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preface
Like many people of my generation, I’ve always been addicted to the latest online
trends. Around 2005, I remember endlessly refreshing FARK, YTMND, and Delicious
for entertainment and news. Now, I shuffle between Reddit and Hacker News, which
led me to witness TensorFlow’s ceremonious debut on November 9, 2015. The post
appeared at the top of the front page on Hacker News and received hundreds of com-
ments—that energy overshadowed anything else on the website.

 At that time, machine-learning tools were already fragmented into a zoo of librar-
ies; the ecosystem relied on experimental software packages from academic labs and
proprietary solutions from industry giants. When Google revealed TensorFlow, the
community’s responses were mixed. Despite Google’s history of retiring beloved ser-
vices (such as Google Reader, iGoogle, Knol, and Google Wave), the company also
had a history of nurturing open source projects (such as Android, Chromium, Go,
and Protobuf).

 Bets had to be made right then and there about whether to adopt TensorFlow.
Although many chose to wait until the library developed, a few dived right in. I
sprinted through the official documentation, mastered the basics, and was ready to
apply the technology to my doctoral research at UCLA. I accumulated notes diligently,
having no idea that the pages I wrote for myself to navigate the TensorFlow documen-
tation would develop into a book.

 Around that time, an acquisitions editor at Manning Publications contacted me for
a second opinion on a new Haskell book—part of their due diligence procedure,
because I’m the author of Haskell Data Analysis Cookbook (Packt Publishing, 2014). The
xiii
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PREFACExiv
journey of writing the book you’re reading right now began with my reply: “On
another note, have you heard about Google’s new machine-learning library called
TensorFlow?”

 Machine Learning with TensorFlow started with a traditional table of contents, featur-
ing subjects you might expect in any machine-learning book, but it evolved to cover
topics that lacked online tutorials. For example, it’s difficult to find online TensorFlow
implementations of hidden Markov models (HMMs) and reinforcement learning
(RL). Each iteration of editing the book introduced more concepts like these that
didn’t have sufficient existing sources. 

 Online TensorFlow tutorials are often too brief or too advanced for a beginner
who wants to explore the art of machine learning. The purpose of this book is to fill
those gaps, and I believe it does exactly that. If you’re new to machine learning or
TensorFlow, you’ll appreciate the book’s down-to-earth teaching style. 
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about this book
Whether you’re new to machine learning or just new to TensorFlow, this book will be
your ultimate guide. You’ll need working knowledge of object-oriented programming
in Python to understand some of the code listings, but other than that, this book cov-
ers introductory machine learning from the basics. 

Roadmap
The book is divided into three parts:

■ Part 1 starts by exploring what machine learning is and highlighting Tensor-
Flow’s crucial role. Chapter 1 introduces the terminology and theory of machine
learning, and chapter 2 tells you everything you need to know to begin using
TensorFlow.

■ Part 2 covers fundamental algorithms that have withstood the test of time.
Chapters 3–6 discuss regression, classification, clustering, and hidden Markov
models, respectively. You’ll find these algorithms everywhere in the field of
machine learning. 

■ Part 3 unveils the true power of TensorFlow: neural networks. Chapters 7–12
introduce you to autoencoders, reinforcement learning, convolutional neural
networks, recurrent neural networks, sequence-to-sequence models, and utility,
respectively.
xvii
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ABOUT THIS BOOKxviii
Unless you’re an experienced TensorFlow user with a fair amount of machine-learning
experience under your belt, I highly recommend reading chapters 1 and 2 first. Other
than that, feel free to skip around in the book as you wish.

Source code
The ideas in this book are timeless; and, thanks to the community, the code listings
are, too. They’re available at the book’s website, www.manning.com/books/machine-
learning-with-tensorflow; and the software will be kept up to date on the book’s official
GitHub repository, https://github.com/BinRoot/TensorFlow-Book. You’re encour-
aged to contribute to the repo by sending pull requests or submitting new issues
through GitHub.

Note to print book readers
Some graphics in this book are best viewed in color. The eBook versions display the
color graphics, so they should be referred to as you read. To get your free eBook in
PDF, ePub, and Kindle formats, go to https://manning.com/books/machine-learn-
ing-with-tensorflow to register your print book.

Book forum
Purchase of Machine Learning with TensorFlow includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum, go to https://forums.manning.com/forums/machine-learning-with-
tensorflow. You can also learn more about Manning’s forums and the rules of conduct
at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.
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about the cover
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304. The book includes finely colored illustrations of figures from different regions of
Dalmatia, accompanied by descriptions of the costumes and of everyday life.

 Dress codes have changed since the nineteenth century, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
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illustrations from collections such as this one.
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Part 1

Your machine-learning rig

Learning to parallel park a car for the first time is typically an intimidating
challenge. The first few days are spent getting familiar with the buttons, assisting
cameras, and engine sensitivity. Machine learning and the TensorFlow library
follow a similar curriculum. Before applying state-of-the-art strategies for solving
face detection or stock-market predictions, you must first tinker with your tools. 

 There are two aspects to establishing a reputable machine-learning rig. First,
as covered in chapter 1, you must understand the lingo and theory of machine
learning. Researchers have manifested precise terminology and formulations
into the literature for a common way to communicate in this field, so we’d better
do the same to avoid confusion. Second, chapter 2 covers everything you need
to know to start operating TensorFlow. Samurai have katanas, musicians have
instruments, and machine-learning practitioners have TensorFlow.
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A machine-learning
odyssey
3
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4 CHAPTER 1 A machine-learning odyssey
Have you ever wondered if there are limits to what computer programs can solve?
Nowadays, computers appear to do a lot more than unravel mathematical equa-
tions. In the last half-century, programming has become the ultimate tool to auto-
mate tasks and save time, but how much can we automate, and how do we go about
doing so?

 Can a computer observe a photograph and say, “Aha, I see a lovely couple walking
over a bridge under an umbrella in the rain”? Can software make medical decisions as
accurately as trained professionals can? Can software predictions about the stock mar-
ket perform better than human reasoning? The achievements of the past decade hint
that the answer to all these questions is a resounding yes, and the implementations
appear to share a common strategy. 

 Recent theoretical advances coupled with newly available technologies have
enabled anyone with access to a computer to attempt their own approach at solving
these incredibly hard problems. Okay, not just anyone, but that’s why you’re reading
this book, right? 

 A programmer no longer needs to know the intricate details of a problem to solve
it. Consider converting speech to text: a traditional approach may involve understand-
ing the biological structure of human vocal chords to decipher utterances by using
many hand-designed, domain-specific, un-generalizable pieces of code. Nowadays, it’s
possible to write code that looks at many examples and figures out how to solve the
problem, given enough time and examples. 

 Algorithms learn from data, similar to the way humans learn from experience.
Humans learn by reading books, observing situations, studying in school, exchang-
ing conversations, and browsing websites, among other means. How can a machine
possibly develop a brain capable of learning? There’s no definitive answer, but
world-class researchers have developed intelligent programs from different angles.
Among the implementations, scholars have noticed recurring patterns in solving
these kinds of problems that has led to a standardized field that we today label
machine learning (ML).

 As the study of ML matures, the tools have become more standardized, robust,
high-performing, and scalable. This is where TensorFlow comes in. This software

This chapter covers
 Machine-learning fundamentals

 Data representation, features, and vector norms

 Why TensorFlow
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


5Machine-learning fundamentals
library has an intuitive interface that lets programmers dive into using complex ML
ideas. The next chapter presents the ins and outs of this library, and every chapter
thereafter explains how to use TensorFlow for each of the various ML applications.

1.1 Machine-learning fundamentals
Have you ever tried to explain to someone how to swim? Describing the rhythmic joint
movements and fluid patterns is overwhelming in its complexity. Similarly, some soft-
ware problems are too complicated for us to easily wrap our minds around. For this,
machine learning may be just the tool to use. 

 Handcrafting carefully tuned algorithms to get the job done was once the only way
of building software. From a simplistic point of view, traditional programming
assumes a deterministic output for each input. Machine learning, on the other hand,
can solve a class of problems for which the input-output correspondences aren’t well
understood.

Machine learning is characterized by software that learns from previous experiences.
Such a computer program improves performance as more and more examples are
available. The hope is that if you throw enough data at this machinery, it’ll learn pat-
terns and produce intelligent results for newly fed input.

 Another name for machine learning is inductive learning, because the code is trying
to infer structure from data alone. It’s like going on vacation in a foreign country, and
reading a local fashion magazine to mimic how to dress. You can develop an idea of

Trusting machine-learning output
Pattern detection is a trait that’s no longer unique to humans. The explosive growth
of computer clock speed and memory has led us to an unusual situation: computers
now can be used to make predictions, catch anomalies, rank items, and automati-
cally label images. This new set of tools provides intelligent answers to ill-defined
problems, but at the subtle cost of trust. Would you trust a computer algorithm to
dispense vital medical advice such as whether to perform heart surgery?

There’s no place for mediocre machine-learning solutions. Human trust is too fragile,
and our algorithms must be robust against doubt. Follow along closely and carefully
in this chapter.

Full speed ahead! 
Machine learning is a relatively young technology, so imagine you’re a geometer in
Euclid’s era, paving the way to a newly discovered field. Or consider yourself a phys-
icist during the time of Newton, possibly pondering something equivalent to general
relativity for the field of machine learning.
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6 CHAPTER 1 A machine-learning odyssey
the culture from images of people wearing local articles of clothing. You’re learning
inductively.

 You might never before have used such an approach when programming,
because inductive learning isn’t always necessary. Consider the task of determining
whether the sum of two arbitrary numbers is even or odd. Sure, you can imagine
training a machine-learning algorithm with millions of training examples (outlined
in figure 1.1), but you certainly know that’s overkill. A more direct approach can
easily do the trick.

For example, the sum of two odd numbers is always an even number. Convince your-
self: take any two odd numbers, add them, and check whether the sum is an even
number. Here’s how you can prove that fact directly:

 For any integer n, the formula 2n + 1 produces an odd number. Moreover, any
odd number can be written as 2n + 1 for some value n. The number 3 can be
written as 2(1) + 1. And the number 5 can be written as 2(2) + 1. 

 Let’s say we have two odd numbers, 2n + 1 and 2m + 1, where n and m are integers.
Adding two odd numbers yields (2n + 1) + (2m + 1) = 2n + 2m + 2 = 2(n + m + 1).
This is an even number because 2 times anything is even.

Likewise, we see that the sum of two even numbers is also an even number: 2m + 2n =
2(m + n). And lastly, we also deduce that the sum of an even with an odd is an odd
number: 2m + (2n + 1) = 2(m + n) + 1. Figure 1.2 presents this logic more clearly.

 That’s it! With absolutely no use of machine learning, you can solve this task on
any pair of integers someone throws at you. Directly applying mathematical rules can
solve this problem. But in ML algorithms, we can treat the inner logic as a black box,
meaning the logic happening inside might not be obvious to interpret, as depicted in
figure 1.3.

 

Input

x₁ = (2, 2) →

x₂ = (3, 2) →

x₃ = (2, 3) →

x₄ = (3, 3) →

...

Output

y₁ = Even

y₂ = Odd

y₃ = Odd

y₄ = Even

...

Figure 1.1 Each pair of integers, when summed, results in an 
even or odd number. The input and output correspondences 
listed are called the ground-truth dataset.
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7Machine-learning fundamentals
1.1.1 Parameters

Sometimes, the best way to devise an algorithm that transforms an input to its corre-
sponding output is too complicated. For example, if the input were a series of num-
bers representing a grayscale image, you can imagine the difficulty in writing an
algorithm to label every object in the image. Machine learning comes in handy
when the inner workings aren’t well understood. It provides us with a toolset to
write software without defining every detail of the algorithm. The programmer can
leave some values undecided and let the machine-learning system figure out the
best values by itself. 

 The undecided values are called parameters, and the description is referred to as
the model. Your job is to write an algorithm that observes existing examples to figure
out how to best tune parameters to achieve the best model. Wow, that’s a mouthful!
Don’t worry, this concept will be a  reoccurring motif.
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Figure 1.2 This table reveals the inner logic 
behind how the output response corresponds 
to the input pairs. 

Black box

2

3

? Figure 1.3 An ML approach to solving problems can be 
thought of as tuning the parameters of a black box until 
it produces satisfactory results.
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8 CHAPTER 1 A machine-learning odyssey
1.1.2 Learning and inference

Suppose you’re trying to bake desserts in an oven. If you’re new to the kitchen, it can
take days to come up with both the right combination and perfect ratio of ingredients
to make something that tastes great. By recording recipes, you can remember how to
quickly repeat the dessert if you happen to discover the ultimate tasty meal.

 Similarly, machine learning shares this idea of recipes. Typically, we examine an
algorithm in two stages: learning and inference. The objective of the learning stage is to
describe the data, which is called the feature vector, and summarize it in a model. The
model is our recipe. In effect, the model is a program with a couple of open interpre-
tations, and the data helps disambiguate it.

NOTE A feature vector is a practical simplification of data. You can think of it as
a sufficient summary of real-world objects into a list of attributes. The learn-
ing and inference steps rely on the feature vector instead of the data directly.

Similar to the way recipes can be shared and used by other people, the learned model
is reused by other software. The learning stage is the most time consuming. Running
an algorithm may take hours, if not days or weeks, to converge into a useful model.
Figure 1.4 outlines the learning pipeline.

Machine learning might solve a problem without much insight
By mastering the art of inductive problem solving, we wield a double-edged sword.
Although ML algorithms may perform well when solving specific tasks, tracing the
steps of deduction to understand why a result is produced may not be as immediate.
An elaborate machine-learning system learns thousands of parameters, but untan-
gling the meaning behind each parameter is sometimes not the prime directive. With
that in mind, I assure you there’s a world of magic to unfold.

EXERCISE 1.1
Suppose you’ve collected three months’ worth of stock market prices. You’d like to
predict future trends to outsmart the system for monetary gains. Without using ML,
how would you go about solving this problem? (As you’ll see in chapter 8, this prob-
lem becomes approachable with ML techniques.)

ANSWER

Believe it or not, hard-designed rules are a common way to define stock market trad-
ing strategies. For example, an algorithm as simple as “if the price drops 5%, buy
some stocks” is often used. Notice that there’s no machine learning involved, just
traditional logic.
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9Data representation and features
The inference stage uses the model to make intelligent remarks about never-before-
seen data. It’s like using a recipe you found online. The process of inference typically
takes orders of magnitude less time than learning; inference can be fast enough to
work on real-time data. Inference is all about testing the model on new data and
observing performance in the process, as shown in figure 1.5.

1.2 Data representation and features
Data is a first-class citizen of machine learning. Computers are nothing more than
sophisticated calculators, and so the data we feed our machine-learning systems must
be mathematical objects such as vectors, matrices, or graphs. 

 The basic theme in all forms of representation is the concept of features, which are
observable properties of an object: 

 Vectors have a flat and simple structure and are the typical embodiment of data
in most real-world machine-learning applications. They have two attributes: a
natural number representing the dimension of the vector, and a type (such as
real numbers, integers, and so on). Just as a refresher, some examples of two-
dimensional vectors of integers are (1, 2) and (–6, 0). Some examples of
three-dimensional vectors of real numbers are (1.1, 2.0, 3.9) and (п, п/2, п/3).

Training data Feature vector Learning algorithm Model

Figure 1.4 The learning approach generally follows a structured recipe. First, the 
dataset needs to be transformed into a representation, most often a list of features, 
which can be used by the learning algorithm. The learning algorithm chooses a 
model and efficiently searches for the model’s parameters.

Test data Feature vector PredictionModel

Figure 1.5 The inference approach generally uses a model that has already been 
either learned or given. After converting data into a usable representation, such as 
a feature vector, it uses the model to produce intended output.
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10 CHAPTER 1 A machine-learning odyssey
You get the idea: a collection of numbers of the same type. In a program that
uses machine learning, a vector measures a property of the data, such as color,
density, loudness, or proximity—anything you can describe with a series of
numbers, one for each thing being measured.

 Moreover, a vector of vectors is a matrix. If each feature vector describes the fea-
tures of one object in your dataset, the matrix describes all the objects; each
item in the outer vector is a node that’s a list of features of one object.

 Graphs, on the other hand, are more expressive. A graph is a collection of
objects (nodes) that can be linked together with edges to represent a network. A
graphical structure enables representing relationships between objects, such as
in a friendship network or a navigation route of a subway system. Consequently,
they’re tremendously harder to manage in machine-learning applications. In
this book, our input data will rarely involve a graphical structure.

Feature vectors are practical simplifications of real-world data, which can be too com-
plicated to deal with. Instead of attending to every little detail of a data item, a feature
vector is a practical simplification. For example, a car in the real world is much more
than the text used to describe it. A car salesman is trying to sell you the car, not the
intangible words spoken or written. Those words are just abstract concepts, similar to
the way feature vectors are just summaries of the data.

 The following scenario will explain this further. When you’re in the market for a
new car, keeping tabs on every minor detail of different makes and models is essential.
After all, if you’re about to spend thousands of dollars, you may as well do so dili-
gently. You’d likely record a list of features about each car and compare them back
and forth. This ordered list of features is the feature vector.

 When shopping for cars, you might find comparing mileage to be more lucrative
than comparing something less relevant to your interest, such as weight. The num-
ber of features to track also must be just right: not too few, or you’ll lose informa-
tion you care about, and not too many, or they’ll be unwieldy and time consuming
to keep track of. This tremendous effort to select both the number of measure-
ments and which measurements to compare is called feature engineering. Depending
on which features you examine, the performance of your system can fluctuate dra-
matically. Selecting the right features to track can make up for a weak learning
algorithm. 

 For example, when training a model to detect cars in an image, you’ll gain an
enormous performance and speed improvement if you first convert the image to
grayscale. By providing some of your own bias when preprocessing the data, you
end up helping the algorithm, because it won’t need to learn that colors don’t mat-
ter when detecting cars. The algorithm can instead focus on identifying shapes and
textures, which will lead to much faster learning than trying to process colors
as well.

 The general rule of thumb in ML is that more data produces better results. But the
same isn’t always true of having more features. Perhaps counterintuitively, if the number
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11Data representation and features
of features you’re tracking is too high, performance may suffer. Populating the space
of all data with representative samples requires exponentially more data as the dimen-
sion of the feature vector increases. As a result, feature engineering, as depicted in fig-
ure 1.6, is one of the most significant problems in ML.

You may not appreciate it right away, but something consequential happens when you
decide which features are worth observing. For centuries, philosophers have pon-
dered the meaning of identity; you may not immediately realize this, but you’ve come
up with a definition of identity by your choice of specific features.

 Imagine writing a machine-learning system to detect faces in an image. Let’s say
one of the necessary features for something to be a face is the presence of two eyes.
Implicitly, a face is now defined as something with eyes. Do you realize the kind of
trouble this can get you into? If a photo of a person shows them blinking, your detector

Curse of dimensionality
To accurately model real-world data, we clearly need more than one or two data
points. But how much data depends on a variety of things, including the number of
dimensions in the feature vector. Adding too many features causes the number of
data points required to describe the space to increase exponentially. That’s why we
can’t just design a 1,000,000-dimension feature vector to exhaust all possible fac-
tors and then expect the algorithm to learn a model. This phenomenon is called the
curse of dimensionality. 

Color

Horsepower

Price

Number
of seats

Figure 1.6 Feature engineering is the process of selecting relevant features for the task. 
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12 CHAPTER 1 A machine-learning odyssey
won’t find a face, because it can’t find two eyes. The algorithm would fail to detect a
face when a person is blinking. The definition of a face was inaccurate to begin with,
and it’s apparent from the poor detection results. 

 The identity of an object is decomposed into the features from which it’s com-
posed. For example, if the features you’re tracking of one car exactly match the corre-
sponding features of another car, they may as well be indistinguishable from your
perspective. You’d need to add another feature to the system in order to tell them
apart, or you’ll think they’re the same item. When handcrafting features, you must
take great care not to fall into this philosophical predicament of identity.

EXERCISE 1.2 
Let’s say you’re teaching a robot how to fold clothes. The perception system sees a
shirt lying on a table, as shown in the following figure. You’d like to represent the shirt
as a vector of features so you can compare it with different clothes. Decide which
features would be most useful to track. (Hint: What types of words do retailers use
to describe their clothing online?)

ANSWER

The width, height, x-symmetry score, y-symmetry score, and flatness are good fea-
tures to observe when folding clothes. Color, cloth texture, and material are mostly
irrelevant. 

A robot is trying to fold a shirt. What are good features of the shirt 
to track?
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13Data representation and features
Feature engineering is a refreshingly philosophical pursuit. For those who enjoy
thought-provoking escapades into the meaning of self, we invite you to meditate on
feature selection, because it’s still an open problem. Fortunately for the rest of you, to
alleviate extensive debates, recent advances have made it possible to automatically
determine which features to track. You’ll be able to try it out for yourself in chapter 7.

EXERCISE 1.3
Now, instead of detecting clothes, you ambitiously decide to detect arbitrary objects;
the following figure shows some examples. What are some salient features that can
easily differentiate objects?

ANSWER

Observing brightness and reflection may help differentiate the lamp from the other
two objects. The shape of pants often follows a predictable template, so shape would
be another good feature to track. Lastly, texture may be a salient feature to differen-
tiate the picture of a dog from the other two classes.

Feature vectors are used in both learning and inference
The interplay between learning and inference provides a complete picture of a
machine-learning system, as shown in the following figure. The first step is to repre-
sent real-world data in a feature vector. For example, we can represent images by a
vector of numbers corresponding to pixel intensities. (We’ll explore how to represent
images in greater detail in future chapters.) We can show our learning algorithm the
ground-truth labels (such as Bird or Dog) along with each feature vector. With enough
data, the algorithm generates a learned model. We can use this model on other real-
world data to uncover previously unknown labels.

Here are images of three objects: a lamp, a pair of pants, and a dog. What are 
some good features that you should record to compare and differentiate objects?
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14 CHAPTER 1 A machine-learning odyssey
(continued)

Real-world data
Feature vectors

(23, 1, 100, 32, ...)

Learning

algorithm

Labels

Inference model

HELLO
my name is

(88, 31, 1, 4, ...)

HELLO
my name is

(20, 3, 81, 10, ...)

HELLO
my name is

(90, 40, 0, 0, ...)

HELLO
my name is

Test data
Feature vector

(94, 30, 10, 0, ...)

Unknown label

HELLO
my name is

HELLO
my name is

Feature vectors are a representation of real-world data used by both the learning and inference 
components of machine learning. The input to the algorithm isn’t the real-world image directly, 
but instead its feature vector.
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15Distance metrics
1.3 Distance metrics
If you have feature vectors of cars you may potentially want to buy, you can figure
out which two are most similar by defining a distance function on the feature vec-
tors. Comparing similarities between objects is an essential component of machine
learning. Feature vectors allow us to represent objects so that we may compare
them in a variety of ways. A standard approach is to use the Euclidian distance, which
is the geometric interpretation you may find most intuitive when thinking about
points in space.

 Let’s say we have two feature vectors, x = (x1, x2, …, xn) and y = (y1, y2, …, yn). The
Euclidian distance ||x – y|| is calculated by

For example, the Euclidian distance between (0, 1) and (1, 0) is

Scholars call this the L2 norm. But that’s just one of many possible distance functions.
The L0, L1, and L-infinity norms also exist. All these norms are valid ways to measure
distance. Here they are in more detail:

 The L0 norm counts the total number of nonzero elements of a vector. For
example, the distance between the origin (0, 0) and vector (0, 5) is 1, because
there’s only one nonzero element. The L0 distance between (1, 1) and (2, 2) is
2, because neither dimension matches up. Imagine that the first and second
dimensions represent username and password, respectively. If the L0 distance
between a login attempt and the true credentials is 0, the login is successful. If
the distance is 1, then either the username or password is incorrect, but not
both. Lastly, if the distance is 2, both username and password aren’t found in
the database.

 The L1 norm, shown in figure 1.7, is defined as |xn|. The distance between two
vectors under the L1 norm is also referred to as the Manhattan distance. Imagine
living in a downtown area like Manhattan, New York, where the streets form a
grid. The shortest distance from one intersection to another is along the blocks.
Similarly, the L1 distance between two vectors is along the orthogonal directions.

x1 y1– 2 x2 y2– 2  xn yn– 2+ + +

0 1( , ) 1 0( , )–

1– 1( , )=

1– 2 12
+=

2= 1.414=
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16 CHAPTER 1 A machine-learning odyssey
The distance between (0, 1) and (1, 0) under the L1 norm is 2. Computing the
L1 distance between two vectors is the sum of absolute differences at each
dimension, which is a useful measure of similarity.

 The L2 norm, shown in figure 1.8, is the Euclidian length of a vector, ((xn)2)1/2.
It’s the most direct route you can possibly take on a geometric plane to get
from one point to another. For the mathematically inclined, this is the norm
that implements the least square estimation as predicted by the Gauss-Markov
theorem. For the rest of you, it’s the shortest distance between two points in
space.

 The L-N norm generalizes this pattern, resulting in (|xn|N)1/N. We rarely use
finite norms above L2, but it’s here for completeness.

 The L-infinity norm is (|xn|)1/. More naturally, it’s the largest magnitude
among each element. If the vector is (–1, –2, –3), the L-infinity norm is 3. If a
feature vector represents costs of various items, minimizing the L-infinity norm
of the vector is an attempt to reduce the cost of the most expensive item.

(0, 1)

(1, 0)

Figure 1.7 The L1 distance is also called the Manhattan 
distance (also referred to as the taxicab metric), because 
it resembles the route of a car in a grid-like neighborhood 
such as Manhattan. If a car is traveling from point (0,1) to 
point (1,0), the shortest route requires a length of 2 units.

Figure 1.8 The L2 norm between points (0,1) 
and (1,0) is the length of a single straight-line 
segment between both points.

(0, 1)

(1, 0)
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17Types of learning
1.4 Types of learning
Now that you can compare feature vectors, you have the tools necessary to use data for
practical algorithms. Machine learning is often split into three perspectives: super-
vised learning, unsupervised learning, and reinforcement learning. Let’s examine
each.

1.4.1 Supervised learning

By definition, a supervisor is someone higher up in the chain of command. When we’re
in doubt, our supervisor dictates what to do. Likewise, supervised learning is all about
learning from examples laid out by a supervisor (such as a teacher). 

 A supervised machine-learning system needs labeled data to develop a useful
understanding, which we call its model. For example, given many photographs of peo-
ple and their recorded corresponding ethnicity, we can train a model to classify the
ethnicity of a never-before-seen individual in an arbitrary photograph. Simply put, a
model is a function that assigns a label to data. It does so by using a collection of previ-
ous examples, called a training dataset, as reference.

 A convenient way to talk about models is through mathematical notation. Let x be
an instance of data, such as a feature vector. The corresponding label associated with
x is f(x), often referred to as the ground truth of x. Usually, we use the variable y = f(x)
because it’s quicker to write. In the example of classifying the ethnicity of a person
through a photograph, x can be a 100-dimensional vector of various relevant features,
and y is one of a couple of values to represent the various ethnicities. Because y is

When do I use a metric other than the L2 norm in the real world?
Let’s say you’re working for a new search-engine startup trying to compete with Goo-
gle. Your boss assigns you the task of using machine learning to personalize the
search results for each user. 

A good goal might be that users shouldn’t see five or more incorrect search results
per month. A year’s worth of user data is a 12-dimensional vector (each month of the
year is a dimension), indicating the number of incorrect results shown per month.
You’re trying to satisfy the condition that the L-infinity norm of this vector must be
less than 5. 

Suppose instead that your boss changes the requirements, saying that fewer than
five erroneous search results are allowed for the entire year. In this case, you’re try-
ing to achieve an L1 norm below 5, because the sum of all errors in the entire space
should be less than 5.

Now, your boss changes the requirements again: the number of months with errone-
ous search results should be fewer than 5. In that case, you’re trying to achieve an
L0 norm less than 5, because the number of months with a nonzero error should be
fewer than 5.
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18 CHAPTER 1 A machine-learning odyssey
discrete with few values, the model is called a classifier. If y can result in many values,
and the values have a natural ordering, then the model is called a regressor. 

 Let’s denote a model’s prediction of x as g(x). Sometimes you can tweak a model
to change its performance drastically. Models have parameters that can be tuned
either by a human or automatically. We use the vector  to represent the parameters.
Putting it all together, g(x|) more completely represents the model, read “g of x
given .” 

NOTE Models may also have hyperparameters, which are extra ad hoc proper-
ties about a model. The term hyper in hyperparameter seems a bit strange at first.
If it helps, a better name could be metaparameter, because the parameter is
akin to metadata about the model. 

The success of a model’s prediction g(x|) depends on how well it agrees with the
ground truth y. We need a way to measure the distance between these two vectors. For
example, the L2 norm may be used to measure how close two vectors lie. The distance
between the ground truth and the prediction is called the cost.

 The essence of a supervised machine-learning algorithm is to figure out the
parameters of a model that result in the least cost. Mathematically put, we’re looking
for a * (Theta star) that minimizes the cost among all data points x  X. One way of
formalizing this optimization problem is the following:

 

where 

Clearly, brute forcing every possible combination of s (also known as a parameter
space) will eventually find the optimal solution, but at an unacceptable runtime. A
major area of research in machine learning is about writing algorithms that efficiently
search through this parameter space. Some of the early algorithms include gradient
descent, simulated annealing, and genetic algorithms. TensorFlow automatically takes care
of the low-level implementation details of these algorithms, so we won’t get into them
in too much detail. 

 After the parameters are learned one way or another, you can finally evaluate the
model to figure out how well the system captured patterns from the data. A rule of
thumb is to not evaluate your model on the same data you used to train it, because
you already know it works for the training data; you need to tell whether it works for
data that wasn’t part of the training set, to make sure your model is general purpose
and not biased to the data used to train it. Use the majority of the data for training, and
the remaining for testing. For example, if you have 100 labeled data points, randomly
select 70 of them to train a model, and reserve the other 30 to test it.

 minCost  Xarg =

Cost  X  g x   f x –
x X
=
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19Types of learning
1.4.2 Unsupervised learning

Unsupervised learning is about modeling data that comes without corresponding labels
or responses. The fact that we can make any conclusions at all on raw data feels like
magic. With enough data, it may be possible to find patterns and structure. Two of the
most powerful tools that machine-learning practitioners use to learn from data alone
are clustering and dimensionality reduction. 

 Clustering is the process of splitting the data into individual buckets of similar
items. In a sense, clustering is like classification of data without knowing any corre-
sponding labels. For instance, when organizing your books on three shelves, you likely
place similar genres together, or maybe you group them by the authors’ last names.
You might have a Stephen King section, another for textbooks, and a third for “any-
thing else.” You don’t care that they’re all separated by the same feature, just that each
has something unique about it that allows you to break it into roughly equal, easily
identifiable groups. One of the most popular clustering algorithms is k-means, which is
a specific instance of a more powerful technique called the E-M algorithm.

 Dimensionality reduction is about manipulating the data to view it under a much sim-
pler perspective. It’s the ML equivalent of the phrase, “Keep it simple, stupid.” For
example, by getting rid of redundant features, we can explain the same data in a
lower-dimensional space and see which features matter. This simplification also helps
in data visualization or preprocessing for performance efficiency. One of the earliest
algorithms is principle component analysis (PCA), and a newer one is autoencoders, which
we cover in chapter 7. 

1.4.3 Reinforcement learning

Supervised and unsupervised learning seem to suggest that the existence of a teacher
is all or nothing. But in one well-studied branch of machine learning, the environ-
ment acts as a teacher, providing hints as opposed to definite answers. The learning
system receives feedback on its actions, with no concrete promise that it’s progressing
in the right direction, which might be to solve a maze or accomplish an explicit goal.

Why split the data?
If the 70-30 split seems odd to you, think about it like this. Let’s say your physics
teacher gives you a practice exam and tells you the real exam will be no different.
You might as well memorize the answers and earn a perfect score without under-
standing the concepts. Similarly, if you test your model on the training dataset, you’re
not doing yourself any favors. You risk a false sense of security, because the model
may merely be memorizing the results. Now, where’s the intelligence in that?

Instead of the 70-30 split, machine-learning practitioners typically divided their data-
set 60-20-20. Training consumes 60% of the dataset, and testing uses 20%, leaving
the other 20% for validation, which is explained in the next chapter.
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20 CHAPTER 1 A machine-learning odyssey
Unlike supervised learning, where training data is conveniently labeled by a “teacher,”
reinforcement learning trains on information gathered by observing how the environ-
ment reacts to actions. Reinforcement learning is a type of machine learning that
interacts with the environment to learn which combination of actions yields the most
favorable results. Because we’re already anthropomorphizing algorithms by using the
words environment and action, scholars typically refer to the system as an autonomous
agent. Therefore, this type of machine learning naturally manifests itself in the
domain of robotics. 

 To reason about agents in the environment, we introduce two new concepts: states
and actions. The status of the world frozen at a particular time is called a state. An
agent may perform one of many actions to change the current state. To drive an agent
to perform actions, each state yields a corresponding reward. An agent eventually dis-
covers the expected total reward of each state, called the value of a state.

 Like any other machine-learning system, performance improves with more data.
In this case, the data is a history of previous experiences. In reinforcement learning,
we don’t know the final cost or reward of a series of actions until it’s executed. These
situations render traditional supervised learning ineffective, because we don’t know
exactly which action in the history of action sequences is to blame for ending up in a
low-value state. The only information an agent knows for certain is the cost of a series
of actions that it has already taken, which is incomplete. The agent’s goal is to find a
sequence of actions that maximizes rewards.

Exploration vs. exploitation—the heart of reinforcement learning
Imagine playing a video game that you’ve never seen before. You click buttons on a
controller and discover that a particular combination of strokes gradually increases
your score. Brilliant—now you repeatedly exploit this finding in hopes of beating the
high score. In the back of your mind, you think that maybe there’s a better combina-
tion of button clicks that you’re missing out on. Should you exploit your current best
strategy, or risk exploring new options?

EXERCISE 1.4
Would you use supervised, unsupervised, or reinforcement learning to solve the fol-
lowing problems? (a) Organize various fruits in three baskets based on no other infor-
mation. (b) Predict the weather based on sensor data. (c) Learn to play chess well
after many trial-and-error attempts.

ANSWER 
(a) Unsupervised, (b) Supervised, (c) Reinforcement
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1.5 TensorFlow
Google open-sourced its machine-learning framework, TensorFlow, in late 2015 under
the Apache 2.0 license. Before that, it was used proprietarily by Google in its speech
recognition, Search, Photos, and Gmail, among other applications.

The library is implemented in C++ and has a convenient Python API, as well as a lesser
appreciated C++ API. Because of the simpler dependencies, TensorFlow can be
quickly deployed to various architectures. 

 Similar to Theano (a popular numerical computation library for Python you may
already be familiar with), computations are described as flowcharts, separating design
from implementation. With little-to-no hassle, this dichotomy allows the same design
to be implemented on not just large-scale training systems with thousands of proces-
sors, but also mobile devices. The single system spans a broad range of platforms.

 One of the fanciest properties of TensorFlow is its automatic differentiation capabil-
ities. You can experiment with new networks without having to redefine many key
calculations. 

NOTE Automatic differentiation makes it much easier to implement back-
propagation, which is a computationally heavy calculation used in a branch of
machine learning called neural networks. TensorFlow hides the nitty-gritty
details of back-propagation so you can focus on the bigger picture. Chapter 7
covers an introduction to neural networks with TensorFlow.

All the mathematics is abstracted away and unfolded under the hood. It’s like using
WolframAlpha for a calculus problem set. 

 Another feature of this library is its interactive visualization environment called
TensorBoard. This tool shows a flowchart of the way data transforms, displays summary
logs over time, and traces performance. Figure 1.9 shows an example of what Tensor-
Board looks like when in use. The next chapter covers using it in greater detail.

 Prototyping in TensorFlow is much faster than in Theano (code initiates in a mat-
ter of seconds as opposed to minutes) because many of the operations come precom-
piled. It becomes easy to debug code due to subgraph execution; an entire segment of
computation can be reused without recalculation.

 
 

A bit of history
A former scalable distributed training and learning system called DistBelief is the pri-
mary influence on TensorFlow’s current implementation. Ever written a messy piece
of code and wished you could start all over again? That’s the dynamic between Dist-
Belief and TensorFlow. 
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22 CHAPTER 1 A machine-learning odyssey
Because TensorFlow isn’t only about neural networks, it also has out-of-the-box matrix
computation and manipulation tools. Most libraries such as Torch and Caffe are
designed solely for deep neural networks, but TensorFlow is more flexible as well as
scalable.

 The library is well documented and officially supported by Google. Machine learn-
ing is a sophisticated topic, so having an exceptionally well-reputed company behind
TensorFlow is comforting. 

1.6 Overview of future chapters
Chapter 2 demonstrates how to use various components of TensorFlow (see figure 1.10).
Chapters 3–6 show how to implement classic machine-learning algorithms in Tensor-
Flow, and chapters 7–12 cover algorithms based on neural networks. The algorithms
solve a wide variety of problems such as prediction, classification, clustering, dimen-
sionality reduction, and planning.

Figure 1.9 Example of TensorBoard in action
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Many algorithms can solve the same real-world problem, and many real-world prob-
lems can be solved by the same algorithm. Table 1.1 covers the ones laid out in this
book.

Table 1.1 Many real-world problems can be solved using the corresponding algorithm found in its
respective chapter.

Real-world problem Algorithm Chapter

Predicting trends, fitting a curve to data points, describing 
relationships between variables

Linear regression 3

Classifying data into two categories, finding the best way 
to split a dataset

Logistic regression 4

Classifying data into multiple categories Softmax regression 4

Revealing hidden causes of observations, finding the 
most likely hidden reason for a series of outcomes

Hidden Markov model (Viterbi) 5

Clustering data into a fixed number of categories, auto-
matically partitioning data points into separate classes

K-means 6

Clustering data into arbitrary categories, visualizing high-
dimensional data into a lower-dimensional embedding

Self-organizing map 6

Machine learning

TensorFlow

Theano

Caffe Torch

CGT

Chapter 1

Chapter 2

Machine learning

Figure 1.10 This chapter introduced fundamental machine-
learning concepts, and the next chapter begins your journey 
into TensorFlow. Other tools to apply machine-learning 
algorithms (such as Caffe, Theano, and Torch) are available, 
but you’ll see in chapter 2 why TensorFlow is the way to go.
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24 CHAPTER 1 A machine-learning odyssey
TIP If you’re interested in the intricate architecture details of TensorFlow,
the best available source is the official documentation at www.tensorflow.org/
extend/architecture. This book will sprint ahead and use TensorFlow without
slowing down for the breadth of low-level performance tuning. For those
interested in cloud services, you may consider Google’s solution for profes-
sional-grade scale and speed: https://cloud.google.com/products/machine-
learning/. 

1.7 Summary
 TensorFlow has become the tool of choice among professionals and researchers

to implement machine-learning solutions. 
 Machine learning uses examples to develop an expert system that can make

useful statements about new inputs. 
 A key property of ML is that performance tends to improve with more training

data. 
 Over the years, scholars have crafted three major archetypes that most problems

fit: supervised learning, unsupervised learning, and reinforcement learning. 
 After a real-world problem is formulated in a machine-learning perspective, sev-

eral algorithms become available. Out of the many software libraries and frame-
works to accomplish an implementation, we chose TensorFlow as our silver
bullet. Developed by Google and supported by its flourishing community, Tensor-
Flow gives us a way to easily implement industry-standard code.

Reducing dimensionality of data, learning latent variables 
responsible for high-dimensional data

Autoencoder 7

Planning actions in an environment using neural networks 
(reinforcement learning)

Q-policy neural network 8

Classifying data using supervised neural networks Perceptron 9

Classifying real-world images using supervised neural net-
works

Convolution neural network 9

Producing patterns that match observations using neural 
networks

Recurrent neural network 10

Predicting natural language responses to natural language 
queries

Seq2seq model 11

Learning to rank items by learning their utility Ranking 12

Table 1.1 Many real-world problems can be solved using the corresponding algorithm found in its
respective chapter. (continued)

Real-world problem Algorithm Chapter
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26 CHAPTER 2 TensorFlow essentials
Before implementing machine-learning algorithms, let’s first get familiarized with
how to use TensorFlow. You’re going to get your hands dirty writing simple code right
away! This chapter covers some essential advantages of TensorFlow to convince you it’s
the machine-learning library of choice. 

 As a thought experiment, let’s see what happens when we use Python code without
a handy computing library. It’ll be like using a new smartphone without installing any
additional apps. The functionality will be there, but you’d be so much more produc-
tive if you had the right tools.

 Suppose you’re a private business owner tracking the flow of sales for your prod-
ucts. Your inventory consists of 100 items, and you represent each item’s price in a vector
called prices. Another 100-dimensional vector called amounts represents the inventory
count of each item. You can write the chunk of Python code shown in the following
listing to calculate the revenue of selling all products. Keep in mind that this code
doesn’t import any libraries.

revenue = 0
for price, amount in zip(prices, amounts):
    revenue += price * amount

That’s a lot of code just to calculate the inner product of two vectors (also known as
the dot product). Imagine how much code would be required for something more
complicated, such as solving linear equations or computing the distance between
two vectors. 

 When installing the TensorFlow library, you also install a well-known and robust
Python library called NumPy, which facilitates mathematical manipulation in Python.
Using Python without its libraries (NumPy and TensorFlow) is like using a camera
without auto mode: you gain more flexibility, but you can easily make careless mis-
takes (for the record, we have nothing against photographers who micromanage aper-
ture, shutter, and ISO). It’s easy to make mistakes in machine learning, so let’s keep
our camera on autofocus and use TensorFlow to help automate tedious software
development. 

This chapter covers
 Understanding the TensorFlow workflow

 Creating interactive notebooks with Jupyter

 Visualizing algorithms by using TensorBoard

Listing 2.1 Computing the inner product of two vectors without using a library
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27Ensuring that TensorFlow works
 The following listing shows how to concisely write the same inner product using
NumPy.

import numpy as np
revenue = np.dot(prices, amounts)

Python is a succinct language. Fortunately for you, that means this book doesn’t have
pages and pages of cryptic code. On the other hand, the brevity of the Python lan-
guage also implies that a lot is happening behind each line of code, which you should
familiarize yourself with carefully as you follow along in this chapter. 

 Machine-learning algorithms require many mathematical operations. Often, an
algorithm boils down to a composition of simple functions iterated until conver-
gence. Sure, you may use any standard programming language to perform these
computations, but the secret to both manageable and high-performing code is the
use of a well-written library, such as TensorFlow (which officially supports Python
and C++).

TIP Detailed documentation about various functions for the Python and C++
APIs are available at www.tensorflow.org/api_docs/.

The skills you learn in this chapter are geared toward using TensorFlow for compu-
tations, because machine learning relies on mathematical formulations. After going
through the examples and code listings, you’ll be able to use TensorFlow for arbi-
trary tasks, such as computing statistics on big data. The focus here is entirely on
how to use TensorFlow, as opposed to machine learning. That sounds like a gentle
start, right?

 Later in this chapter, you’ll use TensorFlow’s flagship features that are essential for
machine learning. These include representation of computation as a dataflow graph,
separation of design and execution, partial subgraph computation, and autodifferen-
tiation. Without further ado, let’s write your first TensorFlow code!

2.1 Ensuring that TensorFlow works
First, you should ensure that everything is working correctly. Check the oil level in
your car, repair the blown fuse in your basement, and ensure that your credit balance
is zero. Just kidding; we’re talking about TensorFlow. 

 Before you begin, follow the procedures in the appendix for step-by-step installa-
tion instructions. Create a new file called test.py for your first piece of code. Import
TensorFlow by running the following script: 

import tensorflow as tf

Listing 2.2 Computing the inner product using NumPy
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28 CHAPTER 2 TensorFlow essentials
This single import prepares TensorFlow to do your bidding. If the Python interpreter
doesn’t complain, you’re ready to start using TensorFlow!

2.2 Representing tensors
Now that you know how to import TensorFlow into a Python source file, let’s start
using it! As covered in the previous chapter, a convenient way to describe an object in
the real world is through listing its properties, or features. For example, you can
describe a car by its color, model, engine type, mileage, and so on. An ordered list of
features is called a feature vector, and that’s exactly what you’ll represent in Tensor-
Flow code.

 Feature vectors are one of the most useful devices in machine learning because of
their simplicity (they’re just a list of numbers). Each data item typically consists of a
feature vector, and a good dataset has hundreds, if not thousands, of these feature vec-
tors. No doubt, you’ll often be dealing with more than one vector at a time. A matrix
concisely represents a list of vectors, where each column of a matrix is a feature vector.

 The syntax to represent matrices in TensorFlow is a vector of vectors, each of the
same length. Figure 2.1 is an example of a matrix with two rows and three columns,
such as [[1, 2, 3], [4, 5, 6]]. Notice that this is a vector containing two elements, and
each element corresponds to a row of the matrix.

Having technical difficulty?
An error commonly occurs at this step if you installed the GPU version and the library
fails to search for CUDA drivers. Remember, if you compiled the library with CUDA,
you need to update your environment variables with the path to CUDA. Check the
CUDA instructions on TensorFlow. (See http://mng.bz/QUMh for further information.)

Sticking with TensorFlow conventions
The TensorFlow library is usually imported with the tf alias. Generally, qualifying Ten-
sorFlow with tf is a good idea to remain consistent with other developers and open
source TensorFlow projects. Of course, you may use another alias (or no alias at all),
but then successfully reusing other people’s snippets of TensorFlow code in your own
projects will be an involved process.

How computers
represent matrices

How people
represent matrices

[[1, 2, 3], [4, 5, 6]]

1 2 3

4 5 6

Figure 2.1 The matrix in the lower half of the 
diagram is a visualization from its compact 
code notation in the upper half of the diagram. 
This form of notation is a common paradigm in 
most scientific computing libraries.
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29Representing tensors
We access an element in a matrix by specifying its row and column indices. For exam-
ple, the first row and first column indicate the very first top-left element. Sometimes
it’s convenient to use more than two indices, such as when referencing a pixel in a
color image not only by its row and column, but also by its red/green/blue channel. A
tensor is a generalization of a matrix that specifies an element by an arbitrary number
of indices.

The syntax for tensors is even more nested vectors. For example, as shown in figure 2.2,
a 2 × 3 × 2 tensor is [[[1,2], [3,4], [5,6]], [[7,8], [9,10], [11,12]]], which can be
thought of as two matrices, each of size 3 × 2. Consequently, we say this tensor has a
rank of 3. In general, the rank of a tensor is the number of indices required to specify
an element. Machine-learning algorithms in TensorFlow act on tensors, so it’s import-
ant to understand how to use them.

Example of a tensor
Suppose an elementary school enforces assigned seating for all its students. You’re
the principal, and you’re terrible with names. Luckily, each classroom has a grid of
seats, and you can easily nickname a student by their row and column index. 

The school has multiple classrooms, so you can’t simply say, “Good morning 4,10!
Keep up the good work.” You need to also specify the classroom: “Hi 4,10 from
classroom 2.” Unlike a matrix, which needs only two indices to specify an element,
the students in this school need three numbers. They’re all a part of a rank-3 tensor! 

How a tensor is
represented in code

[ [[1, 2], [3, 4], [5, 6], [[7, 8], [9, 10], [11, 12]] ]

How we visualize
a tensor

7

9

11

1

3

5

7

99

1111

8

10

12

2

4

6

8

1010

1212

Figure 2.2 This tensor can be thought of as multiple matrices stacked on top 
of each other. To specify an element, you must indicate the row and column, as 
well as which matrix is being accessed. Therefore, the rank of this tensor is 3.
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30 CHAPTER 2 TensorFlow essentials
It’s easy to get lost in the many ways to represent a tensor. Intuitively, three lines of
code in listing 2.3 are trying to represent the same 2 × 2 matrix. This matrix rep-
resents two feature vectors of two dimensions each. It could, for example, represent
two people’s ratings of two movies. Each person, indexed by the row of the matrix,
assigns a number to describe their review of the movie, indexed by the column. Run
the code to see how to generate a matrix in TensorFlow.

import tensorflow as tf
import numpy as np              

m1 = [[1.0, 2.0], 
      [3.0, 4.0]]                               

m2 = np.array([[1.0, 2.0], 
               [3.0, 4.0]], dtype=np.float32)   

m3 = tf.constant([[1.0, 2.0], 
                  [3.0, 4.0]])                  

print(type(m1))           
print(type(m2))           
print(type(m3))           

t1 = tf.convert_to_tensor(m1, dtype=tf.float32)    
t2 = tf.convert_to_tensor(m2, dtype=tf.float32)    
t3 = tf.convert_to_tensor(m3, dtype=tf.float32)    

print(type(t1))    
print(type(t2))    
print(type(t3))    

The first variable (m1) is a list, the second variable (m2) is an ndarray from the NumPy
library, and the last variable (m3) is TensorFlow’s constant Tensor object that you ini-
tialize using tf.constant. 

 All operators in TensorFlow, such as negative, are designed to operate on tensor
objects. A convenient function you can sprinkle anywhere just to make sure you’re
dealing with tensors as opposed to the other types is tf.convert_to_tensor( ... ).
Most functions in the TensorFlow library already perform this function (redundantly)
even if you forget to do so. Using tf.convert_to_tensor( ... ) is optional, but we
show it here because it helps demystify the implicit type system being handled across
the library. Listing 2.3 outputs the following three times: 

<class 'tensorflow.python.framework.ops.Tensor'>

TIP You can find these code listings on the book’s website, to make copying
and pasting easier: www.manning.com/books/machine-learning-with-tensor-
flow.

Listing 2.3 Different ways to represent tensors

You’ll use NumPy 
matrices in TensorFlow.

Defines a 2 × 2 
matrix in three 
ways

Prints the type 
for each matrix

Creates tensor 
objects out of 
the various types

Notice that the 
types will be the 
same now.
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31Representing tensors
Let’s take another look at defining tensors in code. After importing the TensorFlow
library, you can use the tf.constant operator as follows. Here are a couple of tensors
of various dimensions. 

import tensorflow as tf

m1 = tf.constant([[1., 2.]])   

m2 = tf.constant([[1], 
                  [2]])        

m3 = tf.constant([ [[1,2], 
                    [3,4], 
                    [5,6]], 
                    [[7,8], 
                    [9,10], 
                    [11,12]] ])   

print(m1)    
print(m2)    
print(m3)    

Running listing 2.4 produces the following output:

Tensor( "Const:0", 
        shape=TensorShape([Dimension(1), Dimension(2)]), 
        dtype=float32 ) 
Tensor( "Const_1:0", 
        shape=TensorShape([Dimension(2), Dimension(1)]), 
        dtype=int32 ) 
Tensor( "Const_2:0", 
        shape=TensorShape([Dimension(2), Dimension(3), Dimension(2)]),
        dtype=int32 )

As you can see from the output, each tensor is represented by the aptly named Tensor
object. Each Tensor object has a unique label (name), a dimension (shape) to define
its structure, and a data type (dtype) to specify the kind of values you’ll manipulate.
Because you didn’t explicitly provide a name, the library automatically generated the
names: Const:0, Const_1:0, and Const_2:0.

Listing 2.4 Creating tensors

Tensor types
Notice that each element of m1 ends with a decimal point. The decimal point tells
Python that the data type of the elements isn’t an integer, but instead a float. You
can pass in explicit dtype values. Much like NumPy arrays, tensors take on a data
type that specifies the kind of values you’ll manipulate in that tensor.

Defines a 
2 × 1 matrix

Defines a 
1 × 2 matrix

Defines a 
rank-3 tensor

Try printing 
the tensors. 
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TensorFlow also comes with a few convenient constructors for some simple tensors.
For example, tf.zeros(shape) creates a tensor with all values initialized at zero of a
specific shape. Similarly, tf.ones(shape) creates a tensor of a specific shape with all
values initialized at once. The shape argument is a one-dimensional (1D) tensor of
type int32 (a list of integers) describing the dimensions of the tensor.

2.3 Creating operators
Now that you have a few starting tensors ready to be used, you can apply more-interest-
ing operators such as addition or multiplication. Consider each row of a matrix repre-
senting the transaction of money to (positive value) and from (negative value)
another person. Negating the matrix is a way to represent the transaction history of
the other person’s flow of money. Let’s start simple and run a negation op (short for
operation) on the m1 tensor from listing 2.4. Negating a matrix turns the positive num-
bers into negative numbers of the same magnitude, and vice versa.

 Negation is one of the simplest operations. As shown in listing 2.5, negation takes
only one tensor as input, and produces a tensor with every element negated. Try run-
ning the code. If you master how to define negation, it’ll provide a stepping stone to
generalize that skill to all other TensorFlow operations. 

NOTE Defining an operation, such as negation, is different from running it. So
far, you’ve defined how operations should behave. In section 2.4, you’ll evaluate
(or run) them to compute their value.

import tensorflow as tf

x = tf.constant([[1, 2]])   
negMatrix = tf.negative(x)      
print(negMatrix)           

Listing 2.5 generates the following output:

Tensor("Neg:0", shape=TensorShape([Dimension(1), Dimension(2)]), dtype=int32)

Notice that the output isn’t [[-1, -2]]. That’s because you’re printing out the defini-
tion of the negation op, not the actual evaluation of the op. The printed output shows

EXERCISE 2.1 
Initialize a 500 × 500 tensor with all elements equaling 0.5.

ANSWER

tf.ones([500,500]) * 0.5

Listing 2.5 Using the negation operator

Defines an 
arbitrary 
tensor

Negates 
the tensor

Prints the 
object
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33Creating operators
that the negation op is a Tensor class with a name, shape, and data type. The name
was automatically assigned, but you could’ve provided it explicitly as well when using
the tf.negative op in listing 2.5. Similarly, the shape and data type were inferred
from the [[1, 2]] that you passed in.

Useful TensorFlow operators
The official documentation carefully lays out all available math ops: www.tensorflow
.org/api_guides/python/math_ops. Specific examples of commonly used operators
include the following:

tf.add(x, y)—Adds two tensors of the same type, x + y

tf.subtract(x, y)—Subtracts tensors of the same type, x – y

tf.multiply(x, y)—Multiplies two tensors element-wise

tf.pow(x, y)—Takes the element-wise x to the power of y

tf.exp(x)—Equivalent to pow(e, x), where e is Euler’s number (2.718 …) 

tf.sqrt(x)—Equivalent to pow(x, 0.5)

tf.div(x, y)—Takes the element-wise division of x and y

tf.truediv(x, y)—Same as tf.div, except casts the arguments as a float

tf.floordiv(x, y)—Same as truediv, except rounds down the final answer into
an integer

tf.mod(x, y)—Takes the element-wise remainder from division

EXERCISE 2.2 
Use the TensorFlow operators you’ve learned so far to produce the Gaussian distri-
bution (also known as the normal distribution). See figure 2.3 for a hint. For refer-
ence, you can find the probability density of the normal distribution online:
https://en.wikipedia.org/wiki/Normal_distribution. 

ANSWER 
Most mathematical expressions such as ×, –, +, and so on are just shortcuts for their
TensorFlow equivalent, for brevity. The Gaussian function includes many operations,
so it’s cleaner to use shorthand notations as follows:

from math import pi
mean = 0.0
sigma = 1.0
(tf.exp(tf.negative(tf.pow(x – mean, 2.0) / 
               (2.0 * tf.pow(sigma, 2.0) ))) *
 (1.0 / (sigma * tf.sqrt(2.0 * pi) )))
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2.4 Executing operators with sessions
A session is an environment of a software system that describes how the lines of code
should run. In TensorFlow, a session sets up how the hardware devices (such as CPU
and GPU) talk to each other. That way, you can design your machine-learning algo-
rithm without worrying about micromanaging the hardware it runs on. You can later
configure the session to change its behavior without changing a line of the machine-
learning code.

 To execute an operation and retrieve its calculated value, TensorFlow requires a
session. Only a registered session may fill the values of a Tensor object. To do so, you
must create a session class by using tf.Session() and tell it to run an operator, as
shown in the following listing. The result will be a value you can later use for further
computations. 

import tensorflow as tf

x = tf.constant([[1., 2.]])   
neg_op = tf.negative(x)      

with tf.Session() as sess:       
    result = sess.run(negMatrix)    
print(result)   

Congratulations! You’ve just written your first full TensorFlow code. Although all it
does is negate a matrix to produce [[-1, -2]], the core overhead and framework are
just the same as everything else in TensorFlow. A session not only configures where
your code will be computed on your machine, but also crafts how the computation will
be laid out in order to parallelize computation.

Every Tensor object has an eval() function to evaluate the mathematical operations
that define its value. But the eval() function requires defining a session object for the

Listing 2.6 Using a session

Code performance seems a bit slow
You may have noticed that running your code took a few more seconds than
expected. It may appear unnatural that TensorFlow takes seconds to negate a small
matrix. But substantial preprocessing occurs to optimize the library for larger and
more complicated computations.

Defines an 
arbitrary 
matrix

Runs the 
negation 
operator on it

Starts a session to be 
able to run operations

Tells the session to 
evaluate negMatrix

Prints the
resulting matrix
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35Executing operators with sessions
library to understand how to best use the underlying hardware. In listing 2.6, we used
sess.run(…), which is equivalent to invoking the Tensor’s eval() function in the con-
text of the session.

 When you’re running TensorFlow code through an interactive environment (for
debugging or presentation purposes), it’s often easier to create the session in interac-
tive mode, where the session is implicitly part of any call to eval(). That way, the ses-
sion variable doesn’t need to be passed around throughout the code, making it easier
to focus on the relevant parts of the algorithm, as seen in the following listing. 

import tensorflow as tf
sess = tf.InteractiveSession()   

x = tf.constant([[1., 2.]])      
negMatrix = tf.negative(x)           

result = negMatrix.eval()           
print(result)             

sess.close()  

2.4.1 Understanding code as a graph

Consider a doctor who predicts the expected weight of a newborn to be 7.5 pounds.
You’d like to figure out how that differs from the actual measured weight. Being an
overly analytical engineer, you design a function to describe the likelihood of all possi-
ble weights of the newborn. For example, 8 pounds is more likely than 10 pounds. 

 You can choose to use the Gaussian (otherwise known as normal) probability dis-
tribution function. It takes as input a number, and outputs a non-negative number
describing the probability of observing the input. This function shows up all the time
in machine learning and is easy to define in TensorFlow. It uses multiplication, divi-
sion, negation, and a couple of other fundamental operators. 

 Think of every operator as a node in a graph. Whenever you see a plus symbol (+)
or any mathematical concept, just picture it as one of many nodes. The edges between
these nodes represent the composition of mathematical functions. Specifically, the
negative operator we’ve been studying is a node, and the incoming/outgoing edges
of this node are how the Tensor transforms. A tensor flows through the graph, which
is why this library is called TensorFlow! 

 

Listing 2.7 Using the interactive session mode

Starts an interactive session so 
the sess variable no longer 
needs to be passed around

Defines an arbitrary 
matrix and negates it

You can now evaluate 
negMatrix without explicitly 
specifying a session.

Prints the 
negated matrix 

Remember to close the
session to free up

resources.
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 Here’s a thought: every operator is a strongly typed function that takes input ten-
sors of a dimension and produces output of the same dimension. Figure 2.3 is an exam-
ple of how the Gaussian function can be designed using TensorFlow. The function is
represented as a graph in which operators are nodes and edges represent interactions
between nodes. This graph, as a whole, represents a complicated mathematical function
(specifically, the Gaussian function). Small segments of the graph represent simple
mathematical concepts, such as negation or doubling.

TensorFlow algorithms are easy to visualize. They can be simply described by flow-
charts. The technical (and more correct) term for such a flowchart is a dataflow graph.
Every arrow in a dataflow graph is called an edge. In addition, every state of the data-
flow graph is called a node. The purpose of the session is to interpret your Python code
into a dataflow graph, and then associate the computation of each node of the graph
to the CPU or GPU.

2.4.2 Setting session configurations

You can also pass options to tf.Session. For example, TensorFlow automatically
determines the best way to assign a GPU or CPU device to an operation, depending
on what’s available. You can pass an additional option, log_device_placements=True,

Nodes of a graph
are operators.

linspace pow x/ y neg

1/ x

exp
x-mean

1

pow 2* x x* y

sigma

sigma
2

2* pi sqrt x* y

Data flows through
the arrows.

Figure 2.3 The graph represents the operations needed to produce a Gaussian distribution. The links between 
the nodes represent how data flows from one operation to the next. The operations themselves are simple, but 
the complexity arises from the way they intertwine.
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37Executing operators with sessions
when creating a session, as shown in the following listing, which will show you exactly
where on your hardware the computations are evoked.

import tensorflow as tf

x = tf.constant([[1., 2.]])   
negMatrix = tf.negative(x)        

with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:   
    result = sess.run(negMatrix)  

print(result)         

This outputs info about which CPU/GPU devices are used in the session for each
operation. For example, running listing 2.8 results in traces of output like the follow-
ing to show which device was used to run the negation op:

Neg: /job:localhost/replica:0/task:0/cpu:0

Sessions are essential in TensorFlow code. You need to call a session to “run” the math.
Figure 2.4 maps out how the components on TensorFlow interact with the machine-
learning pipeline. A session not only runs a graph operation, but also can take
placeholders, variables, and constants as input. We’ve used constants so far, but in
later sections we’ll start using variables and placeholders. Here’s a quick overview of
these three types of values:

 Placeholder—A value that’s unassigned but will be initialized by the session wher-
ever it’s run. Typically, placeholders are the input and output of your model.

 Variable—A value that can change, such as parameters of a machine-learning
model. Variables must be initialized by the session before they’re used.

 Constant—A value that doesn’t change, such as hyperparameters or settings.

The entire pipeline for machine learning with TensorFlow follows the flow of fig-
ure 2.4. Most of the code in TensorFlow consists of setting up the graph and ses-
sion. After you design a graph and hook up the session to execute it, your code is
ready to use!

 
 
 
 
 
 

Listing 2.8 Logging a session 

Defines a matrix 
and negates it

Starts the session with a
special config passed

into the constructor to
enable logging

Evaluates 
negMatrix

Prints the 
resulting value
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38 CHAPTER 2 TensorFlow essentials
2.5 Writing code in Jupyter
Because TensorFlow is primarily a Python library, you should make full use of Python’s
interpreter. Jupyter is a mature environment for exercising the interactive nature of
the language. It’s a web application that displays computation elegantly so that you
can share annotated interactive algorithms with others to teach a technique or
demonstrate code. 

 You can share your Jupyter notebooks with others to exchange ideas and download
others’ to learn about their code. See the appendix to get started with installing the
Jupyter Notebook. 

 From a new terminal, change the directory to the location where you want to prac-
tice TensorFlow code, and start a notebook server:

$ cd ~/MyTensorFlowStuff
$ jupyter notebook

Running this command should launch a new browser window with the Jupyter Note-
book dashboard. If no window automatically opens, you can manually navigate to

Session

Graph

0 1 0 0

0 0 0 0

1 0 1 1

Training

data

Feature

vector

Operator

to run

Output

Placeholders

Variables

Constants

Figure 2.4 The session dictates how the hardware will be used to 
process the graph most efficiently. When the session starts, it assigns 
the CPU and GPU devices to each of the nodes. After processing, the 
session outputs data in a usable format, such as a NumPy array. 
A session optionally may be fed placeholders, variables, and constants.
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39Writing code in Jupyter
http://localhost:8888 from any browser. You’ll see a web page similar to the one in
figure 2.5.

Create a new notebook by clicking the New drop-down menu at upper right; then
choose Notebooks > Python 3. This creates a new file called Untitled.ipynb, which you
can immediately start editing through the browser interface. You can change the
name of the notebook by clicking the current Untitled name and typing in something
more memorable, such as TensorFlow Example Notebook. 

 Everything in the Jupyter Notebook is an independent chunk of code or text
called a cell. Cells help divide a long block of code into manageable pieces of code
snippets and documentation. You can run cells individually, or choose to run every-
thing at once, in order. There are three common ways to evaluate cells: 

 Pressing Shift-Enter on a cell executes the cell and highlights the next cell
below. 

 Pressing Ctrl-Enter maintains the cursor on the current cell after executing it. 
 Pressing Alt-Enter executes the cell and then inserts a new empty cell directly

below. 

You can change the cell type by clicking the drop-down in the toolbar, as shown in fig-
ure 2.6. Alternatively, you can press Esc to leave edit mode, use the arrow keys to high-
light a cell, and press Y to change to code mode or M for markdown mode.

 
 

Figure 2.5 Running the Jupyter Notebook will launch an interactive notebook on http://localhost:8888.
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40 CHAPTER 2 TensorFlow essentials
Finally, you can create a Jupyter notebook that elegantly demonstrates TensorFlow
code by interlacing code and text cells as shown in figure 2.7.

EXERCISE 2.3 
If you look closely at figure 2.7, you’ll notice that it uses tf.neg instead of tf.neg-
ative. That’s strange. Could you explain why we might have done that?

ANSWER

You should be aware that the TensorFlow library changed naming conventions, and
you may run into these artifacts when following old TensorFlow tutorials online.

Figure 2.6 The drop-down menu changes the type of cell in the notebook. The Code cell is for Python code, 
whereas the Markdown code is for text descriptions.
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41Using variables
2.6 Using variables
Using TensorFlow constants is a good start, but most interesting applications require
data to change. For example, a neuroscientist may be interested in detecting neural
activity from sensor measurements. A spike in neural activity could be a Boolean vari-
able that changes over time. To capture this in TensorFlow, you can use the Variable
class to represent a node whose value changes over time.

Example of using a Variable object in machine learning
Finding the equation of a line that best fits many points is a classic machine-learning
problem that’s discussed in greater detail in the next chapter. The algorithm starts
with an initial guess, which is an equation characterized by a few numbers (such as
the slope or y-intercept). Over time, the algorithm generates increasingly better
guesses for these numbers, which are also called parameters. 

So far, we’ve been manipulating only constants. Programs with only constants aren’t
that interesting for real-world applications, so TensorFlow allows richer tools such as
variables, which are containers for values that may change over time. A machine-
learning algorithm updates the parameters of a model until it finds the optimal value
for each variable. In the world of machine learning, it’s common for parameters to
fluctuate until eventually settling down, making variables an excellent data structure
for them.

Figure 2.7 An interactive Python notebook presents both code and comments grouped for readability.
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42 CHAPTER 2 TensorFlow essentials
The code in listing 2.9 is a simple TensorFlow program that demonstrates how to use
variables. It updates a variable whenever sequential data abruptly increases in value.
Think about recording measurements of a neuron’s activity over time. This piece of
code can detect when the neuron’s activity suddenly spikes. Of course, the algorithm
is an oversimplification for didactic purposes.

 Start with importing TensorFlow. TensorFlow allows you to declare a session by
using tf.InteractiveSession(). When you’ve declared an interactive session, Ten-
sorFlow functions don’t require the session attribute they would otherwise, which
makes coding in Jupyter Notebooks easier.

import tensorflow as tf
sess = tf.InteractiveSession()     

raw_data = [1., 2., 8., -1., 0., 5.5, 6., 13]   
spike = tf.Variable(False)                      
spike.initializer.run()                       

for i in range(1, len(raw_data)):            
    if raw_data[i] - raw_data[i-1] > 5:
        updater = tf.assign(spike, True)      
        updater.eval()                        
    else:
        tf.assign(spike, False).eval()
    print("Spike", spike.eval())

sess.close()   

The expected output of listing 2.9 is a list of spike values over time:

('Spike', False)
('Spike', True)
('Spike', False)
('Spike', False)
('Spike', True)
('Spike', False)
('Spike', True)

Listing 2.9 Using a variable

Starts the session in 
interactive mode so you won’t 
need to pass around sess

Let’s say you have some 
raw data like this.

Creates a Boolean variable called 
spike to detect a sudden increase 
in a series of numbers

Because all variables must be 
initialized, initialize the variable by 
calling run() on its initializer.

Loops through the data 
(skipping the first element) and 
updates the spike variable when 
there’s a significant increase

To update a variable, assign it a new 
value using tf.assign(<var name>, 
<new value>). Evaluate it to see 
the change.

Remember to close 
the session after it’ll 
no longer be used.
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2.7 Saving and loading variables
Imagine writing a monolithic block of code, of which you’d like to individually test a
tiny segment. In complicated machine-learning situations, saving and loading data at
known checkpoints makes it much easier to debug code. TensorFlow provides an ele-
gant interface to save and load variable values to disk; let’s see how to use it for that
purpose.

 Let’s revamp the code that you created in listing 2.9 to save the spike data to disk
so you can load it elsewhere. You’ll change the spike variable from a simple Boolean
to a vector of Booleans that captures the history of spikes (listing 2.10). Notice that
you’ll explicitly name the variables so they can be loaded later with the same name.
Naming a variable is optional but highly encouraged to organize your code.

 Try running this code to see the results.

import tensorflow as tf           
sess = tf.InteractiveSession()    

raw_data = [1., 2., 8., -1., 0., 5.5, 6., 13]                 
spikes = tf.Variable([False] * len(raw_data), name='spikes') 
spikes.initializer.run()                    

saver = tf.train.Saver()     

for i in range(1, len(raw_data)):        
    if raw_data[i] - raw_data[i-1] > 5:  
        spikes_val = spikes.eval()               
        spikes_val[i] = True                     
        updater = tf.assign(spikes, spikes_val)  
        updater.eval()                                    

save_path = saver.save(sess, "spikes.ckpt")                 
print("spikes data saved in file: %s" % save_path)  

sess.close()

Listing 2.10 Saving variables

Imports TensorFlow 
and enables 
interactive sessions

Let’s say you 
have a series of 
data like this.

Defines a Boolean vector 
called spikes to locate a 
sudden spike in raw data

Don’t forget to 
initialize the variable.

The saver op will enable saving and 
restoring variables. If no dictionary is 
passed into the constructor, then it saves 
all variables in the current program.

Loop through the data and 
update the spikes variable when 
there’s a significant increase.

Updates the value of spikes by 
using the tf.assign function

Don’t forget to 
evaluate the 
updater; otherwise, 
spikes won’t be 
updated.

Saves the 
variable to diskPrints out the relative

file path of the saved
variables
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You’ll notice a couple of files generated, one of them being spikes.ckpt, in the same
directory as your source code. It’s a compactly stored binary file, so you can’t easily
modify it with a text editor. To retrieve this data, you can use the restore function
from the saver op, as demonstrated in the following listing.

import tensorflow as tf
sess = tf.InteractiveSession()

spikes = tf.Variable([False]*8, name='spikes') 
# spikes.initializer.run()                     
saver = tf.train.Saver()                       

saver.restore(sess, "./spikes.ckpt")           
print(spikes.eval())           

sess.close()

2.8 Visualizing data using TensorBoard
In machine learning, the most time-consuming part isn’t programming, but it’s wait-
ing for code to finish running. For example, a famous dataset called ImageNet con-
tains over 14 million images prepared to be used in a machine-learning context.
Sometimes it can take up to days or weeks to finish training an algorithm using a large
dataset. TensorFlow’s handy dashboard, TensorBoard, affords you a quick peek into
the way values are changing in each node of the graph, giving you some idea of how
your code is performing.

 Let’s see how to visualize variable trends over time in a real-world example. In this
section, you’ll implement a moving-average algorithm in TensorFlow, and then you’ll
carefully track the variables you care about for visualization in TensorBoard.

2.8.1 Implementing a moving average

In this section, you’ll use TensorBoard to visualize how data changes. Suppose you’re
interested in calculating the average stock price of a company. Typically, computing
the average is just a matter of adding up all the values and dividing by the total num-
ber seen: mean = (x1 + x2 + … + xn) / n. When the total number of values is unknown,
you can use a technique called exponential averaging to estimate the average value of an
unknown number of data points. The exponential average algorithm calculates the

Listing 2.11 Loading variables

Creates a variable of the 
same size and name as the 
saved data

You no longer need to 
initialize this variable because
it’ll be directly loaded.

Creates the saver op to 
restore saved data

Restores data from 
the spikes.ckpt file

Prints the 
loaded data
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45Visualizing data using TensorBoard
current estimated average as a function of the previous estimated average and the cur-
rent value. 

 More succinctly, Avgt = f(Avgt – 1, xt) = (1 – ) Avgt – 1 +  xt. Alpha () is a parame-
ter that will be tuned, representing how strongly recent values should be biased in the
calculation of the average. The higher the value of , the more dramatically the calcu-
lated average will differ from the previously estimated average. Figure 2.8 (shown after
listing 2.16) shows how TensorBoard visualizes the values and corresponding running
average over time. 

 When you code this, it’s a good idea to think about the main piece of computation
that takes place in each iteration. In this case, each iteration will compute Avgt = (1 – )
Avgt – 1 +  xt. As a result, you can design a TensorFlow operator (listing 2.12) that does
exactly as the formula says. To run this code, you’ll have to eventually define alpha,
curr_value, and prev_avg.

update_avg = alpha * curr_value + (1 - alpha) * prev_avg  

You’ll define the undefined variables later. The reason you’re writing code in such a
backward way is that defining the interface first forces you to implement the periph-
eral setup code to satisfy the interface. Skipping ahead, let’s jump right to the session
part to see how your algorithm should behave. The following listing sets up the pri-
mary loop and calls the update_avg operator on each iteration. Running the
update_avg operator depends on the curr_value, which is fed using the feed_dict
argument.

raw_data = np.random.normal(10, 1, 100)

with tf.Session() as sess:
    for i in range(len(raw_data)):
        curr_avg = sess.run(update_avg, feed_dict={curr_value:raw_data[i]} 
        sess.run(tf.assign(prev_avg, curr_avg))

Great, the general picture is clear, because all that’s left to do is to write out the unde-
fined variables. Let’s fill in the gaps and implement a working piece of TensorFlow
code. Copy the following listing so you can run it.

 
 
 

Listing 2.12 Defining the average update operator

Listing 2.13 Running iterations of the exponential average algorithm

alpha is a tf.constant, curr_value is a
placeholder, and prev_avg is a variable.
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import tensorflow as tf
import numpy as np

raw_data = np.random.normal(10, 1, 100) 

alpha = tf.constant(0.05)                
curr_value = tf.placeholder(tf.float32)  
prev_avg = tf.Variable(0.)               
update_avg = alpha * curr_value + (1 - alpha) * prev_avg

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for i in range(len(raw_data)):       
        curr_avg = sess.run(update_avg, feed_dict={curr_value: raw_data[i]})
        sess.run(tf.assign(prev_avg, curr_avg))
        print(raw_data[i], curr_avg) 

2.8.2 Visualizing the moving average

Now that you have a working implementation of a moving-average algorithm, let’s
visualize the results by using TensorBoard. Visualization using TensorBoard is usually
a two-step process: 

1 Pick out which nodes you care about measuring by annotating them with a sum-
mary op. 

2 Call add_summary on them to queue up data to be written to disk.

For example, let’s say you have an img placeholder and a cost op, as shown in the fol-
lowing listing. You can annotate them (by giving each a name such as img or cost) so
that they’re capable of being visualized in TensorBoard. You’ll do something similar
with your moving-average example.

img = tf.placeholder(tf.float32, [None, None, None, 3])
cost = tf.reduce_sum(...)

my_img_summary = tf.summary.image("img", img)
my_cost_summary = tf.summary.scalar("cost", cost)

More generally, to communicate with TensorBoard, you must use a summary op,
which produces serialized strings used by a SummaryWriter to save updates to a directory.

Listing 2.14 Filling in missing code to complete the exponential average algorithm

Listing 2.15 Annotating with a summary op

Creates a vector of 100 
numbers with a mean of 10 
and standard deviation of 1

Defines alpha as a constant

A placeholder is just like a variable, but 
the value is injected from the session. 

Initializes the previous 
average to zero

Loops through the data 
one by one to update 
the average
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47Visualizing data using TensorBoard
Every time you call the add_summary method from SummaryWriter, TensorFlow will
save data to disk for TensorBoard to use.

WARNING Be careful not to call the add_summary function too often! Although
doing so will produce higher-resolution visualizations of your variables, it’ll be
at the cost of more computation and slightly slower learning.

Run the following command to make a directory called logs in the same folder as this
source code: 

    $ mkdir logs

Run TensorBoard with the location of the logs directory passed in as an argument:

    $ tensorboard --logdir=./logs

Open a browser and navigate to http://localhost:6006, which is the default URL for
TensorBoard. The following listing shows how to hook up the SummaryWriter to your
code. Run it and refresh the TensorBoard to see the visualizations.

import tensorflow as tf
import numpy as np

raw_data = np.random.normal(10, 1, 100)

alpha = tf.constant(0.05)
curr_value = tf.placeholder(tf.float32)
prev_avg = tf.Variable(0.)
update_avg = alpha * curr_value + (1 - alpha) * prev_avg

avg_hist = tf.summary.scalar("running_average", update_avg)   
value_hist = tf.summary.scalar("incoming_values", curr_value)  
merged = tf.summary.merge_all()                               
writer = tf.summary.FileWriter("./logs")       
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    sess.add_graph(sess.graph)            
    for i in range(len(raw_data)):

Listing 2.16 Writing summaries to view in TensorBoard

Creates a
summary node

for the averages

Creates a 
summary 
node for 
the values

Merges the summaries 
to make it easier to 
run all at once

Passes in the logs directory’s 
location to the writer

Optional, but allows you to 
visualize the computation 
graph in TensorBoard
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48 CHAPTER 2 TensorFlow essentials
        summary_str, curr_avg = sess.run([merged, update_avg], 
feed_dict={curr_value: raw_data[i]})               

        sess.run(tf.assign(prev_avg, curr_avg))
        print(raw_data[i], curr_avg)
        writer.add_summary(summary_str, i)    

TIP You may need to ensure that the TensorFlow session has ended before
starting TensorBoard. If you rerun listing 2.16, you’ll need to remember to
clear the logs directory. 

Runs the merged op 
and the update_avg op 
at the same time

Adds the summary 
to the writer

Figure 2.8 The summary display in TensorBoard created in listing 2.16. 
TensorBoard provides a user-friendly interface to visualize data produced in 
TensorFlow.
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2.9 Summary
 You should start thinking of mathematical algorithms in terms of a flowchart of

computation. When you consider each node as an operation, and edges as data
flow, writing TensorFlow code becomes trivial. After you define your graph, you
evaluate it under a session, and you have your result. 

 No doubt, there’s more to TensorFlow than representing computations as a
graph. As you’ll see in the coming chapters, some of the built-in functions
are tailored to the field of machine learning. In fact, TensorFlow has some of
the best support for convolutional neural networks, a currently popular type
of model for processing images (with promising results in audio and text
as well). 

 TensorBoard provides an easy way to visualize the way data changes in Tensor-
Flow code as well as troubleshoot bugs by inspecting trends in data.

 TensorFlow works wonderfully with Jupyter notebooks, which are an elegant
interactive medium for sharing and documenting Python code.
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Part 2

Core learning algorithms

When former US President Barack Obama said, “You can put lipstick on a
pig, but it’s still a pig,” he wasn’t referring to how most complex ideas in machine
learning boil down to just a few foundational ideas, but he might as well have
been. For example, the core algorithms are regression, classification, clustering,
and hidden Markov models. The concepts are each detailed in their respective
chapters, in the order listed.

 After you master these four chapters, you’ll see how most real-world prob-
lems can be solved using similar techniques. What were once foreign or unintui-
tive complications can now be untangled using the formulations from these core
learning algorithms.
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and beyond
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54 CHAPTER 3 Linear regression and beyond
Remember science courses back in high school? It might have been a while ago, or
who knows—maybe you’re in high school now, starting your journey in machine
learning early. Either way, whether you took biology, chemistry, or physics, a common
technique to analyze data is to plot how changing one variable affects another. 

 Imagine plotting the correlation between rainfall frequency and agriculture produc-
tion. You may observe that an increase in rainfall produces an increase in agriculture
production rate. Fitting a line to these data points enables you to make predictions
about the production rate under different rain conditions. If you discover the under-
lying function from a few data points, then that learned function empowers you to
make predictions about the values of unseen data. 

 Regression is a study of how to best fit a curve to summarize your data. It’s one of the
most powerful and well-studied types of supervised-learning algorithms. In regression,
we try to understand the data points by discovering the curve that might have gener-
ated them. In doing so, we seek an explanation for why the given data is scattered the
way it is. The best-fit curve gives us a model for explaining how the dataset might have
been produced. 

 This chapter shows you how to formulate a real-world problem to use regression.
As you’ll see, TensorFlow is just the right tool that delivers some of the most powerful
predictors.

3.1 Formal notation
If you have a hammer, every problem looks like a nail. This chapter demonstrates the
first major machine-learning tool, regression, and formally defines it by using precise
mathematical symbols. Learning regression first is a great idea, because many of the
skills you’ll develop will carry over to other types of problems in future chapters. By
the end of this chapter, regression will become the “hammer” in your box of machine-
learning tools.

 Let’s say you have data about how much money people spent on bottles of beer.
Alice spent $4 on 2 bottles, Bob spent $6 on 3 bottles, and Clair spent $8 on 4 bot-
tles. You want to find an equation that describes how the number of bottles affects
the total cost. For example, if the linear equation y = 2x describes the cost of buying

This chapter covers 
 Fitting a line to data points

 Fitting arbitrary curves to data points

 Testing performance of regression algorithms

 Applying regression to real-world data
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55Formal notation
a particular number of bottles, then you can find out how much each bottle of
beer costs.

 When a line appears to fit some data points well, you might claim that your linear
model performs well. But you could have tried out many possible slopes instead of
choosing the value 2. The choice of slope is the parameter, and the equation contain-
ing the parameter is the model. Speaking in machine-learning terms, the equation of
the best-fit curve comes from learning the parameters of a model.

 As another example, the equation y = 3x is also a line, except with a steeper slope.
You can replace that coefficient with any real number, let’s call it w, and the equation
will still produce a line: y = wx. Figure 3.1 shows how changing the parameter w affects
the model. The set of all equations you can generate this way is denoted as M = {y = wx
| w  }. This is read, “All equations y = wx such that w is a real number.”

M is a set of all possible models. Choosing a value for w generates a candidate model
M(w): y = wx. The regression algorithms that you’ll write in TensorFlow will iteratively
converge to progressively better values for the model’s parameter w. An optimal
parameter, let’s call it w* (pronounced w star), is the best-fit equation M(w*): y = w*x.

Figure 3.1 Different values of the parameter w result in different linear equations. 
The set of all these linear equations is what constitutes the linear model M.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


56 CHAPTER 3 Linear regression and beyond
 In the most general sense, a regression algorithm tries to design a function, let’s
call it f, that maps an input to an output. The function’s domain is a real-valued vector

d, and its range is the set of real numbers . 

NOTE Regression can also be posed with multiple outputs, as opposed to just
one real number. In that case, we call it multivariate regression.

The input of the function could be continuous or discrete. But the output must be
continuous, as demonstrated in figure 3.2.

NOTE Regression predicts continuous outputs, but sometimes that’s overkill.
Sometimes we just want to predict a discrete output, such as 0 or 1, but noth-
ing in between. Classification is a technique better suited for such tasks, and
it’s discussed in chapter 4. 

We’d like to discover a function f that agrees well with the given data points, which are
essentially input/output pairs. Unfortunately, the number of possible functions is
infinite, so we’ll have no luck trying them out one by one. Having too many options
available to choose from is usually a bad idea. It behooves us to tighten the scope of all
the functions we want to deal with. For example, if we look at only straight lines to fit a
set of data points, the search becomes much easier.

EXERCISE 3.1 
How many possible functions exist that map 10 integers to 10 integers? For example,
let f(x) be a function that can take numbers 0 through 9 and produce numbers 0
through 9. One example is the identity function that mimics its input—for example,
f(0) = 0, f(1) = 1, and so on. How many other functions exist? 

ANSWER

1010 = 10,000,000,000

Input Output

Discrete Regression

algorithm

Continuous

Continuous

Figure 3.2 A regression algorithm is meant to produce continuous 
output. The input is allowed to be discrete or continuous. This 
distinction is important because discrete-valued outputs are handled 
better by classification, which is discussed in the next chapter.
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57Formal notation
3.1.1 How do you know the regression algorithm is working?

Let’s say you’re trying to sell a housing-market-predictor algorithm to a real estate
firm. The algorithm predicts housing prices given properties such as the number of
bedrooms and lot size. Real estate companies can easily make millions with such
information, but they need some proof that the algorithm works before buying it
from you.

 To measure the success of the learning algorithm, you’ll need to understand two
important concepts, variance and bias: 

 Variance indicates how sensitive a prediction is to the training set that was used.
Ideally, how you choose the training set shouldn’t matter—meaning a lower
variance is desired. 

 Bias indicates the strength of assumptions made about the training dataset.
Making too many assumptions might make the model unable to generalize, so
you should prefer low bias as well. 

If a model is too flexible, it may accidentally memorize the training data instead of
resolving useful patterns. You can imagine a curvy function passing through every
point of a dataset, appearing to produce no error. If that happens, we say the learn-
ing algorithm overfits the data. In this case, the best-fit curve will agree with the
training data well; but it may perform abysmally when evaluated on the testing data
(see figure 3.3).

On the other end of the spectrum, a not-so-flexible model may generalize better to
unseen testing data, but would score relatively low on the training data. That situation
is called underfitting. A too-flexible model has high variance and low bias, whereas a
too-strict model has low variance and high bias. Ideally, you want a model with both
low-variance error and low-bias error. That way, it both generalizes to unseen data and

Ideal

Train Test Result

Underfit

Overfit

Figure 3.3 Ideally, the best-fit curve fits well on 
both the training data and the test data. If we 
witness it fitting poorly with the test data and the 
training data, there’s a chance that our model is 
underfitting. On the other hand, if it performs 
poorly on the test data but well on the training 
data, we know the model is overfitting.
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58 CHAPTER 3 Linear regression and beyond
captures the regularities of the data. See figure 3.4 for examples of a model underfit-
ting and overfitting data points in 2D.

Concretely, the variance of a model is a measure of how badly the responses fluctuate,
and the bias is a measure of how badly the response is offset from the ground-truth.
You want your model to achieve accurate (low-bias) as well as reproducible (low-
variance) results.

In summary, measuring how well your model does on the training data isn’t a great
indicator of its generalizability. Instead, you should evaluate your model on a separate
batch of testing data. You might find out that your model performs great on the data
you trained it with, but it performs terribly on the test data, in which case your model
is likely overfitting the training data. If the testing error is around the same as the
training error, and both errors are similar, then your model may be fitting well, or
underfitting if that error is high.

 This is why, to measure success in machine learning, you partition the dataset into
two groups: a training dataset and a testing dataset. The model is learned using the
training dataset, and performance is evaluated on the testing dataset (exactly how you
evaluate performance is described in the next section). Out of the many possible

EXERCISE 3.2 

Let’s say your model is M(w): y = wx. How many possible functions can you generate
if the values of the weight parameter w must be integers between 0 and 9 (inclusive)? 

ANSWER 
Only 10: {y = 0, y = x, y = 2x, …, y = 9x}.

Raw data

Ideal fit OverfitUnderfit

Figure 3.4 Examples of underfitting and overfitting the data
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59Linear regression
weight parameters you can generate, the goal is to find one that best fits the data. The
way you measure best fit is by defining a cost function, which is discussed in greater
detail in the following section.

3.2 Linear regression
Let’s start by creating fake data for a leap into the heart of linear regression. Create a
Python source file called regression.py, and follow along with the following listing to
initialize data. The code will produce output similar to figure 3.5.

import numpy as np                 
import matplotlib.pyplot as plt                      

x_train = np.linspace(-1, 1, 101)             
y_train = 2 * x_train + np.random.randn(*x_train.shape) * 0.33  

plt.scatter(x_train, y_train)     
plt.show()                        

Now that you have some data points available, you can try fitting a line. At the very
least, you need to provide TensorFlow with a score for each candidate parameter it
tries. This score assignment is commonly called a cost function. The higher the cost, the
worse the model parameter will be. For example, if the best-fit line is y = 2x, a parame-
ter choice of 2.01 should have low cost, but the choice of –1 should have higher cost.

 After you define the situation as a cost-minimization problem, as denoted in fig-
ure 3.6, TensorFlow takes care of the inner workings and tries to update the parameters

Listing 3.1 Visualizing raw input

Imports NumPy to help
generate initial raw data

Uses matplotlib to 
visualize the data

The input values are 101 
evenly spaced numbers 
between –1 and 1. The output 

values are 
proportional to 
the input but 
with added 
noise.Uses matplotlib’s function to 

generate a scatter plot of the data

Figure 3.5 Scatter plot of 
y = x + (noise)
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in an efficient way to eventually reach the best possible value. Each step of looping
through all your data to update the parameters is called an epoch.

In this example, the way you define cost is by the sum of errors. The error in predicting
x is often calculated by the squared difference between the actual value f(x) and the
predicted value M(w, x). Therefore, the cost is the sum of the squared differences
between the actual and predicted values, as seen in figure 3.7.

Update your previous code to look like the following listing. This code defines the
cost function and asks TensorFlow to run an optimizer to find the optimal solution
for the model parameters.

import tensorflow as tf            
import numpy as np                 
import matplotlib.pyplot as plt    

learning_rate = 0.01                 
training_epochs = 100                

x_train = np.linspace(-1, 1, 101)                                
y_train = 2 * x_train + np.random.randn(*x_train.shape) * 0.33   

Listing 3.2 Solving linear regression 

w min∗ = arg w (cost Ymodel ,Yideal)

M w  X( , )

|Ymodel – Yideal | Figure 3.6 Whichever parameter w minimizes, the cost is 
optimal. Cost is defined as the norm of the error between the 
ideal value with the model response. And, lastly, the response 
value is calculated from the function in the model set.

Cost

Model response

True value

Figure 3.7 The cost is the norm of the point-wise difference between the model 
response and the true value.

Imports TensorFlow for the learning algorithm. 
You’ll need NumPy to set up the initial data. And 
you’ll use matplotlib to visualize your data.

Defines constants used by the learning 
algorithm. They’re called hyperparameters.

Sets up fake data
that you’ll use to
find a best-fit line

Sets up fake data
that you’ll use to
find a best-fit line
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


61Linear regression
X = tf.placeholder(tf.float32)     
Y = tf.placeholder(tf.float32)     

def model(X, w):                         
    return tf.multiply(X, w)  
    
w = tf.Variable(0.0, name="weights")                     

y_model = model(X, w)               
cost = tf.square(Y-y_model)         

train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

sess = tf.Session()                            
init = tf.global_variables_initializer()       
sess.run(init)                                 
    

for epoch in range(training_epochs):            
  for (x, y) in zip(x_train, y_train):          
    sess.run(train_op, feed_dict={X: x, Y: y})  

w_val = sess.run(w)            

sess.close()                                    
plt.scatter(x_train, y_train)                  
y_learned = x_train*w_val              
plt.plot(x_train, y_learned, 'r')      
plt.show()                             

As figure 3.8 shows, you’ve just solved linear regression using TensorFlow! Conve-
niently, the rest of the topics in regression are just minor modifications of listing 3.2.
The entire pipeline involves updating model parameters using TensorFlow, as summa-
rized in figure 3.9.

 You’ve just learned how to implement a simple regression model in TensorFlow.
Making further improvements is simply a matter of enhancing the model with the
right medley of variance and bias, as we discussed earlier. For example, the linear
regression model you’ve designed so far is burdened with a strong bias; it expresses
only a limited set of functions, such as linear functions. In the next section, you’ll
try a more flexible model. You’ll notice how only the TensorFlow graph needs to be
rewired, while everything else (such as preprocessing, training, evaluation) stays
the same.

Sets up the input and output nodes as placeholders 
because the value will be injected by x_train and y_train

Defines the model 
as y = w*X

Sets up the 
weights variable

Defines the 
cost function

Defines the operation that will be called on 
each iteration of the learning algorithm

Sets up a session and 
initializes all variables

Loops through the 
dataset multiple times

Loops through each 
item in the dataset

Updates the model parameter(s) to try 
to minimize the cost function

Obtains the final 
parameter value

Closes the 
session

Plots the 
original data

Plots the 
best-fit line
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62 CHAPTER 3 Linear regression and beyond
3.3 Polynomial model
Linear models may be an intuitive first guess, but rarely are real-world correlations so
simple. For example, the trajectory of a missile through space is curved relative to the
observer on Earth. Wi-Fi signal strength degrades with an inverse square law. The
change in height of a flower over its lifetime certainly isn’t linear. 

Figure 3.8 Linear regression estimate 
shown by running listing 3.2

Training

data

Feature

vector

Session

Graph

Run

minimizer

op

Learning algorithm in TensorFlow

Placeholders

Variables ( )  �

M( )  �

Constants

TensorFlow

keeps updating

to minimize cost.

�

Figure 3.9 The learning algorithm updates the model’s parameters to 
minimize the given cost function.
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63Polynomial model
 When data points appear to form smooth curves rather than straight lines, you
need to change your regression model from a straight line to something else. One
such approach is to use a polynomial model. A polynomial is a generalization of a linear
function. The nth degree polynomial looks like the following: 

f(x) = wn xn + ... + w1 x + w0

NOTE When n = 1, a polynomial is simply a linear equation f(x) = w1 x + w0. 

Consider the scatter plot in figure 3.10, showing the input on the x-axis and the out-
put on the y-axis. As you can tell, a straight line is insufficient to describe all the data.
A polynomial function is a more flexible generalization of a linear function.

Let’s try to fit a polynomial to this kind of data. Create a new file called polynomial.py,
and follow along with the next listing.

import tensorflow as tf              
import numpy as np                   
import matplotlib.pyplot as plt      

learning_rate = 0.01                 
training_epochs = 40                 

trX = np.linspace(-1, 1, 101)                

num_coeffs = 6                                   
trY_coeffs = [1, 2, 3, 4, 5, 6]                  
trY = 0                                          
for i in range(num_coeffs):                      
    trY += trY_coeffs[i] * np.power(trX, i)      

Listing 3.3 Using a polynomial model

Figure 3.10 Data points like this 
aren’t suitable for a linear model. 

Imports the relevant 
libraries and initializes 
the hyperparameters

Sets up fake raw 
input data

Sets up raw output 
data based on a fifth-
degree polynomial
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D
th
fu
trY += np.random.randn(*trX.shape) * 1.5            

plt.scatter(trX, trY)              
plt.show()                         

X = tf.placeholder(tf.float32)      
Y = tf.placeholder(tf.float32)      

def model(X, w):                                        
    terms = []                                          
    for i in range(num_coeffs):                         
        term = tf.multiply(w[i], tf.pow(X, i))          
        terms.append(term)                              
    return tf.add_n(terms)                              

w = tf.Variable([0.] * num_coeffs, name="parameters")   
y_model = model(X, w)                                   
 

cost = (tf.pow(Y-y_model, 2))                                              
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 

sess = tf.Session()                                     
init = tf.global_variables_initializer()                
sess.run(init)                                          

for epoch in range(training_epochs):                    
    for (x, y) in zip(trX, trY):                        
        sess.run(train_op, feed_dict={X: x, Y: y})      

w_val = sess.run(w)                                     
print(w_val)                                            

sess.close()                       

plt.scatter(trX, trY)                     
trY2 = 0                                  
for i in range(num_coeffs):               
    trY2 += w_val[i] * np.power(trX, i)   

plt.plot(trX, trY2, 'r')                  
plt.show()                                

The final output of this code is a fifth-degree polynomial that fits the data, as shown in
figure 3.11.

 
 

Adds noise

Shows a scatter plot 
of the raw data

Defines the nodes to hold 
values for input/output pairs

Defines your 
polynomial 
model

Sets up the parameter 
vector to all zeros

efines
e cost
nction
just as
before

Sets up the session 
and runs the 
learning algorithm 
just as before

Closes the session 
when done

Plots the 
result
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3.4 Regularization
Don’t be fooled by the wonderful flexibility of polynomials, as shown in the previous
section. Just because higher-order polynomials are extensions of lower ones doesn’t
mean you should always prefer to use the more flexible model.

 In the real world, raw data rarely forms a smooth curve mimicking a polynomial.
Imagine you’re plotting house prices over time. The data likely will contain fluctua-
tions. The goal of regression is to represent the complexity in a simple mathematical
equation. If your model is too flexible, the model may be overcomplicating its inter-
pretation of the input. 

 Take, for example, the data presented in figure 3.12. You try to fit an eighth-degree
polynomial into points that appear to follow the equation y = x2. This process fails mis-
erably as the algorithm tries its best to update the nine coefficients of the polynomial.

Regularization is a technique to structure the parameters in a form you prefer, often to
solve the problem of overfitting. In this case, you anticipate the learned coefficients to
be 0 everywhere except for the second term, thus producing the curve y = x2. The

Figure 3.11 The best-fit curve smoothly 
aligns with the nonlinear data.

Figure 3.12 When the model is too 
flexible, a best-fit curve can look 
awkwardly complicated or unintuitive. We 
need to use regularization to improve the 
fit, so that the learned model performs 
well against test data.
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C
th
o

regression algorithm has no idea about this, so it may produce curves that score well
but look strangely overcomplicated.

 To influence the learning algorithm to produce a smaller coefficient vector (let’s
call it w), you add that penalty to the loss term. To control how significantly you want
to weigh the penalty term, you multiply the penalty by a constant non-negative num-
ber, , as follows:

Cost(X, Y) = Loss(X, Y) + 

If  is set to 0, regularization isn’t in play. As you set  to larger and larger values,
parameters with larger norms will be heavily penalized. The choice of norm varies
case by case, but parameters are typically measured by their L1 or L2 norm. Simply
put, regularization reduces some of the flexibility of the otherwise easily tangled
model.

 To figure out which value of the regularization parameter  performs best, you
must split your dataset into two disjointed sets. About 70% of the randomly chosen
input/output pairs will consist of the training dataset. The remaining 30% will be
used for testing. You’ll use the function provided in the following listing for splitting
the dataset.

def split_dataset(x_dataset, y_dataset, ratio):         
    arr = np.arange(x_dataset.size)                  
    np.random.shuffle(arr)                           
    num_train = int(ratio * x_dataset.size)           
    x_train = x_dataset[arr[0:num_train]]                
    x_test = x_dataset[arr[num_train:x_dataset.size]]                
    y_train = y_dataset[arr[0:num_train]]       
    y_test = y_dataset[arr[num_train:x_dataset.size]]       
    return x_train, x_test, y_train, y_test           

Listing 3.4 Splitting the dataset into testing and training sets

EXERCISE 3.3 
A Python library called scikit-learn supports many useful data-preprocessing algo-
rithms. You can call a function in scikit-learn to do exactly what listing 3.4 achieves.
Can you find this function on the library’s documentation? Hint: http://scikit-learn
.org/stable/modules/classes.html#module-sklearn.model_selection.

ANSWER

It’s called sklearn.model_selection.train_test_split.

Takes the input and output dataset
as well as the desired split ratio

Shuffles a list of 
numbers

alculates
e number
f training
examples

Uses the shuffled list 
to split the x_dataset

Likewise, splits 
the y_dataset

Returns the split x
and y datasets
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Def
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cost 
With this handy tool, you can begin testing which value of  performs best on your
data. Open a new Python file, and follow along with this listing.

import tensorflow as tf                      
import numpy as np                           
import matplotlib.pyplot as plt              

learning_rate = 0.001                        
training_epochs = 1000                       
reg_lambda = 0.                              

x_dataset = np.linspace(-1, 1, 100)                             

num_coeffs = 9                                                  
y_dataset_params = [0.] * num_coeffs                            
y_dataset_params[2] = 1                                         
y_dataset = 0                                                   
for i in range(num_coeffs):                                     
    y_dataset += y_dataset_params[i] * np.power(x_dataset, i)   
y_dataset += np.random.randn(*x_dataset.shape) * 0.3            

(x_train, x_test, y_train, y_test) = split_dataset(x_dataset, y_dataset, 0.7)

X = tf.placeholder(tf.float32)        
Y = tf.placeholder(tf.float32)        

def model(X, w):                                      
    terms = []                                        
    for i in range(num_coeffs):                       
        term = tf.multiply(w[i], tf.pow(X, i))        
        terms.append(term)                            
    return tf.add_n(terms)                            

w = tf.Variable([0.] * num_coeffs, name="parameters")                      
y_model = model(X, w)                                                      
cost = tf.div(tf.add(tf.reduce_sum(tf.square(Y-y_model)),
                     tf.multiply(reg_lambda, tf.reduce_sum(tf.square(w)))),
              2*x_train.size)                                              
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 

sess = tf.Session()                            
init = tf.global_variables_initializer()       
sess.run(init)                                 

for reg_lambda in np.linspace(0,1,100):                             
    for epoch in range(training_epochs):                            
        sess.run(train_op, feed_dict={X: x_train, Y: y_train})      
    final_cost = sess.run(cost, feed_dict={X: x_test, Y:y_test})    
    print('reg lambda', reg_lambda)                                 
    print('final cost', final_cost)                                 

sess.close()                 

Listing 3.5 Evaluating regularization parameters

Imports the 
relevant libraries 
and initializes the 
hyperparameters

Creates a fake 
dataset, y = x2

ts the
taset
 70%
ining
 30%
sting
using
g 3.4

Sets up the input/output 
placeholders

Defines 
your 
model

ines the
ularized
function

Sets up the 
session

Tries various 
regularization 
parameters

Closes the session
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68 CHAPTER 3 Linear regression and beyond
If you plot the corresponding output per each regularization parameter from listing
3.5, you can see how the curve changes as  increases. When  is 0, the algorithm
favors using the higher-order terms to fit the data. As you start penalizing parameters
with a high L2 norm, the cost decreases, indicating that you’re recovering from over-
fitting, as shown in figure 3.13.

λ = 0.0
Cost = 0.032031

λ = 0.05
Cost = 0.24077

λ = 0.20
Cost = 0.212215

Figure 3.13 As you increase the regularization parameter to some 
extent, the cost decreases. This implies that the model was originally 
overfitting the data, and regularization helped add structure.
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3.5 Application of linear regression
Running linear regression on fake data is like buying a new car and never driving it.
This awesome machinery begs to manifest itself in the real world! Fortunately, many
datasets are available online to test your newfound knowledge of regression: 

 The University of Massachusetts Amherst supplies small datasets of various types:
www.umass.edu/statdata/statdata.

 Kaggle contains all types of large-scale data for machine-learning competitions:
www.kaggle.com/datasets.

 Data.gov is an open data initiative by the US government that contains many
interesting and practical datasets: https://catalog.data.gov.

A good number of datasets contain dates. For example, there’s a dataset of all phone
calls to the 3-1-1 non-emergency line in Los Angeles, California. You can obtain it at
http://mng.bz/6vHx. A good feature to track could be the frequency of calls per day,
week, or month. For convenience, the following listing allows you to obtain a weekly
frequency count of data items.

import csv          
import time                          

def read(filename, date_idx, date_parse, year, bucket=7):

    days_in_year = 365

    freq = {}            
    for period in range(0, int(days_in_year / bucket)):
        freq[period] = 0

    with open(filename, 'rb') as csvfile:      
        csvreader = csv.reader(csvfile)
        csvreader.next()
        for row in csvreader:
            if row[date_idx] == '':
                continue
            t = time.strptime(row[date_idx], date_parse)
            if t.tm_year == year and t.tm_yday < (days_in_year-1):
                freq[int(t.tm_yday / bucket)] += 1

    return freq

freq = read('311.csv', 0, '%m/%d/%Y', 2014)        

Listing 3.6 Parsing raw CSV datasets

For easily 
reading CSV files For using useful 

date functions

Sets up initial 
frequency map

Reads data and 
aggregates count 
per period

Obtains a weekly frequency 
count of 3-1-1 phone calls 
in 2014 
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70 CHAPTER 3 Linear regression and beyond
This code gives you the training data for linear regression. The freq variable is a dic-
tionary that maps a period (such as a week) to a frequency count. A year has 52 weeks,
so you’ll have 52 data points, if you leave bucket=7 as is. 

 Now that you have data points, you have exactly the input and output necessary to
fit a regression model by using the techniques covered in this chapter. More practi-
cally, the learned model can be used to interpolate or extrapolate frequency counts.

3.6 Summary
 Regression is a type of supervised machine learning for predicting continuous-

valued output.
 By defining a set of models, you greatly reduce the search space of possible

functions. Moreover, TensorFlow takes advantage of the differentiable property
of the functions by running its efficient gradient-descent optimizers to learn the
parameters.

 You can easily modify linear regression to learn polynomials or other more
complicated curves.

 To avoid overfitting your data, you regularize the cost function by penalizing
larger-valued parameters.

 If the output of the function isn’t continuous, a classification algorithm should
be used instead (see the next chapter).

 TensorFlow enables you to solve linear-regression machine-learning problems
effectively and efficiently, and hence make useful predictions about important
matters, such as agricultural production, heart conditions, housing prices,
and more.
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72 CHAPTER 4 A gentle introduction to classification
Imagine an advertisement agency collecting information about user interactions to
decide what type of ad to show. That’s not uncommon. Google, Twitter, Facebook, and
other big tech giants that rely on ads have creepy-good personal profiles of their users
to help deliver personalized ads. A user who’s recently searched for gaming keyboards
or graphics cards is probably more likely to click ads about the latest and greatest
video games. 

 Delivering a specially crafted advertisement to each individual may be difficult, so
grouping users into categories is a common technique. For example, a user may be
categorized as a “gamer” to receive relevant video game–related ads.

 Machine learning is the go-to tool to accomplish such a task. At the most funda-
mental level, machine-learning practitioners want to build a tool to help them under-
stand data. Labeling data items as belonging in separate categories is an excellent way
to characterize data for specific needs.

 The previous chapter dealt with regression, which was about fitting a curve to data.
As you recall, the best-fit curve is a function that takes as input a data item and assigns
it a number. Creating a machine-learning model that instead assigns discrete labels to
its inputs is called classification. It’s a supervised-learning algorithm for dealing with
discrete output. (Each discrete value is called a class.) The input is typically a feature
vector, and the output is a class. If there are only two class labels (for example,
True/False, On/Off, Yes/No), we call this learning algorithm a binary classifier. Other-
wise, it’s called a multiclass classifier. 

 There are many types of classifiers, but this chapter focuses on the ones outlined in
table 4.1. Each has its advantages and disadvantages, which we’ll delve into deeper
after we start implementing each one in TensorFlow.

 Linear regression is the easiest to implement because we already did most of the
hard work in chapter 3, but as you’ll see, it’s a terrible classifier. A much better classi-
fier is the logistic regression algorithm. As the name suggests, it uses logarithmic prop-
erties to define a better cost function. And lastly, softmax regression is a direct
approach to solving multiclass classification. It’s a natural generalization of logistic
regression. It’s called softmax regression because a function called softmax is applied
as the last step.

This chapter covers
 Writing formal notation

 Using logistic regression

 Working with a confusion matrix

 Understanding multiclass classification
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


73Formal notation
4.1 Formal notation
In mathematical notation, a classifier is a function y = f(x), where x is the input data
item and y is the output category (figure 4.1). Adopting from traditional scientific lit-
erature, we often refer to the input vector x as the independent variable, and the output
y as the dependent variable.

Formally, a category label is restricted to a range of possible values. You can think of
two-valued labels as being like Boolean variables in Python. When the input features
have only a fixed set of possible values, you need to ensure that your model can under-
stand how to handle them. Because the set of functions in a model typically deal with
continuous real numbers, you need to preprocess the dataset to account for discrete
variables, which fall into one of two types: ordinal or nominal (figure 4.2).

Table 4.1 Classifiers

Type Pros Cons

Linear regression Simple to implement Not guaranteed to work 

Supports only binary labels

Logistic regression Highly accurate

Flexible ways to regularize model for custom 
adjustment

Model responses are measures of probability

Easy-to-update model with new data

Supports only binary labels

Softmax regression Supports multiclass classification

Model responses are measures of probability

More complicated to implement

Input Output

Discrete

f x( )

Classifier

Continuous

Discrete

Figure 4.1 A classifier produces discrete 
outputs but may take either continuous or 
discrete inputs.

Discrete

Ordinal 2,      4,      6

, ,
Nominal

Figure 4.2 There are two types of discrete 
sets: those with values that can be ordered 
(ordinal) and those with values that can’t 
(nominal).
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74 CHAPTER 4 A gentle introduction to classification
Values of an ordinal type, as the name suggests, can be ordered. For example, the val-
ues in a set of even numbers from 1 to 10 are ordinal because integers can be com-
pared with each other. On the other hand, an element from a set of fruits {banana,
apple, orange} might not come with a natural ordering. We call values from such a
set nominal, because they can be described by only their names.

 A simple approach to representing nominal variables in a dataset is to assign a
number to each label. Our set {banana, apple, orange} could instead be processed
as {0, 1, 2}. But some classification models may have a strong bias about how the data
behaves. For example, linear regression would interpret our apple as midway between
a banana and an orange, which makes no natural sense.

 A simple workaround to represent nominal categories of a dependent variable is
by adding dummy variables for each value of the nominal variable. In this example, the
fruit variable would be removed, and replaced by three separate variables: banana,
apple, and orange. Each variable holds a value of 0 or 1 (figure 4.3), depending on
whether the category for that fruit holds true. This process is often referred to as one-
hot encoding.

Just as in linear regression from chapter 3, the learning algorithm must traverse the
possible functions supported by the underlying model, called M. In linear regression,
the model was parameterized by w. The function y = M(w) can then be tried out to
measure its cost. In the end, we choose a value of w with the least cost. The only differ-
ence between regression and classification is that the output is no longer a continuous
spectrum, but instead a discrete set of class labels. 

0,      1
, ,

Fruit

0,      1

0,      1

Figure 4.3 If the values of a variable are nominal, they might need to be 
preprocessed. One solution is to treat each nominal value as a Boolean variable, 
as shown on the right: banana, apple, and orange are three newly added 
variables, each having a value of 0 or 1. The original fruit variable is removed.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


75Measuring performance
Because the input/output types for regression are even more general than those of
classification, nothing prevents you from running a linear regression algorithm on a
classification task. In fact, that’s exactly what you’ll do in section 4.3. Before you begin
implementing TensorFlow code, it’s important to gauge the strength of a classifier.
The next section covers state-of-the-art approaches to measuring a classifier’s success.

4.2 Measuring performance
Before you begin writing classification algorithms, you should be able to check the
success of your results. This section covers essential techniques to measure perfor-
mance in classification problems.

4.2.1 Accuracy

Do you remember those multiple-choice exams in high school or college? Classifica-
tion problems in machine learning are similar. Given a statement, your job is to clas-
sify it as one of the given multiple-choice “answers.” If you have only two choices, as in
a true-or-false exam, we call it a binary classifier. If this were a graded exam in school,
the typical way to measure your score would be to count the number of correct
answers and divide that by the total number of questions.

 Machine learning adopts this same scoring strategy and calls it accuracy. Accuracy is
measured by the following formula:

This formula gives a crude summary of the performance, which may be sufficient if
you’re worried only about the overall correctness of the algorithm. But the accuracy
measure doesn’t reveal a breakdown of correct and incorrect results for each label.

 To account for this limitation, a confusion matrix is a more detailed report of a clas-
sifier’s success. A useful way to describe how well a classifier performs is by inspecting
the way it performs on each of the classes. 

 For instance, consider a binary classifier with “positive” and “negative” labels. As
shown in figure 4.4, a confusion matrix is a table that compares how the predicted
responses compare with actual ones. Data items that are correctly predicted as positive
are called true positives (TP). Those that are incorrectly predicted as positive are called

EXERCISE 4.1 
Is it a better idea to treat each of the following as a regression or classification task?
(a) Predicting stock prices; (b) Deciding which stocks you should buy, sell, or hold;
(c) Rating the quality of a computer on a 1–10 scale

ANSWER 
(a) Regression, (b) Classification, (c) Either

accuracy #correct
#total

--------------------=
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76 CHAPTER 4 A gentle introduction to classification
false positives (FP). If the algorithm accidentally predicts an element to be negative
when in reality it is positive, we call this situation a false negative (FN). Lastly, when the
prediction and reality both agree that a data item is a negative label, it’s called a true
negative (TN). As you can see, it’s called a confusion matrix because it enables you to
easily see how often a model confuses two classes that it’s trying to differentiate.

NOTE TO PRINT BOOK READERS Many graphics in this book include color,
which can be viewed in the eBook versions. To get your free eBook in PDF,
ePub, or Kindle format, go to www.manning.com/books/machine-learning-
with-tensorflow to register your print book.

4.2.2 Precision and recall

Although the definitions of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) are all useful individually, the true power comes in the
interplay between them. 

 The ratio of true positives to total positive examples is called precision. It’s a score
of how likely a positive prediction is to be correct. The left column in figure 4.4 is
the total number of positive predictions (TP + FP), so the equation for precision
is the following:

The ratio of true positives to all possible positives is called recall. It measures the ratio
of true positives found. It’s is a score of how many true positives were successfully pre-
dicted (that is, recalled). The top row in figure 4.4 is the total number of all positives
(TP + FN), so the equation for recall is the following:

Simply put, precision is a measure of the predictions the algorithm got right, and
recall is a measure of the right things the algorithm identified in the final set. If the

TP FN

FP TN

Predicted

Actual

Figure 4.4 You can compare predicted results to 
actual results by using a matrix of positive (green 
check mark) and negative (red forbidden) labels.

precision TP
TP FP+
--------------------=

recall TP
TP FN+
---------------------=
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77Measuring performance
precision is higher than the recall, the model is better at successfully identifying cor-
rect items than not identifying some wrong items, and vice versa.

 Let’s do a quick example. Let’s say you’re trying to identify cats in a set of 100 pic-
tures; 40 of the pictures are cats, and 60 are dogs. When you run your classifier, 10 of
the cats are identified as dogs, and 20 of the dogs are identified as cats. Your confusion
matrix looks like figure 4.5.

You can see the total number of cats on the left side of the prediction column: 30
identified correctly, and 10 not, totaling 40.

4.2.3 Receiver operating characteristic curve

Because binary classifiers are among the most popular tools, many mature techniques
exist for measuring their performance, such as the receiver operating characteristic
(ROC) curve. The ROC curve is a plot that lets you compare the trade-offs between
false positives and true positives. The x-axis is the measure of false-positive values, and
the y-axis is the measure of true-positive values. 

 A binary classifier reduces its input feature vector into a number and then decides
the class based on whether the number is greater than or less than a specified thresh-
old. As you adjust a threshold of the machine-learning classifier, you plot the various
values of false-positive and true-positive rates.

 A robust way to compare various classifiers is by comparing their ROC curves.
When two curves don’t intersect, one method is certainly better than the other. Good

EXERCISE 4.2
What are the precision and recall for cats? What’s the accuracy of the system?

ANSWER

For cats, the precision is 30 / (30 + 20) or 3/5. The recall is 30 / (30 + 10), or 3/4.
The accuracy is (30 + 40) / 100, or 70%.

Confusion matrix Predicted

Cat Dog

30

True positives

20

False positives

10

False negatives

Cat

Actual
Dog 40

True negatives

Figure 4.5 An example of a confusion matrix for evaluating the 
performance of a classification algorithm
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78 CHAPTER 4 A gentle introduction to classification
algorithms are far above the baseline. A quantitative way to compare classifiers is by
measuring the area under the ROC curve. If a model has an area-under-curve (AUC)
value higher than 0.9, it’s an excellent classifier. A model that randomly guesses the
output will have an AUC value of about 0.5. See figure 4.6 for an example.

 

4.3 Using linear regression for classification
One of the simplest ways to implement a classifier is to tweak a linear regression algo-
rithm, like the ones in chapter 3. As a reminder, the linear regression model is a set of
functions that look linear, f(x) = wx. The function f(x) takes continuous real numbers
as input and produces continuous real numbers as output. Remember, classification is
all about discrete outputs. So, one way to force the regression model to produce a two-
valued (binary) output is by setting values above a certain threshold to a number
(such as 1) and values below that threshold to a different number (such as 0). 

EXERCISE 4.3 
How would a 100% correct rate (all true positives, no false positives) look as a point
on an ROC curve? 

ANSWER 
The point for a 100% correct rate would be located on the positive y-axis of the ROC
curve.

1
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ROC curves

False-positive rate

Baseline

Always better

1

1
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False-positive rate

Baseline

Sometimes better

1

Figure 4.6 The principled way to compare algorithms is by examining their ROC curves. When 
the true-positive rate is greater than the false-positive rate in every situation, it’s straightforward 
to declare that one algorithm is dominant in terms of its performance. If the true-positive rate is 
less than the false-positive rate, the plot dips below the baseline shown by the dotted line.
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 We’ll proceed with the following motivating example. Imagine that Alice is an avid
chess player, and you have records of her win/loss history. Moreover, each game has a
time limit ranging from 1 to 10 minutes. You can plot the outcome of each game as
shown in figure 4.7. The x-axis represents the time limit of the game, and the y-axis
signifies whether she won (y = 1) or lost (y = 0).

As you see from the data, Alice is a quick thinker: she always wins short games. But she
usually loses games that have longer time limits. From the plot, you’d like to predict
the critical game time-limit that decides whether she’ll win. 

 You want to challenge her to a game that you’re sure of winning. If you choose an
obviously long game, such as one that takes 10 minutes, she’ll refuse to play. So, let’s
set up the game time to be as short as possible so she’ll be willing to play against you,
while tilting the balance to your advantage. 

 A linear fit on the data gives you something to work with. Figure 4.8 shows the best-
fit line computed using linear regression from listing 4.1 (appearing shortly). The
value of the line is closer to 1 than it is to 0 for games that Alice will likely win. It
appears that if you pick a time corresponding to when the value of the line is less than

1.2

Chess victories of various timed games

Time (minutes)

0.6

0.8

1.0Win

0.4

0.2

0.0

–2 0 2 4 6 8 10
–0.2

Lose

Figure 4.7 A visualization of a binary classification training dataset. The values are 
divided into two classes: all points where y = 1, and all points where y = 0. 
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80 CHAPTER 4 A gentle introduction to classification
0.5 (that is, when Alice is more likely to lose than to win), then you have a good
chance of winning.

 The line is trying to fit the data as best possible. Due to the nature of the training
data, the model will respond with values near 1 for positive examples and values near
0 for negative examples. Because you’re modeling this data with a line, some input
may produce values between 0 and 1. As you may imagine, values too far into one cat-
egory will result in values greater than 1 or less than 0. You need a way to decide when
an item belongs to one category more than another. Typically, you choose the mid-
point, 0.5, as a deciding boundary (also called the threshold). Are you’ve seen, this pro-
cedure uses linear regression to perform classification.

Let’s write your first classifier! Open a new Python source file, and call it linear.py. Use
the following listing to write the code. In the TensorFlow code, you’ll need to first

EXERCISE 4.4 
What are the disadvantages of using linear regression as a tool for classification?
(See listing 4.4 for a hint.)

ANSWER

Linear regression is sensitive to outliers in your data, so it isn’t an accurate classifier. 

Figure 4.8 The diagonal line is the best-fit line on a classification dataset. 
Clearly, the line doesn’t fit the data well, but it provides an imprecise 
approach for classifying new data.
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Sets u
para

var

D
th
fun
define placeholder nodes and then inject values into them from the session.run()
statement. 

import tensorflow as tf                   
import numpy as np                        
import matplotlib.pyplot as plt           

x_label0 = np.random.normal(5, 1, 10)               
x_label1 = np.random.normal(2, 1, 10)               
xs = np.append(x_label0, x_label1)                  
labels = [0.] * len(x_label0) + [1.] * len(x_label1)  

plt.scatter(xs, labels)                              

learning_rate = 0.001       
training_epochs = 1000      

X = tf.placeholder("float")      
Y = tf.placeholder("float")      

def model(X, w):                                     
    return tf.add(tf.multiply(w[1], tf.pow(X, 1)),   
                  tf.multiply(w[0], tf.pow(X, 0)))   

w = tf.Variable([0., 0.], name="parameters")       
y_model = model(X, w)                            
cost = tf.reduce_sum(tf.square(Y-y_model))        

train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

After designing the TensorFlow graph, you’ll see in the following listing how to open a
new session and execute the graph. train_op updates the model’s parameters to bet-
ter and better guesses. You run train_op multiple times in a loop because each step
iteratively improves the parameter estimate. The following listing generates a plot sim-
ilar to figure 4.8.

sess = tf.Session()                          
init = tf.global_variables_initializer()     
sess.run(init)                               
  

for epoch in range(training_epochs):                             
    sess.run(train_op, feed_dict={X: xs, Y: labels})             
    current_cost = sess.run(cost, feed_dict={X: xs, Y: labels})  

Listing 4.1 Using linear regression for classification

Listing 4.2 Executing the graph

Imports TensorFlow for the core learning 
algorithm, NumPy for manipulating data, 
and matplotlib for visualizing

Initializes fake data, 10 
instances of each label

Initializes the 
corresponding 
labels

Plots the dataDeclares the 
hyperparameters

Sets up the placeholder nodes 
for the input/output pairs

Defines a linear 
y = w1 * x + w0 modelp the

meter
iables Defines a helper variable, 

because you’ll refer to 
this multiple timesefines

e cost
ction

Defines the rule to
learn the parameters

Opens a new session, and 
initializes the variables

Runs the 
learning 
operation 
multiple 
times

Records the cost computed with 
the current parameters
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    if epoch % 100 == 0:
        print(epoch, current_cost)              

w_val = sess.run(w)                      
print('learned parameters', w_val)       

sess.close()                                 

all_xs = np.linspace(0, 10, 100)                
plt.plot(all_xs, all_xs*w_val[1] + w_val[0])    
plt.show()                                      

To measure success, you can count the number of correct predictions and compute a
success rate. In the next listing, you’ll add two more nodes to the previous code in lin-
ear.py, called correct_prediction and accuracy. You can then print the value of
accuracy to see the success rate. The code can be executed right before closing the
session.

correct_prediction = tf.equal(Y, tf.to_float(tf.greater(y_model, 0.5))) 
accuracy = tf.reduce_mean(tf.to_float(correct_prediction))    

print('accuracy', sess.run(accuracy, feed_dict={X: xs, Y: labels}))    

The preceding code produces the following output:

('learned parameters', array([ 1.2816, -0.2171], dtype=float32))
('accuracy', 0.95)

If classification were that easy, this chapter would be over by now. Unfortunately, the
linear regression approach fails miserably if you train on more-extreme data, also
called outliers. 

 For example, let’s say Alice lost a game that took 20 minutes. You train the classi-
fier on a dataset that includes this new outlier data point. The following listing
replaces one of the game times with the value of 20. Let’s see how introducing an out-
lier affects the classifier’s performance.

x_label0 = np.append(np.random.normal(5, 1, 9), 20)

Listing 4.3 Measuring accuracy

Listing 4.4 Linear regression failing miserably for classification

Prints out log info 
while the code runs

Prints the learned 
parameters

Closes the session when 
no longer in use

Shows the 
best-fit line

When the model’s response is greater than 0.5,
it should be a positive label, and vice versa.

Computes the 
percent of success

Prints the success measure
from provided input
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83Using logistic regression
When you rerun the code with these changes, you’ll see a result similar to figure 4.9.

The original classifier suggested that you could beat Alice in a three-minute game.
She’d probably agree to play such a short game. But the revised classifier, if you stick
with the same 0.5 threshold, is now suggesting that the shortest game she’ll lose is a
five-minute game. She’ll likely refuse to play such a long game!

4.4 Using logistic regression
Logistic regression provides you with an analytic function with theoretical guarantees
on accuracy and performance. It’s just like linear regression, except you use a differ-
ent cost function and slightly transform the model response function.

 Let’s revisit the linear function shown here:

In linear regression, a line with a nonzero slope may range from negative infinity to
infinity. If the only sensible results for classification are 0 or 1, it would be intuitive
to instead fit a function with that property. Fortunately, the sigmoid function depicted
in figure 4.10 works well because it converges to 0 or 1 quickly.

Figure 4.9 A new training element of value 20 greatly influences the best-fit 
line. The line is too sensitive to outlying data, and therefore linear regression 
is a sloppy classifier.

y x  wx=
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84 CHAPTER 4 A gentle introduction to classification
When x is 0, the sigmoid function results in 0.5. As x increases, the function converges
to 1. And as x decreases to negative infinity, the function converges to 0. 

 In logistic regression, our model is sig(linear(x)). As it turns out, the best-fit
parameters of this function imply a linear separation between the two classes. This
separating line is also called a linear decision boundary. 

4.4.1 Solving one-dimensional logistic regression 

The cost function used in logistic regression is a bit different from the one you used in
linear regression. Although you could use the same cost function as before, it won’t be
as fast or guarantee an optimal solution. The sigmoid function is the culprit here,
because it causes the cost function to have many “bumps.” TensorFlow and most other
machine-learning libraries work best with simple cost functions. Scholars have found a
neat way to modify the cost function to use sigmoids for logistic regression.

 The new cost function between the actual value y and model response h will be a
two-part equation as follows:

You can condense the two equations into one long equation:

Cost(y, h) = –y log(h) – (1 – y)log(1 – h)

This function has exactly the qualities needed for efficient and optimal learning. Spe-
cifically, it’s convex, but don’t worry too much about what that means. You’re trying to
minimize the cost: think of cost as an altitude and the cost function as a terrain.
You’re trying to find the lowest point in the terrain. It’s a lot easier to find the lowest
point in the terrain if there’s no place you can ever go uphill. Such a place is called
convex. There are no hills.

0

1

0.5 sig( ) =x
1

1 + e–x

Figure 4.10 A visualization of 
the sigmoid function

Cost y h  h ,       log– if y 1=

1 h– , log– if y 0=



=
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 You can think of it as a ball rolling down a hill. Eventually, the ball will settle to the
bottom, which is the optimal point. A nonconvex function might have a rugged terrain,
making it difficult to predict where a ball will roll. It might not even end up at the low-
est point. Your function is convex, so the algorithm will easily figure out how to mini-
mize this cost and “roll the ball downhill.”

 Convexity is nice, but correctness is also an important criterion when picking a
cost function. How do you know this cost function does exactly what you intended it to
do? To answer that question most intuitively, take a look at figure 4.11. You use –log(x)
to compute the cost when you want your desired value to be 1 (notice: –log(1) = 0).
The algorithm strays away from setting the value to 0, because the cost approaches
infinity. Adding these functions together gives a curve that approaches infinity at both
0 and 1, with the negative parts cancelling out.

Sure, figures are an informal way to convince you, but the technical discussion about
why the cost function is optimal is beyond the scope of this book. If you’re interested
in the mathematics behind it, you’ll be interested to learn that the cost function is
derived from the principle of maximum entropy, which you can look up anywhere
online.

 See figure 4.12 for a best-fit result from logistic regression on a one-dimensional
dataset. The sigmoid curve that you’ll generate will provide a better linear decision
boundary than that from linear regression.

 You’ll start to notice a pattern in the code listings. In a simple/typical usage of Ten-
sorFlow, you generate a fake dataset, define placeholders, define variables, define a
model, define a cost function on that model (which is often mean squared error or
mean squared log error), create a train_op by using gradient descent, iteratively feed
it example data (possibly with a label or output), and, finally, collect the optimized

0 1

–log(x)

0 1

–log(1 – x)

Figure 4.11 Here’s a visualization of how the two cost functions penalize values at 0 
and 1. Notice that the left function heavily penalizes 0 but has no cost at 1. The right cost 
function displays the opposite phenomena.
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Define
param
values. Create a new source file called logistic_1d.py and copy into it listing 4.5, which
will generate figure 4.12.

import numpy as np                    
import tensorflow as tf               
import matplotlib.pyplot as plt       
learning_rate = 0.01                       
training_epochs = 1000                     

def sigmoid(x):                              
    return 1. / (1. + np.exp(-x))            

x1 = np.random.normal(-4, 2, 1000)                   
x2 = np.random.normal(4, 2, 1000)                    
xs = np.append(x1, x2)                               
ys = np.asarray([0.] * len(x1) + [1.] * len(x2))     

plt.scatter(xs, ys)                                         

X = tf.placeholder(tf.float32, shape=(None,), name="x")    
Y = tf.placeholder(tf.float32, shape=(None,), name="y")    
w = tf.Variable([0., 0.], name="parameter", trainable=True)       
y_model = tf.sigmoid(w[1] * X + w[0])                            
cost = tf.reduce_mean(-Y * tf.log(y_model) - (1 - Y) * tf.log(1 – y_model))  

Listing 4.5 Using one-dimensional logistic regression

Figure 4.12 Here’s a best-fit sigmoid curve for a binary classification dataset. Notice that the curve resides 
within y = 0 and y = 1. That way, this curve isn’t that sensitive to outliers.

Imports relevant 
libraries

Sets the 
hyperparameters

Defines a helper function to 
calculate the sigmoid function

Initializes 
fake data

Visualizes 
the data

Defines the input/
output placeholders

s the
eter

node

Defines the model using 
TensorFlow’s sigmoid function

Defines the cross-entropy
loss function
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p
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train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)  

with tf.Session() as sess:                           
    sess.run(tf.global_variables_initializer())      
    prev_err = 0                                             
    for epoch in range(training_epochs):                     
        err, _ = sess.run([cost, train_op], {X: xs, Y: ys})  
        print(epoch, err)
        if abs(prev_err - err) < 0.0001:    
            break
        prev_err = err                
    w_val = sess.run(w, {X: xs, Y: ys})     

all_xs = np.linspace(-10, 10, 100)                          
plt.plot(all_xs, sigmoid((all_xs * w_val[1] + w_val[0])))   
plt.show()                                                  

And there you have it! If you were playing chess against Alice, you’d now have a binary
classifier to decide the threshold indicating when a chess match might result in a win
or loss. 

4.4.2 Solving two-dimensional logistic regression

Now we’ll explore how to use logistic regression with multiple independent variables.
The number of independent variables corresponds to the number of dimensions. In
our case, a two-dimensional logistic regression problem will try to label a pair of inde-
pendent variables. The concepts you learn in this section extrapolate to arbitrary
dimensions. 

 
 

Cross-entropy loss in TensorFlow
As shown in listing 4.5, the cross-entropy loss is averaged over each input/output
pair by using the tf.reduce_mean op. Another handy and more general function is
provided by the TensorFlow library, called tf.nn.softmax_cross_entropy_with
_logits. You can find more about it in the official documentation: http://mng.bz/
8mEk.

Defines the 
minimizer 
to use

Opens a session, and 
defines all variables

Defines a variable to kee
track of the previous erro

Iterates until convergence or until the
maximum number of epochs is reached

Computes the cost, and updates
the learning parameters

Checks for convergence—if 
you’re changing by < .01% 
per iteration, you’re done

Updates the previous 
error value

Obtains the learned 
parameter value

Plots the learned 
sigmoid function
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NOTE Let’s say you’re thinking about buying a new phone. The only attri-
butes you care about are (1) operating system, (2) size, and (3) cost. The goal
is to decide whether a phone is a worthwhile purchase. In this case, there are
three independent variables (the attributes of the phone) and one depen-
dent variable (whether it’s worth buying). So we regard this as a classification
problem in which the input vector is three-dimensional.

Consider the dataset shown in figure 4.13. It represents crime activity of two gangs in a
city. The first dimension is the x-axis, which can be thought of as the latitude, and the
second dimension is the y-axis, representing longitude. There’s one cluster around
(3, 2) and another around (7, 6). Your job is to decide which gang is most likely
responsible for a new crime that occurred at location (6, 4).

Create a new source file called logistic_2d.py, and follow along with listing 4.6.

import numpy as np                    
import tensorflow as tf               
import matplotlib.pyplot as plt       

learning_rate = 0.1               
training_epochs = 2000            

Listing 4.6 Setting up data for two-dimensional logistic regression

Figure 4.13 The x-axis and y-axis represent the two independent variables. 
The dependent variable holds two possible labels, represented by the shape 
and color of the plotted points.

Imports 
relevant 
libraries

Sets the 
hyperparameters
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


89Using logistic regression

D

le
 
ion, 
s 
, 

ns 
ers 

nce
def sigmoid(x):                       
    return 1. / (1. + np.exp(-x))     

x1_label1 = np.random.normal(3, 1, 1000)                         
x2_label1 = np.random.normal(2, 1, 1000)                         
x1_label2 = np.random.normal(7, 1, 1000)                         
x2_label2 = np.random.normal(6, 1, 1000)                         
x1s = np.append(x1_label1, x1_label2)                            
x2s = np.append(x2_label1, x2_label2)                            
ys = np.asarray([0.] * len(x1_label1) + [1.] * len(x1_label2))   

You have two independent variables (x1 and x2). A simple way to model the mapping
between the input x’s and output M(x) is the following equation, where w is the
parameter to be found using TensorFlow:

In the following listing, you’ll implement the equation and its corresponding cost
function to learn the parameters.

X1 = tf.placeholder(tf.float32, shape=(None,), name="x1")     
X2 = tf.placeholder(tf.float32, shape=(None,), name="x2")     
Y = tf.placeholder(tf.float32, shape=(None,), name="y")       
w = tf.Variable([0., 0., 0.], name="w", trainable=True)         

y_model = tf.sigmoid(w[2] * X2 + w[1] * X1 + w[0])                 
cost = tf.reduce_mean(-tf.log(y_model * Y + (1 - y_model) * (1 - Y)))      
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 

with tf.Session() as sess:                                              
    sess.run(tf.global_variables_initializer())                         
    prev_err = 0                                                        
    for epoch in range(training_epochs):                                
        err, _ = sess.run([cost, train_op], {X1: x1s, X2: x2s, Y: ys})  
        print(epoch, err)                                               
        if abs(prev_err - err) < 0.0001:                                
            break                                                       
        prev_err = err                                                  
    w_val = sess.run(w, {X1: x1s, X2: x2s, Y: ys})    

x1_boundary, x2_boundary = [], []              
for x1_test in np.linspace(0, 10, 100):             
    for x2_test in np.linspace(0, 10, 100):         

Listing 4.7 Using TensorFlow for multidimensional logistic regression
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        z = sigmoid(-x2_test*w_val[2] - x1_test*w_val[1] - w_val[0])   
        if abs(z - 0.5) < 0.01:                                        
            x1_boundary.append(x1_test)                                
            x2_boundary.append(x2_test)                                

plt.scatter(x1_boundary, x2_boundary, c='b', marker='o', s=20)   
plt.scatter(x1_label1, x2_label1, c='r', marker='x', s=20)       
plt.scatter(x1_label2, x2_label2, c='g', marker='1', s=20)       

plt.show()                                                       

Figure 4.14 depicts the linear boundary line learned from the training data. A crime
that occurs on this line has an equal chance of being committed by either gang.

4.5 Multiclass classifier
So far, you’ve dealt with multidimensional input, but not multivariate output, as
shown in figure 4.15. For example, instead of binary labels on the data, what if you
have 3, or 4, or 100 classes? Logistic regression requires two labels, no more. 

 Image classification, for example, is a popular multivariate classification problem
because the goal is to decide the class of an image from a collection of candidates. A
photograph may be bucketed into one of hundreds of categories. 

If the model
ponse is close
5, updates the
undary points

Shows the 
boundary 
line along 
with the data

Figure 4.14 The diagonal dotted line represents when the probability 
between the two decisions is split equally. The confidence of making a 
decision increases as data lies farther away from the line.
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To handle more than two labels, you may reuse logistic regression in a clever way
(using a one-versus-all or one-versus-one approach) or develop a new approach (soft-
max regression). Let’s look at each of the approaches in the next sections. The logistic
regression approaches require a decent amount of ad hoc engineering, so let’s focus
on softmax regression.

4.5.1 One-versus-all

First, you train a classifier for each of the labels, as shown in figure 4.16. If there are
three labels, you have three classifiers available to use: f1, f2, and f3. To test on new

Figure 4.15 The independent variable is two-dimensional, indicated by the 
x-axis and y-axis. The dependent variable can be one of three labels, shown 
by the color and shape of the data points.

One-versus-all

Shoe

detector

Glasses

detector

Pencil

detector

Figure 4.16 One-versus-all is a 
multiclass classifier approach that 
requires a detector for each class.
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data, you run each of the classifiers to see which one produced the most confident
response. Intuitively, you label the new point by the label of the classifier that
responded most confidently.

4.5.2 One-versus-one

Then you train a classifier for each pair of labels (see figure 4.17). If there are three
labels, that’s just three unique pairs. But for k number of labels, that’s k(k – 1)/2
pairs of labels. On new data, you run all the classifiers and choose the class with the
most wins.

4.5.3 Softmax regression

Softmax regression is named after the traditional max function, which takes a vector
and returns the max value; but softmax isn’t exactly the max function, because it has
the added benefit of being continuous and differentiable. As a result, it has the help-
ful properties for stochastic gradient descent to work efficiently. 

 In this type of multiclass classification setup, each class has a confidence (or proba-
bility) score for each input vector. The softmax step picks the highest-scoring output. 

 Open a new file called softmax.py, and follow along with the next listing. First,
you’ll visualize fake data to reproduce figure 4.15 (also reproduced in figure 4.18).

import numpy as np                    
import matplotlib.pyplot as plt       

x1_label0 = np.random.normal(1, 1, (100, 1))   
x2_label0 = np.random.normal(1, 1, (100, 1))   
x1_label1 = np.random.normal(5, 1, (100, 1))   
x2_label1 = np.random.normal(4, 1, (100, 1))   
x1_label2 = np.random.normal(8, 1, (100, 1))   
x2_label2 = np.random.normal(0, 1, (100, 1))   

plt.scatter(x1_label0, x2_label0, c='r', marker='o', s=60)   
plt.scatter(x1_label1, x2_label1, c='g', marker='x', s=60)   
plt.scatter(x1_label2, x2_label2, c='b', marker='_', s=60)   
plt.show()                                                   

Listing 4.8 Visualizing multiclass data

One-versus-one

Shoe

vs. glasses

classifier

Pencil

vs. shoe

classifier

Glasses

vs. pencil

classifier

Figure 4.17 In one-versus-one multiclass 
classification, there’s a detector for each 
pair of classes.

Imports NumPy 
and matplotlib

Generates points near (1, 1)

Generates points near (5, 4)

Generates points near (8, 0)

Visualizes the 
three labels on 
a scatter plot
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Next, in listing 4.9, you’ll set up the training and test data to prepare for the softmax
regression step. The labels must be represented as a vector in which only one element
is 1 and the rest are 0s. This representation is called one-hot encoding. For instance, if
there are three labels, they’d be represented as the following vectors: [1, 0, 0], [0, 1, 0],
and [0, 0, 1].

xs_label0 = np.hstack((x1_label0, x2_label0))       
xs_label1 = np.hstack((x1_label1, x2_label1))       
xs_label2 = np.hstack((x1_label2, x2_label2))       
xs = np.vstack((xs_label0, xs_label1, xs_label2))   

EXERCISE 4.5 
One-hot encoding might appear to be an unnecessary step. Why not just have a one-
dimensional output with values of 1, 2, and 3 representing the three classes?

ANSWER 
Regression may induce a semantic structure in the output. If outputs are similar,
regression implies that their inputs were also similar. If you use just one dimension,
you’re implying that labels 2 and 3 are more similar to each other than 1 and 3. You
must be careful about making unnecessary or incorrect assumptions, so it’s a safe
bet to use one-hot encoding. 

Listing 4.9 Setting up training and test data for multiclass classification

Figure 4.18 2D training data for multi-output classification
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labels = np.matrix([[1., 0., 0.]] * len(x1_label0) + [[0., 1., 0.]] * 
len(x1_label1) + [[0., 0., 1.]] * len(x1_label2))  

arr = np.arange(xs.shape[0])         
np.random.shuffle(arr)               
xs = xs[arr, :]                      
labels = labels[arr, :]              

test_x1_label0 = np.random.normal(1, 1, (10, 1))               
test_x2_label0 = np.random.normal(1, 1, (10, 1))               
test_x1_label1 = np.random.normal(5, 1, (10, 1))               
test_x2_label1 = np.random.normal(4, 1, (10, 1))               
test_x1_label2 = np.random.normal(8, 1, (10, 1))               
test_x2_label2 = np.random.normal(0, 1, (10, 1))               
test_xs_label0 = np.hstack((test_x1_label0, test_x2_label0))   
test_xs_label1 = np.hstack((test_x1_label1, test_x2_label1))   
test_xs_label2 = np.hstack((test_x1_label2, test_x2_label2))   

test_xs = np.vstack((test_xs_label0, test_xs_label1, test_xs_label2))   
test_labels = np.matrix([[1., 0., 0.]] * 10 + [[0., 1., 0.]] * 10 + [[0., 0., 

1.]] * 10)   

train_size, num_features = xs.shape  

Finally, in listing 4.10, you’ll use softmax regression. Unlike the sigmoid function in
logistic regression, here you’ll use the softmax function provided by the TensorFlow
library. The softmax function is similar to the max function, which outputs the maxi-
mum value from a list of numbers. It’s called softmax because it’s a “soft” or “smooth”
approximation of the max function, which is not smooth or continuous (and that’s
bad). Continuous and smooth functions facilitate learning the correct weights of a
neural network by back-propagation.

 
 
 

EXERCISE 4.6 
Which of the following functions is continuous? 

f(x) = x2
f(x) = min(x, 0)
f(x) = tan(x)

ANSWER

The first two are continuous. The last one, tan(x), has periodic asymptotes, so there
are some values for which there are no valid results.
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import tensorflow as tf

learning_rate = 0.01       
training_epochs = 1000     
num_labels = 3             
batch_size = 100           

X = tf.placeholder("float", shape=[None, num_features])   
Y = tf.placeholder("float", shape=[None, num_labels])     

W = tf.Variable(tf.zeros([num_features, num_labels]))   
b = tf.Variable(tf.zeros([num_labels]))                 
y_model = tf.nn.softmax(tf.matmul(X, W) + b)          

cost = -tf.reduce_sum(Y * tf.log(y_model))                                 
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 

correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(Y, 1))      
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))            

Now that you’ve defined the TensorFlow computation graph, execute it from a ses-
sion. You’ll try a new form of iteratively updating the parameters this time, called batch
learning. Instead of passing in the data one piece at a time, you’ll run the optimizer on
batches of data. This speeds things up but introduces a risk of converging to a local
optimum solution instead of the global best. Use the following listing for running the
optimizer in batches.

with tf.Session() as sess:                    
    tf.global_variables_initializer().run()   
    
    for step in range(training_epochs * train_size // batch_size):  
        offset = (step * batch_size) % train_size                 
        batch_xs = xs[offset:(offset + batch_size), :]            
        batch_labels = labels[offset:(offset + batch_size)]       
        err, _ = sess.run([cost, train_op], feed_dict={X: batch_xs, Y: 

batch_labels})             
        print (step, err)  
    

Listing 4.10 Using softmax regression

Listing 4.11 Executing the graph
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    W_val = sess.run(W)   
    print('w', W_val)     
    b_val = sess.run(b)   
    print('b', b_val)     
    print("accuracy", accuracy.eval(feed_dict={X: test_xs, Y: test_labels}))

The final output of running the softmax regression algorithm on the dataset is the
following:

('w', array([[-2.101, -0.021,  2.122], 
             [-0.371,  2.229, -1.858]], dtype=float32))
('b', array([10.305, -2.612, -7.693], dtype=float32))
Accuracy 1.0

You’ve learned the weights and biases of the model. You can reuse these learned
parameters to infer on test data. A simple way to do so is by saving and loading the
variables using TensorFlow’s Saver object (see www.tensorflow.org/programmers_
guide/saved_model). You can run the model (called y_model in our code) to obtain
the model responses on your test input data.

4.6 Application of classification
Emotion is a difficult concept to operationalize. Happiness, sadness, anger, excite-
ment, and fear are examples of emotions that are subjective. What comes across as
exciting to someone might appear sarcastic to another. Text that appears to convey
anger to some might convey fear to others. If humans have so much trouble, what luck
can computers have?

 At the very least, machine-learning researchers have figured out ways to classify
positive and negative sentiments within text. For example, let’s say you’re building an
Amazon-like website in which each item has user reviews. You want your intelligent
search engine to prefer items with positive reviews. Perhaps the best metric you have
available is the average star rating or number of thumbs-ups. But what if you have a lot
of heavy-text reviews without explicit ratings?

 Sentiment analysis can be considered a binary classification problem. The input
is natural language text, and the output is a binary decision that infers positive or
negative sentiment. The following are datasets you can find online to solve this
exact problem:

 Large Movie Review Dataset: http://mng.bz/60nj
 Sentiment Labelled Sentences Data Set: http://mng.bz/CzSM
 Twitter Sentiment Analysis Dataset: http://mng.bz/2M4d

The biggest hurdle is to figure out how to represent raw text as an input to a classifica-
tion algorithm. Throughout this chapter, the input to classification has always been a
feature vector. One of the oldest methods of converting raw text into a feature vector
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97Summary
is called bag-of-words. You can find a nice tutorial and code implementation for it here:
http://mng.bz/K8yz.

4.7 Summary
 There are many ways to solve classification problems, but logistic regression

and softmax regression are two of the most robust in terms of accuracy and
performance.

 It’s important to preprocess data before running classification. For example,
discrete independent variables can be readjusted into binary variables.

 So far, you’ve approached classification from the point of view of regression. In
later chapters, you’ll revisit classification using neural networks. 

 There are various ways to approach multiclass classification. There’s no clear
answer to which one you should try first among one-versus-one, one-versus-all,
and softmax regression. But the softmax approach is a little more hands-free
and allows you to fiddle with more hyperparameters. 
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100 CHAPTER 5 Automatically clustering data
Suppose you have a collection of not-pirated, totally legal MP3s on your hard drive. All
your songs are crowded in one massive folder. Perhaps automatically grouping similar
songs into categories such as Country, Rap, and Rock would help organize them. This
act of assigning an item to a group (such as an MP3 to a playlist) in an unsupervised
fashion is called clustering. 

 The previous chapter on classification assumes you’re given a training dataset of
correctly labeled data. Unfortunately, you don’t always have that luxury when you col-
lect data in the real world. For example, suppose you want to divide a large amount of
music into interesting playlists. How could you possibly group songs if you don’t have
direct access to their metadata?

 Spotify, SoundCloud, Google Music, Pandora, and many other music-streaming
services try to solve this problem in order to recommend similar songs to customers.
Their approach includes a mixture of various machine-learning techniques, but clus-
tering is often at the heart of the solution.

 Clustering is the process of intelligently categorizing the items in your dataset. The
overall idea is that two items in the same cluster are “closer” to each other than items
that belong to separate clusters. That’s the general definition, leaving the interpretation
of closeness open. For example, perhaps cheetahs and leopards belong in the same clus-
ter, whereas elephants belong to another, when closeness is measured by the similarity
of two species in the hierarchy of biological classification (family, genus, and species).

 You can imagine that many clustering algorithms are out there. This chapter
focuses on two types: k-means and self-organizing map. These approaches are completely
unsupervised, meaning they fit a model without ground-truth examples. 

 First, you’ll learn how to load audio files into TensorFlow and represent them as
feature vectors. Then, you’ll implement various clustering techniques to solve real-
world problems. 

5.1 Traversing files in TensorFlow
Some common input types in machine-learning algorithms are audio and image files.
This shouldn’t come as a surprise, because sound recordings and photographs are
raw, redundant, and often noisy representations of semantic concepts. Machine learn-
ing is a tool to help handle these complications. 

This chapter covers 
 Basic clustering with k-means

 Representing audio

 Audio segmentation

 Clustering with a self-organizing map
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Run
read

ex
file
 These data files have various implementations: for example, an image can be
encoded as a PNG or JPEG file, and an audio file can be an MP3 or a WAV. In this
chapter, you’ll investigate how to read audio files as input to your clustering algorithm
so you automatically group music that sounds similar.

Reading files from disk isn’t exactly a machine-learning-specific ability. You can use a
variety of Python libraries to load files into memory, such as NumPy or SciPy. Some
developers like to treat the data-preprocessing step separately from the machine-
learning step. There’s no absolute right or wrong way to manage the pipeline, but
we’ll try TensorFlow for both data preprocessing and learning.

 TensorFlow provides an operator called tf.train.match_filenames_once(…) to
list files in a directory. You can then pass this information along to the queue operator
tf.train.string_input_producer(…). That way, you can access filenames one at a
time, without loading everything at once. Given a filename, you can decode the file to
retrieve usable data. Figure 5.1 outlines the whole process of using the queue.

 The following listing shows an implementation of reading files from disk in
TensorFlow.

import tensorflow as tf

filenames = tf.train.match_filenames_once('./audio_dataset/*.wav') 
count_num_files = tf.size(filenames)
filename_queue = tf.train.string_input_producer(filenames)         
reader = tf.WholeFileReader()                               
filename, file_contents = reader.read(filename_queue)   

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    num_files = sess.run(count_num_files)         
    
    coord = tf.train.Coordinator()                         
    threads = tf.train.start_queue_runners(coord=coord)    

    for i in range(num_files):             
        audio_file = sess.run(filename)    
        print(audio_file)                  

EXERCISE 5.1 
What are the pros and cons of MP3 and WAV? How about PNG versus JPEG?

ANSWER

MP3 and JPEG significantly compress the data, so such files are easy to store or trans-
mit. But because these are lossy, WAV and PNG are closer to the original content.

Listing 5.1 Traversing a directory for data

Stores filenames that match a pattern Sets up a pipeline for retrieving
filenames randomly

Natively reads a file 
in TensorFlows the

er to
tract
 data Counts the 

number of files

Initializes threads for 
the filename queue

Loops through 
the data one 
by one
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102 CHAPTER 5 Automatically clustering data
TIP If you couldn’t get listing 5.1 to work, you may want to try the advice
posted on this book’s official forum: http://mng.bz/Q9aD.

5.2 Extracting features from audio
Machine-learning algorithms are typically designed to use feature vectors as input; but
sound files use a different format. You need a way to extract features from sound files
to create feature vectors. 

 It helps to understand how these files are represented. If you’ve ever seen a vinyl
record, you’ve probably noticed the representation of audio as grooves indented in
the disk. Our ears interpret audio from a series of vibrations through air. By recording
the vibration properties, an algorithm can store sound in a data format. 

 The real world is continuous, but computers store data in discrete values. The
sound is digitalized into a discrete representation through an analog-to-digital con-
verter (ADC). You can think about sound as fluctuation of a wave over time. But that
data is too noisy and difficult to comprehend. 

 An equivalent way to represent a wave is by examining its frequencies at each
time interval. This perspective is called the frequency domain. It’s easy to convert

Session

Graph

reader.read(...)

string_input_producer(...)match_filenames_once(...)

Files Filenames

A

Run

an op

Reading files in TensorFlow

Placeholders

Variables ( )  

Constants

Queue

�

Figure 5.1 You can use a queue in TensorFlow to read files. The queue is built into the TensorFlow framework, 
and you can use the reader.read(…) function to access (and dequeue) it.
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103Extracting features from audio
between time domains and frequency domains by using a mathematical operation
called a discrete Fourier transform (commonly implemented using an algorithm known
as the fast Fourier transform). You’ll use this technique to extract a feature vector out
of a sound.

 A handy Python library can help you view audio in this frequency domain. Down-
load it from https://github.com/BinRoot/BregmanToolkit/archive/master.zip. Extract
it, and then run the following command to set it up: 

$ python setup.py install

A sound may produce 12 kinds of pitches. In music terminology, the 12 pitches are C,
C#, D, D#, E, F, F#, G, G#, A, A#, and B. Listing 5.2 shows how to retrieve the contribu-
tion of each pitch in a 0.1-second interval, resulting in a matrix with 12 rows. The
number of columns grows as the length of the audio file increases. Specifically, there
will be 10 × t columns for a t-second audio. This matrix is also called a chromagram of
the audio.

from bregman.suite import *

def get_chromagram(audio_file):           
    F = Chromagram(audio_file, nfft=16384, wfft=8192, nhop=2205)  
    return F.X               

The chromagram output is a matrix, shown in figure 5.2. A sound clip can be read as
a chromagram, and a chromagram is a recipe for generating a sound clip. Now you
have a way to convert between audio and matrices. And as you’ve learned, most
machine-learning algorithms accept feature vectors as a valid form of data. That said,
the first machine-learning algorithm you’ll look at is k-means clustering.

Python 2 required
The BregmanToolkit is officially supported on Python 2. If you’re using Jupyter Note-
book, you can have access to both versions of Python by following the directions out-
lined in the official Jupyter docs: http://mng.bz/ebvw.

In particular, you can include Python 2 with the following commands:

$ python2 -m pip install ipykernel
$ python2 -m -ipykernel install --user

Listing 5.2 Representing audio in Python

Passes in the 
filename 

Uses these parameters
to describe 12 pitches

every 0.1 second

Represents the values of 
a 12-dimensional vector 
10 times per second 
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104 CHAPTER 5 Automatically clustering data
To run machine-learning algorithms on your chromagram, you first need to decide how
you’re going to represent a feature vector. One idea is to simplify the audio by looking
only at the most significant pitch class per time interval, as shown in figure 5.3.

Then you count the number of times each pitch shows up in the audio file. Figure 5.4
shows this data as a histogram, forming a 12-dimensional vector. If you normalize the
vector so that all the counts add up to 1, you can easily compare audio of different
lengths.
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Figure 5.2 The chromagram matrix, 
where the x-axis represents time, and the 
y-axis represents pitch class. The green 
parallelograms indicate the presence of 
that pitch at that time.
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Figure 5.3 The most influential pitch at 
every time interval is highlighted. You 
can think of it as the loudest pitch at 
each time interval.
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105Extracting features from audio
Take a look at the following listing to generate the histogram from figure 5.4, which is
your feature vector.

import tensorflow as tf
import numpy as np
from bregman.suite import *

filenames = tf.train.match_filenames_once('./audio_dataset/*.wav')
count_num_files = tf.size(filenames)
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
filename, file_contents = reader.read(filename_queue)

chroma = tf.placeholder(tf.float32)       
max_freqs = tf.argmax(chroma, 0)          

def get_next_chromagram(sess):
    audio_file = sess.run(filename)
    F = Chromagram(audio_file, nfft=16384, wfft=8192, nhop=2205)
    return F.X

EXERCISE 5.2 
What are some other ways to represent an audio clip as a feature vector?

ANSWER

You can visualize the audio clip as an image (such as a spectrogram), and use image-
analysis techniques to extract image features. 

Listing 5.3 Obtaining a dataset for k-means
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Figure 5.4 You count the frequency of loudest pitches heard at each interval to generate this 
histogram, which acts as your feature vector.

Creates an op to identify 
the pitch with the biggest 
contribution
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106 CHAPTER 5 Automatically clustering data
def extract_feature_vector(sess, chroma_data): 
    num_features, num_samples = np.shape(chroma_data)
    freq_vals = sess.run(max_freqs, feed_dict={chroma: chroma_data})
    hist, bins = np.histogram(freq_vals, bins=range(num_features + 1))
    return hist.astype(float) / num_samples

def get_dataset(sess):                      
    num_files = sess.run(count_num_files)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    xs = []
    for _ in range(num_files):
        chroma_data = get_next_chromagram(sess)
        x = [extract_feature_vector(sess, chroma_data)]
        x = np.matrix(x)
        if len(xs) == 0:
            xs = x
        else:
            xs = np.vstack((xs, x))
    return xs

NOTE All code listings are available from this book’s website at www.manning
.com/books/machine-learning-with-tensorflow and on GitHub at https://
github.com/BinRoot/TensorFlow-Book/tree/master/ch05_clustering.

5.3 K-means clustering
The k-means algorithm is one of the oldest yet most robust ways to cluster data. The k
in k-means is a variable representing a natural number. So, you can imagine there’s
3-means clustering, or 4-means clustering, or any other value for k. Thus, the first step
of k-means clustering is to choose a value for k. Just to be more concrete, let’s pick
k = 3. With that in mind, the goal of 3-means clustering is to divide the dataset into
three categories (also called clusters).

The k-means algorithm treats data points as points in space. If your dataset is a collec-
tion of guests at an event, you can represent each one by their age. Thus, your dataset is
a collection of feature vectors. In this case, each feature vector is only one-dimensional,
because you’re considering only the age of the person.

Choosing the number of clusters
Choosing the right number of clusters often depends on the task. For example, sup-
pose you’re planning an event for hundreds of people, both young and old. If you have
the budget for only two entertainment options, you can use k-means clustering with
k = 2 to separate the guests into two age groups. Other times, determining the value
of k isn’t as obvious. Automatically figuring out the value of k is a bit more compli-
cated, so we won’t touch on that much in this section. In simplified terms, a straight-
forward way of determining the best value of k is to iterate over a range of k-means
simulations and apply a cost function to determine which value of k caused the best
differentiation between clusters at the lowest value of k.

Converts a
chromagram

into a feature
vector

Constructs a matrix 
where each row is a 
data item
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107K-means clustering
 For clustering music by the audio data, the data points are feature vectors from the
audio files. If two points are close together, their audio features are similar. You want
to discover which audio files belong in the same “neighborhood,” because those clus-
ters will probably be a good way to organize your music files.

 The midpoint of all the points in a cluster is called its centroid. Depending on the
audio features you choose to extract, a centroid could capture concepts such as loud
sound, high-pitched sound, or saxophone-like sound. It’s important to note that the k-
means algorithm assigns nondescript labels, such as cluster 1, cluster 2, and cluster 3.
Figure 5.5 shows examples of the sound data.

Coughing sounds Screaming sounds

Figure 5.5 Four examples of audio files. As you can see, the two on the right appear to have similar histograms. 
The two on the left also have similar histograms. Your clustering algorithms will be able to group these sounds 
together.
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Ch
the 

gu
of c
cent
The k-means algorithm assigns a feature vector to one of the k clusters by choosing
the cluster whose centroid is closest to it. The k-means algorithm starts by guessing
the cluster location. It iteratively improves its guess over time. The algorithm either
converges when it no longer improves the guesses, or stops after a maximum number
of attempts.

 The heart of the algorithm consists of two tasks, assignment and recentering: 

1 In the assignment step, you assign each data item (feature vector) to a category
of the closest centroid. 

2 In the recentering step, you calculate the midpoints of the newly updated clusters.

These two steps repeat to provide increasingly better clustering results, and the algo-
rithm stops either when it has repeated a desired number of times or when the assign-
ments no longer change. Figure 5.6 illustrates the algorithm.

Listing 5.4 shows how to implement the k-means algorithm using the dataset gener-
ated by listing 5.3. For simplicity, you’ll choose k = 2, so you can easily verify that your
algorithm partitions the audio files into two dissimilar categories. You’ll use the first k
vectors as initial guesses for centroids.

k = 2                                                     
max_iterations = 100                         

def initial_cluster_centroids(X, k):     
    return X[0:k, :]

Listing 5.4 Implementing k-means
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Figure 5.6 One iteration of the k-means algorithm. Let’s 
say you’re clustering colors into three buckets (an 
informal way to say category). You can start with an 
initial guess of red, green, and blue and begin the 
assignment step. Then you update the bucket colors by 
averaging the colors that belong to each bucket. You 
keep repeating until the buckets no longer substantially 
change color, arriving at the color representing the 
centroid of each cluster.

Decides the 
number of 
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Declares the 
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of iterations to run 
k-means

ooses
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def assign_cluster(X, centroids):                       
    expanded_vectors = tf.expand_dims(X, 0)
    expanded_centroids = tf.expand_dims(centroids, 1)
    distances = tf.reduce_sum(tf.square(tf.subtract(expanded_vectors, 

expanded_centroids)), 2)
    mins = tf.argmin(distances, 0)
    return mins

def recompute_centroids(X, Y):                      
    sums = tf.unsorted_segment_sum(X, Y, k)
    counts = tf.unsorted_segment_sum(tf.ones_like(X), Y, k)
    return sums / counts

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    X = get_dataset(sess)
    centroids = initial_cluster_centroids(X, k)
    i, converged = 0, False
    while not converged and i < max_iterations:         
        i += 1
        Y = assign_cluster(X, centroids)
        centroids = sess.run(recompute_centroids(X, Y))
    print(centroids)

And that’s it! If you know the number of clusters and the feature vector representa-
tion, you can use listing 5.4 to cluster anything! In the next section, you’ll apply clus-
tering to audio snippets within an audio file.

5.4 Audio segmentation

In the preceding section, you clustered various audio files to automatically group
them. This section is about using clustering algorithms within just one audio file.
Whereas the former is called clustering, the latter is referred to as segmentation. Seg-
mentation is another word for clustering, but we often say segment instead of cluster
when dividing a single image or audio file into separate components. It’s similar to the
way dividing a sentence into words is different from dividing a word into letters.
Though they both share the general idea of breaking bigger pieces into smaller com-
ponents, words are different from letters. 

 Let’s say you have a long audio file, maybe of a podcast or talk show. Imagine writ-
ing a machine-learning algorithm to identify which of two people is speaking in an
audio interview. The goal of segmenting an audio file is to associate which parts of the
audio clip belong to the same category. In this case, you’d have a category for each
person, and the utterances made by each person should converge to their appropriate
categories, as shown in figure 5.7.

 Open a new source file, and follow along with listing 5.5, which will get you started
by organizing the audio data for segmentation. It splits an audio file into multiple

Assigns each data item 
to its nearest cluster

Updates the cluster 
centroids to their 
midpoint

Iterates to find 
the best cluster 
locations
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segments of size segment_size. A long audio file would contain hundreds, if not thou-
sands, of segments.

import tensorflow as tf
import numpy as np
from bregman.suite import *

k = 2                             
segment_size = 50                        
max_iterations = 100                    

chroma = tf.placeholder(tf.float32)
max_freqs = tf.argmax(chroma, 0)

def get_chromagram(audio_file):
    F = Chromagram(audio_file, nfft=16384, wfft=8192, nhop=2205)
    return F.X

def get_dataset(sess, audio_file):       
    chroma_data = get_chromagram(audio_file)
    print('chroma_data', np.shape(chroma_data))
    chroma_length = np.shape(chroma_data)[1]
    xs = []
    for i in range(chroma_length / segment_size):
        chroma_segment = chroma_data[:, i*segment_size:(i+1)*segment_size]
        x = extract_feature_vector(sess, chroma_segment)
        if len(xs) == 0:
            xs = x
        else:
            xs = np.vstack((xs, x))
    return xs

Now run k-means clustering on this dataset to identify when segments are similar. The
intention is that k-means will categorize similar-sounding segments with the same
label. If two people have significantly different-sounding voices, their sound snippets
will belong to different labels.

 

Listing 5.5 Organizing data for segmentation

Alice

Bob

Figure 5.7 Audio segmentation 
is the process of automatically 
labeling segments.

Decides the number 
of clusters

The smaller the segment 
size, the better the results 
(but slower performance).

Decides when to 
stop the iterations

Obtains a dataset by 
extracting segments of 
the audio as separate 
data items
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111Audio segmentation
with tf.Session() as sess:
    X = get_dataset(sess, 'TalkingMachinesPodcast.wav')
    print(np.shape(X))
    centroids = initial_cluster_centroids(X, k)
    i, converged = 0, False
    while not converged and i < max_iterations:        
        i += 1
        Y = assign_cluster(X, centroids)
        centroids = sess.run(recompute_centroids(X, Y))
        if i % 50 == 0:
            print('iteration', i)
    segments = sess.run(Y)
    for i in range(len(segments)):                   
        seconds = (i * segment_size) / float(10)
        min, sec = divmod(seconds, 60)
        time_str = '{}m {}s'.format(min, sec)
        print(time_str, segments[i])

The output of running listing 5.6 is a list of timestamps and cluster IDs that corre-
spond to who is talking during the podcast:

('0.0m 0.0s', 0)
('0.0m 2.5s', 1)
('0.0m 5.0s', 0)
('0.0m 7.5s', 1)
('0.0m 10.0s', 1)
('0.0m 12.5s', 1)
('0.0m 15.0s', 1)
('0.0m 17.5s', 0)
('0.0m 20.0s', 1)
('0.0m 22.5s', 1)
('0.0m 25.0s', 0)
('0.0m 27.5s', 0)

Listing 5.6 Segmenting an audio clip

EXERCISE 5.3 
How can you detect whether the clustering algorithm has converged (so that you can
stop the algorithm early)? 

ANSWER

One way is to monitor how the cluster centroids change, and declare convergence
once no more updates are necessary (for example, when the difference in the size of
the error isn’t changing significantly between iterations). To do this, you’d need to cal-
culate the size of the error and decide what constitutes “significantly.”

Runs the k-means 
algorithm

Prints the labels 
for each time 
interval
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5.5 Clustering using a self-organizing map
A self-organizing map (SOM) is a model for representing data into a lower-dimensional
space. In doing so, it automatically shifts similar data items closer together. For exam-
ple, suppose you’re ordering pizza for a large gathering of people. You don’t want to
order the same type of pizza for every single person—because one might happen to
fancy pineapple with mushrooms and peppers for their toppings, and you may prefer
anchovies with arugula and onions. 

 Each person’s preference of toppings can be represented as a three-dimensional
vector. An SOM lets you embed these three-dimensional vectors in two dimensions (as
long as you define a distance metric between pizzas). Then, a visualization of the two-
dimensional plot reveals good candidates for the number of clusters.

 Although it may take longer to converge than the k-means algorithm, the SOM
approach has no assumptions about the number of clusters. In the real world, it’s hard
to select a value for the number of clusters. Consider a gathering of people, as shown
in figure 5.8, in which the clusters change over time.

The SOM merely reinterprets the data into a structure conducive to clustering. The
algorithm works as follows. First, you design a grid of nodes; each node holds a weight
vector of the same dimension as a data item. The weights of each node are initialized
to random numbers, typically from a standard normal distribution.

Figure 5.8 In the real world, we see groups of people in clusters all the time. Applying k-means requires knowing 
the number of clusters ahead of time. A more flexible tool is a self-organizing map, which has no preconceptions 
about the number of clusters.
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113Clustering using a self-organizing map
 Next, you show data items to the network one by one. For each data item, the net-
work identifies the node whose weight vector most closely matches it. This node is
called the best matching unit (BMU).

  After the network identifies the BMU, all neighbors of the BMU are updated so
their weight vectors move closer to the BMU’s value. The closer nodes are affected
more strongly than nodes farther away. Moreover, the number of neighbors around a
BMU shrinks over time at a rate determined usually by trial and error. Figure 5.9 illus-
trates the algorithm.

The following listing shows how to start implementing a SOM in TensorFlow. Follow
along by opening a new source file.

import tensorflow as tf
import numpy as np

class SOM:
    def __init__(self, width, height, dim):
        self.num_iters = 100
        self.width = width
        self.height = height
        self.dim = dim
        self.node_locs = self.get_locs()
        

        nodes = tf.Variable(tf.random_normal([width*height, dim]))  
        self.nodes = nodes
        

        x = tf.placeholder(tf.float32, [dim])     
        iter = tf.placeholder(tf.float32)         
        

        self.x = x              
        self.iter = iter        
        

Listing 5.7 Setting up the SOM algorithm

Grid of nodes

BMU

Grid of nodes

Update

Step 1 Step 2

Figure 5.9 One iteration of the SOM 
algorithm. The first step is to identify the 
best matching unit (BMU), and the second 
step is to update the neighboring nodes. 
You keep iterating these two steps with 
training data until certain convergence 
criteria are reached.

Each node is a vector of
dimension dim. For a 2D
grid, there are width ×

height nodes; get_locs is
defined in listing 5.10.

These two ops are 
inputs at each iteration.

You’ll need to access them 
from another method.
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        bmu_loc = self.get_bmu_loc(x)         

        self.propagate_nodes = self.get_propagation(bmu_loc, x, iter)  

In the next listing, you define how to update neighboring weights, given the current
time interval and BMU location. As time goes by, the BMU’s neighboring weights are
less influenced to change. That way, over time the weights gradually settle.

    def get_propagation(self, bmu_loc, x, iter):
        num_nodes = self.width * self.height
        rate = 1.0 - tf.div(iter, self.num_iters)    
        alpha = rate * 0.5
        sigma = rate * tf.to_float(tf.maximum(self.width, self.height)) / 2.
        expanded_bmu_loc = tf.expand_dims(tf.to_float(bmu_loc), 0) 
        sqr_dists_from_bmu = tf.reduce_sum(
          tf.square(tf.subtract(expanded_bmu_loc, self.node_locs)), 1)
        neigh_factor =                                              
          tf.exp(-tf.div(sqr_dists_from_bmu, 2 * tf.square(sigma)))
        rate = tf.multiply(alpha, neigh_factor)
        rate_factor = 
          tf.stack([tf.tile(tf.slice(rate, [i], [1]), 
                  [self.dim]) for i in range(num_nodes)])
        nodes_diff = tf.multiply(
          rate_factor, 
          tf.subtract(tf.stack([x for i in range(num_nodes)]), self.nodes))
        update_nodes = tf.add(self.nodes, nodes_diff)        
        return tf.assign(self.nodes, update_nodes)   

The following listing shows how to find the BMU location, given an input data item. It
searches through the grid of nodes to find the one with the closest match. This is sim-
ilar to the assignment step in k-means clustering, where each node in the grid is a
potential cluster centroid.

    def get_bmu_loc(self, x):
        expanded_x = tf.expand_dims(x, 0)
        sqr_diff = tf.square(tf.subtract(expanded_x, self.nodes))

Listing 5.8 Defining how to update the values of neighbors

Listing 5.9 Getting the node location of the closest match

Finds the node that most closely 
matches the input (in listing 5.9)

Updates the values of the
neighbors (in listing 5.8)

The rate decreases as 
iter increases. This value 
influences the alpha and 
sigma parameters.

Expands bmu_loc, so you can 
efficiently compare it pairwise with 
each element of node_locs

Ensures that nodes closer to the 
BMU change more dramatically

Defines the 
updates

Returns an op to
perform the updates
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115Clustering using a self-organizing map
        dists = tf.reduce_sum(sqr_diff, 1)
        bmu_idx = tf.argmin(dists, 0)
        bmu_loc = tf.stack([tf.mod(bmu_idx, self.width), tf.div(bmu_idx,
        ➥ self.width)])
        return bmu_loc

In the next listing, you create a helper method to generate a list of (x, y) locations on
all the nodes in the grid.

    def get_locs(self):
        locs = [[x, y]
                 for y in range(self.height)
                 for x in range(self.width)]
        return tf.to_float(locs)

Finally, let’s define a method called train to run the algorithm, as shown in listing 5.11.
First, you must set up the session and run the global_variables_initializer op.
Next, you loop num_iters a certain number of times to update weights using the
input data one by one. After the loop ends, you record the final node weights and
their locations.

    def train(self, data):
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for i in range(self.num_iters):
                for data_x in data:
                    sess.run(self.propagate_nodes, feed_dict={self.x: data_x,
                    ➥ self.iter: i})
            centroid_grid = [[] for i in range(self.width)]
            self.nodes_val = list(sess.run(self.nodes))
            self.locs_val = list(sess.run(self.node_locs))
            for i, l in enumerate(self.locs_val):
                centroid_grid[int(l[0])].append(self.nodes_val[i])
            self.centroid_grid = centroid_grid

That’s it! Now let’s see it in action. Test the implementation by showing the SOM
some input. In listing 5.12, the input is a list of three-dimensional feature vectors. By
training the SOM, you’ll discover clusters within the data. You’ll use a 4 × 4 grid, but
it’s best to try various values to cross-validate the best grid size. Figure 5.10 shows the
output of running the code.

 
 

 

 

Listing 5.10 Generating a matrix of points

Listing 5.11 Running the SOM algorithm
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116 CHAPTER 5 Automatically clustering data
from matplotlib import pyplot as plt
import numpy as np
from som import SOM

colors = np.array(
     [[0., 0., 1.],
      [0., 0., 0.95],
      [0., 0.05, 1.],
      [0., 1., 0.],
      [0., 0.95, 0.],
      [0., 1, 0.05],
      [1., 0., 0.],
      [1., 0.05, 0.],
      [1., 0., 0.05],
      [1., 1., 0.]])

som = SOM(4, 4, 3)  
som.train(colors)

plt.imshow(som.centroid_grid)
plt.show()

The SOM embeds higher-dimensional data into 2D to make clustering easy. This acts as
a handy preprocessing step. You can manually go in and indicate the cluster centroids

Listing 5.12 Testing the implementation and visualizing the results

The grid size is 4 × 4, 
and the input 
dimension is 3.
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Figure 5.10 The SOM places all three-dimensional data points into a two-dimensional 
grid. From it, you can pick the cluster centroids (automatically or manually) and achieve 
clustering in an intuitive lower-dimensional space.
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by observing the SOM’s output, but it’s also possible to automatically find good cen-
troid candidates by observing the gradient of the weights. For the adventurous, we
suggest reading the famous paper “Clustering of the Self-Organizing Map,” by Juha
Vesanto and Esa Alhoniemi: http://mng.bz/XzyS.

5.6 Application of clustering
You’ve already seen two practical applications of clustering: organizing music and seg-
menting an audio clip to label similar sounds. Clustering is especially helpful when
the training dataset doesn’t contain corresponding labels. As you know, such a situa-
tion characterizes unsupervised learning. Sometimes, data is just too inconvenient to
annotate. 

 For example, suppose you want to understand sensor data from the accelerometer of
a phone or smartwatch. At each time step, the accelerometer provides a three-dimen-
sional vector, but you have no idea whether the human is walking, standing, sitting,
dancing, jogging, or so on. You can obtain such a dataset at http://mng.bz/rTMe.

 To cluster the time-series data, you’ll need to summarize the list of accelerometer
vectors into a concise feature vector. One way is to generate a histogram of differences
between consecutive magnitudes of the acceleration. The derivative of acceleration is
called jerk, and you can apply the same operation to obtain a histogram outlining dif-
ferences in jerk magnitudes. 

 This process of generating a histogram out of data is exactly like the preprocessing
steps on audio data explained in this chapter. After you’ve transformed the histo-
grams into feature vectors, you can use the same code listings taught earlier (such as
k-means in TensorFlow).

NOTE Whereas previous chapters discussed supervised learning, this chapter
focused on unsupervised learning. In the next chapter, you’ll see a machine-
learning algorithm that is neither of the two. It’s a modeling framework that
doesn’t get much attention by programmers nowadays but is the essential tool
for statisticians for unveiling hidden factors in data. 

5.7 Summary
 Clustering is an unsupervised machine-learning algorithm for discovering struc-

ture in data.
 K-means clustering is one of the easiest algorithms to implement and under-

stand, and it also performs well in terms of speed and accuracy.
 If the number of clusters isn’t specified, you can use the self-organizing map

(SOM) algorithm to view the data in a simplified perspective.
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120 CHAPTER 6 Hidden Markov models
If a rocket blows up, someone’s probably going to get fired, so rocket scientists and
engineers must be able to make confident decisions about all components and config-
urations. They do so by physical simulations and mathematical deduction from first
principles. You, too, have solved science problems with pure logical thinking. Con-
sider Boyle’s law: pressure and volume of a gas are inversely related under a fixed tem-
perature. You can make insightful inferences from these simple laws that have been
discovered about the world. Recently, machine learning has started to play the role of
an important sidekick to deductive reasoning.

 Rocket science and machine learning aren’t phrases that usually appear together. But
nowadays, modeling real-world sensor readings by using intelligent data-driven algo-
rithms is more approachable in the aerospace industry. Also, the use of machine-learn-
ing techniques is flourishing in the healthcare and automotive industries. But why?

 This influx can be partly attributed to better understanding of interpretable models,
which are machine-learning models in which the learned parameters have clear inter-
pretations. If a rocket blows up, for example, an interpretable model might help trace
the root cause. 

This chapter is about exposing the hidden explanations behind observations. Con-
sider a puppet master pulling strings to make a puppet appear alive. Analyzing only
the motions of the puppet might lead to overly complicated conclusions about how
it’s possible for an inanimate object to move. After you notice the attached strings,
you’ll realize that a puppet master is the best explanation for the lifelike motions. 

This chapter covers
 Defining interpretive models

 Using Markov chains to model data

 Inferring hidden state using a hidden Markov 
model

EXERCISE 6.1 
What makes a model interpretable may be slightly subjective. What’s your criteria for
an interpretable model?

ANSWER

We like to refer to mathematical proofs as the de facto explanation technique. If one
were to convince another about the truth of a mathematical theorem, then a proof
that irrefutably traces the steps of reasoning is sufficient.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


121Markov model
 On that note, this chapter introduces hidden Markov models (HMMs), which reveal
intuitive properties about the problem under study. The HMM is the “puppet master,”
which explains the observations. You model observations by using Markov chains,
which are described in section 6.2. 

 Before going into detail about Markov chains and HMMs, let’s consider alternative
models. In the next section, you’ll see models that may not be interpretable. 

6.1 Example of a not-so-interpretable model
One classic example of a black-box machine-learning algorithm that’s difficult to
interpret is image classification. In an image-classification task, the goal is to assign a
label to each input image. More simply, image classification is often posed as a multiple-
choice question: which one of the listed categories best describes the image? Machine-
learning practitioners have made tremendous advancements in solving this problem,
to the point where today’s best image classifiers match human-level performance on
certain datasets.

 You’ll learn how to solve the problem of classifying images in chapter 9—convolu-
tional neural networks (CNNs), which are a class of machine-learning models that
end up learning a lot of parameters. But those parameters are the problem with
CNNs: what do each of the thousands, if not millions, of parameters mean? It’s diffi-
cult to ask an image classifier why it made the decision that it did. All we have available
are the learned parameters, which may not easily explain the reasoning behind the
classification.

 Machine learning sometimes gets the notoriety of being a black-box tool that
solves a specific problem without revealing how it arrives at its conclusion. The pur-
pose of this chapter is to unveil an area of machine learning with an interpretable
model. Specifically, you’ll learn about the HMM and use TensorFlow to implement it.

6.2 Markov model
Andrey Markov was a Russian mathematician who studied the ways systems change
over time in the presence of randomness. Imagine gas particles bouncing around in
the air. Tracking the position of each particle by Newtonian physics can get way too
complicated, so introducing randomness helps simplify the physical model a little. 

 Markov realized that what helps simplify a random system even further is consid-
ering only a limited area around the gas particle to model it. For example, maybe a
gas particle in Europe has barely any effect on a particle in the United States. So
why not ignore it? The mathematics is simplified when you look only at a nearby
neighborhood instead of the entire system. This notion is now referred to as the
Markov property. 

 Consider modeling the weather. A meteorologist evaluates various conditions with
thermometers, barometers, and anemometers to help predict the weather. They draw
on brilliant insight and years of experience to do their job. 
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122 CHAPTER 6 Hidden Markov models
 Let’s use the Markov property to help us get started with a simple model. First, you
identify the possible situations, or states, that you care to study. Figure 6.1 shows three
weather states as nodes in a graph: Cloudy, Rainy, and Sunny.

Now that you have the states, you want to also define how one state transforms into
another. Modeling weather as a deterministic system is difficult. It’s not an obvious
conclusion that if it’s sunny today, it’ll certainly be sunny again tomorrow. Instead, you
can introduce randomness and say that if it’s sunny today, there’s a 90% chance it’ll be
sunny again tomorrow, and a 10% chance it’ll be cloudy. The Markov property comes
into play when you use only today’s weather condition to predict tomorrow’s (instead
of using all previous history). 

Figure 6.2 demonstrates the transitions as directed edges drawn between nodes, with
the arrow pointing toward the next future state. Each edge has a weight representing
the probability (for example, there’s a 30% chance that if today is rainy, tomorrow will
be cloudy). The lack of an edge between two nodes is an elegant way of showing that
the probability of that transformation is near zero. The transition probabilities can be
learned from historical data, but for now, let’s assume they’re given to us.

EXERCISE 6.2 
A robot that decides which action to perform based on only its current state is said
to follow the Markov property. What are the advantages and disadvantages of such
a decision-making process?

ANSWER

The Markov property is computationally easy to work with. But these models aren’t
able to generalize to situations that require accumulating a history of knowledge.
Examples of these are models in which a trend over time is important, or in which
knowledge of more than one past state gives a better idea of what to expect next.

Rainy

Cloudy

Sunny Figure 6.1 Weather conditions (states) 
represented as nodes in a graph
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123Markov model
If you have three states, you can represent the transitions as a 3 × 3 matrix. Each ele-
ment of the matrix (at row i and column j) corresponds to the probability associated
with the edge from node i to node j. In general, if you have N states, the transition
matrix will be N × N in size (see figure 6.4 for an example).

 We call this system a Markov model. Over time, a state changes using the transition
probabilities defined in figure 6.2. In our example, Sunny has a 90% chance of Sunny
again tomorrow, so we show an edge of probability 0.9, looping back to itself. There’s
a 10% chance of a sunny day being followed by a cloudy day, shown in the diagram as
the edge 0.1, pointing from Sunny to Cloudy. 

 Figure 6.3 is another way to visualize how the states change, given the transition
probabilities. It’s often called a trellis diagram, which turns out to be an essential tool,
as you’ll see later when we implement the TensorFlow algorithms.

You’ve seen in previous chapters how TensorFlow code builds a graph to represent
computation. It might be tempting to treat each node in a Markov model as a node in
TensorFlow. But even though figures 6.2 and 6.3 nicely illustrate state transitions,
there’s a more efficient way to implement them in code, as shown in figure 6.4.

Rainy

Cloudy

0.3

0.2

0.7

0.3
0.5

0.1
Sunny 0.9

Figure 6.2 Transition probabilities 
between weather conditions are 
represented as directed edges.

Rainy

t
0

Sunny

Rainy

t
1

Cloudy

Sunny

Rainy

t
2

Cloudy

Sunny

Cloudy

Figure 6.3 A trellis representation 
of the Markov system changing 
states over time
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124 CHAPTER 6 Hidden Markov models
Remember, nodes in a TensorFlow graph are tensors, so you can represent a transition
matrix (let’s call it T) as a node in TensorFlow. Then, you can apply mathematical
operations on the TensorFlow node to achieve interesting results. 

 For example, suppose you prefer sunny days over rainy ones, so you have a score
associated with each day. You represent your scores for each state in a 3 × 1 matrix
called s. Then, multiplying the two matrices in TensorFlow using tf.matmul(T*s)
gives the expected preference of transitioning from each state.

 Representing a scenario in a Markov model allows you to greatly simplify how you
view the world. But it’s frequently difficult to measure the state of the world directly.
Often, you have to use evidence from multiple observations to figure out the hidden
meaning. And that’s what the next section aims to solve!

6.3 Hidden Markov model
The Markov model defined in the previous section is convenient when all the states
are observable, but that’s not always the case. Consider having access to only tempera-
ture readings of a town. Temperature isn’t weather, but it’s related to it. How then can
you infer the weather from this indirect set of measurements?

 Rainy weather most likely causes a lower temperature reading, whereas a sunny day
most likely causes a higher temperature reading. With temperature knowledge and
transition probabilities alone, you can still make intelligent inferences about the most
likely weather. Problems like this are common in the real world. A state might leave
traces of hints behind, and those hints are all you have available to you. 

 Models like these are HMMs because the true states of the world (such as whether
it’s raining or sunny) aren’t directly observable. These hidden states follow a Markov
model, and each state emits a measurable observation with a certain likelihood. For
example, the hidden state of Sunny might emit high temperature readings, but occa-
sionally also low readings for one reason or another. 

 In an HMM, you have to define the emission probability, which is usually repre-
sented as a matrix called the emission matrix. The number of rows in the matrix is the

Cloudy

Rainy

Sunny

0.3

Cloudy

0.3

0.1

0.2

Rainy

0.7

0.0

3 × 3 transition matrix

0.5

Sunny

0.0

0.9 Figure 6.4 A transition matrix conveys 
the probabilities of a state from the left 
(rows) transitioning to a state at the top 
(columns).
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


125Forward algorithm
number of states (Sunny, Cloudy, Rainy), and the number of columns is the number
of observation types (Hot, Mild, Cold). Each element of the matrix is the probability
associated with the emission.

 The canonical way of visualizing an HMM is by appending the trellis with observa-
tions, as shown in figure 6.5.

So that’s almost it. The HMM is a description of transition probabilities, emission prob-
abilities, and one more thing: initial probabilities. The initial probability is the probabil-
ity of each state happening with no prior knowledge. If you’re modeling the weather
in Los Angeles, perhaps the initial probability of Sunny would be much greater. Or
let’s say you’re modeling the weather in Seattle; well, you know you can set the initial
probability of Rainy to something higher.

 An HMM lets you understand a sequence of observations. In this weather-model-
ing scenario, one question you may ask is, what’s the probability of observing a certain
sequence of temperature readings? We’ll answer this question by using the forward
algorithm.

6.4 Forward algorithm 
The forward algorithm computes the probability of an observation. Many permutations
may cause a particular observation, so enumerating all possibilities the naïve way will
take an exponentially long time to compute. 
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t
0

Sunny

Rainy

t
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Cloudy

Sunny

Rainy

t
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Cloudy

Sunny

Mild Mild Cold

Cloudy

Figure 6.5 A hidden Markov model 
trellis showing how weather conditions 
might produce temperature readings
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126 CHAPTER 6 Hidden Markov models
 Instead, you can solve the problem by using dynamic programming, which is a strat-
egy of breaking a complex problem into simple little ones and using a lookup table to
cache the results. In your code, you’ll save the lookup table as a NumPy array and feed
it to a TensorFlow op to keep updating it.

 As shown in the following listing, create an HMM class to capture the hidden Markov
model parameters, which include the initial probability vector, transition probability
matrix, and emission probability matrix. 

import numpy as np                
import tensorflow as tf           

class HMM(object):
    def __init__(self, initial_prob, trans_prob, obs_prob):
        self.N = np.size(initial_prob)                      
        self.initial_prob = initial_prob                    
        self.trans_prob = trans_prob                        
        self.emission = tf.constant(obs_prob)               

        assert self.initial_prob.shape == (self.N, 1)      
        assert self.trans_prob.shape == (self.N, self.N)   
        assert obs_prob.shape[0] == self.N                 

        self.obs_idx = tf.placeholder(tf.int32)        
        self.fwd = tf.placeholder(tf.float64)          

Next, you’ll define a quick helper function to access a row from the emission matrix.
The code in the following listing is a helper function to efficiently obtain data from an
arbitrary matrix. The slice function extracts a fraction of the original tensor. This
function requires as input the relevant tensor, the starting location specified by a ten-
sor, and the size of the slice specified by a tensor.

    def get_emission(self, obs_idx):
        slice_location = [0, obs_idx]            
        num_rows = tf.shape(self.emission)[0]
        slice_shape = [num_rows, 1]                             
        return tf.slice(self.emission, slice_location, slice_shape)  

You need to define two TensorFlow ops. The first one, in the following listing, will be
run only once to initialize the forward algorithm’s cache.

Listing 6.1 Defining the HMM class

Listing 6.2 Creating a helper function to access emission probability of an observation

Imports the 
required libraries

Stores the 
parameters as 
method variables

Double-checks that 
the shapes of all the 
matrices make sense

Defines the placeholders used 
for the forward algorithm

The location of 
where to slice 
the emission 
matrix The shape 

of the slice

Performs the
slicing operation
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    def forward_init_op(self):
        obs_prob = self.get_emission(self.obs_idx)
        fwd = tf.multiply(self.initial_prob, obs_prob)
        return fwd

And the next op will update the cache at each observation, as shown in listing 6.4. Run-
ning this code is often called executing a forward step. Although it looks like this for-
ward_op function takes no input, it depends on placeholder variables that need to be fed
to the session. Specifically, self.fwd and self.obs_idx are the inputs to this function.

    def forward_op(self):
        transitions = tf.matmul(self.fwd, 

tf.transpose(self.get_emission(self.obs_idx)))
        weighted_transitions = transitions * self.trans_prob
        fwd = tf.reduce_sum(weighted_transitions, 0)
        return tf.reshape(fwd, tf.shape(self.fwd))

Outside the HMM class, let’s define a function to run the forward algorithm, as shown in
the following listing. The forward algorithm runs the forward step for each observa-
tion. In the end, it finally outputs a probability of observations.

def forward_algorithm(sess, hmm, observations):
    fwd = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs_idx: 

observations[0]})
    for t in range(1, len(observations)):
        fwd = sess.run(hmm.forward_op(), feed_dict={hmm.obs_idx: 

observations[t], hmm.fwd: fwd})
    prob = sess.run(tf.reduce_sum(fwd))
    return prob

In the main function, let’s set up the HMM class by feeding it the initial probability
vector, transition probability matrix, and emission probability matrix. For consistency,
the example in listing 6.6 is lifted directly from the Wikipedia article on HMMs:
http://mng.bz/8ztL, as shown in figure 6.6.

 In general, the three concepts are defined as follows:

 Initial probability vector—Starting probability of the states 
 Transition probability matrix—Probabilities associated with landing on the next

states, given the current state
 Emission probability matrix—Likelihood of an observed state implying the state

you’re interested in has occurred 

Given these matrices, you’ll call the forward algorithm that you just defined.

Listing 6.3 Initializing the cache

Listing 6.4 Updating the cache

Listing 6.5 Defining the forward algorithm given an HMM
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128 CHAPTER 6 Hidden Markov models
if __name__ == '__main__':
    initial_prob = np.array([[0.6], 
                             [0.4]])
    
    trans_prob = np.array([[0.7, 0.3], 
                           [0.4, 0.6]])
    
    obs_prob = np.array([[0.1, 0.4, 0.5], 
                         [0.6, 0.3, 0.1]])
    
    hmm = HMM(initial_prob=initial_prob, trans_prob=trans_prob, 

obs_prob=obs_prob)
    
    observations = [0, 1, 1, 2, 1]
    with tf.Session() as sess:
        prob = forward_algorithm(sess, hmm, observations)
        print('Probability of observing {} is {}'.format(observations, prob))

When you run listing 6.6, the algorithm outputs the following:

Probability of observing [0, 1, 1, 2, 1] is 0.0045403

6.5 Viterbi decoding
The Viterbi decoding algorithm finds the most likely sequence of hidden states, given a
sequence of observations. It requires a caching scheme similar to the forward algo-
rithm. You’ll name the cache viterbi. In the HMM constructor, append the line
shown in the following listing.

 
 

Listing 6.6 Defining the HMM and calling the forward algorithm

Figure 6.6 Screenshot of 
HMM example scenario 
from Wikipedia

states = ('Rainy', 'Sunny')

observations = ('walk', 'shop', 'clean')

start_probability = {'Rainy': 0.6, 'Sunny': 0.4}

transition_probability = {
'Rainy : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},

}

emission_probability = {
'Rainy : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},

}
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129Viterbi decoding
def __init__(self, initial_prob, trans_prob, obs_prob):
  ...
  ...
  ...
  self.viterbi = tf.placeholder(tf.float64)

In the next listing, you’ll define a TensorFlow op to update the viterbi cache. This
will be a method in the HMM class.

def decode_op(self):
        transitions = tf.matmul(self.viterbi, 

tf.transpose(self.get_emission(self.obs_idx)))
        weighted_transitions = transitions * self.trans_prob
        viterbi = tf.reduce_max(weighted_transitions, 0)
        return tf.reshape(viterbi, tf.shape(self.viterbi))

You’ll also need an op to update the back pointers.

def backpt_op(self):
    back_transitions = tf.matmul(self.viterbi, np.ones((1, self.N)))
    weighted_back_transitions = back_transitions * self.trans_prob
    return tf.argmax(weighted_back_transitions, 0)

Lastly, in the following listing, define the Viterbi decoding function outside the HMM.

def viterbi_decode(sess, hmm, observations):
    viterbi = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs: 

observations[0]})
    backpts = np.ones((hmm.N, len(observations)), 'int32') * -1
    for t in range(1, len(observations)):
        viterbi, backpt = sess.run([hmm.decode_op(), hmm.backpt_op()],
                                    feed_dict={hmm.obs: observations[t],
                                               hmm.viterbi: viterbi})
        backpts[:, t] = backpt
    tokens = [viterbi[:, -1].argmax()]
    for i in range(len(observations) - 1, 0, -1):
        tokens.append(backpts[tokens[-1], i])
    return tokens[::-1]

You can run the code in the next listing in the main function to evaluate the Viterbi
decoding of an observation.

 

Listing 6.7 Adding the Viterbi cache as a member variable

Listing 6.8 Defining an op to update the forward cache

Listing 6.9 Defining an op to update the back pointers

Listing 6.10 Defining the Viterbi decoding algorithm
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130 CHAPTER 6 Hidden Markov models
seq = viterbi_decode(sess, hmm, observations)
print('Most likely hidden states are {}'.format(seq))

6.6 Uses of hidden Markov models
Now that you’ve implemented the forward algorithm and Viterbi algorithm, let’s take
a look at interesting uses for your newfound power. 

6.6.1 Modeling a video

Imagine being able to recognize a person based solely (no pun intended) on how they
walk. Identifying people based on their gait is a pretty cool idea, but first you need a
model to recognize the gait. Consider an HMM in which the sequence of hidden
states for a gait are (1) rest position, (2) right foot forward, (3) rest position, (4) left
foot forward, and finally (5) rest position. The observed states are silhouettes of a per-
son walking/jogging/running taken from a video clip (a dataset of such examples is
available at http://mng.bz/Tqfx).

6.6.2 Modeling DNA

DNA is a sequence of nucleotides, and we’re gradually learning more about its struc-
ture. One clever way to understand a long DNA string is by modeling the regions, if
we know some probability about the order in which they appear. Just as cloudy days
are common after a rainy day, maybe a certain region on the DNA sequence (start
codon) is more common before another region (stop codon). 

6.6.3 Modeling an image

In handwriting recognition, we aim to retrieve the plaintext from an image of hand-
written words. One approach is to resolve characters one at a time and then concate-
nate the results. You can use the insight that characters are written in sequences—
words—to build an HMM. Knowing the previous character could probably help you
rule out possibilities of the next character. The hidden states are the plaintext, and
the observations are cropped images containing individual characters.

6.7 Application of hidden Markov models
Hidden Markov models work best when you have an idea about what the hidden states
are and how they change over time. Luckily, in the field of natural language process-
ing, tagging a sentence’s parts of speech can be solved using HMMs:

 A sequence of words in a sentence corresponds to the observations of the
HMM. For example, the sentence “Open the pod bay doors, HAL” has six
observed words.

Listing 6.11 Running the Viterbi decode
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131Summary
 The hidden states are the parts of speech, such as verb, noun, adjective, and so
on. The observed word open in the previous example should correspond to the
hidden state verb. 

 The transition probabilities can be designed by the programmer or obtained
through data. These probabilities represent the rules of the parts of speech. For
example, the probability of two verbs occurring one after another should be
low. By setting up a transition probability, you avoid having the algorithm brute-
forcing all possibilities.

 The emitting probabilities of each word can be obtained from data. A tradi-
tional part-of-speech tagging dataset is called Moby; you can find it at
www.gutenberg.org/ebooks/3203.

NOTE You now have what it takes to design your own experiments using hid-
den Markov models! It’s a powerful tool, and we urge you to try it on your
own data. Predefine some transitions and emissions, and see if you can recover
hidden states. Hopefully, this chapter can help get you started. 

6.8 Summary
 A complicated, entangled system can be simplified using a Markov model.
 The hidden Markov model is particularly useful in real-world applications because

most observations are measurements of hidden states.
 The forward and Viterbi algorithms are among the most common algorithms

used on HMMs.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
http://www.gutenberg.org/ebooks/3203


Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


Part 3

The neural
network paradigm

We’re seeing a huge push from industries to place neural networks on a
pedestal. Deep-learning research has become a corporate status symbol, with the
theory behind it obfuscated by smoke and mirrors. Massive amounts of money
have been thrown at marketing this technology by companies including NVIDIA,
Facebook, Amazon, Microsoft, and, let’s not forget, Google. Regardless, deep
learning works exceptionally well for solving some problems, and using Tensor-
Flow is how we’ll implement it.

 The chapters in this part of the book introduce neural networks from the
basics and apply these architectures to real-world practical applications. In
order, the chapters are about autoencoders, reinforcement learning, convolu-
tional neural networks, recurrent neural networks, sequence-to-sequence mod-
els, and ranking. Full speed ahead!
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136 CHAPTER 7 A peek into autoencoders
Have you ever heard a person humming a melody, and identified the song? It might
be easy for you, but I’m comically tone-deaf when it comes to music. Humming, of
itself, is an approximation of a song. An even better approximation could be singing.
Include some instrumentals, and sometimes a cover of a song sounds indistinguish-
able from the original. 

 Instead of songs, in this chapter, you’ll approximate functions. Functions are a
general notion of relations between inputs and outputs. In machine learning, you typ-
ically want to find the function that relates inputs to outputs. Finding the best possible
function fit is difficult, but approximating the function is much easier. 

 Conveniently, artificial neural networks are a model in machine learning that can
approximate any function. As you’ve learned, your model is a function that gives the
output you’re looking for, given the inputs you have. In ML terms, given training data,
you want to build a neural network model that best approximates the implicit func-
tion that might have generated the data—one that might not give you the exact
answer but that’s good enough to be useful.

 So far, you’ve generated models by explicitly designing a function, whether it be
linear, polynomial, or something more complicated. Neural networks enable a little
bit of leeway when it comes to picking out the right function, and consequently the
right model. In theory, a neural network can model general-purpose types of trans-
formation—where you don’t need to know much at all about the function being
modeled! 

 After section 7.1 introduces neural networks, you’ll learn how to use autoencoders,
which encode data into smaller, faster representations, in section 7.2.

7.1 Neural networks
If you’ve heard about neural networks, you’ve probably seen diagrams of nodes and
edges connected in a complicated mesh. That visualization is mostly inspired by biol-
ogy—specifically, neurons in the brain. As it turns out, it’s also a convenient way to
visualize functions, such as f(x) = w × x + b, shown in figure 7.1.

 
 

This chapter covers
 Getting to know neural networks

 Designing autoencoders

 Representing images by using an autoencoder
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137Neural networks
As a reminder, a linear model is set of linear functions; for example, f(x) = w × x + b,
where (w, b) is the vector of parameters. The learning algorithm drifts around the
values of w and b until it finds a combination that best matches the data. After
the algorithm successfully converges, it’ll find the best possible linear function to
describe the data.

 Linear is a good place to start, but the real world isn’t always that pretty. And thus,
we dive into the type of machine learning responsible for TensorFlow’s inception; this
chapter is your introduction to a type of model called an artificial neural network, which
can approximate arbitrary functions (not just linear ones).

To incorporate the concept of nonlinearity, it’s effective to apply a nonlinear function,
called the activation function, to each neuron’s output. Three of the most commonly
used activation functions are sigmoid (sig), hyperbolic tangent (tan), and a type of ramp
function called a Rectifying Linear Unit (ReLU), plotted in figure 7.2. 

 You don’t have to worry too much about which activation function is better
under what circumstances. That’s still an active research topic. Feel free to experi-
ment with the three shown in figure 7.2. Usually, the best one is chosen by using
cross-validation to determine which one gives the best model, given the dataset
you’re working with. Remember our confusion matrix in chapter 4? You test which
model gives the fewest false-positives or false-negatives, or whatever other criteria
best suits your needs.

 
 

EXERCISE 7.1 
Is f(x) = |x| a linear function?

ANSWER

No. It’s two linear functions stitched together at zero, and that’s not a single straight
line.

Input Output

w x + b×

1

w

b

x Figure 7.1 A graphical representation of the linear 
equation f(x) = w × x + b. The nodes are represented 
as circles, and edges are represented as arrows. The 
values on the edges are often called weights, and 
they act as a multiplication on the input. When two 
arrows lead to the same node, they act as a 
summation of the inputs. 
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138 CHAPTER 7 A peek into autoencoders
The sigmoid function isn’t new to you. As you may recall, the logistic regression classi-
fier in chapter 4 applied this sigmoid function to the linear function w × x + b. The
neural network model in figure 7.3 represents the function f(x) = sig(w × x + b). It’s a
one-input, one-output network, where w and b are the parameters of this model.

If you have two inputs (x1 and x2), you can modify your neural network to look like
the one in figure 7.4. Given training data and a cost function, the parameters to be
learned are w1, w2, and b. When trying to model data, having multiple inputs to a
function is common. For example, image classification takes the entire image (pixel
by pixel) as the input. 

 Naturally, you can generalize to an arbitrary number of inputs (x1, x2, …, xn). The
corresponding neural network represents the function f(x1, …, xn) = sig(wn × xn + …
+ w1 × x1 + b), as shown in figure 7.5.

 
 
 

Figure 7.2 Use nonlinear functions such as sig, tan, and ReLU to introduce nonlinearity to your models.

1

sig tan ReLU

1

–1

Input Output

w x + b×

1

w

b

x

sig ×(w x + b)

Figure 7.3 A nonlinear function, 
such as sigmoid, is applied to the 
output of a node.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


139Neural networks
 
 

Input Output

1

w1

b

x1

sig 1 × 1 2 × 2 +(w x + w x b)x2
w2

Figure 7.4 A two-input network will have three parameters (w1, w2, and b). 
Remember, multiple lines leading to the same node indicate summation.

Input
Output

1

w1

b

x1

sig +(w x b)
T

x2
w2

xn

Figure 7.5 The input dimension can be arbitrarily long. For example, each pixel 
in a grayscale image can have a corresponding input xi. This neural network uses 
all inputs to generate a single output number, which you might use for regression 
or classification. The notation wT means you’re transposing w, which is an n × 1 
vector, into a 1 × n vector. That way, you can properly multiply it with x (which has 
the dimensions n × 1). Such a matrix multiplication is also called a dot product, 
and it yields a scalar (one-dimensional) value.
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140 CHAPTER 7 A peek into autoencoders
So far, you’ve dealt with only an input layer and an output layer. Nothing’s stopping
you from arbitrarily adding neurons in between. Neurons that are used as neither
input nor output are called hidden neurons. They’re hidden from the input and output
interfaces of the neural network, so no one can directly influence their values. A hid-
den layer is any collection of hidden neurons that don’t connect to each other, as
shown in figure 7.6. Adding more hidden layers greatly improves the expressive power
of the network.

As long as the activation function is something nonlinear, a neural network with at
least one hidden layer can approximate arbitrary functions. In linear models, no mat-
ter what parameters are learned, the function remains linear. The nonlinear neural
network model with a hidden layer, on the other hand, is flexible enough to approxi-
mately represent any function! What a time to be alive!

 TensorFlow comes with many helper functions to help you obtain the parameters
of a neural network in an efficient way. You’ll see how to invoke those tools in this
chapter when you start using your first neural network architecture: an autoencoder.

7.2 Autoencoders
An autoencoder is a type of neural network that tries to learn parameters that make the
output as close to the input as possible. An obvious way to do so is to return the input
directly, as shown in figure 7.7.

 But an autoencoder is more interesting than that. It contains a small hidden layer!
If that hidden layer has a smaller dimension than the input, the hidden layer is a com-
pression of your data, called encoding.

Input

Output

1

w1x1

f x( )

xn

Hidden

Figure 7.6 Nodes that don’t interface to both the input and the 
output are called hidden neurons. A hidden layer is a collection 
of hidden units that aren’t connected to each other. 
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The process of reconstructing the input from the hidden layer is called decoding. Fig-
ure 7.8 shows an exaggerated example of an autoencoder.

Encoding data in the real world
A couple of audio formats are out there, but the most popular may be MP3 because
of its relatively small file size. You may have already guessed that such efficient stor-
age comes with a trade-off. The algorithm to generate an MP3 file takes original
uncompressed audio and shrinks it into a much smaller file that sounds approxi-
mately the same to your ears. But it’s lossy, meaning that you won’t be able to com-
pletely recover the original uncompressed audio from the encoded version. Similarly,
in this chapter, we want to reduce the dimensionality of the data to make it more
workable, but not necessarily create a perfect reproduction.

Input

1

x1

xn

Output

Figure 7.7 If you want to create a network 
where the input equals the output, you can 
connect the corresponding nodes and set 
each parameter’s weight to 1. 

Input

1

x1

xn

Output

w1

b

w2

1

y1

yn

w'1

b'

w'2

Hidden

Figure 7.8 Here, you introduce a 
restriction to a network that tries to 
reconstruct its input. Data will pass 
through a narrow channel, as illustrated 
by the hidden layer. In this example, 
there’s only one node in the hidden 
layer. This network is trying to encode 
(and decode) an n-dimensional input 
signal into just one dimension, which 
will likely be difficult in practice.
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Encoding is a great way to reduce the dimensions of the input. For example, if you
can represent a 256 × 256 image in just 100 hidden nodes, you’ve reduced each data
item by a factor of thousands!

It makes sense to use an object-oriented programming style to implement an autoen-
coder. That way, you can later reuse the class in other applications without worrying
about tightly coupled code. Creating your code as outlined in listing 7.1 helps build
deeper architectures, such as a stacked autoencoder, which has been known to perform
better empirically. 

TIP Generally, with neural networks, adding more hidden layers seems to
improve performance if you have enough data to not overfit the model.

class Autoencoder:
    def __init__(self, input_dim, hidden_dim):    

    def train(self, data):     
      

    def test(self, data):   

Open a new Python source file, and call it autoencoder.py. This file will define the
autoencoder class that you’ll use from a separate piece of code. 

 The constructor will set up all the TensorFlow variables, placeholders, optimizers,
and operators. Anything that doesn’t immediately need a session can go in the con-
structor. Because you’re dealing with two sets of weights and biases (one for the
encoding step and the other for the decoding step), you can use TensorFlow’s name
scopes to disambiguate a variable’s name. 

 For instance, the following listing shows an example of defining a variable within a
named scope. Now you can seamlessly save and restore this variable without worrying
about name collisions.

 
 
 

EXERCISE 7.2 
Let x denote the input vector (x1, x2, …, xn), and let y denote the output vector (y1,
y2, …, yn). Lastly, let w and w’ denote the encoder and decoder weights, respec-
tively. What’s a possible cost function to train this neural network?

ANSWER 
See the loss function in listing 7.3.

Listing 7.1 Python class schema

Initializes 
variables

Trains on a 
dataset

Tests on some 
new data
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b
n

with tf.name_scope('encode'):
    weights = tf.Variable(tf.random_normal([input_dim, hidden_dim], 

dtype=tf.float32), name='weights')
    biases = tf.Variable(tf.zeros([hidden_dim]), name='biases')

Moving on, let’s implement the constructor, as shown in the following listing.

import tensorflow as tf
import numpy as np

class Autoencoder:
    def __init__(self, input_dim, hidden_dim, epoch=250, 

learning_rate=0.001):
        self.epoch = epoch                              
        self.learning_rate = learning_rate                         

        x = tf.placeholder(dtype=tf.float32, shape=[None, input_dim]) 

        with tf.name_scope('encode'):                
            weights = tf.Variable(tf.random_normal([input_dim, hidden_dim], 

dtype=tf.float32), name='weights')
            biases = tf.Variable(tf.zeros([hidden_dim]), name='biases')
            encoded = tf.nn.tanh(tf.matmul(x, weights) + biases)
        with tf.name_scope('decode'):                                
            weights = tf.Variable(tf.random_normal([hidden_dim, input_dim], 

dtype=tf.float32), name='weights')
            biases = tf.Variable(tf.zeros([input_dim]), name='biases')
            decoded = tf.matmul(encoded, weights) + biases

        self.x = x                  
        self.encoded = encoded      
        self.decoded = decoded      

        self.loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(self.x, 
self.decoded))))                           

        self.train_op = 
tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss) 

        self.saver = tf.train.Saver() 

Now, in the next listing, you’ll define a class method called train that will receive a
dataset and learn parameters to minimize its loss.

 
 
 

Listing 7.2 Using name scopes

Listing 7.3 Autoencoder class

Number of 
learning cycles

Hyperparameter 
of the optimizer

Defines the
input layer

dataset

Defines the
weights and

iases under a
ame scope so

you can tell
them apart

from the
decoder’s

weights and
biases

The decoder’s
weights and biases
are defined under
this name scope.

These will 
be method 
variables.

Defines the 
reconstruction cost

Chooses the
optimizerSets up a saver to save

model parameters as
they’re being learned
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144 CHAPTER 7 A peek into autoencoders
    def train(self, data):
        num_samples = len(data)
        with tf.Session() as sess:                          
            sess.run(tf.global_variables_initializer())     
            for i in range(self.epoch):                       
                for j in range(num_samples):                     
                    l, _ = sess.run([self.loss, self.train_op], 

feed_dict={self.x: [data[j]]})                              
                if i % 10 == 0:                                  
                    print('epoch {0}: loss = {1}'.format(i, l))  
                    self.saver.save(sess, './model.ckpt')       
            self.saver.save(sess, './model.ckpt')               

You now have enough code to design an algorithm that learns an autoencoder from
arbitrary data. Before you start using this class, let’s create one more method. As
shown in the next listing, the test method will let you evaluate the autoencoder on
new data.

    def test(self, data):
        with tf.Session() as sess:
            self.saver.restore(sess, './model.ckpt')  
            hidden, reconstructed = sess.run([self.encoded, self.decoded], 

feed_dict={self.x: data})                       
        print('input', data)  
        print('compressed', hidden)
        print('reconstructed', reconstructed)
        return reconstructed

Finally, create a new Python source file called main.py, and use your Autoencoder
class, as shown in the following listing.

from autoencoder import Autoencoder
from sklearn import datasets

hidden_dim = 1
data = datasets.load_iris().data
input_dim = len(data[0])
ae = Autoencoder(input_dim, hidden_dim)
ae.train(data)
ae.test([[8, 4, 6, 2]])

Listing 7.4 Training the autoencoder

Listing 7.5 Testing the model on data

Listing 7.6 Using your Autoencoder class

Starts a TensorFlow 
session, and initializes 
all variables

Iterates through 
the number of 
cycles defined in 
the constructor

One sample at
a time, trains

the neural
network on a

data item

Prints the 
reconstruction error 
once every 10 cycles

Saves the learned 
parameters to file

Loads the learned 
parameters

Reconstructs 
the input 
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145Batch training
Running the train function will output debug info about how the loss decreases over
the epochs. The test function shows info about the encoding and decoding process:

('input', [[8, 4, 6, 2]])
('compressed', array([[ 0.78238308]], dtype=float32))
('reconstructed', array([[ 6.87756062,  2.79838109,  6.25144577,  

2.23120356]], dtype=float32))

Notice that you’re able to compress a four-dimensional vector into just one dimension
and then decode it back into a four-dimensional vector with some loss in data.

7.3 Batch training
Training a network one sample at a time is the safest bet if you’re not pressured by
time. But if your network training is taking longer than desired, one solution is to
train it with multiple data inputs at a time, called batch training. 

 Typically, as the batch size increases, the algorithm speeds up but has a lower likeli-
hood of successfully converging. It’s a double-edged sword. Go wield it in the follow-
ing listing. You’ll use that helper function later.

 def get_batch(X, size):
    a = np.random.choice(len(X), size, replace=False)
    return X[a]

To use batch learning, you’ll need to modify the train method from listing 7.4. The
batch version is shown in the following listing. It inserts an additional inner loop for
each batch of data. Typically, the number of batch iterations should be enough so that
all data is covered in the same epoch.

def train(self, data, batch_size=10):
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for i in range(self.epoch):
                for j in range(500):                            
                    batch_data = get_batch(data, self.batch_size) 
                    l, _ = sess.run([self.loss, self.train_op], 

feed_dict={self.x: batch_data})
                if i % 10 == 0:
                    print('epoch {0}: loss = {1}'.format(i, l))
                    self.saver.save(sess, './model.ckpt')
            self.saver.save(sess, './model.ckpt')

Listing 7.7 Batch helper function

Listing 7.8 Batch learning

Loops through 
various batch 
selections

Runs the optimizer
on a randomly
selected batch
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7.4 Working with images
Most neural networks, like your autoencoder, accept only one-dimensional input. Pix-
els of an image, on the other hand, are indexed by both rows and columns. Moreover,
if a pixel is in color, it has a value for its red, green, and blue concentration, as shown
in figure 7.9.

A convenient way to manage the higher dimensions of an image involves two steps:

1 Convert the image to grayscale: merge the values of red, green, and blue into
the pixel intensity, which is a weighted average of the color values.

12, 0, 100Row 1

Image

11, 4, 100 12, 4, 110 11, 4, 90 12, 0, 100

12, 0, 100Row 2

...

12, 0, 100 12, 0, 100 12, 0, 100 12, 0, 100

... ... ... ... ...

... ... ... ... ...

... ... ...

Col 1 Col 2 ...

... ...

Pixel BlueRed Green

Figure 7.9 A colored image is composed of pixels, and each pixel contains values for red, 
green, and blue.
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147Working with images
2 Rearrange the image into row-major order. Row-major order stores an array as a
longer, single-dimension set; you put all the dimensions of an array on the end
of the first dimension. This allows you to index the image by one number
instead of two. If an image is 3 × 3 pixels in size, you rearrange it into the struc-
ture shown in figure 7.10.

You can use images in TensorFlow in many ways. If you have pictures lying around on
your hard drive, you can load them using SciPy, which comes with TensorFlow. The
following listing shows you how to load an image in grayscale, resize it, and represent
it in row-major order.

from scipy.misc import imread, imresize

gray_image = imread(filepath, True)             
small_gray_image = imresize(gray_image, 1. / 8.)
x = small_gray_image.flatten()        

Image processing is a lively field of research, so datasets are readily available for you to
use, instead of using your own limited images. For instance, a dataset called CIFAR-10
contains 60,000 labeled images, each 32 × 32 in size.

 
 
 
 
 

Listing 7.9 Loading images

Image: 1 2 3

Row-major order: 1 2 3

4 5 6

4 5 6

7 8 9

7 8 9

Figure 7.10 An image can be represented in row-major order. That 
way, you can represent a two-dimensional structure as a one-
dimensional structure.

Loads an image 
as grayscale

Resizes it to 
something smaller

Converts it to a one-
dimensional structure
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.

Download the Python dataset from www.cs.toronto.edu/~kriz/cifar.html. Place the
extracted cifar-10-batches-py folder in your working directory. The following listing
is provided from the CIFAR-10 web page; add the code to a new file called main_
imgs.py.

import pickle

def unpickle(file): 
    fo = open(file, 'rb')
    dict = pickle.load(fo, encoding='latin1')
    fo.close()
    return dict

Let’s read each of the dataset files by using the unpickle function you just created.
The CIFA-10 dataset contains six files, each prefixed with data_batch_ and followed by
a number. Each file contains information about the image data and corresponding
label. The following listing shows how to loop through all the files and append the
datasets to memory.

import numpy as np

names = unpickle('./cifar-10-batches-py/batches.meta')['label_names']
data, labels = [], []
for i in range(1, 6):                                      
    filename = './cifar-10-batches-py/data_batch_' + str(i)
    batch_data = unpickle(filename)                      
    if len(data) > 0:
        data = np.vstack((data, batch_data['data']))        
        labels = np.hstack((labels, batch_data['labels']))  
    else:
        data = batch_data['data']
        labels = batch_data['labels']

EXERCISE 7.3 
Can you name other online image datasets? Search online and look around for more!

ANSWER

Perhaps the most used in the deep-learning community is ImageNet (www.image-
net.org). A great list can also be found online at http://deeplearning.net/datasets.

Listing 7.10 Reading from the extracted CIFAR-10 dataset

Listing 7.11 Reading all CIFAR-10 files to memory

Reads the CIFAR-10 file, 
returning the loaded 
dictionary

Loops through 
the six files

Loads the
file to

obtain a
Python

dictionary

The rows of a 
data sample 
represent each 
sample, so you 
stack it vertically

Labels are one-
dimensional, so
you stack them

horizontally.
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Each image is represented as a series of red pixels, followed by green pixels, and then
blue pixels. Listing 7.12 creates a helper function to convert the image into grayscale
by averaging the red, green, and blue values. 

NOTE You can achieve more-realistic grayscale in other ways, but this approach
of averaging the three values gets the job done. Human perception is more
sensitive to green light, so in some other versions of grayscaling, green values
might have a higher weight in the averaging.

def grayscale(a):
    return a.reshape(a.shape[0], 3, 32, 32).mean(1).reshape(a.shape[0], -1)

data = grayscale(data)

Lastly, let’s collect all images of a certain class, such as horse. You’ll run your autoen-
coder on all pictures of horses, as shown in the following listing.

from autoencoder import Autoencoder

x = np.matrix(data)
y = np.array(labels)

horse_indices = np.where(y == 7)[0]

horse_x = x[horse_indices]

print(np.shape(horse_x))  # (5000, 3072)

input_dim = np.shape(horse_x)[1]
hidden_dim = 100
ae = Autoencoder(input_dim, hidden_dim)
ae.train(horse_x)

You can now encode images similar to your training dataset into just 100 numbers.
This autoencoder model is one of the simplest, so clearly it’ll be a lossy encoding.
Beware: running this code may take up to 10 minutes. The output will trace loss values
of every 10 epochs:

epoch 0: loss = 99.8635025024
epoch 10: loss = 35.3869667053
epoch 20: loss = 15.9411172867
epoch 30: loss = 7.66391372681
epoch 40: loss = 1.39575612545
epoch 50: loss = 0.00389165547676

Listing 7.12 Converting CIFAR-10 image to grayscale

Listing 7.13 Setting up the autoencoder
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150 CHAPTER 7 A peek into autoencoders
epoch 60: loss = 0.00203850422986
epoch 70: loss = 0.00186171964742
epoch 80: loss = 0.00231492402963
epoch 90: loss = 0.00166488380637
epoch 100: loss = 0.00172081717756
epoch 110: loss = 0.0018497039564
epoch 120: loss = 0.00220602494664
epoch 130: loss = 0.00179589167237
epoch 140: loss = 0.00122790911701
epoch 150: loss = 0.0027100709267
epoch 160: loss = 0.00213225837797
epoch 170: loss = 0.00215123943053
epoch 180: loss = 0.00148373935372
epoch 190: loss = 0.00171591725666

See the book’s website or GitHub repo for a full example of the output: https://www
.manning.com/books/machine-learning-with-tensorflow or  http://mng.bz/D0Na. 

7.5 Application of autoencoders
This chapter introduced the most straightforward type of autoencoder, but other
variants have been studied, each with their benefits and applications. Let’s take a
look at a few:

 A stacked autoencoder starts the same way a normal autoencoder does. It learns
the encoding for an input into a smaller hidden layer by minimizing the recon-
struction error. The hidden layer is now treated as the input to a new autoen-
coder that tries to encode the first layer of hidden neurons to an even smaller
layer (the second layer of hidden neurons). This continues as desired. Often,
the learned encoding weights are used as initial values for solving regression or
classification problems in a deep neural network architecture.

 A denoising autoencoder receives a noised-up input instead of the original input,
and it tries to “denoise” it. The cost function is no longer used to minimize the
reconstruction error. Now, you’re trying to minimize the error between the
denoised image and the original image. The intuition is that our human minds
can still comprehend a photograph even after scratches or markings on it. If a
machine can also see through the noised input to recover the original data,
maybe it has a better understanding of the data. Denoising models have been
shown to better capture salient features of an image.

 A variational autoencoder can generate new natural images, given the hidden vari-
ables directly. Let’s say you encode a picture of a man as a 100-dimensional vec-
tor, and then a picture of a woman as another 100-dimensional vector. You can
take the average of the two vectors, run it through the decoder, and produce a
reasonable image that represents visually a person who’s between a man and a
woman. This generative power of the variational autoencoder is derived from a
type of probabilistic models called Bayesian networks. 
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151Summary
7.6 Summary
 A neural network is useful when a linear model is ineffective for describing the

dataset.
 Autoencoders are unsupervised learning algorithms that try to reproduce their

inputs, and in doing so reveal interesting structure about the data.
 Images can easily be fed as input to a neural network by flattening and gray-

scaling.
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154 CHAPTER 8 Reinforcement learning
Humans learn from past experiences (or, at least they should). You didn’t get so
charming by accident. Years of positive compliments as well as negative criticism have
all helped shape who you are today. This chapter is about designing a machine-learn-
ing system driven by criticisms and rewards.

 You learn what makes people happy, for example, by interacting with friends, fam-
ily, or even strangers, and you figure out how to ride a bike by trying out various mus-
cle movements until riding just clicks. When you perform actions, you’re sometimes
rewarded immediately. For example, finding a good restaurant nearby might yield
instant gratification. Other times, the reward doesn’t appear right away, such as travel-
ing a long distance to find an exceptional place to eat. Reinforcement learning is
about making the right actions, given any state—such as in figure 8.1, which shows a
person making decisions to arrive at their destination.

 Moreover, suppose on your drive from home to work, you always choose the same
route. But one day your curiosity takes over, and you decide to try a different path in

This chapter covers 
 Defining reinforcement learning

 Implementing reinforcement learning

Agent

High traffic

Destination

Figure 8.1 A person navigating to reach a destination in the midst of traffic 
and unexpected situations is a problem setup for reinforcement learning.
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155Formal notions
hopes of a shorter commute. This dilemma of trying out new routes or sticking to the
best-known route is an example of exploration versus exploitation.

NOTE Why is the trade-off between trying new things and sticking with old
ones called exploration versus exploitation? Exploration makes sense, but you
can think of exploitation as exploiting your knowledge of the status quo by
sticking with what you know.

All these examples can be unified under a general formulation: performing an action
in a scenario can yield a reward. A more technical term for scenario is state. And we
call the collection of all possible states a state space. Performing an action causes the
state to change. But the question is, what series of actions yields the highest expected
rewards?

8.1 Formal notions
Whereas supervised and unsupervised learning appear at opposite ends of the spec-
trum, reinforcement learning (RL) exists somewhere in the middle. It’s not supervised
learning, because the training data comes from the algorithm deciding between
exploration and exploitation. And it’s not unsupervised, because the algorithm
receives feedback from the environment. As long as you’re in a situation where per-
forming an action in a state produces a reward, you can use reinforcement learning to
discover a good sequence of actions to take that maximize expected rewards. 

 You may notice that reinforcement-learning lingo involves anthropomorphizing
the algorithm into taking actions in situations to receive rewards. The algorithm is often
referred to as an agent that acts with the environment. It shouldn’t be a surprise that
much of reinforcement-learning theory is applied in robotics. Figure 8.2 demon-
strates the interplay between states, actions, and rewards.

Agent’s current state
States:

Actions:

Rewards:
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Figure 8.2 Actions are 
represented by arrows, and 
states are represented by 
circles. Performing an action on 
a state produces a reward. If you 
start at state s1, you can 
perform action a1 to obtain a 
reward r(s1, a1).
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156 CHAPTER 8 Reinforcement learning
A robot performs actions to change states. But how does it decide which action to
take? The next section introduces a new concept, called a policy, to answer this
question.

8.1.1 Policy

Everyone cleans their room differently. Some people start by making their bed. I pre-
fer cleaning my room clockwise so I don’t miss a corner. Have you ever seen a robotic
vacuum cleaner, such as a Roomba? Someone programmed a strategy it can follow to
clean any room. In reinforcement-learning lingo, the way an agent decides which
action to take is called a policy: it’s the set of actions that determines the next state (see
figure 8.3).

The goal of reinforcement learning is to discover a good policy. A common way to cre-
ate that policy is by observing the long-term consequences of actions at each state.
The reward is the measure of the outcome of taking an action. The best possible policy
is called the optimal policy, and it’s often the Holy Grail of reinforcement learning. The
optimal policy tells you the optimal action, given any state—but it may not provide the
highest reward at the moment.

 If you measure the reward by looking at the immediate consequence—the state of
things after taking the action—it’s easy to calculate. This is called the greedy strategy—
but it’s not always a good idea to “greedily” choose the action with the best immediate
reward. For example, when cleaning your room, you might make your bed first,
because the room looks neater with the bed made. But if another goal is to wash your
sheets, making the bed first may not be the best overall strategy. You need to look at

Do humans use reinforcement learning?
Reinforcement learning seems like the best way to explain how to perform the next
action based on the current situation. Perhaps humans behave the same way biolog-
ically. But let’s not get ahead of ourselves; consider the following example. 

Sometimes, humans act without thinking. If I’m thirsty, I might instinctively grab a cup
of water to quench my thirst. I don’t iterate through all possible joint motions in my
head and choose the optimal one after thorough calculations. 

Most important, the actions we make aren’t characterized solely by our observations
at each moment. Otherwise, we’re no smarter than bacteria, which act deterministi-
cally given their environment. There seems to be a lot more going on, and a simple
RL model might not fully explain human behavior.

State ActionPolicy Figure 8.3 A policy suggests which 
action to take, given a state.
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the results of the next few actions, and the eventual end state, to come up with the
optimal approach. Similarly, in chess, grabbing your opponent’s queen may maximize
the points for the pieces on the board—but if it puts you in checkmate five moves
later, it isn’t the best possible move.

 You can also arbitrarily choose an action: this is a random policy. If you come up with a
policy to solve a reinforcement-learning problem, it’s often a good idea to double-check
that your learned policy performs better than both the random and greedy policies.

8.1.2 Utility

The long-term reward is called a utility. If you know the utility of performing an action
at a state, learning the policy is easy using reinforcement learning. For example, to
decide which action to take, you select the action that produces the highest utility.
The hard part, as you might have guessed, is uncovering these utility values. 

 The utility of performing an action a at a state s is written as a function Q(s, a),
called the utility function, shown in figure 8.4.

Limitations of (Markovian) reinforcement learning
Most RL formulations assume that the best action to take can be figured out from
knowing the current state, instead of considering the longer-term history of states
and actions that got you there. This approach of making decisions based on the cur-
rent state is called Markovian, and the general framework is often referred to as the
Markov decision process (MDP). 

Such situations in which the state sufficiently captures what to do next can be mod-
eled with RL algorithms discussed in this chapter. But most real-world situations
aren’t Markovian and therefore need a more realistic approach, such as a hierarchi-
cal representation of states and actions. In a grossly oversimplified sense, hierarchi-
cal models are like context-free grammars, whereas MDPs are like finite-state
machines. The expressive leap of modeling a problem as an MDP to something more
hierarchical can dramatically improve the effectiveness of the planning algorithm.

EXERCISE 8.1 
If you were given the utility function Q(s, a), how could you use it to derive a policy
function?

ANSWER

Policy(s) = argmax_a Q(s, a)

Action

State

UtilityQ

Figure 8.4 Given a state and the action taken, applying 
a utility function Q predicts the expected and the total 
rewards: the immediate reward (next state) plus rewards 
gained later by following an optimal policy.
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An elegant way to calculate the utility of a particular state-action pair (s, a) is by recur-
sively considering the utilities of future actions. The utility of your current action is
influenced not only by the immediate reward but also by the next best action, as
shown in the next formula. In the formula, s ' denotes the next state, and a ' denotes
the next action. The reward of taking action a in state s is denoted by r(s, a):

Q(s, a) = r(s, a) +  max Q(s ', a ')

Here,  is a hyperparameter that you get to choose, called the discount factor. If  is 0,
the agent chooses the action that maximizes the immediate reward. Higher values of 
will make the agent put more importance on considering long-term consequences.
You can read the formula as “the value of this action is the immediate reward provided
by taking this action, added to the discount factor times the best thing that can hap-
pen after that.”

 Looking ahead at future rewards is one type of hyperparameter you can play with,
but there’s also another. In some applications of reinforcement learning, newly avail-
able information might be more important than historical records, or vice versa. For
example, if a robot is expected to learn to solve tasks quickly but not necessarily opti-
mally, you might want to set a faster learning rate. Or if a robot is allowed more time
to explore and exploit, you might tune down the learning rate. Let’s call the learning
rate , and change the utility function as follows (notice that when  = 1, both equa-
tions are identical).

Q(s, a)  Q(s, a) + (r(s, a) +  max Q(s ', a ') – Q(s, a))

Reinforcement learning can be solved if you know the Q-function: Q(s, a). Conve-
niently for us, neural networks (chapter 7) are a way to approximate functions, given
enough training data. TensorFlow is the perfect tool to deal with neural networks
because it comes with many essential algorithms to simplify neural network imple-
mentation.

8.2 Applying reinforcement learning
Application of reinforcement learning requires defining a way to retrieve rewards
after an action is taken from a state. A stock-market trader fits these requirements eas-
ily, because buying and selling a stock changes the state of the trader (cash on hand),
and each action generates a reward (or loss).

 The states in this situation are a vector containing information about the current
budget, the current number of stocks, and a recent history of stock prices (the last 200
stock prices). Each state is a 202-dimensional vector. 
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159Applying reinforcement learning
For simplicity, there are only three actions—buy, sell, and hold: 

 Buying a stock at the current stock price decreases the budget while increment-
ing the current stock count. 

 Selling a stock trades it in for money at the current share price. 
 Holding does neither. This action waits a single time period and yields no

reward.

Figure 8.5 demonstrates one possible policy, given stock market data.

EXERCISE 8.2 
What are some possible disadvantages of using reinforcement learning for buying
and selling stocks?

ANSWER 
By performing actions on the market, such as buying or selling shares, you could end
up influencing the market, causing it to change dramatically from your training data. 
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Figure 8.5 Ideally, our algorithm should buy low and sell high. Doing so just once, as 
shown here, might yield a reward of around $160. But the real profit rolls in when you buy 
and sell more frequently. Ever heard the term high-frequency trading? It’s about buying low 
and selling high as frequently as possible to maximize profits within a period of time.
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160 CHAPTER 8 Reinforcement learning
The goal is to learn a policy that gains the maximum net worth from trading in a stock
market. Wouldn’t that be cool? Let’s do it!

8.3 Implementing reinforcement learning
To gather stock prices, you’ll use the yahoo_finance library in Python. You can install
it using pip or follow the official guide (https://pypi.python.org/pypi/yahoo-finance).
The command to install it using pip is as follows:

$ pip install yahoo-finance

With that installed, let’s import all the relevant libraries.

from yahoo_finance import Share       
from matplotlib import pyplot as plt  
import numpy as np                   
import tensorflow as tf              
import random

Create a helper function to get stock prices by using the yahoo_finance library. The
library requires three pieces of information: share symbol, start date, and end date.
When you pick each of the three values, you’ll get a list of numbers representing the
share prices in that period by day. 

 If you choose a start and end date too far apart, it’ll take some time to fetch that
data. It might be a good idea to save (that is, cache) the data to disk so you can load
it locally next time. See the following listing for how to use the library and cache
the data.

def get_prices(share_symbol, start_date, end_date,
               cache_filename='stock_prices.npy'):
    try:                                       
        stock_prices = np.load(cache_filename)
    except IOError:
        share = Share(share_symbol)           
        stock_hist = share.get_historical(start_date, end_date)
        stock_prices = [stock_price['Open'] for stock_price in stock_hist] 
        np.save(cache_filename, stock_prices) 

    return stock_prices.astype(float)

Listing 8.1 Importing relevant libraries

Listing 8.2 Helper function to get prices

For obtaining 
stock-price raw 
data

For plotting 
stock pricesFor numeric 

manipulation 
and machine 
learning

Tries to load the data 
from file if it has already 
been computed

Retrieves stock prices 
from the library

Extracts only relevant info 
from the raw data

Caches the 
result
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/
https://pypi.python.org/pypi/yahoo-finance


161Implementing reinforcement learning
Just for a sanity check, it’s a good idea to visualize the stock-price data. Create a plot,
and save it to disk.

def plot_prices(prices):
    plt.title('Opening stock prices')
    plt.xlabel('day')
    plt.ylabel('price ($)')
    plt.plot(prices)
    plt.savefig('prices.png')
    plt.show()

You can grab some data and visualize it by using the following listing.

if __name__ == '__main__':
  prices = get_prices('MSFT', '1992-07-22', '2016-07-22')
  plot_prices(prices)

Figure 8.6 shows the chart produced from running listing 8.4.

Listing 8.3 Helper function to plot the stock prices

Listing 8.4 Get data and visualize it

Figure 8.6 This chart summarizes the opening stock prices of Microsoft (MSFT) from 
7/22/1992 to 7/22/2016. Wouldn’t it have been nice to buy around day 3000 and sell 
around day 5000? Let's see if our code can learn to buy, sell, and hold to make optimal gain.
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162 CHAPTER 8 Reinforcement learning
Most reinforcement-learning algorithms follow similar implementation patterns. As a
result, it’s a good idea to create a class with the relevant methods to reference later,
such as an abstract class or interface. See the following listing for an example and fig-
ure 8.7 for an illustration. Reinforcement learning needs two operations well defined:
how to select an action, and how to improve the utility Q-function.

class DecisionPolicy:
    def select_action(self, current_state):     
        pass

    def update_q(self, state, action, reward, next_state):  
        pass

Next, let’s inherit from this superclass to implement a policy where decisions are
made at random, otherwise known as a random decision policy. You need to define only
the select_action method, which will randomly pick an action without even looking
at the state. The following listing shows how to implement it.

class RandomDecisionPolicy(DecisionPolicy):  
    def __init__(self, actions):
        self.actions = actions

    def select_action(self, current_state):  
        action = random.choice(self.actions)
        return action

In listing 8.7, you assume a policy is given to you (such as the one from listing 8.6)
and run it on the real-world stock-price data. This function takes care of exploration
and exploitation at each interval of time. Figure 8.8 illustrates the algorithm from list-
ing 8.7.

Listing 8.5 Defining a superclass for all decision policies

Listing 8.6 Implementing a random decision policy

Given a state, the decision 
policy will calculate the 
next action to take.

Improve the 
Q-function from a 
new experience of 
taking an action.

Infer(s) => a

Learn(s, r, a, s')

Do(s, a) => r, s'

Figure 8.7 Most reinforcement-learning algorithms boil down to just 
three main steps: infer, do, and learn. During the first step, the algorithm 
selects the best action (a), given a state (s), using the knowledge it has 
so far. Next, it does the action to find out the reward (r) as well as the 
next state (s'). Then it improves its understanding of the world by using 
the newly acquired knowledge (s, r, a, s'). 

Inherits from DecisionPolicy to 
implement its functions

Randomly chooses 
the next action 
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def run_simulation(policy, initial_budget, initial_num_stocks, prices, hist):
    budget = initial_budget                  
    num_stocks = initial_num_stocks          
    share_value = 0                          
    transitions = list()
    for i in range(len(prices) - hist - 1):
        if i % 1000 == 0:
            print('progress {:.2f}%'.format(float(100*i) / (len(prices) - 

hist - 1)))
        current_state = np.asmatrix(np.hstack((prices[i:i+hist], budget, 

num_stocks)))         
        current_portfolio = budget + num_stocks * share_value   
        action = policy.select_action(current_state, i)         
        share_value = float(prices[i + hist])

Listing 8.7 Using a given policy to make decisions, and returning the performance

S1 ActionPolicy

Update

S2 ActionPolicy

Update

S3 ActionPolicy

Day

60

40

0 1000 30002000 4000
0

20

Budget shares

Figure 8.8 A rolling window of a certain size iterates through the 
stock prices, as shown by the chart segmented to form states S1, 
S2, and S3. The policy suggests an action to take: you may either 
choose to exploit it or randomly explore another action. As you get 
rewards for performing an action, you can update the policy function 
over time.

Initializes values that 
depend on computing the 
net worth of a portfolio

The state is a
hist + 2

dimensional
vector. You’ll
rce it to be a
umPy matrix.

Calculates the
ortfolio value

Selects an action 
from the current 
policy
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        if action == 'Buy' and budget >= share_value:        
            budget -= share_value
            num_stocks += 1
        elif action == 'Sell' and num_stocks > 0:            
            budget += share_value
            num_stocks -= 1
        else:                                                
            action = 'Hold'
        new_portfolio = budget + num_stocks * share_value    
        reward = new_portfolio - current_portfolio                
        next_state = np.asmatrix(np.hstack((prices[i+1:i+hist+1], budget, 

num_stocks)))
        transitions.append((current_state, action, reward, next_state))
        policy.update_q(current_state, action, reward, next_state)    

    portfolio = budget + num_stocks * share_value   
    return portfolio

To obtain a more robust measurement of success, let’s run the simulation a couple of
times and average the results. Doing so may take a while to complete (perhaps 5 min-
utes), but your results will be more reliable.

def run_simulations(policy, budget, num_stocks, prices, hist):
    num_tries = 10               
    final_portfolios = list()          
    for i in range(num_tries):
        final_portfolio = run_simulation(policy, budget, num_stocks, prices, 

hist)
        final_portfolios.append(final_portfolio)
        print('Final portfolio: ${}'.format(final_portfolio))
    plt.title('Final Portfolio Value')
    plt.xlabel('Simulation #')
    plt.ylabel('Net worth')
    plt.plot(final_portfolios)
    plt.show() 

In the main function, append the following lines to define the decision policy and run
simulations to see how it performs.

if __name__ == '__main__':
    prices = get_prices('MSFT', '1992-07-22', '2016-07-22')
    plot_prices(prices)
    actions = ['Buy', 'Sell', 'Hold']         
    hist = 3

Listing 8.8 Running multiple simulations to calculate an average performance 

Listing 8.9 Defining the decision policy

Updates 
portfolio values 
based on actionComputes a

new portfolio
value after

taking action

Computes the
reward from

taking an
action at a

state
Updates the policy
after experiencing

a new actionComputes the final
portfolio worth

Decides the number of times 
to rerun the simulations

Stores the portfolio worth 
of each run in this array

Runs this
simulation

Defines the list of actions 
the agent can take
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    policy = RandomDecisionPolicy(actions)        
    budget = 100000.0               
    num_stocks = 0                                             
    run_simulations(policy, budget, num_stocks, prices, hist) 

Now that you have a baseline to compare your results, let’s implement a neural net-
work approach to learn the Q-function. The decision policy is often called the Q-learn-
ing decision policy. Listing 8.10 introduces a new hyperparameter, epsilon, to keep the
solution from getting “stuck” when applying the same action over and over. The lower
its value, the more often it will randomly explore new actions. The Q-function is
defined by the function depicted in figure 8.9.

EXERCISE 8.3
What are other possible factors that your state-space representation ignores that can
affect the stock prices? How could you factor them into the simulation?

ANSWER

Stock prices depend on a variety of factors, including general market trends, breaking
news, and specific industry trends. Each of these, once quantified, could be applied
as additional dimensions to the model.

Initializes a random 
decision policy

Sets the initial amount of 
money available to use

Sets the number of stocks
already owned

Runs simulations multiple
times to compute the expected

value of your final net worth

Budget

…

Buy

Input layer

Shares

History

… …

Hidden layers

Output layer

Sell

Hold

Figure 8.9 The input is the state 
space vector, with three outputs: 
one for each output’s Q-value.
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w

class QLearningDecisionPolicy(DecisionPolicy):
    def __init__(self, actions, input_dim):
        self.epsilon = 0.95                     
        self.gamma = 0.3                        
        self.actions = actions
        output_dim = len(actions)
        h1_dim = 20                          
        

        self.x = tf.placeholder(tf.float32, [None, input_dim])     
        self.y = tf.placeholder(tf.float32, [output_dim])          
        W1 = tf.Variable(tf.random_normal([input_dim, h1_dim]))     
        b1 = tf.Variable(tf.constant(0.1, shape=[h1_dim]))          
        h1 = tf.nn.relu(tf.matmul(self.x, W1) + b1)                 
        W2 = tf.Variable(tf.random_normal([h1_dim, output_dim]))    
        b2 = tf.Variable(tf.constant(0.1, shape=[output_dim]))      
        self.q = tf.nn.relu(tf.matmul(h1, W2) + b2)              
        

        loss = tf.square(self.y - self.q)                         
        self.train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)  
        self.sess = tf.Session()                               
        self.sess.run(tf.global_variables_initializer())       
    

    def select_action(self, current_state, step):
        threshold = min(self.epsilon, step / 1000.)
        if random.random() < threshold:                                
               # Exploit best option with probability epsilon
            action_q_vals = self.sess.run(self.q, feed_dict={self.x: 

current_state})
            action_idx = np.argmax(action_q_vals)  
            action = self.actions[action_idx]
        else:                                                
            # Explore random option with probability 1 - epsilon
            action = self.actions[random.randint(0, len(self.actions) - 1)]
        return action
    

    def update_q(self, state, action, reward, next_state):             
        action_q_vals = self.sess.run(self.q, feed_dict={self.x: state})
        next_action_q_vals = self.sess.run(self.q, feed_dict={self.x: 

next_state})
        next_action_idx = np.argmax(next_action_q_vals)
        current_action_idx = self.actions.index(action)
        action_q_vals[0, current_action_idx] = reward + self.gamma * 

next_action_q_vals[0, next_action_idx]
        action_q_vals = np.squeeze(np.asarray(action_q_vals))
        self.sess.run(self.train_op, feed_dict={self.x: state, self.y: 

action_q_vals})

Listing 8.10 Implementing a more intelligent decision policy

Sets the hyperparameters 
from the Q-function

Sets the number of hidden 
nodes in the neural networks

Defines the
input and

output
tensors

Designs 
the neural 
network 
architecture

Defines
the op to

compute the
utility

Sets the
loss as the

square
error

Uses an
optimizer to

update model
parameters
to minimize

the loss

Sets up the session, 
and initializes 
variables

Exploits the best option
with probability epsilon

Explores a
random option
ith probability

1 - epsilon

Updates the Q-function by 
updating its model parameters
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The resulting output when running the entire script is shown in figure 8.10.

8.4 Exploring other applications of reinforcement learning
Reinforcement learning is used more often than you might expect. It’s too easy to for-
get that it exists when you’ve learned supervised- and unsupervised-learning methods.
But the following examples will open your eyes to successful uses of RL by Google:

 Game playing—In February 2015, Google developed a reinforcement-learning
system called Deep RL to learn how to play arcade video games from the Atari
2600 console. Unlike most RL solutions, this algorithm had a high-dimensional
input: it perceived the raw frame-by-frame images of the video game. That way,
the same algorithm could work with any video game without much reprogram-
ming or reconfiguring.

 More game playing—In January 2016, Google released a paper about an AI agent
capable of winning the board game Go. The game is known to be unpredictable
because of the enormous number of possible configurations (even more than
chess!), but this algorithm using RL could beat top human Go players. The lat-
est version, AlphaGo Zero, was released in late 2017 and was able to beat the
earlier version consistently—100 games to 0—in only 40 days of training. It will
be considerably better than that by the time you read this.

 Robotics and control—In March 2016, Google demonstrated a way for a robot to
learn by many examples how to grab an object. Google collected more than
800,000 grasp attempts by using multiple robots and developed a model to

Figure 8.10 The algorithm learns a good policy to trade Microsoft 
stocks.
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


168 CHAPTER 8 Reinforcement learning
grasp arbitrary objects. Impressively, the robots were capable of grasping an
object with the help of camera input alone. Learning the simple concept of
grasping an object required aggregating the knowledge of many robots spend-
ing many days in brute-force attempts until enough patterns were detected.
Clearly, there’s a long way to go for robots to be able to generalize, but it’s an
interesting start, nonetheless.

NOTE Now that you’ve applied reinforcement learning to the stock market,
it’s time for you to drop out of school or quit your job and start gaming the
system. Turns out this is your payoff, dear reader, for making it this far into
the book! Just kidding—the actual stock market is a much more complicated
beast, but the techniques used in this chapter generalize to many situations.

8.5 Summary
 Reinforcement learning is a natural tool for problems that can be framed by

states that change due to actions taken by an agent to discover rewards.
 Implementing the reinforcement-learning algorithm requires three primary

steps: infer the best action from the current state, perform the action, and learn
from the results. 

 Q-learning is an approach to solving reinforcement learning whereby you
develop an algorithm to approximate the utility function (Q-function). After a
good enough approximation is found, you can start inferring the best actions to
take from each state.
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170 CHAPTER 9 Convolutional neural networks
Grocery shopping after an exhausting day is a taxing experience. My eyes get bom-
barded with too much information. Sales, coupons, colors, toddlers, flashing lights,
and crowded aisles are just a few examples of all the signals forwarded to my visual
cortex, whether or not I actively try to pay attention. The visual system absorbs an
abundance of information. 

 Ever heard the phrase “a picture is worth a thousand words”? That might be true
for you or me, but can a machine find meaning within images as well? The photore-
ceptor cells in our retinas pick up wavelengths of light, but that information doesn’t
seem to propagate up to our consciousness. After all, I can’t put into words exactly
what wavelengths of lights I’m picking up. Similarly, a camera picks up pixels, yet we
want to squeeze out some form of higher-level knowledge instead, such as names or
locations of objects. How do we get from pixels to human-level perception?

 To achieve intelligent meaning from raw sensory input with machine learning,
you’ll design a neural network model. In the previous chapters, you’ve seen a few
types of neural network models such as fully connected ones (chapter 8) and autoen-
coders (chapter 7). In this chapter, you’ll meet another type of model called a convolu-
tional neural network (CNN), which performs exceptionally well on images and other
sensory data such as audio. For example, a CNN model can reliably classify what
object is being displayed in an image.

 The CNN model that you’ll implement in this chapter will learn how to classify
images to 1 of 10 candidate categories. In effect, “a picture is worth only one word” out
of just 10 possibilities. It’s a tiny step toward human-level perception, but you have to
start somewhere, right?

9.1 Drawback of neural networks
Machine learning constitutes an eternal struggle of designing a model that’s expres-
sive enough to represent the data, yet not so flexible that it overfits and memorizes
the patterns. Neural networks are proposed as a way to improve that expressive power;
yet, as you may guess, they often suffer from the pitfalls of overfitting. 

 

This chapter covers 
 Examining the components of a convolutional 

neural network

 Classifying natural images using deep learning

 Improving neural network performance—tips 
and tricks
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NOTE Overfitting occurs when your learned model performs exceptionally
well on the training dataset, yet tends to perform poorly on the test dataset.
The model is likely too flexible for what little data is available, and it ends up
more or less memorizing the training data. 

A quick and dirty heuristic you can use to compare the flexibility of two machine-
learning models is to count the number of parameters to be learned. As shown in fig-
ure 9.1, a fully connected neural network that takes in a 256 × 256 image and maps it
to a layer of 10 neurons will have 256 × 256 × 10 = 655,360 parameters! Compare that
to a model with perhaps only 5 parameters. It’s likely that the fully connected neural
network can represent more-complex data than the model with 5 parameters.

The next section introduces convolutional neural networks, which are a clever way to
reduce the number of parameters. Instead of dealing with a fully connected network,
the CNN approach reuses the same parameter multiple times.

9.2 Convolutional neural networks
The big idea behind convolutional neural networks is that a local understanding of
an image is good enough. The practical benefit is that having fewer parameters
greatly improves the time it takes to learn as well as reduces the amount of data
required to train the model. 

 Instead of a fully connected network of weights from each pixel, a CNN has just
enough weights to look at a small patch of the image. It’s like reading a book by using

256

height

256

width

256 256×

input neurons

10

output neurons

…

Figure 9.1 In a fully connected network, each 
pixel of an image is treated as an input. For a 
grayscale image of size 256 × 256, that’s 256 × 
256 neurons! Connecting each neuron to 10 
outputs yields 256 × 256 × 10 = 655,360 weights.
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172 CHAPTER 9 Convolutional neural networks
a magnifying glass; eventually, you read the whole page, but you look at only a small
patch of the page at any given time. 

 Consider a 256 × 256 image. Instead of your TensorFlow code processing the whole
image at once, it can efficiently scan it chunk by chunk—say, a 5 × 5 window. The 5 × 5
window slides along the image (usually left to right, and top to bottom), as shown in
figure 9.2. How “quickly” it slides is called its stride length. For example, a stride length
of 2 means the 5 × 5 sliding window moves by 2 pixels at a time until it spans the entire
image. In TensorFlow, you can easily adjust the stride length and window size by using
the built-in library functions, as you’ll soon see.

This 5 × 5 window has an associated 5 × 5 matrix of weights. 

DEFINITION A convolution is a weighted sum of the pixel values of the image,
as the window slides across the whole image. Turns out, this convolution pro-
cess throughout an image with a weight matrix produces another image (of
the same size, depending on the convention). Convolving is the process of
applying a convolution.

The sliding-window shenanigans happen in the convolution layer of the neural network.
A typical CNN has multiple convolution layers. Each convolutional layer typically gen-
erates many alternate convolutions, so the weight matrix is a tensor of 5 × 5 × n, where
n is the number of convolutions. 

 As an example, let’s say an image goes through a convolution layer on a weight
matrix of 5 × 5 × 64. It generates 64 convolutions by sliding a 5 × 5 window. Therefore,

256

height
5

5

256

width

256 × 256

input neurons

Convolution

with 5 × 5 patch

Figure 9.2 Convolving a 5 × 5 patch over 
an image, as shown on the left, produces 
another image, as shown on the right. In 
this case, the produced image is the same 
size as the original. Converting an original 
image to a convolved image requires only 
5 × 5 = 25 parameters!
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173Preparing the image
this model has 5 × 5 × 64 (= 1,600) parameters, which is remarkably fewer parameters
than a fully connected network, 256 × 256 (= 65,536). 

 The beauty of the CNN is that the number of parameters is independent of the size
of the original image. You can run the same CNN on a 300 × 300 image, and the num-
ber of parameters won’t change in the convolution layer!

9.3 Preparing the image
To start implementing CNNs in TensorFlow, let’s first obtain some images to work
with. The code listings in this section will help you set up a training dataset for the
remainder of the chapter.

 First, download the CIFAR-10 dataset from www.cs.toronto.edu/~kriz/cifar-10-
python.tar.gz. This dataset contains 60,000 images, evenly split into 10 categories,
which makes it a great resource for classification tasks. Go ahead and extract that file
to your working directory. Figure 9.3 shows examples of images from the dataset.

You used the CIFAR-10 dataset in the previous chapter about autoencoders, so let’s
pull up that code again. The following listing comes straight from the CIFAR-10

Ship Ship Deer Bird

Bird Automobile Horse Bird

Dog Dog Deer Ship

Dog Automobile Automobile Cat

Figure 9.3 Images from the CIFAR-10 dataset. Because they’re only 32 × 32 
in size, they’re a bit difficult to see, but you can generally recognize some of the 
objects. 
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documentation located at www.cs.toronto.edu/~kriz/cifar.html. Place the code in a
file called cifar_tools.py.

import pickle

def unpickle(file):
    fo = open(file, 'rb')
    dict = pickle.load(fo, encoding='latin1')
    fo.close()
    return dict

Neural networks are already prone to overfitting, so it’s essential that you do as much
as you can to minimize that error. For that reason, always remember to clean the data
before processing it. 

 Cleaning data is a core process in the machine-learning pipeline. Listing 9.2 imple-
ments the following three steps for cleaning a dataset of images:

1 If you have an image in color, try converting it to grayscale to lower the dimen-
sionality of the input data, and consequently lower the number of parameters.

2 Consider center-cropping the image, because the edges of an image might pro-
vide no useful information. 

3 Normalize your input by subtracting the mean and dividing by the standard
deviation of each data sample so that the gradients during back-propagation
don’t change too dramatically. 

The following listing shows how to clean a dataset of images by using these tech-
niques.

import numpy as np

def clean(data):
    imgs = data.reshape(data.shape[0], 3, 32, 32)  
    grayscale_imgs = imgs.mean(1)                  
    cropped_imgs = grayscale_imgs[:, 4:28, 4:28]   
    img_data = cropped_imgs.reshape(data.shape[0], -1)
    img_size = np.shape(img_data)[1]
    means = np.mean(img_data, axis=1)
    meansT = means.reshape(len(means), 1)
    stds = np.std(img_data, axis=1)
    stdsT = stds.reshape(len(stds), 1)
    adj_stds = np.maximum(stdsT, 1.0 / np.sqrt(img_size))  
    normalized = (img_data - meansT) / adj_stds   
    return normalized

Listing 9.1 Loading images from a CIFAR-10 file in Python 

Listing 9.2 Cleaning data

Reorganizes the data so 
it’s a 32 × 32 matrix with 
three channels

Grayscales the 
image by averaging 
the color intensities

Crops the 32 × 32 image 
to a 24 × 24 image

Normalizes the pixels’ values by
subtracting the mean and

dividing by standard deviation
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175Preparing the image
Collect all the images from CIFAR-10 into memory, and run your cleaning function
on them. The following listing sets up a convenient method to read, clean, and struc-
ture your data for use in TensorFlow. Include this in cifar_tools.py, as well.

def read_data(directory):
    names = unpickle('{}/batches.meta'.format(directory))['label_names']
    print('names', names)
    

    data, labels = [], []
    for i in range(1, 6):
        filename = '{}/data_batch_{}'.format(directory, i)
        batch_data = unpickle(filename)
        if len(data) > 0:
            data = np.vstack((data, batch_data['data']))
            labels = np.hstack((labels, batch_data['labels']))
        else:
            data = batch_data['data']
            labels = batch_data['labels']
    

    print(np.shape(data), np.shape(labels))
    

    data = clean(data)
    data = data.astype(np.float32)
    return names, data, labels

In another file called using_cifar.py, you can now use the method by importing
cifar_tools. Listings 9.4 and 9.5 show how to sample a few images from the dataset and
visualize them.

import cifar_tools

names, data, labels = \
    cifar_tools.read_data('your/location/to/cifar-10-batches-py')

You can randomly select a few images and draw them along their corresponding label.
The following listing does exactly that, so you can get a better understanding of the
type of data you’ll be dealing with.

import numpy as np
import matplotlib.pyplot as plt
import random

Listing 9.3 Preprocessing all CIFAR-10 files

Listing 9.4 Using the cifar_tools helper function

Listing 9.5 Visualizing images from the dataset
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def show_some_examples(names, data, labels):
    plt.figure()
    rows, cols = 4, 4               
    random_idxs = random.sample(range(len(data)), rows * cols)
    for i in range(rows * cols):    
        plt.subplot(rows, cols, i + 1)
        j = random_idxs[i]
        plt.title(names[labels[j]])
        img = np.reshape(data[j, :], (24, 24))
        plt.imshow(img, cmap='Greys_r')
        plt.axis('off')
    plt.tight_layout()
    plt.savefig('cifar_examples.png')

show_some_examples(names, data, labels)

By running this code, you’ll generate a file called cifar_examples.png that will look
similar to figure 9.3.

9.3.1 Generating filters

In this section, you’ll convolve an image with a couple of random 5 × 5 patches, also
called filters. This is an important step in a convolutional neural network, so you’ll
carefully examine how the data transforms. To understand a CNN model for image
processing, it’s wise to observe the way an image filter transforms an image. Filters are
a way to extract useful image features such as edges and shapes. You can train a
machine-learning model on these features. 

 Remember: a feature vector indicates how you represent a data point. When you
apply a filter to an image, the corresponding point in the transformed image is a fea-
ture—a feature that says, “When you apply this filter to this point, it now has this new
value.” The more filters you use on an image, the greater the dimensionality of the
feature vector.

 Open a new file called conv_visuals.py. Let’s randomly initialize 32 filters. You’ll
do so by defining a variable called W of size 5 × 5 × 1 × 32. The first two dimensions
correspond to the filter size. The last dimension corresponds to the 32 convolu-
tions. The 1 in the variable’s size corresponds to the input dimension, because the
conv2d function is capable of convolving images of multiple channels. (In our exam-
ple, you care about only grayscale images, so the number of input channels is 1.) The
following listing provides the code to generate filters, which are shown in figure 9.4.

W = tf.Variable(tf.random_normal([5, 5, 1, 32]))  

def show_weights(W, filename=None):
    plt.figure()

Listing 9.6 Generating and visualizing random filters

Change this to 
as many rows 
and columns 
as you desire.

Randomly
ck images
from the
ataset to

show

Defines the tensor 
representing the 
random filters 
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    rows, cols = 4, 8                       
    for i in range(np.shape(W)[3]):      
        img = W[:, :, 0, i]
        plt.subplot(rows, cols, i + 1)
        plt.imshow(img, cmap='Greys_r', interpolation='none')
        plt.axis('off')
    if filename:
        plt.savefig(filename)
    else:
        plt.show()

Use a session, as shown in the following listing, and initialize some weights by using
the global_variables_initializer op. Call the show_weights function to visualize
random filters, as shown in figure 9.4.

 
 

EXERCISE 9.1 
Change listing 9.6 to generate 64 filters of size 3 × 3.

ANSWER

W = tf.Variable(tf.random_normal([3, 3, 1, 64]))

Defines just enough rows 
and columns to show the 
32 figures in figure 9.4

Visualizes
each filter

matrix

Figure 9.4 These are 32 randomly initialized matrices, each of size 5 × 5. 
They represent the filters you’ll use to convolve an input image.
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with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    W_val = sess.run(W)
    show_weights(W_val, 'step0_weights.png')

9.3.2 Convolving using filters

The previous section prepared filters to use. In this section, you’ll use TensorFlow’s
convolve function on your randomly generated filters. The following listing sets up
code to visualize the convolution outputs. You’ll use it later, just as you used show_
weights.

def show_conv_results(data, filename=None):
    plt.figure()
    rows, cols = 4, 8
    for i in range(np.shape(data)[3]):
        img = data[0, :, :, i]  
        plt.subplot(rows, cols, i + 1)
        plt.imshow(img, cmap='Greys_r', interpolation='none')
        plt.axis('off')
    if filename:
        plt.savefig(filename)
    else:
        plt.show()

Let’s say you have an example input image, such as the one shown in figure 9.5. You
can convolve the 24 × 24 image by using 5 × 5 filters to produce many convolved

Listing 9.7 Using a session to initialize weights

Listing 9.8 Showing convolution results

Unlike in listing 9.6, this 
time the shape of the 
tensor is different.

Figure 9.5 An example 24 × 24 image 
from the CIFAR-10 dataset
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rs 
ing 
images. All these convolutions are unique perspectives of looking at the same image.
These different perspectives work together to comprehend the object that exists in
the image. The following listing shows how to do this, step by step. 

raw_data = data[4, :]                             
raw_img = np.reshape(raw_data, (24, 24))          
plt.figure()                                      
plt.imshow(raw_img, cmap='Greys_r')               
plt.savefig('input_image.png')                    

x = tf.reshape(raw_data, shape=[-1, 24, 24, 1])     

b = tf.Variable(tf.random_normal([32]))                           
conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')   
conv_with_b = tf.nn.bias_add(conv, b)                             
conv_out = tf.nn.relu(conv_with_b)                                

with tf.Session() as sess:                                    
    sess.run(tf.global_variables_initializer())              

    conv_val = sess.run(conv)                                
    show_conv_results(conv_val, 'step1_convs.png')           
    print(np.shape(conv_val))                                

conv_out_val = sess.run(conv_out)                            
    show_conv_results(conv_out_val, 'step2_conv_outs.png')   
    print(np.shape(conv_out_val))                            

Finally, by running the conv2d function in TensorFlow, you get the 32 images in fig-
ure 9.6. The idea of convolving images is that each of the 32 convolutions captures dif-
ferent features about the image.

 With the addition of a bias term and an activation function such as relu (see list-
ing 9.12 for an example), the convolution layer of the network behaves nonlinearly,
which improves its expressiveness. Figure 9.7 shows what each of the 32 convolution
outputs becomes.

 
 
 
 
 
 
 

Listing 9.9 Visualizing convolutions

Gets an image from 
the CIFAR dataset, 
and visualizes it

Defines the input 
tensor for the 
24 × 24 image 

Defines the filte
and correspond
parameters

Runs the 
convolution on 
the selected 
image
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Figure 9.6 Resulting images from convolving the random filters on an image of a car

Figure 9.7 After you add a bias term and an activation function, the resulting 
convolutions can capture more-powerful patterns within images.
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9.3.3 Max pooling

After a convolution layer extracts useful features, it’s usually a good idea to reduce the
size of the convolved outputs. Rescaling or subsampling a convolved output helps
reduce the number of parameters, which in turn can help to not overfit the data. 

 This is the main idea behind a technique called max pooling, which sweeps a win-
dow across an image and picks the pixel with the maximum value. Depending on the
stride length, the resulting image is a fraction of the size of the original. This is useful
because it lessens the dimensionality of the data, consequently reducing the number
of parameters in future steps.

Place the following listing within the Session context.

  k = 2
  maxpool = tf.nn.max_pool(conv_out, 
                           ksize=[1, k, k, 1], 
                           strides=[1, k, k, 1], 
                           padding='SAME')

with tf.Session() as sess:
    maxpool_val = sess.run(maxpool)
    show_conv_results(maxpool_val, 'step3_maxpool.png')
    print(np.shape(maxpool_val))

As a result of running this code, the max-pooling function halves the image size and
produces lower-resolution convolved outputs, as shown in figure 9.8.

 You have the tools necessary to implement the full convolutional neural network.
In the next section, you’ll finally train the image classifier.

 
 

EXERCISE 9.2 
Let’s say you want to max pool over a 32 × 32 image. If the window size is 2 × 2 and
the stride length is 2, how big will the resulting max-pooled image be?

ANSWER

The 2 × 2 window would need to move 16 times in each direction to span the 32 ×
32 image, so the image would shrink by half: 16 × 16. Because it shrank by half in
both dimensions, the image is one-fourth the size of the original image (½ × ½).

Listing 9.10 Running the maxpool function to subsample convolved images
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9.4 Implementing a convolutional neural network in 
TensorFlow
A convolutional neural network has multiple layers of convolutions and max pooling.
The convolution layer offers different perspectives on the image, while the max-pool-
ing layer simplifies the computations by reducing the dimensionality without losing
too much information. 

 Consider a full-size 256 × 256 image convolved by a 5 × 5 filter into 64 convolu-
tions. As shown in figure 9.9, each convolution is subsampled by using max pooling to
produce 64 smaller convolved images of size 128 × 128. 

 Now that you know how to make filters and use the convolution op, let’s create a
new source file. You’ll start by defining all your variables. In listing 9.11, import all
libraries, load the dataset, and, finally, define all variables.

 
 
 
 
 
 
 

Figure 9.8 After running maxpool, the convolved outputs are halved in size, making the 
algorithm computationally faster without losing too much information.
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256

height
5

5

256

width

256 256×

input neurons

Convolution

with 5 × 5 patch

Maxpool

with 2 × 2 patch

Convolution

with 5 × 5 patch

Maxpool

with 2 × 2 patch

……

128

width

128

height

128

width

128

height

Figure 9.9 An input image is convolved by multiple 5 × 5 filters. The convolution layer 
includes an added bias term with an activation function, resulting in 5 × 5 + 5 = 30 
parameters. Next, a max-pooling layer reduces the dimensionality of the data (which 
requires no extra parameters).
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import numpy as np
import matplotlib.pyplot as plt
import cifar_tools
import tensorflow as tf

names, data, labels = \
    cifar_tools.read_data('/home/binroot/res/cifar-10-batches-py')  

x = tf.placeholder(tf.float32, [None, 24 * 24])       
y = tf.placeholder(tf.float32, [None, len(names)])    

W1 = tf.Variable(tf.random_normal([5, 5, 1, 64]))   
b1 = tf.Variable(tf.random_normal([64]))            

W2 = tf.Variable(tf.random_normal([5, 5, 64, 64]))   
b2 = tf.Variable(tf.random_normal([64]))             

W3 = tf.Variable(tf.random_normal([6*6*64, 1024]))   
b3 = tf.Variable(tf.random_normal([1024]))           

W_out = tf.Variable(tf.random_normal([1024, len(names)]))   
b_out = tf.Variable(tf.random_normal([len(names)]))         

In the next listing, you define a helper function to perform a convolution, add a bias
term, and then add an activation function. Together, these three steps form a convolu-
tion layer of the network.

def conv_layer(x, W, b):
    conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    conv_with_b = tf.nn.bias_add(conv, b)
    conv_out = tf.nn.relu(conv_with_b)
    return conv_out

The next listing shows how to define the max-pool layer by specifying the kernel and
stride size.

def maxpool_layer(conv, k=2):
    return tf.nn.max_pool(conv, ksize=[1, k, k, 1], strides=[1, k, k, 1], 

padding='SAME')

You can stack together the convolution and max-pool layers to define the convolu-
tional neural network architecture. The following listing defines a possible CNN

Listing 9.11 Setting up CNN weights

Listing 9.12 Creating a convolution layer

Listing 9.13 Creating a max-pool layer

Loads the
dataset

Defines the input and 
output placeholders

Applies 64 convolutions 
of window size 5 × 5

Applies 64 more convolutions 
of window size 5 × 5

Introduces a fully 
connected layer

Defines the variables 
for a fully connected 
linear layer
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C

con
model. The last layer is typically just a fully connected network connected to each of
the 10 output neurons.

def model():
    x_reshaped = tf.reshape(x, shape=[-1, 24, 24, 1])
       
    conv_out1 = conv_layer(x_reshaped, W1, b1)                          
    maxpool_out1 = maxpool_layer(conv_out1)                             
    norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001 / 9.0, 

beta=0.75)
    
    conv_out2 = conv_layer(norm1, W2, b2)                                   
    norm2 = tf.nn.lrn(conv_out2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75) 
    maxpool_out2 = maxpool_layer(norm2)                                     
    
    maxpool_reshaped = tf.reshape(maxpool_out2, [-1, 

W3.get_shape().as_list()[0]])                             
    local = tf.add(tf.matmul(maxpool_reshaped, W3), b3)        
    local_out = tf.nn.relu(local)                              
    
    out = tf.add(tf.matmul(local_out, W_out), b_out)           
    return out                                                 

9.4.1 Measuring performance

With a neural network architecture designed, the next step is to define a cost function
that you want to minimize. You’ll use TensorFlow’s softmax_cross_entropy_with_
logits function, which is best described by the official documentation (http://mng.bz/
8mEk):

[The function softmax_cross_entropy_with_logits] measures the probability
error in discrete classification tasks in which the classes are mutually exclusive (each
entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and
only one label: an image can be a dog or a truck, but not both.

Because an image can belong to 1 of 10 possible labels, you’ll represent that choice as
a 10-dimensional vector. All elements of this vector have a value of 0, except the ele-
ment corresponding to the label will have a value of 1. This representation, as you’ve
seen in earlier chapters, is called one-hot encoding. 

 As shown in listing 9.15, you’ll calculate the cost via the cross-entropy loss function
we mentioned in chapter 4. This returns the probability error for your classification.
Note that this works only for simple classifications—those in which your classes are
mutually exclusive (for example, a truck can’t also be a dog). You can employ many
types of optimizers, but in this example, let’s stick with the AdamOptimizer, which is a
simple and fast optimizer (described in detail at http://mng.bz/zW98). It may be

Listing 9.14 The full CNN model

onstructs the
first layer of
volution and
max pooling

Constructs
the second

layer

Constructs the 
concluding fully 
connected 
layers
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worth playing around with the arguments to this in real-world applications, but it
works well off the shelf.

model_op = model()

cost = tf.reduce_mean(                                     
    tf.nn.softmax_cross_entropy_with_logits(logits=model_op, labels=y)
)

train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)   

correct_pred = tf.equal(tf.argmax(model_op, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

Finally, in the next section, you’ll run the training op to minimize the cost of the neu-
ral network. Doing so multiple times throughout the dataset will learn the optimal
weights (or parameters).

9.4.2 Training the classifier

In the following listing, you’ll loop through the dataset of images in small batches to
train the neural network. Over time, the weights will slowly converge to a local opti-
mum to accurately predict the training images.

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    onehot_labels = tf.one_hot(labels, len(names), on_value=1., off_value=0., 

axis=-1)
    onehot_vals = sess.run(onehot_labels)
    batch_size = len(data) // 200
    print('batch size', batch_size)
    for j in range(0, 1000):                
        print('EPOCH', j)
        for i in range(0, len(data), batch_size):  
            batch_data = data[i:i+batch_size, :]
            batch_onehot_vals = onehot_vals[i:i+batch_size, :]
            _, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: 

batch_data, y: batch_onehot_vals})
            if i % 1000 == 0:
                print(i, accuracy_val)
        print('DONE WITH EPOCH')

That’s it! You’ve successfully designed a convolutional neural network to classify
images. Beware: it might take more than 10 minutes. If you’re running this code on

Listing 9.15 Defining ops to measure the cost and accuracy

Listing 9.16 Training the neural network by using the CIFAR-10 dataset

Defines the classification 
loss function

Defines the training op to
minimize the loss function

Loops through 
1,000 epochs 

Trains the network 
in batches
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187Tips and tricks to improve performance
CPU, it might even take hours! Can you imagine discovering a bug in your code after
a day of waiting? That’s why deep-learning researchers use powerful computers and
GPUs to speed up computations.

9.5 Tips and tricks to improve performance
The CNN you developed in this chapter is a simple approach to solve the problem of
image classification, but many techniques exist to improve performance after you fin-
ish your first working prototype:

 Augmenting data—From a single image, you can easily generate new training
images. As a start, flip an image horizontally or vertically, and you can quadruple
your dataset size. You may also adjust the brightness of the image or the hue to
ensure that the neural network generalizes to other fluctuations. You may
even want to add random noise to the image to make the classifier robust to
small occlusions. Scaling the image up or down can also be helpful; having
exactly the same-size items in your training images will almost guarantee
overfitting!

 Early stopping—Keep track of the training and testing error while you train the
neural network. At first, both errors should slowly dwindle, because the network
is learning. But sometimes, the test error goes back up. This is a signal that the
neural network has started overfitting on the training data and is unable to gen-
eralize to previously unseen input. You should stop the training the moment
you witness this phenomenon. 

 Regularizing weights—Another way to combat overfitting is by adding a regular-
ization term to the cost function. You’ve already seen regularization in previous
chapters, and the same concepts apply here. 

 Dropout—TensorFlow comes with a handy tf.nn.dropout function, which can
be applied to any layer of the network to reduce overfitting. It turns off a ran-
domly selected number of neurons in that layer during training so that the net-
work must be redundant and robust to inferring output. 

 Deeper architecture—A deeper architecture results from adding more hidden lay-
ers to the neural network. If you have enough training data, it’s been shown
that adding more hidden layers improves performance.

EXERCISE 9.3 
After the first iteration of this CNN architecture, try applying a couple of tips and tricks
mentioned in this chapter. 

ANSWER

Fine-tuning is, unfortunately, part of the process. You should begin by adjusting the
hyperparameters and retraining the algorithm until you find a setting that works best.
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9.6 Application of convolutional neural networks
Convolutional neural networks blossom when the input contains sensor data from
audio or images. Images, in particular, are of major interest in industry. For exam-
ple, when you sign up for a social network, you usually upload a profile photo, not
an audio recording of yourself saying “hello.” It seems that humans are naturally
more entertained by photos, so let’s see how CNNs can be used to detect faces in
images.

 The overall CNN architecture can be as simple or as complicated as you desire.
You should start simple, and gradually tune your model until satisfied. There’s no
absolutely correct path, because facial recognition isn’t completely solved. Researchers
are still publishing papers that one-up previous state-of-the-art solutions. 

 You should first obtain a dataset of images. One of the largest datasets of arbitrary
images is ImageNet (http://image-net.org/). Here, you can find negative examples
for your binary classifier. To obtain positive examples of faces, you can find numerous
datasets at the following sites that specialize in human faces: 

 VGG Face Dataset: www.robots.ox.ac.uk/~vgg/data/vgg_face/
 FDDB: Face Detection Data Set and Benchmark: http://vis-www.cs.umass.edu/

fddb/
 Databases for Face Detection and Pose Estimation: http://mng.bz/25N6
 YouTube Faces Database: www.cs.tau.ac.il/~wolf/ytfaces/

9.7 Summary
 Convolutional neural networks make assumptions that capturing the local pat-

terns of a signal are sufficient to characterize it, and thus reduce the number of
parameters of a neural network. 

 Cleaning data is vital to the performance of most machine-learning models.
The hour you spend to write code that cleans data is nothing compared to the
amount of time it can take for a neural network to learn that cleaning function
by itself.
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10.1 Contextual information
Back in school, I remember my sigh of relief when one of my midterm exams con-
sisted of only true-or-false questions. I can’t be the only one who assumed that half the
answers would be True and the other half would be False. 

 I figured out answers to most of the questions and left the rest to random guessing.
But that guessing was based on something clever, a strategy that you might have
employed as well. After counting my number of True answers, I realized that a dispro-
portionate number of False answers were lacking. So, a majority of my guesses were
False to balance the distribution.

 It worked. I sure felt sly in the moment. What exactly is this feeling of craftiness
that makes us feel so confident in our decisions, and how can we give a neural net-
work the same power? 

 One answer is to use context to answer questions. Contextual cues are important
signals that can improve the performance of machine-learning algorithms. For exam-
ple, imagine you want to examine an English sentence and tag the part of speech of
each word. 

 The naïve approach is to individually classify each word as a noun, an adjective,
and so on, without acknowledging its neighboring words. Consider trying that tech-
nique on the words in this sentence. The word trying is used as a verb, but depending
on the context, you can also use it as an adjective, making parts-of-speech tagging a try-
ing problem.

 A better approach considers the context. To bestow neural networks with contex-
tual cues, you’ll study an architecture called a recurrent neural network. Instead of natu-
ral language data, you’ll be dealing with continuous time-series data, such as the stock
market prices covered in previous chapters. By the end of the chapter, you’ll be able
to model the patterns in time-series data to predict future values.

10.2 Introduction to recurrent neural networks
To understand recurrent neural networks, let’s first look at the simple architecture in
figure 10.1. It takes as input a vector X(t) and generates as output a vector Y(t), at
some time (t). The circle in the middle represents the hidden layer of the network. 

This chapter covers 
 Understanding the components of a recurrent 

neural network

 Designing a predictive model of time-series data

 Using the time-series predictor on real-world data
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With enough input/output examples, you can learn the parameters of the network in
TensorFlow. For instance, let’s refer to the input weights as a matrix Win and the out-
put weights as a matrix Wout. Assume there’s just one hidden layer, referred to as a vec-
tor Z(t).

 As shown in figure 10.2, the first half of the neural network is characterized by the
function Z(t) = X(t) × Win, and the second half of the neural network takes the form
Y(t) = Z(t) × Wout. Equivalently, if you prefer, the whole neural network is the function
Y(t) = (X(t) × Win) × Wout.

After spending nights fine-tuning the network, you probably want to start using your
learned model in a real-world scenario. Typically, that implies calling the model multi-
ple times, maybe even repeatedly, as depicted in figure 10.3.

Y t( )

X t( )

Figure 10.1 A neural network with the input and 
output layers labeled as X(t) and Y(t), respectively

Z t( )

Y t( )

X t( )

Wout

Win
Figure 10.2 The hidden layer of a neural network can be thought of as 
a hidden representation of the data, which is encoded by the input 
weights and decoded by the output weights.

Z t( )

Y t( )

X t( )

Wout

Win

Figure 10.3 Often you end up running the 
same neural network multiple times, without 
using knowledge about the hidden states of the 
previous runs.
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At each time t, when calling the learned model, this architecture doesn’t take into
account knowledge about the previous runs. It’s like predicting stock market trends by
looking only at data from the current day. A better idea is to exploit overarching pat-
terns from a week’s worth or a month’s worth of data. 

 A recurrent neural network (RNN) is different from a traditional neural network
because it introduces a transition weight W to transfer information over time. Fig-
ure 10.4 shows the three weight matrices that must be learned in an RNN. The intro-
duction of the transition weight means that the next state is now dependent on the
previous model, as well as the previous state. This means your model now has a “mem-
ory” of what it did!

Diagrams are nice, but you’re here to get your hands dirty. Let’s get right to it! The
next section shows how to use TensorFlow’s built-in RNN models. Then, you’ll use an
RNN on real-world time-series data to predict the future!

10.3 Implementing a recurrent neural network
As you implement the RNN, you’ll use TensorFlow to do much of the heavy lifting.
You won’t need to manually build up a network as shown earlier in figure 10.4,
because the TensorFlow library already supports some robust RNN models. 

NOTE For TensorFlow library information on RNNs, see www.tensorflow.org/
tutorials/recurrent.

One type of RNN model is called Long Short-Term Memory (LSTM). I admit, it’s a fun
name. It means exactly what it sounds like, too: short-term patterns aren’t forgotten in
the long term. 

 The precise implementation details of LSTM are beyond the scope of this book.
Trust me, a thorough inspection of the LSTM model would distract from the chapter,
because there’s no definite standard yet. That’s where TensorFlow comes to the res-
cue. It takes care of how the model is defined so you can use it out of the box. It also
means that as TensorFlow is updated in the future, you’ll be able to take advantage of
improvements to the LSTM model without modifying your code.

Z t( )

Y t( )

X t( )

W

Wout

Win
Figure 10.4 A recurrent neural network 
architecture can use the previous states of 
the network to its advantage.
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TIP To understand how to implement LSTM from scratch, I suggest the fol-
lowing explanation: https://apaszke.github.io/lstm-explained.html. The paper
that describes the implementation of regularization used in the following list-
ings is available at http://arxiv.org/abs/1409.2329.

Begin by writing your code in a new file called simple_regression.py. Import the rele-
vant libraries, as shown in the following listing.

import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn

Now, define a class called SeriesPredictor. The constructor, shown in the following
listing, will set up model hyperparameters, weights, and the cost function.

class SeriesPredictor:
    def __init__(self, input_dim, seq_size, hidden_dim=10):

        self.input_dim = input_dim         
        self.seq_size = seq_size           
        self.hidden_dim = hidden_dim       

        self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]), 
name='W_out')                                                   

        self.b_out = tf.Variable(tf.random_normal([1]), name='b_out')     
        self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim])  
        self.y = tf.placeholder(tf.float32, [None, seq_size])             

        self.cost = tf.reduce_mean(tf.square(self.model() - self.y))  
        self.train_op = tf.train.AdamOptimizer().minimize(self.cost)  

        self.saver = tf.train.Saver()  

Next, let’s use TensorFlow’s built-in RNN model called BasicLSTMCell. The hidden
dimension of the cell passed into the BasicLSTMCell object is the dimension of the
hidden state that gets passed through time. You can run this cell with data by using
the rnn.dynamic_rnn function, to retrieve the output results. The following listing
details how to use TensorFlow to implement a predictive model using LSTM.

    def model(self):
        """
        :param x: inputs of size [T, batch_size, input_size]
        :param W: matrix of fully-connected output layer weights
        :param b: vector of fully-connected output layer biases
        """

Listing 10.1 Importing relevant libraries

Listing 10.2 Defining a class and its constructor

Listing 10.3 Defining the RNN model

Hyperparameters

Weight
variables

and input
placeholders

Cost
optimizer

Auxiliary ops
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194 CHAPTER 10 Recurrent neural networks
        cell = rnn.BasicLSTMCell(self.hidden_dim) 
        outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32) 
        num_examples = tf.shape(self.x)[0]
        W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])
        out = tf.matmul(outputs, W_repeated) + self.b_out
        out = tf.squeeze(out)
        return out

With a model and cost function defined, you can now implement the training function,
which will learn the LSTM weights, given example input/output pairs. As listing 10.4
shows, you open a session and repeatedly run the optimizer on the training data. 

NOTE You can use cross-validation to figure out how many iterations you
need to train the model. In this case, you assume a fixed number of epochs.
Some good insights and answers can be found through online Q&A sites such
as ResearchGate: http://mng.bz/lB92.

After training, save the model to a file so you can load it later.

    def train(self, train_x, train_y):
        with tf.Session() as sess:
            tf.get_variable_scope().reuse_variables()
            sess.run(tf.global_variables_initializer())
            for i in range(1000):                           
                _, mse = sess.run([self.train_op, self.cost], 

feed_dict={self.x: train_x, self.y: train_y})
                if i % 100 == 0:
                    print(i, mse)
            save_path = self.saver.save(sess, 'model.ckpt')
            print('Model saved to {}'.format(save_path))

Let’s say all went well, and your model has successfully learned parameters. Next,
you’d like to evaluate the predictive model on other data. The following listing loads
the saved model and runs the model in a session by feeding in test data. If a learned
model doesn’t perform well on testing data, you can try tweaking the number of hid-
den dimensions of the LSTM cell.

    def test(self, test_x):
        with tf.Session() as sess:
            tf.get_variable_scope().reuse_variables()
            self.saver.restore(sess, './model.ckpt')
            output = sess.run(self.model(), feed_dict={self.x: test_x})
            print(output)

Listing 10.4 Training the model on a dataset

Listing 10.5 Testing the learned model

Creates an LSTM cell

Runs the cell on the input to obtain 
tensors for outputs and states

Computes the output
layer as a fully connected

linear function

Runs the train 
op 1,000 times
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195A predictive model for time-series data
It’s done! But just to convince yourself that it works, let’s make up some data and try to
train the predictive model. In the next listing, you’ll create input sequences, train_x,
and corresponding output sequences, train_y.

if __name__ == '__main__':
    predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)
    train_x = [[[1], [2], [5], [6]],
               [[5], [7], [7], [8]],
               [[3], [4], [5], [7]]]
    train_y = [[1, 3, 7, 11],
               [5, 12, 14, 15],
               [3, 7, 9, 12]]
    predictor.train(train_x, train_y)

    test_x = [[[1], [2], [3], [4]],  
              [[4], [5], [6], [7]]]  
    predictor.test(test_x)

You can treat this predictive model as a black box and train it using real-world time-
series data for prediction. In the next section, you’ll get data to work with.

10.4 A predictive model for time-series data
Time-series data is abundantly available online. For this example, you’ll use data about
international airline passengers for a specific period. You can obtain this data from
http://mng.bz/5UWL. Clicking that link will take you to a nice plot of the time-series
data, as shown in figure 10.5.

Listing 10.6 Training and testing on dummy data

Predicted result 
should be 1, 3, 5, 7

Predicted result should 
be 4, 9, 11, 13

Figure 10.5 Raw data showing the number of international airline passengers throughout the years
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196 CHAPTER 10 Recurrent neural networks
You can download the data by clicking the Export tab and then selecting CSV (,) in
the Export group. You’ll have to manually edit the CSV file to remove the header line
as well as the additional footer line.

 In a file called data_loader.py, add the following code. 

import csv
import numpy as np
import matplotlib.pyplot as plt

def load_series(filename, series_idx=1):
    try:
        with open(filename) as csvfile:
            csvreader = csv.reader(csvfile)
                                                    
            data = [float(row[series_idx]) for row in csvreader 
                                           if len(row) > 0]
            normalized_data = (data - np.mean(data)) / np.std(data) 
        return normalized_data
    except IOError:
        return None

def split_data(data, percent_train=0.80):
    num_rows = len(data) * percent_train     
    return data[:num_rows], data[num_rows:]  

Here, you define two functions, load_series and split_data. The first function
loads the time-series file on disk and normalizes it, and the other function divides the
dataset into two components, for training and testing.

 Because you’ll be evaluating the model multiple times to predict future values, let’s
modify the test function from SeriesPredictor. It now takes as an argument the ses-
sion, instead of initializing the session on every call. See the following listing for this
tweak.

def test(self, sess, test_x):
    tf.get_variable_scope().reuse_variables()
    self.saver.restore(sess, './model.ckpt')
    output = sess.run(self.model(), feed_dict={self.x: test_x})
    return output

You can now train the predictor by loading the data in the acceptable format. List-
ing 10.9 shows how to train the network and then use the trained model to predict

Listing 10.7 Loading data

Listing 10.8 Modifying the test function to pass in the session

Loops through the lines
of the file and converts to

a floating-point number

Preprocesses the data by mean-
centering and dividing by

standard deviation

Calculates training 
data samples

Splits the dataset into 
training and testing
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-

future values. You’ll generate the training data (train_x and train_y) to look like
those shown previously in listing 10.6.

if __name__ == '__main__':
    seq_size = 5
    predictor = SeriesPredictor(
        input_dim=1,       
        seq_size=seq_size, 
        hidden_dim=100)    

    data = data_loader.load_series('international-airline-passengers.csv') 
    train_data, actual_vals = data_loader.split_data(data)

    train_x, train_y = [], []  
    for i in range(len(train_data) - seq_size - 1):  
        train_x.append(np.expand_dims(train_data[i:i+seq_size], 

axis=1).tolist())
        train_y.append(train_data[i+1:i+seq_size+1])

    test_x, test_y = [], []                          
    for i in range(len(actual_vals) - seq_size - 1):
        test_x.append(np.expand_dims(actual_vals[i:i+seq_size], 

axis=1).tolist())
        test_y.append(actual_vals[i+1:i+seq_size+1])

    predictor.train(train_x, train_y, test_x, test_y) 

    with tf.Session() as sess:
        predicted_vals = predictor.test(sess, test_x)[:,0]
        print('predicted_vals', np.shape(predicted_vals))
        plot_results(train_data, predicted_vals, actual_vals, 

'predictions.png')

        prev_seq = train_x[-1]
        predicted_vals = []
        for i in range(20):
            next_seq = predictor.test(sess, [prev_seq])
            predicted_vals.append(next_seq[-1])
            prev_seq = np.vstack((prev_seq[1:], next_seq[-1]))
        plot_results(train_data, predicted_vals, actual_vals, 

'hallucinations.png')

The predictor generates two graphs. The first is prediction results of the model, given
ground-truth values, as shown in figure 10.6.

 The other graph shows the prediction results when only the training data is given
(blue line) and nothing else (see figure 10.7). This procedure has less information
available, but it still did a good job matching trends of the data.

Listing 10.9 Generate training data

The dimension of each 
element of the sequence is a 
scalar (one-dimensional).

Length of each 
sequence

Size of the
RNN hidden

dimension

Loads
the data

Slides a window 
through the time
series data to 
construct the 
training dataset

Uses the same 
window-sliding 
strategy to 
construct the 
test dataset

Trains a
model
on the

training
dataset

Visualizes 
the model’s 
performance
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198 CHAPTER 10 Recurrent neural networks
You can use time-series predictors to reproduce realistic fluctuations in data. Imagine
predicting market boom-and-bust cycles based on the tools you’ve learned so far.
What are you waiting for? Grab some market data, and learn your own predictive
model!

10.5 Application of recurrent neural networks
Recurrent neural networks are meant to be used with sequential data. Because audio
signals are a dimension lower than video (linear signal versus two-dimensional pixel

Figure 10.6 The predictions 
match trends fairly well when 
tested against ground-truth data.

Figure 10.7 If the algorithm 
uses previously predicted results 
to make further predictions, then 
the general trend matches well, 
but not specific bumps.
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199Summary
array), it’s a lot easier to get started with audio time-series data. Consider how much
speech recognition has improved over the years: it’s becoming a tractable problem!

 Like the audio histogram analysis you conducted in chapter 5 on clustering audio
data, most speech recognition preprocessing involves representing the sound into a
chromagram of sorts. Specifically, a common technique is to use a feature called mel-
frequency cepstral coefficients (MFCCs). A good introduction is outlined in this blog post:
http://mng.bz/411F.

 Next, you’ll need a dataset to train your model. A few popular ones include the fol-
lowing:

 LibriSpeech: www.openslr.org/12
 TED-LIUM: www.openslr.org/7
 VoxForge: www.voxforge.org

An in-depth walkthrough of a simple speech-recognition implementation in Tensor-
Flow using these datasets is available online: https://svds.com/tensorflow-rnn-tutorial.

10.6 Summary
 A recurrent neural network (RNN) uses information from the past. That way, it

can make predictions using data with high temporal dependencies. 
 TensorFlow comes with RNN models out of the box.
 Time-series prediction is a useful application for RNNs because of temporal

dependencies in the data.
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202 CHAPTER 11 Sequence-to-sequence models for chatbots
Talking to customer service over the phone is a burden for both the customer and the
company. Service providers pay a good chunk of money to hire these customer service
representatives, but what if it’s possible to automate most of this effort? Can we
develop software to interface with customers through natural language?

 The idea isn’t as farfetched as you might think. Chatbots are getting a lot of hype
because of unprecedented developments in natural language processing using deep-
learning techniques. Perhaps, given enough training data, a chatbot could learn to
navigate the most commonly addressed customer problems through natural conversa-
tions. If the chatbot were truly efficient, it could not only save the company money by
eliminating the need to hire representatives, but even accelerate the customer’s
search for an answer.

 In this chapter, you’ll build a chatbot by feeding a neural network thousands of
examples of input and output sentences. Your training dataset is a pair of English
utterances; for example, if you ask, “How are you?” the chatbot should respond, “Fine,
thank you.”

NOTE In this chapter, we’re thinking of sequences and sentences as interchange-
able concepts. In our implementation, a sentence will be a sequence of let-
ters. Another common approach is to represent a sentence as a sequence of
words.

In effect, the algorithm will try to produce an intelligent natural language response to
each natural language query. You’ll be implementing a neural network that uses two
primary concepts taught in previous chapters: multiclass classification and recurrent
neural networks (RNNs). 

11.1 Building on classification and RNNs
Remember, classification is a machine-learning approach to predict the category of an
input data item. Furthermore, multiclass classification allows for more than two
classes. You saw in chapter 4 how to implement such an algorithm in TensorFlow. Spe-
cifically, the cost function between the model’s prediction (a sequence of numbers)
and the ground truth (a one-hot vector) tries to find the distance between two
sequences by using the cross-entropy loss.

This chapter covers 
 Examining sequence-to-sequence architecture

 Vector embedding of words

 Implementing a chatbot by using real-world data
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203Building on classification and RNNs
NOTE A one-hot vector is like an all-zero vector, except one of the dimen-
sions has a value of 1.

In this case, implementing a chatbot, you’ll use a variant of the cross-entropy loss to
measure the difference between two sequences: the model’s response (which is a
sequence) against the ground truth (which is also a sequence).

You may recall that RNNs are a neural network design for incorporating not only
input from the current time step, but also state information from previous inputs.
Chapter 10 covered these in great detail, and they’ll be used again in this chapter.
RNNs represent input and output as time-series data, which is exactly what you need
to represent sequences. 

 A naïve idea is to use an out-of-the-box RNN to implement a chatbot. Let’s see
why this is a bad approach. The input and output of the RNN are natural language
sentences, so the inputs (xt, xt–1, xt–2, …) and outputs (yt, yt–1, yt–2, …) can be
sequences of words. The problem in using an RNN to model conversations is that
the RNN produces an output result immediately. If your input is a sequence of
words (How, are, you), the first output word will depend on only the first input word.
The output sequence item yt of the RNN couldn’t look ahead to future parts of the
input sentence to make a decision; it would be limited by knowledge of only previ-
ous input sequences (xt, xt–1, xt–2, … ). The naïve RNN model tries to come up with
a response to the user’s query before they’ve finished asking it, which can lead to
incorrect results. 

 Instead, you’ll end up using two RNNs: one for the input sentence and the other
for the output sequence. After the input sequence is finished being processed by the
first RNN, it’ll send the hidden state to the second RNN to process the output sen-
tence. You can see the two RNNs labeled Encoder and Decoder in figure 11.1.

 
 

EXERCISE 11.1 
In TensorFlow, you can use the cross-entropy loss function to measure the similarity
between a one-hot vector, such as (1, 0, 0), and a neural network’s output, such
as (2.34, 0.1, 0.3). On the other hand, English sentences aren’t numeric vectors.
How can you use the cross-entropy loss to measure the similarity between English
sentences?

ANSWER

A crude approach would be to represent each sentence as a vector by counting the
frequency of each word within the sentence. Then compare the vectors to see how
closely they match up.
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We’re bringing concepts of multiclass classification and RNNs from previous chapters
into designing a neural network that learns to map an input sequence to an output
sequence. The RNNs provide a way of encoding the input sentence, passing a summa-
rized state vector to the decoder, and then decoding it to a response sentence. To
measure the cost between the model’s response and the ground truth, we look to the
function used in multiclass classification, the cross-entropy loss, for inspiration. 

 This architecture is called a sequence-to-sequence (seq2seq) neural network architecture.
The training data you use will be thousands of pairs of sentences mined from movie
scripts. The algorithm will observe these dialogue examples and eventually learn to
form responses to arbitrary queries you might ask it.

By the end of the chapter, you’ll have your own chatbot that can respond somewhat
intelligently to your queries. It won’t be perfect, because this model always responds
the same way for the same input query. 

 Suppose, for example, that you’re traveling to a foreign country without any ability
to speak the language. A clever salesman hands you a book, claiming it’s all you need
to respond to sentences in the foreign language. You’re supposed to use it like a dic-
tionary. When someone says a phrase in the foreign language, you can look it up, and
the book will have the response written out for you to read aloud: “If someone says
Hello, you say Hi.” 

 Sure, it might be a practical lookup table for small talk, but can a lookup table get
you the correct response for arbitrary dialogue? Of course not! Consider looking up

EXERCISE 11.2 
What other industries could benefit from a chatbot?

ANSWER

One example is a conversation partner for young students as an educational tool to
teach various subjects such as English, math, and even computer science.

l m a o

Decoder

Seq2seq model overview

Encoder

a y y

Figure 11.1 Here’s a high-level view of your 
neural network model. The input ayy is passed 
into the encoder RNN, and the decoder RNN is 
expected to respond with lmao. These are just 
toy examples for your chatbot, but you could 
imagine more-complicated pairs of sentences 
for the input and output. 
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205Seq2seq architecture
the question “Are you hungry?” The answer to that question is stamped in the book
and will never change. 

 The lookup table is missing state information, which is a key component in dia-
logue. In your seq2seq model, you’ll suffer from a similar issue; but it’s a good start!
Believe it or not, as of 2017, hierarchical state representation for intelligent dialogue
still isn’t the norm; many chatbots start out with these seq2seq models.

11.2 Seq2seq architecture
The seq2seq model attempts to learn a neural network that predicts an output
sequence from an input sequence. Sequences are a little different from traditional
vectors, because a sequence implies an ordering of events. 

 Time is an intuitive way to order events: we usually end up alluding to words
related to time, such as temporal, time series, past, and future. For example, we like to say
that RNNs propagate information to future time steps. Or, RNNs capture temporal depen-
dencies.

NOTE RNNs are covered in detail in chapter 10. 

The seq2seq model is implemented using multiple RNNs. A single RNN cell is
depicted in figure 11.2; it serves as the building block for the rest of the seq2seq
model architecture. 

First, you’ll learn how to stack RNNs on top of each other to improve the model’s
complexity. Then you’ll learn how to pipe the hidden state of one RNN to another
RNN, so that you can have an “encoder” and “decoder” network. As you’ll begin to
see, it’s fairly easy to start using RNNs.

… Xt–1 Xt

yt–1

Output

States

Input

…

St–1

yt

St
…

RNNCell

Figure 11.2 The input, output, and states of an RNN. You can ignore the intricacies of 
exactly how an RNN is implemented. All that matters is the formatting of your input and 
output. 
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206 CHAPTER 11 Sequence-to-sequence models for chatbots
 After that, you’ll get an introduction to converting natural language sentences into
a sequence of vectors. After all, RNNs understand only numeric data, so you’ll abso-
lutely need this conversion process. Because a sequence is another way of saying “a list
of tensors,” you need to make sure you can convert your data accordingly. For exam-
ple, a sentence is a sequence of words, but words aren’t tensors. The process of con-
verting words to tensors or, more commonly, vectors is called embedding.

 Last, you’ll put all these concepts together to implement the seq2seq model on
real-world data. The data will come from thousands of conversations from movie
scripts.

 You can hit the ground running with the following code listing. Open a new
Python file, and start copying listing 11.1 to set up constants and placeholders. You’ll
define the shape of the placeholder to be [None, seq_size, input_dim], where None
means the size is dynamic because the batch size may change, seq_size is the length
of the sequence, and input_dim is the dimension of each sequence item.

import tensorflow as tf  

input_dim = 1            
seq_size = 6             

input_placeholder = tf.placeholder(dtype=tf.float32, 
                                   shape=[None, seq_size, input_dim])

To generate an RNN cell like the one in figure 11.2, TensorFlow provides a helpful
LSTMCell class. Listing 11.2 shows how to use it and extract the outputs and states from
the cell. Just for convenience, the listing defines a helper function called make_cell to
set up the LSTM RNN cell. Remember, just defining a cell isn’t enough: you also need
to call tf.nn.dynamic_rnn on it to set up the network.

def make_cell(state_dim):
    return tf.contrib.rnn.LSTMCell(state_dim)    

with tf.variable_scope("first_cell") as scope:
    cell = make_cell(state_dim=10)
    outputs, states = tf.nn.dynamic_rnn(cell,   
                                        input_placeholder,  
                                        dtype=tf.float32)

Listing 11.1 Setting up constants and placeholders

Listing 11.2 Making a simple RNN cell

All you need is 
TensorFlow. Dimension of 

each sequence 
element

Maximum 
length of 
sequence

Check out the tf.contrib.rnn 
documentation for other 
types of cells, such as GRU.

There will be two 
generated results: 
outputs and states.

This is the 
input sequence 
to the RNN.
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207Seq2seq architecture
You might remember from previous chapters that you can improve a neural net-
work’s complexity by adding more and more hidden layers. More layers means more
parameters, and that likely means the model can represent more functions; it’s
more flexible.

 You know what? You can stack cells on top of each other. Nothing is stopping you.
Doing so makes the model more complex, so perhaps this two-layered RNN model
will perform better because it’s more expressive. Figure 11.3 shows two cells stacked
together.

WARNING The more flexible the model, the more likely that it’ll overfit the
training data.

In TensorFlow, you can intuitively implement this two-layered RNN network. First, you
create a new variable scope for the second cell. To stack RNNs together, you can pipe
the output of the first cell to the input of the second cell. The following listing shows
how to do exactly this.

with tf.variable_scope("second_cell") as scope:   
    cell2 = make_cell(state_dim=10)
    outputs2, states2 = tf.nn.dynamic_rnn(cell2,
                                          outputs,  
                                          dtype=tf.float32)

Listing 11.3 Stacking two RNN cells

… Xt–1

St–1

Xt

St
…

yt–1

Output

States

Input

…

St–1

yt

St
…

Figure 11.3 You can stack RNN cells to form a more complicated architecture.

Defining a variable scope 
helps avoid runtime errors 
due to variable reuse.

Input to this cell will be 
the other cell’s output.
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208 CHAPTER 11 Sequence-to-sequence models for chatbots
What if you wanted four layers of RNNs? Or 10? For example, figure 11.4 shows four
RNN cells stacked atop each other.

A useful shortcut for stacking cells that the TensorFlow library supplies is called
MultiRNNCell. The following listing shows how to use this helper function to build
arbitrarily large RNN cells.

def make_multi_cell(state_dim, num_layers):
    cells = [make_cell(state_dim) for _ in range(num_layers)]  
    return tf.contrib.rnn.MultiRNNCell(cells)

multi_cell = make_multi_cell(state_dim=10, num_layers=4)
outputs4, states4 = tf.nn.dynamic_rnn(multi_cell, 
                                      input_placeholder, 
                                      dtype=tf.float32)

So far, you’ve grown RNNs vertically by piping outputs of one cell to the inputs of
another. In the seq2seq model, you’ll want one RNN cell to process the input sen-

Listing 11.4 Using MultiRNNCell to stack multiple cells

St–1 St
…

States

… Xt–1 Xt

St
…

St–1 St
…

Input

yt–1

Output

…

St–1

yt

St
…

St–1
…

…

St–1
…

St–1
…

MultiRNNCell

St–1

Figure 11.4 TensorFlow lets you stack as many RNN cells as you want.

The for-loop 
syntax is the 
preferred way 
to construct a 
list of RNN 
cells.
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209Seq2seq architecture
tence, and another RNN cell to process the output sentence. To communicate
between the two cells, you can also connect RNNs horizontally by connecting states
from cell to cell, as shown in figure 11.5.

You’ve stacked RNN cells vertically and connected them horizontally, vastly increasing
the number of parameters in the network! Is this utter blasphemy? Yes. You’ve built a
monolithic architecture by composing RNNs every which way. But there’s a method to
this madness, because this insane neural network architecture is the backbone of the
seq2seq model. 

 As you can see in figure 11.5, the seq2seq model appears to have two input
sequences and two output sequences. But only input 1 will be used for the input sen-
tence, and only output 2 will be used for the output sentence. 

 You may be wondering what to do with the other two sequences. Strangely enough,
the output 1 sequence is entirely unused by the seq2seq model. And, as you’ll see, the
input 2 sequence is crafted using some of output 2 data, in a feedback loop.

 Your training data for designing a chatbot will be pairs of input and output sen-
tences, so you’ll need to better understand how to embed words into a tensor. The
next section covers how to do so in TensorFlow.

St–1 S2
t

S1
t

St–1 S3
t

Input 2

Output 2

St–1 S4
t

St–1

St–1

St–1

St–1 St
…

St
…

St–1 St
…

Input 1

Output 1

St–1 St
…

St–1
…

…

St–1
…

St–1
…

MultiRNNCell

St–1St–1

… Xt–1 Xt
… Xt–1 X

t

Figure 11.5 You can use the last states of the first cell as the next cell’s initial state. This model can learn 
mapping from an input sequence to an output sequence. The model is called seq2seq.
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210 CHAPTER 11 Sequence-to-sequence models for chatbots
11.3 Vector representation of symbols
Words and letters are symbols, and converting symbols to numeric values is easy in
TensorFlow. For example, let’s say you have four words in your vocabulary: word0: the ;
word1: fight ; word2: wind ; and word3: like. 

 Let’s say you want to find the embeddings for the sentence “Fight the wind.”
The symbol fight is located at index 1 of the lookup table, the at index 0, and wind at
index 2. If you want to find the embedding of the word fight, you have to refer to its
index, which is 1, and consult the lookup table at index 1 to identify the embed-
ding value. In our first example, each word is associated with a number, as shown in
figure 11.6.

The following listing shows how to define such a mapping between symbols and
numeric values using TensorFlow code.

embeddings_0d = tf.constant([17, 22, 35, 51])

Or maybe the words are associated with vectors, as shown in figure 11.7. This is often
the preferred method of representing words. You can find a thorough tutorial on vec-
tor representation of words in the official TensorFlow docs: http://mng.bz/35M8.

EXERCISE 11.3 
Sentences may be represented by a sequence of characters or words, but can you
think of other sequential representations of sentences?

ANSWER

Phrases and grammatical information (verbs, nouns, and so forth) could both be used.
More frequently, real applications use natural language processing (NLP) lookups to
standardize word forms, spellings, and meanings. One example of a library that does
this translation is fastText from Facebook (https://github.com/facebookresearch/
fastText).

Listing 11.5 Defining a lookup table of scalars

Word Number

the

fight

wind

like

17

22

35

51
Figure 11.6 A mapping from 
symbols to scalars
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211Vector representation of symbols
You can implement the mapping between words and vectors in TensorFlow, as shown
in the following listing.

embeddings_4d = tf.constant([[1, 0, 0, 0],
                             [0, 1, 0, 0],
                             [0, 0, 1, 0],
                             [0, 0, 0, 1]])

This may sound over the top, but you can represent a symbol by a tensor of any rank
you want, not just numbers (rank 0) or vectors (rank 1). In figure 11.8, you’re map-
ping symbols to tensors of rank 2.

The following listing shows how to implement this mapping of words to tensors in
TensorFlow.

embeddings_2x2d = tf.constant([[[1, 0], [0, 0]],
                               [[0, 1], [0, 0]],
                               [[0, 0], [1, 0]],
                               [[0, 0], [0, 1]]])

The embedding_lookup function provided by TensorFlow is an optimized way to
access embeddings by indices, as shown in the following listing.

Listing 11.6 Defining a lookup table of 4D vectors 

Listing 11.7 Defining a lookup table of tensors

Word Vector

the

fight

wind

like

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]
Figure 11.7 A mapping from 
symbols to vectors

Word Tensor

the

fight

wind

like

[[1, 0], [0, 0]]

[[0, 1], [0, 0]]

[[0, 0], [1, 0]]

[[0, 0], [0, 1]] Figure 11.8 A mapping from 
symbols to tensors
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ids = tf.constant([1, 0, 2])  
lookup_0d = sess.run(tf.nn.embedding_lookup(embeddings_0d, ids))
print(lookup_0d)

lookup_4d = sess.run(tf.nn.embedding_lookup(embeddings_4d, ids))
print(lookup_4d)

lookup_2x2d = sess.run(tf.nn.embedding_lookup(embeddings_2x2d, ids))
print(lookup_2x2d)

In reality, the embedding matrix isn’t something you ever have to hardcode. These
listings are for you to understand the ins and outs of the embedding_lookup function
in TensorFlow, because you’ll be using it heavily soon. The embedding lookup table
will be learned automatically over time by training the neural network. You start by
defining a random, normally distributed lookup table. Then, TensorFlow’s optimizer
will adjust the matrix values to minimize the cost.

11.4 Putting it all together
The first step in using natural language input in a neural network is to decide on a
mapping between symbols and integer indices. Two common ways to represent sen-
tences is by a sequence of letters or a sequence of words. Let’s say, for simplicity, that
you’re dealing with sequences of letters, so you’ll need to build a mapping between
characters and integer indices.

NOTE The official code repository is available at the book’s website
(www.manning.com/books/machine-learning-with-tensorflow) and on GitHub
(http://mng.bz/EB5A). From there, you can get the code running without
needing to copy and paste from the book.

The following listing shows how to build mappings between integers and characters. If
you feed this function a list of strings, it’ll produce two dictionaries, representing the
mappings.

 
 

Listing 11.8 Looking up the embeddings

EXERCISE 11.4 
Follow the official TensorFlow word2vec tutorial to get more familiar with embeddings:
www.tensorflow.org/tutorials/word2vec.

ANSWER

This tutorial will teach you to visualize the embeddings using TensorBoard.

Embeddings 
lookup 
corresponding 
to the words 
fight, the, 
and wind
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213Putting it all together
def extract_character_vocab(data):
    special_symbols = ['<PAD>', '<UNK>', '<GO>',  '<EOS>']
    set_symbols = set([character for line in data for character in line])
    all_symbols = special_symbols + list(set_symbols)
    int_to_symbol = {word_i: word 
                     for word_i, word in enumerate(all_symbols)}
    symbol_to_int = {word: word_i 
                     for word_i, word in int_to_symbol.items()}
 
    return int_to_symbol, symbol_to_int

input_sentences = ['hello stranger', 'bye bye']  
output_sentences = ['hiya', 'later alligator']   

input_int_to_symbol, input_symbol_to_int = 
    extract_character_vocab(input_sentences)

output_int_to_symbol, output_symbol_to_int =
    extract_character_vocab(output_sentences

Next, you’ll define all your hyperparameters and constants in listing 11.10. These are
usually values you can tune by hand through trial and error. Typically, greater values
for the number of dimensions or layers result in a more complex model, which is
rewarding if you have big data, fast processing power, and lots of time.

NUM_EPOCS = 300     
RNN_STATE_DIM = 512              
RNN_NUM_LAYERS = 2                          
ENCODER_EMBEDDING_DIM = DECODER_EMBEDDING_DIM = 64  
 
BATCH_SIZE = int(32)
LEARNING_RATE = 0.0003
 
INPUT_NUM_VOCAB = len(input_symbol_to_int)    
OUTPUT_NUM_VOCAB = len(output_symbol_to_int)  

Let’s list all placeholders next. As you can see in listing 11.11, the placeholders nicely
organize the input and output sequences necessary to train the network. You’ll have
to track both the sequences and their lengths. For the decoder part, you’ll also need
to compute the maximum sequence length. The None value in the shape of these

Listing 11.9 Extracting character vocab

Listing 11.10 Defining hyperparameters

List of input 
sentences for 
training

List of corresponding 
output sentences for 
training

Number of 
epochs RNN’s hidden 

dimension size RNN’s number 
of stacked cells

Embedding dimension of 
sequence elements for the 
encoder and decoder

Batch size

It’s possible to have different vocabularies
between the encoder and decoder.
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214 CHAPTER 11 Sequence-to-sequence models for chatbots
placeholders means the tensor may take on an arbitrary size in that dimension. For
example, the batch size may vary in each run. But for simplicity, you’ll keep the batch
size the same at all times.

# Encoder placeholders
encoder_input_seq = tf.placeholder(    
    tf.int32, 
    [None, None],               
    name='encoder_input_seq'
)

encoder_seq_len = tf.placeholder(     
    tf.int32, 
    (None,),                      
    name='encoder_seq_len'
)
 

# Decoder placeholders
decoder_output_seq = tf.placeholder(  
    tf.int32, 
    [None, None],                   
    name='decoder_output_seq'
)

decoder_seq_len = tf.placeholder(    
    tf.int32,
    (None,),                      
    name='decoder_seq_len'
)

max_decoder_seq_len = tf.reduce_max(  
    decoder_seq_len, 
    name='max_decoder_seq_len'
)

Let’s define helper functions to construct RNN cells. These functions, shown in the
following listing, should appear familiar to you from the previous section.

def make_cell(state_dim):
    lstm_initializer = tf.random_uniform_initializer(-0.1, 0.1)
    return tf.contrib.rnn.LSTMCell(state_dim, initializer=lstm_initializer)
 
def make_multi_cell(state_dim, num_layers):
    cells = [make_cell(state_dim) for _ in range(num_layers)]
    return tf.contrib.rnn.MultiRNNCell(cells)

Listing 11.11 Listing placeholders

Listing 11.12 Helper functions to build RNN cells

Sequence of integers for 
the encoder’s input

Shape is batch-size × 
sequence length

Lengths of sequences 
in a batch

Shape is dynamic because the 
length of a sequence can change

Sequence of integers for 
the decoder’s output

Shape is batch-size × 
sequence length

Lengths of sequences 
in a batch

Shape is dynamic because the 
length of a sequence can change

Maximum length of a decoder 
sequence in a batch
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215Putting it all together
You’ll build the encoder and decoder RNN cells by using the helper functions you’ve
just defined. As a reminder, we’ve copied the seq2seq model for you in figure 11.9, to
visualize the encoder and decoder RNNs.

Let’s talk about the encoder cell part first, because in listing 11.13 you’ll build the
encoder cell. The produced states of the encoder RNN will be stored in a variable
called encoder_state. RNNs also produce an output sequence, but you don’t need
access to that in a standard seq2seq model, so you can ignore it or delete it.

 It’s also typical to convert letters or words in a vector representation, often called
embedding. TensorFlow provides a handy function called embed_sequence that can
help you embed the integer representation of symbols. Figure 11.10 shows how the
encoder input accepts numeric values from a lookup table. You can see it in action at
the beginning of listing 11.13.

l m a o

Decoder

Seq2seq model overview

Encoder

a y y

Figure 11.9 The seq2seq model learns a 
transformation between an input sequence to 
an output sequence by using an encoder RNN 
and a decoder RNN.

DecoderEncoder

Word Vector

Encoder embedding matrix

the

fight

wind

like

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]

Figure 11.10 The RNNs accept only 
sequences of numeric values as input or 
output, so you’ll convert your symbols to 
vectors. In this case, the symbols are 
words, such as the, fight, wind, and like. 
Their corresponding vectors are associated 
in the embedding matrix.
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# Encoder embedding
 
encoder_input_embedded = tf.contrib.layers.embed_sequence(
    encoder_input_seq,      
    INPUT_NUM_VOCAB,       
    ENCODER_EMBEDDING_DIM  
)
 
 
# Encoder output
 
encoder_multi_cell = make_multi_cell(RNN_STATE_DIM, RNN_NUM_LAYERS)
 
encoder_output, encoder_state = tf.nn.dynamic_rnn(
    encoder_multi_cell, 
    encoder_input_embedded, 
    sequence_length=encoder_seq_len, 
    dtype=tf.float32
)
 
del(encoder_output)  

The decoder RNN’s output is a sequence of numeric values representing a natural
language sentence and a special symbol to represent that the sequence has ended.
You’ll label this end-of-sequence symbol as <EOS>. Figure 11.11 illustrates this process.
The input sequence to the decoder RNN will look similar to the decoder’s output
sequence, except instead of having the <EOS> (end of sequence) special symbol at the
end of each sentence, it will have a <GO> special symbol at the front. That way, after the
decoder reads its input from left to right, it starts out with no extra information about
the answer, making it a robust model.

Listing 11.14 shows how to correctly perform these slicing and concatenating opera-
tions. The newly constructed sequence for the decoder’s input will be called
decoder_input_seq. You’ll use TensorFlow’s tf.concat operation to glue together

Listing 11.13 Encoder embedding and cell

Input seq of numbers 
(row indices)

Rows of embedding 
matrix

Columns of 
embedding matrix

You don’t need to 
hold on to that value.

Decoder

Output sequence EOS

GO Output sequence

Encoder

Seq2seq model overview

Figure 11.11 The decoder’s input is 
prefixed with a special <GO> symbol, 
whereas the output is suffixed by a 
special <EOS> symbol.
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217Putting it all together
matrices. In the listing, you define a go_prefixes matrix, which will be a column vec-
tor containing only the <GO> symbol.

decoder_raw_seq = decoder_output_seq[:, :-1]                  
go_prefixes = tf.fill([BATCH_SIZE, 1], output_symbol_to_int['<GO>'])  
decoder_input_seq = tf.concat([go_prefixes, decoder_raw_seq], 1)  

Now let’s construct the decoder cell. As shown in listing 11.15, you’ll first embed the
decoder sequence of integers into a sequence of vectors, called decoder_input_
embedded. 

 The embedded version of the input sequence will be fed to the decoder’s RNN, so
go ahead and create the decoder RNN cell. One more thing: you’ll need a layer to
map the output of the decoder to a one-hot representation of the vocabulary, which
you call output_layer. The process of setting up the decoder starts out to be similar
to that with the encoder.

decoder_embedding = tf.Variable(tf.random_uniform([OUTPUT_NUM_VOCAB, 
                                                   DECODER_EMBEDDING_DIM]))
decoder_input_embedded = tf.nn.embedding_lookup(decoder_embedding, 
                                                decoder_input_seq)

decoder_multi_cell = make_multi_cell(RNN_STATE_DIM, RNN_NUM_LAYERS)
 

output_layer_kernel_initializer = 
    tf.truncated_normal_initializer(mean=0.0, stddev=0.1)
output_layer = Dense(
    OUTPUT_NUM_VOCAB,
    kernel_initializer = output_layer_kernel_initializer
)

Okay, here’s where things get weird. You have two ways to retrieve the decoder’s out-
put: during training and during inference. The training decoder will be used only
during training, whereas the inference decoder will be used for testing on never-
before-seen data. 

 The reason for having two ways to obtain an output sequence is that during train-
ing, you have the ground-truth data available, so you can use information about the
known output to help speed the learning process. But during inference, you have no

Listing 11.14 Preparing input sequences to the decoder

Listing 11.15 Decoder embedding and cell

Crops the matrix by ignoring
the very last column

Creates a column vector 
of <GO> symbols

Concatenates the <GO> vector to
the beginning of the cropped matrix
Licensed to Eduardo Guamán <guamane1992@gmail.com>

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/


218 CHAPTER 11 Sequence-to-sequence models for chatbots
ground-truth output labels, so you must resort to making inferences by using only the
input sequence.

 The following listing implements the training decoder. You’ll feed decoder_input
_seq into the decoder’s input, using TrainingHelper. This helper op manages the
input to the decoder RNN for you.

with tf.variable_scope("decode"):
 

    training_helper = tf.contrib.seq2seq.TrainingHelper(
        inputs=decoder_input_embedded,
        sequence_length=decoder_seq_len,
        time_major=False
    )
 

    training_decoder = tf.contrib.seq2seq.BasicDecoder(
        decoder_multi_cell,
        training_helper,
        encoder_state,
        output_layer
    ) 
 

    training_decoder_output_seq, _, _ = tf.contrib.seq2seq.dynamic_decode(
        training_decoder, 
        impute_finished=True, 
        maximum_iterations=max_decoder_seq_len
    )

If you care to obtain output from the seq2seq model on test data, you no longer have
access to decoder_input_seq. Why? Well, the decoder input sequence is derived from
the decoder output sequence, which is available only with the training dataset. 

 The following listing implements the decoder output op for the inference case.
Here again, you’ll use a helper op to feed the decoder an input sequence.

with tf.variable_scope("decode", reuse=True):
    start_tokens = tf.tile(
        tf.constant([output_symbol_to_int['<GO>']], 
                    dtype=tf.int32), 
        [BATCH_SIZE], 
        name='start_tokens')
 

    inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(   
        embedding=decoder_embedding,                               
        start_tokens=start_tokens,                                 
        end_token=output_symbol_to_int['<EOS>']                    
    )                                                              
 

Listing 11.16 Decoder output (training)

Listing 11.17 Decoder output (inference)

Helper for 
the inference 
process
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R
the

con
    inference_decoder = tf.contrib.seq2seq.BasicDecoder(   
        decoder_multi_cell,                                
        inference_helper,                                  
        encoder_state,                                     
        output_layer                                       
    )                                                      
 
    inference_decoder_output_seq, _, _ = tf.contrib.seq2seq.dynamic_decode( 
        inference_decoder,                                                  
        impute_finished=True,                                               
        maximum_iterations=max_decoder_seq_len                              
    )                                                                       

Compute the cost using TensorFlow’s sequence_loss method. You’ll need access to
the inferred decoder output sequence and the ground-truth output sequence. The
following listing defines the cost function in code.

training_logits =                                                           
    tf.identity(training_decoder_output_seq.rnn_output, name='logits')      
inference_logits =                                                          
    tf.identity(inference_decoder_output_seq.sample_id, name='predictions') 
 
masks = tf.sequence_mask(      
    decoder_seq_len,           
    max_decoder_seq_len,       
    dtype=tf.float32,          
    name='masks'               
)                              
 
cost = tf.contrib.seq2seq.sequence_loss(    
    training_logits,                        
    decoder_output_seq,                     
    masks                                   
)                                           

Last, let’s call an optimizer to minimize the cost. But you’ll do one trick you might
have never seen before. In deep networks like this one, you need to limit extreme gra-
dient change to ensure that the gradient doesn’t change too dramatically, a technique
called gradient clipping. Listing 11.19 shows you how to do so.

Listing 11.18 Cost function

EXERCISE 11.5 
Try the seq2seq model without gradient clipping to experience the difference.

ANSWER

You’ll notice that without gradient clipping, sometimes the network adjusts the gra-
dients too much, causing numerical instabilities.

Basic 
decoder

Performs
dynamic

decoding
using the
decoder

enames
 tensors
for your
venience

Creates the 
weights for 
sequence_loss

Uses TensorFlow’s 
built-in sequence 
loss function
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optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
 
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var)  
                        for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients)

That concludes the seq2seq model implementation. In general, the model is ready
to be trained after you’ve set up the optimizer, as in the previous listing. You can cre-
ate a session and run train_op with batches of training data to learn the parameters
of the model.

 Oh, right, you need training data from someplace! How can you obtain thousands
of pairs of input and output sentences? Fear not—the next section covers exactly that.

11.5 Gathering dialogue data
The Cornell Movie Dialogues corpus (http://mng.bz/W28O) is a dataset of more
than 220,000 conversations from more than 600 movies. You can download the zip file
from the official web page. 

WARNING Because there’s a huge amount of data, you can expect the train-
ing algorithm to take a long time. If your TensorFlow library is configured to
use only the CPU, it might take an entire day to train. On a GPU, training this
network may take 30 minutes to an hour.

An example of a small snippet of back-and-forth conversation between two people
(A and B) is the following: 

A: They do not!

B: They do too!

A: Fine.

Because the goal of the chatbot is to produce intelligent output for every possible
input utterance, you’ll structure your training data based on contingent pairs of con-
versation. In the example, the dialogue generates the following pairs of input and out-
put sentences:

 “They do not!”  “They do too!”
 “They do too!”  “Fine.”

For your convenience, we’ve already processed the data and made it available for you
online. You can find it at www.manning.com/books/machine-learning-with-tensorflow
or http://mng.bz/wWo0. After completing the download, you can run the following
listing, which uses the load_sentences helper function from the GitHub repo under
the Concept03_seq2seq.ipynb Jupyter Notebook.

Listing 11.19 Calling an optimizer

Gradient 
clipping
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input_sentences = load_sentences('data/words_input.txt')    
output_sentences = load_sentences('data/words_output.txt')  

input_seq = [
    [input_symbol_to_int.get(symbol, input_symbol_to_int['<UNK>']) 
        for symbol in line]                             
    for line in input_sentences     
]
 

output_seq = [
    [output_symbol_to_int.get(symbol, output_symbol_to_int['<UNK>']) 
        for symbol in line] + [output_symbol_to_int['<EOS>']]  
    for line in output_sentences               
]

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()                       
 

for epoch in range(NUM_EPOCS + 1):         

    for batch_idx in range(len(input_sentences) // BATCH_SIZE): 

        input_data, output_data = get_batches(input_sentences,  
                                              output_sentences,
                                              batch_idx)  

        input_batch, input_lenghts = input_data[batch_idx]
        output_batch, output_lengths = output_data[batch_idx]
 

        _, cost_val = sess.run(               
            [train_op, cost],
            feed_dict={
                encoder_input_seq: input_batch,
                encoder_seq_len: input_lengths,
                decoder_output_seq: output_batch,
                decoder_seq_len: output_lengths
            }
        )

saver.save(sess, 'model.ckpt')
sess.close()

Because you saved the model parameters to a file, you can easily load it onto another
program and query the network for responses to new input. Run the inference_logits
op to obtain the chatbot response.

Listing 11.20 Training the model

Loads the input sentences
as a list of strings Loads the 

corresponding 
output sentences
the same way

Loops through 
the lettersLoops 

through the 
lines of text

Appends the 
EOS symbol to 
the end of the 
output data

Loops through 
the lines

It’s a good idea to save 
the learned parameters.

Loops
rough

the
pochs

Loops
by the

umber of
batches

Gets input 
and output 
pairs for the 
current batch

Runs the optimizer 
on the current batch
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11.6 Summary
In this chapter, you built a real-world example of a seq2seq network, putting to work
all the TensorFlow knowledge you learned in the previous chapters:

 You built a seq2seq neural network by putting to work all the TensorFlow knowl-
edge you’ve acquired from the book so far. 

 You learned how to embed natural language in TensorFlow.
 You used RNNs as a building block for a more interesting model.
 After training the model on examples of dialogue from movie scripts, you were

able to treat the algorithm like a chatbot, inferring natural language responses
from natural language input.
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224 CHAPTER 12 Utility landscape
A household vacuuming robot, like the Roomba, needs sensors to “see” the world.
The ability to process sensory input enables robots to adjust their model of the world
around them. In the case of the vacuum cleaner robot, the furniture in the room may
change day to day, so the robot must be able to adapt to chaotic environments. 

 Let’s say you own a futuristic housemaid robot, which comes with a few basic skills
but also with the ability to learn new skills from human demonstrations. For example,
maybe you’d like to teach it how to fold clothes. 

 Teaching a robot how to accomplish a new task is a tricky problem. Some immedi-
ate questions come to mind:

 Should the robot simply mimic a human’s sequence of actions? Such a process
is referred to as imitation learning.

 How do a robot’s arms and joints match up to human poses? This dilemma is
often referred to as the correspondence problem. 

In this chapter, you’re going to model a task from human demonstrations while avoid-
ing both imitation learning and the correspondence problem. Lucky you! You’ll
achieve this by studying a way to rank states of the world with a utility function, which is
a function that takes a state and returns a real value representing its desirability. Not
only will you steer clear of imitation as a measure of success, but you’ll also bypass the

This chapter covers
 Implementing a neural network for ranking

 Image embedding using VGG16

 Visualizing utility

EXERCISE 12.1
The goal of imitation learning is for the robot to reproduce the action sequences of
the demonstrator. This sounds good on paper, but what are the limitations of such
an approach? 

ANSWER

Mimicking human actions is a naive approach to learning from human demonstra-
tions. Instead, the agent should identify the hidden goal behind a demonstration. For
example, the goal when someone folds clothes is to flatten and compress them,
which are concepts independent of a human’s hand motions. By understanding why
the human is producing their action sequence, the agent is better able to generalize
the skill it’s being taught.
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complications of mapping a robot’s set of actions to that of a human (the correspon-
dence problem). 

 In the following section, you’ll learn how to implement a utility function over the
states of the world obtained through videos of human demonstrations of a task. The
learned utility function is a model of preferences.

 You’ll explore the task of teaching a robot how to fold articles of clothing. A wrin-
kled article of clothing is almost certainly in a configuration that has never before
been seen. As shown in figure 12.1, the utility framework has no limitations on the size
of the state space. The preference model is trained specifically on videos of people
folding T-shirts in various ways.

The utility function generalizes across states (wrinkled T-shirt in novel configuration
versus folded T-shirt in familiar configuration) and reuses knowledge across clothes
(T-shirt folding versus pants folding).

Figure 12.1 Wrinkled clothes in a less favorable state than well-folded clothes. This diagram shows how you 
might score each state of a piece of cloth; higher scores represent a more favorable state.
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226 CHAPTER 12 Utility landscape
 We can further illustrate the practical applications of a good utility function with
the following argument: in real-world situations, not all visual observations are opti-
mized toward learning a task. A teacher demonstrating a skill may perform irrele-
vant, incomplete, or even incorrect actions, yet humans are capable of ignoring the
mistakes. 

 When a robot watches human demonstrations, you want it to understand the
causal relationships that go into achieving a task. Your work enables the learning
phase to be interactive, where the robot is actively skeptic of human behavior, to
refine the training data.

 To accomplish this, you first learn a utility function from a small number of videos
to rank the preferences of various states. Then, when the robot is shown a new
instance of a skill through human demonstration, it consults the utility function to
verify that the expected utility increases over time. Lastly, the robot interrupts the
human demonstration to ask whether the action was essential for learning the skill.

12.1 Preference model
We assume human preferences are derived from a utilitarian perspective, meaning a
number determines the rank of items. For example, suppose you surveyed people to
rank the fanciness of various foods (such as steak, hotdog, shrimp cocktail, and burger). 

 Figure 12.2 shows a couple of possible rankings between pairs of food. As you
might expect, steak is ranked higher than hotdog, and shrimp cocktail higher than
burger on the fanciness scale.

Fortunately for the individuals being surveyed, not every pair of items needs to be
ranked. For example, it might not be so obvious which is fancier between hotdog and
burger, or between steak and shrimp cocktail. There’s a lot of room for disagreement. 

 If a state s1 has a higher utility than another state s2, then the corresponding
ranking is denoted s1  s2, implying the utility of s1 is greater than the utility of s2.

Ranking food by fanciness

Steak Hotdog

>

Shrimp

cocktail

Burger

>

Figure 12.2 This is a possible set of pairwise rankings between 
objects. Specifically, you have four food items, and you want to 
rank them by fanciness, so you employ two pairwise ranking 
decisions: steak is a fancier meal than a hotdog, and shrimp 
cocktail is a fancier meal than a burger.
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Each video demonstration contains a sequence of n states s0, s1, .., sn, which offers
n(n – 1)/2 possible ordered pairs ranking constraints. Let’s implement our own neu-
ral network capable of ranking. Open a new source file, and use the following listing
to import the relevant libraries. You’re about to create a neural network to learn a util-
ity function based on pairs of preferences.

import tensorflow as tf
import numpy as np
import random

%matplotlib inline
import matplotlib.pyplot as plt

To learn a neural network for ranking states based on a utility score, you’ll need training
data. Let’s create dummy data to begin with. You’ll replace it with something more real-
istic later. Reproduce the two-dimensional data in figure 12.3 by using listing 12.2.

n_features = 2     

def get_data():
    data_a = np.random.rand(10, n_features) + 1  
    data_b = np.random.rand(10, n_features)     
    
    plt.scatter(data_a[:, 0], data_a[:, 1], c='r', marker='x')
    plt.scatter(data_b[:, 0], data_b[:, 1], c='g', marker='o')
    plt.show()
    
    return data_a, data_b

data_a, data_b = get_data()

Listing 12.1 Importing relevant libraries

Listing 12.2 Generating dummy training data

Figure 12.3 Example data that you’ll 
work with. The circles represent more-
favorable states, whereas the  crosses 
represent less-favorable states. You 
have an equal number of circles and 
crosses because the data comes in 
pairs; each pair is a ranking, as in 
figure 12.2.

You’ll generate two-dimensional data 
so that you can easily visualize it. The set of points that 

should yield higher utility

The set of points that 
are less preferred
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Next, you need to define hyperparameters. In this model, let’s stay simple by keeping
the architecture shallow. You’ll create a network with just one hidden layer. The cor-
responding hyperparameter that dictates the hidden layer’s number of neurons is
the following:

n_hidden = 10

The ranking neural network will receive pairwise input, so you’ll need to have two
separate placeholders, one for each part of the pair. Moreover, you’ll create a place-
holder to hold the dropout parameter value. Continue by adding the following list-
ing to your script.

with tf.name_scope("input"):
    x1 = tf.placeholder(tf.float32, [None, n_features], name="x1")  
    x2 = tf.placeholder(tf.float32, [None, n_features], name="x2")  
    dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_prob')

The ranking neural network will contain only one hidden layer. In the following list-
ing, you define the weights and biases, and then reuse these weights and biases on
each of the two input placeholders.

with tf.name_scope("hidden_layer"):
    with tf.name_scope("weights"):
        w1 = tf.Variable(tf.random_normal([n_features, n_hidden]), name="w1")
        tf.summary.histogram("w1", w1)
        b1 = tf.Variable(tf.random_normal([n_hidden]), name="b1")
        tf.summary.histogram("b1", b1)
 

    with tf.name_scope("output"):
        h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x1,w1) + b1), 

keep_prob=dropout_keep_prob)
        tf.summary.histogram("h1", h1)
        h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(x2, w1) + b1), 

keep_prob=dropout_keep_prob)
        tf.summary.histogram("h2", h2)

The goal of the neural network is to calculate a score for the two inputs provided. In
the following listing, you define the weights, biases, and fully connected architecture
of the output layer of the network. You’ll be left with two output vectors, s1 and s2,
representing the scores for the pairwise input.

Listing 12.3 Placeholders

Listing 12.4 Hidden layer

Input placeholder for
preferred points

Input placeholder for
non-preferred points
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with tf.name_scope("output_layer"):
    with tf.name_scope("weights"):
        w2 = tf.Variable(tf.random_normal([n_hidden, 1]), name="w2")
        tf.summary.histogram("w2", w2)
        b2 = tf.Variable(tf.random_normal([1]), name="b2")
        tf.summary.histogram("b2", b2)
 
    with tf.name_scope("output"):
        s1 = tf.matmul(h1, w2) + b2  
        s2 = tf.matmul(h2, w2) + b2  

You’ll assume that when training the neural network, x1 should contain the less-favor-
able items. That means s1 should be scored lower than s2, meaning the difference
between s1 and s2 should be negative. As the following listing shows, the loss function
tries to guarantee a negative difference by using the softmax cross-entropy loss. You’ll
define a train_op to minimize the loss function.

with tf.name_scope("loss"):
    s12 = s1 - s2
    s12_flat = tf.reshape(s12, [-1])
    

    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
                        labels=tf.zeros_like(s12_flat), 
                        logits=s12_flat + 1)
    

    loss = tf.reduce_mean(cross_entropy)
    tf.summary.scalar("loss", loss)
 

with tf.name_scope("train_op"):
    train_op = tf.train.AdamOptimizer(0.001).minimize(loss)

Now, follow listing 12.7 to set up a TensorFlow session. This involves initializing all
variables and preparing TensorBoard debugging by using a summary writer. 

NOTE You used a summary writer before, at the end of chapter 2, when you
were first introduced to TensorBoard.

sess = tf.InteractiveSession()
summary_op = tf.summary.merge_all()
writer = tf.summary.FileWriter("tb_files", sess.graph)
init = tf.global_variables_initializer()
sess.run(init)

Listing 12.5 Output layer

Listing 12.6 Loss and optimizer

Listing 12.7 Preparing a session

Utility score 
of input x1

Utility score 
of input x2
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You’re ready to train the network! Run train_op on the dummy data you generated
to learn the parameters of the model.

for epoch in range(0, 10000):
    loss_val, _ = sess.run([loss, train_op], feed_dict={x1:data_a, x2:data_b, 

dropout_keep_prob:0.5})        
    if epoch % 100 == 0 :
        summary_result = sess.run(summary_op, 
                                  feed_dict={x1:data_a,     
                                             x2:data_b,            
                                             dropout_keep_prob:1})  
        writer.add_summary(summary_result, epoch)

Finally, let’s visualize the learned score function. As shown in the following listing,
append two-dimensional points to a list.

grid_size = 10
data_test = []
for y in np.linspace(0., 1., num=grid_size):      
    for x in np.linspace(0., 1., num=grid_size): 
        data_test.append([x, y])

You’ll run the s1 op on the test data to obtain utility values of each state, and visualize
it as shown in figure 12.4. Use the following listing to generate the visualization.

Listing 12.8 Training the network

Listing 12.9 Preparing test data

Training dropout 
keep_prob is 0.5.

Preferred points

Non-preferred 
points

Testing dropout keep_prob
should always be 1.

Loops through 
the rows

Loops through 
the columns

Figure 12.4 The landscape of 
scores learned by the ranking 
neural network
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def visualize_results(data_test):
    plt.figure()
    scores_test = sess.run(s1, feed_dict={x1:data_test, dropout_keep_prob:1})
    scores_img = np.reshape(scores_test, [grid_size, grid_size])  
    plt.imshow(scores_img, origin='lower')
    plt.colorbar()

visualize_results(data_test)

12.2 Image embedding
In chapter 11, you summoned the hubris to feed a neural network some natural lan-
guage sentences. You did so by converting words or letters in a sentence into numeric
forms, such as vectors. For example, each symbol (whether it’s a word or letter) was
embedded into a vector by using a lookup table.

Fortunately, images are already in a numeric form. They’re represented as a matrix of
pixels. If the image is grayscale, perhaps the pixels take on scalar values indicating
luminosity. For colored images, each pixel represents color intensities (usually three:
red, green, and blue). Either way, an image can easily be represented by numeric data
structures, such as a tensor, in TensorFlow.

Listing 12.10 Visualize results

EXERCISE 12.2
Why is a lookup table that converts a symbol into a vector representation called an
embedding matrix?

ANSWER

The symbols are being embedded into a vector space.

EXERCISE 12.3 
Take a photo of a household object, such as a chair. Scale the image smaller and
smaller until you can no longer identify the object. By what factor did you end up
shrinking the image? What’s the ratio of the number of pixels in the original image to
the number of pixels in the smaller image? This ratio is a rough measure of redun-
dancy in the data.

ANSWER

A typical 5 MP camera produces images at a resolution of 2560 × 1920, yet the con-
tent of that image might still be decipherable when you shrink it by a factor of 40 (res-
olution 64 × 48).

Computes the utility
of all the points

Reshapes the utilities to a matrix
so you can visualize an image

using Matplotlib
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Feeding a neural network a large image, say of size 1280 × 720 (almost 1 million pixels),
increases the number of parameters and, consequently, escalates the risk of overfitting
the model. The pixels in an image are highly redundant, so you can try to somehow cap-
ture the essence of an image in a more succinct representation. Figure 12.5 shows the
clusters formed in a two-dimensional embedding of images of clothes being folded.

You saw in chapter 7 how to use autoencoders to reduce the dimensionality of images.
Another common way to accomplish low-dimensional embedding of images is by
using the penultimate layer of a deep convolutional neural network image classifier.
Let’s explore the latter in more detail.

 Because designing, implementing, and learning a deep image classifier isn’t the
primary focus of this chapter (see chapter 9 for CNNs), you’ll instead use an off-the-
shelf pretrained model. A common go-to image classifier that many computer vision
research papers cite is called VGG16.

 Many online implementations of VGG16 exist for TensorFlow. We recommend
using the one by Davi Frossard (www.cs.toronto.edu/~frossard/post/vgg16/). You can
download the vgg16.py TensorFlow code and the vgg16_weights.npz pretrained model
parameters from his website or, alternatively, from the book’s website (www.manning
.com/books/machine-learning-with-tensorflow) or GitHub repo (https://github.com/
BinRoot/TensorFlow-Book). 

Figure 12.5 Images can be embedded into much lower dimensions, such as 
2D as shown here. Notice that points representing similar states of a shirt 
occur in nearby clusters. Embedding images allows you to use the ranking 
neural network to learn a preference between the states of a piece of cloth.
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 Figure 12.6 is a depiction of the VGG16 neural network from Frossard’s page. As
you see, it’s a deep neural network, with many convolutional layers. The last few are
the usual fully connected layers, and, finally, the output layer is a 1,000-dimensional
vector indicating the multiclass classification probabilities.

Learning how to navigate other people’s code is an indispensable skill. First, make
sure you have vgg16.py and vgg16_weights.npz downloaded, and test that you’re able
to run the code by using python vgg16.py my_image.png.

NOTE You might need to install SciPy and Pillow to get the VGG16 demo
code to run without issues. You can download both via pip.

Let’s start by adding TensorBoard integration to visualize what’s going on in this
code. In the main function, after creating a session variable sess, insert the follow-
ing line of code:

my_writer = tf.summary.FileWriter('tb_files', sess.graph)

Now, running the classifier once again (python vgg16.py my_image.png) will generate
a directory called tb_files, to be used by TensorBoard. You can run TensorBoard to
visualize the computation graph of the neural network. The following command runs
TensorBoard: 

$ tensorboard --logdir=tb_files

Figure 12.6 The VGG16 architecture is a deep convolutional neural network 
used for classifying images. This particular diagram is from www.cs.toronto.edu/ 
~frossard/post/vgg16/.
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234 CHAPTER 12 Utility landscape
Open TensorBoard in your browser, and navigate to the Graphs tab to see the compu-
tation graph, as shown in figure 12.7. Notice that with a quick glance, you can immedi-
ately get an idea of the types of layers involved in the network: the last three layers are
fully connected dense layers, labeled fc1, fc2, and fc3.

12.3 Ranking images
You’ll use the VGG16 code in the previous section to obtain a vector representation of
an image. That way, you can rank two images efficiently in the ranking neural network
designed in section 12.1. 

 Consider videos of shirt-folding, as shown in figure 12.8. You’ll process videos
frame by frame to rank the states of the images. That way, in a novel situation, the
algorithm can understand whether the goal of cloth-folding has been reached.

Figure 12.7 A small segment of the computation graph shown in TensorBoard 
for the VGG16 neural network. The topmost node is the softmax operator used 
for classification. The three fully connected layers are labeled fc1, fc2, and fc3. 
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Num
of vi

to 
First, download the cloth-folding dataset from http://mng.bz/eZsc. Extract the zip.
Keep note of where you extract it; you’ll call that location DATASET_DIR in the code
listings.

 Open a new source file, and begin by importing the relevant libraries in Python.

import tensorflow as tf
import numpy as np
from vgg16 import vgg16
import glob, os
from scipy.misc import imread, imresize

For each video, you’ll remember the first and last images. That way, you can train the
ranking algorithm by assuming the last image is of a higher preference than the first
image. In other words, the last state of cloth-folding brings you to a higher-valued state
than the first state of cloth-folding. The following listing shows an example of how to
load the data into memory.

DATASET_DIR = os.path.join(os.path.expanduser('~'), 'res', 
'cloth_folding_rgb_vids')     

NUM_VIDS = 45             

def get_img_pair(video_id):  
    img_files = sorted(glob.glob(os.path.join(DATASET_DIR, video_id, 

'*.png')))
    start_img = img_files[0]
    end_img = img_files[-1]
    pair = []

Listing 12.11 Importing libraries

Listing 12.12 Preparing the training data

Figure 12.8 Videos of folding a shirt reveal how the cloth changes form through time. You can extract the first 
state and the last state of the shirt as your training data to learn a utility function to rank states. Final states of 
a shirt in each video should be ranked with a higher utility than those shirts near the beginning of the video.

Directory of 
downloaded filesber

deos
load

Gets the starting
and ending image

of a video
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    for image_file in [start_img, end_img]:
        img_original = imread(image_file)
        img_resized = imresize(img_original, (224, 224))
        pair.append(img_resized)
    return tuple(pair)

start_imgs = []
end_imgs= []
for vid_id in range(1, NUM_VIDS + 1):
    start_img, end_img = get_img_pair(str(vid_id))
    start_imgs.append(start_img)
    end_imgs.append(end_img)
print('Images of starting state {}'.format(np.shape(start_imgs)))
print('Images of ending state {}'.format(np.shape(end_imgs)))

Running listing 12.12 results in the following output:

Images of starting state (45, 224, 224, 3)
Images of ending state (45, 224, 224, 3)

Use the following listing to create an input placeholder for the image that you’ll be
embedding.

imgs_plc = tf.placeholder(tf.float32, [None, 224, 224, 3])

Copy over the ranking neural network code from listings 12.3–12.7; you’ll reuse it to
rank images. Then prepare the session in the following listing.

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

Next, you’ll initialize the VGG16 model by calling the constructor. Doing so, as shown
next, loads all the model parameters from disk to memory.

print('Loading model...')
vgg = vgg16(imgs_plc, 'vgg16_weights.npz', sess)
print('Done loading!')

Next, let’s prepare training and testing data for the ranking neural network. As shown
in listing 12.16, you’ll feed the VGG16 model your images, and then you’ll access a
layer near the output (in this case, fc1) to obtain the image embedding.

Listing 12.13 Placeholder

Listing 12.14 Preparing the session

Listing 12.15 Loading the VGG16 model
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 In the end, you’ll have a 4,096-dimensional embedding of your images. Because
there are a total of 45 videos, you’ll split some for training and some for testing:

 Train
– Start-frame size: (33, 4096)
– End-frame size: (33, 4096)

 Test
– Start-frame size: (12, 4096)
– End-frame size: (12, 4096)

start_imgs_embedded = sess.run(vgg.fc1, feed_dict={vgg.imgs: start_imgs})
end_imgs_embedded = sess.run(vgg.fc1, feed_dict={vgg.imgs: end_imgs})

idxs = np.random.choice(NUM_VIDS, NUM_VIDS, replace=False)
train_idxs = idxs[0:int(NUM_VIDS * 0.75)]
test_idxs = idxs[int(NUM_VIDS * 0.75):]

train_start_imgs = start_imgs_embedded[train_idxs]
train_end_imgs = end_imgs_embedded[train_idxs]
test_start_imgs = start_imgs_embedded[test_idxs]
test_end_imgs = end_imgs_embedded[test_idxs]

print('Train start imgs {}'.format(np.shape(train_start_imgs)))
print('Train end imgs {}'.format(np.shape(train_end_imgs)))
print('Test start imgs {}'.format(np.shape(test_start_imgs)))
print('Test end imgs {}'.format(np.shape(test_end_imgs)))

With your training data ready for ranking, let’s run train_op an epoch number of
times. After training the network, run the model on the test data to evaluate your
results.

train_y1 = np.expand_dims(np.zeros(np.shape(train_start_imgs)[0]), axis=1)
train_y2 = np.expand_dims(np.ones(np.shape(train_end_imgs)[0]), axis=1)
for epoch in range(100):
    for i in range(np.shape(train_start_imgs)[0]):
        _, cost_val = sess.run([train_op, loss], 
                               feed_dict={x1: train_start_imgs[i:i+1,:], 
                                          x2: train_end_imgs[i:i+1,:], 
                                          dropout_keep_prob: 0.5})
    print('{}. {}'.format(epoch, cost_val))
    s1_val, s2_val = sess.run([s1, s2], feed_dict={x1: test_start_imgs, 
                                                   x2: test_end_imgs, 
                                                   dropout_keep_prob: 1})
    print('Accuracy: {}%'.format(100 * np.mean(s1_val < s2_val)))

Listing 12.16 Preparing data for ranking

Listing 12.17 Training the ranking network
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Notice that the accuracy approaches 100% over time. Your ranking model learns that
the images that occur at the end of the video are more favorable than the images that
occur near the beginning. 

 Just out of curiosity, let’s see the utility over time of a single video, frame by frame,
as shown in figure 12.9. The code to reproduce figure 12.9 requires loading all the
images in a video, as outlined in listing 12.18.

def get_img_seq(video_id):
    img_files = sorted(glob.glob(os.path.join(DATASET_DIR, video_id, 

'*.png')))
    imgs = []
    for image_file in img_files:
        img_original = imread(image_file)
        img_resized = imresize(img_original, (224, 224))
        imgs.append(img_resized)
    return imgs

imgs = get_img_seq('1')

You can use your VGG16 model to embed the images, and then run the ranking net-
work to compute the scores, as shown in the following listing.

imgs_embedded = sess.run(vgg.fc1, feed_dict={vgg.imgs: imgs})
scores = sess.run([s1], feed_dict={x1: imgs_embedded, 
                                   dropout_keep_prob: 1})

Listing 12.18 Preparing image sequences from video

Listing 12.19 Computing the utility of images

Figure 12.9 The utility increases over time, indicating the goal is being 
accomplished. The utility of the cloth near the beginning of the video is 
near 0, but it dramatically increases to 120,000 units by the end.
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Visualize your results to reproduce figure 12.9.

from matplotlib import pyplot as plt
plt.figure()
plt.title('Utility of cloth-folding over time')
plt.xlabel('time (video frame #)')
plt.ylabel('Utility')
plt.plot(scores[-1])

12.4 Summary
 You can rank states by representing objects as vectors and learning a utility func-

tion over such vectors.
 Because images contain redundant data, you used the VGG16 neural network

to reduce the dimensionality of your data so that you can use the ranking net-
work with real-world images.

 You learned how to visualize the utility of images over time in a video, to verify
that the video demonstration increases the utility of the cloth.

You’ve finished your TensorFlow journey! The 12 chapters of this book approached
ML from different angles; but together, they taught you the concepts required to mas-
ter these skills: 

 Formulating an arbitrary real-world problem into a machine-learning framework
 Understanding the basics of many machine-learning problems
 Using TensorFlow to solve these machine-learning problems
 Visualizing a machine-learning algorithm, and speaking the lingo

12.5 What’s next?
Because the concepts taught in this book are timeless, the code listings should be, too.
To ensure the most up-to-date library calls and syntax, we actively manage a GitHub
repository at https://github.com/BinRoot/TensorFlow-Book. Please feel free to join
the community there and file bugs or send us pull requests.

TIP TensorFlow is in a state of rapid development, so more functionality will
become available all the time! 

If you’re thirsty for more TensorFlow tutorials, we know exactly what might interest you:

 Reinforcement learning (RL)—An in-depth series of blog posts by Arthur Juliani
on using RL in TensorFlow: http://mng.bz/C17q.

 Natural language processing (NLP)—An essential TensorFlow guide to modern
neural network architectures in NLP, by Thushan Ganegedara: http://mng
.bz/2Kh7.

Listing 12.20 Visualizing utility scores
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240 CHAPTER 12 Utility landscape
 Generative adversarial networks (GAN)—An introductory study of generative ver-
sus discriminative models in machine learning (using TensorFlow), by John
Glover at AYLIEN: http://mng.bz/o2gc.

 Web tool—Tinker with a simple neural network to visualize the flow of data:
http://playground.tensorflow.org.

 Video lectures—Basic introduction and hands-on demos using TensorFlow, on
the Google Cloud Big Data and Machine Learning Blog: http://mng.bz/vb7U.

 Open source projects—Follow along with the most recently updated TensorFlow
projects on GitHub: http://mng.bz/wVZ4
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242 APPENDIX Installation
You can install TensorFlow in a couple of ways. This book assumes you’ll be using
Python 3 for every chapter unless otherwise stated. The code listings abide by Tensor-
Flow v1.0, but the accompanying source code on GitHub will always be up to date with
the latest version (https://github.com/BinRoot/TensorFlow-Book/). This appendix
covers one of these installation methods that works on all platforms, including Windows.
If you’re familiar with UNIX-based systems (such as Linux or macOS), feel free to use
one of the installation approaches in the official documentation: www.tensorflow.org/
get_started/os_setup.html. 

 Without further ado, let’s install TensorFlow by using a Docker container.

A.1 Installing TensorFlow by using Docker
Docker is a system for packaging software dependencies to keep everyone’s installation
environment identical. This standardization helps limit inconsistencies between com-
puters. It’s a relatively recent technology, so let’s go through how to use it. 

TIP You can install TensorFlow in many ways other than using a Docker con-
tainer. Visit the official documentation for more details on installing Tensor-
Flow: www.tensorflow.org/get_started/os_setup.html.

A.1.1 Installing Docker on Windows

Docker works only on 64-bit Windows (7 or above) with virtualization enabled. Fortu-
nately, most consumer laptops and desktops easily satisfy this requirement. To check
whether your computer supports Docker, open Control Panel, click System and Secu-
rity, and then click System. Here, you can see the details about your Windows
machine, including processor and system type. If the system is 64-bit, you’re almost
good to go. 

 The next step is to check whether your processor can support virtualization. On
Windows 8 or higher, you can open the Task Manager (Ctrl-Shift-Esc) and click the
Performance tab. If Virtualization shows up as Enabled, you’re all set. (See figure A.1.)
For Windows 7, you should use the Microsoft Hardware-Assisted Virtualization Detec-
tion Tool (http://mng.bz/cBlu).

 Now that you know whether your computer can support Docker, let’s install the
Docker Toolbox located at www.docker.com/products/docker-toolbox. Run the down-
loaded setup executable, and accept all the defaults by clicking Next in the dialog
boxes. After the toolbox is installed, run the Docker Quickstart Terminal.
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A.1.2 Installing Docker on Linux

Docker is officially supported on several Linux distributions. The official Docker doc-
umentation (https://docs.docker.com/engine/installation/linux/) contains tutori-
als for Arch Linux, CentOS, CRUX Linux, Debian, Fedora, Frugalware, Gentoo,
Oracle Linux, Red Hat Enterprise Linux, openSUSE, and Ubuntu. Docker is native to
Linux, so there’s typically no problem installing it.

 
 

Figure A.1 Ensure that your 64-bit computer has virtualization enabled.
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A.1.3 Installing Docker on macOS

Docker works on macOS 10.8 Mountain Lion or newer. Install the Docker Toolbox
from www.docker.com/products/docker-toolbox. After installation, open the Docker
Quickstart Terminal from the Applications folder or the Launchpad.

A.1.4 How to use Docker

Run the Docker Quickstart Terminal. Next, launch the TensorFlow binary image by
using the following command in the Docker terminal, as shown in figure A.2:

$ docker run -p 8888:8888 -p 6006:6006 b.gcr.io/tensorflow/tensorflow

TensorFlow will now be accessible from a Jupyter Notebook via a local IP address. The
IP can be found by using the docker-machine ip command, as shown in figure A.3.

 Open a browser and navigate to http://<YOUR_IP_ADDRESS>:8888 to start using
TensorFlow. In our case, the URL was http://192.168.99.100:8888. Figure A.4 shows
the Jupyter Notebook accessed through a browser.

 You can press Ctrl-C or close the terminal window to stop running the Jupyter
Notebook. To rerun it, follow the steps in this section again. 

 
 
 

Figure A.2 Running the official TensorFlow container
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Figure A.3 Docker’s IP address can be found using the docker-machine ip 
command or can be found in the intro text under the ASCII whale.

Figure A.4 You can interact with TensorFlow through a Python 
interface called Jupyter.
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If you run into the error message shown in figure A.5, Docker is already using an
application on that port. 

To resolve this issue, you can either switch the port or quit the intruding Docker con-
tainers. Figure A.6 shows how to list all containers by using docker ps and then kill the
container by using docker kill.

A.2 Installing Matplotlib
Matplotlib is a cross-platform Python library for plotting 2D visualizations of data.
Generally, if your computer can successfully run TensorFlow, it’ll have no trouble
installing Matplotlib. Install it by following the official documentation at http://mat-
plotlib.org/users/installing.html.

Figure A.5 A possible error message from running the TensorFlow container

Figure A.6 Listing and killing a Docker container to get rid of 
the error message in figure A.5
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Nishant Shukla

T
ensorFlow, Google’s library for large-scale machine learn-
ing, simplifi es often-complex computations by repres-
enting them as graphs and effi ciently mapping parts of 

the graphs to machines in a cluster or to the processors of a 
single machine.

Machine Learning with TensorFlow gives readers a solid founda-
tion in machine-learning concepts plus hands-on experience 
coding TensorFlow with Python. You’ll learn the basics by 
working with classic prediction, classifi cation, and clustering 
algorithms. Then, you’ll move on to the money chapters: ex-
ploration of deep-learning concepts like autoencoders, recur-
rent neural networks, and reinforcement learning. Digest this 
book and you will be ready to use TensorFlow for machine-
learning and deep-learning applications of your own. 

What’s Inside
●  Matching your tasks to the right machine-learning
   and deep-learning approaches
●  Visualizing algorithms with TensorBoard
●  Understanding and using neural networks

Written for developers experienced with Python and algebraic 
concepts like vectors and matrices.

Nishant Shukla is a computer vision researcher focused on 
applying machine-learning techniques in robotics. 

Senior technical editor: Kenneth Fricklas

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

www.manning.com/books/machine-learning-with-tensorflow

$44.99 / Can $59.99  [INCLUDING eBOOK]
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“A great guide to machine 
learning. It helped launch 

 my third career!” 
—William Wheeler

TEKsystems

“The many examples 
provide excellent 

  hands-on experience.” 
—Mikaël Dautrey, ISITIX

“Helped me to jump-start 
working with TensorFlow.”—Ursin Stauss, Swiss Post 

“Learn how to use 
TensorFlow to power your 
machine-learning projects 

with this fast-paced yet 
 unintimidating book!” 
—Arthur Zubarev, SERMO
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