However, in recent years, spurred by innovation and also regulation, banks
and other financial institutions like hedge funds have evolved more and
more into technology companies instead of being just financial
intermediaries. Technology has become a major asset for almost any
financial institution around the globe, having the potential to lead to
competitive advantages as well as disadvantages. Some background
information can shed light on the reasons for this development.



Technology Spending
Banks and financial institutions together form the industry that spends the
most on technology on an annual basis. The following statement therefore
shows not only that technology is important for the financial industry, but
that the financial industry is also really important to the technology sector:

FRAMINGHAM, Mass., June 14, 2018 – Worldwide spending on
information technology (IT) by financial services firms will be nearly
$500 billion in 2021, growing from $440 billion in 2018, according to
new data from a series of Financial Services IT Spending Guides from
International Data Corporation (IDC).
IDC

In particular, banks and other financial institutions are engaging in a race to
make their business and operating models digital:

Bank spending on new technologies was predicted to amount to 19.9
billion U.S. dollars in 2017 in North America.
The banks develop current systems and work on new technological
solutions in order to increase their competitiveness on the global market
and to attract clients interested in new online and mobile technologies. It
is a big opportunity for global fintech companies which provide new
ideas and software solutions for the banking industry.
Statista

Large multinational banks today generally employ thousands of developers
to maintain existing systems and build new ones. Large investment banks
with heavy technological requirements often have technology budgets of
several billion USD per year.

http://bit.ly/2RUAV8Y
http://bit.ly/2Q04KYr


Technology as Enabler
The technological development has also contributed to innovations and
efficiency improvements in the financial sector. Typically, projects in this
area run under the umbrella of digitalization.

The financial services industry has seen drastic technology-led changes
over the past few years. Many executives look to their IT departments to
improve efficiency and facilitate game-changing innovation — while
somehow also lowering costs and continuing to support legacy systems.
Meanwhile, FinTech start-ups are encroaching upon established markets,
leading with customer-friendly solutions developed from the ground up
and unencumbered by legacy systems.
PwC 19th Annual Global CEO Survey 2016

As a side effect of the increasing efficiency, competitive advantages must
often be looked for in ever more complex products or transactions. This in
turn inherently increases risks and makes risk management as well as
oversight and regulation more and more difficult. The financial crisis of
2007 and 2008 tells the story of potential dangers resulting from such
developments. In a similar vein, “algorithms and computers gone wild”
represent a potential risk to the financial markets; this materialized
dramatically in the so-called flash crash of May 2010, where automated
selling led to large intraday drops in certain stocks and stock indices.
Part IV covers topics related to the algorithmic trading of financial
instruments.

https://pwc.to/1OYTO2d
http://en.wikipedia.org/wiki/2010_Flash_Crash


Technology and Talent as Barriers to Entry
On the one hand, technology advances reduce cost over time, ceteris
paribus. On the other hand, financial institutions continue to invest heavily
in technology to both gain market share and defend their current positions.
To be active today in certain areas in finance often brings with it the need
for large-scale investments in both technology and skilled staff. As an
example, consider the derivatives analytics space:

Aggregated over the total software lifecycle, firms adopting in-house
strategies for OTC [derivatives] pricing will require investments between
$25 million and $36 million alone to build, maintain, and enhance a
complete derivatives library.
Ding (2010)

Not only is it costly and time-consuming to build a full-fledged derivatives
analytics library, but you also need to have enough experts to do so. And
these experts have to have the right tools and technologies available to
accomplish their tasks. With the development of the Python ecosystem,
such efforts have become more efficient and budgets in this regard can be
reduced significantly today compared to, say, 10 years ago. Part V covers
derivatives analytics and builds a small but powerful and flexible
derivatives pricing library with Python and standard Python packages alone.

Another quote about the early days of Long-Term Capital Management
(LTCM), formerly one of the most respected quantitative hedge funds —
which, however, went bust in the late 1990s — further supports this insight
about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and
hired a crack team of financial engineers to run the show at LTCM,
which set up shop in Greenwich, Connecticut. It was risk management on
an industrial level.
Patterson (2010)

The same computing power that Meriwether had to buy for millions of
dollars is today probably available for thousands or can be rented from a



cloud provider based on a flexible fee plan. Chapter 2 shows how to set up
an infrastructure in the cloud for interactive financial analytics, application
development, and deployment with Python. The budgets for such a
professional infrastructure start at a few USD per month. On the other hand,
trading, pricing, and risk management have become so complex for larger
financial institutions that today they need to deploy IT infrastructures with
tens of thousands of computing cores.



Ever-Increasing Speeds, Frequencies, and Data Volumes
The one dimension of the finance industry that has been influenced most by
technological advances is the speed and frequency with which financial
transactions are decided and executed. Lewis (2014) describes so-called
flash trading — i.e., trading at the highest speeds possible — in vivid detail.

On the one hand, increasing data availability on ever-smaller time scales
makes it necessary to react in real time. On the other hand, the increasing
speed and frequency of trading makes the data volumes further increase.
This leads to processes that reinforce each other and push the average time
scale for financial transactions systematically down. This is a trend that had
already started a decade ago:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008,
capitalizing on the market’s extreme volatility with its lightning-fast
computers. Jim Simons was the hedge fund world’s top earner for the
year, pocketing a cool $2.5 billion.
Patterson (2010)

Thirty years’ worth of daily stock price data for a single stock represents
roughly 7,500 closing quotes. This kind of data is what most of today’s
finance theory is based on. For example, modern or mean-variance portfolio
theory (MPT), the capital asset pricing model (CAPM), and value-at-risk
(VaR) all have their foundations in daily stock price data.

In comparison, on a typical trading day during a single trading hour the
stock price of Apple Inc. (AAPL) may be quoted around 15,000 times —
roughly twice the number of quotes compared to available end-of-day
closing quotes over 30 years (see the example in “Data-Driven and AI-First
Finance”). This brings with it a number of challenges:

Data processing
It does not suffice to consider and process end-of-day quotes for stocks
or other financial instruments; “too much” happens during the day, and
for some instruments during 24 hours for 7 days a week.



Analytics speed
Decisions often have to be made in milliseconds or even faster, making
it necessary to build the respective analytics capabilities and to analyze
large amounts of data in real time.

Theoretical foundations
Although traditional finance theories and concepts are far from being
perfect, they have been well tested (and sometimes well rejected) over
time; for the millisecond and microsecond scales important as of today,
consistent financial concepts and theories in the traditional sense that
have proven to be somewhat robust over time are still missing.

All these challenges can in general only be addressed by modern
technology. Something that might also be a little bit surprising is that the
lack of consistent theories often is addressed by technological approaches,
in that high-speed algorithms exploit market microstructure elements (e.g.,
order flow, bid-ask spreads) rather than relying on some kind of financial
reasoning.



The Rise of Real-Time Analytics
There is one discipline that has seen a strong increase in importance in the
finance industry: financial and data analytics. This phenomenon has a close
relationship to the insight that speeds, frequencies, and data volumes
increase at a rapid pace in the industry. In fact, real-time analytics can be
considered the industry’s answer to this trend.

Roughly speaking, “financial and data analytics” refers to the discipline of
applying software and technology in combination with (possibly advanced)
algorithms and methods to gather, process, and analyze data in order to gain
insights, to make decisions, or to fulfill regulatory requirements, for
instance. Examples might include the estimation of sales impacts induced
by a change in the pricing structure for a financial product in the retail
branch of a bank, or the large-scale overnight calculation of credit valuation
adjustments (CVA) for complex portfolios of derivatives trades of an
investment bank.

There are two major challenges that financial institutions face in this
context:

Big data
Banks and other financial institutions had to deal with massive
amounts of data even before the term “big data” was coined; however,
the amount of data that has to be processed during single analytics
tasks has increased tremendously over time, demanding both increased
computing power and ever-larger memory and storage capacities.

Real-time economy
In the past, decision makers could rely on structured, regular planning
as well as decision and (risk) management processes, whereas they
today face the need to take care of these functions in real time; several
tasks that have been taken care of in the past via overnight batch runs
in the back office have now been moved to the front office and are
executed in real time.



Again, one can observe an interplay between advances in technology and
financial/business practice. On the one hand, there is the need to constantly
improve analytics approaches in terms of speed and capability by applying
modern technologies. On the other hand, advances on the technology side
allow new analytics approaches that were considered impossible (or
infeasible due to budget constraints) a couple of years or even months ago.

One major trend in the analytics space has been the utilization of parallel
architectures on the central processing unit (CPU) side and massively
parallel architectures on the general-purpose graphics processing unit
(GPGPU) side. Current GPGPUs have computing cores in the thousands,
making necessary a sometimes radical rethinking of what parallelism might
mean to different algorithms. What is still an obstacle in this regard is that
users generally have to learn new programming paradigms and techniques
to harness the power of such hardware.



Python for Finance
The previous section described selected aspects characterizing the role of
technology in finance:

Costs for technology in the finance industry

Technology as an enabler for new business and innovation

Technology and talent as barriers to entry in the finance industry

Increasing speeds, frequencies, and data volumes

The rise of real-time analytics

This section analyzes how Python can help in addressing several of the
challenges these imply. But first, on a more fundamental level, a brief
analysis of Python for finance from a language and syntax point of view.



Finance and Python Syntax
Most people who make their first steps with Python in a finance context may
attack an algorithmic problem. This is similar to a scientist who, for
example, wants to solve a differential equation, evaluate an integral, or
simply visualize some data. In general, at this stage, little thought is given to
topics like a formal development process, testing, documentation, or
deployment. However, this especially seems to be the stage where people
fall in love with Python. A major reason for this might be that Python syntax
is generally quite close to the mathematical syntax used to describe scientific
problems or financial algorithms.

This can be illustrated by a financial algorithm, namely the valuation of a
European call option by Monte Carlo simulation. The example considers a
Black-Scholes-Merton (BSM) setup in which the option’s underlying risk
factor follows a geometric Brownian motion.

Assume the following numerical parameter values for the valuation:

Initial stock index level 

Strike price of the European call option 

Time to maturity  year

Constant, riskless short rate 

Constant volatility 

In the BSM model, the index level at maturity is a random variable given by
Equation 1-1, with z being a standard normally distributed random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity



The following is an algorithmic description of the Monte Carlo valuation
procedure:

1. Draw  pseudo-random numbers , from
the standard normal distribution.

2. Calculate all resulting index levels at maturity  for given  and
Equation 1-1.

3. Calculate all inner values of the option at maturity as 
.

4. Estimate the option present value via the Monte Carlo estimator as
given in Equation 1-2.

Equation 1-2. Monte Carlo estimator for European option

This problem and algorithm must now be translated into Python. The
following code implements the required steps:

In [6]: import math 

        import numpy as np   

 

In [7]: S0 = 100.   

        K = 105.   

        T = 1.0  

        r = 0.05   

        sigma = 0.2   

 

In [8]: I = 100000   

 

In [9]: np.random.seed(1000)   

 

In [10]: z = np.random.standard_normal(I)   

 

In [11]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T + sigma * math.sqrt(T) * z)  

 



In [12]: hT = np.maximum(ST - K, 0)   

 

In [13]: C0 = math.exp(-r * T) * np.mean(hT)   

 

In [14]: print('Value of the European call option: {:5.3f}.'.format(C0))   

         Value of the European call option: 8.019.

NumPy is used here as the main package.

The model and simulation parameter values are defined.

The seed value for the random number generator is fixed.

Standard normally distributed random numbers are drawn.

End-of-period values are simulated.

The option payoffs at maturity are calculated.

The Monte Carlo estimator is evaluated.

The resulting value estimate is printed.
Three aspects are worth highlighting:

Syntax
The Python syntax is indeed quite close to the mathematical syntax,
e.g., when it comes to the parameter value assignments.

Translation
Every mathematical and/or algorithmic statement can generally be
translated into a single line of Python code.



Vectorization
One of the strengths of NumPy is the compact, vectorized syntax, e.g.,
allowing for 100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython or Jupyter
Notebook. However, code that is meant to be reused regularly typically gets
organized in so-called modules (or scripts), which are single Python files
(technically text files) with the suffix .py. Such a module could in this case
look like Example 1-1 and could be saved as a file named bsm_mcs_euro.py.

Example 1-1. Monte Carlo valuation of European call option
# 

# Monte Carlo valuation of European call option 

# in Black-Scholes-Merton model 

# bsm_mcs_euro.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import math 

import numpy as np 

 

# Parameter Values 

S0 = 100.  # initial index level 

K = 105.  # strike price 

T = 1.0  # time-to-maturity

r = 0.05  # riskless short rate 

sigma = 0.2  # volatility 

 

I = 100000  # number of simulations 

 

# Valuation Algorithm 

z = np.random.standard_normal(I)  # pseudo-random numbers 

# index values at maturity 

ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * math.sqrt(T) * z) 

hT = np.maximum(ST - K, 0)  # payoff at maturity 

C0 = math.exp(-r * T) * np.mean(hT)  # Monte Carlo estimator 

 

# Result Output 

print('Value of the European call option %5.3f.' % C0)

The algorithmic example in this subsection illustrates that Python, with its
very syntax, is well suited to complement the classic duo of scientific
languages, English and mathematics. It seems that adding Python to the set
of scientific languages makes it more well rounded. One then has:

English for writing and talking about scientific and financial problems,
etc.



Mathematics for concisely, exactly describing and modeling abstract
aspects, algorithms, complex quantities, etc.

Python for technically modeling and implementing abstract aspects,
algorithms, complex quantities, etc.



MATHEMATICS AND PYTHON SYNTAX
There is hardly any programming language that comes as close to mathematical syntax
as Python. Numerical algorithms are therefore in general straightforward to translate
from the mathematical representation into the Pythonic implementation. This makes
prototyping, development, and code maintenance in finance quite efficient with Python.

In some areas, it is common practice to use pseudo-code and therewith to
introduce a fourth language family member. The role of pseudo-code is to
represent, for example, financial algorithms in a more technical fashion that
is both still close to the mathematical representation and already quite close
to the technical implementation. In addition to the algorithm itself, pseudo-
code takes into account how computers work in principle.

This practice generally has its cause in the fact that with most (compiled)
programming languages the technical implementation is quite “far away”
from its formal, mathematical representation. The majority of programming
languages make it necessary to include so many elements that are only
technically required that it is hard to see the equivalence between the
mathematics and the code.

Nowadays, Python is often used in a pseudo-code way since its syntax is
almost analogous to the mathematics and since the technical “overhead” is
kept to a minimum. This is accomplished by a number of high-level
concepts embodied in the language that not only have their advantages but
also come in general with risks and/or other costs. However, it is safe to say
that with Python you can, whenever the need arises, follow the same strict
implementation and coding practices that other languages might require
from the outset. In that sense, Python can provide the best of both worlds:
high-level abstraction and rigorous implementation.



Efficiency and Productivity Through Python
At a high level, benefits from using Python can be measured in three
dimensions:

Efficiency
How can Python help in getting results faster, in saving costs, and in
saving time?

Productivity
How can Python help in getting more done with the same resources
(people, assets, etc.)?

Quality
What does Python allow one to do that alternative technologies do not
allow for?

A discussion of these aspects can by nature not be exhaustive. However, it
can highlight some arguments as a starting point.

Shorter time-to-results
A field where the efficiency of Python becomes quite obvious is interactive
data analytics. This is a field that benefits tremendously from such powerful
tools as IPython, Jupyter Notebook, and packages like pandas.

Consider a finance student who is writing their master’s thesis and is
interested in S&P 500 index values. They want to analyze historical index
levels for, say, a few years to see how the volatility of the index has
fluctuated over time and hope to find evidence that volatility, in contrast to
some typical model assumptions, fluctuates over time and is far from being
constant. The results should also be visualized. The student mainly has to do
the following:

Retrieve index level data from the web

Calculate the annualized rolling standard deviation of the log returns
(volatility)



Plot the index level data and the volatility results

These tasks are complex enough that not too long ago one would have
considered them to be something for professional financial analysts only.
Today, even the finance student can easily cope with such problems. The
following code shows how exactly this works — without worrying about
syntax details at this stage (everything is explained in detail in subsequent
chapters):

In [16]: import numpy as np   

         import pandas as pd   

         from pylab import plt, mpl   

 

In [17]: plt.style.use('seaborn')   

         mpl.rcParams['font.family'] = 'serif'   

         %matplotlib inline 

 

In [18]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                           index_col=0, parse_dates=True)   

         data = pd.DataFrame(data['.SPX'])  

         data.dropna(inplace=True)   

         data.info()  

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29 

         Data columns (total 1 columns): 

         .SPX    2138 non-null float64 

         dtypes: float64(1)

         memory usage: 33.4 KB 

 

In [19]: data['rets'] = np.log(data / data.shift(1))   

         data['vola'] = data['rets'].rolling(252).std() * np.sqrt(252)   

 

In [20]: data[['.SPX', 'vola']].plot(subplots=True, figsize=(10, 6));  

This imports NumPy and pandas.

This imports matplotlib and configures the plotting style and approach
for Jupyter.

pd.read_csv() allows the retrieval of remotely or locally stored data
sets in comma-separated values (CSV) form.



A subset of the data is picked and NaN (“not a number”) values
eliminated.

This shows some metainformation about the data set.

The log returns are calculated in vectorized fashion (“no looping” on
the Python level).

The rolling, annualized volatility is derived.

This finally plots the two time series.
Figure 1-1 shows the graphical result of this brief interactive session. It can
be considered almost amazing that a few lines of code suffice to implement
three rather complex tasks typically encountered in financial analytics: data
gathering, complex and repeated mathematical calculations, as well as
visualization of the results. The example illustrates that pandas makes
working with whole time series almost as simple as doing mathematical
operations on floating-point numbers.

Translated to a professional finance context, the example implies that
financial analysts can — when applying the right Python tools and packages
that provide high-level abstractions — focus on their domain and not on the
technical intrinsicalities. Analysts can also react faster, providing valuable
insights almost in real time and making sure they are one step ahead of the
competition. This example of increased efficiency can easily translate into
measurable bottom-line effects.



Figure 1-1. S&P 500 closing values and annualized volatility

Ensuring high performance
In general, it is accepted that Python has a rather concise syntax and that it is
relatively efficient to code with. However, due to the very nature of Python
being an interpreted language, the prejudice persists that Python often is too
slow for compute-intensive tasks in finance. Indeed, depending on the
specific implementation approach, Python can be really slow. But it does not
have to be slow — it can be highly performing in almost any application
area. In principle, one can distinguish at least three different strategies for
better performance:

Idioms and paradigms
In general, many different ways can lead to the same result in Python,
but sometimes with rather different performance characteristics;
“simply” choosing the right way (e.g., a specific implementation
approach, such as the judicious use of data structures, avoiding loops
through vectorization, or the use of a specific package such as pandas)
can improve results significantly.



Compiling
Nowadays, there are several performance packages available that
provide compiled versions of important functions or that compile
Python code statically or dynamically (at runtime or call time) to
machine code, which can make such functions orders of magnitude
faster than pure Python code; popular ones are Cython and Numba.

Parallelization
Many computational tasks, in particular in finance, can significantly
benefit from parallel execution; this is nothing special to Python but
something that can easily be accomplished with it.



PERFORMANCE COMPUTING WITH PYTHON
Python per se is not a high-performance computing technology. However, Python has
developed into an ideal platform to access current performance technologies. In that
sense, Python has become something like a glue language for performance computing
technologies.

This subsection sticks to a simple, but still realistic, example that touches
upon all three strategies (later chapters illustrate the strategies in detail). A
quite common task in financial analytics is to evaluate complex
mathematical expressions on large arrays of numbers. To this end, Python
itself provides everything needed:

In [21]: import math 

         loops = 2500000 

         a = range(1, loops) 

         def f(x): 

             return 3 * math.log(x) + math.cos(x) ** 2 

         %timeit r = [f(x) for x in a] 

         1.59 s ± 41.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The Python interpreter needs about 1.6 seconds in this case to evaluate the
function f() 2,500,000 times. The same task can be implemented using
NumPy, which provides optimized (i.e., precompiled) functions to handle
such array-based operations:

In [22]: import numpy as np 

         a = np.arange(1, loops) 

         %timeit r = 3 * np.log(a) + np.cos(a) ** 2 

         87.9 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Using NumPy considerably reduces the execution time to about 88
milliseconds. However, there is even a package specifically dedicated to
this kind of task. It is called numexpr, for “numerical expressions.” It
compiles the expression to improve upon the performance of the general
NumPy functionality by, for example, avoiding in-memory copies of ndarray
objects along the way:



In [23]: import numexpr as ne 

         ne.set_num_threads(1) 

         f = '3 * log(a) + cos(a) ** 2' 

         %timeit r = ne.evaluate(f) 

         50.6 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Using this more specialized approach further reduces execution time to
about 50 milliseconds. However, numexpr also has built-in capabilities to
parallelize the execution of the respective operation. This allows us to use
multiple threads of a CPU:

In [24]: ne.set_num_threads(4) 

         %timeit r = ne.evaluate(f) 

         22.8 ms ± 1.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Parallelization brings execution time further down to below 23 milliseconds
in this case, with four threads utilized. Overall, this is a performance
improvement of more than 90 times. Note, in particular, that this kind of
improvement is possible without altering the basic problem/algorithm and
without knowing any detail about compiling or parallelization approaches.
The capabilities are accessible from a high level even by non-experts.
However, one has to be aware, of course, of which capabilities and options
exist.

This example shows that Python provides a number of options to make
more out of existing resources — i.e., to increase productivity. With the
parallel approach, three times as many calculations can be accomplished in
the same amount of time as compared to the sequential approach — in this
case simply by telling Python to use multiple available CPU threads instead
of just one.



From Prototyping to Production
Efficiency in interactive analytics and performance when it comes to
execution speed are certainly two benefits of Python to consider. Yet
another major benefit of using Python for finance might at first sight seem a
bit subtler; at second sight, it might present itself as an important strategic
factor for financial institutions. It is the possibility to use Python end-to-
end, from prototyping to production.

Today’s practice in financial institutions around the globe, when it comes to
financial development processes, is still often characterized by a separated,
two-step process. On the one hand, there are the quantitative analysts
(“quants”) responsible for model development and technical prototyping.
They like to use tools and environments like Matlab and R that allow for
rapid, interactive application development. At this stage of the development
efforts, issues like performance, stability, deployment, access management,
and version control, among others, are not that important. One is mainly
looking for a proof of concept and/or a prototype that exhibits the main
desired features of an algorithm or a whole application.

Once the prototype is finished, IT departments with their developers take
over and are responsible for translating the existing prototype code into
reliable, maintainable, and performant production code. Typically, at this
stage there is a paradigm shift in that compiled languages, such as C++ or
Java, are used to fulfill the requirements for deployment and production.
Also, a formal development process with professional tools, version
control, etc., is generally applied.

This two-step approach has a number of generally unintended
consequences:

Inefficiencies
Prototype code is not reusable; algorithms have to be implemented
twice; redundant efforts take time and resources; risks arise during
translation

http://mathworks.com/
https://www.r-project.org/


Diverse skill sets
Different departments show different skill sets and use different
languages to implement “the same things”; people not only program
but also speak different languages

Legacy code
Code is available and has to be maintained in different languages,
often using different styles of implementation

Using Python, on the other hand, enables a streamlined end-to-end process
from the first interactive prototyping steps to highly reliable and efficiently
maintainable production code. The communication between different
departments becomes easier. The training of the workforce is also more
streamlined in that there is only one major language covering all areas of
financial application building. It also avoids the inherent inefficiencies and
redundancies when using different technologies in different steps of the
development process. All in all, Python can provide a consistent
technological framework for almost all tasks in financial analytics, financial
application development, and algorithm implementation.



Data-Driven and AI-First Finance
Basically all the observations regarding the relationship of technology and
the financial industry first formulated in 2014 for the first edition of this
book still seem pretty current and important in August 2018, at the time of
updating this chapter for the second edition of the book. However, this
section comments on two major trends in the financial industry that are
about to reshape it in a fundamental way. These two trends have mainly
crystallized themselves over the last few years.



Data-Driven Finance
Some of the most important financial theories, such as MPT and CAPM,
date as far back as to the 1950s and 1960s. However, they still represent a
cornerstone in the education of students in such fields as economics,
finance, financial engineering, and business administration. This might be
surprising since the empirical support for most of these theories is meager
at best, and the evidence is often in complete contrast to what the theories
suggest and imply. On the other hand, their popularity is understandable
since they are close to humans’ expectations of how financial markets
might behave and since they are elegant mathematical theories resting on a
number of appealing, if in general too simplistic, assumptions.

The scientific method, say in physics, starts with data, for example from
experiments or observations, and moves on to hypotheses and theories that
are then tested against the data. If the tests are positive, the hypotheses and
theories might be refined and properly written down, for instance, in the
form of a research paper for publication. If the tests are negative, the
hypotheses and theories are rejected and the search begins anew for ones
that conform with the data. Since physical laws are stable over time, once
such a law is discovered and well tested it is generally there to stay, in the
best case, forever.

The history of (quantitative) finance in large parts contradicts the scientific
method. In many cases, theories and models have been developed “from
scratch” on the basis of simplifying mathematical assumptions with the goal
of discovering elegant answers to central problems in finance. Among
others, popular assumptions in finance are normally distributed returns for
financial instruments and linear relationships between quantities of interest.
Since these phenomena are hardly ever found in financial markets, it should
not come as a surprise that empirical evidence for the elegant theories is
often lacking. Many financial theories and models have been formulated,
proven, and published first and have only later been tested empirically. To
some extent, this is of course due to the fact that financial data back in the



1950s to the 1970s or even later was not available in the form that it is
today even to students getting started with a bachelor’s in finance.

The availability of such data to financial institutions has drastically
increased since the early to mid-1990s, and nowadays even individuals
doing financial research or getting involved in algorithmic trading have
access to huge amounts of historical data down to the tick level as well as
real-time tick data via streaming services. This allows us to return to the
scientific method, which starts in general with the data before ideas,
hypotheses, models, and strategies are devised.

A brief example shall illustrate how straightforward it has become today to
retrieve professional data on a large scale even on a local machine, making
use of Python and a professional data subscription to the Eikon Data APIs.
The following example retrieves tick data for the Apple Inc. stock for one
hour during a regular trading day. About 15,000 tick quotes, including
volume information, are retrieved. While the symbol for the stock is AAPL,
the Reuters Instrument Code (RIC) is AAPL.O:

In [26]: import eikon as ek   

 

In [27]: data = ek.get_timeseries('AAPL.O', fields='*', 

                                  start_date='2018-10-18 16:00:00', 

                                  end_date='2018-10-18 17:00:00', 

                                  interval='tick')   

 

In [28]: data.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 35350 entries, 2018-10-18 16:00:00.002000 to 2018-10-18 

          16:59:59.888000 

         Data columns (total 2 columns): 

         VALUE     35285 non-null float64 

         VOLUME    35350 non-null float64 

         dtypes: float64(2)

         memory usage: 828.5 KB 

 

In [29]: data.tail()   

Out[29]: AAPL.O                    VALUE  VOLUME 

         Date 

         2018-10-18 16:59:59.433  217.13    10.0 

         2018-10-18 16:59:59.433  217.13    12.0 

         2018-10-18 16:59:59.439  217.13   231.0 

         2018-10-18 16:59:59.754  217.14   100.0 

         2018-10-18 16:59:59.888  217.13   100.0

http://bit.ly/eikon_data_api


Eikon Data API usage requires a subscription and an API connection.

Retrieves the tick data for the Apple Inc. (AAPL.O) stock.

Shows the last five rows of tick data.
The Eikon Data APIs give access not only to structured financial data, such
as historical price data, but also to unstructured data such as news articles.
The next example retrieves metadata for a small selection of news articles
and shows the beginning of one of the articles as full text:

In [30]: news = ek.get_news_headlines('R:AAPL.O Language:LEN', 

                                  date_from='2018-05-01', 

                                  date_to='2018-06-29', 

                                  count=7)   

 

In [31]: news   

Out[31]: 

                                     versionCreated  \ 

    2018-06-28 23:00:00.000 2018-06-28 23:00:00.000 

    2018-06-28 21:23:26.526 2018-06-28 21:23:26.526 

    2018-06-28 19:48:32.627 2018-06-28 19:48:32.627 

    2018-06-28 17:33:10.306 2018-06-28 17:33:10.306 

    2018-06-28 17:33:07.033 2018-06-28 17:33:07.033 

    2018-06-28 17:31:44.960 2018-06-28 17:31:44.960 

    2018-06-28 17:00:00.000 2018-06-28 17:00:00.000 

 

                                                                          text  \ 

    2018-06-28 23:00:00.000  RPT-FOCUS-AI ambulances and robot doctors: Chi... 

    2018-06-28 21:23:26.526  Why Investors Should Love Apple's (AAPL) TV En... 

    2018-06-28 19:48:32.627  Reuters Insider - Trump: We're reclaiming our ... 

    2018-06-28 17:33:10.306  Apple v. Samsung ends not with a whimper but a... 

    2018-06-28 17:33:07.033  Apple's trade-war discount extended for anothe... 

    2018-06-28 17:31:44.960  Other Products: Apple's fast-growing island of... 

    2018-06-28 17:00:00.000  Pokemon Go creator plans to sell the tech behi... 

 

                                                                  storyId  \ 

    2018-06-28 23:00:00.000  urn:newsml:reuters.com:20180628:nL4N1TU4F8:6 

    2018-06-28 21:23:26.526  urn:newsml:reuters.com:20180628:nNRA6e2vft:1 

    2018-06-28 19:48:32.627  urn:newsml:reuters.com:20180628:nRTV1vNw1p:1 

    2018-06-28 17:33:10.306  urn:newsml:reuters.com:20180628:nNRA6e1oza:1 

    2018-06-28 17:33:07.033  urn:newsml:reuters.com:20180628:nNRA6e1pmv:1 

    2018-06-28 17:31:44.960  urn:newsml:reuters.com:20180628:nNRA6e1m3n:1 

    2018-06-28 17:00:00.000  urn:newsml:reuters.com:20180628:nL1N1TU0PC:3 

 

                            sourceCode 

    2018-06-28 23:00:00.000    NS:RTRS 

    2018-06-28 21:23:26.526  NS:ZACKSC 



    2018-06-28 19:48:32.627    NS:CNBC 

    2018-06-28 17:33:10.306  NS:WALLST 

    2018-06-28 17:33:07.033  NS:WALLST 

    2018-06-28 17:31:44.960  NS:WALLST 

    2018-06-28 17:00:00.000    NS:RTRS 

 

In [32]: story_html = ek.get_news_story(news.iloc[1, 2])  

 

In [33]: from bs4 import BeautifulSoup   

 

In [34]: story = BeautifulSoup(story_html, 'html5lib').get_text()   

 

In [35]: print(story[83:958])   

         Jun 28, 2018 For years, investors and Apple AAPL have been beholden to 

          the iPhone, which is hardly a negative since its flagship product is 

          largely responsible for turning Apple into one of the world's biggest 

          companies. But Apple has slowly pushed into new growth areas, with 

          streaming television its newest frontier. So let's take a look at what 

          Apple has planned as it readies itself to compete against the likes of 

          Netflix NFLX and Amazon AMZN in the battle for the new age of 

          entertainment.Apple's second-quarter revenues jumped by 16% to reach 

          $61.14 billion, with iPhone revenues up 14%. However, iPhone unit sales 

          climbed only 3% and iPhone revenues accounted for over 62% of total Q2 

          sales. Apple knows this is not a sustainable business model, because 

          rare is the consumer product that can remain in vogue for decades. This 

          is why Apple has made a big push into news,

Retrieves metadata for a small selection of news articles.

Retrieves the full text of a single article, delivered as an HTML
document.

Imports the BeautifulSoup HTML parsing package and …

… extracts the contents as plain text (a str object).

Prints the beginning of the news article.
Although just scratching the surface, these two examples illustrate that
structured and unstructured historical financial data is available in a
standardized, efficient way via Python wrapper packages and data



subscription services. In many circumstances, similar data sets can be
accessed for free even by individuals who make use of, for instance, trading
platforms such as the one by FXCM Group, LLC, that is introduced in
Chapter 14 and also used in Chapter 16. Once the data is on the Python
level — independent from the original source — the full power of the
Python data analytics ecosystem can be harnessed.



DATA-DRIVEN FINANCE
Data is what drives finance these days. Even some of the largest and often most
successful hedge funds call themselves “data-driven” instead of “finance-driven.” More
and more offerings are making huge amounts of data available to large and small
institutions and individuals. Python is generally the programming language of choice to
interact with the APIs and to process and analyze the data.



AI-First Finance
With the availability of large amounts of financial data via programmatic
APIs, it has become much easier and more fruitful to apply methods from
artificial intelligence (AI) in general and from machine and deep learning
(ML, DL) in particular to financial problems, such as in algorithmic trading.

Python can be considered a first-class citizen in the AI world as well. It is
often the programming language of choice for AI researchers and
practitioners alike. In that sense, the financial domain benefits from
developments in diverse fields, sometimes not even remotely connected to
finance. As one example consider the TensorFlow open source package for
deep learning, which is developed and maintained by Google Inc. and used
by (among others) its parent company Alphabet Inc. in its efforts to build,
produce, and sell self-driving cars.

Although for sure not even remotely related to the problem of automatically,
algorithmically trading stock, TensorFlow can, for example, be used to
predict movements in financial markets. Chapter 15 provides a number of
examples in this regard.

One of the most widely used Python packages for ML is scikit-learn. The
code that follows shows how, in a highly simplified manner, classification
algorithms from ML can be used to predict the direction of future market
price movements and to base an algorithmic trading strategy on those
predictions. All the details are explained in Chapter 15, so the example is
therefore rather concise. First, the data import and the preparation of the
features data (directional lagged log return data):

In [36]: import numpy as np 

         import pandas as pd 

 

In [37]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                            index_col=0, parse_dates=True) 

         data = pd.DataFrame(data['AAPL.O'])   

         data['Returns'] = np.log(data / data.shift())   

         data.dropna(inplace=True) 

 

In [38]: lags = 6 

 

In [39]: cols = [] 

http://tensorflow.org/


         for lag in range(1, lags + 1): 

             col = 'lag_{}'.format(lag) 

             data[col] = np.sign(data['Returns'].shift(lag))   

             cols.append(col) 

         data.dropna(inplace=True)

Selects historical end-of-day data for the Apple Inc. stock (AAPL.O).

Calculates the log returns over the complete history.

Generates DataFrame columns with directional lagged log return data
(+1 or -1).

Next, the instantiation of a model object for a support vector machine
(SVM) algorithm, the fitting of the model, and the prediction step. Figure 1-
2 shows that the prediction-based trading strategy, going long or short on
Apple Inc. stock depending on the prediction, outperforms the passive
benchmark investment in the stock itself:

In [40]: from sklearn.svm import SVC 

 

In [41]: model = SVC(gamma='auto')   

 

In [42]: model.fit(data[cols], np.sign(data['Returns']))   

Out[42]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 

           decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', 

           max_iter=-1, probability=False, random_state=None, shrinking=True, 

           tol=0.001, verbose=False) 

 

In [43]: data['Prediction'] = model.predict(data[cols])   

 

In [44]: data['Strategy'] = data['Prediction'] * data['Returns']   

 

In [45]: data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot( 

                 figsize=(10, 6));  

Instantiates the model object.



Fits the model, given the features and the label data (all directional).

Uses the fitted model to create the predictions (in-sample), which are
the positions of the trading strategy at the same time (long or short).

Calculates the log returns of the trading strategy given the prediction
values and the benchmark log returns.

Plots the performance of the ML-based trading strategy compared to the
performance of the passive benchmark investment.

Figure 1-2. ML-based algorithmic trading strategy vs. passive benchmark investment in Apple Inc.
stock

The simplified approach taken here does not account for transaction costs,
nor does it separate the data set into training and testing subsets. However, it
shows how straightforward the application of ML algorithms to financial



data is, at least in a technical sense; practically, a number of important topics
need to be considered (see López de Prado (2018)).



AI-FIRST FINANCE
AI will reshape finance in a way that other fields have been reshaped already. The
availability of large amounts of financial data via programmatic APIs functions as an
enabler in this context. Basic methods from AI, ML, and DL are introduced in
Chapter 13 and applied to algorithmic trading in Chapters 15 and 16. A proper treatment
of AI-first finance, however, would require a book fully dedicated to the topic.

AI in finance, as a natural extension of data-driven finance, is for sure a
fascinating and exciting field, both from a research and a practitioner’s
point of view. Although this book uses several methods from AI, ML, and
DL in different contexts, overall the focus lies — in line with the subtitle of
the book — on the fundamental Python techniques and approaches needed
for data-driven finance. These are, however, equally important for AI-first
finance.



Conclusion
Python as a language — and even more so as an ecosystem — is an ideal
technological framework for the financial industry as whole and the
individual working in finance alike. It is characterized by a number of
benefits, like an elegant syntax, efficient development approaches, and
usability for prototyping as well as production. With its huge amount of
available packages, libraries, and tools, Python seems to have answers to
most questions raised by recent developments in the financial industry in
terms of analytics, data volumes and frequency, compliance and regulation,
as well as technology itself. It has the potential to provide a single,
powerful, consistent framework with which to streamline end-to-end
development and production efforts even across larger financial institutions.

In addition, Python has become the programming language of choice for
artificial intelligence in general and machine and deep learning in particular.
Python is therefore the right language for data-driven finance as well as for
AI-first finance, two recent trends that are about to reshape finance and the
financial industry in fundamental ways.



Further Resources
The following books cover several aspects only touched upon in this
chapter in more detail (e.g., Python tools, derivatives analytics, machine
learning in general, and machine learning in finance):

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

López de Prado, Marcos (2018). Advances in Financial Machine
Learning. Hoboken, NJ: John Wiley & Sons.

VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol,
CA: O’Reilly.

When it comes to algorithmic trading, the author’s company offers a range
of online training programs that focus on Python and other tools and
techniques required in this rapidly growing field:

http://pyalgo.tpq.io

http://certificate.tpq.io

Sources referenced in this chapter are, among others, the following:
Ding, Cubillas (2010). “Optimizing the OTC Pricing and Valuation
Infrastructure.” Celent.

Lewis, Michael (2014). Flash Boys. New York: W. W. Norton &
Company.

Patterson, Scott (2010). The Quants. New York: Crown Business.

Python, for example, is a major language used in the Master of Financial Engineering Program at
Baruch College of the City University of New York. The first edition of this book is in use at a
large number of universities around the world to teach Python for financial analysis and
application building.

1

2

http://dawp.tpq.io/
http://pyalgo.tpq.io/
http://certificate.tpq.io/
http://mfe.baruch.cuny.edu/


See http://wiki.python.org/moin/BeginnersGuide, where you will find links to many valuable
resources for both developers and non-developers getting started with Python.

http://wiki.python.org/moin/BeginnersGuide


Chapter 2. Python Infrastructure

In building a house, there is the problem of the selection of wood.
It is essential that the carpenter’s aim be to carry equipment that will cut
well and, when he has time, to sharpen that equipment.
Miyamoto Musashi (The Book of Five Rings)

For someone new to Python, Python deployment might seem all but
straightforward. The same holds true for the wealth of libraries and
packages that can be installed optionally. First of all, there is not only one
Python. Python comes in many different flavors, like CPython, Jython,
IronPython, and PyPy. Then there is the divide between Python 2.7 and the
3.x world.1

Even after you’ve decided on a version, deployment is difficult for a
number of additional reasons:

The interpreter (a standard CPython installation) only comes with the
so-called standard library (e.g., covering typical mathematical
functions)

Optional Python packages need to be installed separately — and there
are hundreds of them

Compiling/building such nonstandard packages on your own can be
tricky due to dependencies and operating system–specific requirements

Taking care of these dependencies and of version consistency over
time (i.e., maintenance) is often tedious and time consuming

Updates and upgrades for certain packages might necessitate
recompiling a multitude of other packages

Changing or replacing one package might cause trouble in (many)
other places



Fortunately, there are tools and strategies available that can help. This
chapter covers the following types of technologies that help with Python
deployment:

Package managers
Package managers like pip and conda help with the installing,
updating, and removing of Python packages; they also help with
version consistency of different packages.

Virtual environment managers
A virtual environment manager like virtualenv or conda allows you
to manage multiple Python installations in parallel (e.g., to have both a
Python 2.7 and 3.7 install on a single machine or to test the most
recent development version of a fancy Python package without risk).2

Containers
Docker containers represent complete filesystems containing all the
pieces of a system needed to run certain software, like code, runtime,
or system tools. For example, you can run an Ubuntu 18.04 operating
system with a Python 3.7 install and the respective Python code in a
Docker container hosted on a machine running macOS or Windows
10.

Cloud instances
Deploying Python code for financial applications generally requires
high availability, security, and also performance; these requirements
can typically only be met by the use of professional compute and
storage infrastructure that is nowadays available at attractive
conditions in the form of fairly small to really large and powerful
cloud instances. One benefit of a cloud instance (i.e., a virtual server)
compared to a dedicated server rented longer-term is that users
generally get charged only for the hours of actual usage; another
advantage is that such cloud instances are available literally in a
minute or two if needed, which helps with agile development and also
with scalability.

The structure of this chapter is as follows:

https://pypi.python.org/pypi/pip
http://conda.pydata.org/docs/intro.html
https://pypi.python.org/pypi/virtualenv
http://docker.com/


“conda as a Package Manager”
This section introduces conda as a package manager for Python.

“conda as a Virtual Environment Manager”
This section focuses on conda’s capabilities as a virtual environment
manager.

“Using Docker Containers”
This section gives a brief overview of Docker as a containerization
technology and focuses on the building of an Ubuntu-based container
with a Python 3.7 installation.

“Using Cloud Instances”
The section shows how to deploy Python and Jupyter Notebook — a
powerful, browser-based tool suite for Python development — in the
cloud.

The goal of this chapter is to set up a proper Python installation with the
most important tools as well as numerical, data analysis, and visualization
packages on a professional infrastructure. This combination then serves as
the backbone for implementing and deploying the Python code in later
chapters, be it interactive financial analytics code or code in the form of
scripts and modules.



conda as a Package Manager
Although conda can be installed standalone, an efficient way of doing it is
via Miniconda, a minimal Python distribution including conda as a package
and virtual environment manager.



Installing Miniconda
Miniconda is available for Windows, macOS, and Linux. You can
download the different versions from the Miniconda webpage. In what
follows, the Python 3.7 64-bit version is assumed. The main example in this
section is a session in an Ubuntu-based Docker container which downloads
the Linux 64-bit installer via wget and then installs Miniconda. The code as
shown should work — perhaps with minor modifications — on any other
Linux- or macOS-based machine as well:

$ docker run -ti -h py4fi -p 11111:11111 ubuntu:latest /bin/bash 

 

root@py4fi:/# apt-get update; apt-get upgrade -y 

... 

root@py4fi:/# apt-get install -y bzip2 gcc wget 

... 

root@py4fi:/# cd root 

root@py4fi:~# wget \ 

> https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \ 

> -O miniconda.sh 

... 

HTTP request sent, awaiting response... 200 OK 

Length: 62574861 (60M) [application/x-sh] 

Saving to: 'miniconda.sh' 

 

miniconda.sh         100%[====================>]  59.68M  5.97MB/s    in 11s 

 

2018-09-15 09:44:28 (5.42 MB/s) - 'miniconda.sh' saved [62574861/62574861] 

 

root@py4fi:~# bash miniconda.sh 

 

Welcome to Miniconda3 4.5.11 

 

In order to continue the installation process, please review the license 

agreement. 

Please, press ENTER to continue 

>>>

Simply pressing the Enter key starts the installation process. After
reviewing the license agreement, approve the terms by answering yes:

... 

Do you accept the license terms? [yes|no] 

[no] >>> yes 

 

Miniconda3 will now be installed into this location: 

/root/miniconda3 

 

  - Press ENTER to confirm the location 

https://conda.io/miniconda.html


  - Press CTRL-C to abort the installation 

  - Or specify a different location below 

 

[/root/miniconda3] >>> 

PREFIX=/root/miniconda3 

installing: python-3.7. ... 

... 

installing: requests-2.19.1-py37_0 ... 

installing: conda-4.5.11-py37_0 ... 

installation finished.

After you have agreed to the licensing terms and have confirmed the install
location you should allow Miniconda to prepend the new Miniconda install
location to the PATH environment variable by answering yes once again:

Do you wish the installer to prepend the Miniconda3 install location 

to PATH in your /root/.bashrc ? [yes|no] 

[no] >>> yes 

 

Appending source /root/miniconda3/bin/activate to /root/.bashrc 

A backup will be made to: /root/.bashrc-miniconda3.bak 

 

 

For this change to become active, you have to open a new terminal. 

 

Thank you for installing Miniconda3! 

root@py4fi:~#

After that, you might want to upgrade conda as well as Python:3

root@py4fi:~# export PATH="/root/miniconda3/bin/:$PATH" 

root@py4fi:~# conda update -y conda python 

... 

root@py4fi:~# echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc 

root@py4fi:~# bash

After this rather simple installation procedure, you’ll have a basic Python
install as well as conda available. The basic Python install comes with some
nice batteries included, like the SQLite3 database engine. You might try out
whether you can start Python in a new shell instance after appending the
relevant path to the respective environment variable (as done previously):

root@py4fi:~# python 

Python 3.7.0 (default, Jun 28 2018, 13:15:42) 

[GCC 7.2.0] :: Anaconda, Inc. on linux 

Type "help", "copyright", "credits" or "license" for more information. 

>>> print('Hello Python for Finance World.') 

Hello Python for Finance World. 

https://sqlite.org/


>>> exit() 

root@py4fi:~#



Basic Operations with conda
conda can be used to efficiently handle, among other things, the installing,
updating, and removing of Python packages. The following list provides an
overview of the major functions:

Installing Python x.x
conda install python=x.x

Updating Python
conda update python

Installing a package
conda install $PACKAGE_NAME

Updating a package
conda update $PACKAGE_NAME

Removing a package
conda remove $PACKAGE_NAME

Updating conda itself
conda update conda

Searching for packages
conda search $SEARCH_TERM

Listing installed packages
conda list

Given these capabilities, installing, for example, NumPy — one of the most
important libraries of the so-called scientific stack — requires a single
command only. When the installation takes place on a machine with an Intel
processor, the procedure automatically installs the Intel Math Kernel
Library (mkl), which speeds up numerical operations not only for NumPy but
also for a few other scientific Python packages:4

https://docs.continuum.io/mkl-optimizations/


root@py4fi:~# conda install numpy 

Solving environment: done 

 

## Package Plan ## 

 

  environment location: /root/miniconda3 

 

  added / updated specs: 

    - numpy 

 

 

The following packages will be downloaded: 

 

    package                    |            build 

    ---------------------------|----------------- 

    mkl-2019.0                 |              117       204.4 MB 

    intel-openmp-2019.0        |              117         721 KB 

    mkl_random-1.0.1           |   py37h4414c95_1         372 KB 

    libgfortran-ng-7.3.0       |       hdf63c60_0         1.3 MB 

    numpy-1.15.1               |   py37h1d66e8a_0          37 KB 

    numpy-base-1.15.1          |   py37h81de0dd_0         4.2 MB 

    blas-1.0                   |              mkl           6 KB 

    mkl_fft-1.0.4              |   py37h4414c95_1         149 KB 

    ------------------------------------------------------------ 

                                           Total:       211.1 MB 

 

The following NEW packages will be INSTALLED: 

 

    blas:           1.0-mkl 

    intel-openmp:   2019.0-117 

    libgfortran-ng: 7.3.0-hdf63c60_0 

    mkl:            2019.0-117 

    mkl_fft:        1.0.4-py37h4414c95_1 

    mkl_random:     1.0.1-py37h4414c95_1 

    numpy:          1.15.1-py37h1d66e8a_0 

    numpy-base:     1.15.1-py37h81de0dd_0 

 

Proceed ([y]/n)? y 

 

 

Downloading and Extracting Packages 

mkl-2019.0           | 204.4 MB  | ####################################### | 100% 

... 

numpy-1.15.1         | 37 KB     | ####################################### | 100% 

numpy-base-1.15.1    | 4.2 MB    | ####################################### | 100% 

... 

root@py4fi:~#

Multiple packages can also be installed at once. The -y flag indicates that
all (potential) questions shall be answered with yes:

root@py4fi:/# conda install -y ipython matplotlib pandas pytables scikit-learn \ 

> scipy 

... 

pytables-3.4.4       | 1.5 MB    | ####################################### | 100% 

kiwisolver-1.0.1     | 83 KB     | ####################################### | 100% 

icu-58.2             | 22.5 MB   | ####################################### | 100% 

Preparing transaction: done 



Verifying transaction: done 

Executing transaction: done 

root@py4fi:~#

After the resulting installation procedure, some of the most important
libraries for financial analytics are available in addition to the standard
ones. These include:

IPython

An improved interactive Python shell

matplotlib

The standard plotting library in Python

NumPy

For efficient handling of numerical arrays

pandas

For management of tabular data, like financial time series data

PyTables

A Python wrapper for the HDF5 library

scikit-learn

A package for machine learning and related tasks

SciPy

A collection of scientific classes and functions (installed as a
dependency)

This provides a basic tool set for data analysis in general and financial
analytics in particular. The next example uses IPython and draws a set of
pseudo-random numbers with NumPy:

 

root@py4fi:~# ipython 

Python 3.7.0 (default, Jun 28 2018, 13:15:42) 

Type 'copyright', 'credits' or 'license' for more information 

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help. 

 

In [1]: import numpy as np 

 

http://ipython.org/
http://matplotlib.org/
http://numpy.org/
http://pandas.pydata.org/
http://pytables.org/
http://hdfgroup.org/
http://scikit-learn.org/
http://scipy.org/


In [2]: np.random.seed(100) 

 

In [3]: np.random.standard_normal((5, 4)) 

Out[3]: 

array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604], 

       [ 0.98132079,  0.51421884,  0.22117967, -1.07004333], 

       [-0.18949583,  0.25500144, -0.45802699,  0.43516349], 

       [-0.58359505,  0.81684707,  0.67272081, -0.10441114], 

       [-0.53128038,  1.02973269, -0.43813562, -1.11831825]]) 

 

In [4]: exit 

root@py4fi:~# 

Executing conda list shows which packages are installed:

root@py4fi:~# conda list 

# packages in environment at /root/miniconda3: 

# 

# Name                    Version                   Build  Channel 

asn1crypto                0.24.0                   py37_0 

backcall                  0.1.0                    py37_0 

blas                      1.0                         mkl 

blosc                     1.14.4               hdbcaa40_0 

bzip2                     1.0.6                h14c3975_5 

... 

python                    3.7.0                hc3d631a_0 

... 

wheel                     0.31.1                   py37_0 

xz                        5.2.4                h14c3975_4 

yaml                      0.1.7                had09818_2 

zlib                      1.2.11               ha838bed_2 

root@py4fi:~#

If a package is not needed anymore, it is efficiently removed with conda
remove:

root@py4fi:~# conda remove scikit-learn 

Solving environment: done 

 

## Package Plan ## 

 

  environment location: /root/miniconda3 

 

  removed specs: 

    - scikit-learn 

 

 

The following packages will be REMOVED: 

 

    scikit-learn: 0.19.1-py37hedc7406_0 

 

Proceed ([y]/n)? y 

 

Preparing transaction: done 

Verifying transaction: done 



Executing transaction: done 

root@py4fi:~#

conda as a package manager is already quite useful. However, its full power
only becomes evident when adding virtual environment management to the
mix.



EASY PACKAGE MANAGEMENT
Using conda as a package manager makes installing, updating, and removing Python
packages a pleasant experience. There is no need to take care of building and compiling
packages on your own — which can be tricky sometimes, given the list of dependencies
a package specifies and the specifics to be considered on different operating systems.



conda as a Virtual Environment Manager
Depending on the version of the installer you choose, Miniconda provides a
default Python 2.7 or 3.7 installation. The virtual environment management
capabilities of conda allow one, for example, to add to a Python 3.7 default
installation a completely separate installation of Python 2.7.x. To this end,
conda offers the following functionality:

Creating a virtual environment
conda create --name $ENVIRONMENT_NAME

Activating an environment
conda activate $ENVIRONMENT_NAME

Deactivating an environment
conda deactivate $ENVIRONMENT_NAME

Removing an environment
conda env remove --name $ENVIRONMENT_NAME

Exporting to an environment file
conda env export > $FILE_NAME

Creating an environment from a file
conda env create -f $FILE_NAME

Listing all environments
conda info --envs

As a simple illustration, the example code that follows creates an
environment called py27, installs IPython, and executes a line of Python
2.7.x code:

root@py4fi:~# conda create --name py27 python=2.7 

Solving environment: done 

 

## Package Plan ## 



 

  environment location: /root/miniconda3/envs/py27 

 

  added / updated specs: 

    - python=2.7 

 

 

The following NEW packages will be INSTALLED: 

 

    ca-certificates: 2018.03.07-0 

... 

    python:          2.7.15-h1571d57_0 

... 

    zlib:            1.2.11-ha838bed_2 

 

Proceed ([y]/n)? y 

 

Preparing transaction: done 

Verifying transaction: done 

Executing transaction: done 

# 

# To activate this environment, use: 

# > conda activate py27 

# 

# To deactivate an active environment, use: 

# > conda deactivate 

# 

 

root@py4fi:~#

Notice how the prompt changes to include (py27) after the activation of the
environment:

root@py4fi:~# conda activate py27 

(py27) root@py4fi:~# conda install ipython 

Solving environment: done 

... 

Executing transaction: done 

(py27) root@py4fi:~#

Finally, this allows you to use IPython with Python 2.7 syntax:

 

(py27) root@py4fi:~# ipython 

Python 2.7.15 |Anaconda, Inc.| (default, May  1 2018, 23:32:55) 

Type "copyright", "credits" or "license" for more information. 

 

IPython 5.8.0 -- An enhanced Interactive Python. 

?         -> Introduction and overview of IPython's features. 

%quickref -> Quick reference. 

help      -> Python's own help system. 

object?   -> Details about 'object', use 'object??' for extra details. 

 

In [1]: print "Hello Python for Finance World!" 

Hello Python for Finance World! 

 



In [2]: exit 

(py27) root@py4fi:~# 

As this example demonstrates, using conda as a virtual environment
manager allows you to install different Python versions alongside each
other. It also allows you to install different versions of certain packages.
The default Python install is not influenced by such a procedure, nor are
other environments which might exist on the same machine. All available
environments can be shown via conda env list:

(py27) root@py4fi:~# conda env list 

# conda environments: 

# 

base                     /root/miniconda3 

py27                  *  /root/miniconda3/envs/py27 

 

(py27) root@py4fi:~#

Sometimes it is necessary to share environment information with others or
to use environment information on multiple machines. To this end, one can
export the installed packages list to a file with conda env export. This
only works properly by default if the machines use the same operating
system, since the build versions are specified in the resulting YAML file,
but they can be deleted to only specify the package version:

(py27) root@py4fi:~# conda env export --no-builds > py27env.yml 

(py27) root@py4fi:~# cat py27env.yml 

name: py27 

channels: 

  - defaults 

dependencies: 

  - backports=1.0 

... 

  - python=2.7.15 

... 

  - zlib=1.2.11 

prefix: /root/miniconda3/envs/py27 

 

(py27) root@py4fi:~#

Often a virtual environment, which is technically not that much more than a
certain (sub)folder structure, is created to do some quick tests.5 In such a
case, the environment is easily removed after deactivation via conda env
remove:



(py27) root@py4fi:/# conda deactivate 

root@py4fi:~# conda env remove -y --name py27 

 

Remove all packages in environment /root/miniconda3/envs/py27: 

 

 

## Package Plan ## 

 

  environment location: /root/miniconda3/envs/py27 

 

 

The following packages will be REMOVED: 

 

    backports:                          1.0-py27_1 

... 

    zlib:                               1.2.11-ha838bed_2 

 

root@py4fi:~#

This concludes the overview of conda as a virtual environment manager.



EASY ENVIRONMENT MANAGEMENT
conda does not only help with managing packages; it is also a virtual environment
manager for Python. It simplifies the creation of different Python environments,
allowing you to have multiple versions of Python and optional packages available on the
same machine without them influencing each other in any way. conda also allows you to
export environment information so you can easily replicate it on multiple machines or
share it with others.



Using Docker Containers
Docker containers have taken the IT world by storm. Although the
technology is still relatively young, it has established itself as one of the
benchmarks for the efficient development and deployment of almost any
kind of software application.

For the purposes of this book it suffices to think of a Docker container as a
separate (“containerized”) filesystem that includes an operating system
(e.g., Ubuntu Server 18.04), a (Python) runtime, additional system and
development tools, as well as further (Python) libraries and packages as
needed. Such a Docker container might run on a local machine with
Windows 10 or on a cloud instance with a Linux operating system, for
instance.

This section does not go into all the exciting details of Docker containers. It
is rather a concise illustration of what the Docker technology can do in the
context of Python deployment.6

http://docker.com/


Docker Images and Containers
However, before moving on to the illustration, two fundamental concepts
need to be distinguished when talking about Docker. The first is a Docker
image, which can be compared to a Python class. The second is a Docker
container, which can be compared to an instance of the respective Python
class.7

On a more technical level, you find the following definition for an image in
the Docker glossary:

Docker images are the basis of containers. An Image is an ordered
collection of root filesystem changes and the corresponding execution
parameters for use within a container runtime. An image typically
contains a union of layered filesystems stacked on top of each other. An
image does not have state and it never changes.

Similarly, you find the following definition for a container in the Docker
glossary, which makes the analogy to Python classes and instances of such
classes transparent:

A container is a runtime instance of a Docker image. A Docker container
consists of: a Docker image, an execution environment, and a standard
set of instructions.

Depending on the operating system, the installation of Docker is somewhat
different. That is why this section does not go into the details. More
information and further links are found on the About Docker CE page.

https://docs.docker.com/engine/reference/glossary/
https://docs.docker.com/install/


Building an Ubuntu and Python Docker Image
This section illustrates the building of a Docker image based on the latest
version of Ubuntu, which includes Miniconda as well as a few important
Python packages. In addition, it does some Linux housekeeping by updating
the Linux packages index, upgrading packages if required, and installing
certain additional system tools. To this end, two scripts are needed. One is a
bash script that does all the work on the Linux level.8 The other is a so-
called Dockerfile, which controls the building procedure for the image
itself.

The bash script in Example 2-1 that does the installing consists of three
major parts. The first part handles the Linux housekeeping. The second part
installs Miniconda, while the third part installs optional Python packages.
There are also more detailed comments inline.

Example 2-1. Script installing Python and optional packages
#!/bin/bash 

# 

# Script to Install 

# Linux System Tools and 

# Basic Python Components 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

# GENERAL LINUX 

apt-get update  # updates the package index cache 

apt-get upgrade -y  # updates packages 

# installs system tools 

apt-get install -y bzip2 gcc git htop screen vim wget 

apt-get upgrade -y bash  # upgrades bash if necessary 

apt-get clean  # cleans up the package index cache 

 

# INSTALL MINICONDA 

# downloads Miniconda 

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \ 

  Miniconda.sh 

bash Miniconda.sh -b  # installs it 

rm -rf Miniconda.sh  # removes the installer 

export PATH="/root/miniconda3/bin:$PATH"  # prepends the new path 

 

# INSTALL PYTHON LIBRARIES 

conda update -y conda python # updates conda & Python (if required) 

conda install -y pandas  # installs pandas 

conda install -y ipython  # installs IPython shell



The Dockerfile in Example 2-2 uses the bash script in Example 2-1 to build
a new Docker image. It also has its major parts commented inline.

Example 2-2. Dockerfile to build the image
# 

# Building a Docker Image with 

# the Latest Ubuntu Version and 

# Basic Python Install 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

 

# latest Ubuntu version 

FROM ubuntu:latest 

 

# information about maintainer 

MAINTAINER yves 

 

# add the bash script 

ADD install.sh / 

 

# change rights for the script 

RUN chmod u+x /install.sh 

 

# run the bash script 

RUN /install.sh 

 

# prepend the new path 

ENV PATH /root/miniconda3/bin:$PATH 

 

# execute IPython when container is run 

CMD ["ipython"]

If these two files are in a single folder and Docker is installed, then the
building of the new Docker image is straightforward. Here, the tag
ubuntupython is used for the image. This tag is needed to reference the
image, for example when running a container based on it:

~/Docker$ docker build -t py4fi:basic . 

 

... 

 

Removing intermediate container 5fec0c9b2239 

 ---> accee128d9e9 

Step 6/7 : ENV PATH /root/miniconda3/bin:$PATH 

 ---> Running in a2bb97686255 

Removing intermediate container a2bb97686255 

 ---> 73b00c215351 

Step 7/7 : CMD ["ipython"] 

 ---> Running in ec7acd90c991 

Removing intermediate container ec7acd90c991 

 ---> 6c36b9117cd2 

Successfully built 6c36b9117cd2 



Successfully tagged py4fi:basic 

~/Docker$

Existing Docker images can be listed via docker images. The new image
should be at the top of the list:

(py4fi) ~/Docker$ docker images 

REPOSITORY       TAG             IMAGE ID            CREATED              SIZE 

py4fi            basic           f789dd230d6f        About a minute ago   1.79GB 

ubuntu           latest          cd6d8154f1e1        9 days ago           84.1MB 

(py4fi) ~/Docker$

Successfully building the py4fi:basic allows you to run the respective
Docker container with docker run. The parameter combination -ti is
needed for interactive processes running within a Docker container, like a
shell process (see the docker run reference page):

~/Docker$ docker run -ti py4fi:basic 

Python 3.7.0 (default, Jun 28 2018, 13:15:42) 

Type 'copyright', 'credits' or 'license' for more information 

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help. 

 

In [1]: import numpy as np 

 

In [2]: a = np.random.standard_normal((5, 3)) 

 

In [3]: import pandas as pd 

 

In [4]: df = pd.DataFrame(a, columns=['a', 'b', 'c']) 

 

In [5]: df 

Out[5]: 

          a         b         c 

0 -1.412661 -0.881592  1.704623 

1 -1.294977  0.546676  1.027046 

2  1.156361  1.979057  0.989772 

3  0.546736 -0.479821  0.693907 

4 -1.972943 -0.193964  0.769500 

 

In [6]:

Exiting IPython will exit the container as well since it is the only
application running within the container. However, you can detach from a
container by typing Ctrl-P+Ctrl-Q.

The docker ps command will still show the running container (and any
other currently running containers) after you’ve detached from it:

https://docs.docker.com/engine/reference/run/


~/Docker$ docker ps 

CONTAINER ID  IMAGE          COMMAND      CREATED             STATUS 

e815df8f0f4d  py4fi:basic    "ipython"    About a minute ago  Up About a minute 

4518917de7dc  ubuntu:latest  "/bin/bash"  About an hour ago   Up About an hour 

d081b5c7add0  ubuntu:latest  "/bin/bash"  21 hours ago        Up 21 hours 

~/Docker$

Attaching to a Docker container is accomplished with the command docker
attach $CONTAINER_ID (notice that a few letters of the $CONTAINER_ID are
enough):

~/Docker$ docker attach e815d 

 

In [6]: df.info() 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 5 entries, 0 to 4 

Data columns (total 3 columns): 

a    5 non-null float64 

b    5 non-null float64 

c    5 non-null float64 

dtypes: float64(3) 

memory usage: 200.0 bytes 

 

In [7]: exit 

~/Docker$

The exit command terminates IPython and stops the Docker container. It
can be removed with docker rm:

~/Docker$ docker rm e815d 

e815d 

~/Docker$

Similarly, the Docker image py4fi:basic can be removed via docker rmi
if not needed any longer. While containers are relatively lightweight, single
images might consume quite a bit of storage. In the case of the
py4fi:basic image, the size is close to 2 GB. That is why you might want
to regularly clean up the list of Docker images:

~/Docker$ docker rmi 6c36b9117cd2

Of course, there is much more to say about Docker containers and their
benefits in certain application scenarios. But for the purposes of this book,
it’s enough to know that they provide a modern approach to deploy Python,



to do Python development in a completely separate (containerized)
environment, and to ship codes for algorithmic trading.



BENEFITS OF DOCKER CONTAINERS
If you are not yet using Docker containers, you should consider doing so. They provide
a number of benefits when it comes to Python deployment and development efforts, not
only when working locally but in particular when working with remote cloud instances
and servers deploying code for algorithmic trading.



Using Cloud Instances
This section shows how to set up a full-fledged Python infrastructure on a
DigitalOcean cloud instance. There are many other cloud providers out
there, among them the leading provider, Amazon Web Services (AWS).
However, DigitalOcean is well known for its simplicity and also its
relatively low rates for its smaller cloud instances, called Droplets. The
smallest Droplet, which is generally sufficient for exploration and
development purposes, only costs 5 USD per month or 0.007 USD per hour.
Usage is charged by the hour so that one can easily spin up a Droplet for 2
hours, say, destroy it afterward, and get charged just 0.014 USD.9

The goal of this section is to set up a Droplet on DigitalOcean that has a
Python 3.7 installation plus typically needed packages (e.g., NumPy, pandas)
in combination with a password-protected and Secure Sockets Layer
(SSL)–encrypted Jupyter Notebook server installation. This server
installation will provide three major tools that can be used via a regular
browser:

Jupyter Notebook
A popular interactive development environment that features a
selection of different language kernels (e.g., for Python, R, and Julia).

Terminal
A system shell implementation accessible via the browser that allows
for all typical system administration tasks and for usage of helpful
tools like Vim and git.

Editor
A browser-based file editor with syntax highlighting for many
different programming languages and file types as well as typical
text/code editing capabilities.

Having Jupyter Notebook installed on a Droplet allows you to do Python
development and deployment via the browser, circumventing the need to

http://digitalocean.com/
http://aws.amazon.com/
http://jupyter.org/
http://www.vim.org/download.php
https://git-scm.com/


log in to the cloud instance via Secure Shell (SSH) access.

To accomplish the goal of this section, a number of files are needed:

Server setup script
This script orchestrates all the steps necessary, like, for instance,
copying other files to the Droplet and running them on the Droplet.

Python and Jupyter installation script
This installs Python, additional packages, and Jupyter Notebook, and
starts the Jupyter Notebook server.

Jupyter Notebook configuration file
This file is for the configuration of the Jupyter Notebook server, e.g.,
with respect to password protection.

RSA public and private key files
These two files are needed for the SSL encryption of the Jupyter
Notebook server.

The following subsections work backward through this list of files.



RSA Public and Private Keys
In order to create a secure connection to the Jupyter Notebook server via an
arbitrary browser, an SSL certificate consisting of RSA public and private
keys is needed. In general, one would expect such a certificate to come
from a so-called Certificate Authority (CA). For the purposes of this book,
however, a self-generated certificate is “good enough.”10 A popular tool to
generate RSA key pairs is OpenSSL. The brief interactive session that
follows shows how to generate a certificate appropriate for use with a
Jupyter Notebook server (insert your own values for the country name and
other fields after the prompts):

~/cloud$ openssl req -x509 -nodes -days 365 -newkey \ 

> rsa:1024 -out cert.pem -keyout cert.key 

Generating a 1024 bit RSA private key 

..++++++ 

.......++++++ 

writing new private key to 'cert.key'

You are about to be asked to enter information that will be incorporated into
your certificate request. What you are about to enter is what is called a
Distinguished Name or a DN. There are quite a few fields, but you can
leave some blank and others will have a default value. If you enter ., the
field will be left blank.

Country Name (2 letter code) [AU]:DE 

State or Province Name (full name) [Some-State]:Saarland 

Locality Name (eg, city) []:Voelklingen 

Organization Name (eg, company) [Internet Widgits Pty Ltd]:TPQ GmbH 

Organizational Unit Name (eg, section) []:Python for Finance 

Common Name (e.g. server FQDN or YOUR name) []:Jupyter 

Email Address []:team@tpq.io 

~/cloud$ ls 

cert.key    cert.pem 

~/cloud$

The two files cert.key and cert.pem need to be copied to the Droplet and
need to be referenced by the Jupyter Notebook configuration file. This file
is presented next.

http://bit.ly/2ONvjvw
http://openssl.org/


Jupyter Notebook Configuration File
A public Jupyter Notebook server can be deployed securely as explained in
the documentation. Among other features, Jupyter Notebook can be
password protected. To this end, there is a password hash code–generating
function called passwd() available in the notebook.auth subpackage. The
following code generates a password hash code with jupyter being the
password itself:

~/cloud$ ipython 

Python 3.7.0 (default, Jun 28 2018, 13:15:42) 

Type 'copyright', 'credits' or 'license' for more information 

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help. 

 

In [1]: from notebook.auth import passwd 

 

In [2]: passwd('jupyter') 

Out[2]: 'sha1:d4d34232ac3a:55ea0ffd78cc3299e3e5e6ecc0d36be0935d424b' 

 

In [3]: exit

This hash code needs to be placed in the Jupyter Notebook configuration
file as presented in Example 2-3. The configuration file assumes that the
RSA key files have been copied on the Droplet to the /root/.jupyter/ folder.

Example 2-3. Jupyter Notebook configuration file
# 

# Jupyter Notebook Configuration File 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

# SSL ENCRYPTION 

# replace the following filenames (and files used) with your choice/files 

c.NotebookApp.certfile = u'/root/.jupyter/cert.pem' 

c.NotebookApp.keyfile = u'/root/.jupyter/cert.key' 

 

# IP ADDRESS AND PORT 

# set ip to '*' to bind on all IP addresses of the cloud instance 

c.NotebookApp.ip = '*' 

# it is a good idea to set a known, fixed default port for server access 

c.NotebookApp.port = 8888 

 

# PASSWORD PROTECTION 

# here: 'jupyter' as password 

# replace the hash code with the one for your strong password 

c.NotebookApp.password = 

'sha1:d4d34232ac3a:55ea0ffd78cc3299e3e5e6ecc0d36be0935d424b' 

 

http://bit.ly/2Ka0tfI


# NO BROWSER OPTION 

# prevent Jupyter from trying to open a browser 

c.NotebookApp.open_browser = False



JUPYTER AND SECURITY
Deploying Jupyter Notebook in the cloud principally leads to a number of security
issues since it is a full-fledged development environment accessible via a web browser.
It is therefore of paramount importance to use the security measures that a Jupyter
Notebook server provides by default, like password protection and SSL encryption. But
this is just the beginning; further security measures might be advisable depending on
what exactly is done on the cloud instance.

The next step is to make sure that Python and Jupyter Notebook get
installed on the Droplet.



Installation Script for Python and Jupyter Notebook
The bash script to install Python and Jupyter Notebook is similar to the one
presented in “Using Docker Containers” to install Python via Miniconda in
a Docker container. However, the script in Example 2-4 needs to start the
Jupyter Notebook server as well. All major parts and lines of code are
commented inline.

Example 2-4. Bash script to install Python and to run the Jupyter Notebook
server
#!/bin/bash 

# 

# Script to Install 

# Linux System Tools, 

# Basic Python Packages and 

# Jupyter Notebook Server 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

# GENERAL LINUX 

apt-get update  # updates the package index cache 

apt-get upgrade -y  # updates packages 

apt-get install -y bzip2 gcc git htop screen vim wget  # installs system tools 

apt-get upgrade -y bash  # upgrades bash if necessary 

apt-get clean  # cleans up the package index cache 

 

# INSTALLING MINICONDA 

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \ 

  Miniconda.sh 

bash Miniconda.sh -b  # installs Miniconda 

rm Miniconda.sh  # removes the installer 

# prepends the new path for current session 

export PATH="/root/miniconda3/bin:$PATH" 

# prepends the new path in the shell configuration 

echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc 

echo "conda activate" >> ~/.bashrc 

 

# INSTALLING PYTHON LIBRARIES 

# More packages can/must be added 

# depending on the use case. 

conda update -y conda # updates conda if required 

conda create -y -n py4fi python=3.7  # creates an environment 

source activate py4fi  # activates the new environment 

conda install -y jupyter  # interactive data analytics in the browser 

conda install -y pytables  # wrapper for HDF5 binary storage 

conda install -y pandas  #  data analysis package 

conda install -y matplotlib  # standard plotting library 

conda install -y scikit-learn  # machine learning library 

conda install -y openpyxl  # library for Excel interaction 

conda install -y pyyaml  # library to manage YAML files 

 

pip install --upgrade pip  # upgrades the package manager 



pip install cufflinks  # combining plotly with pandas 

 

# COPYING FILES AND CREATING DIRECTORIES 

mkdir /root/.jupyter 

mv /root/jupyter_notebook_config.py /root/.jupyter/ 

mv /root/cert.* /root/.jupyter 

mkdir /root/notebook 

cd /root/notebook 

 

# STARTING JUPYTER NOTEBOOK 

jupyter notebook --allow-root 

 

# STARTING JUPYTER NOTEBOOK 

# as background process: 

# jupyter notebook --allow-root &

This script needs to be copied to the Droplet and needs to be started by the
orchestration script as described in the next subsection.



Script to Orchestrate the Droplet Setup
The second bash script, which sets up the Droplet, is the shortest one
(Example 2-5). It mainly copies all the other files to the Droplet, whose IP
address is expected as a parameter. In the final line it starts the install.sh
bash script, which in turn does the installation itself and starts the Jupyter
Notebook server.

Example 2-5. Bash script to set up the Droplet
#!/bin/bash 

# 

# Setting up a DigitalOcean Droplet 

# with Basic Python Stack 

# and Jupyter Notebook 

# 

# Python for Finance, 2nd ed. 

# (c) Dr Yves J Hilpisch 

# 

 

# IP ADDRESS FROM PARAMETER 

MASTER_IP=$1 

 

# COPYING THE FILES 

scp install.sh root@${MASTER_IP}: 

scp cert.* jupyter_notebook_config.py root@${MASTER_IP}: 

 

# EXECUTING THE INSTALLATION SCRIPT 

ssh root@${MASTER_IP} bash /root/install.sh

Everything is now in place to give the setup code a try. On DigitalOcean,
create a new Droplet with options similar to these:

Operating system
Ubuntu 18.10 x64 (the newest version available at the time of this
writing)

Size
1 core, 1 GB, 25 GB SSD (the smallest Droplet)

Data center region
Frankfurt (since your author lives in Germany)

SSH key
Add a (new) SSH key for password-less login 11



Droplet name
You can go with the prespecified name or can choose something like
py4fi

Clicking the Create button initiates the Droplet creation process, which
generally takes about one minute. The major outcome of the setup
procedure is the IP address, which might be, for instance, 46.101.156.199 if
you chose Frankfurt as your data center location. Setting up the Droplet
now is as easy as follows:

(py3) ~/cloud$ bash setup.sh 46.101.156.199

The resulting process might take a couple of minutes. It is finished when
there is a message from the Jupyter Notebook server saying something like:

The Jupyter Notebook is running at: https://[all ip addresses on your 

system]:8888/

In any current browser, visiting the following address accesses the running
Jupyter Notebook server (note the https protocol):

https://46.101.156.199:8888

After perhaps requesting that you add a security exception, the Jupyter
Notebook login screen prompting for a password (in our case, jupyter)
should appear. You are now ready to start Python development in the
browser via Jupyter Notebook, IPython via a terminal window, or the text
file editor. Other file management capabilities, such as file upload, deletion
of files, and creation of folders, are also available.



BENEFITS OF THE CLOUD
Cloud instances like those from DigitalOcean and Jupyter Notebook are a powerful
combination, allowing the Python developer and quant to work on and make use of
professional compute and storage infrastructure. Professional cloud and data center
providers make sure that your (virtual) machines are physically secure and highly
available. Using cloud instances also keeps the cost of the exploration and development
phase rather low, since usage generally gets charged by the hour without the need to
enter into a long-term agreement.



Conclusion
Python is the programming language and technology platform of choice,
not only for this book but for almost every leading financial institution.
However, Python deployment can be tricky at best and sometimes even
tedious and nerve-wracking. Fortunately, several technologies that help
with the deployment issue have become available in recent years. The open
source conda helps with both Python package and virtual environment
management. Docker containers go even further, in that complete
filesystems and runtime environments can be easily created in a technically
shielded “sandbox” (i.e., the container). Going even one step further, cloud
providers like DigitalOcean offer compute and storage capacity in
professionally managed and secured data centers within minutes, billed by
the hour. This in combination with a Python 3.7 installation and a secure
Jupyter Notebook server installation provides a professional environment
for Python development and deployment in the context of Python-for-
finance projects.



Further Resources
For Python package management, consult the following resources:

pip package manager page

conda package manager page

Installing Packages page

For virtual environment management, consult these resources:
virtualenv environment manager page

conda Managing Environments page

pipenv package and environment manager

The following resources (among others) provide information about Docker
containers:

Docker home page

Matthias, Karl, and Sean Kane (2015). Docker: Up and Running.
Sebastopol, CA: O’Reilly.

For a concise introduction to and overview of the bash scripting language,
see:

Robbins, Arnold (2016). Bash Pocket Reference. Sebastopol, CA:
O’Reilly.

How to run a public Jupyter Notebook server securely is explained in the
Jupyter Notebook documentation. There is also a hub available that allows
the management of multiple users for a Jupyter Notebook server, called
JupyterHub.

To sign up on DigitalOcean with a 10 USD starting balance in your new
account, visit the page http://bit.ly/do_sign_up. This pays for two months of

https://pypi.python.org/pypi/pip
http://conda.pydata.org/
https://packaging.python.org/installing/
https://pypi.python.org/pypi/virtualenv
http://bit.ly/2KDObMM
https://github.com/pypa/pipenv
http://docker.com/
http://bit.ly/2Ka0tfI
https://jupyterhub.readthedocs.io/en/stable/
http://bit.ly/do_sign_up


usage of the smallest Droplet.

This edition is based on version 3.7 (the latest major release at the time of writing) of CPython,
the original and most popular version of the Python programming language.

A recent project called pipenv combines the capabilities of the package manager pip with those
of the virtual environment manager virtualenv.

The Miniconda installer is in general not as regularly updated as conda and Python themselves.

Installing the metapackage nomkl, e.g. with conda install numpy nomkl, avoids the automatic
installation and usage of mkl and related other packages.

In the official documentation you find the following explanation: “Python ‘Virtual Environments’
allow Python packages to be installed in an isolated location for a particular application, rather
than being installed globally.”

See Matthias and Kane (2015) for a comprehensive introduction to the Docker technology.

If the terms are not yet clear, they will become so in Chapter 6.

Consult Robbins (2016) for a concise introduction to and quick overview of bash scripting. Also
see https://www.gnu.org/software/bash.

New users who sign up via this referral link get a starting credit of 10 USD for DigitalOcean.

With a self-generated certificate you might need to add a security exception when prompted by
the browser.

If you need assistance, visit either “How to Add SSH Keys to Droplets” or “How to Create SSH
Keys with PuTTY on Windows”.
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https://github.com/pypa/pipenv
https://packaging.python.org/installing/#creating-virtual-environments
https://www.gnu.org/software/bash
http://bit.ly/do_sign_up
https://do.co/2DIqnH9
https://do.co/2A0EAL0


Part II. Mastering the Basics

This part of the book is concerned with the basics of Python programming.
The topics covered in this part are fundamental for all other chapters to
follow in subsequent parts and for Python usage in general.

The chapters are organized according to certain topics such that they can be
used as a reference to which the reader can come to look up examples and
details related to the topic of interest:

Chapter 3 focuses on Python data types and structures.

Chapter 4 is about NumPy and its ndarray class.

Chapter 5 is about pandas and its DataFrame class.

Chapter 6 discusses object-oriented programming (OOP) with Python.



Chapter 3. Data Types and
Structures

Bad programmers worry about the code. Good programmers worry about
data structures and their relationships.
Linus Torvalds

This chapter introduces the basic data types and data structures of Python,
and is organized as follows:

“Basic Data Types”
The first section introduces basic data types such as int, float, bool,
and str.

“Basic Data Structures”
The second section introduces the fundamental data structures of
Python (e.g., list objects) and illustrates, among other things, control
structures, functional programming approaches, and anonymous
functions.

The aim of this chapter is to provide a general introduction to Python
specifics when it comes to data types and structures. The reader equipped
with a background from another programing language, say C or Matlab,
should be able to easily grasp the differences that Python usage might bring
along. The topics and idioms introduced here are important and
fundamental for the chapters to come.

The chapter covers the following data types and structures:

Object type Meaning Used for

int Integer value Natural numbers

float Floating-point number Real numbers



Object type Meaning Used for

bool Boolean value Something true or false

str String object Character, word, text

tuple Immutable container Fixed set of objects, record

list Mutable container Changing set of objects

dict Mutable container Key-value store

set Mutable container Collection of unique objects



Basic Data Types
Python is a dynamically typed language, which means that the Python
interpreter infers the type of an object at runtime. In comparison, compiled
languages like C are generally statically typed. In these cases, the type of an
object has to be specified for the object before compile time.1



Integers
One of the most fundamental data types is the integer, or int:

In [1]: a = 10 

        type(a) 

Out[1]: int

The built-in function type provides type information for all objects with
standard and built-in types as well as for newly created classes and objects.
In the latter case, the information provided depends on the description the
programmer has stored with the class. There is a saying that “everything in
Python is an object.” This means, for example, that even simple objects like
the int object just defined have built-in methods. For example, one can get
the number of bits needed to represent the int object in memory by calling
the method bit_length():

In [2]: a.bit_length() 

Out[2]: 4

The number of bits needed increases the higher the integer value is that one
assigns to the object:

In [3]: a = 100000 

        a.bit_length() 

Out[3]: 17

In general, there are so many different methods that it is hard to memorize
all methods of all classes and objects. Advanced Python environments like
IPython provide tab completion capabilities that show all the methods
attached to an object. You simply type the object name followed by a dot
(e.g., a.) and then press the Tab key. This then provides a collection of
methods you can call on the object. Alternatively, the Python built-in
function dir gives a complete list of the attributes and methods of any
object.



A specialty of Python is that integers can be arbitrarily large. Consider, for
example, the googol number . Python has no problem with such large
numbers:

In [4]: googol = 10 ** 100 

        googol 

Out[4]: 10000000000000000000000000000000000000000000000000000000000000000000000000 

        000000000000000000000000000 

 

In [5]: googol.bit_length() 

Out[5]: 333



LARGE INTEGERS
Python integers can be arbitrarily large. The interpreter simply uses as many bits/bytes
as needed to represent the numbers.

Arithmetic operations on integers are also easy to implement:

In [6]: 1 + 4 

Out[6]: 5 

 

In [7]: 1 / 4 

Out[7]: 0.25

 

In [8]: type(1 / 4) 

Out[8]: float



Floats
The last expression returns the mathematically correct result of 0.25,2 which
gives rise to the next basic data type, the float. Adding a dot to an integer
value, like in 1. or 1.0, causes Python to interpret the object as a float.
Expressions involving a float also return a float object in general:3

In [9]: 1.6 / 4 

Out[9]: 0.4 

 

In [10]: type (1.6 / 4) 

Out[10]: float

A float is a bit more involved in that the computerized representation of
rational or real numbers is in general not exact and depends on the specific
technical approach taken. To illustrate what this implies, let us define
another float object, b. float objects like this one are always represented
internally up to a certain degree of accuracy only. This becomes evident
when adding 0.1 to b:

In [11]: b = 0.35 

         type(b) 

Out[11]: float 

 

In [12]: b + 0.1 

Out[12]: 0.44999999999999996

The reason for this is that float objects are internally represented in binary
format; that is, a decimal number 0 < n < 1 is represented by a series of the

form . For certain floating-point numbers the
binary representation might involve a large number of elements or might
even be an infinite series. However, given a fixed number of bits used to
represent such a number — i.e., a fixed number of terms in the
representation series — inaccuracies are the consequence. Other numbers
can be represented perfectly and are therefore stored exactly even with a
finite number of bits available. Consider the following example:



In [13]: c = 0.5 

         c.as_integer_ratio() 

Out[13]: (1, 2)

One-half, i.e., 0.5, is stored exactly because it has an exact (finite) binary

representation as . However, for b = 0.35 one gets something

different than the expected rational number :

In [14]: b.as_integer_ratio() 

Out[14]: (3152519739159347, 9007199254740992)

The precision is dependent on the number of bits used to represent the
number. In general, all platforms that Python runs on use the IEEE 754
double-precision standard — i.e., 64 bits — for internal representation. This
translates into a 15-digit relative accuracy.

Since this topic is of high importance for several application areas in
finance, it is sometimes necessary to ensure the exact, or at least best
possible, representation of numbers. For example, the issue can be of
importance when summing over a large set of numbers. In such a situation,
a certain kind and/or magnitude of representation error might, in aggregate,
lead to significant deviations from a benchmark value.

The module decimal provides an arbitrary-precision object for floating-
point numbers and several options to address precision issues when
working with such numbers:

In [15]: import decimal 

         from decimal import Decimal 

 

In [16]: decimal.getcontext() 

Out[16]: Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, 

          capitals=1, clamp=0, flags=[], traps=[InvalidOperation, DivisionByZero, 

          Overflow]) 

 

In [17]: d = Decimal(1) / Decimal (11) 

         d 

Out[17]: Decimal('0.09090909090909090909090909091')

One can change the precision of the representation by changing the
respective attribute value of the Context object:

http://bit.ly/2S0un95


In [18]: decimal.getcontext().prec = 4   

 

In [19]: e = Decimal(1) / Decimal (11) 

         e 

Out[19]: Decimal('0.09091') 

 

In [20]: decimal.getcontext().prec = 50   

 

In [21]: f = Decimal(1) / Decimal (11) 

         f 

Out[21]: Decimal('0.090909090909090909090909090909090909090909090909091')

Lower precision than default.

Higher precision than default.
If needed, the precision can in this way be adjusted to the exact problem at
hand and one can operate with floating-point objects that exhibit different
degrees of accuracy:

In [22]: g = d + e + f 

         g 

Out[22]: Decimal('0.27272818181818181818181818181909090909090909090909')



ARBITRARY-PRECISION FLOATS
The module decimal provides an arbitrary-precision floating-point number object. In
finance, it might sometimes be necessary to ensure high precision and to go beyond the
64-bit double-precision standard.



Booleans
In programming, evaluating a comparison or logical expression (such as 4
> 3, 4.5 <= 3.25 or (4 > 3) and (3 > 2)) yields one of True or False as
output, two important Python keywords. Others are, for example, def, for,
and if. A complete list of Python keywords is available in the keyword
module:

In [23]: import keyword 

 

In [24]: keyword.kwlist 

Out[24]: ['False', 

          'None', 

          'True', 

          'and', 

          'as', 

          'assert', 

          'async', 

          'await', 

          'break', 

          'class', 

          'continue', 

          'def', 

          'del', 

          'elif', 

          'else', 

          'except', 

          'finally', 

          'for', 

          'from', 

          'global', 

          'if', 

          'import', 

          'in', 

          'is', 

          'lambda', 

          'nonlocal', 

          'not', 

          'or', 

          'pass', 

          'raise', 

          'return', 

          'try', 

          'while', 

          'with', 

          'yield']

True and False are of data type bool, standing for Boolean value. The
following code shows Python’s comparison operators applied to the same



operands with the resulting bool objects:

In [25]: 4 > 3   

Out[25]: True 

 

In [26]: type(4 > 3) 

Out[26]: bool 

 

In [27]: type(False) 

Out[27]: bool 

 

In [28]: 4 >= 3   

Out[28]: True 

 

In [29]: 4 < 3   

Out[29]: False 

 

In [30]: 4 <= 3   

Out[30]: False 

 

In [31]: 4 == 3   

Out[31]: False 

 

In [32]: 4 != 3   

Out[32]: True

Is greater.

Is greater or equal.

Is smaller.

Is smaller or equal.

Is equal.

Is not equal.



Often, logical operators are applied on bool objects, which in turn yields
another bool object:

In [33]: True and True 

Out[33]: True 

 

In [34]: True and False 

Out[34]: False 

 

In [35]: False and False 

Out[35]: False 

 

In [36]: True or True 

Out[36]: True 

 

In [37]: True or False 

Out[37]: True 

 

In [38]: False or False 

Out[38]: False 

 

In [39]: not True 

Out[39]: False 

 

In [40]: not False 

Out[40]: True

Of course, both types of operators are often combined:

In [41]: (4 > 3) and (2 > 3) 

Out[41]: False 

 

In [42]: (4 == 3) or (2 != 3) 

Out[42]: True 

 

In [43]: not (4 != 4) 

Out[43]: True 

 

In [44]: (not (4 != 4)) and (2 == 3) 

Out[44]: False

One major application area is to control the code flow via other Python
keywords, such as if or while (more examples later in the chapter):

In [45]: if 4 > 3:   

             print('condition true')   

         condition true 

 

In [46]: i = 0   

         while i < 4:   

             print('condition true, i = ', i)   

             i += 1   



         condition true, i =  0 

         condition true, i =  1 

         condition true, i =  2 

         condition true, i =  3

If condition holds true, execute code to follow.

The code to be executed if condition holds true.

Initializes the parameter i with 0.

As long as the condition holds true, execute and repeat the code to
follow.

Prints a text and the value of parameter i.

Increases the parameter value by 1; i += 1 is the same as i = i + 1.

Numerically, Python attaches a value of 0 to False and a value of 1 to True.
When transforming numbers to bool objects via the bool() function, a 0
gives False while all other numbers give True:

In [47]: int(True) 

Out[47]: 1 

 

In [48]: int(False) 

Out[48]: 0 

 

In [49]: float(True) 

Out[49]: 1.0

 

In [50]: float(False) 

Out[50]: 0.0

 

In [51]: bool(0) 

Out[51]: False 

 

In [52]: bool(0.0) 



Out[52]: False 

 

In [53]: bool(1) 

Out[53]: True 

 

In [54]: bool(10.5) 

Out[54]: True 

 

In [55]: bool(-2) 

Out[55]: True



Strings
Now that natural and floating-point numbers can be represented, this
subsection turns to text. The basic data type to represent text in Python is
str. The str object has a number of helpful built-in methods. In fact,
Python is generally considered to be a good choice when it comes to
working with texts and text files of any kind and any size. A str object is
generally defined by single or double quotation marks or by converting
another object using the str() function (i.e., using the object’s standard or
user-defined str representation):

In [56]: t = 'this is a string object'

With regard to the built-in methods, you can, for example, capitalize the
first word in this object:

In [57]: t.capitalize() 

Out[57]: 'This is a string object'

Or you can split it into its single-word components to get a list object of
all the words (more on list objects later):

In [58]: t.split() 

Out[58]: ['this', 'is', 'a', 'string', 'object']

You can also search for a word and get the position (i.e., index value) of the
first letter of the word back in a successful case:

In [59]: t.find('string') 

Out[59]: 10

If the word is not in the str object, the method returns -1:

In [60]: t.find('Python') 

Out[60]: -1



Replacing characters in a string is a typical task that is easily accomplished
with the replace() method:

In [61]: t.replace(' ', '|') 

Out[61]: 'this|is|a|string|object'

The stripping of strings — i.e., deletion of certain leading/lagging
characters — is also often necessary:

In [62]: 'http://www.python.org'.strip('htp:/') 

Out[62]: 'www.python.org'

Table 3-1 lists a number of helpful methods of the str object.

Table 3-1. Selected string methods
Method Arguments Returns/result

capitalize () Copy of the string with first letter capitalized

count (sub[, start[,

end]])

Count of the number of occurrences of substring

decode ([encoding[,

errors]])

Decoded version of the string, using encoding (e.g., UTF-
8)

encode ([encoding+[,

errors]])

Encoded version of the string

find (sub[, start[,

end]])

(Lowest) index where substring is found

join (seq) Concatenation of strings in sequence seq

replace (old, new[, count]) Replaces old by new the first count times

split ([sep[, maxsplit]]) List of words in string with sep as separator

splitlines ([keepends]) Separated lines with line ends/breaks if keepends is True

strip (chars) Copy of string with leading/lagging characters in chars
removed



Method Arguments Returns/result

upper () Copy with all letters capitalized



UNICODE STRINGS
A fundamental change from Python 2.7 (used for the first edition of the book) to Python
3.7 (used for this second edition) is the encoding and decoding of string objects and the
introduction of Unicode. This chapter does not go into the many details important in this
context; for the purposes of this book, which mainly deals with numerical data and
standard strings containing English words, this omission seems justified.

http://bit.ly/1x41ytu


Excursion: Printing and String Replacements
Printing str objects or string representations of other Python objects is
usually accomplished by the print() function:

In [63]: print('Python for Finance')   

         Python for Finance 

 

In [64]: print(t)   

         this is a string object 

 

In [65]: i = 0 

         while i < 4: 

             print(i)   

             i += 1 

         0 

         1 

         2 

         3 

 

In [66]: i = 0 

         while i < 4: 

             print(i, end='|')   

             i += 1 

         0|1|2|3|

Prints a str object.

Prints a str object referenced by a variable name.

Prints the string representation of an int object.

Specifies the final character(s) when printing; default is a line break
(\n) as seen before.

Python offers powerful string replacement operations. There is the old way,
via the % character, and the new way, via curly braces ({}) and format().
Both are still applied in practice. This section cannot provide an exhaustive



illustration of all options, but the following code snippets show some
important ones. First, the old way of doing it:

In [67]: 'this is an integer %d' % 15   

Out[67]: 'this is an integer 15' 

 

In [68]: 'this is an integer %4d' % 15   

Out[68]: 'this is an integer   15' 

 

In [69]: 'this is an integer %04d' % 15   

Out[69]: 'this is an integer 0015' 

 

In [70]: 'this is a float %f' % 15.3456   

Out[70]: 'this is a float 15.345600' 

 

In [71]: 'this is a float %.2f' % 15.3456   

Out[71]: 'this is a float 15.35' 

 

In [72]: 'this is a float %8f' % 15.3456   

Out[72]: 'this is a float 15.345600' 

 

In [73]: 'this is a float %8.2f' % 15.3456   

Out[73]: 'this is a float    15.35' 

 

In [74]: 'this is a float %08.2f' % 15.3456   

Out[74]: 'this is a float 00015.35' 

 

In [75]: 'this is a string %s' % 'Python'   

Out[75]: 'this is a string Python' 

 

In [76]: 'this is a string %10s' % 'Python'   

Out[76]: 'this is a string     Python'

int object replacement.

With fixed number of characters.

With leading zeros if necessary.

float object replacement.

With fixed number of decimals.



With fixed number of characters (and filled-up decimals).

With fixed number of characters and decimals …

… and leading zeros if necessary.

str object replacement.

With fixed number of characters.
Now, here are the same examples implemented in the new way. Notice the
slight differences in the output in some places:

In [77]: 'this is an integer {:d}'.format(15) 

Out[77]: 'this is an integer 15' 

 

In [78]: 'this is an integer {:4d}'.format(15) 

Out[78]: 'this is an integer   15' 

 

In [79]: 'this is an integer {:04d}'.format(15) 

Out[79]: 'this is an integer 0015' 

 

In [80]: 'this is a float {:f}'.format(15.3456) 

Out[80]: 'this is a float 15.345600' 

 

In [81]: 'this is a float {:.2f}'.format(15.3456) 

Out[81]: 'this is a float 15.35' 

 

In [82]: 'this is a float {:8f}'.format(15.3456) 

Out[82]: 'this is a float 15.345600' 

 

In [83]: 'this is a float {:8.2f}'.format(15.3456) 

Out[83]: 'this is a float    15.35' 

 

In [84]: 'this is a float {:08.2f}'.format(15.3456) 

Out[84]: 'this is a float 00015.35' 

 

In [85]: 'this is a string {:s}'.format('Python') 

Out[85]: 'this is a string Python' 

 

In [86]: 'this is a string {:10s}'.format('Python') 

Out[86]: 'this is a string Python    '



String replacements are particularly useful in the context of multiple
printing operations where the printed data is updated, for instance, during a
while loop:

In [87]: i = 0 

         while i < 4: 

             print('the number is %d' % i) 

             i += 1 

         the number is 0 

         the number is 1 

         the number is 2 

         the number is 3 

 

In [88]: i = 0 

         while i < 4: 

             print('the number is {:d}'.format(i)) 

             i += 1 

         the number is 0 

         the number is 1 

         the number is 2 

         the number is 3



Excursion: Regular Expressions
A powerful tool when working with str objects is regular expressions.
Python provides such functionality in the module re:

In [89]: import re

Suppose a financial analyst is faced with a large text file, such as a CSV
file, which contains certain time series and respective date-time
information. More often than not, this information is delivered in a format
that Python cannot interpret directly. However, the date-time information
can generally be described by a regular expression. Consider the following
str object, containing three date-time elements, three integers, and three
strings. Note that triple quotation marks allow the definition of str objects
over multiple rows:

In [90]: series = """ 

         '01/18/2014 13:00:00', 100, '1st'; 

         '01/18/2014 13:30:00', 110, '2nd'; 

         '01/18/2014 14:00:00', 120, '3rd' 

         """

The following regular expression describes the format of the date-time
information provided in the str object:4

In [91]: dt = re.compile("'[0-9/:\s]+'")  # datetime

Equipped with this regular expression, one can go on and find all the date-
time elements. In general, applying regular expressions to str objects also
leads to performance improvements for typical parsing tasks:

In [92]: result = dt.findall(series) 

         result 

Out[92]: ["'01/18/2014 13:00:00'", "'01/18/2014 13:30:00'", "'01/18/2014

          14:00:00'"]



REGULAR EXPRESSIONS
When parsing str objects, consider using regular expressions, which can bring both
convenience and performance to such operations.

The resulting str objects can then be parsed to generate Python datetime
objects (see Appendix A for an overview of handling date and time data
with Python). To parse the str objects containing the date-time information,
one needs to provide information of how to parse them — again as a str
object:

In [93]: from datetime import datetime 

         pydt = datetime.strptime(result[0].replace("'", ""), 

                                  '%m/%d/%Y %H:%M:%S') 

         pydt 

Out[93]: datetime.datetime(2014, 1, 18, 13, 0) 

 

In [94]: print(pydt) 

         2014-01-18 13:00:00 

 

In [95]: print(type(pydt)) 

         <class 'datetime.datetime'>

Later chapters provide more information on date-time data, the handling of
such data, and datetime objects and their methods. This is just meant to be
a teaser for this important topic in finance.



Basic Data Structures
As a general rule, data structures are objects that contain a possibly large
number of other objects. Among those that Python provides as built-in
structures are:

tuple

An immutable collection of arbitrary objects; only a few methods
available

list

A mutable collection of arbitrary objects; many methods available

dict

A key-value store object

set

An unordered collection object for other unique objects



Tuples
A tuple is an advanced data structure, yet it’s still quite simple and limited
in its applications. It is defined by providing objects in parentheses:

In [96]: t = (1, 2.5, 'data') 

         type(t) 

Out[96]: tuple

You can even drop the parentheses and provide multiple objects, just
separated by commas:

In [97]: t = 1, 2.5, 'data' 

         type(t) 

Out[97]: tuple

Like almost all data structures in Python the tuple has a built-in index, with
the help of which you can retrieve single or multiple elements of the tuple.
It is important to remember that Python uses zero-based numbering, such
that the third element of a tuple is at index position 2:

In [98]: t[2] 

Out[98]: 'data' 

 

In [99]: type(t[2]) 

Out[99]: str



ZERO-BASED NUMBERING
In contrast to some other programming languages like Matlab, Python uses zero-based
numbering schemes. For example, the first element of a tuple object has index value 0.

There are only two special methods that this object type provides: count()
and index(). The first counts the number of occurrences of a certain object
and the second gives the index value of the first appearance of it:

In [100]: t.count('data') 

Out[100]: 1 

 

In [101]: t.index(1) 

Out[101]: 0

tuple objects are immutable objects. This means that they, once defined,
cannot be changed easily.



Lists
Objects of type list are much more flexible and powerful in comparison to
tuple objects. From a finance point of view, you can achieve a lot working
only with list objects, such as storing stock price quotes and appending
new data. A list object is defined through brackets and the basic
capabilities and behaviors are similar to those of tuple objects:

In [102]: l = [1, 2.5, 'data'] 

          l[2] 

Out[102]: 'data'

list objects can also be defined or converted by using the function list().
The following code generates a new list object by converting the tuple
object from the previous example:

In [103]: l = list(t) 

          l 

Out[103]: [1, 2.5, 'data'] 

 

In [104]: type(l) 

Out[104]: list

In addition to the characteristics of tuple objects, list objects are also
expandable and reducible via different methods. In other words, whereas
str and tuple objects are immutable sequence objects (with indexes) that
cannot be changed once created, list objects are mutable and can be
changed via different operations. You can append list objects to an
existing list object, and more:

In [105]: l.append([4, 3])   

          l 

Out[105]: [1, 2.5, 'data', [4, 3]] 

 

In [106]: l.extend([1.0, 1.5, 2.0])   

          l 

Out[106]: [1, 2.5, 'data', [4, 3], 1.0, 1.5, 2.0] 

 

In [107]: l.insert(1, 'insert')   

          l 

Out[107]: [1, 'insert', 2.5, 'data', [4, 3], 1.0, 1.5, 2.0] 



 

In [108]: l.remove('data')   

          l 

Out[108]: [1, 'insert', 2.5, [4, 3], 1.0, 1.5, 2.0] 

 

In [109]: p = l.pop(3)   

          print(l, p) 

          [1, 'insert', 2.5, 1.0, 1.5, 2.0] [4, 3]

Append list object at the end.

Append elements of the list object.

Insert object before index position.

Remove first occurrence of object.

Remove and return object at index position.
Slicing is also easily accomplished. Here, slicing refers to an operation that
breaks down a data set into smaller parts (of interest):

In [110]: l[2:5]   

Out[110]: [2.5, 1.0, 1.5]

Return the third through fifth elements.
Table 3-2 provides a summary of selected operations and methods of the
list object.

Table 3-2. Selected operations and methods of list objects
Method Arguments Returns/result



Method Arguments Returns/result

l[i] = x [i] Replaces i-th element by x

l[i:j:k] = s [i:j:k] Replaces every k-th element from i to j – 1 by s

append (x) Appends x to object

count (x) Number of occurrences of object x

del l[i:j:k] [i:j:k] Deletes elements with index values i to j – 1

extend (s) Appends all elements of s to object

index (x[, i[, j]]) First index of x between elements i and j – 1

insert (i, x) Inserts x at/before index i

remove (i) Removes element with index i

pop (i) Removes element with index i and returns it

reverse () Reverses all items in place

sort ([cmp[, key[, reverse]]]) Sorts all items in place



Excursion: Control Structures
Although a topic in themselves, control structures like for loops are maybe
best introduced in Python based on list objects. This is due to the fact that
looping in general takes place over list objects, which is quite different to
what is often the standard in other languages. Take the following example.
The for loop loops over the elements of the list object l with index values
2 to 4 and prints the square of the respective elements. Note the importance
of the indentation (whitespace) in the second line:

In [111]: for element in l[2:5]: 

              print(element ** 2) 

          6.25 

          1.0 

          2.25

This provides a really high degree of flexibility in comparison to the typical
counter-based looping. Counter-based looping is also an option with
Python, but is accomplished using the range object:

In [112]: r = range(0, 8, 1)   

          r 

Out[112]: range(0, 8) 

 

In [113]: type(r) 

Out[113]: range

Parameters are start, end, and step-size.

For comparison, the same loop is implemented using range() as follows:

In [114]: for i in range(2, 5): 

              print(l[i] ** 2) 

          6.25 

          1.0 

          2.25



LOOPING OVER LISTS
In Python you can loop over arbitrary list objects, no matter what the content of the
object is. This often avoids the introduction of a counter.

Python also provides the typical (conditional) control elements if, elif,
and else. Their use is comparable in other languages:

In [115]: for i in range(1, 10): 

              if i % 2 == 0:   

                  print("%d is even" % i) 

              elif i % 3 == 0: 

                  print("%d is multiple of 3" % i) 

              else: 

                  print("%d is odd" % i) 

          1 is odd 

          2 is even 

          3 is multiple of 3 

          4 is even 

          5 is odd 

          6 is even 

          7 is odd 

          8 is even 

          9 is multiple of 3

% stands for modulo.

Similarly, while provides another means to control the flow:

In [116]: total = 0 

          while total < 100: 

              total += 1 

          print(total) 

          100

A specialty of Python is so-called list comprehensions. Instead of looping
over existing list objects, this approach generates list objects via loops in
a rather compact fashion:

In [117]: m = [i ** 2 for i in range(5)] 

          m 



Out[117]: [0, 1, 4, 9, 16]

In a certain sense, this already provides a first means to generate
“something like” vectorized code in that loops are implicit rather than
explicit (vectorization of code is discussed in more detail in Chapters 4 and
5).



Excursion: Functional Programming
Python provides a number of tools for functional programming support as
well — i.e., the application of a function to a whole set of inputs (in our
case list objects). Among these tools are filter(), map(), and reduce().
However, one needs a function definition first. To start with something
really simple, consider a function f() that returns the square of the input x:

In [118]: def f(x): 

              return x ** 2

          f(2) 

Out[118]: 4

Of course, functions can be arbitrarily complex, with multiple
input/parameter objects and even multiple outputs (return objects).
However, consider the following function:

In [119]: def even(x): 

              return x % 2 == 0 

          even(3) 

Out[119]: False

The return object is a Boolean. Such a function can be applied to a whole
list object by using map():

In [120]: list(map(even, range(10))) 

Out[120]: [True, False, True, False, True, False, True, False, True, False]

To this end, one can also provide a function definition directly as an
argument to map(), making use of lambda or anonymous functions:

In [121]: list(map(lambda x: x ** 2, range(10)))

Out[121]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Functions can also be used to filter a list object. In the following example,
the filter returns elements of a list object that match the Boolean condition
as defined by the even function:



In [122]: list(filter(even, range(15))) 

Out[122]: [0, 2, 4, 6, 8, 10, 12, 14]



LIST COMPREHENSIONS, FUNCTIONAL
PROGRAMMING, ANONYMOUS FUNCTIONS

It can be considered good practice to avoid loops on the Python level as far as possible.
List comprehensions and functional programming tools like filter(), map(), and
reduce() provide means to write code without (explicit) loops that is both compact and
in general more readable. lambda or anonymous functions are also powerful tools in this
context.



Dicts
dict objects are dictionaries, and also mutable sequences, that allow data
retrieval by keys (which can, for example, be str objects). They are so-
called key-value stores. While list objects are ordered and sortable, dict
objects are unordered and not sortable, in general.5 An example best
illustrates further differences to list objects. Curly braces are what define
dict objects:

In [123]: d = { 

               'Name' : 'Angela Merkel', 

               'Country' : 'Germany', 

               'Profession' : 'Chancelor', 

               'Age' : 64 

               } 

          type(d) 

Out[123]: dict 

 

In [124]: print(d['Name'], d['Age']) 

          Angela Merkel 64

Again, this class of objects has a number of built-in methods:

In [125]: d.keys() 

Out[125]: dict_keys(['Name', 'Country', 'Profession', 'Age']) 

 

In [126]: d.values() 

Out[126]: dict_values(['Angela Merkel', 'Germany', 'Chancelor', 64]) 

 

In [127]: d.items() 

Out[127]: dict_items([('Name', 'Angela Merkel'), ('Country', 'Germany'), 

           ('Profession', 'Chancelor'), ('Age', 64)]) 

 

In [128]: birthday = True 

          if birthday: 

              d['Age'] += 1 

          print(d['Age']) 

          65

There are several methods to get iterator objects from a dict object. The
iterator objects behave like list objects when iterated over:

In [129]: for item in d.items(): 

              print(item) 

          ('Name', 'Angela Merkel') 

          ('Country', 'Germany')



          ('Profession', 'Chancelor') 

          ('Age', 65) 

 

In [130]: for value in d.values(): 

              print(type(value)) 

          <class 'str'> 

          <class 'str'> 

          <class 'str'> 

          <class 'int'>

Table 3-3 provides a summary of selected operations and methods of the
dict object.

Table 3-3. Selected operations and methods of
dict objects

Method Arguments Returns/result

d[k] [k] Item of d with key k

d[k] = x [k] Sets item key k to x

del d[k] [k] Deletes item with key k

clear () Removes all items

copy () Makes a copy

has_key (k) True if k is a key

items () Iterator over all items

keys () Iterator over all keys

values () Iterator over all values

popitem (k) Returns and removes item with key k

update ([e]) Updates items with items from e



Sets
The final data structure this section covers is the set object. Although set
theory is a cornerstone of mathematics and also of financial theory, there
are not too many practical applications for set objects. The objects are
unordered collections of other objects, containing every element only once:

In [131]: s = set(['u', 'd', 'ud', 'du', 'd', 'du']) 

          s 

Out[131]: {'d', 'du', 'u', 'ud'} 

 

In [132]: t = set(['d', 'dd', 'uu', 'u'])

With set objects, one can implement basic operations on sets as in
mathematical set theory. For example, one can generate unions,
intersections, and differences:

In [133]: s.union(t)   

Out[133]: {'d', 'dd', 'du', 'u', 'ud', 'uu'} 

 

In [134]: s.intersection(t)   

Out[134]: {'d', 'u'} 

 

In [135]: s.difference(t)   

Out[135]: {'du', 'ud'} 

 

In [136]: t.difference(s)   

Out[136]: {'dd', 'uu'} 

 

In [137]: s.symmetric_difference(t)   

Out[137]: {'dd', 'du', 'ud', 'uu'}

All of s and t.

Items in both s and t.

Items in s but not in t.



Items in t but not in s.

Items in either s or t but not both.

One application of set objects is to get rid of duplicates in a list object:

In [138]: from random import randint 

          l = [randint(0, 10) for i in range(1000)]  

          len(l)   

Out[138]: 1000 

 

In [139]: l[:20] 

Out[139]: [4, 2, 10, 2, 1, 10, 0, 6, 0, 8, 10, 9, 2, 4, 7, 8, 10, 8, 8, 2] 

 

In [140]: s = set(l) 

          s 

Out[140]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

1,000 random integers between 0 and 10.

Number of elements in l.



Conclusion
The basic Python interpreter provides a rich set of flexible data structures.
From a finance point of view, the following can be considered the most
important ones:

Basic data types
In Python in general and finance in particular, the classes int, float,
bool, and str provide the atomic data types.

Standard data structures
The classes tuple, list, dict, and set have many application areas in
finance, with list being a flexible all-rounder for a number use cases.



Further Resources
With regard to data types and structures, this chapter focuses on those topics
that might be of particular importance for financial algorithms and
applications. However, it can only represent a starting point for the
exploration of data structures and data modeling in Python.

There are a number of valuable resources available to go deeper from here.
The official documentation for Python data structures is found at
https://docs.python.org/3/tutorial/datastructures.html.
Good references in book form are:

Goodrich, Michael, et al. (2013). Data Structures and Algorithms in
Python. Hoboken, NJ: John Wiley & Sons.

Harrison, Matt (2017). Illustrated Guide to Python 3. CreateSpace
Treading on Python Series.

Ramalho, Luciano (2016). Fluent Python. Sebastopol, CA: O’Reilly.

For an introduction to regular expressions, see:
Fitzgerald, Michael (2012). Introducing Regular Expressions.
Sebastopol, CA: O’Reilly.

The Cython package brings static typing and compiling features to Python that are comparable to
those in C. In fact, Cython is not only a package, it is a full-fledged hybrid programming
language combining Python and C.

This is different in Python 2.x, where floor division is the default. Floor division in Python 3.x is
accomplished by 3 // 4, which gives 0 as the result.

Here and in the following discussion, terms like float, float object, etc. are used
interchangeably, acknowledging that every float is also an object. The same holds true for other
object types.

It is not possible to go into detail here, but there is a wealth of information available on the
internet about regular expressions in general and for Python in particular. For an introduction to
this topic, refer to Fitzgerald (2012).

1

2

3

4

5

https://docs.python.org/3/tutorial/datastructures.html
http://www.cython.org/


There are variants to the standard dict object, including among others an OrderedDict subclass,
which remembers the order in which entries are added. See
https://docs.python.org/3/library/collections.html.

https://docs.python.org/3/library/collections.html


Chapter 4. Numerical Computing
with NumPy

Computers are useless. They can only give answers.
Pablo Picasso

Although the Python interpreter itself already brings a rich variety of data
structures with it, NumPy and other libraries add to these in a valuable
fashion. This chapter focuses on NumPy, which provides a multidimensional
array object to store homogeneous or heterogeneous data arrays and
supports vectorization of code.

The chapter covers the following data structures:

Object type Meaning Used for

ndarray (regular) n-dimensional array object Large arrays of numerical data

ndarray (record) 2-dimensional array object Tabular data organized in columns

This chapter is organized as follows:

“Arrays of Data”
This section is about the handling of arrays of data with pure Python
code.

“Regular NumPy Arrays”
This is the core section about the regular NumPy ndarray class, the
workhorse in almost all data-intensive Python use cases involving
numerical data.

“Structured NumPy Arrays”
This brief section introduces structured (or record) ndarray objects for
the handling of tabular data with columns.



“Vectorization of Code”
In this section, vectorization of code is discussed along with its
benefits; the section also discusses the importance of memory layout in
certain scenarios.



Arrays of Data
The previous chapter showed that Python provides some quite useful and
flexible general data structures. In particular, list objects can be
considered a real workhorse with many convenient characteristics and
application areas. Using such a flexible (mutable) data structure has a cost,
in the form of relatively high memory usage, slower performance, or both.
However, scientific and financial applications generally have a need for
high-performing operations on special data structures. One of the most
important data structures in this regard is the array. Arrays generally
structure other (fundamental) objects of the same data type in rows and
columns.

Assume for the moment that only numbers are relevant, although the
concept generalizes to other types of data as well. In the simplest case, a
one-dimensional array then represents, mathematically speaking, a vector
of, in general, real numbers, internally represented by float objects. It then
consists of a single row or column of elements only. In the more common
case, an array represents an  matrix of elements. This concept

generalizes to  cubes of elements in three dimensions as well

as to general n-dimensional arrays of shape .

Mathematical disciplines like linear algebra and vector space theory
illustrate that such mathematical structures are of high importance in a
number of scientific disciplines and fields. It can therefore prove fruitful to
have available a specialized class of data structures explicitly designed to
handle arrays conveniently and efficiently. This is where the Python library
NumPy comes into play, with its powerful ndarray class. Before introducing
this class in the next section, this section illustrates two alternatives for the
handling of arrays.



Arrays with Python Lists
Arrays can be constructed with the built-in data structures presented in the
previous chapter. list objects are particularly suited to accomplishing this
task. A simple list can already be considered a one-dimensional array:

In [1]: v = [0.5, 0.75, 1.0, 1.5, 2.0]  

list object with numbers.

Since list objects can contain arbitrary other objects, they can also contain
other list objects. In that way, two- and higher-dimensional arrays are
easily constructed by nested list objects:

In [2]: m = [v, v, v]  

        m   

Out[2]: [[0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0]]

list object with list objects …

… resulting in a matrix of numbers.
One can also easily select rows via simple indexing or single elements via
double indexing (whole columns, however, are not so easy to select):

In [3]: m[1] 

Out[3]: [0.5, 0.75, 1.0, 1.5, 2.0] 

 

In [4]: m[1][0] 

Out[4]: 0.5

Nesting can be pushed further for even more general structures:



In [5]: v1 = [0.5, 1.5] 

        v2 = [1, 2] 

        m = [v1, v2] 

        c = [m, m]   

        c 

Out[5]: [[[0.5, 1.5], [1, 2]], [[0.5, 1.5], [1, 2]]] 

 

In [6]: c[1][1][0] 

Out[6]: 1

Cube of numbers.
Note that combining objects in the way just presented generally works with
reference pointers to the original objects. What does that mean in practice?
Have a look at the following operations:

In [7]: v = [0.5, 0.75, 1.0, 1.5, 2.0] 

        m = [v, v, v] 

        m 

Out[7]: [[0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0]]

Now change the value of the first element of the v object and see what
happens to the m object:

In [8]: v[0] = 'Python' 

        m 

Out[8]: [['Python', 0.75, 1.0, 1.5, 2.0], 

         ['Python', 0.75, 1.0, 1.5, 2.0], 

         ['Python', 0.75, 1.0, 1.5, 2.0]]

This can be avoided by using the deepcopy() function of the copy module:

In [9]: from copy import deepcopy 

        v = [0.5, 0.75, 1.0, 1.5, 2.0] 

        m = 3 * [deepcopy(v), ]   

        m 

Out[9]: [[0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0], 

         [0.5, 0.75, 1.0, 1.5, 2.0]] 

 

In [10]: v[0] = 'Python'   

         m   

Out[10]: [[0.5, 0.75, 1.0, 1.5, 2.0], 

          [0.5, 0.75, 1.0, 1.5, 2.0], 

          [0.5, 0.75, 1.0, 1.5, 2.0]]



Instead of reference pointer, physical copies are used.

As a consequence, a change in the original object …

… does not have any impact anymore.



The Python array Class
There is a dedicated array module available in Python. According to the
documentation:

This module defines an object type which can compactly represent an
array of basic values: characters, integers, floating point numbers. Arrays
are sequence types and behave very much like lists, except that the type
of objects stored in them is constrained. The type is specified at object
creation time by using a type code, which is a single character.

Consider the following code, which instantiates an array object out of a
list object:

In [11]: v = [0.5, 0.75, 1.0, 1.5, 2.0] 

 

In [12]: import array 

 

In [13]: a = array.array('f', v)   

         a 

Out[13]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0]) 

 

In [14]: a.append(0.5)   

         a 

Out[14]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5]) 

 

In [15]: a.extend([5.0, 6.75])   

         a 

Out[15]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75]) 

 

In [16]: 2 * a   

Out[16]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75, 0.5, 0.75, 1.0, 

          1.5, 2.0, 0.5, 5.0, 6.75])

The instantiation of the array object with float as the type code.

Major methods work similar to those of the list object.

Although “scalar multiplication” works in principle, the result is not
the mathematically expected one; rather, the elements are repeated.

https://docs.python.org/3/library/array.html


Trying to append an object of a different data type than the one specified
raises a TypeError:

In [17]: a.append('string')   

 

         --------------------------------------- 

         TypeErrorTraceback (most recent call last) 

         <ipython-input-17-14cd6281866b> in <module>() 

         ----> 1 a.append('string')   

 

         TypeError: must be real number, not str 

 

In [18]: a.tolist()   

Out[18]: [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75]

Only float objects can be appended; other data types/type codes raise
errors.

However, the array object can easily be converted back to a list
object if such flexibility is required.

An advantage of the array class is that it has built-in storage and retrieval
functionality:

In [19]: f = open('array.apy', 'wb')  

         a.tofile(f)   

         f.close()   

 

In [20]: with open('array.apy', 'wb') as f:   

             a.tofile(f)   

 

In [21]: !ls -n arr*   

         -rw-r--r--@ 1 503  20  32 Nov  7 11:46 array.apy

Opens a file on disk for writing binary data.

Writes the array data to the file.



Closes the file.

Alternative: uses a with context for the same operation.

Shows the file as written on disk.
As before, the data type of the array object is of importance when reading
the data from disk:

In [22]: b = array.array('f')   

 

In [23]: with open('array.apy', 'rb') as f:   

             b.fromfile(f, 5)   

 

In [24]: b   

Out[24]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0]) 

 

In [25]: b = array.array('d')   

 

In [26]: with open('array.apy', 'rb') as f: 

             b.fromfile(f, 2)   

 

In [27]: b   

Out[27]: array('d', [0.0004882813645963324, 0.12500002956949174])

Instantiates a new array object with type code float.

Opens the file for reading binary data …

… and reads five elements in the b object.

Instantiates a new array object with type code double.



Reads two elements from the file.

The difference in type codes leads to “wrong” numbers.



Regular NumPy Arrays
Composing array structures with list objects works, somewhat. But it is
not really convenient, and the list class has not been built with this
specific goal in mind. It has rather a much broader and more general scope.
The array class is a bit more specialized, providing some useful features
for working with arrays of data. However, a truly specialized class could be
really beneficial to handle array-type structures.



The Basics
numpy.ndarray is just such a class, built with the specific goal of handling
n-dimensional arrays both conveniently and efficiently — i.e., in a highly
performant manner. The basic handling of instances of this class is again
best illustrated by examples:

In [28]: import numpy as np   

 

In [29]: a = np.array([0, 0.5, 1.0, 1.5, 2.0])   

         a 

Out[29]: array([0. , 0.5, 1. , 1.5, 2. ]) 

 

In [30]: type(a)   

Out[30]: numpy.ndarray 

 

In [31]: a = np.array(['a', 'b', 'c'])   

         a 

Out[31]: array(['a', 'b', 'c'], dtype='<U1') 

 

In [32]: a = np.arange(2, 20, 2)   

         a 

Out[32]: array([ 2,  4,  6,  8, 10, 12, 14, 16, 18]) 

 

In [33]: a = np.arange(8, dtype=np.float)  

         a 

Out[33]: array([0., 1., 2., 3., 4., 5., 6., 7.]) 

 

In [34]: a[5:]   

Out[34]: array([5., 6., 7.]) 

 

In [35]: a[:2]   

Out[35]: array([0., 1.])

Imports the numpy package.

Creates an ndarray object out of a list object with floats.

Creates an ndarray object out of a list object with strs.



np.arange() works similar to range() …

… but takes as additional input the dtype parameter.

With one-dimensional ndarray objects, indexing works as usual.

A major feature of the ndarray class is the multitude of built-in methods.
For instance:

In [36]: a.sum()   

Out[36]: 28.0 

 

In [37]: a.std()   

Out[37]: 2.29128784747792 

 

In [38]: a.cumsum()   

Out[38]: array([ 0.,  1.,  3.,  6., 10., 15., 21., 28.])

The sum of all elements.

The standard deviation of the elements.

The cumulative sum of all elements (starting at index position 0).
Another major feature is the (vectorized) mathematical operations defined
on ndarray objects:

In [39]: l = [0., 0.5, 1.5, 3., 5.] 

         2 * l   

Out[39]: [0.0, 0.5, 1.5, 3.0, 5.0, 0.0, 0.5, 1.5, 3.0, 5.0] 

 

In [40]: a 

Out[40]: array([0., 1., 2., 3., 4., 5., 6., 7.]) 

 

In [41]: 2 * a   

Out[41]: array([ 0.,  2.,  4.,  6.,  8., 10., 12., 14.]) 

 

In [42]: a ** 2   

Out[42]: array([ 0.,  1.,  4.,  9., 16., 25., 36., 49.]) 



 

In [43]: 2 ** a   

Out[43]: array([  1.,   2.,   4.,   8.,  16.,  32.,  64., 128.]) 

 

In [44]: a ** a   

Out[44]: array([1.00000e+00, 1.00000e+00, 4.00000e+00, 2.70000e+01, 2.56000e+02, 

                3.12500e+03, 4.66560e+04, 8.23543e+05])

Scalar multiplication with list objects leads to a repetition of
elements.

By contrast, working with ndarray objects implements a proper scalar
multiplication.

This calculates element-wise the square values.

This interprets the elements of the ndarray as the powers.

This calculates the power of every element to itself.
Universal functions are another important feature of the NumPy package.
They are “universal” in the sense that they in general operate on ndarray
objects as well as on basic Python data types. However, when applying
universal functions to, say, a Python float object, one needs to be aware of
the reduced performance compared to the same functionality found in the
math module:

In [45]: np.exp(a)   

Out[45]: array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 

                5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03]) 

 

In [46]: np.sqrt(a)   

Out[46]: array([0.        , 1.        , 1.41421356, 1.73205081, 2.        , 

                2.23606798, 2.44948974, 2.64575131])

 

In [47]: np.sqrt(2.5)   

Out[47]: 1.5811388300841898



 

In [48]: import math   

 

In [49]: math.sqrt(2.5)   

Out[49]: 1.5811388300841898

 

In [50]: math.sqrt(a)   

 

         --------------------------------------- 

         TypeErrorTraceback (most recent call last) 

         <ipython-input-50-b39de4150838> in <module>() 

         ----> 1 math.sqrt(a)   

 

         TypeError: only size-1 arrays can be converted to Python scalars 

 

In [51]: %timeit np.sqrt(2.5)   

         722 ns ± 13.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops 

          each) 

 

In [52]: %timeit math.sqrt(2.5)   

         91.8 ns ± 4.13 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops 

          each)

Calculates the exponential values element-wise.

Calculates the square root for every element.

Calculates the square root for a Python float object.

The same calculation, this time using the math module.

The math.sqrt() function cannot be applied to the ndarray object
directly.

Applying the universal function np.sqrt() to a Python float object
…



… is much slower than the same operation with the math.sqrt()
function.



Multiple Dimensions
The transition to more than one dimension is seamless, and all features
presented so far carry over to the more general cases. In particular, the
indexing system is made consistent across all dimensions:

In [53]: b = np.array([a, a * 2])   

         b 

Out[53]: array([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.], 

                [ 0.,  2.,  4.,  6.,  8., 10., 12., 14.]]) 

 

In [54]: b[0]   

Out[54]: array([0., 1., 2., 3., 4., 5., 6., 7.]) 

 

In [55]: b[0, 2]   

Out[55]: 2.0 

 

In [56]: b[:, 1]   

Out[56]: array([1., 2.]) 

 

In [57]: b.sum()   

Out[57]: 84.0 

 

In [58]: b.sum(axis=0)   

Out[58]: array([ 0.,  3.,  6.,  9., 12., 15., 18., 21.]) 

 

In [59]: b.sum(axis=1)   

Out[59]: array([28., 56.])

Constructs a two-dimensional ndarray object out of the one-
dimensional one.

Selects the first row.

Selects the third element in the first row; indices are separated, within
the brackets, by a comma.

Selects the second column.



Calculates the sum of all values.

Calculates the sum along the first axis; i.e., column-wise.

Calculates the sum along the second axis; i.e., row-wise.
There are a number of ways to initialize (instantiate) ndarray objects. One
is as presented before, via np.array. However, this assumes that all
elements of the array are already available. In contrast, one might like to
have the ndarray objects instantiated first to populate them later with
results generated during the execution of code. To this end, one can use the
following functions:

In [60]: c = np.zeros((2, 3), dtype='i', order='C')   

         c 

Out[60]: array([[0, 0, 0], 

                [0, 0, 0]], dtype=int32) 

 

In [61]: c = np.ones((2, 3, 4), dtype='i', order='C')   

         c 

Out[61]: array([[[1, 1, 1, 1], 

                 [1, 1, 1, 1], 

                 [1, 1, 1, 1]], 

 

                [[1, 1, 1, 1], 

                 [1, 1, 1, 1], 

                 [1, 1, 1, 1]]], dtype=int32) 

 

In [62]: d = np.zeros_like(c, dtype='f16', order='C')   

         d 

Out[62]: array([[[0., 0., 0., 0.], 

                 [0., 0., 0., 0.], 

                 [0., 0., 0., 0.]], 

 

                [[0., 0., 0., 0.], 

                 [0., 0., 0., 0.], 

                 [0., 0., 0., 0.]]], dtype=float128) 

 

In [63]: d = np.ones_like(c, dtype='f16', order='C')   

         d 

Out[63]: array([[[1., 1., 1., 1.], 

                 [1., 1., 1., 1.], 

                 [1., 1., 1., 1.]], 

 

                [[1., 1., 1., 1.], 

                 [1., 1., 1., 1.], 



                 [1., 1., 1., 1.]]], dtype=float128) 

 

In [64]: e = np.empty((2, 3, 2))   

         e 

Out[64]: array([[[0.00000000e+000, 0.00000000e+000], 

                 [0.00000000e+000, 0.00000000e+000], 

                 [0.00000000e+000, 0.00000000e+000]], 

 

                [[0.00000000e+000, 0.00000000e+000], 

                 [0.00000000e+000, 7.49874326e+247], 

                 [1.28822975e-231, 4.33190018e-311]]]) 

 

In [65]: f = np.empty_like(c)   

         f 

Out[65]: array([[[         0,          0,          0,          0], 

                 [         0,          0,          0,          0], 

                 [         0,          0,          0,          0]], 

 

                [[         0,          0,          0,          0], 

                 [         0,          0,  740455269, 1936028450], 

                 [         0,  268435456, 1835316017,       2041]]], dtype=int32) 

 

In [66]: np.eye(5)   

Out[66]: array([[1., 0., 0., 0., 0.], 

                [0., 1., 0., 0., 0.], 

                [0., 0., 1., 0., 0.], 

                [0., 0., 0., 1., 0.], 

                [0., 0., 0., 0., 1.]]) 

 

In [67]: g = np.linspace(5, 15, 12)  

         g 

Out[67]: array([ 5.        ,  5.90909091,  6.81818182,  7.72727273,  8.63636364, 

                 9.54545455, 10.45454545, 11.36363636, 12.27272727, 13.18181818, 

                14.09090909, 15.        ])

Creates an ndarray object prepopulated with zeros.

Creates an ndarray object prepopulated with ones.

The same, but takes another ndarray object to infer the shape.

Creates an ndarray object not prepopulated with anything (numbers
depend on the bits present in the memory).



Creates a square matrix as an ndarray object with the diagonal
populated by ones.

Creates a one-dimensional ndarray object with evenly spaced intervals
between numbers; parameters used are start, end, and num (number of
elements).

For all these functions, one can provide the following parameters:

shape

Either an int, a sequence of int objects, or a reference to another
ndarray

dtype (optional)
A dtype — these are NumPy-specific data types for ndarray objects

order (optional)
The order in which to store elements in memory: C for C-like (i.e.,
row-wise) or F for Fortran-like (i.e., column-wise)

Here, it becomes obvious how NumPy specializes the construction of arrays
with the ndarray class, in comparison to the list -based approach:

The ndarray object has built-in dimensions (axes).

The ndarray object is immutable; its length (size) is fixed.

It only allows for a single data type (np.dtype) for the whole array.

The array class by contrast shares only the characteristic of allowing for a
single data type (type code, dtype).

The role of the order parameter is discussed later in the chapter. Table 4-1
provides an overview of selected np.dtype objects (i.e., the basic data types
NumPy allows).

Table 4-1. NumPy dtype objects



dtype Description Exampledtype Description Example

? Boolean ? (True or False)

i Signed integer i8 (64-bit)

u Unsigned integer u8 (64-bit)

f Floating point f8 (64-bit)

c Complex floating point c32 (256-bit)

m timedelta m (64-bit)

M datetime M (64-bit)

O Object O (pointer to object)

U Unicode U24 (24 Unicode characters)

V Raw data (void) V12 (12-byte data block)



Metainformation
Every ndarray object provides access to a number of useful attributes:

In [68]: g.size   

Out[68]: 12 

 

In [69]: g.itemsize   

Out[69]: 8 

 

In [70]: g.ndim   

Out[70]: 1 

 

In [71]: g.shape   

Out[71]: (12,) 

 

In [72]: g.dtype   

Out[72]: dtype('float64') 

 

In [73]: g.nbytes   

Out[73]: 96

The number of elements.

The number of bytes used to represent one element.

The number of dimensions.

The shape of the ndarray object.

The dtype of the elements.

The total number of bytes used in memory.



Reshaping and Resizing
Although ndarray objects are immutable by default, there are multiple
options to reshape and resize such an object. While reshaping in general
just provides another view on the same data, resizing in general creates a
new (temporary) object. First, some examples of reshaping:

In [74]: g = np.arange(15) 

 

In [75]: g 

Out[75]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14]) 

 

In [76]: g.shape   

Out[76]: (15,) 

 

In [77]: np.shape(g)  

Out[77]: (15,) 

 

In [78]: g.reshape((3, 5))   

Out[78]: array([[ 0,  1,  2,  3,  4], 

                [ 5,  6,  7,  8,  9], 

                [10, 11, 12, 13, 14]]) 

 

In [79]: h = g.reshape((5, 3))   

         h 

Out[79]: array([[ 0,  1,  2], 

                [ 3,  4,  5], 

                [ 6,  7,  8], 

                [ 9, 10, 11], 

                [12, 13, 14]]) 

 

In [80]: h.T   

Out[80]: array([[ 0,  3,  6,  9, 12], 

                [ 1,  4,  7, 10, 13], 

                [ 2,  5,  8, 11, 14]]) 

 

In [81]: h.transpose()   

Out[81]: array([[ 0,  3,  6,  9, 12], 

                [ 1,  4,  7, 10, 13], 

                [ 2,  5,  8, 11, 14]])

The shape of the original ndarray object.

Reshaping to two dimensions (memory view).



Creating a new object.

The transpose of the new ndarray object.

During a reshaping operation, the total number of elements in the ndarray
object is unchanged. During a resizing operation, this number changes — it
either decreases (“down-sizing”) or increases (“up-sizing”). Here some
examples of resizing:

In [82]: g 

Out[82]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14]) 

 

In [83]: np.resize(g, (3, 1))   

Out[83]: array([[0], 

                [1], 

                [2]]) 

 

In [84]: np.resize(g, (1, 5))   

Out[84]: array([[0, 1, 2, 3, 4]]) 

 

In [85]: np.resize(g, (2, 5))   

Out[85]: array([[0, 1, 2, 3, 4], 

                [5, 6, 7, 8, 9]]) 

 

In [86]: n = np.resize(g, (5, 4))   

         n 

Out[86]: array([[ 0,  1,  2,  3],

                [ 4,  5,  6,  7], 

                [ 8,  9, 10, 11], 

                [12, 13, 14,  0], 

                [ 1,  2,  3,  4]])

Two dimensions, down-sizing.

Two dimensions, up-sizing.
Stacking is a special operation that allows the horizontal or vertical
combination of two ndarray objects. However, the size of the “connecting”
dimension must be the same:



In [87]: h 

Out[87]: array([[ 0,  1,  2], 

                [ 3,  4,  5], 

                [ 6,  7,  8], 

                [ 9, 10, 11], 

                [12, 13, 14]]) 

 

In [88]: np.hstack((h, 2 * h))   

Out[88]: array([[ 0,  1,  2,  0,  2,  4], 

                [ 3,  4,  5,  6,  8, 10], 

                [ 6,  7,  8, 12, 14, 16], 

                [ 9, 10, 11, 18, 20, 22], 

                [12, 13, 14, 24, 26, 28]]) 

 

In [89]: np.vstack((h, 0.5 * h))   

Out[89]: array([[ 0. ,  1. ,  2. ], 

                [ 3. ,  4. ,  5. ], 

                [ 6. ,  7. ,  8. ], 

                [ 9. , 10. , 11. ], 

                [12. , 13. , 14. ], 

                [ 0. ,  0.5,  1. ], 

                [ 1.5,  2. ,  2.5], 

                [ 3. ,  3.5,  4. ], 

                [ 4.5,  5. ,  5.5], 

                [ 6. ,  6.5,  7. ]])

Horizontal stacking of two ndarray objects.

Vertical stacking of two ndarray objects.

Another special operation is the flattening of a multidimensional ndarray
object to a one-dimensional one. One can choose whether the flattening
happens row-by-row (C order) or column-by-column (F order):

In [90]: h 

Out[90]: array([[ 0,  1,  2], 

                [ 3,  4,  5], 

                [ 6,  7,  8], 

                [ 9, 10, 11], 

                [12, 13, 14]]) 

 

In [91]: h.flatten()   

Out[91]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14]) 

 

In [92]: h.flatten(order='C')   

Out[92]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14]) 

 

In [93]: h.flatten(order='F')   

Out[93]: array([ 0,  3,  6,  9, 12,  1,  4,  7, 10, 13,  2,  5,  8, 11, 14]) 

 



In [94]: for i in h.flat:   

             print(i, end=',') 

         0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 

In [95]: for i in h.ravel(order='C'):   

             print(i, end=',') 

         0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 

In [96]: for i in h.ravel(order='F'):   

             print(i, end=',') 

         0,3,6,9,12,1,4,7,10,13,2,5,8,11,14,

The default order for flattening is C.

Flattening with F order.

The flat attribute provides a flat iterator (C order).

The ravel() method is an alternative to flatten().



Boolean Arrays
Comparison and logical operations in general work on ndarray objects the
same way, element-wise, as on standard Python data types. Evaluating
conditions yield by default a Boolean ndarray object (dtype is bool):

In [97]: h 

Out[97]: array([[ 0,  1,  2], 

                [ 3,  4,  5], 

                [ 6,  7,  8], 

                [ 9, 10, 11], 

                [12, 13, 14]]) 

 

In [98]: h > 8   

Out[98]: array([[False, False, False], 

                [False, False, False], 

                [False, False, False], 

                [ True,  True,  True], 

                [ True,  True,  True]]) 

 

In [99]: h <= 7   

Out[99]: array([[ True,  True,  True], 

                [ True,  True,  True], 

                [ True,  True, False], 

                [False, False, False], 

                [False, False, False]]) 

 

In [100]: h == 5   

Out[100]: array([[False, False, False], 

                 [False, False,  True], 

                 [False, False, False], 

                 [False, False, False], 

                 [False, False, False]]) 

 

In [101]: (h == 5).astype(int)   

Out[101]: array([[0, 0, 0], 

                 [0, 0, 1], 

                 [0, 0, 0], 

                 [0, 0, 0], 

                 [0, 0, 0]]) 

 

In [102]: (h > 4) & (h <= 12)   

Out[102]: array([[False, False, False], 

                 [False, False,  True], 

                 [ True,  True,  True], 

                 [ True,  True,  True], 

                 [ True, False, False]])

Is value greater than …?



Is value smaller or equal than …?

Is value equal to …?

Present True and False as integer values 0 and 1.

Is value greater than … and smaller than or equal to …?
Such Boolean arrays can be used for indexing and data selection. Notice
that the following operations flatten the data:

In [103]: h[h > 8]   

Out[103]: array([ 9, 10, 11, 12, 13, 14]) 

 

In [104]: h[(h > 4) & (h <= 12)]   

Out[104]: array([ 5,  6,  7,  8,  9, 10, 11, 12]) 

 

In [105]: h[(h < 4) | (h >= 12)]   

Out[105]: array([ 0,  1,  2,  3, 12, 13, 14])

Give me all values greater than …

Give me all values greater than … and smaller than or equal to …

Give me all values greater than … or smaller than or equal to …
A powerful tool in this regard is the np.where() function, which allows the
definition of actions/operations depending on whether a condition is True or
False. The result of applying np.where() is a new ndarray object of the
same shape as the original one:



In [106]: np.where(h > 7, 1, 0)   

Out[106]: array([[0, 0, 0], 

                 [0, 0, 0], 

                 [0, 0, 1], 

                 [1, 1, 1], 

                 [1, 1, 1]]) 

 

In [107]: np.where(h % 2 == 0, 'even', 'odd')   

Out[107]: array([['even', 'odd', 'even'], 

                 ['odd', 'even', 'odd'], 

                 ['even', 'odd', 'even'], 

                 ['odd', 'even', 'odd'], 

                 ['even', 'odd', 'even']], dtype='<U4') 

 

In [108]: np.where(h <= 7, h * 2, h / 2)   

Out[108]: array([[ 0. ,  2. ,  4. ], 

                 [ 6. ,  8. , 10. ], 

                 [12. , 14. ,  4. ], 

                 [ 4.5,  5. ,  5.5], 

                 [ 6. ,  6.5,  7. ]])

In the new object, set 1 if True and 0 otherwise.

In the new object, set even if True and odd otherwise.

In the new object, set two times the h element if True and half the h
element otherwise.

Later chapters provide more examples of these important operations on
ndarray objects.



Speed Comparison
We’ll move on to structured arrays with NumPy shortly, but let us stick with
regular arrays for a moment and see what the specialization brings in terms
of performance.

As a simple example, consider the generation of a matrix/array of shape
5,000 × 5,000 elements, populated with pseudo-random, standard normally
distributed numbers. The sum of all elements shall then be calculated. First,
the pure Python approach, where list comprehensions are used:

In [109]: import random 

          I = 5000 

 

In [110]: %time mat = [[random.gauss(0, 1) for j in range(I)] \ 

                       for i in range(I)]   

          CPU times: user 17.1 s, sys: 361 ms, total: 17.4 s 

          Wall time: 17.4 s 

 

In [111]: mat[0][:5]   

Out[111]: [-0.40594967782329183, 

           -1.357757478015285, 

           0.05129566894355976, 

           -0.8958429976582192, 

           0.6234174778878331] 

 

In [112]: %time sum([sum(l) for l in mat])   

          CPU times: user 142 ms, sys: 1.69 ms, total: 144 ms 

          Wall time: 143 ms 

 

Out[112]: -3561.944965714259 

 

In [113]: import sys 

          sum([sys.getsizeof(l) for l in mat])   

Out[113]: 215200000

The creation of the matrix via a nested list comprehension.

Some selected random numbers from those drawn.



The sums of the single list objects are first calculated during a list
comprehension; then the sum of the sums is taken.

This adds up the memory usage of all list objects.

Let us now turn to NumPy and see how the same problem is solved there. For
convenience, the NumPy subpackage random offers a multitude of functions
to instantiate an ndarray object and populate it at the same time with
pseudo-random numbers:

In [114]: %time mat = np.random.standard_normal((I, I))   

          CPU times: user 1.01 s, sys: 200 ms, total: 1.21 s 

          Wall time: 1.21 s 

 

In [115]: %time mat.sum()   

          CPU times: user 29.7 ms, sys: 1.15 ms, total: 30.8 ms 

          Wall time: 29.4 ms 

 

Out[115]: -186.12767026606448 

 

In [116]: mat.nbytes   

Out[116]: 200000000 

 

In [117]: sys.getsizeof(mat)   

Out[117]: 200000112

Creates the ndarray object with standard normally distributed random
numbers; it is faster by a factor of about 14.

Calculates the sum of all values in the ndarray object; it is faster by a
factor of 4.5.

The NumPy approach also saves some memory since the memory
overhead of the ndarray object is tiny compared to the size of the data
itself.



USING NUMPY ARRAYS
The use of NumPy for array-based operations and algorithms generally results in
compact, easily readable code and significant performance improvements over pure
Python code.



Structured NumPy Arrays
The specialization of the ndarray class obviously brings a number of
valuable benefits with it. However, a too narrow specialization might turn
out to be too large a burden to carry for the majority of array-based
algorithms and applications. Therefore, NumPy provides structured ndarray
and record recarray objects that allow you to have a different dtype per
column. What does “per column” mean? Consider the following
initialization of a structured ndarray object:

In [118]: dt = np.dtype([('Name', 'S10'), ('Age', 'i4'), 

                         ('Height', 'f'), ('Children/Pets', 'i4', 2)])   

 

In [119]: dt   

Out[119]: dtype([('Name', 'S10'), ('Age', '<i4'), ('Height', '<f4'), 

           ('Children/Pets', '<i4', (2,))]) 

 

In [120]: dt = np.dtype({'names': ['Name', 'Age', 'Height', 'Children/Pets'], 

                       'formats':'O int float int,int'.split()})   

 

In [121]: dt   

Out[121]: dtype([('Name', 'O'), ('Age', '<i8'), ('Height', '<f8'), 

           ('Children/Pets', [('f0', '<i8'), ('f1', '<i8')])]) 

 

In [122]: s = np.array([('Smith', 45, 1.83, (0, 1)), 

                        ('Jones', 53, 1.72, (2, 2))], dtype=dt)   

 

In [123]: s   

Out[123]: array([('Smith', 45, 1.83, (0, 1)), ('Jones', 53, 1.72, (2, 2))], 

          dtype=[('Name', 'O'), ('Age', '<i8'), ('Height', '<f8'), 

           ('Children/Pets', [('f0', '<i8'), ('f1', '<i8')])]) 

 

In [124]: type(s)   

Out[124]: numpy.ndarray

The complex dtype is composed.

An alternative syntax to achieve the same result.

http://bit.ly/2DHsXgn


The structured ndarray is instantiated with two records.

The object type is still ndarray.

In a sense, this construction comes quite close to the operation for
initializing tables in a SQL database: one has column names and column
data types, with maybe some additional information (e.g., maximum
number of characters per str object). The single columns can now be easily
accessed by their names and the rows by their index values:

In [125]: s['Name']   

Out[125]: array(['Smith', 'Jones'], dtype=object) 

 

In [126]: s['Height'].mean()   

Out[126]: 1.775 

 

In [127]: s[0]   

Out[127]: ('Smith', 45, 1.83, (0, 1)) 

 

In [128]: s[1]['Age']   

Out[128]: 53

Selecting a column by name.

Calling a method on a selected column.

Selecting a record.

Selecting a field in a record.
In summary, structured arrays are a generalization of the regular ndarray
object type in that the data type only has to be the same per column, like in
tables in SQL databases. One advantage of structured arrays is that a single
element of a column can be another multidimensional object and does not
have to conform to the basic NumPy data types.



STRUCTURED ARRAYS
NumPy provides, in addition to regular arrays, structured (and record) arrays that allow
the description and handling of table-like data structures with a variety of different data
types per (named) column. They bring SQL table–like data structures to Python, with
most of the benefits of regular ndarray objects (syntax, methods, performance).



Vectorization of Code
Vectorization is a strategy to get more compact code that is possibly
executed faster. The fundamental idea is to conduct an operation on or to
apply a function to a complex object “at once” and not by looping over the
single elements of the object. In Python, functional programming tools such
as map() and filter() provide some basic means for vectorization.
However, NumPy has vectorization built in deep down in its core.



Basic Vectorization
As demonstrated in the previous section, simple mathematical operations —
such as calculating the sum of all elements — can be implemented on
ndarray objects directly (via methods or universal functions). More general
vectorized operations are also possible. For example, one can add two
NumPy arrays element-wise as follows:

In [129]: np.random.seed(100) 

          r = np.arange(12).reshape((4, 3))   

          s = np.arange(12).reshape((4, 3)) * 0.5   

 

In [130]: r   

Out[130]: array([[ 0,  1,  2], 

                 [ 3,  4,  5], 

                 [ 6,  7,  8], 

                 [ 9, 10, 11]]) 

 

In [131]: s   

Out[131]: array([[0. , 0.5, 1. ], 

                 [1.5, 2. , 2.5], 

                 [3. , 3.5, 4. ], 

                 [4.5, 5. , 5.5]]) 

 

In [132]: r + s   

Out[132]: array([[ 0. ,  1.5,  3. ], 

                 [ 4.5,  6. ,  7.5], 

                 [ 9. , 10.5, 12. ], 

                 [13.5, 15. , 16.5]])

The first ndarray object with random numbers.

The second ndarray object with random numbers.

Element-wise addition as a vectorized operation (no looping).
NumPy also supports what is called broadcasting. This allows you to
combine objects of different shape within a single operation. Previous
examples have already made use of this. Consider the following examples:



In [133]: r + 3   

Out[133]: array([[ 3,  4,  5], 

                 [ 6,  7,  8], 

                 [ 9, 10, 11], 

                 [12, 13, 14]]) 

 

In [134]: 2 * r   

Out[134]: array([[ 0,  2,  4], 

                 [ 6,  8, 10], 

                 [12, 14, 16], 

                 [18, 20, 22]]) 

 

In [135]: 2 * r + 3   

Out[135]: array([[ 3,  5,  7], 

                 [ 9, 11, 13], 

                 [15, 17, 19], 

                 [21, 23, 25]])

During scalar addition, the scalar is broadcast and added to every
element.

During scalar multiplication, the scalar is also broadcast to and
multiplied with every element.

This linear transformation combines both operations.
These operations work with differently shaped ndarray objects as well, up
to a certain point:

In [136]: r 

Out[136]: array([[ 0,  1,  2], 

                 [ 3,  4,  5], 

                 [ 6,  7,  8], 

                 [ 9, 10, 11]]) 

 

In [137]: r.shape 

Out[137]: (4, 3) 

 

In [138]: s = np.arange(0, 12, 4)   

          s   

Out[138]: array([0, 4, 8]) 

 

In [139]: r + s   

Out[139]: array([[ 0,  5, 10], 

                 [ 3,  8, 13], 

                 [ 6, 11, 16], 

                 [ 9, 14, 19]]) 



 

In [140]: s = np.arange(0, 12, 3)   

          s   

Out[140]: array([0, 3, 6, 9]) 

 

In [141]: r + s   

 

          --------------------------------------- 

          ValueErrorTraceback (most recent call last) 

          <ipython-input-141-1890b26ec965> in <module>() 

          ----> 1 r + s   

 

          ValueError: operands could not be broadcast together 

                      with shapes (4,3) (4,) 

 

In [142]: r.transpose() + s   

Out[142]: array([[ 0,  6, 12, 18], 

                 [ 1,  7, 13, 19], 

                 [ 2,  8, 14, 20]]) 

 

In [143]: sr = s.reshape(-1, 1)   

          sr 

Out[143]: array([[0], 

                 [3], 

                 [6], 

                 [9]])

 

In [144]: sr.shape   

Out[144]: (4, 1) 

 

In [145]: r + s.reshape(-1, 1)   

Out[145]: array([[ 0,  1,  2], 

                 [ 6,  7,  8], 

                 [12, 13, 14], 

                 [18, 19, 20]])

A new one-dimensional ndarray object of length 3.

The r (matrix) and s (vector) objects can be added straightforwardly.

Another one-dimensional ndarray object of length 4.

The length of the new s (vector) object is now different from the
length of the second dimension of the r object.



Transposing the r object again allows for the vectorized addition.

Alternatively, the shape of s can be changed to (4, 1) to make the
addition work (the results are different, however).

Often, custom-defined Python functions work with ndarray objects as well.
If the implementation allows, arrays can be used with functions just as int
or float objects can. Consider the following function:

In [146]: def f(x): 

              return 3 * x + 5   

 

In [147]: f(0.5)   

Out[147]: 6.5 

 

In [148]: f(r)   

Out[148]: array([[ 5,  8, 11], 

                 [14, 17, 20], 

                 [23, 26, 29], 

                 [32, 35, 38]])

A simple Python function implementing a linear transform on
parameter x.

The function f() applied to a Python float object.

The same function applied to an ndarray object, resulting in a
vectorized and element-wise evaluation of the function.

What NumPy does is to simply apply the function f to the object element-
wise. In that sense, by using this kind of operation one does not avoid
loops; one only avoids them on the Python level and delegates the looping
to NumPy. On the NumPy level, looping over the ndarray object is taken care
of by optimized code, most of it written in C and therefore generally faster



than pure Python. This explains the "secret" behind the performance
benefits of using NumPy for array-based use cases.



Memory Layout
When ndarray objects are initialized by using np.zeros(), as in “Multiple
Dimensions”, an optional argument for the memory layout is provided. This
argument specifies, roughly speaking, which elements of an array get stored
in memory next to each other (contiguously). When working with small
arrays, this has hardly any measurable impact on the performance of array
operations. However, when arrays get large, and depending on the
(financial) algorithm to be implemented on them, the story might be
different. This is when memory layout comes into play (see, for instance,
Eli Bendersky’s article “Memory Layout of Multi-Dimensional Arrays”).

To illustrate the potential importance of the memory layout of arrays in
science and finance, consider the following construction of
multidimensional ndarray objects:

In [149]: x = np.random.standard_normal((1000000, 5))   

 

In [150]: y = 2 * x + 3   

 

In [151]: C = np.array((x, y), order='C')   

 

In [152]: F = np.array((x, y), order='F')   

 

In [153]: x = 0.0; y = 0.0   

 

In [154]: C[:2].round(2)   

Out[154]: array([[[-1.75,  0.34,  1.15, -0.25,  0.98], 

                  [ 0.51,  0.22, -1.07, -0.19,  0.26], 

                  [-0.46,  0.44, -0.58,  0.82,  0.67], 

                  ..., 

                  [-0.05,  0.14,  0.17,  0.33,  1.39], 

                  [ 1.02,  0.3 , -1.23, -0.68, -0.87], 

                  [ 0.83, -0.73,  1.03,  0.34, -0.46]], 

 

                 [[-0.5 ,  3.69,  5.31,  2.5 ,  4.96], 

                  [ 4.03,  3.44,  0.86,  2.62,  3.51], 

                  [ 2.08,  3.87,  1.83,  4.63,  4.35], 

                  ..., 

                  [ 2.9 ,  3.28,  3.33,  3.67,  5.78], 

                  [ 5.04,  3.6 ,  0.54,  1.65,  1.26], 

                  [ 4.67,  1.54,  5.06,  3.69,  2.07]]])

http://bit.ly/2K8rujN


An ndarray object with large asymmetry in the two dimensions.

A linear transform of the original object data.

This creates a two-dimensional ndarray object with C order (row-
major).

This creates a two-dimensional ndarray object with F order (column-
major).

Memory is freed up (contingent on garbage collection).

Some numbers from the C object.

Let’s look at some fundamental examples and use cases for both types of
ndarray objects and consider the speed with which they are executed given
the different memory layouts:

In [155]: %timeit C.sum()   

          4.36 ms ± 89.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

 

In [156]: %timeit F.sum()   

          4.21 ms ± 71.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

 

In [157]: %timeit C.sum(axis=0)   

          17.9 ms ± 776 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 

 

In [158]: %timeit C.sum(axis=1)   

          35.1 ms ± 999 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) 

 

In [159]: %timeit F.sum(axis=0)   

          83.8 ms ± 2.63 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 

 

In [160]: %timeit F.sum(axis=1)   

          67.9 ms ± 5.16 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 

 

In [161]: F = 0.0; C = 0.0



Calculates the sum of all elements.

Calculates the sums per row (“many”).

Calculates the sums per columns (“few”).
We can summarize the performance results as follows:

When calculating the sum of all elements, the memory layout does not
really matter.

The summing up over the C-ordered ndarray objects is faster both over
rows and over columns (an absolute speed advantage).

With the C-ordered (row-major) ndarray object, summing up over
rows is relatively faster compared to summing up over columns.

With the F-ordered (column-major) ndarray object, summing up over
columns is relatively faster compared to summing up over rows.



Conclusion
NumPy is the package of choice for numerical computing in Python. The
ndarray class is specifically designed to be convenient and efficient in the
handling of (large) numerical data. Powerful methods and NumPy universal
functions allow for vectorized code that mostly avoids slow loops on the
Python level. Many approaches introduced in this chapter carry over to
pandas and its DataFrame class as well (see Chapter 5).



Further Resources
Many helpful resources are provided at the NumPy website:

http://www.numpy.org/

Good introductions to NumPy in book form are:

McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA:
O’Reilly.

VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol,
CA: O’Reilly.

http://www.numpy.org/


Chapter 5. Data Analysis with
pandas

Data! Data! Data! I can’t make bricks without clay!
Sherlock Holmes

This chapter is about pandas, a library for data analysis with a focus on
tabular data. pandas is a powerful tool that not only provides many useful
classes and functions but also does a great job of wrapping functionality
from other packages. The result is a user interface that makes data analysis,
and in particular financial analysis, a convenient and efficient task.

This chapter covers the following fundamental data structures:

Object type Meaning Used for

DataFrame 2-dimensional data object with index Tabular data organized in columns

Series 1-dimensional data object with index Single (time) series of data

The chapter is organized as follows:

“The DataFrame Class”
This section starts by exploring the basic characteristics and
capabilities of the DataFrame class of pandas by using simple and
small data sets; it then shows how to transform a NumPy ndarray object
into a DataFrame object.

“Basic Analytics” and “Basic Visualization”
Basic analytics and visualization capabilities are introduced in these
sections (later chapters go deeper into these topics).

“The Series Class”



This rather brief section covers the Series class of pandas, which in a
sense represents a special case of the DataFrame class with a single
column of data only.

“GroupBy Operations”
One of the strengths of the DataFrame class lies in grouping data
according to a single or multiple columns. This section explores the
grouping capabilities of pandas.

“Complex Selection”
This section illustrates how the use of (complex) conditions allows for
the easy selection of data from a DataFrame object.

“Concatenation, Joining, and Merging”
The combining of different data sets into one is an important operation
in data analysis. pandas provides different options to accomplish this
task, as described in this section.

“Performance Aspects”
Like Python in general, pandas often provides multiple options to
accomplish the same goal. This section takes a brief look at potential
performance differences.



The DataFrame Class
At the core of pandas (and this chapter) is the DataFrame, a class designed
to efficiently handle data in tabular form — i.e., data characterized by a
columnar organization. To this end, the DataFrame class provides, for
instance, column labeling as well as flexible indexing capabilities for the
rows (records) of the data set, similar to a table in a relational database or
an Excel spreadsheet.

This section covers some fundamental aspects of the pandas DataFrame
class. The class is so complex and powerful that only a fraction of its
capabilities can be presented here. Subsequent chapters provide more
examples and shed light on different aspects.



First Steps with the DataFrame Class
On a fundamental level, the DataFrame class is designed to manage indexed
and labeled data, not too different from a SQL database table or a worksheet
in a spreadsheet application. Consider the following creation of a
DataFrame object:

In [1]: import pandas as pd   

 

In [2]: df = pd.DataFrame([10, 20, 30, 40],   

                          columns=['numbers'],   

                          index=['a', 'b', 'c', 'd'])   

 

In [3]: df   

Out[3]:    numbers 

        a       10 

        b       20 

        c       30 

        d       40

Imports pandas.

Defines the data as a list object.

Specifies the column label.

Specifies the index values/labels.

Shows the data as well as column and index labels of the DataFrame
object.

This simple example already shows some major features of the DataFrame
class when it comes to storing data:



Data itself can be provided in different shapes and types (list, tuple,
ndarray, and dict objects are candidates).

Data is organized in columns, which can have custom names (labels).

There is an index that can take on different formats (e.g., numbers,
strings, time information).

Working with a DataFrame object is in general pretty convenient and
efficient with regard to the handling of the object, e.g., compared to regular
ndarray objects, which are more specialized and more restricted when one
wants to (say) enlarge an existing object. At the same time, DataFrame
objects are often as computationally efficient as ndarray objects. The
following are simple examples showing how typical operations on a
DataFrame object work:

In [4]: df.index   

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object') 

 

In [5]: df.columns   

Out[5]: Index(['numbers'], dtype='object') 

 

In [6]: df.loc['c']   

Out[6]: numbers    30 

        Name: c, dtype: int64 

 

In [7]: df.loc[['a', 'd']]   

Out[7]:    numbers 

        a       10 

        d       40 

 

In [8]: df.iloc[1:3]   

Out[8]:    numbers 

        b       20 

        c       30 

 

In [9]: df.sum()   

Out[9]: numbers    100 

        dtype: int64 

 

In [10]: df.apply(lambda x: x ** 2)   

Out[10]:    numbers 

         a      100 

         b      400 

         c      900 

         d     1600 

 

In [11]: df ** 2   



Out[11]:    numbers 

         a      100 

         b      400 

         c      900 

         d     1600

The index attribute and Index object.

The columns attribute and Index object.

Selects the value corresponding to index c.

Selects the two values corresponding to indices a and d.

Selects the second and third rows via the index positions.

Calculates the sum of the single column.

Uses the apply() method to calculate squares in vectorized fashion.

Applies vectorization directly as with ndarray objects.

Contrary to NumPy ndarray objects, enlarging the DataFrame object in both
dimensions is possible:

In [12]: df['floats'] = (1.5, 2.5, 3.5, 4.5)   

 

In [13]: df 

Out[13]:    numbers  floats

         a       10     1.5 

         b       20     2.5 

         c       30     3.5 

         d       40     4.5 

 



In [14]: df['floats']   

Out[14]: a    1.5 

         b    2.5 

         c    3.5 

         d    4.5 

         Name: floats, dtype: float64

Adds a new column with float objects provided as a tuple object.

Selects this column and shows its data and index labels.
A whole DataFrame object can also be taken to define a new column. In
such a case, indices are aligned automatically:

In [15]: df['names'] = pd.DataFrame(['Yves', 'Sandra', 'Lilli', 'Henry'], 

                                    index=['d', 'a', 'b', 'c'])   

 

In [16]: df 

Out[16]:    numbers  floats   names 

         a       10     1.5  Sandra 

         b       20     2.5   Lilli 

         c       30     3.5   Henry 

         d       40     4.5    Yves

Another new column is created based on a DataFrame object.

Appending data works similarly. However, in the following example a side
effect is seen that is usually to be avoided — namely, the index gets
replaced by a simple range index:

In [17]: df.append({'numbers': 100, 'floats': 5.75, 'names': 'Jil'}, 

                        ignore_index=True)   

Out[17]:    numbers  floats   names 

         0       10    1.50  Sandra 

         1       20    2.50   Lilli 

         2       30    3.50   Henry 

         3       40    4.50    Yves 

         4      100    5.75     Jil 

 

In [18]: df = df.append(pd.DataFrame({'numbers': 100, 'floats': 5.75, 

                                      'names': 'Jil'}, index=['y',]))   

 

In [19]: df 

Out[19]:    numbers  floats   names 



         a       10    1.50  Sandra 

         b       20    2.50   Lilli 

         c       30    3.50   Henry 

         d       40    4.50    Yves 

         y      100    5.75     Jil 

 

In [20]: df = df.append(pd.DataFrame({'names': 'Liz'}, index=['z',]), 

                        sort=False)   

 

In [21]: df 

Out[21]:    numbers  floats   names 

         a     10.0    1.50  Sandra 

         b     20.0    2.50   Lilli 

         c     30.0    3.50   Henry 

         d     40.0    4.50    Yves 

         y    100.0    5.75     Jil 

         z      NaN     NaN     Liz 

 

In [22]: df.dtypes   

Out[22]: numbers    float64

         floats     float64 

         names       object 

         dtype: object

Appends a new row via a dict object; this is a temporary operation
during which index information gets lost.

Appends the row based on a DataFrame object with index information;
the original index information is preserved.

Appends an incomplete data row to the DataFrame object, resulting in
NaN values.

Returns the different dtypes of the single columns; this is similar to
what’s possible with structured ndarray objects.

Although there are now missing values, the majority of method calls will
still work:

In [23]: df[['numbers', 'floats']].mean()  

Out[23]: numbers    40.00 

         floats      3.55 

         dtype: float64 



 

In [24]: df[['numbers', 'floats']].std()   

Out[24]: numbers    35.355339 

         floats      1.662077 

         dtype: float64

Calculates the mean over the two columns specified (ignoring rows
with NaN values).

Calculates the standard deviation over the two columns specified
(ignoring rows with NaN values).



Second Steps with the DataFrame Class
The example in this subsection is based on an ndarray object with standard
normally distributed random numbers. It explores further features such as a
DatetimeIndex to manage time series data:

In [25]: import numpy as np 

 

In [26]: np.random.seed(100) 

 

In [27]: a = np.random.standard_normal((9, 4)) 

 

In [28]: a 

Out[28]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604], 

                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333], 

                [-0.18949583,  0.25500144, -0.45802699,  0.43516349], 

                [-0.58359505,  0.81684707,  0.67272081, -0.10441114], 

                [-0.53128038,  1.02973269, -0.43813562, -1.11831825], 

                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574], 

                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613], 

                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ], 

                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]])

Although one can construct DataFrame objects more directly (as seen
before), using an ndarray object is generally a good choice since pandas
will retain the basic structure and will “only” add metainformation (e.g.,
index values). It also represents a typical use case for financial applications
and scientific research in general. For example:

In [29]: df = pd.DataFrame(a)   

 

In [30]: df 

Out[30]:           0         1         2         3 

         0 -1.749765  0.342680  1.153036 -0.252436 

         1  0.981321  0.514219  0.221180 -1.070043 

         2 -0.189496  0.255001 -0.458027  0.435163 

         3 -0.583595  0.816847  0.672721 -0.104411 

         4 -0.531280  1.029733 -0.438136 -1.118318 

         5  1.618982  1.541605 -0.251879 -0.842436 

         6  0.184519  0.937082  0.731000  1.361556 

         7 -0.326238  0.055676  0.222400 -1.443217 

         8 -0.756352  0.816454  0.750445 -0.455947

Creates a DataFrame object from the ndarray object.



Table 5-1 lists the parameters that the DataFrame() function takes. In the
table, “array-like” means a data structure similar to an ndarray object — a
list, for example. Index is an instance of the pandas Index class.

Table 5-1. Parameters of DataFrame() function
Parameter Format Description

data ndarray/dict/DataFrame Data for DataFrame; dict can contain Series, ndarray,
list

index Index/array-like Index to use; defaults to range(n)

columns Index/array-like Column headers to use; defaults to range(n)

dtype dtype, default None Data type to use/force; otherwise, it is inferred

copy bool, default None Copy data from inputs

As with structured arrays, and as seen before, DataFrame objects have
column names that can be defined directly by assigning a list object with
the right number of elements. This illustrates that one can define/change the
attributes of the DataFrame object easily:

In [31]: df.columns = ['No1', 'No2', 'No3', 'No4']   

 

In [32]: df 

Out[32]:         No1       No2       No3       No4 

         0 -1.749765  0.342680  1.153036 -0.252436 

         1  0.981321  0.514219  0.221180 -1.070043 

         2 -0.189496  0.255001 -0.458027  0.435163 

         3 -0.583595  0.816847  0.672721 -0.104411 

         4 -0.531280  1.029733 -0.438136 -1.118318 

         5  1.618982  1.541605 -0.251879 -0.842436 

         6  0.184519  0.937082  0.731000  1.361556 

         7 -0.326238  0.055676  0.222400 -1.443217 

         8 -0.756352  0.816454  0.750445 -0.455947 

 

In [33]: df['No2'].mean()   

Out[33]: 0.7010330941456459



Specifies the column labels via a list object.

Picking a column is now made easy.
To work with financial time series data efficiently, one must be able to
handle time indices well. This can also be considered a major strength of
pandas. For example, assume that our nine data entries in the four columns
correspond to month-end data, beginning in January 2019. A
DatetimeIndex object is then generated with the date_range() function as
follows:

In [34]: dates = pd.date_range('2019-1-1', periods=9, freq='M')   

 

In [35]: dates 

Out[35]: DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', 

                        '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', 

                        '2019-09-30'], 

                       dtype='datetime64[ns]', freq='M')

Creates a DatetimeIndex object.

Table 5-2 lists the parameters that the date_range() function takes.

Table 5-2. Parameters of date_range() function
Parameter Format Description

start string/datetime Left bound for generating dates

end string/datetime Right bound for generating dates

periods integer/None Number of periods (if start or end is None)

freq string/DateOffset Frequency string, e.g., 5D for 5 days

tz string/None Time zone name for localized index

normalize bool, default None Normalizes start and end to midnight

name string, default None Name of resulting index



The following code defines the just-created DatetimeIndex object as the
relevant index object, making a time series of the original data set:

In [36]: df.index = dates 

 

In [37]: df 

Out[37]:                  No1       No2       No3       No4 

         2019-01-31 -1.749765  0.342680  1.153036 -0.252436 

         2019-02-28  0.981321  0.514219  0.221180 -1.070043 

         2019-03-31 -0.189496  0.255001 -0.458027  0.435163 

         2019-04-30 -0.583595  0.816847  0.672721 -0.104411 

         2019-05-31 -0.531280  1.029733 -0.438136 -1.118318 

         2019-06-30  1.618982  1.541605 -0.251879 -0.842436 

         2019-07-31  0.184519  0.937082  0.731000  1.361556 

         2019-08-31 -0.326238  0.055676  0.222400 -1.443217 

         2019-09-30 -0.756352  0.816454  0.750445 -0.455947

When it comes to the generation of DatetimeIndex objects with the help of
the date_range() function, there are a number of choices for the frequency
parameter freq. Table 5-3 lists all the options.

Table 5-3. Frequency parameter values
for date_range() function

Alias Description

B Business day frequency

C Custom business day frequency (experimental)

D Calendar day frequency

W Weekly frequency

M Month end frequency

BM Business month end frequency

MS Month start frequency

BMS Business month start frequency

Q Quarter end frequency

BQ Business quarter end frequency



Alias Description

QS Quarter start frequency

BQS Business quarter start frequency

A Year end frequency

BA Business year end frequency

AS Year start frequency

BAS Business year start frequency

H Hourly frequency

T Minutely frequency

S Secondly frequency

L Milliseconds

U Microseconds

In some circumstances, it pays off to have access to the original data set in
the form of the ndarray object. The values attribute provides direct access
to it:

In [38]: df.values 

Out[38]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604], 

                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333], 

                [-0.18949583,  0.25500144, -0.45802699,  0.43516349], 

                [-0.58359505,  0.81684707,  0.67272081, -0.10441114], 

                [-0.53128038,  1.02973269, -0.43813562, -1.11831825], 

                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574], 

                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613], 

                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ], 

                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]]) 

 

In [39]: np.array(df) 

Out[39]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604], 

                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333], 

                [-0.18949583,  0.25500144, -0.45802699,  0.43516349], 

                [-0.58359505,  0.81684707,  0.67272081, -0.10441114], 

                [-0.53128038,  1.02973269, -0.43813562, -1.11831825], 

                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574], 

                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613], 



                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ], 

                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]])



ARRAYS AND DATAFRAMES
One can generate a DataFrame object from an ndarray object, but one can also easily
generate an ndarray object out of a DataFrame by using the values attribute of the
DataFrame class or the function np.array() of NumPy.



Basic Analytics
Like the NumPy ndarray class, the pandas DataFrame class has a multitude
of convenience methods built in. As a starter, consider the methods info()
and describe():

In [40]: df.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 9 entries, 2019-01-31 to 2019-09-30 

         Freq: M 

         Data columns (total 4 columns): 

         No1    9 non-null float64 

         No2    9 non-null float64 

         No3    9 non-null float64 

         No4    9 non-null float64 

         dtypes: float64(4)

         memory usage: 360.0 bytes 

 

In [41]: df.describe()   

Out[41]:             No1       No2       No3       No4 

         count  9.000000  9.000000  9.000000  9.000000 

         mean  -0.150212  0.701033  0.289193 -0.387788 

         std    0.988306  0.457685  0.579920  0.877532 

         min   -1.749765  0.055676 -0.458027 -1.443217 

         25%   -0.583595  0.342680 -0.251879 -1.070043 

         50%   -0.326238  0.816454  0.222400 -0.455947 

         75%    0.184519  0.937082  0.731000 -0.104411 

         max    1.618982  1.541605  1.153036  1.361556

Provides metainformation regarding the data, columns, and index.

Provides helpful summary statistics per column (for numerical data).
In addition, one can easily get the column-wise or row-wise sums, means,
and cumulative sums:

In [43]: df.sum()   

Out[43]: No1   -1.351906 

         No2    6.309298 

         No3    2.602739 

         No4   -3.490089 

         dtype: float64 

 

In [44]: df.mean()   



Out[44]: No1   -0.150212 

         No2    0.701033 

         No3    0.289193 

         No4   -0.387788 

         dtype: float64 

 

In [45]: df.mean(axis=0)   

Out[45]: No1   -0.150212 

         No2    0.701033 

         No3    0.289193 

         No4   -0.387788 

         dtype: float64 

 

In [46]: df.mean(axis=1)   

Out[46]: 2019-01-31   -0.126621 

         2019-02-28    0.161669 

         2019-03-31    0.010661 

         2019-04-30    0.200390 

         2019-05-31   -0.264500 

         2019-06-30    0.516568 

         2019-07-31    0.803539 

         2019-08-31   -0.372845 

         2019-09-30    0.088650 

         Freq: M, dtype: float64 

 

In [47]: df.cumsum()   

Out[47]:                  No1       No2       No3       No4 

         2019-01-31 -1.749765  0.342680  1.153036 -0.252436 

         2019-02-28 -0.768445  0.856899  1.374215 -1.322479 

         2019-03-31 -0.957941  1.111901  0.916188 -0.887316 

         2019-04-30 -1.541536  1.928748  1.588909 -0.991727 

         2019-05-31 -2.072816  2.958480  1.150774 -2.110045 

         2019-06-30 -0.453834  4.500086  0.898895 -2.952481 

         2019-07-31 -0.269316  5.437168  1.629895 -1.590925 

         2019-08-31 -0.595554  5.492844  1.852294 -3.034142 

         2019-09-30 -1.351906  6.309298  2.602739 -3.490089

Column-wise sum.

Column-wise mean.

Row-wise mean.

Column-wise cumulative sum (starting at first index position).
DataFrame objects also understand NumPy universal functions, as expected:



In [48]: np.mean(df)   

Out[48]: No1   -0.150212 

         No2    0.701033 

         No3    0.289193 

         No4   -0.387788 

         dtype: float64 

 

In [49]: np.log(df)   

Out[49]:                  No1       No2       No3       No4 

         2019-01-31       NaN -1.070957  0.142398       NaN 

         2019-02-28 -0.018856 -0.665106 -1.508780       NaN 

         2019-03-31       NaN -1.366486       NaN -0.832033 

         2019-04-30       NaN -0.202303 -0.396425       NaN 

         2019-05-31       NaN  0.029299       NaN       NaN 

         2019-06-30  0.481797  0.432824       NaN       NaN 

         2019-07-31 -1.690005 -0.064984 -0.313341  0.308628 

         2019-08-31       NaN -2.888206 -1.503279       NaN 

         2019-09-30       NaN -0.202785 -0.287089       NaN 

 

In [50]: np.sqrt(abs(df))   

Out[50]:                  No1       No2       No3       No4 

         2019-01-31  1.322787  0.585389  1.073795  0.502430 

         2019-02-28  0.990616  0.717091  0.470297  1.034429 

         2019-03-31  0.435311  0.504977  0.676777  0.659669 

         2019-04-30  0.763934  0.903796  0.820196  0.323127 

         2019-05-31  0.728890  1.014757  0.661918  1.057506 

         2019-06-30  1.272392  1.241614  0.501876  0.917843 

         2019-07-31  0.429556  0.968030  0.854986  1.166857 

         2019-08-31  0.571173  0.235958  0.471593  1.201340 

         2019-09-30  0.869685  0.903578  0.866282  0.675238 

 

In [51]: np.sqrt(abs(df)).sum()   

Out[51]: No1    7.384345 

         No2    7.075190 

         No3    6.397719 

         No4    7.538440 

         dtype: float64 

 

In [52]: 100 * df + 100   

Out[52]:                    No1         No2         No3         No4 

         2019-01-31  -74.976547  134.268040  215.303580   74.756396 

         2019-02-28  198.132079  151.421884  122.117967   -7.004333 

         2019-03-31   81.050417  125.500144   54.197301  143.516349 

         2019-04-30   41.640495  181.684707  167.272081   89.558886 

         2019-05-31   46.871962  202.973269   56.186438  -11.831825 

         2019-06-30  261.898166  254.160517   74.812086   15.756426 

         2019-07-31  118.451869  193.708220  173.100034  236.155613 

         2019-08-31   67.376194  105.567601  122.239961  -44.321700 

         2019-09-30   24.364769  181.645401  175.044476   54.405307

Column-wise mean.



Element-wise natural logarithm; a warning is raised but the calculation
runs through, resulting in multiple NaN values.

Element-wise square root for the absolute values …

… and column-wise mean values for the results.

A linear transform of the numerical data.



NUMPY UNIVERSAL FUNCTIONS
In general, one can apply NumPy universal functions to pandas DataFrame objects
whenever they could be applied to an ndarray object containing the same type of data.

pandas is quite error tolerant, in the sense that it captures errors and just
puts a NaN value where the respective mathematical operation fails. Not
only this, but as briefly shown before, one can also work with such
incomplete data sets as if they were complete in a number of cases. This
comes in handy, since reality is characterized by incomplete data sets more
often than one might wish.



Basic Visualization
Plotting of data is only one line of code away in general, once the data is
stored in a DataFrame object (see Figure 5-1):

In [53]: from pylab import plt, mpl   

         plt.style.use('seaborn')   

         mpl.rcParams['font.family'] = 'serif'   

         %matplotlib inline 

 

In [54]: df.cumsum().plot(lw=2.0, figsize=(10, 6));  

Customizing the plotting style.

Plotting the cumulative sums of the four columns as a line plot.
Basically, pandas provides a wrapper around matplotplib (see Chapter 7),
specifically designed for DataFrame objects. Table 5-4 lists the parameters
that the plot() method takes.



Figure 5-1. Line plot of a DataFrame object

Table 5-4. Parameters of plot() method
Parameter Format Description

x label/position, default None Only used when column values are
x-ticks

y label/position, default None Only used when column values are
y-ticks

subplots boolean, default False Plot columns in subplots

sharex boolean, default True Share the x-axis

sharey boolean, default False Share the y-axis

use_index boolean, default True Use DataFrame.index as x-ticks

stacked boolean, default False Stack (only for bar plots)



Parameter Format Description

sort_columns boolean, default False Sort columns alphabetically before
plotting

title string, default None Title for the plot

grid boolean, default False Show horizontal and vertical grid
lines

legend boolean, default True Show legend of labels

ax matplotlib axis object matplotlib axis object to use for
plotting

style string or list/dictionary Line plotting style (for each column)

kind string (e.g., "line", "bar", "barh", "kde",
"density")

Type of plot

logx boolean, default False Use logarithmic scaling of x-axis

logy boolean, default False Use logarithmic scaling of y-axis

xticks sequence, default Index X-ticks for the plot

yticks sequence, default Values Y-ticks for the plot

xlim 2-tuple, list Boundaries for x-axis

ylim 2-tuple, list Boundaries for y-axis

rot integer, default None Rotation of x-ticks

secondary_y boolean/sequence, default False Plot on secondary y-axis

mark_right boolean, default True Automatic labeling of secondary
axis

colormap string/colormap object, default None Color map to use for plotting

kwds keywords Options to pass to matplotlib

As another example, consider a bar plot of the same data (see Figure 5-2):



In [55]: df.plot.bar(figsize=(10, 6), rot=15);   

         # df.plot(kind='bar', figsize=(10, 6))  

Plots the bar chart via .plot.bar().

Alternative syntax: uses the kind parameter to change the plot type.

Figure 5-2. Bar plot of a DataFrame object



The Series Class
So far this chapter has worked mainly with the pandas DataFrame class.
Series is another important class that comes with pandas. It is characterized
by the fact that it has only a single column of data. In that sense, it is a
specialization of the DataFrame class that shares many but not all of its
characteristics and capabilities. A Series object is obtained when a single
column is selected from a multicolumn DataFrame object:

In [56]: type(df) 

Out[56]: pandas.core.frame.DataFrame 

 

In [57]: S = pd.Series(np.linspace(0, 15, 7), name='series') 

 

In [58]: S 

Out[58]: 0     0.0 

         1     2.5 

         2     5.0 

         3     7.5 

         4    10.0 

         5    12.5 

         6    15.0 

         Name: series, dtype: float64 

 

In [59]: type(S) 

Out[59]: pandas.core.series.Series 

 

In [60]: s = df['No1'] 

 

In [61]: s 

Out[61]: 2019-01-31   -1.749765 

         2019-02-28    0.981321 

         2019-03-31   -0.189496 

         2019-04-30   -0.583595 

         2019-05-31   -0.531280 

         2019-06-30    1.618982 

         2019-07-31    0.184519 

         2019-08-31   -0.326238 

         2019-09-30   -0.756352 

         Freq: M, Name: No1, dtype: float64 

 

In [62]: type(s) 

Out[62]: pandas.core.series.Series

The main DataFrame methods are available for Series objects as well. For
illustration, consider the mean() and plot() methods (see Figure 5-3):



In [63]: s.mean() 

Out[63]: -0.15021177307319458 

 

In [64]: s.plot(lw=2.0, figsize=(10, 6));

Figure 5-3. Line plot of a Series object



GroupBy Operations
pandas has powerful and flexible grouping capabilities. They work
similarly to grouping in SQL as well as pivot tables in Microsoft Excel. To
have something to group by one can add, for instance, a column indicating
the quarter the respective data of the index belongs to:

In [65]: df['Quarter'] = ['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 

                          'Q2', 'Q3', 'Q3', 'Q3'] 

         df 

Out[65]:                  No1       No2       No3       No4 Quarter 

         2019-01-31 -1.749765  0.342680  1.153036 -0.252436      Q1 

         2019-02-28  0.981321  0.514219  0.221180 -1.070043      Q1 

         2019-03-31 -0.189496  0.255001 -0.458027  0.435163      Q1 

         2019-04-30 -0.583595  0.816847  0.672721 -0.104411      Q2 

         2019-05-31 -0.531280  1.029733 -0.438136 -1.118318      Q2 

         2019-06-30  1.618982  1.541605 -0.251879 -0.842436      Q2 

         2019-07-31  0.184519  0.937082  0.731000  1.361556      Q3

         2019-08-31 -0.326238  0.055676  0.222400 -1.443217      Q3 

         2019-09-30 -0.756352  0.816454  0.750445 -0.455947      Q3

The following code groups by the Quarter column and outputs statistics for
the single groups:

In [66]: groups = df.groupby('Quarter')   

 

In [67]: groups.size()   

Out[67]: Quarter 

         Q1    3 

         Q2    3 

         Q3    3 

         dtype: int64 

 

In [68]: groups.mean()   

Out[68]:               No1       No2       No3       No4 

         Quarter 

         Q1      -0.319314  0.370634  0.305396 -0.295772 

         Q2       0.168035  1.129395 -0.005765 -0.688388 

         Q3      -0.299357  0.603071  0.567948 -0.179203 

 

In [69]: groups.max()   

Out[69]:               No1       No2       No3       No4 

         Quarter 

         Q1       0.981321  0.514219  1.153036  0.435163 

         Q2       1.618982  1.541605  0.672721 -0.104411 

         Q3       0.184519  0.937082  0.750445  1.361556 

 

In [70]: groups.aggregate([min, max]).round(2)   

Out[70]:           No1         No2         No3         No4 



                   min   max   min   max   min   max   min   max 

         Quarter 

         Q1      -1.75  0.98  0.26  0.51 -0.46  1.15 -1.07  0.44 

         Q2      -0.58  1.62  0.82  1.54 -0.44  0.67 -1.12 -0.10 

         Q3      -0.76  0.18  0.06  0.94  0.22  0.75 -1.44  1.36

Groups according to the Quarter column.

Gives the number of rows in each group.

Gives the mean per column.

Gives the maximum value per column.

Gives both the minimum and maximum values per column.
Grouping can also be done with multiple columns. To this end, another
column, indicating whether the month of the index date is odd or even, is
introduced:

In [71]: df['Odd_Even'] = ['Odd', 'Even', 'Odd', 'Even', 'Odd', 'Even', 

                           'Odd', 'Even', 'Odd'] 

 

In [72]: groups = df.groupby(['Quarter', 'Odd_Even']) 

 

In [73]: groups.size() 

Out[73]: Quarter  Odd_Even 

         Q1       Even        1 

                  Odd         2 

         Q2       Even        2 

                  Odd         1 

         Q3       Even        1 

                  Odd         2 

         dtype: int64 

 

In [74]: groups[['No1', 'No4']].aggregate([sum, np.mean]) 

Out[74]:                        No1                 No4 

                                sum      mean       sum      mean 

         Quarter Odd_Even 

         Q1      Even      0.981321  0.981321 -1.070043 -1.070043 

                 Odd      -1.939261 -0.969631  0.182727  0.091364 

         Q2      Even      1.035387  0.517693 -0.946847 -0.473423 

                 Odd      -0.531280 -0.531280 -1.118318 -1.118318 



         Q3      Even     -0.326238 -0.326238 -1.443217 -1.443217 

                 Odd      -0.571834 -0.285917  0.905609  0.452805

This concludes the introduction to pandas and the use of DataFrame objects.
Subsequent chapters apply this tool set to real financial data sets.



Complex Selection
Often, data selection is accomplished by formulation of conditions on
column values, and potentially combining multiple such conditions
logically. Consider the following data set:

In [75]: data = np.random.standard_normal((10, 2))   

 

In [76]: df = pd.DataFrame(data, columns=['x', 'y'])   

 

In [77]: df.info()   

         <class 'pandas.core.frame.DataFrame'> 

         RangeIndex: 10 entries, 0 to 9 

         Data columns (total 2 columns): 

         x    10 non-null float64 

         y    10 non-null float64 

         dtypes: float64(2)

         memory usage: 240.0 bytes 

 

In [78]: df.head()   

Out[78]:           x         y 

         0  1.189622 -1.690617 

         1 -1.356399 -1.232435 

         2 -0.544439 -0.668172 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

 

In [79]: df.tail()   

Out[79]:           x         y 

         5 -0.983310  0.357508 

         6 -1.613579  1.470714 

         7 -1.188018 -0.549746 

         8 -0.940046 -0.827932 

         9  0.108863  0.507810

ndarray object with standard normally distributed random numbers.

DataFrame object with the same random numbers.

The first five rows via the head() method.



The final five rows via the tail() method.

The following code illustrates the application of Python’s comparison
operators and logical operators on values in the two columns:

In [80]: df['x'] > 0.5   

Out[80]: 0     True 

         1    False 

         2    False 

         3    False 

         4     True 

         5    False 

         6    False 

         7    False 

         8    False 

         9    False 

         Name: x, dtype: bool 

 

In [81]: (df['x'] > 0) & (df['y'] < 0)   

Out[81]: 0     True 

         1    False 

         2    False 

         3     True 

         4     True 

         5    False 

         6    False 

         7    False 

         8    False 

         9    False 

         dtype: bool 

 

In [82]: (df['x'] > 0) | (df['y'] < 0)   

Out[82]: 0     True 

         1     True 

         2     True 

         3     True 

         4     True 

         5    False 

         6    False 

         7     True 

         8     True 

         9     True 

         dtype: bool

Check whether value in column x is greater than 0.5.

Check whether value in column x is positive and value in column y is
negative.



Check whether value in column x is positive or value in column y is
negative.

Using the resulting Boolean Series objects, complex data (row) selection is
straightforward. Alternatively, one can use the query() method and pass the
conditions as str objects:

In [83]: df[df['x'] > 0]   

Out[83]:           x         y 

         0  1.189622 -1.690617 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

         9  0.108863  0.507810 

 

In [84]: df.query('x > 0')   

Out[84]:           x         y 

         0  1.189622 -1.690617 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

         9  0.108863  0.507810 

 

In [85]: df[(df['x'] > 0) & (df['y'] < 0)]  

Out[85]:           x         y 

         0  1.189622 -1.690617 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

 

In [86]: df.query('x > 0 & y < 0')   

Out[86]:           x         y 

         0  1.189622 -1.690617 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

 

In [87]: df[(df.x > 0) | (df.y < 0)]   

Out[87]:           x         y 

         0  1.189622 -1.690617 

         1 -1.356399 -1.232435 

         2 -0.544439 -0.668172 

         3  0.007315 -0.612939 

         4  1.299748 -1.733096 

         7 -1.188018 -0.549746 

         8 -0.940046 -0.827932 

         9  0.108863  0.507810

All rows for which the value in column x is greater than 0.5.



All rows for which the value in column x is positive and the value in
column y is negative.

All rows for which the value in column x is positive or the value in
column y is negative (columns are accessed here via the respective
attributes).

Comparison operators can also be applied to complete DataFrame objects at
once:

In [88]: df > 0   

Out[88]:        x      y 

         0   True  False 

         1  False  False 

         2  False  False 

         3   True  False 

         4   True  False 

         5  False   True 

         6  False   True 

         7  False  False 

         8  False  False 

         9   True   True 

 

In [89]: df[df > 0]   

Out[89]:           x         y 

         0  1.189622       NaN 

         1       NaN       NaN 

         2       NaN       NaN 

         3  0.007315       NaN 

         4  1.299748       NaN 

         5       NaN  0.357508 

         6       NaN  1.470714 

         7       NaN       NaN 

         8       NaN       NaN 

         9  0.108863  0.507810

Which values in the DataFrame object are positive?

Select all such values and put a NaN in all other places.



Concatenation, Joining, and Merging
This section walks through different approaches to combine two simple data
sets in the form of DataFrame objects. The two simple data sets are:

In [90]: df1 = pd.DataFrame(['100', '200', '300', '400'], 

                             index=['a', 'b', 'c', 'd'], 

                             columns=['A',]) 

 

In [91]: df1 

Out[91]:      A 

         a  100 

         b  200 

         c  300 

         d  400 

 

In [92]: df2 = pd.DataFrame(['200', '150', '50'], 

                             index=['f', 'b', 'd'], 

                             columns=['B',]) 

 

In [93]: df2 

Out[93]:      B 

         f  200 

         b  150 

         d   50



Concatenation
Concatenation or appending basically means that rows are added from one
DataFrame object to another one. This can be accomplished via the
append() method or via the pd.concat() function. A major consideration
is how the index values are handled:

In [94]: df1.append(df2, sort=False)   

Out[94]:      A    B 

         a  100  NaN 

         b  200  NaN 

         c  300  NaN 

         d  400  NaN 

         f  NaN  200 

         b  NaN  150 

         d  NaN   50 

 

In [95]: df1.append(df2, ignore_index=True, sort=False)   

Out[95]:      A    B 

         0  100  NaN 

         1  200  NaN 

         2  300  NaN 

         3  400  NaN 

         4  NaN  200 

         5  NaN  150 

         6  NaN   50 

 

In [96]: pd.concat((df1, df2), sort=False)   

Out[96]:      A    B 

         a  100  NaN 

         b  200  NaN 

         c  300  NaN 

         d  400  NaN 

         f  NaN  200 

         b  NaN  150 

         d  NaN   50 

 

In [97]: pd.concat((df1, df2), ignore_index=True, sort=False)   

Out[97]:      A    B 

         0  100  NaN 

         1  200  NaN 

         2  300  NaN 

         3  400  NaN 

         4  NaN  200 

         5  NaN  150 

         6  NaN   50

Appends data from df2 to df1 as new rows.



Does the same but ignores the indices.

Has the same effect as the first append operation.

Has the same effect as the second append operation.



Joining
When joining the two data sets, the sequence of the DataFrame objects also
matters but in a different way. Only the index values from the first
DataFrame object are used. This default behavior is called a left join:

In [98]: df1.join(df2)   

Out[98]:      A    B 

         a  100  NaN 

         b  200  150 

         c  300  NaN 

         d  400   50 

 

In [99]: df2.join(df1)   

Out[99]:      B    A 

         f  200  NaN 

         b  150  200 

         d   50  400

Index values of df1 are relevant.

Index values of df2 are relevant.

There are a total of four different join methods available, each leading to a
different behavior with regard to how index values and the corresponding
data rows are handled:

In [100]: df1.join(df2, how='left')   

Out[100]:      A    B 

          a  100  NaN 

          b  200  150 

          c  300  NaN 

          d  400   50 

 

In [101]: df1.join(df2, how='right')   

Out[101]:      A    B 

          f  NaN  200 

          b  200  150 

          d  400   50 

 

In [102]: df1.join(df2, how='inner')   

Out[102]:      A    B 

          b  200  150 

          d  400   50 



 

In [103]: df1.join(df2, how='outer')   

Out[103]:      A    B 

          a  100  NaN 

          b  200  150 

          c  300  NaN 

          d  400   50 

          f  NaN  200

Left join is the default operation.

Right join is the same as reversing the sequence of the DataFrame
objects.

Inner join only preserves those index values found in both indices.

Outer join preserves all index values from both indices.
A join can also happen based on an empty DataFrame object. In this case,
the columns are created sequentially, leading to behavior similar to a left
join:

In [104]: df = pd.DataFrame() 

 

In [105]: df['A'] = df1['A']   

 

In [106]: df 

Out[106]:      A 

          a  100 

          b  200 

          c  300 

          d  400 

 

In [107]: df['B'] = df2   

 

In [108]: df 

Out[108]:      A    B 

          a  100  NaN 

          b  200  150 

          c  300  NaN 

          d  400   50



df1 as first column A.

df2 as second column B.

Making use of a dictionary to combine the data sets yields a result similar to
an outer join since the columns are created simultaneously:

In [109]: df = pd.DataFrame({'A': df1['A'], 'B': df2['B']})   

 

In [110]: df 

Out[110]:      A    B 

          a  100  NaN 

          b  200  150 

          c  300  NaN 

          d  400   50 

          f  NaN  200

The columns of the DataFrame objects are used as values in the dict
object.



Merging
While a join operation takes place based on the indices of the DataFrame
objects to be joined, a merge operation typically takes place on a column
shared between the two data sets. To this end, a new column C is added to
both original DataFrame objects:

In [111]: c = pd.Series([250, 150, 50], index=['b', 'd', 'c']) 

          df1['C'] = c 

          df2['C'] = c 

 

In [112]: df1 

Out[112]:      A      C 

          a  100    NaN 

          b  200  250.0 

          c  300   50.0 

          d  400  150.0 

 

In [113]: df2 

Out[113]:      B      C 

          f  200    NaN 

          b  150  250.0 

          d   50  150.0

By default, the merge operation in this case takes place based on the single
shared column C. Other options are available, however, such as an outer
merge:

In [114]: pd.merge(df1, df2)   

Out[114]:      A      C    B 

          0  100    NaN  200 

          1  200  250.0  150 

          2  400  150.0   50 

 

In [115]: pd.merge(df1, df2, on='C')  

Out[115]:      A      C    B 

          0  100    NaN  200 

          1  200  250.0  150 

          2  400  150.0   50 

 

In [116]: pd.merge(df1, df2, how='outer')   

Out[116]:      A      C    B 

          0  100    NaN  200 

          1  200  250.0  150 

          2  300   50.0  NaN 

          3  400  150.0   50



The default merge on column C.

An outer merge is also possible, preserving all data rows.
Many more types of merge operations are available, a few of which are
illustrated in the following code:

In [117]: pd.merge(df1, df2, left_on='A', right_on='B') 

Out[117]:      A    C_x    B  C_y 

          0  200  250.0  200  NaN 

 

In [118]: pd.merge(df1, df2, left_on='A', right_on='B', how='outer')

Out[118]:      A    C_x    B    C_y 

          0  100    NaN  NaN    NaN 

          1  200  250.0  200    NaN 

          2  300   50.0  NaN    NaN 

          3  400  150.0  NaN    NaN 

          4  NaN    NaN  150  250.0 

          5  NaN    NaN   50  150.0 

 

In [119]: pd.merge(df1, df2, left_index=True, right_index=True) 

Out[119]:      A    C_x    B    C_y 

          b  200  250.0  150  250.0 

          d  400  150.0   50  150.0 

 

In [120]: pd.merge(df1, df2, on='C', left_index=True) 

Out[120]:      A      C    B 

          f  100    NaN  200 

          b  200  250.0  150 

          d  400  150.0   50 

 

In [121]: pd.merge(df1, df2, on='C', right_index=True) 

Out[121]:      A      C    B 

          a  100    NaN  200 

          b  200  250.0  150 

          d  400  150.0   50 

 

In [122]: pd.merge(df1, df2, on='C', left_index=True, right_index=True) 

Out[122]:      A      C    B 

          b  200  250.0  150 

          d  400  150.0   50



Performance Aspects
Many examples in this chapter illustrate that there are often multiple
options to achieve the same goal with pandas. This section compares such
options for adding up two columns element-wise. First, the data set,
generated with NumPy:

In [123]: data = np.random.standard_normal((1000000, 2))   

 

In [124]: data.nbytes   

Out[124]: 16000000 

 

In [125]: df = pd.DataFrame(data, columns=['x', 'y'])   

 

In [126]: df.info()   

          <class 'pandas.core.frame.DataFrame'> 

          RangeIndex: 1000000 entries, 0 to 999999 

          Data columns (total 2 columns): 

          x    1000000 non-null float64 

          y    1000000 non-null float64 

          dtypes: float64(2) 

          memory usage: 15.3 MB

The ndarray object with random numbers.

The DataFrame object with the random numbers.

Second, some options to accomplish the task at hand with performance
values:

In [127]: %time res = df['x'] + df['y']   

          CPU times: user 7.35 ms, sys: 7.43 ms, total: 14.8 ms 

          Wall time: 7.48 ms 

 

In [128]: res[:3] 

Out[128]: 0    0.387242 

          1   -0.969343 

          2   -0.863159 

          dtype: float64 

 

In [129]: %time res = df.sum(axis=1)   

          CPU times: user 130 ms, sys: 30.6 ms, total: 161 ms 

          Wall time: 101 ms 



 

In [130]: res[:3] 

Out[130]: 0    0.387242 

          1   -0.969343 

          2   -0.863159 

          dtype: float64 

 

In [131]: %time res = df.values.sum(axis=1)   

          CPU times: user 50.3 ms, sys: 2.75 ms, total: 53.1 ms 

          Wall time: 27.9 ms 

 

In [132]: res[:3] 

Out[132]: array([ 0.3872424 , -0.96934273, -0.86315944]) 

 

In [133]: %time res = np.sum(df, axis=1)   

          CPU times: user 127 ms, sys: 15.1 ms, total: 142 ms 

          Wall time: 73.7 ms 

 

In [134]: res[:3] 

Out[134]: 0    0.387242 

          1   -0.969343 

          2   -0.863159 

          dtype: float64 

 

In [135]: %time res = np.sum(df.values, axis=1)   

          CPU times: user 49.3 ms, sys: 2.36 ms, total: 51.7 ms 

          Wall time: 26.9 ms 

 

In [136]: res[:3] 

Out[136]: array([ 0.3872424 , -0.96934273, -0.86315944])

Working with the columns (Series objects) directly is the fastest
approach.

This calculates the sums by calling the sum() method on the
DataFrame object.

This calculates the sums by calling the sum() method on the ndarray
object.

This calculates the sums by using the function np.sum() on the
DataFrame object.



This calculates the sums by using the function np.sum() on the
ndarray object.

Finally, two more options which are based on the methods eval() and
apply(), respectively:1

In [137]: %time res = df.eval('x + y')   

          CPU times: user 25.5 ms, sys: 17.7 ms, total: 43.2 ms 

          Wall time: 22.5 ms 

 

In [138]: res[:3] 

Out[138]: 0    0.387242 

          1   -0.969343 

          2   -0.863159 

          dtype: float64 

 

In [139]: %time res = df.apply(lambda row: row['x'] + row['y'], axis=1)   

          CPU times: user 19.6 s, sys: 83.3 ms, total: 19.7 s 

          Wall time: 19.9 s 

 

In [140]: res[:3] 

Out[140]: 0    0.387242 

          1   -0.969343 

          2   -0.863159 

          dtype: float64

eval() is a method dedicated to evaluation of (complex) numerical
expressions; columns can be directly addressed.

The slowest option is to use the apply() method row-by-row; this is
like looping on the Python level over all rows.



CHOOSE WISELY
pandas often provides multiple options to accomplish the same goal. If unsure of which
to use, compare the options to verify that the best possible performance is achieved
when time is critical. In this simple example, execution times differ by orders of
magnitude.



Conclusion
pandas is a powerful tool for data analysis and has become the central
package in the so-called PyData stack. Its DataFrame class is particularly
suited to working with tabular data of any kind. Most operations on such
objects are vectorized, leading not only — as in the NumPy case — to
concise code but also to high performance in general. In addition, pandas
makes working with incomplete data sets convenient (which is not the case
with NumPy, for instance). pandas and the DataFrame class will be central in
many later chapters of the book, where additional features will be used and
introduced when necessary.



Further Reading
pandas is an open source project with both online documentation and a
PDF version available for download.2 The website provides links to both,
and additional resources:

http://pandas.pydata.org/

As for NumPy, recommended references for pandas in book form are:

McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA:
O’Reilly.

VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol,
CA: O’Reilly.

The application of the eval() method requires the numexpr package to be installed.

At the time of this writing, the PDF version has a total of more than 2,500 pages.

1

2

http://pandas.pydata.org/
http://bit.ly/2qNWFrH


Chapter 6. Object-Oriented
Programming

The purpose of software engineering is to control complexity, not to
create it.
Pamela Zave

Object-oriented programming (OOP) is one of the most popular
programming paradigms today. Used in the right way, it provides a number
of advantages compared to, for example, procedural programming. In many
cases, OOP seems to be particularly suited for financial modeling and
implementing financial algorithms. However, there are also many critics,
voicing their skepticism about single aspects of OOP or even the paradigm
as a whole. This chapter takes a neutral stance, in that OOP is considered an
important tool that might not be the best one for every single problem, but
that should be at the disposal of programmers and quants working in
finance.

With OOP, some new language comes along. The most important terms for
the purposes of this book and chapter are (more follow later):

Class
An abstract definition of a class of objects. For example, a human
being.

Object
An instance of a class. For example, Sandra.

Attribute
A feature of the class (class attribute) or of an instance of the class
(instance attribute). For example, being a mammal, being male or
female, or color of the eyes.

Method



An operation that the class can implement. For example, walking.

Parameters
Input taken by a method to influence its behavior. For example, three
steps.

Instantiation
The process of creating a specific object based on an abstract class.

Translated into Python code, a simple class implementing the example of a
human being might look as follows:

In [1]: class HumanBeing(object):   

            def __init__(self, first_name, eye_color):   

                self.first_name = first_name   

                self.eye_color = eye_color   

                self.position = 0   

            def walk_steps(self, steps):   

                self.position += steps  

Class definition statement; self refers to the current instance of the
class.

Special method called during instantiation.

First name attribute initialized with parameter value.

Eye color attribute initialized with parameter value.

Position attribute initialized with 0.

Method definition for walking with steps as parameter.



Code that changes the position given the steps value.

Based on the class definition, a new Python object can be instantiated and
used:

In [2]: Sandra = HumanBeing('Sandra', 'blue')   

 

In [3]: Sandra.first_name   

Out[3]: 'Sandra' 

 

In [4]: Sandra.position   

Out[4]: 0 

 

In [5]: Sandra.walk_steps(5)   

 

In [6]: Sandra.position   

Out[6]: 5

The instantiation.

Accessing attribute values.

Calling the method.

Accessing the updated position value.

There are several human aspects that might speak for the use of OOP:

Natural way of thinking
Human thinking typically evolves around real-world or abstract
objects, like a car or a financial instrument. OOP is suited to modeling
such objects with their characteristics.

Reducing complexity
Via different approaches, OOP helps to reduce the complexity of a
problem or algorithm and to model it feature-by-feature.



Nicer user interfaces
OOP allows in many cases for nicer user interfaces and more compact
code. This becomes evident, for example, when looking at the NumPy
ndarray class or pandas DataFrame class.

Pythonic way of modeling
Independent of the pros and cons of OOP, it is simply the dominant
paradigm in Python. This is where the saying “everything is an object
in Python” comes from. OOP also allows the programmer to build
custom classes whose instances behave like every other instance of a
standard Python class.

There are also several technical aspects that might speak for OOP:

Abstraction
The use of attributes and methods allows building abstract, flexible
models of objects, with a focus on what is relevant and neglecting
what is not needed. In finance, this might mean having a general class
that models a financial instrument in abstract fashion. Instances of
such a class would then be concrete financial products, engineered and
offered by an investment bank, for example.

Modularity
OOP simplifies breaking code down into multiple modules which are
then linked to form the complete codebase. For example, modeling a
European option on a stock could be achieved by a single class or by
two classes, one for the underlying stock and one for the option itself.

Inheritance
Inheritance refers to the concept that one class can inherit attributes
and methods from another class. In finance, starting with a general
financial instrument, the next level could be a general derivative
instrument, then a European option, then a European call option. Every
class might inherit attributes and methods from class(es) on a higher
level.



Aggregation
Aggregation refers to the case in which an object is at least partly
made up of multiple other objects that might exist independently. A
class modeling a European call option might have as attributes other
objects for the underlying stock and the relevant short rate for
discounting. The objects representing the stock and the short rate can
be used independently by other objects as well.

Composition
Composition is similar to aggregation, but here the single objects
cannot exist independently of each other. Consider a custom-tailored
interest rate swap with a fixed leg and a floating leg. The two legs do
not exist independently of the swap itself.

Polymorphism
Polymorphism can take on multiple forms. Of particular importance in
a Python context is what is called duck typing. This refers to the fact
that standard operations can be implemented on many different classes
and their instances without knowing exactly what object one is dealing
with. For a class of financial instruments this might mean that one can
call a method get_current_price() independent of the specific type
of the object (stock, option, swap).

Encapsulation
This concept refers to the approach of making data within a class
accessible only via public methods. A class modeling a stock might
have an attribute current_stock_price. Encapsulation would then
give access to the attribute value via a method
get_current_stock_price() and would hide the data from the user
(i.e., make it private). This approach might avoid unintended effects by
simply working with and possibly changing attribute values. However,
there are limits as to how data can be made private in a Python class.

On a somewhat higher level, many of these aspects can be summarized by
two generals goals in software engineering:



Reusability
Concepts like inheritance and polymorphism improve code reusability
and increase the efficiency and productivity of the programmer. They
also simplify code maintenance.

Nonredundancy
At the same time, these approaches allow one to build almost
nonredundant code, avoiding double implementation effort and
reducing debugging and testing effort as well as maintenance effort.
They might also lead to a smaller overall codebase.

This chapter is organized as follows:

“A Look at Python Objects”
This section takes a look at some Python objects through the lens of
OOP.

“Basics of Python Classes”
This section introduces central elements of OOP in Python and uses
financial instruments and portfolio positions as major examples.

“Python Data Model”
This section discusses important elements of the Python data model
and roles that certain special methods play.



A Look at Python Objects
Let’s start by taking a brief look at some standard objects encountered in
previous chapters through the eyes of an OOP programmer.



int
To start simple, consider an integer object. Even with such a simple Python
object, the major OOP features are present:

In [7]: n = 5   

 

In [8]: type(n)   

Out[8]: int 

 

In [9]: n.numerator   

Out[9]: 5 

 

In [10]: n.bit_length()   

Out[10]: 3 

 

In [11]: n + n   

Out[11]: 10 

 

In [12]: 2 * n   

Out[12]: 10 

 

In [13]: n.__sizeof__()   

Out[13]: 28

New instance n.

Type of the object.

An attribute.

A method.

Applying the + operator (addition).

Applying the * operator (multiplication).



Calling the special method __sizeof__() to get the memory usage in
bytes.1



list
list objects have some more methods but basically behave the same way:

In [14]: l = [1, 2, 3, 4]   

 

In [15]: type(l)   

Out[15]: list 

 

In [16]: l[0]   

Out[16]: 1 

 

In [17]: l.append(10)   

 

In [18]: l + l   

Out[18]: [1, 2, 3, 4, 10, 1, 2, 3, 4, 10] 

 

In [19]: 2 * l   

Out[19]: [1, 2, 3, 4, 10, 1, 2, 3, 4, 10] 

 

In [20]: sum(l)   

Out[20]: 20 

 

In [21]: l.__sizeof__()   

Out[21]: 104

New instance l.

Type of the object.

Selecting an element via indexing.

A method.

Applying the + operator (concatenation).

Applying the * operator (concatenation).



Applying the standard Python function sum().

Calling the special method __sizeof__() to get the memory usage in
bytes.



ndarray
int and list objects are standard Python objects. The NumPy ndarray
object is a “custom-made” object from an open source package:

In [22]: import numpy as np   

 

In [23]: a = np.arange(16).reshape((4, 4))   

 

In [24]: a   

Out[24]: array([[ 0,  1,  2,  3],

                [ 4,  5,  6,  7], 

                [ 8,  9, 10, 11], 

                [12, 13, 14, 15]]) 

 

In [25]: type(a)   

Out[25]: numpy.ndarray

Importing numpy.

A new instance a.

Type of the object.
Although the ndarray object is not a standard object, it behaves in many
cases as if it were one — thanks to the Python data model, as explained
later in this chapter:

In [26]: a.nbytes   

Out[26]: 128 

 

In [27]: a.sum()   

Out[27]: 120 

 

In [28]: a.cumsum(axis=0)   

Out[28]: array([[ 0,  1,  2,  3],

                [ 4,  6,  8, 10], 

                [12, 15, 18, 21], 

                [24, 28, 32, 36]]) 

 

In [29]: a + a   

Out[29]: array([[ 0,  2,  4,  6],



                [ 8, 10, 12, 14], 

                [16, 18, 20, 22], 

                [24, 26, 28, 30]]) 

 

In [30]: 2 * a   

Out[30]: array([[ 0,  2,  4,  6],

                [ 8, 10, 12, 14], 

                [16, 18, 20, 22], 

                [24, 26, 28, 30]]) 

 

In [31]: sum(a)   

Out[31]: array([24, 28, 32, 36]) 

 

In [32]: np.sum(a)   

Out[32]: 120 

 

In [33]: a.__sizeof__()   

Out[33]: 112

An attribute.

A method (aggregation).

A method (no aggregation).

Applying the + operator (addition).

Applying the * operator (multiplication).

Applying the standard Python function sum().

Applying the NumPy universal function np.sum().

Calling the special method __sizeof__() to get the memory usage in
bytes.



DataFrame
Finally, a quick look at the pandas DataFrame object, which behaves
similarly to the ndarray object. First, the instantiation of the DataFrame
object based on the ndarray object:

In [34]: import pandas as pd   

 

In [35]: df = pd.DataFrame(a, columns=list('abcd'))   

 

In [36]: type(df)   

Out[36]: pandas.core.frame.DataFrame

Importing pandas.

A new instance df.

Type of the object.
Second, a look at attributes, methods, and operations:

In [37]: df.columns   

Out[37]: Index(['a', 'b', 'c', 'd'], dtype='object') 

 

In [38]: df.sum()   

Out[38]: a    24 

         b    28 

         c    32 

         d    36 

         dtype: int64 

 

In [39]: df.cumsum()   

Out[39]:     a   b   c   d 

         0   0   1   2   3 

         1   4   6   8  10 

         2  12  15  18  21 

         3  24  28  32  36 

 

In [40]: df + df   

Out[40]:     a   b   c   d 

         0   0   2   4   6 

         1   8  10  12  14 



         2  16  18  20  22 

         3  24  26  28  30 

 

In [41]: 2 * df   

Out[41]:     a   b   c   d 

         0   0   2   4   6 

         1   8  10  12  14 

         2  16  18  20  22 

         3  24  26  28  30 

 

In [42]: np.sum(df)   

Out[42]: a    24 

         b    28 

         c    32 

         d    36 

         dtype: int64 

 

In [43]: df.__sizeof__()   

Out[43]: 208

An attribute.

A method (aggregation).

A method (no aggregation).

Applying the + operator (addition).

Applying the * operator (multiplication).

Applying the NumPy universal function np.sum().

Calling the special method __sizeof__() to get the memory usage in
bytes.



Basics of Python Classes
This section covers major concepts and the concrete syntax to make use of
OOP in Python. The context now is about building custom classes to model
types of objects that cannot be easily, efficiently, or properly modeled by
existing Python object types. Throughout, the example of a financial
instrument is used.

Two lines of code suffice to create a new Python class:

In [44]: class FinancialInstrument(object):   

             pass   

 

In [45]: fi = FinancialInstrument()   

 

In [46]: type(fi)   

Out[46]: __main__.FinancialInstrument

 

In [47]: fi   

Out[47]: <__main__.FinancialInstrument at 0x116767278> 

 

In [48]: fi.__str__()   

Out[48]: '<__main__.FinancialInstrument object at 0x116767278>' 

 

In [49]: fi.price = 100   

 

In [50]: fi.price   

Out[50]: 100

Class definition statement.2

Some code; here simply the pass keyword.

A new instance of the class named fi.

The type of the object.



Every Python object comes with certain “special” attributes and
methods (from object); here, the special method to retrieve the string
representation is called.

So-called data attributes — in contrast to regular attributes — can be
defined on the fly for every object.

An important special method is __init__, which gets called during every
instantiation of an object. It takes as parameters the object itself (self, by
convention) and potentially multiple others:

In [51]: class FinancialInstrument(object): 

             author = 'Yves Hilpisch'   

             def __init__(self, symbol, price):   

                 self.symbol = symbol   

                 self.price = price  

 

In [52]: FinancialInstrument.author   

Out[52]: 'Yves Hilpisch' 

 

In [53]: aapl = FinancialInstrument('AAPL', 100)   

 

In [54]: aapl.symbol   

Out[54]: 'AAPL' 

 

In [55]: aapl.author   

Out[55]: 'Yves Hilpisch' 

 

In [56]: aapl.price = 105   

 

In [57]: aapl.price   

Out[57]: 105

Definition of a class attribute (inherited by every instance).

The special method __init__ called during initialization.

Definition of the instance attributes (individual to every instance).



A new instance of the class named fi.

Accessing an instance attribute.

Accessing a class attribute.

Changing the value of an instance attribute.
Prices of financial instruments change regularly, but the symbol of a
financial instrument probably does not change. To introduce encapsulation
to the class definition, two methods, get_price() and set_price(), might
be defined. The code that follows additionally inherits from the previous
class definition (and not from object anymore):

In [58]: class FinancialInstrument(FinancialInstrument):   

             def get_price(self):   

                 return self.price   

             def set_price(self, price):   

                 self.price = price  

 

In [59]: fi = FinancialInstrument('AAPL', 100)   

 

In [60]: fi.get_price()   

Out[60]: 100 

 

In [61]: fi.set_price(105)   

 

In [62]: fi.get_price()   

Out[62]: 105 

 

In [63]: fi.price   

Out[63]: 105

Class definition via inheritance from previous version.



Defines the get_price() method.

Defines the set_price() method …

… and updates the instance attribute value given the parameter value.

A new instance based on the new class definition named fi.

Calls the get_price() method to read the instance attribute value.

Updates the instance attribute value via set_price().

Direct access to the instance attribute.
Encapsulation generally has the goal of hiding data from the user working
with a class. Adding getter and setter methods is one part of achieving this
goal. However, this does not prevent the user from directly accessing and
manipulating instance attributes. This is where private instance attributes
come into play. They are defined by two leading underscores:

In [64]: class FinancialInstrument(object): 

             def __init__(self, symbol, price): 

                 self.symbol = symbol 

                 self.__price = price   

             def get_price(self): 

                 return self.__price 

             def set_price(self, price): 

                 self.__price = price 

 

In [65]: fi = FinancialInstrument('AAPL', 100) 

 

In [66]: fi.get_price()   

Out[66]: 100 

 

In [67]: fi.__price   

 

         ----------------------------------------------------------------- 

         AttributeError                  Traceback (most recent call last) 

         <ipython-input-67-bd62f6cadb79> in <module> 



         ----> 1 fi.__price   

 

         AttributeError: 'FinancialInstrument' object has no attribute '__price' 

 

In [68]: fi._FinancialInstrument__price   

Out[68]: 100 

 

In [69]: fi._FinancialInstrument__price = 105   

 

In [70]: fi.set_price(100)  

Price is defined as a private instance attribute.

The method get_price() returns its value.

Trying to access the attribute directly raises an error.

If the class name is prepended with a single leading underscore, direct
access and manipulation are still possible.

Sets the price back to its original value.



ENCAPSULATION IN PYTHON
Although encapsulation can basically be implemented for Python classes via private
instance attributes and respective methods dealing with them, the hiding of data from
the user cannot be fully enforced. In that sense, it is more an engineering principle in
Python than a technical feature of Python classes.

Consider another class that models a portfolio position of a financial
instrument. With the two classes aggregation as a concept is easily
illustrated. An instance of the PortfolioPosition class takes an instance of
the FinancialInstrument class as an attribute value. Adding an instance
attribute, such as position_size, one can then calculate, for instance, the
position value:

In [71]: class PortfolioPosition(object): 

             def __init__(self, financial_instrument, position_size): 

                 self.position = financial_instrument   

                 self.__position_size = position_size   

             def get_position_size(self): 

                 return self.__position_size 

             def update_position_size(self, position_size): 

                 self.__position_size = position_size 

             def get_position_value(self): 

                 return self.__position_size * \ 

                        self.position.get_price()   

 

In [72]: pp = PortfolioPosition(fi, 10) 

 

In [73]: pp.get_position_size() 

Out[73]: 10 

 

In [74]: pp.get_position_value()   

Out[74]: 1000 

 

In [75]: pp.position.get_price()   

Out[75]: 100 

 

In [76]: pp.position.set_price(105)   

 

In [77]: pp.get_position_value()   

Out[77]: 1050



An instance attribute based on an instance of the
FinancialInstrument class.

A private instance attribute of the PortfolioPosition class.

Calculates the position value based on the attributes.

Methods attached to the instance attribute object can be accessed
directly (could be hidden as well).

Updates the price of the financial instrument.

Calculates the new position value based on the updated price.



Python Data Model
The examples in the previous section highlighted some aspects of the so-
called Python data or object model. The Python data model allows you to
design classes that consistently interact with basic language constructs of
Python. Among others, it supports (see Ramalho (2015), p. 4) the following
tasks and constructs:

Iteration

Collection handling

Attribute access

Operator overloading

Function and method invocation

Object creation and destruction

String representation (e.g., for printing)

Managed contexts (i.e., with blocks)

Since the Python data model is so important, this section is dedicated to an
example (from Ramalho (2015), with slight adjustments) that explores
several aspects of it. It implements a class for one-dimensional, three-
element vectors (think of vectors in Euclidean space). First, the special
method __init__:

In [78]: class Vector(object): 

             def __init__(self, x=0, y=0, z=0):   

                 self.x = x   

                 self.y = y   

                 self.z = z   

 

In [79]: v = Vector(1, 2, 3)   

 

In [80]: v   

Out[80]: <__main__.Vector at 0x1167789e8>

https://docs.python.org/3/reference/datamodel.html


Three preinitialized instance attributes (think three-dimensional space).

A new instance of the class named v.

The default string representation.
The special method __repr__ allows the definition of custom string
representations:

In [81]: class Vector(Vector): 

             def __repr__(self): 

                 return 'Vector(%r, %r, %r)' % (self.x, self.y, self.z) 

 

In [82]: v = Vector(1, 2, 3) 

 

In [83]: v   

Out[83]: Vector(1, 2, 3) 

 

In [84]: print(v)   

         Vector(1, 2, 3)

The new string representation.
abs() and bool() are two standard Python functions whose behavior on the
Vector class can be defined via the special methods __abs__ and __bool__:

In [85]: class Vector(Vector): 

             def __abs__(self): 

                 return (self.x ** 2 +  self.y ** 2 +

                         self.z ** 2) ** 0.5   

 

             def __bool__(self): 

                 return bool(abs(self)) 

 

In [86]: v = Vector(1, 2, -1)   

 

In [87]: abs(v) 

Out[87]: 2.449489742783178 

 

In [88]: bool(v) 

Out[88]: True 

 



In [89]: v = Vector()   

 

In [90]: v   

Out[90]: Vector(0, 0, 0) 

 

In [91]: abs(v) 

Out[91]: 0.0 

 

In [92]: bool(v) 

Out[92]: False

Returns the Euclidean norm given the three attribute values.

A new Vector object with nonzero attribute values.

A new Vector object with zero attribute values only.

As shown multiple times, the + and * operators can be applied to almost any
Python object. The behavior is defined through the special methods
__add__ and __mul__:

In [93]: class Vector(Vector): 

             def __add__(self, other): 

                 x = self.x + other.x 

                 y = self.y + other.y 

                 z = self.z + other.z 

                 return Vector(x, y, z)   

 

             def __mul__(self, scalar): 

                 return Vector(self.x * scalar, 

                               self.y * scalar, 

                               self.z * scalar)   

 

In [94]: v = Vector(1, 2, 3) 

 

In [95]: v + Vector(2, 3, 4) 

Out[95]: Vector(3, 5, 7) 

 

In [96]: v * 2 

Out[96]: Vector(2, 4, 6)

In this case, each special method returns an object of its own kind.



Another standard Python function is len(), which gives the length of an
object in number of elements. This function accesses the special method
__len__ when called on an object. On the other hand, the special method
__getitem__ makes indexing via the square bracket notation possible:

In [97]: class Vector(Vector): 

             def __len__(self): 

                 return 3   

 

             def __getitem__(self, i): 

                 if i in [0, -3]: return self.x 

                 elif i in [1, -2]: return self.y 

                 elif i in [2, -1]: return self.z 

                 else: raise IndexError('Index out of range.') 

 

In [98]: v = Vector(1, 2, 3) 

 

In [99]: len(v) 

Out[99]: 3 

 

In [100]: v[0] 

Out[100]: 1 

 

In [101]: v[-2] 

Out[101]: 2 

 

In [102]: v[3] 

 

          ----------------------------------------------------------------- 

          IndexError                      Traceback (most recent call last) 

          <ipython-input-102-f998c57dcc1e> in <module> 

          ----> 1 v[3] 

 

          <ipython-input-97-b0ca25eef7b3> in __getitem__(self, i) 

                7         elif i in [1, -2]: return self.y 

                8         elif i in [2, -1]: return self.z 

          ----> 9         else: raise IndexError('Index out of range.') 

 

          IndexError: Index out of range.

All instances of the Vector class have a length of three.

Finally, the special method __iter__ defines the behavior during iterations
over elements of an object. An object for which this operation is defined is
called iterable. For instance, all collections and containers are iterable:

In [103]: class Vector(Vector): 

              def __iter__(self): 

                  for i in range(len(self)): 



                      yield self[i] 

 

In [104]: v = Vector(1, 2, 3) 

 

In [105]: for i in range(3):   

              print(v[i])   

          1 

          2 

          3 

 

In [106]: for coordinate in v:   

              print(coordinate)   

          1 

          2 

          3

Indirect iteration using index values (via __getitem__).

Direct iteration over the class instance (using __iter__).



ENHANCING PYTHON
The Python data model allows the definition of Python classes that interact with
standard Python operators, functions, etc., seamlessly. This makes Python a rather
flexible programming language that can easily be enhanced by new classes and types of
objects.

As a summary, the following section provides the Vector class definition in
a single code block.



The Vector Class
In [107]: class Vector(object): 

              def __init__(self, x=0, y=0, z=0): 

                  self.x = x 

                  self.y = y 

                  self.z = z 

 

              def __repr__(self): 

                  return 'Vector(%r, %r, %r)' % (self.x, self.y, self.z) 

 

              def __abs__(self): 

                  return (self.x ** 2 +  self.y ** 2 + self.z ** 2) ** 0.5 

 

              def __bool__(self): 

                  return bool(abs(self)) 

 

              def __add__(self, other): 

                  x = self.x + other.x 

                  y = self.y + other.y 

                  z = self.z + other.z 

                  return Vector(x, y, z) 

 

              def __mul__(self, scalar): 

                  return Vector(self.x * scalar, 

                                self.y * scalar, 

                                self.z * scalar) 

 

              def __len__(self): 

                  return 3 

 

              def __getitem__(self, i): 

                  if i in [0, -3]: return self.x 

                  elif i in [1, -2]: return self.y 

                  elif i in [2, -1]: return self.z 

                  else: raise IndexError('Index out of range.') 

 

              def __iter__(self): 

                  for i in range(len(self)): 

                      yield self[i]



Conclusion
This chapter introduces notions and approaches from object-oriented
programming, both theoretically and through Python examples. OOP is one
of the main programming paradigms used in Python. It not only allows for
the modeling and implementation of rather complex applications, but also
allows one to create custom objects that behave like standard Python
objects due to the flexible Python data model. Although there are many
critics who argue against OOP, it is safe to say that it provides the Python
programmer and quant with powerful tools that are helpful when a certain
degree of complexity is reached. The derivatives pricing package developed
and discussed in Part V presents such a case where OOP seems the only
sensible programming paradigm to deal with the inherent complexities and
requirements for abstraction.



Further Resources
The following are valuable online resources about OOP in general and
Python programming and OOP in particular:

Lecture Notes on Object-Oriented Programming

Object-Oriented Programming in Python

A great resource in book form about Python object orientation and the
Python data model is:

Ramalho, Luciano (2016). Fluent Python. Sebastopol, CA: O’Reilly.

Special attributes and methods in Python are characterized by double leading and trailing
underscores as in __XYZ__(). n.__sizeof__(), for instance, calls import sys;
sys.getsizeof(n) internally.

Camel-case naming for classes is recommended. However, if there is no ambiguity, lowercase or
snake case (as in financial_instrument) can also be used.

1

2

http://bit.ly/2qLJU0S
http://bit.ly/2DKGZhB


Part III. Financial Data Science

This part of the book is about basic techniques, approaches, and packages
for financial data science. Many topics (such as visualization) and many
packages (such as scikit-learn) are fundamental for data science with
Python. In that sense, this part equips the quants and financial analysts with
the Python tools they need to become financial data scientists.

Like in Part II, the chapters are organized according to topics such that they
can each be used as a reference for the topic of interest:

Chapter 7 discusses static and interactive visualization with
matplotlib and plotly.

Chapter 8 is about handling financial time series data with pandas.

Chapter 9 focuses on getting input/output (I/O) operations right and
fast.

Chapter 10 is all about making Python code fast.

Chapter 11 focuses on frequently required mathematical tools in
finance.

Chapter 12 looks at using Python to implement methods from
stochastics.

Chapter 13 is about statistical and machine learning approaches.

http://scikit-learn.org/stable/


Chapter 7. Data Visualization

Use a picture. It’s worth a thousand words.
Arthur Brisbane (1911)

This chapter is about the basic visualization capabilities of the matplotlib
and plotly packages.

Although there are more visualization packages available, matplotlib has
established itself as the benchmark and, in many situations, a robust and
reliable visualization tool. It is both easy to use for standard plots and
flexible when it comes to more complex plots and customizations. In
addition, it is tightly integrated with NumPy and pandas and the data
structures they provide.

matplotlib only allows for the generation of plots in the form of bitmaps
(for example, in PNG or JPG format). On the other hand, modern web
technologies — based, for example, on the Data-Driven Documents (D3.js)
standard — allow for nice interactive and also embeddable plots
(interactive, for example, in that one can zoom in to inspect certain areas in
greater detail). A package that makes it convenient to create such D3.js
plots with Python is plotly. A smaller additional library, called Cufflinks,
tightly integrates plotly with pandas DataFrame objects and allows for the
creation of popular financial plots (such as candlestick charts).

This chapter mainly covers the following topics:

“Static 2D Plotting”
This section introduces matplotlib and presents a selection of typical
2D plots, from the most simple to some more advanced ones with two
scales or different subplots.

“Static 3D Plotting”

http://www.matplotlib.org/
http://plot.ly/
https://d3js.org/


Based on matplotlib, a selection of 3D plots useful for certain
financial applications are presented in this section.

“Interactive 2D Plotting”
This section introduces plotly and Cufflinks to create interactive 2D
plots. Making use of the QuantFigure feature of Cufflinks, this
section is also about typical financial plots used, for example, in
technical stock analysis.

This chapter cannot be comprehensive with regard to data visualization
with Python, matplotlib, or plotly, but it provides a number of examples
for the basic and important capabilities of these packages for finance. Other
examples are also found in later chapters. For instance, Chapter 8 shows in
more depth how to visualize financial time series data with the pandas
library.



Static 2D Plotting
Before creating the sample data and starting to plot, some imports and
customizations:

In [1]: import matplotlib as mpl   

 

In [2]: mpl.__version__   

Out[2]: '3.0.0' 

 

In [3]: import matplotlib.pyplot as plt   

 

In [4]: plt.style.use('seaborn')   

 

In [5]: mpl.rcParams['font.family'] = 'serif'   

 

In [6]: %matplotlib inline

Imports matplotlib with the usual abbreviation mpl.

The version of matplotlib used.

Imports the main plotting (sub)package with the usual abbreviation
plt.

Sets the plotting style to seaborn.

Sets the font to be serif in all plots.

http://bit.ly/2KaPFhs


One-Dimensional Data Sets
The most fundamental, but nevertheless quite powerful, plotting function is
plt.plot(). In principle, it needs two sets of numbers:

x values
A list or an array containing the x coordinates (values of the abscissa)

y values
A list or an array containing the y coordinates (values of the ordinate)

The number of x and y values provided must match, of course. Consider the
following code, whose output is presented in Figure 7-1:

In [7]: import numpy as np 

 

In [8]: np.random.seed(1000)   

 

In [9]: y = np.random.standard_normal(20)   

 

In [10]: x = np.arange(len(y))   

         plt.plot(x, y);  

Fixes the seed for the random number generator for reproducibility.

Draws the random numbers (y values).

Fixes the integers (x values).

Calls the plt.plot() function with the x and y objects.



Figure 7-1. Plot given x and y values

plt.plot() notices when an ndarray object is passed. In this case, there is
no need to provide the “extra” information of the x values. If one only
provides the y values, plt.plot() takes the index values as the respective x
values. Therefore, the following single line of code generates exactly the
same output (see Figure 7-2):

In [11]: plt.plot(y);



Figure 7-2. Plot given data as an ndarray object



NUMPY ARRAYS AND MATPLOTLIB
You can simply pass NumPy ndarray objects to matplotlib functions. matplotlib is able
to interpret the data structures for simplified plotting. However, be careful to not pass a
too large and/or complex array.

Since the majority of the ndarray methods return an ndarray object, one can
also pass the object with a method (or even multiple methods, in some cases)
attached. By calling the cumsum() method on the ndarray object with the
sample data, one gets the cumulative sum of this data and, as to be expected,
a different output (see Figure 7-3):

In [12]: plt.plot(y.cumsum());

Figure 7-3. Plot given an ndarray object with a method attached



In general, the default plotting style does not satisfy typical requirements for
reports, publications, etc. For example, one might want to customize the font
used (e.g., for compatibility with LaTeX fonts), to have labels at the axes, or
to plot a grid for better readability. This is where plotting styles come into
play. In addition, matplotlib offers a large number of functions to
customize the plotting style. Some are easily accessible; for others one has to
dig a bit deeper. Easily accessible, for example, are those functions that
manipulate the axes and those that relate to grids and labels (see Figure 7-4):

In [13]: plt.plot(y.cumsum()) 

         plt.grid(False)   

         plt.axis('equal');  

Turns off the grid.

Leads to equal scaling for the two axes.



Figure 7-4. Plot without grid

Other options for plt.axis() are given in Table 7-1, the majority of which
have to be passed as a str object.

Table 7-1. Options for plt.axis()
Parameter Description

Empty Returns current axis limits

off Turns axis lines and labels off

equal Leads to equal scaling

scaled Produces equal scaling via dimension changes

tight Makes all data visible (tightens limits)

image Makes all data visible (with data limits)



Parameter Description

[xmin, xmax, ymin, ymax] Sets limits to given (list of) values

In addition, one can directly set the minimum and maximum values of each
axis by using plt.xlim() and plt.ylim(). The following code provides an
example whose output is shown in Figure 7-5:

In [14]: plt.plot(y.cumsum()) 

         plt.xlim(-1, 20) 

         plt.ylim(np.min(y.cumsum()) - 1, 

                  np.max(y.cumsum()) + 1);

Figure 7-5. Plot with custom axis limits

For the sake of better readability, a plot usually contains a number of labels
— e.g., a title and labels describing the nature of the x and y values. These
are added by the functions plt.title(), plt.xlabel(), and plt.ylabel(),
respectively. By default, plot() plots continuous lines, even if discrete data



points are provided. The plotting of discrete points is accomplished by
choosing a different style option. Figure 7-6 overlays (red) points and a
(blue) line with line width of 1.5 points:

In [15]: plt.figure(figsize=(10, 6))   

         plt.plot(y.cumsum(), 'b', lw=1.5)   

         plt.plot(y.cumsum(), 'ro')   

         plt.xlabel('index')   

         plt.ylabel('value')   

         plt.title('A Simple Plot');  

Increases the size of the figure.

Plots the data as a line in blue with line width of 1.5 points.

Plots the data as red (thick) dots.

Places a label on the x-axis.

Places a label on the y-axis.

Places a title.



Figure 7-6. Plot with typical labels

By default, plt.plot() supports the color abbreviations in Table 7-2.

Table 7-2.
Standard color
abbreviations

Character Color

b Blue

g Green

r Red

c Cyan

m Magenta

y Yellow



Character Color

k Black

w White

In terms of line and/or point styles, plt.plot() supports the characters
listed in Table 7-3.

Table 7-3. Standard style
characters

Character Symbol

- Solid line style

-- Dashed line style

-. Dash-dot line style

: Dotted line style

. Point marker

, Pixel marker

o Circle marker

v Triangle_down marker

�0� Triangle_up marker

< Triangle_left marker

> Triangle_right marker

1 Tri_down marker

2 Tri_up marker

3 Tri_left marker

4 Tri_right marker



Character Symbol

s Square marker

p Pentagon marker

�0� Star marker

h Hexagon1 marker

H Hexagon2 marker

�0� Plus marker

x X marker

D Diamond marker

d Thin diamond marker

| Vline marker

_ Hline marker

Any color abbreviation can be combined with any style character. In this
way, one can make sure that different data sets are easily distinguished. The
plotting style is also reflected in the legend.



Two-Dimensional Data Sets
Plotting one-dimensional data can be considered a special case. In general,
data sets will consist of multiple separate subsets of data. The handling of
such data sets follows the same rules with matplotlib as with one-
dimensional data. However, a number of additional issues might arise in
such a context. For example, two data sets might have such a different
scaling that they cannot be plotted using the same y- and/or x-axis scaling.
Another issue might be that one might want to visualize two different data
sets in different ways, e.g., one by a line plot and the other by a bar plot.

The following code generates a two-dimensional sample data set as a NumPy
ndarray object of shape  with standard normally distributed
pseudo-random numbers. On this array, the method cumsum() is called to
calculate the cumulative sum of the sample data along axis 0 (i.e., the first
dimension):

In [16]: y = np.random.standard_normal((20, 2)).cumsum(axis=0)

In general, one can also pass such two-dimensional arrays to plt.plot(). It
will then automatically interpret the contained data as separate data sets
(along axis 1, i.e., the second dimension). A respective plot is shown in
Figure 7-7:

In [17]: plt.figure(figsize=(10, 6)) 

         plt.plot(y, lw=1.5) 

         plt.plot(y, 'ro') 

         plt.xlabel('index') 

         plt.ylabel('value') 

         plt.title('A Simple Plot');



Figure 7-7. Plot with two data sets

In such a case, further annotations might be helpful to better read the plot.
You can add individual labels to each data set and have them listed in the
legend. The function plt.legend() accepts different locality parameters. 0
stands for best location, in the sense that as little data as possible is hidden
by the legend.

Figure 7-8 shows the plot of the two data sets, this time with a legend. In the
generating code, the ndarray object is not passed as a whole but the two data
subsets (y[:, 0] and y[:, 1]) are accessed separately, which allows you to
attach individual labels to them:

In [18]: plt.figure(figsize=(10, 6)) 

         plt.plot(y[:, 0], lw=1.5, label='1st')   

         plt.plot(y[:, 1], lw=1.5, label='2nd')   

         plt.plot(y, 'ro') 

         plt.legend(loc=0)   

         plt.xlabel('index') 

         plt.ylabel('value') 

         plt.title('A Simple Plot');



Defines labels for the data subsets.

Places a legend in the “best” location.

Figure 7-8. Plot with labeled data sets

Further location options for plt.legend() include those presented in
Table 7-4.

Table 7-4.
Options for
plt.legend()

Loc Description

Default Upper right

0 Best possible



Loc Description

1 Upper right

2 Upper left

3 Lower left

4 Lower right

5 Right

6 Center left

7 Center right

8 Lower center

9 Upper center

10 Center

Multiple data sets with a similar scaling, like simulated paths for the same
financial risk factor, can be plotted using a single y-axis. However, often
data sets show rather different scalings and the plotting of such data with a
single y-scale generally leads to a significant loss of visual information. To
illustrate the effect, the following example scales the first of the two data
subsets by a factor of 100 and plots the data again (see Figure 7-9):

In [19]: y[:, 0] = y[:, 0] * 100   

 

In [20]: plt.figure(figsize=(10, 6)) 

         plt.plot(y[:, 0], lw=1.5, label='1st') 

         plt.plot(y[:, 1], lw=1.5, label='2nd') 

         plt.plot(y, 'ro') 

         plt.legend(loc=0) 

         plt.xlabel('index') 

         plt.ylabel('value') 

         plt.title('A Simple Plot');

Rescales the first data subset.



Figure 7-9. Plot with two differently scaled data sets

Inspection of Figure 7-9 reveals that the first data set is still “visually
readable,” while the second data set now looks like a straight line with the
new scaling of the y-axis. In a sense, information about the second data set
now gets “visually lost.” There are two basic approaches to resolve this
problem through means of plotting, as opposed to adjusting the data (e.g.,
through rescaling):

Use of two y-axes (left/right)

Use of two subplots (upper/lower, left/right)

The following example introduces a second y-axis to the plot. Figure 7-10
now has two different y-axes. The left y-axis is for the first data set while the
right y-axis is for the second. Consequently, there are also two legends:

In [21]: fig, ax1 = plt.subplots()   

         plt.plot(y[:, 0], 'b', lw=1.5, label='1st') 

         plt.plot(y[:, 0], 'ro') 

         plt.legend(loc=8) 



         plt.xlabel('index') 

         plt.ylabel('value 1st') 

         plt.title('A Simple Plot') 

         ax2 = ax1.twinx()   

         plt.plot(y[:, 1], 'g', lw=1.5, label='2nd') 

         plt.plot(y[:, 1], 'ro') 

         plt.legend(loc=0) 

         plt.ylabel('value 2nd');

Defines the figure and axis objects.

Creates a second axis object that shares the x-axis.

Figure 7-10. Plot with two data sets and two y-axes

The key lines of code are those that help manage the axes:

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx()



By using the plt.subplots() function, one gets direct access to the
underlying plotting objects (the figure, subplots, etc.). It allows one, for
example, to generate a second subplot that shares the x-axis with the first
subplot. In Figure 7-10, then, the two subplots actually overlay each other.

Next, consider the case of two separate subplots. This option gives even
more freedom to handle the two data sets, as Figure 7-11 illustrates:

In [22]: plt.figure(figsize=(10, 6)) 

         plt.subplot(211)  

         plt.plot(y[:, 0], lw=1.5, label='1st') 

         plt.plot(y[:, 0], 'ro') 

         plt.legend(loc=0) 

         plt.ylabel('value') 

         plt.title('A Simple Plot') 

         plt.subplot(212)  

         plt.plot(y[:, 1], 'g', lw=1.5, label='2nd') 

         plt.plot(y[:, 1], 'ro') 

         plt.legend(loc=0) 

         plt.xlabel('index') 

         plt.ylabel('value');

Defines the upper subplot 1.

Defines the lower subplot 2.



Figure 7-11. Plot with two subplots

The placing of subplots in a matplotlib figure object is accomplished by
the use of a special coordinate system. plt.subplot() takes as arguments
three integers for numrows, numcols, and fignum (either separated by
commas or not). numrows specifies the number of rows, numcols the number
of columns, and fignum the number of the subplot, starting with 1 and
ending with numrows * numcols. For example, a figure with nine equally
sized subplots would have numrows=3, numcols=3, and fignum=1,2,...,9.
The lower-right subplot would have the following “coordinates”:
plt.subplot(3, 3, 9).

Sometimes, it might be necessary or desired to choose two different plot
types to visualize such data. With the subplot approach one has the freedom
to combine arbitrary kinds of plots that matplotlib offers.1

Figure 7-12 combines a line/point plot with a bar chart:



In [23]: plt.figure(figsize=(10, 6)) 

         plt.subplot(121) 

         plt.plot(y[:, 0], lw=1.5, label='1st') 

         plt.plot(y[:, 0], 'ro') 

         plt.legend(loc=0) 

         plt.xlabel('index') 

         plt.ylabel('value') 

         plt.title('1st Data Set') 

         plt.subplot(122) 

         plt.bar(np.arange(len(y)), y[:, 1], width=0.5, 

                 color='g', label='2nd')   

         plt.legend(loc=0) 

         plt.xlabel('index') 

         plt.title('2nd Data Set');

Creates a bar subplot.

Figure 7-12. Plot combining line/point subplot with bar subplot



Other Plot Styles
When it comes to two-dimensional plotting, line and point plots are probably
the most important ones in finance; this is because many data sets embody
time series data, which generally is visualized by such plots. Chapter 8
addresses financial time series data in detail. However, this section sticks
with a two-dimensional data set of random numbers and illustrates some
alternative, and for financial applications useful, visualization approaches.

The first is the scatter plot, where the values of one data set serve as the x
values for the other data set. Figure 7-13 shows such a plot. This plot type
might be used, for example, for plotting the returns of one financial time
series against those of another one. This example uses a new two-
dimensional data set with some more data:

In [24]: y = np.random.standard_normal((1000, 2))   

 

In [25]: plt.figure(figsize=(10, 6)) 

         plt.plot(y[:, 0], y[:, 1], 'ro')   

         plt.xlabel('1st') 

         plt.ylabel('2nd') 

         plt.title('Scatter Plot');

Creates a larger data set with random numbers.

Scatter plot produced via the plt.plot() function.



Figure 7-13. Scatter plot via plt.plot() function

matplotlib also provides a specific function to generate scatter plots. It
basically works in the same way, but provides some additional features.
Figure 7-14 shows the corresponding scatter plot to Figure 7-13, this time
generated using the plt.scatter() function:

In [26]: plt.figure(figsize=(10, 6)) 

         plt.scatter(y[:, 0], y[:, 1], marker='o')   

         plt.xlabel('1st') 

         plt.ylabel('2nd') 

         plt.title('Scatter Plot');

Scatter plot produced via the plt.scatter() function.



Figure 7-14. Scatter plot via plt.scatter() function

Among other things, the plt.scatter() plotting function allows the
addition of a third dimension, which can be visualized through different
colors and be described by the use of a color bar. Figure 7-15 shows a scatter
plot where there is a third dimension illustrated by different colors of the
single dots and with a color bar as a legend for the colors. To this end, the
following code generates a third data set with random data, this time
consisting of integers between 0 and 10:

In [27]: c = np.random.randint(0, 10, len(y)) 

 

In [28]: plt.figure(figsize=(10, 6)) 

         plt.scatter(y[:, 0], y[:, 1], 

                     c=c,   

                     cmap='coolwarm',   

                     marker='o')   

         plt.colorbar() 

         plt.xlabel('1st') 

         plt.ylabel('2nd') 

         plt.title('Scatter Plot');



Includes the third data set.

Chooses the color map.

Defines the marker to be a thick dot.

Figure 7-15. Scatter plot with third dimension

Another type of plot, the histogram, is also often used in the context of
financial returns. Figure 7-16 puts the frequency values of the two data sets
next to each other in the same plot:

In [29]: plt.figure(figsize=(10, 6)) 

         plt.hist(y, label=['1st', '2nd'], bins=25)   

         plt.legend(loc=0) 



         plt.xlabel('value') 

         plt.ylabel('frequency') 

         plt.title('Histogram');

Histogram plot produced via the plt.hist() function.

Figure 7-16. Histogram for two data sets

Since the histogram is such an important plot type for financial applications,
let’s take a closer look at the use of plt.hist(). The following example
illustrates the parameters that are supported:

plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, 

bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, 

log=False, color=None, label=None, stacked=False, hold=None, **kwargs)

Table 7-5 provides a description of the main parameters of the plt.hist()
function.



Table 7-5. Parameters for plt.hist()
Parameter Description

x list object(s), ndarray object

bins Number of bins

range Lower and upper range of bins

normed Norming such that integral value is 1

weights Weights for every value in x

cumulative Every bin contains the counts of the lower bins

histtype Options (strings): bar, barstacked, step, stepfilled

align Options (strings): left, mid, right

orientation Options (strings): horizontal, vertical

rwidth Relative width of the bars

log Log scale

color Color per data set (array-like)

label String or sequence of strings for labels

stacked Stacks multiple data sets

Figure 7-17 shows a similar plot; this time, the data of the two data sets is
stacked in the histogram:

In [30]: plt.figure(figsize=(10, 6)) 

         plt.hist(y, label=['1st', '2nd'], color=['b', 'g'], 

                     stacked=True, bins=20, alpha=0.5) 

         plt.legend(loc=0) 

         plt.xlabel('value') 

         plt.ylabel('frequency') 

         plt.title('Histogram');



Figure 7-17. Stacked histogram for two data sets

Another useful plot type is the boxplot. Similar to the histogram, the boxplot
allows both a concise overview of the characteristics of a data set and easy
comparison of multiple data sets. Figure 7-18 shows such a plot for our data
sets:

In [31]: fig, ax = plt.subplots(figsize=(10, 6)) 

         plt.boxplot(y)   

         plt.setp(ax, xticklabels=['1st', '2nd'])   

         plt.xlabel('data set') 

         plt.ylabel('value') 

         plt.title('Boxplot');

Boxplot produced via the plt.boxplot() function.

Sets individual x labels.



Figure 7-18. Boxplot for two data sets

This last example uses the function plt.setp(), which sets properties for a
(set of) plotting instance(s). For example, consider a line plot generated by:

line = plt.plot(data, 'r')

The following code changes the style of the line to “dashed”:

plt.setp(line, linestyle='--')

This way, one can easily change parameters after the plotting instance
(“artist object”) has been generated.

As a final illustration in this section, consider a mathematically inspired plot
that can also be found as an example in the matplotlib gallery. It plots a
function and highlights graphically the area below the function from a lower
and to an upper limit — in other words, the integral value of the function
between the lower and upper limits. The integral (value) to be illustrated is 

http://www.matplotlib.org/gallery.html


 with , , and . Figure 7-19 shows
the resulting plot and demonstrates that matplotlib seamlessly handles
LaTeX typesetting for the inclusion of mathematical formulae into plots.
First, the function definition, with integral limits as variables and data sets
for the x and y values:

In [32]: def func(x): 

             return 0.5 * np.exp(x) + 1   

         a, b = 0.5, 1.5   

         x = np.linspace(0, 2)   

         y = func(x)   

         Ix = np.linspace(a, b)   

         Iy = func(Ix)  

         verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)]  

The function definition.

The integral limits.

The x values to plot the function.

The y values to plot the function.

The x values within the integral limits.

The y values within the integral limits.

The list object with multiple tuple objects representing coordinates
for the polygon to be plotted.

Second, the plotting itself, which is a bit involved due to the many single
objects to be placed explicitly:



In [33]: from matplotlib.patches import Polygon 

         fig, ax = plt.subplots(figsize=(10, 6)) 

         plt.plot(x, y, 'b', linewidth=2)   

         plt.ylim(bottom=0)   

         poly = Polygon(verts, facecolor='0.7', edgecolor='0.5')   

         ax.add_patch(poly)   

         plt.text(0.5 * (a + b), 1, r'$\int_a^b f(x)\mathrm{d}x$', 

                  horizontalalignment='center', fontsize=20)   

         plt.figtext(0.9, 0.075, '$x$')   

         plt.figtext(0.075, 0.9, '$f(x)$')   

         ax.set_xticks((a, b))   

         ax.set_xticklabels(('$a$', '$b$'))   

         ax.set_yticks([func(a), func(b)])   

         ax.set_yticklabels(('$f(a)$', '$f(b)$'));  

Plots the function values as a blue line.

Defines the minimum y value for the ordinate axis.

Plots the polygon (integral area) in gray.

Places the integral formula in the plot.

Places the axis labels.

Places the x labels.

Places the y labels.



Figure 7-19. Exponential function, integral area, and LaTeX labels



Static 3D Plotting
There are not too many fields in finance that really benefit from visualization
in three dimensions. However, one application area is volatility surfaces
showing implied volatilities simultaneously for a number of times-to-
maturity and strikes of the traded options used. See also Appendix B for an
example of value and vega surfaces being visualized for a European call
option. In what follows, the code artificially generates a plot that resembles a
volatility surface. To this end, consider the parameters:

Strike values between 50 and 150

Times-to-maturity between 0.5 and 2.5 years

This provides a two-dimensional coordinate system. The NumPy
np.meshgrid() function can generate such a system out of two one-
dimensional ndarray objects:

In [34]: strike = np.linspace(50, 150, 24)   

 

In [35]: ttm = np.linspace(0.5, 2.5, 24)   

 

In [36]: strike, ttm = np.meshgrid(strike, ttm)   

 

In [37]: strike[:2].round(1)   

Out[37]: array([[ 50. ,  54.3,  58.7,  63. ,  67.4,  71.7,  76.1,  80.4,  84.8, 

                  89.1,  93.5,  97.8, 102.2, 106.5, 110.9, 115.2, 119.6, 123.9, 

                 128.3, 132.6, 137. , 141.3, 145.7, 150. ], 

                [ 50. ,  54.3,  58.7,  63. ,  67.4,  71.7,  76.1,  80.4,  84.8, 

                  89.1,  93.5,  97.8, 102.2, 106.5, 110.9, 115.2, 119.6, 123.9, 

                 128.3, 132.6, 137. , 141.3, 145.7, 150. ]]) 

 

In [38]: iv = (strike - 100) ** 2 / (100 * strike) / ttm   

 

In [39]: iv[:5, :3]   

Out[39]: array([[1.        , 0.76695652, 0.58132045], 

                [0.85185185, 0.65333333, 0.4951989 ], 

                [0.74193548, 0.56903226, 0.43130227], 

                [0.65714286, 0.504     , 0.38201058], 

                [0.58974359, 0.45230769, 0.34283001]])



The ndarray object with the strike values.

The ndarray object with the time-to-maturity values.

The two two-dimensional ndarray objects (grids) created.

The dummy implied volatility values.
The plot resulting from the following code is shown in Figure 7-20:

In [40]: from mpl_toolkits.mplot3d import Axes3D   

         fig = plt.figure(figsize=(10, 6)) 

         ax = fig.gca(projection='3d')   

         surf = ax.plot_surface(strike, ttm, iv, rstride=2, cstride=2, 

                                cmap=plt.cm.coolwarm, linewidth=0.5, 

                                antialiased=True)   

         ax.set_xlabel('strike')   

         ax.set_ylabel('time-to-maturity')   

         ax.set_zlabel('implied volatility')   

         fig.colorbar(surf, shrink=0.5, aspect=5);  

Imports the relevant 3D plotting features, which is required although
Axes3D is not directly used.

Sets up a canvas for 3D plotting.

Creates the 3D plot.

Sets the x-axis label.

Sets the y-axis label.



Sets the z-axis label.

Creates a color bar.

Figure 7-20. 3D surface plot for (dummy) implied volatilities

Table 7-6 provides a description of the different parameters the
plt.plot_surface() function can take.

Table 7-6. Parameters for plot_surface()
Parameter Description

X, Y, Z Data values as 2D arrays

rstride Array row stride (step size)

cstride Array column stride (step size)

color Color of the surface patches



Parameter Description

cmap Color map for the surface patches

facecolors Face colors for the individual patches

norm Instance of Normalize to map values to colors

vmin Minimum value to map

vmax Maximum value to map

shade Whether to shade the face colors

As with two-dimensional plots, the line style can be replaced by single
points or, as in what follows, single triangles. Figure 7-21 plots the same
data as a 3D scatter plot but now also with a different viewing angle, using
the view_init() method to set it:

In [41]: fig = plt.figure(figsize=(10, 6)) 

         ax = fig.add_subplot(111, projection='3d') 

         ax.view_init(30, 60)   

         ax.scatter(strike, ttm, iv, zdir='z', s=25, 

                    c='b', marker='^')   

         ax.set_xlabel('strike') 

         ax.set_ylabel('time-to-maturity')

         ax.set_zlabel('implied volatility');

Sets the viewing angle.

Creates a 3D scatter plot.



Figure 7-21. 3D scatter plot for (dummy) implied volatilities



Interactive 2D Plotting
matplotlib allows you to create plots that are static bitmap objects or of
PDF format. Nowadays, there are many libraries available to create
interactive plots based on the D3.js standard. Such plots enable zooming in
and out, hover effects for data inspection, and more. They can in general
also be easily embedded in web pages.

A popular platform and plotting library is plotly. It is dedicated to
visualization for data science and is in widespread use in the data science
community. Major benefits of plotly are its tight integration with the
Python ecosystem and the ease of use — in particular when combined with
pandas DataFrame objects and the wrapper package Cufflinks.

For some functionality, a free account is required. Once the credentials are
granted they should be stored locally for permanent use. For details, see the
“Getting Started with Plotly for Python” guide.

This section focuses on selected aspects only, in that Cufflinks is used
exclusively to create interactive plots from data stored in DataFrame
objects.

http://plot.ly/
http://github.com/santosjorge/cufflinks
https://plot.ly/accounts/login/?action=login#/
https://plot.ly/python/getting-started/


Basic Plots
To get started from within a Jupyter Notebook context, some imports are
required and the notebook mode should be turned on:

In [42]: import pandas as pd 

 

In [43]: import cufflinks as cf   

In [44]: import plotly.offline as plyo   

 

In [45]: plyo.init_notebook_mode(connected=True)  

Imports Cufflinks.

Imports the offline plotting capabilities of plotly.

Turns on the notebook plotting mode.



REMOTE OR LOCAL RENDERING
With plotly, there is also the option to get the plots rendered on the plotly servers.
However, the notebook mode is generally much faster, in particular when dealing with
larger data sets. That said, some functionality, like the streaming plot service of plotly,
is only available via communication with the server.

The examples that follow rely again on pseudo-random numbers, this time
stored in a DataFrame object with DatetimeIndex (i.e., as time series data):

In [46]: a = np.random.standard_normal((250, 5)).cumsum(axis=0)   

 

In [47]: index = pd.date_range('2019-1-1',   

                               freq='B',   

                               periods=len(a))  

 

In [48]: df = pd.DataFrame(100 + 5 * a,   

                           columns=list('abcde'),   

                           index=index)   

 

In [49]: df.head()   

Out[49]:                      a           b           c          d           e 

         2019-01-01  109.037535   98.693865  104.474094  96.878857  100.621936 

         2019-01-02  107.598242   97.005738  106.789189  97.966552  100.175313 

         2019-01-03  101.639668  100.332253  103.183500  99.747869  107.902901 

         2019-01-04   98.500363  101.208283  100.966242  94.023898  104.387256 

         2019-01-07   93.941632  103.319168  105.674012  95.891062   86.547934

The standard normally distributed pseudo-random numbers.

The start date for the DatetimeIndex object.

The frequency (“business daily”).

The number of periods needed.



A linear transform of the raw data.

The column headers as single characters.

The DatetimeIndex object.

The first five rows of data.
Cufflinks adds a new method to the DataFrame class: df.iplot(). This
method uses plotly in the backend to create interactive plots. The code
examples in this section all make use of the option to download the
interactive plot as a static bitmap, which in turn is embedded in the text. In
the Jupyter Notebook environment, the created plots are all interactive. The
result of the following code is shown in Figure 7-22:

In [50]: plyo.iplot(   

             df.iplot(asFigure=True),   

             # image='png',   

             filename='ply_01'   

         )

This makes use of the offline (notebook mode) capabilities of plotly.

The df.iplot() method is called with parameter asFigure=True to
allow for local plotting and embedding.

The image option provides in addition a static bitmap version of the
plot.

The filename for the bitmap to be saved is specified (the file type
extension is added automatically).



Figure 7-22. Line plot for time series data with plotly, pandas, and Cufflinks

As with matplotlib in general and with the pandas plotting functionality,
there are multiple parameters available to customize such plots (see
Figure 7-23):

In [51]: plyo.iplot( 

             df[['a', 'b']].iplot(asFigure=True, 

                      theme='polar',   

                      title='A Time Series Plot',   

                      xTitle='date',   

                      yTitle='value',   

                      mode={'a': 'markers', 'b': 'lines+markers'},   

                      symbol={'a': 'circle', 'b': 'diamond'},   

                      size=3.5,   

                      colors={'a': 'blue', 'b': 'magenta'},   

                                 ), 

             # image='png', 

             filename='ply_02' 

         )

Selects a theme (plotting style) for the plot.



Adds a title.

Adds an x-axis label.

Adds a y-axis label.

Defines the plotting mode (line, marker, etc.) by column.

Defines the symbols to be used as markers by column.

Fixes the size for all markers.

Specifies the plotting color by column.



Figure 7-23. Line plot for two columns of the DataFrame object with customizations

Similar to matplotlib, plotly allows for a number of different plotting
types. Plotting types available via Cufflinks are chart, scatter, bar, box,
spread, ratio, heatmap, surface, histogram, bubble, bubble3d,
scatter3d, scattergeo, ohlc, candle, pie, and choropleth. As an example
of a plotting type different from a line plot, consider the histogram (see
Figure 7-24):

In [52]: plyo.iplot( 

             df.iplot(kind='hist',   

                      subplots=True,   

                      bins=15,   

                      asFigure=True), 

             # image='png', 

             filename='ply_03' 

         )



Specifies the plotting type.

Requires separate subplots for every column.

Sets the bins parameter (buckets to be used = bars to be plotted).

Figure 7-24. Histograms per column of the DataFrame object



Financial Plots
The combination of plotly, Cufflinks, and pandas proves particularly
powerful when working with financial time series data. Cufflinks provides
specialized functionality to create typical financial plots and to add typical
financial charting elements, such as the Relative Strength Index (RSI), to
name but one example. To this end, a persistent QuantFig object is created
that can be plotted the same way as a DataFrame object with Cufflinks.

This subsection uses a real financial data set, time series data for the
EUR/USD exchange rate (source: FXCM Forex Capital Markets Ltd.):

In [54]: raw = pd.read_csv('../../source/fxcm_eur_usd_eod_data.csv', 

                          index_col=0, parse_dates=True)   

 

In [55]: raw.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 1547 entries, 2013-01-01 22:00:00 to 2017-12-31 22:00:00 

         Data columns (total 8 columns): 

         BidOpen     1547 non-null float64 

         BidHigh     1547 non-null float64 

         BidLow      1547 non-null float64 

         BidClose    1547 non-null float64 

         AskOpen     1547 non-null float64 

         AskHigh     1547 non-null float64 

         AskLow      1547 non-null float64 

         AskClose    1547 non-null float64 

         dtypes: float64(8)

         memory usage: 108.8 KB 

 

In [56]: quotes = raw[['AskOpen', 'AskHigh', 'AskLow', 'AskClose']]   

         quotes = quotes.iloc[-60:]   

         quotes.tail()   

Out[56]:                      AskOpen  AskHigh   AskLow  AskClose 

         2017-12-25 22:00:00  1.18667  1.18791  1.18467   1.18587 

         2017-12-26 22:00:00  1.18587  1.19104  1.18552   1.18885 

         2017-12-27 22:00:00  1.18885  1.19592  1.18885   1.19426 

         2017-12-28 22:00:00  1.19426  1.20256  1.19369   1.20092 

         2017-12-31 22:00:00  1.20092  1.20144  1.19994   1.20144

Reads the financial data from a CSV file.



The resulting DataFrame object consists of multiple columns and more
than 1,500 data rows.

Selects four columns from the DataFrame object (Open-High-Low-
Close, or OHLC).

Only a few data rows are used for the visualization.

Returns the final five rows of the resulting data set quotes.

During instantiation, the QuantFig object takes the DataFrame object as
input and allows for some basic customization. Plotting the data stored in the
QuantFig object qf then happens with the qf.iplot() method (see Figure 7-
25):

In [57]: qf = cf.QuantFig( 

                  quotes,   

                  title='EUR/USD Exchange Rate',   

                  legend='top',   

                  name='EUR/USD'   

         ) 

 

In [58]: plyo.iplot( 

             qf.iplot(asFigure=True),

             # image='png', 

             filename='qf_01' 

         )

The DataFrame object is passed to the QuantFig constructor.

This adds a figure title.

The legend is placed at the top of the plot.



This gives the data set a name.

Figure 7-25. OHLC plot of EUR/USD data

Adding typical financial charting elements, such as Bollinger bands, is
possible via different methods available for the QuantFig object (see
Figure 7-26):

In [59]: qf.add_bollinger_bands(periods=15,   

                                boll_std=2)   

 

In [60]: plyo.iplot(qf.iplot(asFigure=True), 

              # image='png', 

              filename='qf_02' 

         )



The number of periods for the Bollinger band.

The number of standard deviations to be used for the band width.

Figure 7-26. OHLC plot of EUR/USD data with Bollinger band

Certain financial indicators, such as RSI, may be added as a subplot (see
Figure 7-27):

In [61]: qf.add_rsi(periods=14,   

                   showbands=False)   

 

In [62]: plyo.iplot( 

              qf.iplot(asFigure=True), 

              # image='png', 

              filename='qf_03' 

         )



Fixes the RSI period.

Does not show an upper or lower band.

Figure 7-27. OHLC plot of EUR/USD data with Bollinger band and RSI



Conclusion
matplotlib can be considered both the benchmark and an all-rounder when
it comes to data visualization in Python. It is tightly integrated with NumPy
and pandas, and the basic functionality is easily and conveniently accessed.
However, matplotlib is a mighty library with a somewhat complex API.
This makes it impossible to give a broad overview of all the capabilities of
matplotlib in this chapter.

This chapter introduces the basic functions of matplotlib for 2D and 3D
plotting useful in many financial contexts. Other chapters provide further
examples of how to use the package for visualization.

In addition, this chapter covers plotly in combination with Cufflinks.
This combination makes the creation of interactive D3.js plots a convenient
affair since only a single method call on a DataFrame object is necessary in
general. All technicalities are taken care of in the backend. Furthermore,
Cufflinks provides with the QuantFig object an easy way to create typical
financial plots with popular financial indicators.



Further Resources
A variety of resources for matplotlib can be found on the web, including:

The home page, which is probably the best starting point

A gallery with many useful examples

A tutorial for 2D plotting

A tutorial for 3D plotting

It has become kind of a standard routine to consult the gallery, look there
for an appropriate visualization example, and start with the corresponding
example code.

The major resources for the plotly and Cufflinks packages are also
online. These include:

The plotly home page

A tutorial to get started with plotly for Python

The Cufflinks GitHub page

For an overview of which plot types are available, visit the matplotlib gallery.1

http://matplotlib.org/
http://matplotlib.org/gallery.html
http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html
http://plot.ly/
https://plot.ly/python/getting-started/
https://github.com/santosjorge/cufflinks
http://bit.ly/2RYvMwS


Chapter 8. Financial Time Series

[T]ime is what keeps everything from happening at once.
Ray Cummings

Financial time series data is one of the most important types of data in
finance. This is data indexed by date and/or time. For example, prices of
stocks over time represent financial time series data. Similarly, the
EUR/USD exchange rate over time represents a financial time series; the
exchange rate is quoted in brief intervals of time, and a collection of such
quotes then is a time series of exchange rates.

There is no financial discipline that gets by without considering time an
important factor. This mainly is the same as with physics and other
sciences. The major tool to cope with time series data in Python is pandas.
Wes McKinney, the original and main author of pandas, started developing
the library when working as an analyst at AQR Capital Management, a
large hedge fund. It is safe to say that pandas has been designed from the
ground up to work with financial time series data.

The chapter is mainly based on two financial time series data sets in the
form of comma-separated values (CSV) files. It proceeds along the
following lines:

“Financial Data”
This section is about the basics of working with financial times series
data using pandas: data import, deriving summary statistics,
calculating changes over time, and resampling.

“Rolling Statistics”



In financial analysis, rolling statistics play an important role. These are
statistics calculated in general over a fixed time interval that is rolled
forward over the complete data set. A popular example is simple
moving averages. This section illustrates how pandas supports the
calculation of such statistics.

“Correlation Analysis”
This section presents a case study based on financial time series data
for the S&P 500 stock index and the VIX volatility index. It provides
some support for the stylized (empirical) fact that both indices are
negatively correlated.

“High-Frequency Data”
This section works with high-frequency data, or tick data, which has
become commonplace in finance. pandas again proves powerful in
handling such data sets.



Financial Data
This section works with a locally stored financial data set in the form of a
CSV file. Technically, such files are simply text files with a data row
structure characterized by commas that separate single values. Before
importing the data, some package imports and customizations:

In [1]: import numpy as np 

        import pandas as pd 

        from pylab import mpl, plt 

        plt.style.use('seaborn')

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline



Data Import
pandas provides a number of different functions and DataFrame methods to
import data stored in different formats (CSV, SQL, Excel, etc.) and to export
data to different formats (see Chapter 9 for more details). The following
code uses the pd.read_csv() function to import the time series data set from
the CSV file:1

In [2]: filename = '../../source/tr_eikon_eod_data.csv'   

 

In [3]: f = open(filename, 'r')   

        f.readlines()[:5]   

Out[3]: ['Date,AAPL.O,MSFT.O,INTC.O,AMZN.O,GS.N,SPY,.SPX,.VIX,EUR=,XAU=,GDX, 

        ,GLD\n', 

         '2010-01-01,,,,,,,,,1.4323,1096.35,,\n', 

         '2010-01-04,30.57282657,30.95,20.88,133.9,173.08,113.33,1132.99,20.04, 

        ,1.4411,1120.0,47.71,109.8\n', 

         '2010-01-05,30.625683660000004,30.96,20.87,134.69,176.14,113.63,1136.52, 

        ,19.35,1.4368,1118.65,48.17,109.7\n', 

         '2010-01-06,30.138541290000003,30.77,20.8,132.25,174.26,113.71,1137.14, 

        ,19.16,1.4412,1138.5,49.34,111.51\n'] 

 

In [4]: data = pd.read_csv(filename,   

                           index_col=0,  

                           parse_dates=True)   

 

In [5]: data.info()   

        <class 'pandas.core.frame.DataFrame'> 

        DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29 

        Data columns (total 12 columns): 

        AAPL.O    2138 non-null float64 

        MSFT.O    2138 non-null float64 

        INTC.O    2138 non-null float64 

        AMZN.O    2138 non-null float64 

        GS.N      2138 non-null float64 

        SPY       2138 non-null float64 

        .SPX      2138 non-null float64 

        .VIX      2138 non-null float64 

        EUR=      2216 non-null float64 

        XAU=      2211 non-null float64 

        GDX       2138 non-null float64 

        GLD       2138 non-null float64 

        dtypes: float64(12) 

        memory usage: 225.1 KB

Specifies the path and filename.



Shows the first five rows of the raw data (Linux/Mac).

The filename passed to the pd.read_csv() function.

Specifies that the first column shall be handled as an index.

Specifies that the index values are of type datetime.

The resulting DataFrame object.

At this stage, a financial analyst probably takes a first look at the data, either
by inspecting or visualizing it (see Figure 8-1):

In [6]: data.head()   

Out[6]:

                   AAPL.O  MSFT.O  INTC.O  AMZN.O    GS.N     SPY     .SPX   .VIX  

\ 

    Date 

    2010-01-01        NaN     NaN     NaN     NaN     NaN     NaN      NaN    NaN 

    2010-01-04  30.572827  30.950   20.88  133.90  173.08  113.33  1132.99  20.04 

    2010-01-05  30.625684  30.960   20.87  134.69  176.14  113.63  1136.52  19.35 

    2010-01-06  30.138541  30.770   20.80  132.25  174.26  113.71  1137.14  19.16 

    2010-01-07  30.082827  30.452   20.60  130.00  177.67  114.19  1141.69  19.06 

 

                  EUR=     XAU=    GDX     GLD 

    Date 

    2010-01-01  1.4323  1096.35    NaN     NaN 

    2010-01-04  1.4411  1120.00  47.71  109.80 

    2010-01-05  1.4368  1118.65  48.17  109.70 

    2010-01-06  1.4412  1138.50  49.34  111.51 

    2010-01-07  1.4318  1131.90  49.10  110.82 

 

In [7]: data.tail()   

Out[7]:

                AAPL.O  MSFT.O  INTC.O   AMZN.O    GS.N     SPY     .SPX   .VIX  \ 

    Date 

    2018-06-25  182.17   98.39   50.71  1663.15  221.54  271.00  2717.07  17.33 

    2018-06-26  184.43   99.08   49.67  1691.09  221.58  271.60  2723.06  15.92 

    2018-06-27  184.16   97.54   48.76  1660.51  220.18  269.35  2699.63  17.91 

    2018-06-28  185.50   98.63   49.25  1701.45  223.42  270.89  2716.31  16.85 

    2018-06-29  185.11   98.61   49.71  1699.80  220.57  271.28  2718.37  16.09 

 

                  EUR=     XAU=    GDX     GLD 

    Date 

    2018-06-25  1.1702  1265.00  22.01  119.89 

    2018-06-26  1.1645  1258.64  21.95  119.26 

    2018-06-27  1.1552  1251.62  21.81  118.58 

    2018-06-28  1.1567  1247.88  21.93  118.22 



    2018-06-29  1.1683  1252.25  22.31  118.65 

 

In [8]: data.plot(figsize=(10, 12), subplots=True);  

The first five rows …

… and the final five rows are shown.

This visualizes the complete data set via multiple subplots.



Figure 8-1. Financial time series data as line plots

The data used is from the Thomson Reuters (TR) Eikon Data API. In the TR
world symbols for financial instruments are called Reuters Instrument Codes
(RICs). The financial instruments that the single RICs represent are:

In [9]: instruments = ['Apple Stock', 'Microsoft Stock', 

                       'Intel Stock', 'Amazon Stock', 'Goldman Sachs Stock', 



                       'SPDR S&P 500 ETF Trust', 'S&P 500 Index', 

                       'VIX Volatility Index', 'EUR/USD Exchange Rate', 

                       'Gold Price', 'VanEck Vectors Gold Miners ETF', 

                       'SPDR Gold Trust'] 

 

In [10]: for ric, name in zip(data.columns, instruments): 

             print('{:8s} | {}'.format(ric, name)) 

         AAPL.O   | Apple Stock 

         MSFT.O   | Microsoft Stock 

         INTC.O   | Intel Stock 

         AMZN.O   | Amazon Stock 

         GS.N     | Goldman Sachs Stock 

         SPY      | SPDR S&P 500 ETF Trust 

         .SPX     | S&P 500 Index 

         .VIX     | VIX Volatility Index 

         EUR=     | EUR/USD Exchange Rate 

         XAU=     | Gold Price 

         GDX      | VanEck Vectors Gold Miners ETF 

         GLD      | SPDR Gold Trust



Summary Statistics
The next step the financial analyst might take is to have a look at different
summary statistics for the data set to get a “feeling” for what it is all about:

In [11]: data.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29 

         Data columns (total 12 columns): 

         AAPL.O    2138 non-null float64 

         MSFT.O    2138 non-null float64 

         INTC.O    2138 non-null float64 

         AMZN.O    2138 non-null float64 

         GS.N      2138 non-null float64 

         SPY       2138 non-null float64 

         .SPX      2138 non-null float64 

         .VIX      2138 non-null float64 

         EUR=      2216 non-null float64 

         XAU=      2211 non-null float64 

         GDX       2138 non-null float64 

         GLD       2138 non-null float64 

         dtypes: float64(12) 

         memory usage: 225.1 KB 

 

In [12]: data.describe().round(2)   

Out[12]: 

            AAPL.O   MSFT.O   INTC.O   AMZN.O     GS.N      SPY     .SPX     .VIX  

\ 

    count  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00 

    mean     93.46    44.56    29.36   480.46   170.22   180.32  1802.71    17.03 

    std      40.55    19.53     8.17   372.31    42.48    48.19   483.34     5.88 

    min      27.44    23.01    17.66   108.61    87.70   102.20  1022.58     9.14 

    25%      60.29    28.57    22.51   213.60   146.61   133.99  1338.57    13.07 

    50%      90.55    39.66    27.33   322.06   164.43   186.32  1863.08    15.58 

    75%     117.24    54.37    34.71   698.85   192.13   210.99  2108.94    19.07 

    max     193.98   102.49    57.08  1750.08   273.38   286.58  2872.87    48.00 

 

              EUR=     XAU=      GDX      GLD 

    count  2216.00  2211.00  2138.00  2138.00 

    mean      1.25  1349.01    33.57   130.09 

    std       0.11   188.75    15.17    18.78 

    min       1.04  1051.36    12.47   100.50 

    25%       1.13  1221.53    22.14   117.40 

    50%       1.27  1292.61    25.62   124.00 

    75%       1.35  1428.24    48.34   139.00 

    max       1.48  1898.99    66.63   184.59

info() gives some metainformation about the DataFrame object.



describe() provides useful standard statistics per column.



QUICK INSIGHTS
pandas provides a number of methods to gain a quick overview over newly imported
financial time series data sets, such as info() and describe(). They also allow for
quick checks of whether the importing procedure worked as desired (e.g., whether the
DataFrame object indeed has an index of type DatetimeIndex).

There are also options, of course, to customize what types of statistic to
derive and display:

In [13]: data.mean()   

Out[13]: AAPL.O      93.455973 

         MSFT.O      44.561115 

         INTC.O      29.364192 

         AMZN.O     480.461251 

         GS.N       170.216221 

         SPY        180.323029 

         .SPX      1802.713106 

         .VIX        17.027133 

         EUR=         1.248587 

         XAU=      1349.014130 

         GDX         33.566525 

         GLD        130.086590 

         dtype: float64 

 

In [14]: data.aggregate([min,   

                         np.mean,   

                         np.std,   

                         np.median,   

                         max]   

         ).round(2) 

Out[14]: 

            AAPL.O  MSFT.O  INTC.O   AMZN.O    GS.N     SPY     .SPX   .VIX  EUR=  

\ 

    min      27.44   23.01   17.66   108.61   87.70  102.20  1022.58   9.14  1.04 

    mean     93.46   44.56   29.36   480.46  170.22  180.32  1802.71  17.03  1.25 

    std      40.55   19.53    8.17   372.31   42.48   48.19   483.34   5.88  0.11 

    median   90.55   39.66   27.33   322.06  164.43  186.32  1863.08  15.58  1.27 

    max     193.98  102.49   57.08  1750.08  273.38  286.58  2872.87  48.00  1.48 

 

               XAU=    GDX     GLD 

    min     1051.36  12.47  100.50 

    mean    1349.01  33.57  130.09 

    std      188.75  15.17   18.78 

    median  1292.61  25.62  124.00 

    max     1898.99  66.63  184.59



The mean value per column.

The minimum value per column.

The mean value per column.

The standard deviation per column.

The median per column.

The maximum value per column.
Using the aggregate() method also allows one to pass custom functions.



Changes over Time
Statistical analysis methods are often based on changes over time and not the
absolute values themselves. There are multiple options to calculate the
changes in a time series over time, including absolute differences,
percentage changes, and logarithmic (log) returns.

First, the absolute differences, for which pandas provides a special method:

In [15]: data.diff().head()   

Out[15]: 

                  AAPL.O  MSFT.O  INTC.O  AMZN.O  GS.N   SPY  .SPX  .VIX    EUR=  

\ 

    Date 

    2010-01-01       NaN     NaN     NaN     NaN   NaN   NaN   NaN   NaN     NaN 

    2010-01-04       NaN     NaN     NaN     NaN   NaN   NaN   NaN   NaN  0.0088 

    2010-01-05  0.052857   0.010   -0.01    0.79  3.06  0.30  3.53 -0.69 -0.0043 

    2010-01-06 -0.487142  -0.190   -0.07   -2.44 -1.88  0.08  0.62 -0.19  0.0044 

    2010-01-07 -0.055714  -0.318   -0.20   -2.25  3.41  0.48  4.55 -0.10 -0.0094 

 

                 XAU=   GDX   GLD 

    Date 

    2010-01-01    NaN   NaN   NaN 

    2010-01-04  23.65   NaN   NaN 

    2010-01-05  -1.35  0.46 -0.10 

    2010-01-06  19.85  1.17  1.81 

    2010-01-07  -6.60 -0.24 -0.69 

 

In [16]: data.diff().mean()   

Out[16]: AAPL.O    0.064737 

         MSFT.O    0.031246 

         INTC.O    0.013540 

         AMZN.O    0.706608 

         GS.N      0.028224 

         SPY       0.072103 

         .SPX      0.732659 

         .VIX     -0.019583 

         EUR=     -0.000119 

         XAU=      0.041887 

         GDX      -0.015071 

         GLD      -0.003455 

         dtype: float64

diff() provides the absolute changes between two index values.

Of course, aggregation operations can be applied in addition.



From a statistics point of view, absolute changes are not optimal because
they are dependent on the scale of the time series data itself. Therefore,
percentage changes are usually preferred. The following code derives the
percentage changes or percentage returns (also: simple returns) in a financial
context and visualizes their mean values per column (see Figure 8-2):

In [17]: data.pct_change().round(3).head()   

Out[17]: 

                AAPL.O  MSFT.O  INTC.O  AMZN.O   GS.N    SPY   .SPX   .VIX   EUR=  

\ 

    Date 

    2010-01-01     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN    NaN 

    2010-01-04     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN  0.006 

    2010-01-05   0.002   0.000  -0.000   0.006  0.018  0.003  0.003 -0.034 -0.003 

    2010-01-06  -0.016  -0.006  -0.003  -0.018 -0.011  0.001  0.001 -0.010  0.003 

    2010-01-07  -0.002  -0.010  -0.010  -0.017  0.020  0.004  0.004 -0.005 -0.007 

 

                 XAU=    GDX    GLD 

    Date 

    2010-01-01    NaN    NaN    NaN 

    2010-01-04  0.022    NaN    NaN 

    2010-01-05 -0.001  0.010 -0.001 

    2010-01-06  0.018  0.024  0.016 

    2010-01-07 -0.006 -0.005 -0.006 

 

In [18]: data.pct_change().mean().plot(kind='bar', figsize=(10, 6));  

pct_change() calculates the percentage change between two index
values.

The mean values of the results are visualized as a bar plot.



Figure 8-2. Mean values of percentage changes as bar plot

As an alternative to percentage returns, log returns can be used. In some
scenarios, they are easier to handle and therefore often preferred in a
financial context.2 Figure 8-3 shows the cumulative log returns for the single
financial time series. This type of plot leads to some form of normalization:

In [19]: rets = np.log(data / data.shift(1))   

 

In [20]: rets.head().round(3)   

Out[20]: 

                AAPL.O  MSFT.O  INTC.O  AMZN.O   GS.N    SPY   .SPX   .VIX   EUR=  

\ 

    Date 

    2010-01-01     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN    NaN 

    2010-01-04     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN  0.006 

    2010-01-05   0.002   0.000  -0.000   0.006  0.018  0.003  0.003 -0.035 -0.003 

    2010-01-06  -0.016  -0.006  -0.003  -0.018 -0.011  0.001  0.001 -0.010  0.003 

    2010-01-07  -0.002  -0.010  -0.010  -0.017  0.019  0.004  0.004 -0.005 -0.007 

 

                 XAU=    GDX    GLD 

    Date 

    2010-01-01    NaN    NaN    NaN 

    2010-01-04  0.021    NaN    NaN 

    2010-01-05 -0.001  0.010 -0.001 

    2010-01-06  0.018  0.024  0.016 



    2010-01-07 -0.006 -0.005 -0.006 

 

In [21]: rets.cumsum().apply(np.exp).plot(figsize=(10, 6));  

Calculates the log returns in vectorized fashion.

A subset of the results.

Plots the cumulative log returns over time; first the cumsum() method is
called, then np.exp() is applied to the results.

Figure 8-3. Cumulative log returns over time



Resampling
Resampling is an important operation on financial time series data. Usually
this takes the form of downsampling, meaning that, for example, a tick data
series is resampled to one-minute intervals or a time series with daily
observations is resampled to one with weekly or monthly observations (as
shown in Figure 8-4):

In [22]: data.resample('1w', label='right').last().head()   

Out[22]: 

                   AAPL.O  MSFT.O  INTC.O  AMZN.O    GS.N     SPY     .SPX   .VIX  

\ 

    Date 

    2010-01-03        NaN     NaN     NaN     NaN     NaN     NaN      NaN    NaN 

    2010-01-10  30.282827   30.66   20.83  133.52  174.31  114.57  1144.98  18.13 

    2010-01-17  29.418542   30.86   20.80  127.14  165.21  113.64  1136.03  17.91 

    2010-01-24  28.249972   28.96   19.91  121.43  154.12  109.21  1091.76  27.31 

    2010-01-31  27.437544   28.18   19.40  125.41  148.72  107.39  1073.87  24.62 

 

                  EUR=     XAU=    GDX     GLD 

    Date 

    2010-01-03  1.4323  1096.35    NaN     NaN 

    2010-01-10  1.4412  1136.10  49.84  111.37 

    2010-01-17  1.4382  1129.90  47.42  110.86 

    2010-01-24  1.4137  1092.60  43.79  107.17 

    2010-01-31  1.3862  1081.05  40.72  105.96 

 

In [23]: data.resample('1m', label='right').last().head()   

Out[23]: 

                   AAPL.O   MSFT.O  INTC.O  AMZN.O    GS.N       SPY     .SPX  \ 

    Date 

    2010-01-31  27.437544  28.1800   19.40  125.41  148.72  107.3900  1073.87 

    2010-02-28  29.231399  28.6700   20.53  118.40  156.35  110.7400  1104.49 

    2010-03-31  33.571395  29.2875   22.29  135.77  170.63  117.0000  1169.43 

    2010-04-30  37.298534  30.5350   22.84  137.10  145.20  118.8125  1186.69 

    2010-05-31  36.697106  25.8000   21.42  125.46  144.26  109.3690  1089.41 

 

                 .VIX    EUR=     XAU=    GDX      GLD 

    Date 

    2010-01-31  24.62  1.3862  1081.05  40.72  105.960 

    2010-02-28  19.50  1.3625  1116.10  43.89  109.430 

    2010-03-31  17.59  1.3510  1112.80  44.41  108.950 

    2010-04-30  22.05  1.3295  1178.25  50.51  115.360 

    2010-05-31  32.07  1.2305  1215.71  49.86  118.881 

 

In [24]: rets.cumsum().apply(np.exp). resample('1m', label='right').last( 

                                   ).plot(figsize=(10, 6));  

EOD data gets resampled to weekly time intervals …



… and monthly time intervals.

This plots the cumulative log returns over time: first, the cumsum()
method is called, then np.exp() is applied to the results; finally, the
resampling takes place.

Figure 8-4. Resampled cumulative log returns over time (monthly)



AVOIDING FORESIGHT BIAS
When resampling, pandas takes by default in many cases the left label (or index value)
of the interval. To be financially consistent, make sure to use the right label (index
value) and in general the last available data point in the interval. Otherwise, a foresight
bias might sneak into the financial analysis.3



Rolling Statistics
It is financial tradition to work with rolling statistics, often also called
financial indicators or financial studies. Such rolling statistics are basic
tools for financial chartists and technical traders, for example. This section
works with a single financial time series only:

In [25]: sym = 'AAPL.O' 

 

In [26]: data = pd.DataFrame(data[sym]).dropna() 

 

In [27]: data.tail() 

Out[27]:             AAPL.O

         Date 

         2018-06-25  182.17

         2018-06-26  184.43

         2018-06-27  184.16

         2018-06-28  185.50

         2018-06-29  185.11



An Overview
It is straightforward to derive standard rolling statistics with pandas:

In [28]: window = 20   

 

In [29]: data['min'] = data[sym].rolling(window=window).min()   

 

In [30]: data['mean'] = data[sym].rolling(window=window).mean()   

 

In [31]: data['std'] = data[sym].rolling(window=window).std()   

 

In [32]: data['median'] = data[sym].rolling(window=window).median()   

 

In [33]: data['max'] = data[sym].rolling(window=window).max()   

 

In [34]: data['ewma'] = data[sym].ewm(halflife=0.5, min_periods=window).mean()  

Defines the window; i.e., the number of index values to include.

Calculates the rolling minimum value.

Calculates the rolling mean value.

Calculates the rolling standard deviation.

Calculates the rolling median value.

Calculates the rolling maximum value.

Calculates the exponentially weighted moving average, with decay in
terms of a half life of 0.5.



To derive more specialized financial indicators, additional packages are
generally needed (see, for instance, the financial plots with Cufflinks in
“Interactive 2D Plotting”). Custom ones can also easily be applied via the
apply() method.

The following code shows a subset of the results and visualizes a selection
of the calculated rolling statistics (see Figure 8-5):

In [35]: data.dropna().head() 

Out[35]: 

                   AAPL.O        min       mean       std     median        max  \ 

    Date 

    2010-02-01  27.818544  27.437544  29.580892  0.933650  29.821542  30.719969 

    2010-02-02  27.979972  27.437544  29.451249  0.968048  29.711113  30.719969 

    2010-02-03  28.461400  27.437544  29.343035  0.950665  29.685970  30.719969 

    2010-02-04  27.435687  27.435687  29.207892  1.021129  29.547113  30.719969 

    2010-02-05  27.922829  27.435687  29.099892  1.037811  29.419256  30.719969 

 

                     ewma 

    Date 

    2010-02-01  27.805432 

    2010-02-02  27.936337 

    2010-02-03  28.330134 

    2010-02-04  27.659299 

    2010-02-05  27.856947 

 

In [36]: ax = data[['min', 'mean', 'max']].iloc[-200:].plot( 

              figsize=(10, 6), style=['g--', 'r--', 'g--'], lw=0.8)   

         data[sym].iloc[-200:].plot(ax=ax, lw=2.0);  

Plots three rolling statistics for the final 200 data rows.

Adds the original time series data to the plot.



Figure 8-5. Rolling statistics for minimum, mean, maximum values



A Technical Analysis Example
Rolling statistics are a major tool in the so-called technical analysis of
stocks, as compared to the fundamental analysis which focuses, for instance,
on financial reports and the strategic positions of the company whose stock
is being analyzed.

A decades-old trading strategy based on technical analysis is using two
simple moving averages (SMAs). The idea is that the trader should go long
on a stock (or financial instrument in general) when the shorter-term SMA is
above the longer-term SMA and should go short when the opposite holds
true. The concepts can be made precise with pandas and the capabilities of
the DataFrame object.

Rolling statistics are generally only calculated when there is enough data
given the window parameter specification. As Figure 8-6 shows, the SMA
time series only start at the day for which there is enough data given the
specific parameterization:

In [37]: data['SMA1'] = data[sym].rolling(window=42).mean()   

 

In [38]: data['SMA2'] = data[sym].rolling(window=252).mean()   

 

In [39]: data[[sym, 'SMA1', 'SMA2']].tail() 

Out[39]:             AAPL.O        SMA1        SMA2 

         Date 

         2018-06-25  182.17  185.606190  168.265556 

         2018-06-26  184.43  186.087381  168.418770 

         2018-06-27  184.16  186.607381  168.579206 

         2018-06-28  185.50  187.089286  168.736627 

         2018-06-29  185.11  187.470476  168.901032 

 

In [40]: data[[sym, 'SMA1', 'SMA2']].plot(figsize=(10, 6));  

Calculates the values for the shorter-term SMA.

Calculates the values for the longer-term SMA.



Visualizes the stock price data plus the two SMA time series.

Figure 8-6. Apple stock price and two simple moving averages

In this context, the SMAs are only a means to an end. They are used to
derive positions to implement a trading strategy. Figure 8-7 visualizes a long
position by a value of 1 and a short position by a value of -1. The change in
the position is triggered (visually) by a crossover of the two lines
representing the SMA time series:

In [41]: data.dropna(inplace=True)   

 

In [42]: data['positions'] = np.where(data['SMA1'] > data['SMA2'],   

                                      1,   

                                      -1)   

 

In [43]: ax = data[[sym, 'SMA1', 'SMA2', 'positions']].plot(figsize=(10, 6), 

                                                       secondary_y='positions') 

         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));

Only complete data rows are kept.



If the shorter-term SMA value is greater than the longer-term one …

… go long on the stock (put a 1).

Otherwise, go short on the stock (put a -1).

Figure 8-7. Apple stock price, two simple moving averages and positions

The trading strategy implicitly derived here only leads to a few trades per se:
only when the position value changes (i.e., a crossover happens) does a trade
take place. Including opening and closing trades, this would add up to just
six trades in total.



Correlation Analysis
As a further illustration of how to work with pandas and financial time
series data, consider the case of the S&P 500 stock index and the VIX
volatility index. It is a stylized fact that when the S&P 500 rises, the VIX
falls in general, and vice versa. This is about correlation and not causation.
This section shows how to come up with some supporting statistical
evidence for the stylized fact that the S&P 500 and the VIX are (highly)
negatively correlated.4



The Data
The data set now consists of two financial times series, both visualized in
Figure 8-8:

In [44]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                          index_col=0, parse_dates=True)   

 

In [45]: data = raw[['.SPX', '.VIX']].dropna() 

 

In [46]: data.tail() 

Out[46]:                .SPX   .VIX 

         Date 

         2018-06-25  2717.07  17.33 

         2018-06-26  2723.06  15.92 

         2018-06-27  2699.63  17.91 

         2018-06-28  2716.31  16.85 

         2018-06-29  2718.37  16.09 

 

In [47]: data.plot(subplots=True, figsize=(10, 6));

Reads the EOD data (originally from the Thomson Reuters Eikon Data
API) from a CSV file.



Figure 8-8. S&P 500 and VIX time series data (different subplots)

When plotting (parts of) the two time series in a single plot and with
adjusted scalings, the stylized fact of negative correlation between the two
indices becomes evident through simple visual inspection (Figure 8-9):

In [48]: data.loc[:'2012-12-31'].plot(secondary_y='.VIX', figsize=(10, 6));  

.loc[:DATE] selects the data until the given value DATE.



Figure 8-9. S&P 500 and VIX time series data (same plot)



Logarithmic Returns
As pointed out earlier, statistical analysis in general relies on returns instead
of absolute changes or even absolute values. Therefore, we’ll calculate log
returns first before any further analysis takes place. Figure 8-10 shows the
high variability of the log returns over time. For both indices so-called
“volatility clusters” can be spotted. In general, periods of high volatility in
the stock index are accompanied by the same phenomena in the volatility
index:

In [49]: rets = np.log(data / data.shift(1)) 

 

In [50]: rets.head() 

Out[50]:                 .SPX      .VIX 

         Date 

         2010-01-04       NaN       NaN 

         2010-01-05  0.003111 -0.035038 

         2010-01-06  0.000545 -0.009868 

         2010-01-07  0.003993 -0.005233 

         2010-01-08  0.002878 -0.050024 

 

In [51]: rets.dropna(inplace=True) 

 

In [52]: rets.plot(subplots=True, figsize=(10, 6));



Figure 8-10. Log returns of the S&P 500 and VIX over time

In such a context, the pandas scatter_matrix() plotting function comes in
handy for visualizations. It plots the log returns of the two series against
each other, and one can add either a histogram or a kernel density estimator
(KDE) on the diagonal (see Figure 8-11):

In [53]: pd.plotting.scatter_matrix(rets,   

                                    alpha=0.2,   

                                    diagonal='hist',   

                                    hist_kwds={'bins': 35},   

                                    figsize=(10, 6));

The data set to be plotted.

The alpha parameter for the opacity of the dots.

What to place on the diagonal; here: a histogram of the column data.



Keywords to be passed to the histogram plotting function.

Figure 8-11. Log returns of the S&P 500 and VIX as a scatter matrix



OLS Regression
With all these preparations, an ordinary least-squares (OLS) regression
analysis is convenient to implement. Figure 8-12 shows a scatter plot of the
log returns and the linear regression line through the cloud of dots. The slope
is obviously negative, providing support for the stylized fact about the
negative correlation between the two indices:

In [54]: reg = np.polyfit(rets['.SPX'], rets['.VIX'], deg=1)   

 

In [55]: ax = rets.plot(kind='scatter', x='.SPX', y='.VIX', figsize=(10, 6))   

         ax.plot(rets['.SPX'], np.polyval(reg, rets['.SPX']), 'r', lw=2);  

This implements a linear OLS regression.

This plots the log returns as a scatter plot …

… to which the linear regression line is added.



Figure 8-12. Log returns of the S&P 500 and VIX as a scatter matrix



Correlation
Finally, we consider correlation measures directly. Two such measures are
considered: a static one taking into account the complete data set and a
rolling one showing the correlation for a fixed window over time. Figure 8-
13 illustrates that the correlation indeed varies over time but that it is always,
given the parameterization, negative. This provides strong support for the
stylized fact that the S&P 500 and the VIX indices are (strongly) negatively
correlated:

In [56]: rets.corr()   

Out[56]:           .SPX      .VIX 

         .SPX  1.000000 -0.804382 

         .VIX -0.804382  1.000000 

 

In [57]: ax = rets['.SPX'].rolling(window=252).corr( 

                           rets['.VIX']).plot(figsize=(10, 6))   

         ax.axhline(rets.corr().iloc[0, 1], c='r');  

The correlation matrix for the whole DataFrame.

This plots the rolling correlation over time …

… and adds the static value to the plot as horizontal line.



Figure 8-13. Correlation between S&P 500 and VIX (static and rolling)



High-Frequency Data
This chapter is about financial time series analysis with pandas. Tick data
sets are a special case of financial time series. Frankly, they can be handled
more or less in the same ways as, for instance, the EOD data set used
throughout this chapter so far. Importing such data sets also is quite fast in
general with pandas. The data set used comprises 17,352 data rows (see also
Figure 8-14):

In [59]: %%time 

         # data from FXCM Forex Capital Markets Ltd. 

         tick = pd.read_csv('../../source/fxcm_eur_usd_tick_data.csv', 

                              index_col=0, parse_dates=True) 

         CPU times: user 1.07 s, sys: 149 ms, total: 1.22 s 

         Wall time: 1.16 s 

 

In [60]: tick.info() 

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 461357 entries, 2018-06-29 00:00:00.082000 to 2018-06-29 

          20:59:00.607000 

         Data columns (total 2 columns): 

         Bid    461357 non-null float64 

         Ask    461357 non-null float64 

         dtypes: float64(2)

         memory usage: 10.6 MB 

 

In [61]: tick['Mid'] = tick.mean(axis=1)   

 

In [62]: tick['Mid'].plot(figsize=(10, 6));

Calculates the Mid price for every data row.



Figure 8-14. Tick data for EUR/USD exchange rate

Working with tick data is generally a scenario where resampling of financial
time series data is needed. The code that follows resamples the tick data to
five-minute bar data (see Figure 8-15), which can then be used, for example,
to backtest algorithmic trading strategies or to implement a technical
analysis:

In [63]: tick_resam = tick.resample(rule='5min', label='right').last() 

 

In [64]: tick_resam.head() 

Out[64]:                          Bid      Ask       Mid 

         2018-06-29 00:05:00  1.15649  1.15651  1.156500 

         2018-06-29 00:10:00  1.15671  1.15672  1.156715 

         2018-06-29 00:15:00  1.15725  1.15727  1.157260 

         2018-06-29 00:20:00  1.15720  1.15722  1.157210 

         2018-06-29 00:25:00  1.15711  1.15712  1.157115 

 

In [65]: tick_resam['Mid'].plot(figsize=(10, 6));



Figure 8-15. Five-minute bar data for EUR/USD exchange rate



Conclusion
This chapter deals with financial time series, probably the most important
data type in the financial field. pandas is a powerful package to deal with
such data sets, allowing not only for efficient data analyses but also easy
visualizations, for instance. pandas is also helpful in reading such data sets
from different sources as well as in exporting the data sets to different
technical file formats. This is illustrated in the subsequent chapter.



Further Resources
Good references in book form for the topics covered in this chapter are:

McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA:
O’Reilly.

VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol,
CA: O’Reilly.

The file contains end-of-day (EOD) data for different financial instruments as retrieved from the
Thomson Reuters Eikon Data API.

One of the advantages is additivity over time, which does not hold true for simple percentage
changes/returns.

Foresight bias — or, in its strongest form, perfect foresight — means that at some point in the
financial analysis, data is used that only becomes available at a later point. The result might be
“too good” results, for example, when backtesting a trading strategy.

One reason behind this is that when the stock index comes down — during a crisis, for instance
— trading volume goes up, and therewith also the volatility. When the stock index is on the rise,
investors generally are calm and do not see much incentive to engage in heavy trading. In
particular, long-only investors then try to ride the trend even further.
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Chapter 9. Input/Output
Operations

It is a capital mistake to theorize before one has data.
Sherlock Holmes

As a general rule, the majority of data, be it in a finance context or any
other application area, is stored on hard disk drives (HDDs) or some other
form of permanent storage device, like solid state disks (SSDs) or hybrid
disk drives. Storage capacities have been steadily increasing over the years,
while costs per storage unit (e.g., per megabyte) have been steadily falling.

At the same time, stored data volumes have been increasing at a much
faster pace than the typical random access memory (RAM) available even
in the largest machines. This makes it necessary not only to store data to
disk for permanent storage, but also to compensate for lack of sufficient
RAM by swapping data from RAM to disk and back.

Input/output (I/O) operations are therefore important tasks when it comes to
finance applications and data-intensive applications in general. Often they
represent the bottleneck for performance-critical computations, since I/O
operations cannot typically shuffle data fast enough to the RAM1 and from
the RAM to the disk. In a sense, CPUs are often “starving” due to slow I/O
operations.

Although the majority of today’s financial and corporate analytics efforts
are confronted with big data (e.g., of petascale size), single analytics tasks
generally use data subsets that fall in the “mid” data category. A study by
Microsoft Research concludes:

Our measurements as well as other recent work shows that the majority
of real-world analytic jobs process less than 100 GB of input, but popular
infrastructures such as Hadoop/MapReduce were originally designed for
petascale processing.
Appuswamy et al. (2013)



In terms of frequency, single financial analytics tasks generally process data
of not more than a couple of gigabytes (GB) in size — and this is a sweet
spot for Python and the libraries of its scientific stack, such as NumPy,
pandas, and PyTables. Data sets of such a size can also be analyzed in-
memory, leading to generally high speeds with today’s CPUs and GPUs.
However, the data has to be read into RAM and the results have to be
written to disk, meanwhile ensuring that today’s performance requirements
are met.

This chapter addresses the following topics:

“Basic I/O with Python”
Python has built-in functions to serialize and store any object on disk
and to read it from disk into RAM; apart from that, Python is strong
when it comes to working with text files and SQL databases. NumPy
also provides dedicated functions for fast binary storage and retrieval
of ndarray objects.

“I/O with pandas”
The pandas library provides a plenitude of convenience functions and
methods to read data stored in different formats (e.g., CSV, JSON) and
to write data to files in diverse formats.

“I/O with PyTables”
PyTables uses the HDF5 standard with hierarchical database structure
and binary storage to accomplish fast I/O operations for large data sets;
speed often is only bound by the hardware used.

“I/O with TsTables”
TsTables is a package that builds on top of PyTables and allows for
fast storage and retrieval of time series data.

http://www.hdfgroup.org/


Basic I/O with Python
Python itself comes with a multitude of I/O capabilities, some optimized for
performance, others more for flexibility. In general, however, they are
easily used in interactive as well as in production settings.



Writing Objects to Disk
For later use, for documentation, or for sharing with others, one might want
to store Python objects on disk. One option is to use the pickle module.
This module can serialize the majority of Python objects. Serialization
refers to the conversion of an object (hierarchy) to a byte stream;
deserialization is the opposite operation.

As usual, some imports and customizations with regard to plotting first:

In [1]: from pylab import plt, mpl 

        plt.style.use('seaborn')

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

The example that follows works with (pseudo-)random data, this time
stored in a list object:

In [2]: import pickle   

        import numpy as np 

        from random import gauss   

 

In [3]: a = [gauss(1.5, 2) for i in range(1000000)]   

 

In [4]: path = '/Users/yves/Temp/data/'   

 

In [5]: pkl_file = open(path + 'data.pkl', 'wb')  

Imports the pickle module from the standard library.

Import gauss to generate normally distributed random numbers.

Creates a larger list object with random numbers.

Specifies the path where to store the data files.



Opens a file for writing in binary mode (wb).

The two major functions to serialize and deserialize Python objects are
pickle.dump(), for writing objects, and pickle.load(), for loading them
into memory:

In [6]: %time pickle.dump(a, pkl_file)   

        CPU times: user 37.2 ms, sys: 15.3 ms, total: 52.5 ms 

        Wall time: 50.8 ms 

 

In [7]: pkl_file.close()   

 

In [8]: ll $path*   

        -rw-r--r--  1 yves  staff  9002006 Oct 19 12:11 

         /Users/yves/Temp/data/data.pkl 

 

In [9]: pkl_file = open(path + 'data.pkl', 'rb')   

 

In [10]: %time b = pickle.load(pkl_file)   

         CPU times: user 34.1 ms, sys: 16.7 ms, total: 50.8 ms 

         Wall time: 48.7 ms 

 

In [11]: a[:3] 

Out[11]: [6.517874180585469, -0.5552400459507827, 2.8488946310833096] 

 

In [12]: b[:3] 

Out[12]: [6.517874180585469, -0.5552400459507827, 2.8488946310833096] 

 

In [13]: np.allclose(np.array(a), np.array(b))   

Out[13]: True

Serializes the object a and saves it to the file.

Closes the file.

Shows the file on disk and its size (Mac/Linux).

Opens the file for reading in binary mode (rb).



Reads the object from disk and deserializes it.

Converting a and b to ndarrary objects, np.allclose() verifies that
both contain the same data (numbers).

Storing and retrieving a single object with pickle obviously is quite simple.
What about two objects?

In [14]: pkl_file = open(path + 'data.pkl', 'wb') 

 

In [15]: %time pickle.dump(np.array(a), pkl_file)   

         CPU times: user 58.1 ms, sys: 6.09 ms, total: 64.2 ms 

         Wall time: 32.5 ms 

 

In [16]: %time pickle.dump(np.array(a) ** 2, pkl_file)   

         CPU times: user 66.7 ms, sys: 7.22 ms, total: 73.9 ms 

         Wall time: 39.3 ms 

 

In [17]: pkl_file.close() 

 

In [18]: ll $path*   

         -rw-r--r--  1 yves  staff  16000322 Oct 19 12:11 

          /Users/yves/Temp/data/data.pkl

Serializes the ndarray version of a and saves it.

Serializes the squared ndarray version of a and saves it.

The file now has roughly double the size from before.
What about reading the two ndarray objects back into memory?

In [19]: pkl_file = open(path + 'data.pkl', 'rb') 

 

In [20]: x = pickle.load(pkl_file)   

         x[:4] 

Out[20]: array([ 6.51787418, -0.55524005,  2.84889463,  5.94489175]) 

 

In [21]: y = pickle.load(pkl_file)   

         y[:4] 

Out[21]: array([42.48268383,  0.30829151,  8.11620062, 35.34173791]) 



 

In [22]: pkl_file.close()

This retrieves the object that was stored first.

This retrieves the object that was stored second.
Obviously, pickle stores objects according to the first in, first out (FIFO)
principle. There is one major problem with this: there is no metainformation
available to the user to know beforehand what is stored in a pickle file.

A sometimes helpful workaround is to not store single objects, but a dict
object containing all the other objects:

In [23]: pkl_file = open(path + 'data.pkl', 'wb') 

         pickle.dump({'x': x, 'y': y}, pkl_file)   

         pkl_file.close() 

 

In [24]: pkl_file = open(path + 'data.pkl', 'rb') 

         data = pickle.load(pkl_file)   

         pkl_file.close() 

         for key in data.keys(): 

             print(key, data[key][:4]) 

         x [ 6.51787418 -0.55524005  2.84889463  5.94489175] 

         y [42.48268383  0.30829151  8.11620062 35.34173791] 

 

In [25]: !rm -f $path*

Stores a dict object containing the two ndarray objects.

Retrieves the dict object.

This approach requires writing and reading all the objects at once, but this
is a compromise one can probably live with in many circumstances given
the higher convenience it brings along.



COMPATIBILITY ISSUES
The use of pickle for the serialization of objects is generally straightforward. However,
it might lead to problems when, e.g., a Python package is upgraded and the new version
of the package cannot work anymore with the serialized object from the older version. It
might also lead to problems when sharing such an object across platforms and operating
systems. It is therefore in general advisable to work with the built-in reading and writing
capabilities of the packages such as NumPy and pandas that are discussed in the
following sections.



Reading and Writing Text Files
Text processing can be considered a strength of Python. In fact, many
corporate and scientific users use Python for exactly this task. With Python
one has multiple options to work with str objects, as well as with text files
in general.

Assume the case of quite a large set of data that shall be shared as a CSV
file. Although such files have a special internal structure, they are basically
plain text files. The following code creates a dummy data set as an ndarray
object, creates a DatetimeIndex object, combines the two, and stores the
data as a CSV text file:

In [26]: import pandas as pd 

 

In [27]: rows = 5000   

         a = np.random.standard_normal((rows, 5)).round(4)   

 

In [28]: a   

Out[28]: array([[-0.0892, -1.0508, -0.5942,  0.3367,  1.508 ], 

                [ 2.1046,  3.2623,  0.704 , -0.2651,  0.4461], 

                [-0.0482, -0.9221,  0.1332,  0.1192,  0.7782], 

                ..., 

                [ 0.3026, -0.2005, -0.9947,  1.0203, -0.6578], 

                [-0.7031, -0.6989, -0.8031, -0.4271,  1.9963], 

                [ 2.4573,  2.2151,  0.158 , -0.7039, -1.0337]]) 

 

In [29]: t = pd.date_range(start='2019/1/1', periods=rows, freq='H')   

 

In [30]: t   

Out[30]: DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 01:00:00', 

                        '2019-01-01 02:00:00', '2019-01-01 03:00:00', 

                        '2019-01-01 04:00:00', '2019-01-01 05:00:00', 

                        '2019-01-01 06:00:00', '2019-01-01 07:00:00', 

                        '2019-01-01 08:00:00', '2019-01-01 09:00:00', 

                        ... 

                        '2019-07-27 22:00:00', '2019-07-27 23:00:00', 

                        '2019-07-28 00:00:00', '2019-07-28 01:00:00', 

                        '2019-07-28 02:00:00', '2019-07-28 03:00:00', 

                        '2019-07-28 04:00:00', '2019-07-28 05:00:00', 

                        '2019-07-28 06:00:00', '2019-07-28 07:00:00'], 

                       dtype='datetime64[ns]', length=5000, freq='H') 

 

In [31]: csv_file = open(path + 'data.csv', 'w')   

 

In [32]: header = 'date,no1,no2,no3,no4,no5\n'   

 

In [33]: csv_file.write(header)   

Out[33]: 25 



 

In [34]: for t_, (no1, no2, no3, no4, no5) in zip(t, a):   

             s = '{},{},{},{},{},{}\n'.format(t_, no1, no2, no3, no4, no5)   

             csv_file.write(s)   

 

In [35]: csv_file.close() 

 

In [36]: ll $path* 

         -rw-r--r--  1 yves  staff  284757 Oct 19 12:11 

          /Users/yves/Temp/data/data.csv

Defines the number of rows for the data set.

Creates the ndarray object with the random numbers.

Creates a DatetimeIndex object of appropriate length (hourly
intervals).

Opens a file for writing (w).

Defines the header row (column labels) and writes it as the first line.

Combines the data row-wise …

… into str objects …

… and writes it line-by-line (appending to the CSV text file).
The other way around works quite similarly. First, open the now-existing
CSV file. Second, read its content line-by-line using the .readline() or
.readlines() methods of the file object:



In [37]: csv_file = open(path + 'data.csv', 'r')   

 

In [38]: for i in range(5): 

             print(csv_file.readline(), end='')   

         date,no1,no2,no3,no4,no5 

         2019-01-01 00:00:00,-0.0892,-1.0508,-0.5942,0.3367,1.508 

         2019-01-01 01:00:00,2.1046,3.2623,0.704,-0.2651,0.4461 

         2019-01-01 02:00:00,-0.0482,-0.9221,0.1332,0.1192,0.7782 

         2019-01-01 03:00:00,-0.359,-2.4955,0.6164,0.712,-1.4328 

 

In [39]: csv_file.close() 

 

In [40]: csv_file = open(path + 'data.csv', 'r')   

 

In [41]: content = csv_file.readlines()   

 

In [42]: content[:5]   

Out[42]: ['date,no1,no2,no3,no4,no5\n', 

          '2019-01-01 00:00:00,-0.0892,-1.0508,-0.5942,0.3367,1.508\n', 

          '2019-01-01 01:00:00,2.1046,3.2623,0.704,-0.2651,0.4461\n', 

          '2019-01-01 02:00:00,-0.0482,-0.9221,0.1332,0.1192,0.7782\n', 

          '2019-01-01 03:00:00,-0.359,-2.4955,0.6164,0.712,-1.4328\n'] 

 

In [43]: csv_file.close()

Opens the file for reading (r).

Reads the file contents line-by-line and prints them.

Reads the file contents in a single step …

… the result of which is a list object with all lines as separate str
objects.

CSV files are so important and commonplace that there is a csv module in
the Python standard library that simplifies the processing of these files. Two
helpful reader (iterator) objects of the csv module return either a list of
list objects or a list of dict objects:

In [44]: import csv 

 

In [45]: with open(path + 'data.csv', 'r') as f: 



             csv_reader = csv.reader(f)   

             lines = [line for line in csv_reader] 

 

In [46]: lines[:5]   

Out[46]: [['date', 'no1', 'no2', 'no3', 'no4', 'no5'], 

         ['2019-01-01 00:00:00', '-0.0892', '-1.0508', '-0.5942', '0.3367', 

          '1.508'], 

         ['2019-01-01 01:00:00', '2.1046', '3.2623', '0.704', '-0.2651', 

          '0.4461'], 

         ['2019-01-01 02:00:00', '-0.0482', '-0.9221', '0.1332', '0.1192', 

          '0.7782'], 

         ['2019-01-01 03:00:00', '-0.359', '-2.4955', '0.6164', '0.712', 

          '-1.4328']] 

 

In [47]: with open(path + 'data.csv', 'r') as f: 

             csv_reader = csv.DictReader(f)   

             lines = [line for line in csv_reader] 

 

In [48]: lines[:3]   

Out[48]: [OrderedDict([('date', '2019-01-01 00:00:00'), 

                       ('no1', '-0.0892'), 

                       ('no2', '-1.0508'), 

                       ('no3', '-0.5942'), 

                       ('no4', '0.3367'), 

                       ('no5', '1.508')]), 

          OrderedDict([('date', '2019-01-01 01:00:00'), 

                       ('no1', '2.1046'), 

                       ('no2', '3.2623'), 

                       ('no3', '0.704'), 

                       ('no4', '-0.2651'), 

                       ('no5', '0.4461')]), 

          OrderedDict([('date', '2019-01-01 02:00:00'), 

                       ('no1', '-0.0482'), 

                       ('no2', '-0.9221'), 

                       ('no3', '0.1332'), 

                       ('no4', '0.1192'), 

                       ('no5', '0.7782')])] 

 

In [49]: !rm -f $path*

csv.reader() returns every single line as a list object.

csv.DictReader() returns every single line as an OrderedDict, which
is a special case of a dict object.



Working with SQL Databases
Python can work with any kind of Structured Query Language (SQL)
database, and in general also with any kind of NoSQL database. One SQL
or relational database that is delivered with Python by default is SQLite3.
With it, the basic Python approach to SQL databases can be easily
illustrated:2

In [50]: import sqlite3 as sq3 

 

In [51]: con = sq3.connect(path + 'numbs.db')   

 

In [52]: query = 'CREATE TABLE numbs (Date date, No1 real, No2 real)'   

 

In [53]: con.execute(query)   

Out[53]: <sqlite3.Cursor at 0x102655f10> 

 

In [54]: con.commit()   

 

In [55]: q = con.execute   

 

In [56]: q('SELECT * FROM sqlite_master').fetchall()   

Out[56]: [('table', 

           'numbs', 

           'numbs', 

           2, 

           'CREATE TABLE numbs (Date date, No1 real, No2 real)')]

Opens a database connection; a file is created if it does not exist.

A SQL query that creates a table with three columns.3

Executes the query …

… and commits the changes.

Defines a short alias for the con.execute() method.

http://www.sqlite.org/


Fetches metainformation about the database, showing the just-created
table as the single object.

Now that there is a database file with a table, this table can be populated
with data. Each row consists of a datetime object and two float objects:

In [57]: import datetime 

 

In [58]: now = datetime.datetime.now() 

         q('INSERT INTO numbs VALUES(?, ?, ?)', (now, 0.12, 7.3))   

Out[58]: <sqlite3.Cursor at 0x102655f80> 

 

In [59]: np.random.seed(100) 

 

In [60]: data = np.random.standard_normal((10000, 2)).round(4)   

 

In [61]: %%time 

         for row in data:   

             now = datetime.datetime.now() 

             q('INSERT INTO numbs VALUES(?, ?, ?)', (now, row[0], row[1])) 

         con.commit() 

         CPU times: user 115 ms, sys: 6.69 ms, total: 121 ms 

         Wall time: 124 ms 

 

In [62]: q('SELECT * FROM numbs').fetchmany(4)   

Out[62]: [('2018-10-19 12:11:15.564019', 0.12, 7.3), 

          ('2018-10-19 12:11:15.592956', -1.7498, 0.3427), 

          ('2018-10-19 12:11:15.593033', 1.153, -0.2524), 

          ('2018-10-19 12:11:15.593051', 0.9813, 0.5142)] 

 

In [63]: q('SELECT * FROM numbs WHERE no1 > 0.5').fetchmany(4)   

Out[63]: [('2018-10-19 12:11:15.593033', 1.153, -0.2524), 

          ('2018-10-19 12:11:15.593051', 0.9813, 0.5142), 

          ('2018-10-19 12:11:15.593104', 0.6727, -0.1044), 

          ('2018-10-19 12:11:15.593134', 1.619, 1.5416)] 

 

In [64]: pointer = q('SELECT * FROM numbs')   

 

In [65]: for i in range(3): 

             print(pointer.fetchone())   

         ('2018-10-19 12:11:15.564019', 0.12, 7.3) 

         ('2018-10-19 12:11:15.592956', -1.7498, 0.3427) 

         ('2018-10-19 12:11:15.593033', 1.153, -0.2524) 

 

In [66]: rows = pointer.fetchall()   

         rows[:3]

Out[66]: [('2018-10-19 12:11:15.593051', 0.9813, 0.5142), 

          ('2018-10-19 12:11:15.593063', 0.2212, -1.07), 

          ('2018-10-19 12:11:15.593073', -0.1895, 0.255)]



Writes a single row (or record) to the numbs table.

Creates a larger dummy data set as an ndarray object.

Iterates over the rows of the ndarray object.

Retrieves a number of rows from the table.

The same, but with a condition on the values in the No1 column.

Defines a pointer object …

… that behaves like a generator object.

Retrieves all the remaining rows.
Finally, one might want to delete the table object in the database if it’s not
required anymore:

In [67]: q('DROP TABLE IF EXISTS numbs')   

Out[67]: <sqlite3.Cursor at 0x1187a7420> 

 

In [68]: q('SELECT * FROM sqlite_master').fetchall()   

Out[68]: [] 

 

In [69]: con.close()   

 

In [70]: !rm -f $path*  

Removes the table from the database.



There are no table objects left after this operation.

Closes the database connection.

Removes the database file from disk.
SQL databases are a rather broad topic; indeed, too broad and complex to
be covered in any significant way in this chapter. The basic messages are:

Python integrates well with almost any database technology.

The basic SQL syntax is mainly determined by the database in use; the
rest is what is called “Pythonic.”

A few more examples based on SQLite3 are included later in this chapter.



Writing and Reading NumPy Arrays
NumPy itself has functions to write and read ndarray objects in a convenient
and performant fashion. This saves effort in some circumstances, such as
when converting NumPy dtype objects into specific database data types (e.g.,
for SQLite3). To illustrate that NumPy can be an efficient replacement for a
SQL-based approach, the following code replicates the example from the
previous section with NumPy.

Instead of pandas, the code uses the np.arange() function of NumPy to
generate an ndarray object with datetime objects stored:

In [71]: dtimes = np.arange('2019-01-01 10:00:00', '2025-12-31 22:00:00', 

                           dtype='datetime64[m]')   

 

In [72]: len(dtimes) 

Out[72]: 3681360 

 

In [73]: dty = np.dtype([('Date', 'datetime64[m]'), 

                         ('No1', 'f'), ('No2', 'f')])   

 

In [74]: data = np.zeros(len(dtimes), dtype=dty)   

 

In [75]: data['Date'] = dtimes   

 

In [76]: a = np.random.standard_normal((len(dtimes), 2)).round(4)   

 

In [77]: data['No1'] = a[:, 0]   

         data['No2'] = a[:, 1]   

 

In [78]: data.nbytes   

Out[78]: 58901760

Creates an ndarray object with datetime as the dtype.

Defines the special dtype object for the structured array.

Instantiates an ndarray object with the special dtype.

http://bit.ly/2DnwAqZ


Populates the Date column.

The dummy data sets …

… which populate the No1 and No2 columns.

The size of the structured array in bytes.
Saving of ndarray objects is highly optimized and therefore quite fast.
Almost 60 MB of data takes a fraction of a second to save on disk (here
using an SSD). A larger ndarray object with 480 MB of data takes about
half a second to save on disk:4

In [79]: %time np.save(path + 'array', data)   

         CPU times: user 37.4 ms, sys: 58.9 ms, total: 96.4 ms 

         Wall time: 77.9 ms 

 

In [80]: ll $path*   

         -rw-r--r--  1 yves  staff  58901888 Oct 19 12:11 

          /Users/yves/Temp/data/array.npy 

 

In [81]: %time np.load(path + 'array.npy')   

         CPU times: user 1.67 ms, sys: 44.8 ms, total: 46.5 ms 

         Wall time: 44.6 ms 

 

Out[81]: array([('2019-01-01T10:00',  1.5131,  0.6973), 

                ('2019-01-01T10:01', -1.722 , -0.4815), 

                ('2019-01-01T10:02',  0.8251,  0.3019), ..., 

                ('2025-12-31T21:57',  1.372 ,  0.6446), 

                ('2025-12-31T21:58', -1.2542,  0.1612), 

                ('2025-12-31T21:59', -1.1997, -1.097 )], 

               dtype=[('Date', '<M8[m]'), ('No1', '<f4'), ('No2', '<f4')]) 

 

In [82]: %time data = np.random.standard_normal((10000, 6000)).round(4)   

         CPU times: user 2.69 s, sys: 391 ms, total: 3.08 s 

         Wall time: 2.78 s 

 

In [83]: data.nbytes   

Out[83]: 480000000 

 

In [84]: %time np.save(path + 'array', data)   

         CPU times: user 42.9 ms, sys: 300 ms, total: 343 ms 

         Wall time: 481 ms 

 



In [85]: ll $path*   

         -rw-r--r--  1 yves  staff  480000128 Oct 19 12:11

          /Users/yves/Temp/data/array.npy 

 

In [86]: %time np.load(path + 'array.npy')   

         CPU times: user 2.32 ms, sys: 363 ms, total: 365 ms 

         Wall time: 363 ms 

 

Out[86]: array([[ 0.3066,  0.5951,  0.5826, ...,  1.6773,  0.4294, -0.2216], 

                [ 0.8769,  0.7292, -0.9557, ...,  0.5084,  0.9635, -0.4443], 

                [-1.2202, -2.5509, -0.0575, ..., -1.6128,  0.4662, -1.3645], 

                ..., 

                [-0.5598,  0.2393, -2.3716, ...,  1.7669,  0.2462,  1.035 ], 

                [ 0.273 ,  0.8216, -0.0749, ..., -0.0552, -0.8396,  0.3077], 

                [-0.6305,  0.8331,  1.3702, ...,  0.3493,  0.1981,  0.2037]]) 

 

In [87]: !rm -f $path*

This saves the structured ndarray object on disk.

The size on disk is hardly larger than in memory (due to binary
storage).

This loads the structured ndarray object from disk.

A larger regular ndarray object.

These examples illustrate that writing to disk in this case is mainly
hardware-bound, since the speeds observed represent roughly the advertised
writing speed of standard SSDs at the time of this writing (about 500
MB/s).

In any case, one can expect that this form of data storage and retrieval is
faster when compared to SQL databases or using the pickle module for
serialization. There are two reasons: first, the data is mainly numeric;
second, NumPy uses binary storage, which reduces the overhead almost to
zero. Of course, one does not have the functionality of a SQL database
available with this approach, but PyTables will help in this regard, as
subsequent sections show.



I/O with pandas
One of the major strengths of pandas is that it can read and write different
data formats natively, including:

CSV (comma-separated values)

SQL (Structured Query Language)

XLS/XSLX (Microsoft Excel files)

JSON (JavaScript Object Notation)

HTML (HyperText Markup Language)

Table 9-1 lists the supported formats and the corresponding import and
export functions/methods of pandas and the DataFrame class, respectively.
The parameters that, for example, the pd.read_csv() import function takes
are described in the documentation for pandas.read_csv.

Table 9-1. Import-export functions and methods
Format Input Output Remark

CSV pd.read_csv() .to_csv() Text file

XLS/XLSX pd.read_excel() .to_excel() Spreadsheet

HDF pd.read_hdf() .to_hdf() HDF5 database

SQL pd.read_sql() .to_sql() SQL table

JSON pd.read_json() .to_json() JavaScript Object Notation

MSGPACK pd.read_msgpack() .to_msgpack() Portable binary format

HTML pd.read_html() .to_html() HTML code

GBQ pd.read_gbq() .to_gbq() Google Big Query format

http://bit.ly/2DaB9C7


Format Input Output Remark

DTA pd.read_stata() .to_stata() Formats 104, 105, 108, 113-115, 117

Any pd.read_clipboard() .to_clipboard() E.g., from HTML page

Any pd.read_pickle() .to_pickle() (Structured) Python object

The test case is again a larger set of float objects:

In [88]: data = np.random.standard_normal((1000000, 5)).round(4) 

 

In [89]: data[:3] 

Out[89]: array([[ 0.4918,  1.3707,  0.137 ,  0.3981, -1.0059], 

                [ 0.4516,  1.4445,  0.0555, -0.0397,  0.44  ], 

                [ 0.1629, -0.8473, -0.8223, -0.4621, -0.5137]])

To this end, this section also revisits SQLite3 and compares the
performance to alternative formats using pandas.



Working with SQL Databases
All that follows with regard to SQLite3 should be familiar by now:

In [90]: filename = path + 'numbers' 

 

In [91]: con = sq3.Connection(filename + '.db') 

 

In [92]: query = 'CREATE TABLE numbers (No1 real, No2 real,\ 

                 No3 real, No4 real, No5 real)'   

 

In [93]: q = con.execute 

         qm = con.executemany 

 

In [94]: q(query) 

Out[94]: <sqlite3.Cursor at 0x1187a76c0>

Creates a table with five columns for real numbers (float objects).

This time, the .executemany() method can be applied since the data is
available in a single ndarray object. Reading and working with the data
works as before. Query results can also be visualized easily (see Figure 9-1):

In [95]: %%time 

         qm('INSERT INTO numbers VALUES (?, ?, ?, ?, ?)', data)   

         con.commit() 

         CPU times: user 7.3 s, sys: 195 ms, total: 7.49 s

         Wall time: 7.71 s 

 

In [96]: ll $path* 

         -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11 

          /Users/yves/Temp/data/numbers.db 

 

In [97]: %%time 

         temp = q('SELECT * FROM numbers').fetchall()   

         print(temp[:3]) 

         [(0.4918, 1.3707, 0.137, 0.3981, -1.0059), (0.4516, 1.4445, 0.0555, 

          -0.0397, 0.44), (0.1629, -0.8473, -0.8223, -0.4621, -0.5137)] 

         CPU times: user 1.7 s, sys: 124 ms, total: 1.82 s

         Wall time: 1.9 s 

 

In [98]: %%time 

         query = 'SELECT * FROM numbers WHERE No1 > 0 AND No2 < 0' 

         res = np.array(q(query).fetchall()).round(3)   

         CPU times: user 639 ms, sys: 64.7 ms, total: 704 ms 

         Wall time: 702 ms 

 

In [99]: res = res[::100]   



         plt.figure(figsize=(10, 6)) 

         plt.plot(res[:, 0], res[:, 1], 'ro')  

Inserts the whole data set into the table in a single step.

Retrieves all the rows from the table in a single step.

Retrieves a selection of the rows and transforms it to an ndarray object.

Plots a subset of the query result.

Figure 9-1. Scatter plot of the query result (selection)



From SQL to pandas
A generally more efficient approach, however, is the reading of either whole
tables or query results with pandas. When one can read a whole table into
memory, analytical queries can generally be executed much faster than when
using the SQL disk-based approach (out-of-memory).

Reading the whole table with pandas takes roughly the same amount of time
as reading it into a NumPy ndarray object. There as here, the bottleneck
performance-wise is the SQL database:

In [100]: %time data = pd.read_sql('SELECT * FROM numbers', con)   

          CPU times: user 2.17 s, sys: 180 ms, total: 2.35 s 

          Wall time: 2.32 s 

 

In [101]: data.head() 

Out[101]:       No1     No2     No3     No4     No5 

          0  0.4918  1.3707  0.1370  0.3981 -1.0059 

          1  0.4516  1.4445  0.0555 -0.0397  0.4400 

          2  0.1629 -0.8473 -0.8223 -0.4621 -0.5137 

          3  1.3064  0.9125  0.5142 -0.7868 -0.3398 

          4 -0.1148 -1.5215 -0.7045 -1.0042 -0.0600

Reads all rows of the table into the DataFrame object named data.

The data is now in-memory, which allows for much faster analytics. The
speedup is often an order of magnitude or more. pandas can also master
more complex queries, although it is neither meant nor able to replace SQL
databases when it comes to complex relational data structures. The result of
the query with multiple conditions combined is shown in Figure 9-2:

In [102]: %time data[(data['No1'] > 0) & (data['No2'] < 0)].head()   

          CPU times: user 47.1 ms, sys: 12.3 ms, total: 59.4 ms 

          Wall time: 33.4 ms 

 

Out[102]:        No1     No2     No3     No4     No5 

          2   0.1629 -0.8473 -0.8223 -0.4621 -0.5137 

          5   0.1893 -0.0207 -0.2104  0.9419  0.2551 

          8   1.4784 -0.3333 -0.7050  0.3586 -0.3937 

          10  0.8092 -0.9899  1.0364 -1.0453  0.0579 

          11  0.9065 -0.7757 -0.9267  0.7797  0.0863 

 

In [103]: %%time 



          q = '(No1 < -0.5 | No1 > 0.5) & (No2 < -1 | No2 > 1)'   

          res = data[['No1', 'No2']].query(q)   

          CPU times: user 95.4 ms, sys: 22.4 ms, total: 118 ms 

          Wall time: 56.4 ms 

 

In [104]: plt.figure(figsize=(10, 6)) 

          plt.plot(res['No1'], res['No2'], 'ro');

Two conditions combined logically.

Four conditions combined logically.

Figure 9-2. Scatter plot of the query result (selection)

As expected, using the in-memory analytics capabilities of pandas leads to a
significant speedup, provided pandas is able to replicate the respective SQL
statement.

This is not the only advantage of using pandas, since pandas is tightly
integrated with a number of other packages (including PyTables, the topic of



the subsequent section). Here, it suffices to know that the combination of
both can speed up I/O operations considerably. This is shown in the
following:

In [105]: h5s = pd.HDFStore(filename + '.h5s', 'w')   

 

In [106]: %time h5s['data'] = data   

          CPU times: user 46.7 ms, sys: 47.1 ms, total: 93.8 ms 

          Wall time: 99.7 ms 

 

In [107]: h5s   

Out[107]: <class 'pandas.io.pytables.HDFStore'> 

          File path: /Users/yves/Temp/data/numbers.h5s 

 

In [108]: h5s.close()  

This opens an HDF5 database file for writing; in pandas an HDFStore
object is created.

The complete DataFrame object is stored in the database file via binary
storage.

The HDFStore object information.

The database file is closed.
The whole DataFrame with all the data from the original SQL table is written
much faster when compared to the same procedure with SQLite3. Reading is
even faster:

In [109]: %%time 

          h5s = pd.HDFStore(filename + '.h5s', 'r')   

          data_ = h5s['data']   

          h5s.close()   

          CPU times: user 11 ms, sys: 18.3 ms, total: 29.3 ms 

          Wall time: 29.4 ms 

 

In [110]: data_ is data   

Out[110]: False 

 



In [111]: (data_ == data).all()   

Out[111]: No1    True 

          No2    True 

          No3    True 

          No4    True 

          No5    True 

          dtype: bool 

 

In [112]: np.allclose(data_, data)   

Out[112]: True 

 

In [113]: ll $path*   

          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11 

           /Users/yves/Temp/data/numbers.db 

          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11 

           /Users/yves/Temp/data/numbers.h5s

This opens the HDF5 database file for reading.

The DataFrame is read and stored in-memory as data_.

The database file is closed.

The two DataFrame objects are not the same …

… but they now contain the same data.

Binary storage generally comes with less size overhead compared to
SQL tables, for instance.



Working with CSV Files
One of the most widely used formats to exchange financial data is the CSV
format. Although it is not really standardized, it can be processed by any
platform and the vast majority of applications concerned with data and
financial analytics. Earlier, we saw how to write and read data to and from
CSV files with standard Python functionality (see “Reading and Writing
Text Files”). pandas makes this whole procedure a bit more convenient, the
code more concise, and the execution in general faster (see also Figure 9-3):

In [114]: %time data.to_csv(filename + '.csv')   

          CPU times: user 6.44 s, sys: 139 ms, total: 6.58 s 

          Wall time: 6.71 s 

 

In [115]: ll $path 

          total 283672 

          -rw-r--r--  1 yves  staff  43834157 Oct 19 12:11 numbers.csv 

          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11 numbers.db 

          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11 numbers.h5s 

 

In [116]: %time df = pd.read_csv(filename + '.csv')  

          CPU times: user 1.12 s, sys: 111 ms, total: 1.23 s 

          Wall time: 1.23 s 

 

In [117]: df[['No1', 'No2', 'No3', 'No4']].hist(bins=20, figsize=(10, 6));

The .to_csv() method writes the DataFrame data to disk in CSV
format.

The pd.read_csv() method then reads it back into memory as a new
DataFrame object.



Figure 9-3. Histograms for selected columns



Working with Excel Files
The following code briefly demonstrates how pandas can write data in Excel
format and read data from Excel spreadsheets. In this case, the data set is
restricted to 100,000 rows (see also Figure 9-4):

In [118]: %time data[:100000].to_excel(filename + '.xlsx')   

          CPU times: user 25.9 s, sys: 520 ms, total: 26.4 s 

          Wall time: 27.3 s 

 

In [119]: %time df = pd.read_excel(filename + '.xlsx', 'Sheet1')   

          CPU times: user 5.78 s, sys: 70.1 ms, total: 5.85 s 

          Wall time: 5.91 s 

 

In [120]: df.cumsum().plot(figsize=(10, 6)); 

In [121]: ll $path* 

          -rw-r--r--  1 yves  staff  43834157 Oct 19 12:11 

           /Users/yves/Temp/data/numbers.csv 

          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11 

           /Users/yves/Temp/data/numbers.db 

          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11 

           /Users/yves/Temp/data/numbers.h5s 

          -rw-r--r--  1 yves  staff   4032725 Oct 19 12:12 

           /Users/yves/Temp/data/numbers.xlsx 

 

In [122]: rm -f $path*

The .to_excel() method writes the DataFrame data to disk in XLSX
format.

The pd.read_excel() method then reads it back into memory as a new
DataFrame object, also specifying the sheet from which to read.

Generating the Excel spreadsheet file with a smaller subset of the data takes
quite a while. This illustrates what kind of overhead the spreadsheet
structure brings along with it.

Inspection of the generated files reveals that the DataFrame with HDFStore
combination is the most compact alternative (using compression, as
described in the next section, further increases the benefits). The same
amount of data as a CSV file — i.e., as a text file — is somewhat larger in



size. This is one reason for the slower performance when working with CSV
files, the other being the very fact that they are “only” general text files.

Figure 9-4. Line plots for all columns



I/O with PyTables
PyTables is a Python binding for the HDF5 database standard. It is
specifically designed to optimize the performance of I/O operations and
make best use of the available hardware. The library’s import name is
tables. Similar to pandas, when it comes to in-memory analytics PyTables
is neither able nor meant to be a full replacement for SQL databases.
However, it brings along some features that further close the gap. For
example, a PyTables database can have many tables, and it supports
compression and indexing and also nontrivial queries on tables. In addition,
it can store NumPy arrays efficiently and has its own flavor of array-like data
structures.

To begin with, some imports:

In [123]: import tables as tb   

          import datetime as dt

The package name is PyTables, the import name is tables.



Working with Tables
PyTables provides a file-based database format, similar to SQLite3.5 The
following opens a database file and creates a table:

In [124]: filename = path + 'pytab.h5' 

 

In [125]: h5 = tb.open_file(filename, 'w')   

 

In [126]: row_des = { 

              'Date': tb.StringCol(26, pos=1),   

              'No1': tb.IntCol(pos=2),   

              'No2': tb.IntCol(pos=3),   

              'No3': tb.Float64Col(pos=4),   

              'No4': tb.Float64Col(pos=5)   

              } 

 

In [127]: rows = 2000000 

 

In [128]: filters = tb.Filters(complevel=0)   

 

In [129]: tab = h5.create_table('/', 'ints_floats',  

                                row_des,   

                                title='Integers and Floats',   

                                expectedrows=rows,   

                                filters=filters)   

 

In [130]: type(tab) 

Out[130]: tables.table.Table 

 

In [131]: tab 

Out[131]: /ints_floats (Table(0,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,)

Opens the database file in HDF5 binary storage format.

The Date column for date-time information (as a str object).



The two columns to store int objects.

The two columns to store float objects.

Via Filters objects, compression levels can be specified, among other
things.

The node (path) and technical name of the table.

The description of the row data structure.

The name (title) of the table.

The expected number of rows; allows for optimizations.

The Filters object to be used for the table.

To populate the table with numerical data, two ndarray objects with random
numbers are generated: one with random integers, the other with random
floating-point numbers. The population of the table happens via a simple
Python loop:

In [132]: pointer = tab.row   

 

In [133]: ran_int = np.random.randint(0, 10000, size=(rows, 2))   

 

In [134]: ran_flo = np.random.standard_normal((rows, 2)).round(4)   

 

In [135]: %%time 

          for i in range(rows): 

              pointer['Date'] = dt.datetime.now()   

              pointer['No1'] = ran_int[i, 0]   

              pointer['No2'] = ran_int[i, 1]   

              pointer['No3'] = ran_flo[i, 0]   

              pointer['No4'] = ran_flo[i, 1]   

              pointer.append()   



          tab.flush()   

          CPU times: user 8.16 s, sys: 78.7 ms, total: 8.24 s 

          Wall time: 8.25 s 

 

In [136]: tab   

Out[136]: /ints_floats (Table(2000000,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,) 

 

In [137]: ll $path* 

          -rw-r--r--  1 yves  staff  100156248 Oct 19 12:12 

           /Users/yves/Temp/data/pytab.h5

A pointer object is created.

The ndarray object with the random int objects is created.

The ndarray object with the random float objects is created.

The datetime object and the two int and two float objects are written
row-by-row.

The new row is appended.

All written rows are flushed; i.e., committed as permanent changes.

The changes are reflected in the Table object description.

The Python loop is quite slow in this case. There is a more performant and
Pythonic way to accomplish the same result, by the use of NumPy structured
arrays. Equipped with the complete data set stored in a structured array, the



creation of the table boils down to a single line of code. Note that the row
description is not needed anymore; PyTables uses the dtype object of the
structured array to infer the data types instead:

In [138]: dty = np.dtype([('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'), 

                                           ('No3', '<f8'), ('No4', '<f8')])   

 

In [139]: sarray = np.zeros(len(ran_int), dtype=dty)   

 

In [140]: sarray[:4]   

Out[140]: array([(b'', 0, 0, 0., 0.), (b'', 0, 0, 0., 0.), (b'', 0, 0, 0., 0.), 

                 (b'', 0, 0, 0., 0.)], 

          dtype=[('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'), ('No3', '<f8'), 

           ('No4', '<f8')]) 

 

In [141]: %%time 

          sarray['Date'] = dt.datetime.now()   

          sarray['No1'] = ran_int[:, 0]   

          sarray['No2'] = ran_int[:, 1]   

          sarray['No3'] = ran_flo[:, 0]   

          sarray['No4'] = ran_flo[:, 1]   

          CPU times: user 161 ms, sys: 42.7 ms, total: 204 ms 

          Wall time: 207 ms 

 

In [142]: %%time 

          h5.create_table('/', 'ints_floats_from_array', sarray, 

                                title='Integers and Floats', 

                                expectedrows=rows, filters=filters)   

          CPU times: user 42.9 ms, sys: 51.4 ms, total: 94.3 ms 

          Wall time: 96.6 ms 

 

Out[142]: /ints_floats_from_array (Table(2000000,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,)

This defines the special dtype object.

This creates the structured array with zeros (and empty strings).

A few records from the ndarray object.



The columns of the ndarray object are populated at once.

This creates the Table object and populates it with the data.

This approach is an order of magnitude faster, has more concise code, and
achieves the same result:

In [143]: type(h5) 

Out[143]: tables.file.File 

 

In [144]: h5   

Out[144]: File(filename=/Users/yves/Temp/data/pytab.h5, title='', mode='w', 

           root_uep='/', filters=Filters(complevel=0, shuffle=False, 

           bitshuffle=False, fletcher32=False, least_significant_digit=None)) 

          / (RootGroup) '' 

          /ints_floats (Table(2000000,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,) 

          /ints_floats_from_array (Table(2000000,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,) 

 

In [145]: h5.remove_node('/', 'ints_floats_from_array')  

The description of the File object with the two Table objects.

This removes the second Table object with the redundant data.

The Table object behaves pretty similar to NumPy structured ndarray objects
in most cases (see also Figure 9-5):



In [146]: tab[:3]   

Out[146]: array([(b'2018-10-19 12:12:28.227771', 8576, 5991, -0.0528, 0.2468),

                 (b'2018-10-19 12:12:28.227858', 2990, 9310, -0.0261, 0.3932), 

                 (b'2018-10-19 12:12:28.227868', 4400, 4823,  0.9133, 0.2579)], 

          dtype=[('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'), ('No3', '<f8'), 

           ('No4', '<f8')]) 

 

In [147]: tab[:4]['No4']   

Out[147]: array([ 0.2468,  0.3932,  0.2579, -0.5582]) 

 

In [148]: %time np.sum(tab[:]['No3'])   

          CPU times: user 76.7 ms, sys: 74.8 ms, total: 151 ms 

          Wall time: 152 ms 

 

Out[148]: 88.8542999999997 

 

In [149]: %time np.sum(np.sqrt(tab[:]['No1']))   

          CPU times: user 91 ms, sys: 57.9 ms, total: 149 ms 

          Wall time: 164 ms 

 

Out[149]: 133349920.3689251

 

In [150]: %%time 

          plt.figure(figsize=(10, 6)) 

          plt.hist(tab[:]['No3'], bins=30);   

          CPU times: user 328 ms, sys: 72.1 ms, total: 400 ms 

          Wall time: 456 ms

Selecting rows via indexing.

Selecting column values only via indexing.

Applying NumPy universal functions.

Plotting a column from the Table object.



Figure 9-5. Histogram of column data

PyTables also provides flexible tools to query data via typical SQL-like
statements, as in the following example (the result of which is illustrated in
Figure 9-6; compare it with Figure 9-2, based on a pandas query):

In [151]: query = '((No3 < -0.5) | (No3 > 0.5)) & ((No4 < -1) | (No4 > 1))'   

 

In [152]: iterator = tab.where(query)   

 

In [153]: %time res = [(row['No3'], row['No4']) for row in iterator]   

          CPU times: user 269 ms, sys: 64.4 ms, total: 333 ms 

          Wall time: 294 ms 

 

In [154]: res = np.array(res)   

          res[:3]

Out[154]: array([[0.7694, 1.4866], 

                 [0.9201, 1.3346], 

                 [1.4701, 1.8776]]) 

 

In [155]: plt.figure(figsize=(10, 6)) 

          plt.plot(res.T[0], res.T[1], 'ro');



The query as a str object, four conditions combined by logical
operators.

The iterator object based on the query.

The rows resulting from the query are collected via a list
comprehension …

… and transformed to an ndarray object.

Figure 9-6. Histogram of column data



FAST QUERIES
Both pandas and PyTables are able to process relatively complex, SQL-like queries and
selections. They are both optimized for speed when it comes to such operations.
Although there are limits to these approaches compared to relational databases, for most
numerical and financial applications these are often not relevant.

As the following examples show, working with data stored in PyTables as
Table objects gives the impression of working with NumPy or pandas
objects in-memory, both from a syntax and a performance point of view:

In [156]: %%time 

          values = tab[:]['No3']

          print('Max %18.3f' % values.max()) 

          print('Ave %18.3f' % values.mean()) 

          print('Min %18.3f' % values.min()) 

          print('Std %18.3f' % values.std()) 

          Max              5.224 

          Ave              0.000 

          Min             -5.649 

          Std              1.000 

          CPU times: user 163 ms, sys: 70.4 ms, total: 233 ms 

          Wall time: 234 ms 

 

In [157]: %%time 

          res = [(row['No1'], row['No2']) for row in 

                  tab.where('((No1 > 9800) | (No1 < 200)) \ 

                          & ((No2 > 4500) & (No2 < 5500))')] 

          CPU times: user 165 ms, sys: 52.5 ms, total: 218 ms 

          Wall time: 155 ms 

 

In [158]: for r in res[:4]: 

              print(r) 

          (91, 4870) 

          (9803, 5026)

          (9846, 4859)

          (9823, 5069)

 

In [159]: %%time 

          res = [(row['No1'], row['No2']) for row in 

                  tab.where('(No1 == 1234) & (No2 > 9776)')] 

          CPU times: user 58.9 ms, sys: 40.5 ms, total: 99.4 ms 

          Wall time: 81 ms 

 

In [160]: for r in res: 

              print(r) 

          (1234, 9841)

          (1234, 9821)

          (1234, 9867)

          (1234, 9987)



          (1234, 9849)

          (1234, 9800)



Working with Compressed Tables
A major advantage of working with PyTables is the approach it takes to
compression. It uses compression not only to save space on disk, but also to
improve the performance of I/O operations in certain hardware scenarios.
How does this work? When I/O is the bottleneck and the CPU is able to
(de)compress data fast, the net effect of compression in terms of speed
might be positive. Since the following examples are based on the I/O of a
standard SSD, there is no speed advantage of compression to be observed.
However, there is also almost no disadvantage to using compression:

In [161]: filename = path + 'pytabc.h5' 

 

In [162]: h5c = tb.open_file(filename, 'w') 

 

In [163]: filters = tb.Filters(complevel=5,   

                               complib='blosc')   

 

In [164]: tabc = h5c.create_table('/', 'ints_floats', sarray, 

                                  title='Integers and Floats', 

                                  expectedrows=rows, filters=filters) 

 

In [165]: query = '((No3 < -0.5) | (No3 > 0.5)) & ((No4 < -1) | (No4 > 1))' 

 

In [166]: iteratorc = tabc.where(query)   

 

In [167]: %time res = [(row['No3'], row['No4']) for row in iteratorc]   

          CPU times: user 300 ms, sys: 50.8 ms, total: 351 ms 

          Wall time: 311 ms 

 

In [168]: res = np.array(res) 

          res[:3]

Out[168]: array([[0.7694, 1.4866], 

                 [0.9201, 1.3346], 

                 [1.4701, 1.8776]])

The complevel (compression level) parameter can take values between
0 (no compression) and 9 (highest compression).

The Blosc compression engine is used, which is optimized for
performance.

http://blosc.org/


This creates the iterator object, based on the query from before.

The rows resulting from the query are collected via a list
comprehension.

Generating the compressed Table object with the original data and doing
analytics on it is slightly slower compared to the uncompressed Table
object. What about reading the data into an ndarray object? Let’s check:

In [169]: %time arr_non = tab.read()   

          CPU times: user 63 ms, sys: 78.5 ms, total: 142 ms 

          Wall time: 149 ms 

 

In [170]: tab.size_on_disk 

Out[170]: 100122200 

 

In [171]: arr_non.nbytes 

Out[171]: 100000000 

 

In [172]: %time arr_com = tabc.read()   

          CPU times: user 106 ms, sys: 55.5 ms, total: 161 ms 

          Wall time: 173 ms 

 

In [173]: tabc.size_on_disk 

Out[173]: 41306140 

 

In [174]: arr_com.nbytes 

Out[174]: 100000000 

 

In [175]: ll $path*   

          -rw-r--r--  1 yves  staff  200312336 Oct 19 12:12 

           /Users/yves/Temp/data/pytab.h5 

          -rw-r--r--  1 yves  staff   41341436 Oct 19 12:12 

           /Users/yves/Temp/data/pytabc.h5 

 

In [176]: h5c.close()  

Reading from the uncompressed Table object tab.

Reading from the compressed Table object tabc.



Comparing the sizes — the size of the compressed table is
significantly reduced.

Closing the database file.
The examples show that there is hardly any speed difference when working
with compressed Table objects as compared to uncompressed ones.
However, file sizes on disk might — depending on the quality of the data
— be significantly reduced, which has a number of benefits:

Storage costs are reduced.

Backup costs are reduced.

Network traffic is reduced.

Network speed is improved (storage on and retrieval from remote
servers is faster).

CPU utilization is increased to overcome I/O bottlenecks.



Working with Arrays
“Basic I/O with Python” showed that NumPy has built-in fast writing and
reading capabilities for ndarray objects. PyTables is also quite fast and
efficient when it comes to storing and retrieving ndarray objects, and since
it is based on a hierarchical database structure, many convenience features
come on top:

In [177]: %%time 

          arr_int = h5.create_array('/', 'integers', ran_int)   

          arr_flo = h5.create_array('/', 'floats', ran_flo)   

          CPU times: user 4.26 ms, sys: 37.2 ms, total: 41.5 ms 

          Wall time: 46.2 ms 

 

In [178]: h5   

Out[178]: File(filename=/Users/yves/Temp/data/pytab.h5, title='', mode='w', 

           root_uep='/', filters=Filters(complevel=0, shuffle=False, 

           bitshuffle=False, fletcher32=False, least_significant_digit=None)) 

          / (RootGroup) '' 

          /floats (Array(2000000, 2)) '' 

            atom := Float64Atom(shape=(), dflt=0.0) 

            maindim := 0 

            flavor := 'numpy' 

            byteorder := 'little' 

            chunkshape := None 

          /integers (Array(2000000, 2)) '' 

            atom := Int64Atom(shape=(), dflt=0) 

            maindim := 0 

            flavor := 'numpy' 

            byteorder := 'little' 

            chunkshape := None 

          /ints_floats (Table(2000000,)) 'Integers and Floats' 

            description := { 

            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0), 

            "No1": Int32Col(shape=(), dflt=0, pos=1), 

            "No2": Int32Col(shape=(), dflt=0, pos=2), 

            "No3": Float64Col(shape=(), dflt=0.0, pos=3), 

            "No4": Float64Col(shape=(), dflt=0.0, pos=4)} 

            byteorder := 'little' 

            chunkshape := (2621,) 

 

In [179]: ll $path* 

          -rw-r--r--  1 yves  staff  262344490 Oct 19 12:12 

           /Users/yves/Temp/data/pytab.h5 

          -rw-r--r--  1 yves  staff   41341436 Oct 19 12:12 

           /Users/yves/Temp/data/pytabc.h5 

 

In [180]: h5.close() 

 

In [181]: !rm -f $path*



Stores the ran_int ndarray object.

Stores the ran_flo ndarray object.

The changes are reflected in the object description.
Writing these objects directly to an HDF5 database is faster than looping
over the objects and writing the data row-by-row to a Table object or using
the approach via structured ndarray objects.



HDF5-BASED DATA STORAGE
The HDF5 hierarchical database (file) format is a powerful alternative to, for example,
relational databases when it comes to structured numerical and financial data. Both on a
standalone basis when using PyTables directly and when combining it with the
capabilities of pandas, one can expect to get almost the maximum I/O performance that
the available hardware allows.



Out-of-Memory Computations
PyTables supports out-of-memory operations, which makes it possible to
implement array-based computations that do not fit in memory. To this end,
consider the following code based on the EArray class. This type of object
can be expanded in one dimension (row-wise), while the number of
columns (elements per row) needs to be fixed:

In [182]: filename = path + 'earray.h5' 

 

In [183]: h5 = tb.open_file(filename, 'w') 

 

In [184]: n = 500   

 

In [185]: ear = h5.create_earray('/', 'ear',   

                                atom=tb.Float64Atom(),   

                                shape=(0, n))   

 

In [186]: type(ear) 

Out[186]: tables.earray.EArray 

 

In [187]: rand = np.random.standard_normal((n, n))   

          rand[:4, :4] 

Out[187]: array([[-1.25983231,  1.11420699,  0.1667485 ,  0.7345676 ], 

                 [-0.13785424,  1.22232417,  1.36303097,  0.13521042], 

                 [ 1.45487119, -1.47784078,  0.15027672,  0.86755989], 

                 [-0.63519366,  0.1516327 , -0.64939447, -0.45010975]]) 

 

In [188]: %%time 

          for _ in range(750): 

              ear.append(rand)   

          ear.flush() 

          CPU times: user 814 ms, sys: 1.18 s, total: 1.99 s 

          Wall time: 2.53 s 

 

In [189]: ear 

Out[189]: /ear (EArray(375000, 500)) '' 

            atom := Float64Atom(shape=(), dflt=0.0) 

            maindim := 0 

            flavor := 'numpy' 

            byteorder := 'little' 

            chunkshape := (16, 500) 

 

In [190]: ear.size_on_disk 

Out[190]: 1500032000

The fixed number of columns.



The path and technical name of the EArray object.

The atomic dtype object of the single values.

The shape for instantiation (no rows, n columns).

The ndarray object with the random numbers …

… that gets appended many times.
For out-of-memory computations that do not lead to aggregations, another
EArray object of the same shape (size) is needed. PyTables has a special
module to cope with numerical expressions efficiently. It is called Expr and
is based on the numerical expression library numexpr. The code that follows
uses Expr to calculate the mathematical expression in Equation 9-1 on the
whole EArray object from before.

Equation 9-1. Example mathematical expression

The results are stored in the out EArray object, and the expression
evaluation happens chunk-wise:

In [191]: out = h5.create_earray('/', 'out', 

                                atom=tb.Float64Atom(), 

                                shape=(0, n)) 

 

In [192]: out.size_on_disk 

Out[192]: 0 

 

In [193]: expr = tb.Expr('3 * sin(ear) + sqrt(abs(ear))')   

 

https://numexpr.readthedocs.io/


In [194]: expr.set_output(out, append_mode=True)   

 

In [195]: %time expr.eval()   

          CPU times: user 3.08 s, sys: 1.7 s, total: 4.78 s 

          Wall time: 4.03 s 

 

Out[195]: /out (EArray(375000, 500)) '' 

            atom := Float64Atom(shape=(), dflt=0.0) 

            maindim := 0 

            flavor := 'numpy' 

            byteorder := 'little' 

            chunkshape := (16, 500) 

 

In [196]: out.size_on_disk 

Out[196]: 1500032000 

 

In [197]: out[0, :10] 

Out[197]: array([-1.73369462,  3.74824436,  0.90627898,  2.86786818, 

           1.75424957, 

          -0.91108973, -1.68313885,  1.29073295, -1.68665599, -1.71345309]) 

 

In [198]: %time out_ = out.read()   

          CPU times: user 1.03 s, sys: 1.1 s, total: 2.13 s 

          Wall time: 2.22 s 

 

In [199]: out_[0, :10] 

Out[199]: array([-1.73369462,  3.74824436,  0.90627898,  2.86786818, 

           1.75424957, 

          -0.91108973, -1.68313885,  1.29073295, -1.68665599, -1.71345309])

Transforms a str object–based expression to an Expr object.

Defines the output to be the out EArray object.

Initiates the evaluation of the expression.

Reads the whole EArray into memory.

Given that the whole operation takes place out-of-memory, it can be
considered quite fast, in particular as it is executed on standard hardware.
As a benchmark, the in-memory performance of the numexpr module (see
also Chapter 10) can be considered. It is faster, but not by a huge margin:



In [200]: import numexpr as ne   

 

In [201]: expr = '3 * sin(out_) + sqrt(abs(out_))'   

 

In [202]: ne.set_num_threads(1)   

Out[202]: 4 

 

In [203]: %time ne.evaluate(expr)[0, :10]   

          CPU times: user 2.51 s, sys: 1.54 s, total: 4.05 s 

          Wall time: 4.94 s 

 

Out[203]: array([-1.64358578,  0.22567882,  3.31363043,  2.50443549, 

           4.27413965, 

          -1.41600606, -1.68373023,  4.01921805, -1.68117412, -1.66053597]) 

 

In [204]: ne.set_num_threads(4)   

Out[204]: 1 

 

In [205]: %time ne.evaluate(expr)[0, :10]   

          CPU times: user 3.39 s, sys: 1.94 s, total: 5.32 s 

          Wall time: 2.96 s 

 

Out[205]: array([-1.64358578,  0.22567882,  3.31363043,  2.50443549, 

           4.27413965, 

          -1.41600606, -1.68373023,  4.01921805, -1.68117412, -1.66053597]) 

 

In [206]: h5.close() 

 

In [207]: !rm -f $path*

Imports the module for in-memory evaluations of numerical
expressions.

The numerical expression as a str object.

Sets the number of threads to one.

Evaluates the numerical expression in-memory with one thread.

Sets the number of threads to four.



Evaluates the numerical expression in-memory with four threads.



I/O with TsTables
The package TsTables uses PyTables to build a high-performance storage
for time series data. The major usage scenario is “write once, retrieve
multiple times.” This is a typical scenario in financial analytics, where data
is created in the markets, retrieved in real-time or asynchronously, and
stored on disk for later usage. That usage might be in a larger trading
strategy backtesting program that requires different subsets of a historical
financial time series over and over again. It is then important that data
retrieval happens fast.



Sample Data
As usual, the first task is the generation of a sample data set that is large
enough to illustrate the benefits of TsTables. The following code generates
three rather long financial time series based on the simulation of a geometric
Brownian motion (see Chapter 12):

In [208]: no = 5000000   

          co = 3   

          interval = 1. / (12 * 30 * 24 * 60)   

          vol = 0.2   

 

In [209]: %%time 

          rn = np.random.standard_normal((no, co))   

          rn[0] = 0.0   

          paths = 100 * np.exp(np.cumsum(-0.5 * vol ** 2 * interval + 

                  vol * np.sqrt(interval) * rn, axis=0))   

          paths[0] = 100   

          CPU times: user 869 ms, sys: 175 ms, total: 1.04 s 

          Wall time: 812 ms

The number of time steps.

The number of time series.

The time interval as a year fraction.

The volatility.

Standard normally distributed random numbers.

Sets the initial random numbers to zero.



The simulation based on an Euler discretization.

Sets the initial values of the paths to 100.
Since TsTables works pretty well with pandas DataFrame objects, the data
is transformed to such an object (see also Figure 9-7):

In [210]: dr = pd.date_range('2019-1-1', periods=no, freq='1s') 

 

In [211]: dr[-6:] 

Out[211]: DatetimeIndex(['2019-02-27 20:53:14', '2019-02-27 20:53:15', 

                         '2019-02-27 20:53:16', '2019-02-27 20:53:17', 

                         '2019-02-27 20:53:18', '2019-02-27 20:53:19'], 

                        dtype='datetime64[ns]', freq='S') 

 

In [212]: df = pd.DataFrame(paths, index=dr, columns=['ts1', 'ts2', 'ts3']) 

 

In [213]: df.info() 

          <class 'pandas.core.frame.DataFrame'> 

          DatetimeIndex: 5000000 entries, 2019-01-01 00:00:00 to 2019-02-27 

           20:53:19 

          Freq: S 

          Data columns (total 3 columns): 

          ts1    float64 

          ts2    float64 

          ts3    float64 

          dtypes: float64(3) 

          memory usage: 152.6 MB

 

In [214]: df.head() 

Out[214]:                             ts1         ts2         ts3 

          2019-01-01 00:00:00  100.000000  100.000000  100.000000 

          2019-01-01 00:00:01  100.018443   99.966644   99.998255 

          2019-01-01 00:00:02  100.069023  100.004420   99.986646 

          2019-01-01 00:00:03  100.086757  100.000246   99.992042 

          2019-01-01 00:00:04  100.105448  100.036033   99.950618 

 

In [215]: df[::100000].plot(figsize=(10, 6));



Figure 9-7. Selected data points of the financial time series



Data Storage
TsTables stores financial time series data based on a specific chunk-based
structure that allows for fast retrieval of arbitrary data subsets defined by
some time interval. To this end, the package adds the function create_ts()
to PyTables. To provide the data types for the table columns, the following
uses a method based on the tb.IsDe scription class from PyTables:

In [216]: import tstables as tstab 

 

In [217]: class ts_desc(tb.IsDescription): 

              timestamp = tb.Int64Col(pos=0)   

              ts1 = tb.Float64Col(pos=1)   

              ts2 = tb.Float64Col(pos=2)   

              ts3 = tb.Float64Col(pos=3)   

 

In [218]: h5 = tb.open_file(path + 'tstab.h5', 'w')   

 

In [219]: ts = h5.create_ts('/', 'ts', ts_desc)   

 

In [220]: %time ts.append(df)   

          CPU times: user 1.36 s, sys: 497 ms, total: 1.86 s 

          Wall time: 1.29 s 

 

In [221]: type(ts) 

Out[221]: tstables.tstable.TsTable 

 

In [222]: ls -n $path 

          total 328472 

          -rw-r--r--  1 501  20  157037368 Oct 19 12:13 tstab.h5

The column for the timestamps.

The columns to store the numerical data.

Opens an HDF5 database file for writing (w).

Creates the TsTable object based on the ts_desc object.



Appends the data from the DataFrame object to the TsTable object.



Data Retrieval
Writing data with TsTables obviously is quite fast, even if hardware-
dependent. The same holds true for reading chunks of the data back into
memory. Conveniently, TsTables returns a DataFrame object (see also
Figure 9-8):

In [223]: read_start_dt = dt.datetime(2019, 2, 1, 0, 0)   

          read_end_dt = dt.datetime(2019, 2, 5, 23, 59)   

 

In [224]: %time rows = ts.read_range(read_start_dt, read_end_dt)   

          CPU times: user 182 ms, sys: 73.5 ms, total: 255 ms 

          Wall time: 163 ms 

 

In [225]: rows.info()   

          <class 'pandas.core.frame.DataFrame'> 

          DatetimeIndex: 431941 entries, 2019-02-01 00:00:00 to 2019-02-05 

            23:59:00 

          Data columns (total 3 columns): 

          ts1    431941 non-null float64 

          ts2    431941 non-null float64 

          ts3    431941 non-null float64 

          dtypes: float64(3) 

          memory usage: 13.2 MB 

 

In [226]: rows.head()   

Out[226]:                            ts1        ts2         ts3 

          2019-02-01 00:00:00  52.063640  40.474580  217.324713 

          2019-02-01 00:00:01  52.087455  40.471911  217.250070 

          2019-02-01 00:00:02  52.084808  40.458013  217.228712 

          2019-02-01 00:00:03  52.073536  40.451408  217.302912 

          2019-02-01 00:00:04  52.056133  40.450951  217.207481 

 

In [227]: h5.close() 

 

In [228]: (rows[::500] / rows.iloc[0]).plot(figsize=(10, 6));

The start time of the interval.

The end time of the interval.

The function ts.read_range() returns a DataFrame object for the
interval.



The DataFrame object has a few hundred thousand data rows.

Figure 9-8. A specific time interval of the financial time series (normalized)

To better illustrate the performance of the TsTables-based data retrieval,
consider the following benchmark, which retrieves 100 chunks of data
consisting of 3 days’ worth of 1-second bars. The retrieval of a DataFrame
with 345,600 rows of data takes less than one-tenth of a second:

In [229]: import random 

 

In [230]: h5 = tb.open_file(path + 'tstab.h5', 'r') 

 

In [231]: ts = h5.root.ts._f_get_timeseries()   

 

In [232]: %%time 

          for _ in range(100):   

              d = random.randint(1, 24)   

              read_start_dt = dt.datetime(2019, 2, d, 0, 0, 0) 

              read_end_dt = dt.datetime(2019, 2, d + 3, 23, 59, 59) 

              rows = ts.read_range(read_start_dt, read_end_dt) 

          CPU times: user 7.17 s, sys: 1.65 s, total: 8.81 s 



          Wall time: 4.78 s 

 

In [233]: rows.info()   

          <class 'pandas.core.frame.DataFrame'> 

          DatetimeIndex: 345600 entries, 2019-02-04 00:00:00 to 2019-02-07 

            23:59:59 

          Data columns (total 3 columns): 

          ts1    345600 non-null float64 

          ts2    345600 non-null float64 

          ts3    345600 non-null float64 

          dtypes: float64(3) 

          memory usage: 10.5 MB 

 

In [234]: !rm $path/tstab.h5

This connects to the TsTable object.

The data retrieval is repeated many times.

The starting day value is randomized.

The last DataFrame object is retrieved.



Conclusion
SQL-based or relational databases have advantages when it comes to
complex data structures that exhibit lots of relations between single
objects/tables. This might justify in some circumstances their performance
disadvantage over pure NumPy ndarray-based or pandas DataFrame–based
approaches.

Many application areas in finance or science in general can succeed with a
mainly array-based data modeling approach. In these cases, huge
performance improvements can be realized by making use of native NumPy
I/O capabilities, a combination of NumPy and PyTables capabilities, or the
pandas approach via HDF5-based stores. TsTables is particularly useful
when working with large (financial) time series data sets, especially in
“write once, retrieve multiple times” scenarios.

While a recent trend has been to use cloud-based solutions — where the
cloud is made up of a large number of computing nodes based on
commodity hardware — one should carefully consider, especially in a
financial context, which hardware architecture best serves the analytics
requirements. A study by Microsoft sheds some light on this topic:

We claim that a single “scale-up” server can process each of these jobs
and do as well or better than a cluster in terms of performance, cost,
power, and server density.
Appuswamy et al. (2013)

Companies, research institutions, and others involved in data analytics
should therefore analyze first what specific tasks have to be accomplished
in general and then decide on the hardware/software architecture, in terms
of:

Scaling out
Using a cluster with many commodity nodes with standard CPUs and
relatively low memory



Scaling up
Using one or a few powerful servers with many-core CPUs, possibly
also GPUs or even TPUs when machine and deep learning play a role,
and large amounts of memory

Scaling up hardware and applying appropriate implementation approaches
might significantly influence performance, which is the focus of the next
chapter.



Further Resources
The paper cited at the beginning and end of the chapter is a good read, and a
good starting point to think about hardware architecture for financial
analytics:

Appuswamy, Raja, et al. (2013). “Nobody Ever Got Fired for Buying a
Cluster”. Microsoft Technical Report.

As usual, the web provides many valuable resources with regard to the
topics and Python packages covered in this chapter:

For serialization of Python objects with pickle, refer to the
documentation.

An overview of the I/O capabilities of NumPy is provided on the
website.

For I/O with pandas, see the respective section in the online
documentation.

The PyTables home page provides both tutorials and detailed
documentation.

More information on TsTables can be found on its GitHub page.

A friendly fork for TsTables is found at
http://github.com/yhilpisch/tstables. Use pip install
git+git://github.com/yhilpisch/tstables to install the package from
this fork, which is maintained for compatibility with newer versions of
pandas and other Python packages.

Here, no distinction is made between different levels of RAM and processor caches. The optimal
use of current memory architectures is a topic in itself.

For an overview of available database connectors for Python, visit
https://wiki.python.org/moin/DatabaseInterfaces. Instead of working directly with relational

1

2

http://bit.ly/2RZOpR8
http://docs.python.org/3/library/pickle.html
http://docs.scipy.org/doc/numpy/reference/routines.io.html
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http://www.pytables.org/
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databases, object relational mappers such as SQLAlchemy often prove useful. They introduce an
abstraction layer that allows for more Pythonic, object-oriented code. They also allow you to
more easily exchange one relational database for another in the backend.

See https://www.sqlite.org/lang.html for an overview of the SQLite3 language dialect.

Note that such times might vary significantly even on the same machine when repeated multiple
times, because they depend, among other factors, on what the machine is doing CPU-wise and
I/O-wise at the same time.

Many other databases require a server/client architecture. For interactive data and financial
analytics, file-based databases prove a bit more convenient and also sufficient for most purposes.
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Chapter 10. Performance Python

Don’t lower your expectations to meet your performance. Raise your
level of performance to meet your expectations.
Ralph Marston

It is a long-lived prejudice that Python per se is a relatively slow
programming language and not appropriate to implement computationally
demanding tasks in finance. Beyond the fact that Python is an interpreted
language, the reasoning is usually along the following lines: Python is slow
when it comes to loops; loops are often required to implement financial
algorithms; therefore Python is too slow for financial algorithm
implementation. Another line of reasoning is: other (compiled)
programming languages are fast at executing loops (such as C or C++);
loops are often required for financial algorithms; therefore these (compiled)
programming languages are well suited for finance and financial algorithm
implementation.

Admittedly, it is possible to write proper Python code that executes rather
slowly — perhaps too slowly for many application areas. This chapter is
about approaches to speed up typical tasks and algorithms often
encountered in a financial context. It shows that with a judicious use of data
structures, choosing the right implementation idioms and paradigms, as well
as using the right performance packages, Python is able to compete even
with compiled programming languages. This is due to, among other factors,
getting compiled itself.

To this end, this chapter introduces different approaches to speed up code:

Vectorization
Making use of Python’s vectorization capabilities is one approach
already used extensively in previous chapters.

Dynamic compiling



Using the Numba package allows one to dynamically compile pure
Python code using LLVM technology.

Static compiling
Cython is not only a Python package but a hybrid language that
combines Python and C; it allows one, for instance, to use static type
declarations and to statically compile such adjusted code.

Multiprocessing
The multiprocessing module of Python allows for easy and simple
parallelization of code execution.

This chapter addresses the following topics:

“Loops”
This section addresses Python loops and how to speed them up.

“Algorithms”
This section is concerned with standard mathematical algorithms that
are often used for performance benchmarks, such as Fibonacci number
generation.

“Binomial Trees”
The binomial option pricing model is a widely used financial model
that allows for an interesting case study about a more involved
financial algorithm.

“Monte Carlo Simulation”
Similarly, Monte Carlo simulation is widely used in financial practice
for pricing and risk management. It is computationally demanding and
has long been considered the domain of such languages as C or C++.

“Recursive pandas Algorithm”
This section addresses the speedup of a recursive algorithm based on
financial time series data. In particular, it presents different
implementations for an algorithm calculating an exponentially
weighted moving average (EWMA).

https://llvm.org/


Loops
This section tackles the Python loop issue. The task is rather simple: a
function shall be written that draws a certain “large” number of random
numbers and returns the average of the values. The execution time is of
interest, which can be estimated by the magic functions %time and %timeit.



Python
Let’s get started “slowly” — forgive the pun. In pure Python, such a
function might look like average_py():

In [1]: import random 

 

In [2]: def average_py(n): 

            s = 0   

            for i in range(n): 

                s += random.random()   

            return s / n   

 

In [3]: n = 10000000   

 

In [4]: %time average_py(n)   

        CPU times: user 1.82 s, sys: 10.4 ms, total: 1.83 s 

        Wall time: 1.93 s 

 

Out[4]: 0.5000590124747943 

 

In [5]: %timeit average_py(n)   

        1.31 s ± 159 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 

 

In [6]: %time sum([random.random() for _ in range(n)]) / n   

        CPU times: user 1.55 s, sys: 188 ms, total: 1.74 s 

        Wall time: 1.74 s 

 

Out[6]: 0.49987031710661173

Initializes the variable value for s.

Adds the uniformly distributed random values from the interval (0, 1)
to s.

Returns the average value (mean).

Defines the number of iterations for the loop.



Times the function once.

Times the function multiple times for a more reliable estimate.

Uses a list comprehension instead of the function.

This sets the benchmark for the other approaches to follow.



NumPy
The strength of NumPy lies in its vectorization capabilities. Formally, loops
vanish on the Python level; the looping takes place one level deeper based
on optimized and compiled routines provided by NumPy.1 The function
average_np() makes use of this approach:

In [7]: import numpy as np 

 

In [8]: def average_np(n): 

            s = np.random.random(n)   

            return s.mean()   

 

In [9]: %time average_np(n) 

        CPU times: user 180 ms, sys: 43.2 ms, total: 223 ms 

        Wall time: 224 ms 

 

Out[9]: 0.49988861556468317

 

In [10]: %timeit average_np(n) 

         128 ms ± 2.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 

 

In [11]: s = np.random.random(n) 

         s.nbytes   

Out[11]: 80000000

Draws the random numbers “all at once” (no Python loop).

Returns the average value (mean).

Number of bytes used for the created ndarray object.

The speedup is considerable, reaching almost a factor of 10 or an order of
magnitude. However, the price that must be paid is significantly higher
memory usage. This is due to the fact that NumPy attains speed by
preallocating data that can be processed in the compiled layer. As a
consquence, there is no way, given this approach, to work with “streamed”



data. This increased memory usage might even be prohibitively large
depending on the algorithm or problem at hand.



VECTORIZATION AND MEMORY
It is tempting to write vectorized code with NumPy whenever possible due to the concise
syntax and speed improvements typically observed. However, these benefits often come
at the price of a much higher memory footprint.



Numba
Numba is a package that allows the dynamic compiling of pure Python code
by the use of LLVM. The application in a simple case, like the one at hand,
is surprisingly straightforward and the dynamically compiled function
average_nb() can be called directly from Python:

In [12]: import numba 

 

In [13]: average_nb = numba.jit(average_py)   

 

In [14]: %time average_nb(n)   

         CPU times: user 204 ms, sys: 34.3 ms, total: 239 ms 

         Wall time: 278 ms 

 

Out[14]: 0.4998865391283664

 

In [15]: %time average_nb(n)   

         CPU times: user 80.9 ms, sys: 457 µs, total: 81.3 ms 

         Wall time: 81.7 ms 

 

Out[15]: 0.5001357454250273

 

In [16]: %timeit average_nb(n)   

         75.5 ms ± 1.95 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

This creates the Numba function.

The compiling happens during runtime, leading to some overhead.

From the second execution (with the same input data types), the
execution is faster.

The combination of pure Python with Numba beats the NumPy version and
preserves the memory efficiency of the original loop-based implementation.
It is also obvious that the application of Numba in such simple cases comes
with hardly any programming overhead.

https://numba.pydata.org/


NO FREE LUNCH
The application of Numba sometimes seems like magic when one compares the
performance of the Python code to the compiled version, especially given its ease of
use. However, there are many use cases for which Numba is not suited and for which
performance gains are hardly observed or even impossible to achieve.



Cython
Cython allows one to statically compile Python code. However, the
application is not as simple as with Numba since the code generally needs to
be changed to see significant speed improvements. To begin with, consider
the Cython function average_cy1(), which introduces static type
declarations for the used variables:

In [17]: %load_ext Cython 

 

In [18]: %%cython -a 

         import random   

         def average_cy1(int n):   

             cdef int i   

             cdef float s = 0   

             for i in range(n): 

                 s += random.random() 

             return s / n 

Out[18]: <IPython.core.display.HTML object> 

 

In [19]: %time average_cy1(n) 

         CPU times: user 695 ms, sys: 4.31 ms, total: 699 ms 

         Wall time: 711 ms 

 

Out[19]: 0.49997106194496155 

 

In [20]: %timeit average_cy1(n) 

         752 ms ± 91.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Imports the random module within the Cython context.

Adds static type declarations for the variables n, i, and s.

Some speedup is observed, but not even close to that achieved by, for
example, the NumPy version. A bit more Cython optimization is necessary to
beat even the Numba version:

In [21]: %%cython 

         from libc.stdlib cimport rand   

         cdef extern from 'limits.h':   

             int INT_MAX   

         cdef int i 

http://cython.org/


         cdef float rn 

         for i in range(5): 

             rn = rand() / INT_MAX   

             print(rn) 

         0.6792964339256287 

         0.934692919254303 

         0.3835020661354065 

         0.5194163918495178 

         0.8309653401374817 

 

In [22]: %%cython -a 

         from libc.stdlib cimport rand   

         cdef extern from 'limits.h':   

             int INT_MAX   

         def average_cy2(int n): 

             cdef int i 

             cdef float s = 0 

             for i in range(n): 

                 s += rand() / INT_MAX   

             return s / n 

Out[22]: <IPython.core.display.HTML object> 

 

In [23]: %time average_cy2(n) 

         CPU times: user 78.5 ms, sys: 422 µs, total: 79 ms 

         Wall time: 79.1 ms 

 

Out[23]: 0.500017523765564 

 

In [24]: %timeit average_cy2(n) 

         65.4 ms ± 706 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Imports a random number generator from C.

Imports a constant value for the scaling of the random numbers.

Adds uniformly distributed random numbers from the interval (0, 1),
after scaling.

This further optimized Cython version, average_cy2(), is now a bit faster
than the Numba version. However, the effort has also been a bit larger.
Compared to the NumPy version, Cython also preserves the memory
efficiency of the original loop-based implementation.



CYTHON = PYTHON + C
Cython allows developers to tweak code for performance as much as possible or as little
as sensible — starting with a pure Python version, for instance, and adding more and
more elements from C to the code. The compilation step itself can also be parameterized
to further optimize the compiled version.



Algorithms
This section applies the performance-enhancing techniques from the
previous section to some well-known problems and algorithms from
mathematics. These algorithms are regularly used for performance
benchmarks.



Prime Numbers
Prime numbers play an important role not only in theoretical mathematics
but also in many applied computer science disciplines, such as encryption.
A prime number is a positive natural number greater than 1 that is only
divisible without remainder by 1 and itself. There are no other factors.
While it is difficult to find larger prime numbers due to their rarity, it is easy
to prove that a number is not prime. The only thing that is needed is a factor
other than 1 that divides the number without a remainder.

Python
There are a number of algorithmic implementations available to test if
numbers are prime. The following is a Python version that is not yet
optimal from an algorithmic point of view but is already quite efficient. The
execution time for the larger prime p2, however, is long:

In [25]: def is_prime(I): 

             if I % 2 == 0: return False   

             for i in range(3, int(I ** 0.5) + 1, 2):   

                 if I % i == 0: return False   

             return True   

 

In [26]: n = int(1e8 + 3)   

         n 

Out[26]: 100000003 

 

In [27]: %time is_prime(n) 

         CPU times: user 35 µs, sys: 0 ns, total: 35 µs 

         Wall time: 39.1 µs 

 

Out[27]: False 

 

In [28]: p1 = int(1e8 + 7)   

         p1 

Out[28]: 100000007 

 

In [29]: %time is_prime(p1) 

         CPU times: user 776 µs, sys: 1 µs, total: 777 µs 

         Wall time: 787 µs 

 

Out[29]: True 

 

In [30]: p2 = 100109100129162907   

 

In [31]: p2.bit_length()   

Out[31]: 57 



 

In [32]: %time is_prime(p2) 

         CPU times: user 22.6 s, sys: 44.7 ms, total: 22.6 s 

         Wall time: 22.7 s 

 

Out[32]: True

If the number is even, False is returned immediately.

The loop starts at 3 and goes until the square root of I plus 1 with step
size 2.

As soon as a factor is identified the function returns False.

If no factor is found, True is returned.

Relatively small non-prime and prime numbers.

A larger prime number which requires longer execution times.

Numba
The loop structure of the algorithm in the function is_prime() lends itself
well to being dynamically compiled with Numba. The overhead again is
minimal but the speedup considerable:

In [33]: is_prime_nb = numba.jit(is_prime) 

 

In [34]: %time is_prime_nb(n)   

         CPU times: user 87.5 ms, sys: 7.91 ms, total: 95.4 ms 

         Wall time: 93.7 ms 

 

Out[34]: False 

 

In [35]: %time is_prime_nb(n)   

         CPU times: user 9 µs, sys: 1e+03 ns, total: 10 µs 

         Wall time: 13.6 µs 



 

Out[35]: False 

 

In [36]: %time is_prime_nb(p1) 

         CPU times: user 26 µs, sys: 0 ns, total: 26 µs 

         Wall time: 31 µs 

 

Out[36]: True 

 

In [37]: %time is_prime_nb(p2)   

         CPU times: user 1.72 s, sys: 9.7 ms, total: 1.73 s 

         Wall time: 1.74 s 

 

Out[37]: True

The first call of is_prime_nb() involves the compiling overhead.

From the second call, the speedup becomes fully visible.

The speedup for the larger prime is about an order of magnitude.

Cython
The application of Cython is straightforward as well. A plain Cython
version without type declarations already speeds up the code significantly:

In [38]: %%cython 

         def is_prime_cy1(I): 

             if I % 2 == 0: return False 

             for i in range(3, int(I ** 0.5) + 1, 2): 

                 if I % i == 0: return False 

             return True 

 

In [39]: %timeit is_prime(p1) 

         394 µs ± 14.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 

 

In [40]: %timeit is_prime_cy1(p1) 

         243 µs ± 6.58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

However, real improvements only materialize with the static type
declarations. The Cython version then even is slightly faster than the Numba
one:



In [41]: %%cython 

         def is_prime_cy2(long I):   

             cdef long i   

             if I % 2 == 0: return False 

             for i in range(3, int(I ** 0.5) + 1, 2): 

                 if I % i == 0: return False 

             return True 

 

In [42]: %timeit is_prime_cy2(p1) 

         87.6 µs ± 27.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 

 

In [43]: %time is_prime_nb(p2) 

         CPU times: user 1.68 s, sys: 9.73 ms, total: 1.69 s 

         Wall time: 1.7 s 

 

Out[43]: True 

 

In [44]: %time is_prime_cy2(p2) 

         CPU times: user 1.66 s, sys: 9.47 ms, total: 1.67 s 

         Wall time: 1.68 s 

 

Out[44]: True

Static type declarations for the two variables I and i.

Multiprocessing
So far, all the optimization efforts have focused on the sequential code
execution. In particular with prime numbers, there might be a need to check
multiple numbers at the same time. To this end, the multiprocessing
module can help speed up the code execution further. It allows one to
spawn multiple Python processes that run in parallel. The application is
straightforward in the simple case at hand. First, an mp.Pool object is set up
with multiple processes. Second, the function to be executed is mapped to
the prime numbers to be checked:

In [45]: import multiprocessing as mp 

 

In [46]: pool = mp.Pool(processes=4)   

 

In [47]: %time pool.map(is_prime, 10 * [p1])   

         CPU times: user 1.52 ms, sys: 2.09 ms, total: 3.61 ms 

         Wall time: 9.73 ms 

 

Out[47]: [True, True, True, True, True, True, True, True, True, True] 

 

In [48]: %time pool.map(is_prime_nb, 10 * [p2])   

         CPU times: user 13.9 ms, sys: 4.8 ms, total: 18.7 ms 

https://docs.python.org/3/library/multiprocessing.html


         Wall time: 10.4 s 

 

Out[48]: [True, True, True, True, True, True, True, True, True, True] 

 

In [49]: %time pool.map(is_prime_cy2, 10 * [p2])   

         CPU times: user 9.8 ms, sys: 3.22 ms, total: 13 ms 

         Wall time: 9.51 s 

 

Out[49]: [True, True, True, True, True, True, True, True, True, True]

The mp.Pool object is instantiated with multiple processes.

Then the respective function is mapped to a list object with prime
numbers.

The observed speedup is significant. The Python function is_prime() takes
more than 20 seconds for the larger prime number p2. Both the
is_prime_nb() and the is_prime_cy2() functions take less than 10
seconds for 10 times the prime number p2 when executed in parallel with
four processes.



PARALLEL PROCESSING
Parallel processing should be considered whenever different problems of the same type
need to be solved. The effect can be huge when powerful hardware is available with
many cores and sufficient working memory. multiprocessing is one easy-to-use
module from the standard library.



Fibonacci Numbers
Fibonacci numbers and sequences can be derived based on a simple
algorithm. Start with two ones: 1, 1. From the third number, the next
Fibonacci number is derived as the sum of the two preceding ones: 1, 1, 2,
3, 5, 8, 13, 21, …. This section analyzes two different implementations, a
recursive one and an iterative one.

Recursive algorithm
Similar to regular Python loops, it is known that regular recursive function
implementations are relatively slow with Python. Such functions call
themselves potentially a large number of times to come up with the final
result. The function fib_rec_py1() presents such an implementation. In
this case, Numba does not help at all with speeding up the execution.
However, Cython shows significant speedups based on static type
declarations only:

In [50]: def fib_rec_py1(n): 

             if n < 2: 

                 return n 

             else: 

                 return fib_rec_py1(n - 1) + fib_rec_py1(n - 2) 

 

In [51]: %time fib_rec_py1(35) 

         CPU times: user 6.55 s, sys: 29 ms, total: 6.58 s

         Wall time: 6.6 s 

 

Out[51]: 9227465 

 

In [52]: fib_rec_nb = numba.jit(fib_rec_py1) 

 

In [53]: %time fib_rec_nb(35) 

         CPU times: user 3.87 s, sys: 24.2 ms, total: 3.9 s 

         Wall time: 3.91 s 

 

Out[53]: 9227465 

 

In [54]: %%cython 

         def fib_rec_cy(int n): 

             if n < 2: 

                 return n 

             else: 

                 return fib_rec_cy(n - 1) + fib_rec_cy(n - 2) 

 

In [55]: %time fib_rec_cy(35) 

         CPU times: user 751 ms, sys: 4.37 ms, total: 756 ms 



         Wall time: 755 ms 

 

Out[55]: 9227465

The major problem with the recursive algorithm is that intermediate results
are not cached but rather recalculated. To avoid this particular problem, a
decorator can be used that takes care of the caching of intermediate results.
This speeds up the execution by multiple orders of magnitude:

In [56]: from functools import lru_cache as cache 

 

In [57]: @cache(maxsize=None)   

         def fib_rec_py2(n): 

             if n < 2: 

                 return n 

             else: 

                 return fib_rec_py2(n - 1) + fib_rec_py2(n - 2) 

 

In [58]: %time fib_rec_py2(35)   

         CPU times: user 64 µs, sys: 28 µs, total: 92 µs 

         Wall time: 98 µs 

 

Out[58]: 9227465 

 

In [59]: %time fib_rec_py2(80)   

         CPU times: user 38 µs, sys: 8 µs, total: 46 µs 

         Wall time: 51 µs 

 

Out[59]: 23416728348467685

Caching intermediate results …

… leads to tremendous speedups in this case.

Iterative algorithm
Although the algorithm to calculate the nth Fibonacci number can be
implemented recursively, it doesn’t have to be. The following presents an
iterative implementation which is even in pure Python faster than the
cached variant of the recursive implementation. This is also the terrain
where Numba leads to further improvements. However, the Cython version
comes out as the winner:



In [60]: def fib_it_py(n): 

             x, y = 0, 1 

             for i in range(1, n + 1): 

                 x, y = y, x + y 

             return x 

 

In [61]: %time fib_it_py(80) 

         CPU times: user 19 µs, sys: 1e+03 ns, total: 20 µs 

         Wall time: 26 µs 

 

Out[61]: 23416728348467685 

 

In [62]: fib_it_nb = numba.jit(fib_it_py) 

 

In [63]: %time fib_it_nb(80) 

         CPU times: user 57 ms, sys: 6.9 ms, total: 63.9 ms 

         Wall time: 62 ms 

 

Out[63]: 23416728348467685 

 

In [64]: %time fib_it_nb(80) 

         CPU times: user 7 µs, sys: 1 µs, total: 8 µs 

         Wall time: 12.2 µs 

 

Out[64]: 23416728348467685 

 

In [65]: %%cython 

         def fib_it_cy1(int n): 

             cdef long i 

             cdef long x = 0, y = 1 

             for i in range(1, n + 1): 

                 x, y = y, x + y 

             return x 

 

In [66]: %time fib_it_cy1(80) 

         CPU times: user 4 µs, sys: 1e+03 ns, total: 5 µs 

         Wall time: 11 µs 

 

Out[66]: 23416728348467685

Now that everything is so fast, one might wonder why we’re just
calculating the 80th Fibonacci number and not the 150th, for instance. The
problem is with the available data types. While Python can basically handle
arbitrarily large numbers (see “Basic Data Types”), this is not true in
general for the compiled languages. With Cython one can, however, rely on
a special data type to allow for numbers larger than the double float object
with 64 bits allows for:

In [67]: %%time 

         fn = fib_rec_py2(150)   

         print(fn)   

         9969216677189303386214405760200 

         CPU times: user 361 µs, sys: 115 µs, total: 476 µs 



         Wall time: 430 µs 

 

In [68]: fn.bit_length()   

Out[68]: 103 

 

In [69]: %%time 

         fn = fib_it_nb(150)   

         print(fn)   

         6792540214324356296 

         CPU times: user 270 µs, sys: 78 µs, total: 348 µs 

         Wall time: 297 µs 

 

In [70]: fn.bit_length()   

Out[70]: 63 

 

In [71]: %%time 

         fn = fib_it_cy1(150)   

         print(fn)   

         6792540214324356296 

         CPU times: user 255 µs, sys: 71 µs, total: 326 µs 

         Wall time: 279 µs 

 

In [72]: fn.bit_length()   

Out[72]: 63 

 

In [73]: %%cython 

         cdef extern from *: 

             ctypedef int int128 '__int128_t'  

         def fib_it_cy2(int n): 

             cdef int128 i   

             cdef int128 x = 0, y = 1   

             for i in range(1, n + 1): 

                 x, y = y, x + y 

             return x 

 

In [74]: %%time 

         fn = fib_it_cy2(150)   

         print(fn)   

         9969216677189303386214405760200 

         CPU times: user 280 µs, sys: 115 µs, total: 395 µs 

         Wall time: 328 µs 

 

In [75]: fn.bit_length()   

Out[75]: 103

The Python version is fast and correct.

The resulting integer has a bit length of 103 (> 64).



The Numba and Cython versions are faster but incorrect.

They suffer from an overflow issue due to the restriction to 64-bit int
objects.

Imports the special 128-bit int object type and uses it.

The Cython version fib_it_cy2() now is faster and correct.



The Number Pi
The final algorithm analyzed in this section is a Monte Carlo simulation–
based algorithm to derive digits for the number pi (π).2 The basic idea relies
on the fact that the area A of a circle is given by . Therefore, 

. For a unit circle with radius r = 1, it holds that π = A. The idea of the
algorithm is to simulate random points with coordinate values (x, y), with x,
y ∈ [–1, 1]. The area of an origin-centered square with side length of 2 is
exactly 4. The area of the origin-centered unit circle is a fraction of the area
of such a square. This fraction can be estimated by Monte Carlo simulation:
count all the points in the square, then count all the points in the circle, and
divide the number of points in the circle by the number of points in the
square. The following example demonstrates (see Figure 10-1):

In [76]: import random 

         import numpy as np

         from pylab import mpl, plt 

         plt.style.use('seaborn') 

         mpl.rcParams['font.family'] = 'serif' 

         %matplotlib inline 

 

In [77]: rn = [(random.random() * 2 - 1, random.random() * 2 - 1) 

               for _ in range(500)] 

 

In [78]: rn = np.array(rn) 

         rn[:5] 

Out[78]: array([[ 0.45583018, -0.27676067], 

                [-0.70120038,  0.15196888], 

                [ 0.07224045,  0.90147321], 

                [-0.17450337, -0.47660912], 

                [ 0.94896746, -0.31511879]]) 

 

In [79]: fig = plt.figure(figsize=(7, 7)) 

         ax = fig.add_subplot(1, 1, 1) 

         circ = plt.Circle((0, 0), radius=1, edgecolor='g', lw=2.0, 

                           facecolor='None')   

         box = plt.Rectangle((-1, -1), 2, 2, edgecolor='b', alpha=0.3)   

         ax.add_patch(circ)   

         ax.add_patch(box)   

         plt.plot(rn[:, 0], rn[:, 1], 'r.')   

         plt.ylim(-1.1, 1.1) 

         plt.xlim(-1.1, 1.1)



Draws the unit circle.

Draws the square with side length of 2.

Draws the uniformly distributed random dots.

Figure 10-1. Unit circle and square with side length 2 with uniformly distributed random points



A NumPy implementation of this algorithm is rather concise but also memory-
intensive. Total execution time given the parameterization is about one
second:

In [80]: n = int(1e7) 

 

In [81]: %time rn = np.random.random((n, 2)) * 2 - 1 

         CPU times: user 450 ms, sys: 87.9 ms, total: 538 ms 

         Wall time: 573 ms 

 

In [82]: rn.nbytes 

Out[82]: 160000000 

 

In [83]: %time distance = np.sqrt((rn ** 2).sum(axis=1))   

         distance[:8].round(3) 

         CPU times: user 537 ms, sys: 198 ms, total: 736 ms 

         Wall time: 651 ms 

 

Out[83]: array([1.181, 1.061, 0.669, 1.206, 0.799, 0.579, 0.694, 0.941]) 

 

In [84]: %time frac = (distance <= 1.0).sum() / len(distance)   

         CPU times: user 47.9 ms, sys: 6.77 ms, total: 54.7 ms 

         Wall time: 28 ms 

 

In [85]: pi_mcs = frac * 4   

         pi_mcs   

Out[85]: 3.1413396

The distance of the points from the origin (Euclidean norm).

The fraction of those points on the circle relative to all points.

This accounts for the square area of 4 for the estimation of the circle
area and therewith of π.

mcs_pi_py() is a Python function using a for loop and implementing the
Monte Carlo simulation in a memory-efficient manner. Note that the random
numbers are not scaled in this case. The execution time is longer than with
the NumPy version, but the Numba version is faster than NumPy in this case:

In [86]: def mcs_pi_py(n): 

             circle = 0 

             for _ in range(n): 



                 x, y = random.random(), random.random() 

                 if (x ** 2 + y ** 2) ** 0.5 <= 1: 

                     circle += 1 

             return (4 * circle) / n 

 

In [87]: %time mcs_pi_py(n) 

         CPU times: user 5.47 s, sys: 23 ms, total: 5.49 s

         Wall time: 5.43 s 

 

Out[87]: 3.1418964 

 

In [88]: mcs_pi_nb = numba.jit(mcs_pi_py) 

 

In [89]: %time mcs_pi_nb(n) 

         CPU times: user 319 ms, sys: 6.36 ms, total: 326 ms 

         Wall time: 326 ms 

 

Out[89]: 3.1422012 

 

In [90]: %time mcs_pi_nb(n) 

         CPU times: user 284 ms, sys: 3.92 ms, total: 288 ms 

         Wall time: 291 ms 

 

Out[90]: 3.142066

A plain Cython version with static type declarations only does not perform
that much faster than the Python version. However, relying again on the
random number generation capabilities of C further speeds up the calculation
considerably:

In [91]: %%cython -a 

         import random 

         def mcs_pi_cy1(int n): 

             cdef int i, circle = 0 

             cdef float x, y 

             for i in range(n): 

                 x, y = random.random(), random.random() 

                 if (x ** 2 + y ** 2) ** 0.5 <= 1: 

                     circle += 1 

             return (4 * circle) / n 

Out[91]: <IPython.core.display.HTML object> 

 

In [92]: %time mcs_pi_cy1(n) 

         CPU times: user 1.15 s, sys: 8.24 ms, total: 1.16 s 

         Wall time: 1.16 s 

 

Out[92]: 3.1417132 

 

In [93]: %%cython -a 

         from libc.stdlib cimport rand 

         cdef extern from 'limits.h':

             int INT_MAX 

         def mcs_pi_cy2(int n): 

             cdef int i, circle = 0 

             cdef float x, y 

             for i in range(n): 

                 x, y = rand() / INT_MAX, rand() / INT_MAX 



                 if (x ** 2 + y ** 2) ** 0.5 <= 1: 

                     circle += 1 

             return (4 * circle) / n 

Out[93]: <IPython.core.display.HTML object> 

 

In [94]: %time mcs_pi_cy2(n) 

         CPU times: user 170 ms, sys: 1.45 ms, total: 172 ms 

         Wall time: 172 ms 

 

Out[94]: 3.1419388



ALGORITHM TYPES
The algorithms analyzed in this section might not be directly related to financial
algorithms. However, the advantage is that they are simple and easy to understand. In
addition, typical algorithmic problems encountered in a financial context can be
discussed within this simplified context.



Binomial Trees
A popular numerical method to value options is the binomial option pricing
model pioneered by Cox, Ross, and Rubinstein (1979). This method relies
on representing the possible future evolution of an asset by a (recombining)
tree. In this model, as in the Black-Scholes-Merton (1973) setup, there is a
risky asset, an index or stock, and a riskless asset, a bond. The relevant time
interval from today until the maturity of the option is divided in general into
equidistant subintervals of length . Given an index level at time s of ,
the index level at  is given by , where m is

chosen randomly from  with 0 < d <  <  as well as 

. r is the constant, riskless short rate.



Python
The code that follows presents a Python implementation that creates a
recombining tree based on some fixed numerical parameters for the model:

In [95]: import math 

 

In [96]: S0 = 36.   

         T = 1.0   

         r = 0.06   

         sigma = 0.2  

 

In [97]: def simulate_tree(M): 

             dt = T / M   

             u = math.exp(sigma * math.sqrt(dt))   

             d = 1 / u   

             S = np.zeros((M + 1, M + 1)) 

             S[0, 0] = S0 

             z = 1 

             for t in range(1, M + 1): 

                 for i in range(z): 

                     S[i, t] = S[i, t-1] * u 

                     S[i+1, t] = S[i, t-1] * d 

                 z += 1 

             return S

Initial value of the risky asset.

Time horizon for the binomial tree simulation.

Constant short rate.

Constant volatility factor.

Length of the time intervals.

Factors for the upward and downward movements.



Contrary to what happens in typical tree plots, an upward movement is
represented in the ndarray object as a sideways movement, which
decreases the ndarray size considerably:

In [98]: np.set_printoptions(formatter={'float': 

                                        lambda x: '%6.2f' % x}) 

 

In [99]: simulate_tree(4)   

Out[99]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71], 

                [  0.00,  32.57,  36.00,  39.79,  43.97], 

                [  0.00,   0.00,  29.47,  32.57,  36.00], 

                [  0.00,   0.00,   0.00,  26.67,  29.47], 

                [  0.00,   0.00,   0.00,   0.00,  24.13]]) 

 

In [100]: %time simulate_tree(500)   

          CPU times: user 148 ms, sys: 4.49 ms, total: 152 ms 

          Wall time: 154 ms 

 

Out[100]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57], 

                 [  0.00,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69], 

                 [  0.00,   0.00,  35.36, ..., 2986.89, 3013.73, 3040.81], 

                 ..., 

                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]])

Tree with 4 time intervals.

Tree with 500 time intervals.



NumPy
With some trickery, such a binomial tree can be created with NumPy based
on fully vectorized code:

In [101]: M = 4 

 

In [102]: up = np.arange(M + 1) 

          up = np.resize(up, (M + 1, M + 1))   

          up 

Out[102]: array([[0, 1, 2, 3, 4], 

                 [0, 1, 2, 3, 4], 

                 [0, 1, 2, 3, 4], 

                 [0, 1, 2, 3, 4], 

                 [0, 1, 2, 3, 4]]) 

 

In [103]: down = up.T * 2   

          down 

Out[103]: array([[0, 0, 0, 0, 0], 

                 [2, 2, 2, 2, 2], 

                 [4, 4, 4, 4, 4], 

                 [6, 6, 6, 6, 6], 

                 [8, 8, 8, 8, 8]]) 

 

In [104]: up - down   

Out[104]: array([[ 0,  1,  2,  3,  4], 

                 [-2, -1,  0,  1,  2], 

                 [-4, -3, -2, -1,  0], 

                 [-6, -5, -4, -3, -2],

                 [-8, -7, -6, -5, -4]]) 

 

In [105]: dt = T / M 

 

In [106]: S0 * np.exp(sigma * math.sqrt(dt) * (up - down))   

Out[106]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71], 

                 [ 29.47,  32.57,  36.00,  39.79,  43.97], 

                 [ 24.13,  26.67,  29.47,  32.57,  36.00], 

                 [ 19.76,  21.84,  24.13,  26.67,  29.47], 

                 [ 16.18,  17.88,  19.76,  21.84,  24.13]])

ndarray object with gross upward movements.

ndarray object with gross downward movements.



ndarray object with net upward (positive) and downward (negative)
movements.

Tree for four time intervals (upper-right triangle of values).
In the NumPy case, the code is a bit more compact. However, more
importantly, NumPy vectorization achieves a speedup of an order of
magnitude while not using more memory:

In [107]: def simulate_tree_np(M): 

              dt = T / M 

              up = np.arange(M + 1) 

              up = np.resize(up, (M + 1, M + 1)) 

              down = up.transpose() * 2 

              S = S0 * np.exp(sigma * math.sqrt(dt) * (up - down)) 

              return S 

 

In [108]: simulate_tree_np(4) 

Out[108]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71], 

                 [ 29.47,  32.57,  36.00,  39.79,  43.97], 

                 [ 24.13,  26.67,  29.47,  32.57,  36.00], 

                 [ 19.76,  21.84,  24.13,  26.67,  29.47], 

                 [ 16.18,  17.88,  19.76,  21.84,  24.13]]) 

 

In [109]: %time simulate_tree_np(500) 

          CPU times: user 8.72 ms, sys: 7.07 ms, total: 15.8 ms 

          Wall time: 12.9 ms 

 

Out[109]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57], 

                 [ 35.36,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69], 

                 [ 34.73,  35.05,  35.36, ..., 2986.89, 3013.73, 3040.81], 

                 ..., 

                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43], 

                 [  0.00,   0.00,   0.00, ...,   0.41,   0.41,   0.42], 

                 [  0.00,   0.00,   0.00, ...,   0.40,   0.41,   0.41]])



Numba
This financial algorithm should be well suited to optimization through
Numba dynamic compilation. And indeed, another speedup compared to the
NumPy version of an order of magnitude is observed. This makes the Numba
version orders of magnitude faster than the Python (or rather hybrid)
version:

In [110]: simulate_tree_nb = numba.jit(simulate_tree) 

 

In [111]: simulate_tree_nb(4) 

Out[111]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71], 

                 [  0.00,  32.57,  36.00,  39.79,  43.97], 

                 [  0.00,   0.00,  29.47,  32.57,  36.00], 

                 [  0.00,   0.00,   0.00,  26.67,  29.47], 

                 [  0.00,   0.00,   0.00,   0.00,  24.13]]) 

 

In [112]: %time simulate_tree_nb(500) 

          CPU times: user 425 µs, sys: 193 µs, total: 618 µs 

          Wall time: 625 µs 

 

Out[112]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57], 

                 [  0.00,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69], 

                 [  0.00,   0.00,  35.36, ..., 2986.89, 3013.73, 3040.81], 

                 ..., 

                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]]) 

 

In [113]: %timeit simulate_tree_nb(500) 

          559 µs ± 46.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



Cython
As before, Cython requires more adjustments to the code to see significant
improvements. The following version uses mainly static type declarations
and certain imports that improve the performance compared to the regular
Python imports and functions, respectively:

In [114]: %%cython -a 

          import numpy as np 

          cimport cython 

          from libc.math cimport exp, sqrt 

          cdef float S0 = 36. 

          cdef float T = 1.0 

          cdef float r = 0.06 

          cdef float sigma = 0.2 

          def simulate_tree_cy(int M): 

              cdef int z, t, i 

              cdef float dt, u, d 

              cdef float[:, :] S = np.zeros((M + 1, M + 1), 

                                            dtype=np.float32)   

              dt = T / M 

              u = exp(sigma * sqrt(dt)) 

              d = 1 / u 

              S[0, 0] = S0 

              z = 1 

              for t in range(1, M + 1): 

                  for i in range(z): 

                      S[i, t] = S[i, t-1] * u 

                      S[i+1, t] = S[i, t-1] * d 

                  z += 1 

              return np.array(S)

Out[114]: <IPython.core.display.HTML object>

Declaring the ndarray object to be a C array is critical for
performance.

The Cython version shaves off another 30% of the execution time compared
to the Numba version:

In [115]: simulate_tree_cy(4) 

Out[115]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71], 

                 [  0.00,  32.57,  36.00,  39.79,  43.97], 

                 [  0.00,   0.00,  29.47,  32.57,  36.00], 

                 [  0.00,   0.00,   0.00,  26.67,  29.47], 

                 [  0.00,   0.00,   0.00,   0.00,  24.13]], dtype=float32) 

 

In [116]: %time simulate_tree_cy(500) 



          CPU times: user 2.21 ms, sys: 1.89 ms, total: 4.1 ms 

          Wall time: 2.45 ms 

 

Out[116]: array([[ 36.00,  36.32,  36.65, ..., 3095.77, 3123.59, 3151.65], 

                 [  0.00,  35.68,  36.00, ..., 3040.89, 3068.21, 3095.77], 

                 [  0.00,   0.00,  35.36, ..., 2986.97, 3013.81, 3040.89], 

                 ..., 

                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42], 

                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]], 

                dtype=float32) 

 

In [117]: %timeit S = simulate_tree_cy(500) 

          363 µs ± 29.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



Monte Carlo Simulation
Monte Carlo simulation is an indispensible numerical tool in computational
finance. It has been in use since long before the advent of modern
computers. Banks and other financial institutions use it, among others, for
pricing and risk management purposes. As a numerical method it is perhaps
the most flexible and powerful one in finance. However, it often also is the
most computationally demanding one. That is why Python was long
dismissed as a proper programming language to implement algorithms based
on Monte Carlo simulation — at least for real-world application scenarios.

This section analyzes the Monte Carlo simulation of the geometric Brownian
motion, a simple yet still widely used stochastic process to model the
evolution of stock prices or index levels. Among others, the Black-Scholes-
Merton (1973) theory of option pricing draws on this process. In their setup
the underlying of the option to be valued follows the stochastic differential
equation (SDE), as seen in Equation 10-1.  is the value of the underlying
at time t; r is the constant, riskless short rate; σ is the constant instantaneous
volatility; and  is a Brownian motion.

Equation 10-1. Black-Scholes-Merton SDE (geometric Brownian motion)

This SDE can be discretized over equidistant time intervals and simulated
according to Equation 10-2, which represents an Euler scheme. In this case,
z is a standard normally distributed random number. For M time intervals,

the length of the time interval is given as  where T is the time
horizon for the simulation (for example, the maturity date of an option to be
valued).

Equation 10-2. Black-Scholes-Merton difference equation (Euler scheme)



The Monte Carlo estimator for a European call option is then given by
Equation 10-3, where  is the ith simulated value of the underlying at
maturity T for a total number of simulated paths I with i = 1, 2, …, I].

Equation 10-3. Monte Carlo estimator for European call option



Python
First, a Python — or rather a hybrid — version, mcs_simulation_py(), that
implements the Monte Carlo simulation according to Equation 10-2. It is
hybrid since it implements Python loops on ndarray objects. As seen
previously, this might make for a good basis to dynamically compile the
code with Numba. As before, the execution time sets the benchmark. Based
on the simulation, a European put option is valued:

In [118]: M = 100   

          I = 50000   

 

In [119]: def mcs_simulation_py(p): 

              M, I = p 

              dt = T / M 

              S = np.zeros((M + 1, I)) 

              S[0] = S0 

              rn = np.random.standard_normal(S.shape)   

              for t in range(1, M + 1):   

                  for i in range(I):   

                      S[t, i] = S[t-1, i] * math.exp((r - sigma ** 2 / 2) * dt + 

                                            sigma * math.sqrt(dt) * rn[t, i])   

              return S 

 

In [120]: %time S = mcs_simulation_py((M, I)) 

          CPU times: user 5.55 s, sys: 52.9 ms, total: 5.6 s 

          Wall time: 5.62 s 

 

In [121]: S[-1].mean()   

Out[121]: 38.22291254503985

 

In [122]: S0 * math.exp(r * T)   

Out[122]: 38.22611567563295

 

In [123]: K = 40.   

 

In [124]: C0 = math.exp(-r * T) * np.maximum(K - S[-1], 0).mean()   

 

In [125]: C0  #   

Out[125]: 3.860545188088036

The number of time intervals for discretization.

The number of paths to be simulated.



The random numbers, drawn in a single vectorized step.

The nested loop implementing the simulation based on the Euler
scheme.

The mean end-of-period value based on the simulation.

The theoretically expected end-of-period value.

The strike price of the European put option.

The Monte Carlo estimator for the option.
Figure 10-2 shows a histogram of the simulated values at the end of the
simulation period (maturity of the European put option).



Figure 10-2. Frequency distribution of the simulated end-of-period values



NumPy
The NumPy version, mcs_simulation_np(), is not too different. It still has
one Python loop, namely over the time intervals. The other dimension is
handled by vectorized code over all paths. It is about 20 times faster than
the first version:

In [127]: def mcs_simulation_np(p): 

              M, I = p 

              dt = T / M 

              S = np.zeros((M + 1, I)) 

              S[0] = S0 

              rn = np.random.standard_normal(S.shape) 

              for t in range(1, M + 1):   

                  S[t] = S[t-1] * np.exp((r - sigma ** 2 / 2) * dt + 

                                         sigma * math.sqrt(dt) * rn[t])  

              return S 

 

In [128]: %time S = mcs_simulation_np((M, I)) 

          CPU times: user 252 ms, sys: 32.9 ms, total: 285 ms 

          Wall time: 252 ms 

 

In [129]: S[-1].mean() 

Out[129]: 38.235136032258595 

 

In [130]: %timeit S = mcs_simulation_np((M, I)) 

          202 ms ± 27.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The loop over the time intervals.

The Euler scheme with vectorized NumPy code handling all paths at
once.



Numba
It should not come as a surprise anymore that Numba is applied to such an
algorithm type easily, and with significant performance improvements. The
Numba version, mcs_simulation_nb(), is slightly faster than the NumPy
version:

In [131]: mcs_simulation_nb = numba.jit(mcs_simulation_py) 

 

In [132]: %time S = mcs_simulation_nb((M, I))   

          CPU times: user 673 ms, sys: 36.7 ms, total: 709 ms 

          Wall time: 764 ms 

 

In [133]: %time S = mcs_simulation_nb((M, I))   

          CPU times: user 239 ms, sys: 20.8 ms, total: 259 ms 

          Wall time: 265 ms 

 

In [134]: S[-1].mean() 

Out[134]: 38.22350694016539

 

In [135]: C0 = math.exp(-r * T) * np.maximum(K - S[-1], 0).mean() 

 

In [136]: C0 

Out[136]: 3.8303077438193833 

 

In [137]: %timeit S = mcs_simulation_nb((M, I))   

          248 ms ± 20.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

First call with compile-time overhead.

Second call without that overhead.



Cython
With Cython, again not surprisingly, the effort required to speed up the code
is higher. However, the speedup itself is not greater. The Cython version,
mcs_simulation_cy(), seems to be even a bit slower compared to the
NumPy and Numba versions. Among other factors, some time is needed to
transform the simulation results to an ndarray object:

In [138]: %%cython 

          import numpy as np 

          cimport numpy as np 

          cimport cython 

          from libc.math cimport exp, sqrt 

          cdef float S0 = 36. 

          cdef float T = 1.0 

          cdef float r = 0.06 

          cdef float sigma = 0.2 

          @cython.boundscheck(False) 

          @cython.wraparound(False) 

          def mcs_simulation_cy(p): 

              cdef int M, I 

              M, I = p 

              cdef int t, i 

              cdef float dt = T / M 

              cdef double[:, :] S = np.zeros((M + 1, I)) 

              cdef double[:, :] rn = np.random.standard_normal((M + 1, I)) 

              S[0] = S0 

              for t in range(1, M + 1): 

                  for i in range(I): 

                      S[t, i] = S[t-1, i] * exp((r - sigma ** 2 / 2) * dt + 

                                                   sigma * sqrt(dt) * rn[t, i]) 

              return np.array(S)

 

In [139]: %time S = mcs_simulation_cy((M, I)) 

          CPU times: user 237 ms, sys: 65.2 ms, total: 302 ms 

          Wall time: 271 ms 

 

In [140]: S[-1].mean() 

Out[140]: 38.241735841791574 

 

In [141]: %timeit S = mcs_simulation_cy((M, I)) 

          221 ms ± 9.26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)



Multiprocessing
Monte Carlo simulation is a task that lends itself well to parallelization. One
approach would be to parallelize the simulation of 100,000 paths, say, into
10 processes simulating 10,000 paths each. Another would be to parallelize
the simulation of the 100,000 paths into multiple processes, each simulating
a different financial instrument, for example. The former case — namely,
the parallel simulation of a larger number of paths based on a fixed number
of separate processes — is illustrated in what follows.

The following code again makes use of the multiprocessing module. It
divides the total number of paths to be simulated I into smaller chunks of

size  with p > 0. After all the single tasks are finished, the results are put
together in a single ndarray object via np.hstack(). This approach can be
applied to any of the versions presented previously. For the particular
parameterization chosen here, there is no speedup to be observed through
this parallelization approach:

In [142]: import multiprocessing as mp 

 

In [143]: pool = mp.Pool(processes=4)   

 

In [144]: p = 20   

 

In [145]: %timeit S = np.hstack(pool.map(mcs_simulation_np, 

                                         p * [(M, int(I / p))])) 

          288 ms ± 10.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 

 

In [146]: %timeit S = np.hstack(pool.map(mcs_simulation_nb, 

                                         p * [(M, int(I / p))])) 

          258 ms ± 8.69 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 

 

In [147]: %timeit S = np.hstack(pool.map(mcs_simulation_cy, 

                                         p * [(M, int(I / p))])) 

          274 ms ± 11.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The Pool object for parallelization.



The number of chunks into which the simulation is divided.



MULTIPROCESSING STRATEGIES
In finance, there are many algorithms that are useful for parallelization. Some of these
even allow the application of different strategies to parallelize the code. Monte Carlo
simulation is a good example in that multiple simulations can easily be executed in
parallel, either on a single machine or on multiple machines, and that the algorithm itself
allows a single simulation to be distributed over multiple processes.



Recursive pandas Algorithm
This section addresses a somewhat special topic which is, however, an
important one in financial analytics: the implementation of recursive
functions on financial time series data stored in a pandas DataFrame object.
While pandas allows for sophisticated vectorized operations on DataFrame
objects, certain recursive algorithms are hard or impossible to vectorize,
leaving the financial analyst with slowly executed Python loops on
DataFrame objects. The examples that follow implement what is called the
exponentially weighted moving average (EWMA) in a simple form.

The EWMA for a financial time series , is given by
Equation 10-4.

Equation 10-4. Exponentially weighted moving average (EWMA)

Although simple in nature and straightforward to implement, such an
algorithm might lead to rather slow code.



Python
Consider first the Python version that iterates over the DatetimeIndex of a
DataFrame object containing financial time series data for a single financial
instrument (see Chapter 8). Figure 10-3 visualizes the financial time series
and the EWMA time series:

In [148]: import pandas as pd 

 

In [149]: sym = 'SPY' 

 

In [150]: data = pd.DataFrame(pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                                     index_col=0, parse_dates=True)[sym]).dropna() 

 

In [151]: alpha = 0.25 

 

In [152]: data['EWMA'] = data[sym]   

 

In [153]: %%time 

          for t in zip(data.index, data.index[1:]): 

              data.loc[t[1], 'EWMA'] = (alpha * data.loc[t[1], sym] + 

                                        (1 - alpha) * data.loc[t[0], 'EWMA'])   

          CPU times: user 588 ms, sys: 16.4 ms, total: 605 ms 

          Wall time: 591 ms 

 

In [154]: data.head() 

Out[154]:                SPY        EWMA 

          Date 

          2010-01-04  113.33  113.330000 

          2010-01-05  113.63  113.405000 

          2010-01-06  113.71  113.481250 

          2010-01-07  114.19  113.658438 

          2010-01-08  114.57  113.886328 

 

In [155]: data[data.index > '2017-1-1'].plot(figsize=(10, 6));

Initializes the EWMA column.

Implements the algorithm based on a Python loop.



Figure 10-3. Financial time series with EWMA

Now consider more general Python function ewma_py(). It can be applied
directly on the column or the raw financial times series data in the form of
an ndarray object:

In [156]: def ewma_py(x, alpha): 

              y = np.zeros_like(x) 

              y[0] = x[0] 

              for i in range(1, len(x)): 

                  y[i] = alpha * x[i] + (1-alpha) * y[i-1] 

              return y 

 

In [157]: %time data['EWMA_PY'] = ewma_py(data[sym], alpha)   

          CPU times: user 33.1 ms, sys: 1.22 ms, total: 34.3 ms 

          Wall time: 33.9 ms 

 

In [158]: %time data['EWMA_PY'] = ewma_py(data[sym].values, alpha)   

          CPU times: user 1.61 ms, sys: 44 µs, total: 1.65 ms 

          Wall time: 1.62 ms

Applies the function to the Series object directly (i.e., the column).



Applies the function to the ndarray object containing the raw data.

This approach already speeds up the code execution considerably — by a
factor of from about 20 to more than 100.



Numba
The very structure of this algorithm promises further speedups when
applying Numba. And indeed, when the function ewma_nb() is applied to the
ndarray version of the data, the speedup is again by an order of magnitude:

In [159]: ewma_nb = numba.jit(ewma_py) 

 

In [160]: %time data['EWMA_NB'] = ewma_nb(data[sym], alpha)   

          CPU times: user 269 ms, sys: 11.4 ms, total: 280 ms 

          Wall time: 294 ms 

 

In [161]: %timeit data['EWMA_NB'] = ewma_nb(data[sym], alpha)   

          30.9 ms ± 1.21 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 

 

In [162]: %time data['EWMA_NB'] = ewma_nb(data[sym].values, alpha)   

          CPU times: user 94.1 ms, sys: 3.78 ms, total: 97.9 ms 

          Wall time: 97.6 ms 

 

In [163]: %timeit data['EWMA_NB'] = ewma_nb(data[sym].values, alpha)   

          134 µs ± 12.5 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Applies the function to the Series object directly (i.e., the column).

Applies the function to the ndarray object containing the raw data.



Cython
The Cython version, ewma_cy(), also achieves considerable speed
improvements but it is not as fast as the Numba version in this case:

In [164]: %%cython 

          import numpy as np 

          cimport cython 

          @cython.boundscheck(False) 

          @cython.wraparound(False) 

          def ewma_cy(double[:] x, float alpha): 

              cdef int i 

              cdef double[:] y = np.empty_like(x) 

              y[0] = x[0] 

              for i in range(1, len(x)): 

                  y[i] = alpha * x[i] + (1 - alpha) * y[i - 1] 

              return y 

 

In [165]: %time data['EWMA_CY'] = ewma_cy(data[sym].values, alpha) 

          CPU times: user 2.98 ms, sys: 1.41 ms, total: 4.4 ms 

          Wall time: 5.96 ms 

 

In [166]: %timeit data['EWMA_CY'] = ewma_cy(data[sym].values, alpha) 

          1.29 ms ± 194 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

This final example illustrates again that there are in general multiple options
to implement (nonstandard) algorithms. All options might lead to exactly
the same results, while also showing considerably different performance
characteristics. The execution times in this example range from 0.1 ms to
500 ms — a factor of 5,000 times.



BEST VERSUS FIRST-BEST
It is easy in general to translate algorithms to the Python programming language.
However, it is equally easy to implement algorithms in a way that is unnecessarily slow
given the menu of performance options available. For interactive financial analytics, a
first-best solution — i.e., one that does the trick but which might not be the fastest
possible nor the most memory-efficient one — might be perfectly fine. For financial
applications in production, one should strive to implement the best solution, even
though this might involve a bit more research and some formal benchmarking.



Conclusion
The Python ecosystem provides a number of ways to improve the
performance of code:

Idioms and paradigms
Some Python paradigms and idioms might be more performant than
others, given a specific problem; in many cases, for instance,
vectorization is a paradigm that not only leads to more concise code
but also to higher speeds (sometimes at the cost of a larger memory
footprint).

Packages
There are a wealth of packages available for different types of
problems, and using a package adapted to the problem can often lead
to much higher performance; good examples are NumPy with the
ndarray class and pandas with the DataFrame class.

Compiling
Powerful packages for speeding up financial algorithms are Numba and
Cython for the dynamic and static compilation of Python code.

Parallelization
Some Python packages, such as multiprocessing, allow for the easy
parallelization of Python code; the examples in this chapter only use
parallelization on a single machine but the Python ecosystem also
offers technologies for multi-machine (cluster) parallelization.

A major benefit of the performance approaches presented in this chapter is
that they are in general easily implementable, meaning that the additional
effort required is regularly low. In other words, performance improvements
often are low-hanging fruit given the performance packages available as of
today.



Further Resources
For all the performance packages introduced in this chapter, there are
helpful web resources available:

http://cython.org is the home of the Cython package and compiler
project.

The documentation for the multiprocessing module is found at
https://docs.python.org/3/library/multiprocessing.html.

Information on Numba can be found at http://github.com/numba/numba
and https://numba.pydata.org.

For references in book form, see the following:
Gorelick, Misha, and Ian Ozsvald (2014). High Performance Python.
Sebastopol, CA: O’Reilly.

Smith, Kurt (2015). Cython. Sebastopol, CA: O’Reilly.

NumPy can also make use of dedicated mathematics libraries, such as the Intel Math Kernel
Library (MKL).

The examples are inspired by a post on Code Review Stack Exchange.

1
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http://cython.org/
https://docs.python.org/3/library/multiprocessing.html
http://github.com/numba/numba
https://numba.pydata.org/
https://software.intel.com/en-us/mkl
http://bit.ly/2DnzGeq


Chapter 11. Mathematical Tools

The mathematicians are the priests of the modern world.
Bill Gaede

Since the arrival of the so-called Rocket Scientists on Wall Street in the
1980s and 1990s, finance has evolved into a discipline of applied
mathematics. While early research papers in finance came with lots of text
and few mathematical expressions and equations, current ones are mainly
comprised of mathematical expressions and equations with some
explanatory text around.

This chapter introduces some useful mathematical tools for finance, without
providing a detailed background for each of them. There are many useful
books available on this topic, so this chapter focuses on how to use the tools
and techniques with Python. In particular, it covers:

“Approximation”
Regression and interpolation are among the most often used numerical
techniques in finance.

“Convex Optimization”
A number of financial disciplines need tools for convex optimization
(for instance, derivatives analytics when it comes to model
calibration).

“Integration”
In particular, the valuation of financial (derivative) assets often boils
down to the evaluation of integrals.

“Symbolic Computation”
Python provides with SymPy a powerful package for symbolic
mathematics, for example, to solve (systems of) equations.



Approximation
To begin with, the usual imports:

In [1]: import numpy as np 

        from pylab import plt, mpl 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

Throughout this section, the main example function is the following, which
is comprised of a trigonometric term and a linear term:

In [3]: def f(x): 

            return np.sin(x) + 0.5 * x

The main focus is the approximation of this function over a given interval by
regression and interpolation techniques. First, a plot of the function to get a
better view of what exactly the approximation shall achieve. The interval of
interest shall be [–2π, 2π]. Figure 11-1 displays the function over the fixed
interval defined via the np.linspace() function. The function
create_plot() is a helper function to create the same type of plot required
multiple times in this chapter:

In [4]: def create_plot(x, y, styles, labels, axlabels): 

            plt.figure(figsize=(10, 6)) 

            for i in range(len(x)): 

                plt.plot(x[i], y[i], styles[i], label=labels[i]) 

                plt.xlabel(axlabels[0]) 

                plt.ylabel(axlabels[1]) 

            plt.legend(loc=0) 

 

In [5]: x = np.linspace(-2 * np.pi, 2 * np.pi, 50)   

 

In [6]: create_plot([x], [f(x)], ['b'], ['f(x)'], ['x', 'f(x)'])

The x values used for the plotting and the calculations.



Figure 11-1. Example function plot



Regression
Regression is a rather efficient tool when it comes to function
approximation. It is not only suited to approximating one-dimensional
functions but also works well in higher dimensions. The numerical
techniques needed to come up with regression results are easily implemented
and quickly executed. Basically, the task of regression, given a set of so-
called basis functions , is to find optimal
parameters  according to Equation 11-1, where  for 

 observation points. The  are considered independent
observations and the  dependent observations (in a functional or statistical
sense).

Equation 11-1. Minimization problem of regression

Monomials as basis functions
One of the simplest cases is to take monomials as basis functions — i.e., 

. In such a case, NumPy has built-in
functions for both the determination of the optimal parameters (namely,
np.polyfit()) and the evaluation of the approximation given a set of input
values (namely, np.polyval()).

Table 11-1 lists the parameters the np.polyfit() function takes. Given the
returned optimal regression coefficients p from np.polyfit(),
np.polyval(p, x) then returns the regression values for the x coordinates.



Table 11-1. Parameters of polyfit() function
Parameter Description

x x coordinates (independent variable values)

y y coordinates (dependent variable values)

deg Degree of the fitting polynomial

full If True, returns diagnostic information in addition

w Weights to apply to the y coordinates

cov If True, returns covariance matrix in addition

In typical vectorized fashion, the application of np.polyfit() and
np.polyval() takes on the following form for a linear regression (i.e., for
deg=1). Given the regression estimates stored in the ry array, we can
compare the regression result with the original function as presented in
Figure 11-2. Of course, a linear regression cannot account for the sin part of
the example function:

In [7]: res = np.polyfit(x, f(x), deg=1, full=True)   

 

In [8]: res   

Out[8]: (array([ 4.28841952e-01, -1.31499950e-16]), 

         array([21.03238686]), 

         2, 

         array([1., 1.]), 

         1.1102230246251565e-14) 

 

In [9]: ry = np.polyval(res[0], x)   

 

In [10]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])

Linear regression step.



Full results: regression parameters, residuals, effective rank, singular
values, and relative condition number.

Evaluation using the regression parameters.

Figure 11-2. Linear regression

To account for the sin part of the example function, higher-order monomials
are necessary. The next regression attempt takes monomials up to the order
of 5 as basis functions. It should not be too surprising that the regression
result, as seen in Figure 11-3, now looks much closer to the original
function. However, it is still far from being perfect:

In [11]: reg = np.polyfit(x, f(x), deg=5) 

         ry = np.polyval(reg, x) 

 

In [12]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])



Figure 11-3. Regression with monomials up to order 5

The last attempt takes monomials up to order 7 to approximate the example
function. In this case the result, as presented in Figure 11-4, is quite
convincing:

In [13]: reg = np.polyfit(x, f(x), 7) 

         ry = np.polyval(reg, x) 

 

In [14]: np.allclose(f(x), ry)   

Out[14]: False 

 

In [15]: np.mean((f(x) - ry) ** 2)   

Out[15]: 0.0017769134759517689 

 

In [16]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])

Checks whether the function and regression values are the same (or at
least close).



Calculates the Mean Squared Error (MSE) for the regression values
given the function values.

Figure 11-4. Regression with monomials up to order 7

Individual basis functions
In general, one can reach better regression results by choosing better sets of
basis functions, e.g., by exploiting knowledge about the function to
approximate. In this case, the individual basis functions have to be defined
via a matrix approach (i.e., using a NumPy ndarray object). First, the case
with monomials up to order 3 (Figure 11-5). The central function here is
np.linalg.lstsq():

In [17]: matrix = np.zeros((3 + 1, len(x)))   

         matrix[3, :] = x ** 3   

         matrix[2, :] = x ** 2   

         matrix[1, :] = x   

         matrix[0, :] = 1   

 

In [18]: reg = np.linalg.lstsq(matrix.T, f(x), rcond=None)[0]   

 

In [19]: reg.round(4)   



Out[19]: array([ 0.    ,  0.5628, -0.    , -0.0054]) 

 

In [20]: ry = np.dot(reg, matrix)   

 

In [21]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])

The ndarray object for the basis function values (matrix).

The basis function values from constant to cubic.

The regression step.

The optimal regression parameters.

The regression estimates for the function values.



Figure 11-5. Regression with individual basis functions

The result in Figure 11-5 is not as good as expected based on our previous
experience with monomials. Using the more general approach allows us to
exploit knowledge about the example function — namely that there is a sin
part in the function. Therefore, it makes sense to include a sine function in
the set of basis functions. For simplicity, the highest-order monomial is
replaced. The fit now is perfect, as the numbers and Figure 11-6 illustrate:

In [22]: matrix[3, :] = np.sin(x)   

 

In [23]: reg = np.linalg.lstsq(matrix.T, f(x), rcond=None)[0] 

 

In [24]: reg.round(4)   

Out[24]: array([0. , 0.5, 0. , 1. ]) 

 

In [25]: ry = np.dot(reg, matrix) 

 

In [26]: np.allclose(f(x), ry)   

Out[26]: True 

 

In [27]: np.mean((f(x) - ry) ** 2)   

Out[27]: 3.404735992885531e-31 

 



In [28]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])

The new basis function exploiting knowledge about the example
function.

The optimal regression parameters recover the original parameters.

The regression now leads to a perfect fit.

Figure 11-6. Regression with the sine basis function

Noisy data
Regression can cope equally well with noisy data, be it data from simulation
or from (nonperfect) measurements. To illustrate this point, independent
observations with noise and dependent observations with noise are



generated. Figure 11-7 reveals that the regression results are closer to the
original function than the noisy data points. In a sense, the regression
averages out the noise to some extent:

In [29]: xn = np.linspace(-2 * np.pi, 2 * np.pi, 50)   

         xn = xn + 0.15 * np.random.standard_normal(len(xn))   

         yn = f(xn) + 0.25 * np.random.standard_normal(len(xn))   

 

In [30]: reg = np.polyfit(xn, yn, 7) 

         ry = np.polyval(reg, xn) 

 

In [31]: create_plot([x, x], [f(x), ry], ['b', 'r.'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])

The new deterministic x values.

Introducing noise to the x values.

Introducing noise to the y values.



Figure 11-7. Regression for noisy data

Unsorted data
Another important aspect of regression is that the approach also works
seamlessly with unsorted data. The previous examples all rely on sorted x
data. This does not have to be the case. To make the point, let’s look at yet
another randomization approach for the x values. In this case, one can hardly
identify any structure by just visually inspecting the raw data:

In [32]: xu = np.random.rand(50) * 4 * np.pi - 2 * np.pi   

         yu = f(xu) 

 

In [33]: print(xu[:10].round(2))   

         print(yu[:10].round(2))   

         [-4.17 -0.11 -1.91  2.33  3.34 -0.96  5.81  4.92 -4.56 -5.42] 

         [-1.23 -0.17 -1.9   1.89  1.47 -1.29  2.45  1.48 -1.29 -1.95] 

 

In [34]: reg = np.polyfit(xu, yu, 5) 

         ry = np.polyval(reg, xu) 

 

In [35]: create_plot([xu, xu], [yu, ry], ['b.', 'ro'], 

                     ['f(x)', 'regression'], ['x', 'f(x)'])



Randomizes the x values.
As with the noisy data, the regression approach does not care for the order of
the observation points. This becomes obvious upon inspecting the structure
of the minimization problem in Equation 11-1. It is also obvious by the
results, presented in Figure 11-8.

Figure 11-8. Regression for unsorted data

Multiple dimensions
Another convenient characteristic of the least-squares regression approach is
that it carries over to multiple dimensions without too many modifications.
As an example function take fm(), as presented next:

In [36]: def fm(p): 

             x, y = p 

             return np.sin(x) + 0.25 * x + np.sqrt(y) + 0.05 * y ** 2



To properly visualize this function, grids (in two dimensions) of independent
data points are needed. Based on such two-dimensional grids of independent
and resulting dependent data points, embodied in the following by X, Y, and
Z, Figure 11-9 presents the shape of the function fm():

In [37]: x = np.linspace(0, 10, 20) 

         y = np.linspace(0, 10, 20) 

         X, Y = np.meshgrid(x, y)   

 

In [38]: Z = fm((X, Y)) 

         x = X.flatten()   

         y = Y.flatten()   

 

In [39]: from mpl_toolkits.mplot3d import Axes3D   

 

In [40]: fig = plt.figure(figsize=(10, 6)) 

         ax = fig.gca(projection='3d') 

         surf = ax.plot_surface(X, Y, Z, rstride=2, cstride=2, 

                                cmap='coolwarm', linewidth=0.5, 

                                antialiased=True) 

         ax.set_xlabel('x') 

         ax.set_ylabel('y') 

         ax.set_zlabel('f(x, y)') 

         fig.colorbar(surf, shrink=0.5, aspect=5)

Generates 2D ndarray objects (“grids”) out of the 1D ndarray objects.

Yields 1D ndarray objects from the 2D ndarray objects.

Imports the 3D plotting capabilities from matplotlib as required.



Figure 11-9. The function with two parameters

To get good regression results, the set of basis functions is essential.
Therefore, factoring in knowledge about the function fm() itself, both an
np.sin() and an np.sqrt() function are included. Figure 11-10 shows the
perfect regression results visually:

In [41]: matrix = np.zeros((len(x), 6 + 1)) 

         matrix[:, 6] = np.sqrt(y)   

         matrix[:, 5] = np.sin(x)   

         matrix[:, 4] = y ** 2 

         matrix[:, 3] = x ** 2 

         matrix[:, 2] = y 

         matrix[:, 1] = x 

         matrix[:, 0] = 1 

 

In [42]: reg = np.linalg.lstsq(matrix, fm((x, y)), rcond=None)[0] 

 

In [43]: RZ = np.dot(matrix, reg).reshape((20, 20))   

 

In [44]: fig = plt.figure(figsize=(10, 6)) 

         ax = fig.gca(projection='3d') 

         surf1 = ax.plot_surface(X, Y, Z, rstride=2, cstride=2,

                     cmap=mpl.cm.coolwarm, linewidth=0.5, 

                     antialiased=True)   

         surf2 = ax.plot_wireframe(X, Y, RZ, rstride=2, cstride=2, 



                                   label='regression')   

         ax.set_xlabel('x') 

         ax.set_ylabel('y') 

         ax.set_zlabel('f(x, y)') 

         ax.legend() 

         fig.colorbar(surf, shrink=0.5, aspect=5)

The np.sqrt() function for the y parameter.

The np.sin() function for the x parameter.

Transforms the regression results to the grid structure.

Plots the original function surface.

Plots the regression surface.



Figure 11-10. Regression surface for function with two parameters



REGRESSION
Least-squares regression approaches have multiple areas of application, including
simple function approximation and function approximation based on noisy or unsorted
data. These approaches can be applied to one-dimensional as well as multidimensional
problems. Due to the underlying mathematics, the application is “almost always the
same.”



Interpolation
Compared to regression, interpolation (e.g., with cubic splines) is more
involved mathematically. It is also limited to low-dimensional problems.
Given an ordered set of observation points (ordered in the x dimension), the
basic idea is to do a regression between two neighboring data points in such
a way that not only are the data points perfectly matched by the resulting
piecewise-defined interpolation function, but also the function is
continuously differentiable at the data points. Continuous differentiability
requires at least interpolation of degree 3 — i.e., with cubic splines.
However, the approach also works in general with quadratic and even linear
splines.

The following code implements a linear splines interpolation, the result of
which is shown in Figure 11-11:

In [45]: import scipy.interpolate as spi   

 

In [46]: x = np.linspace(-2 * np.pi, 2 * np.pi, 25) 

 

In [47]: def f(x): 

             return np.sin(x) + 0.5 * x 

 

In [48]: ipo = spi.splrep(x, f(x), k=1)   

 

In [49]: iy = spi.splev(x, ipo)   

 

In [50]: np.allclose(f(x), iy)   

Out[50]: True 

 

In [51]: create_plot([x, x], [f(x), iy], ['b', 'ro'], 

                     ['f(x)', 'interpolation'], ['x', 'f(x)'])

Imports the required subpackage from SciPy.

Implements a linear spline interpolation.

Derives the interpolated values.



Checks whether the interpolated values are close (enough) to the
function values.

Figure 11-11. Linear splines interpolation (complete data set)

The application itself, given an x-ordered set of data points, is as simple as
the application of np.polyfit() and np.polyval(). Here, the respective
functions are sci.splrep() and sci.splev(). Table 11-2 lists the major
parameters that the sci.splrep() function takes.

Table 11-2. Parameters of splrep() function
Parameter Description

x (Ordered) x coordinates (independent variable values)

y (x-ordered) y coordinates (dependent variable values)

w Weights to apply to the y coordinates



Parameter Description

xb, xe Interval to fit; if None then [x[0], x[-1]]

k Order of the spline fit ( )

s Smoothing factor (the larger, the more smoothing)

full_output If True, returns additional output

quiet If True, suppresses messages

Table 11-3 lists the parameters that the sci.splev() function takes.

Table 11-3. Parameters of splev() function
Parameter Description

x (Ordered) x coordinates (independent variable values)

tck Sequence of length 3 returned by splrep() (knots, coefficients, degree)

der Order of derivative (0 for function, 1 for first derivative)

ext Behavior if x not in knot sequence (0 = extrapolate, 1 = return 0, 2 = raise ValueError)

Spline interpolation is often used in finance to generate estimates for
dependent values of independent data points not included in the original
observations. To this end, the next example picks a much smaller interval
and has a closer look at the interpolated values with the linear splines.
Figure 11-12 reveals that the interpolation function indeed interpolates
linearly between two observation points. For certain applications this might
not be precise enough. In addition, it is evident that the function is not
continuously differentiable at the original data points — another drawback:

In [52]: xd = np.linspace(1.0, 3.0, 50)   

         iyd = spi.splev(xd, ipo) 

 

In [53]: create_plot([xd, xd], [f(xd), iyd], ['b', 'ro'], 

                     ['f(x)', 'interpolation'], ['x', 'f(x)'])



Smaller interval with more points.

Figure 11-12. Linear splines interpolation (data subset)

A repetition of the complete exercise, this time using cubic splines, improves
the results considerably (see Figure 11-13):

In [54]: ipo = spi.splrep(x, f(x), k=3)   

         iyd = spi.splev(xd, ipo)   

 

In [55]: np.allclose(f(xd), iyd)   

Out[55]: False 

 

In [56]: np.mean((f(xd) - iyd) ** 2)   

Out[56]: 1.1349319851436892e-08 

 

In [57]: create_plot([xd, xd], [f(xd), iyd], ['b', 'ro'], 

                     ['f(x)', 'interpolation'], ['x', 'f(x)'])

Cubic splines interpolation on complete data sets.



Results applied to the smaller interval.

The interpolation is still not perfect …

… but better than before.

Figure 11-13. Cubic splines interpolation (data subset)



INTERPOLATION
In those cases where spline interpolation can be applied, one can expect better
approximation results compared to a least-squares regression approach. However,
remember that sorted (and “non-noisy”) data is required and that the approach is limited
to low-dimensional problems. It is also computationally more demanding and might
therefore take (much) longer than regression in certain use cases.



Convex Optimization
In finance and economics, convex optimization plays an important role.
Examples are the calibration of option pricing models to market data or the
optimization of an agent’s utility function. As an example, take the function
fm():

In [58]: def fm(p): 

             x, y = p 

             return (np.sin(x) + 0.05 * x ** 2 

                   + np.sin(y) + 0.05 * y ** 2)

Figure 11-14 shows the function graphically for the defined intervals for x
and y. Visual inspection already reveals that this function has multiple local
minima. The existence of a global minimum cannot really be confirmed by
this particular graphical representation, but it seems to exist:

In [59]: x = np.linspace(-10, 10, 50) 

         y = np.linspace(-10, 10, 50) 

         X, Y = np.meshgrid(x, y) 

         Z = fm((X, Y)) 

 

In [60]: fig = plt.figure(figsize=(10, 6)) 

         ax = fig.gca(projection='3d') 

         surf = ax.plot_surface(X, Y, Z, rstride=2, cstride=2, 

                                cmap='coolwarm', linewidth=0.5, 

                                antialiased=True) 

         ax.set_xlabel('x')

         ax.set_ylabel('y')

         ax.set_zlabel('f(x, y)') 

         fig.colorbar(surf, shrink=0.5, aspect=5)



Figure 11-14. Linear splines interpolation (data subset)



Global Optimization
In what follows, both a global minimization approach and a local one are
implemented. The functions sco.brute() and sco.fmin() that are applied
are from scipy.optimize.

To have a closer look behind the scenes during minimization procedures,
the following code amends the original function by an option to output
current parameter values as well as the function value. This allows us to
keep track of all relevant information for the procedure:

In [61]: import scipy.optimize as sco   

 

In [62]: def fo(p): 

             x, y = p 

             z = np.sin(x) + 0.05 * x ** 2 + np.sin(y) + 0.05 * y ** 2 

             if output == True: 

                 print('%8.4f | %8.4f | %8.4f' % (x, y, z))   

             return z 

 

In [63]: output = True 

         sco.brute(fo, ((-10, 10.1, 5), (-10, 10.1, 5)), finish=None)   

         -10.0000 | -10.0000 |  11.0880 

         -10.0000 | -10.0000 |  11.0880 

         -10.0000 |  -5.0000 |   7.7529 

         -10.0000 |   0.0000 |   5.5440 

         -10.0000 |   5.0000 |   5.8351 

         -10.0000 |  10.0000 |  10.0000 

          -5.0000 | -10.0000 |   7.7529 

          -5.0000 |  -5.0000 |   4.4178 

          -5.0000 |   0.0000 |   2.2089 

          -5.0000 |   5.0000 |   2.5000 

          -5.0000 |  10.0000 |   6.6649 

           0.0000 | -10.0000 |   5.5440 

           0.0000 |  -5.0000 |   2.2089 

           0.0000 |   0.0000 |   0.0000 

           0.0000 |   5.0000 |   0.2911 

           0.0000 |  10.0000 |   4.4560 

           5.0000 | -10.0000 |   5.8351 

           5.0000 |  -5.0000 |   2.5000 

           5.0000 |   0.0000 |   0.2911 

           5.0000 |   5.0000 |   0.5822 

           5.0000 |  10.0000 |   4.7471 

          10.0000 | -10.0000 |  10.0000 

          10.0000 |  -5.0000 |   6.6649 

          10.0000 |   0.0000 |   4.4560 

          10.0000 |   5.0000 |   4.7471 

          10.0000 |  10.0000 |   8.9120 

 

Out[63]: array([0., 0.])



Imports the required subpackage from SciPy.

The information to print out if output = True.

The brute force optimization.
The optimal parameter values, given the initial parameterization of the
function, are x = y = 0. The resulting function value is also 0, as a quick
review of the preceding output reveals. One might be inclined to accept this
as the global minimum. However, the first parameterization here is quite
rough, in that step sizes of 5 for both input parameters are used. This can of
course be refined considerably, leading to better results in this case — and
showing that the previous solution is not the optimal one:

In [64]: output = False 

         opt1 = sco.brute(fo, ((-10, 10.1, 0.1), (-10, 10.1, 0.1)), finish=None) 

 

In [65]: opt1 

Out[65]: array([-1.4, -1.4]) 

 

In [66]: fm(opt1) 

Out[66]: -1.7748994599769203

The optimal parameter values are now x = y = –1.4 and the minimal
function value for the global minimization is about –1.7749.



Local Optimization
The local convex optimization that follows draws on the results from the
global optimization. The function sco.fmin() takes as input the function to
minimize and the starting parameter values. Optional parameter values are
the input parameter tolerance and function value tolerance, as well as the
maximum number of iterations and function calls. The local optimization
further improves the result:

In [67]: output = True 

         opt2 = sco.fmin(fo, opt1, xtol=0.001, ftol=0.001, 

                         maxiter=15, maxfun=20)   

          -1.4000 |  -1.4000 |  -1.7749 

          -1.4700 |  -1.4000 |  -1.7743 

          -1.4000 |  -1.4700 |  -1.7743 

          -1.3300 |  -1.4700 |  -1.7696 

          -1.4350 |  -1.4175 |  -1.7756 

          -1.4350 |  -1.3475 |  -1.7722 

          -1.4088 |  -1.4394 |  -1.7755 

          -1.4438 |  -1.4569 |  -1.7751 

          -1.4328 |  -1.4427 |  -1.7756 

          -1.4591 |  -1.4208 |  -1.7752 

          -1.4213 |  -1.4347 |  -1.7757 

          -1.4235 |  -1.4096 |  -1.7755 

          -1.4305 |  -1.4344 |  -1.7757 

          -1.4168 |  -1.4516 |  -1.7753 

          -1.4305 |  -1.4260 |  -1.7757 

          -1.4396 |  -1.4257 |  -1.7756 

          -1.4259 |  -1.4325 |  -1.7757 

          -1.4259 |  -1.4241 |  -1.7757 

          -1.4304 |  -1.4177 |  -1.7757 

          -1.4270 |  -1.4288 |  -1.7757 

         Warning: Maximum number of function evaluations has been exceeded. 

 

In [68]: opt2 

Out[68]: array([-1.42702972, -1.42876755]) 

 

In [69]: fm(opt2) 

Out[69]: -1.7757246992239009

The local convex optimization.
For many convex optimization problems it is advisable to have a global
minimization before the local one. The major reason for this is that local
convex optimization algorithms can easily be trapped in a local minimum



(or do “basin hopping”), ignoring completely better local minima and/or a
global minimum. The following shows that setting the starting
parameterization to x = y = 2 gives, for example, a “minimum” value of
above zero:

In [70]: output = False 

         sco.fmin(fo, (2.0, 2.0), maxiter=250) 

         Optimization terminated successfully. 

                  Current function value: 0.015826 

                  Iterations: 46 

                  Function evaluations: 86 

 

Out[70]: array([4.2710728 , 4.27106945])



Constrained Optimization
So far, this section only considers unconstrained optimization problems.
However, large classes of economic or financial optimization problems are
constrained by one or multiple constraints. Such constraints can formally
take on the form of equalities or inequalities.

As a simple example, consider the utility maximization problem of an
(expected utility maximizing) investor who can invest in two risky
securities. Both securities cost  USD today. After one year,
they have a payoff of 15 USD and 5 USD, respectively, in state u, and of 5
USD and 12 USD, respectively, in state d. Both states are equally likely.
Denote the vector payoffs for the two securities by  and , respectively.

The investor has a budget of  USD to invest and derives utility

from future wealth according to the utility function , where w
is the wealth (USD amount) available. Equation 11-2 is a formulation of the
maximization problem where a, b are the numbers of securities bought by
the investor.

Equation 11-2. Expected utility maximization problem (1)

Putting in all numerical assumptions, one gets the problem in Equation 11-3.
Note the change to the minimization of the negative expected utility.

Equation 11-3. Expected utility maximization problem (2)



To solve this problem, the scipy.optimize.minimize() function is
appropriate. This function takes as input — in addition to the function to be
minimized — conditions in the form of equalities and inequalities (as a list
of dict objects) as well as boundaries for the parameters (as a tuple of
tuple objects).1 The following translates the problem from Equation 11-3
into Python code:

In [71]: import math 

 

In [72]: def Eu(p):   

             s, b = p 

             return -(0.5 * math.sqrt(s * 15 + b * 5) + 

                      0.5 * math.sqrt(s * 5 + b * 12)) 

 

In [73]: cons = ({'type': 'ineq', 

                  'fun': lambda p: 100 - p[0] * 10 - p[1] * 10})   

 

In [74]: bnds = ((0, 1000), (0, 1000))   

 

In [75]: result = sco.minimize(Eu, [5, 5], method='SLSQP', 

                                bounds=bnds, constraints=cons)  

The function to be minimized, in order to maximize the expected utility.

The inequality constraint as a dict object.

The boundary values for the parameters (chosen to be wide enough).



The constrained optimization.
The result object contains all the relevant information. With regard to the
minimal function value, one needs to recall to shift the sign back:

In [76]: result 

Out[76]:      fun: -9.700883611487832 

              jac: array([-0.48508096, -0.48489535]) 

          message: 'Optimization terminated successfully.' 

             nfev: 21 

              nit: 5 

             njev: 5 

           status: 0 

          success: True 

                x: array([8.02547122, 1.97452878]) 

 

In [77]: result['x']   

Out[77]: array([8.02547122, 1.97452878]) 

 

In [78]: -result['fun']   

Out[78]: 9.700883611487832 

 

In [79]: np.dot(result['x'], [10, 10])   

Out[79]: 99.99999999999999

The optimal parameter values (i.e., the optimal portfolio).

The negative minimum function value as the optimal solution value.

The budget constraint is binding; all wealth is invested.



Integration
Especially when it comes to valuation and option pricing, integration is an
important mathematical tool. This stems from the fact that risk-neutral
values of derivatives can be expressed in general as the discounted
expectation of their payoff under the risk-neutral or martingale measure. The
expectation in turn is a sum in the discrete case and an integral in the
continuous case. The subpackage scipy.integrate provides different
functions for numerical integration. The example function is known from
“Approximation”:

In [80]: import scipy.integrate as sci 

 

In [81]: def f(x): 

             return np.sin(x) + 0.5 * x

The integration interval shall be [0.5, 9.5], leading to the definite integral
as in Equation 11-4.

Equation 11-4. Integral of example function

The following code defines the major Python objects to evaluate the integral:

In [82]: x = np.linspace(0, 10) 

         y = f(x) 

         a = 0.5   

         b = 9.5   

         Ix = np.linspace(a, b)   

         Iy = f(Ix)  

Left integration limit.



Right integration limit.

Integration interval values.

Integration function values.
Figure 11-15 visualizes the integral value as the gray-shaded area under the
function:2

In [83]: from matplotlib.patches import Polygon 

 

In [84]: fig, ax = plt.subplots(figsize=(10, 6)) 

         plt.plot(x, y, 'b', linewidth=2) 

         plt.ylim(bottom=0) 

         Ix = np.linspace(a, b) 

         Iy = f(Ix) 

         verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)] 

         poly = Polygon(verts, facecolor='0.7', edgecolor='0.5') 

         ax.add_patch(poly)

         plt.text(0.75 * (a + b), 1.5, r"$\int_a^b f(x)dx$", 

                  horizontalalignment='center', fontsize=20) 

         plt.figtext(0.9, 0.075, '$x$') 

         plt.figtext(0.075, 0.9, '$f(x)$') 

         ax.set_xticks((a, b)) 

         ax.set_xticklabels(('$a$', '$b$')) 

         ax.set_yticks([f(a), f(b)]);



Figure 11-15. Integral value as shaded area



Numerical Integration
The scipy.integrate subpackage contains a selection of functions to
numerically integrate a given mathematical function for upper and lower
integration limits. Examples are sci.fixed_quad() for fixed Gaussian
quadrature, sci.quad() for adaptive quadrature, and sci.romberg() for
Romberg integration:

In [85]: sci.fixed_quad(f, a, b)[0] 

Out[85]: 24.366995967084602 

 

In [86]: sci.quad(f, a, b)[0] 

Out[86]: 24.374754718086752 

 

In [87]: sci.romberg(f, a, b) 

Out[87]: 24.374754718086713

There are also a number of integration functions that take as input list or
ndarray objects with function values and input values, respectively.
Examples in this regard are sci.trapz(), using the trapezoidal rule, and
sci.simps(), implementing Simpson’s rule:

In [88]: xi = np.linspace(0.5, 9.5, 25) 

 

In [89]: sci.trapz(f(xi), xi) 

Out[89]: 24.352733271544516 

 

In [90]: sci.simps(f(xi), xi) 

Out[90]: 24.37496418455075



Integration by Simulation
The valuation of options and derivatives by Monte Carlo simulation (see
Chapter 12) rests on the insight that one can evaluate an integral by
simulation. To this end, draw I random values of x between the integral
limits and evaluate the integration function at every random value for x.
Sum up all the function values and take the average to arrive at an average
function value over the integration interval. Multiply this value by the
length of the integration interval to derive an estimate for the integral value.

The following code shows how the Monte Carlo estimated integral value
converges — although not monotonically — to the real one when one
increases the number of random draws. The estimator is already quite close
for relatively small numbers of random draws:

In [91]: for i in range(1, 20): 

             np.random.seed(1000) 

             x = np.random.random(i * 10) * (b - a) + a   

             print(np.mean(f(x)) * (b - a)) 

         24.804762279331463 

         26.522918898332378 

         26.265547519223976 

         26.02770339943824 

         24.99954181440844 

         23.881810141621663 

         23.527912274843253 

         23.507857658961207 

         23.67236746066989 

         23.679410416062886 

         24.424401707879305 

         24.239005346819056 

         24.115396924962802 

         24.424191987566726 

         23.924933080533783 

         24.19484212027875 

         24.117348378249833 

         24.100690929662274 

         23.76905109847816

Number of random x values is increased with every iteration.



Symbolic Computation
The previous sections are mainly concerned with numerical computation.
This section now introduces symbolic computation, which can be applied
beneficially in many areas of finance. To this end, SymPy, a library
specifically dedicated to symbolic computation, is generally used.



Basics
SymPy introduces new classes of objects. A fundamental class is the Symbol
class:

In [92]: import sympy as sy 

 

In [93]: x = sy.Symbol('x')   

         y = sy.Symbol('y')   

 

In [94]: type(x) 

Out[94]: sympy.core.symbol.Symbol 

 

In [95]: sy.sqrt(x)   

Out[95]: sqrt(x) 

 

In [96]: 3 + sy.sqrt(x) - 4 ** 2   

Out[96]: sqrt(x) - 13 

 

In [97]: f = x ** 2 + 3 + 0.5 * x ** 2 + 3 / 2   

 

In [98]: sy.simplify(f)   

Out[98]: 1.5*x**2 + 4.5

Defines symbols to work with.

Applies a function on a symbol.

A numerical expression defined on symbol.

A function defined symbolically.

The function expression simplified.
This already illustrates a major difference to regular Python code. Although
x has no numerical value, the square root of x is nevertheless defined with
SymPy since x is a Symbol object. In that sense, sy.sqrt(x) can be part of



arbitrary mathematical expressions. Notice that SymPy in general
automatically simplifies a given mathematical expression. Similarly, one
can define arbitrary functions using Symbol objects. They are not to be
confused with Python functions.

SymPy provides three basic renderers for mathematical expressions:

LaTeX-based

Unicode-based

ASCII-based

When working, for example, solely in a Jupyter Notebook environment
(HTML-based), LaTeX rendering is generally a good (i.e., visually
appealing) choice. The code that follows sticks to the simplest option,
ASCII, to illustrate that there is no manual typesetting involved:

In [99]: sy.init_printing(pretty_print=False, use_unicode=False) 

 

In [100]: print(sy.pretty(f)) 

               2 

          1.5*x  + 4.5 

 

In [101]: print(sy.pretty(sy.sqrt(x) + 0.5)) 

            ___ 

          \/ x  + 0.5

This section cannot go into details, but SymPy also provides many other
useful mathematical functions — for example, when it comes to
numerically evaluating π. The following example shows the first and final
40 characters of the string representation of π up to the 400,000th digit. It
also searches for a six-digit, day-first birthday — a popular task in certain
mathematics and IT circles:

In [102]: %time pi_str = str(sy.N(sy.pi, 400000))   

          CPU times: user 400 ms, sys: 10.9 ms, total: 411 ms 

          Wall time: 501 ms 

 

In [103]: pi_str[:42]   

Out[103]: '3.1415926535897932384626433832795028841971' 

 

In [104]: pi_str[-40:]   



Out[104]: '8245672736856312185020980470362464176198' 

 

In [105]: %time pi_str.find('061072')   

          CPU times: user 115 µs, sys: 1e+03 ns, total: 116 µs 

          Wall time: 120 µs 

 

Out[105]: 80847

Returns the string representation of the first 400,000 digits of π.

Shows the first 40 digits …

… and the final 40 digits.

Searches for a birthday date in the string.



Equations

A strength of SymPy is solving equations, e.g., of the form . In
general, SymPy presumes that one is looking for a solution to the equation
obtained by equating the given expression to zero. Therefore, equations like

 might have to be reformulated to get the desired result. Of
course, SymPy can cope with more complex expressions, like 

. Finally, it can also deal with problems involving

imaginary numbers, such as :

In [106]: sy.solve(x ** 2 - 1) 

Out[106]: [-1, 1] 

 

In [107]: sy.solve(x ** 2 - 1 - 3) 

Out[107]: [-2, 2] 

 

In [108]: sy.solve(x ** 3 + 0.5 * x ** 2 - 1) 

Out[108]: [0.858094329496553, -0.679047164748276 - 0.839206763026694*I, 

           -0.679047164748276 + 0.839206763026694*I] 

 

In [109]: sy.solve(x ** 2 + y ** 2) 

Out[109]: [{x: -I*y}, {x: I*y}]



Integration and Differentiation
Another strength of SymPy is integration and differentiation. The example
that follows revisits the example function used for numerical- and
simulation-based integration and derives both a symbolically and a
numerically exact solution. Symbol objects for the integration limits objects
are required to get started:

In [110]: a, b = sy.symbols('a b')   

 

In [111]: I = sy.Integral(sy.sin(x) + 0.5 * x, (x, a, b))   

 

In [112]: print(sy.pretty(I))   

            b 

            / 

           | 

           |  (0.5*x + sin(x)) dx 

           | 

          / 

          a 

 

In [113]: int_func = sy.integrate(sy.sin(x) + 0.5 * x, x)   

 

In [114]: print(sy.pretty(int_func))   

                2 

          0.25*x  - cos(x) 

 

In [115]: Fb = int_func.subs(x, 9.5).evalf()   

          Fa = int_func.subs(x, 0.5).evalf()   

 

In [116]: Fb - Fa   

Out[116]: 24.3747547180867

The Symbol objects for the integral limits.

The Integral object defined and pretty-printed.

The antiderivative derived and pretty-printed.



The values of the antiderivative at the limits, obtained via the .subs()
and .evalf() methods.

The exact numerical value of the integral.
The integral can also be solved symbolically with the symbolic integration
limits:

In [117]: int_func_limits = sy.integrate(sy.sin(x) + 0.5 * x, (x, a, b))  

 

In [118]: print(sy.pretty(int_func_limits))   

                  2         2 

          - 0.25*a  + 0.25*b  + cos(a) - cos(b) 

 

In [119]: int_func_limits.subs({a : 0.5, b : 9.5}).evalf()   

Out[119]: 24.3747547180868 

 

In [120]: sy.integrate(sy.sin(x) + 0.5 * x, (x, 0.5, 9.5))   

Out[120]: 24.3747547180867

Solving the integral symbolically.

Solving the integral numerically, using a dict object during
substitution.

Solving the integral numerically in a single step.



Differentiation
The derivative of the antiderivative yields in general the original function.
Applying the sy.diff() function to the symbolic antiderivative illustrates
this:

In [121]: int_func.diff() 

Out[121]: 0.5*x + sin(x)

As with the integration example, differentiation shall now be used to derive
the exact solution of the convex minimization problem this chapter looked
at earlier. To this end, the respective function is defined symbolically,
partial derivatives are derived, and the roots are identified.

A necessary but not sufficient condition for a global minimum is that both
partial derivatives are zero. However, there is no guarantee of a symbolic
solution. Both algorithmic and (multiple) existence issues come into play
here. However, one can solve the two first-order conditions numerically,
providing “educated” guesses based on the global and local minimization
efforts from before:

In [122]: f = (sy.sin(x) + 0.05 * x ** 2 

             + sy.sin(y) + 0.05 * y ** 2)  

 

In [123]: del_x = sy.diff(f, x)   

          del_x   

Out[123]: 0.1*x + cos(x) 

 

In [124]: del_y = sy.diff(f, y)   

          del_y   

Out[124]: 0.1*y + cos(y) 

 

In [125]: xo = sy.nsolve(del_x, -1.5)   

          xo   

Out[125]: -1.42755177876459

 

In [126]: yo = sy.nsolve(del_y, -1.5)   

          yo   

Out[126]: -1.42755177876459

 

In [127]: f.subs({x : xo, y : yo}).evalf()   

Out[127]: -1.77572565314742



The symbolic version of the function.

The two partial derivatives derived and printed.

Educated guesses for the roots and resulting optimal values.

The global minimum function value.
Again, providing uneducated/arbitrary guesses might trap the algorithm in a
local minimum instead of the global one:

In [128]: xo = sy.nsolve(del_x, 1.5)   

          xo 

Out[128]: 1.74632928225285 

 

In [129]: yo = sy.nsolve(del_y, 1.5)   

          yo 

Out[129]: 1.74632928225285 

 

In [130]: f.subs({x : xo, y : yo}).evalf()   

Out[130]: 2.27423381055640

Uneducated guesses for the roots.

The local minimum function value.
This numerically illustrates that the first-order conditions are necessary but
not sufficient.



SYMBOLIC COMPUTATIONS
When doing (financial) mathematics with Python, SymPy and symbolic computations
prove to be a valuable tool. Especially for interactive financial analytics, this can be a
more efficient approach compared to nonsymbolic approaches.



Conclusion
This chapter covers selected mathematical topics and tools important to
finance. For example, the approximation of functions is important in many
financial areas, like factor-based models, yield curve interpolation, and
regression-based Monte Carlo valuation approaches for American options.
Convex optimization techniques are also regularly needed in finance; for
example, when calibrating parametric option pricing models to market
quotes or implied volatilities of options.

Numerical integration is central to, for example, the pricing of options and
derivatives. Having derived the risk-neutral probability measure for a (set
of) stochastic process(es), option pricing boils down to taking the
expectation of the option’s payoff under the risk-neutral measure and
discounting this value back to the present date. Chapter 12 covers the
simulation of several types of stochastic processes under the risk-neutral
measure.

Finally, this chapter introduces symbolic computation with SymPy. For a
number of mathematical operations, like integration, differentiation, or the
solving of equations, symbolic computation can prove a useful and efficient
tool.



Further Resources
For further information on the Python libraries used in this chapter, consult
the following web resources:

See the NumPy Reference for details on the NumPy functions used in this
chapter.

Visit the SciPy documentation on optimization and root finding for
details on scipy.optimize.

Integration with scipy.integrate is explained in “Integration and
ODEs”.

The SymPy website provides a wealth of examples and detailed
documentation.

For a mathematical reference for the topics covered in this chapter, see:
Brandimarte, Paolo (2006). Numerical Methods in Finance and
Economics. Hoboken, NJ: John Wiley & Sons.

For details and examples of how to use the minimize function, refer to the documentation.

See Chapter 7 for a more detailed discussion of this type of plot.

1

2

http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/integrate.html
http://sympy.org/
http://bit.ly/using_minimize


Chapter 12. Stochastics

Predictability is not how things will go, but how they can go.
Raheel Farooq

Nowadays, stochastics is one of the most important mathematical and
numerical disciplines in finance. In the beginning of the modern era of
finance, mainly in the 1970s and 1980s, the major goal of financial research
was to come up with closed-form solutions for, e.g., option prices given a
specific financial model. The requirements have drastically changed in
recent years in that not only is the correct valuation of single financial
instruments important to participants in the financial markets, but also the
consistent valuation of whole derivatives books, for example. Similarly, to
come up with consistent risk measures across a whole financial institution,
like value-at-risk and credit valuation adjustments, one needs to take into
account the whole book of the institution and all its counterparties. Such
daunting tasks can only be tackled by flexible and efficient numerical
methods. Therefore, stochastics in general and Monte Carlo simulation in
particular have risen to prominence in the financial field.

This chapter introduces the following topics from a Python perspective:

“Random Numbers”
It all starts with pseudo-random numbers, which build the basis for all
simulation efforts; although quasi-random numbers (e.g., based on
Sobol sequences) have gained some popularity in finance, pseudo-
random numbers still seem to be the benchmark.

“Simulation”
In finance, two simulation tasks are of particular importance:
simulation of random variables and of stochastic processes.

“Valuation”



The two main disciplines when it comes to valuation are the valuation
of derivatives with European exercise (at a specific date) and
American exercise (over a specific time interval); there are also
instruments with Bermudan exercise, or exercise at a finite set of
specific dates.

“Risk Measures”
Simulation lends itself pretty well to the calculation of risk measures
like value-at-risk, credit value-at-risk, and credit valuation
adjustments.



Random Numbers
Throughout this chapter, to generate random numbers,1 the functions
provided by the numpy.random subpackage are used:

In [1]: import math 

        import numpy as np 

        import numpy.random as npr   

        from pylab import plt, mpl 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

Imports the random number generation subpackage from NumPy.

For example, the rand() function returns random numbers from the open
interval [0,1) in the shape provided as a parameter to the function. The return
object is an ndarray object. Such numbers can be easily transformed to
cover other intervals of the real line. For instance, if one wants to generate

random numbers from the interval , one can transform
the returned numbers from npr.rand() as in the next example — this also
works in multiple dimensions due to NumPy broadcasting:

In [3]: npr.seed(100)   

        np.set_printoptions(precision=4)  

 

In [4]: npr.rand(10)   

Out[4]: array([0.5434, 0.2784, 0.4245, 0.8448, 0.0047, 0.1216, 0.6707, 0.8259,

               0.1367, 0.5751]) 

 

In [5]: npr.rand(5, 5)   

Out[5]: array([[0.8913, 0.2092, 0.1853, 0.1084, 0.2197], 

               [0.9786, 0.8117, 0.1719, 0.8162, 0.2741], 

               [0.4317, 0.94  , 0.8176, 0.3361, 0.1754], 

               [0.3728, 0.0057, 0.2524, 0.7957, 0.0153], 

               [0.5988, 0.6038, 0.1051, 0.3819, 0.0365]]) 

 

In [6]: a = 5.   

        b = 10.  

        npr.rand(10) * (b - a) + a   

Out[6]: array([9.4521, 9.9046, 5.2997, 9.4527, 7.8845, 8.7124, 8.1509, 7.9092,



               5.1022, 6.0501]) 

 

In [7]: npr.rand(5, 5) * (b - a) + a   

Out[7]: array([[7.7234, 8.8456, 6.2535, 6.4295, 9.262 ], 

               [9.875 , 9.4243, 6.7975, 7.9943, 6.774 ], 

               [6.701 , 5.8904, 6.1885, 5.2243, 7.5272], 

               [6.8813, 7.964 , 8.1497, 5.713 , 9.6692], 

               [9.7319, 8.0115, 6.9388, 6.8159, 6.0217]])

Fixes the seed value for reproducibility and fixes the number of digits
for printouts.

Uniformly distributed random numbers as one-dimensional ndarray
object.

Uniformly distributed random numbers as two-dimensional ndarray
object.

Lower limit …

… and upper limit …

… for the transformation to another interval.

The same transformation for two dimensions.
Table 12-1 lists functions to generate simple random numbers.

Table 12-1. Functions for simple random number generation
Function Parameters Returns/result

rand d0, d1, ..., dn Random values in the given shape

http://bit.ly/2Fo39Yh


Function Parameters Returns/result

randn d0, d1, ..., dn A sample (or samples) from the standard normal
distribution

randint low[, high, size] Random integers from low (inclusive) to high
(exclusive)

random_integers low[, high, size] Random integers between low and high, inclusive

random_sample [size] Random floats in the half-open interval [0.0, 1.0)

random [size] Random floats in the half-open interval [0.0, 1.0)

ranf [size] Random floats in the half-open interval [0.0, 1.0)

sample [size] Random floats in the half-open interval [0.0, 1.0)

choice a[, size, replace,

p]

Random sample from a given 1D array

bytes length Random bytes

It is straightforward to visualize some random draws generated by selected
functions from Table 12-1. Figure 12-1 shows the results graphically for two
continuous distributions and two discrete ones:

In [8]: sample_size = 500 

        rn1 = npr.rand(sample_size, 3)   

        rn2 = npr.randint(0, 10, sample_size)   

        rn3 = npr.sample(size=sample_size)   

        a = [0, 25, 50, 75, 100]   

        rn4 = npr.choice(a, size=sample_size)  

 

In [9]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, 

                                                     figsize=(10, 8)) 

        ax1.hist(rn1, bins=25, stacked=True) 

        ax1.set_title('rand') 

        ax1.set_ylabel('frequency') 

        ax2.hist(rn2, bins=25) 

        ax2.set_title('randint')

        ax3.hist(rn3, bins=25) 

        ax3.set_title('sample') 

        ax3.set_ylabel('frequency') 

        ax4.hist(rn4, bins=25) 

        ax4.set_title('choice');



Uniformly distributed random numbers.

Random integers for a given interval.

Randomly sampled values from a finite list object.

Figure 12-1. Histograms of simple random numbers

Table 12-2 lists functions for generating random numbers according to
different distributions.

http://bit.ly/2A02jv5


Table 12-2. Functions to generate random numbers according to different
distribution laws

Function Parameters Returns/result

beta a, b[, size] Samples for a beta distribution over [0, 1]

binomial n, p[, size] Samples from a binomial distribution

chisquare df[, size] Samples from a chi-square distribution

dirichlet alpha[, size] Samples from the Dirichlet distribution

exponential [scale, size] Samples from the exponential distribution

f dfnum, dfden[, size] Samples from an F distribution

gamma shape[, scale, size] Samples from a gamma distribution

geometric p[, size] Samples from the geometric distribution

gumbel [loc, scale, size] Samples from a Gumbel distribution

hypergeometric ngood, nbad,
nsample[, size]

Samples from a hypergeometric distribution

laplace [loc, scale, size] Samples from the Laplace or double exponential
distribution

logistic [loc, scale, size] Samples from a logistic distribution

lognormal [mean, sigma, size] Samples from a log-normal distribution

logseries p[, size] Samples from a logarithmic series distribution

multinomial n, pvals[, size] Samples from a multinomial distribution

multivariate_normal mean, cov[, size] Samples from a multivariate normal distribution

negative_binomial n, p[, size] Samples from a negative binomial distribution

noncentral_chisquare df, nonc[, size] Samples from a noncentral chi-square distribution

noncentral_f dfnum, dfden, nonc[,
size]

Samples from the noncentral F distribution



Function Parameters Returns/result

normal [loc, scale, size] Samples from a normal (Gaussian) distribution

pareto a[, size] Samples from a Pareto II or Lomax distribution with
the specified shape

poisson [lam, size] Samples from a Poisson distribution

power a[, size] Samples in [0, 1] from a power distribution with
positive exponent a – 1

rayleigh [scale, size] Samples from a Rayleigh distribution

standard_cauchy [size] Samples from standard Cauchy distribution with
mode = 0

standard_exponential [size] Samples from the standard exponential distribution

standard_gamma shape[, size] Samples from a standard gamma distribution

standard_normal [size] Samples from a standard normal distribution
(mean=0, stdev=1)

standard_t df[, size] Samples from a Student’s t distribution with df
degrees of freedom

triangular left, mode, right[,
size]

Samples from the triangular distribution over the
interval [left, right]

uniform [low, high, size] Samples from a uniform distribution

vonmises mu, kappa[, size] Samples from a von Mises distribution

wald mean, scale[, size] Samples from a Wald, or inverse Gaussian,
distribution

weibull a[, size] Samples from a Weibull distribution

zipf a[, size] Samples from a Zipf distribution

Although there is much criticism around the use of (standard) normal
distributions in finance, they are an indispensable tool and still the most



widely used type of distribution, in analytical as well as numerical
applications. One reason is that many financial models directly rest in one
way or another on a normal distribution or a log-normal distribution.
Another reason is that many financial models that do not rest directly on a
(log-)normal assumption can be discretized, and therewith approximated for
simulation purposes, by the use of the normal distribution.

As an illustration, Figure 12-2 visualizes random draws from the following
distributions:

Standard normal with mean of 0 and standard deviation of 1

Normal with mean of 100 and standard deviation of 20

Chi square with 0.5 degrees of freedom

Poisson with lambda of 1

Figure 12-2 shows the results for the three continuous distributions and the
discrete one (Poisson). The Poisson distribution is used, for example, to
simulate the arrival of (rare) external events, like a jump in the price of an
instrument or an exogenic shock. Here is the code that generates it:

In [10]: sample_size = 500 

         rn1 = npr.standard_normal(sample_size)   

         rn2 = npr.normal(100, 20, sample_size)   

         rn3 = npr.chisquare(df=0.5, size=sample_size)   

         rn4 = npr.poisson(lam=1.0, size=sample_size)   

 

In [11]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, 

                                                      figsize=(10, 8)) 

         ax1.hist(rn1, bins=25) 

         ax1.set_title('standard normal') 

         ax1.set_ylabel('frequency') 

         ax2.hist(rn2, bins=25) 

         ax2.set_title('normal(100, 20)') 

         ax3.hist(rn3, bins=25) 

         ax3.set_title('chi square') 

         ax3.set_ylabel('frequency') 

         ax4.hist(rn4, bins=25) 

         ax4.set_title('Poisson');

Standard normally distributed random numbers.



Normally distributed random numbers.

Chi-square distributed random numbers.

Poisson distributed numbers.

Figure 12-2. Histograms of random samples for different distributions



NUMPY AND RANDOM NUMBERS
This section shows that NumPy is a powerful (even indispensable) tool when generating
pseudo-random numbers in Python. The creation of small or large ndarray objects with
such numbers is not only convenient but also performant.



Simulation
Monte Carlo simulation (MCS) is among the most important numerical
techniques in finance, if not the most important and widely used. This
mainly stems from the fact that it is the most flexible numerical method
when it comes to the evaluation of mathematical expressions (e.g.,
integrals), and specifically the valuation of financial derivatives. The
flexibility comes at the cost of a relatively high computational burden,
though, since often hundreds of thousands or even millions of complex
computations have to be carried out to come up with a single value
estimate.



Random Variables
Consider, for example, the Black-Scholes-Merton setup for option pricing.
In their setup, the level of a stock index  at a future date  given a level 

 as of today is given according to Equation 12-1.

Equation 12-1. Simulating future index level in Black-Scholes-Merton setup

The variables and parameters have the following meaning:

Index level at date 

Constant riskless short rate

Constant volatility (= standard deviation of returns) of 

Standard normally distributed random variable
This financial model is parameterized and simulated as follows. The output
of this simulation code is shown in Figure 12-3:

In [12]: S0 = 100   

         r = 0.05   

         sigma = 0.25   

         T = 2.0   

         I = 10000   

         ST1 = S0 * np.exp((r - 0.5 * sigma ** 2) * T + 

                 sigma * math.sqrt(T) * npr.standard_normal(I))   

 

In [13]: plt.figure(figsize=(10, 6)) 

         plt.hist(ST1, bins=50) 

         plt.xlabel('index level') 

         plt.ylabel('frequency');



The initial index level.

The constant riskless short rate.

The constant volatility factor.

The horizon in year fractions.

The number of simulations.

The simulation itself via a vectorized expression; the discretization
scheme makes use of the npr.standard_normal() function.



Figure 12-3. Statically simulated geometric Brownian motion (via npr.standard_normal())

Figure 12-3 suggests that the distribution of the random variable as defined
in Equation 12-1 is log-normal. One could therefore also try to use the
npr.lognormal() function to directly derive the values for the random
variable. In that case, one has to provide the mean and the standard deviation
to the function:

In [14]: ST2 = S0 * npr.lognormal((r - 0.5 * sigma ** 2) * T, 

                                   sigma * math.sqrt(T), size=I)   

 

In [15]: plt.figure(figsize=(10, 6)) 

         plt.hist(ST2, bins=50) 

         plt.xlabel('index level') 

         plt.ylabel('frequency');

The simulation via a vectorized expression; the discretization scheme
makes use of the npr.lognormal() function.

The result is shown in Figure 12-4.



Figure 12-4. Statically simulated geometric Brownian motion (via npr.lognormal())

By visual inspection, Figures 12-3 and 12-4 indeed look pretty similar. This
can be verified a bit more rigorously by comparing statistical moments of the
resulting distributions. To compare the distributional characteristics of
simulation results, the scipy.stats subpackage and the helper function
print_statistics(), as defined here, prove useful:

In [16]: import scipy.stats as scs 

 

In [17]: def print_statistics(a1, a2): 

             ''' Prints selected statistics. 

 

             Parameters 

             ========== 

             a1, a2: ndarray objects 

                 results objects from simulation 

             ''' 

             sta1 = scs.describe(a1)   

             sta2 = scs.describe(a2)   

             print('%14s %14s %14s' % 

                 ('statistic', 'data set 1', 'data set 2')) 

             print(45 * "-") 

             print('%14s %14.3f %14.3f' % ('size', sta1[0], sta2[0])) 

             print('%14s %14.3f %14.3f' % ('min', sta1[1][0], sta2[1][0])) 

             print('%14s %14.3f %14.3f' % ('max', sta1[1][1], sta2[1][1])) 



             print('%14s %14.3f %14.3f' % ('mean', sta1[2], sta2[2])) 

             print('%14s %14.3f %14.3f' % ('std', np.sqrt(sta1[3]), 

                                           np.sqrt(sta2[3]))) 

             print('%14s %14.3f %14.3f' % ('skew', sta1[4], sta2[4])) 

             print('%14s %14.3f %14.3f' % ('kurtosis', sta1[5], sta2[5])) 

 

In [18]: print_statistics(ST1, ST2) 

              statistic     data set 1     data set 2 

         --------------------------------------------- 

                   size      10000.000      10000.000 

                    min         32.327         28.230 

                    max        414.825        409.110 

                   mean        110.730        110.431 

                    std         40.300         39.878 

                   skew          1.122          1.115 

               kurtosis          2.438          2.217

The scs.describe() function gives back important statistics for a data
set.

Obviously, the statistics of both simulation results are quite similar. The
differences are mainly due to what is called the sampling error in simulation.
Another error can also be introduced when discretely simulating continuous
stochastic processes — namely the discretization error, which plays no role
here due to the static nature of the simulation approach.



Stochastic Processes
Roughly speaking, a stochastic process is a sequence of random variables. In
that sense, one should expect something similar to a sequence of repeated
simulations of a random variable when simulating a process. This is mainly
true, apart from the fact that the draws are typically not independent but
rather depend on the result(s) of the previous draw(s). In general, however,
stochastic processes used in finance exhibit the Markov property, which
mainly says that tomorrow’s value of the process only depends on today’s
state of the process, and not any other more “historic” state or even the
whole path history. The process then is also called memoryless.

Geometric Brownian motion
Consider now the Black-Scholes-Merton model in its dynamic form, as
described by the stochastic differential equation (SDE) in Equation 12-2.
Here,  is a standard Brownian motion. The SDE is called a geometric
Brownian motion. The values of  are log-normally distributed and the

(marginal) returns  normally.

Equation 12-2. Stochastic differential equation in Black-Scholes-Merton setup

The SDE in Equation 12-2 can be discretized exactly by an Euler scheme.
Such a scheme is presented in Equation 12-3, with  being the fixed
discretization interval and  being a standard normally distributed random
variable.

Equation 12-3. Simulating index levels dynamically in Black-Scholes-Merton setup



As before, translation into Python and NumPy code is straightforward. The
resulting end values for the index level are log-normally distributed again, as
Figure 12-5 illustrates. The first four moments are also quite close to those
resulting from the static simulation approach:

In [19]: I = 10000   

         M = 50   

         dt = T / M   

         S = np.zeros((M + 1, I))   

         S[0] = S0   

         for t in range(1, M + 1): 

             S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + 

                     sigma * math.sqrt(dt) * npr.standard_normal(I))   

 

In [20]: plt.figure(figsize=(10, 6)) 

         plt.hist(S[-1], bins=50) 

         plt.xlabel('index level') 

         plt.ylabel('frequency');

The number of paths to be simulated.

The number of time intervals for the discretization.

The length of the time interval in year fractions.

The two-dimensional ndarray object for the index levels.

The initial values for the initial point in time .

The simulation via semivectorized expression; the loop is over the
points in time starting at  and ending at .



Figure 12-5. Dynamically simulated geometric Brownian motion at maturity

Following is a comparison of the statistics resulting from the dynamic
simulation as well as from the static simulation. Figure 12-6 shows the first
10 simulated paths:

In [21]: print_statistics(S[-1], ST2) 

              statistic     data set 1     data set 2 

         --------------------------------------------- 

                   size      10000.000      10000.000 

                    min         27.746         28.230 

                    max        382.096        409.110 

                   mean        110.423        110.431 

                    std         39.179         39.878 

                   skew          1.069          1.115 

               kurtosis          2.028          2.217 

 

In [22]: plt.figure(figsize=(10, 6)) 

         plt.plot(S[:, :10], lw=1.5) 

         plt.xlabel('time') 

         plt.ylabel('index level');



Figure 12-6. Dynamically simulated geometric Brownian motion paths

Using the dynamic simulation approach not only allows us to visualize paths
as displayed in Figure 12-6, but also to value options with
American/Bermudan exercise or options whose payoff is path-dependent.
One gets the full dynamic picture over time, so to say.

Square-root diffusion
Another important class of financial processes is mean-reverting processes,
which are used to model short rates or volatility processes, for example. A
popular and widely used model is the square-root diffusion, as proposed by
Cox, Ingersoll, and Ross (1985). Equation 12-4 provides the respective SDE.

Equation 12-4. Stochastic differential equation for square-root diffusion

The variables and parameters have the following meaning:



Process level at date 

Mean-reversion factor

Long-term mean of the process

Constant volatility parameter

Standard Brownian motion
It is well known that the values of  are chi-squared distributed. However,
as stated before, many financial models can be discretized and approximated
by using the normal distribution (i.e., a so-called Euler discretization
scheme). While the Euler scheme is exact for the geometric Brownian
motion, it is biased for the majority of other stochastic processes. Even if
there is an exact scheme available — one for the square-root diffusion will
be presented later — the use of an Euler scheme might be desirable for
numerical and/or computational reasons. Defining  and 

, Equation 12-5 presents such an Euler scheme. This
particular one is generally called full truncation in the literature (see
Hilpisch (2015) for more details and other schemes).

Equation 12-5. Euler discretization for square-root diffusion

The square-root diffusion has the convenient and realistic characteristic that
the values of  remain strictly positive. When discretizing it by an Euler



scheme, negative values cannot be excluded. That is the reason why one
works always with the positive version of the originally simulated process.
In the simulation code, one therefore needs two ndarray objects instead of
only one. Figure 12-7 shows the result of the simulation graphically as a
histogram:

In [23]: x0 = 0.05   

         kappa = 3.0  

         theta = 0.02   

         sigma = 0.1  

         I = 10000 

         M = 50 

         dt = T / M 

 

In [24]: def srd_euler(): 

             xh = np.zeros((M + 1, I)) 

             x = np.zeros_like(xh) 

             xh[0] = x0 

             x[0] = x0 

             for t in range(1, M + 1): 

                 xh[t] = (xh[t - 1] + 

                          kappa * (theta - np.maximum(xh[t - 1], 0)) * dt + 

                          sigma * np.sqrt(np.maximum(xh[t - 1], 0)) * 

                          math.sqrt(dt) * npr.standard_normal(I))   

             x = np.maximum(xh, 0) 

             return x 

         x1 = srd_euler() 

 

In [25]: plt.figure(figsize=(10, 6)) 

         plt.hist(x1[-1], bins=50) 

         plt.xlabel('value') 

         plt.ylabel('frequency');

The initial value (e.g., for a short rate).

The mean reversion factor.

The long-term mean value.

The volatility factor.



The simulation based on an Euler scheme.

Figure 12-7. Dynamically simulated square-root diffusion at maturity (Euler scheme)

Figure 12-8 then shows the first 10 simulated paths, illustrating the resulting
negative average drift (due to ) and the convergence to :

In [26]: plt.figure(figsize=(10, 6)) 

         plt.plot(x1[:, :10], lw=1.5) 

         plt.xlabel('time') 

         plt.ylabel('index level');



Figure 12-8. Dynamically simulated square-root diffusion paths (Euler scheme)

Equation 12-6 presents the exact discretization scheme for the square-root
diffusion based on the noncentral chi-square distribution  with

degrees of freedom and noncentrality parameter

Equation 12-6. Exact discretization for square-root diffusion



The Python implementation of this discretization scheme is a bit more
involved but still quite concise. Figure 12-9 shows the output at maturity of
the simulation with the exact scheme as a histogram:

In [27]: def srd_exact(): 

             x = np.zeros((M + 1, I)) 

             x[0] = x0 

             for t in range(1, M + 1): 

                 df = 4 * theta * kappa / sigma ** 2   

                 c = (sigma ** 2 * (1 - np.exp(-kappa * dt))) / (4 * kappa)   

                 nc = np.exp(-kappa * dt) / c * x[t - 1]   

                 x[t] = c * npr.noncentral_chisquare(df, nc, size=I)   

             return x 

         x2 = srd_exact() 

 

In [28]: plt.figure(figsize=(10, 6)) 

         plt.hist(x2[-1], bins=50) 

         plt.xlabel('value') 

         plt.ylabel('frequency');

Exact discretization scheme, making use of
npr.noncentral_chisquare().



Figure 12-9. Dynamically simulated square-root diffusion at maturity (exact scheme)

Figure 12-10 presents as before the first 10 simulated paths, again displaying
the negative average drift and the convergence to :

In [29]: plt.figure(figsize=(10, 6)) 

         plt.plot(x2[:, :10], lw=1.5) 

         plt.xlabel('time') 

         plt.ylabel('index level');



Figure 12-10. Dynamically simulated square-root diffusion paths (exact scheme)

Comparing the main statistics from the different approaches reveals that the
biased Euler scheme indeed performs quite well when it comes to the desired
statistical properties:

In [30]: print_statistics(x1[-1], x2[-1]) 

              statistic     data set 1     data set 2 

         --------------------------------------------- 

                   size      10000.000      10000.000 

                    min          0.003          0.005 

                    max          0.049          0.047 

                   mean          0.020          0.020 

                    std          0.006          0.006 

                   skew          0.529          0.532 

               kurtosis          0.289          0.273 

 

In [31]: I = 250000 

         %time x1 = srd_euler() 

         CPU times: user 1.62 s, sys: 184 ms, total: 1.81 s 

         Wall time: 1.08 s 

 

In [32]: %time x2 = srd_exact() 

         CPU times: user 3.29 s, sys: 39.8 ms, total: 3.33 s 

         Wall time: 1.98 s 

 

In [33]: print_statistics(x1[-1], x2[-1]) 

         x1 = 0.0; x2 = 0.0 

              statistic     data set 1     data set 2 



         --------------------------------------------- 

                   size     250000.000     250000.000 

                    min          0.002          0.003 

                    max          0.071          0.055 

                   mean          0.020          0.020 

                    std          0.006          0.006 

                   skew          0.563          0.579 

               kurtosis          0.492          0.520

However, a major difference can be observed in terms of execution speed,
since sampling from the noncentral chi-square distribution is more
computationally demanding than from the standard normal distribution. The
exact scheme takes roughly twice as much time for virtually the same results
as with the Euler scheme.

Stochastic volatility
One of the major simplifying assumptions of the Black-Scholes-Merton
model is the constant volatility. However, volatility in general is neither
constant nor deterministic — it is stochastic. Therefore, a major
advancement with regard to financial modeling was achieved in the early
1990s with the introduction of so-called stochastic volatility models. One of
the most popular models that fall into that category is that of Heston (1993),
which is presented in Equation 12-7.

Equation 12-7. Stochastic differential equations for Heston stochastic volatility model

The meaning of the variables and parameters can now be inferred easily
from the discussion of the geometric Brownian motion and the square-root
diffusion. The parameter  represents the instantaneous correlation between
the two standard Brownian motions . This allows us to account for a
stylized fact called the leverage effect, which in essence states that volatility



goes up in times of stress (declining markets) and goes down in times of a
bull market (rising markets).

Consider the following parameterization of the model. To account for the
correlation between the two stochastic processes, one needs to determine the
Cholesky decomposition of the correlation matrix:

In [34]: S0 = 100. 

         r = 0.05

         v0 = 0.1   

         kappa = 3.0 

         theta = 0.25 

         sigma = 0.1 

         rho = 0.6   

         T = 1.0 

 

In [35]: corr_mat = np.zeros((2, 2)) 

         corr_mat[0, :] = [1.0, rho] 

         corr_mat[1, :] = [rho, 1.0] 

         cho_mat = np.linalg.cholesky(corr_mat)   

 

In [36]: cho_mat   

Out[36]: array([[1. , 0. ], 

                [0.6, 0.8]])

Initial (instantaneous) volatility value.

Fixed correlation between the two Brownian motions.

Cholesky decomposition and resulting matrix.
Before the start of the simulation of the stochastic processes the whole set of
random numbers for both processes is generated, looking to use set 0 for the
index process and set 1 for the volatility process. For the volatility process
modeled by a square-root diffusion, the Euler scheme is chosen, taking into
account the correlation via the Cholesky matrix:

In [37]: M = 50 

         I = 10000 

         dt = T / M 

 

In [38]: ran_num = npr.standard_normal((2, M + 1, I))   



 

In [39]: v = np.zeros_like(ran_num[0]) 

         vh = np.zeros_like(v) 

 

In [40]: v[0] = v0 

         vh[0] = v0 

 

In [41]: for t in range(1, M + 1): 

             ran = np.dot(cho_mat, ran_num[:, t, :])   

             vh[t] = (vh[t - 1] + 

                      kappa * (theta - np.maximum(vh[t - 1], 0)) * dt + 

                      sigma * np.sqrt(np.maximum(vh[t - 1], 0)) * 

                      math.sqrt(dt) * ran[1])   

 

In [42]: v = np.maximum(vh, 0)

Generates the three-dimensional random number data set.

Picks out the relevant random number subset and transforms it via the
Cholesky matrix.

Simulates the paths based on an Euler scheme.
The simulation of the index level process also takes into account the
correlation and uses the (in this case) exact Euler scheme for the geometric
Brownian motion. Figure 12-11 shows the simulation results at maturity as a
histogram for both the index level process and the volatility process:

In [43]: S = np.zeros_like(ran_num[0]) 

         S[0] = S0 

         for t in range(1, M + 1): 

             ran = np.dot(cho_mat, ran_num[:, t, :]) 

             S[t] = S[t - 1] * np.exp((r - 0.5 * v[t]) * dt + 

                             np.sqrt(v[t]) * ran[0] * np.sqrt(dt)) 

 

In [44]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6)) 

         ax1.hist(S[-1], bins=50) 

         ax1.set_xlabel('index level') 

         ax1.set_ylabel('frequency') 

         ax2.hist(v[-1], bins=50) 

         ax2.set_xlabel('volatility');



Figure 12-11. Dynamically simulated stochastic volatility process at maturity

This illustrates another advantage of working with the Euler scheme for the
square-root diffusion: correlation is easily and consistently accounted for
since one only draws standard normally distributed random numbers. There
is no simple way of achieving the same with a mixed approach (i.e., using
Euler for the index and the noncentral chi-square-based exact approach for
the volatility process).

An inspection of the first 10 simulated paths of each process (see Figure 12-
12) shows that the volatility process is drifting positively on average and that
it, as expected, converges to :

In [45]: print_statistics(S[-1], v[-1]) 

              statistic     data set 1     data set 2 

         --------------------------------------------- 

                   size      10000.000      10000.000 

                    min         20.556          0.174 

                    max        517.798          0.328 

                   mean        107.843          0.243 

                    std         51.341          0.020 

                   skew          1.577          0.124 

               kurtosis          4.306          0.048 

 



In [46]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, 

                                        figsize=(10, 6)) 

         ax1.plot(S[:, :10], lw=1.5) 

         ax1.set_ylabel('index level') 

         ax2.plot(v[:, :10], lw=1.5) 

         ax2.set_xlabel('time') 

         ax2.set_ylabel('volatility');

Figure 12-12. Dynamically simulated stochastic volatility process paths

Having a brief look at the statistics for the maturity date for both data sets
reveals a pretty high maximum value for the index level process. In fact, this
is much higher than a geometric Brownian motion with constant volatility
could ever climb, ceteris paribus.

Jump diffusion
Stochastic volatility and the leverage effect are stylized (empirical) facts
found in a number of markets. Another important stylized fact is the
existence of jumps in asset prices and, for example, volatility. In 1976,
Merton published his jump diffusion model, enhancing the Black-Scholes-
Merton setup through a model component generating jumps with log-normal
distribution. The risk-neutral SDE is presented in Equation 12-8.



Equation 12-8. Stochastic differential equation for Merton jump diffusion model

For completeness, here is an overview of the variables’ and parameters’
meaning:

Index level at date 

Constant riskless short rate

Drift correction for jump to maintain risk neutrality

Constant volatility of 

Standard Brownian motion

Jump at date  with distribution …

…  with …

… N as the cumulative distribution function of a standard normal
random variable

Poisson process with intensity 
Equation 12-9 presents an Euler discretization for the jump diffusion where
the  are standard normally distributed and the  are Poisson distributed
with intensity .



Equation 12-9. Euler discretization for Merton jump diffusion model

Given the discretization scheme, consider the following numerical
parameterization:

In [47]: S0 = 100. 

         r = 0.05

         sigma = 0.2 

         lamb = 0.75  

         mu = -0.6   

         delta = 0.25   

         rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)   

 

In [48]: T = 1.0 

         M = 50 

         I = 10000 

         dt = T / M

The jump intensity.

The mean jump size.

The jump volatility.

The drift correction.
This time, three sets of random numbers are needed. Notice in Figure 12-13
the second peak (bimodal frequency distribution), which is due to the jumps:

In [49]: S = np.zeros((M + 1, I)) 

         S[0] = S0 

         sn1 = npr.standard_normal((M + 1, I))   

         sn2 = npr.standard_normal((M + 1, I))   

         poi = npr.poisson(lamb * dt, (M + 1, I))   

         for t in range(1, M + 1, 1): 

             S[t] = S[t - 1] * (np.exp((r - rj - 0.5 * sigma ** 2) * dt + 

                                sigma * math.sqrt(dt) * sn1[t]) + 

                                (np.exp(mu + delta * sn2[t]) - 1) * 



                                poi[t])   

             S[t] = np.maximum(S[t], 0) 

 

In [50]: plt.figure(figsize=(10, 6)) 

         plt.hist(S[-1], bins=50) 

         plt.xlabel('value') 

         plt.ylabel('frequency');

Standard normally distributed random numbers.

Poisson distributed random numbers.

Simulation based on the exact Euler scheme.

Figure 12-13. Dynamically simulated jump diffusion process at maturity

The negative jumps can also be spotted in the first 10 simulated index level
paths, as presented in Figure 12-14:



In [51]: plt.figure(figsize=(10, 6)) 

         plt.plot(S[:, :10], lw=1.5) 

         plt.xlabel('time') 

         plt.ylabel('index level');

Figure 12-14. Dynamically simulated jump diffusion process paths



Variance Reduction
Because the Python functions used so far generate pseudo-random numbers
and due to the varying sizes of the samples drawn, the resulting sets of
numbers might not exhibit statistics close enough to the expected or desired
ones. For example, one would expect a set of standard normally distributed
random numbers to show a mean of 0 and a standard deviation of 1. Let us
check what statistics different sets of random numbers exhibit. To achieve a
realistic comparison, the seed value for the random number generator is
fixed:

In [52]: print('%15s %15s' % ('Mean', 'Std. Deviation')) 

         print(31 * '-') 

         for i in range(1, 31, 2): 

             npr.seed(100) 

             sn = npr.standard_normal(i ** 2 * 10000) 

             print('%15.12f %15.12f' % (sn.mean(), sn.std())) 

                    Mean  Std. Deviation 

         ------------------------------- 

          0.001150944833  1.006296354600 

          0.002841204001  0.995987967146 

          0.001998082016  0.997701714233 

          0.001322322067  0.997771186968 

          0.000592711311  0.998388962646 

         -0.000339730751  0.998399891450 

         -0.000228109010  0.998657429396 

          0.000295768719  0.998877333340 

          0.000257107789  0.999284894532 

         -0.000357870642  0.999456401088 

         -0.000528443742  0.999617831131 

         -0.000300171536  0.999445228838 

         -0.000162924037  0.999516059328 

          0.000135778889  0.999611052522 

          0.000182006048  0.999619405229 

 

In [53]: i ** 2 * 10000 

Out[53]: 8410000

The results show that the statistics “somehow” get better the larger the
number of draws becomes.2 But they still do not match the desired ones,
even in our largest sample with more than 8,000,000 random numbers.

Fortunately, there are easy-to-implement, generic variance reduction
techniques available to improve the matching of the first two moments of
the (standard) normal distribution. The first technique is to use antithetic
variates. This approach simply draws only half the desired number of



random draws, and adds the same set of random numbers with the opposite
sign afterward.3 For example, if the random number generator (i.e., the
respective Python function) draws 0.5, then another number with value –0.5
is added to the set. By construction, the mean value of such a data set must
equal zero.

With NumPy this is concisely implemented by using the function
np.concatenate(). The following repeats the exercise from before, this
time using antithetic variates:

In [54]: sn = npr.standard_normal(int(10000 / 2)) 

         sn = np.concatenate((sn, -sn))   

 

In [55]: np.shape(sn)   

Out[55]: (10000,) 

 

In [56]: sn.mean()   

Out[56]: 2.842170943040401e-18 

 

In [57]: print('%15s %15s' % ('Mean', 'Std. Deviation')) 

         print(31 * "-") 

         for i in range(1, 31, 2): 

             npr.seed(1000) 

             sn = npr.standard_normal(i ** 2 * int(10000 / 2)) 

             sn = np.concatenate((sn, -sn)) 

             print("%15.12f %15.12f" % (sn.mean(), sn.std())) 

                    Mean  Std. Deviation 

         ------------------------------- 

          0.000000000000  1.009653753942 

         -0.000000000000  1.000413716783 

          0.000000000000  1.002925061201 

         -0.000000000000  1.000755212673 

          0.000000000000  1.001636910076 

         -0.000000000000  1.000726758438 

         -0.000000000000  1.001621265149 

          0.000000000000  1.001203722778 

         -0.000000000000  1.000556669784 

         -0.000000000000  1.000113464185 

         -0.000000000000  0.999435175324 

         -0.000000000000  0.999356961431 

         -0.000000000000  0.999641436845 

         -0.000000000000  0.999642768905 

         -0.000000000000  0.999638303451

This concatenates the two ndarray objects …



… to arrive at the desired number of random numbers.

The resulting mean value is zero (within standard floating-point
arithmetic errors).

As immediately noticed, this approach corrects the first moment perfectly
— which should not come as a surprise due to the very construction of the
data set. However, this approach does not have any influence on the second
moment, the standard deviation. Using another variance reduction
technique, called moment matching, helps correct in one step both the first
and second moments:

In [58]: sn = npr.standard_normal(10000) 

 

In [59]: sn.mean() 

Out[59]: -0.001165998295162494 

 

In [60]: sn.std() 

Out[60]: 0.991255920204605 

 

In [61]: sn_new = (sn - sn.mean()) / sn.std()   

 

In [62]: sn_new.mean() 

Out[62]: -2.3803181647963357e-17

 

In [63]: sn_new.std() 

Out[63]: 0.9999999999999999

Corrects both the first and second moment in a single step.
By subtracting the mean from every single random number and dividing
every single number by the standard deviation, this technique ensures that
the set of random numbers matches the desired first and second moments of
the standard normal distribution (almost) perfectly.

The following function utilizes the insight with regard to variance reduction
techniques and generates standard normal random numbers for process
simulation using either two, one, or no variance reduction technique(s):

In [64]: def gen_sn(M, I, anti_paths=True, mo_match=True): 

             ''' Function to generate random numbers for simulation. 

 



             Parameters 

             ========== 

             M: int 

                 number of time intervals for discretization 

             I: int 

                 number of paths to be simulated 

             anti_paths: boolean 

                 use of antithetic variates 

             mo_math: boolean 

                 use of moment matching 

             ''' 

             if anti_paths is True: 

                 sn = npr.standard_normal((M + 1, int(I / 2))) 

                 sn = np.concatenate((sn, -sn), axis=1) 

             else: 

                 sn = npr.standard_normal((M + 1, I)) 

             if mo_match is True: 

                 sn = (sn - sn.mean()) / sn.std() 

             return sn



VECTORIZATION AND SIMULATION
Vectorization with NumPy is a natural, concise, and efficient approach to implementing
Monte Carlo simulation algorithms in Python. However, using NumPy vectorization
comes with a larger memory footprint in general. For alternatives that might be equally
fast, see Chapter 10.



Valuation
One of the most important applications of Monte Carlo simulation is the
valuation of contingent claims (options, derivatives, hybrid instruments,
etc.). Simply stated, in a risk-neutral world, the value of a contingent claim
is the discounted expected payoff under the risk-neutral (martingale)
measure. This is the probability measure that makes all risk factors (stocks,
indices, etc.) drift at the riskless short rate, making the discounted processes
martingales. According to the Fundamental Theorem of Asset Pricing, the
existence of such a probability measure is equivalent to the absence of
arbitrage.

A financial option embodies the right to buy (call option) or sell (put
option) a specified financial instrument at a given maturity date (European
option), or over a specified period of time (American option), at a given
price (strike price). Let us first consider the simpler case of European
options in terms of valuation.



European Options
The payoff of a European call option on an index at maturity is given by 

, where  is the index level at maturity date 
 and  is the strike price. Given a, or in complete markets the, risk-neutral

measure for the relevant stochastic process (e.g., geometric Brownian
motion), the price of such an option is given by the formula in Equation 12-
10.

Equation 12-10. Pricing by risk-neutral expectation

Chapter 11 sketches how to numerically evaluate an integral by Monte Carlo
simulation. This approach is used in the following and applied to Equation
12-10. Equation 12-11 provides the respective Monte Carlo estimator for the
European option, where  is the Tth simulated index level at maturity.

Equation 12-11. Risk-neutral Monte Carlo estimator

Consider now the following parameterization for the geometric Brownian
motion and the valuation function gbm_mcs_stat(), taking as a parameter
only the strike price. Here, only the index level at maturity is simulated. As a
reference, consider the case with a strike price of K = 105:

In [65]: S0 = 100. 

         r = 0.05



         sigma = 0.25 

         T = 1.0 

         I = 50000 

 

In [66]: def gbm_mcs_stat(K): 

             ''' Valuation of European call option in Black-Scholes-Merton 

             by Monte Carlo simulation (of index level at maturity) 

 

             Parameters 

             ========== 

             K: float 

                 (positive) strike price of the option 

 

             Returns 

             ======= 

             C0: float 

                 estimated present value of European call option 

             ''' 

             sn = gen_sn(1, I) 

             # simulate index level at maturity 

             ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T 

                          + sigma * math.sqrt(T) * sn[1]) 

             # calculate payoff at maturity 

             hT = np.maximum(ST - K, 0) 

             # calculate MCS estimator 

             C0 = math.exp(-r * T) * np.mean(hT)

             return C0 

 

In [67]: gbm_mcs_stat(K=105.)   

Out[67]: 10.044221852841922

The Monte Carlo estimator value for the European call option.
Next, consider the dynamic simulation approach and allow for European put
options in addition to the call option. The function gbm_mcs_dyna()
implements the algorithm. The code also compares option price estimates for
a call and a put stroke at the same level:

In [68]: M = 50   

 

In [69]: def gbm_mcs_dyna(K, option='call'): 

             ''' Valuation of European options in Black-Scholes-Merton 

             by Monte Carlo simulation (of index level paths) 

 

             Parameters 

             ========== 

             K: float 

                 (positive) strike price of the option 

             option : string 

                 type of the option to be valued ('call', 'put') 

 

             Returns 

             ======= 



             C0: float 

                 estimated present value of European call option 

             ''' 

             dt = T / M 

             # simulation of index level paths 

             S = np.zeros((M + 1, I)) 

             S[0] = S0 

             sn = gen_sn(M, I) 

             for t in range(1, M + 1): 

                 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt 

                         + sigma * math.sqrt(dt) * sn[t]) 

             # case-based calculation of payoff 

             if option == 'call': 

                 hT = np.maximum(S[-1] - K, 0) 

             else: 

                 hT = np.maximum(K - S[-1], 0) 

             # calculation of MCS estimator 

             C0 = math.exp(-r * T) * np.mean(hT)

             return C0 

 

In [70]: gbm_mcs_dyna(K=110., option='call')   

Out[70]: 7.950008525028434 

 

In [71]: gbm_mcs_dyna(K=110., option='put')   

Out[71]: 12.629934942682004

The number of time intervals for the discretization.

The Monte Carlo estimator value for the European call option.

The Monte Carlo estimator value for the European put option.
The question is how well these simulation-based valuation approaches
perform relative to the benchmark value from the Black-Scholes-Merton
valuation formula. To find out, the following code generates respective
option values/estimates for a range of strike prices, using the analytical
option pricing formula for European calls found in the module
bsm_functions.py (see “Python Script”).

First, we compare the results from the static simulation approach with
precise analytical values:

In [72]: from bsm_functions import bsm_call_value 

 

In [73]: stat_res = []   



         dyna_res = []   

         anal_res = []   

         k_list = np.arange(80., 120.1, 5.)   

         np.random.seed(100) 

 

In [74]: for K in k_list: 

             stat_res.append(gbm_mcs_stat(K))  

             dyna_res.append(gbm_mcs_dyna(K))  

             anal_res.append(bsm_call_value(S0, K, T, r, sigma))   

 

In [75]: stat_res = np.array(stat_res)   

         dyna_res = np.array(dyna_res)   

         anal_res = np.array(anal_res)  

Instantiates empty list objects to collect the results.

Creates an ndarray object containing the range of strike prices.

Simulates/calculates and collects the option values for all strike prices.

Transforms the list objects to ndarray objects.

Figure 12-15 shows the results. All valuation differences are smaller than
1% absolutely. There are both negative and positive value differences:

In [76]: plt.figure(figsize=(10, 6)) 

         fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6)) 

         ax1.plot(k_list, anal_res, 'b', label='analytical') 

         ax1.plot(k_list, stat_res, 'ro', label='static') 

         ax1.set_ylabel('European call option value') 

         ax1.legend(loc=0) 

         ax1.set_ylim(bottom=0) 

         wi = 1.0

         ax2.bar(k_list - wi / 2, (anal_res - stat_res) / anal_res * 100, wi) 

         ax2.set_xlabel('strike') 

         ax2.set_ylabel('difference in %') 

         ax2.set_xlim(left=75, right=125); 

Out[76]: <Figure size 720x432 with 0 Axes>



Figure 12-15. Analytical option values vs. Monte Carlo estimators (static simulation)

A similar picture emerges for the dynamic simulation and valuation
approach, whose results are reported in Figure 12-16. Again, all valuation
differences are smaller than 1% absolutely, with both positive and negative
deviations. As a general rule, the quality of the Monte Carlo estimator can be
controlled for by adjusting the number of time intervals M used and/or the
number of paths I simulated:

In [77]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6)) 

         ax1.plot(k_list, anal_res, 'b', label='analytical') 

         ax1.plot(k_list, dyna_res, 'ro', label='dynamic') 

         ax1.set_ylabel('European call option value') 

         ax1.legend(loc=0) 

         ax1.set_ylim(bottom=0) 

         wi = 1.0

         ax2.bar(k_list - wi / 2, (anal_res - dyna_res) / anal_res * 100, wi) 

         ax2.set_xlabel('strike') 

         ax2.set_ylabel('difference in %') 

         ax2.set_xlim(left=75, right=125);



Figure 12-16. Analytical option values vs. Monte Carlo estimators (dynamic simulation)



American Options
The valuation of American options is more involved compared to European
options. In this case, an optimal stopping problem has to be solved to come
up with a fair value of the option. Equation 12-12 formulates the valuation of
an American option as such a problem. The problem formulation is already
based on a discrete time grid for use with numerical simulation. In a sense, it
is therefore more correct to speak of an option value given Bermudan
exercise. For the time interval converging to zero length, the value of the
Bermudan option converges to the one of the American option.

Equation 12-12. American option prices as optimal stopping problem

The algorithm described in the following is called Least-Squares Monte
Carlo (LSM) and is from the paper by Longstaff and Schwartz (2001). It can
be shown that the value of an American (Bermudan) option at any given date
 is given as , where 

 is the so-called continuation value of
the option given an index level of .

Consider now that we have simulated  paths of the index level over 

time intervals of equal size . Define  to be the
simulated continuation value for path  at time . We cannot use this number
directly because it would imply perfect foresight. However, we can use the
cross section of all such simulated continuation values to estimate the
(expected) continuation value by least-squares regression.

Given a set of basis functions , the continuation value

is then given by the regression estimate , where the optimal



regression parameters  are the solution of the least-squares problem stated
in Equation 12-13.

Equation 12-13. Least-squares regression for American option valuation

The function gbm_mcs_amer() implements the LSM algorithm for both
American call and put options:4

In [78]: def gbm_mcs_amer(K, option='call'): 

             ''' Valuation of American option in Black-Scholes-Merton 

             by Monte Carlo simulation by LSM algorithm 

 

             Parameters 

             ========== 

             K : float 

                 (positive) strike price of the option 

             option : string 

                 type of the option to be valued ('call', 'put') 

 

             Returns 

             ======= 

             C0 : float 

                 estimated present value of European call option 

             ''' 

             dt = T / M 

             df = math.exp(-r * dt) 

             # simulation of index levels 

             S = np.zeros((M + 1, I)) 

             S[0] = S0 

             sn = gen_sn(M, I) 

             for t in range(1, M + 1): 

                 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt

                         + sigma * math.sqrt(dt) * sn[t]) 

             # case based calculation of payoff 

             if option == 'call': 

                 h = np.maximum(S - K, 0) 

             else: 

                 h = np.maximum(K - S, 0) 

             # LSM algorithm 

             V = np.copy(h) 

             for t in range(M - 1, 0, -1): 

                 reg = np.polyfit(S[t], V[t + 1] * df, 7) 

                 C = np.polyval(reg, S[t]) 

                 V[t] = np.where(C > h[t], V[t + 1] * df, h[t]) 



             # MCS estimator 

             C0 = df * np.mean(V[1]) 

             return C0 

 

In [79]: gbm_mcs_amer(110., option='call') 

Out[79]: 7.721705606305352 

 

In [80]: gbm_mcs_amer(110., option='put') 

Out[80]: 13.609997625418051

The European value of an option represents a lower bound to the American
option’s value. The difference is generally called the early exercise premium.
What follows compares European and American option values for the same
range of strikes as before to estimate the early exercise premium, this time
with puts:5

In [81]: euro_res = [] 

         amer_res = [] 

 

In [82]: k_list = np.arange(80., 120.1, 5.) 

 

In [83]: for K in k_list: 

             euro_res.append(gbm_mcs_dyna(K, 'put'))

             amer_res.append(gbm_mcs_amer(K, 'put'))

 

In [84]: euro_res = np.array(euro_res) 

         amer_res = np.array(amer_res)

Figure 12-17 shows that for the range of strikes chosen the early exercise
premium can rise to up to 10%:

In [85]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6)) 

         ax1.plot(k_list, euro_res, 'b', label='European put') 

         ax1.plot(k_list, amer_res, 'ro', label='American put') 

         ax1.set_ylabel('call option value') 

         ax1.legend(loc=0) 

         wi = 1.0

         ax2.bar(k_list - wi / 2, (amer_res - euro_res) / euro_res * 100, wi) 

         ax2.set_xlabel('strike') 

         ax2.set_ylabel('early exercise premium in %') 

         ax2.set_xlim(left=75, right=125);



Figure 12-17. European vs. American Monte Carlo estimators



Risk Measures
In addition to valuation, risk management is another important application
area of stochastic methods and simulation. This section illustrates the
calculation/estimation of two of the most common risk measures applied
today in the finance industry.



Value-at-Risk
Value-at-risk (VaR) is one of the most widely used risk measures, and a
much debated one. Loved by practitioners for its intuitive appeal, it is widely
discussed and criticized by many — mainly on theoretical grounds, with
regard to its limited ability to capture what is called tail risk (more on this
shortly). In words, VaR is a number denoted in currency units (e.g., USD,
EUR, JPY) indicating a loss (of a portfolio, a single position, etc.) that is not
exceeded with some confidence level (probability) over a given period of
time.

Consider a stock position, worth 1 million USD today, that has a VaR of
50,000 USD at a confidence level of 99% over a time period of 30 days (one
month). This VaR figure says that with a probability of 99% (i.e., in 99 out
of 100 cases), the loss to be expected over a period of 30 days will not
exceed 50,000 USD. However, it does not say anything about the size of the
loss once a loss beyond 50,000 USD occurs — i.e., if the maximum loss is
100,000 or 500,000 USD what the probability of such a specific “higher than
VaR loss” is. All it says is that there is a 1% probability that a loss of a
minimum of 50,000 USD or higher will occur.

Assume the Black-Scholes-Merton setup and consider the following
parameterization and simulation of index levels at a future date 

 (a period of 30 days). The estimation of VaR figures
requires the simulated absolute profits and losses relative to the value of the
position today in a sorted manner, i.e., from the severest loss to the largest
profit. Figure 12-18 shows the histogram of the simulated absolute
performance values:

In [86]: S0 = 100 

         r = 0.05

         sigma = 0.25 

         T = 30 / 365. 

         I = 10000 

 

In [87]: ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + 

                      sigma * np.sqrt(T) * npr.standard_normal(I))   

 

In [88]: R_gbm = np.sort(ST - S0)   

 



In [89]: plt.figure(figsize=(10, 6)) 

         plt.hist(R_gbm, bins=50) 

         plt.xlabel('absolute return') 

         plt.ylabel('frequency');

Simulates end-of-period values for the geometric Brownian motion.

Calculates the absolute profits and losses per simulation run and sorts
the values.

Figure 12-18. Absolute profits and losses from simulation (geometric Brownian motion)

Having the ndarray object with the sorted results, the
scs.scoreatpercentile() function already does the trick. All one has to do
is to define the percentiles of interest (in percent values). In the list object
percs, 0.1 translates into a confidence level of 100% – 0.1% = 99.9%. The
30-day VaR given a confidence level of 99.9% in this case is 18.8 currency
units, while it is 8.5 at the 90% confidence level:



In [91]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0] 

         var = scs.scoreatpercentile(R_gbm, percs) 

         print('%16s %16s' % ('Confidence Level', 'Value-at-Risk')) 

         print(33 * '-') 

         for pair in zip(percs, var): 

             print('%16.2f %16.3f' % (100 - pair[0], -pair[1])) 

         Confidence Level    Value-at-Risk

         --------------------------------- 

                    99.99           21.814 

                    99.90           18.837 

                    99.00           15.230 

                    97.50           12.816 

                    95.00           10.824 

                    90.00            8.504

As a second example, recall the jump diffusion setup from Merton, which is
simulated dynamically. In this case, with the jump component having a
negative mean, one sees something like a bimodal distribution for the
simulated profits/losses in Figure 12-19. From a normal distribution point of
view, one sees a pronounced left fat tail:

In [92]: dt = 30. / 365 / M 

         rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1) 

 

In [93]: S = np.zeros((M + 1, I))

         S[0] = S0 

         sn1 = npr.standard_normal((M + 1, I)) 

         sn2 = npr.standard_normal((M + 1, I)) 

         poi = npr.poisson(lamb * dt, (M + 1, I)) 

         for t in range(1, M + 1, 1): 

             S[t] = S[t - 1] * (np.exp((r - rj - 0.5 * sigma ** 2) * dt 

                                + sigma * math.sqrt(dt) * sn1[t]) 

                                + (np.exp(mu + delta * sn2[t]) - 1) 

                                * poi[t]) 

             S[t] = np.maximum(S[t], 0) 

 

In [94]: R_jd = np.sort(S[-1] - S0) 

 

In [95]: plt.figure(figsize=(10, 6)) 

         plt.hist(R_jd, bins=50) 

         plt.xlabel('absolute return') 

         plt.ylabel('frequency');



Figure 12-19. Absolute profits and losses from simulation (jump diffusion)

For this process and parameterization, the VaR over 30 days at the 90% level
is almost identical as with the geometric Brownian motion, while it is more
than three times as high at the 99.9% level (70 vs. 18.8 currency units):

In [96]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0] 

         var = scs.scoreatpercentile(R_jd, percs) 

         print('%16s %16s' % ('Confidence Level', 'Value-at-Risk')) 

         print(33 * '-') 

         for pair in zip(percs, var): 

             print('%16.2f %16.3f' % (100 - pair[0], -pair[1])) 

         Confidence Level    Value-at-Risk

         --------------------------------- 

                    99.99           76.520 

                    99.90           69.396 

                    99.00           55.974 

                    97.50           46.405 

                    95.00           24.198 

                    90.00            8.836

This illustrates the problem of capturing the tail risk so often encountered in
financial markets by the standard VaR measure.



To further illustrate the point, Figure 12-20 lastly shows the VaR measures
for both cases in direct comparison graphically. As the plot reveals, the VaR
measures behave completely differently given a range of typical confidence
levels:

In [97]: percs = list(np.arange(0.0, 10.1, 0.1)) 

         gbm_var = scs.scoreatpercentile(R_gbm, percs) 

         jd_var = scs.scoreatpercentile(R_jd, percs) 

 

In [98]: plt.figure(figsize=(10, 6)) 

         plt.plot(percs, gbm_var, 'b', lw=1.5, label='GBM') 

         plt.plot(percs, jd_var, 'r', lw=1.5, label='JD') 

         plt.legend(loc=4) 

         plt.xlabel('100 - confidence level [%]') 

         plt.ylabel('value-at-risk') 

         plt.ylim(ymax=0.0);

Figure 12-20. Value-at-risk for geometric Brownian motion and jump diffusion



Credit Valuation Adjustments
Other important risk measures are the credit value-at-risk (CVaR) and the
credit valuation adjustment (CVA), which is derived from the CVaR.
Roughly speaking, CVaR is a measure for the risk resulting from the
possibility that a counterparty might not be able to honor its obligations —
for example, if the counterparty goes bankrupt. In such a case there are two
main assumptions to be made: the probability of default and the (average)
loss level.
To make it specific, consider again the benchmark setup of Black-Scholes-
Merton with the parameterization in the following code. In the simplest case,
one considers a fixed (average) loss level L and a fixed probability p of
default (per year) of a counterparty. Using the Poisson distribution, default
scenarios are generated as follows, taking into account that a default can
only occur once:

In [99]: S0 = 100. 

         r = 0.05

         sigma = 0.2 

         T = 1. 

         I = 100000 

 

In [100]: ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T 

                       + sigma * np.sqrt(T) * npr.standard_normal(I)) 

 

In [101]: L = 0.5   

 

In [102]: p = 0.01   

 

In [103]: D = npr.poisson(p * T, I)   

 

In [104]: D = np.where(D > 1, 1, D)  

Defines the loss level.

Defines the probability of default.



Simulates default events.

Limits defaults to one such event.
Without default, the risk-neutral value of the future index level should be
equal to the current value of the asset today (up to differences resulting from
numerical errors). The CVaR and the present value of the asset, adjusted for
the credit risk, are given as follows:

In [105]: math.exp(-r * T) * np.mean(ST)   

Out[105]: 99.94767178982691

 

In [106]: CVaR = math.exp(-r * T) * np.mean(L * D * ST)   

          CVaR   

Out[106]: 0.4883560258963962 

 

In [107]: S0_CVA = math.exp(-r * T) * np.mean((1 - L * D) * ST)   

          S0_CVA   

Out[107]: 99.45931576393053

 

In [108]: S0_adj = S0 - CVaR   

          S0_adj   

Out[108]: 99.5116439741036

Discounted average simulated value of the asset at .

CVaR as the discounted average of the future losses in the case of a
default.

Discounted average simulated value of the asset at T, adjusted for the
simulated losses from default.

Current price of the asset adjusted by the simulated CVaR.
In this particular simulation example, one observes roughly 1,000 losses due
to credit risk, which is to be expected given the assumed default probability
of 1% and 100,000 simulated paths. Figure 12-21 shows the complete



frequency distribution of the losses due to a default. Of course, in the large
majority of cases (i.e., in about 99,000 of the 100,000 cases) there is no loss
to observe:

In [109]: np.count_nonzero(L * D * ST)   

Out[109]: 978 

 

In [110]: plt.figure(figsize=(10, 6)) 

          plt.hist(L * D * ST, bins=50) 

          plt.xlabel('loss') 

          plt.ylabel('frequency') 

          plt.ylim(ymax=175);

Number of default events and therewith loss events.

Figure 12-21. Losses due to risk-neutrally expected default (stock)

Consider now the case of a European call option. Its value is about 10.4
currency units at a strike of 100. The CVaR is about 5 cents given the same
assumptions with regard to probability of default and loss level:



In [111]: K = 100. 

          hT = np.maximum(ST - K, 0) 

 

In [112]: C0 = math.exp(-r * T) * np.mean(hT)   

          C0   

Out[112]: 10.396916492839354 

 

In [113]: CVaR = math.exp(-r * T) * np.mean(L * D * hT)   

          CVaR   

Out[113]: 0.05159099858923533 

 

In [114]: C0_CVA = math.exp(-r * T) * np.mean((1 - L * D) * hT)   

          C0_CVA   

Out[114]: 10.34532549425012

The Monte Carlo estimator value for the European call option.

The CVaR as the discounted average of the future losses in the case of a
default.

The Monte Carlo estimator value for the European call option, adjusted
for the simulated losses from default.

Compared to the case of a regular asset, the option case has somewhat
different characteristics. One only sees a little more than 500 losses due to a
default, although there are again 1,000 defaults in total. This results from the
fact that the payoff of the option at maturity has a high probability of being
zero. Figure 12-22 shows that the CVaR for the option has quite a different
frequency distribution compared to the regular asset case:

In [115]: np.count_nonzero(L * D * hT)   

Out[115]: 538 

 

In [116]: np.count_nonzero(D)   

Out[116]: 978 

 

In [117]: I - np.count_nonzero(hT)   

Out[117]: 44123 

 

In [118]: plt.figure(figsize=(10, 6)) 

          plt.hist(L * D * hT, bins=50) 

          plt.xlabel('loss') 

          plt.ylabel('frequency') 

          plt.ylim(ymax=350);



The number of losses due to default.

The number of defaults.

The number of cases for which the option expires worthless.

Figure 12-22. Losses due to risk-neutrally expected default (call option)



Python Script
The following presents an implementation of central functions related to the
Black-Scholes-Merton model for the analytical pricing of European (call)
options. For details of the model, see Black and Scholes (1973) as well as
Merton (1973). See Appendix B for an alternative implementation based on
a Python class.

# 

# Valuation of European call options 

# in Black-Scholes-Merton model 

# incl. vega function and implied volatility estimation 

# bsm_functions.py 

# 

# (c) Dr. Yves J. Hilpisch 

# Python for Finance, 2nd ed. 

# 

 

 

def bsm_call_value(S0, K, T, r, sigma): 

    ''' Valuation of European call option in BSM model. 

    Analytical formula. 

 

    Parameters 

    ========== 

    S0: float 

        initial stock/index level 

    K: float 

        strike price 

    T: float 

        maturity date (in year fractions) 

    r: float 

        constant risk-free short rate 

    sigma: float 

        volatility factor in diffusion term 

 

    Returns 

    ======= 

    value: float 

        present value of the European call option 

    ''' 

    from math import log, sqrt, exp 

    from scipy import stats 

 

    S0 = float(S0) 

    d1 = (log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * sqrt(T)) 

    d2 = (log(S0 / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * sqrt(T)) 

    # stats.norm.cdf --> cumulative distribution function 

    #                    for normal distribution 

    value = (S0 * stats.norm.cdf(d1, 0.0, 1.0) -

             K * exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0)) 

    return value 

 



 

def bsm_vega(S0, K, T, r, sigma): 

    ''' Vega of European option in BSM model. 

 

    Parameters 

    ========== 

    S0: float 

        initial stock/index level 

    K: float 

        strike price 

    T: float 

        maturity date (in year fractions) 

    r: float 

        constant risk-free short rate 

    sigma: float 

        volatility factor in diffusion term 

 

    Returns 

    ======= 

    vega: float 

        partial derivative of BSM formula with respect 

        to sigma, i.e. vega 

 

    ''' 

    from math import log, sqrt 

    from scipy import stats 

 

    S0 = float(S0) 

    d1 = (log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * sqrt(T)) 

    vega = S0 * stats.norm.pdf(d1, 0.0, 1.0) * sqrt(T) 

    return vega 

 

# Implied volatility function 

 

 

def bsm_call_imp_vol(S0, K, T, r, C0, sigma_est, it=100): 

    ''' Implied volatility of European call option in BSM model. 

 

    Parameters 

    ========== 

    S0: float 

        initial stock/index level 

    K: float 

        strike price 

    T: float 

        maturity date (in year fractions) 

    r: float 

        constant risk-free short rate 

    sigma_est: float 

        estimate of impl. volatility 

    it: integer 

        number of iterations 

 

    Returns 

    ======= 

    simga_est: float 

        numerically estimated implied volatility 

    ''' 

    for i in range(it): 

        sigma_est -= ((bsm_call_value(S0, K, T, r, sigma_est) - C0) / 



                      bsm_vega(S0, K, T, r, sigma_est)) 

    return sigma_est



Conclusion
This chapter deals with methods and techniques important to the application
of Monte Carlo simulation in finance. In particular, it first shows how to
generate pseudo-random numbers based on different distribution laws. It
proceeds with the simulation of random variables and stochastic processes,
which is important in many financial areas. Two application areas are
discussed in some depth in this chapter: valuation of options with European
and American exercise and the estimation of risk measures like value-at-
risk and credit valuation adjustments.

The chapter illustrates that Python in combination with NumPy is well suited
to implementing even such computationally demanding tasks as the
valuation of American options by Monte Carlo simulation. This is mainly
due to the fact that the majority of functions and classes of NumPy are
implemented in C, which leads to considerable speed advantages in general
over pure Python code. A further benefit is the compactness and readability
of the resulting code due to vectorized operations.
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Black, Fischer, and Myron Scholes (1973). “The Pricing of Options
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Merton, Robert (1976). “Option Pricing When the Underlying Stock
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The following books cover the topics of this chapter in more depth
(however, the first one does not cover technical implementation details):

Glasserman, Paul (2004). Monte Carlo Methods in Financial
Engineering. New York: Springer.

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.
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It took until the turn of the century for an efficient method to value
American options by Monte Carlo simulation to finally be published:

Longstaff, Francis, and Eduardo Schwartz (2001). “Valuing American
Options by Simulation: A Simple Least Squares Approach.” Review of
Financial Studies, Vol. 14, No. 1, pp. 113–147.

A broad and in-depth treatment of credit risk is provided in:
Duffie, Darrell, and Kenneth Singleton (2003). Credit Risk — Pricing,
Measurement, and Management. Princeton, NJ: Princeton University
Press.

For simplicity, we will speak of random numbers knowing that all numbers used will be pseudo-
random.

The approach here is inspired by the Law of Large Numbers.

The described method works for symmetric median 0 random variables only, like standard
normally distributed random variables, which are almost exclusively used throughout.

For algorithmic details, refer to Hilpisch (2015).

Since no dividend payments are assumed (having an index in mind), there generally is no early
exercise premium for call options (i.e., no incentive to exercise the option early).
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Chapter 13. Statistics

I can prove anything by statistics except the truth.
George Canning

Statistics is a vast field, but the tools and results it provides have become
indispensable for finance. This explains the popularity of domain-specific
languages like R in the finance industry. The more elaborate and complex
statistical models become, the more important it is to have available easy-
to-use and high-performing computational solutions.

A single chapter in a book like this one cannot do justice to the richness and
depth of the field of statistics. Therefore, the approach — as in many other
chapters — is to focus on selected topics that seem of importance or that
provide a good starting point when it comes to the use of Python for the
particular tasks at hand. The chapter has four focal points:

“Normality Tests”
A large number of important financial models, like modern or mean-
variance portfolio theory (MPT) and the capital asset pricing model
(CAPM), rest on the assumption that returns of securities are normally
distributed. Therefore, this chapter presents approaches to test a given
time series for normality of returns.

“Portfolio Optimization”
MPT can be considered one of the biggest successes of statistics in
finance. Starting in the early 1950s with the work of pioneer Harry
Markowitz, this theory began to replace people’s reliance on judgment
and experience with rigorous mathematical and statistical methods
when it comes to the investment of money in financial markets. In that
sense, it is maybe the first real quantitative model and approach in
finance.

“Bayesian Statistics”

https://www.r-project.org/


On a conceptual level, Bayesian statistics introduces the notion of
beliefs of agents and the updating of beliefs to statistics. When it
comes to linear regression, for example, this might take the form of
having a statistical distribution for regression parameters instead of
single point estimates (e.g., for the intercept and slope of the
regression line). Nowadays, Bayesian methods are widely used in
finance, which is why this section illustrates Bayesian methods based
on some examples.

“Machine Learning”
Machine learning (or statistical learning) is based on advanced
statistical methods and is considered a subdiscipline of artificial
intelligence (AI). Like statistics itself, machine learning offers a rich
set of approaches and models to learn from data sets and create
predictions based on what is learned. Different algorithms of learning
are distinguished, such as those for supervised learning or
unsupervised learning. The types of problems solved by the algorithms
differ as well, such as estimation or classification. The examples
presented in this chapter fall in the category of supervised learning for
classification.

Many aspects in this chapter relate to date and/or time information. Refer to
Appendix A for an overview of handling such data with Python, NumPy, and
pandas.



Normality Tests
The normal distribution can be considered the most important distribution
in finance and one of the major statistical building blocks of financial
theory. Among others, the following cornerstones of financial theory rest to
a large extent on the assumption that returns of a financial instrument are
normally distributed:1

Portfolio theory
When stock returns are normally distributed, optimal portfolio choice
can be cast into a setting where only the (expected) mean return and
the variance of the returns (or the volatility) as well as the covariances
between different stocks are relevant for an investment decision (i.e.,
an optimal portfolio composition).

Capital asset pricing model
Again, when stock returns are normally distributed, prices of single
stocks can be elegantly expressed in linear relationship to a broad
market index; the relationship is generally expressed by a measure for
the co-movement of a single stock with the market index called beta or
β.

Efficient markets hypothesis
An efficient market is a market where prices reflect all available
information, where “all” can be defined more narrowly or more widely
(e.g., as in “all publicly available” information vs. including also “only
privately available” information). If this hypothesis holds true, then
stock prices fluctuate randomly and returns are normally distributed.

Option pricing theory
Brownian motion is the benchmark model for the modeling of random
price movements of financial instruments; the famous Black-Scholes-
Merton option pricing formula uses a geometric Brownian motion as
the model for a stock’s random price fluctuations over time, leading to
log-normally distributed prices and normally distributed returns.



This by far nonexhaustive list underpins the importance of the normality
assumption in finance.



Benchmark Case
To set the stage for further analyses, the analysis starts with the geometric
Brownian motion as one of the canonical stochastic processes used in
financial modeling. The following can be said about the characteristics of
paths from a geometric Brownian motion S:

Normal log returns

Log returns  between two times 0 < s < t are
normally distributed.

Log-normal values
At any time t > 0, the values  are log-normally distributed.

For what follows, the plotting setup is taken care of first. Then a number of
Python packages, including scipy.stats and statsmodels.api, are
imported:

In [1]: import math 

        import numpy as np 

        import scipy.stats as scs 

        import statsmodels.api as sm 

        from pylab import mpl, plt 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

The following uses the function gen_paths() to generate sample Monte
Carlo paths for the geometric Brownian motion (see also Chapter 12):

In [3]: def gen_paths(S0, r, sigma, T, M, I): 

            ''' Generate Monte Carlo paths for geometric Brownian motion. 

 

            Parameters 

            ========== 

            S0: float 

                initial stock/index value 

            r: float 

                constant short rate 

            sigma: float 

                constant volatility 

            T: float 

                final time horizon 

            M: int 

http://docs.scipy.org/doc/scipy/reference/stats.html
http://statsmodels.sourceforge.net/stable/


                number of time steps/intervals 

            I: int 

                number of paths to be simulated 

 

            Returns 

            ======= 

            paths: ndarray, shape (M + 1, I) 

                simulated paths given the parameters 

            ''' 

            dt = T / M 

            paths = np.zeros((M + 1, I)) 

            paths[0] = S0 

            for t in range(1, M + 1): 

                rand = np.random.standard_normal(I) 

                rand = (rand - rand.mean()) / rand.std()   

                paths[t] = paths[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt + 

                                                 sigma * math.sqrt(dt) * rand)   

            return paths

Matching first and second moment.

Vectorized Euler discretization of geometric Brownian motion.
The simulation is based on the parameterization for the Monte Carlo
simulation as shown here, generating, in combination with the function
gen_paths(), 250,000 paths with 50 time steps each. Figure 13-1 shows the
first 10 simulated paths:

In [4]: S0 = 100.   

        r = 0.05   

        sigma = 0.2   

        T = 1.0  

        M = 50   

        I = 250000   

        np.random.seed(1000) 

 

In [5]: paths = gen_paths(S0, r, sigma, T, M, I) 

 

In [6]: S0 * math.exp(r * T)   

Out[6]: 105.12710963760242 

 

In [7]: paths[-1].mean()   

Out[7]: 105.12645392478755 

 

In [8]: plt.figure(figsize=(10, 6)) 

        plt.plot(paths[:, :10]) 

        plt.xlabel('time steps')

        plt.ylabel('index level');



Initial value for simulated processes.

Constant short rate.

Constant volatility factor.

Time horizon in year fractions.

Number of time intervals.

Number of simulated processes.

Expected value and average simulated value.



Figure 13-1. Ten simulated paths of geometric Brownian motion

The main interest is in the distribution of the log returns. To this end, an
ndarray object with all the log returns is created based on the simulated
paths. Here, a single simulated path and the resulting log returns are shown:

In [9]: paths[:, 0].round(4) 

Out[9]: array([100.    ,  97.821 ,  98.5573, 106.1546, 105.899 ,  99.8363, 

               100.0145, 102.6589, 105.6643, 107.1107, 108.7943, 108.2449, 

               106.4105, 101.0575, 102.0197, 102.6052, 109.6419, 109.5725, 

               112.9766, 113.0225, 112.5476, 114.5585, 109.942 , 112.6271, 

               112.7502, 116.3453, 115.0443, 113.9586, 115.8831, 117.3705, 

               117.9185, 110.5539, 109.9687, 104.9957, 108.0679, 105.7822, 

               105.1585, 104.3304, 108.4387, 105.5963, 108.866 , 108.3284, 

               107.0077, 106.0034, 104.3964, 101.0637,  98.3776,  97.135 , 

                95.4254,  96.4271,  96.3386]) 

 

In [10]: log_returns = np.log(paths[1:] / paths[:-1])

 

In [11]: log_returns[:, 0].round(4) 

Out[11]: array([-0.022 ,  0.0075,  0.0743, -0.0024, -0.059 ,  0.0018,  0.0261,

                 0.0289,  0.0136,  0.0156, -0.0051, -0.0171, -0.0516,  0.0095, 

                 0.0057,  0.0663, -0.0006,  0.0306,  0.0004, -0.0042,  0.0177, 

                -0.0411,  0.0241,  0.0011,  0.0314, -0.0112, -0.0095,  0.0167, 

                 0.0128,  0.0047, -0.0645, -0.0053, -0.0463,  0.0288, -0.0214, 

                -0.0059, -0.0079,  0.0386, -0.0266,  0.0305, -0.0049, -0.0123, 

                -0.0094, -0.0153, -0.0324, -0.0269, -0.0127, -0.0178,  0.0104, 

                -0.0009])



This is something one might experience in financial markets as well: days
when one makes a positive return on an investment and other days when one
is losing money relative to the most recent wealth position.

The function print_statistics() is a wrapper function for the
scs.describe() function from the scipy.stats subpackage. It mainly
generates a better (human-)readable output for such statistics as the mean,
the skewness, or the kurtosis of a given (historical or simulated) data set:

In [13]: def print_statistics(array): 

             ''' Prints selected statistics. 

 

             Parameters 

             ========== 

             array: ndarray 

                 object to generate statistics on 

             ''' 

             sta = scs.describe(array) 

             print('%14s %15s' % ('statistic', 'value')) 

             print(30 * '-') 

             print('%14s %15.5f' % ('size', sta[0])) 

             print('%14s %15.5f' % ('min', sta[1][0])) 

             print('%14s %15.5f' % ('max', sta[1][1])) 

             print('%14s %15.5f' % ('mean', sta[2])) 

             print('%14s %15.5f' % ('std', np.sqrt(sta[3]))) 

             print('%14s %15.5f' % ('skew', sta[4])) 

             print('%14s %15.5f' % ('kurtosis', sta[5])) 

 

In [14]: print_statistics(log_returns.flatten()) 

              statistic           value 

         ------------------------------ 

                   size  12500000.00000 

                    min        -0.15664 

                    max         0.15371 

                   mean         0.00060 

                    std         0.02828 

                   skew         0.00055 

               kurtosis         0.00085 

 

In [15]: log_returns.mean() * M + 0.5 * sigma ** 2   

Out[15]: 0.05000000000000005 

 

In [16]: log_returns.std() * math.sqrt(M)   

Out[16]: 0.20000000000000015

Annualized mean log return after correction for the Itô term.2

Annualized volatility; i.e., annualized standard deviation of log returns.



The data set in this case consists of 12,500,000 data points with the values
mainly lying between +/– 0.15. One would expect annualized values of 0.05
for the mean return (after correcting for the Itô term) and 0.2 for the standard
deviation (volatility). The annualized values almost match these values
perfectly (multiply the mean value by 50 and correct it for the Itô term;
multiply the standard deviation by ). One reason for the good match is
the use of moment matching for variance reduction when drawing the
random numbers (see “Variance Reduction”).

Figure 13-2 compares the frequency distribution of the simulated log returns
with the probability density function (PDF) of the normal distribution given
the parameterizations for r and sigma. The function used is norm.pdf()
from the scipy.stats subpackage. There is obviously quite a good fit:

In [17]: plt.figure(figsize=(10, 6)) 

         plt.hist(log_returns.flatten(), bins=70, normed=True, 

                  label='frequency', color='b') 

         plt.xlabel('log return') 

         plt.ylabel('frequency') 

         x = np.linspace(plt.axis()[0], plt.axis()[1]) 

         plt.plot(x, scs.norm.pdf(x, loc=r / M, scale=sigma / np.sqrt(M)), 

                  'r', lw=2.0, label='pdf')   

         plt.legend();

Plots the PDF for the assumed parameters scaled to the interval length.



Figure 13-2. Histogram of log returns of geometric Brownian motion and normal density function

Comparing a frequency distribution (histogram) with a theoretical PDF is
not the only way to graphically “test” for normality. So-called quantile-
quantile (QQ) plots are also well suited for this task. Here, sample quantile
values are compared to theoretical quantile values. For normally distributed
sample data sets, such a plot might look like Figure 13-3, with the absolute
majority of the quantile values (dots) lying on a straight line:

In [18]: sm.qqplot(log_returns.flatten()[::500], line='s') 

         plt.xlabel('theoretical quantiles') 

         plt.ylabel('sample quantiles');



Figure 13-3. Quantile-quantile plot for log returns of geometric Brownian motion

However appealing the graphical approaches might be, they generally cannot
replace more rigorous testing procedures. The function normality_tests()
used in the next example combines three different statistical tests:

Skewness test (skewtest())
This tests whether the skew of the sample data is “normal” (i.e., has a
value close enough to zero).

Kurtosis test (kurtosistest())
Similarly, this tests whether the kurtosis of the sample data is “normal”
(again, close enough to zero).

Normality test (normaltest())
This combines the other two test approaches to test for normality.

The test values indicate that the log returns of the geometric Brownian
motion are indeed normally distributed — i.e., they show p-values of 0.05 or



above:

In [19]: def normality_tests(arr): 

             ''' Tests for normality distribution of given data set. 

 

             Parameters 

             ========== 

             array: ndarray 

                 object to generate statistics on 

             ''' 

             print('Skew of data set  %14.3f' % scs.skew(arr)) 

             print('Skew test p-value %14.3f' % scs.skewtest(arr)[1]) 

             print('Kurt of data set  %14.3f' % scs.kurtosis(arr)) 

             print('Kurt test p-value %14.3f' % scs.kurtosistest(arr)[1]) 

             print('Norm test p-value %14.3f' % scs.normaltest(arr)[1]) 

 

In [20]: normality_tests(log_returns.flatten())   

         Skew of data set           0.001 

         Skew test p-value          0.430 

         Kurt of data set           0.001 

         Kurt test p-value          0.541 

         Norm test p-value          0.607

All p-values are well above 0.05.
Finally, a check whether the end-of-period values are indeed log-normally
distributed. This boils down to a normality test, since one only has to
transform the data by applying the log function to it to then arrive at
normally distributed values (or maybe not). Figure 13-4 plots both the log-
normally distributed end-of-period values and the transformed ones (“log
index level”):

In [21]: f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6)) 

         ax1.hist(paths[-1], bins=30) 

         ax1.set_xlabel('index level') 

         ax1.set_ylabel('frequency') 

         ax1.set_title('regular data') 

         ax2.hist(np.log(paths[-1]), bins=30) 

         ax2.set_xlabel('log index level') 

         ax2.set_title('log data')



Figure 13-4. Histogram of simulated end-of-period index levels for geometric Brownian motion

The statistics for the data set show expected behavior — for example, a
mean value close to 105. The log index level values have skew and kurtosis
values close to zero and they show high p-values, providing strong support
for the normal distribution hypothesis:

In [22]: print_statistics(paths[-1]) 

              statistic           value 

         ------------------------------ 

                   size    250000.00000 

                    min        42.74870 

                    max       233.58435 

                   mean       105.12645 

                    std        21.23174 

                   skew         0.61116 

               kurtosis         0.65182 

 

In [23]: print_statistics(np.log(paths[-1])) 

              statistic           value 

         ------------------------------ 

                   size    250000.00000 

                    min         3.75534 

                    max         5.45354 

                   mean         4.63517 

                    std         0.19998 

                   skew        -0.00092 



               kurtosis        -0.00327 

 

In [24]: normality_tests(np.log(paths[-1])) 

         Skew of data set          -0.001 

         Skew test p-value          0.851 

         Kurt of data set          -0.003 

         Kurt test p-value          0.744 

         Norm test p-value          0.931

Figure 13-5 compares again the frequency distribution with the PDF of the
normal distribution, showing a pretty good fit (as now is, of course, to be
expected):

In [25]: plt.figure(figsize=(10, 6)) 

         log_data = np.log(paths[-1]) 

         plt.hist(log_data, bins=70, normed=True, 

                  label='observed', color='b') 

         plt.xlabel('index levels') 

         plt.ylabel('frequency') 

         x = np.linspace(plt.axis()[0], plt.axis()[1]) 

         plt.plot(x, scs.norm.pdf(x, log_data.mean(), log_data.std()), 

                  'r', lw=2.0, label='pdf') 

         plt.legend();

Figure 13-5. Histogram of log index levels of geometric Brownian motion and normal density function



Figure 13-6 also supports the hypothesis that the log index levels are
normally distributed:

In [26]: sm.qqplot(log_data, line='s') 

         plt.xlabel('theoretical quantiles') 

         plt.ylabel('sample quantiles');

Figure 13-6. Quantile-quantile plot for log index levels of geometric Brownian motion



NORMALITY
The normality assumption with regard to the uncertain returns of financial instruments is
central to a number of financial theories. Python provides efficient statistical and
graphical means to test whether time series data is normally distributed or not.



Real-World Data
This section analyzes four historical financial time series, two for technology
stocks and two for exchange traded funds (ETFs):

APPL.O: Apple Inc. stock price

MSFT.O: Microsoft Inc. stock price

SPY: SPDR S&P 500 ETF Trust

GLD: SPDR Gold Trust

The data management tool of choice is pandas (see Chapter 8). Figure 13-7
shows the normalized prices over time:

In [27]: import pandas as pd 

 

In [28]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                          index_col=0, parse_dates=True).dropna() 

 

In [29]: symbols = ['SPY', 'GLD', 'AAPL.O', 'MSFT.O'] 

 

In [30]: data = raw[symbols] 

         data = data.dropna() 

 

In [31]: data.info() 

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29 

         Data columns (total 4 columns): 

         SPY       2138 non-null float64 

         GLD       2138 non-null float64 

         AAPL.O    2138 non-null float64 

         MSFT.O    2138 non-null float64 

         dtypes: float64(4)

         memory usage: 83.5 KB 

 

In [32]: data.head() 

Out[32]:                SPY     GLD     AAPL.O  MSFT.O 

         Date 

         2010-01-04  113.33  109.80  30.572827  30.950 

         2010-01-05  113.63  109.70  30.625684  30.960 

         2010-01-06  113.71  111.51  30.138541  30.770 

         2010-01-07  114.19  110.82  30.082827  30.452 

         2010-01-08  114.57  111.37  30.282827  30.660 

 

In [33]: (data / data.iloc[0] * 100).plot(figsize=(10, 6))



Figure 13-7. Normalized prices of financial instruments over time

Figure 13-8 shows the log returns of the financial instruments as histograms:

In [34]: log_returns = np.log(data / data.shift(1)) 

         log_returns.head() 

Out[34]:                  SPY       GLD    AAPL.O    MSFT.O 

         Date 

         2010-01-04       NaN       NaN       NaN       NaN 

         2010-01-05  0.002644 -0.000911  0.001727  0.000323 

         2010-01-06  0.000704  0.016365 -0.016034 -0.006156 

         2010-01-07  0.004212 -0.006207 -0.001850 -0.010389 

         2010-01-08  0.003322  0.004951  0.006626  0.006807 

 

In [35]: log_returns.hist(bins=50, figsize=(10, 8));



Figure 13-8. Histograms of log returns for financial instruments

As a next step, consider the different statistics for the time series data sets.
The kurtosis values seem to be especially far from normal for all four data
sets:

In [36]: for sym in symbols: 

             print('\nResults for symbol {}'.format(sym)) 

             print(30 * '-') 

             log_data = np.array(log_returns[sym].dropna()) 

             print_statistics(log_data)   

 

         Results for symbol SPY 

         ------------------------------ 

              statistic           value 

         ------------------------------ 

                   size      2137.00000 

                    min        -0.06734 

                    max         0.04545 

                   mean         0.00041 



                    std         0.00933 

                   skew        -0.52189 

               kurtosis         4.52432 

 

         Results for symbol GLD 

         ------------------------------ 

              statistic           value 

         ------------------------------ 

                   size      2137.00000 

                    min        -0.09191 

                    max         0.04795 

                   mean         0.00004 

                    std         0.01020 

                   skew        -0.59934 

               kurtosis         5.68423 

 

         Results for symbol AAPL.O 

         ------------------------------ 

              statistic           value 

         ------------------------------ 

                   size      2137.00000 

                    min        -0.13187 

                    max         0.08502 

                   mean         0.00084 

                    std         0.01591 

                   skew        -0.23510 

               kurtosis         4.78964 

 

         Results for symbol MSFT.O 

         ------------------------------ 

              statistic           value 

         ------------------------------ 

                   size      2137.00000 

                    min        -0.12103 

                    max         0.09941 

                   mean         0.00054 

                    std         0.01421 

                   skew        -0.09117 

               kurtosis         7.29106

Statistics for time series of financial instruments.
Figure 13-9 shows the QQ plot for the SPY ETF. Obviously, the sample
quantile values do not lie on a straight line, indicating “non-normality.” On
the left and right sides there are many values that lie well below the line and
well above the line, respectively. In other words, the time series data exhibits
fat tails. This term refers to a (frequency) distribution where large negative
and positive values are observed more often than a normal distribution
would imply. The same conclusions can be drawn from Figure 13-10, which



presents the data for the Microsoft stock. There also seems to be evidence
for a fat-tailed distribution:

In [37]: sm.qqplot(log_returns['SPY'].dropna(), line='s') 

         plt.title('SPY') 

         plt.xlabel('theoretical quantiles') 

         plt.ylabel('sample quantiles'); 

In [38]: sm.qqplot(log_returns['MSFT.O'].dropna(), line='s') 

         plt.title('MSFT.O') 

         plt.xlabel('theoretical quantiles') 

         plt.ylabel('sample quantiles');

Figure 13-9. Quantile-quantile plot for SPY log returns



Figure 13-10. Quantile-quantile plot for MSFT.O log returns

This finally leads to the statistical normality tests:

In [39]: for sym in symbols: 

             print('\nResults for symbol {}'.format(sym)) 

             print(32 * '-') 

             log_data = np.array(log_returns[sym].dropna()) 

             normality_tests(log_data)   

 

         Results for symbol SPY 

         -------------------------------- 

         Skew of data set          -0.522 

         Skew test p-value          0.000 

         Kurt of data set           4.524 

         Kurt test p-value          0.000 

         Norm test p-value          0.000 

 

         Results for symbol GLD 

         -------------------------------- 

         Skew of data set          -0.599 

         Skew test p-value          0.000 

         Kurt of data set           5.684 

         Kurt test p-value          0.000 

         Norm test p-value          0.000 

 



         Results for symbol AAPL.O 

         -------------------------------- 

         Skew of data set          -0.235 

         Skew test p-value          0.000 

         Kurt of data set           4.790 

         Kurt test p-value          0.000 

         Norm test p-value          0.000 

 

         Results for symbol MSFT.O 

         -------------------------------- 

         Skew of data set          -0.091 

         Skew test p-value          0.085 

         Kurt of data set           7.291 

         Kurt test p-value          0.000 

         Norm test p-value          0.000

Normality test results for the times series of the financial instruments.
The p-values of the different tests are all zero, strongly rejecting the test
hypothesis that the different sample data sets are normally distributed. This
shows that the normal assumption for stock market returns and other asset
classes — as, for example, embodied in the geometric Brownian motion
model — cannot be justified in general and that one might have to use richer
models that are able to generate fat tails (e.g., jump diffusion models or
models with stochastic volatility).



Portfolio Optimization
Modern or mean-variance portfolio theory is a major cornerstone of
financial theory. Based on this theoretical breakthrough the Nobel Prize in
Economics was awarded to its inventor, Harry Markowitz, in 1990.
Although formulated in the 1950s, it is still a theory taught to finance
students and applied in practice today (often with some minor or major
modifications).3 This section illustrates the fundamental principles of the
theory.

Chapter 5 in the book by Copeland, Weston, and Shastri (2005) provides an
introduction to the formal topics associated with MPT. As pointed out
previously, the assumption of normally distributed returns is fundamental to
the theory:

By looking only at mean and variance, we are necessarily assuming that
no other statistics are necessary to describe the distribution of end-of-
period wealth. Unless investors have a special type of utility function
(quadratic utility function), it is necessary to assume that returns have a
normal distribution, which can be completely described by mean and
variance.



The Data
The analysis and examples that follow use the same financial instruments as
before. The basic idea of MPT is to make use of diversification to achieve a
minimal portfolio risk given a target return level or a maximum portfolio
return given a certain level of risk. One would expect such diversification
effects for the right combination of a larger number of assets and a certain
diversity in the assets. However, to convey the basic ideas and to show
typical effects, four financial instruments shall suffice. Figure 13-11 shows
the frequency distribution of the log returns for the financial instruments:

In [40]: symbols = ['AAPL.O', 'MSFT.O', 'SPY', 'GLD']   

 

In [41]: noa = len(symbols)   

 

In [42]: data = raw[symbols] 

 

In [43]: rets = np.log(data / data.shift(1)) 

 

In [44]: rets.hist(bins=40, figsize=(10, 8));

Four financial instruments for portfolio composition.

Number of financial instruments defined.
The covariance matrix for the financial instruments to be invested in is the
central piece of the portfolio selection process. pandas has a built-in method
to generate the covariance matrix on which the same scaling factor is
applied:

In [45]: rets.mean() * 252   

Out[45]: AAPL.O    0.212359 

         MSFT.O    0.136648 

         SPY       0.102928 

         GLD       0.009141 

         dtype: float64 

 

In [46]: rets.cov() * 252   

Out[46]:           AAPL.O    MSFT.O       SPY       GLD 

         AAPL.O  0.063773  0.023427  0.021039  0.001513 

         MSFT.O  0.023427  0.050917  0.022244 -0.000347 



         SPY     0.021039  0.022244  0.021939  0.000062 

         GLD     0.001513 -0.000347  0.000062  0.026209

Annualized mean returns.

Annualized covariance matrix.

Figure 13-11. Histograms of log returns of financial instruments



The Basic Theory
In what follows, it is assumed that an investor is not allowed to set up short
positions in a financial instrument. Only long positions are allowed, which
implies that 100% of the investor’s wealth has to be divided among the
available instruments in such a way that all positions are long (positive) and
that the positions add up to 100%. Given the four instruments, one could,
for example, invest equal amounts into every such instrument — i.e., 25%
of the available wealth in each. The following code generates four
uniformly distributed random numbers between 0 and 1 and then
normalizes the values such that the sum of all values equals 1:

In [47]: weights = np.random.random(noa)   

         weights /= np.sum(weights)   

 

In [48]: weights 

Out[48]: array([0.07650728, 0.06021919, 0.63364218, 0.22963135]) 

 

In [49]: weights.sum() 

Out[49]: 1.0

Random portfolio weights …

… normalized to 1 or 100%.

As verified here, the weights indeed add up to 1; i.e., , where I is
the number of financial instruments and  is the weight of financial
instrument i. Equation 13-1 provides the formula for the expected portfolio
return given the weights for the single instruments. This is an expected
portfolio return in the sense that historical mean performance is assumed to
be the best estimator for future (expected) performance. Here, the  are the
state-dependent future returns (vector with return values assumed to be
normally distributed) and  is the expected return for instrument i. Finally, 



 is the transpose of the weights vector and μ is the vector of the expected
security returns.

Equation 13-1. General formula for expected portfolio return

Translated into Python this boils down to a single line of code including
annualization:

In [50]: np.sum(rets.mean() * weights) * 252   

Out[50]: 0.09179459482057793

Annualized portfolio return given the portfolio weights.



The second object of importance in MPT is the expected portfolio variance.
The covariance between two securities is defined by

. The variance of a security is the special

case of the covariance with itself: . Equation 13-2
provides the covariance matrix for a portfolio of securities (assuming an
equal weight of 1 for every security).

Equation 13-2. Portfolio covariance matrix

Equipped with the portfolio covariance matrix, Equation 13-3 then provides
the formula for the expected portfolio variance.

Equation 13-3. General formula for expected portfolio variance



In Python, this all again boils down to a single line of code, making heavy
use of NumPy vectorization capabilities. The np.dot() function gives the dot
product of two vectors/matrices. The T attribute or transpose() method
gives the transpose of a vector or matrix. Given the portfolio variance, the

(expected) portfolio standard deviation or volatility  is then only
one square root away:

In [51]: np.dot(weights.T, np.dot(rets.cov() * 252, weights))   

Out[51]: 0.014763288666485574 

 

In [52]: math.sqrt(np.dot(weights.T, np.dot(rets.cov() * 252, weights)))   

Out[52]: 0.12150427427249452

Annualized portfolio variance given the portfolio weights.

Annualized portfolio volatility given the portfolio weights.



PYTHON AND VECTORIZATION
The MPT example shows how efficient it is with Python to translate mathematical
concepts, like portfolio return or portfolio variance, into executable, vectorized code (an
argument made in Chapter 1).

This mainly completes the tool set for mean-variance portfolio selection. Of
paramount interest to investors is what risk-return profiles are possible for a
given set of financial instruments, and their statistical characteristics. To this
end, the following implements a Monte Carlo simulation (see Chapter 12) to
generate random portfolio weight vectors on a larger scale. For every
simulated allocation, the code records the resulting expected portfolio return
and variance. To simplify the code, two functions, port_ret() and
port_vol(), are defined:

In [53]: def port_ret(weights): 

             return np.sum(rets.mean() * weights) * 252 

 

In [54]: def port_vol(weights): 

             return np.sqrt(np.dot(weights.T, np.dot(rets.cov() * 252, weights))) 

 

In [55]: prets = [] 

         pvols = [] 

         for p in range (2500):   

             weights = np.random.random(noa)   

             weights /= np.sum(weights)   

             prets.append(port_ret(weights))   

             pvols.append(port_vol(weights))   

         prets = np.array(prets) 

         pvols = np.array(pvols)

Monte Carlo simulation of portfolio weights.

Collects the resulting statistics in list objects.

Figure 13-12 illustrates the results of the Monte Carlo simulation. In

addition, it provides results for the Sharpe ratio, defined as  —



i.e., the expected excess return of the portfolio over the risk-free short rate 
divided by the expected standard deviation of the portfolio. For simplicity, 

 is assumed:

In [56]: plt.figure(figsize=(10, 6)) 

         plt.scatter(pvols, prets, c=prets / pvols, 

                     marker='o', cmap='coolwarm') 

         plt.xlabel('expected volatility') 

         plt.ylabel('expected return') 

         plt.colorbar(label='Sharpe ratio');

Figure 13-12. Expected return and volatility for random portfolio weights

It is clear by inspection of Figure 13-12 that not all weight distributions
perform well when measured in terms of mean and volatility. For example,
for a fixed risk level of, say, 15%, there are multiple portfolios that all show
different returns. As an investor, one is generally interested in the maximum
return given a fixed risk level or the minimum risk given a fixed return
expectation. This set of portfolios then makes up the so-called efficient
frontier. This is derived later in this section.



Optimal Portfolios
This minimization function is quite general and allows for equality
constraints, inequality constraints, and numerical bounds for the parameters.

First, the maximization of the Sharpe ratio. Formally, the negative value of
the Sharpe ratio is minimized to derive at the maximum value and the
optimal portfolio composition. The constraint is that all parameters
(weights) add up to 1. This can be formulated as follows using the
conventions of the minimize() function.4 The parameter values (weights)
are also bound to be between 0 and 1. These values are provided to the
minimization function as a tuple of tuples.

The only input that is missing for a call of the optimization function is a
starting parameter list (initial guess for the weights vector). An equal
distribution of weights will do:

In [57]: import scipy.optimize as sco 

 

In [58]: def min_func_sharpe(weights):   

             return -port_ret(weights) / port_vol(weights)   

 

In [59]: cons = ({'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})   

 

In [60]: bnds = tuple((0, 1) for x in range(noa))   

 

In [61]: eweights = np.array(noa * [1. / noa,])   

         eweights   

Out[61]: array([0.25, 0.25, 0.25, 0.25]) 

 

In [62]: min_func_sharpe(eweights) 

Out[62]: -0.8436203363155397

Function to be minimized.

Equality constraint.

Bounds for the parameters.

http://bit.ly/using_minimize


Equal weights vector.
Calling the function returns more than just the optimal parameter values.
The results are stored in an object called opts. The main interest lies in
getting the optimal portfolio composition. To this end, one can access the
results object by providing the key of interest; i.e., x in this case:

In [63]: %%time 

         opts = sco.minimize(min_func_sharpe, eweights, 

                             method='SLSQP', bounds=bnds,

                             constraints=cons)   

         CPU times: user 67.6 ms, sys: 1.94 ms, total: 69.6 ms 

         Wall time: 75.2 ms 

 

In [64]: opts   

Out[64]:      fun: -0.8976673894052725 

         jac: array([ 8.96826386e-05,  8.30739737e-05, -2.45958567e-04, 

          1.92895532e-05]) 

          message: 'Optimization terminated successfully.' 

             nfev: 36 

              nit: 6 

             njev: 6 

           status: 0 

          success: True 

                x: array([0.51191354, 0.19126414, 0.25454109, 0.04228123]) 

 

In [65]: opts['x'].round(3)   

Out[65]: array([0.512, 0.191, 0.255, 0.042]) 

 

In [66]: port_ret(opts['x']).round(3)   

Out[66]: 0.161 

 

In [67]: port_vol(opts['x']).round(3)   

Out[67]: 0.18 

 

In [68]: port_ret(opts['x']) / port_vol(opts['x'])   

Out[68]: 0.8976673894052725

The optimization (i.e., minimization of function min_func_sharpe()).

The results from the optimization.



The optimal portfolio weights.

The resulting portfolio return.

The resulting portfolio volatility.

The maximum Sharpe ratio.
Next, the minimization of the variance of the portfolio. This is the same as
minimizing the volatility:

In [69]: optv = sco.minimize(port_vol, eweights, 

                             method='SLSQP', bounds=bnds,

                             constraints=cons)   

 

In [70]: optv 

Out[70]:      fun: 0.1094215526341138 

              jac: array([0.11098004, 0.10948556, 0.10939826, 0.10944918]) 

          message: 'Optimization terminated successfully.' 

             nfev: 54 

              nit: 9 

             njev: 9 

           status: 0 

          success: True 

         x: array([1.62630326e-18, 1.06170720e-03, 5.43263079e-01, 

          4.55675214e-01]) 

 

In [71]: optv['x'].round(3) 

Out[71]: array([0.   , 0.001, 0.543, 0.456]) 

 

In [72]: port_vol(optv['x']).round(3) 

Out[72]: 0.109 

 

In [73]: port_ret(optv['x']).round(3) 

Out[73]: 0.06 

 

In [74]: port_ret(optv['x']) / port_vol(optv['x']) 

Out[74]: 0.5504173653075624

The minimization of the portfolio volatility.
This time, the portfolio is made up of only three financial instruments. This
portfolio mix leads to the so-called minimum volatility or minimum
variance portfolio.



Efficient Frontier
The derivation of all optimal portfolios — i.e., all portfolios with minimum
volatility for a given target return level (or all portfolios with maximum
return for a given risk level) — is similar to the previous optimizations. The
only difference is that one has to iterate over multiple starting conditions.

The approach taken is to fix a target return level and to derive for each such
level those portfolio weights that lead to the minimum volatility value. For
the optimization, this leads to two conditions: one for the target return level,
tret, and one for the sum of the portfolio weights as before. The boundary
values for each parameter stay the same. When iterating over different target
return levels (trets), one condition for the minimization changes. That is
why the constraints dictionary is updated during every loop:

In [75]: cons = ({'type': 'eq', 'fun': lambda x:  port_ret(x) - tret}, 

                 {'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})   

 

In [76]: bnds = tuple((0, 1) for x in weights) 

 

In [77]: %%time 

         trets = np.linspace(0.05, 0.2, 50) 

         tvols = [] 

         for tret in trets: 

             res = sco.minimize(port_vol, eweights, method='SLSQP', 

                                bounds=bnds, constraints=cons)   

             tvols.append(res['fun']) 

         tvols = np.array(tvols) 

         CPU times: user 2.6 s, sys: 13.1 ms, total: 2.61 s 

         Wall time: 2.66 s

The two binding constraints for the efficient frontier.

The minimization of portfolio volatility for different target returns.
Figure 13-13 shows the optimization results. Crosses indicate the optimal
portfolios given a certain target return; the dots are, as before, the random
portfolios. In addition, the figure shows two larger stars, one for the



minimum volatility/variance portfolio (the leftmost portfolio) and one for the
portfolio with the maximum Sharpe ratio:

In [78]: plt.figure(figsize=(10, 6)) 

         plt.scatter(pvols, prets, c=prets / pvols, 

                     marker='.', alpha=0.8, cmap='coolwarm') 

         plt.plot(tvols, trets, 'b', lw=4.0) 

         plt.plot(port_vol(opts['x']), port_ret(opts['x']), 

                  'y*', markersize=15.0) 

         plt.plot(port_vol(optv['x']), port_ret(optv['x']), 

                  'r*', markersize=15.0) 

         plt.xlabel('expected volatility') 

         plt.ylabel('expected return') 

         plt.colorbar(label='Sharpe ratio')

Figure 13-13. Minimum risk portfolios for given return levels (efficient frontier)

The efficient frontier is comprised of all optimal portfolios with a higher
return than the absolute minimum variance portfolio. These portfolios
dominate all other portfolios in terms of expected returns given a certain risk
level.



Capital Market Line
In addition to risky financial instruments like stocks or commodities (such as
gold), there is in general one universal, riskless investment opportunity
available: cash or cash accounts. In an idealized world, money held in a cash
account with a large bank can be considered riskless (e.g., through public
deposit insurance schemes). The downside is that such a riskless investment
generally yields only a small return, sometimes close to zero.

However, taking into account such a riskless asset enhances the efficient
investment opportunity set for investors considerably. The basic idea is that
investors first determine an efficient portfolio of risky assets and then add
the riskless asset to the mix. By adjusting the proportion of the investor’s
wealth to be invested in the riskless asset it is possible to achieve any risk-
return profile that lies on the straight line (in the risk-return space) between
the riskless asset and the efficient portfolio.

Which efficient portfolio (out of the many options) is to be taken to invest in
optimally? It is the one portfolio where the tangent line of the efficient
frontier goes exactly through the risk-return point of the riskless portfolio.

For example, consider a riskless interest rate of . The portfolio is
to be found on the efficient frontier for which the tangent goes through the

point  in risk-return space.

For the calculations that follow, a functional approximation and the first
derivative for the efficient frontier are used. Cubic splines interpolation
provides such a differentiable functional approximation (see Chapter 11).
For the spline interpolation, only those portfolios from the efficient frontier
are used. Via this numerical approach it is possible to define a continuously
differentiable function f(x) for the efficient frontier and the respective first
derivative function df(x):

In [79]: import scipy.interpolate as sci 

 

In [80]: ind = np.argmin(tvols)   

         evols = tvols[ind:]   

         erets = trets[ind:]   



 

In [81]: tck = sci.splrep(evols, erets)   

 

In [82]: def f(x): 

             ''' Efficient frontier function (splines approximation). ''' 

             return sci.splev(x, tck, der=0) 

         def df(x): 

             ''' First derivative of efficient frontier function. ''' 

             return sci.splev(x, tck, der=1)

Index position of minimum volatility portfolio.

Relevant portfolio volatility and return values.

Cubic splines interpolation on these values.

What is now to be derived is a linear function 
representing the line that passes through the riskless asset in risk-return
space and that is tangent to the efficient frontier. Equation 13-4 describes all
three conditions that the function t(x) needs to satisfy.

Equation 13-4. Mathematical conditions for capital market line

Since there is no closed formula for the efficient frontier or the first
derivative of it, one has to solve the system of equations in Equation 13-4
numerically. To this end, define a Python function that returns the values of
all three equations given the parameter set p = (a, b, x).



The function sco.fsolve() from scipy.optimize is capable of solving
such a system of equations. In addition to the function equations(), an
initial parameterization is provided. Note that success or failure of the
optimization might depend on the initial parameterization, which therefore
has to be chosen carefully — generally by a combination of educated
guesses with trial and error:

In [83]: def equations(p, rf=0.01): 

             eq1 = rf - p[0]   

             eq2 = rf + p[1] * p[2] - f(p[2])   

             eq3 = p[1] - df(p[2])   

             return eq1, eq2, eq3 

 

In [84]: opt = sco.fsolve(equations, [0.01, 0.5, 0.15])   

 

In [85]: opt   

Out[85]: array([0.01      , 0.84470952, 0.19525391]) 

 

In [86]: np.round(equations(opt), 6)   

Out[86]: array([ 0.,  0., -0.])

The equations describing the capital market line (CML).

Solving these equations for given initial values.

The optimal parameter values.

The equation values are all zero.
Figure 13-14 presents the results graphically; the star represents the optimal
portfolio from the efficient frontier for which the tangent line passes through

the riskless asset point :

In [87]: plt.figure(figsize=(10, 6)) 

         plt.scatter(pvols, prets, c=(prets - 0.01) / pvols, 

                     marker='.', cmap='coolwarm') 

         plt.plot(evols, erets, 'b', lw=4.0) 

         cx = np.linspace(0.0, 0.3) 

         plt.plot(cx, opt[0] + opt[1] * cx, 'r', lw=1.5) 



         plt.plot(opt[2], f(opt[2]), 'y*', markersize=15.0) 

         plt.grid(True) 

         plt.axhline(0, color='k', ls='--', lw=2.0) 

         plt.axvline(0, color='k', ls='--', lw=2.0) 

         plt.xlabel('expected volatility') 

         plt.ylabel('expected return') 

         plt.colorbar(label='Sharpe ratio')

Figure 13-14. Capital market line and tangency portfolio (star) for risk-free rate of 1%

The portfolio weights of the optimal (tangent) portfolio are as follows. Only
three of the four assets are in the mix:

In [88]: cons = ({'type': 'eq', 'fun': lambda x:  port_ret(x) - f(opt[2])}, 

                 {'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})   

         res = sco.minimize(port_vol, eweights, method='SLSQP', 

                            bounds=bnds, constraints=cons) 

 

In [89]: res['x'].round(3)   

Out[89]: array([0.59 , 0.221, 0.189, 0.   ]) 

 

In [90]: port_ret(res['x']) 

Out[90]: 0.1749328414905194

 

In [91]: port_vol(res['x']) 

Out[91]: 0.19525371793918325 

 



In [92]: port_ret(res['x']) / port_vol(res['x']) 

Out[92]: 0.8959257899765407

Binding constraints for the tangent portfolio (gold star in Figure 13-14).

The portfolio weights for this particular portfolio.



Bayesian Statistics
Bayesian statistics nowadays is widely popular in empirical finance. This
chapter can for sure not lay the foundations for all concepts of the field. The
reader should therefore consult, if needed, a textbook like the one by
Geweke (2005) for a general introduction or Rachev (2008) for one that is
financially motivated.



Bayes’ Formula
The most common interpretation of Bayes’ formula in finance is the
diachronic interpretation. This mainly states that over time one learns new
information about certain variables or parameters of interest, like the mean
return of a time series. Equation 13-5 states the theorem formally.

Equation 13-5. Bayes’s formula

Here, H stands for an event, the hypothesis, and D represents the data an
experiment or the real world might present.5 On the basis of these
fundamental notions, one has:

The prior probability

The probability for the data under any hypothesis, called the
normalizing constant

The likelihood (i.e., the probability) of the data under hypothesis H

The posterior probability; i.e., after one has seen the data
Consider a simple example. There two boxes, B1 and B2. Box B1 contains 30
black balls and 60 red balls, while box B2 contains 60 black balls and 30 red
balls. A ball is randomly drawn from one of the two boxes. Assume the ball



is black. What are the probabilities for the hypotheses “H1: Ball is from box
B1”; and “H2: Ball is from box B2,” respectively?

Before the random draw of the the ball, both hypotheses are equally likely.
After it is clear that the ball is black, one has to update the probability for
both hypotheses according to Bayes’ formula. Consider hypothesis H1:

Prior: 

Normalizing constant: 

Likelihood: 

This gives the updated probability for H1 of .

This result also makes sense intuitively. The probability of drawing a black
ball from box B2 is twice as high as that of the same event happening with
box B1. Therefore, having drawn a black ball, the hypothesis H2 has with 

 an updated probability two times as high as the updated
probability for hypothesis H1.



Bayesian Regression
With PyMC3 the Python ecosystem provides a comprehensive package to
technically implement Bayesian statistics and probabilistic programming.

Consider the following example based on noisy data around a straight line.6
First, a linear ordinary least-squares regression (see Chapter 11) is
implemented on the data set, the result of which is visualized in Figure 13-
15:

In [1]: import numpy as np 

        import pandas as pd 

        import datetime as dt 

        from pylab import mpl, plt 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        np.random.seed(1000) 

        %matplotlib inline 

 

In [3]: x = np.linspace(0, 10, 500) 

        y = 4 + 2 * x + np.random.standard_normal(len(x)) * 2 

 

In [4]: reg = np.polyfit(x, y, 1) 

 

In [5]: reg 

Out[5]: array([2.03384161, 3.77649234]) 

 

In [6]: plt.figure(figsize=(10, 6)) 

        plt.scatter(x, y, c=y, marker='v', cmap='coolwarm') 

        plt.plot(x, reg[1] + reg[0] * x, lw=2.0) 

        plt.colorbar() 

        plt.xlabel('x') 

        plt.ylabel('y')



Figure 13-15. Sample data points and regression line

The results of the OLS regression approach are fixed values for the two
parameters of the regression line (intercept and slope). Note that the highest-
order monomial factor (in this case, the slope of the regression line) is at
index level 0 and that the intercept is at index level 1. The original
parameters 2 and 4 are not perfectly recovered, but this of course is due to
the noise included in the data.

Second, a Bayesian regression making use of the PyMC3 package. Here, it is
assumed that the parameters are distributed in a certain way. For example,

consider the equation describing the regression line .
Assume now the following priors:

α is normally distributed with mean 0 and a standard deviation of 20.

β is normally distributed with mean 0 and a standard deviation of 10.



For the likelihood, assume a normal distribution with a mean of  and a
uniformly distributed standard deviation of between 0 and 10.

A major element of Bayesian regression is Markov chain Monte Carlo
(MCMC) sampling.7 In principle, this is the same as drawing balls multiple
times from boxes, as in the simple example in the previous section — just in
a more systematic, automated way.

For the technical sampling, there are three different functions to call:
find_MAP() finds the starting point for the sampling algorithm by
deriving the local maximum a posteriori point.

NUTS() implements the so-called “efficient No-U-Turn Sampler with
dual averaging” (NUTS) algorithm for MCMC sampling given the
assumed priors.

sample() draws a number of samples given the starting value from
find_MAP() and the optimal step size from the NUTS algorithm.

All this is to be wrapped into a PyMC3 Model object and executed within a
with statement:

In [8]: import pymc3 as pm 

 

In [9]: %%time 

        with pm.Model() as model: 

            # model 

            alpha = pm.Normal('alpha', mu=0, sd=20)   

            beta = pm.Normal('beta', mu=0, sd=10)   

            sigma = pm.Uniform('sigma', lower=0, upper=10)   

            y_est = alpha + beta * x   

            likelihood = pm.Normal('y', mu=y_est, sd=sigma, 

                                   observed=y)   

 

            # inference 

            start = pm.find_MAP()   

            step = pm.NUTS()   

            trace = pm.sample(100, tune=1000, start=start, 

                              progressbar=True, verbose=False)   

        logp = -1,067.8, ||grad|| = 60.354: 100%|██████████| 28/28 [00:00<00:00, 

         474.70it/s] 

        Only 100 samples in chain. 

        Auto-assigning NUTS sampler... 

        Initializing NUTS using jitter+adapt_diag... 

        Multiprocess sampling (2 chains in 2 jobs) 

        NUTS: [sigma, beta, alpha] 

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo


        Sampling 2 chains: 100%|██████████| 2200/2200 [00:03<00:00, 

         690.96draws/s] 

 

        CPU times: user 6.2 s, sys: 1.72 s, total: 7.92 s 

        Wall time: 1min 28s 

 

In [10]: pm.summary(trace)   

Out[10]: 

               mean        sd  mc_error   hpd_2.5  hpd_97.5       n_eff      Rhat 

    alpha  3.764027  0.174796  0.013177  3.431739  4.070091  152.446951  0.996281 

    beta   2.036318  0.030519  0.002230  1.986874  2.094008  106.505590  0.999155 

    sigma  2.010398  0.058663  0.004517  1.904395  2.138187  188.643293  0.998547 

 

In [11]: trace[0]   

Out[11]: {'alpha': 3.9303300798212444, 

          'beta': 2.0020264758995463,

          'sigma_interval__': -1.3519315719461853, 

          'sigma': 2.0555476283253156}

Defines the priors.

Specifies the linear regression.

Defines the likelihood.

Finds the starting value by optimization.

Instantiates the MCMC algorithm.

Draws posterior samples using NUTS.

Shows summary statistics from samplings.

Estimates from the first sample.



The three estimates shown are rather close to the original values (4, 2, 2).
However, the whole procedure yields more estimates. They are best
illustrated with the help of a trace plot, as in Figure 13-16 — i.e., a plot
showing the resulting posterior distribution for the different parameters as
well as all single estimates per sample. The posterior distribution gives an
intuitive sense about the uncertainty in the estimates:

In [12]: pm.traceplot(trace, lines={'alpha': 4, 'beta': 2, 'sigma': 2});

Figure 13-16. Posterior distributions and trace plots

Taking only the alpha and beta values from the regression, one can draw all
resulting regression lines as shown in Figure 13-17:

In [13]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x, y, c=y, marker='v', cmap='coolwarm') 

         plt.colorbar() 

         plt.xlabel('x') 

         plt.ylabel('y') 

         for i in range(len(trace)): 

             plt.plot(x, trace['alpha'][i] + trace['beta'][i] * x)  

Plots single regression lines.



Figure 13-17. Regression lines based on the different estimates



Two Financial Instruments
Having introduced Bayesian regression with PyMC3 based on dummy data,
the move to real financial data is straightforward. The example uses financial
time series data for the two exchange traded funds (ETFs) GLD and GDX (see
Figure 13-18):

In [14]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                           index_col=0, parse_dates=True)

 

In [15]: data = raw[['GDX', 'GLD']].dropna() 

 

In [16]: data = data / data.iloc[0]   

 

In [17]: data.info() 

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29 

         Data columns (total 2 columns): 

         GDX    2138 non-null float64

         GLD    2138 non-null float64

         dtypes: float64(2)

         memory usage: 50.1 KB 

 

In [18]: data.ix[-1] / data.ix[0] - 1   

Out[18]: GDX   -0.532383 

         GLD    0.080601 

         dtype: float64 

 

In [19]: data.corr()   

Out[19]:          GDX      GLD 

         GDX  1.00000  0.71539 

         GLD  0.71539  1.00000 

 

In [20]: data.plot(figsize=(10, 6));

Normalizes the data to a starting value of 1.

Calculates the relative performances.

Calculates the correlation between the two instruments.



Figure 13-18. Normalized prices for GLD and GDX over time

In what follows, the dates of the single data points are visualized in scatter
plots. To this end, the DatetimeIndex object of the DataFrame is
transformed to matplotlib dates. Figure 13-19 shows a scatter plot of the
time series data, plotting the GLD values against the GDX values and
illustrating the dates of each data pair by different colorings:8

In [21]: data.index[:3] 

Out[21]: DatetimeIndex(['2010-01-04', '2010-01-05', '2010-01-06'], 

          dtype='datetime64[ns]', name='Date', freq=None) 

 

In [22]: mpl_dates = mpl.dates.date2num(data.index.to_pydatetime())   

         mpl_dates[:3]

Out[22]: array([733776., 733777., 733778.]) 

 

In [23]: plt.figure(figsize=(10, 6)) 

         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates, 

                     marker='o', cmap='coolwarm') 

         plt.xlabel('GDX') 

         plt.ylabel('GLD') 

         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250), 

                      format=mpl.dates.DateFormatter('%d %b %y'));  



Converts the DatetimeIndex object to matplotlib dates.

Customizes the color bar for the dates.

Figure 13-19. Scatter plot of GLD prices against GDX prices

The following code implements a Bayesian regression on the basis of these
two time series. The parameterizations are essentially the same as in the
previous example with dummy data. Figure 13-20 shows the results from the
MCMC sampling procedure given the assumptions about the prior
probability distributions for the three parameters:

In [24]: with pm.Model() as model: 

             alpha = pm.Normal('alpha', mu=0, sd=20) 

             beta = pm.Normal('beta', mu=0, sd=20) 

             sigma = pm.Uniform('sigma', lower=0, upper=50) 

 

             y_est = alpha + beta * data['GDX'].values 

 

             likelihood = pm.Normal('GLD', mu=y_est, sd=sigma, 



                                    observed=data['GLD'].values) 

 

             start = pm.find_MAP() 

             step = pm.NUTS() 

             trace = pm.sample(250, tune=2000, start=start, 

                               progressbar=True) 

         logp = 1,493.7, ||grad|| = 188.29: 100%|██████████| 27/27 [00:00<00:00, 

          1609.34it/s] 

         Only 250 samples in chain. 

         Auto-assigning NUTS sampler... 

         Initializing NUTS using jitter+adapt_diag... 

         Multiprocess sampling (2 chains in 2 jobs) 

         NUTS: [sigma, beta, alpha] 

         Sampling 2 chains: 100%|██████████| 4500/4500 [00:09<00:00, 

          465.07draws/s] 

         The estimated number of effective samples is smaller than 200 for some 

          parameters. 

 

In [25]: pm.summary(trace) 

Out[25]: 

               mean        sd  mc_error   hpd_2.5  hpd_97.5       n_eff      Rhat 

    alpha  0.913335  0.005983  0.000356  0.901586  0.924714  184.264900  1.001855 

    beta   0.385394  0.007746  0.000461  0.369154  0.398291  215.477738  1.001570 

    sigma  0.119484  0.001964  0.000098  0.115305  0.123315  312.260213  1.005246 

 

In [26]: fig = pm.traceplot(trace)

Figure 13-20. Posterior distributions and trace plots for GDX and GLD data

Figure 13-21 adds all the resulting regression lines to the scatter plot from
before. However, all the regression lines are pretty close to each other:

In [27]: plt.figure(figsize=(10, 6)) 

         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates, 



                     marker='o', cmap='coolwarm') 

         plt.xlabel('GDX') 

         plt.ylabel('GLD') 

         for i in range(len(trace)): 

             plt.plot(data['GDX'], 

                      trace['alpha'][i] + trace['beta'][i] * data['GDX']) 

         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250), 

                      format=mpl.dates.DateFormatter('%d %b %y'));

Figure 13-21. Multiple Bayesian regression lines through GDX and GLD data

The figure reveals a major drawback of the regression approach used: the
approach does not take into account evolutions over time. That is, the most
recent data is treated the same way as the oldest data.



Updating Estimates over Time
As pointed out before, the Bayesian approach in finance is generally most
useful when seen as diachronic — i.e., in the sense that new data revealed
over time allows for better regressions and estimates through updating or
learning.

To incorporate this concept in the current example, assume that the
regression parameters are not only random and distributed in some fashion,
but that they follow some kind of random walk over time. It is the same
generalization used when making the transition in financial theory from
random variables to stochastic processes (which are essentially ordered
sequences of random variables).

To this end, define a new PyMC3 model, this time specifying parameter values
as random walks. After having specified the distributions of the random
walk parameters, one proceeds with specifying the random walks for alpha
and beta. To make the whole procedure more efficient, 50 data points at a
time share common coefficients:

In [28]: from pymc3.distributions.timeseries import GaussianRandomWalk 

 

In [29]: subsample_alpha = 50 

         subsample_beta = 50 

 

In [30]: model_randomwalk = pm.Model() 

         with model_randomwalk: 

             sigma_alpha = pm.Exponential('sig_alpha', 1. / .02, testval=.1)  

             sigma_beta = pm.Exponential('sig_beta', 1. / .02, testval=.1)   

             alpha = GaussianRandomWalk('alpha', sigma_alpha ** -2, 

                                 shape=int(len(data) / subsample_alpha))   

             beta = GaussianRandomWalk('beta', sigma_beta ** -2, 

                                 shape=int(len(data) / subsample_beta))   

             alpha_r = np.repeat(alpha, subsample_alpha)   

             beta_r = np.repeat(beta, subsample_beta)   

             regression = alpha_r + beta_r * data['GDX'].values[:2100]   

             sd = pm.Uniform('sd', 0, 20)   

             likelihood = pm.Normal('GLD', mu=regression, sd=sd, 

                                    observed=data['GLD'].values[:2100])  

Defines priors for the random walk parameters.



Models for the random walks.

Brings the parameter vectors to interval length.

Defines the regression model.

The prior for the standard deviation.

Defines the likelihood with mu from regression results.

All these definitions are a bit more involved than before due to the use of
random walks instead of a single random variable. However, the inference
steps with the MCMC sampling remain essentially the same. Note, though,
that the computational burden increases substantially since the algorithm has
to estimate parameters per random walk sample — i.e., 1,950 / 50 = 39
parameter combinations in this case (instead of 1, as before):

In [31]: %%time 

         import scipy.optimize as sco 

         with model_randomwalk: 

             start = pm.find_MAP(vars=[alpha, beta], 

                                 fmin=sco.fmin_l_bfgs_b) 

             step = pm.NUTS(scaling=start) 

             trace_rw = pm.sample(250, tune=1000, start=start, 

                                  progressbar=True) 

         logp = -6,657:   2%|▏         | 82/5000 [00:00<00:08, 550.29it/s] 
         Only 250 samples in chain. 

         Auto-assigning NUTS sampler... 

         Initializing NUTS using jitter+adapt_diag... 

         Multiprocess sampling (2 chains in 2 jobs) 

         NUTS: [sd, beta, alpha, sig_beta, sig_alpha] 

         Sampling 2 chains: 100%|██████████| 2500/2500 [02:48<00:00,  8.59draws/s] 

 

         CPU times: user 27.5 s, sys: 3.68 s, total: 31.2 s 

         Wall time: 5min 3s 

 

In [32]: pm.summary(trace_rw).head()   

Out[32]: 

                  mean        sd  mc_error   hpd_2.5  hpd_97.5        n_eff  \ 

    alpha__0  0.673846  0.040224  0.001376  0.592655  0.753034  1004.616544 

    alpha__1  0.424819  0.041257  0.001618  0.348102  0.509757   804.760648 



    alpha__2  0.456817  0.057200  0.002011  0.321125  0.553173   800.225916 

    alpha__3  0.268148  0.044879  0.001725  0.182744  0.352197   724.967532 

    alpha__4  0.651465  0.057472  0.002197  0.544076  0.761216   978.073246 

 

                  Rhat 

    alpha__0  0.998637 

    alpha__1  0.999540 

    alpha__2  0.998075 

    alpha__3  0.998995 

    alpha__4  0.998060

The summary statistics per interval (first five and alpha only).

Figure 13-22 illustrates the evolution of the regression parameters alpha and
beta over time by plotting a subset of the estimates:

In [33]: sh = np.shape(trace_rw['alpha'])   

         sh   

Out[33]: (500, 42) 

 

In [34]: part_dates = np.linspace(min(mpl_dates), 

                                  max(mpl_dates), sh[1])   

 

In [35]: index = [dt.datetime.fromordinal(int(date)) for 

                 date in part_dates]   

 

In [36]: alpha = {'alpha_%i' % i: v for i, v in 

                  enumerate(trace_rw['alpha']) if i < 20}   

 

In [37]: beta = {'beta_%i' % i: v for i, v in 

                  enumerate(trace_rw['beta']) if i < 20}   

 

In [38]: df_alpha = pd.DataFrame(alpha, index=index)   

 

In [39]: df_beta = pd.DataFrame(beta, index=index)   

 

In [40]: ax = df_alpha.plot(color='b', style='-.', legend=False, 

                            lw=0.7, figsize=(10, 6)) 

         df_beta.plot(color='r', style='-.', legend=False, 

                      lw=0.7, ax=ax) 

         plt.ylabel('alpha/beta');

Shape of the object with parameter estimates.

Creates a list of dates to match the number of intervals.



Collects the relevant parameter time series in two DataFrame objects.

Figure 13-22. Selected parameter estimates over time



ABSOLUTE PRICE DATA VERSUS RELATIVE
RETURN DATA

The analyses in this section are based on normalized price data. This is for illustration
purposes only, because the respective graphical results are easier to understand and
interpret (they are visually “more appealing”). For real-world financial applications one
would instead rely on return data, for instance, to ensure stationarity of the time series
data.

Using the mean alpha and beta values, Figure 13-23 illustrates how the
regression is updated over time. The 39 different regression lines resulting
from the mean alpha and beta values are displayed. It is obvious that
updating over time improves the regression fit (for the current/most recent
data) significantly — in other words, “every time period needs its own
regression”:

In [41]: plt.figure(figsize=(10, 6)) 

         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates, 

                     marker='o', cmap='coolwarm') 

         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250), 

                      format=mpl.dates.DateFormatter('%d %b %y')) 

         plt.xlabel('GDX') 

         plt.ylabel('GLD') 

         x = np.linspace(min(data['GDX']), max(data['GDX'])) 

         for i in range(sh[1]):   

             alpha_rw = np.mean(trace_rw['alpha'].T[i]) 

             beta_rw = np.mean(trace_rw['beta'].T[i]) 

             plt.plot(x, alpha_rw + beta_rw * x, '--', lw=0.7, 

                     color=plt.cm.coolwarm(i / sh[1]))

Plots the regression lines for all time intervals of length 50.



Figure 13-23. Scatter plot with time-dependent regression lines (updated estimates)

This concludes the section on Bayesian statistics. Python offers with PyMC3 a
comprehensive package to implement different approaches from Bayesian
statistics and probabilistic programming. Bayesian regression in particular is
a tool that has become quite popular and important in quantitative finance.

https://oreil.ly/2PApqqL


Machine Learning
In finance and many other fields, the “name of the game” these days is
machine learning (ML). As the following quote puts it:

Econometrics might be good enough to succeed in financial academia
(for now), but succeeding in practice requires ML.
Marcos López de Prado (2018)

Machine learning subsumes different types of algorithms that are basically
able to learn on their own certain relationships, patterns, etc. from raw data.
“Further Resources” lists a number of books that can be consulted on the
mathematical and statistical aspects of machine learning approaches and
algorithms as well as on topics related to their implementation and practical
use. For example, Alpaydin (2016) provides a gentle introduction to the
field and gives a nontechnical overview of the types of algorithms that are
typically used.

This section takes a rigorously practical approach and focuses on selected
implementation aspects only — with a view on the techniques used in
Chapter 15. However, the algorithms and techniques introduced can of
course be used in many different financial areas and not only in algorithmic
trading. The section covers two types of algorithms: unsupervised and
supervised learning algorithms.

One of the most popular packages for machine learning with Python is
scikit-learn. It not only provides implementations of a great variety of
ML algorithms, but also provides a large number of helpful tools for pre-
and post-processing activities related to ML tasks. This section mainly
relies on this package. It also uses TensorFlow in the context of deep neural
networks (DNNs).

VanderPlas (2016) provides a concise introduction to different ML
algorithms based on Python and scikit-learn. Albon (2018) offers a
number of recipes for typical tasks in ML, also mainly using Python and
scikit-learn.

http://scikit-learn.org/
http://tensorflow.org/


Unsupervised Learning
Unsupervised learning embodies the idea that a machine learning algorithm
discovers insights from raw data without any further guidance. One such
algorithm is the k-means clustering algorithm that clusters a raw data set into
a number of subsets and assigns these subsets labels (“cluster 0,” “cluster 1,”
etc.). Another one is Gaussian mixture.9

The data
Among other things, scikit-learn allows the creation of sample data sets
for different types of ML problems. The following creates a sample data set
suited to illustrating k-means clustering.

First, some standard imports and configurations:

In [1]: import numpy as np 

        import pandas as pd 

        import datetime as dt 

        from pylab import mpl, plt 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        np.random.seed(1000) 

        np.set_printoptions(suppress=True, precision=4) 

        %matplotlib inline

Second, the creation of the sample data set. Figure 13-24 visualizes the
sample data:

In [3]: from sklearn.datasets.samples_generator import make_blobs 

 

In [4]: X, y = make_blobs(n_samples=250, centers=4, 

                          random_state=500, cluster_std=1.25)   

 

In [5]: plt.figure(figsize=(10, 6)) 

        plt.scatter(X[:, 0], X[:, 1], s=50);

Creates the sample data set for clustering with 250 samples and 4
centers.



Figure 13-24. Sample data for the application of clustering algorithms

k-means clustering
One of the convenient features of scikit-learn is that it provides a
standardized API to apply different kinds of algorithms. The following code
shows the basic steps for k-means clustering that are repeated for other
models afterwards:

Importing the model class

Instantiating a model object

Fitting the model object to some data

Predicting the outcome given the fitted model for some data

Figure 13-25 shows the results:

In [6]: from sklearn.cluster import KMeans   

 

In [7]: model = KMeans(n_clusters=4, random_state=0)   

 



In [8]: model.fit(X)   

Out[8]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, 

            n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto', 

            random_state=0, tol=0.0001, verbose=0) 

 

In [9]: y_kmeans = model.predict(X)   

 

In [10]: y_kmeans[:12]   

Out[10]: array([1, 1, 0, 3, 0, 1, 3, 3, 3, 0, 2, 2], dtype=int32) 

 

In [11]: plt.figure(figsize=(10, 6)) 

         plt.scatter(X[:, 0], X[:, 1], c=y_kmeans,  cmap='coolwarm');

Imports the model class from scikit-learn.

Instantiates a model object, given certain parameters; knowledge about
the sample data is used to inform the instantiation.

Fits the model object to the raw data.

Predicts the cluster (number) given the raw data.

Shows some cluster numbers as predicted.



Figure 13-25. Sample data and identified clusters

Gaussian mixture
As an alternative clustering method, consider Gaussian mixture. The
application is the same, and with the appropriate parameterization, the
results are also the same:

In [12]: from sklearn.mixture import GaussianMixture 

 

In [13]: model = GaussianMixture(n_components=4, random_state=0) 

 

In [14]: model.fit(X) 

Out[14]: GaussianMixture(covariance_type='full', init_params='kmeans', 

          max_iter=100, 

         means_init=None, n_components=4, n_init=1, precisions_init=None, 

                 random_state=0, reg_covar=1e-06, tol=0.001, verbose=0, 

                 verbose_interval=10, warm_start=False, weights_init=None) 

 

In [15]: y_gm = model.predict(X) 

 

In [16]: y_gm[:12] 

Out[16]: array([1, 1, 0, 3, 0, 1, 3, 3, 3, 0, 2, 2]) 

 

In [17]: (y_gm == y_kmeans).all()   

Out[17]: True



The results from k-means clustering and Gaussian mixture are the same.



Supervised Learning
Supervised learning is machine learning with some guidance in the form of
known results or observed data. This means that the raw data already
contains what the ML algorithm is supposed to learn. In what follows, the
focus lies on classification problems as opposed to estimation problems.
While estimation problems are about the estimation of real-valued quantities
in general, classification problems are characterized by an effort to assign to
a certain feature combination a certain class (integer value) from a relatively
small set of classes (integer values).

The examples in the previous subsection showed that with unsupervised
learning the algorithms come up with their own categorical labels for the
clusters identified. With four clusters, the labels are 0, 1, 2, and 3. In
supervised learning, such categorical labels are already given, so that the
algorithm can learn the relationship between the features and the categories
(classes). In other words, during the fitting step, the algorithm knows the
right class for the given feature value combinations.

This subsection illustrates the application of the following classification
algorithms: Gaussian Naive Bayes, logistic regression, decision trees, deep
neural networks, and support vector machines.10

The data
Again, scikit-learn allows the creation of an appropriate sample data set
to apply classification algorithms. In order to be able to visualize the results,
the sample data only contains two real-valued, informative features and a
single binary label (a binary label is characterized by two different classes
only, 0 and 1). The following code creates the sample data, shows some
extracts of the data, and visualizes the data (see Figure 13-26):

In [18]: from sklearn.datasets import make_classification 

 

In [19]: n_samples = 100 

 

In [20]: X, y = make_classification(n_samples=n_samples, n_features=2, 

                                    n_informative=2, n_redundant=0, 

                                    n_repeated=0, random_state=250) 

 



In [21]: X[:5]   

Out[21]: array([[ 1.6876, -0.7976], 

                [-0.4312, -0.7606], 

                [-1.4393, -1.2363], 

                [ 1.118 , -1.8682], 

                [ 0.0502,  0.659 ]]) 

 

In [22]: X.shape   

Out[22]: (100, 2) 

 

In [23]: y[:5]   

Out[23]: array([1, 0, 0, 1, 1]) 

 

In [24]: y.shape   

Out[24]: (100,) 

 

plt.figure(figsize=(10, 6)) 

plt.hist(X); 

In [25]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x=X[:, 0], y=X[:, 1], c=y, cmap='coolwarm');

The two informative, real-valued features.

The single binary label.



Figure 13-26. Sample data for the application of classification algorithms

Gaussian Naive Bayes
Gaussian Naive Bayes (GNB) is generally considered to be a good baseline
algorithm for a multitude of different classification problems. The
application is in line with the steps outlined in “k-means clustering”:

In [26]: from sklearn.naive_bayes import GaussianNB 

         from sklearn.metrics import accuracy_score 

 

In [27]: model = GaussianNB() 

 

In [28]: model.fit(X, y) 

Out[28]: GaussianNB(priors=None, var_smoothing=1e-09) 

 

In [29]: model.predict_proba(X).round(4)[:5]   

Out[29]: array([[0.0041, 0.9959], 

                [0.8534, 0.1466], 

                [0.9947, 0.0053], 

                [0.0182, 0.9818], 

                [0.5156, 0.4844]]) 

 

In [30]: pred = model.predict(X)   

 

In [31]: pred   

Out[31]: array([1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 

          0, 



         0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 

         0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 

         0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 

                0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) 

 

In [32]: pred == y   

Out[32]: array([ True,  True,  True,  True, False,  True,  True,  True,  True, 

                 True, False,  True,  True,  True,  True,  True,  True,  True, 

                 True,  True,  True,  True, False, False, False,  True,  True, 

                 True,  True,  True,  True,  True,  True, False,  True,  True, 

                 True,  True,  True,  True,  True,  True,  True,  True,  True, 

                 True,  True,  True,  True,  True,  True, False,  True, False, 

                 True,  True,  True,  True,  True,  True,  True,  True,  True, 

                 True,  True, False,  True,  True,  True,  True,  True,  True, 

                 True,  True,  True,  True,  True,  True, False,  True, False, 

                 True,  True,  True,  True,  True,  True,  True,  True,  True, 

                 True,  True, False,  True, False,  True,  True,  True,  True, 

                 True]) 

 

In [33]: accuracy_score(y, pred)   

Out[33]: 0.87

Shows the probabilities that the algorithm assigns to each class after
fitting.

Based on the probabilities, predicts the binary classes for the data set.

Compares the predicted classes with the real ones.

Calculates the accuracy score given the predicted values.
Figure 13-27 visualizes the correct and false predictions from GNB:

In [34]: Xc = X[y == pred]   

         Xf = X[y != pred]   

 

In [35]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred], 

                     marker='o', cmap='coolwarm')   

         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred], 

                     marker='x', cmap='coolwarm')  



Selects the correct predictions and plots them.

Selects the false predictions and plots them.

Figure 13-27. Correct (dots) and false predictions (crosses) from GNB

Logistic regression
Logistic regression (LR) is a fast and scalable classification algorithm. The
accuracy in this particular case is slightly better than with GNB:

In [36]: from sklearn.linear_model import LogisticRegression 

 

In [37]: model = LogisticRegression(C=1, solver='lbfgs') 

 

In [38]: model.fit(X, y) 

Out[38]: LogisticRegression(C=1, class_weight=None, dual=False, 

          fit_intercept=True, 

                   intercept_scaling=1, max_iter=100, multi_class='warn', 

                   n_jobs=None, penalty='l2', random_state=None, solver='lbfgs', 

                   tol=0.0001, verbose=0, warm_start=False) 

 

In [39]: model.predict_proba(X).round(4)[:5] 

Out[39]: array([[0.011 , 0.989 ], 

                [0.7266, 0.2734], 

                [0.971 , 0.029 ], 



                [0.04  , 0.96  ], 

                [0.4843, 0.5157]]) 

 

In [40]: pred = model.predict(X) 

 

In [41]: accuracy_score(y, pred) 

Out[41]: 0.9

 

In [42]: Xc = X[y == pred] 

         Xf = X[y != pred] 

 

In [43]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred], 

                     marker='o', cmap='coolwarm') 

         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred], 

                     marker='x', cmap='coolwarm');

Decision trees
Decision trees (DTs) are yet another type of classification algorithm that
scales quite well. With a maximum depth of 1, the algorithm already
performs slightly better than both GNB and LR (see also Figure 13-28):

In [44]: from sklearn.tree import DecisionTreeClassifier 

 

In [45]: model = DecisionTreeClassifier(max_depth=1) 

 

In [46]: model.fit(X, y) 

Out[46]: DecisionTreeClassifier(class_weight=None, criterion='gini', 

          max_depth=1, 

                     max_features=None, max_leaf_nodes=None, 

                     min_impurity_decrease=0.0, min_impurity_split=None, 

                     min_samples_leaf=1, min_samples_split=2, 

         min_weight_fraction_leaf=0.0, presort=False, random_state=None, 

                     splitter='best') 

 

In [47]: model.predict_proba(X).round(4)[:5] 

Out[47]: array([[0.08, 0.92], 

                [0.92, 0.08], 

                [0.92, 0.08], 

                [0.08, 0.92], 

                [0.08, 0.92]]) 

 

In [48]: pred = model.predict(X) 

 

In [49]: accuracy_score(y, pred) 

Out[49]: 0.92 

 

In [50]: Xc = X[y == pred] 

         Xf = X[y != pred] 

 

In [51]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred], 

                     marker='o', cmap='coolwarm') 

         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred], 

                     marker='x', cmap='coolwarm');



Figure 13-28. Correct (dots) and false predictions (crosses) from DT (max_depth=1)

However, increasing the maximum depth parameter for the decision tree
allows one to reach a perfect result:

In [52]: print('{:>8s} | {:8s}'.format('depth', 'accuracy')) 

         print(20 * '-') 

         for depth in range(1, 7): 

             model = DecisionTreeClassifier(max_depth=depth) 

             model.fit(X, y) 

             acc = accuracy_score(y, model.predict(X)) 

             print('{:8d} | {:8.2f}'.format(depth, acc)) 

            depth | accuracy 

         -------------------- 

                1 |     0.92 

                2 |     0.92 

                3 |     0.94 

                4 |     0.97 

                5 |     0.99 

                6 |     1.00

Deep neural networks
Deep neural networks (DNNs) are considered to be among the most
powerful — but also computationally demanding — algorithms for both
estimation and classification. The open sourcing of the TensorFlow package



by Google and related success stories are in part responsible for their
popularity. DNNs are capable of learning and modeling complex nonlinear
relationships. Although their origins date back to the 1970s, they only
recently have become feasible on a large scale due to advances in hardware
(CPUs, GPUs, TPUs), numerical algorithms, and related software
implementations.

While other ML algorithms, such as linear models of LR type, can be fitted
efficiently based on a standard optimization problem, DNNs rely on deep
learning, which requires in general a large number of repeated steps to
adjust certain parameters (weights) and compare the results to the data. In
that sense, deep learning can be compared to Monte Carlo simulation in
mathematical finance where the price of, say, a European call option can be
estimated on the basis of 100,000 simulated paths for the underlying. On the
other hand, the Black-Scholes-Merton option pricing formula is available in
closed form and can be evaluated analytically.

While Monte Carlo simulation is among the most flexible and powerful
numerical techniques in mathematical finance, there’s a cost to pay in terms
of the high computational burden and large memory footprint. The same
holds true for deep learning, which is more flexible in general than many
other ML algorithms but which requires greater computational power.

DNNs with scikit-learn
Although it is quite different in nature, scikit-learn provides the same API
for its MLPClassifier algorithm class,11 which is a DNN model, as for the
other ML algorithms used before. With just two so-called hidden layers it
reaches a perfect result on the test data (the hidden layers are what make
deep learning out of simple learning — e.g., “learning” weights in the
context of a linear regression instead of using OLS regression to derive them
directly):

In [53]: from sklearn.neural_network import MLPClassifier 

 

In [54]: model = MLPClassifier(solver='lbfgs', alpha=1e-5, 

                               hidden_layer_sizes=2 * [75], random_state=10) 

 

In [55]: %time model.fit(X, y) 

         CPU times: user 537 ms, sys: 14.2 ms, total: 551 ms 



         Wall time: 340 ms 

 

Out[55]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', 

          beta_1=0.9, 

                beta_2=0.999, early_stopping=False, epsilon=1e-08, 

                hidden_layer_sizes=[75, 75], learning_rate='constant', 

                learning_rate_init=0.001, max_iter=200, momentum=0.9, 

                n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, 

                random_state=10, shuffle=True, solver='lbfgs', tol=0.0001, 

                validation_fraction=0.1, verbose=False, warm_start=False) 

 

In [56]: pred = model.predict(X) 

         pred 

Out[56]: array([1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 

          0, 

         1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 

         0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 

         0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 

                0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0]) 

 

In [57]: accuracy_score(y, pred) 

Out[57]: 1.0

DNNs with TensorFlow
The API of TensorFlow is different from the scikit-learn standard.
However, the application of the DNNClassifier class is similarly
straightforward:

In [58]: import tensorflow as tf 

         tf.logging.set_verbosity(tf.logging.ERROR)   

 

In [59]: fc = [tf.contrib.layers.real_valued_column('features')]   

 

In [60]: model = tf.contrib.learn.DNNClassifier(hidden_units=5 * [250], 

                                                n_classes=2, 

                                                feature_columns=fc)   

 

In [61]: def input_fn():   

             fc = {'features': tf.constant(X)} 

             la = tf.constant(y) 

             return fc, la 

 

In [62]: %time model.fit(input_fn=input_fn, steps=100)   

         CPU times: user 7.1 s, sys: 1.35 s, total: 8.45 s

         Wall time: 4.71 s 

 

Out[62]: DNNClassifier(params={'head': 

          <tensorflow.contrib.learn.python.learn ... head._BinaryLogisticHead 

          object at 0x1a3ee692b0>, 'hidden_units': [250, 250, 250, 250, 250], 

          'feature_columns': (_RealValuedColumn(column_name='features', 

          dimension=1, default_value=None, dtype=tf.float32, normalizer=None),), 

          'optimizer': None, 'activation_fn': <function relu at 0x1a3aa75b70>, 

          'dropout': None, 'gradient_clip_norm': None, 

          'embedding_lr_multipliers': None, 'input_layer_min_slice_size': None}) 

 



In [63]: model.evaluate(input_fn=input_fn, steps=1)   

Out[63]: {'loss': 0.18724777, 

          'accuracy': 0.91,

          'labels/prediction_mean': 0.5003989, 

          'labels/actual_label_mean': 0.5, 

          'accuracy/baseline_label_mean': 0.5, 

          'auc': 0.9782, 

          'auc_precision_recall': 0.97817385, 

          'accuracy/threshold_0.500000_mean': 0.91, 

          'precision/positive_threshold_0.500000_mean': 0.9019608, 

          'recall/positive_threshold_0.500000_mean': 0.92, 

          'global_step': 100} 

 

In [64]: pred = np.array(list(model.predict(input_fn=input_fn)))   

         pred[:10]   

Out[64]: array([1, 0, 0, 1, 1, 0, 1, 1, 1, 1]) 

 

In [65]: %time model.fit(input_fn=input_fn, steps=750)   

         CPU times: user 29.8 s, sys: 7.51 s, total: 37.3 s 

         Wall time: 13.6 s 

 

Out[65]: DNNClassifier(params={'head': 

          <tensorflow.contrib.learn.python.learn ... head._BinaryLogisticHead 

          object at 0x1a3ee692b0>, 'hidden_units': [250, 250, 250, 250, 250], 

          'feature_columns': (_RealValuedColumn(column_name='features', 

          dimension=1, default_value=None, dtype=tf.float32, normalizer=None),), 

          'optimizer': None, 'activation_fn': <function relu at 0x1a3aa75b70>, 

          'dropout': None, 'gradient_clip_norm': None, 

          'embedding_lr_multipliers': None, 'input_layer_min_slice_size': None}) 

 

In [66]: model.evaluate(input_fn=input_fn, steps=1)   

Out[66]: {'loss': 0.09271307, 

          'accuracy': 0.94,

          'labels/prediction_mean': 0.5274486, 

          'labels/actual_label_mean': 0.5, 

          'accuracy/baseline_label_mean': 0.5, 

          'auc': 0.99759996, 

          'auc_precision_recall': 0.9977609, 

          'accuracy/threshold_0.500000_mean': 0.94, 

          'precision/positive_threshold_0.500000_mean': 0.9074074, 

          'recall/positive_threshold_0.500000_mean': 0.98, 

          'global_step': 850}

Sets the verbosity for TensorFlow logging.

Defines the real-valued features abstractly.

Instantiates the model object.



Features and label data are to be delivered by a function.

Fits the model through learning and evaluates it.

Predicts the label values based on the feature values.

Retrains the model based on more learning steps; the previous results
are taken as a starting point.

Accuracy increases after retraining.
This only scratches the surface of TensorFlow, which is used in a number of
demanding use cases, such as Alphabet Inc.’s effort to build self-driving
cars. In terms of speed, the training of TensorFlow’s models in general
benefits significantly from the use of specialized hardware such as GPUs
and TPUs instead of CPUs.

Feature transforms
For a number of reasons, it might be beneficial or even necessary to
transform real-valued features. The following code shows some typical
transformations and visualizes the results for comparison in Figure 13-29:

In [67]: from sklearn import preprocessing 

 

In [68]: X[:5] 

Out[68]: array([[ 1.6876, -0.7976], 

                [-0.4312, -0.7606], 

                [-1.4393, -1.2363], 

                [ 1.118 , -1.8682], 

                [ 0.0502,  0.659 ]]) 

 

In [69]: Xs = preprocessing.StandardScaler().fit_transform(X)   

         Xs[:5] 

Out[69]: array([[ 1.2881, -0.5489], 

                [-0.3384, -0.5216], 

                [-1.1122, -0.873 ], 

                [ 0.8509, -1.3399], 

                [ 0.0312,  0.5273]]) 

 

In [70]: Xm = preprocessing.MinMaxScaler().fit_transform(X)   



         Xm[:5] 

Out[70]: array([[0.7262, 0.3563], 

                [0.3939, 0.3613], 

                [0.2358, 0.2973], 

                [0.6369, 0.2122], 

                [0.4694, 0.5523]]) 

 

In [71]: Xn1 = preprocessing.Normalizer(norm='l1').transform(X)   

         Xn1[:5] 

Out[71]: array([[ 0.6791, -0.3209], 

                [-0.3618, -0.6382], 

                [-0.5379, -0.4621], 

                [ 0.3744, -0.6256], 

                [ 0.0708,  0.9292]]) 

 

In [72]: Xn2 = preprocessing.Normalizer(norm='l2').transform(X)   

         Xn2[:5] 

Out[72]: array([[ 0.9041, -0.4273], 

                [-0.4932, -0.8699], 

                [-0.7586, -0.6516], 

                [ 0.5135, -0.8581], 

                [ 0.076 ,  0.9971]]) 

 

In [73]: plt.figure(figsize=(10, 6)) 

         markers = ['o', '.', 'x', '^', 'v'] 

         data_sets = [X, Xs, Xm, Xn1, Xn2] 

         labels = ['raw', 'standard', 'minmax', 'norm(1)', 'norm(2)'] 

         for x, m, l in zip(data_sets, markers, labels): 

             plt.scatter(x=x[:, 0], y=x[:, 1], c=y, 

                     marker=m, cmap='coolwarm', label=l) 

         plt.legend();

Transforms the features data to standard normally distributed data with
zero mean and unit variance.

Transforms the features data to a given range for every feature as
defined by the minimum and maximum values per feature.

Scales the features data individually to the unit norm (L1 or L2).



Figure 13-29. Raw and transformed data in comparison

In terms of pattern recognition tasks, a transformation to categorical features
is often helpful or even required to achieve acceptable results. To this end,
the real values of the features are mapped to a limited, fixed number of
possible integer values (categories, classes):

In [74]: X[:5] 

Out[74]: array([[ 1.6876, -0.7976], 

                [-0.4312, -0.7606], 

                [-1.4393, -1.2363], 

                [ 1.118 , -1.8682], 

                [ 0.0502,  0.659 ]]) 

 

In [75]: Xb = preprocessing.Binarizer().fit_transform(X)   

         Xb[:5] 

Out[75]: array([[1., 0.], 

                [0., 0.], 

                [0., 0.], 

                [1., 0.], 

                [1., 1.]]) 

 

In [76]: 2 ** 2   

Out[76]: 4 

 

In [77]: Xd = np.digitize(X, bins=[-1, 0, 1])   

         Xd[:5] 

Out[77]: array([[3, 1], 



                [1, 1], 

                [0, 0], 

                [3, 0], 

                [2, 2]]) 

 

In [78]: 4 ** 2   

Out[78]: 16

Transforms the features to binary features.

The number of possible feature value combinations for two binary
features.

Transforms the features to categorical features based on a list of
values used for binning.

The number of possible feature value combinations, with three values
used for binning for two features.

Train-test splits: Support vector machines
At this point, every seasoned ML researcher and practitioner reading this
probably has concerns with regard to the implementations in this section:
they all rely on the same data for training, learning, and prediction. The
quality of an ML algorithm can of course be better judged when different
data (sub)sets are used for training and learning on the one hand and testing
on the other hand. This comes closer to a real-world application scenario.

Again, scikit-learn provides a function to accomplish such an approach
efficiently. In particular, the train_test_split() function allows the
splitting of data sets into training and test data in a randomized, but
nevertheless repeatable, fashion.

The following code uses yet another classification algorithm, the support
vector machine (SVM). It first fits the SVM model based on the training
data:



In [79]: from sklearn.svm import SVC 

         from sklearn.model_selection import train_test_split 

 

In [80]: train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.33, 

                                                             random_state=0) 

 

In [81]: model = SVC(C=1, kernel='linear') 

 

In [82]: model.fit(train_x, train_y)   

Out[82]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,

             decision_function_shape='ovr', degree=3, gamma='auto_deprecated', 

           kernel='linear', max_iter=-1, probability=False, random_state=None, 

           shrinking=True, tol=0.001, verbose=False) 

 

In [83]: pred_train = model.predict(train_x)   

 

In [84]: accuracy_score(train_y, pred_train)   

Out[84]: 0.9402985074626866

Fits the model based on the training data.

Predicts the training data label values.

The accuracy of the training data prediction (“in-sample”).
Next, the testing of the fitted model based on the test data. Figure 13-30
shows the correct and false predictions for the test data. The accuracy on the
test data is — as one would naturally expect — lower than on the training
data:

In [85]: pred_test = model.predict(test_x)   

 

In [86]: test_y == pred_test   

Out[86]: array([ True,  True,  True,  True,  True,  True,  True,  True,  True, 

                 True, False, False, False,  True,  True,  True, False, False, 

                False,  True,  True,  True,  True,  True,  True,  True,  True, 

                 True,  True,  True,  True, False,  True]) 

 

In [87]: accuracy_score(test_y, pred_test)   

Out[87]: 0.7878787878787878

 

In [88]: test_c = test_x[test_y == pred_test] 

         test_f = test_x[test_y != pred_test] 

 

In [89]: plt.figure(figsize=(10, 6)) 

         plt.scatter(x=test_c[:, 0], y=test_c[:, 1], c=test_y[test_y == 

pred_test], 



                     marker='o', cmap='coolwarm') 

         plt.scatter(x=test_f[:, 0], y=test_f[:, 1], c=test_y[test_y != 

pred_test], 

                     marker='x', cmap='coolwarm');

Predicts the testing data label values based on the test data.

Evaluates the accuracy of the fitted model for the test data (“out-of-
sample”).

Figure 13-30. Correct (dots) and false predictions (crosses) from SVM for test data

The SVM classification algorithm provides a number of options for the
kernel to be used. Depending on the problem at hand, different kernels might
lead to quite different results (i.e., accuracy scores), as the following analysis
shows. The code first transforms the real-valued features into categorical
ones:



In [90]: bins = np.linspace(-4.5, 4.5, 50) 

 

In [91]: Xd = np.digitize(X, bins=bins) 

 

In [92]: Xd[:5] 

Out[92]: array([[34, 21], 

                [23, 21], 

                [17, 18], 

                [31, 15], 

                [25, 29]]) 

 

In [93]: train_x, test_x, train_y, test_y = train_test_split(Xd, y, 

test_size=0.33, 

                                                             random_state=0) 

 

In [94]: print('{:>8s} | {:8s}'.format('kernel', 'accuracy')) 

         print(20 * '-') 

         for kernel in ['linear', 'poly', 'rbf', 'sigmoid']: 

             model = SVC(C=1, kernel=kernel, gamma='auto') 

             model.fit(train_x, train_y) 

             acc = accuracy_score(test_y, model.predict(test_x)) 

             print('{:>8s} | {:8.3f}'.format(kernel, acc)) 

           kernel | accuracy 

         -------------------- 

           linear |    0.848 

             poly |    0.758 

              rbf |    0.788 

          sigmoid |    0.455



Conclusion
Statistics is not only an important discipline in its own right, but also
provides indispensable tools for many other disciplines, like finance and the
social sciences. It is impossible to give a broad overview of such a large
subject in a single chapter. This chapter therefore focuses on four important
topics, illustrating the use of Python and several statistics libraries on the
basis of realistic examples:

Normality
The normality assumption with regard to financial market returns is an
important one for many financial theories and applications; it is
therefore important to be able to test whether certain time series data
conforms to this assumption. As seen in “Normality Tests” — via
graphical and statistical means — real-world return data generally is
not normally distributed.

Portfolio optimization
MPT, with its focus on the mean and variance/volatility of returns, can
be considered not only one of the first but also one of the major
conceptual successes of statistics in finance; the important concept of
investment diversification is beautifully illustrated in this context.

Bayesian statistics
Bayesian statistics in general (and Bayesian regression in particular)
has become a popular tool in finance, since this approach overcomes
some shortcomings of other approaches, as introduced, for instance, in
Chapter 11; even if the mathematics and the formalism are more
involved, the fundamental ideas — like the updating of
probability/distribution beliefs over time — are easily grasped (at least
intuitively).

Machine learning



Nowadays, machine learning has established itself in the financial
domain alongside traditional statistical methods and techniques. The
chapter introduces ML algorithms for unsupervised learning (such as
k-means clustering) and supervised learning (such as DNN classifiers)
and illustrates selected related topics, such as feature transforms and
train-test splits.



Further Resources
For more information on the topics and packages covered in this chapter,
consult the following online resources:

The documentation on SciPy’s statistical functions

The documentation of the statsmodels library

Details on the optimization functions used in this chapter

The documentation for PyMC3

The documentation for scikit-learn

Useful references in book form for more background information are:
Albon, Chris (2018). Machine Learning with Python Cookbook.
Sebastopol, CA: O’Reilly.

Alpaydin, Ethem (2016). Machine Learning. Cambridge, MA: MIT
Press.

Copeland, Thomas, Fred Weston, and Kuldeep Shastri (2005).
Financial Theory and Corporate Policy. Boston, MA: Pearson.

Downey, Allen (2013). Think Bayes. Sebastopol, CA: O’Reilly.

Geweke, John (2005). Contemporary Bayesian Econometrics and
Statistics. Hoboken, NJ: John Wiley & Sons.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The
Elements of Statistical Learning: Data Mining, Inference, and
Prediction. New York: Springer.

James, Gareth, et al. (2013). An Introduction to Statistical Learning —
With Applications in R. New York: Springer.

http://docs.scipy.org/doc/scipy/reference/stats.html
http://statsmodels.sourceforge.net/stable/
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.pymc.io/
http://scikit-learn.org/


López de Prado, Marcos (2018). Advances in Financial Machine
Learning. Hoboken, NJ: John Wiley & Sons.

Rachev, Svetlozar, et al. (2008). Bayesian Methods in Finance.
Hoboken, NJ: John Wiley & Sons.

VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol,
CA: O’Reilly.

The paper introducing modern portfolio theory is:

Markowitz, Harry (1952). “Portfolio Selection.” Journal of Finance, Vol. 7,
pp. 77–91.

Another central assumption is the one of linearity. For example, financial markets are assumed,
in general, to exhibit a linear relationship between demand, say for shares of a stock, and the
price to be paid for the shares. In other words, markets are assumed, in general, to be perfectly
liquid in the sense that varying demand does not have any influence on the unit price for a
financial instrument.

For the fundamentals of stochastic and Itô calculus needed in this context, refer to Glasserman
(2004).

See Markowitz (1952).

An alternative to np.sum(x) - 1 would be to write np.sum(x) == 1, taking into account that
with Python the Boolean True value equals 1 and the False value equals 0.

For a Python-based introduction into these and other fundamental concepts of Bayesian statistics,
refer to Downey (2013).

Examples originally provided by Thomas Wiecki, one of the main authors of the PyMC3 package.

For example, the Monte Carlo algorithms used throughout the book and analyzed in detail in
Chapter 12 all generate so-called Markov chains, since the immediate next step/value only
depends on the current state of the process and not on any other historic state or value.

Note all visualizations here are based on normalized price data and not, as might be better in real-
world applications, on return data, for instance.

For more unsupervised learning algorithms available in scikit-learn, see the documentation.

For an overview of the classification algorithms for supervised learning available in scikit-
learn, refer to the documentation. Note that many of these algorithms are also available for
estimation instead of classification.
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http://scikit-learn.org/stable/unsupervised_learning.html
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For more details and available parameters, refer to the documentation on the multi-layer
perceptron classifier.

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


Part IV. Algorithmic Trading

This part of the book is about the use of Python for algorithmic trading.
More and more trading platforms and brokers allow their clients to use, for
example, REST APIs to programmatically retrieve historical data or
streaming data, or to place buy and sell orders. What has been the domain
of large financial institutions for a long period now has become accessible
even to retail algorithmic traders. In this space, Python has secured a top
position as a programming language and technology platform. Among other
factors, this is driven by the fact that many trading platforms, such as the
one from FXCM Forex Capital Markets, provide easy-to-use Python
wrapper packages for their REST APIs.

This part of the book comprises three chapters:
Chapter 14 introduces the FXCM trading platform, its REST API, and
the fxcmpy wrapper package.

Chapter 15 focuses on the use of methods from statistics and machine
learning to derive algorithmic trading strategies; the chapter also
shows how to use vectorized backtesting.

Chapter 16 looks at the deployment of automated algorithmic trading
strategies; it addresses capital management, backtesting for
performance and risk, online algorithms, and deployment.



Chapter 14. The FXCM Trading
Platform

Financial institutions like to call what they do trading. Let’s be honest.
It’s not trading; it’s betting.
Graydon Carter

This chapter introduces the trading platform from FXCM Group, LLC
(“FXCM” hereafter), with its RESTful and streaming application
programming interface (API), as well as the Python wrapper package
fxcmpy. FXCM offers to retail and institutional traders a number of
financial products that can be traded both via traditional trading
applications and programmatically via the API. The focus of the products
lies on currency pairs as well as contracts for difference (CFDs) on major
stock indices and commodities, etc.



RISK DISCLAIMER
Trading forex/CFDs on margin carries a high level of risk and may not be suitable for all
investors as you could sustain losses in excess of deposits. Leverage can work against
you. The products are intended for retail and professional clients. Due to the certain
restrictions imposed by the local law and regulation, German resident retail client(s)
could sustain a total loss of deposited funds but are not subject to subsequent payment
obligations beyond the deposited funds. Be aware and fully understand all risks
associated with the market and trading. Prior to trading any products, carefully consider
your financial situation and experience level. Any opinions, news, research, analyses,
prices, or other information is provided as general market commentary, and does not
constitute investment advice. The market commentary has not been prepared in
accordance with legal requirements designed to promote the independence of
investment research, and it is therefore not subject to any prohibition on dealing ahead
of dissemination. FXCM and the author will not accept liability for any loss or damage,
including without limitation to, any loss of profit, which may arise directly or indirectly
from use of or reliance on such information.

The trading platform of FXCM allows even individual traders with smaller
capital positions to implement and deploy algorithmic trading strategies.

This chapter covers the basic functionalities of the FXCM trading API and
the fxcmpy Python package required to implement an automated
algorithmic trading strategy programmatically. It is structured as follows:

“Getting Started”
This section shows how to set up everything to work with the FXCM
REST API for algorithmic trading.

“Retrieving Data”
This section shows how to retrieve and work with financial data (down
to the tick level).

“Working with the API”
This section illustrates typical tasks implemented using the REST API,
such as retrieving historical and streaming data, placing orders, and
looking up account information.



Getting Started
Detailed documentation of the FXCM API is found at
https://fxcm.github.io/rest-api-docs. To install the Python wrapper package
fxcmpy, execute this command in the shell:

pip install fxcmpy

The documentation for the fxcmpy package is found at http://fxcmpy.tpq.io.

To get started with the FXCM trading API and the fxcmpy package, a free
demo account with FXCM is sufficient.1 The next step is to create a unique
API token — say, YOUR_FXCM_API_TOKEN — from within the demo account.
A connection to the API is then opened, for example, via:

import fxcmpy 

api = fxcmpy.fxcmpy(access_token=YOUR_FXCM_API_TOKEN, log_level='error')

Alternatively, a configuration file (say, fxcm.cfg) can be used to connect to
the API. This file’s contents should look as follows:

[FXCM] 

log_level = error 

log_file = PATH_TO_AND_NAME_OF_LOG_FILE 

access_token = YOUR_FXCM_API_TOKEN

One can then connect to the API via:

import fxcmpy 

api = fxcmpy.fxcmpy(config_file='fxcm.cfg')

By default, the fxcmpy class connects to the demo server. However, by the
use of the server parameter, the connection can be made to the live trading
server (if such an account exists):

api = fxcmpy.fxcmpy(config_file='fxcm.cfg', server='demo')   

api = fxcmpy.fxcmpy(config_file='fxcm.cfg', server='real')  

https://fxcm.github.io/rest-api-docs
http://fxcmpy.tpq.io/
https://www.fxcm.com/uk/forex-trading-demo/


Connects to the demo server.

Connects to the live trading server.



Retrieving Data
FXCM provides access to historical market price data sets, such as tick
data, in a pre-packaged variant. This means that one can retrieve, for
instance, compressed files from FXCM servers that contain tick data for the
EUR/USD exchange rate for week 26 of 2018, as described in the following
subsection. The retrieval of historical candles data from the API is
explained in the subsequent subsection.



Retrieving Tick Data
For a number of currency pairs, FXCM provides historical tick data. The
fxcmpy package makes retrieval of such tick data and working with it
convenient. First, some imports:

In [1]: import time 

        import numpy as np 

        import pandas as pd 

        import datetime as dt 

        from pylab import mpl, plt 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

Second, a look at the available symbols (currency pairs) for which tick data
is available:

In [3]: from fxcmpy import fxcmpy_tick_data_reader as tdr 

 

In [4]: print(tdr.get_available_symbols()) 

        ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF', 

         'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD', 

         'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD', 

         'USDCAD', 'USDCHF', 'USDJPY')

The following code retrieves one week’s worth of tick data for a single
symbol. The resulting pandas DataFrame object has more than 1.5 million
data rows:

In [5]: start = dt.datetime(2018, 6, 25)   

        stop = dt.datetime(2018, 6, 30)   

 

In [6]: td = tdr('EURUSD', start, stop)   

 

In [7]: td.get_raw_data().info()   

        <class 'pandas.core.frame.DataFrame'> 

        Index: 1963779 entries, 06/24/2018 21:00:12.290 to 06/29/2018 

         20:59:00.607 

        Data columns (total 2 columns): 

        Bid    float64 

        Ask    float64 

        dtypes: float64(2) 

        memory usage: 44.9+ MB 

 

In [8]: td.get_data().info()   

        <class 'pandas.core.frame.DataFrame'> 



        DatetimeIndex: 1963779 entries, 2018-06-24 21:00:12.290000 to 2018-06-29 

         20:59:00.607000 

        Data columns (total 2 columns): 

        Bid    float64 

        Ask    float64 

        dtypes: float64(2) 

        memory usage: 44.9 MB 

 

In [9]: td.get_data().head() 

Out[9]:                             Bid      Ask 

        2018-06-24 21:00:12.290  1.1662  1.16660 

        2018-06-24 21:00:16.046  1.1662  1.16650 

        2018-06-24 21:00:22.846  1.1662  1.16658 

        2018-06-24 21:00:22.907  1.1662  1.16660 

        2018-06-24 21:00:23.441  1.1662  1.16663

This retrieves the data file, unpacks it, and stores the raw data in a
DataFrame object (as an attribute to the resulting object).

The td.get_raw_data() method returns the DataFrame object with the
raw data; i.e., with the index values still being str objects.

The td.get_data() method returns a DataFrame object for which the
index has been transformed to a DatetimeIndex.

Since the tick data is stored in a DataFrame object, it is straightforward to
pick a subset of the data and to implement typical financial analytics tasks
on it. Figure 14-1 shows a plot of the mid prices derived for the subset and a
simple moving average (SMA):

In [10]: sub = td.get_data(start='2018-06-29 12:00:00', 

                           end='2018-06-29 12:15:00')   

 

In [11]: sub.head() 

Out[11]:                              Bid      Ask 

         2018-06-29 12:00:00.011  1.16497  1.16498 

         2018-06-29 12:00:00.071  1.16497  1.16497 

         2018-06-29 12:00:00.079  1.16497  1.16498 

         2018-06-29 12:00:00.091  1.16495  1.16498 

         2018-06-29 12:00:00.205  1.16496  1.16498 

 

In [12]: sub['Mid'] = sub.mean(axis=1)   

 

In [13]: sub['SMA'] = sub['Mid'].rolling(1000).mean()   



 

In [14]: sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=0.75);

Picks a subset of the complete data set.

Calculates the mid prices from the bid and ask prices.

Derives SMA values over intervals of 1,000 ticks.

Figure 14-1. Historical mid tick prices for EUR/USD and SMA



Retrieving Candles Data
FXCM also provides access to historical candles data (beyond the API) —
i.e., to data for certain homogeneous time intervals (“bars”) with open, high,
low, and close values for both bid and ask prices.

First, a look at the available symbols for which candles data is provided:

In [15]: from fxcmpy import fxcmpy_candles_data_reader as cdr 

 

In [16]: print(cdr.get_available_symbols()) 

         ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF', 

          'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD', 

          'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD', 

          'USDCAD', 'USDCHF', 'USDJPY')

Second, the data retrieval itself. It is similar to the tick data retrieval. The
only difference is that a period value — i.e., the bar length — needs to be
specified (e.g., m1 for one minute, H1 for one hour, or D1 for one day):

In [17]: start = dt.datetime(2018, 5, 1) 

         stop = dt.datetime(2018, 6, 30) 

 

In [18]: period = 'H1'   

 

In [19]: candles = cdr('EURUSD', start, stop, period) 

 

In [20]: data = candles.get_data() 

 

In [21]: data.info() 

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 1080 entries, 2018-04-29 21:00:00 to 2018-06-29 20:00:00 

         Data columns (total 8 columns): 

         BidOpen     1080 non-null float64 

         BidHigh     1080 non-null float64 

         BidLow      1080 non-null float64 

         BidClose    1080 non-null float64 

         AskOpen     1080 non-null float64 

         AskHigh     1080 non-null float64 

         AskLow      1080 non-null float64 

         AskClose    1080 non-null float64 

         dtypes: float64(8)

         memory usage: 75.9 KB 

 

In [22]: data[data.columns[:4]].tail()   

Out[22]:                      BidOpen  BidHigh   BidLow  BidClose 

         2018-06-29 16:00:00  1.16768  1.16820  1.16731   1.16769 

         2018-06-29 17:00:00  1.16769  1.16826  1.16709   1.16781 

         2018-06-29 18:00:00  1.16781  1.16816  1.16668   1.16684 

         2018-06-29 19:00:00  1.16684  1.16792  1.16638   1.16774 

         2018-06-29 20:00:00  1.16774  1.16904  1.16758   1.16816 



 

In [23]: data[data.columns[4:]].tail()   

Out[23]:                      AskOpen  AskHigh   AskLow  AskClose 

         2018-06-29 16:00:00  1.16769  1.16820  1.16732   1.16771 

         2018-06-29 17:00:00  1.16771  1.16827  1.16711   1.16782 

         2018-06-29 18:00:00  1.16782  1.16817  1.16669   1.16686 

         2018-06-29 19:00:00  1.16686  1.16794  1.16640   1.16775 

         2018-06-29 20:00:00  1.16775  1.16907  1.16760   1.16861

Specifies the period value.

Open, high, low, close values for the bid prices.

Open, high, low, close values for the ask prices.
To conclude this section, the following code calculates mid close prices and
two SMAs, and plots the results (see Figure 14-2):

In [24]: data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1)   

 

In [25]: data['SMA1'] = data['MidClose'].rolling(30).mean()   

         data['SMA2'] = data['MidClose'].rolling(100).mean()   

 

In [26]: data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6));

Calculates the mid close prices from the bid and ask close prices.

Calculates two SMAs, one for a shorter time interval, one for a longer
one.



Figure 14-2. Historical hourly mid close prices for EUR/USD and two SMAs



Working with the API
While the previous sections demonstrate retrieving prepackaged historical
tick data and candles data from FXCM servers, this section shows how to
retrieve historical data via the API. For this, a connection object to the
FXCM API is needed. Therefore, first the import of the fxcmpy package,
the connection to the API (based on the unique API token), and a look at
the available instruments:

In [27]: import fxcmpy 

 

In [28]: fxcmpy.__version__ 

Out[28]: '1.1.33' 

 

In [29]: api = fxcmpy.fxcmpy(config_file='../fxcm.cfg')   

 

In [30]: instruments = api.get_instruments() 

 

In [31]: print(instruments) 

         ['EUR/USD', 'XAU/USD', 'GBP/USD', 'UK100', 'USDOLLAR', 'XAG/USD', 

'GER30', 

          'FRA40', 'USD/CNH', 'EUR/JPY', 'USD/JPY', 'CHN50', 'GBP/JPY', 'AUD/JPY', 

          'CHF/JPY', 'USD/CHF', 'GBP/CHF', 'AUD/USD', 'EUR/AUD', 'EUR/CHF', 

          'EUR/CAD', 'EUR/GBP', 'AUD/CAD', 'NZD/USD', 'USD/CAD', 'CAD/JPY', 

          'GBP/AUD', 'NZD/JPY', 'US30', 'GBP/CAD', 'SOYF', 'GBP/NZD', 'AUD/NZD', 

          'USD/SEK', 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF', 

          'EUR/NZD', 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'BTC/USD', 'USD/TRY', 

          'EUR/TRY', 'NZD/CHF', 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'AUS200', 

          'ESP35', 'HKG33', 'JPN225', 'NAS100', 'SPX500', 'Copper', 'EUSTX50', 

          'USOil', 'UKOil', 'NGAS', 'Bund']

This connects to the API; adjust the path/filename.



Retrieving Historical Data
Once connected, data retrieval for specific time intervals is accomplished via
a single method call. When using the get_candles() method, the parameter
period can be one of m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1, or M1.
The following code gives a few examples. Figure 14-3 shows one-minute
bar ask close prices for the EUR/USD instrument (currency pair):

In [32]: candles = api.get_candles('USD/JPY', period='D1', number=10)   

 

In [33]: candles[candles.columns[:4]]   

Out[33]:                      bidopen  bidclose  bidhigh   bidlow 

         date 

         2018-10-08 21:00:00  113.760   113.219  113.937  112.816 

         2018-10-09 21:00:00  113.219   112.946  113.386  112.863 

         2018-10-10 21:00:00  112.946   112.267  113.281  112.239 

         2018-10-11 21:00:00  112.267   112.155  112.528  111.825 

         2018-10-12 21:00:00  112.155   112.200  112.491  111.873 

         2018-10-14 21:00:00  112.163   112.130  112.270  112.109 

         2018-10-15 21:00:00  112.130   111.758  112.230  111.619 

         2018-10-16 21:00:00  112.151   112.238  112.333  111.727 

         2018-10-17 21:00:00  112.238   112.636  112.670  112.009 

         2018-10-18 21:00:00  112.636   112.168  112.725  111.942 

 

In [34]: candles[candles.columns[4:]]   

Out[34]:                      askopen  askclose  askhigh   asklow  tickqty 

         date 

         2018-10-08 21:00:00  113.840   113.244  113.950  112.827   184835 

         2018-10-09 21:00:00  113.244   112.970  113.399  112.875   321755 

         2018-10-10 21:00:00  112.970   112.287  113.294  112.265   329174 

         2018-10-11 21:00:00  112.287   112.175  112.541  111.835   568231 

         2018-10-12 21:00:00  112.175   112.243  112.504  111.885   363233 

         2018-10-14 21:00:00  112.219   112.181  112.294  112.145      581 

         2018-10-15 21:00:00  112.181   111.781  112.243  111.631   322304 

         2018-10-16 21:00:00  112.163   112.271  112.345  111.740   253420 

         2018-10-17 21:00:00  112.271   112.664  112.682  112.022   542166 

         2018-10-18 21:00:00  112.664   112.237  112.738  111.955   369012 

 

In [35]: start = dt.datetime(2017, 1, 1)   

         end = dt.datetime(2018, 1, 1)   

 

In [36]: candles = api.get_candles('EUR/GBP', period='D1', 

                                   start=start, stop=end)   

 

In [37]: candles.info()   

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 309 entries, 2017-01-03 22:00:00 to 2018-01-01 22:00:00 

         Data columns (total 9 columns): 

         bidopen     309 non-null float64 

         bidclose    309 non-null float64 

         bidhigh     309 non-null float64 

         bidlow      309 non-null float64 

         askopen     309 non-null float64 



         askclose    309 non-null float64 

         askhigh     309 non-null float64 

         asklow      309 non-null float64 

         tickqty     309 non-null int64 

         dtypes: float64(8), int64(1) 

         memory usage: 24.1 KB 

 

In [38]: candles = api.get_candles('EUR/USD', period='m1', number=250)   

 

In [39]: candles['askclose'].plot(figsize=(10, 6))

Retrieves the 10 most recent end-of-day prices.

Retrieves end-of-day prices for a whole year.

Retrieves the most recent one-minute bar prices available.

Figure 14-3. Historical ask close prices for EUR/USD (minute bars)



Retrieving Streaming Data
While historical data is important to, for example, backtest algorithmic
trading strategies, continuous access to real-time or streaming data (during
trading hours) is required to deploy and automate algorithmic trading
strategies. The FXCM API allows for the subscription to real-time data
streams for all instruments. The fxcmpy wrapper package supports this
functionality, among others, in that it allows users to provide user-defined
functions (so-called callback functions) to process the real-time data stream.

The following code presents a simple callback function — it only prints out
selected elements of the data set retrieved — and uses it to process data
retrieved in real time after subscribing to the desired instrument (here,
EUR/USD):

In [40]: def output(data, dataframe): 

             print('%3d | %s | %s | %6.5f, %6.5f' 

                   % (len(dataframe), data['Symbol'], 

                      pd.to_datetime(int(data['Updated']), unit='ms'), 

                      data['Rates'][0], data['Rates'][1]))   

 

In [41]: api.subscribe_market_data('EUR/USD', (output,))   

           1 | EUR/USD | 2018-10-19 11:36:39.735000 | 1.14694, 1.14705 

           2 | EUR/USD | 2018-10-19 11:36:39.776000 | 1.14694, 1.14706 

           3 | EUR/USD | 2018-10-19 11:36:40.714000 | 1.14695, 1.14707 

           4 | EUR/USD | 2018-10-19 11:36:41.646000 | 1.14696, 1.14708 

           5 | EUR/USD | 2018-10-19 11:36:41.992000 | 1.14696, 1.14709 

           6 | EUR/USD | 2018-10-19 11:36:45.131000 | 1.14696, 1.14708 

           7 | EUR/USD | 2018-10-19 11:36:45.247000 | 1.14696, 1.14709 

 

In [42]: api.get_last_price('EUR/USD')   

Out[42]: Bid     1.14696 

         Ask     1.14709 

         High    1.14775 

         Low     1.14323 

         Name: 2018-10-19 11:36:45.247000, dtype: float64 

 

In [43]: api.unsubscribe_market_data('EUR/USD')   

           8 | EUR/USD | 2018-10-19 11:36:48.239000 | 1.14696, 1.14708

The callback function that prints out certain elements of the retrieved
data set.



The subscription to a specific real-time data stream; data is processed
asynchronously as long as there is no “unsubscribe” event.

During the subscription, the .get_last_price() method returns the
last available data set.

This unsubscribes from the real-time data stream.



CALLBACK FUNCTIONS
Callback functions are a flexible means to process real-time streaming data based on a
Python function or even multiple such functions. They can be used for simple tasks,
such as the printing of incoming data, or complex tasks, such as generating trading
signals based on online trading algorithms (see Chapter 16).



Placing Orders
The FXCM API allows the placement and management of all types of
orders that are also available via the trading application of FXCM (such as
entry orders or trailing stop loss orders).2 However, the following code
illustrates basic market buy and sell orders only since they are in general
sufficient to at least get started with algorithmic trading. It first verifies that
there are no open positions, then opens different positions (via the
create_market_buy_order() method):

In [44]: api.get_open_positions()   

Out[44]: Empty DataFrame 

         Columns: [] 

         Index: [] 

 

In [45]: order = api.create_market_buy_order('EUR/USD', 10)   

 

In [46]: sel = ['tradeId', 'amountK', 'currency', 

                'grossPL', 'isBuy']   

 

In [47]: api.get_open_positions()[sel]   

Out[47]:      tradeId  amountK currency  grossPL  isBuy 

         0  132607899       10  EUR/USD  0.17436   True 

 

In [48]: order = api.create_market_buy_order('EUR/GBP', 5)   

 

In [49]: api.get_open_positions()[sel] 

Out[49]:      tradeId  amountK currency  grossPL  isBuy 

         0  132607899       10  EUR/USD  0.17436   True 

         1  132607928        5  EUR/GBP -1.53367   True

Shows the open positions for the connected (default) account.

Opens a position of 100,000 in the EUR/USD currency pair.3

Shows the open positions for selected elements only.

Opens another position of 50,000 in the EUR/GBP currency pair.



While the create_market_buy_order() function opens or increases
positions, the create_market_sell_order() function allows one to close
or decrease positions. There are also more general methods that allow the
closing out of positions, as the following code illustrates:

In [50]: order = api.create_market_sell_order('EUR/USD', 3)   

 

In [51]: order = api.create_market_buy_order('EUR/GBP', 5)   

 

In [52]: api.get_open_positions()[sel]   

Out[52]:      tradeId  amountK currency  grossPL  isBuy 

         0  132607899       10  EUR/USD  0.17436   True 

         1  132607928        5  EUR/GBP -1.53367   True 

         2  132607930        3  EUR/USD -1.33369  False 

         3  132607932        5  EUR/GBP -1.64728   True 

 

In [53]: api.close_all_for_symbol('EUR/GBP')   

 

In [54]: api.get_open_positions()[sel] 

Out[54]:      tradeId  amountK currency  grossPL  isBuy 

         0  132607899       10  EUR/USD  0.17436   True 

         1  132607930        3  EUR/USD -1.33369  False 

 

In [55]: api.close_all()   

 

In [56]: api.get_open_positions() 

Out[56]: Empty DataFrame 

         Columns: [] 

         Index: []

This reduces the position in the EUR/USD currency pair.

This increases the position in the EUR/GBP currency pair.

For EUR/GBP there are now two open long positions; contrary to the
EUR/USD position, they are not netted.

The close_all_for_symbol() method closes all positions for the
specified symbol.



The close_all() method closes all open positions.



Account Information
Beyond, for example, open positions, the FXCM API allows retrieval of
more general account information as well. For example, one can look up the
default account (if there are multiple accounts) or get an overview of the
equity and margin situation:

In [57]: api.get_default_account()   

Out[57]: 1090495 

 

In [58]: api.get_accounts().T   

Out[58]:                           0 

         accountId           1090495 

         accountName        01090495 

         balance              4915.2 

         dayPL                -41.97 

         equity               4915.2 

         grossPL                   0 

         hedging                   Y 

         mc                        N 

         mcDate 

         ratePrecision             0 

         t                         6 

         usableMargin         4915.2 

         usableMargin3        4915.2 

         usableMargin3Perc       100 

         usableMarginPerc        100 

         usdMr                     0 

         usdMr3                    0

Shows the default accountId value.

Shows for all accounts the financial situation and some parameters.



Conclusion
This chapter is about the REST API of FXCM for algorithmic trading and
covers the following topics:

Setting everything up for API usage

Retrieving historical tick data

Retrieving historical candles data

Retrieving streaming data in real time

Placing market buy and sell orders

Looking up account information

The FXCM API and the fxcmpy wrapper package provide, of course, more
functionality, but these are the basic building blocks needed to get started
with algorithmic trading.



Further Resources
For further details on the FXCM trading API and the Python wrapper
package, consult the documentation:

Trading API

fxcmpy package

For a comprehensive online training program covering Python for
algorithmic trading, see http://certificate.tpq.io.

Note that FXCM demo accounts are only offered for certain countries.

See the documentation for details.

Quantities are in thousands of the instrument for currency pairs. Also note that different accounts
might have different leverage ratios. This implies that the same position might require more or
less equity (margin) depending on the relevant leverage ratio. Adjust the example quantities to
lower values if necessary.

1

2

3

https://fxcm.github.io/rest-api-docs
http://fxcmpy.tpq.io/
http://certificate.tpq.io/
http://fxcmpy.tpq.io/
https://www.fxcm.com/uk/accounts/forex-cfd-leverage/


Chapter 15. Trading Strategies

[T]hey were silly enough to think you can look at the past to predict the
future.
The Economist1

This chapter is about the vectorized backtesting of algorithmic trading
strategies. The term algorithmic trading strategy is used to describe any
type of financial trading strategy that is based on an algorithm designed to
take long, short, or neutral positions in financial instruments on its own
without human interference. A simple algorithm, such as “altering every
five minutes between a long and a neutral position in the stock of Apple,
Inc.,” satisfies this definition. For the purposes of this chapter and a bit
more technically, an algorithmic trading strategy is represented by some
Python code that, given the availability of new data, decides whether to buy
or sell a financial instrument in order to take long, short, or neutral positions
in it.

The chapter does not provide an overview of algorithmic trading strategies
(see “Further Resources” for references that cover algorithmic trading
strategies in more detail). It rather focuses on the technical aspects of the
vectorized backtesting approach for a select few such strategies. With this
approach the financial data on which the strategy is tested is manipulated in
general as a whole, applying vectorized operations on NumPy ndarray and
pandas DataFrame objects that store the financial data.2

Another focus of the chapter is the application of machine and deep
learning algorithms to formulate algorithmic trading strategies. To this end,
classification algorithms are trained on historical data in order to predict
future directional market movements. This in general requires the
transformation of the financial data from real values to a relatively small
number of categorical values.3 This allows us to harness the pattern
recognition power of such algorithms.



The chapter is broken down into the following sections:

“Simple Moving Averages”
This section focuses on an algorithmic trading strategy based on
simple moving averages and how to backtest such a strategy.

“Random Walk Hypothesis”
This section introduces the random walk hypothesis.

“Linear OLS Regression”
This section looks at using OLS regression to derive an algorithmic
trading strategy.

“Clustering”
In this section, we explore using unsupervised learning algorithms to
derive algorithmic trading strategies.

“Frequency Approach”
This section introduces a simple frequentist approach for algorithmic
trading.

“Classification”
Here we look at classification algorithms from machine learning for
algorithmic trading.

“Deep Neural Networks”
This section focuses on deep neural networks and how to use them for
algorithmic trading.



Simple Moving Averages
Trading based on simple moving averages (SMAs) is a decades-old trading
approach (see, for example, the paper by Brock et al. (1992)). Although
many traders use SMAs for their discretionary trading, they can also be
used to formulate simple algorithmic trading strategies. This section uses
SMAs to introduce vectorized backtesting of algorithmic trading strategies.
It builds on the technical analysis example in Chapter 8.



Data Import
First, some imports:

In [1]: import numpy as np 

        import pandas as pd 

        import datetime as dt 

        from pylab import mpl, plt 

 

In [2]: plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline

Second, the reading of the raw data and the selection of the financial time
series for a single symbol, the stock of Apple, Inc. (AAPL.O). The analysis in
this section is based on end-of-day data; intraday data is used in subsequent
sections:

In [3]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                          index_col=0, parse_dates=True) 

 

In [4]: raw.info() 

        <class 'pandas.core.frame.DataFrame'> 

        DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29 

        Data columns (total 12 columns): 

        AAPL.O    2138 non-null float64 

        MSFT.O    2138 non-null float64 

        INTC.O    2138 non-null float64 

        AMZN.O    2138 non-null float64 

        GS.N      2138 non-null float64 

        SPY       2138 non-null float64 

        .SPX      2138 non-null float64 

        .VIX      2138 non-null float64 

        EUR=      2216 non-null float64 

        XAU=      2211 non-null float64 

        GDX       2138 non-null float64 

        GLD       2138 non-null float64 

        dtypes: float64(12) 

        memory usage: 225.1 KB 

 

In [5]: symbol = 'AAPL.O' 

 

In [6]: data = ( 

            pd.DataFrame(raw[symbol])

            .dropna() 

        )



Trading Strategy
Third, the calculation of the SMA values for two different rolling window
sizes. Figure 15-1 shows the three time series visually:

In [7]: SMA1 = 42   

        SMA2 = 252   

 

In [8]: data['SMA1'] = data[symbol].rolling(SMA1).mean()   

        data['SMA2'] = data[symbol].rolling(SMA2).mean()   

 

In [9]: data.plot(figsize=(10, 6));

Calculates the values for the shorter SMA.

Calculates the values for the longer SMA.

Figure 15-1. Apple stock price and two simple moving averages



Fourth, the derivation of the positions. The trading rules are:
Go long (= +1) when the shorter SMA is above the longer SMA.

Go short (= -1) when the shorter SMA is below the longer SMA.4

The positions are visualized in Figure 15-2:

In [10]: data.dropna(inplace=True) 

 

In [11]: data['Position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)  

 

In [12]: data.tail() 

Out[12]:             AAPL.O        SMA1        SMA2  Position 

         Date 

         2018-06-25  182.17  185.606190  168.265556         1 

         2018-06-26  184.43  186.087381  168.418770         1 

         2018-06-27  184.16  186.607381  168.579206         1 

         2018-06-28  185.50  187.089286  168.736627         1 

         2018-06-29  185.11  187.470476  168.901032         1 

 

In [13]: ax = data.plot(secondary_y='Position', figsize=(10, 6)) 

         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));

np.where(cond, a, b) evaluates the condition cond element-wise and
places a when True and b otherwise.



Figure 15-2. Apple stock price, two SMAs, and resulting positions

This replicates the results derived in Chapter 8. What is not addressed there
is if following the trading rules — i.e., implementing the algorithmic trading
strategy — is superior compared to the benchmark case of simply going long
on the Apple stock over the whole period. Given that the strategy leads to
two periods only during which the Apple stock should be shorted,
differences in the performance can only result from these two periods.



Vectorized Backtesting
The vectorized backtesting can now be implemented as follows. First, the
log returns are calculated. Then the positionings, represented as +1 or -1, are
multiplied by the relevant log return. This simple calculation is possible
since a long position earns the return of the Apple stock and a short position
earns the negative return of the Apple stock. Finally, the log returns for the
Apple stock and the algorithmic trading strategy based on SMAs need to be
added up and the exponential function applied to arrive at the performance
values:

In [14]: data['Returns'] = np.log(data[symbol] / data[symbol].shift(1))   

 

In [15]: data['Strategy'] = data['Position'].shift(1) * data['Returns']   

 

In [16]: data.round(4).head() 

Out[16]:              AAPL.O     SMA1     SMA2  Position  Returns  Strategy 

         Date 

         2010-12-31  46.0800  45.2810  37.1207         1      NaN       NaN 

         2011-01-03  47.0814  45.3497  37.1862         1   0.0215    0.0215 

         2011-01-04  47.3271  45.4126  37.2525         1   0.0052    0.0052 

         2011-01-05  47.7142  45.4661  37.3223         1   0.0081    0.0081 

         2011-01-06  47.6757  45.5226  37.3921         1  -0.0008   -0.0008 

 

In [17]: data.dropna(inplace=True) 

 

In [18]: np.exp(data[['Returns', 'Strategy']].sum())   

Out[18]: Returns     4.017148 

         Strategy    5.811299 

         dtype: float64 

 

In [19]: data[['Returns', 'Strategy']].std() * 252 ** 0.5   

Out[19]: Returns     0.250571 

         Strategy    0.250407 

         dtype: float64

Calculates the log returns of the Apple stock (i.e., the benchmark
investment).

Multiplies the position values, shifted by one day, by the log returns of
the Apple stock; the shift is required to avoid a foresight bias.5



Sums up the log returns for the strategy and the benchmark investment
and calculates the exponential value to arrive at the absolute
performance.

Calculates the annualized volatility for the strategy and the benchmark
investment.

The numbers show that the algorithmic trading strategy indeed outperforms
the benchmark investment of passively holding the Apple stock. Due to the
type and characteristics of the strategy, the annualized volatility is the same,
such that it also outperforms the benchmark investment on a risk-adjusted
basis.

To gain a better picture of the overall performance, Figure 15-3 shows the
performance of the Apple stock and the algorithmic trading strategy over
time:

In [20]: ax = data[['Returns', 'Strategy']].cumsum( 

                 ).apply(np.exp).plot(figsize=(10, 6)) 

         data['Position'].plot(ax=ax, secondary_y='Position', style='--') 

         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));



Figure 15-3. Performance of Apple stock and SMA-based trading strategy over time



SIMPLIFICATIONS
The vectorized backtesting approach as introduced in this subsection is based on a
number of simplifying assumptions. Among others, transactions costs (fixed fees, bid-
ask spreads, lending costs, etc.) are not included. This might be justifiable for a trading
strategy that leads to a few trades only over multiple years. It is also assumed that all
trades take place at the end-of-day closing prices for the Apple stock. A more realistic
backtesting approach would take these and other (market microstructure) elements into
account.



Optimization
A natural question that arises is if the chosen parameters SMA1=42 and
SMA2=252 are the “right” ones. In general, investors prefer higher returns to
lower returns ceteris paribus. Therefore, one might be inclined to search for
those parameters that maximize the return over the relevant period. To this
end, a brute force approach can be used that simply repeats the whole
vectorized backtesting procedure for different parameter combinations,
records the results, and does a ranking afterward. This is what the following
code does:

In [21]: from itertools import product 

 

In [22]: sma1 = range(20, 61, 4)   

         sma2 = range(180, 281, 10)   

 

In [23]: results = pd.DataFrame() 

         for SMA1, SMA2 in product(sma1, sma2):   

             data = pd.DataFrame(raw[symbol]) 

             data.dropna(inplace=True) 

             data['Returns'] = np.log(data[symbol] / data[symbol].shift(1)) 

             data['SMA1'] = data[symbol].rolling(SMA1).mean() 

             data['SMA2'] = data[symbol].rolling(SMA2).mean() 

             data.dropna(inplace=True) 

             data['Position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1) 

             data['Strategy'] = data['Position'].shift(1) * data['Returns'] 

             data.dropna(inplace=True) 

             perf = np.exp(data[['Returns', 'Strategy']].sum()) 

             results = results.append(pd.DataFrame( 

                         {'SMA1': SMA1, 'SMA2': SMA2, 

                          'MARKET': perf['Returns'], 

                          'STRATEGY': perf['Strategy'], 

                          'OUT': perf['Strategy'] - perf['Returns']}, 

                          index=[0]), ignore_index=True)  

Specifies the parameter values for SMA1.

Specifies the parameter values for SMA2.

Combines all values for SMA1 with those for SMA2.



Records the vectorized backtesting results in a DataFrame object.

The following code gives an overview of the results and shows the seven
best-performing parameter combinations of all those backtested. The
ranking is implemented according to the outperformance of the algorithmic
trading strategy compared to the benchmark investment. The performance
of the benchmark investment varies since the choice of the SMA2 parameter
influences the length of the time interval and data set on which the
vectorized backtest is implemented:

In [24]: results.info() 

         <class 'pandas.core.frame.DataFrame'> 

         RangeIndex: 121 entries, 0 to 120 

         Data columns (total 5 columns): 

         SMA1        121 non-null int64 

         SMA2        121 non-null int64 

         MARKET      121 non-null float64 

         STRATEGY    121 non-null float64 

         OUT         121 non-null float64 

         dtypes: float64(3), int64(2) 

         memory usage: 4.8 KB 

 

In [25]: results.sort_values('OUT', ascending=False).head(7) 

Out[25]:      SMA1  SMA2    MARKET  STRATEGY       OUT 

         56     40   190  4.650342  7.175173  2.524831 

         39     32   240  4.045619  6.558690  2.513071 

         59     40   220  4.220272  6.544266  2.323994 

         46     36   200  4.074753  6.389627  2.314874 

         55     40   180  4.574979  6.857989  2.283010 

         70     44   220  4.220272  6.469843  2.249571 

         101    56   200  4.074753  6.319524  2.244772

According to the brute force–based optimization, SMA1=40 and SMA2=190 are
the optimal parameters, leading to an outperformance of some 230
percentage points. However, this result is heavily dependent on the data set
used and is prone to overfitting. A more rigorous approach would be to
implement the optimization on one data set, the in-sample or training data
set, and test it on another one, the out-of-sample or testing data set.



OVERFITTING
In general, any type of optimization, fitting, or training in the context of algorithmic
trading strategies is prone to what is called overfitting. This means that parameters
might be chosen that perform (exceptionally) well for the used data set but might
perform (exceptionally) badly on other data sets or in practice.



Random Walk Hypothesis
The previous section introduces vectorized backtesting as an efficient tool to
backtest algorithmic trading strategies. The single strategy backtested based
on a single financial time series, namely historical end-of-day prices for the
Apple stock, outperforms the benchmark investment of simply going long on
the Apple stock over the same period.

Although rather specific in nature, these results are in contrast to what the
random walk hypothesis (RWH) predicts, namely that such predictive
approaches should not yield any outperformance at all. The RWH postulates
that prices in financial markets follow a random walk, or, in continuous time,
an arithmetic Brownian motion without drift. The expected value of an
arithmetic Brownian motion without drift at any point in the future equals its
value today.6 As a consequence, the best predictor for tomorrow’s price, in a
least-squares sense, is today’s price if the RWH applies.

The consequences are summarized in the following quote:

For many years, economists, statisticians, and teachers of finance have
been interested in developing and testing models of stock price behavior.
One important model that has evolved from this research is the theory of
random walks. This theory casts serious doubt on many other methods for
describing and predicting stock price behavior — methods that have
considerable popularity outside the academic world. For example, we
shall see later that, if the random-walk theory is an accurate description of
reality, then the various “technical” or “chartist” procedures for predicting
stock prices are completely without value.
Eugene F. Fama (1965)

The RWH is consistent with the efficient markets hypothesis (EMH), which,
non-technically speaking, states that market prices reflect “all available
information.” Different degrees of efficiency are generally distinguished,
such as weak, semi-strong, and strong, defining more specifically what “all
available information” entails. Formally, such a definition can be based on



the concept of an information set in theory and on a data set for
programming purposes, as the following quote illustrates:

A market is efficient with respect to an information set S if it is impossible
to make economic profits by trading on the basis of information set S.
Michael Jensen (1978)

Using Python, the RWH can be tested for a specific case as follows. A
financial time series of historical market prices is used for which a number
of lagged versions are created — say, five. OLS regression is then used to
predict the market prices based on the lagged market prices created before.
The basic idea is that the market prices from yesterday and four more days
back can be used to predict today’s market price.

The following Python code implements this idea and creates five lagged
versions of the historical end-of-day closing levels of the S&P 500 stock
index:

In [26]: symbol = '.SPX' 

 

In [27]: data = pd.DataFrame(raw[symbol]) 

 

In [28]: lags = 5 

         cols = [] 

         for lag in range(1, lags + 1): 

             col = 'lag_{}'.format(lag)   

             data[col] = data[symbol].shift(lag)   

             cols.append(col)   

 

In [29]: data.head(7) 

Out[29]:                .SPX    lag_1    lag_2    lag_3    lag_4    lag_5 

         Date 

         2010-01-01      NaN      NaN      NaN      NaN      NaN      NaN 

         2010-01-04  1132.99      NaN      NaN      NaN      NaN      NaN 

         2010-01-05  1136.52  1132.99      NaN      NaN      NaN      NaN 

         2010-01-06  1137.14  1136.52  1132.99      NaN      NaN      NaN 

         2010-01-07  1141.69  1137.14  1136.52  1132.99      NaN      NaN 

         2010-01-08  1144.98  1141.69  1137.14  1136.52  1132.99      NaN 

         2010-01-11  1146.98  1144.98  1141.69  1137.14  1136.52  1132.99 

 

In [30]: data.dropna(inplace=True)

Defines a column name for the current lag value.



Creates the lagged version of the market prices for the current lag
value.

Collects the column names for later reference.
Using NumPy, the OLS regression is straightforward to implement. As the
optimal regression parameters show, lag_1 indeed is the most important one
in predicting the market price based on OLS regression. Its value is close to
1. The other four values are rather close to 0. Figure 15-4 visualizes the
optimal regression parameter values.

Figure 15-4. Optimal regression parameters from OLS regression for price prediction

When using the optimal results to visualize the prediction values as
compared to the original index values for the S&P 500, it becomes obvious
from Figure 15-5 that indeed lag_1 is basically what is used to come up with
the prediction value. Graphically speaking, the prediction line in Figure 15-5
is the original time series shifted by one day to the right (with some minor
adjustments).



Figure 15-5. S&P 500 levels compared to prediction values from OLS regression

All in all, the brief analysis in this section reveals some support for both the
RWH and the EMH. For sure, the analysis is done for a single stock index
only and uses a rather specific parameterization — but this can easily be
widened to incorporate multiple financial instruments across multiple asset
classes, different values for the number of lags, etc. In general, one will find
out that the results are qualitatively more or less the same. After all, the
RWH and EMH are among the financial theories that have broad empirical
support. In that sense, any algorithmic trading strategy must prove its worth
by proving that the RWH does not apply in general. This for sure is a tough
hurdle.



Linear OLS Regression
This section applies linear OLS regression to predict the direction of market
movements based on historical log returns. To keep things simple, only two
features are used. The first feature (lag_1) represents the log returns of the
financial time series lagged by one day. The second feature (lag_2) lags the
log returns by two days. Log returns — in contrast to prices — are
stationary in general, which often is a necessary condition for the
application of statistical and ML algorithms.

The basic idea behind the usage of lagged log returns as features is that they
might be informative in predicting future returns. For example, one might
hypothesize that after two downward movements an upward movement is
more likely (“mean reversion”), or, to the contrary, that another downward
movement is more likely (“momentum” or “trend”). The application of
regression techniques allows the formalization of such informal reasonings.



The Data
First, the importing and preparation of the data set. Figure 15-6 shows the
frequency distribution of the daily historical log returns for the EUR/USD
exchange rate. They are the basis for the features as well as the labels to be
used in what follows:

In [3]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                          index_col=0, parse_dates=True).dropna() 

 

In [4]: raw.columns 

Out[4]: Index(['AAPL.O', 'MSFT.O', 'INTC.O', 'AMZN.O', 'GS.N', 'SPY', '.SPX', 

               '.VIX', 'EUR=', 'XAU=', 'GDX', 'GLD'], 

               dtype='object') 

 

In [5]: symbol = 'EUR=' 

 

In [6]: data = pd.DataFrame(raw[symbol]) 

 

In [7]: data['returns'] = np.log(data / data.shift(1)) 

 

In [8]: data.dropna(inplace=True) 

 

In [9]: data['direction'] = np.sign(data['returns']).astype(int) 

 

In [10]: data.head() 

Out[10]:               EUR=   returns  direction 

         Date 

         2010-01-05  1.4368 -0.002988         -1 

         2010-01-06  1.4412  0.003058          1 

         2010-01-07  1.4318 -0.006544         -1 

         2010-01-08  1.4412  0.006544          1 

         2010-01-11  1.4513  0.006984          1 

 

In [11]: data['returns'].hist(bins=35, figsize=(10, 6));



Figure 15-6. Histogram of log returns for EUR/USD exchange rate

Second, the code that creates the features data by lagging the log returns and
visualizes it in combination with the returns data (see Figure 15-7):

In [12]: lags = 2 

 

In [13]: def create_lags(data): 

             global cols 

             cols = [] 

             for lag in range(1, lags + 1): 

                 col = 'lag_{}'.format(lag) 

                 data[col] = data['returns'].shift(lag) 

                 cols.append(col) 

 

In [14]: create_lags(data) 

 

In [15]: data.head() 

Out[15]:               EUR=   returns  direction     lag_1     lag_2 

         Date 

         2010-01-05  1.4368 -0.002988         -1       NaN       NaN 

         2010-01-06  1.4412  0.003058          1 -0.002988       NaN 

         2010-01-07  1.4318 -0.006544         -1  0.003058 -0.002988 

         2010-01-08  1.4412  0.006544          1 -0.006544  0.003058 

         2010-01-11  1.4513  0.006984          1  0.006544 -0.006544 

 

In [16]: data.dropna(inplace=True) 

 

In [17]: data.plot.scatter(x='lag_1', y='lag_2', c='returns', 

                           cmap='coolwarm', figsize=(10, 6), colorbar=True) 



         plt.axvline(0, c='r', ls='--') 

         plt.axhline(0, c='r', ls='--');

Figure 15-7. Scatter plot based on features and labels data



Regression
With the data set completed, linear OLS regression can be applied to learn
about any potential (linear) relationships, to predict market movement based
on the features, and to backtest a trading strategy based on the predictions.
Two basic approaches are available: using the log returns or only the
direction data as the dependent variable during the regression. In any case,
predictions are real-valued and therefore transformed to either +1 or -1 to
only work with the direction of the prediction:

In [18]: from sklearn.linear_model import LinearRegression   

 

In [19]: model = LinearRegression()   

 

In [20]: data['pos_ols_1'] = model.fit(data[cols], 

                                       data['returns']).predict(data[cols])   

 

In [21]: data['pos_ols_2'] = model.fit(data[cols], 

                                       data['direction']).predict(data[cols])   

 

In [22]: data[['pos_ols_1', 'pos_ols_2']].head()

Out[22]:             pos_ols_1  pos_ols_2 

         Date 

         2010-01-07  -0.000166  -0.000086 

         2010-01-08   0.000017   0.040404 

         2010-01-11  -0.000244  -0.011756 

         2010-01-12  -0.000139  -0.043398 

         2010-01-13  -0.000022   0.002237 

 

In [23]: data[['pos_ols_1', 'pos_ols_2']] = np.where( 

                     data[['pos_ols_1', 'pos_ols_2']] > 0, 1, -1)   

 

In [24]: data['pos_ols_1'].value_counts()   

Out[24]: -1    1847 

          1     288 

         Name: pos_ols_1, dtype: int64 

 

In [25]: data['pos_ols_2'].value_counts()   

Out[25]:  1    1377 

         -1     758 

         Name: pos_ols_2, dtype: int64 

 

In [26]: (data['pos_ols_1'].diff() != 0).sum()   

Out[26]: 555 

 

In [27]: (data['pos_ols_2'].diff() != 0).sum()   

Out[27]: 762



The linear OLS regression implementation from scikit-learn is used.

The regression is implemented on the log returns directly …

… and on the direction data which is of primary interest.

The real-valued predictions are transformed to directional values (+1,
-1).

The two approaches yield different directional predictions in general.

However, both lead to a relatively large number of trades over time.
Equipped with the directional prediction, vectorized backtesting can be
applied to judge the performance of the resulting trading strategies. At this
stage, the analysis is based on a number of simplifying assumptions, such as
“zero transaction costs” and the usage of the same data set for both training
and testing. Under these assumptions, however, both regression-based
strategies outperform the benchmark passive investment, while only the
strategy trained on the direction of the market shows a positive overall
performance (Figure 15-8):

In [28]: data['strat_ols_1'] = data['pos_ols_1'] * data['returns'] 

 

In [29]: data['strat_ols_2'] = data['pos_ols_2'] * data['returns'] 

 

In [30]: data[['returns', 'strat_ols_1', 'strat_ols_2']].sum().apply(np.exp) 

Out[30]: returns        0.810644 

         strat_ols_1    0.942422 

         strat_ols_2    1.339286 

         dtype: float64 

 

In [31]: (data['direction'] == data['pos_ols_1']).value_counts()   

Out[31]: False    1093 

         True     1042 

         dtype: int64 

 

In [32]: (data['direction'] == data['pos_ols_2']).value_counts()   

Out[32]: True     1096 



         False    1039 

         dtype: int64 

 

In [33]: data[['returns', 'strat_ols_1', 'strat_ols_2']].cumsum( 

                 ).apply(np.exp).plot(figsize=(10, 6));

Shows the number of correct and false predictions by the strategies.

Figure 15-8. Performance of EUR/USD and regression-based strategies over time



Clustering
This section applies k-means clustering, as introduced in “Machine
Learning”, to financial time series data to automatically come up with
clusters that are used to formulate a trading strategy. The idea is that the
algorithm identifies two clusters of feature values that predict either an
upward movement or a downward movement.

The following code applies the k-means algorithm to the two features as
used before. Figure 15-9 visualizes the two clusters:

In [34]: from sklearn.cluster import KMeans 

 

In [35]: model = KMeans(n_clusters=2, random_state=0)   

 

In [36]: model.fit(data[cols]) 

Out[36]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, 

             n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto', 

             random_state=0, tol=0.0001, verbose=0) 

 

In [37]: data['pos_clus'] = model.predict(data[cols]) 

 

In [38]: data['pos_clus'] = np.where(data['pos_clus'] == 1, -1, 1)   

 

In [39]: data['pos_clus'].values 

Out[39]: array([-1,  1, -1, ...,  1,  1, -1]) 

 

In [40]: plt.figure(figsize=(10, 6)) 

         plt.scatter(data[cols].iloc[:, 0], data[cols].iloc[:, 1], 

                     c=data['pos_clus'], cmap='coolwarm');

Two clusters are chosen for the algorithm.

Given the cluster values, the position is chosen.



Figure 15-9. Two clusters as identified by the k-means algorithm

Admittedly, this approach is quite arbitrary in this context — after all, how
should the algorithm know what one is looking for? However, the resulting
trading strategy shows a slight outperformance at the end compared to the
benchmark passive investment (see Figure 15-10). It is noteworthy that no
guidance (supervision) is given and that the hit ratio — i.e., the number of
correct predictions in relationship to all predictions made — is less than
50%:

In [41]: data['strat_clus'] = data['pos_clus'] * data['returns'] 

 

In [42]: data[['returns', 'strat_clus']].sum().apply(np.exp) 

Out[42]: returns       0.810644 

         strat_clus    1.277133 

         dtype: float64 

 

In [43]: (data['direction'] == data['pos_clus']).value_counts() 

Out[43]: True     1077

         False    1058 

         dtype: int64 

 

In [44]: data[['returns', 'strat_clus']].cumsum( 

                 ).apply(np.exp).plot(figsize=(10, 6));



Figure 15-10. Performance of EUR/USD and k-means-based strategy over time



Frequency Approach
Beyond more sophisticated algorithms and techniques, one might come up
with the idea of just implementing a frequency approach to predict
directional movements in financial markets. To this end, one might
transform the two real-valued features to binary ones and assess the
probability of an upward and a downward movement, respectively, from the
historical observations of such movements, given the four possible
combinations for the two binary features ((0, 0), (0, 1), (1, 0), (1, 1)).

Making use of the data analysis capabilities of pandas, such an approach is
relatively easy to implement:

In [45]: def create_bins(data, bins=[0]): 

             global cols_bin 

             cols_bin = [] 

             for col in cols: 

                 col_bin = col + '_bin' 

                 data[col_bin] = np.digitize(data[col], bins=bins)   

                 cols_bin.append(col_bin) 

 

In [46]: create_bins(data) 

 

In [47]: data[cols_bin + ['direction']].head()   

Out[47]:             lag_1_bin  lag_2_bin  direction 

         Date 

         2010-01-07          1          0         -1 

         2010-01-08          0          1          1 

         2010-01-11          1          0          1 

         2010-01-12          1          1         -1 

         2010-01-13          0          1          1 

 

In [48]: grouped = data.groupby(cols_bin + ['direction']) 

         grouped.size()   

Out[48]: lag_1_bin  lag_2_bin  direction 

         0          0          -1           239

                                0             4 

                                1           258 

                    1          -1           262 

                                1           288 

         1          0          -1           272

                                0             1 

                                1           278 

                    1          -1           278 

                                0             4 

                                1           251 

         dtype: int64 

 

In [49]: res = grouped['direction'].size().unstack(fill_value=0)   

 



In [50]: def highlight_max(s): 

             is_max = s == s.max() 

             return ['background-color: yellow' if v else '' for v in is_max]   

 

In [51]: res.style.apply(highlight_max, axis=1)   

Out[51]: <pandas.io.formats.style.Styler at 0x1a194216a0>

Digitizes the feature values given the bins parameter.

Shows the digitized feature values and the label values.

Shows the frequency of the possible movements conditional on the
feature value combinations.

Transforms the DataFrame object to have the frequencies in columns.

Highlights the highest-frequency value per feature value combination.
Given the frequency data, three feature value combinations hint at a
downward movement while one lets an upward movement seem more likely.
This translates into a trading strategy the performance of which is shown in
Figure 15-11:

In [52]: data['pos_freq'] = np.where(data[cols_bin].sum(axis=1) == 2, -1, 1)   

 

In [53]: (data['direction'] == data['pos_freq']).value_counts() 

Out[53]: True     1102 

         False    1033 

         dtype: int64 

 

In [54]: data['strat_freq'] = data['pos_freq'] * data['returns'] 

 

In [55]: data[['returns', 'strat_freq']].sum().apply(np.exp) 

Out[55]: returns       0.810644 

         strat_freq    0.989513 

         dtype: float64 

 

In [56]: data[['returns', 'strat_freq']].cumsum( 

                 ).apply(np.exp).plot(figsize=(10, 6));



Translates the findings given the frequencies to a trading strategy.

Figure 15-11. Performance of EUR/USD and frequency-based trading strategy over time



Classification
This section applies the classification algorithms from ML (as introduced in
“Machine Learning”) to the problem of predicting the direction of price
movements in financial markets. With that background and the examples
from previous sections, the application of the logistic regression, Gaussian
Naive Bayes, and support vector machine approaches is as straightforward
as applying them to smaller sample data sets.



Two Binary Features
First, a fitting of the models based on the binary feature values and the
derivation of the resulting position values:

In [57]: from sklearn import linear_model 

         from sklearn.naive_bayes import GaussianNB 

         from sklearn.svm import SVC 

 

In [58]: C = 1 

 

In [59]: models = { 

             'log_reg': linear_model.LogisticRegression(C=C), 

             'gauss_nb': GaussianNB(), 

             'svm': SVC(C=C) 

         } 

 

In [60]: def fit_models(data):   

             mfit = {model: models[model].fit(data[cols_bin], 

                                              data['direction']) 

                     for model in models.keys()} 

 

In [61]: fit_models(data) 

 

In [62]: def derive_positions(data):   

             for model in models.keys(): 

                 data['pos_' + model] = models[model].predict(data[cols_bin]) 

 

In [63]: derive_positions(data)

A function that fits all models.

A function that derives all position values from the fitted models.
Second, the vectorized backtesting of the resulting trading strategies.
Figure 15-12 visualizes the performance over time:

In [64]: def evaluate_strats(data):   

             global sel 

             sel = [] 

             for model in models.keys(): 

                 col = 'strat_' + model 

                 data[col] = data['pos_' + model] * data['returns'] 

                 sel.append(col) 

             sel.insert(0, 'returns') 

 

In [65]: evaluate_strats(data) 



 

In [66]: sel.insert(1, 'strat_freq') 

 

In [67]: data[sel].sum().apply(np.exp)   

Out[67]: returns           0.810644 

         strat_freq        0.989513 

         strat_log_reg     1.243322 

         strat_gauss_nb    1.243322 

         strat_svm         0.989513 

         dtype: float64 

 

In [68]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

A function that evaluates all resulting trading strategies.

Some strategies might show the exact same performance.

Figure 15-12. Performance of EUR/USD and classification-based trading strategies (two binary lags)
over time



Five Binary Features
In an attempt to improve the strategies’ performance, the following code
works with five binary lags instead of two. In particular, the performance of
the SVM-based strategy is significantly improved (see Figure 15-13). On the
other hand, the performance of the LR- and GNB-based strategies is worse:

In [69]: data = pd.DataFrame(raw[symbol]) 

 

In [70]: data['returns'] = np.log(data / data.shift(1)) 

 

In [71]: data['direction'] = np.sign(data['returns']) 

 

In [72]: lags = 5   

         create_lags(data) 

         data.dropna(inplace=True) 

 

In [73]: create_bins(data)   

         cols_bin 

Out[73]: ['lag_1_bin', 'lag_2_bin', 'lag_3_bin', 'lag_4_bin', 'lag_5_bin'] 

 

In [74]: data[cols_bin].head() 

Out[74]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin 

         Date 

         2010-01-12          1          1          0          1          0 

         2010-01-13          0          1          1          0          1 

         2010-01-14          1          0          1          1          0 

         2010-01-15          0          1          0          1          1 

         2010-01-19          0          0          1          0          1 

 

In [75]: data.dropna(inplace=True) 

 

In [76]: fit_models(data) 

 

In [77]: derive_positions(data) 

 

In [78]: evaluate_strats(data) 

 

In [79]: data[sel].sum().apply(np.exp) 

Out[79]: returns           0.805002 

         strat_log_reg     0.971623 

         strat_gauss_nb    0.986420 

         strat_svm         1.452406 

         dtype: float64 

 

In [80]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

Five lags of the log returns series are now used.



The real-valued features data is transformed to binary data.

Figure 15-13. Performance of EUR/USD and classification-based trading strategies (five binary lags)
over time



Five Digitized Features
Finally, the following code uses the first and second moment of the historical
log returns to digitize the features data, allowing for more possible feature
value combinations. This improves the performance of all classification
algorithms used, but for SVM the improvement is again most pronounced
(see Figure 15-14):

In [81]: mu = data['returns'].mean()   

         v = data['returns'].std()   

 

In [82]: bins = [mu - v, mu, mu + v]   

         bins   

Out[82]: [-0.006033537040418665, -0.00010174015279231306, 0.005830056734834039] 

 

In [83]: create_bins(data, bins) 

 

In [84]: data[cols_bin].head() 

Out[84]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin 

         Date 

         2010-01-12          3          3          0          2          1 

         2010-01-13          1          3          3          0          2 

         2010-01-14          2          1          3          3          0 

         2010-01-15          1          2          1          3          3 

         2010-01-19          0          1          2          1          3 

 

In [85]: fit_models(data) 

 

In [86]: derive_positions(data) 

 

In [87]: evaluate_strats(data) 

 

In [88]: data[sel].sum().apply(np.exp) 

Out[88]: returns           0.805002 

         strat_log_reg     1.431120 

         strat_gauss_nb    1.815304 

         strat_svm         5.653433 

         dtype: float64 

 

In [89]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

The mean log return and …

… the standard deviation are used …



… to digitize the features data.

Figure 15-14. Performance of EUR/USD and classification-based trading strategies (five digitized
lags) over time



TYPES OF FEATURES
This chapter exclusively works with lagged return data as features data, mostly in
binarized or digitized form. This is mainly done for convenience, since such features
data can be derived from the financial time series itself. However, in practical
applications the features data can be gained from a wealth of different data sources and
might include other financial time series and statistics derived thereof, macroeconomic
data, company financial indicators, or news articles. Refer to López de Prado (2018) for
an in-depth discussion of this topic. There are also Python packages for automated time
series feature extraction available, such as tsfresh.

https://github.com/blue-yonder/tsfresh


Sequential Train-Test Split
To better judge the performance of the classification algorithms, the code
that follows implements a sequential train-test split. The idea here is to
simulate the situation where only data up to a certain point in time is
available on which to train an ML algorithm. During live trading, the
algorithm is then faced with data it has never seen before. This is where the
algorithm must prove its worth. In this particular case, all classification
algorithms outperform — under the simplified assumptions from before —
the passive benchmark investment, but only the GNB and LR algorithms
achieve a positive absolute performance (Figure 15-15):

In [90]: split = int(len(data) * 0.5) 

 

In [91]: train = data.iloc[:split].copy()   

 

In [92]: fit_models(train)   

 

In [93]: test = data.iloc[split:].copy()   

 

In [94]: derive_positions(test)   

 

In [95]: evaluate_strats(test)   

 

In [96]: test[sel].sum().apply(np.exp) 

Out[96]: returns           0.850291 

         strat_log_reg     0.962989 

         strat_gauss_nb    0.941172 

         strat_svm         1.048966 

         dtype: float64 

 

In [97]: test[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

Trains all classification algorithms on the training data.

Tests all classification algorithms on the test data.



Figure 15-15. Performance of EUR/USD and classification-based trading strategies (sequential train-
test split)



Randomized Train-Test Split
The classification algorithms are trained and tested on binary or digitized
features data. The idea is that the feature value patterns allow a prediction of
future market movements with a better hit ratio than 50%. Implicitly, it is
assumed that the patterns’ predictive power persists over time. In that sense,
it shouldn’t make (too much of) a difference on which part of the data an
algorithm is trained and on which part of the data it is tested — implying
that one can break up the temporal sequence of the data for training and
testing.

A typical way to do this is a randomized train-test split to test the
performance of the classification algorithms out-of-sample — again trying to
emulate reality, where an algorithm during trading is faced with new data on
a continuous basis. The approach used is the same as that applied to the
sample data in “Train-test splits: Support vector machines”. Based on this
approach, the SVM algorithm shows again the best performance out-of-
sample (see Figure 15-16):

In [98]: from sklearn.model_selection import train_test_split 

 

In [99]: train, test = train_test_split(data, test_size=0.5, 

                                        shuffle=True, random_state=100) 

 

In [100]: train = train.copy().sort_index()   

 

In [101]: train[cols_bin].head() 

Out[101]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin 

          Date 

          2010-01-12          3          3          0          2          1 

          2010-01-13          1          3          3          0          2 

          2010-01-14          2          1          3          3          0 

          2010-01-15          1          2          1          3          3 

          2010-01-20          1          0          1          2          1 

 

In [102]: test = test.copy().sort_index()   

 

In [103]: fit_models(train) 

 

In [104]: derive_positions(test) 

 

In [105]: evaluate_strats(test) 

 

In [106]: test[sel].sum().apply(np.exp) 

Out[106]: returns           0.878078 

          strat_log_reg     0.735893 

          strat_gauss_nb    0.765009 



          strat_svm         0.695428 

          dtype: float64 

 

In [107]: test[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

Train and test data sets are copied and brought back in temporal order.

Figure 15-16. Performance of EUR/USD and classification-based trading strategies (randomized
train-test split)



Deep Neural Networks
Deep neural networks (DNNs) try to emulate the functioning of the human
brain. They are in general composed of an input layer (the features), an
output layer (the labels), and a number of hidden layers. The presence of
hidden layers is what makes a neural network deep. It allows it to learn
more complex relationships and to perform better on a number of problem
types. When applying DNNs one generally speaks of deep learning instead
of machine learning. For an introduction to this field, refer to Géron (2017)
or Gibson and Patterson (2017).



DNNs with scikit-learn
This section applies the MLPClassifier algorithm from scikit-learn, as
introduced in “Deep neural networks”. First, it is trained and tested on the
whole data set, using the digitized features. The algorithm achieves
exceptional performance in-sample (see Figure 15-17), which illustrates the
power of DNNs for this type of problem. It also hints at strong overfitting,
since the performance indeed seems unrealistically good:

In [108]: from sklearn.neural_network import MLPClassifier 

 

In [109]: model = MLPClassifier(solver='lbfgs', alpha=1e-5, 

                                hidden_layer_sizes=2 * [250], 

                                random_state=1) 

 

In [110]: %time model.fit(data[cols_bin], data['direction']) 

          CPU times: user 16.1 s, sys: 156 ms, total: 16.2 s 

          Wall time: 9.85 s 

 

Out[110]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', 

           beta_1=0.9, 

                 beta_2=0.999, early_stopping=False, epsilon=1e-08, 

                 hidden_layer_sizes=[250, 250], learning_rate='constant', 

                 learning_rate_init=0.001, max_iter=200, momentum=0.9, 

                 n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, 

                 random_state=1, shuffle=True, solver='lbfgs', tol=0.0001, 

                 validation_fraction=0.1, verbose=False, warm_start=False) 

 

In [111]: data['pos_dnn_sk'] = model.predict(data[cols_bin]) 

 

In [112]: data['strat_dnn_sk'] = data['pos_dnn_sk'] * data['returns'] 

 

In [113]: data[['returns', 'strat_dnn_sk']].sum().apply(np.exp) 

Out[113]: returns          0.805002 

          strat_dnn_sk    35.156677 

          dtype: float64 

 

In [114]: data[['returns', 'strat_dnn_sk']].cumsum().apply( 

                      np.exp).plot(figsize=(10, 6));



Figure 15-17. Performance of EUR/USD and DNN-based trading strategy (scikit-learn, in-sample)

To avoid overfitting of the DNN model, a randomized train-test split is
applied next. The algorithm again outperforms the passive benchmark
investment and achieves a positive absolute performance (Figure 15-18).
However, the results seem more realistic now:

In [115]: train, test = train_test_split(data, test_size=0.5, 

                                         random_state=100) 

 

In [116]: train = train.copy().sort_index() 

 

In [117]: test = test.copy().sort_index() 

 

In [118]: model = MLPClassifier(solver='lbfgs', alpha=1e-5, max_iter=500, 

                               hidden_layer_sizes=3 * [500], random_state=1)   

 

In [119]: %time model.fit(train[cols_bin], train['direction']) 

          CPU times: user 2min 26s, sys: 1.02 s, total: 2min 27s 

          Wall time: 1min 31s 

 

Out[119]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', 

           beta_1=0.9, 

                 beta_2=0.999, early_stopping=False, epsilon=1e-08, 

                 hidden_layer_sizes=[500, 500, 500], learning_rate='constant', 

                 learning_rate_init=0.001, max_iter=500, momentum=0.9, 

                 n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, 

                 random_state=1, shuffle=True, solver='lbfgs', tol=0.0001, 



                 validation_fraction=0.1, verbose=False, warm_start=False) 

 

In [120]: test['pos_dnn_sk'] = model.predict(test[cols_bin]) 

 

In [121]: test['strat_dnn_sk'] = test['pos_dnn_sk'] * test['returns'] 

 

In [122]: test[['returns', 'strat_dnn_sk']].sum().apply(np.exp) 

Out[122]: returns         0.878078 

          strat_dnn_sk    1.242042 

          dtype: float64 

 

In [123]: test[['returns', 'strat_dnn_sk']].cumsum( 

                      ).apply(np.exp).plot(figsize=(10, 6));

Increases the number of hidden layers and hidden units.

Figure 15-18. Performance of EUR/USD and DNN-based trading strategy (scikit-learn, randomized
train-test split)



DNNs with TensorFlow
TensorFlow has become a popular package for deep learning. It is developed
and supported by Google Inc. and applied there to a great variety of machine
learning problems. Zedah and Ramsundar (2018) cover TensorFlow for deep
learning in depth.

As with scikit-learn, the application of the DNNClassifier algorithm
from TensorFlow to derive an algorithmic trading strategy is straightforward
given the background from “Deep neural networks”. The training and test
data is the same as before. First, the training of the model. In-sample, the
algorithm outperforms the passive benchmark investment and shows a
considerable absolute return (see Figure 15-19), again hinting at overfitting:

In [124]: import tensorflow as tf 

          tf.logging.set_verbosity(tf.logging.ERROR) 

 

In [125]: fc = [tf.contrib.layers.real_valued_column('lags', dimension=lags)] 

 

In [126]: model = tf.contrib.learn.DNNClassifier(hidden_units=3 * [500], 

                                                 n_classes=len(bins) + 1, 

                                                 feature_columns=fc) 

 

In [127]: def input_fn(): 

              fc = {'lags': tf.constant(data[cols_bin].values)} 

              la = tf.constant(data['direction'].apply( 

                               lambda x: 0 if x < 0 else 1).values, 

                               shape=[data['direction'].size, 1]) 

              return fc, la 

 

In [128]: %time model.fit(input_fn=input_fn, steps=250)   

          CPU times: user 2min 7s, sys: 8.85 s, total: 2min 16s 

          Wall time: 49 s 

 

Out[128]: DNNClassifier(params={'head': 

           <tensorflow.contrib.learn.python.learn.estimators.head._MultiClassHead 

           object at 0x1a19acf898>, 'hidden_units': [500, 500, 500], 

           'feature_columns': (_RealValuedColumn(column_name='lags', dimension=5, 

           default_value=None, dtype=tf.float32, normalizer=None),), 'optimizer': 

           None, 'activation_fn': <function relu at 0x1161441e0>, 'dropout': 

           None, 'gradient_clip_norm': None, 'embedding_lr_multipliers': None, 

           'input_layer_min_slice_size': None})

 

In [129]: model.evaluate(input_fn=input_fn, steps=1)   

Out[129]: {'loss': 0.6879357, 'accuracy': 0.5379925, 'global_step': 250} 

 

In [130]: pred = np.array(list(model.predict(input_fn=input_fn)))   

          pred[:10]   

Out[130]: array([0, 0, 0, 0, 0, 1, 0, 1, 1, 0]) 

 



In [131]: data['pos_dnn_tf'] = np.where(pred > 0, 1, -1)   

 

In [132]: data['strat_dnn_tf'] = data['pos_dnn_tf'] * data['returns'] 

 

In [133]: data[['returns', 'strat_dnn_tf']].sum().apply(np.exp) 

Out[133]: returns         0.805002 

          strat_dnn_tf    2.437222 

          dtype: float64 

 

In [134]: data[['returns', 'strat_dnn_tf']].cumsum( 

                      ).apply(np.exp).plot(figsize=(10, 6));

The time needed for training might be considerable.

The binary predictions (0, 1) …

… need to be transformed to market positions (-1, +1).

Figure 15-19. Performance of EUR/USD and DNN-based trading strategy (TensorFlow, in-sample)



The following code again implements a randomized train-test split to get a
more realistic view of the performance of the DNN-based algorithmic
trading strategy. The performance is, as expected, worse out-of-sample (see
Figure 15-20). In addition, given the specific parameterization the
TensorFlow DNNClassifier underperforms the scikit-learn
MLPClassifier algorithm by quite few percentage points:

In [135]: model = tf.contrib.learn.DNNClassifier(hidden_units=3 * [500], 

                                                 n_classes=len(bins) + 1, 

                                                 feature_columns=fc) 

 

In [136]: data = train 

 

In [137]: %time model.fit(input_fn=input_fn, steps=2500) 

          CPU times: user 11min 7s, sys: 1min 7s, total: 12min 15s 

          Wall time: 4min 27s 

 

Out[137]: DNNClassifier(params={'head': 

           <tensorflow.contrib.learn.python.learn.estimators.head._MultiClassHead 

           object at 0x116828cc0>, 'hidden_units': [500, 500, 500], 

           'feature_columns': (_RealValuedColumn(column_name='lags', dimension=5, 

           default_value=None, dtype=tf.float32, normalizer=None),), 'optimizer': 

           None, 'activation_fn': <function relu at 0x1161441e0>, 'dropout': 

           None, 'gradient_clip_norm': None, 'embedding_lr_multipliers': None, 

           'input_layer_min_slice_size': None}) 

 

In [138]: data = test 

 

In [139]: model.evaluate(input_fn=input_fn, steps=1) 

Out[139]: {'loss': 0.82882184, 'accuracy': 0.48968107, 'global_step': 2500} 

 

In [140]: pred = np.array(list(model.predict(input_fn=input_fn))) 

 

In [141]: test['pos_dnn_tf'] = np.where(pred > 0, 1, -1) 

 

In [142]: test['strat_dnn_tf'] = test['pos_dnn_tf'] * test['returns'] 

 

In [143]: test[['returns', 'strat_dnn_sk', 'strat_dnn_tf']].sum().apply(np.exp) 

Out[143]: returns         0.878078 

          strat_dnn_sk    1.242042 

          strat_dnn_tf    1.063968 

          dtype: float64 

 

In [144]: test[['returns', 'strat_dnn_sk', 'strat_dnn_tf']].cumsum( 

                      ).apply(np.exp).plot(figsize=(10, 6));



Figure 15-20. Performance of EUR/USD and DNN-based trading strategy (TensorFlow, randomized
train-test split)



PERFORMANCE RESULTS
All performance results shown for the different algorithmic trading strategies from
vectorized backtesting so far are illustrative only. Beyond the simplifying assumption of
no transaction costs, the results depend on a number of other (mostly arbitrarily chosen)
parameters. They also depend on the relative small end-of-day price data set used
throughout for the EUR/USD exchange rate. The focus lies on illustrating the
application of different approaches and ML algorithms to financial data, not on deriving
a robust algorithmic trading strategy to be deployed in practice. The next chapter
addresses some of these issues.



Conclusion
This chapter is about algorithmic trading strategies and judging their
performance based on vectorized backtesting. It starts with a rather simple
algorithmic trading strategy based on two simple moving averages, a type
of strategy known and used in practice for decades. This strategy is used to
illustrate vectorized backtesting, making heavy use of the vectorization
capabilities of NumPy and pandas for data analysis.

Using OLS regression, the chapter also illustrates the random walk
hypothesis on the basis of a real financial time series. This is the benchmark
against which any algorithmic trading strategy must prove its worth.

The core of the chapter is the application of machine learning algorithms, as
introduced in “Machine Learning”. A number of algorithms, the majority of
which are of classification type, are used and applied based on mostly the
same “rhythm.” As features, lagged log returns data is used in a number of
variants — although this is a restriction that for sure is not necessary. It is
mostly done for convenience and simplicity. In addition, the analysis is
based on a number of simplifying assumptions since the focus is mainly on
the technical aspects of applying machine learning algorithms to financial
time series data to predict the direction of financial market movements.
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Chapter 16. Automated Trading

People worry that computers will get too smart and take over the world,
but the real problem is that they’re too stupid and they’ve already taken
over the world.
Pedro Domingos

“Now what?” one might think. A trading platform is available that allows
one to retrieve historical data and streaming data, to place buy and sell
orders, and to check the account status. A number of different methods have
been introduced to derive algorithmic trading strategies by predicting the
direction of market price movements. How can this all be put together to
work in automated fashion? This question cannot be answered in any
generality. However, this chapter addresses a number of topics that are
important in this context. The chapter assumes that a single automated
algorithmic trading strategy only shall be deployed. This simplifies, among
others, aspects like capital and risk management.

The chapter covers the following topics:

“Capital Management”
As this section demonstrates, depending on the strategy characteristics
and the trading capital available, the Kelly criterion helps with sizing
the trades.

“ML-Based Trading Strategy”
To gain confidence in an algorithmic trading strategy, the strategy
needs to be backtested thoroughly both with regard to performance and
risk characteristics; the example strategy used is based on a
classification algorithm from machine learning as introduced in
Chapter 15.

“Online Algorithm”



To deploy the algorithmic trading strategy for automated trading, it
needs to be translated into an online algorithm that works with
incoming streaming data in real time.

“Infrastructure and Deployment”
To run automated algorithmic trading strategies robustly and reliably,
deployment in the cloud is the preferred option from an availability,
performance, and security point of view.

“Logging and Monitoring”
To be able to analyze the history and certain events during the
deployment of an automated trading strategy, logging plays an
important role; monitoring via socket communication allows one to
observe events (remotely) in real time.



Capital Management
A central question in algorithmic trading is how much capital to deploy to a
given algorithmic trading strategy given the total available capital. The
answer to this question depends on the main goal one is trying to achieve by
algorithmic trading. Most individuals and financial institutions will agree
that the maximization of long-term wealth is a good candidate objective.
This is what Edward Thorpe had in mind when he derived the Kelly
criterion for investing, as described in the paper by Rotando and Thorp
(1992).



The Kelly Criterion in a Binomial Setting
The common way of introducing the theory of the Kelly criterion for
investing is on the basis of a coin tossing game, or more generally a
binomial setting (where only two outcomes are possible). This section
follows that route. Assume a gambler is playing a coin tossing game against
an infinitely rich bank or casino. Assume further that the probability for

heads is some value p for which  < p < 1 holds. Probability for tails is

defined by  < . The gambler can place bets b > 0 of arbitrary
size, whereby the gambler wins the same amount if right and loses it all if
wrong. Given the assumptions about the probabilities, the gambler would of
course want to bet on heads. Therefore, the expected value for this betting
game  (i.e., the random variable representing this game) in a one-shot
setting is:

A risk-neutral gambler with unlimited funds would like to bet as large an
amount as possible since this would maximize the expected payoff.
However, trading in financial markets is not a one-shot game in general. It is
a repeated one. Therefore, assume that  represents the amount that is bet
on day i and that  represents the initial capital. The capital  at the end of
day one depends on the betting success on that day and might be either 

 or . The expected value for a gamble that is repeated n
times then is:



In classical economic theory, with risk-neutral, expected utility-maximizing
agents, a gambler would try to maximize this expression. It is easily seen
that it is maximized by betting all available funds — i.e.,  — like
in the one-shot scenario. However, this in turn implies that a single loss will
wipe out all available funds and will lead to ruin (unless unlimited
borrowing is possible). Therefore, this strategy does not lead to a
maximization of long-term wealth.

While betting the maximum capital available might lead to sudden ruin,
betting nothing at all avoids any kind of loss but does not benefit from the
advantageous gamble either. This is where the Kelly criterion comes into

play, since it derives the optimal fraction  of the available capital to bet per
round of betting. Assume that n = h + t, where h stands for the number of
heads observed during n rounds of betting and where t stands for the number
of tails. With these definitions, the available capital after n rounds is:

In such a context, long-term wealth maximization boils down to maximizing
the average geometric growth rate per bet, which is given as:



The problem then formally is to maximize the expected average rate of
growth by choosing f optimally. With  and ,
one gets:

One can now maximize the term by choosing the optimal fraction 
according to the first-order condition. The first derivative is given by:



From the first-order condition, one gets:

G ' ( f ) = ! 0 ⇒ f * = p - q

If one trusts this to be the maximum (and not the minimum), this result
implies that it is optimal to invest a fraction f * = p - q per round of betting.
With, for example, p = 0.55 one has f * = 0.55 - 0.45 = 0.1, indicating that
the optimal fraction is 10%.

The following Python code formalizes these concepts and results through
simulation. First, some imports and configurations:

In [1]: import math 

        import time 

        import numpy as np 

        import pandas as pd 

        import datetime as dt 

        import cufflinks as cf 

        from pylab import plt 

In [2]: np.random.seed(1000) 

        plt.style.use('seaborn')

        %matplotlib inline



The idea is to simulate, for example, 50 series with 100 coin tosses per
series. The Python code for this is straightforward:

In [3]: p = 0.55   

 

In [4]: f = p - (1 - p)   

 

In [5]: f   

Out[5]: 0.10000000000000009

 

In [6]: I = 50   

 

In [7]: n = 100  

Fixes the probability for heads.

Calculates the optimal fraction according to the Kelly criterion.

The number of series to be simulated.

The number of trials per series.
The major part is the Python function run_simulation(), which achieves
the simulation according to the prior assumptions. Figure 16-1 shows the
simulation results:

In [8]: def run_simulation(f): 

            c = np.zeros((n, I))   

            c[0] = 100   

            for i in range(I):   

                for t in range(1, n):   

                    o = np.random.binomial(1, p)   

                    if o > 0:   

                        c[t, i] = (1 + f) * c[t - 1, i]   

                    else:   

                        c[t, i] = (1 - f) * c[t - 1, i]   

            return c 

 

In [9]: c_1 = run_simulation(f)   

 

In [10]: c_1.round(2) 

Out[10]: array([[100.  , 100.  , 100.  , ..., 100.  , 100.  , 100.  ], 



                [ 90.  , 110.  ,  90.  , ..., 110.  ,  90.  , 110.  ], 

                [ 99.  , 121.  ,  99.  , ..., 121.  ,  81.  , 121.  ], 

                ..., 

                [226.35, 338.13, 413.27, ..., 123.97, 123.97, 123.97], 

                [248.99, 371.94, 454.6 , ..., 136.37, 136.37, 136.37], 

                [273.89, 409.14, 409.14, ..., 122.73, 150.01, 122.73]]) 

 

In [11]: plt.figure(figsize=(10, 6)) 

         plt.plot(c_1, 'b', lw=0.5)   

         plt.plot(c_1.mean(axis=1), 'r', lw=2.5);  

Instantiates an ndarray object to store the simulation results.

Initializes the starting capital with 100.

Outer loop for the series simulations.

Inner loop for the series itself.

Simulates the tossing of a coin.

If 1, i.e., heads …

… then add the win to the capital.

If 0, i.e., tails …

… then subtract the loss from the capital.

Runs the simulation.



Plots all 50 series.

Plots the average over all 50 series.

Figure 16-1. 50 simulated series with 100 trials each (red line = average)

The following code repeats the simulation for different values of f. As shown
in Figure 16-2, a lower fraction leads to a lower growth rate on average.
Higher values might lead to a higher average capital at the end of the
simulation (f = 0.25) or to a much lower average capital (f = 0.5). In both
cases where the fraction f is higher, the volatility increases considerably:

In [12]: c_2 = run_simulation(0.05)   

 

In [13]: c_3 = run_simulation(0.25)   

 

In [14]: c_4 = run_simulation(0.5)   

 

In [15]: plt.figure(figsize=(10, 6)) 

         plt.plot(c_1.mean(axis=1), 'r', label='$f^*=0.1$') 

         plt.plot(c_2.mean(axis=1), 'b', label='$f=0.05$') 



         plt.plot(c_3.mean(axis=1), 'y', label='$f=0.25$') 

         plt.plot(c_4.mean(axis=1), 'm', label='$f=0.5$') 

         plt.legend(loc=0);

Simulation with f = 0.05.

Simulation with f = 0.25.

Simulation with f = 0.5.

Figure 16-2. Average capital over time for different fractions



The Kelly Criterion for Stocks and Indices
Assume now a stock market setting in which the relevant stock (index) can
take on only two values after a period of one year from today, given its
known value today. The setting is again binomial, but this time a bit closer
on the modeling side to stock market realities.1 Specifically, assume that:

with  being the expected return of the stock over one year
and  being the standard deviation of returns (volatility). In a one-
period setting, one gets for the available capital after one year (with  and f
defined as before):

Here, r is the constant short rate earned on cash not invested in the stock.
Maximizing the geometric growth rate means maximizing the term:

Assume now that there are n relevant trading days in the year so that for
each such trading day i:

Note that volatility scales with the square root of the number of trading days.
Under these assumptions, the daily values scale up to the yearly ones from



before and one gets:

One now has to maximize the following quantity to achieve maximum long-
term wealth when investing in the stock:

Using a Taylor series expansion, one finally arrives at:

or for infinitely many trading points in time — i.e., for continuous trading —
at:



The optimal fraction  then is given through the first-order condition by the
expression:

I.e., the expected excess return of the stock over the risk-free rate divided by
the variance of the returns. This expression looks similar to the Sharpe ratio
(see “Portfolio Optimization”) but is different.

A real-world example shall illustrate the application of these formulae and
their role in leveraging equity deployed to trading strategies. The trading
strategy under consideration is simply a passive long position in the S&P
500 index. To this end, base data is quickly retrieved and required statistics
are easily derived:

In [16]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv', 

                           index_col=0, parse_dates=True)

 

In [17]: symbol = '.SPX' 

 

In [18]: data = pd.DataFrame(raw[symbol]) 

 

In [19]: data['returns'] = np.log(data / data.shift(1)) 

 

In [20]: data.dropna(inplace=True) 

 

In [21]: data.tail() 

Out[21]:                .SPX   returns 

         Date 

         2018-06-25  2717.07 -0.013820 

         2018-06-26  2723.06  0.002202 

         2018-06-27  2699.63 -0.008642 

         2018-06-28  2716.31  0.006160 

         2018-06-29  2718.37  0.000758



The statistical properties of the S&P 500 index over the period covered
suggest an optimal fraction of about 4.5 to be invested in the long position in
the index. In other words, for every dollar available 4.5 dollars shall be
invested — implying a leverage ratio of 4.5, in accordance with the optimal
Kelly “fraction” (or rather “factor” in this case). Ceteris paribus, the Kelly
criterion implies a higher leverage the higher the expected return and the
lower the volatility (variance):

In [22]: mu = data.returns.mean() * 252   

 

In [23]: mu   

Out[23]: 0.09898579893004976 

 

In [24]: sigma = data.returns.std() * 252 ** 0.5   

 

In [25]: sigma   

Out[25]: 0.1488567510081967

 

In [26]: r = 0.0   

 

In [27]: f = (mu - r) / sigma ** 2  

 

In [28]: f   

Out[28]: 4.4672043679706865

Calculates the annualized return.

Calculates the annualized volatility.

Sets the risk-free rate to 0 (for simplicity).

Calculates the optimal Kelly fraction to be invested in the strategy.
The following code simulates the application of the Kelly criterion and the
optimal leverage ratio. For simplicity and comparison reasons, the initial

equity is set to 1 while the initially invested total capital is set to .
Depending on the performance of the capital deployed to the strategy, the



total capital itself is adjusted daily according to the available equity. After a
loss, the capital is reduced; after a profit, the capital is increased. The
evolution of the equity position compared to the index itself is shown in
Figure 16-3:

In [29]: equs = [] 

 

In [30]: def kelly_strategy(f): 

             global equs 

             equ = 'equity_{:.2f}'.format(f) 

             equs.append(equ) 

             cap = 'capital_{:.2f}'.format(f) 

             data[equ] = 1   

             data[cap] = data[equ] * f   

             for i, t in enumerate(data.index[1:]): 

                 t_1 = data.index[i]   

                 data.loc[t, cap] = data[cap].loc[t_1] * \

                                     math.exp(data['returns'].loc[t])   

                 data.loc[t, equ] = data[cap].loc[t] - \ 

                                     data[cap].loc[t_1] + \ 

                                     data[equ].loc[t_1]  

                 data.loc[t, cap] = data[equ].loc[t] * f   

 

In [31]: kelly_strategy(f * 0.5)   

 

In [32]: kelly_strategy(f * 0.66)   

 

In [33]: kelly_strategy(f)   

 

In [34]: print(data[equs].tail()) 

                     equity_2.23  equity_2.95  equity_4.47 

         Date 

         2018-06-25     4.707070     6.367340     8.794342 

         2018-06-26     4.730248     6.408727     8.880952 

         2018-06-27     4.639340     6.246147     8.539593 

         2018-06-28     4.703365     6.359932     8.775296 

         2018-06-29     4.711332     6.374152     8.805026 

 

In [35]: ax = data['returns'].cumsum().apply(np.exp).plot(legend=True, 

                                                          figsize=(10, 6)) 

         data[equs].plot(ax=ax, legend=True);

Generates a new column for equity and sets the initial value to 1.

Generates a new column for capital and sets the initial value to .



Picks the right DatetimeIndex value for the previous values.

Calculates the new capital position given the return.

Adjusts the equity value according to the capital position performance.

Adjusts the capital position given the new equity position and the fixed
leverage ratio.

Simulates the Kelly criterion–based strategy for half of f …

… for two-thirds of f …

… and for f itself.



Figure 16-3. Cumulative performance of S&P 500 compared to equity position given different values
of f

As Figure 16-3 illustrates, applying the optimal Kelly leverage leads to a
rather erratic evolution of the equity position (high volatility) which is —
given the leverage ratio of 4.47 — intuitively plausible. One would expect
the volatility of the equity position to increase with increasing leverage.
Therefore, practitioners often reduce the leverage to, for example, “half

Kelly” — i.e., in the current example to . Therefore,
Figure 16-3 also shows the evolution of the equity position of values lower
than “full Kelly.” The risk indeed reduces with lower values of f.



ML-Based Trading Strategy
Chapter 14 introduces the FXCM trading platform, its REST API, and the
Python wrapper package fxcmpy. This section combines an ML-based
approach for predicting the direction of market price movements with
historical data from the FXCM REST API to backtest an algorithmic
trading strategy for the EUR/USD currency pair. It uses vectorized
backtesting, taking into account this time the bid-ask spread as proportional
transaction costs. It also adds, compared to the plain vectorized backtesting
approach as introduced in Chapter 15, a more in-depth analysis of the risk
characteristics of the trading strategy tested.



Vectorized Backtesting
The backtest is based on intraday data, more specifically on bars of length
five minutes. The following code connects to the FXCM REST API and
retrieves five-minute bar data for a whole month. Figure 16-4 visualizes the
mid close prices over the period for which data is retrieved:

In [36]: import fxcmpy 

 

In [37]: fxcmpy.__version__ 

Out[37]: '1.1.33' 

 

In [38]: api = fxcmpy.fxcmpy(config_file='../fxcm.cfg')   

 

In [39]: data = api.get_candles('EUR/USD', period='m5', 

                                 start='2018-06-01 00:00:00', 

                                 stop='2018-06-30 00:00:00')   

 

In [40]: data.iloc[-5:, 4:] 

Out[40]:                      askopen  askclose  askhigh   asklow  tickqty 

         date 

         2018-06-29 20:35:00  1.16862   1.16882  1.16896  1.16839      601 

         2018-06-29 20:40:00  1.16882   1.16853  1.16898  1.16852      387 

         2018-06-29 20:45:00  1.16853   1.16826  1.16862  1.16822      592 

         2018-06-29 20:50:00  1.16826   1.16836  1.16846  1.16819      842 

         2018-06-29 20:55:00  1.16836   1.16861  1.16876  1.16834      540 

 

In [41]: data.info() 

         <class 'pandas.core.frame.DataFrame'> 

         DatetimeIndex: 6083 entries, 2018-06-01 00:00:00 to 2018-06-29 20:55:00 

         Data columns (total 9 columns): 

         bidopen     6083 non-null float64 

         bidclose    6083 non-null float64 

         bidhigh     6083 non-null float64 

         bidlow      6083 non-null float64 

         askopen     6083 non-null float64 

         askclose    6083 non-null float64 

         askhigh     6083 non-null float64 

         asklow      6083 non-null float64 

         tickqty     6083 non-null int64 

         dtypes: float64(8), int64(1) 

         memory usage: 475.2 KB 

 

In [42]: spread = (data['askclose'] - data['bidclose']).mean()   

         spread   

Out[42]: 2.6338977478217845e-05 

 

In [43]: data['midclose'] = (data['askclose'] + data['bidclose']) / 2   

 

In [44]: ptc = spread / data['midclose'].mean()   

         ptc   

Out[44]: 2.255685318140426e-05 

 

In [45]: data['midclose'].plot(figsize=(10, 6), legend=True);



Connects to the API and retrieves the data.

Calculates the average bid-ask spread.

Calculates the mid close prices from the ask and bid close prices.

Calculates the average proportional transaction costs given the average
spread and the average mid close price.

Figure 16-4. EUR/USD exchange rate (five-minute bars)

The ML-based strategy is based on lagged return data that is binarized. In
other words, the ML algorithm learns from historical patterns of upward and
downward movements whether another upward or downward movement is
more likely. Accordingly, the following code creates features data with



values of 0 and 1 as well as labels data with values of +1 and -1 indicating
the observed market direction in all cases:

In [46]: data['returns'] = np.log(data['midclose'] / data['midclose'].shift(1)) 

 

In [47]: data.dropna(inplace=True) 

 

In [48]: lags = 5 

 

In [49]: cols = [] 

         for lag in range(1, lags + 1): 

             col = 'lag_{}'.format(lag) 

             data[col] = data['returns'].shift(lag)   

             cols.append(col) 

 

In [50]: data.dropna(inplace=True) 

 

In [51]: data[cols] = np.where(data[cols] > 0, 1, 0)   

 

In [52]: data['direction'] = np.where(data['returns'] > 0, 1, -1)   

 

In [53]: data[cols + ['direction']].head() 

Out[53]:                      lag_1  lag_2  lag_3  lag_4  lag_5  direction 

         date 

         2018-06-01 00:30:00      1      0      1      0      1          1 

         2018-06-01 00:35:00      1      1      0      1      0          1 

         2018-06-01 00:40:00      1      1      1      0      1          1 

         2018-06-01 00:45:00      1      1      1      1      0          1 

         2018-06-01 00:50:00      1      1      1      1      1         -1

Creates the lagged return data given the number of lags.

Transforms the feature values to binary data.

Transforms the returns data to directional label data.
Given the features and label data, different supervised learning algorithms
can now be applied. In what follows, a support vector machine algorithm for
classification is used from the scikit-learn ML package. The code trains
and tests the algorithmic trading strategy based on a sequential train-test
split. The accuracy scores of the model for the training and test data are
slightly above 50%, while the score is even a bit higher on the test data.
Instead of accuracy scores, one would also speak in a financial trading



context of the hit ratio of the trading strategy; i.e., the number of winning
trades compared to all trades. Since the hit ratio is greater than 50%, this
might indicate — in the context of the Kelly criterion — a slight edge
compared to a random walk setting:

In [54]: from sklearn.svm import SVC 

         from sklearn.metrics import accuracy_score 

 

In [55]: model = SVC(C=1, kernel='linear', gamma='auto') 

 

In [56]: split = int(len(data) * 0.80) 

 

In [57]: train = data.iloc[:split].copy() 

 

In [58]: model.fit(train[cols], train['direction']) 

Out[58]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,

         decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear', 

           max_iter=-1, probability=False, random_state=None, shrinking=True, 

           tol=0.001, verbose=False) 

 

In [59]: accuracy_score(train['direction'], model.predict(train[cols]))   

Out[59]: 0.5198518823287389

 

In [60]: test = data.iloc[split:].copy() 

 

In [61]: test['position'] = model.predict(test[cols]) 

 

In [62]: accuracy_score(test['direction'], test['position'])   

Out[62]: 0.5419407894736842

The accuracy of the predictions from the trained model in-sample
(training data).

The accuracy of the predictions from the trained model out-of-sample
(test data).

It is well known that the hit ratio is only one aspect of success in financial
trading. Also crucial are, among other things, the transaction costs implied
by the trading strategy and getting the important trades right.2 To this end,
only a formal vectorized backtesting approach allows judgment of the
quality of the trading strategy. The following code takes into account the
proportional transaction costs based on the average bid-ask spread.
Figure 16-5 compares the performance of the algorithmic trading strategy



(without and with proportional transaction costs) to the performance of the
passive benchmark investment:

In [63]: test['strategy'] = test['position'] * test['returns']   

 

In [64]: sum(test['position'].diff() != 0)   

Out[64]: 660 

 

In [65]: test['strategy_tc'] = np.where(test['position'].diff() != 0, 

                                        test['strategy'] - ptc,   

                                        test['strategy']) 

 

In [66]: test[['returns', 'strategy', 'strategy_tc']].sum( 

                 ).apply(np.exp) 

Out[66]: returns        0.999324 

         strategy       1.026141 

         strategy_tc    1.010977 

         dtype: float64 

 

In [67]: test[['returns', 'strategy', 'strategy_tc']].cumsum( 

                 ).apply(np.exp).plot(figsize=(10, 6));

Derives the log returns for the ML-based algorithmic trading strategy.

Calculates the number of trades implied by the trading strategy based
on changes in the position.

Whenever a trade takes place, the proportional transaction costs are
subtracted from the strategy’s log return on that day.



Figure 16-5. Performance of EUR/USD exchange rate and algorithmic trading strategy



LIMITATIONS OF VECTORIZED BACKTESTING
Vectorized backtesting has its limits with regard to how closely to market realities
strategies can be tested. For example, it does not allow direct inclusion of fixed
transaction costs per trade. One could, as an approximation, take a multiple of the
average proportional transaction costs (based on average position sizes) to account
indirectly for fixed transactions costs. However, this would not be precise in general. If
a higher degree of precision is required other approaches, such as event-based
backtesting with explicit loops over every bar of the price data, need to be applied.



Optimal Leverage
Equipped with the trading strategy’s log returns data, the mean and variance
values can be calculated in order to derive the optimal leverage according to
the Kelly criterion. The code that follows scales the numbers to annualized
values, although this does not change the optimal leverage values according
to the Kelly criterion since the mean return and the variance scale with the
same factor:

In [68]: mean = test[['returns', 'strategy_tc']].mean() * len(data) * 12   

         mean 

Out[68]: returns       -0.040535

         strategy_tc    0.654711 

         dtype: float64 

 

In [69]: var = test[['returns', 'strategy_tc']].var() * len(data) * 12   

         var 

Out[69]: returns        0.007861 

         strategy_tc    0.007837 

         dtype: float64 

 

In [70]: vol = var ** 0.5   

         vol 

Out[70]: returns        0.088663 

         strategy_tc    0.088524 

         dtype: float64 

 

In [71]: mean / var   

Out[71]: returns        -5.156448 

         strategy_tc    83.545792 

         dtype: float64 

 

In [72]: mean / var * 0.5   

Out[72]: returns        -2.578224 

         strategy_tc    41.772896 

         dtype: float64

Annualized mean returns.

Annualized variances.

Annualized volatilities.



Optimal leverage according to the Kelly criterion (“full Kelly”).

Optimal leverage according to the Kelly criterion (“half Kelly”).
Using the “half Kelly” criterion, the optimal leverage for the trading strategy
is about 40. With a number of brokers, such as FXCM, and financial
instruments, such as foreign exchange and contracts for difference (CFDs),
such leverage ratios are feasible, even for retail traders.3 Figure 16-6 shows
in comparison the performance of the trading strategy with transaction costs
for different leverage values:

In [73]: to_plot = ['returns', 'strategy_tc'] 

 

In [74]: for lev in [10, 20, 30, 40, 50]: 

             label = 'lstrategy_tc_%d' % lev 

             test[label] = test['strategy_tc'] * lev   

             to_plot.append(label) 

 

In [75]: test[to_plot].cumsum().apply(np.exp).plot(figsize=(10, 6));

Scales the strategy returns for different leverage values.



Figure 16-6. Performance of algorithmic trading strategy for different leverage values



Risk Analysis
Since leverage increases the risk associated with a trading strategy, a more
in-depth risk analysis seems in order. The risk analysis that follows assumes
a leverage ratio of 30. First, the maximum drawdown and the longest
drawdown period are calculated. Maximum drawdown is the largest loss
(dip) after a recent high. Accordingly, the longest drawdown period is the
longest period that the trading strategy needs to get back to a recent high.
The analysis assumes that the initial equity position is 3,333 EUR, leading to
an initial position size of 100,000 EUR for a leverage ratio of 30. It also
assumes that there are no adjustments with regard to the equity over time, no
matter what the performance is:

In [76]: equity = 3333   

 

In [77]: risk = pd.DataFrame(test['lstrategy_tc_30'])   

 

In [78]: risk['equity'] = risk['lstrategy_tc_30'].cumsum( 

                 ).apply(np.exp) * equity   

 

In [79]: risk['cummax'] = risk['equity'].cummax()   

 

In [80]: risk['drawdown'] = risk['cummax'] - risk['equity']   

 

In [81]: risk['drawdown'].max()   

Out[81]: 781.7073602069818 

 

In [82]: t_max = risk['drawdown'].idxmax()   

         t_max   

Out[82]: Timestamp('2018-06-29 02:45:00')

The initial equity.

The relevant log returns time series …

… scaled by the initial equity.



The cumulative maximum values over time.

The drawdown values over time.

The maximum drawdown value.

The point in time when it happens.
Technically a (new) high is characterized by a drawdown value of 0. The
drawdown period is the time between two such highs. Figure 16-7 visualizes
both the maximum drawdown and the drawdown periods:

In [83]: temp = risk['drawdown'][risk['drawdown'] == 0]   

 

In [84]: periods = (temp.index[1:].to_pydatetime() - 

                    temp.index[:-1].to_pydatetime())   

 

In [85]: periods[20:30]   

Out[85]: array([datetime.timedelta(seconds=68700), 

                datetime.timedelta(seconds=72000), 

         datetime.timedelta(seconds=1800), datetime.timedelta(seconds=300), 

         datetime.timedelta(seconds=600), datetime.timedelta(seconds=300), 

                datetime.timedelta(seconds=17400), 

         datetime.timedelta(seconds=4500), datetime.timedelta(seconds=1500), 

                datetime.timedelta(seconds=900)], dtype=object) 

 

In [86]: t_per = periods.max()   

 

In [87]: t_per   

Out[87]: datetime.timedelta(seconds=76500) 

 

In [88]: t_per.seconds / 60 / 60   

Out[88]: 21.25 

 

In [89]: risk[['equity', 'cummax']].plot(figsize=(10, 6)) 

         plt.axvline(t_max, c='r', alpha=0.5);

Identifies highs for which the drawdown must be 0.

Calculates the timedelta values between all highs.



The longest drawdown period in seconds …

… and hours.

Figure 16-7. Maximum drawdown (vertical line) and drawdown periods (horizontal lines)

Another important risk measure is value-at-risk (VaR). It is quoted as a
currency amount and represents the maximum loss to be expected given both
a certain time horizon and a confidence level. The code that follows derives
VaR values based on the log returns of the equity position for the leveraged
trading strategy over time for different confidence levels. The time interval
is fixed to the bar length of five minutes:

In [91]: import scipy.stats as scs 

 

In [92]: percs = np.array([0.01, 0.1, 1., 2.5, 5.0, 10.0])   

 

In [93]: risk['returns'] = np.log(risk['equity'] / 



                                  risk['equity'].shift(1)) 

 

In [94]: VaR = scs.scoreatpercentile(equity * risk['returns'], percs)   

 

In [95]: def print_var(): 

             print('%16s %16s' % ('Confidence Level', 'Value-at-Risk')) 

             print(33 * '-') 

             for pair in zip(percs, VaR): 

                 print('%16.2f %16.3f' % (100 - pair[0], -pair[1]))   

 

In [96]: print_var()   

         Confidence Level    Value-at-Risk

         --------------------------------- 

                    99.99          400.854 

                    99.90          175.932 

                    99.00           88.139 

                    97.50           60.485 

                    95.00           45.010 

                    90.00           32.056

Defines the percentile values to be used.

Calculates the VaR values given the percentile values.

Translates the percentile values into confidence levels and the VaR
values (negative values) to positive values for printing.

Finally, the following code calculates the VaR values for a time horizon of
one hour by resampling the original DataFrame object. In effect, the VaR
values are increased for all confidence levels but the highest one:

In [97]: hourly = risk.resample('1H', label='right').last()   

 

In [98]: hourly['returns'] = np.log(hourly['equity'] / 

                                  hourly['equity'].shift(1)) 

 

In [99]: VaR = scs.scoreatpercentile(equity * hourly['returns'], percs)   

 

In [100]: print_var() 

          Confidence Level    Value-at-Risk 

          --------------------------------- 

                     99.99          389.524 

                     99.90          372.657 

                     99.00          205.662 

                     97.50          186.999 

                     95.00          164.869 

                     90.00          101.835



Resamples the data from five-minute to one-hour bars.

Recalculates the VaR values for the resampled data.



Persisting the Model Object
Once the algorithmic trading strategy is “accepted” based on the
backtesting, leveraging, and risk analysis results, the model object might be
persisted for later use in deployment. It embodies now the ML-based
trading strategy or the trading algorithm:

In [101]: import pickle 

 

In [102]: pickle.dump(model, open('algorithm.pkl', 'wb'))



Online Algorithm
The trading algorithm tested so far is an offline algorithm. Such algorithms
use a complete data set to solve a problem at hand. The problem has been to
train an SVM algorithm based on binarized features data and directional
label data. In practice, when deploying the trading algorithm in financial
markets, it must consume data piece-by-piece as it arrives to predict the
direction of the market movement for the next time interval (bar). This
section makes use of the persisted model object from the previous section
and embeds it into a streaming data environment.

The code that transforms the offline trading algorithm into an online trading
algorithm mainly addresses the following issues:

Tick data
Tick data arrives in real time and is to be processed in real time

Resampling
The tick data is to be resampled to the appropriate bar size given the
trading algorithm

Prediction
The trading algorithm generates a prediction for the direction of the
market movement over the relevant time interval that by nature lies in
the future

Orders
Given the current position and the prediction (“signal”) generated by
the algorithm, an order is placed or the position is kept

“Retrieving Streaming Data” shows how to retrieve tick data from the
FXCM REST API in real time. The basic approach is to subscribe to a
market data stream and pass a callback function that processes the data.

First, the persisted trading algorithm is loaded — it represents the trading
logic to be followed. It might also be useful to define a helper function to



print out the open position(s) while the trading algorithm is trading:

In [103]: algorithm = pickle.load(open('algorithm.pkl', 'rb')) 

 

In [104]: algorithm 

Out[104]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, 

          decision_function_shape='ovr', degree=3, gamma='auto', 

          kernel='linear', max_iter=-1, probability=False, 

          random_state=None, shrinking=True, tol=0.001, verbose=False) 

 

In [105]: sel = ['tradeId', 'amountK', 'currency', 

                 'grossPL', 'isBuy']   

 

In [106]: def print_positions(pos): 

              print('\n\n' + 50 * '=') 

              print('Going {}.\n'.format(pos)) 

              time.sleep(1.5)   

              print(api.get_open_positions()[sel])   

              print(50 * '=' + '\n\n')

Defines the DataFrame columns to be shown.

Waits a bit for the order to be executed and reflected in the open
positions.

Prints the open positions.
Before the online algorithm is defined and started, a few parameter values
are set:

In [107]: symbol = 'EUR/USD'   

          bar = '15s'   

          amount = 100   

          position = 0   

          min_bars = lags + 1   

          df = pd.DataFrame()  

Instrument symbol to be traded.



Bar length for resampling; for easier testing, the bar length might be
shortened compared to the real deployment length (e.g., 15 seconds
instead of 5 minutes).

The amount, in thousands, to be traded.

The initial position (“neutral”).

The minimum number of resampled bars required for the first
prediction and trade to be possible.

An empty DataFrame object to be used later for the resampled data.

Following is the callback function automated_strategy() that transforms
the trading algorithm into a real-time context:

In [108]: def automated_strategy(data, dataframe): 

              global min_bars, position, df 

              ldf = len(dataframe)   

              df = dataframe.resample(bar, label='right').last().ffill()   

              if ldf % 20 == 0: 

                  print('%3d' % len(dataframe), end=',') 

 

              if len(df) > min_bars: 

                  min_bars = len(df) 

                  df['Mid'] = df[['Bid', 'Ask']].mean(axis=1) 

                  df['Returns'] = np.log(df['Mid'] / df['Mid'].shift(1)) 

                  df['Direction'] = np.where(df['Returns'] > 0, 1, -1) 

                  features = df['Direction'].iloc[-(lags + 1):-1]   

                  features = features.values.reshape(1, -1)   

                  signal = algorithm.predict(features)[0]   

 

                  if position in [0, -1] and signal == 1:   

                      api.create_market_buy_order( 

                          symbol, amount - position * amount) 

                      position = 1 

                      print_positions('LONG') 

 

                  elif position in [0, 1] and signal == -1:   

                      api.create_market_sell_order( 

                          symbol, amount + position * amount) 

                      position = -1 

                      print_positions('SHORT') 

 



              if len(dataframe) > 350:   

                  api.unsubscribe_market_data('EUR/USD') 

                  api.close_all()

Captures the length of the DataFrame object with the tick data.

Resamples the tick data to the defined bar length.

Picks the relevant feature values for all lags …

… and reshapes them to a form that the model can use for prediction.

Generates the prediction value (either +1 or -1).

The conditions to enter (or keep) a long position.

The conditions to enter (or keep) a short position.

The condition to stop trading and close out any open positions
(arbitrarily defined based on the number of ticks retrieved).



Infrastructure and Deployment
Deploying an automated algorithmic trading strategy with real funds
requires an appropriate infrastructure. Among others, the infrastructure
should satisfy the following conditions:

Reliability
The infrastructure on which to deploy an algorithmic trading strategy
should allow for high availability (e.g., > 99.9%) and should otherwise
take care of reliability (automatic backups, redundancy of drives and
web connections, etc.).

Performance
Depending on the amount of data being processed and the
computational demand the algorithms generate, the infrastructure must
have enough CPU cores, working memory (RAM), and storage (SSD);
in addition, the web connections should be sufficiently fast.

Security
The operating system and the applications run on it should be
protected by strong passwords as well as SSL encryption; the hardware
should be protected from fire, water, and unauthorized physical access.

Basically, these requirements can only be fulfilled by renting appropriate
infrastructure from a professional data center or a cloud provider.
Investments in the physical infrastructure to satisfy the aforementioned
requirements can in general only be justified by the bigger or even biggest
players in the financial markets.

From a development and testing point of view, even the smallest Droplet
(cloud instance) from DigitalOcean is enough to get started. At the time of
this writing such a Droplet costs 5 USD per month; usage is billed by the
hour and a server can be created within minutes and destroyed within
seconds.4



How to set up a Droplet with DigitalOcean is explained in detail in the
section “Using Cloud Instances”, with bash scripts that can be adjusted to
reflect individual requirements regarding Python packages, for example.



OPERATIONAL RISKS
Although the development and testing of automated algorithmic trading strategies is
possible from a local computer (desktop, notebook, etc.), it is not appropriate for the
deployment of live strategies trading real money. A simple loss of the web connection or
a brief power outage might bring down the whole algorithm, leaving, for example,
unintended open positions in the portfolio or causing data set corruption (due to missing
out on real-time tick data), potentially leading to wrong signals and unintended
trades/positions.



Logging and Monitoring
Let’s assume that the automated algorithmic trading strategy is to be
deployed on a remote server (cloud instance, leased server, etc.), that all
required Python packages have been installed (see “Using Cloud
Instances”), and that, for instance, Jupyter Notebook is running securely.
What else needs to be considered from the algorithmic trader’s point of
view if they do not want to sit all day in front of the screen while logged in
to the server?

This section addresses two important topics in this regard: logging and real-
time monitoring. Logging persists information and events on disk for later
inspection. It is standard practice in software application development and
deployment. However, here the focus might be put rather on the financial
side, logging important financial data and event information for later
inspection and analysis. The same holds true for real-time monitoring
making use of socket communication. Via sockets a constant real-time
stream of important financial aspects can be created that can be retrieved
and processed on a local computer, even if the deployment happens in the
cloud.

“Automated Trading Strategy” presents a Python script implementing all
these aspects and making use of the code from “Online Algorithm”. The
script puts the code in a shape that allows, for example, the deployment of
the algorithmic trading strategy — based on the persisted algorithm object
— on a remote server. It adds both logging and monitoring capabilities
based on a custom function that, among others, makes use of ZeroMQ for
socket communication. In combination with the short script from “Strategy
Monitoring”, this allows for remote real-time monitoring of the activity on
a remote server.

When the script from “Automated Trading Strategy” is run, either locally or
remotely, the output that is logged and sent via the socket looks as follows:

2018-07-25 09:16:15.568208 

================================================================== 

http://bit.ly/2A8jkDx
http://zeromq.org/


NUMBER OF BARS: 24 

 

================================================================== 

MOST RECENT DATA 

                          Mid   Returns  Direction 

2018-07-25 07:15:30  1.168885 -0.000009         -1 

2018-07-25 07:15:45  1.168945  0.000043          1 

2018-07-25 07:16:00  1.168895 -0.000051         -1 

2018-07-25 07:16:15  1.168895 -0.000009         -1 

2018-07-25 07:16:30  1.168885 -0.000017         -1 

 

================================================================== 

features: [[ 1 -1  1 -1 -1]] 

position: -1 

signal:   -1 

 

 

2018-07-25 09:16:15.581453 

================================================================== 

no trade placed 

 

****END OF CYCLE*** 

 

 

 

 

2018-07-25 09:16:30.069737 

================================================================== 

NUMBER OF BARS: 25 

 

================================================================== 

MOST RECENT DATA 

                          Mid   Returns  Direction 

2018-07-25 07:15:45  1.168945  0.000043          1 

2018-07-25 07:16:00  1.168895 -0.000051         -1 

2018-07-25 07:16:15  1.168895 -0.000009         -1 

2018-07-25 07:16:30  1.168950  0.000034          1 

2018-07-25 07:16:45  1.168945 -0.000017         -1 

 

================================================================== 

features: [[-1  1 -1 -1  1]] 

position: -1 

signal:   1 

 

 

2018-07-25 09:16:33.035094 

================================================================== 

 

 

================================================== 

Going LONG. 

 

    tradeId  amountK currency  grossPL  isBuy 

0  61476318      100  EUR/USD       -2   True 

================================================== 

 

 

 

****END OF CYCLE***



Running the script from “Strategy Monitoring” locally then allows the real-
time retrieval and processing of such information. Of course, it is easy to
adjust the logging and streaming data to one’s own requirements.5
Similarly, one can also, for example, persist DataFrame objects as created
during the execution of the trading script. Furthermore, the trading script
and the whole logic can be adjusted to include such elements as stop losses
or take profit targets programmatically. Alternatively, one could make use
of more sophisticated order types available via the FXCM trading API.

http://fxcmpy.tpq.io/


CONSIDER ALL RISKS
Trading currency pairs and/or CFDs is associated with a number of financial risks.
Implementing an algorithmic trading strategy for such instruments automatically leads
to a number of additional risks. Among them are flaws in the trading and/or execution
logic. as well as technical risks such as problems with socket communications or
delayed retrieval or even loss of tick data during the deployment. Therefore, before one
deploys a trading strategy in automated fashion one should make sure that all associated
market, execution, operational, technical, and other risks have been identified,
evaluated, and addressed. The code presented in this chapter is intended only for
technical illustration purposes.



Conclusion
This chapter is about the deployment of an algorithmic trading strategy —
based on a classification algorithm from machine learning to predict the
direction of market movements — in automated fashion. It addresses such
important topics as capital management (based on the Kelly criterion),
vectorized backtesting for performance and risk, the transformation of
offline to online trading algorithms, an appropriate infrastructure for
deployment, as well as logging and monitoring during deployment.

The topic of this chapter is complex and requires a broad skill set from the
algorithmic trading practitioner. On the other hand, having a REST API for
algorithmic trading available, such as the one from FXCM, simplifies the
automation task considerably since the core part boils down mainly to
making use of the capabilities of the Python wrapper package fxcmpy for
tick data retrieval and order placement. Around this core, elements to
mitigate operational and technical risks as far as possible have to be added.



Python Scripts



Automated Trading Strategy
The following is the Python script to implement the algorithmic trading
strategy in automated fashion, including logging and monitoring.

# 

# Automated ML-Based Trading Strategy for FXCM 

# Online Algorithm, Logging, Monitoring 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import zmq 

import time 

import pickle 

import fxcmpy 

import numpy as np 

import pandas as pd 

import datetime as dt 

 

sel = ['tradeId', 'amountK', 'currency', 

       'grossPL', 'isBuy'] 

 

log_file = 'automated_strategy.log' 

 

# loads the persisted algorithm object 

algorithm = pickle.load(open('algorithm.pkl', 'rb')) 

 

# sets up the socket communication via ZeroMQ (here: "publisher") 

context = zmq.Context() 

socket = context.socket(zmq.PUB) 

 

# this binds the socket communication to all IP addresses of the machine 

socket.bind('tcp://0.0.0.0:5555') 

 

 

def logger_monitor(message, time=True, sep=True): 

    ''' Custom logger and monitor function. 

    ''' 

    with open(log_file, 'a') as f: 

        t = str(dt.datetime.now()) 

        msg = '' 

        if time: 

            msg += '\n' + t + '\n' 

        if sep: 

            msg += 66 * '=' + '\n' 

        msg += message + '\n\n' 

        # sends the message via the socket 

        socket.send_string(msg) 

        # writes the message to the log file 

        f.write(msg) 

 

 

def report_positions(pos): 

    ''' Prints, logs and sends position data. 

    ''' 



    out = '\n\n' + 50 * '=' + '\n' 

    out += 'Going {}.\n'.format(pos) + '\n' 

    time.sleep(2)  # waits for the order to be executed 

    out += str(api.get_open_positions()[sel]) + '\n' 

    out += 50 * '=' + '\n' 

    logger_monitor(out) 

    print(out) 

 

 

def automated_strategy(data, dataframe): 

    ''' Callback function embodying the trading logic. 

    ''' 

    global min_bars, position, df 

    # resampling of the tick data 

    df = dataframe.resample(bar, label='right').last().ffill() 

 

    if len(df) > min_bars: 

        min_bars = len(df) 

        logger_monitor('NUMBER OF TICKS: {} | '.format(len(dataframe)) + 

                       'NUMBER OF BARS: {}'.format(min_bars)) 

        # data processing and feature preparation 

        df['Mid'] = df[['Bid', 'Ask']].mean(axis=1) 

        df['Returns'] = np.log(df['Mid'] / df['Mid'].shift(1)) 

        df['Direction'] = np.where(df['Returns'] > 0, 1, -1) 

        # picks relevant points 

        features = df['Direction'].iloc[-(lags + 1):-1] 

        # necessary reshaping 

        features = features.values.reshape(1, -1) 

        # generates the signal (+1 or -1) 

        signal = algorithm.predict(features)[0] 

 

        # logs and sends major financial information 

        logger_monitor('MOST RECENT DATA\n' + 

                       str(df[['Mid', 'Returns', 'Direction']].tail()), 

                       False) 

        logger_monitor('features: ' + str(features) + '\n' + 

                       'position: ' + str(position) + '\n' + 

                       'signal:   ' + str(signal), False)

 

        # trading logic 

        if position in [0, -1] and signal == 1:  # going long? 

            api.create_market_buy_order( 

                symbol, size - position * size)  # places a buy order 

            position = 1  # changes position to long 

            report_positions('LONG') 

 

        elif position in [0, 1] and signal == -1:  # going short? 

            api.create_market_sell_order( 

                symbol, size + position * size)  # places a sell order 

            position = -1  # changes position to short 

            report_positions('SHORT') 

        else:  # no trade 

            logger_monitor('no trade placed') 

 

        logger_monitor('****END OF CYCLE***\n\n', False, False) 

 

    if len(dataframe) > 350:  # stopping condition 

        api.unsubscribe_market_data('EUR/USD')  # unsubscribes from data stream 

        report_positions('CLOSE OUT') 

        api.close_all()  # closes all open positions 

        logger_monitor('***CLOSING OUT ALL POSITIONS***') 



 

 

if __name__ == '__main__': 

    symbol = 'EUR/USD'  # symbol to be traded 

    bar = '15s'  # bar length; adjust for testing and deployment 

    size = 100  # position size in thousand currency units 

    position = 0  # initial position 

    lags = 5  # number of lags for features data 

    min_bars = lags + 1  # minimum length for resampled DataFrame 

    df = pd.DataFrame() 

    # adjust configuration file location 

    api = fxcmpy.fxcmpy(config_file='../fxcm.cfg') 

    # the main asynchronous loop using the callback function 

    api.subscribe_market_data(symbol, (automated_strategy,))



Strategy Monitoring
The following is the Python script to implement a local or remote
monitoring of the automated algorithmic trading strategy via socket
communication.

# 

# Automated ML-Based Trading Strategy for FXCM 

# Strategy Monitoring via Socket Communication 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import zmq 

 

# sets up the socket communication via ZeroMQ (here: "subscriber") 

context = zmq.Context() 

socket = context.socket(zmq.SUB) 

 

# adjust the IP address to reflect the remote location 

socket.connect('tcp://REMOTE_IP_ADDRESS:5555') 

 

# configures the socket to retrieve every message 

socket.setsockopt_string(zmq.SUBSCRIBE, '') 

 

while True: 

    msg = socket.recv_string() 

    print(msg)



Further Resources
The papers cited in this chapter are:

Rotando, Louis, and Edward Thorp (1992). “The Kelly Criterion and
the Stock Market.” The American Mathematical Monthly, Vol. 99, No.
10, pp. 922–931.

Hung, Jane (2010): “Betting with the Kelly Criterion.”
http://bit.ly/betting_with_kelly.

For a comprehensive online training program covering Python for
algorithmic trading see http://certificate.tpq.io.

The exposition follows Hung (2010).

It is a stylized empirical fact that it is of paramount importance for investment and trading
performance to get the largest market movements right — i.e., the biggest upward and downward
movements. This aspect is neatly illustrated in Figures 16-5 and 16-7, which show that the
trading strategy gets a large upward movement in the underlying instrument wrong, leading to a
large dip for the trading strategy.

Leverage increases risks associated with trading strategies significantly. Traders should read the
risk disclaimers and regulations carefully. A positive backtesting performance is also no
guarantee whatsoever of future performance. All results shown are illustrative only and are meant
to demonstrate the application of programming and analytics approaches. In some jurisdictions,
such as in Germany, leverage ratios are capped for retail traders based on different groups of
financial instruments.

Use the link http://bit.ly/do_sign_up to get a 10 USD bonus on DigitalOcean when signing up for
a new account.

Note that the socket communication as implemented in the two scripts is not encrypted and is
sending plain text over the web, which might represent a security risk in production.
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Part V. Derivatives Analytics

This part of the book is concerned with the development of a smaller, but
nevertheless still powerful, real-world application for the pricing of options
and derivatives by Monte Carlo simulation.1 The goal is to have, in the end,
a set of Python classes — a pricing library called DX, for Derivatives
analytiX — that allows for the following:

Modeling
To model short rates for discounting purposes; to model European and
American options, including their underlying risk factors as well as
their relevant market environments; to model even complex portfolios
consisting of multiple options with multiple (possibly correlated)
underlying risk factors

Simulation
To simulate risk factors based on geometric Brownian motion and
jump diffusions as well as on square-root diffusions, and to simulate a
number of such risk factors simultaneously and consistently, whether
they are correlated or not

Valuation
To value, by the risk-neutral valuation approach, European and
American options with arbitrary payoffs; to value portfolios composed
of such options in a consistent, integrated fashion (“global valuation”)

Risk management
To estimate numerically the most important Greeks — i.e., the delta
and the vega of an option/derivative — independent of the underlying
risk factor or the exercise type

Application



To use the package to value and manage a portfolio of non-traded
American options on the DAX 30 stock index in market-consistent
fashion; i.e., based on a calibrated model for the DAX 30 index

The material presented in this part of the book relies on the DX analytics
package, which is developed and maintained by the author and The Python
Quants GmbH (and available, e.g., via the Quant Platform). The full-
fledged version allows, for instance, the modeling, pricing, and risk
management of complex multi-risk derivatives and trading books composed
thereof.

This part is divided into the following chapters:
Chapter 17 presents the valuation framework in both theoretical and
technical form. Theoretically, the Fundamental Theorem of Asset
Pricing and the risk-neutral valuation approach are central.
Technically, the chapter presents Python classes for risk-neutral
discounting and for market environments.

Chapter 18 is concerned with the simulation of risk factors based on
geometric Brownian motion, jump diffusions, and square-root
diffusion processes; a generic class and three specialized classes are
discussed.

Chapter 19 addresses the valuation of single derivatives with European
or American exercise based on a single underlying risk factor; again, a
generic and two specialized classes represent the major building
blocks. The generic class allows the estimation of the delta and the
vega independent of the option type.

Chapter 20 is about the valuation of possibly complex derivatives
portfolios with multiple derivatives based on multiple possibly
correlated underlyings; a simple class for the modeling of a derivatives
position is presented as well as a more complex class for a consistent
portfolio valuation.

Chapter 21 uses the DX library developed in the other chapters to value
and risk-manage a portfolio of American put options on the DAX 30
stock index index.

http://dx-analytics.com/
http://pqp.io/


See Bittman (2009) for an introduction to options trading and related topics like market
fundamentals and the role of the so-called Greeks in options risk management.
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Chapter 17. Valuation Framework

Compound interest is the greatest mathematical discovery of all time.
Albert Einstein

This chapter provides the framework for the development of the DX library
by introducing the most fundamental concepts needed for such an
undertaking. It briefly reviews the Fundamental Theorem of Asset Pricing,
which provides the theoretical background for the simulation and valuation.
It then proceeds by addressing the fundamental concepts of date handling
and risk-neutral discounting. This chapter considers only the simplest case
of constant short rates for the discounting, but more complex and realistic
models can be added to the library quite easily. This chapter also introduces
the concept of a market environment — i.e., a collection of constants, lists,
and curves needed for the instantiation of almost any other class to come in
subsequent chapters.

The chapter comprises the following sections:

“Fundamental Theorem of Asset Pricing”
This section introduces the Fundamental Theorem of Asset Pricing,
which provides the theoretical background for the library to be
developed.

“Risk-Neutral Discounting”
This section develops a class for the risk-neutral discounting of future
payoffs of options and other derivative instruments.

“Market Environments”
This section develops a class to manage market environments for the
pricing of single instruments and portfolios composed of multiple
instruments.



Fundamental Theorem of Asset Pricing
The Fundamental Theorem of Asset Pricing is one of the cornerstones and
success stories of modern financial theory and mathematics.1 The central
notion underlying the theorem is the concept of a martingale measure; i.e.,
a probability measure that removes the drift from a discounted risk factor
(stochastic process). In other words, under a martingale measure, all risk
factors drift with the risk-free short rate — and not with any other market
rate involving some kind of risk premium over the risk-free short rate.



A Simple Example
Consider a simple economy at the dates today and tomorrow with a risky
asset, a “stock,” and a riskless asset, a “bond.” The bond costs 10 USD
today and pays off 10 USD tomorrow (zero interest rates). The stock costs
10 USD today and, with a probability of 60% and 40%, respectively, pays
off 20 USD or 0 USD tomorrow. The riskless return of the bond is 0. The

expected return of the stock is , or 20%. This is
the risk premium the stock pays for its riskiness.

Consider now a call option with strike price of 15 USD. What is the fair
value of such a contingent claim that pays 5 USD with 60% probability and
0 USD otherwise? One can take the expectation, for example, and discount
the resulting value back (here with zero interest rates). This approach yields
a value of 0.6 ⋅ 5 = 3 USD, since the option pays 5 USD in the case where
the stock price moves up to 20 USD and 0 USD otherwise.

However, there is another approach that has been successfully applied to
option pricing problems like this: replication of the option’s payoff through
a portfolio of traded securities. It is easily verified that buying 0.25 of the
stock perfectly replicates the option’s payoff (in the 60% case one then has
0.25 ⋅ 20 = 5 USD). A quarter of the stock only costs 2.5 USD and not 3
USD. Taking expectations under the real-world probability measure
overvalues the option.

Why is this the case? The real-world measure implies a risk premium of
20% for the stock since the risk involved in the stock (gaining 100% or
losing 100%) is “real” in the sense that it cannot be diversified or hedged
away. On the other hand, there is a portfolio available that replicates the
option’s payoff without any risk. This also implies that someone writing
(selling) such an option can completely hedge away any risk.2 Such a
perfectly hedged portfolio of an option and a hedge position must yield the
riskless rate in order to avoid arbitrage opportunities (i.e., the opportunity to
make some money out of no money with a positive probability).



Can one save the approach of taking expectations to value the call option?
Yes, it is possible. One “only” has to change the probability in such a way
that the risky asset, the stock, drifts with the riskless short rate of zero.
Obviously, a (martingale) measure giving equal mass of 50% to both

scenarios accomplishes this; the calculation is .
Now, taking expectations of the option’s payoff under the new martingale
measure yields the correct (arbitrage-free) fair value: 0.5 ⋅ 5 + 0.5 ⋅ 0 = 2.5
USD.



The General Results
The beauty of this approach is that it carries over to even the most complex
economies with, for example, continuous time modeling (i.e., a continuum
of points in time to consider), large numbers of risky assets, complex
derivative payoffs, etc.

Therefore, consider a general market model in discrete time:3

A general market model  in discrete time is a collection of:
A finite state space 

A filtration 

A strictly positive probability measure  defined on 

A terminal date  < 

A set  of  strictly
positive security price processes

Together one has .

Based on such a general market model, one can formulate the Fundamental
Theorem of Asset Pricing as follows:4

Consider the general market model . According to the Fundamental
Theorem of Asset Pricing, the following three statements are equivalent:

There are no arbitrage opportunities in the market model .

The set  of P-equivalent martingale measures is nonempty.

The set  of consistent linear price systems is nonempty.



When it comes to valuation and pricing of contingent claims (i.e., options,
derivatives, futures, forwards, swaps, etc.), the importance of the theorem is
illustrated by the following corollary:

If the market model  is arbitrage-free, then there exists a unique price 
 associated with any attainable (i.e., replicable) contingent claim

(option, derivative, etc.) . It satisfies ,
where  is the relevant risk-neutral discount factor for a constant
short rate .

This result illustrates the importance of the theorem, and shows that our
simple reasoning from earlier indeed carries over to the general market
model.

Due to the role of the martingale measure, this approach to valuation is also
often called the martingale approach, or — since under the martingale
measure all risky assets drift with the riskless short rate — the risk-neutral
valuation approach. The second term might, for our purposes, be the better
one because in numerical applications, one “simply” lets the risk factors
(stochastic processes) drift by the risk-neutral short rate. One does not have
to deal with the probability measures directly for our applications — they
are, however, what theoretically justifies the central theoretical results
applied and the technical approach implemented.

Finally, consider market completeness in the general market model:

The market model  is complete if it is arbitrage-free and if every
contingent claim (option, derivative, etc.) is attainable (i.e., replicable).
Suppose that the market model  is arbitrage-free. The market model is
complete if and only if  is a singleton; i.e., if there is a unique -
equivalent martingale measure.

This mainly completes the discussion of the theoretical background for
what follows. For a detailed exposition of the concepts, notions, definitions,
and results, refer to Chapter 4 of Hilpisch (2015).



Risk-Neutral Discounting
Obviously, risk-neutral discounting is central to the risk-neutral valuation
approach. This section therefore develops a Python class for risk-neutral
discounting. However, it pays to first have a closer look at the modeling and
handling of relevant dates for a valuation.



Modeling and Handling Dates
A necessary prerequisite for discounting is the modeling of dates (see also
Appendix A). For valuation purposes, one typically divides the time interval
between today and the final date of the general market model  into
discrete time intervals. These time intervals can be homogeneous (i.e., of
equal length), or they can be heterogeneous (i.e., of varying length). A
valuation library should be able to handle the more general case of
heterogeneous time intervals, since the simpler case is then automatically
included. Therefore, the code works with lists of dates, assuming that the
smallest relevant time interval is one day. This implies that intraday events
are considered irrelevant, for which one would have to model time (in
addition to dates).5

To compile a list of relevant dates, one can basically take one of two
approaches: constructing a list of concrete dates (e.g., as datetime objects
in Python) or of year fractions (as decimal numbers, as is often done in
theoretical works).

Some imports first:

In [1]: import numpy as np 

        import pandas as pd 

        import datetime as dt 

 

In [2]: from pylab import mpl, plt 

        plt.style.use('seaborn')

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline 

 

In [3]: import sys 

        sys.path.append('../dx')

For example, the following two definitions of dates and fractions are
(roughly) equivalent:

In [4]: dates = [dt.datetime(2020, 1, 1), dt.datetime(2020, 7, 1), 

                 dt.datetime(2021, 1, 1)] 

 

In [5]: (dates[1] - dates[0]).days / 365. 

Out[5]: 0.4986301369863014 

 



In [6]: (dates[2] - dates[1]).days / 365. 

Out[6]: 0.5041095890410959 

 

In [7]: fractions = [0.0, 0.5, 1.0]

They are only roughly equivalent since year fractions seldom lie on the
beginning (0 a.m.) of a certain day. Just consider the result of dividing a
year by 50.

Sometimes it is necessary to get year fractions out of a list of dates. The
function get_year_deltas() does the job:

# 

# DX Package 

# 

# Frame -- Helper Function 

# 

# get_year_deltas.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

 

def get_year_deltas(date_list, day_count=365.): 

    ''' Return vector of floats with day deltas in year fractions. 

    Initial value normalized to zero. 

 

    Parameters 

    ========== 

    date_list: list or array 

        collection of datetime objects 

    day_count: float 

        number of days for a year 

        (to account for different conventions) 

 

    Results 

    ======= 

    delta_list: array 

        year fractions 

    ''' 

 

    start = date_list[0] 

    delta_list = [(date - start).days / day_count 

                  for date in date_list] 

    return np.array(delta_list)

This function can then be applied as follows:

In [8]: from get_year_deltas import get_year_deltas 

 

In [9]: get_year_deltas(dates) 

Out[9]: array([0.        , 0.49863014, 1.00273973])



When modeling the short rate, it becomes clear what the benefit of this
conversion is.



Constant Short Rate
The exposition to follow focuses on the simplest case for discounting by the
short rate; namely, the case where the short rate is constant through time.
Many option pricing models, like the ones of Black-Scholes-Merton (1973),
Merton (1976), or Cox-Ross-Rubinstein (1979), make this assumption.6
Assume continuous discounting, as is usual for option pricing applications.
In such a case, the general discount factor as of today, given a future date 
and a constant short rate of , is then given by . Of course, for
the end of the economy the special case  holds true. Note that
here both  and  are in year fractions.

The discount factors can also be interpreted as the value of a unit zero-
coupon bond (ZCB) as of today, maturing at  and , respectively.7 Given
two dates , the discount factor relevant for discounting from 
to  is then given by the equation 

.

The following translates these considerations into Python code in the form
of a class:8

# 

# DX Library 

# 

# Frame -- Constant Short Rate Class 

# 

# constant_short_rate.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

from get_year_deltas import * 

 

 

class constant_short_rate(object): 

    ''' Class for constant short rate discounting. 

 

    Attributes 

    ========== 

    name: string 

        name of the object 

    short_rate: float (positive) 

        constant rate for discounting 

 



    Methods 

    ======= 

    get_discount_factors: 

        get discount factors given a list/array of datetime objects 

        or year fractions 

    ''' 

 

    def __init__(self, name, short_rate): 

        self.name = name 

        self.short_rate = short_rate 

        if short_rate < 0: 

            raise ValueError('Short rate negative.') 

            # this is debatable given recent market realities 

 

    def get_discount_factors(self, date_list, dtobjects=True): 

        if dtobjects is True: 

            dlist = get_year_deltas(date_list) 

        else: 

            dlist = np.array(date_list) 

        dflist = np.exp(self.short_rate * np.sort(-dlist)) 

        return np.array((date_list, dflist)).T

The application of the class dx.constant_short_rate is best illustrated by
a simple, concrete example. The main result is a two-dimensional ndarray
object containing pairs of a datetime object and the relevant discount
factor. The class in general and the object csr in particular work with year
fractions as well:

In [10]: from constant_short_rate import constant_short_rate 

 

In [11]: csr = constant_short_rate('csr', 0.05) 

 

In [12]: csr.get_discount_factors(dates) 

Out[12]: array([[datetime.datetime(2020, 1, 1, 0, 0), 0.9510991280247174], 

                [datetime.datetime(2020, 7, 1, 0, 0), 0.9753767163648953], 

                [datetime.datetime(2021, 1, 1, 0, 0), 1.0]], dtype=object) 

 

In [13]: deltas = get_year_deltas(dates) 

         deltas 

Out[13]: array([0.        , 0.49863014, 1.00273973]) 

 

In [14]: csr.get_discount_factors(deltas, dtobjects=False) 

Out[14]: array([[0.        , 0.95109913], 

                [0.49863014, 0.97537672], 

                [1.00273973, 1.        ]])

This class will take care of all discounting operations needed in other
classes.



Market Environments
Market environment is “just” a name for a collection of other data and
Python objects. However, it is rather convenient to work with this
abstraction since it simplifies a number of operations and also allows for a
consistent modeling of recurring aspects.9 A market environment mainly
consists of three dictionaries to store the following types of data and Python
objects:

Constants
These can be, for example, model parameters or option maturity dates.

Lists
These are collections of objects in general, like a list of objects
modeling (risky) securities.

Curves
These are objects for discounting; e.g., an instance of the
dx.constant_short_rate class.

Following is the code for the dx.market_environment class. Refer to
Chapter 3 for details on the handling of dict objects:

# 

# DX Package 

# 

# Frame -- Market Environment Class 

# 

# market_environment.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

 

class market_environment(object): 

    ''' Class to model a market environment relevant for valuation. 

 

    Attributes 

    ========== 

    name: string 

        name of the market environment 

    pricing_date: datetime object 

        date of the market environment 



 

    Methods 

    ======= 

    add_constant: 

        adds a constant (e.g. model parameter) 

    get_constant: 

        gets a constant 

    add_list: 

        adds a list (e.g. underlyings) 

    get_list: 

        gets a list 

    add_curve: 

        adds a market curve (e.g. yield curve) 

    get_curve: 

        gets a market curve 

    add_environment: 

        adds and overwrites whole market environments 

        with constants, lists, and curves 

    ''' 

 

    def __init__(self, name, pricing_date): 

        self.name = name 

        self.pricing_date = pricing_date 

        self.constants = {}

        self.lists = {} 

        self.curves = {} 

 

    def add_constant(self, key, constant): 

        self.constants[key] = constant 

 

    def get_constant(self, key): 

        return self.constants[key] 

 

    def add_list(self, key, list_object): 

        self.lists[key] = list_object 

 

    def get_list(self, key): 

        return self.lists[key] 

 

    def add_curve(self, key, curve): 

        self.curves[key] = curve 

 

    def get_curve(self, key): 

        return self.curves[key] 

 

    def add_environment(self, env): 

        # overwrites existing values, if they exist 

        self.constants.update(env.constants) 

        self.lists.update(env.lists) 

        self.curves.update(env.curves)

Although there is nothing really special about the dx.market_environment
class, a simple example shall illustrate how convenient it is to work with
instances of the class:

In [15]: from market_environment import market_environment 

 



In [16]: me = market_environment('me_gbm', dt.datetime(2020, 1, 1)) 

 

In [17]: me.add_constant('initial_value', 36.) 

 

In [18]: me.add_constant('volatility', 0.2) 

 

In [19]: me.add_constant('final_date', dt.datetime(2020, 12, 31)) 

 

In [20]: me.add_constant('currency', 'EUR') 

 

In [21]: me.add_constant('frequency', 'M') 

 

In [22]: me.add_constant('paths', 10000) 

 

In [23]: me.add_curve('discount_curve', csr) 

 

In [24]: me.get_constant('volatility') 

Out[24]: 0.2

 

In [25]: me.get_curve('discount_curve').short_rate 

Out[25]: 0.05

This illustrates the basic handling of this rather generic “storage” class. For
practical applications, market data and other data as well as Python objects
are first collected, then a dx.market_environment object is instantiated and
filled with the relevant data and objects. This is then delivered in a single
step to other classes that need the data and objects stored in the respective
dx.market_environment object.

A major advantage of this object-oriented modeling approach is, for
example, that instances of the dx.constant_short_rate class can live in
multiple environments (see the topic of aggregation in Chapter 6). Once the
instance is updated — for example, when a new constant short rate is set —
all the instances of the dx.market_environment class containing that
particular instance of the discounting class will be updated automatically.



FLEXIBILITY
The market environment class as introduced in this section is a flexible means to model
and store any quantities and input data relevant to the pricing of options and derivatives
and portfolios composed thereof. However, this flexibility also leads to operational risks
in that it is easy to pass nonsensical data, objects, etc. to the class during instantiation,
which might or might not be captured during instantiation. In a production context, a
number of checks need to be added to at least capture obviously wrong cases.



Conclusion
This chapter provides the basic framework for the larger project of building
a Python package to value options and other derivatives by Monte Carlo
simulation. The chapter introduces the Fundamental Theorem of Asset
Pricing, illustrating it by a rather simple numerical example. Important
results in this regard are provided for a general market model in discrete
time.

The chapter also develops a Python class for risk-neutral discounting
purposes to make numerical use of the mathematical machinery of the
Fundamental Theorem of Asset Pricing. Based on a list object of either
Python datetime objects or float objects representing year fractions,
instances of the class dx.constant_short_rate provide the appropriate
discount factors (present values of unit zero-coupon bonds).

The chapter concludes with the rather generic dx.market_environment
class, which allows for the collection of relevant data and Python objects
for modeling, simulation, valuation, and other purposes.

To simplify future imports, a wrapper module called dx_frame.py is used:

# 

# DX Analytics Package 

# 

# Frame Functions & Classes 

# 

# dx_frame.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import datetime as dt 

 

from get_year_deltas import get_year_deltas 

from constant_short_rate import constant_short_rate 

from market_environment import market_environment

A single import statement like the following then makes all framework
components available in a single step:



import dx_frame

Thinking of a Python package of modules, there is also the option to store
all relevant Python modules in a (sub)folder and to put in that folder a
special __init__.py file that does all the imports. For example, when storing
all modules in a folder called dx, say, the file presented next does the job.
However, notice the naming convention for this particular file:

# 

# DX Package 

# packaging file 

# __init__.py 

# 

import datetime as dt 

 

from get_year_deltas import get_year_deltas 

from constant_short_rate import constant_short_rate 

from market_environment import market_environment

In that case you can just use the folder name to accomplish all the imports
at once:

from dx import *

Or, via the alternative approach:

import dx



Further Resources
Useful references in book form for the topics covered in this chapter are:

Bittman, James (2009). Trading Options as a Professional. New York:
McGraw Hill.

Delbaen, Freddy, and Walter Schachermayer (2004). The Mathematics
of Arbitrage. Berlin, Heidelberg: Springer-Verlag.

Fletcher, Shayne, and Christopher Gardner (2009). Financial
Modelling in Python. Chichester, England: Wiley Finance.

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

Williams, David (1991). Probability with Martingales. Cambridge,
England: Cambridge University Press.

For the original research papers defining the models cited in this chapter,
refer to the “Further Resources” sections in subsequent chapters.

Refer to Delbaen and Schachermayer (2004) for a comprehensive review and details of the
mathematical machinery involved. See also Chapter 4 of Hilpisch (2015) for a shorter
introduction, in particular for the discrete time version.

The strategy would involve selling an option at a price of 2.5 USD and buying 0.25 stocks for 2.5
USD. The payoff of such a portfolio is 0 no matter what scenario plays out in the simple
economy.

See Williams (1991) on the probabilistic concepts.

See Delbaen and Schachermayer (2004).

Adding a time component is actually a straightforward undertaking, which is nevertheless not
done here for the ease of the exposition.

For the pricing of, for example, short-dated options, this assumption seems satisfied in many
circumstances.

A unit zero-coupon bond pays exactly one currency unit at its maturity and no coupons between
today and maturity.
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See Chapter 6 for the basics of object-oriented programming (OOP) in Python. Here, and for the
rest of this part, the naming deviates from the standard PEP 8 conventions with regard to Python
class names. PEP 8 recommends using “CapWords” or “CamelCase” convention in general for
Python class names. The code in this part rather uses the function name convention as mentioned
in PEP 8 as a valid alternative “in cases where the interface is documented and used primarily as
a callable.”

On this concept see also Fletcher and Gardner (2009), who use market environments extensively.
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Chapter 18. Simulation of
Financial Models

The purpose of science is not to analyze or describe but to make useful
models of the world.
Edward de Bono

Chapter 12 introduces in some detail the Monte Carlo simulation of
stochastic processes using Python and NumPy. This chapter applies the basic
techniques presented there to implement simulation classes as a central
component of the DX package. The set of stochastic processes is restricted to
three widely used ones. In particular, the chapter comprises the following
sections:

“Random Number Generation”
This section develops a function to generate standard normally
distributed random numbers using variance reduction techniques.1

“Generic Simulation Class”
This section develops a generic simulation class from which the other
specific simulatation classes inherit fundamental attributes and
methods.

“Geometric Brownian Motion”
This section is about the geometric Brownian motion (GBM) that was
introduced to the option pricing literature through the seminal works of
Black and Scholes (1973) and Merton (1973); it is used several times
throughout this book and still represents — despite its known
shortcomings and given the mounting empirical evidence against it —
a benchmark process for option and derivative valuation purposes.

“Jump Diffusion”



The jump diffusion, as introduced to finance by Merton (1976), adds a
log-normally distributed jump component to the GBM. This allows
one to take into account that, for example, short-term out-of-the-
money (OTM) options often seem to have priced in the possibility of
larger jumps; in other words, relying on GBM as a financial model
often cannot explain the market values of such OTM options
satisfactorily, while a jump diffusion may be able to do so.

“Square-Root Diffusion”
The square-root diffusion, popularized in finance by Cox, Ingersoll,
and Ross (1985), is used to model mean-reverting quantities like
interest rates and volatility; in addition to being mean-reverting, the
process stays positive, which is generally a desirable characteristic for
those quantities.

For further details on the simulation of the models presented in this chapter,
refer also to Hilpisch (2015). In particular, that book contains a complete
case study based on the jump diffusion model of Merton (1976).



Random Number Generation
Random number generation is a central task of Monte Carlo simulation.2
Chapter 12 shows how to use Python and subpackages such as
numpy.random to generate random numbers with different distributions. For
the project at hand, standard normally distributed random numbers are the
most important ones. That is why it pays off to have the convenience
function sn_random_numbers(), defined here, available for generating this
particular type of random numbers:

# 

# DX Package 

# 

# Frame -- Random Number Generation 

# 

# sn_random_numbers.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

 

def sn_random_numbers(shape, antithetic=True, moment_matching=True, 

                      fixed_seed=False): 

    ''' Returns an ndarray object of shape shape with (pseudo)random numbers 

    that are standard normally distributed. 

 

    Parameters 

    ========== 

    shape: tuple (o, n, m) 

        generation of array with shape (o, n, m) 

    antithetic: Boolean 

        generation of antithetic variates 

    moment_matching: Boolean 

        matching of first and second moments 

    fixed_seed: Boolean 

        flag to fix the seed 

 

    Results 

    ======= 

    ran: (o, n, m) array of (pseudo)random numbers 

    ''' 

    if fixed_seed: 

        np.random.seed(1000) 

    if antithetic: 

        ran = np.random.standard_normal( 

            (shape[0], shape[1], shape[2] // 2)) 

        ran = np.concatenate((ran, -ran), axis=2) 

    else: 

        ran = np.random.standard_normal(shape) 



    if moment_matching: 

        ran = ran - np.mean(ran) 

        ran = ran / np.std(ran) 

    if shape[0] == 1: 

        return ran[0] 

    else: 

        return ran

The variance reduction techniques used in this function, namely antithetic
paths and moment matching, are also illustrated in Chapter 12.3 The
application of the function is straightforward:

In [26]: from sn_random_numbers import * 

 

In [27]: snrn = sn_random_numbers((2, 2, 2), antithetic=False, 

                                  moment_matching=False, fixed_seed=True) 

         snrn 

Out[27]: array([[[-0.8044583 ,  0.32093155], 

                 [-0.02548288,  0.64432383]], 

 

                [[-0.30079667,  0.38947455], 

                 [-0.1074373 , -0.47998308]]]) 

 

In [28]: round(snrn.mean(), 6) 

Out[28]: -0.045429 

 

In [29]: round(snrn.std(), 6) 

Out[29]: 0.451876 

 

In [30]: snrn = sn_random_numbers((2, 2, 2), antithetic=False, 

                                  moment_matching=True, fixed_seed=True) 

         snrn 

Out[30]: array([[[-1.67972865,  0.81075283], 

                 [ 0.04413963,  1.52641815]], 

 

                [[-0.56512826,  0.96243813], 

                 [-0.13722505, -0.96166678]]]) 

 

In [31]: round(snrn.mean(), 6) 

Out[31]: -0.0 

 

In [32]: round(snrn.std(), 6) 

Out[32]: 1.0

This function will prove a workhorse for the simulation classes to follow.



Generic Simulation Class
Object-oriented modeling — as introduced in Chapter 6 — allows
inheritance of attributes and methods. This is what the following code
makes use of when building the simulation classes: one starts with a generic
simulation class containing those attributes and methods that all other
simulation classes share and can then focus with the other classes on
specific elements of the stochastic process to be simulated.

Instantiating an object of any simulation class happens by providing three
attributes only:

name

A str object as a name for the model simulation object

mar_env

An instance of the dx.market_environment class

corr

A flag (bool) indicating whether the object is correlated or not

This again illustrates the role of a market environment: to provide in a
single step all data and objects required for simulation and valuation. The
methods of the generic class are:

generate_time_grid()

This method generates the time grid of relevant dates used for the
simulation; this task is the same for every simulation class.

get_instrument_values()

Every simulation class has to return the ndarray object with the
simulated instrument values (e.g., simulated stock prices, commodities
prices, volatilities).

The code for the generic model simulation class follows. The methods
make use of other methods that the model-tailored classes will provide, like



self.generate_paths(). The details in this regard become clear when one
has the full picture of a specialized, nongeneric simulation class. First, the
base class:

# 

# DX Package 

# 

# Simulation Class -- Base Class 

# 

# simulation_class.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

import pandas as pd 

 

 

class simulation_class(object): 

    ''' Providing base methods for simulation classes. 

 

    Attributes 

    ========== 

    name: str 

        name of the object 

    mar_env: instance of market_environment 

        market environment data for simulation 

    corr: bool 

        True if correlated with other model object 

 

    Methods 

    ======= 

    generate_time_grid: 

        returns time grid for simulation 

    get_instrument_values: 

        returns the current instrument values (array) 

    ''' 

 

    def __init__(self, name, mar_env, corr): 

        self.name = name 

        self.pricing_date = mar_env.pricing_date 

        self.initial_value = mar_env.get_constant('initial_value') 

        self.volatility = mar_env.get_constant('volatility') 

        self.final_date = mar_env.get_constant('final_date') 

        self.currency = mar_env.get_constant('currency') 

        self.frequency = mar_env.get_constant('frequency') 

        self.paths = mar_env.get_constant('paths') 

        self.discount_curve = mar_env.get_curve('discount_curve') 

        try: 

            # if time_grid in mar_env take that object 

            # (for portfolio valuation) 

            self.time_grid = mar_env.get_list('time_grid') 

        except: 

            self.time_grid = None 

        try: 

            # if there are special dates, then add these 

            self.special_dates = mar_env.get_list('special_dates') 

        except: 



            self.special_dates = [] 

        self.instrument_values = None 

        self.correlated = corr 

        if corr is True: 

            # only needed in a portfolio context when 

            # risk factors are correlated 

            self.cholesky_matrix = mar_env.get_list('cholesky_matrix') 

            self.rn_set = mar_env.get_list('rn_set')[self.name] 

            self.random_numbers = mar_env.get_list('random_numbers') 

 

    def generate_time_grid(self): 

        start = self.pricing_date 

        end = self.final_date 

        # pandas date_range function 

        # freq = e.g. 'B' for Business Day, 

        # 'W' for Weekly, 'M' for Monthly 

        time_grid = pd.date_range(start=start, end=end, 

                                  freq=self.frequency).to_pydatetime() 

        time_grid = list(time_grid) 

        # enhance time_grid by start, end, and special_dates 

        if start not in time_grid: 

            time_grid.insert(0, start) 

            # insert start date if not in list 

        if end not in time_grid: 

            time_grid.append(end) 

            # insert end date if not in list 

        if len(self.special_dates) > 0: 

            # add all special dates 

            time_grid.extend(self.special_dates) 

            # delete duplicates 

            time_grid = list(set(time_grid)) 

            # sort list 

            time_grid.sort() 

        self.time_grid = np.array(time_grid) 

 

    def get_instrument_values(self, fixed_seed=True): 

        if self.instrument_values is None: 

            # only initiate simulation if there are no instrument values 

            self.generate_paths(fixed_seed=fixed_seed, day_count=365.) 

        elif fixed_seed is False: 

            # also initiate resimulation when fixed_seed is False 

            self.generate_paths(fixed_seed=fixed_seed, day_count=365.) 

        return self.instrument_values

Parsing of the market environment is embedded in the special method
__init__(), which is called during instantiation. To keep the code concise,
there are no sanity checks implemented. For example, the following line of
code is considered a “success,” no matter if the content is indeed an
instance of a discounting class or not. Therefore, one has to be rather
careful when compiling and passing dx.market_environment objects to
any simulation class:

self.discount_curve = mar_env.get_curve('discount_curve')



Table 18-1 shows all components a dx.market_environment object must
contain for the generic and therefore for all other simulation classes.

Table 18-1. Elements of the market environment for all simulation classes
Element Type Mandatory Description

initial_value Constant Yes Initial value of process at pricing_date

volatility Constant Yes Volatility coefficient of process

final_date Constant Yes Simulation horizon

currency Constant Yes Currency of the financial entity

frequency Constant Yes Date frequency, as pandas freq parameter

paths Constant Yes Number of paths to be simulated

discount_curve Curve Yes Instance of dx.constant_short_rate

time_grid List No Time grid of relevant dates (in portfolio context)

random_numbers List No Random number np.ndarray object (for correlated
objects)

cholesky_matrix List No Cholesky matrix (for correlated objects)

rn_set List No dict object with pointer to relevant random number set

Everything that has to do with the correlation of model simulation objects is
explained in subsequent chapters. In this chapter, the focus is on the
simulation of single, uncorrelated processes. Similarly, the option to pass a
time_grid is only relevant in a portfolio context, something also explained
later.



Geometric Brownian Motion
Geometric Brownian motion is a stochastic process, as described in Equation
18-1 (see also Equation 12-2 in Chapter 12, in particular for the meaning of
the parameters and variables). The drift of the process is already set equal to
the riskless, constant short rate r, implying that one operates under the
equivalent martingale measure (see Chapter 17).

Equation 18-1. Stochastic differential equation of geometric Brownian motion

Equation 18-2 presents an Euler discretization of the stochastic differential
equation for simulation purposes (see also Equation 12-3 in Chapter 12 for
further details). The general framework is a discrete time market model,
such as the general market model ℳ from Chapter 17, with a finite set of
relevant dates 0 < t1 < t2 < … < T.

Equation 18-2. Difference equation to simulate the geometric Brownian motion



The Simulation Class
Following is the specialized class for the GBM model:

# 

# DX Package 

# 

# Simulation Class -- Geometric Brownian Motion 

# 

# geometric_brownian_motion.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

 

 

class geometric_brownian_motion(simulation_class): 

    ''' Class to generate simulated paths based on 

    the Black-Scholes-Merton geometric Brownian motion model. 

 

    Attributes 

    ========== 

    name: string 

        name of the object 

    mar_env: instance of market_environment 

        market environment data for simulation 

    corr: Boolean 

        True if correlated with other model simulation object 

 

    Methods 

    ======= 

    update: 

        updates parameters 

    generate_paths: 

        returns Monte Carlo paths given the market environment 

    ''' 

 

    def __init__(self, name, mar_env, corr=False): 

        super(geometric_brownian_motion, self).__init__(name, mar_env, corr) 

 

    def update(self, initial_value=None, volatility=None, final_date=None): 

        if initial_value is not None: 

            self.initial_value = initial_value 

        if volatility is not None: 

            self.volatility = volatility 

        if final_date is not None: 

            self.final_date = final_date 

        self.instrument_values = None 

 

    def generate_paths(self, fixed_seed=False, day_count=365.): 

        if self.time_grid is None: 

            # method from generic simulation class 

            self.generate_time_grid() 



        # number of dates for time grid 

        M = len(self.time_grid) 

        # number of paths 

        I = self.paths

        # ndarray initialization for path simulation 

        paths = np.zeros((M, I)) 

        # initialize first date with initial_value 

        paths[0] = self.initial_value 

        if not self.correlated: 

            # if not correlated, generate random numbers 

            rand = sn_random_numbers((1, M, I), 

                                     fixed_seed=fixed_seed) 

        else: 

            # if correlated, use random number object as provided 

            # in market environment 

            rand = self.random_numbers 

        short_rate = self.discount_curve.short_rate 

        # get short rate for drift of process 

        for t in range(1, len(self.time_grid)): 

            # select the right time slice from the relevant 

            # random number set 

            if not self.correlated: 

                ran = rand[t] 

            else: 

                ran = np.dot(self.cholesky_matrix, rand[:, t, :]) 

                ran = ran[self.rn_set] 

            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count 

            # difference between two dates as year fraction 

            paths[t] = paths[t - 1] * np.exp((short_rate - 0.5 * 

                                            self.volatility ** 2) * dt + 

                                            self.volatility * np.sqrt(dt) * ran) 

            # generate simulated values for the respective date 

        self.instrument_values = paths

In this particular case, the dx.market_environment object has to contain
only the data and objects shown in Table 18-1 — i.e., the minimum set of
components.

The method update() does what its name suggests: it allows the updating
of selected important parameters of the model. The method
generate_paths() is, of course, a bit more involved. However, it has a
number of inline comments that should make clear the most important
aspects. Some complexity is brought into this method by, in principle,
allowing for the correlation between different model simulation objects —
the purpose of which will become clearer later, especially in Chapter 20.



A Use Case
The following interactive IPython session illustrates the use of the GBM
simulation class. First, one has to generate a dx.market_environment object
with all the mandatory elements:

In [33]: from dx_frame import * 

 

In [34]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1)) 

 

In [35]: me_gbm.add_constant('initial_value', 36.) 

         me_gbm.add_constant('volatility', 0.2) 

         me_gbm.add_constant('final_date', dt.datetime(2020, 12, 31)) 

         me_gbm.add_constant('currency', 'EUR') 

         me_gbm.add_constant('frequency', 'M')   

         me_gbm.add_constant('paths', 10000) 

 

In [36]: csr = constant_short_rate('csr', 0.06) 

 

In [37]: me_gbm.add_curve('discount_curve', csr)

Monthly frequency with month end as default.
Second, one instantiates a model simulation object to work with:

In [38]: from geometric_brownian_motion import geometric_brownian_motion 

 

In [39]: gbm = geometric_brownian_motion('gbm', me_gbm)   

 

In [40]: gbm.generate_time_grid()   

 

In [41]: gbm.time_grid   

Out[41]: array([datetime.datetime(2020, 1, 1, 0, 0), 

                datetime.datetime(2020, 1, 31, 0, 0), 

                datetime.datetime(2020, 2, 29, 0, 0), 

                datetime.datetime(2020, 3, 31, 0, 0), 

                datetime.datetime(2020, 4, 30, 0, 0), 

                datetime.datetime(2020, 5, 31, 0, 0), 

                datetime.datetime(2020, 6, 30, 0, 0), 

                datetime.datetime(2020, 7, 31, 0, 0), 

                datetime.datetime(2020, 8, 31, 0, 0), 

                datetime.datetime(2020, 9, 30, 0, 0), 

                datetime.datetime(2020, 10, 31, 0, 0), 

                datetime.datetime(2020, 11, 30, 0, 0), 

                datetime.datetime(2020, 12, 31, 0, 0)], dtype=object) 

 

In [42]: %time paths_1 = gbm.get_instrument_values()   

         CPU times: user 21.3 ms, sys: 6.74 ms, total: 28.1 ms 

         Wall time: 40.3 ms 



 

In [43]: paths_1.round(3)   

Out[43]: array([[36.   , 36.   , 36.   , ..., 36.   , 36.   , 36.   ], 

                [37.403, 38.12 , 34.4  , ..., 36.252, 35.084, 39.668], 

                [39.562, 42.335, 32.405, ..., 34.836, 33.637, 37.655], 

                ..., 

                [40.534, 33.506, 23.497, ..., 37.851, 30.122, 30.446], 

                [42.527, 36.995, 21.885, ..., 36.014, 30.907, 30.712], 

                [43.811, 37.876, 24.1  , ..., 36.263, 28.138, 29.038]]) 

 

In [44]: gbm.update(volatility=0.5)   

 

In [45]: %time paths_2 = gbm.get_instrument_values()   

         CPU times: user 27.8 ms, sys: 3.91 ms, total: 31.7 ms 

         Wall time: 19.8 ms

Instantiates the simulation object.

Generates the time grid …

… and shows it; note that the initial date is added.

Simulates the paths given the parameterization.

Updates the volatility parameter and repeats the simulation.
Figure 18-1 shows 10 simulated paths for the two different
parameterizations. The effect of increasing the volatility parameter value is
easy to see:

In [46]: plt.figure(figsize=(10, 6)) 

         p1 = plt.plot(gbm.time_grid, paths_1[:, :10], 'b') 

         p2 = plt.plot(gbm.time_grid, paths_2[:, :10], 'r-.') 

         l1 = plt.legend([p1[0], p2[0]], 

                         ['low volatility', 'high volatility'], loc=2) 

         plt.gca().add_artist(l1) 

         plt.xticks(rotation=30);



Figure 18-1. Simulated paths from GBM simulation class



VECTORIZATION FOR SIMULATION
As argued and shown already in Chapter 12, vectorization approaches using NumPy and
pandas are well suited to writing concise and performant simulation code.



Jump Diffusion
Equipped with the background knowledge from the
dx.geometric_brownian_motion class, it is now straightforward to
implement a class for the jump diffusion model described by Merton (1976).
The stochastic differential equation for the jump diffusion model is shown in
Equation 18-3 (see also Equation 12-8 in Chapter 12, in particular for the
meaning of the parameters and variables).

Equation 18-3. Stochastic differential equation for Merton jump diffusion model

An Euler discretization for simulation purposes is presented in Equation 18-
4 (see also Equation 12-9 in Chapter 12 and the more detailed explanations
given there).

Equation 18-4. Euler discretization for Merton jump diffusion model



The Simulation Class
The Python code for the dx.jump_diffusion simulation class follows. This
class should by now contain no surprises. Of course, the model is different,
but the design and the methods are essentially the same:

# 

# DX Package 

# 

# Simulation Class -- Jump Diffusion 

# 

# jump_diffusion.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

 

 

class jump_diffusion(simulation_class): 

    ''' Class to generate simulated paths based on 

    the Merton (1976) jump diffusion model. 

 

    Attributes 

    ========== 

    name: str 

        name of the object 

    mar_env: instance of market_environment 

        market environment data for simulation 

    corr: bool 

        True if correlated with other model object 

 

    Methods 

    ======= 

    update: 

        updates parameters 

    generate_paths: 

        returns Monte Carlo paths given the market environment 

    ''' 

 

    def __init__(self, name, mar_env, corr=False): 

        super(jump_diffusion, self).__init__(name, mar_env, corr) 

        # additional parameters needed 

        self.lamb = mar_env.get_constant('lambda') 

        self.mu = mar_env.get_constant('mu') 

        self.delt = mar_env.get_constant('delta') 

 

    def update(self, initial_value=None, volatility=None, lamb=None, 

               mu=None, delta=None, final_date=None): 

        if initial_value is not None: 

            self.initial_value = initial_value 

        if volatility is not None: 



            self.volatility = volatility 

        if lamb is not None: 

            self.lamb = lamb 

        if mu is not None: 

            self.mu = mu 

        if delta is not None: 

            self.delt = delta 

        if final_date is not None: 

            self.final_date = final_date 

        self.instrument_values = None 

 

    def generate_paths(self, fixed_seed=False, day_count=365.): 

        if self.time_grid is None: 

            # method from generic simulation class 

            self.generate_time_grid() 

        # number of dates for time grid 

        M = len(self.time_grid) 

        # number of paths 

        I = self.paths

        # ndarray initialization for path simulation 

        paths = np.zeros((M, I)) 

        # initialize first date with initial_value 

        paths[0] = self.initial_value 

        if self.correlated is False: 

            # if not correlated, generate random numbers 

            sn1 = sn_random_numbers((1, M, I), 

                                    fixed_seed=fixed_seed) 

        else: 

            # if correlated, use random number object as provided 

            # in market environment 

            sn1 = self.random_numbers 

 

        # standard normally distributed pseudo-random numbers 

        # for the jump component 

        sn2 = sn_random_numbers((1, M, I), 

                                fixed_seed=fixed_seed) 

 

        rj = self.lamb * (np.exp(self.mu + 0.5 * self.delt ** 2) - 1) 

 

        short_rate = self.discount_curve.short_rate 

        for t in range(1, len(self.time_grid)): 

            # select the right time slice from the relevant 

            # random number set 

            if self.correlated is False: 

                ran = sn1[t] 

            else: 

                # only with correlation in portfolio context 

                ran = np.dot(self.cholesky_matrix, sn1[:, t, :]) 

                ran = ran[self.rn_set] 

            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count 

            # difference between two dates as year fraction 

            poi = np.random.poisson(self.lamb * dt, I) 

            # Poisson-distributed pseudo-random numbers for jump component 

            paths[t] = paths[t - 1] * ( 

                np.exp((short_rate - rj - 

                        0.5 * self.volatility ** 2) * dt + 

                       self.volatility * np.sqrt(dt) * ran) + 

                (np.exp(self.mu + self.delt * sn2[t]) - 1) * poi) 

        self.instrument_values = paths



Of course, since this is a different model, it needs a different set of elements
in the dx.market_environment object. In addition to those for the generic
simulation class (see Table 18-1), there are three parameters required, as
outlined in Table 18-2: namely, the parameters of the log-normal jump
component, lambda, mu, and delta.

Table 18-2. Specific elements of the market
environment for dx.jump_diffusion class

Element Type Mandatory Description

lambda Constant Yes Jump intensity (probability p.a.)

mu Constant Yes Expected jump size

delta Constant Yes Standard deviation of jump size

For the generation of the paths, this class needs further random numbers
because of the jump component. Inline comments in the method
generate_paths() highlight the two spots where these additional random
numbers are generated. For the generation of Poisson-distributed random
numbers, see also Chapter 12.



A Use Case
The following interactive session illustrates how to use the simulation class
dx.jump_diffusion. The dx.market_environment object defined for the
GBM object is used as a basis:

In [47]: me_jd = market_environment('me_jd', dt.datetime(2020, 1, 1)) 

 

In [48]: me_jd.add_constant('lambda', 0.3)   

         me_jd.add_constant('mu', -0.75)   

         me_jd.add_constant('delta', 0.1)   

 

In [49]: me_jd.add_environment(me_gbm)   

 

In [50]: from jump_diffusion import jump_diffusion 

 

In [51]: jd = jump_diffusion('jd', me_jd) 

 

In [52]: %time paths_3 = jd.get_instrument_values()   

         CPU times: user 28.6 ms, sys: 4.37 ms, total: 33 ms 

         Wall time: 49.4 ms 

 

In [53]: jd.update(lamb=0.9)   

 

In [54]: %time paths_4 = jd.get_instrument_values()   

         CPU times: user 29.7 ms, sys: 3.58 ms, total: 33.3 ms 

         Wall time: 66.7 ms

The three additional parameters for the dx.jump_diffusion object.
These are specific to the simulation class.

Adds a complete environment to the existing one.

Simulates the paths with the base parameters.

Increases the jump intensity parameters.

Simulates the paths with the updated parameter.



Figure 18-2 compares a couple of simulated paths from the two sets with
low and high intensity (jump probability), respectively. It is easy to spot
several jumps for the low-intensity case and the multiple jumps for the high-
intensity case in the figure:

In [55]: plt.figure(figsize=(10, 6)) 

         p1 = plt.plot(gbm.time_grid, paths_3[:, :10], 'b') 

         p2 = plt.plot(gbm.time_grid, paths_4[:, :10], 'r-.') 

         l1 = plt.legend([p1[0], p2[0]], 

                         ['low intensity', 'high intensity'], loc=3) 

         plt.gca().add_artist(l1) 

         plt.xticks(rotation=30);

Figure 18-2. Simulated paths from jump diffusion simulation class



Square-Root Diffusion
The third stochastic process to be simulated is the square-root diffusion as
used, for example, by Cox, Ingersoll, and Ross (1985) to model stochastic
short rates. Equation 18-5 shows the stochastic differential equation of the
process (see also Equation 12-4 in Chapter 12 for further details).

Equation 18-5. Stochastic differential equation of square-root diffusion

The code uses the discretization scheme as presented in Equation 18-6 (see
also Equation 12-5 in Chapter 12, as well as Equation 12-6 for an
alternative, exact scheme).

Equation 18-6. Euler discretization for square-root diffusion (full truncation scheme)



The Simulation Class
Following is the Python code for the dx.square_root_diffusion
simulation class, which is the third and final one. Apart from, of course, a
different model and discretization scheme, the class does not contain
anything new compared to the other two specialized classes:

# 

# DX Package 

# 

# Simulation Class -- Square-Root Diffusion 

# 

# square_root_diffusion.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

 

 

class square_root_diffusion(simulation_class): 

    ''' Class to generate simulated paths based on 

    the Cox-Ingersoll-Ross (1985) square-root diffusion model. 

 

    Attributes 

    ========== 

    name : string 

        name of the object 

    mar_env : instance of market_environment 

        market environment data for simulation 

    corr : Boolean 

        True if correlated with other model object 

 

    Methods 

    ======= 

    update : 

        updates parameters 

    generate_paths : 

        returns Monte Carlo paths given the market environment 

    ''' 

 

    def __init__(self, name, mar_env, corr=False): 

        super(square_root_diffusion, self).__init__(name, mar_env, corr) 

        # additional parameters needed 

        self.kappa = mar_env.get_constant('kappa') 

        self.theta = mar_env.get_constant('theta') 

 

    def update(self, initial_value=None, volatility=None, kappa=None, 

               theta=None, final_date=None): 

        if initial_value is not None: 

            self.initial_value = initial_value 



        if volatility is not None: 

            self.volatility = volatility 

        if kappa is not None: 

            self.kappa = kappa 

        if theta is not None: 

            self.theta = theta 

        if final_date is not None: 

            self.final_date = final_date 

        self.instrument_values = None 

 

    def generate_paths(self, fixed_seed=True, day_count=365.): 

        if self.time_grid is None: 

            self.generate_time_grid() 

        M = len(self.time_grid) 

        I = self.paths

        paths = np.zeros((M, I)) 

        paths_ = np.zeros_like(paths) 

        paths[0] = self.initial_value 

        paths_[0] = self.initial_value 

        if self.correlated is False: 

            rand = sn_random_numbers((1, M, I), 

                                     fixed_seed=fixed_seed) 

        else: 

            rand = self.random_numbers 

 

        for t in range(1, len(self.time_grid)): 

            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count 

            if self.correlated is False: 

                ran = rand[t] 

            else: 

                ran = np.dot(self.cholesky_matrix, rand[:, t, :]) 

                ran = ran[self.rn_set] 

 

            # full truncation Euler discretization 

            paths_[t] = (paths_[t - 1] + self.kappa * 

                         (self.theta - np.maximum(0, paths_[t - 1, :])) * dt + 

                         np.sqrt(np.maximum(0, paths_[t - 1, :])) * 

                         self.volatility * np.sqrt(dt) * ran) 

            paths[t] = np.maximum(0, paths_[t]) 

        self.instrument_values = paths

Table 18-3 lists the two elements of the market environment that are
specific to this class.

Table 18-3. Specific elements of the market
environment for dx.square_root_diffusion class
Element Type Mandatory Description

kappa Constant Yes Mean reversion factor

theta Constant Yes Long-term mean of process



A Use Case
A rather brief example illustrates the use of the simulation class. As usual,
one needs a market environment, for example, to model a volatility (index)
process:

In [56]: me_srd = market_environment('me_srd', dt.datetime(2020, 1, 1))  

 

In [57]: me_srd.add_constant('initial_value', .25) 

         me_srd.add_constant('volatility', 0.05) 

         me_srd.add_constant('final_date', dt.datetime(2020, 12, 31)) 

         me_srd.add_constant('currency', 'EUR') 

         me_srd.add_constant('frequency', 'W') 

         me_srd.add_constant('paths', 10000) 

 

In [58]: me_srd.add_constant('kappa', 4.0) 

         me_srd.add_constant('theta', 0.2) 

 

In [59]: me_srd.add_curve('discount_curve', constant_short_rate('r', 0.0))   

 

In [60]: from square_root_diffusion import square_root_diffusion 

 

In [61]: srd = square_root_diffusion('srd', me_srd)   

 

In [62]: srd_paths = srd.get_instrument_values()[:, :10]  

Additional parameters for the dx.square_root_diffusion object.

The discount_curve object is required by default but not needed for
the simulation.

Instantiates the object …

… simulates the paths, and selects 10.
Figure 18-3 illustrates the mean-reverting characteristic by showing how the
simulated paths on average revert to the long-term mean theta (dashed
line), which is assumed to be 0.2:



In [55]: plt.figure(figsize=(10, 6)) 

         p1 = plt.plot(gbm.time_grid, paths_3[:, :10], 'b') 

         p2 = plt.plot(gbm.time_grid, paths_4[:, :10], 'r-.') 

         l1 = plt.legend([p1[0], p2[0]], 

                         ['low intensity', 'high intensity'], loc=3) 

         plt.gca().add_artist(l1) 

         plt.xticks(rotation=30);

Figure 18-3. Simulated paths from square-root diffusion simulation class (dashed line = long-term
mean theta)



Conclusion
This chapter develops all the tools and classes needed for the simulation of
the three stochastic processes of interest: geometric Brownian motion, jump
diffusions, and square-root diffusions. The chapter presents a function to
conveniently generate standard normally distributed random numbers. It
then proceeds by introducing a generic model simulation class. Based on
this foundation, the chapter introduces three specialized simulation classes
and presents use cases for these classes.

To simplify future imports one can again use a wrapper module, this one
called dx_simulation.py:

# 

# DX Package 

# 

# Simulation Functions & Classes 

# 

# dx_simulation.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

import pandas as pd 

 

from dx_frame import * 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

from geometric_brownian_motion import geometric_brownian_motion 

from jump_diffusion import jump_diffusion 

from square_root_diffusion import square_root_diffusion

As with the first wrapper module, dx_frame.py, the benefit is that a single
import statement makes available all simulation components:

from dx_simulation import *

Since dx_simulation.py also imports everything from dx_frame.py, this
single import in fact exposes all functionality developed so far. The same
holds true for the enhanced __init__.py file in the dx folder:



# 

# DX Package 

# packaging file 

# __init__.py 

# 

import numpy as np 

import pandas as pd 

import datetime as dt 

 

# frame 

from get_year_deltas import get_year_deltas 

from constant_short_rate import constant_short_rate 

from market_environment import market_environment 

 

# simulation 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

from geometric_brownian_motion import geometric_brownian_motion 

from jump_diffusion import jump_diffusion 

from square_root_diffusion import square_root_diffusion



Further Resources
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Hilpisch, Yves (2015): Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

Original papers cited in this chapter are:
Black, Fischer, and Myron Scholes (1973). “The Pricing of Options
and Corporate Liabilities.” Journal of Political Economy, Vol. 81, No.
3, pp. 638–659.

Cox, John, Jonathan Ingersoll, and Stephen Ross (1985). “A Theory of
the Term Structure of Interest Rates.” Econometrica, Vol. 53, No. 2,
pp. 385–407.

Merton, Robert (1973). “Theory of Rational Option Pricing.” Bell
Journal of Economics and Management Science, Vol. 4, pp. 141–183.

Merton, Robert (1976). “Option Pricing When the Underlying Stock
Returns Are Discontinuous.” Journal of Financial Economics, Vol. 3,
No. 3, pp. 125–144.

The text speaks of “random” numbers knowing that they are in general “pseudo-random” only.

See Glasserman (2004), Chapter 2, on generating random numbers and random variables.
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Chapter 19. Derivatives Valuation

Derivatives are a huge, complex issue.
Judd Gregg

Options and derivatives valuation has long been the domain of the so-called
rocket scientists on Wall Street — i.e., people with a PhD in physics or a
similarly demanding discipline when it comes to the mathematics involved.
However, the application of the models by the means of numerical methods
like Monte Carlo simulation is generally a little less involved than the
theoretical models themselves.

This is particularly true for the valuation of options and derivatives with
European exercise — i.e., where exercise is only possible at a certain
predetermined date. It is a bit less true for options and derivatives with
American exercise, where exercise is allowed at any point over a
prespecified period of time. This chapter introduces and uses the Least-
Squares Monte Carlo (LSM) algorithm, which has become a benchmark
algorithm when it comes to American options valuation based on Monte
Carlo simulation.

The current chapter is similar in structure to Chapter 18 in that it first
introduces a generic valuation class and then provides two specialized
valuation classes, one for European exercise and another for American
exercise. The generic valuation class contains methods to numerically
estimate the most important Greeks of an option: the delta and the vega.
Therefore, the valuation classes are important not only for valuation
purposes, but also for risk management purposes.

The chapter is structured as follows:

“Generic Valuation Class”
This section introduces the generic valuation class from which the
specific ones inherit.



“European Exercise”
This section is about the valuation class for options and derivatives
with European exercise.

“American Exercise”
This section covers the valuation class for options and derivatives with
American exercise.



Generic Valuation Class
As with the generic simulation class, one instantiates an object of the
valuation class by providing only a few inputs (in this case, four):

name

A str object, as a name for the model simulation object

underlying

An instance of a simulation class representing the underlying

mar_env

An instance of the dx.market_environment class

payoff_func

A Python str object containing the payoff function for the
option/derivative

The generic class has three methods:

update()

Updates selected valuation parameters (attributes)

delta()

Calculates a numerical value for the delta of an option/derivative

vega()

Calculates the vega of an option/derivative
Equipped with the background knowledge from the previous chapters about
the DX package, the generic valuation class as presented here should be
almost self-explanatory; where appropriate, inline comments are also
provided. Again, the class is presented in its entirety first, then discussed in
more detail:

# 

# DX Package 

# 



# Valuation -- Base Class 

# 

# valuation_class.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

 

 

class valuation_class(object): 

    ''' Basic class for single-factor valuation. 

 

    Attributes 

    ========== 

    name: str 

        name of the object 

    underlying: instance of simulation class 

        object modeling the single risk factor 

    mar_env: instance of market_environment 

        market environment data for valuation 

    payoff_func: str 

        derivatives payoff in Python syntax 

        Example: 'np.maximum(maturity_value - 100, 0)' 

        where maturity_value is the NumPy vector with 

        respective values of the underlying 

        Example: 'np.maximum(instrument_values - 100, 0)' 

        where instrument_values is the NumPy matrix with 

        values of the underlying over the whole time/path grid 

 

    Methods 

    ======= 

    update: 

        updates selected valuation parameters 

    delta: 

        returns the delta of the derivative 

    vega: 

        returns the vega of the derivative 

    ''' 

 

    def __init__(self, name, underlying, mar_env, payoff_func=''): 

        self.name = name 

        self.pricing_date = mar_env.pricing_date 

        try: 

            # strike is optional 

            self.strike = mar_env.get_constant('strike') 

        except: 

            pass 

        self.maturity = mar_env.get_constant('maturity') 

        self.currency = mar_env.get_constant('currency') 

        # simulation parameters and discount curve from simulation object 

        self.frequency = underlying.frequency 

        self.paths = underlying.paths

        self.discount_curve = underlying.discount_curve 

        self.payoff_func = payoff_func 

        self.underlying = underlying 

        # provide pricing_date and maturity to underlying 

        self.underlying.special_dates.extend([self.pricing_date, 

                                              self.maturity]) 

 

    def update(self, initial_value=None, volatility=None, 

               strike=None, maturity=None): 

        if initial_value is not None: 



            self.underlying.update(initial_value=initial_value) 

        if volatility is not None: 

            self.underlying.update(volatility=volatility)

        if strike is not None: 

            self.strike = strike 

        if maturity is not None: 

            self.maturity = maturity 

            # add new maturity date if not in time_grid 

            if maturity not in self.underlying.time_grid: 

                self.underlying.special_dates.append(maturity) 

                self.underlying.instrument_values = None 

 

    def delta(self, interval=None, accuracy=4): 

        if interval is None: 

            interval = self.underlying.initial_value / 50. 

        # forward-difference approximation 

        # calculate left value for numerical delta 

        value_left = self.present_value(fixed_seed=True) 

        # numerical underlying value for right value 

        initial_del = self.underlying.initial_value + interval 

        self.underlying.update(initial_value=initial_del) 

        # calculate right value for numerical delta 

        value_right = self.present_value(fixed_seed=True) 

        # reset the initial_value of the simulation object 

        self.underlying.update(initial_value=initial_del - interval) 

        delta = (value_right - value_left) / interval 

        # correct for potential numerical errors 

        if delta < -1.0: 

            return -1.0 

        elif delta > 1.0: 

            return 1.0 

        else: 

            return round(delta, accuracy) 

 

    def vega(self, interval=0.01, accuracy=4): 

        if interval < self.underlying.volatility / 50.: 

            interval = self.underlying.volatility / 50. 

        # forward-difference approximation 

        # calculate the left value for numerical vega 

        value_left = self.present_value(fixed_seed=True) 

        # numerical volatility value for right value 

        vola_del = self.underlying.volatility + interval 

        # update the simulation object 

        self.underlying.update(volatility=vola_del) 

        # calculate the right value for numerical vega 

        value_right = self.present_value(fixed_seed=True) 

        # reset volatility value of simulation object 

        self.underlying.update(volatility=vola_del - interval) 

        vega = (value_right - value_left) / interval 

        return round(vega, accuracy)

One topic covered by the generic dx.valuation_class class is the
estimation of Greeks. This is worth taking a closer look at. To this end,
assume that a continuously differentiable function  is available
that represents the present value of an option. The delta of the option is then



defined as the first partial derivative with respect to the current value of the

underlying ; i.e., .

Suppose now that from Monte Carlo valuation (see Chapter 12 and
subsequent sections in this chapter) there is a numerical Monte Carlo

estimator  available for the option value. A numerical
approximation for the delta of the option is then given in Equation 19-1.1
This is what the delta() method of the generic valuation class implements.
The method assumes the existence of a present_value() method that
returns the Monte Carlo estimator given a certain set of parameter values.

Equation 19-1. Numerical delta of an option

Similarly, the vega of the instrument is defined as the first partial derivative
of the present value with respect to the current (instantaneous) volatility ,

i.e., . Again assuming the existence of a Monte Carlo estimator for
the value of the option, Equation 19-2 provides a numerical approximation
for the vega. This is what the vega() method of the dx.valuation_class
class implements.

Equation 19-2. Numerical vega of an option

Note that the discussion of delta and vega is based only on the existence of
either a differentiable function or a Monte Carlo estimator for the present
value of an option. This is the very reason why one can define methods to
numerically estimate these quantities without knowledge of the exact
definition and numerical implementation of the Monte Carlo estimator.



European Exercise
The first case to which the generic valuation class is specialized is the case
of European exercise. To this end, consider the following simplified recipe
to generate a Monte Carlo estimator for an option value:

1. Simulate the relevant underlying risk factor S under the risk-neutral
measure I times to come up with as many simulated values of the
underlying at the maturity of the option T — i.e., 

.

2. Calculate the payoff  of the option at maturity for every simulated
value of the underlying — i.e., .

3. Derive the Monte Carlo estimator for the option’s present value as 
.



The Valuation Class
The following code shows the class implementing the present_value()
method based on this recipe. In addition, it contains the method
generate_payoff() to generate the simulated paths and the payoff of the
option given the simulated paths. This, of course, builds the very basis for
the Monte Carlo estimator:

# 

# DX Package 

# 

# Valuation -- European Exercise Class 

# 

# valuation_mcs_european.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

from valuation_class import valuation_class 

 

 

class valuation_mcs_european(valuation_class): 

    ''' Class to value European options with arbitrary payoff 

    by single-factor Monte Carlo simulation. 

 

    Methods 

    ======= 

    generate_payoff: 

        returns payoffs given the paths and the payoff function 

    present_value: 

        returns present value (Monte Carlo estimator) 

    ''' 

 

    def generate_payoff(self, fixed_seed=False): 

        ''' 

        Parameters 

        ========== 

        fixed_seed: bool 

            use same/fixed seed for valuation 

        ''' 

        try: 

            # strike is optional 

            strike = self.strike 

        except: 

            pass 

        paths = self.underlying.get_instrument_values(fixed_seed=fixed_seed) 

        time_grid = self.underlying.time_grid 

        try: 

            time_index = np.where(time_grid == self.maturity)[0] 

            time_index = int(time_index) 

        except: 



            print('Maturity date not in time grid of underlying.') 

        maturity_value = paths[time_index] 

        # average value over whole path 

        mean_value = np.mean(paths[:time_index], axis=1) 

        # maximum value over whole path 

        max_value = np.amax(paths[:time_index], axis=1)[-1] 

        # minimum value over whole path 

        min_value = np.amin(paths[:time_index], axis=1)[-1] 

        try: 

            payoff = eval(self.payoff_func) 

            return payoff 

        except: 

            print('Error evaluating payoff function.') 

 

    def present_value(self, accuracy=6, fixed_seed=False, full=False): 

        ''' 

        Parameters 

        ========== 

        accuracy: int 

            number of decimals in returned result 

        fixed_seed: bool 

            use same/fixed seed for valuation 

        full: bool 

            return also full 1d array of present values 

        ''' 

        cash_flow = self.generate_payoff(fixed_seed=fixed_seed) 

        discount_factor = self.discount_curve.get_discount_factors( 

            (self.pricing_date, self.maturity))[0, 1] 

        result = discount_factor * np.sum(cash_flow) / len(cash_flow) 

        if full: 

            return round(result, accuracy), discount_factor * cash_flow 

        else: 

            return round(result, accuracy)

The generate_payoff() method provides some special objects to be used
for the definition of the payoff of the option:

strike is the strike of the option.

maturity_value represents the 1D ndarray object with the simulated
values of the underlying at maturity of the option.

mean_value is the average of the underlying over a whole path from
today until maturity.

max_value is the maximum value of the underlying over a whole path.

min_value gives the minimum value of the underlying over a whole
path.



The last three allow for the efficient handling of options with Asian (i.e.,
lookback or path-dependent) features.



FLEXIBLE PAYOFFS
The approach taken for the valuation of options and derivatives with European exercise
is quite flexible in that arbitrary payoff functions can be defined. This allows, among
other things, modeling of derivatives with conditional exercise (e.g., options) as well as
unconditional exercise (e.g., forwards). It also allows the inclusion of exotic payoff
elements, such as lookback features.



A Use Case
The application of the valuation class dx.valuation_mcs_european is best
illustrated by a specific use case. However, before a valuation class can be
instantiated, an instance of a simulation object — i.e., an underlying for the
option to be valued — is needed. From Chapter 18, the
dx.geometric_brownian_motion class is used to model the underlying:

In [64]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1)) 

 

In [65]: me_gbm.add_constant('initial_value', 36.) 

         me_gbm.add_constant('volatility', 0.2)

         me_gbm.add_constant('final_date', dt.datetime(2020, 12, 31)) 

         me_gbm.add_constant('currency', 'EUR')

         me_gbm.add_constant('frequency', 'M') 

         me_gbm.add_constant('paths', 10000) 

 

In [66]: csr = constant_short_rate('csr', 0.06) 

 

In [67]: me_gbm.add_curve('discount_curve', csr) 

 

In [68]: gbm = geometric_brownian_motion('gbm', me_gbm)

In addition to a simulation object, one needs to define a market environment
for the option itself. It has to contain at least a maturity and a currency.
Optionally, a value for the strike parameter can be included as well:

In [69]: me_call = market_environment('me_call', me_gbm.pricing_date) 

 

In [70]: me_call.add_constant('strike', 40.) 

         me_call.add_constant('maturity', dt.datetime(2020, 12, 31)) 

         me_call.add_constant('currency', 'EUR')

A central element, of course, is the payoff function, provided here as a str
object containing Python code that the eval() function can evaluate. A
European call option shall be modeled. Such an option has a payoff of 

, with  being the value of the underlying at
maturity and K being the strike price of the option. In Python and NumPy —
with vectorized storage of all simulated values — this takes on the following
form:

In [71]: payoff_func = 'np.maximum(maturity_value - strike, 0)'



Having all the ingredients together, one can then instantiate an object from
the dx.valuation_mcs_european class. With the valuation object available,
all quantities of interest are only one method call away:

In [72]: from valuation_mcs_european import valuation_mcs_european 

 

In [73]: eur_call = valuation_mcs_european('eur_call', underlying=gbm, 

                                 mar_env=me_call, payoff_func=payoff_func) 

 

In [74]: %time eur_call.present_value()   

         CPU times: user 14.8 ms, sys: 4.06 ms, total: 18.9 ms 

         Wall time: 43.5 ms 

 

Out[74]: 2.146828

 

In [75]: %time eur_call.delta()   

         CPU times: user 12.4 ms, sys: 2.68 ms, total: 15.1 ms 

         Wall time: 40.1 ms 

 

Out[75]: 0.5155 

 

In [76]: %time eur_call.vega()   

         CPU times: user 21 ms, sys: 2.72 ms, total: 23.7 ms 

         Wall time: 89.9 ms 

 

Out[76]: 14.301

Estimates the present value of the European call option.

Estimates the delta of the option numerically; the delta is positive for
calls.

Estimates the vega of the option numerically; the vega is positive for
both calls and puts.

Once the valuation object is instantiated, a more comprehensive analysis of
the present value and the Greeks is easily implemented. The following code
calculates the present value, delta, and vega for initial values of the
underlying ranging from 34 to 46 EUR. The results are presented graphically
in Figure 19-1:



In [77]: %%time 

         s_list = np.arange(34., 46.1, 2.) 

         p_list = []; d_list = []; v_list = [] 

         for s in s_list: 

             eur_call.update(initial_value=s) 

             p_list.append(eur_call.present_value(fixed_seed=True)) 

             d_list.append(eur_call.delta()) 

             v_list.append(eur_call.vega()) 

         CPU times: user 374 ms, sys: 8.82 ms, total: 383 ms 

         Wall time: 609 ms 

 

In [78]: from plot_option_stats import plot_option_stats 

 

In [79]: plot_option_stats(s_list, p_list, d_list, v_list)

Figure 19-1. Present value, delta, and vega estimates for European call option

The visualization makes use of the helper function plot_option_stats():

# 

# DX Package 

# 

# Valuation -- Plotting Options Statistics 

# 



# plot_option_stats.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import matplotlib.pyplot as plt 

 

 

def plot_option_stats(s_list, p_list, d_list, v_list): 

    ''' Plots option prices, deltas, and vegas for a set of 

    different initial values of the underlying. 

 

    Parameters 

    ========== 

    s_list: array or list 

        set of initial values of the underlying 

    p_list: array or list 

        present values 

    d_list: array or list 

        results for deltas 

    v_list: array or list 

        results for vegas 

    ''' 

    plt.figure(figsize=(10, 7)) 

    sub1 = plt.subplot(311) 

    plt.plot(s_list, p_list, 'ro', label='present value') 

    plt.plot(s_list, p_list, 'b') 

    plt.legend(loc=0) 

    plt.setp(sub1.get_xticklabels(), visible=False) 

    sub2 = plt.subplot(312) 

    plt.plot(s_list, d_list, 'go', label='Delta') 

    plt.plot(s_list, d_list, 'b') 

    plt.legend(loc=0) 

    plt.ylim(min(d_list) - 0.1, max(d_list) + 0.1) 

    plt.setp(sub2.get_xticklabels(), visible=False) 

    sub3 = plt.subplot(313) 

    plt.plot(s_list, v_list, 'yo', label='Vega') 

    plt.plot(s_list, v_list, 'b') 

    plt.xlabel('initial value of underlying') 

    plt.legend(loc=0)

This illustrates that working with the DX package — despite the fact that
heavy numerics are involved — boils down to an approach that is
comparable to having a closed-form option pricing formula available.
However, this approach does not only apply to such simple or “plain vanilla”
payoffs as the one considered so far. With exactly the same approach, one
can handle more complex payoffs.

To this end, consider the following payoff, a mixture of a regular and an
Asian payoff. The handling and the analysis are the same and are mainly
independent of the type of payoff defined. Figure 19-2 shows that delta
becomes 1 when the initial value of the underlying reaches the strike price of
40 in this case. Every (marginal) increase of the initial value of the



underlying leads to the same (marginal) increase in the option’s value from
this particular point on:

In [80]: payoff_func = 'np.maximum(0.33 * ' 

         payoff_func += '(maturity_value + max_value) - 40, 0)'   

 

In [81]: eur_as_call = valuation_mcs_european('eur_as_call', underlying=gbm, 

                                     mar_env=me_call, payoff_func=payoff_func) 

 

In [82]: %%time 

         s_list = np.arange(34., 46.1, 2.) 

         p_list = []; d_list = []; v_list = [] 

         for s in s_list: 

             eur_as_call.update(s) 

             p_list.append(eur_as_call.present_value(fixed_seed=True)) 

             d_list.append(eur_as_call.delta())

             v_list.append(eur_as_call.vega()) 

         CPU times: user 319 ms, sys: 14.2 ms, total: 333 ms 

         Wall time: 488 ms 

 

In [83]: plot_option_stats(s_list, p_list, d_list, v_list)

Payoff dependent on both the simulated maturity value and the
maximum value over the simulated path.



Figure 19-2. Present value, delta, and vega estimates for option with Asian feature



American Exercise
The valuation of options with American exercise or Bermudan exercise is
much more involved than with European exercise.2 Therefore, a bit more
valuation theory is needed before proceeding to the valuation class.



Least-Squares Monte Carlo
Although Cox, Ross, and Rubinstein (1979) presented with their binomial
model a simple numerical method to value European and American options
in the same framework, only with the Longstaff-Schwartz (2001) approach
was the valuation of American options by Monte Carlo simulation (MCS)
satisfactorily solved. The major problem is that MCS per se is a forward-
moving algorithm, while the valuation of American options is generally
accomplished by backward induction, estimating the continuation value of
the American option starting at maturity and working back to the present.

The major insight of the Longstaff-Schwartz (2001) model is to use an
ordinary least-squares regression to estimate the continuation value based on
the cross section of all available simulated values.3 The algorithm takes into
account, per path:

The simulated value of the underlying(s)

The inner value of the option

The actual continuation value given the specific path

In discrete time, the value of a Bermudan option (and in the limit of an
American option) is given by the optimal stopping problem, as presented in
Equation 19-3 for a finite set of points in time 0 < t1 < t2 < … < T.4

Equation 19-3. Optimal stopping problem in discrete time for Bermudan option

Equation 19-4 presents the continuation value of the American option at date
 < T. It is the risk-neutral expectation at date  under the martingale

measure of the value of the American option  at the subsequent date.



Equation 19-4. Continuation value for the American option

The value of the American option  at date  can be shown to equal the
formula in Equation 19-5 — i.e., the maximum of the payoff of immediate
exercise (inner value) and the expected payoff of not exercising
(continuation value).

Equation 19-5. Value of American option at any given date

In Equation 19-5, the inner value is of course easily calculated. The
continuation value is what makes it a bit trickier. The Longstaff-Schwartz
(2001) algorithm approximates this value by a regression, as presented in
Equation 19-6. There, i stands for the current simulated path, D is the
number of basis functions for the regression used,  are the optimal
regression parameters, and  is the regression function with number d.

Equation 19-6. Regression-based approximation of continuation value

The optimal regression parameters are the result of the solution of the least-
squares regression problem presented in Equation 19-7. Here, 

 is the actual continuation value at date  for path i
(and not a regressed/estimated one).



Equation 19-7. Ordinary least-squares regression

This completes the basic (mathematical) tool set to value an American
option by MCS.



The Valuation Class
The code that follows represents the class for the valuation of options and
derivatives with American exercise. There is one noteworthy step in the
implementation of the LSM algorithm in the present_value() method
(which is also commented on inline): the optimal decision step. Here, it is
important that, based on the decision that is made, the LSM algorithm takes
either the inner value or the actual continuation value, and not the estimated
continuation value:5

# 

# DX Package 

# 

# Valuation -- American Exercise Class 

# 

# valuation_mcs_american.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

 

from valuation_class import valuation_class 

 

 

class valuation_mcs_american(valuation_class): 

    ''' Class to value American options with arbitrary payoff 

    by single-factor Monte Carlo simulation. 

 

    Methods 

    ======= 

    generate_payoff: 

        returns payoffs given the paths and the payoff function 

    present_value: 

        returns present value (LSM Monte Carlo estimator) 

        according to Longstaff-Schwartz (2001) 

    ''' 

 

    def generate_payoff(self, fixed_seed=False): 

        ''' 

        Parameters 

        ========== 

        fixed_seed: 

            use same/fixed seed for valuation 

        ''' 

        try: 

            # strike is optional 

            strike = self.strike 

        except: 

            pass 

        paths = self.underlying.get_instrument_values(fixed_seed=fixed_seed) 

        time_grid = self.underlying.time_grid 



        time_index_start = int(np.where(time_grid == self.pricing_date)[0]) 

        time_index_end = int(np.where(time_grid == self.maturity)[0]) 

        instrument_values = paths[time_index_start:time_index_end + 1] 

        payoff = eval(self.payoff_func) 

        return instrument_values, payoff, time_index_start, time_index_end 

 

    def present_value(self, accuracy=6, fixed_seed=False, bf=5, full=False): 

        ''' 

        Parameters 

        ========== 

        accuracy: int 

            number of decimals in returned result 

        fixed_seed: bool 

            use same/fixed seed for valuation 

        bf: int 

            number of basis functions for regression 

        full: bool 

            return also full 1d array of present values 

        ''' 

        instrument_values, inner_values, time_index_start, time_index_end = \

            self.generate_payoff(fixed_seed=fixed_seed) 

        time_list = self.underlying.time_grid[ 

            time_index_start:time_index_end + 1] 

        discount_factors = self.discount_curve.get_discount_factors( 

            time_list, dtobjects=True) 

        V = inner_values[-1] 

        for t in range(len(time_list) - 2, 0, -1): 

            # derive relevant discount factor for given time interval 

            df = discount_factors[t, 1] / discount_factors[t + 1, 1] 

            # regression step 

            rg = np.polyfit(instrument_values[t], V * df, bf) 

            # calculation of continuation values per path 

            C = np.polyval(rg, instrument_values[t]) 

            # optimal decision step: 

            # if condition is satisfied (inner value > regressed cont. value) 

            # then take inner value; take actual cont. value otherwise 

            V = np.where(inner_values[t] > C, inner_values[t], V * df) 

        df = discount_factors[0, 1] / discount_factors[1, 1] 

        result = df * np.sum(V) / len(V) 

        if full: 

            return round(result, accuracy), df * V 

        else: 

            return round(result, accuracy)



A Use Case
As has become by now the means of choice, a use case shall illustrate how
to work with the dx.valuation_mcs_american class. The use case
replicates all American option values as presented in Table 1 of the seminal
paper by Longstaff and Schwartz (2001). The underlying is the same as
before, a dx.geometric_brownian_motion object. The initial
parameterization is as follows:

In [84]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1)) 

 

In [85]: me_gbm.add_constant('initial_value', 36.) 

         me_gbm.add_constant('volatility', 0.2)

         me_gbm.add_constant('final_date', dt.datetime(2021, 12, 31)) 

         me_gbm.add_constant('currency', 'EUR')

         me_gbm.add_constant('frequency', 'W') 

         me_gbm.add_constant('paths', 50000) 

 

In [86]: csr = constant_short_rate('csr', 0.06) 

 

In [87]: me_gbm.add_curve('discount_curve', csr) 

 

In [88]: gbm = geometric_brownian_motion('gbm', me_gbm) 

 

In [89]: payoff_func = 'np.maximum(strike - instrument_values, 0)' 

 

In [90]: me_am_put = market_environment('me_am_put', dt.datetime(2020, 1, 1)) 

 

In [91]: me_am_put.add_constant('maturity', dt.datetime(2020, 12, 31)) 

         me_am_put.add_constant('strike', 40.) 

         me_am_put.add_constant('currency', 'EUR')

The next step is to instantiate the valuation object based on the numerical
assumptions and to initiate the valuations. The valuation of the American
put option can take quite a bit longer than the same task for the European
options. Not only is the number of paths and time intervals increased, but
the algorithm is also more computationally demanding due to the backward
induction and the regression per induction step. The numerical estimate
obtained for the first option considered is close to the correct one reported
in the original paper of 4.478:

In [92]: from valuation_mcs_american import valuation_mcs_american 

 

In [93]: am_put = valuation_mcs_american('am_put', underlying=gbm, 

                             mar_env=me_am_put, payoff_func=payoff_func) 



 

In [94]: %time am_put.present_value(fixed_seed=True, bf=5) 

         CPU times: user 1.57 s, sys: 219 ms, total: 1.79 s 

         Wall time: 2.01 s 

 

Out[94]: 4.472834

Due to the very construction of the LSM Monte Carlo estimator, it
represents a lower bound of the mathematically correct American option
value.6 Therefore, one expects the numerical estimate to lie under the true
value in any numerically realistic case. Alternative dual estimators can
provide upper bounds as well.7 Taken together, two such different
estimators then define an interval for the true American option value.

The main stated goal of this use case is to replicate all American option
values of Table 1 in the original paper. To this end, one only needs to
combine the valuation object with a nested loop. During the innermost loop,
the valuation object has to be updated according to the then-current
parameterization:

In [95]: %%time 

         ls_table = [] 

         for initial_value in (36., 38., 40., 42., 44.): 

             for volatility in (0.2, 0.4): 

                 for maturity in (dt.datetime(2020, 12, 31), 

                                  dt.datetime(2021, 12, 31)): 

                     am_put.update(initial_value=initial_value, 

                                   volatility=volatility, 

                                   maturity=maturity) 

                     ls_table.append([initial_value, 

                                      volatility, 

                                      maturity, 

                                      am_put.present_value(bf=5)]) 

         CPU times: user 41.1 s, sys: 2.46 s, total: 43.5 s 

         Wall time: 1min 30s 

 

In [96]: print('S0  | Vola | T | Value') 

         print(22 * '-') 

         for r in ls_table: 

             print('%d  | %3.1f  | %d | %5.3f' % 

                   (r[0], r[1], r[2].year - 2019, r[3])) 

         S0  | Vola | T | Value 

         ---------------------- 

         36  | 0.2  | 1 | 4.447 

         36  | 0.2  | 2 | 4.773 

         36  | 0.4  | 1 | 7.006 

         36  | 0.4  | 2 | 8.377 

         38  | 0.2  | 1 | 3.213 

         38  | 0.2  | 2 | 3.645 

         38  | 0.4  | 1 | 6.069 

         38  | 0.4  | 2 | 7.539 



         40  | 0.2  | 1 | 2.269 

         40  | 0.2  | 2 | 2.781 

         40  | 0.4  | 1 | 5.211 

         40  | 0.4  | 2 | 6.756 

         42  | 0.2  | 1 | 1.556 

         42  | 0.2  | 2 | 2.102 

         42  | 0.4  | 1 | 4.466 

         42  | 0.4  | 2 | 6.049 

         44  | 0.2  | 1 | 1.059 

         44  | 0.2  | 2 | 1.617 

         44  | 0.4  | 1 | 3.852 

         44  | 0.4  | 2 | 5.490

These results are a simplified version of Table 1 in the paper by Longstaff
and Schwartz (2001). Overall, the numerical values come close to those
reported in the paper, where some different parameters have been used
(they use, for example, double the number of paths).

To conclude the use case, note that the estimation of Greeks for American
options is formally the same as for European options — a major advantage
of the implemented approach over alternative numerical methods (like the
binomial model):

In [97]: am_put.update(initial_value=36.) 

         am_put.delta() 

Out[97]: -0.4631 

 

In [98]: am_put.vega() 

Out[98]: 18.0961



LEAST-SQUARES MONTE CARLO
The LSM valuation algorithm of Longstaff and Schwartz (2001) is a numerically
efficient algorithm to value options and even complex derivatives with American or
Bermudan exercise features. The OLS regression step allows the approximation of the
optimal exercise strategy based on an efficient numerical method. Since OLS regression
can easily handle high-dimensional data, it makes it a flexible method in derivatives
pricing.



Conclusion
This chapter is about the numerical valuation of European and American
options based on Monte Carlo simulation. The chapter introduces a generic
valuation class, called dx.valuation_class. This class provides methods,
for example, to estimate the most important Greeks (delta, vega) for both
types of options, independent of the simulation object (i.e., the risk factor or
stochastic process) used for the valuation.

Based on the generic valuation class, the chapter presents two specialized
classes, dx.valuation_mcs_european and dx.valuation_mcs_american.
The class for the valuation of European options is mainly a straightforward
implementation of the risk-neutral valuation approach presented in
Chapter 17 in combination with the numerical estimation of an expectation
term (i.e., an integral by Monte Carlo simulation, as discussed in
Chapter 11).

The class for the valuation of American options needs a certain kind of
regression-based valuation algorithm, called Least-Squares Monte Carlo
(LSM). This is due to the fact that for American options an optimal exercise
policy has to be derived for a valuation. This is theoretically and
numerically a bit more involved. However, the respective present_value()
method of the class is still concise.

The approach taken with the DX derivatives analytics package proves to be
beneficial. Without too much effort one is able to value a relatively large
class of options with the following features:

Single risk factor

European or American exercise

Arbitrary payoff

In addition, one can estimate the most important Greeks for this class of
options. To simplify future imports, again a wrapper module is used, this



time called dx_valuation.py:

# 

# DX Package 

# 

# Valuation Classes 

# 

# dx_valuation.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

import pandas as pd 

 

from dx_simulation import * 

from valuation_class import valuation_class 

from valuation_mcs_european import valuation_mcs_european 

from valuation_mcs_american import valuation_mcs_american

The __init__.py file in the dx folder is updated accordingly:

# 

# DX Package 

# packaging file 

# __init__.py 

# 

import numpy as np 

import pandas as pd 

import datetime as dt 

 

# frame 

from get_year_deltas import get_year_deltas 

from constant_short_rate import constant_short_rate 

from market_environment import market_environment 

from plot_option_stats import plot_option_stats 

 

# simulation 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

from geometric_brownian_motion import geometric_brownian_motion 

from jump_diffusion import jump_diffusion 

from square_root_diffusion import square_root_diffusion 

 

# valuation 

from valuation_class import valuation_class 

from valuation_mcs_european import valuation_mcs_european 

from valuation_mcs_american import valuation_mcs_american



Further Resources
References for the topics of this chapter in book form are:

Glasserman, Paul (2004). Monte Carlo Methods in Financial
Engineering. New York: Springer.

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

Original papers cited in this chapter are:
Cox, John, Stephen Ross, and Mark Rubinstein (1979). “Option
Pricing: A Simplified Approach.” Journal of Financial Economics,
Vol. 7, No. 3, pp. 229–263.

Kohler, Michael (2010). “A Review on Regression-Based Monte Carlo
Methods for Pricing American Options.” In Luc Devroye et al. (eds.):
Recent Developments in Applied Probability and Statistics (pp. 37–
58). Heidelberg: Physica-Verlag.

Longstaff, Francis, and Eduardo Schwartz (2001). “Valuing American
Options by Simulation: A Simple Least Squares Approach.” Review of
Financial Studies, Vol. 14, No. 1, pp. 113–147.

For details on how to estimate Greeks numerically by Monte Carlo simulation, refer to Chapter 7
of Glasserman (2004). The code uses forward-difference schemes only since this leads to only
one additional simulation and revaluation of the option. For example, a central-difference
approximation would lead to two option revaluations and therefore a higher computational
burden.

American exercise refers to a situation where exercise is possible at every instant of time over a
fixed time interval (at least during trading hours). Bermudan exercise generally refers to a
situation where there are multiple discrete exercise dates. In numerical applications, American
exercise is approximated by Bermudan exercise, and maybe letting the number of exercise dates
go to infinity in the limit.

That is why their algorithm is generally abbreviated as LSM, for Least-Squares Monte Carlo.

Kohler (2010) provides a concise overview of the theory of American option valuation in general
and the use of regression-based methods in particular.
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See also Chapter 6 of Hilpisch (2015).

The main reason is that the “optimal” exercise policy based on the regression estimates for the
continuation values is in fact “suboptimal.”

See Chapter 6 in Hilpisch (2015) for a dual algorithm leading to an upper bound and a Python
implementation thereof.
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Chapter 20. Portfolio Valuation

Price is what you pay. Value is what you get.
Warren Buffet

By now, the whole approach for building the DX derivatives analytics
package — and its associated benefits — should be clear. By strictly relying
on Monte Carlo simulation as the only numerical method, the approach
accomplishes an almost complete modularization of the analytics package:

Discounting
The relevant risk-neutral discounting is taken care of by an instance of
the dx.constant_short_rate class.

Relevant data
Relevant data, parameters, and other input are stored in (several)
instances of the dx.market_environment class.

Simulation objects
Relevant risk factors (underlyings) are modeled as instances of one of
three simulation classes:

dx.geometric_brownian_motion

dx.jump_diffusion

dx.square_root_diffusion

Valuation objects
Options and derivatives to be valued are modeled as instances of one
of two valuation classes:

dx.valuation_mcs_european

dx.valuation_mcs_american



One last step is missing: the valuation of possibly complex portfolios of
options and derivatives. To this end, the following requirements shall be
satisfied:

Nonredundancy
Every risk factor (underlying) is modeled only once and potentially
used by multiple valuation objects.

Correlations
Correlations between risk factors have to be accounted for.

Positions
An option position, for example, consists of a certain number of option
contracts.

However, although it is in principle allowed (it is in fact even required) to
provide a currency for both simulation and valuation objects, the following
code assumes that portfolios are denominated in a single currency only.
This simplifies the aggregation of values within a portfolio significantly,
because one can abstract from exchange rates and currency risks.

The chapter presents two new classes: a simple one to model a derivatives
position, and a more complex one to model and value a derivatives
portfolio. It is structured as follows:

“Derivatives Positions”
This section introduces the class to model a single derivatives position.

“Derivatives Portfolios”
This section introduces the core class to value a portfolio of potentially
many derivatives positions.



Derivatives Positions
In principle, a derivatives position is nothing more than a combination of a
valuation object and a quantity for the instrument modeled.



The Class
The code that follows presents the class to model a derivatives position. It is
mainly a container for data and objects. In addition, it provides a
get_info() method, printing the data and object information stored in an
instance of the class:

# 

# DX Package 

# 

# Portfolio -- Derivatives Position Class 

# 

# derivatives_position.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

 

 

class derivatives_position(object): 

    ''' Class to model a derivatives position. 

 

    Attributes 

    ========== 

 

    name: str 

        name of the object 

    quantity: float 

        number of assets/derivatives making up the position 

    underlying: str 

        name of asset/risk factor for the derivative 

    mar_env: instance of market_environment 

        constants, lists, and curves relevant for valuation_class 

    otype: str 

        valuation class to use 

    payoff_func: str 

        payoff string for the derivative 

 

    Methods 

    ======= 

    get_info: 

        prints information about the derivatives position 

    ''' 

 

    def __init__(self, name, quantity, underlying, mar_env, 

                 otype, payoff_func): 

        self.name = name 

        self.quantity = quantity 

        self.underlying = underlying 

        self.mar_env = mar_env 

        self.otype = otype 

        self.payoff_func = payoff_func 

 

    def get_info(self): 



        print('NAME') 

        print(self.name, '\n') 

        print('QUANTITY') 

        print(self.quantity, '\n') 

        print('UNDERLYING') 

        print(self.underlying, '\n') 

        print('MARKET ENVIRONMENT') 

        print('\n**Constants**') 

        for key, value in self.mar_env.constants.items(): 

            print(key, value) 

        print('\n**Lists**') 

        for key, value in self.mar_env.lists.items(): 

            print(key, value) 

        print('\n**Curves**') 

        for key in self.mar_env.curves.items(): 

            print(key, value) 

        print('\nOPTION TYPE') 

        print(self.otype, '\n') 

        print('PAYOFF FUNCTION') 

        print(self.payoff_func)

To define a derivatives position the following information is required,
which is almost the same as for the instantiation of a valuation class:

name

Name of the position as a str object

quantity

Quantity of options/derivatives

underlying

Instance of simulation object as a risk factor

mar_env

Instance of dx.market_environment

otype

str, either "European" or "American"

payoff_func

Payoff as a Python str object



A Use Case
The following interactive session illustrates the use of the class. However,
first a definition of a simulation object is needed (but not in full; only the
most important, object-specific information is required):

In [99]: from dx_valuation import * 

 

In [100]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1))   

 

In [101]: me_gbm.add_constant('initial_value', 36.)   

          me_gbm.add_constant('volatility', 0.2)   

          me_gbm.add_constant('currency', 'EUR')   

 

In [102]: me_gbm.add_constant('model', 'gbm')  

The dx.market_environment object for the underlying.

The model type needs to be specified here.
Similarly, for the definition of the derivatives position, one does not need a
“complete” dx.market_environment object. Missing information is
provided later (during the portfolio valuation), when the simulation object is
instantiated:

In [103]: from derivatives_position import derivatives_position 

 

In [104]: me_am_put = market_environment('me_am_put', dt.datetime(2020, 1, 1))   

 

In [105]: me_am_put.add_constant('maturity', dt.datetime(2020, 12, 31))   

          me_am_put.add_constant('strike', 40.)   

          me_am_put.add_constant('currency', 'EUR')   

 

In [106]: payoff_func = 'np.maximum(strike - instrument_values, 0)'   

 

In [107]: am_put_pos = derivatives_position( 

                       name='am_put_pos', 

                       quantity=3, 

                       underlying='gbm', 

                       mar_env=me_am_put, 

                       otype='American', 

                       payoff_func=payoff_func)   

 



In [108]: am_put_pos.get_info() 

          NAME 

          am_put_pos 

 

          QUANTITY 

          3 

 

          UNDERLYING 

          gbm 

 

          MARKET ENVIRONMENT 

 

          **Constants** 

          maturity 2020-12-31 00:00:00 

          strike 40.0 

          currency EUR 

 

          **Lists** 

 

          **Curves** 

 

          OPTION TYPE 

          American 

 

          PAYOFF FUNCTION 

          np.maximum(strike - instrument_values, 0)

The dx.market_environment object for the derivative.

The payoff function of the derivative.

The instantiation of the derivatives_position object.



Derivatives Portfolios
From a portfolio perspective, a relevant market is mainly composed of the
relevant risk factors (underlyings) and their correlations, as well as the
derivatives and derivatives positions, respectively, to be valued.
Theoretically, the analysis to follow now deals with a general market model
ℳ as defined in Chapter 17, and applies the Fundamental Theorem of
Asset Pricing (with its corollaries) to it.1



The Class
A somewhat complex Python class implementing a portfolio valuation
based on the Fundamental Theorem of Asset Pricing — taking into account
multiple relevant risk factors and multiple derivatives positions — is
presented next. The class is documented inline, especially during passages
that implement functionality specific to the purpose at hand:

# 

# DX Package 

# 

# Portfolio -- Derivatives Portfolio Class 

# 

# derivatives_portfolio.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

import numpy as np 

import pandas as pd 

 

from dx_valuation import * 

 

# models available for risk factor modeling 

models = {'gbm': geometric_brownian_motion, 

          'jd': jump_diffusion, 

          'srd': square_root_diffusion} 

 

# allowed exercise types 

otypes = {'European': valuation_mcs_european, 

          'American': valuation_mcs_american} 

 

 

class derivatives_portfolio(object): 

    ''' Class for modeling and valuing portfolios of derivatives positions. 

 

    Attributes 

    ========== 

    name: str 

        name of the object 

    positions: dict 

        dictionary of positions (instances of derivatives_position class) 

    val_env: market_environment 

        market environment for the valuation 

    assets: dict 

        dictionary of market environments for the assets 

    correlations: list 

        correlations between assets 

    fixed_seed: bool 

        flag for fixed random number generator seed 

 

    Methods 

    ======= 

    get_positions: 



        prints information about the single portfolio positions 

    get_statistics: 

        returns a pandas DataFrame object with portfolio statistics 

    ''' 

 

    def __init__(self, name, positions, val_env, assets, 

                 correlations=None, fixed_seed=False): 

        self.name = name 

        self.positions = positions 

        self.val_env = val_env 

        self.assets = assets 

        self.underlyings = set()

        self.correlations = correlations 

        self.time_grid = None 

        self.underlying_objects = {} 

        self.valuation_objects = {} 

        self.fixed_seed = fixed_seed 

        self.special_dates = [] 

        for pos in self.positions: 

            # determine earliest starting_date 

            self.val_env.constants['starting_date'] = \ 

                min(self.val_env.constants['starting_date'], 

                    positions[pos].mar_env.pricing_date) 

            # determine latest date of relevance 

            self.val_env.constants['final_date'] = \ 

                max(self.val_env.constants['final_date'], 

                    positions[pos].mar_env.constants['maturity']) 

            # collect all underlyings and 

            # add to set (avoids redundancy) 

            self.underlyings.add(positions[pos].underlying) 

 

        # generate general time grid 

        start = self.val_env.constants['starting_date'] 

        end = self.val_env.constants['final_date'] 

        time_grid = pd.date_range(start=start, end=end, 

                                  freq=self.val_env.constants['frequency'] 

                                  ).to_pydatetime() 

        time_grid = list(time_grid) 

        for pos in self.positions: 

            maturity_date = positions[pos].mar_env.constants['maturity'] 

            if maturity_date not in time_grid: 

                time_grid.insert(0, maturity_date) 

                self.special_dates.append(maturity_date) 

        if start not in time_grid: 

            time_grid.insert(0, start) 

        if end not in time_grid: 

            time_grid.append(end) 

        # delete duplicate entries 

        time_grid = list(set(time_grid)) 

        # sort dates in time_grid 

        time_grid.sort() 

        self.time_grid = np.array(time_grid) 

        self.val_env.add_list('time_grid', self.time_grid) 

 

        if correlations is not None: 

            # take care of correlations 

            ul_list = sorted(self.underlyings) 

            correlation_matrix = np.zeros((len(ul_list), len(ul_list))) 

            np.fill_diagonal(correlation_matrix, 1.0) 

            correlation_matrix = pd.DataFrame(correlation_matrix, 

                                              index=ul_list, columns=ul_list) 



            for i, j, corr in correlations: 

                corr = min(corr, 0.999999999999) 

                # fill correlation matrix 

                correlation_matrix.loc[i, j] = corr 

                correlation_matrix.loc[j, i] = corr 

            # determine Cholesky matrix 

            cholesky_matrix = np.linalg.cholesky(np.array(correlation_matrix)) 

 

            # dictionary with index positions for the 

            # slice of the random number array to be used by 

            # respective underlying 

            rn_set = {asset: ul_list.index(asset) 

                      for asset in self.underlyings}

 

            # random numbers array, to be used by 

            # all underlyings (if correlations exist) 

            random_numbers = sn_random_numbers((len(rn_set), 

                                                len(self.time_grid), 

                                                self.val_env.constants['paths']), 

                                               fixed_seed=self.fixed_seed) 

 

            # add all to valuation environment that is 

            # to be shared with every underlying 

            self.val_env.add_list('cholesky_matrix', cholesky_matrix) 

            self.val_env.add_list('random_numbers', random_numbers) 

            self.val_env.add_list('rn_set', rn_set) 

 

        for asset in self.underlyings: 

            # select market environment of asset 

            mar_env = self.assets[asset] 

            # add valuation environment to market environment 

            mar_env.add_environment(val_env) 

            # select right simulation class 

            model = models[mar_env.constants['model']] 

            # instantiate simulation object 

            if correlations is not None: 

                self.underlying_objects[asset] = model(asset, mar_env, 

                                                       corr=True) 

            else: 

                self.underlying_objects[asset] = model(asset, mar_env, 

                                                       corr=False) 

 

        for pos in positions: 

            # select right valuation class (European, American) 

            val_class = otypes[positions[pos].otype] 

            # pick market environment and add valuation environment 

            mar_env = positions[pos].mar_env 

            mar_env.add_environment(self.val_env) 

            # instantiate valuation class 

            self.valuation_objects[pos] = \ 

                val_class(name=positions[pos].name, 

                          mar_env=mar_env, 

                          underlying=self.underlying_objects[ 

                    positions[pos].underlying], 

                payoff_func=positions[pos].payoff_func) 

 

    def get_positions(self): 

        ''' Convenience method to get information about 

        all derivatives positions in a portfolio. ''' 

        for pos in self.positions: 

            bar = '\n' + 50 * '-' 



            print(bar) 

            self.positions[pos].get_info()

            print(bar) 

 

    def get_statistics(self, fixed_seed=False): 

        ''' Provides portfolio statistics. ''' 

        res_list = [] 

        # iterate over all positions in portfolio 

        for pos, value in self.valuation_objects.items(): 

            p = self.positions[pos] 

            pv = value.present_value(fixed_seed=fixed_seed) 

            res_list.append([ 

                p.name, 

                p.quantity, 

                # calculate all present values for the single instruments 

                pv, 

                value.currency, 

                # single instrument value times quantity 

                pv * p.quantity,

                # calculate delta of position 

                value.delta() * p.quantity, 

                # calculate vega of position 

                value.vega() * p.quantity, 

            ]) 

        # generate a pandas DataFrame object with all results 

        res_df = pd.DataFrame(res_list, 

                              columns=['name', 'quant.', 'value', 'curr.', 

                                       'pos_value', 'pos_delta', 'pos_vega']) 

        return res_df



OBJECT ORIENTATION
The class dx.derivatives_portfolio illustrates a number of benefits of object
orientation as mentioned in Chapter 6. At first inspection, it might look like a complex
piece of Python code. However, the financial problem that it solves is a pretty complex
one and it provides the flexibility to address a large number of different use cases. It is
hard to imagine how all this could be achieved without the use of object-oriented
programming and Python classes.



A Use Case
In terms of the DX analytics package, the modeling capabilities are, on a high
level, restricted to a combination of a simulation and a valuation class. There
are a total of six possible combinations:

models = {'gbm' : geometric_brownian_motion, 

          'jd' : jump_diffusion 

          'srd': square_root_diffusion} 

 

otypes = {'European' : valuation_mcs_european, 

          'American' : valuation_mcs_american}

The interactive use case that follows combines selected elements to define
two different derivatives positions that are then combined into a portfolio.

Recall the derivatives_position class with the gbm and am_put_pos
objects from the previous section. To illustrate the use of the
derivatives_portfolio class, we’ll define both an additional underlying
and an additional options position. First, a dx.jump_diffusion object:

In [109]: me_jd = market_environment('me_jd', me_gbm.pricing_date) 

 

In [110]: me_jd.add_constant('lambda', 0.3)  

          me_jd.add_constant('mu', -0.75) 

          me_jd.add_constant('delta', 0.1) 

          me_jd.add_environment(me_gbm)  

 

In [111]: me_jd.add_constant('model', 'jd') 

Adds jump diffusion-specific parameters.

Adds other parameters from gbm.

Needed for portfolio valuation.
Second, a European call option based on this new simulation object:



In [112]: me_eur_call = market_environment('me_eur_call', me_jd.pricing_date) 

 

In [113]: me_eur_call.add_constant('maturity', dt.datetime(2020, 6, 30)) 

          me_eur_call.add_constant('strike', 38.) 

          me_eur_call.add_constant('currency', 'EUR') 

 

In [114]: payoff_func = 'np.maximum(maturity_value - strike, 0)' 

 

In [115]: eur_call_pos = derivatives_position( 

                       name='eur_call_pos', 

                       quantity=5, 

                       underlying='jd', 

                       mar_env=me_eur_call, 

                       otype='European', 

                       payoff_func=payoff_func)

From a portfolio perspective, the relevant market now is as shown in the
following in underlyings and positions. For the moment, the definitions
do not include correlations between the underlyings. Compiling a
dx.market_environment for the portfolio valuation is the last step before the
instantiation of a derivatives_portfolio object:

In [116]: underlyings = {'gbm': me_gbm, 'jd' : me_jd}   

          positions = {'am_put_pos' : am_put_pos, 

                       'eur_call_pos' : eur_call_pos}   

 

In [117]: csr = constant_short_rate('csr', 0.06)   

 

In [118]: val_env = market_environment('general', me_gbm.pricing_date) 

          val_env.add_constant('frequency', 'W') 

          val_env.add_constant('paths', 25000) 

          val_env.add_constant('starting_date', val_env.pricing_date) 

          val_env.add_constant('final_date', val_env.pricing_date)   

          val_env.add_curve('discount_curve', csr)   

 

In [119]: from derivatives_portfolio import derivatives_portfolio 

 

In [120]: portfolio = derivatives_portfolio( 

                          name='portfolio', 

                          positions=positions, 

                          val_env=val_env, 

                          assets=underlyings, 

                          fixed_seed=False)  

Relevant risk factors.

Relevant portfolio postions.



Unique discounting object for the portfolio valuation.

final_date is not yet known; therefore, set pricing_date as
preliminary value.

Instantiation of the derivatives_portfolio object.

Now one can harness the power of the valuation class and easily get
important statistics for the derivatives_portfolio object just defined. The
sum of the position values, deltas, and vegas is also easily calculated. This
portfolio is slightly long delta (almost neutral) and long vega:

In [121]: %time portfolio.get_statistics(fixed_seed=False) 

          CPU times: user 4.68 s, sys: 409 ms, total: 5.09 s 

          Wall time: 14.5 s 

 

Out[121]: 

               name  quant.     value curr.  pos_value  pos_delta  pos_vega 

    0    am_put_pos       3  4.458891   EUR  13.376673    -2.0430   31.7850 

    1  eur_call_pos       5  2.828634   EUR  14.143170     3.2525   42.2655 

 

In [122]: portfolio.get_statistics(fixed_seed=False)[ 

              ['pos_value', 'pos_delta', 'pos_vega']].sum()   

Out[122]: pos_value    27.502731 

          pos_delta     1.233500 

          pos_vega     74.050500 

          dtype: float64 

 

In [123]: portfolio.get_positions()   

 

          ... 

 

In [124]: portfolio.valuation_objects['am_put_pos'].present_value()   

Out[124]: 4.453187 

 

In [125]: portfolio.valuation_objects['eur_call_pos'].delta()   

Out[125]: 0.6514

Aggregation of single position values.



This method call would create a rather lengthy output about all
positions.

The present value estimate for a single position.

The delta estimate for a single position.
The derivatives portfolio valuation is conducted based on the assumption
that the risk factors are not correlated. This is easily verified by inspecting
two simulated paths (see Figure 20-1), one for each simulation object:

In [126]: path_no = 888 

          path_gbm = portfolio.underlying_objects[ 

              'gbm'].get_instrument_values()[:, path_no] 

          path_jd = portfolio.underlying_objects[ 

              'jd'].get_instrument_values()[:, path_no] 

 

In [127]: plt.figure(figsize=(10,6)) 

          plt.plot(portfolio.time_grid, path_gbm, 'r', label='gbm') 

          plt.plot(portfolio.time_grid, path_jd, 'b', label='jd') 

          plt.xticks(rotation=30) 

          plt.legend(loc=0)



Figure 20-1. Noncorrelated risk factors (two sample paths)

Now consider the case where the two risk factors are highly positively
correlated. In this case, there is no direct influence on the values of the single
positions in the portfolio:

In [128]: correlations = [['gbm', 'jd', 0.9]] 

 

In [129]: port_corr = derivatives_portfolio( 

                          name='portfolio', 

                          positions=positions, 

                          val_env=val_env, 

                          assets=underlyings, 

                          correlations=correlations, 

                          fixed_seed=True) 

 

In [130]: port_corr.get_statistics() 

Out[130]: 

               name  quant.     value curr.  pos_value  pos_delta  pos_vega 

    0    am_put_pos       3  4.458556   EUR  13.375668    -2.0376   30.8676 

    1  eur_call_pos       5  2.817813   EUR  14.089065     3.3375   42.2340

However, the correlation takes place behind the scenes. The graphical
illustration in Figure 20-2 takes the same combination of paths as before.



The two paths now almost move in parallel:

In [131]: path_gbm = port_corr.underlying_objects['gbm'].\ 

                      get_instrument_values()[:, path_no] 

          path_jd = port_corr.underlying_objects['jd'].\ 

                      get_instrument_values()[:, path_no] 

 

In [132]: plt.figure(figsize=(10, 6)) 

          plt.plot(portfolio.time_grid, path_gbm, 'r', label='gbm') 

          plt.plot(portfolio.time_grid, path_jd, 'b', label='jd') 

          plt.xticks(rotation=30) 

          plt.legend(loc=0);

Figure 20-2. Correlated risk factors (two sample paths)

As a last numerical and conceptual example, consider the frequency
distribution of the portfolio present value. This is something impossible to
generate in general with other approaches, like the application of analytical
formulae or the binomial option pricing model. Setting the parameter
full=True causes the complete set of present values per option position to
be returned after the present value estimation:



In [133]: pv1 = 5 * port_corr.valuation_objects['eur_call_pos'].\ 

                      present_value(full=True)[1] 

          pv1 

Out[133]: array([ 0.        , 39.71423714, 24.90720272, ...,  0.        , 

                  6.42619093,  8.15838265]) 

 

In [134]: pv2 = 3 * port_corr.valuation_objects['am_put_pos'].\ 

                      present_value(full=True)[1] 

          pv2 

Out[134]: array([21.31806027, 10.71952869, 19.89804376, ..., 21.39292703, 

                 17.59920608,  0.        ])

First, compare the frequency distribution of the two positions. The payoff
profiles of the two positions, as displayed in Figure 20-3, are quite different.
Note that the values for both the x- and y-axes are limited for better
readability:

In [135]: plt.figure(figsize=(10, 6)) 

          plt.hist([pv1, pv2], bins=25, 

                   label=['European call', 'American put']); 

          plt.axvline(pv1.mean(), color='r', ls='dashed', 

                      lw=1.5, label='call mean = %4.2f' % pv1.mean()) 

          plt.axvline(pv2.mean(), color='r', ls='dotted', 

                      lw=1.5, label='put mean = %4.2f' % pv2.mean()) 

          plt.xlim(0, 80); plt.ylim(0, 10000) 

          plt.legend();



Figure 20-3. Frequency distribution of present values of the two positions

Figure 20-4 finally shows the full frequency distribution of the portfolio
present values. One can clearly see the offsetting diversification effects of
combining a call with a put option:

In [136]: pvs = pv1 + pv2 

          plt.figure(figsize=(10, 6)) 

          plt.hist(pvs, bins=50, label='portfolio'); 

          plt.axvline(pvs.mean(), color='r', ls='dashed', 

                      lw=1.5, label='mean = %4.2f' % pvs.mean()) 

          plt.xlim(0, 80); plt.ylim(0, 7000) 

          plt.legend();



Figure 20-4. Portfolio frequency distribution of present values

What impact does the correlation between the two risk factors have on the
risk of the portfolio, measured in the standard deviation of the present
values? This can be answered by the following two estimations:

In [137]: pvs.std()   

Out[137]: 16.723724772741118 

 

In [138]: pv1 = (5 * portfolio.valuation_objects['eur_call_pos']. 

                      present_value(full=True)[1]) 

          pv2 = (3 * portfolio.valuation_objects['am_put_pos']. 

                      present_value(full=True)[1]) 

          (pv1 + pv2).std()   

Out[138]: 21.80498672323975

Standard deviation of portfolio values with correlation.

Standard deviation of portfolio values without correlation.



Although the mean value stays constant (ignoring numerical deviations),
correlation obviously significantly decreases the portfolio risk when
measured in this way. Again, this is an insight that it is not really possible to
gain when using alternative numerical methods or valuation approaches.



Conclusion
This chapter addresses the valuation and risk management of a portfolio of
multiple derivatives positions dependent on multiple (possibly correlated)
risk factors. To this end, a new class called derivatives_position is
introduced to model an options or derivatives position. The main focus,
however, lies on the derivatives_portfolio class, which implements
some more complex tasks. For example, the class takes care of:

Correlations between risk factors (the class generates a single
consistent set of random numbers for the simulation of all risk factors)

Instantiation of simulation objects given the single market
environments and the general valuation environment, as well as the
derivatives positions

Generation of portfolio statistics based on all the assumptions, the risk
factors involved, and the terms of the derivatives positions

The examples presented in this chapter can only show some simple versions
of derivatives portfolios that can be managed and valued with the DX
package developed so far and the derivatives_portfolio class. Natural
extensions to the DX package would be the addition of more sophisticated
financial models, like a stochastic volatility model, and multi-risk valuation
classes to model and value derivatives dependent on multiple risk factors
(like a European basket option or an American maximum call option, to
name just two). At this stage, the modular modeling using OOP and the
application of a valuation framework as general as the Fundamental
Theorem of Asset Pricing (or “global valuation”) play out their strengths:
the nonredundant modeling of the risk factors and the accounting for the
correlations between them will then also have a direct influence on the
values and Greeks of multi-risk derivatives.

The following is a final wrapper module bringing all the components of the
DX analytics package together for a single import statement:



# 

# DX Package 

# 

# All components 

# 

# dx_package.py 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

from dx_valuation import * 

from derivatives_position import derivatives_position 

from derivatives_portfolio import derivatives_portfolio

And here is the now-complete __init__.py file for the dx folder:

# 

# DX Package 

# packaging file 

# __init__.py 

# 

import numpy as np 

import pandas as pd 

import datetime as dt 

 

# frame 

from get_year_deltas import get_year_deltas 

from constant_short_rate import constant_short_rate 

from market_environment import market_environment 

from plot_option_stats import plot_option_stats 

 

# simulation 

from sn_random_numbers import sn_random_numbers 

from simulation_class import simulation_class 

from geometric_brownian_motion import geometric_brownian_motion 

from jump_diffusion import jump_diffusion 

from square_root_diffusion import square_root_diffusion 

 

# valuation 

from valuation_class import valuation_class 

from valuation_mcs_european import valuation_mcs_european 

from valuation_mcs_american import valuation_mcs_american 

 

# portfolio 

from derivatives_position import derivatives_position 

from derivatives_portfolio import derivatives_portfolio



Further Resources
As for the preceding chapters on the DX derivatives analytics package,
Glasserman (2004) is a comprehensive resource for Monte Carlo simulation
in the context of financial engineering and applications. Hilpisch (2015)
also provides Python-based implementations of the most important Monte
Carlo algorithms:

Glasserman, Paul (2004). Monte Carlo Methods in Financial
Engineering. New York: Springer.

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

However, there is hardly any research available when it comes to the
valuation of (complex) portfolios of derivatives in a consistent,
nonredundant fashion by Monte Carlo simulation. A notable exception, at
least from a conceptual point of view, is the brief article by Albanese,
Gimonet, and White (2010a). There is a bit more detail in the working
paper by the same team of authors:

Albanese, Claudio, Guillaume Gimonet and Steve White (2010a).
“Towards a Global Valuation Model”. Risk Magazine, Vol. 23, No. 5,
pp. 68–71.

Albanese, Claudio, Guillaume Gimonet and Steve White (2010b).
“Global Valuation and Dynamic Risk Management”. Working paper.

In practice, the approach chosen here is sometimes called global valuation instead of instrument-
specific valuation. See Albanese, Gimonet, and White (2010a).

1

http://dawp.tpq.io/
http://bit.ly/risk_may_2010
http://bit.ly/global_valuation


Chapter 21. Market-Based
Valuation

We are facing extreme volatility.
Carlos Ghosn

A major task in derivatives analytics is the market-based valuation of
options and derivatives that are not liquidly traded. To this end, one
generally calibrates a pricing model to market quotes of liquidly traded
options and uses the calibrated model for the pricing of the non-traded
options.1

This chapter presents a case study based on the DX package and illustrates
that this package, as developed step-by-step in the previous four chapters, is
suited to implement a market-based valuation. The case study is based on
the DAX 30 stock index, which is a blue chip stock market index consisting
of stocks of 30 major German companies. On this index, liquidly traded
European call and put options are available.

The chapter is divided into sections that implement the following major
tasks:

“Options Data”
One needs two types of data, namely for the DAX 30 stock index itself
and for the liquidly traded European options on the index.

“Model Calibration”
To value the non-traded options in a market-consistent fashion, one
generally first calibrates the chosen model to quoted option prices in
such a way that the model based on the optimal parameters replicates
the market prices as well as possible.

“Portfolio Valuation”



Equipped with the data and a market-calibrated model for the DAX 30
stock index, the final task then is to model and value the non-traded
options; important risk measures are also estimated on a position and
portfolio level.

The index and options data used in this chapter are from the Thomson
Reuters Eikon Data API (see “Python Code”).



Options Data
To get started, here are the required imports and customizations:

In [1]: import numpy as np 

        import pandas as pd 

        import datetime as dt 

 

In [2]: from pylab import mpl, plt 

        plt.style.use('seaborn')

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline 

 

In [3]: import sys 

        sys.path.append('../') 

        sys.path.append('../dx')

Given the data file as created in “Python Code”, the options data is read with
pandas and processed such that date information is given as pd.Timestamp
objects:

In [4]: dax = pd.read_csv('../../source/tr_eikon_option_data.csv', 

                          index_col=0)   

 

In [5]: for col in ['CF_DATE', 'EXPIR_DATE']: 

            dax[col] = dax[col].apply(lambda date: pd.Timestamp(date))   

 

In [6]: dax.info()   

        <class 'pandas.core.frame.DataFrame'> 

        Int64Index: 115 entries, 0 to 114 

        Data columns (total 7 columns): 

        Instrument    115 non-null object 

        CF_DATE       115 non-null datetime64[ns] 

        EXPIR_DATE    114 non-null datetime64[ns] 

        PUTCALLIND    114 non-null object 

        STRIKE_PRC    114 non-null float64 

        CF_CLOSE      115 non-null float64 

        IMP_VOLT      114 non-null float64 

        dtypes: datetime64[ns](2), float64(3), object(2) 

        memory usage: 7.2+ KB 

 

In [7]: dax.set_index('Instrument').head(7)   

Out[7]:

                       CF_DATE EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  \ 

    Instrument 

    .GDAXI          2018-04-27        NaT        NaN         NaN  12500.47 

    GDAX105000G8.EX 2018-04-27 2018-07-20       CALL     10500.0   2040.80 

    GDAX105000S8.EX 2018-04-27 2018-07-20       PUT      10500.0     32.00 

    GDAX108000G8.EX 2018-04-27 2018-07-20       CALL     10800.0   1752.40 

    GDAX108000S8.EX 2018-04-26 2018-07-20       PUT      10800.0     43.80 

    GDAX110000G8.EX 2018-04-27 2018-07-20       CALL     11000.0   1562.80 

    GDAX110000S8.EX 2018-04-27 2018-07-20       PUT      11000.0     54.50 



 

                     IMP_VOLT 

    Instrument 

    .GDAXI                NaN 

    GDAX105000G8.EX     23.59 

    GDAX105000S8.EX     23.59 

    GDAX108000G8.EX     22.02 

    GDAX108000S8.EX     22.02 

    GDAX110000G8.EX     21.00 

    GDAX110000S8.EX     21.00

Reads the data with pd.read_csv().

Processes the two columns with date information.

The resulting DataFrame object.

The following code stores the relevant index level for the DAX 30 in a
variable and creates two new DataFrame objects, one for calls and one for
puts. Figure 21-1 presents the market quotes for the calls and their implied
volatilities:2

In [8]: initial_value = dax.iloc[0]['CF_CLOSE']   

 

In [9]: calls = dax[dax['PUTCALLIND'] == 'CALL'].copy()   

        puts = dax[dax['PUTCALLIND'] == 'PUT '].copy()   

 

In [10]: calls.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot( 

             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6));

Assigns the relevant index level to the initial_value variable.

Separates the options data for calls and puts into two new DataFrame
objects.



Figure 21-1. Market quotes and implied volatilities for European call options on the DAX 30

Figure 21-2 presents the market quotes for the puts and their implied
volatilities:

In [11]: ax = puts.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot( 

             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6)) 

         ax.get_legend().set_bbox_to_anchor((0.25, 0.5));



Figure 21-2. Market quotes and implied volatilities for European put options on the DAX 30



Model Calibration
This section selects the relevant market data, models the European options
on the DAX 30 index, and implements the calibration procedure itself.



Relevant Market Data
Model calibration generally takes place based on a smaller subset of the
available option market quotes.3 To this end, the following code selects only
those European call options whose strike price is relatively close to the
current index level (see Figure 21-3). In other words, only those European
call options are selected that are not too far in-the-money or out-of-the-
money:

In [12]: limit = 500   

 

In [13]: option_selection = calls[abs(calls['STRIKE_PRC'] - initial_value) 

                                  < limit].copy()   

 

In [14]: option_selection.info()   

         <class 'pandas.core.frame.DataFrame'> 

         Int64Index: 20 entries, 43 to 81 

         Data columns (total 7 columns): 

         Instrument    20 non-null object 

         CF_DATE       20 non-null datetime64[ns] 

         EXPIR_DATE    20 non-null datetime64[ns] 

         PUTCALLIND    20 non-null object 

         STRIKE_PRC    20 non-null float64

         CF_CLOSE      20 non-null float64 

         IMP_VOLT      20 non-null float64 

         dtypes: datetime64[ns](2), float64(3), object(2) 

         memory usage: 1.2+ KB 

 

In [15]: option_selection.set_index('Instrument').tail()   

Out[15]: 

                       CF_DATE EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  \ 

    Instrument 

    GDAX128000G8.EX 2018-04-27 2018-07-20       CALL     12800.0     182.4 

    GDAX128500G8.EX 2018-04-27 2018-07-20       CALL     12850.0     162.0 

    GDAX129000G8.EX 2018-04-25 2018-07-20       CALL     12900.0     142.9 

    GDAX129500G8.EX 2018-04-27 2018-07-20       CALL     12950.0     125.4 

    GDAX130000G8.EX 2018-04-27 2018-07-20       CALL     13000.0     109.4 

 

                     IMP_VOLT 

    Instrument 

    GDAX128000G8.EX     12.70 

    GDAX128500G8.EX     12.52 

    GDAX129000G8.EX     12.36 

    GDAX129500G8.EX     12.21 

    GDAX130000G8.EX     12.06 

 

In [16]: option_selection.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot( 

             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6));



Sets the limit value for the derivation of the strike price from the
current index level (moneyness condition).

Selects, based on the limit value, the European call options to be
included for the calibration.

The resulting DataFrame with the European call options for the
calibration.

Figure 21-3. European call options on the DAX 30 used for model calibration



Option Modeling
Having the relevant market data defined, the DX package can now be used to
model the European call options. The definition of the
dx.market_environment object to model the DAX 30 index follows, along
the lines of the examples in previous chapters:

In [17]: import dx 

 

In [18]: pricing_date = option_selection['CF_DATE'].max()   

 

In [19]: me_dax = dx.market_environment('DAX30', pricing_date)   

 

In [20]: maturity = pd.Timestamp(calls.iloc[0]['EXPIR_DATE'])   

 

In [21]: me_dax.add_constant('initial_value', initial_value)   

         me_dax.add_constant('final_date', maturity)   

         me_dax.add_constant('currency', 'EUR')   

 

In [22]: me_dax.add_constant('frequency', 'B')   

         me_dax.add_constant('paths', 10000)   

 

In [23]: csr = dx.constant_short_rate('csr', 0.01)   

         me_dax.add_curve('discount_curve', csr)  

Defines the initial or pricing date given the options data.

Instantiates the dx.market_environment object.

Defines the maturity date given the options data.

Adds the basic model parameters.

Adds the simulation-related parameters.



Defines and adds a dx.constant_short_rate object.

This code then adds the model-specific parameters for the
dx.jump_diffusion class and instantiates a respective simulation object:

In [24]: me_dax.add_constant('volatility', 0.2) 

         me_dax.add_constant('lambda', 0.8) 

         me_dax.add_constant('mu', -0.2) 

         me_dax.add_constant('delta', 0.1)

 

In [25]: dax_model = dx.jump_diffusion('dax_model', me_dax)

As an example for a European call option, consider the following
parameterization for which the strike is set equal to the current index level
of the DAX 30. This allows for a first value estimation based on Monte
Carlo simulation:

In [26]: me_dax.add_constant('strike', initial_value)   

         me_dax.add_constant('maturity', maturity) 

 

In [27]: payoff_func = 'np.maximum(maturity_value - strike, 0)'   

 

In [28]: dax_eur_call = dx.valuation_mcs_european('dax_eur_call', 

                                 dax_model, me_dax, payoff_func)   

 

In [29]: dax_eur_call.present_value()   

Out[29]: 654.298085

Sets the value for strike equal to the initial_value.

Defines the payoff function for a European call option.

Instantiates the valuation object.

Initiates the simulation and value estimation.
Similarly, valuation objects can be defined for all relevant European call
options on the DAX 30 index. The only parameter that changes is the strike



price:

In [30]: option_models = {}   

         for option in option_selection.index: 

             strike = option_selection['STRIKE_PRC'].loc[option]   

             me_dax.add_constant('strike', strike)   

             option_models[strike] = dx.valuation_mcs_european( 

                                         'eur_call_%d' % strike, 

                                         dax_model, 

                                         me_dax, 

                                         payoff_func)

The valuation objects are collected in a dict object.

Selects the relevant strike price and (re)defines it in the
dx.market_environment object.

Now, based on the valuation objects for all relevant options, the function
calculate_model_values() returns the model values for all options given
a set of the model-specific parameter values p0:

In [32]: def calculate_model_values(p0): 

             ''' Returns all relevant option values. 

 

             Parameters 

             =========== 

             p0: tuple/list 

                 tuple of kappa, theta, volatility 

 

             Returns 

             ======= 

             model_values: dict 

                 dictionary with model values 

             ''' 

             volatility, lamb, mu, delta = p0 

             dax_model.update(volatility=volatility, lamb=lamb, 

                              mu=mu, delta=delta) 

             return { 

                     strike: model.present_value(fixed_seed=True) 

                     for strike, model in option_models.items() 

                 } 

 

In [33]: calculate_model_values((0.1, 0.1, -0.4, 0.0)) 

Out[33]: {12050.0: 611.222524, 

          12100.0: 571.83659, 

          12150.0: 533.595853, 

          12200.0: 496.607225, 

          12250.0: 460.863233, 



          12300.0: 426.543355, 

          12350.0: 393.626483, 

          12400.0: 362.066869, 

          12450.0: 331.877733, 

          12500.0: 303.133596, 

          12550.0: 275.987049, 

          12600.0: 250.504646, 

          12650.0: 226.687523, 

          12700.0: 204.550609, 

          12750.0: 184.020514, 

          12800.0: 164.945082, 

          12850.0: 147.249829, 

          12900.0: 130.831722, 

          12950.0: 115.681449, 

          13000.0: 101.917351}

The function calculate_model_values() is used during the calibration
procedure, as described next.



Calibration Procedure
Calibration of an option pricing model is, in general, a convex optimization
problem. The most widely used function for the calibration — i.e., the
minimization of some error function value — is the mean-squared error
(MSE) for the model option values given the market quotes of the options.4
Assume there are N relevant options, and also model and market quotes. The
problem of calibrating an option pricing model to the market quotes based
on the MSE is then given in Equation 21-1. There,  and  are the
market price and the model price of the nth option, respectively. p is the
parameter set provided as input to the option pricing model.

Equation 21-1. Mean-squared error for model calibration

The Python function mean_squared_error() implements this approach to
model calibration technically. A global variable i is used to control the
output of intermediate parameter tuple objects and the resulting MSE:

In [34]: i = 0 

         def mean_squared_error(p0): 

             ''' Returns the mean-squared error given 

             the model and market values. 

 

             Parameters 

             =========== 

             p0: tuple/list 

                 tuple of kappa, theta, volatility 

 

             Returns 

             ======= 

             MSE: float 

                 mean-squared error 

             ''' 

             global i 



             model_values = np.array(list( 

                     calculate_model_values(p0).values()))   

             market_values = option_selection['CF_CLOSE'].values   

             option_diffs = model_values - market_values   

             MSE = np.sum(option_diffs ** 2) / len(option_diffs)   

             if i % 75 == 0: 

                 if i == 0: 

                     print('%4s  %6s  %6s  %6s  %6s --> %6s' % 

                          ('i', 'vola', 'lambda', 'mu', 'delta', 'MSE')) 

                 print('%4d  %6.3f  %6.3f  %6.3f  %6.3f --> %6.3f' % 

                         (i, p0[0], p0[1], p0[2], p0[3], MSE)) 

             i += 1 

             return MSE 

 

In [35]: mean_squared_error((0.1, 0.1, -0.4, 0.0))   

            i    vola  lambda      mu   delta -->    MSE 

            0   0.100   0.100  -0.400   0.000 --> 728.375 

 

Out[35]: 728.3752973715275

Estimates the set of model values.

Picks out the market quotes.

Calculates element-wise the differences between the two.

Calculates the mean-squared error value.

Illustrates such a calculation based on sample parameters.
Chapter 11 introduces the two functions (spo.brute() and spo.fmin()) that
are used to implement the calibration procedure. First, the global
minimization based on ranges for the four model-specific parameter values.
The result is an optimal parameter combination given all the parameter
combinations checked during the brute force minimization:

In [36]: import scipy.optimize as spo 

 

In [37]: %%time 

         i = 0 

         opt_global = spo.brute(mean_squared_error, 



                           ((0.10, 0.201, 0.025),  # range for volatility 

                            (0.10, 0.80, 0.10),  # range for jump intensity 

                            (-0.40, 0.01, 0.10),  # range for average jump size 

                            (0.00, 0.121, 0.02)),  # range for jump variability 

                          finish=None) 

            i    vola  lambda      mu   delta -->    MSE 

            0   0.100   0.100  -0.400   0.000 --> 728.375 

           75   0.100   0.300  -0.400   0.080 --> 5157.513 

          150   0.100   0.500  -0.300   0.040 --> 12199.386 

          225   0.100   0.700  -0.200   0.000 --> 6904.932 

          300   0.125   0.200  -0.200   0.100 --> 855.412 

          375   0.125   0.400  -0.100   0.060 --> 621.800 

          450   0.125   0.600   0.000   0.020 --> 544.137

          525   0.150   0.100   0.000   0.120 --> 3410.776 

          600   0.150   0.400  -0.400   0.080 --> 46775.769 

          675   0.150   0.600  -0.300   0.040 --> 56331.321 

          750   0.175   0.100  -0.200   0.000 --> 14562.213 

          825   0.175   0.300  -0.200   0.100 --> 24599.738 

          900   0.175   0.500  -0.100   0.060 --> 19183.167 

          975   0.175   0.700   0.000   0.020 --> 11871.683 

         1050   0.200   0.200   0.000   0.120 --> 31736.403 

         1125   0.200   0.500  -0.400   0.080 --> 130372.718 

         1200   0.200   0.700  -0.300   0.040 --> 126365.140 

         CPU times: user 1min 45s, sys: 7.07 s, total: 1min 52s 

         Wall time: 1min 56s 

 

In [38]: mean_squared_error(opt_global) 

Out[38]: 17.946670038040985

The opt_global values are intermediate results only. They are used as
starting values for the local minimization. Given the parameterization used,
the opt_local values are final and optimal given certain assumed tolerance
levels:

In [39]: %%time 

         i = 0 

         opt_local = spo.fmin(mean_squared_error, opt_global, 

                              xtol=0.00001, ftol=0.00001, 

                              maxiter=200, maxfun=550) 

            i    vola  lambda      mu   delta -->    MSE 

            0   0.100   0.200  -0.300   0.000 --> 17.947 

           75   0.098   0.216  -0.302  -0.001 -->  7.885 

          150   0.098   0.216  -0.300  -0.001 -->  7.371 

         Optimization terminated successfully. 

                  Current function value: 7.371163 

                  Iterations: 100 

                  Function evaluations: 188 

         CPU times: user 15.6 s, sys: 1.03 s, total: 16.6 s 

         Wall time: 16.7 s 

 

In [40]: i = 0 

         mean_squared_error(opt_local)   

            i    vola  lambda      mu   delta -->    MSE 

            0   0.098   0.216  -0.300  -0.001 -->  7.371 

 

Out[40]: 7.371162645265256 

 



In [41]: calculate_model_values(opt_local)   

Out[41]: {12050.0: 647.428189, 

          12100.0: 607.402796, 

          12150.0: 568.46137, 

          12200.0: 530.703659, 

          12250.0: 494.093839, 

          12300.0: 458.718401, 

          12350.0: 424.650128, 

          12400.0: 392.023241, 

          12450.0: 360.728543, 

          12500.0: 330.727256, 

          12550.0: 302.117223, 

          12600.0: 274.98474, 

          12650.0: 249.501807, 

          12700.0: 225.678695, 

          12750.0: 203.490065, 

          12800.0: 182.947468, 

          12850.0: 163.907583, 

          12900.0: 146.259349, 

          12950.0: 129.909743, 

          13000.0: 114.852425}

The mean-squared error given the optimal parameter values.

The model values given the optimal parameter values.
Next, we compare the model values for the optimal parameters with the
market quotes. The pricing errors are calculated as the absolute differences
between the model values and market quotes and as the deviation in percent
from the market quotes:

In [42]: option_selection['MODEL'] = np.array(list(calculate_model_values( 

                                                   opt_local).values())) 

         option_selection['ERRORS_EUR'] = (option_selection['MODEL'] - 

                                           option_selection['CF_CLOSE']) 

         option_selection['ERRORS_%'] = (option_selection['ERRORS_EUR'] / 

                                         option_selection['CF_CLOSE']) * 100 

 

In [43]: option_selection[['MODEL', 'CF_CLOSE', 'ERRORS_EUR', 'ERRORS_%']] 

Out[43]:          MODEL  CF_CLOSE  ERRORS_EUR  ERRORS_% 

         43  647.428189     642.6    4.828189  0.751352 

         45  607.402796     604.4    3.002796  0.496823 

         47  568.461370     567.1    1.361370  0.240058 

         49  530.703659     530.4    0.303659  0.057251 

         51  494.093839     494.8   -0.706161 -0.142716 

         53  458.718401     460.3   -1.581599 -0.343602 

         55  424.650128     426.8   -2.149872 -0.503719 

         57  392.023241     394.4   -2.376759 -0.602627 

         59  360.728543     363.3   -2.571457 -0.707805 

         61  330.727256     333.3   -2.572744 -0.771900 

         63  302.117223     304.8   -2.682777 -0.880176 



         65  274.984740     277.5   -2.515260 -0.906400 

         67  249.501807     251.7   -2.198193 -0.873338 

         69  225.678695     227.3   -1.621305 -0.713289 

         71  203.490065     204.1   -0.609935 -0.298841 

         73  182.947468     182.4    0.547468  0.300147 

         75  163.907583     162.0    1.907583  1.177520 

         77  146.259349     142.9    3.359349  2.350839 

         79  129.909743     125.4    4.509743  3.596286 

         81  114.852425     109.4    5.452425  4.983935 

 

In [44]: round(option_selection['ERRORS_EUR'].mean(), 3)   

Out[44]: 0.184 

 

In [45]: round(option_selection['ERRORS_%'].mean(), 3)   

Out[45]: 0.36

The average pricing error in EUR.

The average pricing error in percent.
Figure 21-4 visualizes the valuation results and errors:

In [46]: fix, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, figsize=(10, 10)) 

         strikes = option_selection['STRIKE_PRC'].values 

         ax1.plot(strikes, option_selection['CF_CLOSE'], label='market quotes') 

         ax1.plot(strikes, option_selection['MODEL'], 'ro', label='model values') 

         ax1.set_ylabel('option values') 

         ax1.legend(loc=0) 

         wi = 15 

         ax2.bar(strikes - wi / 2., option_selection['ERRORS_EUR'], width=wi) 

         ax2.set_ylabel('errors [EUR]') 

         ax3.bar(strikes - wi / 2., option_selection['ERRORS_%'], width=wi) 

         ax3.set_ylabel('errors [%]') 

         ax3.set_xlabel('strikes');



CALIBRATION SPEED
The calibration of an option pricing model to market data in general requires the
recalculation of hundreds or even thousands of option values. This is therefore typically
done based on analytical pricing formulae. Here, the calibration procedure relies on
Monte Carlo simulation as the pricing method, which is computationally more
demanding compared to analytical methods. Nevertheless, the calibration procedure does
not take “too long” even on a typical notebook. The use of parallelization techniques, for
instance, can speed up the calibration considerably.



Figure 21-4. Model values and market quotes after calibration



Portfolio Valuation
Being equipped with a calibrated model reflecting realities in the financial
markets as represented by market quotes of liquidly traded options enables
one to model and value non-traded options and derivatives. The idea is that
calibration “infuses” the correct risk-neutral martingale measure into the
model via optimal parameters. Based on this measure, the machinery of the
Fundamental Theorem of Asset Pricing can then be applied to contingent
claims beyond those used for the calibration.

This section considers a portfolio of American put options on the DAX 30
index. There are no such options available that are liquidly traded on
exchanges. For simplicity, it is assumed that the American put options have
the same maturity as the European call options used for the calibration.
Similarly, the same strikes are assumed.



Modeling Option Positions
First, the market environment for the underlying risk factor, the DAX 30
stock index, is modeled with the optimal parameters from the calibration
being used:

In [47]: me_dax = dx.market_environment('me_dax', pricing_date) 

         me_dax.add_constant('initial_value', initial_value) 

         me_dax.add_constant('final_date', pricing_date) 

         me_dax.add_constant('currency', 'EUR') 

 

In [48]: me_dax.add_constant('volatility', opt_local[0])   

         me_dax.add_constant('lambda', opt_local[1])   

         me_dax.add_constant('mu', opt_local[2])   

         me_dax.add_constant('delta', opt_local[3])   

 

In [49]: me_dax.add_constant('model', 'jd')

This adds the optimal parameters from the calibration.
Second, the option positions and the associated environments are defined
and stored in two separate dict objects:

In [50]: payoff_func = 'np.maximum(strike - instrument_values, 0)' 

 

In [51]: shared = dx.market_environment('share', pricing_date)   

         shared.add_constant('maturity', maturity)   

         shared.add_constant('currency', 'EUR')   

 

In [52]: option_positions = {} 

         option_environments = {} 

         for option in option_selection.index: 

             option_environments[option] = dx.market_environment( 

                 'am_put_%d' % option, pricing_date)   

             strike = option_selection['STRIKE_PRC'].loc[option]   

             option_environments[option].add_constant('strike', strike)   

             option_environments[option].add_environment(shared)   

             option_positions['am_put_%d' % strike] = \ 

                             dx.derivatives_position( 

                                 'am_put_%d' % strike, 

                                 quantity=np.random.randint(10, 50), 

                                 underlying='dax_model', 

                                 mar_env=option_environments[option], 

                                 otype='American', 

                                 payoff_func=payoff_func)  



Defines a shared dx.market_environment object as the basis for all
option-specific environments.

Defines and stores a new dx.market_environment object for the
relevant American put option.

Defines and stores the strike price parameter for the option.

Adds the elements from the shared dx.market_environment object to
the option-specific one.

Defines the dx.derivatives_position object with a randomized
quantity.



The Options Portfolio
To value the portfolio with all the American put options, a valuation
environment is needed. It contains the major parameters for the estimation
of position values and risk statistics:

In [53]: val_env = dx.market_environment('val_env', pricing_date) 

         val_env.add_constant('starting_date', pricing_date) 

         val_env.add_constant('final_date', pricing_date)   

         val_env.add_curve('discount_curve', csr) 

         val_env.add_constant('frequency', 'B') 

         val_env.add_constant('paths', 25000) 

 

In [54]: underlyings = {'dax_model' : me_dax}   

 

In [55]: portfolio = dx.derivatives_portfolio('portfolio', option_positions, 

                                              val_env, underlyings)   

 

In [56]: %time results = portfolio.get_statistics(fixed_seed=True) 

         CPU times: user 1min 5s, sys: 2.91 s, total: 1min 8s 

         Wall time: 38.2 s 

 

In [57]: results.round(1) 

Out[57]:             name  quant.  value curr.  pos_value  pos_delta  pos_vega 

         0   am_put_12050      33  151.6   EUR     5002.8       -4.7   38206.9 

         1   am_put_12100      38  161.5   EUR     6138.4       -5.7   51365.2 

         2   am_put_12150      20  171.3   EUR     3426.8       -3.3   27894.5 

         3   am_put_12200      12  183.9   EUR     2206.6       -2.2   18479.7 

         4   am_put_12250      37  197.4   EUR     7302.8       -7.3   59423.5 

         5   am_put_12300      37  212.3   EUR     7853.9       -8.2   65911.9 

         6   am_put_12350      36  228.4   EUR     8224.1       -9.0   70969.4 

         7   am_put_12400      16  244.3   EUR     3908.4       -4.3   32871.4 

         8   am_put_12450      17  262.7   EUR     4465.6       -5.1   37451.2 

         9   am_put_12500      16  283.4   EUR     4534.8       -5.2   36158.2 

         10  am_put_12550      38  305.3   EUR    11602.3      -13.3   86869.9 

         11  am_put_12600      10  330.4   EUR     3303.9       -3.9   22144.5 

         12  am_put_12650      38  355.5   EUR    13508.3      -16.0   89124.8 

         13  am_put_12700      40  384.2   EUR    15367.5      -18.6   90871.2 

         14  am_put_12750      13  413.5   EUR     5375.7       -6.5   28626.0 

         15  am_put_12800      49  445.0   EUR    21806.6      -26.3  105287.3 

         16  am_put_12850      30  477.4   EUR    14321.8      -17.0   60757.2 

         17  am_put_12900      33  510.3   EUR    16840.1      -19.7   69163.6 

         18  am_put_12950      40  544.4   EUR    21777.0      -24.9   80472.3 

         19  am_put_13000      35  582.3   EUR    20378.9      -22.9   66522.6 

 

In [58]: results[['pos_value','pos_delta','pos_vega']].sum().round(1) 

Out[58]: pos_value     197346.2 

         pos_delta       -224.0 

         pos_vega     1138571.1 

         dtype: float64



The final_date parameter is later reset to the final maturity date over
all options in the portfolio.

The American put options in the portfolio are all written on the same
underlying risk factor, the DAX 30 stock index.

This instantiates the dx.derivatives_portfolio object.

The estimation of all statistics takes a little while, since it is all based on
Monte Carlo simulation and such estimations are particularly compute-
intensive for American options due to the application of the Least-Squares
Monte Carlo (LSM) algorithm. Because we are dealing with long positions
of American put options only, the portfolio is short delta and long vega.



Python Code
The following presents code to retrieve options data for the German DAX
30 stock index from the Eikon Data API:

In [1]: import eikon as ek   

        import pandas as pd 

        import datetime as dt 

        import configparser as cp 

 

In [2]: cfg = cp.ConfigParser()   

        cfg.read('eikon.cfg')   

Out[2]: ['eikon.cfg'] 

 

In [3]: ek.set_app_id(cfg['eikon']['app_id'])   

 

In [4]: fields = ['CF_DATE', 'EXPIR_DATE', 'PUTCALLIND', 

                  'STRIKE_PRC', 'CF_CLOSE', 'IMP_VOLT']   

 

In [5]: dax = ek.get_data('0#GDAXN8*.EX', fields=fields)[0]   

 

In [6]: dax.info()   

 

        <class 'pandas.core.frame.DataFrame'> 

        RangeIndex: 115 entries, 0 to 114 

        Data columns (total 7 columns): 

        Instrument    115 non-null object 

        CF_DATE       115 non-null object 

        EXPIR_DATE    114 non-null object 

        PUTCALLIND    114 non-null object 

        STRIKE_PRC    114 non-null float64 

        CF_CLOSE      115 non-null float64 

        IMP_VOLT      114 non-null float64 

        dtypes: float64(3), object(4) 

        memory usage: 6.4+ KB 

 

 

In [7]: dax['Instrument'] = dax['Instrument'].apply( 

            lambda x: x.replace('/', ''))   

 

In [8]: dax.set_index('Instrument').head(10) 

Out[8]:                     CF_DATE  EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  

\ 

        Instrument 

        .GDAXI           2018-04-27        None       None         NaN  12500.47 

        GDAX105000G8.EX  2018-04-27  2018-07-20       CALL     10500.0   2040.80 

        GDAX105000S8.EX  2018-04-27  2018-07-20       PUT      10500.0     32.00 

        GDAX108000G8.EX  2018-04-27  2018-07-20       CALL     10800.0   1752.40 

        GDAX108000S8.EX  2018-04-26  2018-07-20       PUT      10800.0     43.80 

        GDAX110000G8.EX  2018-04-27  2018-07-20       CALL     11000.0   1562.80 

        GDAX110000S8.EX  2018-04-27  2018-07-20       PUT      11000.0     54.50 

        GDAX111500G8.EX  2018-04-27  2018-07-20       CALL     11150.0   1422.50 

        GDAX111500S8.EX  2018-04-27  2018-07-20       PUT      11150.0     64.30 

        GDAX112000G8.EX  2018-04-27  2018-07-20       CALL     11200.0   1376.10 



 

                         IMP_VOLT 

        Instrument 

        .GDAXI                NaN 

        GDAX105000G8.EX     23.59 

        GDAX105000S8.EX     23.59 

        GDAX108000G8.EX     22.02 

        GDAX108000S8.EX     22.02 

        GDAX110000G8.EX     21.00 

        GDAX110000S8.EX     21.00 

        GDAX111500G8.EX     20.24 

        GDAX111500S8.EX     20.25 

        GDAX112000G8.EX     19.99 

 

In [9]: dax.to_csv('../../source/tr_eikon_option_data.csv')  

Imports the eikon Python wrapper package.

Reads the login credentials for the Eikon Data API.

Defines the data fields to be retrieved.

Retrieves options data for the July 2018 expiry.

Replaces the slash character / in the instrument names.

Writes the data set as a CSV file.



Conclusion
This chapter presents a larger, realistic use case for the application of the DX
analytics package to the valuation of a portfolio of non-traded American
options on the German DAX 30 stock index. The chapter addresses three
main tasks typically involved in any real-world derivatives analytics
application:

Obtaining data
Current, correct market data builds the basis of any modeling and
valuation effort in derivatives analytics; one needs index data as well
as options data for the DAX 30.

Model calibration
To value, manage, and hedge non-traded options and derivatives in a
market-consistent fashion, one has to calibrate the parameters of an
appropriate model (simulation object) to the relevant option market
quotes (relevant with regard to maturity and strikes). The model of
choice is the jump diffusion model, which is in some cases appropriate
for modeling a stock index; the calibration results are quite good
although the model only offers three degrees of freedom (lambda as
the jump intensity, mu as the expected jump size, and delta as the
variability of the jump size).

Portfolio valuation
Based on the market data and the calibrated model, a portfolio with the
American put options on the DAX 30 index was modeled and major
statistics (position values, deltas, and vegas) were estimated.

The realistic use case in this chapter shows the flexibility and the power of
the DX package; it essentially allows one to address the major analytical
tasks with regard to derivatives. The very approach and architecture make
the application largely comparable to the benchmark case of a Black-
Scholes-Merton analytical formula for European options. Once the
valuation objects are defined, one can use them in a similar way as an



analytical formula — despite the fact that under the hood, computationally
demanding and memory-intensive algorithms are applied.



Further Resources
As for previous chapters, the following book is a good general reference for
the topics covered in this chapter, especially when it comes to the
calibration of option pricing models:

Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester,
England: Wiley Finance.

With regard to the consistent valuation and management of derivatives
portfolios, see also the resources at the end of Chapter 20.

For details, refer to Hilpisch (2015).

The implied volatility of an option is the volatility value that gives, ceteris paribus, when put into
the Black-Scholes-Merton (1973) option pricing formula, the market quote of the option.

See Hilpisch (2015), Chapter 11, for more details.

There are multiple alternatives to define the target function for the calibration procedure. See
Hilpisch (2015), Chapter 11, for a discussion of this topic.
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http://dawp.tpq.io/


Appendix A. Dates and Times

As in the majority of scientific disciplines, dates and times play an
important role in finance. This appendix introduces different aspects of this
topic when it comes to Python programming. It cannot, of course, be
exhaustive. However, it provides an introduction to the main areas of the
Python ecosystem that support the modeling of date and time information.



Python
The datetime module from the Python standard library allows for the
implementation of the most important date and time–related tasks:

In [1]: from pylab import mpl, plt 

        plt.style.use('seaborn') 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline 

 

In [2]: import datetime as dt 

 

In [3]: dt.datetime.now()   

Out[3]: datetime.datetime(2018, 10, 19, 15, 17, 32, 164295) 

 

In [4]: to = dt.datetime.today()   

        to 

Out[4]: datetime.datetime(2018, 10, 19, 15, 17, 32, 177092) 

 

In [5]: type(to) 

Out[5]: datetime.datetime 

 

In [6]: dt.datetime.today().weekday()   

Out[6]: 4

Returns the exact date and system time.

Returns the day of the week as a number, where 0 = Monday.
Of course, datetime objects can be defined freely:

In [7]: d = dt.datetime(2020, 10, 31, 10, 5, 30, 500000)   

        d 

Out[7]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000) 

 

In [8]: str(d)   

Out[8]: '2020-10-31 10:05:30.500000' 

 

In [9]: print(d)   

        2020-10-31 10:05:30.500000 

 

In [10]: d.year   

Out[10]: 2020 

 

In [11]: d.month   

https://docs.python.org/3/library/datetime.html


Out[11]: 10 

 

In [12]: d.day   

Out[12]: 31 

 

In [13]: d.hour   

Out[13]: 10

Custom datetime object.

String representation.

Printing such an object.

The year …

… month …

… day …

… and hour attributes of the object.

Transformations and split-ups are easily accomplished:

In [14]: o = d.toordinal()   

         o 

Out[14]: 737729 

 

In [15]: dt.datetime.fromordinal(o)   

Out[15]: datetime.datetime(2020, 10, 31, 0, 0) 

 

In [16]: t = dt.datetime.time(d)   

         t 

Out[16]: datetime.time(10, 5, 30, 500000) 

 

In [17]: type(t) 

Out[17]: datetime.time 

 



In [18]: dd = dt.datetime.date(d)   

         dd 

Out[18]: datetime.date(2020, 10, 31) 

 

In [19]: d.replace(second=0, microsecond=0)   

Out[19]: datetime.datetime(2020, 10, 31, 10, 5)

Transformation to ordinal number.

Transformation from ordinal number.

Splitting up the time component.

Splitting up the date component.

Setting selected values to 0.
timedelta objects result from, among other things, arithmetic operations on
datetime objects (i.e., finding the difference between two such objects):

In [20]: td = d - dt.datetime.now()   

         td 

Out[20]: datetime.timedelta(days=742, seconds=67678, microseconds=169720) 

 

In [21]: type(td)   

Out[21]: datetime.timedelta 

 

In [22]: td.days 

Out[22]: 742 

 

In [23]: td.seconds 

Out[23]: 67678 

 

In [24]: td.microseconds 

Out[24]: 169720 

 

In [25]: td.total_seconds()   

Out[25]: 64176478.16972



The difference between two datetime objects …

… gives a timedelta object.

The difference in seconds.
There are multiple ways to transform a datetime object into different
representations, as well as to generate datetime objects out of, say, str
objects. Details are found in the documentation of the datetime module.
Here are a few examples:

In [26]: d.isoformat()   

Out[26]: '2020-10-31T10:05:30.500000' 

 

In [27]: d.strftime('%A, %d. %B %Y %I:%M%p')   

Out[27]: 'Saturday, 31. October 2020 10:05AM' 

 

In [28]: dt.datetime.strptime('2017-03-31', '%Y-%m-%d')   

Out[28]: datetime.datetime(2017, 3, 31, 0, 0) 

 

In [29]: dt.datetime.strptime('30-4-16', '%d-%m-%y')   

Out[29]: datetime.datetime(2016, 4, 30, 0, 0) 

 

In [30]: ds = str(d) 

         ds 

Out[30]: '2020-10-31 10:05:30.500000' 

 

In [31]: dt.datetime.strptime(ds, '%Y-%m-%d %H:%M:%S.%f')   

Out[31]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

ISO format string representation.

Exact template for string representation.

datetime object from str object based on template.

In addition to the now() and today() functions, there is also the utcnow()
function, which gives the exact date and time information in UTC



(Coordinated Universal Time, formerly known as Greenwich Mean Time,
or GMT). This represents a one-hour or two-hour difference from the
author’s time zone (Central European Time, CET, or Central European
Summer Time, CEST):

In [32]: dt.datetime.now() 

Out[32]: datetime.datetime(2018, 10, 19, 15, 17, 32, 438889) 

 

In [33]: dt.datetime.utcnow()   

Out[33]: datetime.datetime(2018, 10, 19, 13, 17, 32, 448897) 

 

In [34]: dt.datetime.now() - dt.datetime.utcnow()   

Out[34]: datetime.timedelta(seconds=7199, microseconds=999995)

Returns the current UTC time.

Returns the difference between local time and UTC time.
Another class of the datetime module is the tzinfo class, a generic time
zone class with methods utcoffset(), dst(), and tzname(). A definition
for UTC and CEST time might look as follows:

In [35]: class UTC(dt.tzinfo): 

             def utcoffset(self, d): 

                 return dt.timedelta(hours=0)   

             def dst(self, d): 

                 return dt.timedelta(hours=0)   

             def tzname(self, d): 

                 return 'UTC' 

 

In [36]: u = dt.datetime.utcnow() 

 

In [37]: u 

Out[37]: datetime.datetime(2018, 10, 19, 13, 17, 32, 474585) 

 

In [38]: u = u.replace(tzinfo=UTC())   

 

In [39]: u 

Out[39]: datetime.datetime(2018, 10, 19, 13, 17, 32, 474585, tzinfo=<__main__.UTC 

          object at 0x11c9a2320>) 

 

In [40]: class CEST(dt.tzinfo): 

             def utcoffset(self, d): 

                 return dt.timedelta(hours=2)   

             def dst(self, d): 

                 return dt.timedelta(hours=1)   



             def tzname(self, d): 

                 return 'CEST' 

 

In [41]: c = u.astimezone(CEST())   

         c 

Out[41]: datetime.datetime(2018, 10, 19, 15, 17, 32, 474585, 

          tzinfo=<__main__.CEST object at 0x11c9a2cc0>) 

 

In [42]: c - c.dst()   

Out[42]: datetime.datetime(2018, 10, 19, 14, 17, 32, 474585, 

          tzinfo=<__main__.CEST object at 0x11c9a2cc0>)

No offsets for UTC.

Attaches the dt.tzinfo object via the replace() method.

Regular and DST (Daylight Saving Time) offsets for CEST.

Transforms the UTC time zone to the CEST time zone.

Gives the DST time for the transformed datetime object.

There is a Python module available called pytz that implements the most
important time zones from around the world:

In [43]: import pytz 

 

In [44]: pytz.country_names['US']   

Out[44]: 'United States' 

 

In [45]: pytz.country_timezones['BE']   

Out[45]: ['Europe/Brussels'] 

 

In [46]: pytz.common_timezones[-10:]   

Out[46]: ['Pacific/Wake', 

          'Pacific/Wallis', 

          'US/Alaska', 

          'US/Arizona', 

          'US/Central', 

          'US/Eastern', 

          'US/Hawaii', 

          'US/Mountain', 

http://pytz.sourceforge.net/


          'US/Pacific', 

          'UTC']

A single country.

A single time zone.

Some common time zones.
With pytz, there is generally no need to define custom tzinfo objects:

In [47]: u = dt.datetime.utcnow() 

 

In [48]: u = u.replace(tzinfo=pytz.utc)   

 

In [49]: u 

Out[49]: datetime.datetime(2018, 10, 19, 13, 17, 32, 611417, tzinfo=<UTC>) 

 

In [50]: u.astimezone(pytz.timezone('CET'))   

Out[50]: datetime.datetime(2018, 10, 19, 15, 17, 32, 611417, tzinfo=<DstTzInfo 

          'CET' CEST+2:00:00 DST>) 

 

In [51]: u.astimezone(pytz.timezone('GMT'))   

Out[51]: datetime.datetime(2018, 10, 19, 13, 17, 32, 611417, tzinfo=<StaticTzInfo 

          'GMT'>)

 

In [52]: u.astimezone(pytz.timezone('US/Central'))   

Out[52]: datetime.datetime(2018, 10, 19, 8, 17, 32, 611417, tzinfo=<DstTzInfo 

          'US/Central' CDT-1 day, 19:00:00 DST>)

Defining the tzinfo object via pytz.

Transforming a datetime object to different time zones.



NumPy
NumPy also provides functionality to deal with date and time information:

In [53]: import numpy as np 

 

In [54]: nd = np.datetime64('2020-10-31')  

         nd 

Out[54]: numpy.datetime64('2020-10-31') 

 

In [55]: np.datetime_as_string(nd)   

Out[55]: '2020-10-31' 

 

In [56]: np.datetime_data(nd)   

Out[56]: ('D', 1) 

 

In [57]: d 

Out[57]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000) 

 

In [58]: nd = np.datetime64(d)   

         nd 

Out[58]: numpy.datetime64('2020-10-31T10:05:30.500000') 

 

In [59]: nd.astype(dt.datetime)   

Out[59]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

Construction from str object and string representation.

Metainformation about the data itself (type, size).

Construction from datetime object.

Conversion to datetime object.

Another way to construct such an object is by providing a str object, e.g.,
with the year and month and the frequency information. Note that the object
value then defaults to the first day of the month. The construction of
ndarray objects based on list objects also is possible:



In [60]: nd = np.datetime64('2020-10', 'D') 

         nd 

Out[60]: numpy.datetime64('2020-10-01') 

 

In [61]: np.datetime64('2020-10') == np.datetime64('2020-10-01') 

Out[61]: True 

 

In [62]: np.array(['2020-06-10', '2020-07-10', '2020-08-10'], dtype='datetime64') 

Out[62]: array(['2020-06-10', '2020-07-10', '2020-08-10'], dtype='datetime64[D]') 

 

In [63]: np.array(['2020-06-10T12:00:00', '2020-07-10T12:00:00', 

                   '2020-08-10T12:00:00'], dtype='datetime64[s]') 

Out[63]: array(['2020-06-10T12:00:00', '2020-07-10T12:00:00', 

                '2020-08-10T12:00:00'], dtype='datetime64[s]')

One can also generate ranges of dates by using the function np.arange().
Different frequencies (e.g., days, weeks, or seconds) are easily taken care of:

In [64]: np.arange('2020-01-01', '2020-01-04', dtype='datetime64')   

Out[64]: array(['2020-01-01', '2020-01-02', '2020-01-03'], dtype='datetime64[D]') 

 

In [65]: np.arange('2020-01-01', '2020-10-01', dtype='datetime64[M]')   

Out[65]: array(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05', 

                '2020-06', '2020-07', '2020-08', '2020-09'], 

                dtype='datetime64[M]') 

 

In [66]: np.arange('2020-01-01', '2020-10-01', dtype='datetime64[W]')[:10]   

Out[66]: array(['2019-12-26', '2020-01-02', '2020-01-09', '2020-01-16', 

                '2020-01-23', '2020-01-30', '2020-02-06', '2020-02-13', 

                '2020-02-20', '2020-02-27'], dtype='datetime64[W]') 

 

In [67]: dtl = np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00', 

                         dtype='datetime64[h]')   

         dtl[:10]

Out[67]: array(['2020-01-01T00', '2020-01-01T01', '2020-01-01T02', 

                '2020-01-01T03', '2020-01-01T04', '2020-01-01T05', '2020-01-

01T06', 

                '2020-01-01T07', '2020-01-01T08', '2020-01-01T09'], 

                dtype='datetime64[h]') 

 

In [68]: np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00', 

                   dtype='datetime64[s]')[:10]   

Out[68]: array(['2020-01-01T00:00:00', '2020-01-01T00:00:01', 

                '2020-01-01T00:00:02', '2020-01-01T00:00:03', 

                '2020-01-01T00:00:04', '2020-01-01T00:00:05', 

                '2020-01-01T00:00:06', '2020-01-01T00:00:07', 

                '2020-01-01T00:00:08', '2020-01-01T00:00:09'],

               dtype='datetime64[s]') 

 

In [69]: np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00', 

                   dtype='datetime64[ms]')[:10]   

Out[69]: array(['2020-01-01T00:00:00.000', '2020-01-01T00:00:00.001', 

                '2020-01-01T00:00:00.002', '2020-01-01T00:00:00.003', 

                '2020-01-01T00:00:00.004', '2020-01-01T00:00:00.005', 

                '2020-01-01T00:00:00.006', '2020-01-01T00:00:00.007', 

                '2020-01-01T00:00:00.008', '2020-01-01T00:00:00.009'], 

               dtype='datetime64[ms]')



Daily frequency.

Monthly frequency.

Weekly frequency.

Hourly frequency.

Second frequency.

Millisecond frequency.
Plotting date-time and/or time series data can sometimes be tricky.
matplotlib has support for standard datetime objects. Transforming NumPy
datetime64 information into Python datetime information generally does
the trick, as the following example, whose result is shown in Figure A-1,
illustrates:

In [70]: import matplotlib.pyplot as plt 

         %matplotlib inline 

 

In [71]: np.random.seed(3000) 

         rnd = np.random.standard_normal(len(dtl)).cumsum() ** 2 

 

In [72]: fig = plt.figure(figsize=(10, 6)) 

         plt.plot(dtl.astype(dt.datetime), rnd)   

         fig.autofmt_xdate();  

Uses the datetime information as x values.

Autoformats the datetime ticks on the x-axis.



Figure A-1. Plot with datetime x-ticks autoformatted



pandas
The pandas package was designed, at least to some extent, with time series
data in mind. Therefore, the package provides classes that are able to
efficiently handle date and time information, like the DatetimeIndex class
for time indices (see the documentation at http://bit.ly/timeseries_doc).

pandas introduces the Timestamp object as a further alternative to datetime
and datetime64 objects:

In [73]: import pandas as pd 

 

In [74]: ts = pd.Timestamp('2020-06-30')   

         ts 

Out[74]: Timestamp('2020-06-30 00:00:00') 

 

In [75]: d = ts.to_pydatetime()   

         d 

Out[75]: datetime.datetime(2020, 6, 30, 0, 0) 

 

In [76]: pd.Timestamp(d)   

Out[76]: Timestamp('2020-06-30 00:00:00') 

 

In [77]: pd.Timestamp(nd)   

Out[77]: Timestamp('2020-10-01 00:00:00')

Timestamp object from str object.

datetime object from Timestamp object.

Timestamp from datetime object.

Timestamp from datetime64 object.

Another important class is the aforementioned DatetimeIndex class, which
is a collection of Timestamp objects with a number of helpful methods

http://bit.ly/timeseries_doc
http://bit.ly/datetimeindex_doc


attached. A DatetimeIndex object can be created with the pd.date_range()
function, which is rather flexible and powerful for constructing time indices
(see Chapter 8 for more details on this function). Typical conversions are
possible:

In [78]: dti = pd.date_range('2020/01/01', freq='M', periods=12)   

         dti 

Out[78]: DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30', 

                        '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31', 

                        '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'], 

                       dtype='datetime64[ns]', freq='M') 

 

In [79]: dti[6] 

Out[79]: Timestamp('2020-07-31 00:00:00', freq='M') 

 

In [80]: pdi = dti.to_pydatetime()   

         pdi 

Out[80]: array([datetime.datetime(2020, 1, 31, 0, 0), 

                datetime.datetime(2020, 2, 29, 0, 0), 

                datetime.datetime(2020, 3, 31, 0, 0), 

                datetime.datetime(2020, 4, 30, 0, 0), 

                datetime.datetime(2020, 5, 31, 0, 0), 

                datetime.datetime(2020, 6, 30, 0, 0), 

                datetime.datetime(2020, 7, 31, 0, 0), 

                datetime.datetime(2020, 8, 31, 0, 0), 

                datetime.datetime(2020, 9, 30, 0, 0), 

                datetime.datetime(2020, 10, 31, 0, 0), 

                datetime.datetime(2020, 11, 30, 0, 0), 

                datetime.datetime(2020, 12, 31, 0, 0)], dtype=object) 

 

In [81]: pd.DatetimeIndex(pdi)   

Out[81]: DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30', 

                        '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31', 

                        '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'], 

                       dtype='datetime64[ns]', freq=None)

 

In [82]: pd.DatetimeIndex(dtl)   

Out[82]: DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:00:00', 

                        '2020-01-01 02:00:00', '2020-01-01 03:00:00', 

                        '2020-01-01 04:00:00', '2020-01-01 05:00:00', 

                        '2020-01-01 06:00:00', '2020-01-01 07:00:00', 

                        '2020-01-01 08:00:00', '2020-01-01 09:00:00', 

                        '2020-01-01 10:00:00', '2020-01-01 11:00:00', 

                        '2020-01-01 12:00:00', '2020-01-01 13:00:00', 

                        '2020-01-01 14:00:00', '2020-01-01 15:00:00', 

                        '2020-01-01 16:00:00', '2020-01-01 17:00:00', 

                        '2020-01-01 18:00:00', '2020-01-01 19:00:00', 

                        '2020-01-01 20:00:00', '2020-01-01 21:00:00', 

                        '2020-01-01 22:00:00', '2020-01-01 23:00:00'], 

                       dtype='datetime64[ns]', freq=None)

DatetimeIndex object with monthly frequency for 12 periods.

http://bit.ly/date_range_doc


DatetimeIndex object converted to ndarray objects with datetime
objects.

DatetimeIndex object from ndarray object with datetime objects.

DatetimeIndex object from ndarray object with datetime64 objects.

pandas takes care of proper plotting of date-time information (see Figure A-
2 and also Chapter 8):

In [83]: rnd = np.random.standard_normal(len(dti)).cumsum() ** 2 

 

In [84]: df = pd.DataFrame(rnd, columns=['data'], index=dti) 

 

In [85]: df.plot(figsize=(10, 6));

Figure A-2. pandas plot with Timestamp x-ticks autoformatted



pandas also integrates well with the pytz module to manage time zones:

In [86]: pd.date_range('2020/01/01', freq='M', periods=12, 

                       tz=pytz.timezone('CET')) 

Out[86]: DatetimeIndex(['2020-01-31 00:00:00+01:00', '2020-02-29 

          00:00:00+01:00', 

         '2020-03-31 00:00:00+02:00', '2020-04-30 00:00:00+02:00', 

         '2020-05-31 00:00:00+02:00', '2020-06-30 00:00:00+02:00', 

         '2020-07-31 00:00:00+02:00', '2020-08-31 00:00:00+02:00', 

         '2020-09-30 00:00:00+02:00', '2020-10-31 00:00:00+01:00', 

         '2020-11-30 00:00:00+01:00', '2020-12-31 00:00:00+01:00'], 

                       dtype='datetime64[ns, CET]', freq='M') 

 

In [87]: dti = pd.date_range('2020/01/01', freq='M', periods=12, tz='US/Eastern') 

         dti 

Out[87]: DatetimeIndex(['2020-01-31 00:00:00-05:00', '2020-02-29 

          00:00:00-05:00', 

         '2020-03-31 00:00:00-04:00', '2020-04-30 00:00:00-04:00', 

         '2020-05-31 00:00:00-04:00', '2020-06-30 00:00:00-04:00', 

         '2020-07-31 00:00:00-04:00', '2020-08-31 00:00:00-04:00', 

         '2020-09-30 00:00:00-04:00', '2020-10-31 00:00:00-04:00', 

         '2020-11-30 00:00:00-05:00', '2020-12-31 00:00:00-05:00'], 

                       dtype='datetime64[ns, US/Eastern]', freq='M') 

 

In [88]: dti.tz_convert('GMT') 

Out[88]: DatetimeIndex(['2020-01-31 05:00:00+00:00', '2020-02-29 

          05:00:00+00:00', 

         '2020-03-31 04:00:00+00:00', '2020-04-30 04:00:00+00:00', 

         '2020-05-31 04:00:00+00:00', '2020-06-30 04:00:00+00:00', 

         '2020-07-31 04:00:00+00:00', '2020-08-31 04:00:00+00:00', 

         '2020-09-30 04:00:00+00:00', '2020-10-31 04:00:00+00:00', 

         '2020-11-30 05:00:00+00:00', '2020-12-31 05:00:00+00:00'], 

                       dtype='datetime64[ns, GMT]', freq='M')



Appendix B. BSM Option Class



Class Definition
The following presents a class definition for a European call option in the
Black-Scholes-Merton (1973) model. The class-based implementation is an
alternative to the one based on functions as presented in “Python Script”:

# 

# Valuation of European call options in Black-Scholes-Merton model 

# incl. vega function and implied volatility estimation 

# -- class-based implementation 

# 

# Python for Finance, 2nd ed. 

# (c) Dr. Yves J. Hilpisch 

# 

from math import log, sqrt, exp 

from scipy import stats 

 

 

class bsm_call_option(object): 

    ''' Class for European call options in BSM model. 

 

    Attributes 

    ========== 

    S0: float 

        initial stock/index level 

    K: float 

        strike price 

    T: float 

        maturity (in year fractions) 

    r: float 

        constant risk-free short rate 

    sigma: float 

        volatility factor in diffusion term 

 

    Methods 

    ======= 

    value: float 

        returns the present value of call option 

    vega: float 

        returns the vega of call option 

    imp_vol: float 

        returns the implied volatility given option quote 

    ''' 

 

    def __init__(self, S0, K, T, r, sigma): 

        self.S0 = float(S0) 

        self.K = K 

        self.T = T 

        self.r = r 

        self.sigma = sigma 

 

    def value(self): 

        ''' Returns option value. 

        ''' 



        d1 = ((log(self.S0 / self.K) + 

               (self.r + 0.5 * self.sigma ** 2) * self.T) / 

              (self.sigma * sqrt(self.T))) 

        d2 = ((log(self.S0 / self.K) + 

               (self.r - 0.5 * self.sigma ** 2) * self.T) / 

              (self.sigma * sqrt(self.T))) 

        value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0) - 

                 self.K * exp(-self.r * self.T) * stats.norm.cdf(d2, 0.0, 1.0)) 

        return value 

 

    def vega(self): 

        ''' Returns vega of option. 

        ''' 

        d1 = ((log(self.S0 / self.K) + 

               (self.r + 0.5 * self.sigma ** 2) * self.T) / 

              (self.sigma * sqrt(self.T))) 

        vega = self.S0 * stats.norm.pdf(d1, 0.0, 1.0) * sqrt(self.T) 

        return vega 

 

    def imp_vol(self, C0, sigma_est=0.2, it=100): 

        ''' Returns implied volatility given option price. 

        ''' 

        option = bsm_call_option(self.S0, self.K, self.T, self.r, sigma_est) 

        for i in range(it): 

            option.sigma -= (option.value() - C0) / option.vega() 

        return option.sigma



Class Usage
This class can be used in an interactive Jupyter Notebook session as follows:

In [1]: from bsm_option_class import * 

 

In [2]: o = bsm_call_option(100., 105., 1.0, 0.05, 0.2) 

        type(o) 

Out[2]: bsm_option_class.bsm_call_option 

 

In [3]: value = o.value() 

        value 

Out[3]: 8.021352235143176 

 

In [4]: o.vega() 

Out[4]: 39.67052380842653 

 

In [5]: o.imp_vol(C0=value) 

Out[5]: 0.2

The option class can also be used to visualize, for example, the value and
vega of the option for different strikes and maturities. It is, in the end, one of
the major advantages of having an analytical option pricing formula
available. The following Python code generates the option statistics for
different maturity-strike combinations:

In [6]: import numpy as np 

        maturities = np.linspace(0.05, 2.0, 20) 

        strikes = np.linspace(80, 120, 20) 

        T, K = np.meshgrid(strikes, maturities) 

        C = np.zeros_like(K) 

        V = np.zeros_like(C) 

        for t in enumerate(maturities): 

            for k in enumerate(strikes): 

                o.T = t[1] 

                o.K = k[1] 

                C[t[0], k[0]] = o.value() 

                V[t[0], k[0]] = o.vega()

First, a look at the option values. Figure B-1 presents the value surface for
the European call option:

In [7]: from pylab import cm, mpl, plt 

        from mpl_toolkits.mplot3d import Axes3D 

        mpl.rcParams['font.family'] = 'serif' 

        %matplotlib inline 

 

In [8]: fig = plt.figure(figsize=(12, 7)) 



        ax = fig.gca(projection='3d') 

        surf = ax.plot_surface(T, K, C, rstride=1, cstride=1, 

                    cmap=cm.coolwarm, linewidth=0.5, antialiased=True) 

        ax.set_xlabel('strike') 

        ax.set_ylabel('maturity') 

        ax.set_zlabel('European call option value') 

        fig.colorbar(surf, shrink=0.5, aspect=5);

Figure B-1. Value surface for European call option

Second, a look at the vega values. Figure B-2 presents the vega surface for
the European call option:

In [9]: fig = plt.figure(figsize=(12, 7)) 

        ax = fig.gca(projection='3d') 

        surf = ax.plot_surface(T, K, V, rstride=1, cstride=1, 

                    cmap=cm.coolwarm, linewidth=0.5, antialiased=True) 

        ax.set_xlabel('strike') 

        ax.set_ylabel('maturity') 

        ax.set_zlabel('Vega of European call option') 

        fig.colorbar(surf, shrink=0.5, aspect=5);



Figure B-2. Vega surface for European call option
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