

Treading on Python Series
Illustrated Guide to Python 3

A Complete Walkthrough of Beginning Python with Unique
Illustrations Showing how Python Really Works

Matt Harrison

Technical Editors: Roger A. Davidson, Andrew McLaughlin
Version: Oct 2, 2017
Copyright © 2017
While every precaution has been taken in the preparation of this book, the
publisher and author assumes no responsibility for errors or
omissions, or
for damages resulting from the use of the
information contained herein.

Introduction

Are you ready to jumpstart your Python programming career? This book

will
 arm you with years of knowledge and experience that are condensed
into an
 easy to follow format. Rather than taking months reading blogs,
websites, and searching mailing lists and groups, this book will allow
 a
programmer to quickly become knowledgeable and comfortable with
Python.

Programming is fun and Python makes it delightful. Basic Python is not
only easy, but approachable for all ages. I have taught elementary
students,
teenagers, “industry” professionals and “golden years” folks
 the Python
programming language. If you are willing to read and type,
you are about to
begin an exciting path. Where it ultimately
takes you depends on how hard
you are willing to work.

There are different levels of Python. Basic Python syntax is small
 and
easy to learn. Once you master basic Python, doors will open to
you. You
should be able to read a lot of Python and understand
 it. From there, you
can learn more advanced topics, specific
toolkits, start contributing to open
source projects written in
 Python, or use that knowledge to learn other
programming languages.

A recommended approach for learning the language is to read a chapter
and then sit down at a computer and type out some of the examples
found in
the chapter. Python makes it easy to get started, eliminating
 much of the
hassle found in running programs in other
 languages. The temptation will

likely be to merely read the book. By
 jumping in and actually typing the
examples you will learn a lot more
than by just reading.

Why Python?

Python is booming! It is the top language being taught in
 universities.
Python developers are among the highest paid.
 With the boom in data
science, Python is quickly becoming
 one of the most desired skills for
analytics. Operations are
 also adopting Python to manage their backend
systems. They
 are discovering what web developers using Python have
known
for a long time; namely, that Python will make you productive.

Python has crossed the tipping point. No longer are only small, agile
startups
relying on it. Looking to take advantage of its power and efficiency,
enterprises have also converged on Python. Over the past year, I've taught
Python to hundreds of seasoned developers with years of experience at
large
companies, who are moving to Python.

Python enables increased productivity. I came to Python as a Perl
programmer. At
work, I was assigned to a team with a co-worker who was
well versed in Tcl.
 Neither of us wanted to jump ship though both of us
were interested in
learning Python. In 3 days our prototype was completed,
much faster
 than we expected, and we both promptly forgot our previous
“goto”
 language. What appealed to me about Python was that it fit my
brain. I
 firmly believe if you have some experience in programming, you
can
learn the basics of Python in a few days.

Python is easy to learn. For beginning programmers, Python is a great
stepping stone. Learning to write simple programs is pretty easy,
yet Python
also scales up to complex “enterprise” systems. Python also
scales with age

—I have personally seen people from 7-80+ learn basic
programming skills
using Python.

Which Version of Python?

This book will focus on Python 3. Python 2 has served us well over
the

years. The Python Software Foundation, which manages releases of the
language, has stated that Python 2 is coming to an end. As such,
after 2020
they will no longer support the language.

Python 3, has been out for a bit now
 and is somewhat backward
incompatible with the 2 series. For green field
 development, you should
move forward with Python 3. If you have legacy
systems on Python 2, do
not fret. In fact, most of the content in
this book is perfectly applicable to
Python 2. If you want to focus
on Python 2, check out the prior version of
this book.

Python installation

Python 3 is not installed on most platforms. Some Linux distributions ship
with it, but Windows and Mac users will need to install it.

For Windows folks, go to the download area of the Python website 1
and
find a link that says “Python 3.6 Windows Installer”. This will link to
a .msi
file that will install Python on your Windows machine. Download
the file,
open it by double-clicking it, and follow the
 instructions to finish the
installation.

Note

On the Windows installer there is an option labeled "Add Python to
PATH".
 Please make sure it is checked. That way, when you run
python from the
 command prompt, it will know where to find the
Python executable. Otherwise,
you can go to System properties (click
WIN+Pause, or run environ from the start menu), Advanced system
settings, and click on the
Environment Variables button. There you can
update the PATH variable by adding
the following:

C:\Program Files\Python 3.6;C:\Program Files\Python 3.6\Scripts

If you have UAC (User Account Control) enabled on Windows,
then path is:

C:\Users\<username>\AppData\Local\Programs\Python\Python36

Likewise, Mac users should download the Mac installer from the Python
website.

Note

Another option for installing Python is to use the Anaconda 2

distribution. This runs on Windows, Mac, and Linux, and also provides
many pre-built binaries for doing scientific calculations. Traditionally,
these libraries have been annoying to install as they wrap libraries
written in C and Fortran, that require some setup for compiling.

Mac users might also want to look into the Homebrew version 3. If
you are already familiar with Homebrew, it is a simple brew install
python3 away.

Which editor?

In addition to installing Python, you will need a text editor. An
editor is a
tool for writing code. A skilled craftsman will invest the
time to learn to use
their tool appropriately and it will pay
 dividends. Learning to use the
features of an editor can make churning
 out code easier. Many modern
editors today have some semblance of
support for Python.

If you are just beginning with Python and have not had much experience
with real text editors, most Python installations include IDLE, which
 has
decent Python editing features. The IDLE development environment
 also
runs on Windows, Mac and Linux.

A feature to look for in editors is integration with the Python REPL 4.
Later you will see an example with IDLE. Hopefully your editor of choice
will
have similar features.

Popular editors with decent Python support include Emacs, Vim, Atom,
Visual Studio Code, and Sublime Text. If you are interested in more fancy
editors that
 have support for refactoring tools and intelligent completion,
PyCharm and
Wing IDE are also popular.

Summary

Python 3 is the current version of Python. Unless you are working on
legacy
 code, you should favor using this version. You can find the latest
version
on the Python website.

Most modern editors contain some support for Python. There are various
levels
of features that editors and IDEs provide. If you are getting started
programming, give the IDLE editor a try. It is a great place to start out.

Exercises

1. Install Python 3 on your computer. Make sure you can start Python.
2. If you are used to a particular editor, do some investigation into its

support for Python. For example, does it:

Do syntax highlighting of Python code?
Run Python code in a REPL for you?
Provide a debugger for stepping through your Python code?

1 - https://www.python.org/download
2 - https://www.anaconda.com/download/
3 - https://brew.sh/
4 - REPL stands for Read, Evaluate, Print, and Loop. You will soon
see

an example using it.

https://www.python.org/download
https://www.anaconda.com/download/
https://brew.sh/

The Interpreter

Python is commonly classified as an interpreted language. Another
term

used to describe an interpreted language is scripting language.
 To run a
computer program on the CPU, the program must be in a
 format that the
CPU understands, namely machine code. Interpreted
 languages do not
compile directly to machine code, instead, there is
 a layer above, an
interpreter that performs this function.

Difference between a compiled language and an interpreted language. A compiler
runs to
create an executable. An interpreter is an executable that loads
code and runs it on top of itself.

There are pros and cons to this approach. As you can imagine, on the
fly
translating can be time consuming. Interpreted code like Python
programs
tend to run on the order of 10–100 times slower than C
programs. On the
flip side, writing code in Python optimizes for developer
 time. It is not
uncommon for a Python program to be 2–10 times shorter
 than its C
equivalent. Also, a compilation step can be time consuming
and actually a
distraction during development and debugging.

Many developers and companies are willing to accept this trade-off.
Smaller programs
(read fewer lines of code) take less time to write and are
easier to
 debug. Programmers can be expensive—if you can throw
hardware at a
 problem, it can be cheaper than hiring more programmers.
Debugging 10
 lines of code is easier than debugging 100 lines of
 code.
Studies have shown that the number of bugs found in code is
proportional
to the numbers of lines of code. Hence, if a language
permits you to write
fewer lines of code to achieve a given task, you
will likely have fewer bugs.
Sometimes program execution speed is not
 that important and Python is
sufficiently fast for many
 applications. In addition, there are efforts to
improve the speed of
Python interpreters such as PyPy 5.

REPL

Python has an interactive interpreter or REPL (Read Evaluate Print Loop).
This is a loop that waits until there is input to read in, then evaluates it
(interprets it), and prints
 out the result. When you run the python3
executable by itself, you launch the
interactive interpreter in Python. Other
environments, such as IDLE, also embed
an interactive interpreter.

To launch the REPL, type python3 in the prompt and it will start a Python session

Note

This book generally starts Python 3 with the python3 executable. On
Windows,
 the executable is named python. If you are on Windows,
replace
python3 with python. On Unix systems you shouldn't have to
change anything.

When you start the interpreter, it will print out the version of Python,
some
 information about the build, and some hints to type. Finally, the
interpreter will give you a prompt, >>>.

Another option is to start IDLE, the editor included with Python, by
typing
python3 -m idlelib.idle.

To launch the REPL in IDLE, click on the IDLE icon or type python3 -m
idlelib.idle

Note

Some Linux distributions do not ship with all of the libraries from the
Python standard library. This is annoying, but justified by the idea that
a server doesn't need libraries to create client side applications. As
such, Ubuntu and Arch (among others) don't provide the gui libraries
necessary for IDLE on the default installation.

If you see an error like:

$ python3 -m idlelib.idle

** IDLE can't import Tkinter.

Your Python may not be configured for Tk. **

it is an indication you are missing the tkinter library.
On Ubuntu, you need to run:

$ sudo apt-get install tk-dev

On Arch, you need to run:

$ sudo pacman -S tk

A REPL example

Below is an example to show why the Read, Evaluate, Print Loop was
given this
 name. If you typed python3 from the command line 6, or
launched IDLE, you
will see >>>.

Type 2 + 2 like shown below and hit enter:

$ python3

>>> 2 + 2

4

>>>

In the above example, python3 was typed, which opened the
interpreter.
The first >>> could be thought of as the read
portion. Python is waiting for
input. 2 + 2 is typed in, read, and
evaluated. The result of that expression
—4—is printed. The
second >>> illustrates the loop, because the interpreter
is
waiting for more input.

The REPL, by default, prints the result of an expression to standard out
(unless
the result is None, which will be explained in a later chapter). This
behavior is
 inconsistent with normal Python programs, where the print
function must be
explicitly invoked. But it saves a few keystrokes when in
the REPL.

Note

The >>> prompt is only used on the first line of each input. If
 the
statement typed into the REPL takes more than one line, the
 ...
prompt follows:

>>> sum([1, 2, 3, 4, 5,

... 6, 7])

These prompts are defined in the sys module:

>>> import sys

>>> sys.ps1

'>>> '

>>> sys.ps2

'... '

A later chapter will explain what modules are. For now, know that
there are variables that define what the prompts look like.

The REPL ends up being quite handy. You can use the interactive
interpreter to write small functions, to test out code samples, or
 even to
function as a calculator. Perhaps more interesting is to go the
 other way.
Run your Python code in the REPL. Your code will run, but
you will have
access to the REPL to inspect the state of your code. (You will
see how to
do this in IDLE soon).

The >>> is a prompt. That is where you type your program. Type
print("hello world") after the >>> and hit the enter key. Make
 sure
there are not any spaces or tabs before the word print. You
should see this:

>>> print("hello world")

hello world

If you see this, congratulations, you are writing Python. Consider
yourself
 inducted into the world of programming. You have just run a
program—“hello
 world”. Hello world is the canonical program that most
people write when
encountering a new language. To exit the REPL from the
terminal, type
quit(). Unix users may also type Ctl-D.

Note

Programming requires precision. If you were not careful in typing
exactly print("hello world") you might have seen something like
this:

>>> print("hello world

 File "<stdin>", line 1

 print("hello world

 ^

SyntaxError: EOL while scanning string literal

Computers are logical, and if your logic does not make sense, the
computer can warn you, perform irrationally (or at least what
appears
so to you), or stop working. Do not take it personally, but
 remember
that languages have rules, and any code you write has to
follow those
rules. In the previous example, the rules that states
if you want to print
text on the screen you need to start and end
the text with quotes was
violated. A missing quote on the end of the
line consequently confused
Python.

IDLE will try to highlight where the error occurred. The highlight following world is
supposed to indicate where the syntax error occurred. It is normally a salmon color.

Summary

As Python is an interpreted language, it provides a REPL. This allows you
to
 explore features of Python interactively. You don't need to write code,
compile
it, and run it. You can launch a REPL and start trying out code.

For users who have used compiled languages, this might seem somewhat
novel.
Give it a try though, it can make development easy and quick. Also,
don't
be afraid to try out code from the REPL. I find that new Python users
tend to be timid to use the REPL. Don't fear the REPL!

There are other REPLs for Python. One popular one is Jupyter, which
presents a
web-based REPL 7. Start using the REPL, then you can jump into
other more
advanced REPLs.

Exercises

1. Open the Python 3 REPL and run "hello world". Review the chapter to
see what this one line program looks like.

2. Open the REPL IDLE and run "hello world".

5 - https://www.pypy.org
6 - From the Windows run menu, type cmd (or Win-R) to get a prompt.

On Macs, you can
quickly launch a terminal by typing command-space, the
typing
Terminal and return. If you have installed Python 3, you should be
able to launch it now on either platform by typing python3.

7 - https://jupyter.org/

https://www.pypy.org/
https://jupyter.org/

Running Programs

While using the interactive interpreter can be useful during

development, you (and others) will want to deploy your program and run it
outside of the REPL. In Python, this is easy as
 well. To run a Python
program named hello.py, open a
 terminal, go to the directory containing
that program and type:

$ python3 hello.py

Note

When running a command from the command line, this book will
precede
the command with a $. This will distinguish it from interpreter
contents (>>> or ...) and file contents (nothing preceding
the content).

Note

The previous command, python3 hello.py, will probably fail unless
you have a file named hello.py.

In the previous chapter you used the REPL to run “hello world”,
 how
does one run the same program standalone? Create a file named
hello.py
using your favorite text editor.

In your hello.py file type:

print("hello world")

Save the file, go to its directory, and execute the file (here
execute and
run have the same meaning, i.e. type python3 before
the file name, and let
the Python interpreter evaluate the code for
you.)

Note

Typing python3 standalone launches the interpreter. Typing
python3
some_file.py executes that file.

If you were successful at running hello.py, it would print out
 hello
world.

Running from IDLE

You can also edit and run programs from IDLE. Start by launching IDLE,
either by clicking on the application icon on your computer or by typing:

$ python3 -m idlelib.idle

When IDLE launches, you see the Shell window. This is a Python REPL.
You can
 type code and Python will immediately evaluate it. To create a
program you need
to create a file with Python code in it. To do that, click on
the “File” menu, and select “New File”.
You should see a new window pop
up. This window is not a Shell window, it is an
 editor window. You will
notice that it is empty and there is no Python prompt in it. In this window,
you will type Python code.

IDLE has been launched and a new editor window (Untitled because it has not been saved)
has been opened

Type your code into the window. Since you are doing the hello world
example, type:

print("hello world")

You'll notice that IDLE uses a different color for print and "hello
world". This is
 called syntax highlighting and is meant to aid in
understanding your code. Now, you need
to run the code. The easiest way
to do this is to hit the F5 key on your keyboard. Alternatively, you
can click
on “Run”, and select “Run Module”. IDLE will ask you to save your file.
Save it as hello.py.
IDLE will bring the shell window to focus, print a line
stating that it has restarted the shell, and print
out hello world.

Code typed into the editor window.

This might seem trivial, but the shell window now has the state of your
code. In this
case, you only printed to the screen, so there is not much state.
In future examples,
you will see how you can use the integration between
the editor and shell to provide
an environment where you can quickly try
out code, see the results, and inspect the
output of a program.

Result of running Hello World from IDLE

If you need help navigating from the command prompt check out the
appendix.

Unixy embellishments

On Unix platforms (Linux and OS X among others), files such as
hello.py
are often referred to as scripts. A script is a
program, but the term is often
used to distinguish native code from
interpreted code. In this case, scripts
are interpreted code, whereas
 the output from the compilation step of a
language that compiles to
machine code (such as C) is native code.

Note

It is not uncommon to hear about shell scripts, Perl scripts, Python
scripts, etc. What is the difference between a Python script and a
Python program? Nothing, really it is only semantics. A Python script
usually refers to a Python program run from the command line,
whereas a Python program is any program written in Python (which
run the gamut of small 1-liners to fancy GUI applications, to
“enterprise” class services).

Unix environments provide a handy way to make your script executable
on it is own. By putting a hash bang (#!) on the first line of
 the file,
followed by the path to the interpreter, and by changing the
executable bit
on the file, you can create a file that can run
itself.

To have the script execute with the Python interpreter found in
 the
environment, update your hello.py file to:

#!/usr/bin/env python3

print("hello world")

Note

This new first line tells the shell that executes the file to
run the rest of
the file with the #!/usr/bin/env python3
executable. (Shell scripts
usually start with #!/bin/bash or
#!/bin/sh.) Save hello.py with
the new initial line.

Tip

#!/usr/bin/env is a handy way to indicate that the first
 python3
executable found on your PATH environment variable
should be used.
Because the python3 executable is located in
 different places on
different platforms, this solution turns out to
be cross-platform. Note
that Windows ignores this line. Unless you
are absolutely certain that
you want to run a specific Python
 version, you should probably use
#!/usr/bin/env.

Using hardcoded hashbangs such as:

#!/bin/python3

#!/usr/bin/python3.3

might work fine on your machine, but could lead to problems when
you
try to share your code and others do not have python3 where you
specified it. If you require a specific version of Python, it is
common
to specify that in the README file.

Now you need to make the file executable. Open a terminal, cd to
 the
directory containing hello.py and make the file
executable by typing:

$ chmod +x hello.py

This sets the executable bit on the file. The Unix environment has
different permissions (set by flipping a corresponding bit) for
 reading,
writing, and executing a file. If the executable bit is set,
 the Unix
environment will look at the first line and execute it
accordingly, when the
file is run.

Tip

If you are interested in knowing what the chmod command does,
use
the man (manual) command to find out by typing:

$ man chmod

Now you can execute the file by typing its name in the terminal and
hitting enter. Type:

$./hello.py

And your program (or script) should run. Note the ./ included
before the
name of the program. Normally when you type a command into
 the
terminal, the environment looks for an executable in the PATH
 (an
environment variable that defines directories where executables
 reside).
Unless . (or the parent directory of hello.py) is in
your PATH variable you
need to include ./ before the name (or
 the full path to the executable).
Otherwise, you will get a message
like this:

$ hello.py

bash: hello.py command not found

Yes, all that work just to avoid typing python3 hello.py. Why? The
main reason is that you want your program to be named
hello (without the
trailing .py). And perhaps you want the
program on your PATH so you can
run it at any time. By making a file
executable, and adding a hashbang, you
can create a file that looks
 like an ordinary executable. The file will not
require a .py
extension, nor will it need to be explicitly executed with the
python3 command.

Summary

Running Python programs is easy. There is no lengthy compilation step.
You need to point Python to the program you would like to run.
 Many
editors also have the ability to run Python code. It is worthwhile
 to
investigate how to do it with your editor. With IDLE, it is simple: you
hit
F5.

Exercises

1. Create a file hello.py with the code from this chapter in it.
2. Run hello.py from a terminal.
3. Run hello.py from within IDLE.
4. If you have another editor that you prefer, run hello.py from it.
5. If you are on a Unix platform, create a file called hello. Add the hello

world code to it, and make the appropriate adjustments such that you
can run
the code by typing:

./hello

Writing and Reading Data

Programs will typically have input and output. This chapter will show

how to
print values to the screen and allow the end user to type in a
value.
In Python, both of these are really straightforward.

Simple output

The easiest way to provide the user with output is to use the print
function,
which writes to standard out. Standard out is where the computer
writes its
output. When you are in a terminal, standard out is printed on the terminal

>>> print('Hello there')

Hello there

If you want to print out multiple items, you can provide them separated
by commas.
Python will insert a space between them. You can put strings
and numbers in a
print function:

>>> print('I am', 10, 'years old')

I am 10 years old

A later chapter will look at strings in detail. It will discuss how to format
them to get
output to look a certain way.

Getting user input

The built-in input function will read text from a
 terminal. This function
accepts text which it prints out as a prompt to the
screen and waits until the
user types something on standard in and
hits enter. Standard in is where the

computer reads its input. In a terminal,
 standard input can be read from
what you type in:

>>> name = input('Enter your name:')

If you typed the above into the interpreter (the spaces around the = are
not
required but convention suggests that you type them to make your code
more
 readable), it might look like your computer is frozen. In reality,
Python is
waiting for you to type in some input and hit enter. After you type
something in
 and press enter, the variable name will hold the value you
typed. Type the
name Matt and press the enter key. If you print name it will
print the
value you just typed:

>>> print(name)

Matt

Note

The value entered into the terminal when input is called is always a
string.
If you tried to perform math operations on it, it might not give
you
the answer you want:

>>> value = input('Enter a number:')

3

>>> other = input('Enter another:')

4

If you try to add value and other right now, you concatenate them
(or
join them together) because they are strings:

>>> type(value)

<class 'str'>

>>> value + other

'34'

If you want to add these strings as if they were numbers you need to
change them from a string into a number type.
To convert a string to
another type like an integer (a whole number) or
 float (a decimal
number), you will need to use the int and float
 functions
respectively.

If you want to numerically add value and other, you have to
convert them to numbers
using int:

>>> int(value) + int(other)

7

A future chapter will talk more about strings and number types.

Summary

Python gives you two functions that make it really easy to print data
out to
the screen and read input from the user. These functions are print
 and
input. Remember that when you call the input function, you will
always
get a string back.

Exercises

1. Create some Python code that will prompt you to enter your name.
Print
out Hello and then the name.

2. Create a program that will ask a user how old they are. Print out some
text telling them how old they will be next year.

Variables

Now that you know about running programs via the interpreter (or the

REPL) and the command line, it is time to start learning about
programming. Variables are the basic building blocks of computer
programs.

Variables are important in Python, because in the Python world,
everything is an
object. (This is not quite true, keywords are not objects).
Variables allow you
 to attach names to these objects so you can refer to
them in future code.

Mutation and state

Two important programming concepts are state and mutation. State
 deals
with a digital representation of a model. For example, if you
want to model
a light bulb, you may want to store its current status—is
it on or off? Other
possibly interesting states you could store include
the type of bulb (CFL or
incandescent), wattage, size, dimmable,
etc.

Mutation deals with changing the state to a new or different
state. For the
light bulb example, it could be useful to have a power
switch that toggles
the state and changes it from off to on.

How is this related to variables? Remember that in Python everything
is
an object. Objects have state, and might be mutated. To keep track
of these
objects, you use variables.

Once you have objects that hold state and are mutable, then you have
opened a world of possibilities. You can model almost anything you want
if

you can determine what state it needs, and what actions or
mutations need
to apply to it.

Python variables are like tags

Variables are the building blocks of keeping track of state. You
might think
of a variable as a label or tag. Important information is
 tagged with a
variable name. To continue the light bulb example,
suppose that you want to
remember the state of your light bulb. Having
that data is only useful if you
have access to it. If you want to
 access it and keep track of its state you
need to have a variable to
tag that data. Here the state of the bulb is stored
in a variable named
status:

>>> status = "off"

This requires a little more examination because there is a bit going on
there.
Starting from the right, there is the word "off" surrounded by quotes.
This
is a string literal, or a built-in datatype that Python has special syntax
for. The quotes tell Python that this object is a string. So Python will
create
a string object. A string stores textual data—in this case, the letters
off.

This object has a few properties of interest. First, it has an id. You
 can
think of the id as where Python stores this object in memory. It also
has a
type, in this case, a string. Finally, it has a value, here the
value is 'off',
because it is a string.

The = sign is the assignment operator in many
programming languages.
Do not be afraid of these technical terms, they
are more benign than they
appear. The assignment operator connects or
binds together a variable name
and its object. It indicates that the
name on the left of it is a variable that
will hold the object on the
right. In this case, the variable name is status.

When Python creates a variable, it tells the object to increase its
reference
count. When objects have variables or other objects pointing
to them, they
have a positive reference count. When variables go away
 (an example is
when you exit a function, variables in that function will
 go away), the
reference count goes down. When this count goes down to
zero, the Python
interpreter will assume that no one cares about the
 object anymore and
garbage collects it. This means it removes it from
 its memory, so your
program doesn't get out of control and use all
 the memory of your
computer.

Note

If you want to inspect the reference count of an object, you can call
sys.getrefcount on it:

>>> import sys

>>> names = []

>>> sys.getrefcount(names)

2

Do note that as this count may seem high, the
documentation for this
function states:

Return the reference count of object. The count returned

is generally one higher than you might expect, because it

includes the (temporary) reference as an argument to

getrefcount().

Even though Python gives you this ability, typically you don't worry
about
the reference count and let Python handle cleaning up objects for
us.

This is a feature of Python, and typically Python does this for you
automatically, without any prompting from a user. In other languages,
you
need to manually tell the program to allocate and deallocate memory.

To drive the point home, reading the code again from the left this
 time.
status is a variable that is assigned to the object that Python
created for us.
This object has a type, string, and holds
the value of "off".

Two steps of an assignment to a literal. First, Python creates an object. The
object has a
value, "off", a type, string, and an id (the location of the
object in memory). After the object is
created, Python looks for any variable
named status. If it exists, Python updates what object
the variable is pointing to,
otherwise, Python creates the variable and points it to the object.

Cattle tags

My grandfather had a cattle ranch, so I will pull out a non-nerdy
analogy. If
you have a cattle ranch of any size, it makes sense to have
a good foreman

who will keep track of your cattle (your
investment).
One way to keep track of cattle is to use cattle tags. These small tags

attached
 to the ear of a cow can be used to identify and track individual
cows.

To pull this back to programming, rather than running a cattle ranch,
you
are managing aspects of your program. A program can hold many
distinct
pieces of information that you want to remember or keep track
 of. This
information is the state. For example, if you needed to
track data pertinent
to humans you might want to track age, address,
and name.

Just like how ranchers tag their cattle to keep track of them,
programmers
create variables to keep track of data. Look at the
example again:

>>> status = "off"

This tells Python to create a string with the contents of
 off. Create a
variable named status, and attach it to that
string. Later on, when you need
to know what the status is, you can ask
your program to print it out like so:

>>> print(status)

off

It is entirely possible to create state and lose it to the ether if
you neglect
to put it in a variable. It is somewhat useless to create
 objects that you
would not use, but again it is possible. Suppose you
want to keep track of
the bulb’s wattage. If you write:

>>> "120 watt"

It tells Python to create a string object with the content of 120 watt. This
is problematic because you forgot to assign it to a variable. Now, you have
no
 way of using this object. Python will only let you access data that is

stored in
variables, so it is impossible for you to use this item now. Objects
are
accessed by using their variable names. If this was information that you
needed
in your program, a better solution would be the following:

>>> wattage = "120 watt"

Later on, in your program you can access wattage, you can print
it out,
and you can even assign another variable to it, or assign
wattage to another
new value (say if your incandescent bulb broke
and you replaced it with an
LED bulb):

>>> incandescent = wattage

>>> wattage = "25 watt"

>>> print(incandescent, wattage)

120 watt 25 watt

Managing state is a core aspect of programming. Variables are one
mechanism to manage it.

Rebinding variables

Much like cow tags, variables tend to stay with an object for a while,
but
they are transferable. Python lets you easily change the variable:

>>> num = 400

>>> num = '400' # now num is a string

In the above example num was originally pointing to an integer but then
was
told to point to a
string.

This illustrates rebinding variables. Variables can be rebound to any type.
Python makes no
effort to prevent this or complain. When an object no longer has
any variable pointing to it, it is

cleaned up by Python, or garbage collected.

Note

The variable does not care about the type. In Python, the type is
attached to
the object.

There is no limit to how often you can change a variable. But
you should
be careful not to change a variable if you still need
access to the old data.

Once you remove all variables from an object,
 you are essentially telling
Python to destroy (garbage collect is
 the proper geeky term) the object
when it has the chance, to free up
any internal memory it occupies.

Tip

This is a case where Python allows you to do something, but you
probably don't
want to do it in real life. Just because you can rebind a
variable to a
 different type, doesn't mean you should.
 Changing the
type of a variable is confusing to you when you read your
code later. It
is also confusing to others who are using your code.
 Don't use the
same variable to point to different types.

This is a point of confusion for those who are new to Python. They
sometimes
reuse the same variable throughout their code because they
mistakenly believe
that it will save memory. As you have seen this is
not the case. The variable
itself is very lightweight. The object is what
uses memory. Reusing a variable
is not going to change how memory
on the object is handled, but it will
be confusing to those who have to
read the code later.

Naming variables

Python is somewhat particular about naming variables. It has
conventions
that most Python programmers follow. Some of these are
 enforced, some
are not. One that is enforced by the interpreter is a variable should
not have
the name of a keyword. The word break is a keyword and
hence cannot be
used as a variable. You will get a SyntaxError if
 you try to use it as a
variable. Even though this code looks perfectly
legal, Python will complain:

>>> break = 'foo'

 File "<stdin>", line 1

 break = 'foo'

 ^

SyntaxError: invalid syntax

If you find yourself with a SyntaxError that looks like normal Python
code,
check that the variable name is not a keyword.

Note

Keywords are reserved for use in Python language constructs,
 so it
confuses Python if you try to make them variables.

The module keyword has a kwlist attribute, which is a list
containing all the current keywords for Python:

>>> import keyword

>>> print(keyword.kwlist)

['False', 'None', 'True', 'and', 'as', 'assert',

'break', 'class', 'continue', 'def', 'del', 'elif',

'else', 'except', 'finally', 'for', 'from', 'global',

'if', 'import', 'in', 'is', 'lambda', 'nonlocal',

'not', 'or', 'pass', 'raise', 'return', 'try',

'while', 'with', 'yield']

Another method for examining keywords in the REPL is to run
help(). This
puts you in a help utility in the REPL, from which you
can type commands (that
aren't Python). Then type keywords and hit
enter. You can type any of the
 keywords and it will give you some
documentation and related help topics. To
exit the help utility hit enter
by itself.

Additional naming considerations

In addition to the aforementioned rule about not naming variables after
keywords, there are a few best practices encouraged by the Python

community. The rules are simple—variables should:

be lowercase
use an underscore to separate words
not start with numbers
not override a built-in function

Here are examples of variable names, both good and bad:

>>> good = 4

>>> bAd = 5 # bad - capital letters

>>> a_longer_variable = 6

this style is frowned upon

>>> badLongerVariable = 7

bad - starts with a number

>>> 3rd_bad_variable = 8

 File "<stdin>", line 1

 3rd_bad_variable = 8

 ^

SyntaxError: invalid syntax

bad - keyword

>>> for = 4

 File "<stdin>", line 1

 for = 4

 ^

SyntaxError: invalid syntax

bad - built-in function

>>> compile = 5

Tip

Rules and conventions for naming in Python come from a document
named “PEP 8 – Style Guide for Python Code” 8. PEP stands for
Python
 Enhancement Proposal, which is a community process for
documenting a
feature, enhancement, or best practice for Python. PEP
documents are
found on the Python website.

http://www.python.org/dev/peps/pep-0008

Note

Although Python will not allow keywords as variable names, it will
allow you to use a built-in name as a variable. Built-ins are
functions,
classes, or variables that Python automatically preloads
for you, so you
get easy access to them. Unlike keywords, Python
will let you use a
built-in as a variable name without so much as a
peep. However, you
should refrain from doing this, it is a bad
practice.

Using a built-in name as a variable name shadows the built-in. The
new variable name prevents you from getting access to the original
built-in. Doing so essentially takes the built-in variable and co-opts it
for your use. As a result, access to the original built-in may only be
obtained through the __builtins__ module. But it is much
better not
to shadow it in the first place.

Here is a list of Python’s built-ins that you should avoid using
 as
variables:

>>> dir(__builtins__)

['ArithmeticError', 'AssertionError',

'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError',

'BufferError', 'BytesWarning', 'ChildProcessError',

'ConnectionAbortedError', 'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError',

'DeprecationWarning', 'EOFError', 'Ellipsis',

'EnvironmentError', 'Exception', 'False',

'FileExistsError', 'FileNotFoundError',

'FloatingPointError', 'FutureWarning',

'GeneratorExit', 'IOError', 'ImportError',

'ImportWarning', 'IndentationError', 'IndexError',

'InterruptedError', 'IsADirectoryError',

'KeyError', 'KeyboardInterrupt', 'LookupError',

'MemoryError', 'NameError', 'None',

'NotADirectoryError', 'NotImplemented',

'NotImplementedError', 'OSError', 'OverflowError',

'PendingDeprecationWarning', 'PermissionError',

'ProcessLookupError', 'RecursionError',

'ReferenceError', 'ResourceWarning',

'RuntimeError', 'RuntimeWarning',

'StopAsyncIteration', 'StopIteration',

'SyntaxError', 'SyntaxWarning', 'SystemError',

'SystemExit', 'TabError', 'TimeoutError', 'True',

'TypeError', 'UnboundLocalError',

'UnicodeDecodeError', 'UnicodeEncodeError',

'UnicodeError', 'UnicodeTranslateError',

'UnicodeWarning', 'UserWarning', 'ValueError',

'Warning', 'ZeroDivisionError', '_',

'__build_class__', '__debug__', '__doc__',

'__import__', '__loader__', '__name__',

'__package__', '__spec__', 'abs', 'all', 'any',

'ascii', 'bin', 'bool', 'bytearray', 'bytes',

'callable', 'chr', 'classmethod', 'compile',

'complex', 'copyright', 'credits', 'delattr',

'dict', 'dir', 'divmod', 'enumerate', 'eval',

'exec', 'exit', 'filter', 'float', 'format',

'frozenset', 'getattr', 'globals', 'hasattr',

'hash', 'help', 'hex', 'id', 'input', 'int',

'isinstance', 'issubclass', 'iter', 'len',

'license', 'list', 'locals', 'map', 'max',

'memoryview', 'min', 'next', 'object', 'oct',

'open', 'ord', 'pow', 'print', 'property', 'quit',

'range', 'repr', 'reversed', 'round', 'set',

'setattr', 'slice', 'sorted', 'staticmethod',

'str', 'sum', 'super', 'tuple', 'type', 'vars',

'zip']

Tip

Here are a few built-ins that would be tempting variable names
otherwise: dict,
id, list, min, max, open, range, str, sum, and type.

Summary

In Python, everything is an object. Objects hold state, which is also
called
the value. To keep track of objects you use variables. Python
variables are

like cattle tags, they are attached to the object and
 have a name. But the
object has the important data, the value and type
of data.

This chapter also discussed rebinding of variables. Python allows you to
do
this, but you should be careful not to change the type of the variable, as
that
 can be confusing to readers of the said code. Finally, the chapter
discussed naming
conventions for Python variables.

Exercises

1. Create a variable, pi, that points to an approximation for the value of
π. Create a variable, r, for the radius of a circle that has a value
of 10.
Calculate the area of the circle (π times the radius squared).
You can do multiplication with * and you can square numbers using
**.
For example, 3**2 is 9.

2. Create a variable, b, that points to the base of a rectangle with a value
of 10. Create a variable, h, that points to the height of a rectangle
with
a value of 2. Calculate the perimeter. Change the base to 6 and
calculate the perimeter again.

8 -
https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

More about Objects

This chapter will dive into objects a little bit more. You will cover

three important properties of objects:

identity
type
value

Identity

Identity at its lowest level refers to an object’s location in the
 computer’s
memory. Python has a built-in function called id
that tells you the identity
of an object:

>>> name = "Matt"

>>> id(name)

140310794682416

When you type this, the identity of the string "Matt" will appear
 as
140310794682416 (which refers to a location in the RAM of your
computer). This will generally vary from computer to computer and for
each
time you start the shell, but the id of an object is consistent
across the
lifetime of a program.

It is possible for a single cow to have two tags
on its ears and it is also
possible for two variables to refer to the
same object. If you want another
variable—first—to
also refer to the same object referred to by name, you
could do
the following:

>>> first = name

This illustrates what happens when you bind a variable to an
existing variable. They both
point to the same object. Note that
this does not copy the variable! Also note that the object has

a value,
"Matt", a type, and an id.

This tells Python to give the first variable the same id as
 name.
Running id on either of the two variables will
return the same id:

>>> id(first)

140310794682416

>>> id(name)

140310794682416

What is identity used for? Actually not much. When you program in
Python,
 you typically are not concerned with low-level details such as
where the
object is living in the RAM of the computer. But identity is used
to illustrate when objects are created and if they are mutable.
It is also used
indirectly for doing identity checks with is.

The is operator checks for identity equality and validates whether
or not
two variables point to the same object:

>>> first is name

True

If you print either first or name at the REPL, it will print
the same value
because they are both pointing to the exact same object:

>>> print(first)

Matt

>>> print(name)

Matt

If I had a cattle tag, I could take it off of one cow and attach it to
another.
Just like a cattle tag, you can take a variable and point it
to a new object. I
can make name point to a new object. You will see
that the identity of name
has changed. But first is still the same:

>>> name = 'Fred'

>>> id(name)

140310794682434

>>> id(first)

140310794682416

Type

Another property of an object is its type. Common types are
 strings,
integers, floats, and booleans. There are many other
kinds of types, and you
can create your own as well. The type of an
object refers to the class of an
object. A class defines the state
of data an object holds, and the methods or
actions that it can
perform. Python allows you to easily view the type of an
object with
the built-in function, type:

>>> type(name)

<class 'str'>

The type function tells you that the variable name points to a
 string
(str).

The table below shows the types for various objects in Python.

Object Type

String str

Integer int

Floating point float

List list

Dictionary dict

Tuple tuple

function function

User-defined class
(subclass object) type

Instance of class
(subclass of class) class

Built-in function builtin_function _or_method

type type

Due to duck-typing, the type function is not used too frequently.
Rather
than check if an object is of a certain type that provides an
 operation,
normally you
try and do that operation.

Sometimes though you have data and need to convert it to another type.
This is common when reading data from standard in. Typically it would
come in as a string, and you might want to change it into a number.
Python
provides built-in classes, str, int, float,
 list, dict, and tuple that
convert (or coerce) to the
appropriate type if needed:

>>> str(0)

'0'

>>> tuple([1,2])

(1, 2)

>>> list('abc')

['a', 'b', 'c']

Note

Duck typing comes from a saying used in the 18th century to refer to a
mechanical duck.
Much like the Turing Test, the saying went:

If it looks like a duck, walks like a duck and quacks like a duck,
then it’s a duck

But I prefer the scene in Monty Python and the Holy Grail, where a
lady
 is determined to be a witch because she weighs as much as a
duck. (If this is
confusing go watch the movie, I find it enjoyable). The
idea is that because she had
characteristics (her weight) that were the
same as a duck’s, she could be considered a witch.

Python takes a similar approach. If you want to loop over an object,
you put
it in a for loop. You don't check first to see if it is a list or a
subclass of a list, you just loop over it. If you want to use a plus
operation, you don't check to see if the object is a number, or string (or
another type that supports addition). If the operation fails, that’s ok, it
is
an indication that you are not providing the correct type.

If you are familiar with object-oriented programming, duck typing
eases the requirement
for subclassing. Rather than inheriting multiple
classes to take advantage of behaviors they
 provide, you need to
implement the protocols (usually by defining a method or two).
 For
example, to create a class that adds, you need to implement a
.__add__ method.
Any class can define that method and respond to
the plus operation.

Mutability

Another interesting property of an object is its mutability. Many
objects are
mutable while others are immutable. Mutable objects
can change their value
in place, in other words, you can alter their
state, but their identity stays the
same. Objects that are
 immutable do not allow you to change their value.
Instead, you can
 change their variable reference to a new object, but this
will change
the identity of the variable as well.

In Python, dictionaries and lists are mutable types. Strings,
 tuples,
integers, and floats are immutable types. Here is an
example demonstrating
that the identity of a variable holding an
integer will change if you change
the value. First, you will assign
an integer to the variable age and inspect
the id:

>>> age = 1000

>>> id(age)

140310794682416

Notice that if you change the value of the integer, it will have
a different
id:

>>> age = age + 1

>>> id(age)

140310793921824

This illustrates that when you try to change an integer, you
will necessarily create a new
integer. Integers are immutable, and you can't
change their value.

Here is an example of changing a list. You will start with an empty list,
and
examine the id. Note that even after you add an item to the list, the
identity of the list is unchanged, hence it is mutable. First, you will create a
list and look at the id:

>>> names = []

>>> id(name)

140310794682432

Now, add a string into the list. There are a few things to note. The return
value of the .append method didn't show anything (ie, it is not returning a
new list). But if you inspect the names variable, you will see that the new
name is in there. Also, the id of the list is still the same. You have mutated
the list:

>>> names.append("Fred")

>>> names

['Fred']

>>> id(name)

140310794682432

This illustrates that when you append an object into a list,
you change the value of the list.
The list is mutated. You can add and
remove items from it, but the id of the list stays the same.

Mutable objects should not be used for keys in dictionaries and can
present problems when used as default parameters for functions.

Using IDLE

At this point, it would be good to try this out in IDLE (or your favorite
editor
that has REPL integration). Because IDLE comes with a REPL, you
could type in the
previous code and inspect it from there. But you can also
write code, run it, and
then inspect it from the REPL. To try it, open a new
file, and type the
following code into it:

name = "Matt"

first = name

age = 1000

print(id(age))

age = age + 1

print(id(age))

names = []

print(id(names))

names.append("Fred")

print(id(names))

Save this as a file, call it iden.py. Then run the file. In IDLE, you
need
to hit F5 to do this. In the REPL, you should see four numbers printed out.
The first two should be different, illustrating that an integer is immutable.
The
last two numbers are the same. They are the same because even though
the list, names,
was mutated, the id is still the same. This by itself is nothing
particularly novel.

The interesting part now is that if you type dir() in the REPL, it will
show you
the variables. You will see that the global variables from iden.py
are now
available.

This illustrates running code and then inspecting it from the REPL in IDLE. If you do not
use IDLE, figure out how to do this from your editor.

From the REPL in IDLE you have access to all the global variables. You
can
 inspect name or names. You can even call functions or methods like
names.append("George").

The ability to inspect what just ran gives you the chance to quickly
inspect the code, and try things out. It is not uncommon for experienced
Python developers to write code in the REPL, paste it into a file, re-run the
file, write more code in the REPL, and continue writing code in this
manner.

Summary

In Python, everything is an object. Objects have three properties:

A Type - Indicates what the class is for the object.
A Value - The data that the object holds. When you test if an
object is
equal to another object (with ==), you are checking against the value.

An Id - A unique id for the object. In the Python version found at
www.python.org,
 this is essentially the location in memory of the
object, which will be a unique
 value. When you check whether two
objects have the same identity (with is), you are checking
whether the
id is the same.

You also examined how mutable objects, such as lists, can change their
value, while immutable
objects, like numbers or strings, cannot be changed.

Exercises

1. Create a variable that points to a floating point number. Examine the
id,
type, and value of that number. Update the variable by adding 20 to
it.
 Re-examine the id, type, and value. Did the id change? Did the
value change?

2. Create a variable pointing to an empty list. Examine the id, type, and
value
of the list. Append the number 300 to the list. Re-examine the id,
type,
and value. Did the id change? Did the value change?

Numbers

This chapter will discuss manipulating numbers with Python. Integers

(whole numbers like -1, 5, or 2000) and Floating Points (the
 computer’s
approximation of real numbers like .333, 0.5 or -1000.234)
are available in
Python and provide easy numerical manipulation. Out
 of the box, Python
provides support for addition, subtraction,
 multiplication, division, power,
modulo, and more!

Unlike other languages, in Python, everything is an object, including
numbers. Integers are of class int:

>>> type(1)

<class 'int'>

Floating point numbers are of class float:

>>> type(2.0)

<class 'float'>

Everything has a level of precision. It’s up to the user to determine if it is
sufficient for their calculations. Python’s floats are represented internally
using a binary representation (as per the IEEE 754 standard for floating
point
 numbers). Floats have a certain amount of precision and rounding
errors are possible. In
fact, one should expect rounding errors. (If you need
more precision, the
decimal module provides a more precise albeit slower
implementation).

As a quick example of precision, examine what happens when
 you
perform this apparently simple subtraction operation:

>>> print(1.01 - .99)

0.020000000000000018

Tip

If you are interested in understanding more about floats and how
computers
 represent them, Wikipedia 9 has more information on the
subject.

Addition

The Python REPL can be used as a simple calculator. If you want
 to add
two integers, type in the expression:

>>> 2 + 6

8

Note

The math example above did not bind the result to a variable. For a
simple calculation printing out the result to the terminal may be
sufficient. If you need the result after the fact, the Python
 interpreter
stores the last result in a variable named _:

>>> 2 + 6

8

>>> result = _

>>> result

8

Note that adding two integers together results in an integer.
Likewise, you can also add two floats together:

>>> .4+.01

0.41000000000000003

This example illustrates once again that care is needed when using
floating point numbers, as you can lose precision (the real result
would be
0.41).

What happens when you add an integer and a float?

>>> 6 + .2

6.2

Python decided that because you are adding an integer and a
 float, you
need floating point arithmetic. In this case, Python
converts or coerces, 6 to
a float behind the scenes, before
adding it to .2. Python has given you the
answer back as a float.

Note

If you have an operation involving two numerics, coercion generally
does the right thing. For operations involving an integer and a
 float,
the integer is coerced to a float.

Note

Coercion between strings and numerics does not occur with most
mathematical operations. Two exceptions are the string formatting
operator, and the multiplication operator.

When you use % with a string on the left side (the left operand) and
any
object (including numbers) on the right side (the right operand),
Python
performs the formatting operator:

>>> print('num: %s' % 2)

num: 2

If the left operand is a string and you use the multiplication
operator,
*, Python performs repetition:

>>> 'Python!' * 2

'Python!Python!'

>>> '4' * 2

'44'

Note

Explicit conversion can be done with the int and float
 built-in
classes. (Although these look like functions they are really
classes):

>>> int(2.3)

2

>>> float(3)

3.0

Subtraction

Subtraction is similar to addition. Subtraction of two integers or two
floats
returns an integer or a float respectively. For mixed numeric
 types, the
operands are coerced before performing subtraction:

>>> 2 - 6

-4

>>> .25 - 0.2

0.04999999999999999

>>> 6 - .2

5.8

Multiplication

In many programming languages, the * (asterisk) is used for
multiplication.
You can probably guess what is going to happen when you
 multiply two
integers:

>>> 6 * 2

12

If you have been following carefully, you will also know what happens
when you multiply two floats:

>>> .25 * 12.0

3.0

And if you mix the types of the product you end up with a float as a
result:

>>> 4 * .3

1.2

Note that the float result in these examples appears correct, though
you
should be careful, due to floating point precision issues,
not to assume that

you would always be so lucky.

Division

In Python (like many languages), the / (slash) symbol is used for
division:

>>> 12 / 4

3.0

Python 3 also addressed what many considered to be a wart in
 prior
versions of Python. The result of dividing two integers
is a float:

>>> 3 / 4

0.75

Previously, Python performed integer division. If you want that behavior,
you can use the // operator. What integer does Python use? The floor of the
real
result—take the answer and round down:

>>> 3 // 4

0

Modulo

The modulo operator (%) calculates the modulus. This is the same as the
remainder of a division operation when the operators are positive. This is
useful for determining whether a number is odd or even (or whether you
have
iterated over 1000 items):

remainder of 4 divided by 3

>>> 4 % 3

1

>>> 3 % 2 # odd if 1 is result

1

>>> 4 % 2 # even if 0 is result

0

Tip

Be careful with the modulo operator and negative numbers. Modulo
can behave differently, depending on which operand is negative. It
makes sense that if you are counting down, the modulo should cycle
at
some interval:

>>> 3 % 3

0

>>> 2 % 3

2

>>> 1 % 3

1

>>> 0 % 3

0

What should -1 % 3 be? Since you are counting down it should
cycle over to 2 again:

>>> -1 % 3

2

But when you switch the sign of the denominator, the behavior
becomes weird:

>>> -1 % -3

-1

Python guarantees that the sign of the modulo result is the same as
the denominator (or zero). To further confuse you:

>>> 1 % -3

-2

The takeaway here is that you probably do not want to do modulo
with negative numbers on the denominator unless you are sure that
is

what you need.

Power

Python also gives you the power operator by using ** (double asterisks).
If
you wanted to square 4 (4 is the base, 2 is the exponent), the following code
will do it:

>>> 4 ** 2

16

Exponential growth tends to let numbers get large pretty
 quickly.
Consider raising 10 to the 100th power:

>>> 10 ** 100

10000000000000000000000000000000000000

00000000000000000000000000000000000000

0000000000000000000000000

Programs need to
 use a certain amount of memory to store integers.
Because integers are
usually smaller numbers, Python optimizes for them,
to not waste
 memory. Under the covers, it can coerce system integers to
long integers
to store larger numbers. Python 3 does this automatically for
you.

An analogy might be a scale. If you are always weighing small amounts,
you might want a small scale. If you deal in sand, you will probably
want to
put the sand in a bag to make it easier to handle. You will
have a bunch of
small bags that you will use. But if you occasionally
need to weigh larger
items that do not fit on the small scale, you
need to pull out a bigger scale,
and a bigger bag. It would be a waste
 to use the bigger bag and scale for
many of the smaller items.

Similarly, Python tries to optimize storage space for integers towards
smaller sizes. When Python does not have enough memory (a small bag)
to
fit larger integers in, it coerces the integer into a long
 integer. This is
actually desirable because, in some environments,
you run into an overflow
error here, where the program dies (or
 Pac-Man refuses to go over level
255—since it stored the level
counter in an 8-bit number).

Note

Python includes the operator module which provides functions for
common mathematical operations. When using more advanced
features of
 Python such as lambda functions or list comprehensions,
this
module comes in handy:

>>> import operator

>>> operator.add(2, 4) # same as 2 + 4

6

Order of operations

When you are performing math, you do not apply all the
operations from
left to right. You do the multiplication and division
before the addition and
subtraction. Computers work the same way. If you
want to perform addition
(or subtraction) first, use parentheses to
indicate the order of operations:

>>> 4 + 2 * 3

10

>>> (4 + 2) * 3

18

As illustrated in the example, anything in parentheses is evaluated
first.

Other operations

The help section from the REPL is pretty useful. There is a topic called
NUMBERMETHODS that
explains how all of the number operations work.

Summary

Python has built-in support for the basic mathematical operations. Addition,
subtraction, multiplication, and division are all included. In addition, the
power and modulus operations are available. If you need to control which
order
the operations occur, wrap parentheses around the operation that you
want to
happen first.

If you need a simple calculator, rather than opening a calculator
application,
 give Python a try. It should be more than capable for most
tasks.

Exercises

1. You slept for 6.2, 7, 8, 5, 6.5, 7.1, and 8.5 hours this week. Calculate
the
average number of hours slept.

2. Is 297 divisible by 3?
3. What is 2 raised to the tenth power?
4. Wikipedia defines leap years as:

Every year that is exactly divisible by four is a leap year, except
for
 years that are exactly divisible by 100, but these centurial
years are leap
 years if they are exactly divisible by 400. For
example, the years 1700,
1800, and 1900 are not leap years, but
the years 1600 and 2000 are.
—https://en.wikipedia.org/wiki/Leap_year

Write Python code to determine if 1800, 1900, 1903, 2000, and 2002
are
leap years.

https://en.wikipedia.org/wiki/Leap_year

9 - https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point

Strings

Strings are immutable objects that hold character data. A string could

hold a
 single character, a word, a line of words, a paragraph, multiple
paragraphs, or even zero characters.

Python denotes strings by wrapping them with ' (single quotes),
 "
(double quotes), """ (triple doubles) or '''
(triple singles). Here are some
examples:

>>> character = 'a'

>>> name = 'Matt'

>>> with_quote = "I ain't gonna"

>>> longer = """This string has

... multiple lines

... in it"""

>>> latin = '''Lorum ipsum

... dolor'''

>>> escaped = 'I ain\'t gonna'

>>> zero_chars = ''

>>> unicode_snake = "I love \N{SNAKE}"

Notice that the strings always start and end with the same style of
quote.
As illustrated in the with_quote example you can put single
quotes inside
of a double-quoted string—and vice versa. Furthermore,
 if you need to
include the same type of quote within your string, you
can escape the quote
by preceding it with a \ (backslash). When
 you print out an escaped
character the backslash is ignored.

Note

Attentive readers may wonder how to include a backslash in a
string.
To include a backslash in a normal string, you must
 escape the
backslash with ... you guessed it, another backslash:

>>> backslash = '\\'

>>> print(backslash)

\

Note

Here are the common ways to escape characters in Python:

Escape Sequence Output

\\ Backslash

\' Single quote

\" Double quote

\b ASCII Backspace

\n Newline

\t Tab

\u12af Unicode 16 bit

\U12af89bc Unicode 32 bit

\N{SNAKE} Unicode character

\o84 Octal character

\xFF Hex character

Tip

If you do not want to use an escape sequence, you can use a raw string
by
preceding the string with an r. Raw strings are normally used two
places.
They are used in regular expressions, where the backslash is
also used as an
 escape character. You can use regular expressions to
match characters (such as
phone numbers, names, etc) from text. The
re module in the Python standard
library provides support for regular
expressions. Raw strings are also used in
 Windows paths where the
backslash is a delimiter.

Raw strings interpret the character content literally (ie. there is
 no
escaping). The following illustrates the difference between raw
 and
normal strings:

>>> slash_t = r'\tText \\'

>>> print(slash_t)

\tText \\

>>> normal = '\tText \\'

>>> print(normal)

 Text \

Python also has a triple quoting mechanism for defining
 strings. Triple
quotes are useful for creating strings containing
 paragraphs or multiple
lines. Triple-quoted strings are also commonly
 used in docstrings.
Docstrings will be discussed in the chapter on
 functions. Below is an
example of a multi-line triple-quoted string:

>>> paragraph = """Lorem ipsum dolor

... sit amet, consectetur adipisicing

... elit, sed do eiusmod tempor incididunt

... ut labore et dolore magna aliqua. Ut

... enimad minim veniam, quis nostrud

... exercitation ullamco laboris nisi ut

... aliquip ex ea commodo consequat. Duis

... aute irure dolor in reprehenderit in

... voluptate velit esse cillum dolore eu

... fugiat nulla pariatur. Excepteur sint

... occaecat cupidatat non proident, sunt

... in culpa qui officia deserunt mollit

... anim id est laborum."""

A nice benefit of using triple-quoted strings is that you can
embed single
and double quotes inside it without escaping them:

>>> """This string has double " and single

... quotes ' inside of it"""

'This string has double " and single\nquotes \' inside of it'

Unless they butt up to the end of the string, then you will need to
escape
the final quote:

>>> """He said, "Hello""""

 File "<stdin>", line 1

 """He said, "Hello""""

 ^

SyntaxError: EOL while scanning string literal

>>> """He said, "Hello\""""

'He said, "Hello"'

Formatting Strings

Storing strings in variables is nice, but being able to compose
 strings of
other strings and manipulate them is also necessary. One
 way to achieve
this is to use string formatting.

In Python 3, the preferred way to format strings is to use the .format
method of strings. Below, you tell Python to replace {} (a placeholder) with
the contents of name or the string Matt:

>>> name = 'Matt'

>>> print('Hello {}'.format(name))

Hello Matt

Another useful property of formatting is that you can also format
 non-
string objects, such as numbers:

>>> print('I:{} R:{} S:{}'.format(1, 2.5, 'foo'))

I:1 R:2.5 S:foo

Format string syntax

Format strings have a special syntax for replacement fields.
 If an object is
passed into the format string, attributes
 can be looked up using
.attribute_name syntax. There is also
 support for pulling index-able
items out by using [index] as well.
The Python documentation refers to
these as field names. The field
names can be empty, a name of a keyword
argument, a number of a
positional argument, or index of a list or dictionary
(in square brackets):

>>> 'Name: {}'.format('Paul')

'Name: Paul'

>>> 'Name: {name}'.format(name='John')

'Name: John'

>>> 'Name: {[name]}'.format({'name':'George'})

'Name: George'

The curly braces ({ and }) can also contain an
integer inside of them. The
integer refers to the zero based position of
 the argument passed into
.format.
 Below is an example of using the numbers of positional
arguments in the placeholders.
The first argument to .format, 'Paul', is at
position 0, the second, 'George', is position 1, and 'John' is at 2:

>>> 'Last: {2} First: {0}'.format('Paul', 'George',

... 'John')

'Last: John First: Paul'

There is a whole language for formatting strings. If you
 insert a colon
following the field name, you can provide further formatting
 information.
The format is below. Anything in square brackets is optional:

:[[fill]align][sign][#][0][width][grouping_option][.precision][type]

The
following tables lists the fields and their meaning.

Field Meaning

fill Character used to fill in
align (default is space)

align Alight output < (left align),
> (right align),
^ (center align), or
= (put padding
after sign)

sign For numbers + (show sign
on both positive and negative
numbers,
- (default,
only on negative), or
space (leading space for
positive, sign on negative)

Prefix integers. 0b (binary),
0o (octal), or 0x (hex)

0 Enable zero padding

width Minimum field width

grouping_option Number separator , (use comma for thousands
separator), _ (Use underscore
for
thousands separator)

.precision For floats (digits after period (floats),
for non-numerics (max length)

type Number type or s (string format default)
see Integer and Float charts

The tables below lists the various options you have for formatting integer
and floating point numbers.

Integer Types Meaning

b binary

c character - convert to Unicode
character

d decimal (default)

n decimal with locale-specific
separators

o octal

x hex (lower-case)

X hex (upper-case)

Float Types Meaning

e/E Exponent. Lower/upper-case e

f Fixed point

g/G General. Fixed with exponent for
large,
and small numbers (g default)

n g with locale-specific
separators

% Percentage (multiplies by 100)

Some format examples

Here are a few examples of using .format. To format a string in the center
of 12 characters surrounded by *, use the code below. * is the fill
character,
^ is the align field, and 12 is the width field:

>>> "Name: {:*^12}".format("Ringo")

'Name: ***Ringo****'

Next, you format a percentage using a width of 10, one decimal place,
and the
 sign before the width padding. = is the align field, + ensures that
there is always a sign (negative or positive), 10.1 are the width
 and
precision fields, and % is the float type, which converts the number
 to a
percentage:

>>> "Percent: {:=+10.1%}".format(-44/100)

'Percent: - 44.0%'

Below are a binary and a hex conversion. The integer type field is set to b
and x respectively:

>>> "Binary: {:b}".format(12)

'Binary: 1100'

>>> "Hex: {:x}".format(12)

'Hex: c'

Note

The .format method on a string provides an alternative for the %
operator which is similar to C’s printf. The % operator is still
available and some users prefer it as it requires less typing for simple
statements and because it is similar to C. %s, %d, and %x are
 replaced
by their string, integer, and hex values respectively. Here are some
examples:

>>> "Num: %d Hex: %x" % (12, 13)

'Num: 12 Hex: d'

>>> "%s %s" % ('hello', 'world')

'hello world'

Tip

A great resource for formatting is in the built-in help documentation,
available in the REPL. Type:

>>> help()

Which puts you in the help mode, and gives you a help> prompt.
Then type:

help> FORMATTING

You can scroll through here and find many examples. A bare return
from the help>
prompt will return you to the normal prompt.

Another resource is found at https://pyformat.info/. This website
contains many
formatting examples with both .format and the older %
operator.

There is also an entry in help for strings, located under STRINGS.

F-Strings

Python 3.6 introduced a new type of string, called f-string. If you precede a
string
with an f, it will allow you to include code inside of the placeholders.
Here is
a basic example:

>>> name = 'matt'

>>> f'My name is {name}'

'My name is matt'

Python will look in the placeholder and evaluate the code there. Note that
the
 placeholder can contain function calls, method calls, or any other
arbitrary code:

https://pyformat.info/

>>> f'My name is {name.capitalize()}'

'My name is Matt'

You can also provide format strings following a colon:

>>> f'Square root of two: {2**.5:5.3f}'

'Square root of two: 1.414'

Summary

In this chapter, strings were introduced. Strings can be defined with various
delimiters.
Unlike other languages, which may distinguish between a string
defined with " and one
defined with ', Python makes no distinction. Triple-
quoted strings, however, may span
multiple lines.

We also looked at the .format method and gave examples of formatting
strings. Finally,
 the chapter introduced a new feature in Python 3.6, f-
strings.

Exercises

1. Create a variable, name, pointing to your name. Create another
variable,
age, holding an integer value for your age. Print out a string
formatted
with both values. If your name was Fred and age was 23 it
would print:

Fred is 23

2. Create a variable, paragraph, that has the following content:

"Python is a great language!", said Fred. "I don't ever remember
having
this much fun before."

3. Go to https://unicode.org and find the symbol omega in the Greek
character
 code chart. Create a string that holds the omega character,

https://unicode.org/

using both the
Unicode code point (\u form) and Unicode name (\N
form). The code
point is the hex number in the chart, the name is the
bolded capital name
following the code point. For example, the theta
character has the code point
of 03f4 and a name of GREEK CAPITAL
THETA SYMBOL.

4. Make a variable, item, that points to a string, "car". Make a
variable,
cost, that points to 13499.99. Print out a line that has
item in a left-
justified area of 10 characters, and cost in a
right-justified area of 10
characters with 2 decimal places and commas in the
thousands place. It
should look like this (without the quotes):

'car 13,499.99'

dir, help, and pdb

You have only touched the surface of strings, but you need to
 take a

break to discuss two important functions and one library that
 come with
Python. The first function is dir, which
illustrates how powerful and useful
the REPL is. The
dir function returns the attributes of an object. If you had
a
Python interpreter open and wanted to know what the attributes of a
string
are, you can do the following:

>>> dir('Matt')

['__add__', '__class__', '__contains__',

'__delattr__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__',

'__getitem__', '__getnewargs__', '__gt__',

'__hash__', '__init__', '__iter__', '__le__',

'__len__', '__lt__', '__mod__', '__mul__', '__ne__',

'__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__rmod__', '__rmul__', '__setattr__', '__sizeof__',

'__str__', '__subclasshook__', 'capitalize',

'casefold', 'center', 'count', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'format_map',

'index', 'isalnum', 'isalpha', 'isdecimal',

'isdigit', 'isidentifier', 'islower', 'isnumeric',

'isprintable', 'isspace', 'istitle', 'isupper',

'join', 'ljust', 'lower', 'lstrip', 'maketrans',

'partition', 'replace', 'rfind', 'rindex', 'rjust',

'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase',

'title', 'translate', 'upper', 'zfill']

dir lists all the attributes of the object passed into it. Since
you passed in
the string 'Matt' to dir, the function displays
 the attributes of a string.

This handy feature of Python
illustrates its “batteries included” philosophy.
Python gives you an
 easy mechanism to discover the attributes of any
object. Other
 languages might require special websites, documentation or
IDEs to
access similar functionality. But in Python, because you have the
REPL, you can get at this information quickly and easily.

The attribute list is in alphabetical order, and you can normally
ignore the
first couple of attributes starting with __. Later on,
you will see attributes
such as capitalize (which is a method
 that capitalizes a string), format
(which as was illustrated previously,
 allows for formatting of strings), or
lower (which is a method
 used to ensure the string is lowercase). These
attributes happen to be
 methods, which are functions that are attached to
objects. To call, or invoke
 a function, you place a period after the object,
then the method name,
then parentheses.

The three methods are invoked below:

>>> print('matt'.capitalize())

Matt

>>> print('Hi {}'.format('there'))

Hi there

>>> print('YIKES'.lower())

yikes

Dunder methods

You might be wondering what all the attributes starting with __ are. People
call them special methods, magic methods, or dunder methods since they
start (and end) with double underscores (Double UNDERscores). “Dunder
add” is
 one way to say __add__, “the add magic method” is another.
Special methods
determine what happens under the covers when operations
are performed on an
object. For example, when you use the + or % operator
on a string, the
.__add__ or .__mod__ method is invoked respectively.

Beginner Pythonistas can usually ignore dunder methods. When you start
implementing your own classes and want them to react to operations
such
as + or %, you can define them.

Tip

In the help() documentation is an entry, SPECIALMETHODS, that
describes these methods.

Another place where these are described is on the Python website.
Go to
Documentation, Language Reference, Data Model. It is tucked
away in there.

help

help is another built-in function that is useful in combination
 with the
REPL. The book previously mentioned invoking help(),
 without any
arguments, to
bring up help documentation.

The help function also provides documentation for a method,
 module,
class, or function
if you pass them in as an argument. For
example, if you
are curious what the attribute upper on a string
does, the following gives
you the documentation:

>>> help('some string'.upper)

Help on built-in function upper:

upper(...) method of builtins.str instance

 S.upper() -> str

 Return a copy of S converted to uppercase.

The help function, combined with the REPL, allows you to
 read up on
documentation without having to go to a browser, or
 even have internet
access. If you were stranded on a desert island,
you should be able to learn

Python, provided you had a computer
 with Python installed and a power
source.

pdb

Python also includes a debugger to step through code. It is found
 in a
module named pdb. This
library is modeled after the gdb library for C. To
drop
into the debugger at any point in a Python program, insert the code:

import pdb; pdb.set_trace()

These are two statements here, but I typically type them in a single line
separated by a semicolon—that way I can easily remove them with a single
keystroke
from my editor when I am done debugging. This is also about the
only place I use a semicolon
 in Python code (two statements in a single
line).

When this line is executed, it will present a (pdb) prompt, which is
similar
 to the REPL. Code can be evaluated at this prompt and you can
inspect objects
 and variables as well. Also, breakpoints can be set for
further inspection.

Below is a table listing useful pdb commands:

Command Purpose
h, help List the commands available

n, next Execute the next line

c, cont,
continue Continue execution until a
breakpoint is hit

w, where,
bt Print a stack trace showing
where execution is

u, up Pop up a level in the stack

d, down Push down a level in the stack

l, list List source code around
current line

Note

In Programming Pearls, Jon Bentley states:

When I have to debug a little algorithm deep inside a big
program, I sometimes
 use debugging tools... though, print
statements are usually faster to
implement and more effective than
sophisticated debuggers.

I've heard Guido van Rossum, the creator of Python, voice the same
opinion: he
 prefers print debugging. Print debugging is easy, simply
insert print
functions to provide clarity as to what is going on. This is
often sufficient
 to figure out a problem. Make sure to remove these
debug statements or change
 them to logging statements before
releasing the code. If more
exploration is required, you can always use
the pdb module.

Summary

Python provides many tools to make your life easier. If you learn
to use the
REPL, you can take advantage of them. The dir function
will help you see
what the attributes of an object are. Then, you
can use the help function to
inspect those attributes for
documentation.

This chapter also introduced the pdb module. This module allows you to
step through code, which can be useful for debugging.

Exercises

1. Open a REPL, and create a variable, name, with your name in it. List
the
 attributes of the string. Print out the help documentation for the
.find
and .title methods.

2. Open a REPL, and create a variable, age, with your age in it. List the
attributes of the integer. Print out the help documentation for the
.numerator method.

Strings and Methods

In the previous chapter you learned about the built-in dir function and

saw
 some methods you can call on string objects. Because strings are
immutable,
these methods do not mutate the string, but rather return a new
string or a new
 result. Strings allow you create a new version that is
capitalized, return a
formatted string, or create a lowercase string, as well as
many other actions.
You do this by calling methods.

Methods are functions that are called on an instance of a type. What does
this
mean? The string type allows you to call a method (another term for
call is
 invoke) by placing a . (period) and the method name directly after
the
 variable name holding the data (or the data itself), followed by
parentheses
with arguments inside of them.

Note

In this book, I place a period in front of methods. This is meant
 to
remind you that you need to have an object before the method. I
will
mention the .capitalize method, rather than saying capitalize.
The invocation looks like this on the text object:

text.capitalize()

This is in contrast to a function, like help, which you
 invoke by
itself (there is no object or period before it):

help()

Illustration of calling a method on a string. The method does not change the
string because it
is immutable. Rather, the method returns a new string.

Here is an example of calling the .capitalize method on a variable
pointing to a string
and a string literal. Note that this does not change the
object on which it is called.
Because a string is immutable, the result of the
method is a new object with the
capitalized value:

>>> name = 'matt'

invoked on variable

>>> correct = name.capitalize()

>>> print(correct)

Matt

Note that name does not change:

>>> print(name)

matt

Note, the .capitalize method does not have to be called on a variable.
You can invoke the method directly on a string literal:

>>> print('fred'.capitalize())

Fred

In Python, methods and functions are first-class objects. As was
previously mentioned,
everything is an object. If the
parentheses are left off,
Python will not throw an error, it will
only show a reference to a method,
which is an object:

>>> print('fred'.capitalize)

<built-in method capitalize of str object at

0x7ff648617508>

Having first-class objects enables more advanced
 features like closures
and decorators (these are discussed in my
intermediate Python book).

Note

Do integers and floats have methods? Yes, again, everything in Python
is
 and object and objects have methods. This is easy to verify by
invoking dir on an integer (or a variable holding an integer):

>>> dir(4)

['__abs__', '__add__', '__and__',

 '__class__',

 ...

 '__subclasshook__', '__truediv__',

 '__trunc__', '__xor__', 'conjugate',

 'denominator', 'imag', 'numerator',

 'real']

Invoking a method on a number is somewhat tricky due to the use of
the . to denote calling a method. Because . is common in
 floats, it
would confuse Python if . were also used to call
methods on numbers.

For example, the .conjugate method returns the complex
conjugate
of an integer. But if you try to invoke it on an integer, you
will
get an error:

>>> 5.conjugate()

Traceback (most recent call last):

 ...

 5.conjugate()

 ^

SyntaxError: invalid syntax

One solution to this is to wrap the number with parentheses:

>>> (5).conjugate()

5

Another option would be to assign a variable to 5 and invoke the
method on the variable:

>>> five = 5

>>> five.conjugate()

5

However, in practice, it is fairly rare to call methods on numbers.

Common string methods

Here are a few string methods that are commonly used or found in
the wild.
Feel free to explore others using dir and help (or
 the online
documentation).

endswith

If you have a variable holding a filename, you might want to check the
extension. This is easy with .endswith:

>>> xl = 'Oct2000.xls'

>>> xl.endswith('.xls')

True

>>> xl.endswith('.xlsx')

False

Note

Notice that you had to pass in a parameter (or argument), 'xls', into
the
method. Methods have a signature, which is a funky way of saying
that they need to be called with the correct number (and type) of
parameters. For the .endswith method, it makes sense that if you
want to know
 if a string ends with another string you have to tell
Python which
ending you want to check for. This is done by passing
the end string
to the method.

Tip

Again, it is usually easy to find out this sort of information via
help.
The documentation should tell you what parameters are
 required as
well as any optional parameters. Here is the help
for endswith:

>>> help(xl.endswith)

Help on built-in function endswith:

endswith(...)

 S.endswith(suffix[, start[, end]]) -> bool

 Return True if S ends with the specified

 suffix, False otherwise. With optional

 start, test S beginning at that position.

 With optional end, stop comparing S at

 that position. suffix can also be a

 tuple of strings to try.

Notice the line:

S.endswith(suffix[, start[, end]]) -> bool

The
 S represents the string (or instance) you are invoking the
method on, in this
 case, the xl variable. .endswith is the method
name. Between
the parentheses, (and), are the parameters. suffix is
a required parameter, the .endswith method will complain if you
do
not provide it:

>>> xl.endswith()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: endswith() takes at least 1 argument

(0 given)

The parameters between the square brackets [and] are
 optional
parameters. In this case, start and end allow you
 to only check a

portion of the string. If you wanted to check if the
characters starting at
0 and ending at 3 ends with Oct you could
do the following:

>>> xl.endswith('Oct', 0, 3)

True

Strings also have a .startswith method, so the correct way to
check if a string starts with 'Oct' is:

>>> xl.startswith('Oct')

True

find

The .find method allows you to find substrings inside other
 strings. It
returns the index (offset starting at 0) of the matched
 substring. If no
substring is found it returns -1:

>>> word = 'grateful'

0 is g, 1 is r, 2 is a

>>> word.find('ate')

2

>>> word.find('great')

-1

format

format allows for easy creation of new strings by combining
 existing
variables. The chapter on strings discussed this method:

>>> print('name: {}, age: {}'.\

... format('Matt', 10))

name: Matt, age: 10

Note

In the above example, the print function is spread across two lines.
By
placing a \ following a . you indicate to Python that you want to
continue on the next line. If you have opened a left parenthesis, (, you
can also place the arguments on multiple lines without a \:

>>> print("word".

... find('ord'))

1

>>> print("word".find(

... 'ord'))

1

To help make the code more readable, indent the
 continued lines.
Note that indenting with four spaces
 serves to indicate to anyone
reading the code that
 the second line is a continuation of a previous
statement:

>>> print("word".\

... find('ord'))

1

>>> print("word".find(

... 'ord'))

1

Why spread code that could reside in a single line across multiple
lines? Where this comes into play in most code is dealing with code
standards that expect lines to be less than 80 characters in
length. If a
method takes multiple arguments, it may be hard to follow
 the 80
character limit. (Note that Python itself does not care about
line length,
but readers of your code might). It is not uncommon to
see a separate
line for each argument to a method:

>>> print('{} {} {} {} {}'.format(

... 'hello',

... 'to',

... 'you',

... 'and',

... 'you'

...))

hello to you and you

join

Oftentimes you have a list (lists are discussed later in the book) of items
and
need to insert something between them. The .join method creates a
new string
from a sequence by inserting a string between every member of
the list:

>>> ', '.join(['1','2','3'])

'1, 2, 3'

Tip

For most Python interpreters, using .join is faster than repeated
concatenation using the + operator. The above idiom is common.

lower

The .lower method returns a copy of the string converted to lowercase.
The is often useful for validating if the input matches a string. For example,
some programs capitalize file extensions, while others do not. If you wanted
to know if a file name had TXT or txt as an extension, you could
 do the
following:

>>> fname = 'readme.txt'

>>> fname.endswith('txt') or fname.endswith('TXT')

True

A more Pythonic version would read:

>>> fname.lower().endswith('txt')

True

startswith

The .startswith method is analogous to .endswith except that it checks
that
a string starts with another string:

>>> 'Book'.startswith('B')

True

>>> 'Book'.startswith('b')

False

strip

The .strip method returns a new string that removes preceding and
trailing whitespace (spaces, tabs,
newlines). This may come in handy if you
have to
normalize data or parse input from a user (or the web):

>>> ' hello there '.strip()

'hello there'

Note that three spaces at the front of the string were removed as were
the
two at the end. But the two spaces between the words were left
 intact. If
you are interested in removing only the leading whitespace
 or rightmost
whitespace, the methods lstrip and rstrip
 respectively will perform
those duties.

upper

The .upper method is analogous to .lower. It returns a copy of the string
with all of the letters capitalized:

>>> 'yell'.upper()

'YELL'

Other methods

There are other string methods, but they are used less often. Feel
 free to
explore them by reading the documentation and trying them out.
 The
appendix provides a list of them.

Note

The STRINGMETHODS entry in the help section from the REPL contains
documentation
for all of the string methods as well as some examples.

Summary

This chapter talked about methods. Methods are always called by putting an
object and a period before the method name. You also looked at some of the
more common methods of strings.
One thing to remember is that a string is
immutable. If you want to change a string’s value,
you need to create a new
string.

Exercises

1. Create a string, school, with the name of your elementary school.
Examine
 the methods that are available on that string. Use the help
function to
view their documentation.

2. Create a string, country, with the value 'usa'. Create a new string,
correct_country, that has the value in uppercase, by using a string
method.

3. Create a string, filename, that has the value 'hello.py'. Check and
see if the filename ends with '.java'. Find the index location of
'py'. See if it starts with 'world'.

4. Open a REPL. Enter the help documentation and scan through the
STRINGMETHODS entry.

Comments, Booleans, and None

This chapter will introduce comments, booleans, and None.
Comments have

the potential to make your code more readable. The boolean and None types
are very common throughout Python code.

Comments

Comments are not a type per se because they are ignored by Python.
Comments
serve as reminders to the programmer. There are various takes
on comments, their
 purpose, and their utility. There is a continuum from
those who are against any
and all comments, to those who comment almost
every line of code, as well as
 those who are in between. If you are
contributing to a project, try to be
 consistent with their commenting
scheme. A basic rule of thumb is that a comment
 should explain the why
rather than the how (code alone should be sufficient
for the how).

To create a comment in Python, start a line with a #.
 Anything that
follows the hash is ignored:

>>> # This line is ignored by Python

You can also comment at the end of a line:

>>> num = 3.14 # PI

Tip

A rogue use of comments is to temporarily disable code during
editing.
If your editor supports this, it is sometimes easier to
comment out code
rather than remove it completely. But the best
 practice is to remove
commented-out code before sharing the code
with others.

Other languages support multi-line comments, but Python does not. The
only way to comment multiple lines is to start every line with #.

Tip

You may be tempted to comment out multiple lines of code by making
those lines a triple-quoted string. This is ugly and confusing. Try
not to
do this.

Booleans

Booleans represent the values for true and false. You have already seen
them in previous code examples, such as the result of
.startswith:

>>> 'bar'.startswith('b')

True

You can also assign those values to variables:

>>> a = True

>>> b = False

Note

The actual name of the boolean class in Python is
bool, not boolean:

>>> type(True)

<class 'bool'>

It can be useful to convert other types to booleans. In Python, the
bool
class can do that. Converting from one type to another is
 called casting.
However, this is usually unnecessary due to the implicit casting
 Python
performs when conditionals are evaluated. The conditional statement
 will
do this casting for you.

In Python parlance, it is common to hear of objects behaving as “truthy”
or “falsey”—that
 means that non-boolean types can implicitly behave as
though they were
booleans. If you are unsure what the behavior might be,
pass in the
type to the bool class for an explicit conversion (or cast).

For strings, an empty string is “falsey”, while non-empty values coerce to
True:

>>> bool('')

False

>>> bool('0') # The string containing 0

True

Since a non-empty string behaves as truthy, you can test whether the
string has content.
In the code below name has been set, but
imagine that it
came from user input:

>>> name = 'Paul'

>>> if name:

... print("The name is {}".format(name))

... else:

... print("Name is missing")

The name is Paul

You don't have to test if the name has a length. So don't do this:

>>> if len(name) > 0:

... print("The name is {}".format(name))

Also, you don't need to do this:

>>> if bool(name):

... print("The name is {}".format(name))

because Python will evaluate the contents of the if statement, and
coerce
to a boolean for you. Because a string is True when
it has content you only
need:

>>> if name:

... print("The name is {}".format(name))

Note

The built-in types, int, float, str, and bool, are
 classes. Even
though their capitalization (lowercase) makes it look as if they were
functions, they are classes. Invoking help(str) will confirm this:

>>> help(str)

Help on class str in module builtins:

class str(object)

 | str(object='') -> str

 | str(bytes_or_buffer[, encoding[, errors]]) -> str

 |

This is one of those slight inconsistencies with Python. User-defined
classes typically follow PEP8, which suggests camel cased naming of
classes.

For numbers, zero coerces to False while other numbers have
“truthy”
behavior:

>>> bool(0)

False

>>> bool(4)

True

While explicit casting via the bool function is available, it is
 usually
overkill, because variables are implicitly coerced to booleans
when used in
conditional statements. For example, container types,
 such as lists and
dictionaries, when empty, behave as “falsey”. On
 the flipside, when they
are populated they act as “truthy”.

Tip

Be careful when parsing content that you want to turn into
booleans.
Strings that are non-empty evaluate to True. One
example of a string
that might bite you is the string
'False' which evaluates to True:

>>> bool('False')

True

Here is a table of truthy and falsey values:

Truthy Falsey
True False

Most objects None

1 0

3.2 0.0

[1, 2] [] (empty list)

{'a': 1,
'b': 2} {} (empty dict)

'string' "" (empty string)

'False'

'0'

Tip

Do not test boolean values to check if they are equal to
True. Do not
explicitly cast expressions to boolean results. If
 you have a variable,
done, containing a boolean, this is
sufficient:

if done:

 # do something

While this is overkill:

if done == True:

 # do something

As is this:

if bool(done):

 # do something

Similarly, if you have a list and need to distinguish between an
empty and non-empty list, this is sufficient:

members = []

if members:

 # do something if members

 # have values

else:

 # member is empty

Likewise, this test is superfluous. It is not necessary to determine
the
truthiness of a list by its length:

if len(members) > 0:

 # do something if members

 # have values

else:

 # member is empty

Note

If you wish to define the implicit truthiness for user-defined
objects,
the .__bool__ method specifies this behavior. It can
 return True, or
False. If this magic method is not defined,
 the .__len__ method is
checked for a non-zero value. If neither
method is defined, an object
defaults to True:

>>> class Nope:

... def __bool__(self):

... return False

>>> n = Nope()

>>> bool(n)

False

If this is confusing, feel free to come back to this example after
reading about classes.

None

None is an instance of NoneType. Other languages have similar
constructs
such as nil, NULL or undefined. Variables can be assigned to
 None to
indicate that they are waiting to hold a real
value. None coerces to False in
a boolean context:

>>> bool(None)

False

Note

A Python function defaults to returning None if no return
statement is
specified:

>>> def hello():

... print("hi")

>>> result = hello()

hi

>>> print(result)

None

Note

None is a singleton (Python only has one copy of None in
 the
interpreter). The id for this value will always be the same:

>>> a = None

>>> id(a)

140575303591440

>>> b = None

>>> id(b)

140575303591440

As any variable containing None is the same object as any other
variable containing None. You typically use is to check
 for identity
with these variables rather than using == to
check for equality:

>>> a is b

True

>>> a is not b

False

is is faster than == and connotes to the programmer that
identity is
being compared rather than the value.

You can put the is expression in an if statement:

>>> if a is None:

... print("A is not set!")

A is not set!

Since None evaluates to False in a boolean context
you could also
do the following:

>>> if not a:

... print("A is not set!")

A is not set!

But, you should be careful as other values also evaluate to False,
such as
0, [], or '' (empty string). Checking against None is
explicit.

Summary

In this chapter, you learned about comments in Python. Comments are
started with a hash,
and any content following the hash until the end of the
line is ignored. There
are no multi-line comments.

The chapter also discussed True, False, and boolean coercion. Most
values are True
 in a boolean context (when used in an if statement). The
False values are
zero, None, and empty sequences.

Finally, the None object was mentioned. It is a singleton that is
used to
indicate that you have a variable that may be assigned a value in
the future.
It is also the result of a function that does not explicitly
return a value.

Exercises

1. Create a variable, age, set to your age. Create another variable,
old,
that uses a condition to test whether you are older than 18. The
value
of old should be True or False.

2. Create a variable, name, set to your name. Create another variable,
second_half, that tests whether the name would be classified in the
second half of the alphabet? What do you need to compare it to?

3. Create a list, names, with the names of people in a class. Write
code to
print 'The class is empty!' or 'Class has enrollments.',
based on
whether there are values in names. (See the tip in this chapter
for
details).

4. Create a variable, car, set to None. Write code to print 'Taxi for
you!', or 'You have a car!', based on whether or not car is set
(None is not the name of a car).

Conditionals and Whitespace

In this chapter, you will learn more about making comparisons in Python.
Most code needs to make decisions about which path to execute, so
 you
will look at how this is done.

In addition to the boolean values, True and False, in Python, you can
also use expressions to get boolean values. If you have two numbers, you
might
want to compare them to check if they are greater than or less than
each other.
The operators, > and <, do this respectively:

>>> 5 > 9

False

Here is a table of comparison operations to create boolean values:

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

is Identical object

is not Not identical object

These operations work on most types. If you create a custom class that
defines
the appropriate magic methods, your class can use them as well:

>>> name = 'Matt'

>>> name == 'Matt'

True

>>> name != 'Fred'

True

>>> 1 > 3

False

Note

The “rich comparison” magic methods, __gt__, __lt__, __ge__,
__le__, __eq__, and __ne__ correspond to >, <, >=,
<=, ==, and !=
respectively. Defining all of these can be somewhat
 tedious and
repetitive. For classes where these comparisons are commonly used,
the functools.total_ordering class decorator gives you all of the
comparison functionality as long as you define __eq__ and __le__.
The
 decorator will automatically derive the remainder of the
comparison methods.
 Otherwise, all six methods should be
implemented:

>>> import functools

>>> @functools.total_ordering

... class Abs(object):

... def __init__(self, num):

... self.num = abs(num)

... def __eq__(self, other):

... return self.num == abs(other)

... def __lt__(self, other):

... return self.num < abs(other)

>>> five = Abs(-5)

>>> four = Abs(-4)

>>> five > four # not using less than!

True

Decorators are considered an intermediate subject and are not
covered in this beginning book.

Tip

The is and is not statements are for comparing identity. When
testing for
identity—if two objects are the same actual object with the
same id (not just
the same value)—use is or is not. Since None is a
singleton and only has one identity, is and is not are used
with None:

>>> if name is None:

... # initialize name

Combining conditionals

Conditional expressions are combined using boolean logic. This
 logic
consists of the and, or, and not operators.

Boolean Operator Meaning

x and y Both x and y must evaluate to True for true result

x or y If x or y is True, result is true

not x Negate the value of x (True becomes False and vice versa)

Below is a simple example for setting a grade based on a score using
and
to test whether the score is between two numbers:

>>> score = 91

>>> if score > 90 and score <= 100:

... grade = 'A'

Note

Python allows you to do the above example using a range comparison
like this:

>>> if 90 < score <=100:

... grade = 'A'

Either style works, but range comparisons are not common in other
languages.

Here is an example for checking if a given name is a member of a band:

>>> name = 'Paul'

>>> beatle = False

>>> if name == 'George' or \

... name == 'Ringo' or \

... name == 'John' or \

... name == 'Paul':

... beatle = True

... else:

... beatle = False

Note

In the above example the \ at the end of "'George' or \" indicates
that the statement will be continued on the next line.

Like most programming languages, Python allows you to wrap
conditional statements in parentheses. Because they are not required
in
Python, most developers leave them out unless they are needed for
operator precedence. But another subtlety of using parentheses is
that
they serve as a hint to the interpreter when a statement is
still open and
will be continued on the next line, hence the \
 is not needed in that
case:

>>> name = 'Paul'

>>> beatle = False

>>> if (name == 'George' or

... name == 'Ringo' or

... name == 'John' or

... name == 'Paul'):

... beatle = True

... else:

... beatle = False

Tip

An idiomatic Python version of checking membership is listed below.
To check
if a value is found across a variety of values, you can throw
the values in a
set and use the in operator:

>>> beatles = {'George', 'Ringo', 'John', 'Paul'}

>>> beatle = name in beatles

A later chapter will discuss sets further.

Here is an example of using the not keyword in a conditional statement:

>>> last_name = 'unknown'

>>> if name == 'Paul' and not beatle:

... last_name = 'Revere'

if statements

Booleans (True and False) are often used in conditional
 statements.
Conditional statements are instructions that say “if this
 statement is true,
perform a block of code, otherwise execute some other code.” Branching
statements are used frequently in Python. Sometimes, the “if statement”
will check values that contain booleans, other times it will check
expressions that evaluate to booleans. Another common check is for
implicit coercion to “truthy” or “falsey” values:

>>> debug = True

>>> if debug: # checking a boolean

... print("Debugging")

Debugging

else statements

An else statement can be used in combination with an if statement.
The
body of the else statement will execute only if the if statement
evaluates
to False.
Here is an example of combining an else statement with an if
statement. The school below appears to have grade inflation:

>>> score = 87

>>> if score >= 90:

... grade = 'A'

... else:

... grade = 'B'

Note that the expression, score >= 90, is evaluated by Python and
turns
into a False. Because the “if statement” was false, the
statements under the

else block are executed, and the grade
variable is set to 'B'.

More choices

The previous example does not work for most schools. You can add more
intermediate steps if needed using the elif keyword. elif is
 an
abbreviation for “else if”. Below is a complete grading
scheme:

>>> score = 87

>>> if score >= 90:

... grade = 'A'

... elif score >= 80:

... grade = 'B'

... elif score >= 70:

... grade = 'C'

... elif score >= 60:

... grade = 'D'

... else:

... grade = 'F'

The if, elif, and else statements above each have their own block.
Python will start from the top trying to find a statement that evaluates to
True, when it does, it runs the block and then continues executing at the
code
following all of the elif and else blocks. If none of the if or
elif
statements are True, it runs the block for the else statement.

Note

The if statement can have zero or more elif statements. The else
statement is optional.
If it exists, there can only be one.

Whitespace

A peculiarity you may have noticed is the colon (:)
following the boolean
expression in the if statement. The lines
immediately after the if statement

were indented by four spaces. The
indented lines are the block of code that
is executed when the
if expression evaluates to True.

In other languages, an if statement might look like this:

if (score >= 90) {

 grade = 'A';

}

In many of these languages, the curly braces, { and }, denote the
boundaries of the
 if block. Any code between these braces is executed
when the score is
greater than or equal to 90.

Python, unlike those other languages, uses two things to denote
blocks:

a colon (:)
indentation

If you have programmed in other languages, it is easy to learn the
whitespace rules in Python. All you have to do is replace the left
 curly
bracket ({) with a colon (:) and indent consistently
 until the end of the
block.

Tip

What is consistent indentation? Normally either tabs or spaces are
used
to indent code. The Python interpreter only cares about
consistency on
a per-file basis. It is possible to have a project
with multiple files that
each use different indentation schemes, but
this would be silly.

In Python, using four spaces is the preferred way to indent
 code.
This is described in PEP 8. If you mix tabs and spaces in
the same file,
you will eventually run into problems.

Although spaces are the preferred mechanism, if you are working on
code that already uses tabs, it is better to be consistent. In that
 case,
continue using tabs with the code.

The python3 executable will complain with a TabError when you
mix tabs and spaces.

Summary

This chapter discussed the if statement. This statement
 can be used to
create arbitrarily complex conditions when combining
 expressions with
and, or, and not.

Blocks, indentation, and whitespace were also discussed. Sometimes
when people
 encounter Python, the required whitespace rules may seem
like a nuisance.
I've run across such people in my trainings. When asked if
and why they indent code
 in other languages, they reply “Of course, it
makes code more readable”.
 In Python, you emphasize readability, and
enforcing whitespace tends to aid in that.

Exercises

1. Write an if statement to determine whether a variable holding a year is
a
 leap year. (See the Numbers chapter exercises for the rules for leap

http://www.python.org/dev/peps/pep-0008

years).
2. Write an if statement to determine whether a variable holding an

integer is odd.
3. Write an if statement. Look at the indented block and check if your

editor
 indented with tabs or spaces. If it is indented with tabs,
configure your
 editor to indent with spaces. Some editors show tabs
differently, if yours
does not distinguish between tabs and spaces, an
easy way to check if the spacing
 is a tab is to cursor over it. If the
cursor jumps four or eight characters,
then it inserted a tab character.

Containers: Lists, Tuples, and Sets

Many of the types discussed so far have been scalars, which hold a
single

value. Integers, floats, and booleans are all scalar values.
Containers hold multiple objects (scalar types or even other
containers).

This chapter will discuss some of these types—lists, tuples,
and sets.

Lists

Lists, as the name implies, are used to hold a list of objects.
In Python, a list
may hold any type of item and may mix item type. Though in
practice, you
only store a single item type in a list.
Another way to think of a list is that
they give an order to a sequence
of items. They
are a mutable type, meaning
you can add, remove, and alter the
contents of them. There are two ways to
create empty lists, one is
to invoke the list class, and the other is to use the
square bracket
literal syntax—[and]:

>>> names = list()

>>> other_names = []

If you want to have prepopulated lists, you can provide the values in
between the square brackets, using the literal syntax:

>>> other_names = ['Fred', 'Charles']

Note

The list class can also create prepopulated lists, but it is
 somewhat
redundant because you have to pass a list into it:

>>> other_names = list(['Fred', 'Charles'])

Typically, this class is used to coerce other sequence types into a list.
For example, a string is a sequence of characters. If you pass a string
into
list, you get back a list of the individual characters:

>>> list('Matt')

['M', 'a', 't', 't']

Lists, like other types, have methods that you can call on them (use
dir([]) to see a complete list of them). For example, to add items
to the
end of a list, use the .append method:

>>> names.append('Matt')

>>> names.append('Fred')

>>> print(names)

['Matt', 'Fred']

Remember that lists are mutable. Python does not return a new list when
you
append to a list. Notice that the call to .append did not return a list (the
REPL didn't print anything out). Rather it returns None and updates the list
in place. (In Python, the default return value is None for a function or a
method. There is no way to have a method that doesn't return anything).

Sequence indices

A list is one of the sequence types in Python. Sequences hold ordered
collections of objects. To work effectively with sequences, it is important to

understand what an index is. Every item in a list has an associated index,
which describes its location in the list. For example, the ingredients in
potato
chips are potatoes, oil, and salt, and they are normally listed in that
order.
Potatoes are first in the list, oil is second, and salt is third.

In many programming languages, the first item in a sequence is at index
0,
 the second item is at index 1, the third at index 2, and so on. Counting
beginning with zero is called zero-based indexing.

You can access an item in a list using the bracket notation and the
index
of said item:

>>> names[0]

'Matt'

>>> names[1]

'Fred'

List insertion

To insert an item at a certain index, use the .insert
 method. Calling
.insert will shift any items following
that index to the right:

>>> names.insert(0, 'George')

>>> print(names)

['George', 'Matt', 'Fred']

The syntax for replacement at an index is the bracket
notation:

>>> names[1] = 'Henry'

>>> print(names)

['George', 'Henry', 'Fred']

To append items to the end of a list use the .append method:

>>> names.append('Paul')

>>> print(names)

['George', 'Henry', 'Fred', 'Paul']

Note

CPython’s underlying implementation of a list is actually an array
of
pointers. This provides quick random access to indices. Also,
appending and removing at the end of a list is quick (O(1)), while
inserting and removing from the middle of a list is slower (O(n)). If
you find yourself inserting and popping from the front of a list,
collections.deque is a better data structure to use.

List deletion

To remove an item, use the .remove method:

>>> names.remove('Paul')

>>> print(names)

['George', 'Henry', 'Fred']

You can also delete
by index using the bracket notation:

>>> del names[1]

>>> print(names)

['George', 'Fred']

Sorting lists

A common operation on lists is sorting. The .sort method orders
 the
values in the list. This method sorts the list in place. It does
 not return a
new, sorted copy of the list, rather it updates the
 list with the items
reordered:

>>> names.sort()

>>> print(names)

['Fred', 'George']

This illustrates sorting a list with the .sort method. Note that the
list is sorted in-place. The
result of calling the .sort method is the
list is mutated, and the method returns None.

If the previous order of the list was important, you can make a copy of it
before sorting. A more general option for sorting sequences is the sorted
function. The sorted function works with any sequence. It returns a new
list
that is ordered:

>>> old = [5, 3, -2, 1]

>>> nums_sorted = sorted(old)

>>> print(nums_sorted)

[-2, 1, 3, 5]

>>> print(old)

[5, 3, -2, 1]

This illustrates sorting a list by using the sorted
function. Note that the list is not modified,
rather a new list is created.
Also, note that Python reused the items of the list. It did not create

new
items.

Final steps showing that the variable assignment is used to create a variable
pointing to the
new list. Note that the sorted function works with any
sequence, not only lists.

Be careful about what you sort. Python wants you to be explicit. In
Python 3,
when you try to sort a list that contains heterogeneous types, you
might get an error:

>>> things = [2, 'abc', 'Zebra', '1']

>>> things.sort()

Traceback (most recent call last):

 ...

TypeError: unorderable types: str() < int()

Both the .sort method and sorted function allow arbitrary
 control of
sorting by passing in a function for the key
parameter. The key parameter
can be any callable (function, class, method)
 that takes a single item and
returns something that can be compared.

In this example, by passing in str as the key
parameter, every item in the
list is sorted as if it were a string:

>>> things.sort(key=str)

>>> print(things)

['1', 2, 'Zebra', 'abc']

Useful list hints

As usual, there are other methods found on lists. Do not hesitate to
open the
Python interpreter and type in a few examples. Remember that
 dir and
help are your friends.

Tip

range is a built-in function that constructs integer sequences. The
following will create
the numbers zero through four:

>>> nums = range(5)

>>> nums

range(5)

Python 3 tends to be lazy. Note that range does not materialize the
list,
 but rather gives you an iterable that will return those numbers
when iterated over.
 By passing the result into list you can see the
numbers it would generate:

>>> list(nums)

[0, 1, 2, 3, 4]

Notice that range does not include 5 in its sequence. Many
Python
functions dealing with final indices mean “up to but not
 including”.
(Slices are another example of this you will see later).

If you need to start at a non-zero number, range will accept two
parameters. When there are two parameters, the first is the
 starting
number (including itself), and the second is the “up to but
 not
including” number:

numbers from 2 to 5

>>> nums2 = range(2, 6)

>>> nums2

range(2, 6)

range also has an optional third parameter—stride. A
stride of one
(which is the default) means the next number in the
 sequence that
range returns should be one more than the previous. A
 stride of 2

would return every other number. Below is an example
 that returns
only even numbers below eleven:

>>> even = range(0, 11, 2)

>>> even

range(0, 11, 2)

>>> list(even)

[0, 2, 4, 6, 8, 10]

Note

The “up to but not including” construct is more formally known
as the
half-open interval convention. It is commonly used when
 defining
sequences of natural numbers. This construct has a few nice
properties:

The difference between the end and start is the length when
dealing
with a sequence of consecutive numbers

Two subsequences can be spliced together cleanly without
overlap

Python adopts this half-open interval idiom widely. Here is an
example:

>>> a = range(0, 5)

>>> b = range(5, 10)

>>> both = list(a) + list(b)

>>> len(both) # 10 - 0

10

>>> both

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If you are
dealing with numeric sequences you might want to follow
suit,
especially when defining APIs.

Famous computer scientist, Edsger Dijkstra, posited on the reasons
for using zero-based indexing, and why it is the correct choice. 10
He
ends by saying:

Many programming languages have been designed without due
attention to this detail.

Luckily, Python is not one of those languages.

Tuples

Tuples (commonly pronounced as either “two”-ples or “tuh”-ples) are
immutable sequences. You should think of them as ordered records.
Once
you create them, you cannot change
them. To create a tuple using the literal
syntax, use parentheses around the members and
commas in between. There
is also a tuple class
 that you can use to construct a new tuple from an
existing sequence:

>>> row = ('George', 'Guitar')

>>> row

('George', 'Guitar')

>>> row2 = ('Paul', 'Bass')

>>> row2

('Paul', 'Bass')

You can create tuples with zero or one items in them. Though in
practice,
because tuples hold record type data, this isn't super
 common. There are
two ways to create an empty tuple, using either the tuple
 function or the
literal syntax:

>>> empty = tuple()

>>> empty

()

>>> empty = ()

>>> empty

()

Here are three ways to create a tuple with one item in it:

>>> one = tuple([1])

>>> one

(1,)

>>> one = (1,)

>>> one

(1,)

>>> one = 1,

>>> one

(1,)

Note

Parentheses are used for denoting the calling of functions or
methods
in Python. They are also used to specify operator
 precedence. In
addition, they may be used in tuple creation. This
 overloading of
parentheses can lead to confusion. Here is the simple
 rule, if there is
one item in the parentheses, then Python treats
 the parentheses as
normal parentheses (for operator precedence),
 such as those that you
might use when writing (2 + 3) * 8. If
 there are multiple items
separated by commas, then Python treats them
as a tuple:

>>> d = (3)

>>> type(d)

<class 'int'>

In the above example, d might look like a tuple with parentheses
but
Python claims it is an integer. For tuples with only one item,
you need
to put a comma (,) following the
item—or use the tuple class with a
single item list:

>>> e = (3,)

>>> type(e)

<class 'tuple'>

Here are three ways to create a tuple with more than one item. Typically,
you
would use the last one to be Pythonic. Because it has parentheses it is
easier to
see that it is a tuple:

>>> p = tuple(['Steph', 'Curry', 'Guard'])

>>> p

('Steph', 'Curry', 'Guard')

>>> p = 'Steph', 'Curry', 'Guard'

>>> p

('Steph', 'Curry', 'Guard')

>>> p = ('Steph', 'Curry', 'Guard')

>>> p

('Steph', 'Curry', 'Guard')

Because tuples are immutable you cannot append to them:

>>> p.append('Golden State')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'tuple' object has no attribute

'append'

Note

Why the distinction between tuples and lists? Why not use lists
since
they appear to be a super-set of tuples?

The main difference between the objects is mutability. Because
tuples are immutable, they are able to serve as keys in
 dictionaries.
Tuples are often used to represent a record of data
such as the row of a
database query, which may contain
 heterogeneous types of objects.
Perhaps a tuple would contain a
name, address, and age:

>>> person = ('Matt', '123 North 456 East', 24)

Tuples are used for returning multiple items from a function.
Tuples
also serve as a hint to the developer that this type
 is not meant to be
modified.

Tuples also use less memory than lists. If you have sequences that
you are not mutating, consider using tuples to conserve memory.

Sets

Another container type found in Python is a set. A set is an unordered
collection that cannot contain duplicates. Like a tuple, it can be instantiated
with a list or anything you can iterate over. Unlike a list or a tuple, a set
does not care about order. Sets are particularly useful for two things,
removing
 duplicates and checking membership. Because the lookup
mechanism is based on the
optimized hash function found in dictionaries, a
lookup operation takes very
little time, even on large sets.

Note

Because sets must be able to compute a hash value for each item in the
set,
 sets can only contain items that are hashable. A hash is a semi-
unique number
 for a given object. If an object is hashable, it will
always generate the
same hash number.

In Python,
 mutable items are not hashable. This means that you
cannot hash a list
or dictionary. To hash your own user-created classes,
you will
need to implement __hash__ and __eq__.

Sets can be specified by passing in a sequence into the set class
(another
coercion class that appears as a function):

>>> digits = [0, 1, 1, 2, 3, 4, 5, 6,

... 7, 8, 9]

>>> digit_set = set(digits) # remove extra 1

They can also be
created with a literal syntax using { and }:

>>> digit_set = {0, 1, 1, 2, 3, 4, 5, 6,

... 7, 8, 9}

As was mentioned, a set is great for removing duplicates. When a set is
created from a sequence, any duplicates are removed. The extra 1
 was
removed from digit_set:

>>> digit_set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

To check for membership, you use the in operation:

>>> 9 in digit_set

True

>>> 42 in digit_set

False

Note

There is a contains protocol in Python. If a class (set or list, or
user-
defined class) implements the __contains__ method (or the iteration
protocol), you can use in with to check for membership. Due to how
sets
 are implemented, membership tests against them can be much
quicker than tests
against a list.

Below, a set called odd is created. This set will aid in the following
examples:

>>> odd = {1, 3, 5, 7, 9}

Sets provide set operations, such as union
(|), intersection (&), difference
(-), and xor (^).

The difference (-) operator removes items in one set from
another:

>>> odd = {1, 3, 5, 7, 9}

difference

>>> even = digit_set - odd

>>> even

{0, 8, 2, 4, 6}

Notice that the order of the result is somewhat arbitrary at a casual
glance. If the order is important, a set is not the data type you should
use.

The intersection (&) operation (you can think of it as the area where two
roads intersect) returns the items found in
both sets:

>>> prime = set([2, 3, 5, 7])

those in both

>>> prime_even = prime & even

>>> prime_even

{2}

The union (|) operation returns a set composed of all the items from both
sets, with
duplicates removed:

>>> numbers = odd | even

>>> print(numbers)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Xor (^) is an operation that returns a set of items that only are
found in
one set or the other, but not both:

>>> first_five = set([0, 1, 2, 3, 4])

>>> two_to_six = set([2, 3, 4, 5, 6])

>>> in_one = first_five ^ two_to_six

>>> print(in_one)

{0, 1, 5, 6}

Tip

Why use a set instead of a list? Remember that sets are optimized for
membership and
removing duplicates. If you find yourself performing
unions or differences
among lists, look into using a set instead.

Sets are also much quicker for testing membership. The in operator
runs faster for sets than lists. However, this speed comes at a
cost. Sets
do not keep the elements in any particular order, whereas
 lists and
tuples do.
 If the order is important for you, use a data structure that
remembers the order.

Summary

This chapter discussed a few of the built-in container types. You saw lists,
which are ordered sequences that are mutable. Remember that a list method
does
not return a new list, but typically will change the list in place. Lists
will
support inserting any item, but you typically put items of the same type
in a
list.

You also saw tuples. Tuples are also ordered like lists, unlike lists,
however,
 tuples do not support mutation. In practice, you use them to
represent a record of data,
like a row retrieved from a database. When they
are representing records, they
might hold different types of objects.

Finally, sets were introduced. Sets are mutable, but they are unordered.
They are
used to remove duplicates and check membership. Because
of the
hashing mechanism they use, these set operations are fast and efficient.
But
it requires that the items in the set are hashable.

Exercises

1. Create a list. Append the names of your colleagues and friends to it.
Has the
id of the list changed? Sort the list. What is the first item in
the
list? What is the second item in the list?

2. Create a tuple with your first name, last name, and age. Create a list,
people, and append your tuple to it. Make more tuples with the
corresponding information from your friends and append them to the
list. Sort
the list. When you learn about functions, you can use the key
parameter to
 sort by any field in the tuple, first name, last name, or
age.

3. Create a list of the names of the first names your friends. Create a list
with the top ten common names. Use set operations to see if any of
your
friends have common names.

4. Go to Project Gutenberg 11 and find a page of text from Shakespeare.
Paste
 it into a triple-quoted string. Create another string with a
paragraph of
text from Ralph Waldo Emerson. Use the string's .split
method to get a
list of words from each. Using set operations find the
common words and words
unique to both authors.

5. Tuples and lists are similar but have different behavior. Use set
operations
 to find the attributes of a list object that are not in a tuple
object.

10 - https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EW

D831.html
11 - https://www.gutenberg.org/

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://www.gutenberg.org/

Iteration

A common idiom when dealing with sequences is to loop over the contents

of the
 sequence. You might want to filter out one of the items, apply a
function to
it, or print it out. The for loop is one way to do this. Here is an
example of printing out the strings in a list:

>>> for letter in ['c', 'a', 't']:

... print(letter)

c

a

t

>>> print(letter)

t

Note

Notice that a for loop construct contains a colon (:)
followed by the
indented code. (The indented code is the block of the
for loop).

This illustrates how a for loop creates a variable. A new variable, letter,
is created. At first,
it points to 'c', which is printed. Then the loop continues
and the variable points to 'a'.

The for loop continues with the final loop. After 't' is printed, the loop exits.
At this point,
the list literal is garbage collected. Because the only thing pointing to 'c' and
'a' was the list,
those are also garbage collected. However, the letter variable is still
pointing to 't'. Python

doesn't clean up this variable, it hangs around after the for loop
is done.

During a for loop, Python makes a new variable, letter, that holds the
item of iteration.
Note that the value of letter is not the index position, but
rather the string. This variable
 is not cleaned up by Python after the for
loop is done.

Looping with an index

In languages like C, when you loop over a sequence, you do not
loop over
the items in the sequence, rather you loop over the
 indices. Using those

indices you can pull out the items at those index
values. Here is one way to
do that in Python using the built-in
functions range and len:

>>> animals = ["cat", "dog", "bird"]

>>> for index in range(len(animals)):

... print(index, animals[index])

0 cat

1 dog

2 bird

The above code is a code smell. It indicates that you are not using Python
as you should. Usually, the reason for
 iterating over a sequence is to get
access to the items in the
 sequence, not the indices. But occasionally you
will also need the
 index position of the item. Python provides the built-in
enumerate
 function that makes the combination of range and len

unnecessary. The enumerate function returns a tuple of (index,
 item) for
every item in the sequence:

>>> animals = ["cat", "dog", "bird"]

>>> for index, value in enumerate(animals):

... print(index, value)

0 cat

1 dog

2 bird

Because the tuple returns a pair of index and value, you can use tuple
unpacking
to create two variables, index and value directly in the for loop.
You
need to put a comma between the variable names. As long as the tuple
is the same
length as the number of variables you include in the for loop,
Python will
happily create them for us.

Breaking out of a loop

You may need to stop processing a loop early, without going over every
item in the loop. The break keyword will jump out of the nearest
loop you

are in. Below is a program that adds numbers until it comes
 to the first
negative one. It uses the break statement to stop processing when
it comes
across a negative number:

>>> numbers = [3, 5, 9, -1, 3, 1]

>>> result = 0

>>> for item in numbers:

... if item < 0:

... break

... result += item

>>> print(result)

17

Note

The line:

result += item

uses what is called augmented assignment. It is similar to writing:

result = result + item

Augmented assignment is slightly quicker as the lookup
 for the
result variable only occurs once. Another added benefit is that
 it is
easier to type.

Note

The if block inside the for block is indented
eight spaces. Blocks can
be nested, and each level needs to be indented
consistently.

Skipping over items in a loop

Another common looping idiom is to skip over items. If the body of
the for
loop takes a while to execute, but you only need to
 execute it for certain
items in the sequence, the continue keyword
 comes in handy. The
continue statement tells Python to disregard
processing of the current item
in the for loop and “continue” from the
 top of the for block with the next
value in the loop.

Here is an example of summing all positive numbers:

>>> numbers = [3, 5, 9, -1, 3, 1]

>>> result = 0

>>> for item in numbers:

... if item < 0:

... continue

... result = result + item

>>> print(result)

21

The in statement can be used for membership

You have used the in statement in a for loop.
In Python, the in statement
can also be used to check for
 membership. If you want to know if a list
contains an item,
you can use the in statement to check that:

>>> animals = ["cat", "dog", "bird"]

>>> 'bird' in animals

True

If you want the index location, use the .index method:

>>> animals.index('bird')

2

Removing items from lists during iteration

It was mentioned previously that lists are mutable. Because they are
mutable you can add or remove items from them. Also, lists are
sequences,

so you can loop over them. Do not mutate
the list at the same time that you
are looping over it.

For example, if you wanted to filter a list of names so it only contained
'John' or 'Paul', this would be the wrong way to do it:

>>> names = ['John', 'Paul', 'George',

... 'Ringo']

>>> for name in names:

... if name not in ['John', 'Paul']:

... names.remove(name)

>>> print(names)

['John', 'Paul', 'Ringo']

What happened? Python assumes that lists will not be modified while
they are being iterated over. When the loop got to 'George', it
removed the
name from the list. Internally Python tracks the index
 location of the for
loop. At that point there are only three items in
 the list, 'John', 'Paul',
and 'Ringo'. But the for loop
internally thinks it is on index location 3 (the
fourth item), and
there is no fourth item so the loop stops, leaving 'Ringo'
in.

There are two alternatives to the above contruct of removing items from
a list during iteration. The first is to collect the items to be
removed during
a pass through the list.

In a subsequent loop, iterate over only the items that need to be deleted
(names_to_remove), and remove them from the original list (names):

>>> names = ['John', 'Paul', 'George',

... 'Ringo']

>>> names_to_remove = []

>>> for name in names:

... if name not in ['John', 'Paul']:

... names_to_remove.append(name)

>>> for name in names_to_remove:

... names.remove(name)

>>> print(names)

['John', 'Paul']

Another option is to iterate over a copy of the list. This can be done
relatively painlessly using the [:] slice copy construct that is
covered in the
chapter on slicing:

>>> names = ['John', 'Paul', 'George',

... 'Ringo']

>>> for name in names[:]: # copy of names

... if name not in ['John', 'Paul']:

... names.remove(name)

>>> print(names)

['John', 'Paul']

else clauses

A for loop can also have an else clause. Any code in an
else block will
execute if the for loop did not hit a
break statement. Below is sample code
that checks if numbers
in a loop are positive:

>>> positive = False

>>> for num in items:

... if num < 0:

... break

... else:

... positive = True

Note that continue statements do not have any effect on whether an
else block is executed.

The else statement is somewhat oddly named. For a for loop, it
indicates that the whole sequence was processed. A typical use of an
else
statement in a for loop is to indicate that an item was
not found.

while loops

Python will let you loop over a block of code while a condition holds. This
is
 called a while loop and you use the while statement to create a it. A
while loop
 is followed by an expression that evaluates to True or False.
Then,
 a colon follows it. Remember what follows a colon (:) in Python?
Yes,
an indented block of code. This block of code will continue to repeat
as long as the
expression evaluates to True. This allows you to easily create
an infinite loop.

You usually try to avoid infinite loops because they cause your program
to
"hang", forever caught in the processing of a loop with no way out. One
exception to this is a server, that loops forever, continuing to process
requests. Another exception seen in more advanced Python is an infinite
generator. A generator behaves like a lazy list and only creates values when
you
loop over it. If you are familiar with stream processing, you could think
of it
as a stream. (I don't cover generators in this book, but do in my more
advanced
book.)

Typically, if you have an object that supports iteration, you use a for
loop
 to iterate over the items. You use while loops when you don't have
easy access to
an iterable object.

A common example is counting down:

>>> n = 3

>>> while n > 0:

... print(n)

... n = n - 1

3

2

1

You can also use the break statement to exit a while loop:

>>> n = 3

>>> while True:

... print(n)

... n = n - 1

... if n == 0:

... break

Summary

This chapter discussed using the for loop to iterate over a sequence.
You
saw that you can loop over lists. You can also loop over strings, tuples,
dictionaries,
 and other data structures. In fact, you can define your own
classes that respond to the for
statement, by implementing the .__iter__
method.

A for loop creates a variable during iteration. This variable is
 not
garbage collected after the for loop, it sticks around. If your for loop
 is
inside of a function, the variable will be garbage collected when the
function exits.

The enumerate function was introduced. This function returns a
sequence of tuples of
 index, item pairs for the sequence passed into it. If
you need to get the index location
 as well as the item of iteration, use
enumerate.

Finally, you saw how to break out of loops, continue to the next item of
iteration,
and use else statements. These constructs enable you to adeptly
configure your looping
logic.

Exercises

1. Create a list with the names of friends and colleagues. Calculate the
average
length of the names.

2. Create a list with the names of friends and colleagues. Search for the
name
John using a for loop. Print not found if you didn't find it.
(Hint:
use else).

3. Create a list of tuples of first name, last name, and age for your friends
and colleagues. If you don't know the age, put in None. Calculate the
average age, skipping over any None values. Print out each name,
followed
by old or young if they are above or below the average age.

Dictionaries

Dictionaries are a highly optimized built-in type in Python.
You can compare a Python dictionary to an English dictionary. An

English
dictionary has words and definitions. The purpose of a dictionary is
to allow
 fast lookup of the word in order to find the definition. You can
quickly
lookup any word by doing a binary search (open up the dictionary
to the
midpoint, and determine which half the word is in, and repeat).

A Python dictionary also has words and definitions, but you call them
keys and
values respectively. The purpose of a dictionary is to provide fast
lookup of
 the keys. You can quickly look for a key and pull out the value
associated with
 it. Like an English dictionary, where it would take a long
time to
determine the word from a definition (if you didn't know the word
beforehand),
looking up the value is slow.

In Python 3.6, there is a feature that is new for dictionaries. The keys are
now sorted
by insertion order. If you are writing Python code that needs to
work in prior versions,
 you will need to remember that prior to 3.6, keys
had an arbitrary order (that allowed
Python to do quick lookups but wasn't
particularly useful to end users).

Dictionary assignment

Dictionaries provide a link from a key to a value. (Other languages call
them
hashes, hash maps, maps, or associative arrays). Suppose you
wanted
to store information about an individual. You saw how you could
 use a
tuple to represent a record. A dictionary is another mechanism.
 Because

dictionaries are built into Python, you can use a literal syntax
to create one.
This one has first and last names:

>>> info = {'first': 'Pete', 'last': 'Best'}

Note

An alternate way to create a dictionary is with the built-in dict class.
If you pass a list of tuple pairs into the class, it will return a dictionary:

>>> info = dict([('first', 'Pete'),

... ('last', 'Best')])

You can also use named parameters when you call dict:

>>> info = dict(first='Pete', last='Best')

If you use named parameters, they must be valid Python variable
names, and they
will be converted to strings.

You can use index operations to insert values into the dictionary:

>>> info['age'] = 20

>>> info['occupation'] = 'Drummer'

This illustrates the creation of a dictionary. In this case, you use an
existing variable for the
value. Note that the dictionary does not copy the
variable, but it points to it (increasing the

reference count).

In the above example, the keys are 'first', 'last', 'age', and
'occupation'. For example, 'age' is the key that maps to the integer
20,
the value. You can quickly look up the value for 'age' by performing
 a
lookup with an index operation:

>>> info['age']

20

On the flip side, finding what the key is that has the value 20 is a slow
operation. It would be like giving someone a definition from an English
Dictionary and asking what word has that definition.

The above example illustrates the literal syntax for creating an initially
populated dictionary. It also shows how the square brackets (index
operations)
are used to insert items into a dictionary and pull them out. An
index operation
 associates a key with a value when used in combination
with the assignment
 operator (=). When the index operation has no
assignment, it looks
up the value for a given key.

Retrieving values from a dictionary

As you have seen, the square bracket literal syntax can pull a value out of a
dictionary when you use the brackets without assignment:

>>> info['age']

20

Be careful though, if you try to access a key that does not exist in
 the
dictionary, Python will throw an exception:

>>> info['Band']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'Band'

Because Python likes to be explicit and fail fast, raising an exception is
the
desired behavior. You know that the 'Band' key is not in the dictionary.
It
would be bad if Python decided to return an arbitrary value for a key that
was
not in the dictionary. Doing so could allow errors to propagate further
in
your program and mask a logic error.

The in operator

Python provides an operator, in, that allows you to quickly check
if a key
is in a dictionary:

>>> 'Band' in info

False

>>> 'first' in info

True

As you have seen, in also works with sequences. You can use the in
statement with a list, set, or string to check for membership:

>>> 5 in [1, 3, 6]

False

>>> 't' in {'a', 'e', 'i'}

False

>>> 'P' in 'Paul'

True

Note

Python 3 removed the .has_key method, which provided the same
functionality as the in statement, but is specific to a dictionary.
Hooray
for steps forward towards consistency!

The in statement will work with most containers. In addition, you can
define
your own classes that respond to this statement. Your object needs to
define the
.__contains__ or be iterable.

Dictionary shortcuts

The .get method of a dictionary will retrieve a value for a
key. .get also
accepts an optional parameter to provide a default
 value if the key is not
found. If you wanted the genre to default to 'Rock',
 you could do the
following:

>>> genre = info.get('Genre', 'Rock')

>>> genre

'Rock'

Tip

The .get method of dictionaries is one way to get around the
KeyError thrown when trying to use the bracket notation to pull
out a
key not found in the dictionary.

It is fine to use this method because you are being explicit about
what will
 happen when the key is missing. You should prefer to fail
fast when you aren't being
specific about the failing case.

setdefault

A useful, but somewhat confusingly named, method of dictionaries
 is the
.setdefault method. The method has the same signature as
 .get and
initially behaves like it, returning a default value if
the key does not exist.
In addition to that, it also sets the value of
the key to the default value if the
key is not found. Because
.setdefault returns a value, if you initialize it
to a mutable
type, such as a dict or list, you can mutate the result in place.
.setdefault can be used to provide an accumulator or counter for a
key.

For example, if you wanted to count the number of people with same
name,
you could do the following:

>>> names = ['Ringo', 'Paul', 'John',

... 'Ringo']

>>> count = {}

>>> for name in names:

... count.setdefault(name, 0)

... count[name] += 1

Without the .setdefault method, a bit more code is required:

>>> names = ['Ringo', 'Paul', 'John',

... 'Ringo']

>>> count = {}

>>> for name in names:

... if name not in count:

... count[name] = 1

... else:

... count[name] += 1

>>> count['Ringo']

2

Tip

Performing these counting types of operations was so common that
later the
 collections.Counter class was added to the Python
standard library. This
 class can perform the above operations much
more succinctly:

>>> import collections

>>> count = collections.Counter(['Ringo', 'Paul',

... 'John', 'Ringo'])

>>> count

Counter({'Ringo': 2, 'Paul': 1, 'John': 1})

>>> count['Ringo']

2

>>> count['Fred']

0

Here is a somewhat contrived example illustrating mutating the result
of
.setdefault. Assume you want to have a dictionary mapping a name to
bands that they played in. If a person named Paul is in two bands, the result
should map Paul to a list containing both of those bands:

>>> band1_names = ['John', 'George',

... 'Paul', 'Ringo']

>>> band2_names = ['Paul']

>>> names_to_bands = {}

>>> for name in band1_names:

... names_to_bands.setdefault(name,

... []).append('Beatles')

>>> for name in band2_names:

... names_to_bands.setdefault(name,

... []).append('Wings')

>>> print(names_to_bands['Paul'])

['Beatles', 'Wings']

To belabor the point, without setdefault this code would be a bit
longer:

>>> band1_names = ['John', 'George',

... 'Paul', 'Ringo']

>>> band2_names = ['Paul']

>>> names_to_bands = {}

>>> for name in band1_names:

... if name not in names_to_bands:

... names_to_bands[name] = []

... names_to_bands[name].\

... append('Beatles')

>>> for name in band2_names:

... if name not in names_to_bands:

... names_to_bands[name] = []

... names_to_bands[name].\

... append('Wings')

>>> print(names_to_bands['Paul'])

['Beatles', 'Wings']

Tip

The collections module from the Python standard library includes
a
handy class—defaultdict. This class behaves like a
dictionary but it
also allows for setting the default value of a key
to an arbitrary factory.
If the default factory is not None, it
is initialized and inserted as a value
any time a key is missing.

The previous example re-written with defaultdict is the
following:

>>> from collections import defaultdict

>>> names_to_bands = defaultdict(list)

>>> for name in band1_names:

... names_to_bands[name].\

... append('Beatles')

>>> for name in band2_names:

... names_to_bands[name].\

... append('Wings')

>>> print(names_to_bands['Paul'])

['Beatles', 'Wings']

Using defaultdict is slightly more readable than using
setdefault.

Deleting keys

Another common operation on dictionaries is the removal of keys and their
corresponding values. To remove an item from a dictionary, use
 the del
statement:

remove 'Ringo' from dictionary

>>> del names_to_bands['Ringo']

Tip

Python will prevent you from adding to or removing from a dictionary
while you are looping
over it. Python will throw a RuntimeError:

>>> data = {'name': 'Matt'}

>>> for key in data:

... del data[key]

Traceback (most recent call last):

 ...

RuntimeError: dictionary changed size during iteration

Dictionary iteration

Dictionaries also support iteration using the for
 statement. By default,
when you iterate over a dictionary, you
get back the keys:

>>> data = {'Adam': 2, 'Zeek': 5, 'Fred': 3}

>>> for name in data:

... print(name)

Adam

Zeek

Fred

Note

The dictionary has a method—.keys—that will also list out the
keys
of a dictionary. In Python 3, the .keys method returns a view.
 The
view is a window into the current keys found in the dictionary. You
can iterate over it, like a list. But, unlike a list, it is not a copy
of the
keys. If you later remove a key from the dictionary, the view
 will
reflect that change. A list would not.

To iterate over the values of a dictionary, iterate over the
 .values
method:

>>> for value in data.values():

... print(value)

2

5

3

The result of .values is also a view. It reflects the current state of the
values
found in a dictionary.

To retrieve both key and value during iteration, use the .items
method,
which returns a view:

>>> for key, value in data.items():

... print(key, value)

Adam 2

Zeek 5

Fred 3

If you materialize the view into a list, you will see that the list is
 a
sequence of (key, value) tuples—the same thing that dict accepts
to create
a dictionary:

>>> list(data.items())

[('Adam', 2), ('Zeek', 5), ('Fred', 3)]

Tip

Remember that a dictionary is ordered based on key insertion order.
If
a different order is desired, you will need to sort the sequence of
iteration.

The built-in function sorted will return a new sorted list,
 given a
sequence:

>>> for name in sorted(data.keys()):

... print(name)

Adam

Fred

Zeek

The sorted function has an optional argument, reverse, to flip the
order of the output:

>>> for name in sorted(data.keys(),

... reverse=True):

... print(name)

Zeek

Fred

Adam

Note

It is possible to have keys of different types. The only requirement for
a key
is that it be hashable. For example, a list isn't hashable because
you can mutate it,
and Python can't generate a consistent hash value for
it.
 If you used a list as a key and then mutated that key, should the
dictionary return
 the value based on the old list, or the new one, or
both? Python refuses to guess here
and makes you use keys that don't
change.

It would be possible to insert items into a dictionary using both
integers and strings
as keys:

>>> weird = {1: 'first',

... '1': 'another first'}

Typically, you don't mix key types, because it is confusing to readers
of the
 code and also makes sorting keys harder. Python 3 won't sort
mixed type lists
without a key function telling Python explicitly how
to compare different
 types. This is one of those areas where Python
gives you the ability to do
 something, but that doesn't mean you
should. In the words of Python core
developer Raymond Hettinger:

Many "Can I do x in Python" questions equate to "Can I stop a
car on train
tracks when no trains are coming?" Yes you can, No
you shouldn't

—@raymondh

Summary

This chapter discussed the dictionary. This data structure is important
because
it is a building block in Python. Classes, namespaces, and modules
in Python are
all implemented using a dictionary under the covers.

Dictionaries provide quick lookup or insertion for a key. You can also do
a lookup
by value, but it is slow. If you find yourself doing this operation
often, it is
a code smell that you should use a different data structure.

You saw how to mutate a dictionary. You can insert and remove keys
from a dictionary.
You can also check a dictionary for membership using
the in statement.

You looked at some fancier constructs, using .setdefault to insert and
return
 values in one operation. You saw that Python includes specialized
dictionary
classes, Counter and defaultdict in the collections module.

Because dictionaries are mutable, you can delete keys from them using
the del
statement. You can also iterate over the keys of a dictionary using a
for
loop.

Remember that Python 3.6 introduced ordering to the dictionary. The
keys are
ordered by insertion order, not alphabetic or numeric order.

Exercises

1. Create a dictionary, info, that holds your first name, last name, and
age.

2. Create an empty dictionary, phone, that will hold details about your
phone.
Add the screen size, memory, OS, brand, etc. to the dictionary.

3. Write a paragraph in a triple-quoted string. Use the .split method to
create a list of words. Create a dictionary to hold the count for every
word
in the paragraph.

4. Count how many times each word is used in a paragraph of text from
Ralph
Waldo Emerson.

5. Write code that will print out the anagrams (words that use the same
letters)
from a paragraph of text.

6. The PageRank algorithm was used to create the Google search engine.
The
algorithm gives a score to each page based on incoming links. It
takes one
 input: a list of pages that link to other pages. Each page
initially gets a
score set to 1. Then multiple iterations of the algorithm
are run, typically
ten. For each iteration:

A page transfers its score divided by the number of outgoing
links to each
page that it links to.
The score transferred is multiplied by a damping factor,
typically set
to .85.

Write some code to run 10 iterations of this algorithm on a list of
tuples of
source and destination links, ie:

links = [('a', 'b'), ('a', 'c'), ('b', 'c')]

Functions

We have come a long way without discussing functions, which are a
basic

building block of Python programs. Functions are discrete
 units of code,
isolated into their own block. You have actually been
 using built-in
functions along the way such as dir, help, (and
the classes that behave like
coercion functions—float, int,
dict, list, and bool).

A function is like a box. It can take input and return output. It can be
passed around and
reused.

One way to think of a function is as a black box that you can send input
to
 (though input is not required). The black box then performs a series of
operations and returns output (it implicitly returns None if the function
ends
without return being called). An advantage of a function is that it
enables
code reuse. Once a function is defined, you can call it multiple times.
If you
have code that you repeatedly run in your program, rather than copying
and
pasting it, you can put it in a function once, then call that function
multiple
times. This gives you less code to reason about, making your programs

easier to understand. It is also easier to change code (or fix bugs) later as
you only have to do it in one place.

Here is a simple example of a function. This function, named add_2,
takes a number as input, adds 2 to that value, and returns the
result:

>>> def add_2(num):

... '''

... return 2 more than num

... '''

... result = num + 2

... return result

What are the different components of a function? This whole group of
code is known as a function definition. First, you see the
 def statement,
which is short for define (i.e. define a
function). Following def is a required
space (one space is fine)
 and then the function name—add_2. This is the
name that is used to
invoke the function. Synonyms for invoke include call,
execute, or run the
function. When Python creates a function, it will create a
new variable,
using the name of the function.

This illustrates the creation of a function. Note that Python creates
a new function object,
then points a variable to it using the name of the function.
Use the dir function on the function

name to see the attributes of the newly created function.

Following the function name is a left parenthesis followed
by num and a
right parenthesis. The names between the parentheses
 (there can be an
arbitrary number of names, in this case, there is only
 one), are the input
parameters. These are the objects that you pass
into a function.

After the parentheses comes a colon (:). Whenever you see a colon
 in
Python, you should immediately think the colon is followed by an
indented
block—similar to the body of the for loops
shown previously. Everything
that is indented is the body of the
function. It is also called a block of code.

The body of a function is where the logic lives. You might recognize the
first 3
 lines of indented code as a triple-quoted string. This is not a
comment, though
it appears to have comment-like text. It is a string. Python
allows you to place
a string immediately after the :, this string is called a
docstring. A
docstring is a string used solely for documentation. It should
describe the
block of code following it. The docstring does not affect the
logic in the
function.

Tip

The help function has been emphasized through this book. It is
important to note that the help function gets its content from
 the
docstring of the object passed into it. If you call help
on add_2, you
should see the following (provided you actually
 typed out the add_2
code above):

>>> help(add_2)

Help on function add_2 in module

__main__:

add_2()

 return 2 more than num

(END)

Providing docstrings can be useful to you as a reminder of what
your
code does. If they are accurate, the docstrings are invaluable to
anyone trying to use your code.

Following the docstring (note that a docstring is optional), comes the
logic of the function. The result is calculated. Finally, the
function uses a
return statement to indicate that it has output. A
return statement is not
necessary, and if it is missing a function
 will return None by default.
Furthermore, you can use more than
one return statement, and they do not
even have to be at the end of
the function. For example, a conditional block
may contain a return
statement inside of an if block and another in an else
block.

To recap, the main parts of a function are:

the def keyword
a function name

function parameters between parentheses
a colon (:)
indentation

docstring
logic
return statement

Creating functions is easy. They allow you to reuse code, which makes
your
 code shorter and easier to understand. They are useful to remove
global state by keeping
 short-lived variables inside of the function body.
Use functions to improve your code.

Invoking functions

When you call or execute a function, you are invoking a
 function. In
Python, you invoke functions by adding
parentheses following the function
name. This code invokes the newly
defined function add_2:

>>> add_2(3)

5

To invoke a function, list its name followed by a left parenthesis, the
input
parameters, and a right parenthesis. The number of parameters should
match the
number of parameters in the function declaration. Notice that the
REPL
 implicitly prints the result—the integer 5. The result is what the
return statement passes back.

You can pass in whatever object you want to the add_2 function.
However,
if that object doesn't support addition of a number, you will get an
exception.
If you pass a string in, you will see a TypeError:

>>> add_2('hello')

Traceback (most recent call last):

 ...

TypeError: must be str, not int

Scope

Python looks for variables in various places. You call these places scopes
(or
namespaces). When looking for a variable (remember that functions are
also
 variables in Python, as are classes, modules, and more), Python will
look in the
following locations, in this order:

Local scope - Variables that are defined inside of functions.
Global scope - Variables that are defined at the global level.
Built-in scope - Variables that are predefined in Python.

In the following code is a function that will look up variables in each of
the three scopes:

>>> x = 2 # Global

>>> def scope_demo():

... y = 4 # Local to scope_demo

... print("Local: {}".format(y))

... print("Global: {}".format(x))

... print("Built-in: {}".format(dir))

>>> scope_demo()

Local: 4

Global: 2

Built-in: <built-in function dir>

Note that after scope_demo is invoked, the local variable y is garbage
collected and no longer available in the global scope:

>>> y

Traceback (most recent call last):

 ...

NameError: name 'y' is not defined

Variables defined inside of a function or method will be local. In general,
you
 should try to avoid global variables. They make it harder to reason
about code.
 Global variables are common in books, blogs, and
documentation because using
 them requires writing less code, and allows
you to focus on concepts without
them being wrapped in a function. Using
functions and classes are some of the
 tools that help you remove global
variables, make your code more modular, and
easier to understand.

Note

Python will allow you to override variables in the global and built-in
scope.
At the global level, you could define your own variable called
dir. At
that point, the built-in function, dir, is shadowed by the global
variable. You could also do this within a function, and create a local
variable that shadows a global or built-in:

>>> def dir(x):

... print("Dir called")

>>> dir('')

Dir called

You can use the del statement to delete variables in the local or
global
 scope. In practice though, you don't see this, as it is better to
avoid
shadowing built-ins in the first place:

>>> del dir

>>> dir('')

['__add__', '__class__', '__contains__', ...]

Hint

You can use the locals and globals functions to list these scopes.
These return dictionaries
with their current scope in them:

>>> def foo():

... x = 1

... print(locals())

>>> foo()

{'x': 1}

The __builtins__ variable lists the built-in names. If you access its
__dict__ attribute, it will give you a dictionary similar to globals
and locals.

Multiple parameters

Functions can have many parameters. Below is a function that takes two
parameters and returns their sum:

>>> def add_two_nums(a, b):

... return a + b

Note that Python is a dynamic language and you don't specify the types
of the parameters. This function can add two integers:

>>> add_two_nums(4, 6)

10

It can also add floats:

>>> add_two_nums(4.0, 6.0)

10.0

Strings too:

>>> add_two_nums('4', '6')

'46'

Note that the strings use + to perform string concatenation
 (joining two
strings together).

However, if you try to add a string and a number, Python will complain:

>>> add_two_nums('4', 6)

Traceback (most recent call last):

 ...

TypeError: Can't convert 'int' object to str implicitly

This is an instance where Python wants you to be more explicit about
what
operation is desired, and it isn't going to guess for you. If you wanted
to add
 a string type to a number, you might want to convert them to
numbers first (using
float or int). Likewise, it might be useful to convert
from numbers to
 strings if concatenation is the desired operation. Python
does not implicitly
choose which operation to perform. Rather, it throws an
error which should force
the programmer to resolve the ambiguity.

Default parameters

One cool feature of Python functions is default
parameters. Like the name
implies, default parameters allow you to
 specify the default values for
function parameters. The default
parameters are then optional, though you
can override them if you
need to.

The following function is similar to add_two_nums, but will
 default to
adding 3 if the second number is not provided:

>>> def add_n(num, n=3):

... """default to

... adding 3"""

... return num + n

>>> add_n(2)

5

>>> add_n(15, -5)

10

To create a default value for a parameter, follow the parameter
name by
an equal sign (=) and the chosen value.

Note

Default parameters must be declared after non-default
 parameters.
Otherwise, Python will give you a SyntaxError:

>>> def add_n(num=3, n):

... return num + n

Traceback (most recent call last):

 ...

SyntaxError: non-default argument follows

default argument

Because default parameters are optional, Python forces you to
declare required parameters before optional ones. The above
 code
wouldn't work with an invocation like add_n(4) because
the required
parameter is missing.

Tip

Do not use mutable types (lists, dictionaries) for default
 parameters
unless you know what you are doing. Because of the way
 Python
works, the default parameters are created only once—at
 function
definition time, not at function execution time. If you use a mutable
default value, you
will end up re-using the same instance of the default
parameter
during each function invocation:

>>> def to_list(value, default=[]):

... default.append(value)

... return default

>>> to_list(4)

[4]

>>> to_list('hello')

[4, 'hello']

The fact that default parameters are instantiated at the time the
function is created is considered a wart by many. This is because
 the
behavior can be surprising. The workaround is to push the
creation of
the default values from function definition time (which only
 occurs
once) to function runtime (which will create a new value every time
the function is executed).

Change the mutable default
parameters so that they default to None.
Then, create an instance of the
desired mutable type within the body of
the function if the default
is None:

>>> def to_list2(value, default=None):

... if default is None:

... default = []

... default.append(value)

... return default

>>> to_list2(4)

[4]

>>> to_list2('hello')

['hello']

The following code:

... if default is None:

... default = []

Can also be written as a single line using a conditional expression:

... default = default if default is not None else []

Naming conventions for functions

Function naming conventions are similar to variable naming conventions
(and are also found in the PEP 8 document). This is called snake case,
which
is claimed to be easier to read. Function names should:

be lowercase
have_an_underscore_between_words
not start with numbers
not override built-ins
not be a keyword

Languages such as Java have adopted the camel case naming convention.
In that
 style you might have a variable named sectionList or a method
named
 hasTimeOverlap. In Python, you would typically name these
section_list
 and has_time_overlap respectively. While Python code
should follow the PEP 8
conventions, there is also an allowance in PEP 8
for consistency. If the code
 you are working on has a different style of
naming convention, follow suit and
 be consistent with the existing code.

http://www.python.org/dev/peps/pep-0008

Indeed, the unittest module in the
 standard library still has Java style
conventions (because it was originally a
port from the Java library junit).

Summary

Functions allow you to encapsulate change and side effects within their
body.
 In this chapter, you learned that functions can take input and return
output. There can be multiple input parameters, and you can also provide
default
values for them.

Remember that Python is based on objects, and when you create a
function, you
also create a variable with the function name that points to it.

Functions can also have a docstring which is a string written immediately
after
the declaration. These strings are used to present documentation when
the
function is passed into the help function.

Exercises

1. Write a function, is_odd, that takes an integer and returns True if
the
number is odd and False if the number is not odd.

2. Write a function, is_prime, that takes an integer and returns True if
the number is prime and False if the number is not prime.

3. Write a binary search function. It should take a sorted sequence and the
item it is looking for. It should return the index of the item if found.
It
should return -1 if the item is not found.

4. Write a function that takes camel cased strings (i.e.
ThisIsCamelCased), and
 converts them to snake case (i.e.
this_is_camel_cased). Modify the function by
 adding an argument,
separator, so it will also convert to kebab case (i.e.
 this-is-camel-
case) as well.

Indexing and Slicing

Python provides two constructs to pull data out of
sequence-like types

(lists, tuples, and even strings). These are the indexing
 and slicing
constructs. Indexing allows you to access single items out of a
 sequence,
while slicing allows you to pull out a sub-sequence from a
sequence.

Indexing

You have seen indexing with lists. For example, if you have a list
containing
pets, you can pull out animals by index:

>>> my_pets = ["dog", "cat", "bird"]

>>> my_pets[0]

'dog'

Tip

Remember that in Python indices start at 0. If you want to pull out the
first item you
 reference it by 0, not 1. This is called zero-based
indexing.

This illustrates positive and negative index positions.

Python has a cool feature where you can reference items using negative
indices. -1 refers to the last item,
-2 the second to last item, etc. This is
commonly used to pull off the last
item in a list:

>>> my_pets[-1]

'bird'

Guido van Rossum, the creator of Python, tweeted to explain how to
understand negative index values:

[The] proper way to think of [negative indexing] is to reinterpret a[-
X] as a[len(a)-X]
—@gvanrossum

You can also perform an index operation on a tuple or a string:

>>> ('Fred', 23, 'Senior')[1]

23

>>> 'Fred'[0]

'F'

Some types, such as sets, don't support index operations. If you want to
define
your own class that supports index operations, you should implement
the
.__getitem__ method.

Slicing sub lists

In addition to accepting an integer to pull out a single item, a
slice may be
used to pull out a sub-sequence. A slice may contain
 the start index, an
optional end index,
and an optional stride, all separated by a colon.

Here is a slice that pulls out the first two items of a list:

>>> my_pets = ["dog", "cat", "bird"] # a list

>>> print(my_pets[0:2])

['dog', 'cat']

Remember that Python uses the half-open interval convention. The
 list
goes up to but does not include the end index. As mentioned
previously, the
range function also behaves similarly with its
second parameter.

This illustrates slicing off the first four characters of a string.
Three options are shown. The
last option is the preferred way. You don't need
the zero index since it is the default. Using

negative indices is just silly.
Slicing off the final three characters is shown as well. Again, the

final
example is the idiomatic way to do it. The first two assume the string has a
length of eight,
while the final code will work with any string that has at
least three characters.

When you slice with a colon (:), the first index is optional. If the
 first
index is missing, the slice defaults to starting from the first
item of the list
(the zeroth item):

>>> print(my_pets[:2])

['dog', 'cat']

You can also use negative indices when slicing. A negative index can be
used in the
start location or ending location. The index -1 represents
the last
item. If you slice up to the last item, you will get
everything but that item:

>>> my_pets[0:-1]

['dog', 'cat']

>>> my_pets[:-1] # defaults to 0

['dog', 'cat']

>>> my_pets[0:-2]

['dog']

The final index is also optional. If the final index is missing, the slice
defaults to the end of the list:

>>> my_pets[1:]

['cat', 'bird']

>>> my_pets[-2:]

['cat', 'bird']

Finally, you can default both the start and end indices. If both indices are
missing, the slice returned will run from the start to the end (which will
contain a copy of the list). This is a construct you can use to quickly copy
lists in Python:

>>> print(my_pets[:])

['dog', 'cat', 'bird']

Striding slices

Slices also take a stride following the starting and ending
 indices. The
default value for an unspecified stride is 1. A
stride of 1 means take every
item from a sequence between the
indices. A stride of 2 would take every
second item. A stride of
3 would take every third item:

>>> my_pets = ["dog", "cat", "bird"]

>>> dog_and_bird = my_pets[0:3:2]

>>> print(dog_and_bird)

['dog', 'bird']

>>> zero_three_six = [0, 1, 2, 3, 4, 5, 6][::3]

>>> print(zero_three_six)

[0, 3, 6]

Note

Again, the range function has a similar third parameter that
specifies
stride:

>>> list(range(0, 7, 3))

[0, 3, 6]

Strides can be negative. A stride of -1 means that you move
backward
right to left. To use a negative stride, you
should make the start slice greater
than the end slice. The
 exception is if you leave out the start and end
indices, a
stride of -1 will reverse the sequence:

>>> my_pets[0:2:-1]

[]

>>> my_pets[2:0:-1]

['bird', 'cat']

>>> print([1, 2, 3, 4][::-1])

[4, 3, 2, 1]

The next time you are in a job interview and they ask you to reverse
a
string, you can do it in a single line:

>>> 'emerih'[::-1]

'hireme'

Of course, they will probably want you to do it in C. Just tell them that
you want to program in Python!

Summary

You use indexing operations to pull single values out of sequences. This
makes it easy to get a character from a string, or an item from a list or tuple.

If you want subsequences, you can use the slicing construct. Slicing
follows the
 half-open interval and gives you the sequence up to but not
including the last
 index. If you provide an optional stride, you can skip
elements in a slice.

Python has a nice feature that allows you to use negative values to index
or slice
relative to the end of the sequence. This lets you do your operations
relative to
 the length of the sequence, and you don't have to worry about
calculating the
length of sequence and subtracting from that.

Exercises

1. Create a variable with your name stored as a string. Use indexing
operations
 to pull out the first character. Pull out the last character.
Will your code
 to pull out the last character work on a name of
arbitrary length?

2. Create a variable, filename. Assuming that it has a three letter
extension, and using slice operations, find the extension. For
README.txt, the extension should be txt. Write code using slice

operations that will give the name without the extension. Does your
code work
on filenames of arbitrary length?

3. Create a function, is_palindrome, to determine if a supplied word is
the same
if the letters are reversed.

File Input and Output

Reading and writing files is common in programming. Python makes these

operations easy. You can read both text and binary files. You also have a
choice of reading a file by the number of bytes, lines, or even the whole file
at once. There are similar options available for writing files.

Opening files

The Python function, open, returns a file object. This function has multiple
optional parameters:

open(filename, mode='r', buffering=-1, encoding=None,

 errors=None, newline=None, closefd=True, opener=None)

Hint

Windows paths use \ as a separator, which can be problematic. Python
strings also use \ as an escape character. If you had a directory named
"test" and wrote "C:\test", Python would treat \t as a tab character.

The remedy for this is to use raw strings to represent Windows
paths.
Put an r in front of the string:

r"C:\test"

You typically are only concerned with the first two or three parameters.
The first
parameter, the filename, is required. The second parameter is the

mode, which
determines if you are reading or writing a file and if the file is
a text file
or binary file. There are various modes.

File modes
Mode Meaning

'r' Read text file (default)

'w' Write text file (overwrites if exists)

'x' Write text file, throw FileExistsError if exists.

'a' Append to text file (write to end)

'rb' Read binary file

'wb' Write binary (overwrite)

'w+b' Open binary file for reading and writing

'xb' Write binary file, throw FileExistsError if exists.

'ab' Append to binary file (write to end)

For details on the rest of the options to the open function, pass
 it into
help. This function has very detailed documentation.

If you are dealing with text files, typically you will use 'r' as the mode
to read a
file, and 'w' to write a file. Here you open the file /tmp/a.txt for
writing. Python will create that file, or overwrite it if it already exists:

>>> a_file = open('/tmp/a.txt', 'w')

The file object, returned from the open call,
has various methods to allow
for reading and writing. This chapter
 discusses the most commonly used
methods. To read the full
documentation on a file object pass it to the help
function. It will list all of the methods and describe what they do.

Note

/tmp is where Unix systems place temporary files. If you are on
Windows,
you can inspect the Temp variable by typing:

c:\> ECHO %Temp%

The value is usually:

C:\Users\<username>\AppData\Local\Temp

Reading text files

Python provides multiple ways to read data from files. If you open a file in
text mode (the default), you read strings from the file or you write strings to
it. If you open a file in binary mode (using a 'rb' for reading or 'wb'
for
writing), you will read and write byte strings.

If you want to read a single line from an existing text file, use the
.readline method. If you don't specify a mode, Python will default to
reading a text file (mode of r):

>>> passwd_file = open('/etc/passwd')

>>> passwd_file.readline()

'root:x:0:0:root:/root:/bin/bash'

Be careful, if you open a file for reading that does not exist, Python
will
throw an error:

>>> fin = open('bad_file')

Traceback (most recent call last):

 ...

IOError: [Errno 2] No such file or

directory: 'bad_file'

Tip

The open function returns a file object instance. This object
 has
methods to read and write data.

Common variable names for file objects are fin (file input), fout
(file output), fp (file pointer, used for either input or output) or names
such as passwd_file. Names like fin and fout are useful because
they indicate whether the file is used for reading or writing
respectively.

As illustrated above, the .readline method will return one line of
a file.
You can call it repeatedly to retrieve every line or use
 the .readlines
method to return a list containing all the lines.

To read all the contents of a file into one string use the .read
method:

>>> passwd_file = open('/etc/passwd')

>>> print(passwd_file.read())

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/bin/false

daemon:x:2:2:daemon:/sbin:/bin/false

adm:x:3:4:adm:/var/adm:/bin/false

You should always close your files when you are done with them by
calling
.close:

>>> passwd_file.close()

Closing your files is easy. A bit later you will dig into why you
should
make sure you close them.

Reading binary files

To read a binary file, pass in 'rb' (read binary) as the mode. When you
read
a binary file you will not get strings, but byte strings. Don't worry, as
the
 interface for byte strings is very similar to strings. Here are the first
eight
bytes of a PNG file. To read eight bytes, you will pass 8 to the .read
method:

>>> bfin = open('img/dict.png', 'rb')

>>> bfin.read(8)

b'\x89PNG\r\n\x1a\n'

Notice the b in front of the string, specifying that this is a byte string.
You
can also use .readline on binary files and it will read until it gets to a
b'\n'.
 Binary strings versus normal strings will be discussed in a later
chapter.

Iteration with files

Iteration over sequences was discussed previously. In Python, it is
easy to
iterate over the lines in a file. When dealing with a text
file, you can iterate
over the .readlines method to get a line at a time:

>>> fin = open('/etc/passwd')

>>> for line in fin.readlines():

... print(line)

However, because .readlines returns a list, Python will need to read
the
whole file to create that list, and that could be problematic. Say the
file was
a large log file, it could possibly consume all of your memory to read it.
Python has a
trick up its sleeve though. Python allows you to loop over the
file
 instance itself to iterate over the lines of the file. When you iterate
directly over the file, Python is lazy, and only reads the lines of text
 as
needed:

>>> fin = open('/etc/passwd')

>>> for line in fin:

... print(line)

How can you iterate directly over the file instance?
Python has a dunder
method, .__iter__, that
defines what the behavior is for looping over an
instance. It just so
 happens that for the file class, the .__iter__ method
iterates
over the lines in the file.

The .readlines method should be reserved for when you are sure that
you can hold the file in memory and you need to access the lines
multiple
times. Otherwise, directly iterating over the file is preferred.

Writing files

To write to a file, you must first open the file in write mode.
If mode is set to
'w', the
file is opened for writing text data:

>>> fout = open('/tmp/names.txt', 'w')

>>> fout.write('George')

The above method will try to overwrite the file /tmp/names.txt if it
exists, otherwise, the file will be created. If you don't have permission
 to
access the file, a Permission Error will be thrown. If the
path is bad, you
will see a FileNotFoundError.

Two methods used to place data in a file are .write and
.writelines.
The .write method takes a string as a parameter and writes it
 to the file.
The .writelines method takes a sequence containing string data
 and
writes it to the file.

Note

To include newlines in your file, you need to explicitly pass them
 to
the file methods. On Unix platforms, strings passed into
 .write
should end with \n. Likewise, each of the strings in
the sequence that
is passed into to .writelines should end in
 \n. On Windows, the
newline string is \r\n.

To program in a cross platform manner, the linesep string found
in
the os module defines the correct newline string for the platform:

>>> import os

>>> os.linesep # Unix platform

'\n'

Tip

If you are trying this out on the interpreter right now, you may
notice
that the /tmp/names.txt file is empty even though you told
Python to
write George in it. What is going on?

File output is buffered by the operating system. In order to optimize
writes to
the storage media, the operating system will only write data
after a certain
 threshold has been passed. On Linux systems, this is
normally 4K
bytes.

To force writing the data, you can call the .flush method, which
flushes the pending data to the storage media.

A more heavy-handed mechanism, to ensure that data is written, is
to
 call the .close method. This informs Python that you are done
writing to the file:

>>> fout2 = open('/tmp/names2.txt',

... 'w')

>>> fout2.write('John\n')

>>> fout2.close()

Closing files

As mentioned previously, calling .close will write the file buffers out to
the storage media. The best practice in Python is to always close files after
you are done with them (whether for writing or reading).

Here are a few reasons why you should explicitly close your files:

If you have a file in a global variable, it will never be closed while
your program is executing.
cPython will automatically
close your files for you if they are garbage
collected. Other Python implementations may not.

Unless you call .flush you won't know when your data is written.
Your operating system probably has a limit of open files per process.
Some operating systems won't let you delete an open file.

Python usually takes care of garbage collection for you and you don't
have to
 worry about cleaning up objects. Opening and closing files are
exceptions.
 Python will automatically close the file for you when the file
object goes out of
 scope. But this is a case where you shouldn't rely on
garbage collection. Be
explicit and clean up after yourself. Make sure you
close your files!

Python 2.5 introduced the with statement. The with
 statement is used
with context managers to enforce conditions that occur before
and after a
block is executed. The open function also serves as a
 context manager to
ensure that a file is opened before the block is entered
and that it is closed
when the block is exited. Below is an example:

>>> with open('/tmp/names3.txt', 'w') as fout3:

... fout3.write('Ringo\n')

This is the equivalent of:

>>> fout3 = open('/tmp/names3.txt', 'w')

>>> fout3.write('Ringo\n')

>>> fout3.close()

Notice that the with line ends with a colon. When a line ends with a
colon
 in Python, you always indent the code that follows. The indented
content
 following a colon is called a block or the body of the context
manager. In the
 above example, the block consists of writing Ringo to a
file. Then the
block finishes. You can't really see it in the above example,
but you know a
with block ends when the code is dedented. At this point,

the context
manager kicks in and executes the exit logic. The exit logic for
the file
context manager tells Python to automatically close the file for you
when the
block is finished.

Tip

Use the with construct for reading and writing files. It is a
 good
practice to close files, and if you use the with statement
when using
files, you do not have to worry about closing them. The
 with
statement automatically closes the file for you.

Designing around files

You have seen how to use functions to organize and compartmentalize
complicated
programs. One benefit to using functions is that you can re-use
those
functions throughout your code. Here is a tip for organizing functions
that deal with files.

Assume that you want to write code that takes a filename and creates a
sequence
 of the lines from the file with the line number inserted before
every line. At
first thought it might seem that you want the API (application
programming
interface) for your functions to accept the filename of the file
that you want
to modify, like this:

>>> def add_numbers(filename):

... results = []

... with open(filename) as fin:

... for num, line in enumerate(fin):

... results.append(

... '{0}-{1}'.format(num, line))

... return results

This code will work okay. But what will happen when you are required to
insert
line numbers in front of lines from a source other than a file? If you

want
to test the code, now you have access to the file system. One solution
is to refactor the add_numbers function so that it will only
open the file in a
context manager, and then call another function,
add_nums_to_seq. This
new function contains logic that operates on a
 sequence rather than
depending on a filename. Since a file behaves as a sequence
of strings, you
preserve the original functionality:

>>> def add_numbers(filename):

... with open(filename) as fin:

... return add_nums_to_seq(fin)

>>> def add_nums_to_seq(seq):

... results = []

... for num, line in enumerate(seq):

... results.append(

... '{0}-{1}'.format(num, line))

... return results

Now you have a more general function, add_nums_to_seq, that is
easier
to test and reuse, because instead of depending on a filename,
it depends on
a sequence. You can pass in a list of strings,
or create a fake file to pass into
it.

Hint

There are other types that also implement the file-like interface
(read
and write). Any time you find yourself coding with a
 filename, ask
yourself if you may want to apply the logic to other
 sequence-like
things. If so, use the previous example of refactoring
the functions to
obtain code that is much easier to reuse and test.

Summary

Python provides a single function to interact with both text and binary files,
open.
 By specifying the mode, you can tell Python whether you want to
read or write to the file.
When you are dealing with text files, you read and
write strings. When you
are dealing with binary files, you read and write
byte strings.

Make sure you close your files. Using the with statement is
the idiomatic
way to do this. Finally, make sure your functions deal
 with sequences of
data instead of filenames as this makes your code more generally useful.

Exercises

1. Write a function to write a comma separated value (CSV) file. It
should
accept a filename and a list of tuples as parameters. The tuples
should have a name, address, and age. The file
should create a header
row followed by a row for each tuple. If the following
 list of tuples
was passed in:

[('George', '4312 Abbey Road', 22),

 ('John', '54 Love Ave', 21)]

it should write the following in the file:

name,address,age

George,4312 Abbey Road,22

John,54 Love Ave,21

2. Write a function that reads a CSV file. It should return a list of
dictionaries, using the first row as key names, and each subsequent
row as
values for those keys. For the data in the previous example it
would return:

[{'name': 'George', 'address': '4312 Abbey Road', 'age': 22},

 {'name': 'John', 'address': '54 Love Ave', 'age': 21}]

Unicode

We've seen strings all over the place, but we haven't really talked

about
one of the biggest changes that came in Python 3, Unicode strings!
Python 2 had support for Unicode strings, but you needed to explicitly
create them.
This is no longer the case, everything is Unicode.

Background

What is Unicode? It is a standard for representing glyphs (the characters
that
 create most written language, as well as symbols and emoji). The
standard can be
found on the Unicode website 12, and is frequently updated.
The standard
consists of various documents or charts that map code points
(hexadecimal
numbers such as 0048 or 1F600) to glyphs (such as H or 😀),
and
names (LATIN CAPITAL H and GRINNING FACE). The code points
and names are
unique, though many glyphs may look very similar.

This illustrates how to read code charts found at unicode.org. The
charts have tables listing
glyphs by their hex code points. Following that
table is another table with the codepoint, glyph,
and name. You can use a
glyph, the name, or the code point. If the code point has more than 4

digits,
you need to use capital U and left pad with 0 until you have 8
digits. If it has 4 or less
digits, you need to use a lowercase u and
left pad with 0 until you have 4 digits. Also shown is

an example
decoding the UTF-8 byte string to the corresponding glyph.

Here is a condensed history. As computers became prevalent, different
providers had different schemes to map binary data to string data. One
encoding, ASCII, would use 7 bits of data to map to 128 symbols and
control
 codes. That works fine in a Latin character-centric environment
such as English.
Having 128 different glyphs would provide enough space

for lowercase characters,
 uppercase characters, digits, and common
punctuation.

As support for non-English languages became more common, ASCII was
not
 sufficient. Windows systems through Windows 98 supported an
encoding called
 Windows-1252, that had support for various accented
characters, and symbols such
as the Euro sign.

All of these encoding schemes provided a one-to-one mapping of bytes to
a
character. In order to support Chinese, Korean, and Japanese scripts, many
more
than 128 symbols were needed. Using four bytes provided support for
over 4
billion characters. But this encoding came at a cost. For the majority
of people
using only ASCII-centric characters, requiring those characters to
be encoded in
 four times as much data seemed like a colossal waste of
memory.

A compromise that provided both the ability to support all characters but
not
waste memory, was to stop encoding characters to a sequence of bits.
Rather, the
characters were abstracted. Each character instead mapped to a
unique code
 point (that has a hex value and a unique name). Various
encodings then mapped
 these code points to bit encodings. Unicode maps
from character to a code
 point—it is not the encoding. For different
contexts, an alternate encoding
might provide better characteristics.

One encoding, UTF-32, uses four bytes to store the character
information. This
 representation is easy for low-level programmers to use
as indexing operations
 are trivial. But it uses four times the amount of
memory as ASCII to encode a Latin
sequence of letters.

The notion of variable width encodings also helped alleviate memory
waste. UTF-8
is one such encoding. It uses between one and four bytes to
represent a
 character. In addition, UTF-8 is backward compatible with
ASCII. UTF-8 is the
 most common encoding on the web, and is a great

choice for encoding since many
applications and operating systems know
how to deal with it.

Tip

You can find out what the preferred encoding is on your machine by
running the
following code. Here is mine on a 2015 Mac:

>>> import locale

>>> locale.getpreferredencoding(False)

'UTF-8'

Let’s be clear. UTF-8 is an encoding of bytes for Unicode code points. To
say
 that UTF-8 is Unicode is sloppy at best and connotes a lack of
understanding of
character encodings at worst. In fact, the name is derived
from Unicode
Transformation Format - 8-bit, ie. it is a format for Unicode.

Let’s look at an example. The character named, SUPERSCRIPT TWO, is
defined in
 the Unicode standard as code point U+00b2. It has a glyph (a
written
 representation) of ². ASCII has no way to represent this character.
Windows-1252
does, it is encoded as the hex byte b2 (which happens to be
the same as the
code point, note that this is not guaranteed). In UTF-8 it is
encoded as c2
b2. Likewise, UTF-16 encodes it as ff fe b2 00. There are
multiple encodings
for this Unicode code point.

Basic steps in Python

You can create Unicode strings in Python. In fact, you have been doing it all
along. Remember in Python 3, strings are Unicode strings. But you
probably want
 to create a string that has a non-ASCII character. Below is
code to make a
string that has x squared (x²) in it. If you can find the glyph
you want to
use, you can copy that character in into your code:

>>> result = 'x²'

This works in general. Though you might run into problems if your font
does not
 support said glyph. Then you will get what is sometimes called
tofu because it looks
either like an empty box or a diamond with a question
mark. Another way to include
 non-ASCII characters is to use the hex
Unicode code point following \u:

>>> result2 = 'x\u00b2'

Note that this string is the same as the previous string:

>>> result == result2

True

Finally, you can use the name of the code point inside of the curly braces
in \N{}:

>>> result3 = 'x\N{SUPERSCRIPT TWO}'

All of these work. They all return the same Unicode string:

>>> print(result, result2, result3)

x² x² x²

The third option is a little verbose and requires a little more typing. But if
you don't
speak native Unicode or have font support, it is perhaps the most
readable.

Tip

The Python help documentation has an entry for Unicode. Type
help(), then UNICODE.
It actually doesn't discuss Unicode that much,
rather the different ways to
create Python strings.

Encoding

Perhaps one of the keys to grokking Unicode in Python is to understand that
you
 encode a Unicode string to a byte string. You never encode a byte
string. You
decode a byte string to a Unicode string. Likewise, you never
decode a Unicode
string. Another way of looking at encoding and decoding
is that encoding
transforms a human-readable or meaningful representation
into an abstract
representation meant for storage (Unicode to bytes or letter
to bytes), and
 decoding transforms that abstract representation back to a
human readable or meaningful
representation.

Image illustrates the encoding (in this case using UTF-8) of a Unicode string
into its byte
representation, and then the decoding of the same byte string
back into Unicode (also using
UTF-8). Note that you should be explicit when
decoding as there are other encodings that if

used, might produce erroneous
data or mojibake (character transformation).

Given a Unicode string, you can call the .encode method to see the
representation in
various encodings. Let’s start off with UTF-8:

>>> x_sq = 'x\u00b2'

>>> x_sq.encode('utf-8')

b'x\xc2\xb2'

If Python does not support an encoding, it will throw a
UnicodeEncodeError.
 This means that the Unicode code points are not
supported in that encoding. For
example, ASCII, does not have support for
the squared character:

>>> x_sq.encode('ascii')

Traceback (most recent call last):

 ...

UnicodeEncodeError: 'ascii' codec can't encode character

'\xb2' in position 1: ordinal not in range(128)

If you use Python long enough, you will probably encounter this error. It
means
that the specified encoding does not have the ability to represent all
of the
 characters. If you are certain that you want to force Python to this
encoding,
 there are a few different options you can provide to the errors
parameter.
 To ignore characters Python can't encode, use
errors='ignore':

>>> x_sq.encode('ascii', errors='ignore')

b'x'

If you specify errors='replace', Python will insert a question mark for
the unsupported
bytes:

>>> x_sq.encode('ascii', errors='replace')

b'x?'

Note

The encodings module has a mapping of aliases of encodings that
Python supports. There are 99
encodings in Python 3.6. Most modern
applications try to stay in UTF-8, but if you need support
 for other
encodings, there is a good chance that Python has support for it.

This mapping is found in encodings.aliases.aliases.
Alternatively, the documentation
on the module at the Python website
13 has a table of the encodings.

Here are some other possible encodings for this string:

>>> x_sq.encode('cp1026') # Turkish

b'\xa7\xea'

>>> x_sq.encode('cp949') # Korean

b'x\xa9\xf7'

>>> x_sq.encode('shift_jis_2004') # Japanese

b'x\x85K'

Though Python supports many encodings, their usage is becoming more
rare. Typically they
 are used for legacy applications. Today, most
applications use UTF-8.

Decoding

Decoding has a specific meaning in Python. It means to take a sequence of
bytes and create a Unicode string from them. In Python, you never encode
bytes,
you decode them (in fact there is no .encode method on bytes). If
you can
 remember that rule, it can save a bit of frustration when dealing
with non-ASCII
characters.

Let’s assume that you have the UTF-8 byte sequence for x²:

>>> utf8_bytes = b'x\xc2\xb2'

When you are dealing with character data represented as bytes, you want
to get it into
a Unicode string as soon as possible. Typically, you will only
deal with strings
 in your application and use bytes as a serialization
mechanism (i.e. when persisting
 to files or sending over the network). If
you received these bytes somehow
and the framework or library that you
were using did not convert
 it into a string for you, you could do the
following:

>>> text = utf8_bytes.decode('utf-8')

>>> text

'x²'

Another thing to note is that in general, you cannot divine what a
sequence of
bytes was encoded as. You know that the sequence in the code
listed is UTF-8
because you just created it, but if unidentified bytes were
sent to you from
another source then it could certainly be another encoding.

Note

You need to be told the encoding. Otherwise, you might try to decode
with the
wrong encoding and have bad data. When this happens, the
miscoded
string is called mojibake. This is a Japanese word that means
character mutation, but
mojibake sounds cooler.

Here are some examples of erroneous decoding:

>>> b'x\xc2\xb2'.decode('cp1026') # Turkish

'ÌB¥'

>>> b'x\xc2\xb2'.decode('cp949') # Korean

'x짼'

>>> b'x\xc2\xb2'.decode('shift_jis_2004') # Japanese

'xﾂｲ'

But some encodings don't support all byte sequences. If you decode with
the wrong encoding,
 sometimes instead of getting bad data, you get an
exception. For example, ASCII, does not
support this byte sequence:

>>> b'x\xc2\xb2'.decode('ascii')

Traceback (most recent call last):

 ...

UnicodeDecodeError: 'ascii' codec can't decode byte 0xc2

in position 1: ordinal not in range(128)

A UnicodeDecodeError means that you were trying to convert a byte
string to a Unicode
string and the encoding did not have support to create
Unicode strings for all of the
bytes. Typically, this means that you are using
the wrong encoding. For best results,
 try to determine and use the correct
encoding.

If you really don't know the encoding, you can pass the
errors='ignore' parameter,
but then you are losing data. This should only
be used as a last resort:

>>> b'x\xc2\xb2'.decode('ascii', errors='ignore')

'x'

Unicode and files

When you read a text file, Python will give you Unicode strings. By default,
Python will use the default encoding
(locale.getpreferredencoding(False)).
 If you want to encode a text
file in another encoding, you can pass that
information with the encoding
parameter to the open function.

Likewise, you can specify the encoding when you open a file for writing.
Remember, you should treat encodings as a serialization format (used to
transfer
 information over the internet or store the data in a file). Here are
two
examples of writing to a file. With the first file no encoding is defined,

and
it therefore defaults to UTF-8 (per the system's default encoding). In the
second example, CP949 (Korean) is set as the encoding parameter:

>>> with open('/tmp/sq.utf8', 'w') as fout:

... fout.write('x²')

>>> with open('/tmp/sq.cp949', 'w', encoding='cp949') as fout:

... fout.write('x²')

From the UNIX terminal, look at the files. You see that they have
different
contents, because they are using different encodings:

$ hexdump /tmp/sq.utf8

0000000 78 c2 b2

0000003

$ hexdump /tmp/sq.cp949

0000000 78 a9 f7

0000003

You can read the data back:

>>> data = open('/tmp/sq.utf8').read()

>>> data

'x²'

Remember, that in Python, explicit is better than implicit. When dealing
with encodings,
you need to be specific. Python on a UTF-8 system will try
and decode from UTF-8 when you read a file.
 This is fine if the file is
encoded with UTF-8, but if it is not, you will either get mojibake,
 or an
error:

>>> data = open('/tmp/sq.cp949').read()

Traceback (most recent call last):

 ...

UnicodeDecodeError: 'utf-8' codec can't decode byte

0xa9 in position 1: invalid start byte

If you are explicit and tell Python that this file was encoded with the
CP949 encoding,
you will get the correct data from this file:

>>> data = open('/tmp/sq.cp949', encoding='cp949').read()

>>> data

'x²'

If you are dealing with text files that contain non-ASCII characters, make
sure
you specify their encoding.

Summary

Unicode is a mapping of code points to glyphs. In Python, strings can hold
Unicode glyphs.
You can encode the Unicode string to a byte string using
various encodings. You never
decode Python strings.

When you read a text file, you can specify the encoding to make sure that
you get
a Unicode string containing the correct characters. When you write
text files, you
can use the encoding parameter to declare the encoding to
use.

UTF-8 is the most popular encoding these days. Unless you have a
reason to use
another encoding, you should default to using UTF-8.

Exercises

1. Go to http://unicode.org and download a chart that has code points on
it.
Choose a non-ASCII character and write Python code to print the
character by
both the code point and name.

2. There are various Unicode characters that appear to be upside down
versions
of ASCII characters. Find a mapping of these characters (they
should be a
 search away). Write a function that takes a string with
ASCII characters,
and returns the upside down version of that string.

3. Write the upside down version of your name to a file. What are some
of the
 possible encodings that support your name? What are some

http://unicode.org/

encodings that don't?
4. Smart quotes (or curly quotes) are not supported with ASCII. Write a

function
that takes an ASCII string as input and returns a string where
the double
 quotes are replaced with smart quotes. For example, the
string Python comes
with "batteries included", should become Python
comes with “batteries
included” (if you look closely, you will see that
with smart quotes, the
 left quotes curve differently than the right
quotes).

5. Write a function that takes text with old school emojis in it (:),
:P,
etc.). Using the emoji chart 14, add code to your function that
replaces
the text emojis, with Unicode versions found in the chart.

12 - https://unicode.org
13 - https://docs.python.org/3/library/codecs.html
14 - http://unicode.org/emoji/charts/full-emoji-list.html

https://unicode.org/
https://docs.python.org/3/library/codecs.html
http://unicode.org/emoji/charts/full-emoji-list.html

Classes

Strings, dictionaries, files, and integers are all objects. Even functions

are
 objects. In Python, almost everything is an object. There are some
exceptions,
keywords (such as in) are not objects. Also, variable names are
not objects,
but they do point to them. This chapter will delve deeper into
what an object
really is.

Object is a somewhat ambiguous term. One definition of “Object-
Oriented
 Programming” is using structures to group together data (state)
and methods
(functions to alter state). Many object-oriented languages such
as
C++, Java, and Python use classes to define what state an object can hold
and
the methods to alter that state. Whereas classes are the definition of the
state and methods,
 instances are occurrences of said classes. Generally
when people
say object they mean an instance of a class.

In Python, str is the name of the class used to store strings. The str
class defines the methods of strings.

You can create an instance of the str class, b, by using Python’s
 literal
string syntax:

>>> b = "I'm a string"

>>> b

"I'm a string"

There are many terms that you will see thrown about to talk about b.
You
may hear, “b is a string”, “b is an object”, “b is
an instance of a string”. The
latter is perhaps the most specific.
But, b is not a string class.

This illustrates a string object. All objects have types, which are really
just the class of the
object. In this case the class is str.

This illustrates an updated version of a string object. Type has
been changed to __class__,
because when you inspect the object, the
__class__ attribute points to the class of the object.

Note that this
class has various methods, this image only shows capitalize, but there
are many
more. Methods are also objects, as shown in the image.

Note

The str class can also be used to create strings, but is
normally used
for casting. Strings are built into the language, so
it is overkill to pass
in a
string literal into the str class.

You wouldn't say:

>>> c = str("I'm a string")

Because Python automatically creates a string when you put
quotes
around characters. The term literal means that
this is a special syntax
built into Python to create strings.

On the flipside, if you have a number that you want to convert
to a
string, you could call str:

>>> num = 42

>>> answer = str(num)

>>> answer

'42'

It is said that Python comes with “batteries included”—it has libraries
and
classes predefined for your use. These classes tend to be generic. You
can
 define your own classes that deal specifically with your problem
domain. You can
create customized objects that contain state, and as well as
logic to change
that state.

Planning for a class

First of all, classes are not always needed in Python. You should give some
thought
 to whether you need to define a class or whether a function (or
group of functions)
would be sufficient. Classes might be useful to provide
a programmatic representation
of something that is a physical object, or a

conceptual object. Something that is
 a description such as speed,
temperature, average, or color are not good candidates
for classes.

Once you have decided that you want to model something with a class,
ask yourself the
following questions:

Does it have a name?
What are the properties that is has?
Are these properties constant between instances of the class? ie:

Which of these properties are common to the class?
Which of these properties are unique to each member?

What actions does it do?

Here’s a concrete example. Assume that you work for a ski resort and
want
to model how people use the chairlifts. One way to do so would be to
create a class
 that defines a chair on a chairlift. A chairlift, if you are not
familiar with it,
is a contraption that has many chairs. These chairs are like
a bench that multiple skiers
may sit on. Skiers queue up at the bottom of a
hill to board the chairs, then
unboard once the chair has lifted them to the
top of the hill.

Obviously, you will need to abstract your model to some degree. You are
not going to model
every low-level property of a chair. For example, you
don't care whether a chair
 is made of steel or aluminum or wood for
calculating usage. That might matter for other people.

Does this thing you want to model have a name? Yes, chair. A few
properties of
 the chair include chair number, capacity, whether it has a
safety bar, and if it
has padded seats. To dive in a little deeper, capacity can
be broken down into
maximum capacity and current occupants. Maximum

capacity should stay constant,
whereas occupants can change at a point in
time.

A chair is involved with a few actions. Some actions include adding
people at
 the bottom of the hill and removing people when they reach the
top of the hill.
Another action might be the position of the safety bar. You
are going handle loading
 and unloading but ignore bar position for your
model.

Defining a class

Here is a Python class to represent a chair on a chairlift. Below is a
simple
class definition. The comments are numbered for discussion following
the
code:

>>> class Chair: # 1

... ''' A Chair on a chairlift ''' # 2

... max_occupants = 4 # 3

...

... def __init__(self, id): # 4

... self.id = id # 5

... self.count = 0

...

... def load(self, number): # 6

... self.count += number

...

... def unload(self, number): # 7

... self.count -= number

The class statement in Python defines a class. You need to give it
 a
name (1), followed by a colon. Remember that in Python, you indent
following a colon (unless it is a slice). Note, that you indented consistently
below the class definition. Also note that the name of the class was
capitalized.

Note

Class names are actually camel cased. Because Chair is a single word,
you might not have noticed. Unlike functions where words are joined
together
 with underscores, in camel casing, you capitalize the first
letter of each
 word and then shove them together. Normally class
names are nouns. In Python,
 they cannot start with numbers. The
following are examples of class names,
both good and bad:

Kitten # good

jaguar # bad - starts with lowercase

SnowLeopard # good - camel case

White_Tiger # bad - has underscores

9Lives # bad - starts with a number

See PEP 8 for further insight into class naming.
Note that many of the built-in types do not follow this rule:
str,

int, float, etc.

Immediately following the declaration of the class, you can insert a
docstring (2).
This is just a string. Note that if it is a triple-quoted string, it
may span
 multiple lines. Docstrings are optional, but they are useful to
readers of your
 code, and also appear when you use the help function to
inspect your code
in the REPL. Use them judiciously and it will pay great
dividends.

Inside the indented body of the class, you can create class attributes (3).
A
class attribute is used to hold state that is shared among all instances of a
class. In this example, any chair that you create will have a maximum of
four
 occupants. (Skiers call these types of chairlifts quads). There are

http://www.python.org/dev/peps/pep-0008

advantages to
 creating class attributes. Because the class is setting this
number, you don't
have to repeat yourself and set the value each time you
create a chair. On the
 flipside, you have hardcoded your chair to only
support four seats on it. Later,
 you will see how to override the class
attribute.

Next you see a def statement (4). It looks like you are defining a function
inside of the class body. And you are, except when you define a function
directly inside of a class body, you call it a method. Because this method
has a special name, __init__, you call it a constructor.
 It has two
parameters, self and id. Most methods have self
 as the first parameter.
You can interpret self as being the instance
of the class.

This illustrates what happens when you define a class. Python will
create a new type for you.
Any class attributes or methods will be
stored as attributes of the new class. Instance attributes

(id and count) are not
found in the class as they will be defined on the instances.

A constructor is called when you create an instance of a class.
 If you
consider a class to be a factory that provides a template or blueprint
 for
instances, then the constructor is what initializes the state for the instances.
The constructor takes an instance as input (the self parameter),
 and
updates it inside the method. Python takes care of passing around the
instance for us. This can be confusing and will be discussed more later.

Inside the body of the constructor (5) (it is indented because it follows a
colon), you attach two attributes that will be unique to the instance, id
and
count. On most chairlifts, each chair on the chairlift has a unique number
painted on the chair. The id represents this number. Also, a chair may
hold
a number of skiers—you store this in the count attribute and
initialize it to
zero. Note, that the constructor does not return
 anything, but rather it
updates values that are unique to the instance.

Note

Remember that id is a built-in function in Python, but you can also use
that as an attribute name in a class. You will still have access to the id
function. Every time you want to access the id attribute you will do a
lookup on the instance. If the instance was named chair, you would
get the
id by calling chair.id. So, this is not shadowing the built-in
function and is ok.

You can tell that the constructor logic is finished when you see that the
indentation level has stepped back out. You see another method defined (6),
load. This method represents an action that an instance of the class can
perform. In this case, a chair may load passengers onto it, and this method
tells the instance what to do when that happens. Again, self (the instance),
is the first parameter to the method. The second parameter, number, is the
number of people that get on the chair. Remember that a chair on a chairlift
can
usually hold more than one person, and in this case, you said that your
chair
may hold up to four people. When skiers board the chair you would
want to call
the load` method on the chair, and inside of the body of that
method,
update the count attribute on the instance.

Likewise, there is a corresponding method, unload (7), that should be
called when skiers dismount at the top of the hill.

Note

Don't be intimidated by methods. You have already seen many
methods, such as
 the .capitalize method defined on a string.
Methods are functions
 that are attached to a class. Instead of calling
the method by itself, you
need to call it on an instance of the class:

>>> 'matt'.capitalize()

'Matt'

In summary, creating a class is easy. You define the attributes you want.
The
 attributes that are constant are put inside the class definition. The
attributes
that are unique to an instance are put in the constructor. You can
also define
 methods that contain actions that modify the instance of the
class. After the
class is defined, Python will create a variable with the name
of the class that
points to the class:

>>> Chair

<class '__main__.Chair'>

You can inspect the class with the dir function. Note that the class
attributes
are defined on the class, and you can access them directly on the
class:

>>> dir(Chair)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',

'__hash__', '__init__', '__le__', '__lt__', '__module__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'__weakref__', 'load', 'max_occupants', 'unload']

>>> Chair.max_occupants

4

The figure in this section showed how the attributes and methods of the
class
 are stored. We can also inspect them from the REPL. Because
everything is
an object in Python, they will all have a __class__ attribute:

>>> Chair.__class__

<class 'type'>

>>> Chair.max_occupants.__class__

<class 'int'>

>>> Chair.__init__.__class__

<class 'function'>

>>> Chair.load.__class__

<class 'function'>

>>> Chair.unload.__class__

<class 'function'>

The methods are also defined on the class, but the instance attributes are
not.
 Because instance attributes are unique to the instance, they will be
stored on
the instance.

If you have docstrings defined on your class or its methods,
 you can
inspect them with help:

>>> help(Chair)

 Help on class Chair in module __main__:

 class Chair(builtins.object)

 | A Chair on a chairlift

 |

 | Methods defined here:

 |

 | __init__(self, id)

 |

 | load(self, number)

 |

 | unload(self, number)

 |

 | --

 | Data descriptors defined here:

 |

 | __dict__

 | dictionary for instance variables (if defined)

 |

 | __weakref__

 | list of weak references to the object (if defined)

 |

 | --

 | Data and other attributes defined here:

 |

 | max_occupants = 4

Creating an instance of a class

Now that you have defined a class to represent a chair, you can create
instances of chairs. One way to think of the Chair class is to compare it
to a
factory. The factory takes in bare objects and churns out chair objects.

To be more specific, this is pretty much what the constructor method,
__init__ does. You'll notice that self is the first parameter, this is
the bare
object. Python assigns the __class__ attribute (pointing the
Chair class) to
the object before passing it into the constructor.

Another analogy that might help understand classes is to consider how
cartoons
depict the delivery of babies. The unborn babies live in the clouds
somewhere.
At some point in time, a stork comes along, picks up a baby
from the cloud and
delivers it to a crib in the parent's house. When you call
the constructor,
Python goes out and picks a baby up from the cloud (gets
an object for you). It
 delivers it to the house, making it a member of the
family (it sets the
__class__ to Chair or whatever your class is). Once the
baby is inside
the house, you can mold her, cut her hair, etc. Remember that
objects store
state and mutate the state.

Below is code to create chair number 21 in Python. When you invoke the
class
 (i.e. put parentheses after the class name), you tell Python that
 you
want to call the constructor. Unlike some languages, you don't need to say

new
or add the variable type, you just add parentheses with the constructor
parameters
following the name of the class:

>>> chair = Chair(21)

Again, to be specific with terminology, the chair variable
 points to an
object or instance. It does not point to a class. The
object has a class, Chair.
The instance has a few attributes, including count and id.

This illustrates constructing an object. When the constructor is
called, the proverbial Python
"stork" drops a baby object as self
into the constructor. The baby object has the __class__
attribute set,
but the constructor is free to alter the instance, by adding attributes.
This object

will turn into chair.

You can access an instance attribute from the
instance, chair:

>>> chair.count

0

>>> chair.id

21

Python has a hierarchy for looking up attributes. First, Python will look
for
 the attribute on the instance. If that fails, Python will try to find the
attribute on the class. Because instances know about their class, Python will
look there next. If that fails Python will raise an AttributeError, an apt
error for a missing attribute. The max_occupants attribute is actually
stored
on the class, but you can access it from the instance:

>>> chair.max_occupants

4

Under the covers Python is doing this for you:

>>> chair.__class__.max_occupants

4

Attribute lookup is different that variable lookup. Recall that Python
looks for
variables first in the local scope, then global scope, then the built-
in scope, and finally
 raises a NameError if it was unsuccessful. Attribute
lookup occurs first on the
 instance, then the class, then the parent classes,
and will raise a AttributeError if the
attribute was not found.

Calling a method on a class

When you have an instance of a class, you can call methods on
it. Methods
—like functions—are invoked by adding parentheses with any
 arguments

inside of them. Here you will call the .load method to add
3 skiers to the
chair:

>>> chair.load(3)

Here’s a review of the syntax of method invocation. First, you list the
instance,
chair, which is followed by a period. A period means search for
an attribute
 in Python (unless it is following a number literal). When you
see a period following an
instance, remember that Python is going to search
for what follows the period.

First, Python will look on the instance for load. This attribute was not
found
 on the instance, recall that only count and id were set on the
instance inside of the constructor.
But the instance has a link to its class. So
if the search fails on the instance,
Python will look for those attributes on
the class. The .load method is
 defined on the Chair class, so Python
returns that. The parentheses
 mean invoke or call the method. You are
passing 3 in as a parameter to
the method.

Recall that the declaration of load looked like this:

... def load(self, number): # 6

... self.count += number

In the declaration, there were two parameters, self and number. But
 in
the invocation, you only passed a single parameter, 3. Why the mismatch?
The self parameter represents the instance, which is chair in your
 case.
Python will call the .load method by inserting chair as the
 self
parameter and 3 as the number parameter. In effect, Python
handles passing
around the self parameter for you automatically.

Note

When you call:

chair.load(3)

What happens under the covers is similar to this:

Chair.load(chair, 3)

You can try this out to validate that it works, but you wouldn't do
this in real life because it is harder to read, and also requires more
typing.

Examining an instance

If you have an instance and want to know what its attributes are,
you have a
few options. You can look up the documentation (if it
exists). You can read
the code where the class was defined. Or you can
use dir to examine it for
you:

>>> dir(chair)

['__class__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__gt__', '__hash__', '__init__', '__le__', '__lt__',

'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',

'__repr__', '__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__weakref__', 'count', 'id', 'load',

'max_occupants', 'unload']

Recall that the dir function lists the attributes of an object. If you look
at
the documentation for dir, you see that the definition previously
provided
for dir is not quite correct. The documentation reads:

return an alphabetized list of names comprising (some of) the
attributes of
the given object, and of attributes reachable from it.
—help(dir) (emphasis added)

This function
shows the attributes that are reachable from an object. The
actual state of the
instance is stored in the __dict__ attribute, a dictionary
mapping attribute
names to values:

>>> chair.__dict__

{'count': 3, 'id': 21}

So, the instance really only stores count and id, the other
attributes are
available through the class. Where is the class stored?
 In the __class__
attribute:

>>> chair.__class__

<class '__main__.Chair'>

It is important that an instance know what its class is
because the class
stores the methods and class attributes.

Private and protected

Some languages have the notion of private attributes or methods.
These are
methods that are meant to be implementation details
and end users can't call
them. In fact, the language may prevent
access to them.

Python does not make an effort to prevent users from doing much
 of
anything. Rather, it takes the attitude that you are an adult
and you should
take responsibility for your actions. If you
want to access something, you
can do it. But you should
be willing to accept the consequences.

Python programmers realize that it can be convenient to store
state and
methods that are implementation details. To signify to
end users that they

should not access these members, you prefix
their name with an underscore.
Here is a class that has a helper
method, ._check, that is not meant to be
called publicly:

>>> class CorrectChair:

... ''' A Chair on a chairlift '''

... max_occupants = 4

...

... def __init__(self, id):

... self.id = id

... self.count = 0

...

... def load(self, number):

... new_val = self._check(self.count + number)

... self.count = new_val

...

... def unload(self, number):

... new_val = self._check(self.count - number)

... self.count = new_val

...

... def _check(self, number):

... if number < 0 or number > self.max_occupants:

... raise ValueError('Invalid count:{}'.format(

... number))

... return number

The ._check method is considered private, only the instance should
access it
inside the class. In the class, the .load and .unload methods call
the
private method. If wanted, you could call it from outside the class. But
you
 shouldn't, as anything with an underscore should be considered an
implementation
detail that might not exist in future versions of the class.

A simple program modeling flow

Let’s use the class above to model flow of skiers up a hill. You will make
some
basic assumptions, such as every chair has an equal probability of 0 to
max_occupants
 riding on it. It will turn on the chairlift, load it, and run
forever. Four times a second
it prints out the current statistics:

import random

import time

class CorrectChair:

 ''' A Chair on a chairlift '''

 max_occupants = 4

 def __init__(self, id):

 self.id = id

 self.count = 0

 def load(self, number):

 new_val = self._check(self.count + number)

 self.count = new_val

 def unload(self, number):

 new_val = self._check(self.count - number)

 self.count = new_val

 def _check(self, number):

 if number < 0 or number > self.max_occupants:

 raise ValueError('Invalid count:{}'.format(

 number))

 return number

NUM_CHAIRS = 100

chairs = []

for num in range(1, NUM_CHAIRS + 1):

 chairs.append(CorrectChair(num))

def avg(chairs):

 total = 0

 for c in chairs:

 total += c.count

 return total/len(chairs)

in_use = []

transported = 0

while True:

 # loading

 loading = chairs.pop(0)

 in_use.append(loading)

 in_use[-1].load(random.randint(0, CorrectChair.max_occupants))

 # unloading

 if len(in_use) > NUM_CHAIRS / 2:

 unloading = in_use.pop(0)

 transported += unloading.count

 unloading.unload(unloading.count)

 chairs.append(unloading)

 print('Loading Chair {} Count:{} Avg:{:.2} Total:{}'.format

 (loading.id, loading.count, avg(in_use), transported))

 time.sleep(.25)

This program will run forever printing out how many people are
 riding
on the chairlift. It outputs to the terminal, but the
print function could be
replaced with code that writes a CSV
file as well.

By changing two numbers, the global NUM_CHAIRS and the class attribute
CorrectChair.max_occupants, you could change how the model behaves
to
represent larger or smaller chairlifts. The call to random.randint could
be
 replaced with a function that more precisely represents the usage
distribution.

Summary

We dove into classes a bit in this chapter. The terminology around classes
was
 discussed. You can say object or instance; they are interchangeable.
Each object
has a class. The class is like a factory that determines how its
instance
objects behave.

An object is created by the constructor method. This method
 is named
__init__. You may define other methods for classes as well.

Give some thought to creating a class. What are the attributes?
 If the
attributes remain consistent across the objects,
define them on the class. If
they are unique to the
object, set them in the constructor.

Exercises

1. Imagine you are designing a banking application. What would a
customer look like?
 What attributes would she have? What methods
would she have?

2. Imagine you are creating a Super Mario game. You need to define a
class to
represent Mario. What would it look like? If you aren't familiar
with Super Mario,
 use your own favorite video or board game to
model a player.

3. Create a class that could represent a tweet. If you aren't familiar with
Twitter,
Wikipedia describes it as:

[...] an online news and social networking service where
 users
post and interact with messages, "tweets", restricted to 140
characters.
—https://en.wikipedia.org/wiki/Twitter

4. Create a class that could represent a household appliance (toaster,
washer, refrigerator, etc.).

https://en.wikipedia.org/wiki/Twitter

Subclassing a Class

Besides grouping state and action in a coherent place, classes also

enable
re-use. If you already have a class but want one that behaves slightly
differently, one way to re-use the existing class is to subclass it. The class
that you subclass from is called the superclass. (Another common term for
superclass
is parent class).

Suppose that you wanted to create a chair that can hold six people.
To
create a class representing a six-person chair, Chair6, which is a more
specialized version of a Chair, you can create a subclass. Subclasses
allow
you to inherit methods of parent classes, and override methods you want to
change.

Here is the class Chair6, which is a subclass of CorrectChair:

>>> class Chair6(CorrectChair):

... max_occupants = 6

Illustration of the __bases__ attribute in a subclass. This connection
between a subclass and
its parent classes allows you to look up attributes in
a well-defined manner. If the instance of a
subclass has an attribute defined,
it uses that attribute. If not, after searching the instance, the

class
(__class__) of the instance is searched. Failing that, parent classes
(__bases__) of the
class are searched.

Note that you put the parent class, CorrectChair, in parentheses
following
 the class name. Notice that Chair6 doesn't define a constructor

inside of
the body, yet you can still create instances of the class:

>>> sixer = Chair6(76)

Illustration depicting the instantiation of a subclass. Note that the instance
points to its class
and that the class points to any parent classes using
the __bases__ attribute.

How does Python create an object, when the class doesn't define the
constructor?
Here is what happens: when Python looks for the .__init__
method,
it will search for it on Chair6 first. Since the Chair6 class
only has
a max_occupants attribute, Python will not find the .__init__
 method
there. But, because Chair6 is a subclass of CorrectChair, it has
 a
__bases__ attribute that lists the base classes in a tuple:

>>> Chair6.__bases__

(__main__.CorrectChair,)

Python will then search the base classes for the constructor. It will
 find
the constructor in CorrectChair and use it to create the
new class.

The same lookup happens when you call .load on an instance.
 The
instance doesn't have an attribute matching the method name, so
 Python
looks at the class of the instance. Chair6 does not
have the .load method
either, so Python looks for the attribute
on the base class, CorrectChair.
Here the .load method is called
with a count that is too large, leading to a
ValueError:

>>> sixer.load(7)

Traceback (most recent call last):

 File "/tmp/chair.py", line 30, in <module>

 sixer.load(7)

 File "/tmp/chair.py", line 13, in load

 new_val = self._check(self.count + number)

 File "/tmp/chair.py", line 23, in _check

 number))

ValueError: Invalid count:7

Python finds the method on the base class, but the call to the ._check
method
raises a ValueError.

Counting stalls

A semi-common occurrence is that a skier fails to mount the chair correctly.
In
that case, a chairlift operator will slow down or stop the chairlift to assist
the skier.
 You can use Python to create a new class that will be able to
account for the
number of times a stall happens.

Assume that you want to call a function every time .load is called,
and
this function will return a boolean indicating whether a stall occurred.
The
function takes as parameters the number of skiers and the chair object.

Below is a class that accepts an is_stalled function in the constructor.
It will call this function every time .load is invoked to determine if the
chairlift has stalled:

>>> class StallChair(CorrectChair):

... def __init__(self, id, is_stalled):

... super().__init__(id)

... self.is_stalled = is_stalled

... self.stalls = 0

...

... def load(self, number):

... if self.is_stalled(number, self):

... self.stalls += 1

... super().load(number)

To create an instance of this class, you must provide an is_stalled
function.
Here is a simple function that stalls ten percent of the time:

>>> import random

>>> def ten_percent(number, chair):

... """Return True 10% of time"""

... return random.random() < .1

Now you can create an instance using the ten_percent function as your
is_stalled parameter:

>>> stall42 = StallChair(42, ten_percent)

A figure showing the code for creating a subclass with custom methods.
Note that you use
super() to call the method on the parent class.
This illustrates what objects are created when

you create a class
that is a subclass.

super

Remember that StallChair defines its own .__init__ method, which is
called when
the instance is created. Note that the first line in the constructor
is:

super().__init__(id)

When super is called inside of a method, it gives you access to the
correct parent
 class. This line in the constructor allows you to invoke the
CorrectChair constructor.
 Rather than repeat the logic of setting the id
and count attribute, you can
reuse the logic from the parent class. Because
StallChair has additional
attributes it wants to set on the instance, you can
do that following the call
to the parent constructor.

Note that the .load method also has a call to super:

def load(self, number):

 if self.is_stalled(number, self):

 self.stalls += 1

 super().load(number)

In the .load method, you call your is_stalled function to determine
whether
the chair was stalled. Then you dispatch back to the original .load
functionality
found in CorrectChair by using super.

Having general code appear in one place (the base class) eliminates bugs
and repeating code.

Note

There are two cases where super really comes in handy. One is
 for
resolving method resolution order (MRO) in classes that have
multiple
parents. super will guarantee that this order is
consistent. The other is
when you change the base class, super
is intelligent about determining
who the new base is. This aids in
code maintainability.

Summary

This chapter discussed subclasses, which are new specialized classes that
reuse
 code from their base class (also referred to as superclass or parent
class). For
any method that you don't implement in a subclass, Python will
reuse the parent
class' functionality. You can choose to implement a method
to override
completely, or you can call out to super. When you call super,
it gives
 you access to the parent class so you can reuse any functionality
found there.

Exercises

1. Create a class to represent a cat. What can a cat do? What are the
properties
of a cat? Create a subclass of a cat for a tiger. How does it
behave
differently?

2. In the previous chapter, you created a class to represent Mario from the
Super
Mario Brothers video game. In later editions of the game, there
were
 different characters that you could play. They all had the same
basic
 functionality 15 but differed in skill. Create a base class for the
character, then implement four subclasses. One for Mario, Luigi, Toad,
and
Princess Toadstool.

Name Mario Luigi Toad Princess Toadstool

Speed 4 3 5 2

Jump 4 5 2 3

Power 4 3 5 2

Special Skill Float jump

15 - https://www.mariowiki.com/Super_Mario_Bros._2#Playable_charac

ters

https://www.mariowiki.com/Super_Mario_Bros._2#Playable_characters

Exceptions

A computer may be told to perform an action that it cannot
do. Reading

files that do not exist or dividing by zero are two
examples. Python allows
you to deal with such exceptions when they
occur. In these cases, Python
throws an exception or
raises an exception.

Normally when an exception occurs, Python will halt and print out a
stack trace explaining where the problem occurred. This stack trace is
useful in
that it tells you the line and file of the error:

>>> 3/0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

The above states that in line 1 of the file <stdin> (this is the name of the
interpreter “file”) there was a divide by zero error. When you execute a
program
with an exception, the stack trace will indicate the file name and
line number
 of where the problem occurred. This example from the
interpreter isn't
particularly helpful as there is only a single line of code. But
in bigger
 programs you could have deeply nested stack traces due to
functions calling
other functions and methods:

If you had the following in a file and a tried to run it, you would see a
traceback:

def err():

 1/0

def start():

 return middle()

def middle():

 return more()

def more():

 err()

start()

Here is the stacktrace:

Traceback (most recent call last):

 File "/tmp/err.py", line 13, in <module>

 start()

 File "/tmp/err.py", line 5, in start

 return middle()

 File "/tmp/err.py", line 8, in middle

 return more()

 File "/tmp/err.py", line 11, in more

 err()

 File "/tmp/err.py", line 2, in err

 1/0

ZeroDivisionError: division by zero

Tracebacks are easiest to read when you start from the bottom, find the
error,
and see where it occurred. As you move up the traceback, you are in
effect looking
up the call chain. This can help you pinpoint what is going on
in your program.

Look before you leap

Suppose you have a program that performs division. Depending on how it is
coded,
it may be possible that it tries to divide by zero at some point. There
are two
styles for dealing with exceptions that programmers commonly use.
The first is
 look before you leap (LBYL). The idea is to check for
exceptional cases before
 performing an action. In this case, the program
would examine the denominator
value and determine if it is zero or not. If it

is not zero, the program could
perform the division, otherwise, it could skip
it.

In Python, look before you leap can be implemented with if statements:

>>> numerator = 10

>>> divisor = 0

>>> if divisor != 0:

... result = numerator / divisor

... else:

... result = None

Note

Look before you leap is not always a guarantee of success. If you
check that a file exists before you open it (looking before
leaping), that
does not mean that the file will still be around
later. In multi-threaded
environments, this is known as a race condition.

Note

None is used to represent the undefined state. This is
a common idiom
throughout Pythondom. Be careful though, try not to
invoke methods
on a variable that is assigned to None, as that will
raise an exception.

Easier to ask for forgiveness

Another option for dealing with exceptions is known as easier to ask
 for
forgiveness than permission (EAFP). The idea here is to always perform
the
operation inside of a try block. If the operation fails, the
exception will be
caught by the exception block.

The try...except construct provides a mechanism for Python to
catch
exceptional cases:

>>> numerator = 10

>>> divisor = 0

>>> try:

... result = numerator / divisor

... except ZeroDivisionError as e:

... result = None

Notice that the try construct creates a block following the
try statement
(because there is a colon and indentation). Inside of
 the try block are the
statements that might throw exceptions. If the
statements actually throw an
exception, Python looks for an except
block that catches that exception (or
a parent class of it).

In the code above, the except block states that it will catch an exception
that
is an instance (or subclass) of the ZeroDivisionError class. When the
stated
exception is thrown in the try block, the except block is
executed
and result is set to None.

Note that line:

except ZeroDivisionError as e:

has as e: on the end. This part is optional. If it is included then e
 (or
whatever you choose as a valid variable name) will point to an instance of a
ZeroDivisionError exception. You can inspect the exception as they often
have more details. The e variable points to the active exception. If you
leave
"as e" off the end of the except statement, you will still have an
 active
exception, but you won't be able to access the instance of it.

Tip

Try to limit the scope of the try block. Instead of including all
 the
code in a function inside a try block, include only the line
 that will
possibly throw the error.

Because the look before you leap style of handling is not guaranteed to
prevent errors, in general, most Python developers favor the easier to ask
for forgiveness
style of exception handling.
Here are some rules of thumb
for exception handling:

Gracefully handle errors you know how to handle and can reasonably
expect.
Do not silence exceptions that you cannot handle or do not reasonably
expect.
Use a global exception handler to gracefully handle unexpected errors.

Tip

If you were making a server type application that needs to run without
stopping, here is one way to do it. The functions process_input and
log_error
don't exist but serve as placeholders:

while 1:

 try:

 result = process_input()

 except Exception as e:

 log_error(e)

Multiple exception cases

If there are multiple exceptions that your code needs to be aware of,
 you
can chain a list of except statements together:

try:

 some_function()

except ZeroDivisionError as e:

 # handle specific

except Exception as e:

 # handle others

In this case, when some_function throws an exception, the
 interpreter
checks first if it is a ZeroDivisionError (or a subclass
of it). If that is not
the case, it checks if the exception is a
 subclass of Exception. Once an
except block is entered, Python
no longer checks the subsequent blocks.

If an exception is not handled by the chain, code somewhere up the stack
must
 deal with the exception. If the exception is unhandled, Python will
stop running
and will print the stack trace.

An example of dealing with multiple exceptions is found in the standard
library.
The argparse module from the standard library provides an easy
way to parse
 command line options. It allows you to specify a type for
certain options, such as integers
or files (the options all come in as strings).
In the ._get_value method there
are examples of multiple except clauses.
Based on the type of the exception
that occurs a different error message is
provided:

def _get_value(self, action, arg_string):

 type_func = self._registry_get('type', action.type, action.type)

 if not callable(type_func):

 msg = _('%r is not callable')

 raise ArgumentError(action, msg % type_func)

 # convert the value to the appropriate type

 try:

 result = type_func(arg_string)

 # ArgumentTypeErrors indicate errors

 except ArgumentTypeError:

 name = getattr(action.type, '__name__', repr(action.type))

 msg = str(_sys.exc_info()[1])

 raise ArgumentError(action, msg)

 # TypeErrors or ValueErrors also indicate errors

 except (TypeError, ValueError):

 name = getattr(action.type, '__name__', repr(action.type))

 args = {'type': name, 'value': arg_string}

 msg = _('invalid %(type)s value: %(value)r')

 raise ArgumentError(action, msg % args)

 # return the converted value

 return result

Note

This code example also shows that a single except statement can
catch more
than one exception type if you provide a tuple of exception
classes:

except (TypeError, ValueError):

Note

This example also shows an older style of string formatting using the %
operator. The lines:

msg = _('invalid %(type)s value: %(value)r')

raise ArgumentError(action, msg % args)

would be written in a more modern style as:

msg = _('invalid {type!s} value: {value!r}')

raise ArgumentError(action, msg.format(**args))

finally clause

Another clause for error handling is the finally clause. This
statement is
used to place code that will always execute, regardless
 of whether an
exception happens or not. If the try block succeeds,
 then the finally
block will be executed.

The finally always
executes. If the exception is handled, the finally
block will
 execute after the handling. If the exception is not handled, the
finally block will execute and then the exception will be
re-raised:

try:

 some_function()

except Exception as e:

 # handle errors

finally:

 # cleanup

Usually, the purpose of the finally clause is to cleanup external
resources, such as files, network connections, or databases. These
resources
should be freed regardless of whether an operation was
successful or not.

An example from the timeit module found in the standard library might
aid in seeing the utility of the finally statement. The timeit module
allows developers to run a benchmark on their code. One of the things that
it does while running the benchmark is tell the Python garbage collector
to
disable itself during the run. But, you want to ensure that garbage collection
is working after the benchmark is done regardless of whether the run
worked or
errored out.

Here is the method, timeit that dispatches to run the benchmark. It
checks
 if the garbage collector was enabled, then turns off the garbage
collector,
runs the timing code, and finally, re-enables garbage collection if
it was
previously enabled:

def timeit(self, number=default_number):

 """Time 'number' executions of the main statement.

 To be precise, this executes the setup statement once, and

 then returns the time it takes to execute the main statement

 a number of times, as a float measured in seconds. The

 argument is the number of times through the loop, defaulting

 to one million. The main statement, the setup statement and

 the timer function to be used are passed to the constructor.

 """

 it = itertools.repeat(None, number)

 gcold = gc.isenabled()

 gc.disable()

 try:

 timing = self.inner(it, self.timer)

 finally:

 if gcold:

 gc.enable()

 return timing

It is possible that the call to self.inner will throw an exception, but
because
 the standard library uses finally, garbage collection will always
be turned
back on regardless (if the gcold boolean is true).

Note

This book doesn't address context managers, but to prepare you for
your future
 as a Python expert, here is a hint. The try/finally
combination
is a code smell in Python. Seasoned Python programmers
will use a
 context manager in these cases. Put this on your list of
things to study
after you have mastered basic Python.

else clause

The optional else clause in a try statement is executed when
no exception
is raised. It must follow any except statements and
 executes before the
finally block. Here is a simple example:

>>> try:

... print('hi')

... except Exception as e:

... print('Error')

... else:

... print('Success')

... finally:

... print('at last')

hi

Success

at last

Here is an example from the heapq module found in the in the standard
library.
According to the comments, there is a shortcut if you want the get
the smallest
values and you ask for more values than the size of the heap.
However, if you
 try to get the size of the heap and get an error, the code
calls pass.
This ignores the error and continues on with the
slower way of
getting the small items. If there was no error, you can
 follow the else
statement and take the fast path if n is
greater than the size of the heap:

def nsmallest(n, iterable, key=None):

 # Code removed here

 # When n>=size, it's faster to use sorted()

 try:

 size = len(iterable)

 except (TypeError, AttributeError) as e:

 pass

 else:

 if n >= size:

 return sorted(iterable, key=key)[:n]

 # Code removed here Try slower way

Raising exceptions

In addition to catching exceptions, Python also allows you to raise
exceptions
(or throw them). Remember that the Zen of Python wants you to
be explicit and
refuse the temptation to guess. If invalid input is passed into
your function
and you know that you will not be able to handle it, you may
raise an exception.
Exceptions are subclasses of the BaseException class,
and are raised using
the raise statement:

raise BaseException('Program failed')

Normally you will not raise the generic BaseException class but will
raise subclasses that are predefined, or defined by you.

Another common way of using the raise statement is to use it all by
itself. Recall that when you are inside of an except statement, you have
what is called
 an active exception. If that is the case, you can use a bare
raise statement.
 A bare raise statement allows you to deal with the
exception, but re-raise the original
exception. If you try to use:

except (TypeError, AttributeError) as e:

 log('Hit an exception')

 raise e

You will succeed in raising the original exception, but the stack trace will
state that the original exception now occurred in the line with raise e
rather than where the exception first occurred.
You have two options to deal
with this. The first is a bare ``raise``
 statement. The second is using
exception chaining, described
later.

Here is an example from the configparser module in the standard
library.
This module handles reading and creating INI files. An INI file is
usually used
 for configuration and was popular before JSON and YAML
were around. The
 .read_dict method will try to read the configuration
from a dictionary. If the
 instance is in strict mode, it will raise an error if
you try to add the same
 section more than once. If you are not in strict
mode, the method allows
duplicate keys; the last one wins. Here is a portion
of the method showing the
bare raise method:

def read_dict(self, dictionary, source='<dict>'):

 elements_added = set()

 for section, keys in dictionary.items():

 section = str(section)

 try:

 self.add_section(section)

 except (DuplicateSectionError, ValueError):

 if self._strict and section in elements_added:

 raise

 elements_added.add(section)

 # code removed from here

When a duplicate is added in strict mode, the stack trace will show the
error in the
.add_section method, because that is where it occurred.

Wrapping exceptions

Python 3 has introduced another feature similar to a bare raise
 in “PEP
3134 – Exception Chaining and Embedded Tracebacks”
When handling an

http://www.python.org/dev/peps/pep-3134

exception, another exception may occur in the
handling code. In this case, it
is useful to know about both
exceptions.

Here is some basic code. The function, divide_work, might have
problems dividing by zero. You can catch that error and log
that it occurred.
Suppose that your log function is calling
out to a cloud-based service that is
down (you'll simulate that
by having log raise an exception):

>>> def log(msg):

... raise SystemError("Logging not up")

>>> def divide_work(x, y):

... try:

... return x/y

... except ZeroDivisionError as ex:

... log("System is down")

When you call divide_work with 5 and 0 as input, Python will show two
errors, the ZeroDivisionError,
 and the SystemError. It will show
SystemError last because it
happened last:

>>> divide_work(5, 0)

Traceback (most recent call last):

 File "begpy.py", line 3, in divide_work

 return x/y

ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File "begpy.py", line 1, in <module>

 divide_work(5, 0)

 File "begpy.py", line 5, in divide_work

 log("System is down")

 File "begpy.py", line 2, in log

 raise SystemError("Logging not up")

SystemError: Logging not up

Suppose your cloud logging service is now working (the log function no
longer
 throws an error).
 If you want to change the type of the
ZeroDivisionError in divide_work
to ArithmeticError, you can use a
syntax described in PEP 3134.
You can use the raise ... from syntax:

>>> def log(msg):

... print(msg)

>>> def divide_work(x, y):

... try:

... return x/y

... except ZeroDivisionError as ex:

... log("System is down")

... raise ArithmeticError() from ex

You will see two exceptions now: the original ZeroDivisionError and
the
 ArithmeticError which is no longer shadowed by
ZeroDivisionError:

>>> divide_work(3, 0)

Traceback (most recent call last):

 File "begpy.py", line 3, in divide_work

 return x/y

ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

 File "begpy.py", line 1, in <module>

 divide_work(3, 0)

 File "begpy.py", line 6, in divide_work

 raise ArithmeticError() from ex

ArithmeticError

If you want to suppress the original exception, the ZeroDivisionError,
you can use the following code. This is described in “PEP 0409 –
Suppressing exception context”:

http://www.python.org/dev/peps/pep-0409

>>> def divide_work(x, y):

... try:

... return x/y

... except ZeroDivisionError as ex:

... log("System is down")

... raise ArithmeticError() from None

Now you only see the outermost error, ArithmeticError:

>>> divide_work(3, 0)

Traceback (most recent call last):

 File "begpy.py", line 1, in <module>

 divide_work(3, 0)

 File "begpy.py", line 6, in divide_work

 raise ArithmeticError() from None

ArithmeticError

Defining your own exceptions

Python has many built-in exceptions defined in the exceptions
module. If
your error corresponds well with the existing exceptions,
 you can re-use
them. The following lists the class hierarchy for the
built-in exceptions:

BaseException

 SystemExit

 KeyboardInterrupt

 GeneratorExit

 Exception

 StopIteration

 ArithmeticError

 FloatingPointError

 OverflowError

 ZeroDivisionError

 AssertionError

 AttributeError

 BufferError

 EnvironmentError

 IOError

 OSError

 EOFError

 ImportError

 LookupError

 IndexError

 KeyError

 MemoryError

 NameError

 UnboundLocalError

 ReferenceError

 RuntimeError

 NotImplementedError

 SyntaxError

 IndentationError

 TabError

 SystemError

 TypeError

 ValueError

 UnicodeError

 UnicodeDecodeError

 UnicodeEncodeError

 UnicodeTranslateError

 Warning

 DeprecationWarning

 PendingDeprecationWarning

 RuntimeWarning

 SyntaxWarning

 UserWarning

 FutureWarning

 ImportWarning

 UnicodeWarning

 BytesWarning

When defining your own exception, you should subclass from
Exception or below. The reason for this is that other subclasses of
BaseException are not necessarily “exceptions”. For example, if
 you
caught KeyboardInterrupt, you wouldn’t be able to stop the
process with
control-C. If you caught GeneratorExit, generators
would stop working.

Here is an exception for defining that a program is missing information:

>>> class DataError(Exception):

... def __init__(self, missing):

... self.missing = missing

Using your custom exception is easy:

>>> if 'important_data' not in config:

... raise DataError('important_data missing')

Summary

This chapter introduced strategies for dealing with exceptions. In Look
Before You Leap, you make sure the environment will not throw an error
before
trying something. In Easier to Ask for Forgiveness than Permission,
you
wrap any code that you know might throw an error with a try/catch
block.
You should favor the latter style of programming in Python.

The various mechanisms for catching errors, raising them, and re-raising
them
were discussed. Finally, the chapter showed how you could subclass
an existing
exception to create your own.

Exercises

1. Write a program that serves as a basic calculator. It asks for two
numbers,
 then it asks for an operator. Gracefully deal with input that
doesn't cleanly convert to
numbers. Deal with division by zero errors.

2. Write a program that inserts line numbers in front the lines of a file.
Accept a filename being passed in on the command line. Import the
sys
module and read the filename from the sys.argv list. Gracefully
deal with a bogus
file being passed in.

Importing Libraries

The previous chapters have covered the basic constructs for Python. In

this chapter, you'll learn about importing code. Many languages have
 the
concept of libraries or reusable chunks of code. Python comes
with a whole
swath of libraries, commonly referred to as “batteries included”.
You need
to know how to use the
batteries that are found in these libraries.

To use a library, you have to load the code from that library into your
namespace. The
namespace holds the functions, classes, and variables you
have access to.
If you want to calculate the sine of an angle you will need to
define a
function that does that or load a preexisting function. The built-in
math library
 has a sin function that calculates the sine of an angle
expressed
in radians. It also has a variable that defines a value for pi:

>>> from math import sin, pi

>>> sin(pi/2)

1.0

The above code loads the math module. But it doesn't put math
in your
namespace. Rather it creates a variable that points to the
sin function from
the math module. It also creates a variable
 that points to the pi variable
found in the math module. If you inspect your
current namespace using the
dir function you can confirm
this:

>>> 'sin' in dir()

True

Multiple ways to import

In the previous example, you imported a single function from a
library. It is
also possible to load the library into your namespace
and reference all of its
classes, functions, and variables.
 To import the math module into your
namespace type:

>>> import math

This illustrates importing a module. Note that this code creates
a new variable, math, that
points to a module. The module
has various attributes that you can access using a period.

In the above, you imported the math library. This created a new variable,
math, that points to the module. The module has various attributes. You
can
use the dir function to list the attributes:

>>> dir(math)

['__doc__', '__file__', '__loader__', '__name__',

'__package__', '__spec__', 'acos', 'acosh', 'asin',

'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',

'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',

'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp',

'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose',

'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',

'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

Most of these attributes are functions. If you want to call the
 tan
function, you can't invoke it, because tan isn't
 in your namespace, only
math is. But, you can do a lookup on the
math variable using the period (.)
operator. The period
operator will look up attributes on an object. Because
everything
in Python is an object, you can use the period to lookup the tan
attribute on the math object:

>>> math.tan(0)

0.0

If you want to read the associated documentation for the tan function,
you can enlist the help function for aid:

>>> help(math.tan)

Help on built-in function tan in module math:

tan(...)

 tan(x)

 Return the tangent of x (measured in radians).

Tip

When would you import a function using from versus the import
statement? If you are only using a couple attributes from a library, you
might want to use the from style import. It is possible to specify
multiple
comma-delimited attributes in the from construct:

>>> from math import sin, cos, tan

>>> cos(0)

1.0

However if you need to access most of the library, it requires less
typing to
import the library using the import statement. It is also a hint
to anyone
reading your code (including you), as to where the function
(or class or
variable) came from.

Note

If you need to import multiple attributes from a library, you might
need
to span multiple lines. If you continue importing functions on the next
line,
you will run into an error:

>>> from math import sin,

... cos

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

SyntaxError: trailing comma not allowed

without surrounding parentheses

You will need to use a backslash, to indicate that the line
continues
on the next line:

>>> from math import sin,\

... cos

Otherwise, you can specify multiple imports with parentheses. Open
parentheses
 (or braces, or brackets) indicate that the statement
continues on the next
line:

>>> from math import (sin,

... cos)

This latter form is more idiomatic Python.

Conflicting import names

If you were working on a program that performs trigonometric
operations,
you might already have a function named sin. What if
you also want to use
the sin function from the math library?
One option is to import math, then
math.sin would
 reference the library and sin would reference your
function.

Python has another option too. You can redefine the name of what you
want
to import using the as keyword:

>>> from math import sin as other_sin

>>> other_sin(0)

0.0

Now, other_sin is a reference to the sin found in math and
 you may
continue using your sin without having to refactor your
code.

The as keyword construct also works on import statements. If
you had a
variable (or a function) that conflicted with the math
 name in your
namespace, the following would be one way to get around
it:

>>> import math as other_math

>>> other_math.sin(0)

0.0

Tip

The as keyword can also be used to eliminate typing. If your
favorite
library has overly long and verbose names you can easily
shorten them
in your code. Users of the Numpy 16 library have adopted
the standard
of reducing keystrokes by using a two-letter acronym:

>>> import numpy as np

The Pandas 17 library has adopted a similar standard:

>>> import pandas as pd

Star imports

Python also allows you to clobber your namespace with what are known
as
star imports:

>>> from math import *

>>> asin(0)

0.0

Notice that the above code calls the arc sine function, which was not
defined.
The line where asin is invoked is the first reference to asin in the
code. What happened? When you say from math import *, that is a star
import,
and it tells Python to throw everything from the math library (class
definitions,
 functions, and variables) into the local namespace. While this
might appear
handy at first glance, it is quite dangerous.

Star imports make debugging harder because it is not explicit where
code
comes from. Even worse are star imports from multiple
 libraries.
Subsequent library imports might override something defined
in an earlier
library. As such, star imports are discouraged and frowned
upon.

Tip

Do not use star imports!
The possible exceptions to this rule are when you are writing your

own testing
code, or messing around in the REPL. Library authors do
this as a shortcut to
 importing everything from the library that they
want to test. And this often
ends up in the documentation. Do not be
tempted because you see it in other’s
code, to use star imports in your
code.

Remember the Zen of Python:

Explicit is better than implicit

Nested libraries

Some Python packages have a nested namespace. For example, the XML
library that comes with Python has support for minidom and
etree. Both
libraries live under the xml parent package:

>>> from xml.dom.minidom import \

... parseString

>>> dom = parseString(

... '<xml><foo/></xml>')

>>> from xml.etree.ElementTree import \

... XML

>>> elem = XML('<xml><foo/></xml>')

Notice that the from construct allows importing only the functions
 and
classes needed. Using the import construct (without from) would require
more
typing (but also allow access to everything from the package):

>>> import xml.dom.minidom

>>> dom = xml.dom.minidom.parseString(

... '<xml><foo/></xml>')

>>> import xml.etree.ElementTree

>>> elem = xml.etree.ElementTree.XML(

... '<xml><foo/></xml>')

Import organization

According to PEP 8, import statements should be located at the top of the
file following the module docstring. There should be one import per
 line
and imports should be grouped by:

Standard library imports
3rd party imports
Local package imports

http://www.python.org/dev/peps/pep-0008

An example module might have the following at the start:

#!/usr/bin/env python3

"""

This module converts records into JSON

and shoves them into a database

"""

import json # standard libs

import sys

import psycopg2 # 3rd party lib

import recordconverter # local library

...

Tip

It is useful to organize the grouped imports alphabetically.

Tip

It can be useful to postpone some imports to:

Avoid circular imports. A circular import is where modules
mutually import
 one another. If you are not able (or willing) to
refactor to remove the
circular import, it is possible to place the
import statement within the
 function or method containing the
code that invokes it.

Avoid importing modules that are not available on some
systems.

Avoid importing large modules that you may not use.

Summary

This chapter discussed importing libraries in Python. Python has a large
standard library 18, and you will need to import those libraries to use them.
Throughout this book, it has emphasized that everything is an object, and
you
often create variables that point to those objects. When you import a
module,
 you create a variable that points to a module object. Anything
within the
module’s namespace can be accessed using the lookup operation
(.).

You can also selectively import parts out of the module’s namespace,
using the
from statement. If you want to rename what you are importing,
you can
use an as statement to change what the variable name will be.

Exercises

1. Find a package in the Python standard library for dealing with JSON.
Import
the library module and inspect the attributes of the module. Use
the help
function to learn more about how to use the module. Serialize
a dictionary
mapping 'name' to your name and 'age' to your age, to a
JSON string.
Deserialize the JSON back into Python.

2. Find a package in the Python standard library for listing directory
contents.
Using that package, write a function that accepts a directory
name. The
function should get all the files in that directory and print
out a report of
the count of files by extension type.

16 - numpy.scipy.org
17 - pandas.pydata.org
18 - https://docs.python.org/3/library/index.html

https://docs.python.org/3/library/index.html

Libraries: Packages and Modules

The previous chapter discussed how to import libraries. This chapter
will

dive a little deeper into what constitutes a library. There are two
requirements
for importing a library:

1. The library must be a module or a package
2. The library must exist in the PYTHONPATH environment variable or
sys.path Python variable.

Modules

Modules are Python files that end in .py, and have a name
 that is
importable. PEP 8 states that module filenames should be
 short and in
lowercase. Underscores may be used for readability.

Packages

A package in Python is a directory that contains a file named
__init__.py.
The file named __init__.py can have any
implementation it pleases or it
can be empty. In addition, the
directory may contain an arbitrary number of
modules and sub packages.

When writing code, should you prefer a module or a package? I usually
start simple and use a module. When I need to break coherent parts out into
their
own modules, then I refactor into modules in a package.

Here is an example from the directory layout of the
 popular
SQLAlchemy 19 project (an Object Relational Mapper for
databases).

http://www.python.org/dev/peps/pep-0008

sqlalchemy/

 __init__.py

 engine/

 __init__.py

 base.py

 schema.py

PEP 8 states that directory names for packages should be short and
lowercase. Underscores should not be used.

Importing packages

To import a package, use the import statement with the package name (the
directory name):

>>> import sqlalchemy

This will import the sqlalchemy/__init__.py file into the current
namespace if the package is found in PYTHONPATH or sys.path.

If you wanted to use the Column and ForeignKey
 classes found in the
schema.py module, either of the code snippets below would work.
The first
puts sqlalchemy.schema in your namespace, while the latter only
 puts
schema in your namespace:

>>> import sqlalchemy.schema

>>> col = sqlalchemy.schema.Column()

>>> fk = sqlalchemy.schema.ForeignKey()

or:

>>> from sqlalchemy import schema

>>> col = schema.Column()

>>> fk = schema.ForeignKey()

Alternatively, to access only the Column class, import that
class in one of
the following two ways:

http://www.python.org/dev/peps/pep-0008

>>> import sqlalchemy.schema.Column

>>> col = sqlalchemy.schema.Column()

or:

>>> from sqlalchemy.schema import Column

>>> col = Column()

PYTHONPATH

PYTHONPATH is an environment variable listing
non-standard directories that
Python looks for modules or packages
in. This variable is usually empty. It
is not necessary to change
PYTHONPATH unless you are developing code and
want to use
libraries that have not been installed.

Tip

Leave PYTHONPATH empty unless you have a good reason to change it.
This
section illustrates what can happen if you change it. This can be
confusing to
 others trying to debug your code who forget that
PYTHONPATH has been
changed.

If you had some code in /home/test/a/plot.py, but were working out
of /home/test/b/, using PYTHONPATH allows access to that
 code.
Otherwise, if plot.py was not installed using system or
 Python tools,
trying to import it would raise an ImportError:

>>> import plot

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ImportError: No module named plot

If you start Python by setting the PYTHONPATH, it indicates to
 Python
where to look for libraries:

$ PYTHONPATH=/home/test/a python3

Python 3.6.0 (default, Dec 24 2016, 08:01:42)

>>> import plot

>>> plot.histogram()

...

Tip

Python packages can be installed via package managers, Windows
executables or Python specific tools such as pip 20.

sys.path

The sys module has an attribute, path, that lists the directories
that Python
searches for libraries.
If you inspect sys.path, you will see
all the locations
that are scanned:

>>> import sys

>>> sys.path

['',

'/usr/lib/python35.zip',

'/usr/lib/python3.6',

'/usr/lib/python3.6/plat-darwin',

'/usr/lib/python3.6/lib-dynload',

'/usr/local/lib/python3.6/site-packages']

Tip

If you see errors like:

ImportError: No module named plot

Look at the sys.path variable to see if it has the directory holding
foo.py
 (if it is a module). If plot is a package, then the plot/
directory should
be located in one of the paths in sys.path:

>>> import plot

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ImportError: No module named plot

>>> sys.path.append('/home/test/a')

>>> import plot

>>> plot.histogram()

Alternatively, you can set PYTHONPATH to point to that directory
from the command used to invoke Python.

Again, typically you don't manually set sys.path or PYTHONPATH,
normally you install libraries, and the installer puts them in the correct
location.

Tip

If you want to know the location of the library on the filesystem, you
can inspect
the __file__ attribute:

>>> import json

>>> json.__file__

'/usr/lib/python3.6/json/__init__.py'

This only works with libraries implemented in Python. The sys
module is not
implemented in Python, so this fails:

>>> import sys

>>> sys.__file__

Traceback (most recent call last):

 ...

AttributeError: module 'sys' has no attribute '__file__'

Summary

This chapter discussed modules and packages. A module is
a Python file. A
package is a directory that has a file named __init__.py
in it. A package
may also contain other modules and packages.

There is a list of paths that determines where Python looks to import
libraries. This list is stored in sys.path. You can inspect it to see
 where
Python looks. You can also update its value via the PYTHONPATH

environment variable, or mutate the list directly. But typically,
you don't set
this variable to install packages, you use something like
 pip to install
packages.

Exercises

1. Create a module, begin.py, that has a function named prime in it. The
prime function should take a number and return a boolean indicating
whether the number is a prime number (divisible only by 1 and itself).
Go to
another directory, launch Python, and run:

from begin import prime

It should fail. Update the sys.path variable, so that you can import
the
function from the module. Then, set PYTHONPATH to get it to load.

2. Create a package, utils. In the __init__.py file, place the prime
code from the previous exercise. Go to a different directory in the
terminal,
launch Python, and run:

from utils import prime

It should fail. Update the sys.path variable, so that you can import
the
function from the package. Then, set PYTHONPATH to get it to load.

19 - https://www.sqlalchemy.org/
20 - https://pip.pypa.io/

https://www.sqlalchemy.org/
https://pip.pypa.io/

A Complete Example

This chapter covers how to layout code within a script. It includes the

source
for a simplified implementation of the Unix command cat. The cat
command
reads filenames from the command line and prints their contents
to the screen.
 There are various options to do things like add line
numbering. This script will
 illustrate how the code is laid out in a typical
Python file.

cat.py

Below are the contents of the Python implementation of the Unix command
cat. It only
 includes an option for adding line numbers (--number), but
none of
the other cat options. You can put this in a file named cat.py:

#!/usr/bin/env python3

r"""A simple implementation of the unix ``cat``

command. It only implements the ``--number``

option. It is useful for illustrating file

layout and best practices in Python.

This is a triple quoted docstring for the whole

module (this file). If you import this module

somewhere else and run ``help(cat)``, you will

see this.

This docstring also contains a ``doctest`` which

serves as an example of programmatically using

the code. It also functions as a doctest. The

``doctest`` module can execute this docstring

and validate it by checking any output.

>>> import io

>>> fin = io.StringIO(\

... 'hello\nworld\n')

>>> fout = io.StringIO()

>>> cat = Catter([fin],

... show_numbers=True)

>>> cat.run(fout)

>>> print(fout.getvalue())

 1 hello

 2 world

"""

import argparse

import logging

import sys

__version__ = '0.0.1'

logging.basicConfig(

 level=logging.DEBUG)

class Catter(object):

 """

 A class to concatenate files to

 standard out

 This is a class docstring,

 ``help(cat.Catter)`` would show

 this.

 """

 def __init__(self, files,

 show_numbers=False):

 self.files = files

 self.show_numbers = show_numbers

 def run(self, fout):

 # use 6 spaces for numbers and right align

 fmt = '{0:>6} {1}'

 for fin in self.files:

 logging.debug('catting {0}'.format(fin))

 for count, line in enumerate(fin, 1):

 if self.show_numbers:

 fout.write(fmt.format(

 count, line))

 else:

 fout.write(line)

def main(args):

 """

 Logic to run a cat with arguments

 """

 parser = argparse.ArgumentParser(

 description='Concatenate FILE(s), or '

 'standard input, to standard output')

 parser.add_argument('--version',

 action='version', version=__version__)

 parser.add_argument('-n', '--number',

 action='store_true',

 help='number all output lines')

 parser.add_argument('files', nargs='*',

 type=argparse.FileType('r'),

 default=[sys.stdin], metavar='FILE')

 parser.add_argument('--run-tests',

 action='store_true',

 help='run module tests')

 args = parser.parse_args(args)

 if args.run_tests:

 import doctest

 doctest.testmod()

 else:

 cat = Catter(args.files, args.number)

 cat.run(sys.stdout)

 logging.debug('done catting')

if __name__ == '__main__':

 main(sys.argv[1:])

If you don't feel like typing in this code, you can grab a copy here 21.

What does this code do?

This code will echo the contents of a file (optionally with line numbers) to a
terminal
on Windows and Unix systems:

$ python3 cat.py -n README.md

 1 # IllustratedPy3

 2

 3 If you have questions or concerns, click on Issues above.

If you run this code with -h it will print out the help documentation for
the command line arguments:

$ python3 cat.py -h

usage: cat.py [-h] [--version] [-n] [--run-tests] [FILE [FILE ...]]

Concatenate FILE(s), or standard input, to standard output

positional arguments:

 FILE

optional arguments:

 -h, --help show this help message and exit

 --version show program's version number and exit

 -n, --number number all output lines

 --run-tests run module tests

The command line parsing functionality is implemented in the main
function
 and provided by the argparse module found in the standard
library. The
argparse module handles command line argument parsing.

If you want to know what the argparse module does, you can look up
the
documentation on the web or you can use the help function. The basic
idea of
 the module is that you create an instance of the ArgumentParser
class and
call .add_argument for each command line option. You provide
the command
 line switches, tell it what kind of action to do (the default
stores the value
 following the switch), and provide help documentation.
After you have added
arguments, you call the .parse_args method on the
command line arguments (we
 get that from sys.argv). The result of
.parse_args is an object that has
 attributes attached to it based on the
option names. In this case, there will be
a .files attribute and a .number
attribute.

Note

You can also use the REPL to inspect this module and any
documentation that it
 ships with. Remember the help function? You
can pass a module to it and it
will print out the module level docstring.

If you wanted to look at the source code for this module, you can do
that too.
Remember the dir function? It lists attributes of an object. If
you inspect
 the argparse module, you see that it has a __file__
attribute. This
points to the location on your computer where the file
is:

>>> import argparse

>>> argparse.__file__

'/usr/local/Cellar/python3/3.6.0/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/argparse.py'

Because it is written in Python (some modules are written in C), you
can
 inspect the source. At this point, you should be able to read the
module
and understand what it is trying to do.

After parsing the arguments, you create an instance of the Catter class
that is
defined in the code, and call the .run method on it.

This example might seem a little overwhelming, but you have covered all
of the
syntax that it illustrates over the course of the book. The rest of this
chapter will discuss the layout and other aspects of this code.

Common layout

Here are the common components found in a Python module and the
order
in which they are found:

#!/usr/bin/env python3 (shebang) (used if module also serves as a
script.)
module docstring
imports
metadata/globals
logging
implementation
if __name__ == '__main__': (used if module also serves as a
script.)
argparse

Note

The above list is a recommendation. Most of those items can be in an
arbitrary order. And not every file will have all these
 items. For
instance not every file needs to be executable as a shell
script.

You are free to organize files how you please, but you do so at your
own
peril. Users of your code will likely complain (or submit patches).
As a
 reader of code, you will appreciate code that follows the
recommendation,
since it will be quickly discoverable.

Shebang

The first line in a file (that is also used as a script) is the
 shebang line
(#!/usr/bin/env python3). On Unix operating systems,
 this line is
parsed to determine how to execute the script. Thus, this
 line is only
included in files that are meant to be executable as
scripts.

It should say python3, as python refers to Python version 2 on most
systems.

Note

The Windows platform ignores the shebang line. So this is safe to
include.
 Indeed you will find it in libraries that are also popular on
Windows.

Note

Rather than hardcoding a specific path to a Python executable,
/usr/bin/env selects the first python3 executable found on
the user’s
PATH. Tools such as venv 22 will modify your
PATH to use a custom
python3 executable and will work with this convention.

Tip

On Unix systems, if the directory containing the file is present in the
user’s
PATH environment variable, and the file is executable, then the
file name alone is sufficient for execution from a shell.

Type:

$ chmod +x <path/to/file.py>

to make it executable.

Docstring

A module may have a module-level docstring at the top of the file.
It should
follow the shebang line but precede any other Python code.
A docstring
serves as an overview of the module and should
contain a basic summary of
the code. Also, it may contain examples of
using the module.

Tip

Python includes a library, doctest that can verify examples from
an
interactive interpreter. Using docstrings that contain REPL code
snippets can serve both as documentation and simple sanity tests for
your library.
cat.py includes doctest code at the end of its docstring. When

cat.py
 runs with --run-tests, the doctest library will check any
docstrings
and validate the code found in them. This was included for
illustration
purposes only. Normally a non-developer end user would
not see options for
running tests in a script, though you could include
doctests in the
 docstrings. In this case, the --run-tests option is
included as an example
of using the doctest module.

Imports

Imports are usually included at the top of Python modules. The import
lines
are normally grouped by location of the library. First, list any
 libraries
found in the Python standard library. Next list third-party
libraries. Finally,
list the libraries that are local to the current
code. Such organization allows
end users of your code to quickly see
imports, requirements, and where the
code is coming from.

Metadata and globals

If you have legitimate module-level global variables, define them after
the
imports. This makes it easy to scan a module and quickly determine
what
the globals are.

Global variables are defined at the module-level and are accessible
throughout that module. Because Python allows any variable to be
modified, global variables are potential sources of bugs. In addition,
 it is

easier to understand code when variables are defined and
 modified only
within the function scope. Then you can be sure of what
data you have and
who is changing it. If you have multiple places
where a global variable is
being modified (especially if it is in
 a different module) you are setting
yourself up for a long debugging
session.

One legitimate use for globals is to emulate constants found in
 other
programming languages. A constant variable is a variable whose
value does
not change. Python doesn't support variables that don't change,
but you can
use a convention to indicate to the user that they should treat
a variable as
read-only. PEP 8 states that global constants should have names
that are the
same as variables except they should be capitalized. For
 example, if you
wanted to use the golden ratio you could define it like
this:

>>> GOLDEN_RATIO = 1.618

If this code was defined in a module, the capitalization serves as a hint
that you should not rebind this variable.

http://www.python.org/dev/peps/pep-0008

Note

By defining constants as globals, and using well thought-out
variable
names, you can avoid a problem found in programming—magic
numbers. A magic number is a number sitting in code or a formula
that
is not stored in a variable. That in itself is bad enough,
especially when
someone else starts reading your code.

Another problem with magic numbers is that the same value tends to
propagate through the code over time. This isn’t a problem until you
want to change that value. Do you do a search and replace?
What if the
magic number actually represents two different values,
i.e. the number
of sides of a triangle and number of dimensions? In that
case, a global
search and replace will introduce bugs.

The solution to both these problems (context and repetition) is to
put
the value in a named variable. Having them in a variable gives
context
and naming around the number. It also allows you to easily
change the
value in one place.

In addition to global variables, there are also metadata variables
found at
that level. Metadata variables hold information about the
module, such as
author and version. Normally metadata variables are
 specified using
“dunder” variables such as __author__.

For example, PEP 396 recommends that the module version should
 be
specified in a
string, __version__, at the global module level.

http://www.python.org/dev/peps/pep-0396

Note

It is a good idea to define a version for your library if you intend
on
releasing it to the wild. PEP 396 suggests best practices for how
 to
declare version strings.

Other common metadata variables include author, license, date, and
contact. If these were specified in code they might look like this:

__author__ = 'Matt Harrison'

__date__ = 'Jan 1, 2017'

__contact__ = 'matt_harrison <at> someplace.com'

__version__ = '0.1.1'

Logging

One more variable that is often declared at the global level is the
logger for
a module. The Python standard library includes the
 logging library that
allows you to report different levels of
information in well-defined formats.

Multiple classes or functions in the same module will likely need to
log
information. It is common to perform logger initialization once at
the global
level and then reuse the logger handle that you get back
 throughout the
module.

Other globals

You should not use a global variable when local a variable will
suffice. The
common globals found in Python code are metadata,
constants, and logging.

It is not uncommon to see globals scattered about in sample code. Do
not
fall to the temptation to copy this code. Place it into a
function or a class.
This will pay dividends in the future when you
are refactoring or
debugging
your code.

Implementation

http://www.python.org/dev/peps/pep-0396

Following any global and logging setup comes the actual meat of the
code
—the implementation. Functions and classes will be a substantial
portion of
this code. The Catter class would be considered the
 core logic of the
module.

Testing

Normally, bonafide test code is separated from the implementation
 code.
Python allows a small exception to this. Python docstrings can
be defined at
module, function, class, and method levels. Within
 docstrings, you can
place Python REPL snippets illustrating how to use
 the function, class, or
module. These snippets, if well crafted and
thought-out, can be effective in
documenting common usage of the
module.

Another nice feature of doctest is validation of documentation. If
your
snippets once worked, but now they fail, either your code has
changed or
your snippets are wrong. You can easily find this out
before end users start
complaining to you.

Tip

doctest code can be in a stand-alone text file. To execute
 arbitrary
files using doctest, use the testfile function:

import doctest

doctest.testfile('module_docs.txt')

Note

In addition to doctest, the Python standard library includes the
unittest module that implements the common xUnit style
methodology—setup, assert and teardown. There are pro’s and con’s
to
both doctest and unittest styles of testing. doctest
 tends to be
more difficult to debug, while unittest contains
boilerplate code that
is regarded as too Java-esque. It is possible
to combine both to achieve
well documented and well tested code.

if __name__ == '__main__':

If your file is meant to be run as a script, you will find this
snippet at the
bottom of your script:

if __name__ == '__main__':

 sys.exit(main(sys.argv[1:]) or 0)

To understand the statement, you should understand the __name__
variable.

__name__

Python defines the module level variable __name__ for any module
 you
import, or any file you execute. Normally __name__’s value
is the name of
the module:

>>> import sys

>>> sys.__name__

'sys'

>>> import xml.sax

>>> xml.sax.__name__

'xml.sax'

There is an exception to this rule. When a module is executed (i.e.
python3 some_module.py), then the value of __name__ is the
 string
"__main__".

In effect, the value of __name__ indicates whether a file is being
loaded
as a library, or run as a script.

Note

It is easy to illustrate __name__. Create a file,
some_module.py, with
the following contents:

print("The __name__ is: {0}".format(__name__))

Now run a REPL and import this module:

>>> import some_module

The __name__ is: some_module

Now execute the module:

$ python3 some_module.py

 The __name__ is: __main__

It is a common idiom throughout Pythondom to place a check
similar to
the following at the
bottom of a module that could also serve as a script.
This check will
determine whether the file is being executed or imported:

if __name__ == '__main__':

 # execute

 sys.exit(main(sys.argv[1:]) or 0)

This simple statement will run the main function when the file is
executed.
Conversely, if the file is used as a module, main will
not be run
automatically. It calls sys.exit with the return value
of main (or 0 if main
does not return an exit code) to behave
as a good citizen in the Unix world.

The main function takes the command line options as parameters.
sys.argv holds the command line options. It also contains
python3 at the
front, so you need to slice sys.argv to ignore that,
 before you pass the
options into main.

Tip

Some people place the execution logic (the code inside the main
function)
 directly under the if __name__ == '__main__': test.
Reasons
to keep the logic inside a function include:

The main function can be called by others
The main function can be tested easily with different arguments
Reduce the amount of code executing at the global level

Summary

In this chapter, you dissected Python code in a script. The chapter discussed
best practices and common coding conventions.

By laying out your code as described in this chapter, you will be
following best practices for Python code. This layout will also aid
 others
needing to read your code.

Exercises

1. Copy the cat.py code. Get it working on your computer. This isn't just
busy work. Much of the time when you are programming, you aren't
creating
something from scratch, but rather are reusing code that others
have written.

2. Write a script, convert.py, that will convert a file from one encoding
to
another. Accept the following command line options:

An input filename
An input encoding (default to utf-8)
An output encoding
An option for handling errors (ignore/raise)

21 - https://github.com/mattharrison/IllustratedPy3/
22 - https://docs.python.org/3/library/venv.html

https://github.com/mattharrison/IllustratedPy3/
https://docs.python.org/3/library/venv.html

Onto Bigger and Better

At this point you should have a pretty good understanding of how

Python programs work. You should feel comfortable using the Python
REPL and exploring classes using dir and help.

What comes next? That is up to you. You should now have the
prerequisites to use Python to create websites, GUI programs, or
numerical
applications.

One huge benefit of Python is the various communities associated with
the different areas of programming. There are local user groups,
newsgroups, mailing lists and social networks for many aspects of
Python.
Most of these groups are welcoming to new programmers and
 willing to
share their knowledge. Do not be afraid to try something
 new, Python
makes it easy and most likely there are others who have
similar interests.

File Navigation

If you are not familiar with file navigation from a terminal, here is a

basic
introduction. First, you need to open a terminal. A terminal is one of
those
windows you see on the movies where hackers type in a lot of text.
You don't have
 to use one to program, but being able to navigate and run
commands from the terminal
is a useful skill to have.

Mac and Unix

On Mac, type command-space to bring up Spotlight, then type terminal to
launch the terminal application included on Macs.

On Linux systems, launching a terminal depends on your desktop
environment. For
 example, on Ubuntu systems you can hit the keyboard
shortcut ctr-alt-T. A minimal
 terminal found in most systems is called
xterm.

There are a few commands to know:

cd - Change directory changes to a different directory. Typing:

$ cd ~/Documents

will change to the Documents directory found in your home folder (~
is
 a shortcut for home, which is /Users/<username> on Mac and
/home/<username> on Linux.
pwd - Print working directory will list the current directory that you are
in.

ls - List directory will list the contents of the current directory.

If you had a Python script located at ~/work/intro-to-py/hello.py,
you could type the
following to run it:

$ cd ~/work/intro-to-py

$ python3 hello.py

Windows

On Windows, type Win-R to bring up the "Run Window" interface, then
type cmd
to launch the command prompt.

There are a few commands to know:

cd - Change directory changes to a different directory. Typing:

c:> cd C:\Users

will change to the C:\Users directory.
echo %CD% - Will list the current directory that you are in.
dir - List directory will list the contents of the current directory.

If you had a Python script located at C:\Users\matt\intro-to-
py\hello.py, you could type the
following to run it:

C:> cd C:\Users\matt\intro-to-py

C:\Users\matt\intro-to-py> python hello.py

Useful Links

Here are some useful Python links:

https://python.org/ - Python home page
https://github.com/mattharrison/Tiny-Python-3.6-Notebook - Python
3.6 reference
http://docutils.sourceforge.net/ - reStructuredText - lightweight markup
language for Python documentation
https://pyformat.info - Useful string formatting reference
https://pypi.python.org/pypi - Python Package Index - 3rd party
packages
https://www.python.org/dev/peps/pep-0008/ - PEP 8 - Coding
conventions
https://www.anaconda.com/download/ - Anaconda - Alternate Python
installer with many 3rd party packages included
https://www.djangoproject.com/ - Django - Popular web framework
http://scikit-learn.org/ - Machine learning with Python
https://www.tensorflow.org/ - Deep learning with Python
https://www.reddit.com/r/Python/ - News for Python

https://python.org/
https://github.com/mattharrison/Tiny-Python-3.6-Notebook
http://docutils.sourceforge.net/
https://pyformat.info/
https://pypi.python.org/pypi
https://www.python.org/dev/peps/pep-0008/
https://www.anaconda.com/download/
https://www.djangoproject.com/
http://scikit-learn.org/
https://www.tensorflow.org/
https://www.reddit.com/r/Python/

About the Author

Matt Harrison has been using Python since 2000.
He runs MetaSnake, a

Python and Data Science consultancy and corporate training shop. In the
past, he has worked across the domains
of search, build management and
testing, business intelligence, and
storage.

He has presented and taught tutorials at conferences such as Strata,
SciPy, SCALE,
PyCON, and OSCON as well as local user conferences. The
structure and
content of this book is based on first-hand experience teaching
Python to many individuals.

He blogs at hairysun.com and occasionally tweets useful Python
related
information at @__mharrison__.

About the Technical Editors

Roger A. Davidson is currently the Dean of Mathematics at American River
College in Sacramento, CA. His doctorate is in aerospace engineering, but
he also holds degrees in computer science, electrical engineering and
systems engineering in addition to a recent graduate certificate in data
science (where his current love of Python began). During his career thus far
Roger has worked for NASA, Fortune 50 companies, startups, and
community colleges. He is passionate about education, science (not just the
data kind), wild blackberry cobbler and guiding diverse teams to solve big
problems.

Andrew McLaughlin is a programmer and designer, a sysadmin by day,
and family man by night. With a love for detail, he's been building things
for the web since 1998. A graduate with honors from George Fox
University, Andrew has a degree in Management and Information Systems.
In his free time he enjoys hiking with his wife and two kids, and
occasionally working in his woodshop. He has all ten fingers. Follow him
on twitter: @amclaughlin

Also Available

Beginning Python Programming

Treading on Python: Beginning Python Programming 23 by Matt Harrison is
the complete book to teach you Python fast. Designed to up your Python
game by covering the basics:

Interpreter Usage
Types
Sequences

Dictionaries
Functions
Indexing and Slicing
File Input and Output
Classes
Exceptions
Importing
Libraries
Testing
And more …

Reviews

Matt Harrison gets it, admits there are undeniable flaws and schisms
in
 Python, and guides you through it in short and to the point
examples. I bought
both Kindle and paperback editions to always have
at the ready for continuing
to learn to code in Python.
—S. Oakland

This book was a great intro to Python fundamentals, and was very easy
to read.
 I especially liked all the tips and suggestions scattered
throughout to help
the reader program Pythonically :)
—W. Dennis

You don't need 1600 pages to learn Python
Last time I was using Python when Lutz's book Learning Python had
only 300
pages. For whatever reasons, I have to return to Python right
now. I have
discovered that the same book today has 1600 pages.
Fortunately, I discovered Harrison's books. I purchased all of them,
both
Kindle and paper. Just few days later I was on track.

Harrison's presentation is just right. Short and clear. There is no 50
pages
 about the Zen and philosophy of using if-then-else construct.
Just facts.
—A. Customer

Treading on Python: Vol 2: Intermediate Python

Treading on Python: Vol 2: Intermediate Python 24 by Matt Harrison is the
complete book on intermediate Python. Designed to up your Python game
by covering:

Functional Programming
Lambda Expressions
List Comprehensions
Generator Comprehensions

Iterators
Generators
Closures
Decorators
And more …

Reviews

Complete! All you must know about Python Decorators: theory,
practice, standard decorators.
All written in a clear and direct way and very affordable price.
Nice to read in Kindle.
—F. De Arruda (Brazil)

This is a very well written piece that delivers. No fluff and right
to the
point, Matt describes how functions and methods are
constructed, then
describes the value that decorators offer.
…
Highly recommended, even if you already know decorators, as this is
a
very good example of how to explain this syntax illusion to others
in a
way they can grasp.
—J Babbington

Decorators explained the way they SHOULD be explained …
There is an old saying to the effect that “Every stick has two ends,
one
by which it may be picked up, and one by which it may not.” I
believe
that most explanations of decorators fail because they pick
up the stick
by the wrong end.
What I like about Matt Harrison’s e-book “Guide to: Learning Python
Decorators” is that it is structured in the way that I think an

introduction to decorators should be structured. It picks up the
stick by
the proper end…
Which is just as it should be.
—S. Ferg

This book will clear up your confusions about functions even before
you start to read about decoration at all. In addition to getting
straight
about scope, you'll finally get clarity about the
 difference between
arguments and parameters, positional parameters,
named parameters,
etc. The author concedes that this introductory
material is something
that some readers will find “pedantic,” but
reports that many people
find it helpful. He’s being too modest. The
 distinctions he draws are
essential to moving your programming
 skills beyond doing a pretty
good imitation to real fluency.
—R. Careago

Ebook Formatting: KF8, Mobi & EPUB

Ebook Formatting: KF8, Mobi & EPUB by Matt Harrison is the complete
book on formatting for all Kindle and EPUB devices. A good deal of the
eBooks found in online stores today have problematic
 formatting. Ebook
Formatting: KF8, Mobi & EPUB is meant to be an aid
 in resolving those
issues. Customers hate poorly formatted books. Read
 through the reviews
on Amazon and you'll find many examples. This
doesn't just happen to self-
published books. Books coming out of big
Publishing Houses often suffer
similar issues. In the rush to put out
 a book, one of the most important
aspects affecting readability is
ignored.

This books covers all aspects of ebook formatting on the most popular
devices (Kindle, iPad, Android Tablets, Nook and Kobo):

Covers

http://hairysun.com/books/ebookformatting
http://hairysun.com/books/ebookformatting

Title Pages
Images
Centering stuff
Box model support
Text Styles
Headings
Page breaks
Tables
Blockquotes
First sentence styling
Non-ASCII characters
Footnotes
Sidebars
Media Queries
Embedded Fonts
Javascript
and more …

23 - http://hairysun.com/books/tread/
24 - http://hairysun.com/books/treadvol2/

http://hairysun.com/books/tread/
http://hairysun.com/books/treadvol2/

One more thing

Thank you for buying and reading this book.
If you have found this book helpful, I have a big favor to ask.
As a self-

published author, I don't have a big Publishing House with
lots of marketing
power pushing my book. I also try to price my
books so that they are much
more affordable.

If you enjoyed this book, I hope that you would take a
moment to leave
an honest review on Amazon. A short comment on how the book
 helped
you and what your learned makes a huge difference. A quick review is
useful to others who
might be interested in the book.

Thanks again!
Write a review here.

https://www.amazon.com/review/create-review/ref=cm_cr_dp_d_wr_but_btm?ie=UTF8&channel=glance-detail&asin=B0773PZ6HQ

Table of Contents

Introduction
Why Python?
Which Version of Python?
The Interpreter
Running Programs
Writing and Reading Data
Variables
More about Objects
Numbers
Strings
dir, help, and pdb
Strings and Methods
Comments, Booleans, and None
Conditionals and Whitespace
Containers: Lists, Tuples, and Sets
Iteration
Dictionaries
Functions
Indexing and Slicing
File Input and Output
Unicode
Classes
Subclassing a Class
Exceptions
Importing Libraries
Libraries: Packages and Modules
A Complete Example
Onto Bigger and Better
File Navigation
Useful Links

About the Author
Also Available
One more thing

	Introduction
	Why Python?
	Which Version of Python?
	The Interpreter
	Running Programs
	Writing and Reading Data
	Variables
	More about Objects
	Numbers
	Strings
	dir, help, and pdb
	Strings and Methods
	Comments, Booleans, and None
	Conditionals and Whitespace
	Containers: Lists, Tuples, and Sets
	Iteration
	Dictionaries
	Functions
	Indexing and Slicing
	File Input and Output
	Unicode
	Classes
	Subclassing a Class
	Exceptions
	Importing Libraries
	Libraries: Packages and Modules
	A Complete Example
	Onto Bigger and Better
	File Navigation
	Useful Links
	About the Author
	Also Available
	One more thing

