

by Luca Massaron
and John Paul Mueller

Python® for
Data Science

Python® for Data Science For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Python is a registered trademark of Python Software Foundation
Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is
not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2013956848

ISBN: 978‐1‐118‐84418‐2

ISBN 978-1-118-84398-7 (ebk); ISBN ePDF 978-1-118-84414-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 4
Where to Go from Here ... 5

Part I: Getting Started with Python for Data Science 7

Chapter 1: Discovering the Match between
Data Science and Python .9

Defining the Sexiest Job of the 21st Century .. 11
Considering the emergence of data science..................................... 11
Outlining the core competencies of a data scientist 12
Linking data science and big data ... 13
Understanding the role of programming .. 13

Creating the Data Science Pipeline .. 14
Preparing the data ... 14
Performing exploratory data analysis ... 15
Learning from data .. 15
Visualizing ... 15
Obtaining insights and data products ... 15

Understanding Python’s Role in Data Science ... 16
Considering the shifting profile of data scientists 16
Working with a multipurpose, simple, and efficient language 17

Learning to Use Python Fast .. 18
Loading data ... 18
Training a model .. 18
Viewing a result .. 20

Chapter 2: Introducing Python’s Capabilities and Wonders 21
Why Python? .. 22

Grasping Python’s core philosophy .. 23
Discovering present and future development goals 23

Working with Python .. 24
Getting a taste of the language ... 24
Understanding the need for indentation .. 25
Working at the command line or in the IDE 25

iv Python for Data Science For Dummies

Performing Rapid Prototyping and Experimentation 29
Considering Speed of Execution .. 30
Visualizing Power .. 32
Using the Python Ecosystem for Data Science .. 33

Accessing scientific tools using SciPy ... 33
Performing fundamental scientific computing using NumPy 34
Performing data analysis using pandas .. 34
Implementing machine learning using Scikit‐learn 35
Plotting the data using matplotlib ... 35
Parsing HTML documents using Beautiful Soup 35

Chapter 3: Setting Up Python for Data Science 37
Considering the Off‐the‐Shelf Cross‐Platform Scientific

Distributions ... 38
Getting Continuum Analytics Anaconda ... 39
Getting Enthought Canopy Express... 40
Getting pythonxy ... 40
Getting WinPython ... 41

Installing Anaconda on Windows .. 41
Installing Anaconda on Linux ... 45
Installing Anaconda on Mac OS X .. 46
Downloading the Datasets and Example Code .. 47

Using IPython Notebook ... 47
Defining the code repository .. 48
Understanding the datasets used in this book 54

Chapter 4: Reviewing Basic Python .57
Working with Numbers and Logic ... 59

Performing variable assignments .. 60
Doing arithmetic .. 61
Comparing data using Boolean expressions 62

Creating and Using Strings ... 65
Interacting with Dates ... 66
Creating and Using Functions .. 68

Creating reusable functions ... 68
Calling functions in a variety of ways .. 70

Using Conditional and Loop Statements .. 73
Making decisions using the if statement ... 73
Choosing between multiple options using nested decisions 74
Performing repetitive tasks using for .. 75
Using the while statement .. 76

Storing Data Using Sets, Lists, and Tuples ... 77
Performing operations on sets ... 77
Working with lists .. 78
Creating and using Tuples .. 80

Defining Useful Iterators ... 81
Indexing Data Using Dictionaries ... 82

v Table of Contents

Part II: Getting Your Hands Dirty with Data 83

Chapter 5: Working with Real Data .85
Uploading, Streaming, and Sampling Data ... 86

Uploading small amounts of data into memory 87
Streaming large amounts of data into memory 88
Sampling data ... 89

Accessing Data in Structured Flat‐File Form .. 90
Reading from a text file ... 91
Reading CSV delimited format ... 92
Reading Excel and other Microsoft Office files 94

Sending Data in Unstructured File Form .. 95
Managing Data from Relational Databases ... 98
Interacting with Data from NoSQL Databases ... 100
Accessing Data from the Web .. 101

Chapter 6: Conditioning Your Data .105
Juggling between NumPy and pandas .. 106

Knowing when to use NumPy ... 106
Knowing when to use pandas ... 106

Validating Your Data ... 107
Figuring out what’s in your data .. 108
Removing duplicates ... 109
Creating a data map and data plan .. 110

Manipulating Categorical Variables .. 112
Creating categorical variables.. 113
Renaming levels ... 114
Combining levels .. 115

Dealing with Dates in Your Data .. 116
Formatting date and time values ... 117
Using the right time transformation .. 117

Dealing with Missing Data .. 118
Finding the missing data ... 119
Encoding missingness ... 119
Imputing missing data ... 120

Slicing and Dicing: Filtering and Selecting Data 122
Slicing rows ... 122
Slicing columns .. 123
Dicing ... 123

Concatenating and Transforming .. 124
Adding new cases and variables .. 125
Removing data .. 126
Sorting and shuffling .. 127

Aggregating Data at Any Level ... 128

vi Python for Data Science For Dummies

Chapter 7: Shaping Data .131
Working with HTML Pages ... 132

Parsing XML and HTML... 132
Using XPath for data extraction ... 133

Working with Raw Text ... 134
Dealing with Unicode... 134
Stemming and removing stop words ... 136
Introducing regular expressions .. 137

Using the Bag of Words Model and Beyond ... 140
Understanding the bag of words model .. 141
Working with n‐grams ... 142
Implementing TF‐IDF transformations .. 144

Working with Graph Data ... 145
Understanding the adjacency matrix .. 146
Using NetworkX basics.. 146

Chapter 8: Putting What You Know in Action .149
Contextualizing Problems and Data .. 150

Evaluating a data science problem .. 151
Researching solutions ... 151
Formulating a hypothesis ... 152
Preparing your data ... 153

Considering the Art of Feature Creation .. 153
Defining feature creation .. 153
Combining variables .. 154
Understanding binning and discretization 155
Using indicator variables .. 155
Transforming distributions .. 156

Performing Operations on Arrays ... 156
Using vectorization .. 157
Performing simple arithmetic on vectors and matrices 157
Performing matrix vector multiplication .. 158
Performing matrix multiplication .. 159

Part III: Visualizing the Invisible 161

Chapter 9: Getting a Crash Course in MatPlotLib163
Starting with a Graph .. 164

Defining the plot ... 164
Drawing multiple lines and plots ... 165
Saving your work ... 165

Setting the Axis, Ticks, Grids ... 166
Getting the axes ... 167

vii Table of Contents

Formatting the axes ... 167
Adding grids ... 168

Defining the Line Appearance .. 169
Working with line styles .. 170
Using colors .. 170
Adding markers .. 172

Using Labels, Annotations, and Legends .. 173
Adding labels .. 174
Annotating the chart ... 174
Creating a legend ... 175

Chapter 10: Visualizing the Data .179
Choosing the Right Graph .. 180

Showing parts of a whole with pie charts 180
Creating comparisons with bar charts ... 181
Showing distributions using histograms .. 183
Depicting groups using box plots .. 184
Seeing data patterns using scatterplots ... 185

Creating Advanced Scatterplots .. 187
Depicting groups .. 187
Showing correlations ... 188

Plotting Time Series .. 189
Representing time on axes ... 190
Plotting trends over time .. 191

Plotting Geographical Data .. 193
Visualizing Graphs ... 195

Developing undirected graphs ... 195
Developing directed graphs ... 197

Chapter 11: Understanding the Tools .199
Using the IPython Console ... 200

Interacting with screen text.. 200
Changing the window appearance... 202
Getting Python help ... 203
Getting IPython help .. 205
Using magic functions ... 205
Discovering objects ... 207

Using IPython Notebook ... 208
Working with styles ... 208
Restarting the kernel ... 210
Restoring a checkpoint ... 210

Performing Multimedia and Graphic Integration 212
Embedding plots and other images ... 212
Loading examples from online sites .. 212
Obtaining online graphics and multimedia 212

viii Python for Data Science For Dummies

Part IV: Wrangling Data ... 215

Chapter 12: Stretching Python’s Capabilities .217
Playing with Scikit‐learn ... 218

Understanding classes in Scikit‐learn ... 218
Defining applications for data science .. 219

Performing the Hashing Trick .. 222
Using hash functions ... 223
Demonstrating the hashing trick ... 223
Working with deterministic selection ... 225

Considering Timing and Performance .. 227
Benchmarking with timeit... 228
Working with the memory profiler .. 230

Running in Parallel .. 232
Performing multicore parallelism .. 232
Demonstrating multiprocessing... 233

Chapter 13: Exploring Data Analysis .235
The EDA Approach .. 236
Defining Descriptive Statistics for Numeric Data 237

Measuring central tendency ... 238
Measuring variance and range ... 239
Working with percentiles .. 239
Defining measures of normality ... 240

Counting for Categorical Data .. 241
Understanding frequencies .. 242
Creating contingency tables ... 243

Creating Applied Visualization for EDA .. 243
Inspecting boxplots ... 244
Performing t‐tests after boxplots ... 245
Observing parallel coordinates .. 246
Graphing distributions .. 247
Plotting scatterplots .. 248

Understanding Correlation ... 250
Using covariance and correlation .. 250
Using nonparametric correlation .. 252
Considering chi‐square for tables .. 253

Modifying Data Distributions ... 253
Using the normal distribution .. 254
Creating a Z‐score standardization ... 254
Transforming other notable distributions...................................... 254

ix Table of Contents

Chapter 14: Reducing Dimensionality .257
Understanding SVD ... 258

Looking for dimensionality reduction ... 259
Using SVD to measure the invisible ... 260

Performing Factor and Principal Component Analysis 261
Considering the psychometric model ... 262
Looking for hidden factors ... 262
Using components, not factors .. 263
Achieving dimensionality reduction ... 264

Understanding Some Applications .. 264
Recognizing faces with PCA.. 265
Extracting Topics with NMF ... 267
Recommending movies ... 270

Chapter 15: Clustering .273
Clustering with K‐means ... 275

Understanding centroid‐based algorithms 275
Creating an example with image data ... 277
Looking for optimal solutions .. 278
Clustering big data ... 281

Performing Hierarchical Clustering .. 282
Moving Beyond the Round-Shaped Clusters: DBScan 286

Chapter 16: Detecting Outliers in Data . .289
Considering Detection of Outliers ... 290

Finding more things that can go wrong .. 291
Understanding anomalies and novel data 292

Examining a Simple Univariate Method .. 292
Leveraging on the Gaussian distribution .. 294
Making assumptions and checking out ... 295

Developing a Multivariate Approach .. 296
Using principal component analysis ... 297
Using cluster analysis .. 298
Automating outliers detection with SVM .. 299

Part V: Learning from Data 301

Chapter 17: Exploring Four Simple and Effective Algorithms 303
Guessing the Number: Linear Regression .. 304

Defining the family of linear models .. 304
Using more variables ... 305
Understanding limitations and problems 307

x Python for Data Science For Dummies

Moving to Logistic Regression ... 307
Applying logistic regression ... 308
Considering when classes are more .. 309

Making Things as Simple as Naïve Bayes ... 310
Finding out that Naïve Bayes isn’t so naïve 312
Predicting text classifications .. 313

Learning Lazily with Nearest Neighbors ... 315
Predicting after observing neighbors.. 316
Choosing your k parameter wisely .. 317

Chapter 18: Performing Cross‐Validation, Selection,
and Optimization . .319

Pondering the Problem of Fitting a Model ... 320
Understanding bias and variance .. 321
Defining a strategy for picking models .. 322
Dividing between training and test sets.. 325

Cross‐Validating ... 328
Using cross‐validation on k folds ... 329
Sampling stratifications for complex data 329

Selecting Variables Like a Pro .. 331
Selecting by univariate measures .. 331
Using a greedy search ... 333

Pumping Up Your Hyperparameters ... 334
Implementing a grid search .. 335
Trying a randomized search... 339

Chapter 19: Increasing Complexity with Linear
and Nonlinear Tricks . .341

Using Nonlinear Transformations ... 341
Doing variable transformations ... 342
Creating interactions between variables .. 344

Regularizing Linear Models .. 348
Relying on Ridge regression (L2) ... 349
Using the Lasso (L1) .. 349
Leveraging regularization ... 350
Combining L1 & L2: Elasticnet ... 350

Fighting with Big Data Chunk by Chunk ... 351
Determining when there is too much data 351
Implementing Stochastic Gradient Descent 351

Understanding Support Vector Machines .. 354
Relying on a computational method ... 355
Fixing many new parameters ... 358
Classifying with SVC .. 360
Going nonlinear is easy ... 365
Performing regression with SVR .. 366
Creating a stochastic solution with SVM .. 368

xi Table of Contents

Chapter 20: Understanding the Power of the Many 373
Starting with a Plain Decision Tree ... 374

Understanding a decision tree ... 374
Creating classification and regression trees 376

Making Machine Learning Accessible ... 379
Working with a Random Forest classifier 381
Working with a Random Forest regressor 382
Optimizing a Random Forest .. 383

Boosting Predictions ... 384
Knowing that many weak predictors win 384
Creating a gradient boosting classifier ... 385
Creating a gradient boosting regressor .. 386
Using GBM hyper‐parameters .. 387

Part VI: The Part of Tens ... 389

Chapter 21: Ten Essential Data Science
Resource Collections .391

Gaining Insights with Data Science Weekly .. 392
Obtaining a Resource List at U Climb Higher .. 392
Getting a Good Start with KDnuggets ... 392
Accessing the Huge List of Resources on Data Science Central 393
Obtaining the Facts of Open Source Data Science from Masters 394
Locating Free Learning Resources with Quora .. 394
Receiving Help with Advanced Topics at Conductrics 394
Learning New Tricks from the Aspirational Data Scientist 395
Finding Data Intelligence and Analytics Resources

at AnalyticBridge.. 396
Zeroing In on Developer Resources with Jonathan Bower 396

Chapter 22: Ten Data Challenges You Should Take397
Meeting the Data Science London + Scikit‐learn Challenge 398
Predicting Survival on the Titanic ... 399
Finding a Kaggle Competition that Suits Your Needs 399
Honing Your Overfit Strategies .. 400
Trudging Through the MovieLens Dataset .. 401
Getting Rid of Spam Emails .. 401
Working with Handwritten Information .. 402
Working with Pictures ... 403
Analyzing Amazon.com Reviews ... 404
Interacting with a Huge Graph ... 405

Index ... 407

xii Python for Data Science For Dummies

Y
ou rely on data science absolutely every day to perform an amazing
array of tasks or to obtain services from someone else. In fact, you’ve

probably used data science in ways that you never expected. For example,
when you used your favorite search engine this morning to look for some-
thing, it made suggestions on alternative search terms. Those terms are
 supplied by data science. When you went to the doctor last week and
 discovered the lump you found wasn’t cancer, it’s likely the doctor made his
prognosis with the help of data science. In fact, you might work with data
science every day and not even know it. Python for Data Science For Dummies
not only gets you started using data science to perform a wealth of practical
tasks but also helps you realize just how many places data science is used.
By knowing how to answer data science problems and where to employ data
science, you gain a significant advantage over everyone else, increasing your
chances at promotion or that new job you really want.

About This Book
The main purpose of Python for Data Science For Dummies is to take the scare
factor out of data science by showing you that data science is not only really
interesting but also quite doable using Python. You might assume that you
need to be a computer science genius to perform the complex tasks normally
associated with data science, but that’s far from the truth. Python comes
with a host of useful libraries that do all the heavy lifting for you in the back-
ground. You don’t even realize how much is going on, and you don’t need to
care. All you really need to know is that you want to perform specific tasks
and that Python makes these tasks quite accessible.

Part of the emphasis of this book is on using the right tools. You start with
Anaconda, a product that includes IPython and IPython Notebook — two
tools that take the sting out of working with Python. You experiment with
IPython in a fully interactive environment. The code you place in IPython
Notebook is presentation quality, and you can mix a number of presentation
elements right there in your document. It’s not really like using a develop-
ment environment at all.

You also discover some interesting techniques in this book. For example,
you can create plots of all your data science experiments using MatPlotLib,
for which this book provides you with all the details. This book also spends

Introduction

2 Python for Data Science For Dummies

 considerable time showing you just what is available and how you can use
it to perform some really interesting calculations. Many people would like to
know how to perform handwriting recognition — and if you’re one of them,
you can use this book to get a leg up on the process.

Of course, you might still be worried about the whole programming environ-
ment issue, and this book doesn’t leave you in the dark there, either. At the
beginning, you find complete installation instructions for Anaconda and a
quick primer (with references) to the basic Python programming you need
to perform. The emphasis is on getting you up and running as quickly as
possible, and to make examples straightforward and simple so that the code
doesn’t become a stumbling block to learning.

To make absorbing the concepts even easier, this book uses the following
conventions:

 ✓ Text that you’re meant to type just as it appears in the book is in bold.
The exception is when you’re working through a step list: Because each
step is bold, the text to type is not bold.

 ✓ When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if
you see “Type Your Name and press Enter,” you need to replace Your
Name with your actual name.

 ✓ Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the
Internet, note that you can click the web address to visit that website,
like this: http://www.dummies.com.

 ✓ When you need to type command sequences, you see them separated by
a special arrow, like this: File➪New File. In this case, you go to the File
menu first and then select the New File entry on that menu. The result is
that you see a new file created.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about
you — after all, we haven’t even met you yet! Although most assumptions
are indeed foolish, we made these assumptions to provide a starting point
for the book.

It’s important that you’re familiar with the platform you want to use because
the book doesn’t provide any guidance in this regard. (Chapter 3 does
 provide Anaconda installation instructions.) To provide you with maximum

http://www.dummies.com/

3 Introduction

information about Python concerning how it applies to data science, this
book doesn’t discuss any platform‐specific issues. You really do need to
know how to install applications, use applications, and generally work with
your chosen platform before you begin working with this book.

This book isn’t a math primer. Yes, you see lots of examples of complex
math, but the emphasis is on helping you use Python and data science to
 perform analysis tasks rather than learn math theory. Chapters 1 and 2
 provide you with a better understanding of precisely what you need to know
in order to use this book successfully.

This book also assumes that you can access items on the Internet. Sprinkled
throughout are numerous references to online material that will enhance
your learning experience. However, these added sources are useful only if
you actually find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of
interest (or not, as the case may be).This section briefly describes each icon
in this book.

Tips are nice because they help you save time or perform some task without
a lot of extra work. The tips in this book are time‐saving techniques or
 pointers to resources that you should try in order to get the maximum
 benefit from Python or in performing data science–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you
should avoid doing anything that’s marked with a Warning icon. Otherwise,
you might find that your application fails to work as expected, you get incor-
rect answers from seemingly bulletproof equations, or (in the worst‐case
scenario) you lose data.

Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This text usually contains an essential
process or a bit of information that you must know to work with Python or to
perform data science–related tasks successfully.

4 Python for Data Science For Dummies

Beyond the Book
This book isn’t the end of your Python or data science experience — it’s
really just the beginning. We provide online content to make this book more
flexible and better able to meet your needs. That way, as we receive email
from you, we can address questions and tell you how updates to either
Python or its associated add‐ons affect book content. In fact, you gain access
to all these cool additions:

 ✓ Cheat sheet: You remember using crib notes in school to make a better
mark on a test, don’t you? You do? Well, a cheat sheet is sort of like
that. It provides you with some special notes about tasks that you can
do with Python, IPython, IPython Notebook, and data science that not
every other person knows. You can find the cheat sheet for this book at
http://www.dummies.com/cheatsheet/pythonfordatascience.
It contains really neat information such as the most common program-
ming mistakes that cause people woe when using Python.

 ✓ Dummies.com online articles: A lot of readers were skipping past the
parts pages in For Dummies books, so the publisher decided to remedy
that. You now have a really good reason to read the parts pages —
online content. Every parts page has an article associated with it that
provides additional interesting information that wouldn’t fit in the book.
You can find the articles for this book at http://www.dummies.com/
extras/pythonfordatascience.

 ✓ Updates: Sometimes changes happen. For example, we might not
have seen an upcoming change when we looked into our crystal ball
during the writing of this book. In the past, this possibility simply
meant that the book became outdated and less useful, but you can now
find updates to the book at http://www.dummies.com/extras/
pythonfordatascience.

In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book‐related techniques
at http://blog.johnmuellerbooks.com/.

 ✓ Companion files: Hey! Who really wants to type all the code in the book
and reconstruct all those plots manually? Most readers would prefer
to spend their time actually working with Python, performing data sci-
ence tasks, and seeing the interesting things they can do, rather than
typing. Fortunately for you, the examples used in the book are available
for download, so all you need to do is read the book to learn Python for
data science usage techniques. You can find these files at http://www.
dummies.com/extras/matlab.

http://www.dummies.com/cheatsheet/
http://www.dummies.com/extras/
http://www.dummies.com/extras/
http://www.dummies.com/extras/matlab
http://www.dummies.com/extras/matlab
http://blog.johnmuellerbooks.com/
http://www.dummies.com/extras/matlab
http://www.dummies.com/extras/matlab
http://www.dummies.com/cheatsheet/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience

5 Introduction

Where to Go from Here
It’s time to start your Python for data science adventure! If you’re completely
new to Python and its use for data science tasks, you should start with
Chapter 1 and progress through the book at a pace that allows you to absorb
as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python for data
science as quickly as possible, you can skip to Chapter 3 with the under-
standing that you may find some topics a bit confusing later. Skipping to
Chapter 4 is possible if you already have Anaconda (the programming prod-
uct used in the book) installed, but be sure to at least skim Chapter 3 so that
you know what assumptions we made when writing this book. Make sure to
install Anaconda with Python version 2.7.9 installed to obtain the best results
from the book’s source code.

Readers who have some exposure to Python and have Anaconda installed
can save reading time by moving directly to Chapter 5. You can always go
back to earlier chapters as necessary when you have questions. However, it’s
important that you understand how each technique works before moving to
the next one. Every technique, coding example, and procedure has important
lessons for you, and you could miss vital content if you start skipping too
much information.

6 Python for Data Science For Dummies

 Visit www.dummies.com for great For Dummies content online.

Part I
Getting Started with

Python for Data Science

http://www.dummies.com

In this part . . .
 ✓ Discovering why being a data scientist is so cool

 ✓ Defining how Python makes data science easier

 ✓ Specifying the process normally used for data science tasks

 ✓ Installing Python so that it works well for data science tasks

 ✓ Getting up to speed on Python essentials

Discovering the Match between
Data Science and Python

In This Chapter
 ▶ Discovering the wonders for data science

 ▶ Exploring how data science works

 ▶ Creating the connection between Python and data science

 ▶ Getting started with Python

D
ata science may seem like one of those technologies that you’d
never use, but you’d be wrong. Yes, data science involves the use of

advanced math techniques, statistics, and big data. However, data science
also involves helping you make smart decisions, creating suggestions for
options based on previous choices, and making robots see objects. In fact,
people use data science in so many different ways that you literally can’t look
anywhere or do anything without feeling the effects of data science on your
life. In short, data science is the person behind the partition in the experi
ence of the wonderment of technology. Without data science, much of what
you accept as typical and expected today wouldn’t even be possible. This
is the reason that being a data scientist is the sexiest job of the twenty‐first
century.

To make data science doable by someone who’s less than a math genius, you
need tools. You could use any of a number of tools to perform data science
tasks, but Python is uniquely suited to making it easier to work with data
 science. For one thing, Python provides an incredible number of math‐related
libraries that help you perform tasks with a less‐than‐perfect understanding
of precisely what is going on. However, Python goes further by supporting
multiple coding styles and doing other things to make your job easier.
Therefore, yes, you could use other languages to write data science applica
tions, but Python reduces your workload, so it’s a natural choice for those
who really don’t want to work hard, but rather to work smart.

Chapter 1

10 Part I: Getting Started with Python for Data Science

This chapter gets you started with Python. Even though this book isn’t
designed to provide you with a complete Python tutorial, exploring some
basic Python issues will reduce the time needed for you to get up to speed.
(If you do need a good starting tutorial, please get my Beginning Programming
with Python For Dummies, published by John Wiley & Sons, Inc.) You’ll find
that the book provides pointers to tutorials and other aids as needed to fill in
any gaps that you may have in your Python education.

Choosing a data science language
There are many different programming
languages in the world — and most were
designed to perform tasks in a certain way or
even make it easier for a particular profession’s
work to be done with greater ease. Choosing
the correct tool makes your life easier. It’s
akin to using a hammer to drive a screw rather
than a screwdriver. Yes, the hammer works,
but the screwdriver is much easier to use and
definitely does a better job. Data scientists
usually use only a few languages because they
make working with data easier. With this in
mind, here are the four top languages for data
science work in order of preference (used by
91 percent of the data scientists out there):

 ✓ Python (general purpose): Many data
scientists prefer to use Python because
it provides a wealth of libraries, such as
NumPy, SciPy, MatPlotLib, pandas, and
Scikit‐learn, to make data science tasks
significantly easier. Python is also a pre-
cise language that makes it easy to use
multi‐processing on large datasets —
reducing the time required to analyze them.
The data science community has also
stepped up with specialized IDEs, such
as Anaconda, that implement the IPython
Notebook concept, which makes work-
ing with data science calculations sig-
nificantly easier (Chapter 3 demonstrates
how to use IPython, so don’t worry about

it in this chapter). Besides all of these
things in Python’s favor, it’s also an excel-
lent language for creating glue code with
languages such as C/C++ and Fortran. The
Python documentation actually shows how
to create the required extensions. Most
Python users rely on the language to see
patterns, such as allowing a robot to see
a group of pixels as an object. It also sees
use for all sorts of scientific tasks.

 ✓ R (special purpose statistical): In many
respects, Python and R share the same
sorts of functionality but implement it in dif-
ferent ways. Depending on which source
you view, Python and R have about the
same number of proponents, and some
people use Python and R interchangeably
(or sometimes in tandem). Unlike Python,
R provides its own environment, so you
don’t need a third‐party product such as
Anaconda. However, R doesn’t appear to
mix with other languages with the ease that
Python provides.

 ✓ SAS (business statistical analysis): The
Statistical Analysis System (SAS) language
is popular because it makes data analy-
sis, business intelligence, data manage-
ment, and predictive analytics easy. The
SAS Institute originally created SAS as a
means to perform statistical analysis. In

11 Chapter 1: Discovering the Match between Data Science and Python

Defining the Sexiest Job
of the 21st Century

At one point, the world viewed anyone working with statistics as a sort of
accountant or perhaps a mad scientist. Many people consider statistics and
analysis of data boring. However, data science is one of those occupations in
which the more you learn, the more you want to learn. Answering one ques
tion often spawns more questions that are even more interesting than the
one you just answered. However, the thing that makes data science so sexy
is that you see it everywhere and used in an almost infinite number of ways.
The following sections provide you with more details on why data science is
such an amazing field of study.

Considering the emergence
of data science
Data science is a relatively new term. William S. Cleveland coined the term in
2001 as part of a paper entitled “Data Science: An Action Plan for Expanding
the Technical Areas of the Field of Statistics.” It wasn’t until a year later that
the International Council for Science actually recognized data science and
created a committee for it. Columbia University got into the act in 2003 by
beginning publication of the Journal of Data Science.

other words, this is a business‐specific
language — one used to make decisions
rather than to perform handwriting analysis
or to detect specific natural patterns.

 ✓ SQL (database management): The most
important thing to remember about
Structured Query Language (SQL) is
that it focuses on data rather than tasks.
Businesses can’t operate without good
data management — the data is the busi-
ness. Large organizations use some sort
of relational database, which is normally
accessible with SQL, to store their data.
Most Database Management System

(DBMS) products rely on SQL as their
main language, and DBMS usually has a
large number of data analysis and other
data science features built in. Because
you’re accessing the data natively, there is
often a significant speed gain in perform-
ing data science tasks this way. Database
Administrators (DBAs) generally use SQL
to manage or manipulate the data rather
than necessarily perform detailed analysis
of it. However, the data scientist can also
use SQL for various data science tasks and
make the resulting scripts available to the
DBAs for their needs.

12 Part I: Getting Started with Python for Data Science

However, the mathematical basis behind data science is centuries old because
data science is essentially a method of viewing and analyzing stati stics and
probability. The first essential use of statistics as a term comes in 1749,
but statistics are certainly much older than that. People have used statis
tics to recognize patterns for thousands of years. For example, the historian
Thucydides (in his History of the Peloponnesian War) describes how the
Athenians calculated the height of the wall of Platea in fifth century BC by
counting bricks in an unplastered section of the wall. Because the count
needed to be accurate, the Athenians took the average of the count by several
solders.

The process of quantifying and understanding statistics is relatively new,
but the science itself is quite old. An early attempt to begin documenting the
 importance of statistics appears in the ninth century when Al‐Kindi wrote
Manuscript on Deciphering Cryptographic Messages. In this paper, Al‐Kindi
describes how to use a combination of statistics and frequency analysis to
 decipher encrypted messages. Even in the beginning, statistics saw use in
 practical application of science to tasks that seemed virtually impossible to
complete. Data science continues this process, and to some people it might
actually seem like magic.

Outlining the core competencies
of a data scientist
Like most complex trades today, the data scientist requires knowledge of
a broad range of skills in order to perform the required tasks. In fact, so
many different skills are required that data scientists often work in teams.
Someone who is good at gathering data might team up with an analyst and
someone gifted in presenting information. It would be hard to find a single
person with all the required skills. With this in mind, the following list
describes areas in which a data scientist could excel (with more compet
encies being better):

 ✓ Data capture: It doesn’t matter what sort of math skills you have if you
can’t obtain data to analyze in the first place. The act of capturing data
begins by managing a data source using database management skills.
However, raw data isn’t particularly useful in many situations — you
must also understand the data domain so that you can look at the
data and begin formulating the sorts of questions to ask. Finally, you
must have data‐modeling skills so that you understand how the data is
 connected and whether the data is structured.

13 Chapter 1: Discovering the Match between Data Science and Python

 ✓ Analysis: After you have data to work with and understand the
 complexities of that data, you can begin to perform an analysis on it.
You perform some analysis using basic statistical tool skills, much like
those that just about everyone learns in college. However, the use of
specialized math tricks and algorithms can make patterns in the data
more obvious or help you draw conclusions that you can’t draw by
reviewing the data alone.

 ✓ Presentation: Most people don’t understand numbers well. They can’t
see the patterns that the data scientist sees. It’s important to provide a
graphical presentation of these patterns to help others visualize what
the numbers mean and how to apply them in a meaningful way. More
important, the presentation must tell a specific story so that the impact
of the data isn’t lost.

Linking data science and big data
Interestingly enough, the act of moving data around so that someone can
 perform analysis on it is a specialty called Extract, Transformation, and
Loading (ETL). The ETL specialist uses programming languages such as
Python to extract the data from a number of sources. Corporations tend not
to keep data in one easily accessed location, so finding the data required
to perform analysis takes time. After the ETL specialist finds the data, a
programming language or other tool transforms it into a common format
for analysis purposes. The loading process takes many forms, but this book
relies on Python to perform the task. In a large, real‐world operation, you
might find yourself using tools such as Informatica, MS SSIS, or Teradata to
perform the task.

Understanding the role of programming
A data scientist may need to know several programming languages in order to
achieve specific goals. For example, you may need SQL knowledge to extract
data from relational databases. Python can help you perform data loading,
transformation, and analysis tasks. However, you might choose a product such
as MATLAB (which has its own programming language) or PowerPoint (which
relies on VBA) to present the information to others. (If you’re interested to see
how MATLAB compares to the use of Python, you can get my book, MATLAB
For Dummies, published by John Wiley & Sons, Inc.) The immense datasets
that data scientists rely on often require multiple levels of redundant process
ing to transform into useful processed data. Manually performing these tasks
is time consuming and error prone, so programming presents the best method
for achieving the goal of a coherent, usable data source.

14 Part I: Getting Started with Python for Data Science

Given the number of products that most data scientists use, it may not
be possible to use just one programming language. Yes, Python can load
data, transform it, analyze it, and even present it to the end user, but it
works only when the language provides the required functionality. You
may have to choose other languages to fill out your toolkit. The languages
you choose depend on a number of criteria. Here are the things you should
consider:

 ✓ How you intend to use data science in your code (you have a number
of tasks to consider, such as data analysis, classification, and
 regression)

 ✓ Your familiarity with the language

 ✓ The need to interact with other languages

 ✓ The availability of tools to enhance the development environment

 ✓ The availability of APIs and libraries to make performing tasks easier

Creating the Data Science Pipeline
Data science is partly art and partly engineering. Recognizing patterns
in data, considering what questions to ask, and determining which
 algorithms work best are all part of the art side of data science. However,
to make the art part of data science realizable, the engineering part relies
on a specific process to achieve specific goals. This process is the data
 science pipeline, which requires the data scientist to follow particular
steps in the preparation, analysis, and presentation of the data. The
 following sections help you understand the data science pipeline better
so that you can understand how the book employs it during the presen
tation of examples.

Preparing the data
The data that you access from various sources doesn’t come in an easily
 packaged form, ready for analysis — quite the contrary. The raw data not
only may vary substantially in format, but you may also need to trans
form it to make all the data sources cohesive and amenable to analysis.
Transformation may require changing data types, the order in which data
appears, and even the creation of data entries based on the information pro
vided by existing entries.

15 Chapter 1: Discovering the Match between Data Science and Python

Performing exploratory data analysis
The math behind data analysis relies on engineering principles in that the
results are provable and consistent. However, data science provides access
to a wealth of statistical methods and algorithms that help you discover
patterns in the data. A single approach doesn’t ordinarily do the trick. You
typically use an iterative process to rework the data from a number of
 perspectives. The use of trial and error is part of the data science art.

Learning from data
As you iterate through various statistical analysis methods and apply
 algorithms to detect patterns, you begin learning from the data. The data
might not tell the story that you originally thought it would, or it might have
many stories to tell. Discovery is part of being a data scientist. In fact, it’s the
fun part of data science because you can’t ever know in advance precisely
what the data will reveal to you.

Of course, the imprecise nature of data and the finding of seemingly random
patterns in it means keeping an open mind. If you have preconceived ideas of
what the data contains, you won’t find the information it actually does con
tain. You miss the discovery phase of the process, which translates into lost
opportunities for both you and the people who depend on you.

Visualizing
Visualization means seeing the patterns in the data and then being able to
react to those patterns. It also means being able to see when data is not part
of the pattern. Think of yourself as a data sculptor — removing the data that
lies outside the patterns (the outliers) so that others can see the masterpiece
of information beneath. Yes, you can see the masterpiece, but until others
can see it, too, it remains in your vision alone.

Obtaining insights and data products
The data scientist may seem to simply be looking for unique methods of
viewing data. However, the process doesn’t end until you have a clear under
standing of what the data means. The insights you obtain from manipulating
and analyzing the data help you to perform real‐world tasks. For example,
you can use the results of an analysis to make a business decision.

16 Part I: Getting Started with Python for Data Science

In some cases, the result of an analysis creates an automated response. For
example, when a robot views a series of pixels obtained from a camera, the
pixels that form an object have special meaning and the robot’s programming
may dictate some sort of interaction with that object. However, until the data
scientist builds an application that can load, analyze, and visualize the pixels
from the camera, the robot doesn’t see anything at all.

Understanding Python’s Role
in Data Science

Given the right data sources, analysis requirements, and presentation needs,
you can use Python for every part of the data science pipeline. In fact, that’s
precisely what you do in this book. Every example uses Python to help you
understand another part of the data science equation. Of all the languages
you could choose for performing data science tasks, Python is the most flex
ible and capable because it supports so many third‐party libraries devoted
to the task. The following sections help you better understand why Python is
such a good choice for many (if not most) data science needs.

Considering the shifting profile
of data scientists
Some people view the data scientist as an unapproachable nerd who performs
miracles on data with math. The data scientist is the person behind the cur
tain in an Oz‐like experience. However, this perspective is changing. In many
respects, the world now views the data scientist as either an adjunct to a
developer or as a new type of developer. The ascendance of applications of all
sorts that can learn is the essence of this change. For an application to learn,
it has to be able to manipulate large databases and discover new patterns
in them. In addition, the application must be able to create new data based
on the old data — making an informed prediction of sorts. The new kinds of
applications affect people in ways that would have seemed like science fiction
just a few years ago. Of course, the most noticeable of these applications
define the behaviors of robots that will interact far more closely with people
 tomorrow than they do today.

From a business perspective, the necessity of fusing data science and appli
cation development is obvious: Businesses must perform various sorts
of analysis on the huge databases it has collected — to make sense of the
information and use it to predict the future. In truth, however, the far greater
impact of the melding of these two branches of science — data science and
application development — will be felt in terms of creating altogether new

17 Chapter 1: Discovering the Match between Data Science and Python

kinds of applications, some of which aren’t even possibly to imagine with
clarity today. For example, new applications could help students learn with
greater precision by analyzing their learning trends and creating new instruc
tional methods that work for that particular student. This combination of
sciences might also solve a host of medical problems that seem impossible
to solve today — not only in keeping disease at bay, but also by solving prob
lems, such as how to create truly usable prosthetic devices that look and act
like the real thing.

Working with a multipurpose, simple,
and efficient language
Many different ways are available for accomplishing data science tasks. This
book covers only one of the myriad methods at your disposal. However,
Python represents one of the few single‐stop solutions that you can use to
solve complex data science problems. Instead of having to use a number of
tools to perform a task, you can simply use a single language, Python, to get
the job done. The Python difference is the large number scientific and math
libraries created for it by third parties. Plugging in these libraries greatly
extends Python and allows it to easily perform tasks that other languages
could perform, but with great difficulty.

Python’s libraries are its main selling point; however, Python offers more
than reusable code. The most important thing to consider with Python is that
it supports four different coding styles:

 ✓ Functional: Treats every statement as a mathematical equation and
avoids any form of state or mutable data. The main advantage of this
approach is having no side effects to consider. In addition, this coding
style lends itself better than the others to parallel processing because
there is no state to consider. Many developers prefer this coding style
for recursion and for lambda calculus.

 ✓ Imperative: Performs computations as a direct change to program state.
This style is especially useful when manipulating data structures and
produces elegant, but simple, code.

 ✓ Object‐oriented: Relies on data fields that are treated as objects and
manipulated only through prescribed methods. Python doesn’t fully sup
port this coding form because it can’t implement features such as data
hiding. However, this is a useful coding style for complex applications
because it supports encapsulation and polymorphism. This coding style
also favors code reuse.

 ✓ Procedural: Treats tasks as step‐by‐step iterations where common
tasks are placed in functions that are called as needed. This coding style
favors iteration, sequencing, selection, and modularization.

18 Part I: Getting Started with Python for Data Science

Learning to Use Python Fast
It’s time to try using Python to see the data science pipeline in action. The
following sections provide a brief overview of the process you explore in
detail in the rest of the book. You won’t actually perform the tasks in the
 following sections. In fact, you don’t install Python until Chapter 3, so for
now, just follow along in the text. Don’t worry about understanding every
aspect of the process at this point. The purpose of these sections is to help
you gain an understanding of the flow of using Python to perform data sci
ence tasks. Many of the details may seem difficult to understand at this point,
but the rest of the book will help you understand them.

The examples in this book rely on a web‐based application named IPython
Notebook. The screenshots you see in this and other chapters reflect how
IPython Notebook looks in Firefox on a Windows 7 system. The view you see
will contain the same data, but the actual interface may differ a little depend
ing on platform (such as using a notebook instead of a desktop system), oper
ating system, and browser. Don’t worry if you see some slight differences
between your display and the screenshots in the book.

You don’t have to type the source code for this chapter in by hand. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction for
details on downloading the source code). The source code for this chapter
appears in the P4DS4D; 01; Quick Overview.ipynb source code file.

Loading data
Before you can do anything, you need to load some data. The book shows
you all sorts of methods for performing this task. In this case, Figure 11
shows how to load a dataset called Boston that contains housing prices
and other facts about houses in the Boston area. The code places the entire
dataset in the boston variable and then places parts of that data in variables
named X and y. Think of variables as you would storage boxes. The variables
are important because they make it possible to work with the data.

Training a model
Now that you have some data to work with, you can do something with it. All
sorts of algorithms are built into Python. Figure 12 shows a linear regression
model. Again, don’t worry precisely how this works; later chapters discuss
linear regression in detail. The important thing to note in Figure 12 is that
Python lets you perform the linear regression using just two statements and
to place the result in a variable named hypothesis.

19 Chapter 1: Discovering the Match between Data Science and Python

Figure 1-1:
Loading

data into
variables

so that
you can

manipulate it.

Figure 1-2:
Using the

 variable
 content to

train a linear
regression

model.

20 Part I: Getting Started with Python for Data Science

Viewing a result
Performing any sort of analysis doesn’t pay unless you obtain some benefit
from it in the form of a result. This book shows all sorts of ways to view
output, but Figure 13 starts with something simple. In this case, you see the
coefficient output from the linear regression analysis.

One of the reasons that this book uses IPython Notebook is that the product
helps you to create nicely formatted output as part of creating the applica
tion. Look again at Figure 13 and you see a report that you could simply
print and offer to a colleague. The output isn’t suitable for many people, but
those experienced with Python and data science will find it quite usable and
 informative.

Figure 1-3:
Outputting

a result as a
response to

the model.

Introducing Python’s Capabilities
and Wonders

In This Chapter
 ▶ Delving into why Python came about

 ▶ Getting a quick start with Python

 ▶ Using Python for rapid prototyping and experimentation

 ▶ Defining how Python provides speed of execution

 ▶ Defining the power of Python for the data scientist

 ▶ Exploring the Python and data science relationship

A
ll computers run on just one language — machine code. However,
unless you want to learn how to talk like a computer in 0s and 1s,

machine code isn’t particularly useful. You’d never want to try to define data
science problems using machine code. It would take an entire lifetime (if not
longer) just to define one problem. Higher‐level languages make it possible
to write a lot of code that humans can understand quite quickly. The tools
used with these languages make it possible to translate the human‐readable
code into machine code that the machine understands. Therefore, the choice
of languages depends on the human need, not the machine need. With this
in mind, this chapter introduces you to the capabilities that Python provides
that make it a practical choice for the data scientist. After all, you want to
know why this book uses Python and not another language, such as Java or
C++. These other languages are perfectly good choices for some tasks, but
they’re not as suited to meet data science needs.

The chapter begins with a short history of Python so that you know a little
about why developers created Python in the first place. You also see some
simple Python examples to get a taste for the language. As part of explor-
ing Python in this chapter, you discover all sorts of interesting features that
Python provides. Python gives you access to a host of libraries that are espe-
cially suited to meet the needs of the data scientist. In fact, you use a number

Chapter 2

22 Part I: Getting Started with Python for Data Science

of these libraries throughout the book as you work through the coding exam-
ples. Knowing about these libraries in advance will help you understand the
programming examples and why the book shows how to perform tasks in a
certain way.

Even though this chapter does show examples of working with Python, you
don’t really begin using Python in earnest until Chapter 4. This chapter pro-
vides you with an overview so that you can better understand what Python
can do. Chapter 3 shows how to install the particular version of Python used
for this book, and Chapter 4 gives you basic hands‐on exercises on how
to work with Python. In short, if you don’t quite understand an example in
this chapter, don’t worry: You get plenty of additional information in later
 chapters.

Why Python?
Python is the vision of a single person, Guido van Rossum. You might be sur-
prised to learn that Python has been around a long time — Guido started the
language in December 1989 as a replacement for the ABC language. Not much
information is available as to the precise goals for Python, but it does retain
ABC’s ability to create applications using less code. However, it far exceeds
the ability of ABC to create applications of all types, and in contrast to ABC,
boasts four programming styles. In short, Guido took ABC as a starting point,
found it limited, and created a new language without those limitations. It’s an
example of creating a new language that really is better than its predecessor.

Using the right language for the job
Computer languages provide a means
for humans to write down instructions in
a systematic and understandable way.
Computers don’t actually understand
computer languages — a computer relies on
machine‐code for instructions. The reason
languages are so important is that humans
don’t characteristically understand machine
language, so the conversion from something
humans understand to something machines
understand is essential. Python provides a

specific set of features that make writing
data science applications easier. As with any
other language, it provides the right toolset for
some situations and not for others. Use Python
(or any other language) when it provides the
functionality you need to accomplish a task.
If you start finding the language getting in the
way, it’s time to choose a different language
because in the end, the computer doesn’t care
which language you use. Computer languages
are for people, not the other way around.

23 Chapter 2: Introducing Python’s Capabilities and Wonders

Python has gone through a number of iterations and currently has two
development paths. The 2.x path is backward compatible with previous
versions of Python, while the 3.x path isn’t. The compatibility issue is one
that figures into how data science uses Python because at least some of the
libraries won’t work with 3.x. In addition, some versions use different licens-
ing because Guido was working at various companies during Python’s devel-
opment. You can see a listing of the versions and their respective licenses
at https://docs.python.org/3/license.html. The Python Software
Foundation (PSF) owns all current versions of Python, so unless you use an
older version, you really don’t need to worry about the licensing issue.

Grasping Python’s core philosophy
Guido actually started Python as a skunkworks project. The core concept
was to create Python as quickly as possible, yet create a language that is
flexible, runs on any platform, and provides significant potential for exten-
sion. Python provides all these features and many more. Of course, there
are always bumps in the road, such as figuring out just how much of the
underlying system to expose. You can read more about the Python design
philosophy at http://python‐history.blogspot.com/2009/01/
pythons‐design‐philosophy.html. The history of Python at http://
python‐history.blogspot.com/2009/01/introduction‐and‐
overview.html also provides some useful information.

Discovering present and future
 development goals
The original development (or design) goals for Python don’t quite match
what has happened to the language since that time. Guido originally intended
Python as a second language for developers who needed to create one‐off
code but who couldn’t quite achieve their goals using a scripting language.
The original target audience for Python was the C developer. You can read
about these original goals in the interview at http://www.artima.com/
intv/pyscale.html.

You can find a number of applications written in Python today, so the idea of
using it solely for scripting didn’t come to fruition. In fact, you can find list-
ings of Python applications at https://www.python.org/about/apps/
and https://www.python.org/about/success/.

Naturally, with all these success stories to go on, people are enthusiastic
about adding to Python. You can find lists of Python Enhancement Proposals

https://docs.python.org/3/license.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://www.artima.com/intv/pyscale.html
http://www.artima.com/intv/pyscale.html
https://www.python.org/about/apps/
https://www.python.org/about/success/

24 Part I: Getting Started with Python for Data Science

(PEPs) at http://legacy.python.org/dev/peps/. These PEPs may or
may not see the light of day, but they prove that Python is a living, growing
language that will continue to provide features that developers truly need to
create great applications of all types, not just those for data science.

Working with Python
This book doesn’t provide you with a full Python tutorial. (However, you
can get a great start with my book, Beginning Programming with Python For
Dummies, published by John Wiley & Sons, Inc.) You do get a quick review
of the language in Chapter 4. However, for now, it’s helpful to get a brief
 overview of what Python looks like and how you interact with it, as in the
 following sections.

Getting a taste of the language
Python is designed to provide clear language statements but to do so in an
incredibly small space. A single line of Python code may perform tasks that
another language usually takes several lines to perform. For example, if you
want to display something on‐screen, you simply tell Python to print it,
like this:

print "Hello There!"

This is an example of a 2.x print statement. The “Why Phython?” section of
this chapter mentions that there are differences between the 2.x path and the
3.x path. If you use this line of code in 3.x, you get an error message:

 File "<stdin>", line 1
 print "Hello There!"
 ^
SyntaxError: invalid syntax

It turns out that the 3.x version of the same statement looks like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or
 anything else using a simple statement. You don’t really need too much in
the way of advanced programming skills. When you want to end your session,
you simply type quit() and press Enter.

http://legacy.python.org/dev/peps/

25 Chapter 2: Introducing Python’s Capabilities and Wonders

Understanding the need for indentation
Python relies on indentation to create various language features, such as
 conditional statements. One of the most common errors that developers
encounter is not providing the proper indentation for code. You see this prin-
ciple in action later in the book, but for now, always be sure to pay attention
to indentation as you work through the book examples. For example, here is
an if statement (a conditional that says that if something meets the condi-
tion, perform the code that follows) with proper indentation.

if 1 < 2:
 print("1 is less than 2")

The print statement must appear indented below the conditional statement.
Otherwise, the condition won’t work as expected, and you might see an error
message, too.

Working at the command line or in the IDE
Anaconda is a product that makes using Python even easier. It comes with a
number of utilities that help you work with Python in a variety of ways. The
vast majority of this book relies on IPython Notebook, which is part of the
Anaconda installation you create in Chapter 3. You saw this editor used in

Understanding the Anaconda package
The book approaches Anaconda as a product. In
fact, you do install and interact with Anaconda
as you would any other single product.
However, Anaconda is actually a compilation of
several open source applications. You can use
these applications individually or in cooperation
with each other to achieve specific coding
goals. In most of the book, you use a single
application, IPython Notebook, to accomplish
tasks. However, you want to know about the
other applications bundled in Anaconda to get
the best use out of the product as a whole.

A large number of data scientists rely on the
Anaconda product bundling, which is why

this book uses it. However, you might find that
some of the open source products come in a
newer form when downloaded separately. For
example, IPython actually comes in a newer
form called Jupyter (http://jupyter.
org/). Because of the differences in Jupyter
and the fact that it hasn’t been accepted by
a large number of data scientists (because
of file incompatibilities with IPython), you
need to make the update to Jupyter carefully.
Jupyter does work much the same as IPython,
though, so you should be able to use it with the
examples in this book with some modification if
you choose.

http://jupyter.org/
http://jupyter.org/

26 Part I: Getting Started with Python for Data Science

Chapter 1 and you see it again later in the book. In fact, this book doesn’t use
any of the other Anaconda utilities much at all. However, they do exist, and
sometimes they’re helpful in playing with Python (as you do in Chapter 4).
The following sections provide a brief overview of the other Anaconda utili-
ties for creating Python code. You may want to experiment with them as you
work through various coding techniques in the book.

Creating new sessions with Anaconda Command Prompt
Only one of the Anaconda utilities provides direct access to the command
line, Anaconda Command Prompt. When you start this utility, you see a
command prompt at which you can type commands. The main advantage of
this utility is that you can start an Anaconda utility with any of the switches
it provides to modify that utility’s standard environment. Of course, you
start all the utilities using the Python interpreter that you access using the
python.exe command. (If you have both Python 3.4 and Python 2.7 installed
on your system and open a regular command prompt or terminal window,
you may see the Python 3.4 version start instead of the Python 2.7 version, so
it’s always best to open an Anaconda Command Prompt to ensure that you
get the right version of Python.) So you could simply type python and press
Enter to start a copy of the Python interpreter should you wish to do so.
Figure 2-1 shows how the plain Python interpreter looks.

You quit the interpreter by typing quit() and pressing Enter. Once back at
the command line, you can discover the list of python.exe command‐line
switches by typing python ‐? and pressing Enter. Figure 2-2 shows just some
of the ways in which you can change the Python interpreter environment.

Figure 2-1:
A view of
the plain

Python
interpreter.

27 Chapter 2: Introducing Python’s Capabilities and Wonders

If you want, you can create a modified form of any of the utilities provided
by Anaconda by starting the interpreter with the correct script. The scripts
appear in the Scripts subdirectory. For example, type python scripts/
ipython‐script.py and press Enter to start the IPython environment without
using the graphical command for your platform.

Entering the IPython environment
The Interactive Python (IPython) environment provides enhancements to the
standard Python interpreter. The main purpose of the environment shown
in Figure 2-3 is to help you use Python with less work. To see these enhance-
ments, type %quickref and press Enter.

One of the more interesting additions to IPython is a fully functional clear
screen (cls) command. You can’t clear the screen easily when working in
the Python interpreter, which means that things tend to get a bit messy after

Figure 2-2:
The Python
interpreter

includes
all sorts of
command‐

line
switches.

Figure 2-3:
The IPython
environment

is easier to
use than the

standard
Python

interpreter.

28 Part I: Getting Started with Python for Data Science

a while. It’s also possible to perform tasks such as searching for variables
using wildcard matches. Later in the book, you see how to use the magic
functions to perform tasks such as capturing the amount of time it takes to
perform a task for the purpose of optimization.

Entering IPython QTConsole environment
Trying to remember Python commands and functions is hard — and trying
to remember the enhanced IPython additions is even harder. In fact, some
people would say that the task is impossible (and perhaps they’re right).
This is where the IPython QTConsole comes into play. It adds a GUI on top
of IPython that makes using the enhancements that IPython provides a lot
easier, as shown in Figure 2-4. Of course, you give up a little screen real
estate to get this feature, and some hardcore programmers don’t like the idea
of using a GUI, so you have to choose what sort of environment to work with
when programming.

The enhanced commands appear in menus across the top of the window. All
you need to do is choose the command you want to use. For example, to see
the current application directory, choose Magic ➪ OS Magics ➪ %cd.

Editing scripts using Spyder
Spyder is a fully functional Integrated Development Environment (IDE). You
use it to load scripts, edit them, run them, and perform debugging tasks.
Figure 2-5 shows the default windowed environment.

Figure 2-4:
Use the

QTConsole
to make
working

with IPython
easier.

29 Chapter 2: Introducing Python’s Capabilities and Wonders

The Spyder IDE is much like any other IDE that you might have used in the
past. The left side contains an editor in which you type code. Any code you
create is placed in a script file, and you must save the script before running
it. The upper‐right window contains various tabs for inspecting objects,
exploring variables, and interacting with files. The lower‐right window con-
tains the Python console, a history log, and the IPython console. Across the
top, you see menu options for performing all the tasks that you normally
associate with working with an IDE.

Performing Rapid Prototyping
and Experimentation

Python is all about creating applications quickly and then experimenting with
them to see how things work. The act of creating an application design in
code without necessarily filling in all the details is prototyping. Python uses
less code than other languages to perform tasks, so prototyping goes faster.
The fact that many of the actions you need to perform are already defined as
part of libraries that you load into memory makes things go faster still.

Data science doesn’t rely on static solutions. You may have to try multiple
solutions to find the particular solution that works best. This is where
 experimentation comes into play. After you create a prototype, you use it

Figure 2-5:
Spyder is a
traditional

style IDE for
developers

who need
one.

30 Part I: Getting Started with Python for Data Science

to experiment with various algorithms to determine which algorithm works
best in a particular situation. The algorithm you use varies depending on the
answers you see and the data you use, so there are too many variables to
consider for any sort of canned solution.

The prototyping and experimentation process occurs in several phases. As
you go through the book, you discover that these phases have distinct uses
and appear in a particular order. The following list shows the phases in the
order in which you normally perform them.

1. Building a data pipeline. To work with the data, you must create a pipe-
line to it. It’s possible to load some data into memory. However, after
the dataset gets to a certain size, you need to start working with it on
disk or by using other means to interact with it. The technique you use
for gaining access to the data is important because it impacts how fast
you get a result.

2. Performing the required shaping. The shape of the data — the way in
which it appears and its characteristics (such a data type), is important
in performing analysis. To perform an apples‐to‐apples comparison,
like data has to be shaped the same. However, just shaping the data the
same isn’t enough. The shape has to be correct for the algorithms you
employ to analyze it. Later chapters (starting with Chapter 6) help you
understand the need to shape data in various ways.

3. Analyzing the data. When analyzing data, you seldom employ a single
algorithm and call it good enough. You can’t know which algorithm will
produce the same results at the outset. To find the best result from your
dataset, you experiment on it using several algorithms. This practice is
emphasized in the later chapters of the book when you start performing
serious data analysis.

4. Presenting a result. A picture is worth a thousand words, or so they
say. However, you need the picture to say the correct words or your
message gets lost. Using the MATLAB plotting functionality provided by
the matplotlib library, you can create multiple presentations of the same
data, each of which describes the data graphically in different ways. To
ensure that your meaning really isn’t lost, you must experiment with
various presentation methods and determine which one works best.

Considering Speed of Execution
Computers are known for their prowess in crunching numbers. Even so, anal-
ysis takes considerable processing power. The datasets are so large that you
can bog down even an incredibly powerful system. In general, the following
factors control the speed of execution for your data science application:

31 Chapter 2: Introducing Python’s Capabilities and Wonders

 ✓ Dataset size: Data science relies on huge datasets in many cases. Yes,
you can make a robot see objects using a modest dataset size, but
when it comes to making business decisions, larger is better in most
situations. The application type determines the size of your dataset
in part, but dataset size also relies on the size of the source data.
Underestimating the effect of dataset size is deadly in data science
applications, especially those that need to operate in real time (such as
self‐driving cars).

 ✓ Loading technique: The method you use to load data for analysis is
critical, and you should always use the fastest means at your disposal,
even if it means upgrading your hardware to do so. Working with data
in memory is always faster than working with data stored on disk.
Accessing local data is always faster than accessing it across a network.
Performing data science tasks that rely on Internet access through web
services is probably the slowest method of all. Chapter 5 helps you
understand loading techniques in more detail. You also see the effects of
loading technique later in the book.

 ✓ Coding style: Some people will likely try to tell you that Python’s pro-
gramming paradigms make writing a slow application nearly impossible.
They’re wrong. Anyone can create a slow application using any language
by employing coding techniques that don’t make the best use of pro-
gramming language functionality. To create fast data science applica-
tions, you must use best‐of‐method coding techniques. The techniques
demonstrated in this book are a great starting point.

 ✓ Machine capability: Running data science applications on a memory‐
constrained system with a slower processor is impossible. The system
you use needs to have the best hardware you can afford. Given that data
science applications are both processor and disk bound, you can’t really
cut corners in any area and expect great results.

 ✓ Analysis algorithm: The algorithm you use determines the kind of result
you obtain and controls execution speed. Many of the chapters in the
latter parts of this book demonstrate multiple methods to achieve a goal
using different algorithms. However, you must still experiment to find
the best algorithm for your particular dataset.

A number of the chapters in this book emphasize performance, most nota-
bly speed and reliability, because both factors are critical to data science
applications. Even though database applications tend to emphasize the need
for speed and reliability to some extent, the combination of huge dataset
access (disk‐bound issues) and data analysis (processor‐bound issues) in
data science applications makes the need to make good choices even
more critical.

32 Part I: Getting Started with Python for Data Science

Visualizing Power
Python makes it possible to explore the data science environment without
resorting to using a debugger or debugging code, as would be needed in
many other languages. The print statement (or function, depending on the
version of Python you use) and dir() function let you examine any object
interactively. In short, you can load something up and play with it for a while
to see just how the developer put it together. Playing with the data, visualiz-
ing what it means to you personally, can often help you gain new insights and
create new ideas. Judging by many online conversations, playing with the
data is the part of data science that its practitioners find the most fun.

You can play with data using any of the tools found in Anaconda, but one of
the best tools for the job is IPython because you don’t really have to worry too
much about the environment, and nothing you create is permanent. After all,
you’re playing with the data. Therefore, you can load a dataset to see just what
it has to offer, as shown in Figure 2-6. Don’t worry if this code looks foreign
and hard to understand right now. Chapter 4 provides an overview that helps
explain it. Just follow along with the concept of playing with data for now.

In this case, you use Python code to discover all the key‐related functions
included with the dataset. You can use these functions to perform useful
work with the dataset as part of building your application. For example, in
Figure 2-7, you can see how the keys() function displays a list of keys you
can use to access data.

When you have a list of keys you can use, you can access individual data
items. For example, Figure 2-8 shows a list of all the feature names contained
in the Boston dataset. Python really does make it possible to know quite a lot
about a dataset before you have to work with it in depth.

Figure 2-6:
Load a

dataset and
play with it a

little.

33 Chapter 2: Introducing Python’s Capabilities and Wonders

Using the Python Ecosystem
for Data Science

You have already seen the need to load libraries in order to perform data
science tasks in Python. The following sections provide an overview of the
libraries you use for the data science examples in this book. Various book
examples show the libraries at work.

Accessing scientific tools using SciPy
The SciPy stack (http://www.scipy.org/) contains a host of other librar-
ies that you can also download separately. These libraries provide support
for mathematics, science, and engineering. When you obtain SciPy, you get

Figure 2-7:
Use a

 function to
learn more

information.

Figure 2-8:
Access
 specific

data using
a key.

http://www.scipy.org/

34 Part I: Getting Started with Python for Data Science

a set of libraries designed to work together to create applications of various
sorts. These libraries are

 ✓ NumPy

 ✓ SciPy

 ✓ matplotlib

 ✓ IPython

 ✓ Sympy

 ✓ pandas

The SciPy library itself focuses on numerical routines, such as routines for
numerical integration and optimization. SciPy is a general‐purpose library
that provides functionality for multiple problem domains. It also provides
support for domain‐specific libraries, such as Scikit‐learn, Scikit‐image, and
statsmodels.

Performing fundamental scientific
 computing using NumPy
The NumPy library (http://www.numpy.org/) provides the means for
performing n‐dimensional array manipulation, which is critical for data sci-
ence work. The Boston dataset used in the examples in Chapters 1 and 2 is an
example of an n‐dimensional array, and you couldn’t easily access it without
NumPy functions that include support for linear algebra, Fourier transform,
and random‐number generation (see the listing of functions at http://
docs.scipy.org/doc/numpy/reference/routines.html).

Performing data analysis
using pandas
The pandas library (http://pandas.pydata.org/) provides support for
data structures and data analysis tools. The library is optimized to perform
data science tasks especially fast and efficiently. The basic principle behind
pandas is to provide data analysis and modeling support for Python that is
similar to other languages, such as R.

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/routines.html
http://docs.scipy.org/doc/numpy/reference/routines.html
http://pandas.pydata.org/

35 Chapter 2: Introducing Python’s Capabilities and Wonders

Implementing machine learning
using Scikit‐learn
The Scikit‐learn library (http://scikit‐learn.org/stable/) is one of a
number of Scikit libraries that build on the capabilities provided by NumPy
and SciPy to allow Python developers to perform domain‐specific tasks. In
this case, the library focuses on data mining and data analysis. It provides
access to the following sorts of functionality:

 ✓ Classification

 ✓ Regression

 ✓ Clustering

 ✓ Dimensionality reduction

 ✓ Model selection

 ✓ Preprocessing

A number of these functions appear as chapter headings in the book. As a
result, you can assume that Scikit‐learn is the most important library for the
book (even though it relies on other libraries to perform its work).

Plotting the data using matplotlib
The matplotlib library (http://matplotlib.org/) provides you with a
MATLAB‐like interface for creating data presentations of the analysis you
perform. The library is currently limited to 2D output, but it still provides you
with the means to express graphically the data patterns you see in the data
you analyze. Without this library, you couldn’t create output that people out-
side the data science community could easily understand.

Parsing HTML documents using
Beautiful Soup
The Beautiful Soup library (http://www.crummy.com/software/
BeautifulSoup/) download is actually found at https://pypi.python.
org/pypi/beautifulsoup4/4.3.2. This library provides the means for
parsing HTML or XML data in a manner that Python understands. It allows
you to work with tree‐based data.

http://scikit-learn.org/stable/
http://matplotlib.org/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://pypi.python.org/pypi/beautifulsoup4/4.3.2

36 Part I: Getting Started with Python for Data Science

Besides providing a means for working with tree‐based data, Beautiful Soup
takes a lot of the work out of working with HTML documents. For example,
it automatically converts the encoding (the manner in which characters are
stored in a document) of HTML documents from UTF‐8 to Unicode. A Python
developer would normally need to worry about things like encoding, but with
Beautiful Soup, you can focus on your code instead.

Setting Up Python for
Data Science

In This Chapter
 ▶ Obtaining an off‐the‐shelf solution

 ▶ Creating an Anaconda installation on Linux, Mac OS, and Windows

 ▶ Getting and installing the datasets and example code

B
efore you can do too much with Python or use it to solve data
 science problems, you need a workable installation. In addition, you

need access to the datasets and code used for this book. Downloading
the sample code and installing it on your system is the best way to get a
good learning experience from the book. This chapter helps you get your
system set up so that you can easily follow the examples in the remainder
of the book.

Using the downloadable source doesn’t prevent you from typing the examples
on your own, following them using a debugger, expanding them, or working
with the code in all sorts of ways. The downloadable source is there to help
you get a good start with your data science and Python learning experience.
After you see how the code works when it’s correctly typed and configured,
you can try to create the examples on your own. If you make a mistake, you
can compare what you’ve typed with the downloadable source and discover
precisely where the error exists. You can find the downloadable source
for this chapter in the P4DS4D; 03; Sample.ipynb and P4DS4D; 03;
Dataset Load.ipynb files. (The Introduction tells you where to download
the source code for this book.)

Chapter 3

38 Part I: Getting Started with Python for Data Science

Considering the Off‐the‐Shelf Cross‐
Platform Scientific Distributions

It’s entirely possible to obtain a generic copy of Python and add all of the
required data science libraries to it. The process can be difficult because
you need to ensure that you have all the required libraries in the correct
versions to ensure success. In addition, you need to perform the configura-
tion required to ensure that the libraries are accessible when you need them.
Fortunately, going through the required work is not necessary because a
number of Python data science products are available for you to use. These
products provide everything needed to get started with data science projects.

Using Python 2.7.x for this book
There are currently two parallel Python
developments. Most books rely on the newest
version of a language for examples. However,
there are actually two newest versions of
Python that you can use as of this writing:
2.7.9 and 3.4.2. Python is unique in that some
groups use one version and other groups use
the other version. Because data scientists
use the 2.7.x version of Python, for the most
part, this book concentrates on that version.
Using the 2.7.x version means that you’re
better able to work with other data scientists
when you complete this book. If the book
used the 3.4.x version instead, you might find
it hard to understand examples that you see
in real‐world applications.

If you truly want to use the 3.4.x version with
this book, you can do so, but you need to
understand that the examples may not always
work as written. For example, when using
the Python 2.7 print() function, you don’t
absolutely need to include parenthesis. The
Python 3.4 version of the same function raises
an error unless you do use the parenthesis.
Even though it seems like a minor difference,
it’s enough to cause confusion for some people

and you need to keep it in mind as you work
through the examples.

Fortunately, you can find a number of
online sites that document the version 2.7
and version 3.4 differences. One of the
easiest sites to understand is nbviewer at
http://nbviewer.ipython.org/
github/rasbt/python_reference/
blob/master/tutorials/key_
differences_between_python_2_
and_3.ipynb. Another good place to look is
Spartan Ideas at http://spartanideas.
m s u . e d u / 2 0 1 4 / 0 6 / 0 1 /
the‐key‐differences‐between‐
python‐2‐7‐x‐and‐python‐3‐x‐
with‐examples/. These sites will help
you if you choose to use version 3.4 with this
book. However, the book only supports version
2.7 and you use version 3.4 at your own risk.
Make sure you keep an eye out for changes
as data science evolves on the book’s blog at
http://blog.johnmuellerbooks.
com/category/technical/python‐
for‐data‐science‐for‐dummies/.
The blog will help you make any adjustments
should they be needed to keep current.

http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/

39 Chapter 3: Setting Up Python for Data Science

You can use any of the packages mentioned in the following sections to
work with the examples in this book. However, the book’s source code and
downloadable source rely on Continuum Analytics Anaconda because this
particular package works on every platform this book is designed to support:
Linux, Mac OS X, and Windows. The book doesn’t mention a specific package
in the chapters that follow, but any screenshots reflect how things look when
using Anaconda on Windows. You may need to tweak the code to use another
 package, and the screens will look different if you use Anaconda on some
other platform.

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download that you obtain at https://
store.continuum.io/cshop/anaconda/. Simply click Download
Anaconda to obtain access to the free product. You do need to provide an
email address in order to get a copy of Anaconda. After you provide your
email address, you go to another page, where you can choose your platform
and the installer for that platform. Anaconda supports the following
platforms:

 ✓ Windows 32‐bit and 64‐bit (the installer may offer you only the 64‐bit or
32‐bit version, depending on which version of Windows it detects)

 ✓ Linux 32‐bit and 64‐bit

 ✓ Mac OS X 64‐bit

The default download version installed Python 2.7, which is the version used
in this book (see the “Using Python 2.7.x for this book” sidebar for details).
You can also choose to install Python 3.4 by clicking the I Want Python 3.4
link. Both Windows and Mac OS X provide graphical installers. When using
Linux, you rely on the bash utility.

It’s possible to obtain Anaconda with older versions of Python. If you want to
use an older version of Python, click the installer archive link about halfway
down the page. You should use only an older version of Python when you
have a pressing need to do so.

The Miniconda installer can potentially save time by limiting the number of
features you install. However, trying to figure out precisely which packages
you do need is an error‐prone and time‐consuming process. In general, you
want to perform a full installation to ensure that you have everything needed
for your projects. Even a full install doesn’t require much time or effort to
download and install on most systems.

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

40 Part I: Getting Started with Python for Data Science

The free product is all you need for this book. However, when you look on
the site, you see that many other add‐on products are available. These prod-
ucts can help you create robust applications. For example, when you add
Accelerate to the mix, you obtain the ability to perform multicore and GPU‐
enabled operations. The use of these add‐on products is outside the scope of
this book, but the Anaconda site provides details on using them.

Getting Enthought Canopy Express
Enthought Canopy Express is a free product for producing both technical
and scientific applications using Python. You can obtain it at https://www.
enthought.com/canopy‐express/. Click Download Free on the main
page to see a listing of the versions that you can download. Only Canopy
Express is free, the full Canopy product comes at a cost. However, you can
use Canopy Express to work with the examples in this book. Canopy Express
supports the following platforms:

 ✓ Windows 32‐bit and 64‐bit

 ✓ Linux 32‐bit and 64‐bit

 ✓ Mac OS X 32‐bit and 64‐bit

Choose the platform and version you want to download. When you click
Download Canopy Express, you see an optional form for providing informa-
tion about yourself. The download starts automatically, even if you don’t
 provide personal information to the company.

One of the advantages of Canopy Express is that Enthought is heavily
involved in providing support for both students and teachers. People also
can take classes, including online classes, that teach the use of Canopy
Express in various ways (see https://training.enthought.com/
courses). Also offered is live classroom training specifically designed for the
data scientist; read about this training at https://www.enthought.com/
services/training/data‐science.

Getting pythonxy
The pythonxy Integrated Development Environment (IDE) is a community
project hosted on Google at https://code.google.com/p/pythonxy/.
It’s a Windows‐only product, so you can’t easily use it for cross‐platform
needs. (In fact, it supports only Windows Vista, Windows 7, and Windows 8.)
However, it does come with a full set of libraries, and you can easily use it for
this book, if desired.

https://www.enthought.com/canopy-express/
https://www.enthought.com/canopy-express/
https://training.enthought.com/courses
https://training.enthought.com/courses
https://www.enthought.com/services/training/data-science
https://www.enthought.com/services/training/data-science
https://code.google.com/p/pythonxy/

41 Chapter 3: Setting Up Python for Data Science

Because pythonxy uses the GNU General Public License (GPL) v3 (see
http://www.gnu.org/licenses/gpl.html), you have no add‐ons,
 training, or other paid features to worry about. No one will come calling at
your door hoping to sell you something. In addition, you have access to all
the source code for pythonxy, so you can make modifications if desired.

Getting WinPython
The name tells you that WinPython is a Windows‐only product that you can
find at http://winpython.sourceforge.net/. This product is actually
a takeoff of pythonxy and isn’t meant to replace it. Quite the contrary:
WinPython is simply a more flexible way to work with pythonxy. You can read
about the motivation for creating WinPython at http://sourceforge.
net/p/winpython/wiki/Roadmap/.

The bottom line for this product is that you gain flexibility at the cost of
friendliness and a little platform integration. However, for developers who
need to maintain multiple versions of an IDE, WinPython may make a sig-
nificant difference. When using WinPython with this book, make sure to
pay particular attention to configuration issues or you’ll find that even the
 downloadable code has little chance of working.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so
getting a good install means using a wizard, much as you would for any other
installation. Of course, you need a copy of the installation file before you
begin, and you can find the required download information in the “Getting
Continuum Analytics Anaconda” section of this chapter. The following
 procedure should work fine on any Windows system, whether you use the
32‐bit or the 64‐bit version of Anaconda.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as
Anaconda‐2.1.0‐Windows‐x86.exe for 32‐bit systems and
Anaconda‐2.1.0‐Windows‐x86_64.exe for 64‐bit systems. The
version number is embedded as part of the filename. In this case, the
filename refers to version 2.1.0, which is the version used for this book.
If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

http://www.gnu.org/licenses/gpl.html
http://winpython.sourceforge.net/
http://sourceforge.net/p/winpython/wiki/Roadmap/
http://sourceforge.net/p/winpython/wiki/Roadmap/

42 Part I: Getting Started with Python for Data Science

2. Double‐click the installation file.

(You may see an Open File – Security Warning dialog box that asks
whether you want to run this file. Click Run if you see this dialog box
pop up.) You see an Anaconda 2.1.0 Setup dialog box similar to the one
shown in Figure 3-1. The exact dialog box you see depends on which
version of the Anaconda installation program you download. If you have
a 64‐bit operating system, it’s always best to use the 64‐bit version of
Anaconda so that you obtain the best possible performance. This first
dialog box tells you when you have the 64‐bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in
Figure 3-2. In most cases, you want to install the product just for yourself.
The exception is if you have multiple people using your system and they
all need access to Anaconda.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3.
The book assumes that you use the default location. If you choose some
other location, you may have to modify some procedures later in the book
to work with your setup.

Figure 3-1:
The setup

 process
begins by

telling you
whether you

have the
64‐bit

version.

43 Chapter 3: Setting Up Python for Data Science

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These
options are selected by default and there isn’t a good reason to change
them in most cases. You might need to change them if Anaconda won’t
provide your default Python 2.7 (or Python 3.4) setup. However, the
book assumes that you’ve set up Anaconda using the default options.

7. Change the advanced installation options (if necessary) and then
click Install.

Figure 3-2:
Tell the

wizard how
to install

Anaconda
on your
 system.

Figure 3-3:
Specify an
installation

 location.

44 Part I: Getting Started with Python for Data Science

You see an Installing dialog box with a progress bar. The installation
 process can take a few minutes, so get yourself a cup of coffee and read
the comics for a while. When the installation process is over, you see a
Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

9. Click Finish.

You’re ready to begin using Anaconda.

Figure 3-4:
Configure

the
advanced

installation
options.

A word about the screenshots
As you work your way through the book, you’ll
use an IDE of your choice to open the Python
and IPython Notebook files containing the
book’s source code. Every screenshot that
contains IDE‐specific information relies on
Anaconda because Anaconda runs on all
three platforms supported by the book. The
use of Anaconda doesn’t imply that it’s the best
IDE or that the authors are making any sort of
recommendation for it — Anaconda simply
works well as a demonstration product.

When you work with Anaconda, the name
of the graphical (GUI) environment, IPython

(Py 2.7) Notebook, is precisely the same
across all three platforms, and you won’t
even see any significant difference in the
presentation. The differences you do see are
minor, and you should ignore them as you
work through the book. With this in mind,
the book does rely heavily on Windows 7
screenshots. When working on a Linux, Mac
OS X, or other Windows version platform,
you should expect to see some differences
in presentation, but these differences
shouldn’t reduce your ability to work with
the examples.

45 Chapter 3: Setting Up Python for Data Science

Installing Anaconda on Linux
You use the command line to install Anaconda on Linux — there is no graphi-
cal installation option. Before you can perform the install, you must down-
load a copy of the Linux software from the Continuum Analytics site. You can
find the required download information in the “Getting Continuum Analytics
Anaconda” section of this chapter. The following procedure should work
fine on any Linux system, whether you use the 32‐bit or the 64‐bit version of
Anaconda.

1. Open a copy of Terminal.

You see the Terminal window appear.

2. Change directories to the downloaded copy of Anaconda on your
system.

The name of this file varies, but normally it appears as Anaconda‐2.1.0‐
Linux‐x86.sh for 32‐bit systems and Anaconda‐2.1.0‐Linux‐
x86_64.sh for 64‐bit systems. The version number is embedded as part
of the filename. In this case, the filename refers to version 2.1.0, which is
the version used for this book. If you use some other version, you may
experience problems with the source code and need to make adjustments
when working with it.

3. Type bash Anaconda‐2.1.0‐Linux‐x86 (for the 32‐bit version) or
Anaconda‐2.1.0‐Linux‐x86_64.sh (for the 64‐bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms
for using Anaconda.

4. Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda.
The book assumes that you use the default location of ~/anaconda. If
you choose some other location, you may have to modify some proce-
dures later in the book to work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click
Next).

You see the application extraction process begin. After the extraction is
complete, you see a completion message.

6. Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re ready to begin using Anaconda.

46 Part I: Getting Started with Python for Data Science

Installing Anaconda on Mac OS X
The Mac OS X installation comes only in one form: 64‐bit. Before you can
perform the install, you must download a copy of the Mac software from the
Continuum Analytics site. You can find the required download information
in the “Getting Continuum Analytics Anaconda” section of this chapter. The
 following steps help you install Anaconda 64‐bit on a Mac system.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda‐2.1.0‐
MacOSX‐x86_64.pkg. The version number is embed ded as part of the
filename. In this case, the filename refers to version 2.1.0, which is the
version used for this book. If you use some other version, you may experi-
ence problems with the source code and need to make adjustments when
working with it.

2. Double‐click the installation file.

You see an introduction dialog box.

3. Click Continue.

The wizard asks whether you want to review the Read Me materials.
You can read these materials later. For now, you can safely skip the
 information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The
destination controls whether the installation is for an individual user or
a group.

You may see an error message stating that you can’t install Anaconda on
the system. The error message occurs because of a bug in the installer
and has nothing to do with your system. To get rid of the error message,
choose the Install Only for Me option. You can’t install Anaconda for a
group of users on a Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the
installation type. Click Change Install Location if you want to modify
where Anaconda is installed on your system (the book assumes that
you use the default path of ~/anaconda). Click Customize if you want to
modify how the installer works. For example, you can choose not to add

47 Chapter 3: Setting Up Python for Data Science

Anaconda to your PATH statement. However, the book assumes that you
have chosen the default install options and there isn’t a good reason to
change them unless you have another copy of Python 2.7 installed some-
where else.

7. Click Install.

You see the installation begin. A progress bar tells you how the installa-
tion process is progressing. When the installation is complete, you see a
completion dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Downloading the Datasets
and Example Code

This book is about using Python to perform data science tasks. Of course,
you could spend all your time creating the example code from scratch,
debugging it, and only then discovering how it relates to data science, or you
can take the easy way and download the prewritten code so that you can
get right to work. Likewise, creating datasets large enough for data science
purposes would take quite a while. Fortunately, you can access standard-
ized, precreated data sets quite easily using features provided in some of the
data science libraries. The following sections help you download and use the
example code and datasets so that you can save time and get right to work
with data science–specific tasks.

Using IPython Notebook
To make working with the relatively complex code in this book easier, you use
IPython Notebook. This interface makes it easy to create Python notebook files
that can contain any number of examples, each of which can run individually.
The program runs in your browser, so which platform you use for develop-
ment doesn’t matter; as long as it has a browser, you should be OK.

Starting IPython Notebook
Most platforms provide an icon to access IPython (Py 2.7) Notebook (the
version number may be different on your system). All you need to do is open
this icon to access IPython Notebook. For example, on a Windows system,
you choose Start ➪ All Programs ➪ Anaconda ➪ IPython (Py 2.7) Notebook.
Figure 3-5 shows how the interface looks when viewed in a Firefox browser.

48 Part I: Getting Started with Python for Data Science

The precise appearance on your system depends on the browser you use and
the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can
use these steps to access IPython Notebook:

1. Open a Command Prompt or Terminal Window on your system.

You see the window open so that you can type commands.

2. Change directories to the \Anaconda\Scripts directory on your
machine.

Most systems let you use the CD command for this task.

3. Type ..\python ipython‐script.py notebook and press Enter.

The IPython Notebook page opens in your browser.

Stopping the IPython Notebook server
No matter how you start IPython Notebook (or just Notebook, as it appears
in the remainder of the book), the system generally opens a command
prompt or terminal window to host Notebook. This window contains a server
that makes the application work. After you close the browser window when a
session is complete, select the server window and press Ctrl+C or Ctrl+Break
to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your
hard drive. Think of a repository as a kind of filing cabinet where you put your
code. Notebook opens a drawer, takes out the folder, and shows the code to

Figure 3-5:
IPython

Notebook
 provides
an easy

method to
 create data

 science
 examples.

49 Chapter 3: Setting Up Python for Data Science

you. You can modify it, run individual examples within the folder, add new
examples, and simply interact with your code in a natural manner. The fol-
lowing sections get you started with Notebook so that you can see how this
whole repository concept works.

Dealing with the MathJax error
You may find yourself staring at an odd error like the one shown in Figure 3-6
when you try to perform certain tasks, such as creating a new notebook. The
book doesn’t actually use the MathJax library, so you can simply dismiss the
message box if you like.

However, you may eventually need the MathJax library, so the best approach
is to fix the problem. The following steps help you install a local copy of the
MathJax library so that you no longer see the error message.

1. Open a Command Prompt or Terminal Window on your system.

The window opens so that you can type commands.

2. Change directories to the \Anaconda directory on your machine.

Most systems let you use the CD command for this task.

3. Type python and press Enter.

A new copy of Python starts.

4. Type from IPython.external import mathjax; mathjax.install_mathjax()
and press Enter.

Python tells you that it’s extracting a copy of the mathjax library to a
specific location on your system.

Figure 3-6:
It’s safe to
ignore the

MathJax
error when
working in
this book.

50 Part I: Getting Started with Python for Data Science

The extraction process can take a long time to complete. Get a cup of
coffee, discuss the latest sports with a friend, or read a good book, but
don’t disturb the download process or you won’t get a complete copy of
the MathJax library. The result will be that Notebook could fail to work
properly (if it works at all). After some period of time, the extraction
 process is complete and you return to the Python prompt.

5. Type quit() and press Enter.

The MathJax library is now ready for use. You must restart any
Notebook servers before proceeding.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples
within the file folder, just as you would sheets of paper into a physical file
folder. Each example appears in a cell. You can put other sorts of things
in the file folder, too, but you see how these things work as the book
 progresses. Use these steps to create a new notebook.

1. Click New Notebook.

You see a new tab open in the browser with the new notebook, as shown
in Figure 3-7. Notice that the notebook contains a cell and that Notebook
has highlighted the cell so that you can begin typing code in it. The title
of the notebook is Untitled0 right now. That’s not a particularly helpful
title, so you need to change it.

2. Click Untitled0 on the page.

Notebook asks whether you want to use as a new name, as shown in
Figure 3-8.

Figure 3-7:
A notebook

contains
cells that

you use to
hold code.

51 Chapter 3: Setting Up Python for Data Science

3. Type P4DS4D; 03; Sample and press Enter.

The new name tells you that this is a file for Python for Data Science For
Dummies, Chapter 3, Sample.ipynb. Using this naming convention will
make it easy for you to differentiate these files from other files in your
repository.

Of course, the Sample notebook doesn’t contain anything just yet. Place the
cursor in the cell, type print ‘Python is really cool!’, and then click the Run
button (the button with the right‐pointing arrow on the toolbar). You see the
output shown in Figure 3-9. The output is part of the same cell as the code.
However, Notebook visually separates the output from the code so that you
can tell them apart. Notebook automatically creates a new cell for you.

Figure 3-8:
Provide a

new name
for your

notebook.

Figure 3-9:
Notebook

uses cells to
store your

code.

52 Part I: Getting Started with Python for Data Science

When you finish working with a notebook, it’s important to shut it down. To
close a notebook, choose File ➪ Close and Halt. You return to the Home page,
where you can see the notebook you just created added to the list, as shown
in Figure 3-10.

Exporting a notebook
It isn’t much fun to create notebooks and keep them all to yourself. At some
point, you want to share them with other people. To perform this task, you
must export your notebook from the repository to a file. You can then send
the file to someone else who will import it into his or her repository.

The previous section shows how to create a notebook named P4DS4D; 03;
Sample. You can open this notebook by clicking its entry in the repository
list. File reopens so that you can see your code again. To export this code,
choose File ➪ Download As ➪ IPython Notebook. What you see next depends
on your browser, but you generally see some sort of dialog box for saving the
notebook as a file. Use the same method for saving the IPython Notebook file
as you use for any other file you save using your browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with
them any longer. Rather than allow your repository to get clogged with
files you don’t need, you can remove these unwanted notebooks from the
list. Notice the Delete button next to the P4DS4D; 03; Sample.ipynb entry in
Figure 3-10. Use these steps to remove the file:

1. Click Delete.

You see a Delete notebook warning message like the one shown in
Figure 3-11.

Figure 3-10:
Any note-
books you

create
appear in

the reposi-
tory list.

53 Chapter 3: Setting Up Python for Data Science

2. Click Delete.

Notebook removes the notebook file from the list. However, you won’t
actually see the change.

3. Click Refresh Notebook List (the button with two arrows forming a
circle in it).

You see the file removed from the list.

Importing a notebook
In order to use the source code from this book, you must import the
 downloaded files into your repository. The source code comes in an archive
file that you extract to a location on your hard drive. The archive contains
a list of .ipynb (IPython Notebook) files containing the source code for this
book (see the Introduction for details on downloading the source code). The
following steps tell how to import these files into your repository:

1. Click the Click Here link on the Notebook Home page.

What you see depends on your browser. In most cases, you see some
type of File Upload dialog box that provides access to the files on your
hard drive.

2. Navigate to the directory containing the files you want to import into
Notebook.

3. Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-12. The file
isn’t part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

Figure 3-11:
Notebook

warns you
before

removing
any files
from the

repository.

54 Part I: Getting Started with Python for Data Science

Understanding the datasets
used in this book
This book uses a number of datasets, all of which appear in the Scikit‐learn
library. These datasets demonstrate various ways in which you can interact
with data, and you use them in the examples to perform a variety of tasks.
The following list provides a quick overview of the function used to import
each of the datasets into your Python code:

 ✓ load_boston(): Regression analysis with the Boston house‐prices
dataset

 ✓ load_iris(): Classification with the iris dataset

 ✓ load_diabetes(): Regression with the diabetes dataset

 ✓ load_digits([n_class]): Classification with the digits dataset

 ✓ fetch_20newsgroups(subset=’train’): Data from 20 newsgroups

 ✓ fetch_olivetti_faces(): Olivetti faces dataset from AT&T

The technique for loading each of these datasets is the same across examples.
The following example shows how to load the Boston house‐prices dataset.
You can find the code in the P4DS4D; 03; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston
Boston = load_boston()
print Boston.data.shape

Figure 3-12:
The files

you want to
add to the
repository
appear as
part of an

upload list.

sklearn.datasets.fetch_olivetti_faces

55 Chapter 3: Setting Up Python for Data Science

To see how the code works, click Run Cell. The output from the print call is
(506L, 13L). You can see the output shown in Figure 3-13.

Figure 3-13:
The Boston

object
contains

the loaded
 dataset.

56 Part I: Getting Started with Python for Data Science

Reviewing Basic Python
In This Chapter

 ▶ Using numbers and logic

 ▶ Interacting with strings

 ▶ Delving into dates

 ▶ Developing modular code

 ▶ Making decisions and performing tasks repetitively

 ▶ Organizing information into sets, lists, and tuples

 ▶ Iterating through data

 ▶ Making data easier to find using dictionaries

C
hapter 3 helped you create a Python installation that’s specific to data
science. However, you can use this installation to perform common

Python tasks as well, and that’s actually the best way to test your setup to
know that it works as intended. If you already know Python, you might be
able to skip this chapter and move on to the next chapter; however, it’s prob-
ably best to skim the material as a minimum and test some of the examples,
just to be sure you have a good installation.

The focus of this chapter is to provide you with a good overview of how
Python works as a language. Of course, part of that focus is how you use
Python to solve data science problems. However, you can’t use this book to
learn Python from scratch. To learn Python from scratch, you need a book
such as my book Beginning Programming with Python For Dummies (published
by John Wiley & Sons, Inc.) or a tutorial such as the one at https://docs.
python.org/2/tutorial/. The chapter assumes that you’ve worked with
other programming languages and have at least an idea of how Python works.
This limitation aside, the chapter gives you a good reminder of how things
work in Python, which is all that many people really need.

Chapter 4

https://docs.python.org/2/tutorial/
https://docs.python.org/2/tutorial/

58 Part I: Getting Started with Python for Data Science

This book uses Python 2.7.x. The latest version of Python as of this writing
is version 2.7.9. If you try to use this book with Python 3.4.2 (or above), you
may need to modify the examples to compensate for the differences in that
version. The “Using Python 2.7.x for this book” sidebar in Chapter 3 provides
you with details about Python version differences. Going through the exam-
ples in this chapter will help you know what to expect with other examples
in the book should you decide to use version 3.4.2 when solving data science
problems.

Stylistic concerns with Python
Python developers designed Python to be
easy to read and understand. For this reason,
it comes with certain style conventions. You
can see these conventions listed in Pep‐8
(https://www.python.org/dev/
peps/pep‐0008/). If you want to exchange
your code with someone else or use it in a public
venue, you need to follow the conventions
relatively closely. However, personal code or
example code that you create need not follow
the conventions precisely.

You must use the whitespace rules when
writing your code because Python uses them
to determine where code segments begin and
end. In addition, Python has some odd rules
that might seem randomly implemented, but
they make the code easier to work with. For
example, you can’t mix tabs and spaces in the
same document to create whitespace when
working with Python 3 (Python 2 does allow
mixing of tabs and spaces). The preference is
to use spaces, and the Python editors on the
market tend to use spaces by default.

Some stylistic concerns are more about
preference than about making the code work.

For example, method names are supposed to
use all lowercase letters and use underscores
to separate words, such as my_method.
However, you can use camel case when desired,
such as myMethod, or even pascal case, such
as MyMethod, and the code will compile just
fine. If you want to make a method private,
however, you must use a leading underscore
for it, such as _my_method. Adding two
underscores, such as __my_method, invokes
Python’s name mangling to make it harder
(albeit not impossible) for someone to use the
method. The point is that you don’t have to be
a slave to the stylistic rules as long as you’re
willing to live with the consequences of not
following them completely.

Python does include magic words, such as __
init__, __import__, and __file__. You
don’t ever create these names yourself, and you
use only the existing magic words as defined by
Python. A listing of these magic words appears
at http://www.rafekettler.com/
magicmethods.html. The guide tells you
the most common uses for the magic words
as well.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
http://www.rafekettler.com/magicmethods.html
http://www.rafekettler.com/magicmethods.html

59 Chapter 4: Reviewing Basic Python

Working with Numbers and Logic
Data science involves working with data of various sorts, but much of the
work involves numbers. In addition, you use logical values to make decisions
about the data you use. For example, you might need to know whether two
values are equal or whether one value is greater than another value. Python
supports these number and logic value types:

 ✓ Any whole number is an integer. For example, the value 1 is a whole
number, so it’s an integer. On the other hand, 1.0 isn’t a whole number;
it has a decimal part to it, so it’s not an integer. Integers are repre-
sented by the int data type. On most platforms, you can store numbers
between –9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 within
an int (which is the maximum value that fits in a 64‐bit variable).

 ✓ Any number that includes a decimal portion is a floating point value.
For example, 1.0 has a decimal part, so it’s a floating‐point value. Many
people get confused about whole numbers and floating‐point numbers,
but the difference is easy to remember. If you see a decimal in the
number, it’s a floating‐point value. Python stores floating‐point values in
the float data type. The maximum value that a floating‐point variable
can contain is ±1.7976931348623157 × 10308 and the minimum value that
a floating point variable can contain is ±2.2250738585072014 × 10‐308 on
most platforms.

 ✓ A complex number consists of a real number and an imaginary number
that are paired together. Just in case you’ve completely forgotten
about complex numbers, you can read about them at http://www.
mathsisfun.com/numbers/complex‐numbers.html. The imaginary
part of a complex number always appears with a j after it. So, if you want
to create a complex number with 3 as the real part and 4 as the imagi-
nary part, you make an assignment like this: myComplex = 3 + 4j.

 ✓ Logical arguments require Boolean values, which are named after
George Bool. When using a Boolean value in Python, you rely on the
bool type. A variable of this type can contain only two values: True or
False. You can assign a value by using the True or False keywords,
or you can create an expression that defines a logical idea that equates
to true or false. For example, you could say myBool = 1 > 2, which
would equate to False because 1 is most definitely not greater than 2.

Now that you have the basics down, it’s time to see the data types in action.
The following paragraphs provide a quick overview of how you can work with
both numeric and logical data in Python.

http://www.mathsisfun.com/numbers/complex-numbers.html
http://www.mathsisfun.com/numbers/complex-numbers.html

60 Part I: Getting Started with Python for Data Science

Performing variable assignments
When working with applications, you store information in variables. A vari-
able is a kind of storage box. Whenever you want to work with the informa-
tion, you access it using the variable. If you have new information you want
to store, you put it in a variable. Changing information means accessing the
variable first and then storing the new value in the variable. Just as you store
things in boxes in the real world, so you store things in variables (a kind of
storage box) when working with applications. To store data in a variable, you
assign the data to it using any of a number of assignment operators (special
symbols that tell how to store the data). Table 4-1 shows the assignment
operators that Python supports.

Table 4-1 Python Assignment Operators
Operator Description Example
= Assigns the value found in the right operand

to the left operand
MyVar = 2 results in
MyVar containing 2

+= Adds the value found in the right operand
to the value found in the left operand and
places the result in the left operand

MyVar += 2 results in
MyVar containing 7

‐= Subtracts the value found in the right oper
and from the value found in the left operand
and places the result in the left operand

MyVar ‐= 2 results in
MyVar containing 3

*= Multiplies the value found in the right oper
and by the value found in the left operand
and places the result in the left operand

MyVar *= 2 results in
MyVar containing 10

/= Divides the value found in the left operand
by the value found in the right operand and
places the result in the left operand

MyVar /= 2 results in
MyVar containing 2.5

%= Divides the value found in the left operand
by the value found in the right operand and
places the remainder in the left operand

MyVar %= 2 results in
MyVar containing 1

**= Determines the exponential value found in
the left operand when raised to the power
of the value found in the right operand and
places the result in the left operand

MyVar ** 2 results in
MyVar containing 25

//= Divides the value found in the left operand
by the value found in the right operand and
places the integer (whole number) result in
the left operand

MyVar //= 2 results in
MyVar containing 2

61 Chapter 4: Reviewing Basic Python

Doing arithmetic
Storing information in variables makes it easily accessible. However, in order
to perform any useful work with the variable, you usually perform some type
of arithmetic operation on it. Python supports the common arithmetic opera-
tors you use to perform tasks by hand. They appear in Table 4-2.

Sometimes you need to interact with just one variable. Python supports a
number of unary operators, those that work with just one variable, as shown
in Table 4-3.

Table 4-2 Python Arithmetic Operators
Operator Description Example
+ Adds two values together 5 + 2 = 7

‐ Subtracts the right‐hand operand from left operand 5 – 2 = 3

* Multiplies the right‐hand operand by the left operand 5 * 2 = 10

/ Divides the left‐hand operand by the right operand 5 / 2 = 2.5

% Divides the left‐hand operand by the right operand and
returns the remainder

5 % 2 = 1

** Calculates the exponential value of the right operand by
the left operand

5 ** 2 = 25

// Performs integer division, in which the left operand is
divided by the right operand and only the whole number
is returned (also called floor division)

5 // 2 = 2

Table 4-3 Python Unary Operators
Operator Description Example
~ Inverts the bits in a number so that all of the 0 bits

become 1 bits and vice versa.
~4 results in a
value of –5

‐ Negates the original value so that positive
becomes negative and vice versa.

–(–4) results in
4 and –4 results
in –4

+ Is provided purely for the sake of completeness.
This operator returns the same value that you
 provide as input.

+4 results in a
value of 4

62 Part I: Getting Started with Python for Data Science

Computers can perform other sorts of math tasks because of the way in
which the processor works. It’s important to remember that computers store
data as a series of individual bits. Python makes it possible to access these
individual bits using bitwise operators, as shown in Table 4-4.

Comparing data using Boolean expressions
Using arithmetic to modify the content of variables is a kind of data manipula-
tion. To determine the effect of data manipulation, a computer must compare
the current state of the variable against its original state or the state of a
known value. In some cases, detecting the status of one input against another
is also necessary. All these operations check the relationship between two
variables, so the resulting operators are relational operators, as shown
in Table 4-5.

Table 4-4 Python Bitwise Operators
Operator Description Example
& (And) Determines whether both individual

bits within two operators are true
and sets the resulting bit to true
when they are.

0b1100 & 0b0110 =
0b0100

| (Or) Determines whether either of the indi
vidual bits within two operators are
true and sets the resulting bit to true
when they are.

0b1100 | 0b0110 = 0b1110

^ (Exclusive or) Determines whether just one of the
individual bits within two operators
is true and sets the resulting bit to
true when one is. When both bits are
true or both bits are false, the result
is false.

0b1100 ^ 0b0110 = 0b1010

~ (One’s
 complement)

Calculates the one’s complement
value of a number.

~0b1100 = –0b1101
~0b0110 = –0b0111

<< (Left shift) Shifts the bits in the left operand left
by the value of the right operand. All
new bits are set to 0 and all bits that
flow off the end are lost.

0b00110011 << 2 =
0b11001100

>> (Right shift) Shifts the bits in the left operand right
by the value of the right operand. All
new bits are set to 0 and all bits that
flow off the end are lost.

0b00110011 >> 2 =
0b00001100

63 Chapter 4: Reviewing Basic Python

Sometimes a relational operator can’t tell the whole story of the comparison
of two values. For example, you might need to check a condition in which two

separate comparisons are needed, such as MyAge > 40 and MyHeight < 74.
The need to add conditions to the comparison requires a logical operator of
the sort shown in Table 4-6.

Table 4-5 Python Relational Operators
Operator Description Example
== Determines whether two values are equal. Notice

that the relational operator uses two equals signs.
A mistake many developers make is using just
one equals sign, which results in one value being
assigned to another.

1 == 2 is False

!= Determines whether two values are not equal.
Some older versions of Python allowed you to
use the <> operator in place of the != operator.
Using the <> operator results in an error in current
 versions of Python.

1 != 2 is True

> Verifies that the left operand value is greater than
the right operand value.

1 > 2 is False

< Verifies that the left operand value is less than the
right operand value.

1 < 2 is True

>= Verifies that the left operand value is greater than
or equal to the right operand value.

1 >= 2 is False

<= Verifies that the left operand value is less than or
equal to the right operand value.

1 <= 2 is True

Table 4-6 Python Logical Operators
Operator Description Example
and Determines whether both operands

are true.
True and True is True

True and False is False

False and True is False

False and False is False
(continued)

64 Part I: Getting Started with Python for Data Science

Computers provide order to comparisons by making some operators more
significant than others. The ordering of operators is operator precedence.
Table 4-7 shows the operator precedence of all the common Python opera-
tors, including a few you haven’t seen as part of a discussion yet. When
making comparisons, always consider operator precedence because other-
wise, the assumptions you make about a comparison outcome will likely be
wrong.

Operator Description Example

or Determines when one of two
 operands is true.

True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a
single operand. A true value
becomes false and a false
value becomes true.

not True is False

not False is True

Table 4-6 (continued)

Table 4-7 Python Operator Precedence
Operator Description
() You use parentheses to group expressions and to override

the default precedence so that you can force an operation of
lower precedence (such as addition) to take precedence over
an operation of higher precedence (such as multiplication).

** Exponentiation raises the value of the left operand to the
power of the right operand.

~ + ‐ Unary operators interact with a single variable or expression.

* / % // Multiply, divide, modulo, and floor division.

+ ‐ Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

65 Chapter 4: Reviewing Basic Python

Creating and Using Strings
Of all the data types, strings are the most easily understood by humans
and not understood at all by computers. A string is simply any grouping
of characters you place within double quotation marks. For example,
myString = "Python is a great language." assigns a string of
characters to myString.

The computer doesn’t see letters at all. Every letter you use is represented
by a number in memory. For example, the letter A is actually the number 65.
To see this for yourself, type ord("A") at the Python prompt and press Enter.
You see 65 as output. It’s possible to convert any single letter to its numeric
equivalent using the ord() command.

Because the computer doesn’t really understand strings, but strings are so
useful in writing applications, you sometimes need to convert a string to a
number. You can use the int() and float() commands to perform this
conversion. For example, if you type myInt = int("123") and press Enter at the
Python prompt, you create an int named myInt that contains the value 123.

You can convert numbers to a string as well by using the str() command.
For example, if you type myStr = str(1234.56) and press Enter, you create a
string containing the value "1234.56" and assign it to myStr. The point is
that you can go back and forth between strings and numbers with great ease.
Later chapters demonstrate how these conversions make many seemingly
impossible tasks quite doable.

Operator Description

== != Equality operators.

= %= /= //= ‐= +=
*= **=

Assignment operators.

is

is not

Identity operators.

in

not in

Membership operators.

not or and Logical operators.

66 Part I: Getting Started with Python for Data Science

As with numbers, you can use some special operators with strings (and many
objects). The member operators make it possible to determine when a string
contains specific content. Table 4-8 shows these operators.

The discussion in this section also makes it obvious that you need to know
the kind of data that variables contain. You use the identity operators to
 perform this task, as shown in Table 4-9.

Interacting with Dates
Dates and times are items that most people work with quite a bit. Society
bases almost everything on the date and time that a task needs to be or
was completed. We make appointments and plan events for specific dates

Table 4-8 Python Membership Operators
Operator Description Example
in Determines whether the value in the

left operand appears in the sequence
found in the right operand

“Hello” in “Hello
Goodbye“ is True

not in Determines whether the value in
the left operand is missing from the
sequence found in the right operand

“Hello“ not in “Hello
Goodbye“ is False

Table 4-9 Python Identity Operators
Operator Description Example
is Evaluates to true when the type of the

value or expression in the right oper
and points to the same type in the left
operand

type(2) is int is True

is not Evaluates to true when the type of the
value or expression in the right operand
points to a different type than the value
or expression in the left operand

type(2) is not int is False

67 Chapter 4: Reviewing Basic Python

and times. Most of our day revolves around the clock. Because of the time‐
oriented nature of humans, it’s a good idea to look at how Python deals with
interacting with date and time (especially storing these values for later use).
As with everything else, computers understand only numbers — date and
time don’t really exist.

To work with dates and times, you must issue a special import datetime
command. Technically, this act is called importing a module. Don’t worry how
the command works right now — just use it whenever you want to do some-
thing with date and time.

Computers do have clocks inside them, but the clocks are for the humans
using the computer. Yes, some software also depends on the clock, but again,
the emphasis is on human needs rather than anything the computer might
require. To get the current time, you can simply type datetime.datetime.
now() and press Enter. You see the full date and time information as found on
your computer’s clock (see Figure 4-1).

You may have noticed that the date and time are a little hard to read in the
existing format. Say that you want to get just the current date, and in a read-
able format. To accomplish this task, you access just the date portion of the
output and convert it into a string. Type str(datetime.datetime.now().date())
and press Enter. Figure 4-2 shows that you now have something a little more
usable.

Interestingly enough, Python also has a time() command, which you can
use to obtain the current time. You can obtain separate values for each of the
components that make up date and time using the day, month, year, hour,
minute, second, and microsecond values. Later chapters help you under-
stand how to use these various date and time features to make working with
data science applications easier.

Figure 4-1:
Get the
 current

date and
time using

the now()
command.

68 Part I: Getting Started with Python for Data Science

Creating and Using Functions
To manage information properly, you need to organize the tools used to
 perform the required tasks. Each line of code that you create performs a
specific task, and you combine these lines of code to achieve a desired
result. Sometimes you need to repeat the instructions with different data,
and in some cases your code becomes so long that it’s hard to keep track
of what each part does. Functions serve as organization tools that keep
your code neat and tidy. In addition, functions make it easy to reuse the
instructions you’ve created as needed with different data. This section of
the chapter tells you all about functions. More important, in this section you
start creating your first serious applications in the same way that profes-
sional developers do.

Creating reusable functions
You go to your closet, take out pants and shirt, remove the labels, and put
them on. At the end of the day, you take everything off and throw it in the
trash. Hmmm . . . that really isn’t what most people do. Most people take
the clothes off, wash them, and then put them back into the closet for reuse.
Functions are reusable, too. No one wants to keep repeating the same task;
it becomes monotonous and boring. When you create a function, you define
a package of code that you can use over and over to perform the same task.
All you need to do is tell the computer to perform a specific task by telling it
which function to use. The computer faithfully executes each instruction in
the function absolutely every time you ask it to do so.

When you work with functions, the code that needs services from the func-
tion is named the caller, and it calls upon the function to perform tasks for
it. Much of the information you see about functions refers to the caller. The
caller must supply information to the function, and the function returns
 information to the caller.

Figure 4-2:
Make the
date and

time more
readable
using the
str()

command.

69 Chapter 4: Reviewing Basic Python

At one time, computer programs didn’t include the concept of code reusabil-
ity. As a result, developers had to keep reinventing the same code. It didn’t
take long for someone to come up with the idea of functions, though, and
the concept has evolved over the years until functions have become quite
flexible. You can make functions do anything you want. Code reusability is a
necessary part of applications to

 ✓ Reduce development time

 ✓ Reduce programmer error

 ✓ Increase application reliability

 ✓ Allow entire groups to benefit from the work of one programmer

 ✓ Make code easier to understand

 ✓ Improve application efficiency

In fact, functions do a whole list of things for applications in the form of
 reusability. As you work through the examples in this book, you see how
reusability makes your life significantly easier. If not for reusability, you’d
still be programming by plugging 0s and 1s into the computer by hand.

Creating a function doesn’t require much work. To see how functions work,
open a copy of IPython and type in the following code (pressing Enter at the
end of each line):

def SayHello():
 print('Hello There!')

To end the function, you press Enter a second time after the last line. A
 function begins with the keyword def (for define). You provide a function
name, parentheses that can contain function arguments (data used in the
function), and a colon. The editor automatically indents the next line for
you. Python relies on whitespace to define code blocks (statements that are
 associated with each other in a function).

You can now use the function. Simply type SayHello() and press Enter. The
parentheses after the function name are important because they tell Python
to execute the function, rather than tell you that you are accessing a function
as an object (to determine what it is). Figure 4-3 shows the output from this
function.

70 Part I: Getting Started with Python for Data Science

Calling functions in a variety of ways
Functions can accept arguments (additional bits of data) and return values.
The ability to exchange data makes functions far more useful than they
 otherwise might be. The following sections describe how to call functions in
a variety of ways to both send and receive data.

Sending required arguments
A function can require the caller to provide arguments to it. A required
 argument is a variable that must contain data for the function to work. Open
a copy of IPython and type the following code:

def DoSum(Value1, Value2):
 return Value1 + Value2

You have a new function, DoSum(). This function requires that you provide
two arguments to use it. At least, that’s what you’ve heard so far. Type
DoSum() and press Enter. You see an error message, as shown in Figure 4-4,
telling you that DoSum requires two arguments.

Figure 4-3:
Creating

and using
functions

is straight
forward.

Figure 4-4:
You must
supply an
argument
or you get

an error
 message.

71 Chapter 4: Reviewing Basic Python

Trying DoSum() with just one argument would result in another error
 message. In order to use DoSum() you must provide two argument. To see
how this works, type DoSum(1, 2) and press Enter. You see the result in
Figure 4-5.

Notice that DoSum() provides an output value of 3 when you supply 1 and 2
as inputs. The return statement provides the output value. Whenever you
see return in a function, you know the function provides an output value.

Sending arguments by keyword
As your functions become more complex and the methods to use them do as
well, you may want to provide a little more control over precisely how you
call the function and provide arguments to it. Until now, you have positional
arguments, which means that you have supplied values in the order in which
they appear in the argument list for the function definition. However, Python
also has a method for sending arguments by keyword. In this case, you
supply the name of the argument followed by an equals sign (=) and the
 argument value. To see how this works, open a copy of IPython and type the
following code:

def DisplaySum(Value1, Value2):
 print(str(Value1) + ' + ' + str(Value2) + ' = ' +
 str((Value1 + Value2)))

Notice that the print() function argument includes a list of items to print
and that those items are separated by plus signs (+). In addition, the argu-
ments are of different types, so you must convert them using the str()
function. Python makes it easy to mix and match arguments in this manner.
This function also introduces the concept of automatic line continuation. The
print() function actually appears on two lines, and Python automatically
continues the function from the first line to the second.

Figure 4-5:
Supplying two

arguments
provides the

expected
 output.

72 Part I: Getting Started with Python for Data Science

Next, it’s time to test DisplaySum(). Of course, you want to try the function
using positional arguments first, so type DisplaySum(2, 3) and press Enter.
You see the expected output of 2 + 3 = 5. Now type DisplaySum(Value2
= 3, Value1 = 2) and press Enter. Again, you receive the output 2 + 3 = 5
even though the position of the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword
 arguments, the functions to this point have required that you supply a value.
Sometimes a function can use default values when a common value is avail-
able. Default values make the function easier to use and less likely to cause
errors when a developer doesn’t provide an input. To create a default value,
you simply follow the argument name with an equals sign and the default
value. To see how this works, open a copy of IPython and type the following
code:

def SayHello(Greeting = "No Value Supplied"):
 print(Greeting)

The SayHello() function provides an automatic value for Greeting when a
caller doesn’t provide one. When someone tries to call SayHello() without
an argument, it doesn’t raise an error. Type SayHello() and press Enter to see
for yourself — you see the default message. Type SayHello("Howdy!") to see
a normal response.

Creating functions with a variable number of arguments
In most cases, you know precisely how many arguments to provide with
your function. It pays to work toward this goal whenever you can because
functions with a fixed number of arguments are easier to troubleshoot later.
However, sometimes you simply can’t determine how many arguments the
function will receive at the outset. For example, when you create a Python
application that works at the command line, the user might provide no argu-
ments, the maximum number of arguments (assuming there is one), or any
number of arguments in between.

Fortunately, Python provides a technique for sending a variable number of
arguments to a function. You simply create an argument that has an asterisk
in front of it, such as *VarArgs. The usual technique is to provide a second
argument that contains the number of arguments passed as an input. To see
how this works, open a copy of IPython and type the following code:

def DisplayMulti(ArgCount = 0, *VarArgs):
 print('You passed ' + str(ArgCount) + ' arguments.',
 Var Args)

73 Chapter 4: Reviewing Basic Python

Notice that the print() function displays a string and then the list of
arguments. Because of the way this function is designed, you can type
DisplayMulti() and press Enter to see that it’s possible to pass zero argu-
ments. To see multiple arguments at work, type DisplayMulti(3, 'Hello', 1,
True) and press Enter. The output of ('You passed 3 arguments.',
('Hello', 1, True)) shows that you need not pass values of any
 particular type.

Using Conditional and Loop Statements
Computer applications aren’t very useful if they perform precisely the same
tasks the same number of times every time you run them. Yes, they can
 perform useful work, but life seldom offers situations in which conditions
remain the same. In order to accommodate changing conditions, applica-
tions must make decisions and perform tasks a variable number of times.
Conditional and loop statements make it possible to perform this task as
described in the sections that follow.

Making decisions using the if statement
You use “if” statements regularly in everyday life. For example, you may say
to yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if
statement is a little less verbose, but it follows precisely the same pattern. To
see how this works, open a copy of IPython and type the following code:

def TestValue(Value):
 if Value == 5:
 print('Value equals 5!')
 elif Value == 6:
 print('Value equals 6!')
 else:
 print('Value is something else.')
 print('It equals ' + str(Value))

Every Python if statement begins, oddly enough, with the word if. When
Python sees if, it knows that you want it to make a decision. After the word
if comes a condition. A condition simply states what sort of comparison you
want Python to make. In this case, you want Python to determine whether
Value contains the value 5.

Notice that the condition uses the relational equality operator, ==, and not
the assignment operator, =. A common mistake that developers make is to
use the assignment operator rather than the equality operator.

74 Part I: Getting Started with Python for Data Science

The condition always ends with a colon (:). If you don’t provide a colon,
Python doesn’t know that the condition has ended and will continue to look
for additional conditions on which to base its decision. After the colon comes
any tasks you want Python to perform.

You may need to perform multiple tasks using a single if statement. The elif
clause makes it possible to add an additional condition and associated tasks.
A clause is an addendum to a previous condition, which is an if statement in
this case. The elif clause always provides a condition, just like the if state-
ment, and it has its own associated set of tasks to perform.

Sometimes you need to do something no matter what the condition might
be. In this case, you add the else clause. The else clause tells Python to do
something in particular when the conditions of the if statement aren’t met.

Notice how indenting is becoming more important as the functions become
more complex. The function contains an if statement. The if statement
 contains just one print() statement. The else clause contains two
print() statements.

To see this function in action, type TestValue(1) and press Enter. You see the
output from the else clause. Type TestValue(5) and press Enter. The output
now reflects the if statement output. Type TestValue(6) and press Enter.
The output now shows the results of the elif clause. The result is that this
function is more flexible than previous functions in the chapter because it
can make decisions.

Choosing between multiple options
using nested decisions
Nesting is the process of placing a subordinate statement within another
statement. You can nest any statement within any other statement in most
cases. To see how this works, open a copy of IPython and type the following
code:

def SecretNumber():
 One = int(input("Type a number between 1 and 10: "))
 Two = int(input("Type a number between 1 and 10: "))

 if (One >= 1) and (One <= 10):
 if (Two >= 1) and (Two <= 10):
 print('Your secret number is: ' + str(One * Two))
 else:
 print("Incorrect second value!")
 else:
 print("Incorrect first value!")

75 Chapter 4: Reviewing Basic Python

In this case, SecretNumber() asks you to provide two inputs. Yes, you can
get inputs from a user when needed by using the input() function. The
int() function converts the inputs to a number.

There are two levels of if statement this time. The first level checks for the
validity of the number in One. The second level checks for the validity of the
number in Two. When both One and Two have values between 1 and 10, then
SecretNumber() outputs a secret number for the user.

To see SecretNumber() in action, type SecretNumber() and press Enter.
Type 20 and press Enter when asked for the first input value, and type 10
and press Enter when asked for the second. You see an error message telling
you that the first value is incorrect. Type SecretNumber() and press Enter
again. This time, use values of 10 and 20. The function will tell you that the
second input is incorrect. Try the same sequence again using input values
of 10 and 10.

Performing repetitive tasks using for
Sometimes you need to perform a task more than one time. You use the
for loop statement when you need to perform a task a specific number of
times. The for loop has a definite beginning and a definite end. The number
of times that that loop executes depends on the number of elements in the
 variable you provide. To see how this works, open a copy of IPython and
type the following code:

def DisplayMulti(*VarArgs):
 for Arg in VarArgs:
 if Arg.upper() == 'CONT':
 continue
 print('Continue Argument: ' + Arg)
 elif Arg.upper() == 'BREAK':
 break
 print('Break Argument: ' + Arg)
 print('Good Argument: ' + Arg)

In this case, the for loop attempts to process each element in VarArgs.
Notice that there is a nested if statement in the loop and it tests for two
ending conditions. In most cases, the code skips the if statement and simply
prints the argument. However, when the if statement finds the words CONT
or BREAK in the input values, it performs one of these two tasks:

 ✓ continue: Forces the loop to continue from the current point of
 execution with the next entry in VarArgs.

 ✓ break: Stops the loop from executing.

76 Part I: Getting Started with Python for Data Science

The keywords can appear capitalized in any way because the upper()
function converts them to uppercase. The DisplayMulti() func-
tion can process any number of input strings. To see it in action, type
DisplayMulti('Hello', 'Goodbye', 'First', 'Last') and press Enter. You see
each of the input strings presented on a separate line in the output. Now
type DisplayMulti('Hello', 'Cont', 'Goodbye', 'Break', 'Last') and press Enter.
Notice that the words Cont and Break don’t appear in the output because
they’re keywords. In addition, the word Last doesn’t appear in the output
because the for loop ends before this word is processed.

Using the while statement
The while loop statement continues to perform tasks until such time that
a condition is no longer true. As with the for statement, the while state-
ment supports both the continue and break keywords for ending the loop
 prematurely. To see how this works, open a copy of IPython and type the
 following code:

def SecretNumber():
 GotIt = False
 while GotIt == False:
 One = int(input("Type a number between 1 and 10: "))
 Two = int(input("Type a number between 1 and 10: "))

 if (One >= 1) and (One <= 10):
 if (Two >= 1) and (Two <= 10):
 print('Secret number is: ' + str(One * Two))
 GotIt = True
 continue
 else:
 print("Incorrect second value!")
 else:
 print("Incorrect first value!")
 print("Try again!")

This is an expansion of the SecretNumber() function first described in the
“Choosing between multiple options using nested decisions” section, earlier
in this chapter. However, in this case, the addition of a while loop statement
means that the function continues to ask for input until it receives a valid
response.

To see how the while statement works, type SecretNumber() and press Enter.
Type 20 and press Enter for the first prompt. Type 10 and press Enter for the
second prompt. The example tells you that the first number is wrong and then
tells you to try again. Try a second time using values of 10 and 20. This time
the second number is wrong and you still need to try again. On the third try,
use values of 10 and 10. This time you get a secret number. Notice that the use
of a continue clause means that the application doesn’t tell you to try again.

77 Chapter 4: Reviewing Basic Python

Storing Data Using Sets, Lists,
and Tuples

Python provides a host of methods for storing data in memory. Each method
has advantages and disadvantages. Choosing the most appropriate method
for your particular need is important. The following sections discuss three
common techniques used for storing data for data science needs.

Performing operations on sets
Most people have used sets at one time or another in school to create lists of
items that belong together. These lists then became the topic of manipulation
using math operations such as intersection, union, difference, and symmet-
ric difference. Sets are the best option to choose when you need to perform
membership testing and remove duplicates from a list. You can’t perform
sequence‐related tasks using sets, such a indexing or slicing. To see how you
can work with sets, start a copy of IPython and type the following code:

from sets import Set
SetA = Set(['Red', 'Blue', 'Green', 'Black'])
SetB = Set(['Black', 'Green', 'Yellow', 'Orange'])
SetX = SetA.union(SetB)
SetY = SetA.intersection(SetB)
SetZ = SetA.difference(SetB)

Notice that you must import the Set capability into your Python application.
The module sets contain a Set class that you import into your application
in order to use the resulting functionality. If you try to use the Set class
without first importing it, Python displays an error message. The book uses a
number of imported libraries, so knowing how to use the import statement
is important.

You now have five different sets to play with, each of which has some
common elements. To see the results of each math operation, type print
’{0}\n{1}\n{2}’.format(SetX, SetY, SetZ) and press Enter. You see one set
printed on each line, like this:

Set(['Blue', 'Yellow', 'Green', 'Orange', 'Black', 'Red'])
Set(['Green', 'Black'])
Set(['Blue', 'Red'])

78 Part I: Getting Started with Python for Data Science

The outputs show the results of the math operations: union(), intersec-
tion(), and difference(). (When working with Python 3.4, the output
may vary from the Python 2.7 output shown. All output in the book is for
Python 2.7, so you may see differences from time to time when using Python
3.4.) Python’s fancier print formatting can be useful in working with collec-
tions such as sets. The format() function tells Python which objects to
place within each of the placeholders in the string. A placeholder is a set of
curly brackets ({}) with an optional number in it. The escape character (essen-
tially a kind of control or special character), /n, provides a newline character
between entries. You can read more about fancy formatting at https://
docs.python.org/2/tutorial/inputoutput.html.

You can also test relationships between the various sets. For example, type
SetA.issuperset(SetY) and press Enter. The output value of True tells you
that SetA is a superset of SetY. Likewise, if you type SetA.issubset(SetX) and
press Enter, you find that SetA is a subset of SetX.

It’s important to understand that sets are either mutable or immutable.
All the sets in this example are mutable, which means that you can add or
remove elements from them. For example, if you type SetA.add('Purple') and
press Enter, SetA receives a new element. If you type SetA.issubset(SetX)
and press Enter now, you find that SetA is no longer a subset of SetX
because SetA has the 'Purple' element in it.

Working with lists
The Python specification defines a list as a kind of sequence. Sequences
simply provide some means of allowing multiple data items to exist together
in a single storage unit, but as separate entities. Think about one of those
large mail holders you see in apartment buildings. A single mail holder con-
tains a number of small mailboxes, each of which can contain mail. Python
supports other kinds of sequences as well:

 ✓ Tuples: A tuple is a collection used to create complex list‐like
sequences. An advantage of tuples is that you can nest the content of
a tuple. This feature lets you create structures that can hold employee
records or x‐y coordinate pairs.

 ✓ Dictionaries: As with the real dictionaries, you create key/value pairs
when using the dictionary collection (think of a word and its associated
definition). A dictionary provides incredibly fast search times and makes
ordering data significantly easier.

https://docs.python.org/2/tutorial/inputoutput.html
https://docs.python.org/2/tutorial/inputoutput.html

79 Chapter 4: Reviewing Basic Python

 ✓ Stacks: Most programming languages support stacks directly. However,
Python doesn’t support the stack, although there’s a workaround for
that. A stack is a first in/first out (LIFO) sequence. Think of a pile of
pancakes: You can add new pancakes to the top and also take them off
of the top. A stack is an important collection that you can simulate in
Python using a list.

 ✓ Queues: A queue is a last in/first out (FIFO) collection. You use it to
track items that need to be processed in some way. Think of a queue as
a line at the bank. You go into the line, wait your turn, and are eventually
called to talk with a teller.

 ✓ Deques: A double‐ended queue (deque) is a queue‐like structure that
lets you add or remove items from either end, but not from the middle.
You can use a deque as a queue or a stack or any other kind of collec-
tion to which you’re adding and from which you’re removing items in
an orderly manner (in contrast to lists, tuples, and dictionaries, which
allow randomized access and management).

Of all the sequences, lists are the easiest to understand and are the most
directly related to a real‐world object. Working with lists helps you become
better able to work with other kinds of sequences that provide greater func-
tionality and improved flexibility. The point is that the data is stored in a
list much as you would write it on a piece of paper — one item comes after
another. The list has a beginning, a middle, and an end. As shown in the
figure, the items are numbered. (Even if you might not normally number them
in real life, Python always numbers the items for you.) To see how you can
work with lists, start a copy of IPython and type the following code:

ListA = [0, 1, 2, 3]
ListB = [4, 5, 6, 7]
ListA.extend(ListB)
ListA

When you type the last line of code, you see the output of [0, 1, 2, 3,
4, 5, 6, 7]. The extend() function adds the members of ListB to
ListA. Beside extending lists, you can also add to them using the append()
function. Type ListA.append(‐5) and press Enter. When you type ListA and
press Enter again, you see that Python has added –5 to the end of the list.
You may find that you need to remove items again and you do that using the
remove() function. For example, type ListA.remove(‐5) and press Enter.
When you list ListA again, you see that the added entry is gone.

Lists also support concatenation using the plus (+) sign. For example, if you
type ListX = ListA + ListB and press Enter, you find that the newly created
ListX contains both ListA and ListB in it with the elements of ListA
coming first.

80 Part I: Getting Started with Python for Data Science

Creating and using Tuples
A tuple is a collection used to create complex lists, in which you can embed
one tuple within another. This embedding lets you create hierarchies with
tuples. A hierarchy could be something as simple as the directory listing of
your hard drive or an organizational chart for your company. The idea is that
you can create complex data structures using a tuple.

Tuples are immutable, which means you can’t change them. You can create
a new tuple with the same name and modify it in some way, but you can’t
modify an existing tuple. Lists are mutable, which means that you can change
them. So, a tuple can seem at first to be at a disadvantage, but immutabil-
ity has all sorts of advantages, such as being more secure as well as faster.
In addition, immutable objects are easier to use with multiple processors.
To see how you can work with tuples, start a copy of IPython and type the
 following code:

MyTuple = (1, 2, 3, (4, 5, 6, (7, 8, 9)))

MyTuple is nested three levels deep. The first level consists of the values 1,
2, and 3, and a tuple. The second level consists of the values 4, 5, and 6, and
yet another tuple. The third level consists of the values 7, 8, and 9. To see
how this works, type the following code into IPython:

for Value1 in MyTuple:
 if type(Value1) == int:
 print Value1
 else:
 for Value2 in Value1:
 if type(Value2) == int:
 print "\t", Value2
 else:
 for Value3 in Value2:
 print "\t\t", Value3

When you run this code, you find that the values really are at three different
levels. You can see the indentations showing the level:

1
2
3
 4
 5
 6
 7
 8
 9

81 Chapter 4: Reviewing Basic Python

It is possible to perform tasks such as adding new values, but you must do it
by adding the original entries and the new values to a new tuple. In addition,
you can add tuples to an existing tuple only. To see how this works, type
MyNewTuple = MyTuple.__add__((10, 11, 12, (13, 14, 15))) and press Enter.
MyNewTuple contains new entries at both the first and second levels, like
this: (1, 2, 3, (4, 5, 6, (7, 8, 9)), 10, 11, 12, (13, 14,
15)). If you were to run the previous code against MyNewTuple, you’d see
entries at the appropriate levels in the output, as shown here.

1
2
3
 4
 5
 6
 7
 8
 9
10
11
12
 13
 14
 15

Defining Useful Iterators
The chapters that follow use all kinds of techniques to access individual
values in various types of data structures. For this section, you use two
simple lists, defined as the following:

ListA = ['Orange', 'Yellow', 'Green', 'Brown']
ListB = [1, 2, 3, 4]

The simplest method of accessing a particular value is to use an index. For
example, if you type ListA[1] and press Enter, you see 'Yellow' as the
output. All indexes in Python are zero‐based, which means that the first entry
is 0, not 1.

Ranges present another simple method of accessing values. For example, if
you type ListB[1:3] and press Enter, the output is [2, 3]. You could use the
range as input to a for loop, such as

for Value in ListB[1:3]:
 print Value

82 Part I: Getting Started with Python for Data Science

Instead of the entire list, you see just 2 and 3 as outputs, printed on separate
lines. The range has two values separated by a colon. However, the values
are optional. For example, ListB[:3] would output [1, 2, 3]. When you
leave out a value, the range starts at the beginning or the end of the list, as
appropriate.

Sometimes you need to process two lists in parallel. The simplest method
of doing this is to use the zip() function. Here’s an example of the zip()
 function in action:

for Value1, Value2 in zip(ListA, ListB):
 print Value1, '\t', Value2

This code processes both ListA and ListB at the same time. The process-
ing ends when the for loop reaches the shortest of the two lists. In this case,
you see the following:

Orange 1
Yellow 2
Green 3
Brown 4

This is the tip of the iceberg. You see a host of iterator types used through-
out the book. The idea is to make it possible to list just the items you want,
rather than all of the items in a list or other data structure. Some of the itera-
tors used in upcoming chapters are a little more complicated than what you
see here, but this is an important start.

Indexing Data Using Dictionaries
A dictionary is a special kind of sequence that uses a name and value pair.
The use of a name makes it easy to access particular values with something
other than a numeric index. To create a dictionary, you enclose name and
value pairs in curly brackets. Create a test dictionary by typing MyDict =
{'Orange':1, 'Blue':2, 'Pink':3} and pressing Enter.

To access a particular value, you use the name as an index. For example,
type MyDict['Pink'] and press Enter to see the output value of 3. The use of
dictionaries as data structures makes it easy to access incredibly complex
data sets using terms that everyone can understand. In many other respects,
working with a dictionary is the same as working with any other sequence.

Dictionaries do have some special features. For example, type MyDict.keys()
and press Enter to see a list of the keys. You can use the values() function
to see the list of values in the dictionary.

 See an example of how you can use IPython Notebook to view intermediate results of
tasks at http://www.dummies.com/extras/pythonfordatascience.

Getting Your Hands
Dirty with Data

Part II

http://www.dummies.com/extras/pythonfordatascience

In this part . . .
 ✓ Importing data from various sources

 ✓ Validating your data and making it complete

 ✓ Using only part of the data for analysis

 ✓ Performing data shaping

 ✓ Defining the problem and creating a solution for it

Working with Real Data
In This Chapter

 ▶ Manipulating data streams

 ▶ Working with flat files

 ▶ Working with unstructured files

 ▶ Interacting with relational databases

 ▶ Using NoSql as a data source

 ▶ Interacting with web‐based data

D
ata science applications require data by definition. It would be nice if
you could simply go to a data store somewhere, purchase the data you

need in an easy‐open package, and then write an application to access that
data. However, data is messy. It appears in all sorts of places, in many differ
ent forms, and you can interpret it in many different ways. Every organization
has a different method of viewing data and stores it in a different manner as
well. Even when the data management system used by one company is the
same as the data management system used by another company, the chances
are slim that the data will appear in the same format or even use the same
data types. In short, before you can do any data science work, you must dis
cover how to access the data in all its myriad forms. Real data requires a lot
of work to use and fortunately, Python is up to the task of manipulating it as
needed.

This chapter helps you understand the techniques required to access data
in a number of forms and locations. For example, memory streams represent
a form of data storage that your computer supports natively; flat files exist
on your hard drive; relational databases commonly appear on networks
(although smaller relational databases, such as those found in Access, could
appear on your hard drive as well); and web‐based data usually appears on
the Internet. You won’t visit every form of data storage available (such as
that stored on a point‐of‐sale, or POS, system). Quite possibly, an entire book
on the topic wouldn’t suffice to cover the topic of data formats in any detail.

Chapter 5

86 Part II: Getting Your Hands Dirty with Data

However, the techniques in this chapter do demonstrate how to access
data in the formats you most commonly encounter when working with
real‐world data.

The Scikit‐learn library includes a number of toy datasets (small datasets
meant for you to play with). These datasets are complex enough to perform a
number of tasks, such as experimenting with Python to perform data science
tasks. Because this data is readily available, and making the examples too
complicated to understand is a bad idea, this book relies on these toy data
sets as input for many of the examples. Even though the book does use these
toy datasets for the sake of reducing complexity and making the examples
clearer, the techniques that the book demonstrates work equally well on
real‐world data that you access using the techniques shown in this chapter.

You don’t have to type the source code for this chapter in by hand. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 05; Dataset Load.ipynb source code file.

It’s essential that the Colors.txt, Titanic.csv, Values.xls, and
XMLData.xml files that come with the downloadable source code appear in
the same folder (directory) as your IPython Notebook files. Otherwise, the
examples in the following sections fail with an input/output (IO) error. The
file location varies according to the platform you’re using. For example, on a
Windows system, you find the notebooks stored in the C:\Users\Username\
My Documents\IPython Notebooks folder, where Username is your
login name. To make the examples work, simply copy the four files from the
 downloadable source folder into your IPython Notebook folder.

Uploading, Streaming,
and Sampling Data

Storing data in local computer memory represents the fastest and most
reliable means to access it. The data could reside anywhere. However, you
don’t actually interact with the data in its storage location. You load the data
into memory from the storage location and then interact with it in memory.
This is the technique the book uses to access all the toy datasets found in the
Scikit‐learn library, so you see this technique used relatively often in
the book.

Data scientists call the columns in a database features or variables. The
rows are cases. Each row represents a collection of variables that you can
analyze.

87 Chapter 5: Working with Real Data

Uploading small amounts
of data into memory
The most convenient method that you can use to work with data is to load it
directly into memory. This technique shows up a couple of times earlier in
the book but uses the toy dataset from the Scikit‐learn library. This section
uses the Colors.txt file, shown in Figure 51, for input.

The example also relies on native Python functionality to get the task done.
When you load a file (of any type), the entire dataset is available at all times
and the loading process is quite short. Here is an example of how this tech
nique works.

with open("Colors.txt", 'rb') as open_file:
 print 'Colors.txt content:\n' + open_file.read()

The example begins by using the open() method to obtain a file object. The
open() function accepts the filename and an access mode. In this case, the
access mode is read binary (rb). (When using Python 3.x, you may have to
change the mode to read (r) in order to avoid error messages.) It then uses the
read() method of the file object to read all the data in the file. If you were to
specify a size argument as part of read(), such as read(15), Python would
read only the number of characters that you specify or stop when it reaches
the End Of File (EOF). When you run this example, you see the following
output:

Colors.txt content:
Color Value
Red 1
Orange 2
Yellow 3
Green 4

Figure 5-1:
Format

of the
Colors.
txt file.

88 Part II: Getting Your Hands Dirty with Data

Blue 5
Purple 6
Black 7
White 8

The entire dataset is loaded from the library into free memory. Of course, the
loading process will fail if your system lacks sufficient memory to hold the
dataset. When this problem occurs, you need to consider other techniques
for working with the dataset, such as streaming it or sampling it. In short,
before you use this technique, you must ensure that the dataset will actually
fit in memory. You won’t normally experience any problems when working
with the toy datasets in the Scikit‐learn library.

Streaming large amounts of data
into memory
Some datasets will be so large that you won’t be able to fit them entirely
in memory at one time. In addition, you may find that some datasets load
slowly because they reside on a remote site. Streaming answers both needs
by making it possible to work with the data a little at a time. You download
individual pieces, making it possible to work with just part of the data and
to work with it as you receive it, rather than waiting for the entire dataset to
download. Here’s an example of how you can stream data using Python:

with open("Colors.txt", 'rb') as open_file:
 for observation in open_file:
 print 'Reading Data: ' + observation

This example relies on the Colors.txt file, which contains a header, and
then a number of records that associate a color name with a value. The
open_file file object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to
the next record. Each record appears one at a time in observation. The
code outputs the value in observation using a print statement. You
should receive this output:

Reading Data: Color Value

Reading Data: Red 1

Reading Data: Orange 2

Reading Data: Yellow 3

89 Chapter 5: Working with Real Data

Reading Data: Green 4

Reading Data: Blue 5

Reading Data: Purple 6

Reading Data: Black 7

Reading Data: White 8

Python streams each record from the source. This means that you must per
form a read for each record you want.

Sampling data
Data streaming obtains all the records from a data source. You may find that
you don’t need all the records. You can save time and resources by simply
sampling the data. This means retrieving records a set number of records
apart, such as every fifth record, or by making random samples. The follow
ing code shows how to retrieve every other record in the Colors.txt file:

n = 2
with open("Colors.txt", 'rb') as open_file:
 for j, observation in enumerate(open_file):
 if j % n==0:
 print('Reading Line: ' + str(j) +
 ' Content: ' + observation)

The basic idea of sampling is the same as streaming. However, in this case,
the application uses enumerate() to retrieve a row number. When
j % n == 0, the row is one that you want to keep and the application
outputs the information. In this case, you see the following output:

Reading Line: 0 Content: Color Value

Reading Line: 2 Content: Orange 2

Reading Line: 4 Content: Green 4

Reading Line: 6 Content: Purple 6

Reading Line: 8 Content: White 8

The value of n is important in determining which records appear as part of
the dataset. Try changing n to 3. The output will change to sample just the
header and rows 3 and 6.

90 Part II: Getting Your Hands Dirty with Data

You can perform random sampling as well. All you need to do is randomize
the selector, like this:

from random import random
sample_size = 0.25
with open("Colors.txt", 'rb') as open_file:
 for j, observation in enumerate(open_file):
 if random()<=sample_size:
 print('Reading Line: ' + str(j) +
 ' Content: ' + observation)

To make this form of selection work, you must import the random class.
The random() method outputs a value between 0 and 1. However, Python
randomizes the output so that you don’t know what value you receive. The
sample_size variable contains a number between 0 and 1 to determine the
sample size. For example, 0.25 selects 25 percent of the items in the file.

The output will still appear in numeric order. For example, you won’t see
Green come before Orange. However, the items selected are random, and
you won’t always get precisely the same number of return values. The spaces
between return values will differ as well. Here is an example of what you
might see as output (although your output will likely vary):

Reading Line: 1 Content: Red 1

Reading Line: 4 Content: Green 4

Reading Line: 8 Content: White 8

Accessing Data in Structured
Flat‐File Form

In many cases, the data you need to work with won’t appear within a library,
such as the toy datasets in the Scikit‐learn library. Real‐world data usually
appears in a file of some type. A flat file presents the easiest kind of file to
work with. The data appears as a simple list of entries that you can read one
at a time, if desired, into memory. Depending on the requirements for your
project, you can read all or part of the file.

A problem with using native Python techniques is that the input isn’t intel
ligent. For example, when a file contains a header, Python simply reads it
as yet more data to process, rather than as a header. You can’t easily select
a particular column of data. The pandas library used in the sections that

91 Chapter 5: Working with Real Data

follow makes it much easier to read and understand flat‐file data. Classes and
 methods in the pandas library interpret (parse) the flat‐file data to make it
easier to manipulate.

The least formatted and therefore easiest‐to‐read flat‐file format is the text
file. However, a text file also treats all data as strings, so you often have to
convert numeric data into other forms. A comma‐separated value (CSV) file
provides more formatting and more information, but it requires a little more
effort to read. At the high end of flat‐file formatting are custom data formats,
such as an Excel file, which contains extensive formatting and could include
multiple datasets in a single file.

The following sections describe these three levels of flat‐file dataset and
show how to use them. These sections assume that the file structures the
data in some way. For example, the CSV file uses commas to separate data
fields. A text file might rely on tabs to separate data fields. An Excel file uses
a complex method to separate data fields and to provide a wealth of informa
tion about each field. You can work with unstructured data as well, but work
ing with structured data is much easier because you know where each field
begins and ends.

Reading from a text file
Text files can use a variety of storage formats. However, a common format
is to have a header line that documents the purpose of each field, followed
by another line for each record in the file. The file separates the fields using
tabs. Refer to Figure 51 for an example of the Colors.txt file used for the
example in this section.

Native Python provides a wide variety of methods you can use to read such a
file. However, it’s far easier to let someone else do the work. In this case, you
can use the pandas library to perform the task. Within the pandas library,
you find a set of parsers, code used to read individual bits of data and deter
mine the purpose of each bit according to the format of the entire file. Using
the correct parser is essential if you want to make sense of file content. In
this case, you use the read_table() method to accomplish the task, as
shown in the following code:

import pandas as pd
color_table = pd.io.parsers.read_table("Colors.txt")
print color_table

The code imports the pandas library, uses the read_table() method to
read Colors.txt into a variable named color_table, and then displays

92 Part II: Getting Your Hands Dirty with Data

the resulting memory data onscreen using the print function. Here’s the
output you can expect to see from this example.

 Color Value
0 Red 1
1 Orange 2
2 Yellow 3
3 Green 4
4 Blue 5
5 Purple 6
6 Black 7
7 White 8

Notice that the parser correctly interprets the first row as consisting of
field names. It numbers the records from 0 through 7. Using read_table()
method arguments, you can adjust how the parser interprets the input
file, but the default settings usually work best. You can read more about
the read_table() arguments at http://pandas.pydata.org/
pandas‐docs/dev/generated/pandas.io.parsers.read_table.
html#pandas.io.parsers.read_table.

Reading CSV delimited format
A CSV file provides more formatting than a simple text file. In fact, CSV files
can become quite complicated. There is a standard that defines the format of
CSV files, and you can see it at https://tools.ietf.org/html/rfc4180.
The CSV file used for this example is quite simple:

 ✓ A header defines each of the fields

 ✓ Fields are separated by commas

 ✓ Records are separated by linefeeds

 ✓ Strings are enclosed in double quotes

 ✓ Integers and real numbers appear without double quotes

Figure 52 shows the raw format for the Titanic.csv file used for this
 example. You can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they
become easier to read. Figure 53 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features
such as data sorting, you could select header columns to obtain the desired

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
https://tools.ietf.org/html/rfc4180

93 Chapter 5: Working with Real Data

result. Fortunately, pandas also makes it possible to work with the CSV file as
formatted data, as shown in the following example:

import pandas as pd
titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]
print X

Notice that the parser of choice this time is read_csv(), which understands
CSV files and provides you with new options for working with it. (You
can read more about this parser at http://pandas.pydata.org/
pandas‐docs/dev/io.html#io‐read‐csv‐table.) Selecting a specific
field is quite easy — you just supply the field name as shown. The output
from this example looks like this (some values omitted for the sake of space):

 age
0 29.0000

Figure 5-2:
The raw

format of
a CSV file
is still text
and quite
 readable.

Figure 5-3:
Use an

 application
such as
Excel to
create a

 formatted
CSV

 presentation.

http://pandas.pydata.org/pandas-docs/dev/io.html#io-read-csv-table
http://pandas.pydata.org/pandas-docs/dev/io.html#io-read-csv-table

94 Part II: Getting Your Hands Dirty with Data

1 0.9167
2 2.0000
3 30.0000
4 25.0000
5 48.0000
...
1304 14.5000
1305 9999.0000
1306 26.5000
1307 27.0000
1308 29.0000
[1309 rows x 1 columns]

Of course, a human readable output like this one is nice when working
through an example, but you might also need the output as a list. To create
the output as a list, you simply change the third line of code to read X =
titanic[[’age’]].values. Notice the addition of the values property.
The output changes to something like this (some values omitted for the sake
of space):

 [[29.]
 [0.91670001]
 [2.]
 ...,
 [26.5]
 [27.]
 [29.]]

Reading Excel and other
Microsoft Office files
Excel and other Microsoft Office applications provide highly formatted
 content. You can specify every aspect of the information these files contain.
The Values.xls file used for this example provides a listing of sine,
cosine, and tangent values for a random list of angles. You can see this file
in Figure 54.

When you work with Excel or other Microsoft Office products, you begin to
experience some complexity. For example, an Excel file can contain more
than one worksheet, so you need to tell pandas which worksheet to process.
In fact, you can choose to process multiple worksheets, if desired. When
working with other Office products, you have to be specific about what to
process. Just telling pandas to process something isn’t good enough. Here’s
an example of working with the Values.xls file.

95 Chapter 5: Working with Real Data

import pandas as pd
xls = pd.ExcelFile("Values.xls")
trig_values = xls.parse('Sheet1', index_col=None,
 na_values=['NA'])
print trig_values

The code begins by importing the pandas library as normal. It then creates
a pointer to the Excel file using the ExcelFile() constructor. This pointer,
xls, lets you access a worksheet, define an index column, and specify how to
present empty values. The index column is the one that the worksheet uses
to index the records. Using a value of None means that pandas should gener
ate an index for you. The parse() method obtains the values you request.
You can read more about the Excel parser options at http://pandas.
pydata.org/pandas‐docs/dev/io.html#io‐excel.

You don’t absolutely have to use the two‐step process of obtaining a file
pointer and then parsing the content. You can also perform the task using a
single step like this: trig_values = pd.read_excel("Values.xls",
'Sheet1', index_col=None, na_values=['NA']). Because Excel files
are more complex, using the two‐step process is often more convenient and
efficient because you don’t have to reopen the file for each read of the data.

Sending Data in Unstructured File Form
Unstructured data files consist of a series of bits. The file doesn’t separate
the bits from each other in any way. You can’t simply look into the file and
see any structure because there isn’t any to see. Unstructured file formats
rely on the file user to know how to interpret the data. For example, each

Figure 5-4:
An Excel

file is highly
formatted
and might

contain
information

of various
types.

http://pandas.pydata.org/pandas-docs/dev/io.html#io-excel
http://pandas.pydata.org/pandas-docs/dev/io.html#io-excel

96 Part II: Getting Your Hands Dirty with Data

pixel of a picture file could consist of three 32‐bit fields. Knowing that each
field is 32‐bits is up to you. A header at the beginning of the file may provide
clues about interpreting the file, but even so, it’s up to you to know how to
interact with the file.

The example in this section shows how to work with a picture as an unstruc
tured file. The example image is a public domain offering from http://
commons.wikimedia.org/wiki/Main_Page. To work with images, you
need to access the Scikit‐image library (http://scikit‐image.org/),
which is a free‐of‐charge collection of algorithms used for image process
ing. You can find a tutorial for this library at http://scipy‐lectures.
github.io/packages/scikit‐image/. The first task is to be able to
display the image onscreen using the following code. (This code can require
a little time to run. The image is ready when the busy indicator disappears
from the IPython Notebook tab.)

from skimage.io import imread
from skimage.transform import resize
from matplotlib import pyplot as plt
import matplotlib.cm as cm

example_file = ("http://upload.wikimedia.org/" +
 "wikipedia/commons/7/7d/Dog_face.png")
image = imread(example_file, as_grey=True)
plt.imshow(image, cmap=cm.gray)
plt.show()

The code begins by importing a number of libraries. It then creates a string
that points to the example file online and places it in example_file. This
string is part of the imread() method call, along with as_grey, which is set
to True. The as_grey argument tells Python to turn any color images into
gray scale. Any images that are already in gray scale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to
display onscreen. The imshow() function performs the rendering and uses a
grayscale color map. The show() function actually displays image for you,
as shown in Figure 55.

Close the image when you’re finished viewing it. (The asterisk in the In [*]:
entry tells you that the code is still running and you can’t move on to the
next step.) The act of closing the image ends the code segment. You now
have an image in memory and you may want to find out more about it. When
you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" %
 (type(image), image.shape))

http://commons.wikimedia.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://scikit-image.org/
http://scipy-lectures.github.io/packages/scikit-image/
http://scipy-lectures.github.io/packages/scikit-image/

97 Chapter 5: Working with Real Data

The output from this call tells you that the image type is a numpy.ndarray
and that the image size is 90 pixels by 90 pixels. The image is actually an
array of pixels that you can manipulate in various ways. For example, if you
want to crop the image, you can use the following code to manipulate the
image array:

image2 = image[5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

The numpy.ndarray in image2 is smaller than the one in image, so the
output is smaller as well. Figure 56 shows typical results. The purpose of
cropping the image is to make it a specific size. Both images must be the
same size for you to analyze them. Cropping is one way to ensure that the
images are the correct size for analysis.

Another method that you can use to change the image size is to resize it.
The following code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='nearest')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %
 (type(image3), image3.shape))

The output from the print() function tells you that the image is now
30 pixels by 30 pixels in size. You can compare it to any image with the same
dimensions.

Figure 5-5:
The image

appears
onscreen
after you

render and
show it.

98 Part II: Getting Your Hands Dirty with Data

After you have all the images the right size, you need to flatten them. A
 dataset row is always a single dimension, not two dimensions. The image
is currently an array of 30 pixels by 30 pixels, so you can’t make it part of a
dataset. The following code flattens image3 so that it becomes an array of
900 elements that is stored in image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
 (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a
dataset and then use the dataset for analysis purposes. The size is 900 ele
ments, as anticipated.

Managing Data from Relational
Databases

Databases come in all sorts of forms. For example, AskSam (http://
asksam.en.softonic.com/) is a kind of free‐form textual database.
However, the vast majority of data used by organizations rely on relational
databases because these databases provide the means for organizing
 massive amounts of complex data in an organized manner that makes the

Figure 5-6:
Cropping

the image
makes it
smaller.

http://asksam.en.softonic.com/
http://asksam.en.softonic.com/

99 Chapter 5: Working with Real Data

data easy to manipulate. The goal of a database manager is to make data
easy to manipulate. The focus of most data storage is to make data easy to
retrieve.

Relational databases accomplish both the manipulation and data retrieval
objectives with relative ease. However, because data storage needs come
in all shapes and sizes for a wide range of computing platforms, there are
many different relational database products. In fact, for the data scientist, the
 proliferation of different Database Management Systems (DBMSs) using vari
ous data layouts is one of the main problems you encounter with creating a
comprehensive dataset for analysis.

The one common denominator between many relational databases is that
they all rely on a form of the same language to perform data manipulation,
which does make the data scientist’s job easier. The Structured Query
Language (SQL) lets you perform all sorts of management tasks in a relational
database, retrieve data as needed, and even shape it in a particular way so
that the need to perform additional shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For
one thing, you need to know how to connect to that particular database.
However, you can divide the process into smaller pieces. The first step is to
gain access to the database engine. You use two lines of code similar to the
following code (but the code presented here is not meant to execute and
 perform a task):

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

After you have access to an engine, you can use the engine to perform tasks
specific to that DBMS. The output of a read method is always a DataFrame
object that contains the requested data. To write data, you must create a
DataFrame object or use an existing DataFrame object. You normally use
these methods to perform most tasks:

 ✓ read_sql_table(): Reads data from a SQL table to a DataFrame
object

 ✓ read_sql_query(): Reads data from a database using a SQL query to
a DataFrame object

 ✓ read_sql(): Reads data from either a SQL table or query to a
DataFrame object

 ✓ DataFrame.to_sql(): Writes the content of a DataFrame object to
the specified tables in the database

100 Part II: Getting Your Hands Dirty with Data

The sqlalchemy library provides support for a broad range of SQL databases.
The following list contains just a few of them:

 ✓ SQLite

 ✓ MySQL

 ✓ PostgreSQL

 ✓ SQL Server

 ✓ Other relational databases, such as those you can connect to using
Open Database Connectivity (ODBC)

You can discover more about working with databases at http://pandas.
pydata.org/pandas‐docs/dev/io.html#sql‐queries. The techniques
that you discover in this book using the toy databases also work with
relational databases.

Interacting with Data from
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a
wealth of databases of all sorts that don’t have to rely on SQL. These Not
only SQL (NoSQL) databases are used in large data storage scenarios in
which the relational model can become overly complex or can break down
in other ways. The databases generally don’t use the relational model. Of
course, you find fewer of these DBMSes used in the corporate environment
because they require special handling and training. Still, some common
DBMSes are used because they provide special functionality or meet unique
requirements. The process is essentially the same for using NoSQL databases
as it is for relational databases:

1. Import required database engine functionality.

2. Create a database engine.

3. Make any required queries using the database engine and the functional
ity supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with
your particular database product. For example, when working with MongoDB
(https://www.mongodb.org/), you must obtain a copy of the PyMongo
library (https://api.mongodb.org/python/current/) and use the
MongoClient class to create the required engine. The MongoDB engine

http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries
https://www.mongodb.org/
https://api.mongodb.org/python/current/

101 Chapter 5: Working with Real Data

relies heavily on the find() function to locate data. Here’s a pseudo‐code
example of a MongoDB session:

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

Accessing Data from the Web
It would be incredibly difficult (perhaps impossible) to find an organization
today that doesn’t rely on some sort of web‐based data. Most organizations
use web services of some type. A web service is a kind of web application that
provides a means to ask questions and receive answers. Web services usu
ally host a number of input types. In fact, a particular web service may host
entire groups of query inputs.

Another type of query system is the microservice. Unlike the web service,
microservices have a specific focus and provide only one specific query input

APIs and other web entities
A data scientist may have a reason to rely
on various web Application Programming
Interfaces (APIs) to access and manipulate
data. In fact, the focus of an analysis might
be the API itself. This book doesn’t discuss
APIs in any detail because each API is
unique, and APIs operate outside the normal
scope of what a data scientist might do. For
example, you might use a product such as
jQuery (http://jquery.com/) to access
data and manipulate it in various ways when
working with a web application. However, the
techniques for doing so are more along the
lines of writing an application than employing
a data science technique.

It’s important to realize that APIs can be data
sources and that you might need to use one
to achieve some data input or data‐shaping
goals. In fact, you find many data entities that
resemble APIs but don’t appear in this book.
Windows developers can create Component
Object Model (COM) applications that output
data onto the web that you could possibly use
for analysis purposes. In fact, the number of
potential sources is nearly endless. This book
focuses on the sources that you use most often
and in the most conventional manner. Keeping
your eyes open for other possibilities, though, is
always a good idea.

http://jquery.com/

102 Part II: Getting Your Hands Dirty with Data

and output. Using microservices has specific benefits that are outside the
scope of this book to address, but essentially they work like tiny web ser
vices, so that’s how this book addresses them.

One of the most beneficial data access techniques to know when working
with web data is accessing XML. All sorts of content types rely on XML, even
some web pages. Working with web services and microservices means work
ing with XML. With this in mind, the example in this section works with XML
data found in the XMLData.xml file, shown in Figure 57. In this case, the
file is simple and uses only a couple of levels. XML is hierarchical and can
become quite a few levels deep.

The technique for working with XML, even simple XML, can be a bit harder
than anything else you’ve worked with so far. Here’s the code for this
 example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):
 obj = root.getchildren()[i].getchildren()

Figure 5-7:
XML is a

hierarchical
format that

can become
quite

 complex.

103 Chapter 5: Working with Real Data

 row = dict(zip(['Number', 'String', 'Boolean'],
 [obj[0].text, obj[1].text,
 obj[2].text]))
 row_s = pd.Series(row)
 row_s.name = i
 df = df.append(row_s)

print df

The example begins by importing libraries and parsing the data file using
the objectify.parse() method. Every XML document must contain a
root node, which is <MyDataset> in this case. The root node encapsulates
the rest of the content, and every node under it is a child. To do anything
 practical with the document, you must obtain access to the root node using
the getroot() method.

The next step is to create an empty DataFrame object that contains the
 correct column names for each record entry: Number, String, and Boolean.
As with all other pandas data handling, XML data handling relies on a
DataFrame. The for loop fills the DataFrame with the four records from
the XML file (each in a <Record> node).

The process looks complex but follows a logical order. The obj variable
 contains all the children for one <Record> node. These children are loaded
into a dictionary object in which the keys are Number, String, and Boolean
to match the DataFrame columns.

There is now a dictionary object that contains the row data. The code cre
ates an actual row for the DataFrame next. It gives the row the value of the
 current for loop iteration. It then appends the row to the DataFrame. To
see that everything worked as expected, the code prints the result, which
looks like this:

 Number String Boolean
0 1 First True
1 2 Second False
2 3 Third True
3 4 Fourth False

104 Part II: Getting Your Hands Dirty with Data

Conditioning Your Data
In This Chapter

 ▶ Working with NumPy and pandas

 ▶ Knowing your data

 ▶ Working with symbolic variables

 ▶ Considering the effect of dates

 ▶ Fixing missing data

 ▶ Creating data slices

 ▶ Adding data elements together and modifying data types

 ▶ Combing data at any level

T
he characteristics, content, type, and other elements that define your
data in its entirety is the data shape. The shape of your data determines

the kinds of tasks you can perform with it. In order to make your data amena-
ble to certain types of analysis, you must shape it into a different form. Think
of the data as clay and you as the potter, because that’s the sort of relation-
ship that exists. However, instead of using your hands to shape the data, you
rely on functions and algorithms to perform the task. This chapter helps you
understand the tools you have available to shape data and the ramifications
of shaping it.

Also in this chapter, you consider the problems associated with shaping. For
example, you need to know what to do when data is missing from a dataset.
It’s important to shape the data correctly or you end up with an analysis that
simply doesn’t make sense. Likewise, some data types, such as dates, can
present problems. Again, you need to tread carefully to ensure that you get
the desired result so that the dataset becomes more useful and amenable to
analysis of various sorts.

The goal of some types of data shaping is to create a larger dataset. In many
cases, the data you need to perform an analysis doesn’t appear in a single
database or in a particular form. You need to shape the data and then com-
bine it so that you have a single dataset in a known format before you can

Chapter 6

106 Part II: Getting Your Hands Dirty with Data

begin the analysis. Combining data successfully can be an art form because
data often defies simple analysis or quick fixes.

You don’t have to type the source code for this chapter in by hand. In fact,
it’s a lot easier if you use the downloadable source. The source code for this
chapter appears in the P4DS4D; 06; Getting Your Data in Shape.
ipynb source code file; see the Introduction for the location of this file.

Juggling between NumPy
and pandas

There is no question that you need NumPy at all times. The pandas library
is actually built on top of NumPy. However, you do need to make a choice
between NumPy and pandas when performing tasks. You need the low‐level
functionality of NumPy to perform some tasks, but pandas makes things
so much easier that you want to use it as often as possible. The following
 sections describe when to use each library in more detail.

Knowing when to use NumPy
It’s essential to realize that developers built pandas on top of NumPy. As a
result, every task you perform using pandas also goes through NumPy. To
obtain the benefits of pandas, you pay a performance penalty that some
testers say is 100 times slower than NumPy for a similar task (see http://
penandpants.com/2014/09/05/performance‐of‐pandas‐series‐
vs‐numpy‐arrays/). Given that computer hardware can make up for a lot
of performance differences today, the speed issue may not be a concern at
times, but when speed is essential, NumPy is always the better choice.

Knowing when to use pandas
You use pandas to make writing code easier and faster. Because pandas does
a lot of the work for you, you could make a case for saying that using pandas
also reduces the potential for coding errors. The essential consideration,
though, is that the pandas library provides rich time‐series functionality,
data alignment, NA‐friendly statistics, groupby, merge, and join methods.
Normally, you need to code these features when using NumPy, which means
you keep reinventing the wheel.

http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/

107 Chapter 6: Conditioning Your Data

As the book progresses, you discover just how useful pandas can be perform-
ing such tasks as binning (a data preprocessing technique designed to reduce
the effect of observational errors) and working with a dataframe (a two‐
dimensional labeled data structure with columns that can potentially contain
different data types) so that you can calculate statistics on it. For example,
in Chapter 8, you discover how to perform both discretization and binning.
Chapter 13 shows actual binning examples, such as obtaining a frequency
for each categorical variable of a dataset. In fact, many of the examples in
Chapter 13 don’t work without binning. In other words, don’t worry too much
right now about knowing precisely what binning is or why you need to use
it — examples later in the book discuss the topic in detail. All you really need
to know is that pandas does make your work considerably easier.

Validating Your Data
When it comes to data, no one really knows what a large database contains.
Yes, everyone has seen bits and pieces of it, but when you consider the size
of some databases, viewing it all would be physically impossible. Because
you don’t know what’s in there, you can’t be sure that your analysis will
 actually work as desired and provide valid results. In short, you must
 validate your data before you use it to ensure that the data is at least close
to what you expect it to be. This means performing tasks such as removing

It’s all in the preparation
This book may seem to spend a lot of time
massaging data and little time in actually
analyzing it. However, the majority of a data
scientist’s time is actually spent preparing data
because the data is seldom in any order to
actually perform analysis. To prepare data for
use, a data scientist must:

✓ Get the data

✓ Aggregate the data

✓ Create data subsets

✓ Clean the data

✓ Develop a single dataset by merging
 various datasets together

Fortunately, you don’t need to die of boredom
while wading your way through these various
tasks. Using Python and the various libraries it
provides makes the task a lot simpler, faster,
and more efficient, which is the point of
spending all of the time on seemingly mundane
topics in these early chapters. The better you
know how to use Python to speed your way
through these repetitive tasks, the sooner you
begin having fun performing various sorts of
analysis on the data.

108 Part II: Getting Your Hands Dirty with Data

duplicate records before you use the data for any sort of analysis (duplicates
would unfairly weight the results).

However, you do need to consider what validation actually does for you. It
doesn’t tell you that the data is correct or that there won’t be values outside
the expected range. In fact, later chapters help you understand the tech-
niques for handling these sorts of issues. What validation does is ensure that
you can perform an analysis of the data and reasonably expect that analysis
to succeed. Later, you need to perform additional massaging of the data to
obtain the sort of results that you need in order to perform the task you set
out to perform in the first place.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by
hand is sometimes simply impossible due to the number of observations and
variables. In addition, hand verifying the content is time consuming, error
prone, and, most important, really boring. Finding duplicates is important
because you end up

 ✓ Spending more computational time to process duplicates, which slows
your algorithms down.

 ✓ Obtaining false results because duplicates implicitly overweight the
results. Because some entries appear more than once, the algorithm
considers these entries more important.

As a data scientist, you want your data to enthrall you, so it’s time to get it to
talk to you — not figuratively, of course, but through the wonders of pandas,
as shown in the following example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):
 obj = root.getchildren()[i].getchildren()
 row = dict(zip(['Number', 'String', 'Boolean'],
 [obj[0].text, obj[1].text,
 obj[2].text]))
 row_s = pd.Series(row)
 row_s.name = i
 df = df.append(row_s)

search = pd.DataFrame.duplicated(df)

109 Chapter 6: Conditioning Your Data

print df
print
print search[search == True]

This example shows how to find duplicate rows. It relies on a modified ver-
sion of the XMLData.xml file, XMLData2.xml, which contains a simple
repeated row in it. A real data file contains thousands (or more) of records
and possibly hundreds of repeats, but this simple example does the job. The
example begins by reading the data file into memory using the same tech-
nique you explored in Chapter 5. It then places the data into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row.
However, you can get rid of the duplicated row by searching for it. The first
task is to create a search object containing a list of duplicated rows by calling
pd.DataFrame.duplicated(). The duplicated rows contain a True next
to their row number.

Of course, now you have an unordered list of rows that are and aren’t
 duplicated. The easiest way to determine which rows are duplicated is
to create an index in which you use search == True as the expression.
Following is the output you see from this example. Notice that row 1 is
duplicated in the DataFrame output and that row 1 is also called out in the
search results:

 Number String Boolean
0 1 First True
1 1 First True
2 2 Second False
3 3 Third True
1 True
dtype: bool

Removing duplicates
To get a clean dataset, you want to remove the duplicates from it.
Fortunately, you don’t have to write any weird code to get the job done —
pandas does it for you, as shown in the following example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

110 Part II: Getting Your Hands Dirty with Data

for i in range(0,4):
 obj = root.getchildren()[i].getchildren()
 row = dict(zip(['Number', 'String', 'Boolean'],
 [obj[0].text, obj[1].text,
 obj[2].text]))
 row_s = pd.Series(row)
 row_s.name = i
 df = df.append(row_s)

print df.drop_duplicates()

As with the previous example, you begin by creating a DataFrame that
 contains the duplicate record. To remove the errant record, all you need to
do is call drop_duplicates(). Here’s the result you get.

 Number String Boolean
0 1 First True
2 2 Second False
3 3 Third True

Creating a data map and data plan
You need to know about your dataset — that is, how it looks statically. A data
map is an overview of the dataset. You use it to spot potential problems in
your data, such as

 ✓ Redundant variables

 ✓ Possible errors

 ✓ Missing values

 ✓ Variable transformations

Checking for these problems goes into a data plan, which is a list of tasks you
have to perform to ensure the integrity of your data. The following example
shows a data map, A, with two datasets, B and C:

import pandas as pd

df = pd.DataFrame({'A': [0,0,0,0,0,1,1],
 'B': [1,2,3,5,4,2,5],
 'C': [5,3,4,1,1,2,3]})

a_group_desc = df.groupby('A').describe()
print a_group_desc

111 Chapter 6: Conditioning Your Data

In this case, the data map uses 0s for the first series and 1s for the second
series. The groupby() function places the datasets, B and C, into groups.
To determine whether the data map is viable, you obtain statistics using
describe(). What you end up with is a dataset B, series 0 and 1, and data-
set C, series 0 and 1, as shown in the following output.

 B C
A
0 count 5.000000 5.000000
 mean 3.000000 2.800000
 std 1.581139 1.788854
 min 1.000000 1.000000
 25% 2.000000 1.000000
 50% 3.000000 3.000000
 75% 4.000000 4.000000
 max 5.000000 5.000000
1 count 2.000000 2.000000
 mean 3.500000 2.500000
 std 2.121320 0.707107
 min 2.000000 2.000000
 25% 2.750000 2.250000
 50% 3.500000 2.500000
 75% 4.250000 2.750000
 max 5.000000 3.000000

These statistics tell you about the two dataset series. The breakup of the two
datasets using specific cases is the data plan. As you can see, the statistics
tell you that this data plan may not be viable because some statistics are
relatively far apart.

The output from describe() can be hard to read. The data is crammed
together, but you can break it apart, as shown here:

unstacked = a_group_desc.unstack()
print unstacked

Using unstack() creates a new presentation. Here’s the output formatted
nicely so that you can see it better:

 B
 count mean std min 25% 50% 75% max
A
0 5 3.0 1.581139 1 2.00 3.0 4.00 5
1 2 3.5 2.121320 2 2.75 3.5 4.25 5

 C
 count mean std min 25% 50% 75% max
A
0 5 2.8 1.788854 1 1.00 3.0 4.00 5
1 2 2.5 0.707107 2 2.25 2.5 2.75 3

112 Part II: Getting Your Hands Dirty with Data

Of course, you may not want all the data that describe() provides. Perhaps
you really just want to see the number of items in each series and their mean.
Here’s how you reduce the size of the information output:

print unstacked.loc[:,(slice(None),['count','mean']),]

Using loc lets you obtain specific columns. Here’s the final output from
the example showing just the information you absolutely need to make a
 decision:

 B C
 count mean count mean
A
0 5 3.0 5 2.8
1 2 3.5 2 2.5

Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a
limited selection of values. The number of values is usually fixed. Many devel-
opers will know categorical variables by the moniker enumerations. Each of
the potential values that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a vari-
able expressing the color of an object, such as a car, and that the user can
select blue, red, or green. To express the car’s color in a way that computers
can represent and effectively compute, an application assigns each color a
numeric value, so blue is 1, red is 2, and green is 3. Normally when you print
each color, you see the value rather than the color.

If you use pandas.DataFrame (http://pandas.pydata.org/
pandas‐docs/dev/generated/pandas.DataFrame.html), you can still
see the symbolic value (blue, red, and green), even though the computer
stores it as a numeric value. Sometimes you need to rename and combine
these named values to create new symbols. Symbolic variables are just a
 convenient way of representing and storing qualitative data.

When using categorical variables for machine learning, it’s important to
 consider the algorithm used to manipulate the variables. Some algorithms,
such as trees and ensembles of three, can work directly with the numeric
variables behind the symbols. Other algorithms, such as linear and logistic
regression and SVM, require that you encode the categorical values into
binary variables. For example, if you have three levels for a color variable
(blue, red, and green), you have to create three binary variables:

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html

113 Chapter 6: Conditioning Your Data

 ✓ One for blue (1 when the value is blue, 0 when it is not)

 ✓ One for red (1 when the value is red, 0 when it is not)

 ✓ One for green (1 when the value is green, 0 when it is not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them
incredibly valuable in performing a number of data science tasks. For exam-
ple, imagine trying to find values that are out of range in a huge dataset. In
this example, you see one method for creating a categorical variable and then
using it to check whether some data falls within the specified limits.

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],
dtype='category')

car_data = pd.Series(
 pd.Categorical(['Yellow', 'Green', 'Red', 'Blue',

'Purple'],
 categories=car_colors, ordered=False))

find_entries = pd.isnull(car_data)

print car_colors
print
print car_data
print
print find_entries[find_entries == True]

Checking your version of pandas
The categorical variable examples in this
section depend on your having a minimum
version of pandas 0.15.0 installed on your
system (using pandas 0.16.0 or above is actually
better because it includes a large number of
bug fixes). However, your version of Anaconda
may have pandas version 0.14.1 installed
instead. To check your version of pandas, type
import pandas as pd and press Enter; then,

type print pd.version.version and press Enter.
You see the version number of pandas you
have installed. If you have an older version,
download the newest version from http://
pandas.pydata.org/ and follow the
instructions at http://pandas.pydata.
org/pandas‐docs/version/0.15.2/
install.html to install it.

http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html

114 Part II: Getting Your Hands Dirty with Data

The example begins by creating a categorical variable, car_colors. The
variable contains the values Blue, Red, and Green as colors that are
 acceptable for a car. Notice that you must specify a dtype property value of
 category.

The next step is to create another series. This one uses a list of actual car
colors, named car_data, as input. Not all the car colors match the pre-
defined acceptable values. When this problem occurs, pandas outputs Not a
Number (NaN) instead of the car color.

Of course, you could search the list manually for the nonconforming cars, but
the easiest method is to have pandas do the work for you. In this case, you
ask pandas which entries are null using isnull() and place them in find_
entries. You can then output just those entries that are actually null. Here’s
the output you see from the example:

0 Blue
1 Red
2 Green
dtype: category
Categories (3, object): [Blue < Green < Red]

0 NaN
1 Green
2 Red
3 Blue
4 NaN
dtype: category
Categories (3, object): [Blue, Red, Green]

0 True
4 True
dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4
equal NaN. The output from find_entries verifies this fact for you. If this
were a large dataset, you could quickly locate and correct errant entries in
the dataset before performing an analysis on it.

Renaming levels
There are times when the naming of the categories you use is inconvenient
or otherwise wrong for a particular need. Fortunately, you can rename the
 categories as needed using the technique shown in the following example.

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],
 dtype='category')

115 Chapter 6: Conditioning Your Data

car_data = pd.Series(
 pd.Categorical(
 ['Blue', 'Green', 'Red', 'Blue', 'Red'],
 categories=car_colors, ordered=False))

car_colors.cat.categories = ["Purple", "Yellow", "Mauve"]
car_data.cat.categories = car_colors

print car_data

All you really need to do is set the cat.categories property to a new
value, as shown. Here is the output from this example:

0 Purple
1 Yellow
2 Mauve
3 Purple
4 Mauve
dtype: category
Categories (3, object): [Purple, Mauve, Yellow]

Combining levels
A particular categorical level might be too small to offer significant data
for analysis. Perhaps there are only a few of the values, which may not be
enough to create a statistical difference. In this case, combining several small
categories might offer better analysis results. The following example shows
how to combine categories:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'],
 dtype='category')
car_data = pd.Series(
 pd.Categorical(
 ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],
 categories=car_colors, ordered=False))

car_data.cat.categories = ["Blue_Red", "Red", "Green"]
print car_data.ix[car_data.isin(['Red'])]

car_data.ix[car_data.isin(['Red'])] = 'Blue_Red'

print
print car_data

116 Part II: Getting Your Hands Dirty with Data

What this example shows you is that there is only one Blue item and only
two Red items, but there are three Green items, which places Green in the
majority. Combining Blue and Red together is a two‐step process. First, you
change the Blue category to the Blue_Red category so that when you see
the output, you know that the two are combined. Then you change the Red
entries to Blue_Red, which creates the combined category.

However, before you can change the Red entries to Blue_Red entries, you
must find them. This is where a combination of calls to isin(), which
locates the Red entries, and ix[], which obtains their index, provides
 precisely what you need. The first print statement shows the result of using
this combination. Here’s the output from this example.

2 Red
4 Red
dtype: category
Categories (3, object): [Blue_Red, Red, Green]

0 Blue_Red
1 Green
2 Blue_Red
3 Green
4 Blue_Red
5 Green
dtype: category
Categories (3, object): [Blue_Red, Red, Green]

Notice that there are now three Blue_Red entries and three Green entries.
The Blue category no longer exists and the Red category is no longer in use.
The result is that the levels are now combined as expected.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as
numeric values. However, the precise value of the number depends on the
representation for the particular platform and could even depend on the
users’ preferences. For example, Excel users can choose to start dates in
1900 or 1904 (https://support.microsoft.com/en‐us/kb/180162).
The numeric encoding for each is different, so the same date can have two
numeric values depending on the starting date.

In addition to problems of representation, you also need to consider how
to work with time values. Creating a time value format that represents a
value the user can understand is hard. For example, you might need to use

https://support.microsoft.com/en-us/kb/180162

117 Chapter 6: Conditioning Your Data

Greenwich Mean Time (GMT) in some situations but a local time zone in
others. Transforming between various times is also problematic. With this
in mind, the following sections provide you with details on dealing with time
issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing
analysis a lot easier. For example, you often have to change the representa-
tion to obtain a correct sorting of values. Python provides two common
methods of formatting date and time. The first technique is to call str(),
which simply turns a datetime value into a string without any formatting.
The strftime() function requires more work because you must define
how you want the datetime value to appear after conversion. When using
strftime(), you must provide a string containing special directives that
define the formatting. You can find a listing of these directives at http://
strftime.org/.

Now that you have some idea of how time and date conversions work, it’s
time to see an example. The following example creates a datetime object
and then converts it into a string using two different approaches:

import datetime as dt

now = dt.datetime.now()

print str(now)
print now.strftime('%a, %d %B %Y')

In this case, you can see that using str() is the easiest approach. However,
as shown by the following output, it may not provide the output you need.
Using strftime() is infinitely more flexible.

2015‐04‐16 17:26:45.986000
Thu, 16 April 2015

Using the right time transformation
Time zones and differences in local time can cause all sorts of problems
when performing analysis. For that matter, some types of calculations simply
require a time shift in order to get the right results. No matter what the
reason, you may need to transform one time into another time at some point.

http://strftime.org/
http://strftime.org/

118 Part II: Getting Your Hands Dirty with Data

The following examples show some techniques you can employ to perform
the task.

import datetime as dt

now = dt.datetime.now()
timevalue = now + dt.timedelta(hours=2)

print now.strftime('%H:%M:%S')
print timevalue.strftime('%H:%M:%S')
print timevalue ‐ now

The timedelta() function makes the time transformation straightforward.
You can use any of these parameter names with timedelta() to change a
time and date value:

 ✓ days

 ✓ seconds

 ✓ microseconds

 ✓ milliseconds

 ✓ minutes

 ✓ hours

 ✓ weeks

You can also manipulate time by performing addition or subtraction on time
values. You can even subtract two time values to determine the difference
between them. Here’s the output from this example:

17:44:40
19:44:40
2:00:00

Notice that now is the local time, timevalue is two time zones different from
this one, and there is a two‐hour difference between the two times. You can
perform all sorts of transformations using these techniques to ensure that
your analysis always shows precisely the time‐oriented values you need.

Dealing with Missing Data
Sometimes the data you receive is missing information in specific fields. For
example, a customer record might be missing an age. If enough records are
missing entries, any analysis you perform will be skewed and the results

119 Chapter 6: Conditioning Your Data

of the analysis weighted in an unpredictable manner. Having a strategy for
dealing with missing data is important. The following sections give you some
ideas on how to work through these issues and produce better results.

Finding the missing data
It’s essential to find missing data in your dataset to avoid getting incorrect
results from your analysis. The following code shows how you could obtain a
listing of missing values without too much effort.

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.isnull()

print
print s[s.isnull()]

A dataset could represent missing data in several ways. In this example, you
see missing data represented as np.NaN (NumPy Not a Number) and the
Python None value.

Use the isnull() method to detect the missing values. The output shows
True when the value is missing. By adding an index into the dataset, you
obtain just the entries that are missing. The example shows the following
output:

0 False
1 False
2 False
3 True
4 False
5 False
6 True
dtype: bool

3 NaN
6 NaN
dtype: float64

Encoding missingness
After you figure out that your dataset is missing information, you need to
consider what to do about it. The three possibilities are to ignore the issue,
fill in the missing items, or remove (drop) the missing entries from the

120 Part II: Getting Your Hands Dirty with Data

 dataset. Ignoring the problem could lead to all sorts of problems for your
analysis, so it’s the option you use least often. The following example shows
one technique for filling in missing data or dropping the errant entries from
the dataset:

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.fillna(int(s.mean()))
print
print s.dropna()

The two methods of interest are fillna(), which fills in the missing entries,
and dropna(), which drops the missing entries. When using fillna(), you
must provide a value to use for the missing data. This example uses the mean
of all the values, but you could choose a number of other approaches. Here’s
the output from this example:

0 1
1 2
2 3
3 3
4 5
5 6
6 3
dtype: float64

0 1
1 2
2 3
4 5
5 6
dtype: float64

Working with a series is straightforward because the dataset is so simple.
When working with a DataFrame, however, the problem becomes signifi-
cantly more complicated. You still have the option of dropping the entire
row. When a column is sparsely populated, you might drop the column
instead. Filling in the data also becomes more complex because you must
consider the dataset as a whole, in addition to the needs of the individual
feature.

Imputing missing data
The previous section hints at the process of imputing missing data (ascrib-
ing characteristics based on how the data is used). The technique you use
depends on the sort of data you’re working with. For example, when working

121 Chapter 6: Conditioning Your Data

with a tree ensemble (you can find discussions of trees in the “Performing
Hierarchical Clustering” section of Chapter 15 and the “Starting with a Plain
Decision Tree” section of Chapter 20), you may simply replace missing values
with a –1 and rely on the imputer (a transformer algorithm used to complete
missing values) to define the best possible value for the missing data. The
following example shows a technique you can use to impute missing data
values:

import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

imp = Imputer(missing_values='NaN',
 strategy='mean', axis=0)

imp.fit([1, 2, 3, 4, 5, 6, 7])

x = pd.Series(imp.transform(s).tolist()[0])

print x

In this example, s is missing some values. The code creates an Imputer
to replace these missing values. The missing_values parameter defines
what to look for, which is NaN. You set the axis parameter to 0 to impute
along columns and 1 to impute along rows. The strategy parameter
defines how to replace the missing values (you can discover more about the
Imputer parameters at http://scikit‐learn.org/stable/modules/
generated/sklearn.preprocessing.Imputer.html):

 ✓ mean: Replaces the values by using the mean along the axis

 ✓ median: Replaces the values by using the medium along the axis

 ✓ most_frequent: Replaces the values by using the most frequent value
along the axis

Before you can impute anything, you must provide statistics for the Imputer
to use by calling fit(). The code then calls transform() on s to fill in the
missing values. However, the output is no longer a series. To create a series,
you must convert the Imputer output to a list and use the resulting list as
input to Series(). Here’s the result of the process with the missing values
filled in:

0 1
1 2
2 3
3 4

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html

122 Part II: Getting Your Hands Dirty with Data

4 5
5 6
6 7
dtype: float64

Slicing and Dicing: Filtering
and Selecting Data

You may not need to work with all the data in a dataset. In fact, looking at
just one particular column might be beneficial, such as age, or a set of rows
with a significant amount of information. You perform two steps to obtain
just the data you need to perform a particular task:

1. Filter rows to create a subject of the data that meets the criterion you
select (such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze. For
example, you probably don’t need the individuals’ names unless you
want to perform some analysis based on name.

The act of slicing and dicing data, gives you a subset of the data suitable for
analysis. The following sections describe various ways to obtain specific
pieces of data to meet particular needs.

Slicing rows
Slicing can occur in multiple ways when working with data, but the technique
of interest in this section is to slice data from a row of 2D or 3D data. A 2D
array may contain temperatures (x axis) over a specific timeframe (y axis).
Slicing a row would mean seeing the temperatures at a specific time. In some
cases, you might associate rows with cases in a dataset.

A 3D array might include an axis for place (x axis), product (y axis), and time
(z axis) so that you can see sales for items over time. Perhaps you want to
track whether sales of an item are increasing, and specifically where they
are increasing. Slicing a row would mean seeing all the sales for one specific
product for all locations at any time. The following example demonstrates
how to perform this task:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
 [[11,12,13], [14,15,16], [17,18,19],],
 [[21,22,23], [24,25,26], [27,28,29]]])

x[1]

123 Chapter 6: Conditioning Your Data

In this case, the example builds a 3D array. It then slices row 1 of that array
to produce the following output:

array([[11, 12, 13],
 [14, 15, 16],
 [17, 18, 19]])

Slicing columns
Using the examples from the previous section, slicing columns would obtain
data at a 90‐degree angle from rows. In other words, when working with the
2D array, you would want to see the times at which specific temperatures
occurred. Likewise, you might want to see the sales of all products for a
 specific location at any time when working with the 3D array. In some cases,
you might associate columns with features in a dataset. The following exam-
ple demonstrates how to perform this task using the same array as in the
previous section:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
 [[11,12,13], [14,15,16], [17,18,19],],
 [[21,22,23], [24,25,26], [27,28,29]]])

x[:,1]

Notice that the indexing now occurs at two levels. The first index refers to
the row. Using the colon (:) for the row means to use all the rows. The second
index refers to a column. In this case, the output will contain column 1. Here’s
the output you see:

array([[4, 5, 6],
 [14, 15, 16],
 [24, 25, 26]])

This is a 3D array. Therefore, each of the columns contains all the z axis
 elements. What you see is every row — 0 through 2 for column 1 with every z
axis element 0 through 2 for that column.

Dicing
The act of dicing a dataset means to perform both row and column slicing
such that you end up with a data wedge. For example, when working with the
3D array, you might want to see the sales of a specific product in a specific

124 Part II: Getting Your Hands Dirty with Data

location at any time. The following example demonstrates how to perform
this task using the same array as in the previous two sections:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
 [[11,12,13], [14,15,16], [17,18,19],],
 [[21,22,23], [24,25,26], [27,28,29]]])

print x[1,1]
print x[:,1,1]
print x[1,:,1]
print
print x[1:2, 1:2]

This example dices the array in four different ways. First, you get row 1,
column 1. Of course, what you may actually want is column 1, z axis 1. If
that’s not quite right, you could always request row 1, z axis 1 instead. Then
again, you may want rows 1 and 2 of columns 1 and 2. Here’s the output of all
four requests:

[14 15 16]
[5 15 25]
[12 15 18]

[[[14 15 16]
 [17 18 19]]

 [[24 25 26]
 [27 28 29]]]

Concatenating and Transforming
Data used for data science purposes seldom comes in a neat package. You
may need to work with multiple databases in various locations — each of
which has its own data format. It’s impossible to perform analysis on such
disparate sources of information with any accuracy. To make the data useful,
you must create a single dataset (by concatenating, or combining, the data
from various sources).

Part of the process is to ensure that each field you create for the combined
dataset has the same characteristics. For example, an age field in one data-
base might appear as a string, but another database could use an integer for
the same field. For the fields to work together, they must appear as the same
type of information.

125 Chapter 6: Conditioning Your Data

The following sections help you understand the process involved in con-
catenating and transforming data from various sources to create a single
dataset. After you have a single dataset from these sources, you can begin to
perform tasks such as analysis on the data. Of course, the trick is to create a
single dataset that truly represents the data in all those disparate datasets —
 modifying the data would result in skewed results.

Adding new cases and variables
You often find a need to combine datasets in various ways or even to add
new information for the sake of analysis purposes. The result is a combined
dataset that includes either new cases or variables. The following example
shows techniques for performing both tasks:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],
 'B': [1,2,3],
 'C': [5,3,4]})

df1 = pd.DataFrame({'A': [4],
 'B': [4],
 'C': [4]})

df = df.append(df1)
df = df.reset_index(drop=True)
print df

df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print
print df

df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})

df = pd.DataFrame.join(df, df2)
print
print df

The easiest way to add more data to an existing DataFrame is to rely on the
append() method. You can also use the concat() method (a technique
shown in Chapter 13). In this case, the three cases found in df are added
to the single case found in df1. To ensure that the data is appended as
anticipated, the columns in df and df1 must match. When you append two
DataFrame objects in this manner, the new DataFrame contains the old
index values. Use the reset_index() method to create a new index to make
accessing cases easier.

126 Part II: Getting Your Hands Dirty with Data

You can also add another case to an existing DataFrame by creating the new
case directly. Any time you add a new entry at a position that is one greater
than the last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In
this case, you rely on join() to perform the task. The resulting DataFrame
will match cases with the same index value, so indexing is important.
In addition, unless you want blank values, the number of cases in both
DataFrame objects must match. Here’s the output from this example:

 A B C
0 2 1 5
1 3 2 3
2 1 3 4
3 4 4 4

 A B C
0 2 1 5
1 3 2 3
2 1 3 4
3 4 4 4
4 5 5 5

 A B C D
0 2 1 5 1
1 3 2 3 2
2 1 3 4 3
3 4 4 4 4
4 5 5 5 5

Removing data
At some point, you may need to remove cases or variables from a dataset
because they aren’t required for your analysis. In both cases, you rely on
the drop() method to perform the task. The difference in removing cases or
variables is in how you describe what to remove, as shown in the following
example:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],
 'B': [1,2,3],
 'C': [5,3,4]})

df = df.drop(df.index[[1]])
print df

df = df.drop('B', 1)
print
print df

127 Chapter 6: Conditioning Your Data

The example begins by removing a case from df. Notice how the code relies
on an index to describe what to remove. You can remove just one case (as
shown), ranges of cases, or individual cases separated by commas. The main
concern is to ensure that you have the correct index numbers for the cases
you want to remove.

Removing a column is different. This example shows how to remove a
column using a column name. You can also remove a column by using an
index. In both cases, you must specify an axis as part of the removal process
(normally 1). Here’s the output from this example:

 A B C
0 2 1 5
2 1 3 4

 A C
0 2 5
2 1 4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order.
In the first case, you put the data into order, while in the second, you remove
any systematic patterning from the order. In general, you don’t sort datasets
for the purpose of analysis because doing so can cause you to get incorrect
results. However, you might want to sort data for presentation purposes. The
following example shows both sorting and shuffling:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [2,1,2,3,3,5,4],
 'B': [1,2,3,5,4,2,5],
 'C': [5,3,4,1,1,2,3]})

df = df.sort_index(by=['A', 'B'], ascending=[True, True])
df = df.reset_index(drop=True)
print df

index = df.index.tolist()
np.random.shuffle(index)
df = df.ix[index]
df = df.reset_index(drop=True)
print
print df

128 Part II: Getting Your Hands Dirty with Data

It turns out that sorting the data is a bit easier than shuffling it. To sort the
data, you use the sort_index() method and define which columns to use
for indexing purposes. You can also determine whether the index is in ascend-
ing or descending order. Make sure to always call reset_index() when
you’re done so that the index appears in order for analysis or other purposes.

To shuffle the data, you first acquire the current index using df.index.
tolist() and place it in index. A call to random.shuffle() creates a
new order for the index. You then apply the new order to df using ix[]. As
always, you call reset_index() to finalize the new order. Here’s the output
from this example:

 A B C
0 1 2 3
1 2 1 5
2 2 3 4
3 3 4 1
4 3 5 1
5 4 5 3
6 5 2 2

 A B C
0 2 3 4
1 3 5 1
2 3 4 1
3 1 2 3
4 4 5 3
5 5 2 2
6 2 1 5

Aggregating Data at Any Level
Aggregation is the process of combining or grouping data together into a
set, bag, or list. The data may or may not be alike. However, in most cases,
an aggregation function combines several rows together statistically using
 algorithms such as average, count, maximum, median, minimum, mode, or
sum. There are several reasons to aggregate data:

 ✓ Make it easier to analyze

 ✓ Reduce the ability of anyone to deduce the data of an individual from
the dataset for privacy or other reasons

 ✓ Create a combined data element from one data source that matches a
combined data element in another source

129 Chapter 6: Conditioning Your Data

The most important use of data aggregation is to promote anonymity in
order to meet legal or other concerns. Sometimes even data that should be
anonymous turns out to provide identification of an individual using the
proper analysis techniques. For example, researchers have found that it’s
possible to identify individuals based on just three credit card purchases
(see http://www.computerworld.com/article/2877935/how‐three‐
small‐credit‐card‐transactions‐could‐reveal‐your‐identity.
html for details). Here’s an example that shows how to perform aggregation
tasks:

import pandas as pd

df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],
 'Values': [1,2,3,5,4,2,5]})

df['S'] = df.groupby('Map')['Values'].transform(np.sum)
df['M'] = df.groupby('Map')['Values'].transform(np.mean)
df['V'] = df.groupby('Map')['Values'].transform(np.var)

print df

In this case, you have two initial features for this DataFrame. The values in
Map define which elements in Values belong together. For example, when
calculating a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map
values. You then index into Values and rely on transform() to create the
aggregated data using one of several algorithms found in NumPy, such as np.
sum. Here are the results of this calculation:

 Map Values S M V
0 0 1 6 2.0 1.0
1 0 2 6 2.0 1.0
2 0 3 6 2.0 1.0
3 1 5 9 4.5 0.5
4 1 4 9 4.5 0.5
5 2 2 7 3.5 4.5
6 2 5 7 3.5 4.5

http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html

130 Part II: Getting Your Hands Dirty with Data

Shaping Data
In This Chapter

 ▶ Manipulating HTML data

 ▶ Manipulating raw text

 ▶ Discovering the bag of words model and other techniques

 ▶ Manipulating graph data

C
hapter 6 demonstrates techniques for working with data as an entity —
as something you work with in Python. However, data doesn’t exist in

a vacuum. It doesn’t just suddenly appear within Python for absolutely no
reason at all. As demonstrated in Chapter 5, you load the data. However,
loading may not be enough — you may have to shape the data as part of
loading it. That’s the purpose of this chapter. You discover how to work with
a variety of container types in a way that makes it possible to load data from
a number of complex container types, such as HTML pages. In fact, you even
work with graphics, images, and sounds.

As you progress through the book, you discover that data takes all kinds of
forms and shapes. As far as the computer is concerned, data consists of 0s
and 1s. Humans give the data meaning by formatting, storing, and interpret-
ing it in a certain way. The same group of 0s and 1s could be a number, date,
or text, depending on the interpretation. The data container provides clues
as to how to interpret the data, so that’s why this chapter is so important to
you as a data scientist using Python to discover data patterns. You find that
you can discover patterns in places where you might have thought patterns
couldn’t exist.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 07; Shaping Data.ipynb source code file.

Chapter 7

132 Part II: Getting Your Hands Dirty with Data

Working with HTML Pages
HTML pages contain data in a hierarchical format. You often find HTML con-
tent in a strict HTML form or as XML. The HTML form can present problems
because it doesn’t always necessarily follow strict formatting rules. XML
does follow strict formatting rules because of the standards used to define it,
which makes it easier to parse. However, in both cases, you use similar tech-
niques to parse a page. The first section that follows describes how to parse
HTML pages in general.

Sometimes you don’t need all the data on a page. Instead you need specific
data, which is where XPath comes into play. You can use XPath to locate spe-
cific data on the HTML page and extract it for your particular needs.

Parsing XML and HTML
Simply extracting data from an XML file as you do in Chapter 5 may not be
enough. The data may not be in the correct format. Using the approach in
Chapter 5, you end up with a DataFrame containing three columns of type
str. Obviously, you can’t perform much data manipulation with strings.
The following example shapes the XML data from Chapter 5 to create a new
DataFrame containing just the <Number> and <Boolean> elements in the
correct format.

from lxml import objectify
import pandas as pd
from distutils import util

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'Boolean'))

for i in range(0,4):
 obj = root.getchildren()[i].getchildren()
 row = dict(zip(['Number', 'Boolean'],
 [obj[0].pyval,
 bool(util.strtobool(obj[2].text))]))
 row_s = pd.Series(row)
 row_s.name = obj[1].text
 df = df.append(row_s)

print type(df.ix['First']['Number'])
print type(df.ix['First']['Boolean'])

Obtaining a numeric value from the <Number> element consists of using the
pyval output, rather than the text output. The result isn’t an int, but it is
numeric.

133 Chapter 7: Shaping Data

The conversion of the <Boolean> element is a little harder. You must
convert the string to a numeric value using the strtobool() function in
distutils.util. The output is a 0 for False values and a 1 for True
values. However, that’s still not a Boolean value. To create a Boolean value,
you must convert the 0 or 1 using bool().

This example also shows how to access individual values in the DataFrame.
Notice that the name property now uses the <String> element value for
easy access. You provide an index value using ix and then access the indi-
vidual feature using a second index. The output from this example is

<type 'numpy.float64'>
<type 'bool'>

Using XPath for data extraction
Using XPath to extract data from your dataset can greatly reduce the com-
plexity of your code and potentially make it faster as well. The following
example shows an XPath version of the example in the previous section.
Notice that this version is shorter and doesn’t require the use of a for loop.

from lxml import objectify
import pandas as pd
from distutils import util

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

data = zip(map(int, root.xpath('Record/Number')),
 map(bool, map(util.strtobool,
 map(str, root.xpath('Record/Boolean')))))

df = pd.DataFrame(data,
 columns=('Number', 'Boolean'),
 index=map(str,
 root.xpath('Record/String')))

print df
print type(df.ix['First']['Number'])
print type(df.ix['First']['Boolean'])

The example begins just like the previous example, with the importing of
data and obtaining of the root node. At this point, the example creates a
data object that contains record number and Boolean value pairs. Because
the XML file entries are all strings, you must use the map() function to con-
vert the strings to the appropriate values. Working with the record number
is straightforward — all you do is map it to an int. The xpath() function
accepts a path from the root node to the data you need, which is 'Record/
Number' in this case.

134 Part II: Getting Your Hands Dirty with Data

Mapping the Boolean value is a little more difficult. As in the previous sec-
tion, you must use the util.strtobool() function to convert the string
Boolean values to a number that bool() can convert to a Boolean equiva-
lent. However, if you try to perform just a double mapping, you’ll encoun-
ter an error message saying that lists don’t include a required function,
tolower().To overcome this obstacle, you perform a triple mapping and
convert the data to a string using the str() function first.

Creating the DataFrame is different, too. Instead of adding individual rows,
you add all the rows at one time by using data. Setting up the column names
is the same as before. However, now you need some way of adding the row
names, as in the previous example. This task is accomplished by setting
the index parameter to a mapped version of the xpath() output for the
'Record/String' path. Here’s the output you can expect:

 Number Boolean
First 1 True
Second 2 False
Third 3 True
Fourth 4 False
<type 'numpy.int64'>
<type 'numpy.bool_'>

Working with Raw Text
Even though it might seem as if raw text wouldn’t present a problem in pars-
ing because it doesn’t contain any special formatting, you do have to con-
sider how the text is stored and whether it contains special words within it.
The multiple forms of Unicode can present interpretation problems that you
need to consider as you work through the text. Using regular expressions can
help you locate specific information within a raw‐text file. You can use regu-
lar expressions for both data cleaning and pattern matching. The following
sections help you understand the techniques used to shape raw‐text files.

Dealing with Unicode
Text files are pure text — this much is certain. The way the text is encoded
can differ. For example, a character can use either seven or eight bits for
encoding purposes. The use of special characters can differ as well. In short,
the interpretation of bits used to create characters differs from encoding to

135 Chapter 7: Shaping Data

encoding. You can see a host of encodings at http://www.i18nguy.com/
unicode/codepages.html.

Sometimes you need to work with encodings other than the default encoding
set within the Python environment. When working with Python 3.x, you must
rely on Universal Transformation Format 8‐bit (UTF‐8) as the encoding used
to read and write files. This environment is always set for UTF‐8, and trying to
change it causes an error message. However, when working with Python 2.x,
you can choose other encodings. In this case, the default encoding is the
American Standard Code for Information Interchange (ASCII), but you can
change it to some other encoding.

You can use this technique in any IPython Notebook file, but you won’t actu-
ally see output from it. In order to see output, you need to work with the
IPython prompt. The following steps help you see how to deal with Unicode
characters, but only when working with Python 2.x (these steps will cause
errors in the Python 3.x environment).

1. Open a copy of the IPython command prompt.

You see the IPython window.

2. Type the following code, pressing Enter after each line.

import sys
sys.getdefaultencoding()

You see the default encoding for Python, which is ascii in most cases.

3. Type reload(sys) and press Enter.

Python reloads the sys module and makes a special function available.

4. Type sys.setdefaultencoding(‘utf‐8’) and press Enter.

Python does change the encoding, but you won’t know that for certain
until after the next step.

5. Type sys.getdefaultencoding() and press Enter.

You see that the default encoding has now changed to utf‐8.

Changing the default encoding at the wrong time and in the incorrect way
can prevent you from performing tasks such as importing modules. Make
sure to test your code carefully and completely to ensure that any change
in the default encoding won’t affect your ability to run the application. Good
additional articles to read on this topic appear at http://blog.notdot.
net/2010/07/Getting‐unicode‐right‐in‐Python and http://web.
archive.org/web/20120722170929/http://boodebr.org/main/
python/all‐about‐python‐and‐unicode.

http://www.i18nguy.com/unicode/codepages.html
http://www.i18nguy.com/unicode/codepages.html
http://blog.notdot.net/2010/07/Getting-unicode-right-in-Python
http://blog.notdot.net/2010/07/Getting-unicode-right-in-Python
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode

136 Part II: Getting Your Hands Dirty with Data

Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This
task isn’t the same as understanding that some words come from Latin or
other roots, but instead makes like words equal to each other for the pur-
pose of comparison or sharing. For example, the words cats, catty, and catlike
all have the stem cat. The act of stemming helps you analyze sentences by
tokenizing them.

Removing suffixes to create stem words and generally tokenizing sentences
are only two parts of the process, however, of creating something like a natu-
ral language interface. Languages include a great number of glue words that
don’t mean much to a computer but have significant meaning to humans,
such as a, as, the, that, and so on in English. These short, less useful words
are stop words. Sentences don’t make sense without them to humans, but for
your computer, they can act as a means of stopping sentence analysis.

The act of stemming and removing stop words simplifies the text and
reduces the number of textual elements so that just the essential elements
remain. In addition, you keep just the terms that are nearest to the true sense
of the phrase. By reducing phrases in such a fashion, a computational algo-
rithm can work faster and process the text more effectively.

This example requires the use of the Natural Language Toolkit (NLTK), which
Anaconda (see Chapter 3 for details on Anaconda) doesn’t install by default. To
use this example, you must download and install NLTK using the instructions
found at http://www.nltk.org/install.html for your platform. Make
certain that you install the NLTK for whatever version of Python you’re using
for this book when you have multiple versions of Python installed on your
system. After you install NLTK, you must also install the packages associated
with it. The instructions at http://www.nltk.org/data.html tell you how
to perform this task (install all the packages to ensure you have everything).

The following example demonstrates how to perform stemming and remove
stop words from a sentence. It begins by training an algorithm to perform
the required analysis using a test sentence. Afterward, the example checks a
second sentence for words that appear in the first.

import sklearn.feature_extraction.text as ext
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer()

def stem_tokens(tokens, stemmer):
 stemmed = []
 for item in tokens:
 stemmed.append(stemmer.stem(item))

http://www.nltk.org/install.html
http://www.nltk.org/data.html

137 Chapter 7: Shaping Data

 return stemmed

def tokenize(text):
 tokens = word_tokenize(text)
 stems = stem_tokens(tokens, stemmer)
 return stems

vocab = ['Sam loves swimming so he swims all the time']
vect = ext.CountVectorizer(tokenizer=tokenize,
 stop_words='english')
vec = vect.fit(vocab)

sentence1 = vec.transform(['George loves swimming too!'])

print vec.get_feature_names()
print sentence1.toarray()

At the outset, the example creates a vocabulary using a test sentence and
places it in vocab. It then creates a CountVectorizer, vect, to hold a list
of stemmed words, but excludes the stop words. The tokenizer parameter
defines the function used to stem the words. The stop_words parameter
refers to a pickle file that contains stop words for a specific language, which
is English in this case. There are also files for other languages, such as French
and German. (You can see other parameters for the CountVectorizer() at
http://scikit‐learn.org/stable/modules/generated/sklearn.
feature_extraction.text.CountVectorizer.html.) The vocabulary
is fitted into another CountVectorizer, vec, which is used to perform the
actual transformation on a test sentence using the transform() function.
Here’s the output from this example.

 [u'love', u'sam', u'swim', u'time']
[[1 0 1 0]]

The first output shows the stemmed words. Notice that the list contains only
swim, not swimming and swims. All the stop words are missing as well. For
example, you don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in
the test sentence. In this case, a love variant appears once and a swim variant
appears once as well. The words sam and time don’t appear in the second
sentence, so those values are set to 0.

Introducing regular expressions
Regular expressions present the data scientist with an interesting array
of tools for parsing raw text. At first, it may seem daunting to figure out
precisely how regular expressions work. However, sites such as http://
regexr.com/ let you play with regular expressions so that you can see how

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://regexr.com/
http://regexr.com/

138 Part II: Getting Your Hands Dirty with Data

the use of various expressions performs specific types of pattern matching.
Of course, the first requirement is to discover pattern matching, which is the
use of special characters to tell a parsing engine what to find in the raw text
file. Table 7-1 provides a list of pattern‐matching characters and tells you
how to use them.

Table 7-1 Pattern‐Matching Characters Used in Python
Character Interpretation
(re) Groups regular expressions and remembers the matched text

(?: re) Groups regular expressions without remembering matched text

(?#...) Indicates a comment, which isn’t processed

re? Matches 0 or 1 occurrence of preceding expression (but no
more than 0 or 1 occurrence)

re* Matches 0 or more occurrences of the preceding expression

re+ Matches 1 or more occurrences of the preceding expression

(?> re) Matches an independent pattern without backtracking

. Matches any single character except the newline (\n) character
(adding the m option allows it to match the newline character as
well)

[^...] Matches any single character or range of characters not found
within the brackets

[...] Matches any single character or range of characters that
appears within the brackets

re{ n, m} Matches at least n and at most m occurrences of the preceding
expression

\n, \t, etc. Matches control characters such as newlines (\n), carriage
returns (\r), and tabs (\t)

\d Matches digits (which is equivalent to using [0‐9])

a|b Matches either a or b

re{ n} Matches exactly the number of occurrences of preceding
expression specified by n

re{ n,} Matches n or more occurrences of the preceding expression

\D Matches nondigits

\S Matches nonwhitespace

\B Matches nonword boundaries

\W Matches nonword characters

139 Chapter 7: Shaping Data

Using regular expressions helps you manipulate complex text before using
other techniques described in this chapter. In the following example, you
see how to extract a telephone number from a sentence no matter where the
telephone number appears. This sort of manipulation is helpful when you
have to work with text of various origins and in irregular format. You can see
some additional telephone number manipulation routines at http://www.
diveintopython.net/regular_expressions/phone_numbers.html.
The big thing is that this example helps you understand how to extract any
text you need from text you don’t.

Character Interpretation

\1...\9 Matches nth grouped subexpression

\10 Matches nth grouped subexpression if it matched already
(otherwise the pattern refers to the octal representation of a
character code)

\A Matches the beginning of a string

^ Matches the beginning of the line

\z Matches the end of a string

\Z Matches the end of string (when a newline exists, it matches just
before newline)

$ Matches the end of the line

\G Matches the point where the last match finished

\s Matches whitespace (which is equivalent to using [\t\n\r\f])

\b Matches word boundaries when outside the brackets
Matches the backspace (0x08) when inside the brackets

\w Matches word characters

(?= re) Specifies a position using a pattern (this pattern doesn’t have a
range)

(?! re) Specifies a position using pattern negation (this pattern doesn’t
have a range)

(?‐imx) Toggles the i, m, or x options temporarily off within a regular
expression (when this pattern appears in parentheses, only the
area within the parentheses is affected)

(?imx) Toggles the i, m, or x options temporarily on within a regular
expression (when this pattern appears in parentheses, only the
area within the parentheses is affected)

(?‐imx: re) Toggles the i, m, or x options within parentheses temporarily off

(?imx: re) Toggles the i, m, or x options within parentheses temporarily on

http://www.diveintopython.net/regular_expressions/phone_numbers.html
http://www.diveintopython.net/regular_expressions/phone_numbers.html

140 Part II: Getting Your Hands Dirty with Data

import re

data1 = 'My phone number is: 800‐555‐1212.'
data2 = '800‐555‐1234 is my phone number.'

pattern = re.compile(r'(\d{3})‐(\d{3})‐(\d{4})')

dmatch1 = pattern.search(data1).groups()
dmatch2 = pattern.search(data2).groups()

print dmatch1
print dmatch2

The example begins with two telephone numbers placed in sentences in vari-
ous locations. Before you can do much, you need to create a pattern. Always
read a pattern from left to right. In this case, the pattern is looking for three
digits, followed by a dash, three more digits, followed by another dash, and
finally four digits.

To make the process faster and easier, the code calls the compile() func-
tion to create a compiled version of the pattern so that Python doesn’t have
to recreate the pattern every time you need it. The compiled pattern appears
in pattern.

The search() function looks for the pattern in each of the test sentences.
It then places any matched text that it finds into groups and outputs a tuple
into one of two variables. Here’s the output from this example.

('800', '555', '1212')
('800', '555', '1234')

Using the Bag of Words Model
and Beyond

The goal of most data imports is to perform some type of analysis. Before
you can perform analysis on textual data, you must tokenize every word
within the dataset. The act of tokenizing the words creates a bag of words.
You can then use the bag of words to train classifiers, a special kind of
algorithm used to break words down into categories. The following section
provides additional insights into the bag of words model and shows how to
work with it.

141 Chapter 7: Shaping Data

Understanding the bag of words model
As mentioned in the introduction, in order to perform textual analysis of
various sorts, you need to first tokenize the words and create a bag of words
from them. The bag of words uses numbers to represent words, word fre-
quencies, and word locations that you can manipulate mathematically to see
patterns in the way that the words are structured and used. The bag of words
model ignores grammar and even word order — the focus is on simplifying
the text so that you can easily analyze it.

The creation of a bag of words revolves around Natural Language Processing
(NLP) and Information Retrieval (IR). Before you perform this sort of process-
ing, you normally remove any special characters (such as HTML formatting
from a web source), remove the stop words, and possibly perform stem-
ming as well (as described in the “Stemming and removing stop words” sec-
tion, earlier this chapter). For the purpose of this example, you use the 20
Newsgroups dataset directly. Here’s an example of how you can obtain tex-
tual input and create a bag of words from it:

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['comp.graphics', 'misc.forsale',
 'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset='train',
 categories=categories,

Getting the 20 Newsgroups dataset
The examples in the sections that follow rely
on the 20 Newsgroups dataset (http://
qwone.com/~jason/20Newsgroups/)
that’s part of the Scikit‐learn installation. The
host site provides some additional information
about the dataset, but essentially it’s a good
dataset to use to demonstrate various kinds of
text analysis.

You don’t have to do anything special to
work with the dataset because Scikit‐learn
already knows about it. However, when you
run the first example, you see the message
“WARNING:sk learn .datasets . twenty_

newsgroups:Downloading dataset from
http://people.csail.mit.edu/
jrennie/20Newsgroups/20news‐
bydate.tar.gz (14 MB).” All this message
tells you is that you need to wait for the data
download to complete. There is nothing wrong
with your system. Look at the left side of the
code cell in IPython Notebook and you see the
familiar In [*]: entry. When this entry changes to
show a number, the download is complete. The
message doesn’t go away until the next time
you run the cell.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz

142 Part II: Getting Your Hands Dirty with Data

 shuffle=True,
 random_state=42)

count_vect = ext.CountVectorizer()
X_train_counts = count_vect.fit_transform(
 twenty_train.data)

print X_train_counts.shape

A number of the examples you see online are unclear as to where the
list of categories they use come from. The host site at http://qwone.
com/~jason/20Newsgroups/ provides you with a listing of the categories
you can use. The category list doesn’t come from a magic hat somewhere,
but many examples online simply don’t bother to document some informa-
tion sources. Always refer to the host site when you have questions about
issues such as dataset categories.

The call to fetch_20newsgroups() loads the dataset into memory. You see
the resulting training object, twenty_train, described as a bunch. At this
point, you have an object that contains a listing of categories and associated
data, but the application hasn’t tokenized the data, and the algorithm used to
work with the data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag
of words with it. The bag of words process begins by assigning an integer
value (an index of a sort) to each unique word in the training set. In addition,
each document receives an integer value. The next step is to count every
occurrence of these words in each document and create a list of document
and count pairs so that you know which words appear how often in each
 document.

Naturally, some words from the master list aren’t used in some documents,
thereby creating a high‐dimensional sparse dataset. The scipy.sparse
matrix is a data structure that lets you store only the nonzero elements of the
list in order to save memory. When the code makes the call to count_vect.
fit_transform(), it places the resulting bag of words into X_train_
counts. You can see the resulting number of entries by accessing the shape
property. The result, using the categories defined for this example, is

 (2356, 34750)

Working with n‐grams
An n‐gram is a continuous sequence of items in the text you want to ana-
lyze. The items are phonemes, syllables, letters, words, or base pairs. The n
in n‐gram refers to a size. An n‐gram that has a size of one, for example, is a

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

143 Chapter 7: Shaping Data

unigram. The example in this section uses a size of three, making a trigram.
You use n‐grams in a probabilistic manner to perform tasks such as predict-
ing the next sequence in a series, which wouldn’t seem very useful until you
start thinking about applications such as search engines that try to predict
the word you want to type based on the previous letters you’ve supplied.
However, the technique has all sorts of applications, such as in DNA sequenc-
ing and data compression. The following example shows how to create
n‐grams from the 20 Newsgroups dataset.

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train',
 categories=categories,
 remove=('headers', 'footers', 'quotes'),
 shuffle=True,
 random_state=42)

count_chars = ext.CountVectorizer(analyzer='char_wb',
 ngram_range=(3,3),
 max_features=10).fit(twenty_train['data'])
count_words = ext.CountVectorizer(analyzer='word',
 ngram_range=(2,2),
 max_features=10,
 stop_words='english').fit(twenty_train['data'])
X = count_chars.transform(twenty_train.data)

print count_words.get_feature_names()
print X[1].todense()
print count_words.get_feature_names()

The beginning code is the same as in the previous section. You still begin by
fetching the dataset and placing it into a bunch. However, in this case, the
vectorization process takes on new meaning. The arguments process the
data in a special way.

In this case, the analyzer parameter determines how the application cre-
ates the n‐grams. You can choose words (word), characters (char), or char-
acters within word boundaries (char_wb). The ngram_range parameter
requires two inputs in the form of a tuple: The first determines the minimum
n‐gram size and the second determines the maximum n‐gram size. The third
argument, max_features, determines how many features the vectorizer
returns. In the second vectorizer call, the stop_words argument removes
the terms contained in the English pickle (see the “Stemming and removing
stop words” section, earlier in the chapter, for details). At this point, the
application fits the data to the transformation algorithm.

144 Part II: Getting Your Hands Dirty with Data

The example provides three outputs. The first shows the top ten trigrams for
characters from the document. The second is the n‐gram for the first docu-
ment. It shows the frequency of the top ten trigrams. The third is the top ten
trigrams for words. Here’s the output from this example:

[u'ax ax', u'ax max', u'distribution world', u'don know',
 u'edu organization', u'max ax', u'nntp posting',
 u'organization university', u'posting host',
 u'writes article']
[[0 0 5 1 0 0 4 2 5 1]]
[u'ax ax', u'ax max', u'distribution world', u'don know',
 u'edu organization', u'max ax', u'nntp posting',
 u'organization university', u'posting host',
 u'writes article']

Implementing TF‐IDF transformations
The Term Frequency times Inverse Document Frequency (TF‐IDF) transfor-
mation is a technique used to help compensate for the lengths of different
documents. A short document and a long document might discuss the same
topics, but the long document will have higher bag of word counts because it
contains more words. When performing a comparison between the short and
long document, the long document will receive unfair weighting without this
transformation. Search engines often need to weigh documents equally, so
you see this transformation used quite often in search engine applications.

However, what this transformation is really telling you is the importance of
a particular word to a document. The greater the frequency of a word in a
document, the more important it is to that document. However, the measure-
ment is offset by the document size — the total number of words the docu-
ment contains. The TF part of the equation determines how frequently the
term appears in the document, while the IDF part of the equation determines
the term’s importance. You can see some actual calculations of this particu-
lar measure at http://www.tfidf.com/. Here’s an example of how you’d
calculate TF‐IDF using Python:

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train',
 categories=categories,
 remove=('headers', 'footers', 'quotes'),
 shuffle=True,
 random_state=42)

http://www.tfidf.com/

145 Chapter 7: Shaping Data

count_vect = ext.CountVectorizer()
X_train_counts = count_vect.fit_transform(
 twenty_train.data)

tfidf = ext.TfidfTransformer().fit(X_train_counts)
X_train_tfidf = tfidf.transform(X_train_counts)

print X_train_tfidf.shape

This example begins much like the other examples in this section have, by
fetching the 20 Newsgroups dataset. It then creates a word bag, much like the
example in the “Understanding the bag of words model” section, earlier in
this chapter. However, now you see something you can do with the word bag.

In this case, the code calls upon TfidfTransformer() to convert the raw
newsgroup documents into a matrix of TF‐IDF features. The use_idf con-
trols the use of inverse‐document‐frequency reweighting, which it turned off
in this case. The vectorized data is fitted to the transformation algorithm.
The next step, calling tf_transformer.transform(), performs the actual
transformation process. Here’s the result you get from this example:

(593, 13564)

TF‐IDF helps you to locate the most important word or n‐grams and exclude
the least important ones. It is also very helpful as an input for linear models,
because they work better with TF‐IDF scores than word counts. At this point,
you normally train a classifier and perform various sorts of analysis. Don’t
worry about this next part of the process just yet. Starting with Chapters 12
and 15, you get introduced to classifiers. In Chapter 17, you begin working
with classifiers in earnest.

Working with Graph Data
Imagine data points that are connected to other data points, such as how
one web page is connected to another web page through hyperlinks. Each
of these data points is a node. The nodes connect to each other using links.
Not every node links to every other node, so the node connections become
important. By analyzing the nodes and their links, you can perform all sorts
of interesting tasks in data science, such as defining the best way to get
from work to your home using streets and highways. The following sections
describe how graphs work and how to perform basic tasks with them.

146 Part II: Getting Your Hands Dirty with Data

Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph.
When there is a connection between one node and another, the matrix indi-
cates it as a value greater than 0. The precise representation of connections
in the matrix depends on whether the graph is directed (where the direction
of the connection matters) or undirected.

A problem with many online examples is that the authors keep them simple
for explanation purposes. However, real‐world graphs are often immense and
defy easy analysis simply through visualization. Just think about the number
of nodes that even a small city would have when considering street intersec-
tions (with the links being the streets themselves). Many other graphs are far
larger, and simply looking at them will never reveal any interesting patterns.
Data scientists call the problem in presenting any complex graph using an
adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For
example, you might choose to sort the data according to properties other
than the actual connections. A graph of street connections might include
the date the street was last paved with the data, making it possible for you
to look for patterns that direct someone based on the streets that are in
the best repair. In short, making the graph data useful becomes a matter of
manipulating the organization of that data in specific ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code
from scratch. Fortunately, the NetworkX package for Python makes it easy to
create, manipulate, and study the structure, dynamics, and functions of com-
plex networks (or graphs). Even though this book covers only graphs, you
can use the package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs. The
use of simple calls hides much of the complexity of working with graphs and
adjacency matrices from view. The following example shows how to create a
basic adjacency matrix from one of the NetworkX‐supplied graphs:

import networkx as nx

G = nx.cycle_graph(10)
A = nx.adjacency_matrix(G)

print(A.todense())

147 Chapter 7: Shaping Data

The example begins by importing the required package. It then creates a
graph using the cycle_graph() template. The graph contains ten nodes.
Calling adjacency_matrix() creates the adjacency matrix from the graph.
The final step is to print the output as a matrix, as shown here:

[[0 1 0 0 0 0 0 0 0 1]
 [1 0 1 0 0 0 0 0 0 0]
 [0 1 0 1 0 0 0 0 0 0]
 [0 0 1 0 1 0 0 0 0 0]
 [0 0 0 1 0 1 0 0 0 0]
 [0 0 0 0 1 0 1 0 0 0]
 [0 0 0 0 0 1 0 1 0 0]
 [0 0 0 0 0 0 1 0 1 0]
 [0 0 0 0 0 0 0 1 0 1]
 [1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes.
The NetworkX site documents a number of standard graph types that
you can use, all of which are available within IPython. The list appears at
https://networkx.github.io/documentation/latest/reference/
generators.html.

It’s interesting to see how the graph looks after you generate it. The following
code displays the graph for you. Figure 7-1 shows the result of the plot.

import matplotlib.pyplot as plt
nx.draw_networkx(G)
plt.show()

Figure 7-1:
Plotting

the original
graph.

https://networkx.github.io/documentation/latest/reference/generators.html
https://networkx.github.io/documentation/latest/reference/generators.html

148 Part II: Getting Your Hands Dirty with Data

The plot shows that you can add an edge between nodes 1 and 5. Here’s the
code needed to perform this task using the add_edge() function. Figure 7-2
shows the result.

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

Figure 7-2:
Plotting the

graph
addition.

Putting What You Know in Action
In This Chapter

 ▶ Putting data science problems and data into perspective

 ▶ Defining and using feature creation to your benefit

 ▶ Working with arrays

P
revious chapters have all been preparatory in nature. You have discov-
ered how to perform essential data science tasks using Python. In addi-

tion, you spent time working with the various tools that Python provides to
make data science tasks easier. All this information is essential, but it doesn’t
help you see the big picture — where all the pieces go. This chapter shows
you how to employ the techniques you discovered in previous chapters to
solve real data science problems.

This chapter isn’t the end of the journey — it’s the beginning. Think of previ-
ous chapters in the same way as you think about packing your bags, making
reservations, and creating an itinerary before you go on a trip. This chapter
is the trip to the airport, during which you start to see everything come
together.

The chapter begins by looking at the aspects you normally have to consider
when trying to solve a data science problem. You can’t just jump in and
start performing an analysis; you must understand the problem first, as well
as consider the resources (in the form of data, algorithms, computational
resources) to solve it. Putting the problem into a context, a setting of a sort,
helps you understand the problem and define how the data relates to that
problem. The context is essential because, like language, context alters the
meaning of both the problem and its associated data. For example, when you
say, “I have a red rose” to your significant other, the meaning behind the sen-
tence has one connotation. If you say the same sentence to a fellow gardener,
the connotation is different. The rose is a sort of data and the person you’re
speaking to is the context. There is no meaning to saying, “I have a red rose.”
unless you know the context in which the statement is made. Likewise, data
has no meaning; it doesn’t answer any question until you know the context in

Chapter 8

150 Part II: Getting Your Hands Dirty with Data

which the data is used. Saying “I have data” expresses a question, “What does
the data mean?”

In the end, you’ll need one or more datasets. Two dimensional data tables
(datasets) consist of cases (the rows) and features (the columns). You can
also refer to features as variables when using a statistical terminology. The
features you decide to use for any given dataset determine the kinds of analy-
sis you can perform, the ways in which you can manipulate the data, and
ultimately the sorts of results you obtain. Determining what sorts of features
you can create from source data and how you must transform the data to
ensure that it works for the analysis you want to perform is an essential part
of developing a data science solution.

After you get a picture of what your problem is, the resources you have to
solve it, and the inputs you need to work with to solve it, you’re ready to
perform some actual work. The last section of this chapter shows you how to
perform simple tasks efficiently. You can usually perform tasks using more
than one methodology, but when working with big data, the fastest routes are
better. By working with arrays and matrices to perform specific tasks, you’ll
notice that certain operations can take a long time unless you leverage some
computational tricks. Using computational tricks is one of the most basic
forms of manipulation you perform, but knowing about them from the begin-
ning is essential. Applying these techniques paves the road to later chapters
when you start to look at the magic that data science can truly accomplish in
helping you see more in the data you have than is nominally apparent.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 08; Operations on Arrays and Matrices.ipynb source
code file.

Contextualizing Problems and Data
Putting your problem in the correct context is an essential part of develop-
ing a data science solution for any given problem and associated data. Data
science is definitively applied science, and abstract manual approaches may
not work all that well on your specific situation. Running a Hadoop cluster or
building a deep neural network may sound cool in front of fellow colleagues
and make you feel you are doing great data science projects, but they may
not provide what you need to solve your problem. Putting the problem in the
correct context isn’t just a matter of deliberating whether to use a certain
algorithm or that you must transform the data in a certain way — it’s the art
of critically examining the problem and the available resources and creating
an environment in which to solve the problem and obtain a desired solution.

151 Chapter 8: Putting What You Know in Action

The key point here is the desired solution, in that you could come up with
solutions that aren’t desirable because they don’t tell you what you need to
know — or, even when they do tell you what you need to know, they waste
too much time and resources. The following sections provide an overview of
the process you follow to contextualize both problems and data.

Evaluating a data science problem
When working through a data science problem, you need to start by consid-
ering your goal and the resources you have available for achieving that goal.
The resources are data, computational resources such as available memory,
CPUs, and disk space. In the real world, no one will hand you ready‐made
data and tell you to perform a particular analysis on it. Most of the time, you
have to face completely new problems, and you have to build your solution
from scratch. During your first evaluation of a data science problem, you
need to consider the following:

 ✓ The data available in terms of accessibility, quantity, and quality. You
must also consider the data in terms of possible biases that could influ-
ence or even distort its characteristics and content. Data never contains
absolute truths, only relative truths that offer you a more or less useful
view of a problem. Always be aware of the truthfulness of data and apply
critical reasoning as part of your analysis of it.

 ✓ The methods you can feasibly use to analyze the dataset. Consider
whether the methods are simple or complex. You must also decide
how well you know a particular methodology. Start by using simple
approaches, and never fall in love with any particular technique. There
are neither free lunches nor Holy Grails in data science.

 ✓ The questions you want to answer by performing your analysis and
how you can quantitatively measure whether you achieved a satisfac-
tory answer to them. “If you can not measure it, you can not improve it,”
as Lord Kelvin stated (see http://zapatopi.net/kelvin/quotes/).
If you can measure performance, you can determine the impact of
your work and even make a monetary estimation. Stakeholders will be
delighted to know that you’ve figured out what to do and what benefits
your data science project will bring about.

Researching solutions
Data science is a complex system of knowledge at the intersection of com-
puter science, math, statistics, and business. Very few people can know
everything about it, and, if someone has already faced the same problem or
dilemmas as you face, reinventing the wheel makes little sense. Now that you

http://zapatopi.net/kelvin/quotes/

152 Part II: Getting Your Hands Dirty with Data

have contextualized your project, you know what you’re looking for and you
can search for it in different ways.

 ✓ Check the Python documentation. You might be able to find examples
that suggest a possible solution. NumPy (http://docs.scipy.org/
doc/numpy/user/), SciPy (http://docs.scipy.org/doc/), pandas
(http://pandas.pydata.org/pandas‐docs/version/0.15.2/),
and especially Scikit‐learn (http://scikit‐learn.org/stable/
user_guide.html) have detailed in‐line and online documentation
with plenty of data science–related examples.

 ✓ Seek out online articles and blogs that hint at how other practitioners
solved similar problems. Q&A websites such as Quora (http://www.
quora.com/), Stack Overflow (http://stackoverflow.com/), and
Cross Validated (http://stats.stackexchange.com/) can provide
you with plenty of answers to similar problems.

 ✓ Consult academic papers. For example, you can query your problem
on Google Scholar at https://scholar.google.it/ or Microsoft
Academic Search at http://academic.research.microsoft.com/.
You can find a series of scientific papers that can tell you about prepar-
ing the data or detail the kind of algorithms that work better for a par-
ticular problem.

It may seem trivial, but the solutions you create have to reflect the problem
you’re trying to solve. As you research solutions, you may find that some of
them seem promising at first, but then you can’t successfully apply them to
your case because something in their context is different. For instance, your
dataset may be incomplete or may not provide enough input to solve the
problem. In addition, the analysis model you select may not actually provide
the answer you need or the answer might prove inaccurate. As you work
through the problem, don’t be afraid to perform your research multiple times
as you discover, test, and evaluate possible solutions that you could apply
given the resources available and your actual constraints.

Formulating a hypothesis
At some point, you have everything you think you need to solve the problem.
Of course, it’s a mistake to assume now that the solutions you create can
actually solve the problem. You have a hypothesis, rather than a solution,
because you have to demonstrate the efficacy of the potential solution in a
scientific way. In order to form and test a hypothesis, you must train a model
using a training dataset and then test it using an entirely different dataset.
Later chapters in the book spend a great deal of time helping you through
the process of training and testing the algorithms used to perform analysis,
so don’t worry too much if you don’t understand this aspect of the process
right now.

http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/
http://pandas.pydata.org/pandas-docs/version/0.15.2/
http://stats.stackexchange.com/
http://academic.research.microsoft.com/

153 Chapter 8: Putting What You Know in Action

Preparing your data
After you have some idea of the problem and its solution, you know the
inputs required to make the algorithm work. Unfortunately, your data prob-
ably appears in multiple forms, you get it from multiple sources, and some
data is missing entirely. Moreover, the developers of the features that exist-
ing data sources provide may have devised them for different purposes (such
as accountancy or marketing) than yours and you have to transform them so
that you can use your algorithm at its fullest power. To make the algorithm
work, you must prepare the data. This means checking for missing data, cre-
ating new features as needed, and possibly manipulating the dataset to get it
into a form that your algorithm can actually use to make a prediction.

Considering the Art of Feature Creation
Features have to do with the columns in your dataset. Of course, you need
to determine what those columns should contain. They might not end up
looking precisely like the data in the original data source. The original data
source may present the data in a form that leads to inaccurate analysis or
even prevent you from getting a desired outcome because it’s not completely
suited to your algorithm or your objectives. For example, the data may con-
tain too much information redundancy inside multiple variables, which is a
problem called multivariate correlation. The task of making the columns work
in the best manner for data analysis purposes is feature creation (also called
feature engineering). The following sections help you understand feature cre-
ation and why it’s important. (Future chapters provide all sorts of examples
of how you actually employ feature creation to perform analysis.)

Defining feature creation
Feature creation may seem a bit like magic or weird science to some people,
but it really does have a firm basis in math. The task is to take existing data
and transform it into something that you can work with to perform an analy-
sis. For example, numeric data could appear as strings in the original data
source. To perform an analysis, you must convert the string data to numeric
values in many cases. The immediate goal of feature creation is to achieve
better performance from the algorithms used to accomplish the analysis than
you can when using the original data.

In many cases, the transformation is less than straightforward. You may have
to combine values in some way or perform math operations on them. The

154 Part II: Getting Your Hands Dirty with Data

information you can access may appear in all sorts of forms, and the trans-
formation process lets you work with the data in new ways so that you can
see patterns in it. For example, consider this popular Kaggle competition:
http://www.kaggle.com/c/march‐machine‐learning‐mania‐2015.
The goal is to use all sorts of statistics to determine who will win the NCAA
Basketball Tournament. Imagine trying to derive disparate measures from
public information on a match, such as the geographic location the team will
travel to or the unavailability of key players, and you can begin to grasp the
need to create features in a dataset.

As you might imagine, feature creation truly is an art form, and everyone has
an opinion on precisely how to perform it. This book provides you with some
good basic information on feature creation as well as a number of examples,
but it leaves advanced techniques to experimentation and trial. As Pedro
Domingos, professor at Washington University, stated in his Data Science
paper, “A Few Useful Things to Know about Machine Learning” (see http://
homes.cs.washington.edu/~pedrod/papers/cacm12.pdf), feature
engineering is “easily the most important factor” in determining the success
or failure of a machine‐learning project, and nothing can really replace the
“smarts you put into feature engineering.”

Combining variables
Data often comes in a form that doesn’t work at all for an algorithm. Consider
a simple real‐life situation in which you need to determine whether one
person can lift a board at a lumber yard. You receive two data tables. The
first contains the height, width, thickness, and wood types of boards. The
second contains a list of wood types and the amount they weigh per board
foot (a piece of wood 12" x 12" x 1"). Not every wood type comes in every
size, and some shipments come unmarked, so you don’t actually know what
type of wood you’re working with. The goal is to create a prediction so that
the company knows how many people to send to work with the shipments.

In this case, you create a two‐dimensional dataset by combining variables.
The resulting dataset contains only two features. The first feature contains
just the length of the boards. It’s reasonable to expect a single person to
carry a board that is up to ten feet long, but you want two people carrying
a board ten feet or longer. The second feature is the weight of the board.
A board that is 10 feet long, 12 inches wide, and 2 inches thick contains 20
board feet. If the board is made of ponderosa pine (with a board foot rating
of 2.67), the overall weight of the board is 53.4 pounds — one person could
probably lift it. However, when the board is made of hickory (with a board
foot rating of 4.25), the overall weight is now 85 pounds. Unless you have the
Hulk working for you, you really do need two people lifting that board, even
though the board is short enough for one person to lift.

https://www.kaggle.com/c/march-machine-learning-mania-2015
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

155 Chapter 8: Putting What You Know in Action

Getting the first feature for your dataset is easy. All you need is the lengths
of each of the boards that you stock. However, the second feature requires
that you combine variables from both tables: length in feet * width in feet *
thickness in inches * board foot rating. The resulting dataset will contain the
weight for each length of each kind of wood you stock. Having this informa-
tion means that you can create a model that predicts whether a particular
task will require one, two, or even three people to perform.

Understanding binning and
discretization
In order to perform some types of analysis, you need to break numeric values
into classes. For example, you might have a dataset that includes entries for
people from ages 0 to 80. To derive statistics that work in this case (such as
running the Naïve Bayes algorithm), you might want to view the variable as
a series of levels in ten‐year increments. The process of breaking the dataset
up into these ten‐year increments is binning. Each bin is a numeric category
that you can use.

Binning may improve the accuracy of predictive models by reducing noise
or by helping model nonlinearity. In addition, it allows easy identification of
outliers (values outside the expected range) and invalid or missing values of
numerical variables.

Binning works exclusively with single numeric features. Discretization is a
more complex process, in which you place combinations of values from
different features in a bucket — limiting the number of states in any given
bucket. In contrast to binning, discretization works with both numeric and
string values. It’s a more generalized method of creating categories. For
example, you can obtain a discretization as a byproduct of cluster analysis.

Using indicator variables
Indicator variables are features that can take on a value of 0 or 1. Another
name for indicator variables is dummy variables. No matter what you call
them, these variables serve an important purpose in making data easier to
work with. For example, if you want to create a dataset in which individu-
als under 25 are treated one way and individuals 25 and over are treated
another, you could replace the age feature with an indicator variable that
contains a 0 when the individual is under 25 or a 1 when the individual is 25
and older.

156 Part II: Getting Your Hands Dirty with Data

Using an indicator variable lets you perform analysis faster and categorize
cases with greater accuracy than you can without this variable. The indicator
variable removes shades of gray from the dataset. Someone is either under
25 or 25 and older — there is no middle ground. Because the data is simpli-
fied, the algorithm can perform its task faster, and you have less ambiguity to
contend with.

Transforming distributions
A distribution is an arrangement of the values of a variable that shows the
frequency at which various values occur. After you know how the values are
distributed, you can begin to understand the data better. All sorts of distribu-
tions exist (see a gallery of distributions at http://www.itl.nist.gov/
div898/handbook/eda/section3/eda366.htm), and most algorithms
can easily deal with them. However, you must match the algorithm to the
distribution.

Pay particular attention to uniform and skewed distributions. They are quite
difficult to deal with for different reasons. The bell‐shaped curve, the normal
distribution, is always your friend. When you see a distribution shaped
 differently from a bell distribution, you should think about performing a
transformation.

When working with distributions, you might find that the distribution of
values is skewed in some way and that, because of the skewed values, any
algorithm applied to the set of values produces output that simply won’t
match your expectations. Transforming a distribution means to apply some
sort of function to the values in order to achieve specific objectives, such as
fixing the data skew, so that the output of your algorithm is closer to what
you expected. In addition, transformation helps make the distribution friend-
lier, such as when you transform a dataset to appear as a normal distribu-
tion. Transformations that you should always try on your numeric features
are

 ✓ Logarithm np.log(x) and exponential np.exp(x)

 ✓ Inverse 1/x, square root np.sqrt(x), and cube root x**(1.0/3.0)

 ✓ Polynomial transformations such as, x**2, x**3, and so on.

Performing Operations on Arrays
A basic form of data manipulation is to place the data in an array or matrix
and then use standard math‐based techniques to modify its form. Using this
approach puts the data in a convenient form to perform other operations

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm

157 Chapter 8: Putting What You Know in Action

done at the level of every single observation, such as in iterations, because
they can leverage your computer architecture and some highly optimized
numerical linear algebra routines present in CPUs. These routines are call-
able from every operating system. The larger the data and the computations,
the more time you can save. In addition, using these techniques also spare
you writing long and complex Python code. The following sections describe
how to work with arrays for data science purposes.

Using vectorization
Your computer provides you with powerful routine calculations, and you
can use them when your data is in the right format. NumPy’s ndarray is a
multidimensional data storage structure that you can use as a dimensional
datatable. In fact, you can use it as a cube or even a hypercube when there
are more than three dimensions.

Using ndarray makes computations easy and fast. The following example
creates a dataset of three observations with seven features for each observa-
tion. In this case, the example obtains the maximum value for each observa-
tion and subtracts it from the minimum value to obtain the range of values
for each observation.

import numpy as np
dataset = np.array([[2, 4, 6, 8, 3, 2, 5],
 [7, 5, 3, 1, 6, 8, 0],
 [1, 3, 2, 1, 0, 0, 8]])
print np.max(dataset, axis=1) ‐ np.min(dataset, axis=1)

The print statement obtains the maximum value from each observation using
np.max() and then subtracts it from the minimum value using np.min().
The maximum value in each observation is [8 8 8]. The minimum value for
each observation is [2 0 0]. As a result, you get the following output:

[6 8 8]

Performing simple arithmetic on
vectors and matrices
Most operations and functions from NumPy that you apply to arrays leverage
vectorization, so they’re fast and efficient — much more efficient than any
other solution or handmade code. Even the simplest operations such as addi-
tions or divisions can take advantage of vectorization.

158 Part II: Getting Your Hands Dirty with Data

For instance, many times, the form of the data in your dataset won’t quite
match the form you need. A list of numbers could represent percentages as
whole numbers when you really need them as fractional values. In this case,
you can usually perform some type of simple math to solve the problem, as
shown here:

import numpy as np
a = np.array([15.0, 20.0, 22.0, 75.0, 40.0, 35.0])
a = a*.01
print a

The example creates an array, fills it with whole number percentages, and
then uses 0.01 as a multiplier to create fractional percentages. You can then
multiply these fractional values against other numbers to determine how the
percentage affects that number. The output from this example is

[0.15 0.2 0.22 0.75 0.4 0.35]

Performing matrix vector multiplication
The most efficient vectorization operations are matrix manipulations in
which you add and multiply multiple values against other multiple values.
NumPy makes performing multiplication of a vector by a matrix easy, which
is handy if you have to estimate a value for each observation as a weighted
summation of the features. Here’s an example of this technique:

import numpy as np
a = np.array([2, 4, 6, 8])
b = np.array([[1, 2, 3, 4],
 [2, 3, 4, 5],
 [3, 4, 5, 6],
 [4, 5, 6, 7]])
c = np.dot(a, b)
print c

Notice that the array formatted as a vector must appear before the array
formatted as a matrix in the multiplication or you get an error. The example
outputs these values:

[60 80 100 120]

To obtain the values shown, you multiply every value in the array against
the matching column in the matrix — you multiply the first value in the
array against the first column, first row of the matrix. For example, the first
value in the output is 2 * 1 + 4 * 2 + 6 * 3 + 8 * 4, which equals 60.

159 Chapter 8: Putting What You Know in Action

Performing matrix multiplication
You can also multiply one matrix against another. In this case, the output
is the result of multiplying rows in the first matrix against columns in the
second matrix. Here is an example of how you multiply one NumPy matrix
against another:

import numpy as np

a = np.array([[2, 4, 6, 8],
 [1, 3, 5, 7]])
b = np.array ([[1, 2],
 [2, 3],
 [3, 4],
 [4, 5]])
c = np.dot(a, b)
print c

In this case, you end up with a 2 x 2 matrix as output. Here are the values you
should see when you run the application:

[[60 80]
 [50 66]]

Each row in the first matrix is multiplied by each column of the second
matrix. For example, to get the value 50 shown in row 2, column 1 of the
output, you match up the values in row two of matrix a with column 1 of
matrix b, like this: 1 * 1 + 3 * 2 + 5 * 3 + 7 * 4.

160 Part II: Getting Your Hands Dirty with Data

 See an example of how you can plot a sound file at http://www.dummies.com/
extras/pythonfordatascience.

Visualizing the Invisible
Part III

http://www.dummies.com/extras/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience

In this part . . .
 ✓ Creating graphs and charts

 ✓ Changing the appearance of graphs and charts

 ✓ Using scatterplots effectively

 ✓ Working with geographical data and other nontraditional
data types

 ✓ Using the IPython tools to your advantage

Getting a Crash Course
in MatPlotLib

In This Chapter
 ▶ Creating a basic graph

 ▶ Adding measurement lines to your graph

 ▶ Dressing your graph up with styles and color

 ▶ Documenting your graph with labels, annotations, and legends

M
ost people visualize information better when they see it in graphic,
versus textual, format. Graphics help people see relationships and

make comparisons with greater ease. Even if you can deal with the abstrac-
tion of textual data with ease, performing data analysis is all about commu-
nication. Unless you can communicate your ideas to other people, the act
of obtaining, shaping, and analyzing the data has little value beyond your
own personal needs. Fortunately, Python makes the task of converting your
 textual data into graphics relatively easy using MatPlotLib, which is actually
a simulation of the MATLAB application. You can see a comparison of the
two at http://www.pyzo.org/python_vs_matlab.html.

If you already know how to use MATLAB (see my book, MATLAB For Dummies,
published by John Wiley & Sons, Inc., if you’d like to learn), moving over to
MatPlotLib is relatively easy because they both use the same sort of state
machine to perform tasks and they have a similar method of defining graphic
elements. A number of people feel that MatPlotLib is superior to MATLAB
because you can do things like perform tasks using less code when working with
MatPlotLib than when using MATLAB (see http://phillipmfeldman.org/
Python/Advantages_of_Python_Over_Matlab.html). Others have noted
that the transition from MATLAB to MatPlotLib is relatively straightforward
(see https://vnoel.wordpress.com/2008/05/03/bye‐matlab‐hello‐
python‐thanks‐sage/). However, what matters most is what you think. You
may find that you like to experiment with data using MATLAB and then create
applications based on your findings using Python with MatPlotLib. It’s a matter
of personal taste rather than one of a strict correct answer.

Chapter 9

http://www.pyzo.org/python_vs_matlab.html
http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://vnoel.wordpress.com/2008/05/03/bye-matlab-hello-python-thanks-sage/
https://vnoel.wordpress.com/2008/05/03/bye-matlab-hello-python-thanks-sage/

164 Part III: Visualizing the Invisible

This chapter focuses on getting you up to speed quickly with MatPlotLib. You
do use MatPlotLib quite a few times later in the book, so this short overview
of how it works is important, even if you already know how to work with
MATLAB. That said, the MATLAB experience will be incredibly helpful as you
progress through the chapter, and you may find that you can simply skim
through some sections. Make sure to keep this chapter in mind as you start
working with MatPlotLib in more detail later in the book.

You don’t have to type the source code for this chapter manually. In fact, it’s
a lot easier if you use the downloadable source code. The source code for
this chapter appears in the P4DS4D; 09; Getting a Crash Course in
MatPlotLib.ipynb source code file (see the Introduction for where to find
this code).

Starting with a Graph
A graph or chart is simply a visual representation of numeric data. MatPlotLib
makes a large number of graph and chart types available to you. Of course,
you can choose any of the common graph and graph types such as bar
charts, line graphs, or pie charts. As with MATLAB, you also have access to a
huge number of statistical plot types, such as box plots, error bar charts, and
histograms. You can see a gallery of the various graph types that MatPlotLib
supports at http://matplotlib.org/gallery.html. However, it’s
important to remember that you can combine graphic elements in an almost
infinite number of ways to create your own presentation of data no matter
how complex that data might be. The following sections describe how to
create a basic graph, but remember that you have access to a lot more
 functionality than these sections tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you
need some values, the matplotlib.pyplot module, and an idea of what
you want to display, as shown in the following code.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.show()

In this case, the code tells the plt.plot() function to create a plot using
x‐axis values between 1 and 11 and y‐axis values as they appear in values.
Calling plot.show() displays the plot in a separate dialog box, as shown in
Figure 9-1. Notice that the output is a line graph. Chapter 10 shows you how
to create other chart and graph types.

http://matplotlib.org/gallery.html

165 Chapter 9: Getting a Crash Course in MatPlotLib

Drawing multiple lines and plots
You encounter many situations in which you must use multiple plot lines,
such as when comparing two sets of values. To create such plots using
MatPlotLib, you simply call plt.plot() multiple times — once for each plot
line, as shown in the following example.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.plot(range(1,11), values2)
plt.show()

When you run this example, you see two plot lines, as shown in Figure 9-2.
Even though you can’t see it in the printed book, the line graphs are different
colors so that you can tell them apart.

Saving your work
Often you need to save a copy of your work to disk for later reference or to
use as part of a larger report. The easiest way to accomplish this task is to
click Save the Figure (the floppy disk icon in Figure 9-2). You see a dialog box
that you can use to save the figure to disk.

Figure 9-1:
Creating a
basic plot

that shows
just one line.

166 Part III: Visualizing the Invisible

However, you sometimes need to save the graphic automatically rather than
wait for the user to do it. In this case, you can save it programmatically using
the plt.savefig() function, as shown in the following code:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the
filename. You may optionally include a path for saving the file. The second
input is the file format. In this case, the example saves the file in Portable
Network Graphic (PNG) format, but you have other options: Portable
Document Format (PDF), Postscript (PS), Encapsulated Postscript (EPS), and
Scalable Vector Graphics (SVG).

Setting the Axis, Ticks, Grids
It’s hard to know what the data actually means unless you provide a unit of
measure or at least some means of performing comparisons. The use of axes,
ticks, and grids make it possible to illustrate graphically the relative size of
data elements so that the viewer gains an appreciation of comparative mea-
sure. You won’t use these features with every graphic, and you may employ
the features differently based on viewer needs, but it’s important to know
that these features exist and how you can use them to help document your
data within the graphic environment.

Figure 9-2:
Defining

a plot that
contains
multiple

lines.

167 Chapter 9: Getting a Crash Course in MatPlotLib

Getting the axes
The axes define the x and y plane of the graphic. The x axis runs horizon-
tally, and the y axis runs vertically. In many cases, you can allow MatPlotLib
to perform any required formatting for you. However, sometimes you need
to obtain access to the axes and format them manually. The following code
shows how to obtain access to the axes for a plot:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
plt.plot(range(1,11), values)
plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them
directly is to make writing the code simpler and more efficient. In this case,
you simply turn on the default axes by calling plt.axes(); then you place a
handle to the axes in ax. A handle is a sort of pointer to the axes. Think of it
as you would a frying pan. You wouldn’t lift the frying pan directly but would
instead use its handle when picking it up.

Formatting the axes
Simply displaying the axes won’t be enough in many cases. You want to change
the way MatPlotLib displays them. For example, you may not want the highest
value t to reach to the top of the graph. The following example shows just a
small number of tasks you can perform after you have access to the axes:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([‐1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.plot(range(1,11), values)
plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes
limits — the length of each axis. The set_xticks() and set_yticks()
calls change the ticks used to display data. The ways in which you can
change a graph using these calls can become quite detailed. For example, you
can choose to change individual tick labels if you want. Figure 9-3 shows the
output from this example. Notice how the changes affect how the line graph
displays.

168 Part III: Visualizing the Invisible

Adding grids
Grid lines make it possible to see the precise value of each element of a graph.
You can more quickly determine both the x and y coordinate, which allow
you to perform comparisons of individual points with greater ease. Of course,
grids also add noise and make seeing the actual flow of data harder. The point
is that you can use grids to good effect to create particular effects. The follow-
ing code shows how to add a grid to the graph in the previous section:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([‐1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.grid()
plt.plot(range(1,11), values)
plt.show()

All you really need to do is call the grid() function. As with many other
MatPlotLib functions, you can add parameters to create the grid precisely
as you want to see it. For example, you can choose whether to add the x
grid lines, y grid lines, or both. The output from this example appears in
Figure 9-4.

Figure 9-3:
Specifying

how the
axes should

appear to
the viewer.

169 Chapter 9: Getting a Crash Course in MatPlotLib

Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the
viewer understand the importance of your data. In most cases, you need to
use different line styles to ensure that the viewer can tell one data grouping
from another. However, to emphasize the importance or value of a particular
data grouping, you need to employ color. The use of color communicates all
sorts of ideas to the viewer. For example, green often denotes that something
is safe, while red communicates danger. The following sections help you
understand how to work with line style and color to communicate ideas and
concepts to the viewer without using any text.

Figure 9-4:
Adding

grids makes
the values

easier to
read.

Making graphics accessible
Avoiding assumptions about someone’s
ability to see your graphic presentation is
essential. For example, someone who is color
blind may not be able to tell that one line is
green and the other red. Likewise, someone
with low‐vision problems may not be able to

distinguish between a line that is dashed and
one that has a combination of dashes and
dots. Using multiple methods to distinguish
each line helps ensure that everyone can see
your data in a manner that is comfortable to
each person.

170 Part III: Visualizing the Invisible

Working with line styles
Line styles help differentiate graphs by drawing the lines in various ways.
Using a unique presentation for each line helps you distinguish each line so
that you can call it out (even when the printout is in shades of gray). You
could also call out a particular line graph by using a different line style for it
(and using the same style for the other lines). Table 9-1 shows the various
MatPlotLib line styles.

The line style appears as a third argument to the plot() function call. You
simply provide the desired string for the line type, as shown in the following
example.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, '‐‐')
plt.plot(range(1,11), values2, ':')
plt.show()

In this case, the first line graph uses a dashed line style, while the second
line graph uses a dotted line style. You can see the results of the changes in
Figure 9-5.

Using colors
Color is another way in which to differentiate line graphs. Of course, this
method has certain problems. The most significant problem occurs when
someone makes a black‐and‐white copy of your colored graph — hiding
the color differences as shades of gray. Another problem is that someone
with color blindness may not be able to tell one line from the other. All this
said, color does make for a brighter, eye‐grabbing presentation. Table 9-2
shows the colors that MatPlotLib supports.

Table 9-1 MatPlotLib Line Styles
Character Line Style
'‐' Solid line

'‐‐' Dashed line

'‐.' Dash‐dot line

':' Dotted line

171 Chapter 9: Getting a Crash Course in MatPlotLib

As with line styles, the color appears in a string as the third argument to the
plot() function call. In this case, the viewer sees two lines — one in red
and the other in magenta. The actual presentation looks like Figure 9-2, but
with specific colors, rather than the default colors used in that screenshot.
If you’re reading the printed version of the book, Figure 9-2 actually uses
shades of gray.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, 'r')
plt.plot(range(1,11), values2, 'm')
plt.show()

Figure 9-5:
Line styles

help
 differentiate

between
plots.

Table 9-2 MatPlotLib Colors
Character Color
'b' Blue

'g' Green

'r' Red

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White

172 Part III: Visualizing the Invisible

Adding markers
Markers add a special symbol to each data point in a line graph. Unlike line
style and color, markers tend to be a little less susceptible to accessibility
and printing issues. Even when the specific marker isn’t clear, people can
usually differentiate one marker from the other. Table 9-3 shows the list of
markers that MatPlotLib provides.

Table 9-3 MatPlotLib Markers
Character Marker Type
'.' Point

',' Pixel

'o' Circle

'v' Triangle 1 down

'^' Triangle 1 up

'<' Triangle 1 left

'>' Triangle 1 right

'1' Triangle 2 down

'2' Triangle 2 up

'3' Triangle 2 left

'4' Triangle 2 right

's' Square

'p' Pentagon

'*' Star

'h' Hexagon style 1

'H' Hexagon style 2

'+' Plus

'x' X

'D' Diamond

'd' Thin diamond

'|' Vertical line

'_' Horizontal line

173 Chapter 9: Getting a Crash Course in MatPlotLib

As with line style and color, you add markers as the third argument to a
plot() call. In the following example, you see the effects of combining line
style with a marker to provide a unique line graph presentation.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, 'o‐‐')
plt.plot(range(1,11), values2, 'v:')
plt.show()

Notice how the combination of line style and marker makes each line stand
out in Figure 9-6. Even when printed in black and white, you can easily dif-
ferentiate one line from the other, which is why you usually want to combine
presentation techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations,
and legends. Each of these elements has a different purpose, as follows:

 ✓ Label: Provides positive identification of a particular data element or
grouping. The purpose is to make it easy for the viewer to know the
name or kind of data illustrated.

Figure 9-6:
Markers

help to
emphasize

individual
values.

174 Part III: Visualizing the Invisible

 ✓ Annotation: Augments the information the viewer can immediately see
about the data with notes, sources, or other useful information. In con-
trast to a label, the purpose of annotation is to help extend the viewer’s
knowledge of the data rather than simply identify it.

 ✓ Legend: Presents a listing of the data groups within the graph and often
provides cues (such as line type or color) to make identification of the
data group easier. For example, all the red points may belong to group
A, while all the blue points may belong to group B.

The following sections help you understand the purpose and usage of vari-
ous documentation aids provided with MatPlotLib. These documentation
aids help you create an environment in which the viewer is certain as to the
source, purpose, and usage of data elements. Some graphs work just fine
without any documentation aids, but in other cases, you might find that you
need to use all three in order to communicate with your viewer fully.

Adding labels
Labels help people understand the significance of each axis of any graph
you create. Without labels, the values portrayed don’t have any significance.
In addition to a moniker, such as rainfall, you can also add units of measure,
such as inches or centimeters, so that your audience knows how to interpret
the data shown. The following example shows how to add labels to
your graph:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.xlabel('Entries')
plt.ylabel('Values')
plt.plot(range(1,11), values)
plt.show()

The call to xlabel() documents the x axis of your graph, while the call the
ylabel() documents the y axis of your graph. Figure 9-7 shows the output
of this example.

Annotating the chart
You use annotation to draw special attention to points of interest on a graph.
For example, you may want to point out that a specific data point is outside
the usual range expected for a particular dataset. The following example
shows how to add annotation to a graph.

175 Chapter 9: Getting a Crash Course in MatPlotLib

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.annotate(xy=[1,1], s='First Entry')
plt.plot(range(1,11), values)
plt.show()

The call to annotate() provides the labeling you need. You must provide
a location for the annotation by using the xy parameter, as well as provide
text to place at the location by using the s parameter. The annotate()
function also provides other parameters that you can use to create special
formatting or placement onscreen. Figure 9-8 shows the output from
this example.

Creating a legend
A legend documents the individual elements of a plot. Each line is presented
in a table that contains a label for it so that people can differentiate between
each line. For example, one line may represent sales in 2014 and another line
may represent sales in 2015, so you include an entry in the legend for each
line that is labeled 2014 and 2015. The following example shows how to add a
legend to your plot.

Figure 9-7:
Use labels
to identify
the axes.

176 Part III: Visualizing the Invisible

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
line1 = plt.plot(range(1,11), values)
line2 = plt.plot(range(1,11), values2)
plt.legend(['First', 'Second’], loc=4)
plt.show()

The call to legend() occurs after you create the plots, not before, as with
some of the other functions described in this chapter. You must provide a
handle to each of the plots. Notice how line1 is set equal to the first plot()
call and line2 is set equal to the second plot() call.

The default location for the legend is the upper‐right corner of the plot,
which proved inconvenient for this particular example. Adding the loc
parameter lets you place the legend in a different location. See the legend()
function documentation at http://matplotlib.org/api/pyplot_api.
html#matplotlib.pyplot.legend for additional legend locations.
Figure 9-9 shows the output from this example.

Figure 9-8:
Annotation

can identify
points of
interest.

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

177 Chapter 9: Getting a Crash Course in MatPlotLib

Figure 9-9:
Use legends

to identify
 individual

lines.

178 Part III: Visualizing the Invisible

Visualizing the Data
In This Chapter

 ▶ Selecting the right graph for the job

 ▶ Working with advanced scatterplots

 ▶ Exploring time‐related data

 ▶ Exploring geographical data

 ▶ Creating graphs

C
hapter 9 helped you understand the mechanics of working with
MatPlotLib, which is an important first step toward using it. This

 chapter takes the next step in helping you use MatPlotLib to perform useful
work. The main goal of this chapter is to help you visualize your data in
 various ways. Creating a graphic presentation of your data is essential if you
want to help other people understand what you’re trying to say. Even though
you can see what the numbers mean in your mind, other people will likely
need graphics to see what point you’re trying to make by manipulating data
in various ways.

The chapter starts by looking at some basic graph types that MatPlotLib
 supports. You don’t find the full list of graphs and plots listed in this chapter —
it could take an entire book to explore them all in detail. However, you do find
the most common types.

In the remainder of the chapter, you begin exploring specific sorts of plot-
ting as it relates to data science. Of course, no book on data science would
be complete without exploring scatterplots, which are used to help people
see patterns in seemingly unrelated data points. Because much of the data
that you work with today is time related or geographic in nature, the chapter
devotes two special sections to these topics. You also get to work with both
directed and undirected graphs, which is fine for social media analysis.

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source. The source code for this chapter
appears in the P4DS4D; 10; Visualizing the Data.ipynb source code
file (see the Introduction for details on how to find that source file).

Chapter 10

180 Part III: Visualizing the Invisible

Choosing the Right Graph
The kind of graph you choose determines how people view the associated
data, so choosing the right graph from the outset is important. For example,
if you want to show how various data elements contribute toward a whole,
you really need to use a pie chart. On the other hand, when you want people
to form opinions on how data elements compare, you use a bar chart. The
idea is to choose a graph that naturally leads people to draw the conclusion
that you need them to draw about the data that you’ve carefully massaged
from various data sources. (You also have the option of using line graphs — a
technique demonstrated in Chapter 9.) The following sections describe the
various graph types and provide you with basic examples of how to use them.

Showing parts of a whole with pie charts
Pie charts focus on showing parts of a whole. The entire pie would be 100
percent. The question is how much of that percentage each value occupies.
The following example shows how to create a pie chart with many of the
 special features in place:

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]
colors = ['b', 'g', 'r', 'c', 'm', 'y']
labels = ['A', 'B', 'C', 'D', 'E', 'F']
explode = (0, 0.2, 0, 0, 0, 0)

plt.pie(values, colors=colors, labels=labels,
 explode=explode, autopct='%1.1f%%',
 counterclock=False, shadow=True)
plt.title('Values')

plt.show()

The essential part of a pie chart is the values. You could create a basic pie
chart using just the values as input.

The colors parameter lets you choose custom colors for each pie wedge.
You use the labels parameter to identify each wedge. In many cases, you
need to make one wedge stand out from the others, so you add the explode
parameter with list of explode values. A value of 0 keeps the wedge in
place — any other value moves the wedge out from the center of the pie.

Each pie wedge can show various kinds of information. This example shows
the percentage occupied by each wedge with the autopct parameter. You
must provide a format string to format the percentages.

181 Chapter 10: Visualizing the Data

Some parameters affect how the pie chart is drawn. Use the counterclock
parameter to determine the direction of the wedges. The shadow param-
eter determines whether the pie appears with a shadow beneath it (for a 3D
effect). You can find other parameters at http://matplotlib.org/api/
pyplot_api.html.

In most cases, you also want to give your pie chart a title so that others
know what it represents. You do this using the title() function. Figure 10-1
shows the output from this example.

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one
value to another as a line graph would do. Fortunately, you have all sorts of
methods at your disposal for emphasizing specific values and performing other
tricks. The following example shows just some of the things you can do with a
vertical bar chart.

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]
widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]
colors = ['b', 'r', 'b', 'b', 'b', 'b']
plt.bar(range(0, 6), values, width=widths,
 color=colors, align='center')

plt.show()

Figure 10-1:
Pie charts

show a
 percentage

of the
whole.

http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/api/pyplot_api.html

182 Part III: Visualizing the Invisible

To create even a basic bar chart, you must provide a series of x coordinates
and the heights of the bars. The example uses the range() function to
create the x coordinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and MatPlotLib pro-
vides a number of ways to get the job done. In this case, the example uses the
width parameter to control the width of each bar, emphasizing the second
bar by making it slightly larger. The larger width would show up even in a
black‐and‐white printout. It also uses the color parameter to change the
color of the target bar to red (the rest are blue).

As with other chart types, the bar chart provides some special features
that you can use to make your presentation stand out. The example uses
the align parameter to center the data on the x coordinate (the standard
position is to the left). You can also use other parameters, such as hatch,
to enhance the visual appearance of your bar chart. Figure 10-2 shows the
output of this example.

This chapter helps you get started using MatPlotLib to create a variety of
chart and graph types. Of course, more examples are better, so you can
also find some more advanced examples on the MatPlotLib site at http://
matplotlib.org/1.2.1/examples/index.html. Some of the examples,
such as those that demonstrate animation techniques, become quite
advanced, but with practice you can use any of them to improve your own
charts and graphs.

Figure 10-2:
Bar charts

make it
easier to
perform

compari-
sons.

http://matplotlib.org/1.2.1/examples/index.html
http://matplotlib.org/1.2.1/examples/index.html

183 Chapter 10: Visualizing the Data

Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains
a subset of the data range. A histogram then displays the number of items
in each bin so that you can see the distribution of data and the progression
of data from bin to bin. In most cases, you see a curve of some type, such as
a bell curve. The following example shows how to create a histogram with
 randomized data:

import numpy as np
import matplotlib.pyplot as plt

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(‐50, 50), histtype='stepfilled',
 align='mid', color='g', label='Test Data')
plt.legend()
plt.title('Step Filled Histogram')
plt.show()

In this case, the input values are a series of random numbers. The distribu-
tion of these numbers should show a type of bell curve. As a minimum, you
must provide a series of values, x in this case, to plot. The second argument
contains the number of bins to use when creating the data intervals. The
default value is 10. Using the range parameter helps you focus the histogram
on the relevant data and exclude any outliers.

You can create multiple histogram types. The default setting creates a bar
chart. You can also create a stacked bar chart, stepped graph, or filled
stepped graph (the type shown in the example). In addition, it’s possible to
control the orientation of the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special
features to the output. For example, the align parameter determines the
alignment of each bar along the baseline. Use the color parameter to
control the colors of the bars. The label parameter doesn’t actually
appear unless you also create a legend (as shown in this example).
Figure 10-3 shows typical output from this example.

Random data varies call by call. Every time you run the example, you
see slightly different results because the random‐generation process
differs.

184 Part III: Visualizing the Invisible

Depicting groups using box plots
Box plots provide a means of depicting groups of numbers through their
quartiles (three points dividing a group into four equal parts). A box plot may
also have lines, called whiskers, indicating data outside the upper and lower
quartiles. The spacing shown within a box plot helps indicate the skew and
dispersion of the data. The following example shows how to create a box plot
with randomized data.

import numpy as np
import matplotlib.pyplot as plt

spread = 100 * np.random.rand(100)
center = np.ones(50) * 50
flier_high = 100 * np.random.rand(10) + 100
flier_low = ‐100 * np.random.rand(10)
data = np.concatenate((spread, center,
 flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)
plt.show()

To create a usable dataset, you need to combine several different number‐
generation techniques, as shown at the beginning of the example. Here are
how these techniques work:

 ✓ spread: Contains a set of random numbers between 0 and 100

 ✓ center: Provides 50 values directly in the center of the range of 50

Figure 10-3:
Histograms
let you see

distributions
of numbers.

185 Chapter 10: Visualizing the Data

 ✓ flier_high: Simulates outliers between 100 and 200

 ✓ flier_low: Simulates outliers between 0 and –100

The code combines all these values into a single dataset using concatenate().
Being randomly generated with specific characteristics (such as a large number
of points in the middle), the output will show specific characteristics but will
work fine for the example.

The call to boxplot()requires only data as input. All other parameters
have default settings. In this case, the code sets the presentation of outliers
to green Xs by setting the sym parameter. You use widths to modify the
size of the box (made extra large in this case to make the box easier to see).
Finally, you can create a square box or a box with a notch using the notch
parameter (which normally defaults to False). Figure 10-4 shows typical
output from this example.

The box shows the three data points as the box, with the red line in the middle
being the median. The two black horizontal lines connected to the box by
whiskers show the upper and lower limits (for four quartiles). The outliers
appear above and below the upper and lower limit lines as green Xs.

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or
discrete values (as with bar charts). The purpose of a scatterplot is to help

Figure 10-4:
Use box
plots to
present

groups of
numbers.

186 Part III: Visualizing the Invisible

you see data patterns. The following example shows how to create a scatter-
plot using randomized data:

import numpy as np
import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)
y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)
y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')
plt.show()

The example begins by generating random x and y coordinates. For each
x coordinate, you must have a corresponding y coordinate. It’s possible to
create a scatterplot using just the x and y coordinates.

It’s possible to dress up a scatterplot in a number of ways. In this case, the
s parameter determines the size of each data point. The marker parameter
determines the data point shape. You use the c parameter to define the
colors for all the data points, or you can define a separate color for individual
data points. Figure 10-5 shows the output from this example.

Figure 10-5:
Use

 scatterplots
to show

groups of
data points

and their
associated

patterns.

187 Chapter 10: Visualizing the Data

Creating Advanced Scatterplots
Scatterplots are especially important for data science because they can show
data patterns that aren’t obvious when viewed in other ways. You can see
data groupings with relative ease and help the viewer understand when data
belongs to a particular group. You can also show overlaps between groups
and even demonstrate when certain data is outside the expected range.
Showing these various kinds of relationships in the data is an advanced tech-
nique that you need to know in order to make the best use of MatPlotLib. The
following sections demonstrate how to perform these advanced techniques
on the scatterplot you created earlier in the chapter.

Depicting groups
Color is the third axis when working with a scatterplot. Using color lets you
highlight groups so that others can see them with greater ease. The following
example shows how you can use color to show groups within a scatterplot:

import numpy as np
import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(50)
x2 = 5 * np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)
x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(50)
y2 = 5 * np.random.rand(50) + 25
y3 = 30 * np.random.rand(25)
y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[50], marker='D', c=color_array)
plt.show()

The example works essentially the same as the scatterplot example in the
previous section, except that this example uses an array for the colors.
Unfortunately, if you’re seeing this in the printed book, the differences
between the shades of gray in Figure 10-6 will be hard to see. However, the
first group is blue, followed by green for the second group. Any outliers
appear in red.

188 Part III: Visualizing the Invisible

Showing correlations
In some cases, you need to know the general direction that your data is
taking when looking at a scatterplot. Even if you create a clear depiction of
the groups, the actual direction that the data is taking as a whole may not
be clear. In this case, you add a trendline to the output. Here’s an example
of adding a trendline to a scatterplot that includes groups but isn’t quite as
clear as the scatterplot shown previously in Figure 10-6.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as plb

x1 = 15 * np.random.rand(50)
x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(30)
x = np.concatenate((x1, x2, x3))

y1 = 15 * np.random.rand(50)
y2 = 15 * np.random.rand(50) + 15
y3 = 30 * np.random.rand(30)
y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[90], marker='*', c=color_array)

Figure 10-6:
Color arrays

can make
the scatter-
plot groups

stand out
better.

189 Chapter 10: Visualizing the Data

z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plb.plot(x, p(x), 'm‐')

plt.show()

The code for creating the scatterplot is essentially the same as in the example
in the “Depicting groups” section, earlier in the chapter, but the plot doesn’t
define the groups as clearly. Adding a trendline means calling the NumPy
polyfit() function with the data, which returns a vector of coefficients, p,
that minimizes the least squares error. (Least square regression is a method
for finding a line that summarizes the relationship between two variables, x
and y in this case, at least within the domain of the explanatory variable x.
The third polyfit() parameter expresses the degree of the polynomial fit.)

The vector output of polyfit() is used as input to poly1d(), which calcu-
lates the actual y‐axis data points. The call to plot() creates the trendline
on the scatterplot. You can see a typical result of this example in Figure 10-7.

Plotting Time Series
Nothing is truly static. When you view most data, you see an instant of time —
a snapshot of how the data appeared at one particular moment. Of course,
such views are both common and useful. However, sometimes you need to
view data as it moves through time — to see it as it changes. Only by viewing

Figure 10-7:
Scatterplot
trendlines
can show

you the
general data

direction.

190 Part III: Visualizing the Invisible

the data as it changes can you expect to understand the underlying forces
that shape it. The following sections describe how to work with data on a
time‐related basis.

Representing time on axes
Many times, you need to present data over time. The data could come in
many forms, but generally you have some type of time tick (one unit of time),
followed by one or more features that describe what happens during that
particular tick. The following example shows a simple set of days and sales
on those days for a particular item in whole (integer) amounts.

import datetime as dt
import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2015, 7,1)
end_date = dt.datetime(2015, 7,10)
daterange = pd.date_range(start_date, end_date)

for single_date in daterange:
 row = dict(zip(['Time', 'Sales'],
 [single_date,
 int(50*np.random.rand(1))]))
 row_s = pd.Series(row)
 row_s.name = single_date.strftime('%b %d')
 df = df.append(row_s)

df.ix['Jul 01':'Jul 07', ['Time', 'Sales']].plot()
plt.ylim(0, 50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.show()

The example begins by creating a DataFrame to hold the information. The
source of the information could be anything, but the example generates it
randomly. Notice that the example creates a date_range to hold the start-
ing and ending date time frame for easier processing using a for loop.

An essential part of this example is the creation of individual rows. Each row
has an actual time value so that you don’t lose information. However, notice
that the index (row_s.name property) is a string. This string should appear
in the form that you want the dates to appear when presented in the plot.

191 Chapter 10: Visualizing the Data

Using ix[] lets you select a range of dates from the total number of entries
available. Notice that this example uses only some of the generated data for
output. It then adds some amplifying information about the plot and displays it
onscreen. Figure 10-8 show typical output from the randomly generated data.

Plotting trends over time
As with any other data presentation, sometimes you really can’t see what
direction the data is headed in without help. The following example starts
with the plot from the previous section and adds a trendline to it:

import datetime as dt
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pylab as plb

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2015, 7,1)
end_date = dt.datetime(2015, 7,10)
daterange = pd.date_range(start_date, end_date)

for single_date in daterange:
 row = dict(zip(['Time', 'Sales'],
 [single_date,
 int(50*np.random.rand(1))]))

Figure 10-8:
Use line

graphs to
show the

flow of data
over time.

192 Part III: Visualizing the Invisible

 row_s = pd.Series(row)
 row_s.name = single_date.strftime('%b %d')
 df = df.append(row_s)

df.ix['Jul 01':'Jul 10', ['Time', 'Sales']].plot()

z = np.polyfit(range(0, 10),
 df.as_matrix(['Sales']).flatten(), 1)

p = np.poly1d(z)
plb.plot(df.as_matrix(['Sales']),
 p(df.as_matrix(['Sales'])), 'm‐')

plt.ylim(0, 50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.legend(['Sales', 'Trend'])
plt.show()

The technique for adding the trendline is the same as for the example in the
“Showing correlations” section, earlier in this chapter, with some interesting
differences. Because the data appears within a DataFrame, you must export
it using as_matrix() and then flatten the resulting array using flatten()
before you can use it as input to polyfit(). Likewise, you must export the
data before you can call plot() to display the trendline onscreen.

When you plot the initial data, the call to plot() automatically generates a
legend for you. MatPlotLib doesn’t automatically add the trendline, so you
must also create a new legend for the plot. Figure 10-9 shows typical output
from this example using randomly generated data.

Figure 10-9:
Add a trend-
line to show
the average
direction of

change in
a chart or

graph.

193 Chapter 10: Visualizing the Data

Plotting Geographical Data
Knowing where data comes from or how it applies to a specific place can
be important. For example, if you want to know where food shortages have
occurred and plan how to deal with them, you need to match the data you
have to geographical locations. The same holds true for predicting where
future sales will occur. You may find that you need to use existing data to
determine where to put new stores. Otherwise, you could put a store in a
location that won’t receive much in the way of sales, and the effort will lose
money rather than make it. The following example shows how to draw a map
and place pointers to specific locations on it:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

austin = (‐97.75, 30.25)
hawaii = (‐157.8, 21.3)
washington = (‐77.01, 38.90)
chicago = (‐87.68, 41.83)
losangeles = (‐118.25, 34.05)

m = Basemap(projection='merc',llcrnrlat=10,urcrnrlat=50,
 llcrnrlon=‐160,urcrnrlon=‐60)

m.drawcoastlines()
m.fillcontinents(color='lightgray',lake_color='lightblue')
m.drawparallels(np.arange(‐90.,91.,30.))
m.drawmeridians(np.arange(‐180.,181.,60.))
m.drawmapboundary(fill_color='aqua')

m.drawcountries()

x, y = m(*zip(*[hawaii, austin, washington,
 chicago, losangeles]))
m.plot(x, y, marker='o', markersize=6,
 markerfacecolor='red', linewidth=0)

plt.title("Mercator Projection")
plt.show()

The example begins by defining the longitude and latitude for various cities.
It then creates the basic map. The projection parameter defines the
basic map appearance. The next four parameters, llcrnrlat, urcrnrlat,
llcrnrlon, and urcrnrlon define the sides of the map. You can define
other parameters, but these parameters generally create a useful map.

194 Part III: Visualizing the Invisible

The next set of calls defines the map particulars. For example, drawcoast-
lines() determines whether the coastlines are highlighted to make them
easy to see. To make landmasses easy to discern from water, you want to
call fillcontinents() with the colors of your choice. When working with
specific locations, as the example does, you want to call drawcountries()
to ensure that the country boundaries appear on the map. At this point, you
have a map that’s ready to fill in with data.

In this case, the example creates x and y coordinates using the previously
stored longitude and latitude values. It then plots these locations on the map
in a contrasting color so that you can easily see them. The final step is to
 display the map, as shown in Figure 10-10.

Figure 10-10:
Maps can

illustrate
data in

ways other
 graphics

can’t.

Getting the Basemap Toolkit
Before you can work with mapping data, you
need a library that supports the required
mapping functionality. A number of such
packages are available, but the easiest
to work with and install is the Basemap
Toolkit. You can obtain this toolkit from
http://matplotlib.org/basemap/
users/intro.html. The site includes
supplementary information about the toolkit

and provides download instructions. Unlike
some other packages, this one does include
instructions for Mac, Windows, and Linux users.
In addition, you can obtain a Windows‐specific
installer. Make sure to also check out the usage
video at http://nbviewer.ipython.
org/github/mqlaql/geospatial‐
data/blob/master/Geospatial‐
Data‐with‐Python.ipynb.

http://matplotlib.org/basemap/users/intro.html
http://matplotlib.org/basemap/users/intro.html
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb

195 Chapter 10: Visualizing the Data

Visualizing Graphs
A graph is a depiction of data showing the connections between data points
using lines. The purpose is to show that some data points relate to other data
points, but not all the data points that appear on the graph. Think about a
map of a subway system. Each of the stations connects to other stations, but
no single station connects to all the stations in the subway system. Graphs
are a popular data science topic because of their use in social media analysis.
When performing social media analysis, you depict and analyze networks of
relationships, such as friends or business connections, from social hubs such
as Facebook, Google+, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph
simply shows lines between data elements, and directed, where arrows added
to the line show that data flows in a particular direction. For example, con-
sider a depiction of a water system. The water would flow in just one direc-
tion in most cases, so you could use a directed graph to depict not only the
connections between sources and targets for the water but also to show
water direction by using arrows. The following sections help you understand
the two types of graphs better and show you how to create them.

Developing undirected graphs
As previously stated, an undirected graph simply shows connections between
nodes. The output doesn’t provide a direction from one node to the next. For
example, when establishing connectivity between web pages, no direction is
implied. The following example shows how to create an undirected graph.

import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph()
H = nx.Graph()
G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 7))
H.add_node(7)
G.add_nodes_from(H)

G.add_edge(1, 2)
G.add_edge(1, 1)
G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])
H.add_edges_from([(4,7), (5,7), (6,7)])
G.add_edges_from(H.edges())

nx.draw_networkx(G)
plt.show()

196 Part III: Visualizing the Invisible

In contrast to the canned example found in the “Using NetworkX basics”
section of Chapter 7, this example builds the graph using a number of
 different techniques. It begins by importing the Networkx package you
use in Chapter 7. To create a new undirected graph, the code calls the
Graph() constructor, which can take a number of input arguments to use
as attributes. However, you can build a perfectly usable graph without using
 attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number.
You can also add a list, dictionary, or range() of nodes using add_nodes_
from(). In fact, you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have
to use numbers for your nodes. A node can use a single letter, a string, or
even a date. Nodes do have some restrictions. For example, you can’t create
a node using a Boolean value.

Nodes don’t have any connectivity at the outset. You must define connections
(edges) between them. To add a single edge, you call add_edge() with
the numbers of the nodes that you want to add. As with nodes, you can use
add_edges_from() to create more than one edge using a list, dictionary,
or another graph as input. Figure 10-11 shows the output from this example
(your output may differ slightly but should have the same connections).

Figure 10-11:
Undirected

graphs
 connect

nodes
together

to form
 patterns.

197 Chapter 10: Visualizing the Data

Developing directed graphs
You use directed graphs when you need to show a direction, say from a start
point to an end point. When you get a map that shows you how to get from
one specific point to another, the starting node and ending node are marked
as such and the lines between these nodes (and all the intermediate nodes),
show direction.

Your graphs need not be boring. You can dress them up in all sorts of ways
so that the viewer gains additional information in different ways. For example,
you can create custom labels, use specific colors for certain nodes, or rely
on color to help people see the meaning behind your graphs. You can also
change edge line weight and use other techniques to mark a specific path
between nodes as the better one to choose. The following example shows
many (but not nearly all) the ways in which you can dress up a directed graph
and make it more interesting:

import networkx as nx
import matplotlib.pyplot as plt

G = nx.DiGraph()

G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 6))
G.add_path([6, 7, 8])

G.add_edge(1, 2)
G.add_edges_from([(1,4), (4,5), (2,3), (3,6), (5,6)])

colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']
labels = {1:'Start', 2:'2', 3:'3', 4:'4',
 5:'5', 6:'6', 7:'7', 8:'End'}
sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx.draw_networkx(G, node_color=colors, node_shape='D',
 with_labels=True, labels=labels,
 node_size=sizes)
plt.show()

The example begins by creating a directional graph using the DiGraph()
constructor. You should note that the NetworkX package also supports
MultiGraph() and MultiDiGraph() graph types. You can see a list-
ing of all the graph types at http://networkx.lanl.gov/reference/
classes.html.

http://networkx.lanl.gov/reference/classes.html
http://networkx.lanl.gov/reference/classes.html

198 Part III: Visualizing the Invisible

Adding nodes is much like working with an undirected graph. You can add
single nodes using add_node() and multiple nodes using add_nodes_from().
The add_path() call lets you create nodes and edges at the same time. The
order of nodes in the call is important. The flow from one node to another is
from left to right in the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too.
You can use add_edge() to add a single edge or add_edges_from() to
add multiple edges at one time. However, the order of the node numbers is
important. The flow goes from the left node to the right node in each pair.

This example adds special node colors, labels, shape (only one shape is
used), and sizes to the output. You still call on draw_networkx() to perform
the task. However, adding the parameters shown changes the appearance
of the graph. Note that you must set with_labels to True in order to see
the labels provided by the labels parameter. Figure 10-12 shows the output
from this example.

Figure 10-12:
Use directed

graphs
to show

direction
between

nodes.

Understanding the Tools
In This Chapter

 ▶ Working with the IPython console

 ▶ Working with IPython Notebook

 ▶ Interacting with multimedia and graphics

U
p to this point, the book spends a lot of time working with Python
to perform data science tasks without actually engaging the tools

 provided by Anaconda much. Yes, a good deal of what you do involves typing
in code and seeing what happens. However, if you don’t actually know how
to use your tools well, you miss opportunities to perform tasks easier and
faster. Automation is an essential part of performing data science tasks in
Python.

This chapter is about working with the two main Anaconda tools, IPython
console and IPython Notebook. Earlier chapters give you some experience
with both tools, but those chapters don’t explore either tool in any detail, and
you need to know these tools a lot better for upcoming chapters. The skills
you develop in this chapter will help you perform tasks in later chapters with
greater speed and far less effort.

The chapter also looks at tasks you can perform with your newfound skills.
You develop even more skills as the book progresses, but these tasks help
put your new skills into perspective and appreciate how you can use them to
make working with Python even easier.

You don’t have to manually type the source code for this chapter. In fact,
it’s a lot easier if you use the downloadable source. The source code for this
chapter appears in the P4DS4D; 11; Understanding the Tools.ipynb
source code file. (See the Introduction for details on where to locate this file.)

Chapter 11

200 Part III: Visualizing the Invisible

Using the IPython Console
The Python console is where you can experiment with data science inter-
actively. You can try things and see the results immediately. If you make a
mistake, you can simply close the console and create a new one. The console
is for playing around and considering what might be possible. The following
sections help you understand what you can do to make your IPython console
experience better.

The standard Python console and the IPython console look similar, and you
can perform many of the same tasks using them. If you already know how to
use the Python console, you have an advantage when it comes to working
with the IPython console. However, they also have differences. The IPython
console provides enhancements that don’t come with the Python console.
In addition, performing certain tasks, such as pasting large amounts of text,
differs between the two consoles, so even if you know how to use the Python
console, reading the sections that follow will help you.

Interacting with screen text
When you first start IPython, you see a screen similar to the one shown in
Figure 11-1. The screen seems loaded with text, but all of it provides useful
information. The top three lines tell you about your version of Python and
Anaconda. Below that are three help terms (copyright, credits, and license)
that you can type to obtain more information about your version of these
two products. For example, when you type credits and press Enter, you see a
 listing of the contributors to this version of the product.

Figure 11-1:
The open-
ing screen

provides
information

on where
to get addi-
tional help.

201 Chapter 11: Understanding the Tools

Below the product text, you see another text area containing information
about IPython. The four commands that follow, ?, %quickref, help, and
object? tell you how to obtain additional information about

 ✓ Using IPython to perform useful work

 ✓ Obtaining information about the magic functions that IPython provides

 ✓ Learning about the Python programming language

 ✓ Discovering facts about the packages, objects, and methods you use in
Python to interact with data

Depending on your operating system, you should be able to right‐click the
IPython window and see a context menu containing options for working with
the text in the window. Figure 11-2 shows the context menu for Windows.
This menu is important because it lets you interact with the text and copy
the results of your experimentation in a more permanent form.

You can obtain access to the same menu of options by choosing the System
menu (click the icon in the upper‐left corner of the window) and selecting the
Edit menu. The options you commonly see are the following:

 ✓ Mark: Selects the specific text you want to copy.

 ✓ Copy: Places the text you have marked onto the Clipboard (you can also
press Enter after marking the text to perform a copy).

 ✓ Paste: Moves text from the Clipboard to the window. Unfortunately, this
command doesn’t work right with IPython for copying multiple lines of
text. Use the %paste magic function to copy multiple lines of text instead.

 ✓ Select All: Performs a mark on all the text visible in the window.

 ✓ Scroll: Makes it possible to scroll the window when using the arrow
keys. Press Enter to stop scrolling.

 ✓ Find: Displays a Find dialog box that you can use to locate text anywhere
in the screen buffer. This is actually an exceptionally useful command
because you can quickly locate text that you previously entered and
want to reuse in some way.

Figure 11-2:
You can

cut, copy,
and paste
text using

this context
menu.

202 Part III: Visualizing the Invisible

One feature that IPython provides that you don’t find when working with
the standard Python console is cls, or clear screen. To clear the screen and
make typing new commands easier, simply type cls and press Enter.

Changing the window appearance
The Windows console lets you change the IPython window appearance with
ease. Depending on the console and platform you use, you may find that you
have other options as well. If your console doesn’t provide any flexibility in
changing the IPython appearance, you can still do so using a magic function
as described in the “Using magic functions” section later in the chapter to
change the window appearance.

To change the Windows console, click the system menu and choose
Properties. You see a dialog box like the one shown in Figure 11-3.

Each tab controls a different aspect of the window appearance. Even though
you’re working with IPython, the underlying console still affects what you
see. Here are the purposes for each of the tabs shown in Figure 11-3:

 ✓ Options: Determines the size of the cursor (a large cursor works better
in bright settings), how many commands the window remembers, and
how editing works (such as whether you’re in Insert mode).

 ✓ Font: Defines the font used to display text in the window. The Raster
Fonts option appears to work best for most people, but trying other font
options may help you see the text better under certain conditions.

Figure 11-3:
The

Properties
dialog box

makes it
 possible to
control the

appearance
of your

 window.

203 Chapter 11: Understanding the Tools

 ✓ Layout: Specifies the window size, position onscreen, and size of the
buffer used to hold information that scrolls out of view. If you find that
old commands scroll off too quickly, increasing the size of the window
can help. Likewise, if you find that you can’t locate older commands,
increasing the size of the buffer can help.

 ✓ Colors: Determines the basic color settings for the window. The default
setting of a black background with gray text is hard for many people to
use. Using a white background with black text is much easier. However,
you need to choose the color settings that work best for you. These colors
are augmented by the colors used by the %colors magic function.

Getting Python help
No one can remember absolutely everything about a programming language.
Even the best coders have memory lapses. This is why having language‐
specific help is so important. Without this help, programmers would spend
a great deal of time researching packages, classes, methods, and properties
online. Yes, they’ve used them in the past, but they can’t quite bring the
required information to mind today.

The Python portion of the IPython console provides two methods of getting
help: help mode and interactive help. You use help mode when you want to
explore the language and plan to spend some while doing it. Interactive help
is better when you know specifically what you need help with and don’t want
to spend a lot of time looking at other sorts of information. The following sec-
tions tell you how to get help on the Python language whenever you need it.

Entering help mode
To enter help mode, type help() and press Enter. The console enters a new
mode, in which you can type help‐related commands as needed to discover
more about Python. You can’t type Python commands in this mode. The
prompt changes to a help> prompt, as shown in Figure 11-4, to remind you
that you’re in help mode.

Figure 11-4:
Help mode

relies on
a special

help>
prompt.

204 Part III: Visualizing the Invisible

To obtain help about any object or command, simply type the object or
command name and press Enter. You can also type any of the following
 commands to obtain a listing of other topics of discussion.

 ✓ modules: Compiles a list of the currently loaded modules. This list
varies by how your copy of Python is configured at any given time,
so the list won’t be the same every time you use this command. The
 command can take a while to execute, and the output list is usually quite
large (unlike the standard Python console, in which the list is relatively
small). In some cases, the command actually fails because of the way in
which Anaconda interacts with Python.

 ✓ keywords: Presents a list of Python keywords that you can ask about.
For example, you can type assert and learn more about the assert
 keyword.

 ✓ topics: Displays a list of general Python topics, such as CONVERSIONS.
The topics appear in uppercase rather than lowercase.

Requesting help in help mode
To obtain help in help mode, you simply type the name of the module,
 keyword, or topic you want to learn more about and press Enter. Help mode
is Python specific, which means that you can ask about a list, but not an
object based on a list named mylist. You also can’t ask about IPython‐
specific features, such as the cls command.

When working with features that are part of a module, you need to include
the module name. For example, if you want to find out about the version()
method within the sys module, you type sys.version and press Enter at the
help prompt, rather than just type version.

If a help topic is too large to present as a single screen of information, you
see ‐‐ More ‐‐ at the bottom of the display. Press Enter to advance the help
information one line at a time or the spacebar to advance the help informa-
tion a full screen a time. You can’t go backward in the help listing. Pressing Q
ends the help information immediately.

Exiting help mode
After you finish exploring help, you need to get back to the Python prompt to
type more commands. Simply press Enter without entering anything at the
help prompt or type quit and press Enter at the help prompt.

Getting interactive help
Sometimes you don’t want to leave the Python prompt to get help. In this
case, you can type help('<topic>') and press Enter to obtain help

205 Chapter 11: Understanding the Tools

information. For example, to receive help on the print command, you type
help('print') and press Enter. Notice that the help topic is in single quota-
tion marks. If you try to request help without enclosing the topic in single
 quotation marks, you see an error message.

Interactive help works with any module, keyword, or topic that Python
supports. For example, you can type help('CONVERSIONS') and press
Enter to receive help about the CONVERSIONS topic. It’s important to note
that case is still important when working with interactive help. Typing
help('conversions') and pressing Enter displays a message telling you that
help isn’t available.

Getting IPython help
Getting help with IPython is different from getting help with Python. When
you obtain IPython help, you work with the development environment
rather than the programming language. To obtain IPython help, type ? and
press Enter. You see a long listing of the various ways in which you can use
IPython help.

Some of the more essential forms of help rely on typing a keyword with
a question mark. For example, if you want to learn more about the cls
 command, you type cls? or ?cls and press Enter. It doesn’t matter
whether the question mark appears before or after the command.

Interestingly enough, you can kick IPython help up a notch. If you want to
obtain more details about a command or other IPython feature, use two
question marks. For example, ??cls displays the source code for the cls
command. The double question mark (??) may not always return additional
information if there isn’t any more information to find.

If you want to stop displaying IPython information early, press Q to quit.
Otherwise, you can press Space or Enter to display each screen of information
until the help system has displayed everything available.

Using magic functions
It’s amazing to think that you really can get magic on your computer! IPython
provides a special feature called magic functions. The functions let you
 perform all sorts of amazing tasks with your IPython console. The following
sections provide an overview of the magic functions. You do see some of them
used later in the book as well. However, it pays to spend some time checking
out these functions for yourself.

206 Part III: Visualizing the Invisible

Obtaining the magic functions list
The best way to start working with magic functions is to obtain a list of them
by typing %quickref and pressing Enter. What you see is a help screen similar
to the one shown in Figure 11-5. The listing can be a little confusing to read,
so make sure you take your time with it.

Working with magic functions
Most magic functions start with either a single percent sign (%) or two percent
signs (%%). Those with a single percent sign work at the command‐line level,
while those that have two percent signs work at the cell level. The IPython
Notebook discussion later in the chapter talks more about cells. For now, all
you really need to know is that you generally use magic functions with a single
percent sign within the IPython console.

Most of the magic functions display status information when you use them
by themselves. For example, when you type %cd and press Enter, you see
the current directory. To change directories, you type %cd plus the new
directory location on your system. There are some exceptions to this rule,
however. For example, %cls clears the screen when used alone because it
doesn’t take any parameters.

One of the more interesting magic functions is %colors. You can use this
function to change the colors used to display information onscreen, which
is helpful when you use various devices. The available options are NoColor
(everything is in black and white), Linux (the default setting), and LightBG
(which uses a blue‐and‐green color scheme). This particular function is
another exception to the rule. Typing %colors alone doesn’t display the
 current color scheme but displays an error message instead.

Figure 11-5:
Take your
time going

through
the magic

 function
help; it has

a lot of
 information.

207 Chapter 11: Understanding the Tools

Discovering objects
Python is all about objects. In fact, you can’t do anything in Python without
working with some sort of object. With this in mind, it’s a good idea to know
how to discover precisely what object you’re working with and what features
it provides. The following sections help you discover the Python objects you
use as you code.

Getting object help
With IPython, you can request information about specific objects using the
object name and a question mark (?). For example, if you want to know more
about a list object named mylist, simply type mylist? and press Enter.
You see output showing the mylist type, content in string form, length, and
a document string providing a quick overview of mylist.

When you need detailed help about mylist, you type help(mylist) and press
Enter instead. You see the same help that you should when requesting infor-
mation about the Python list. However, you receive the information that’s
appropriate to the particular object you need help with, rather than having to
first discover the object type and then request information for that object.

Obtaining object specifics
The dir() function is often overlooked, but it’s an essential way to learn
about object specifics. To see a list of properties and methods associated
with any object, use dir(<object name>). For example, if you create a list
called mylist and want to know what sorts of things you can do with it, type
dir(mylist) and press Enter. IPython displays a list of methods and properties
that are specific to mylist.

Using IPython object help
Python provides one level of help about your objects — and IPython provides
another. When you want to know more about your object than Python tells
you, try using the question mark with it. For example, when working with a
list named mylist, you can type mylist? and press Enter to discover the
object type, content, length, and associated docstring. The docstring
provides you with a quick overview of usage information for the type —
enough that you can find more details with what you now know about the
object.

Using a single question mark does cause IPython to clip long content. If you
want to obtain the full content for an object, you need to use the double
question mark (??). For example, type mylist?? and press Enter to see any
clipped details (although there may not be any additional details). Whenever
possible, IPython provides you with the full source code for the object
(assuming that the source code is available).

208 Part III: Visualizing the Invisible

You can use magic functions with objects as well. These functions simplify
the help output and provide only the information you need, as shown here:

 ✓ %pdoc: Displays the docstring for the object

 ✓ %pdef: Shows how to call the object (assuming that the object is
 callable)

 ✓ %source: Displays the source code for the object (assuming that the
source is available)

 ✓ %file: Outputs the name of the file that contains the source code for
the object

 ✓ %pinfo: Displays detailed information about the object (often more
than provided by help alone)

 ✓ %pinfo2: Displays extra detailed information about the object (when
available)

Using IPython Notebook
So far, the chapter has told you about using IPython Notebook to input code,
and that’s about it. Of course, it works fine for that purpose. However, the
IDE can do more for you. The following sections help you understand some of
the interesting things that IPython Notebook can help you do.

Working with styles
One of the ways in which IPython Notebook excels over just about any
other Integrated Development Environment (IDE) you’ll ever use is that you
can use it to create nice‐looking output. Rather than have a screen full of a
whole bunch of plain old code, you can use iPython to create sections and
add styles so that the output is nicely formatted. What you can end up with
is a good‐looking report that just happens to contain executable code. The
reason for this improved output is the use of styles.

When you type code into IPython Notebook, you place the code in a cell.
Each section of code you create goes into a separate cell. When you need to
create a new cell, you click Insert Cell Below (the button with a plus sign in
a black circle) on the toolbar. Likewise, when you decide that you no longer
need a cell, you select it and then click Cut Cell (the button with a scissors).

The default style for a cell is Code. However, when you click the down arrow
next to the Code entry, you see a listing of styles, as shown in Figure 11-6.

209 Chapter 11: Understanding the Tools

The various styles shown help you format content in various ways. The head-
ings are most definitely used to separate varies entries. To try it for yourself,
type the heading for this main chapter section, Using IPython Notebook, in
the first cell; next, select Heading 1 from the drop‐down list and click Run
Cell. The content changes to a heading. Now add another cell by clicking
Insert Cell Below and type Working with styles as a Heading 2. Figure 11-7
shows that the two entries are indeed headings and that the second entry is
smaller than the first.

Figure 11-6:
IPython

Notebook
makes
adding

styles to
your work

easy.

Figure 11-7:
Adding

headings
makes

separating
content
in your

 notebooks
easy.

210 Part III: Visualizing the Invisible

You can add HTML content to your documents as well. Simply select the
Markdown style. The HTML content can contain anything a web page contains
with regard to standard HTML tags. In general, you use this style to provide
documentation and links to outside material. Relying on HTML tags makes it
possible to include things like lists or even pictures. In short, you can actually
include an HTML document fragment as part of your notebook, which makes
an IPython Notebook much more than a simple means of writing down code.

The use of the Raw NBConvert formatting option is outside the scope of
this book. However, it provides you the means for included information that
shouldn’t be modified by the notebook converter (NBConvert). You can
output IPython Notebooks in a variety of formats, and NBConvert performs
this task for you. You can read about this feature at https://ipython.
org/ipython‐doc/dev/notebook/nbconvert.html#nbconvert. The
goal of the Raw NBConvert style is to allow you to include special content,
such as Lamport TeX (LaTeX) content. The LaTeX document system isn’t tied
to a particular editor — it’s simply a means of encoding scientific documents.

Restarting the kernel
Every time you perform a task in your notebook, you create variables, import
modules, and perform a wealth of other tasks that corrupt the environ-
ment. At some point, you can’t really be sure that something is working as
it should. To overcome this problem, you click Restart Kernel after saving
your document by clicking Save and Checkpoint. You can then run your code
again to ensure that it does work as you thought it would.

Sometimes an error also causes the kernel to crash. Your document starts
acting oddly, updates slowly, or shows other signs of corruption. Again, the
answer is to restart the kernel to ensure that you have a clean environment
and that the kernel is running as it should.

Whenever you click Restart Kernel, you see the warning message shown
in Figure 11-8. Make certain that you pay attention to the warning because
you could lose temporary changes during a kernel restart. Always save your
 document before you restart the kernel.

Restoring a checkpoint
At some point, you may find that you made a mistake. IPython Notebook is
notably missing an Undo button: You won’t find one anywhere. Instead, you
create checkpoints each time you finish a task. Creating checkpoints when
your document is stable and working properly helps you recover faster from
mistakes.

https://ipython.org/ipython-doc/dev/notebook/nbconvert.html#nbconvert
https://ipython.org/ipython-doc/dev/notebook/nbconvert.html#nbconvert

211 Chapter 11: Understanding the Tools

To restore your setup to the condition contained in a checkpoint, choose
File➪Revert to Checkpoint. You see a listing of available checkpoints. Simply
select the one you want to use. When you select the checkpoint, you see a
warning message like the one shown in Figure 11-9. When you click Revert,
any old information is gone and the information found in the checkpoint
becomes the current information.

Figure 11-8:
Save your
 document

before
restarting

the kernel.

Figure 11-9:
Revert to

a previous
notebook

setup to
undo a

 mistake.

212 Part III: Visualizing the Invisible

Performing Multimedia and
Graphic Integration

Pictures say a lot of things that words can’t say (or at least they do it with far
less effort). IPython Notebook is both a coding platform and a presentation
platform. You may be surprised at just what you can do with it. The following
sections provide a brief overview of some of the more interesting features.

Embedding plots and other images
At some point, you might have spotted an IPython Notebook with multi-
media or graphics embedded into it and wondered why you didn’t see the
same effects in your own files. In fact, all the graphics examples to this point
in the book have appeared as separate figures and not part of the code.
Fortunately, you cam perform some more magic by using the %matplotlib
magic function. The possible values for this function are: 'gtk', 'gtk3',
'inline', 'nbagg', 'osx', 'qt', 'qt4', 'qt5', 'tk', and 'wx', each of
which defines a different plotting backend (the code used to actually render
the plot) used to present information onscreen.

When you run %matplotlib inline, any plots you create appear as part
of the document. When you try this technique with the “Showing parts of a
whole with pie charts” example from Chapter 10, you get the output shown in
Figure 11-10.

Loading examples from online sites
Because some examples you see online can be hard to understand unless
you have them loaded on your own system, you should also keep the %load
magic function in mind. All you need is the URL of an example you want
to see on your system. For example, try %load http://matplotlib.
sourceforge.net/mpl_examples/pylab_examples/integral_demo.py.
When you click Run Cell, IPython Notebook loads the example directly below
the cell. You can then run the example and see the output from it on your
own system.

Obtaining online graphics and multimedia
A lot of the functionality required to perform special multimedia and graph-
ics processing appears within IPython.display. By importing a required

http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py

213 Chapter 11: Understanding the Tools

class, you can perform tasks such as embedding images into your notebook.
Here’s an example of embedding one of the pictures from the author’s blog
into the notebook for this chapter:

from IPython.display import Image
Embed = Image(
 'http://blog.johnmuellerbooks.com/' +
 'wp‐content/uploads/2015/04/Layer‐Hens.jpg')
Embed

The code begins by importing the required class, Image, and then using
features from it to first define what to embed and then actually embed the
image. The output you see from this example appears in Figure 11-11.

If you expect an image to change over time, you might want to create a
link to it instead of embedding it. You must refresh a link because
the content in the notebook is only a reference rather than the actual
image. However, as the image changes, you see the change in your
notebook as well. To accomplish this task, you use SoftLinked =
Image(url='http://blog.johnmuellerbooks.com/wp‐content/
uploads/2015/04/Layer‐Hens.jpg') instead of Embed.

Figure 11-10:
You can

embed
 multimedia

and
 graphics
into your

notebook.

http://blog.johnmuellerbooks.com/wp%E2%80%90content/uploads/2015/04/Layer%E2%80%90Hens.jpg

214 Part III: Visualizing the Invisible

When working with embedded images on a regular basis, you might want to
set the form in which the images are embedded. For example, you may prefer
to embed them as PDFs. To perform this task, you use code similar to this:

from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')

You have access to a wide number of formats when working with a notebook.
The commonly supported formats are 'png', 'retina', 'jpeg', 'svg',
and 'pdf'.

The IPython display system is nothing short of amazing, and this section
hasn’t even begun to tap the surface for you. For example, you can import a
YouTube video and place it directly into your notebook as part of your pre-
sentation if you want. You can see quite a few more of the display features
demonstrated at http://nbviewer.ipython.org/github/ipython/
ipython/blob/1.x/examples/notebooks/Part 5 ‐ Rich Display
System.ipynb.

Figure 11-11:
Embedding

images
can dress

up your
notebook

presentation.

http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb

 See an example of how you can analyze a sound file using a Fast Fourier Transform
(FFT) at http://www.dummies.com/extras/pythonfordatascience.

Wrangling Data
Part IV

http://www.dummies.com/extras/pythonfordatascience

In this part . . .
 ✓ Using programming tricks to solve data science problems

 ✓ Performing data analysis

 ✓ Making data easier to analyze

 ✓ Developing merged datasets

 ✓ Finding data that lies outside the predicted range

Stretching Python’s Capabilities
In This Chapter

 ▶ Understanding how Scikit‐learn works with classes

 ▶ Using sparse matrices and the hashing trick

 ▶ Testing performances and memory consumption

 ▶ Saving time with multicore algorithms

I
f you’ve gone through the previous chapters, by this point you’ve dealt
with all the basic data loading and manipulation methods offered by

Python. Now it’s time to start using some more complex instruments for data
wrangling (or munging) and for machine learning. The final step of most data
science projects is to build a data tool able to automatically summarize, pre-
dict, and recommend directly from your data.

Before taking that final step, you still have to massage your data by enforcing
transformations that are even more radical. That’s the data wrangling or data
munging part, where sophisticated transformations are followed by visual
and statistical explorations, and then again by further transformations. In the
following sections, you learn how to handle huge streams of text, explore the
basic characteristics of a dataset, optimize the speed of your experiments,
compress data and create new synthetic features, generate new groups and
classifications, and detect unexpected or exceptional cases that may cause
your project to go wrong.

From here onward, you use the Scikit‐learn package more and more (which
means knowing more about it — the full documentation appears at http://
scikit‐learn.org/stable/documentation.html). The Scikit‐learn
package, in fact, offers a single repository containing almost all the tools that
you need to be a data scientist and for your data science project to be suc-
cessful. In this chapter, you discover important characteristics of Scikit‐learn,
structured in modules, classes, and functions, and some advanced Python
time savers for improving performance with big unstructured data and highly
time‐consuming computational operations.

Chapter 12

http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/documentation.html

218 Part IV: Wrangling Data

You don’t have to type the source code for this chapter in by hand. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in
the P4DS4D; 12; Stretching Pythons Capabilities.ipynb source
code file.

Playing with Scikit‐learn
Sometimes the best way to discover how to use something is to spend time
playing with it. The more complex a tool, the more important play becomes.
Given the complex math tasks you perform using Scikit‐learn, playing becomes
especially important. The following sections use the idea of playing with Scikit‐
learn to help you discover important concepts in using Scikit‐learn to perform
amazing feats of data science work.

Understanding classes in Scikit‐learn
Understanding how classes work is an important prerequisite for being able
to use the Scikit‐learn package appropriately. Scikit‐learn is the package for
machine learning and data science experimentation favored by most data sci-
entists. It contains a wide range of well‐established learning algorithms, error
functions, and testing procedures.

At its core, Scikit‐learn features some base classes on which all the algo-
rithms are built. Apart from BaseEstimator, the class from which all other
classes inherit, there are four class types covering all the basic machine‐
learning functionalities:

 ✓ Classifying

 ✓ Regressing

 ✓ Grouping by clusters

 ✓ Transforming data

Even though each base class has specific methods and attributes, the core
functionalities for data processing and machine learning are guaranteed by
one or more series of methods and attributes called interfaces. The inter-
faces provide a uniform Application Programming Interface (API) to enforce

219 Chapter 12: Stretching Python’s Capabilities

similarity of methods and attributes between all the different algorithms
present in the package. There are four Scikit‐learn object‐based interfaces:

 ✓ estimator: For fitting parameters, learning them from data, according
to the algorithm

 ✓ predictor: For generating predictions from the fitted parameters

 ✓ transformer: For transforming data, implementing the fitted parameters

 ✓ model: For reporting goodness of fit or other score measures

The package groups the algorithms built on base classes and one or more
object interfaces into modules, each module displaying a specialization in
a particular type of machine‐learning solution. For example, the linear_
model module is for linear modeling, and metrics is for score and loss
 measure.

In order to find a specific algorithm in Scikit‐learn, you must first find the
module containing the same kind of algorithm that interests you, and then
select it from the list of contents of the module. The algorithm is typically a
class itself, whose methods and attributes are already known because they’re
common to other algorithms in Scikit‐learn.

Getting accustomed to the Scikit‐learn class approach may take some time.
However, the API is the same for all the tools available in the package, so
learning one class necessarily tells you about all the other classes. The best
approach is to learn one class completely and then apply what you know to
other classes.

Defining applications for data science
Figuring out ways to use data science to obtain constructive results is
 important. For example, you can apply the estimator interface to a

 ✓ Classification problem: Guessing that a new observation is from a
 certain group

 ✓ Regression problem: Guessing the value of a new observation

It works with the method fit(X,y) where X is the bidimensional array of
predictors (the set of observations to learn) and y is the target outcome
(another array, unidimensional).

By applying fit, the information in X is related to y, so that, knowing some
new information with the same characteristics of X, we can guess correctly y.

220 Part IV: Wrangling Data

In the process, some parameters are estimated internally by the fit method.
Using fit makes it possible to distinguish between parameters, which are
learned, and hyper‐parameters, which instead are fixed by you when you
instantiate the learner.

Instantiation involves assigning a Scikit‐learn class to a Python variable. In
addition to hyper‐parameters, you can also fix other working parameters,
such as requiring normalization or setting a random seed to reproduce the
same results for each call, given the same input data.

Here is an example with linear regression, a very basic and common machine‐
learning algorithm. You must upload some data to use this example, and
Scikit‐learn provides some useful examples. The Boston dataset, for instance,
contains predictor variables that the example code can match against house
prices, which helps build a predictor that can figure out the value of a house
given some characteristics of it.

from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data,boston.target
print X.shape, y.shape

(506L, 13L) (506L,)

The output specifies that both arrays have the same row number and that
the X has 13 features. The shape method performs the analysis on the arrays
and reports their dimensions.

The rows of X have to be of the same length as y. You also have to take care
that X and y correspond, because learning from data happens when the
algorithm matches the rows of X with the corresponding element of y. If you
shuffle the two arrays, no learning is possible.

The characteristics of X, expressed as X’s columns, are called variables (a
more statistical term) or features (a term more related to machine learning).

Now, after importing the LinearRegression class, we can instantiate a
variable called hypothesis and set a parameter indicating the algorithm to
standardize (that is to set mean zero and unit standard deviation for all the
variables, a statistical operation for having all the variables at a similar level)
before estimating the parameters to learn.

from sklearn.linear_model import LinearRegression
hypothesis = LinearRegression(normalize=True)
hypothesis.fit(X,y)
print hypothesis.coef_

221 Chapter 12: Stretching Python’s Capabilities

[‐1.07170557e‐01 4.63952195e‐02 2.08602395e‐02
 2.68856140e+00 ‐1.77957587e+01 3.80475246e+00
 7.51061703e‐04 ‐1.47575880e+00 3.05655038e‐01
 ‐1.23293463e‐02 ‐9.53463555e‐01 9.39251272e‐03
 ‐5.25466633e‐01]

After fitting, hypothesis holds the learned parameters, and you can
visualize them using the coef_ method, which is typical of all the linear
models (where the model output is a summation of variables weighted by
 coefficients). You can also call this fitting activity training (as in, “training
a machine learning algorithm”).

A hypothesis is a way to describe a learning algorithm trained with data. The
hypothesis defines a possible representation of y given X that you test for
validity. Therefore, it’s a hypothesis in both scientific and machine‐learning
language.

Apart from the estimator class, the predictor and the model object classes
are also important. The predictor class, which predicts the probability of a
certain result, obtains the result of new observations using the predict and
predict_proba methods, as in this script:

import numpy as np
new_observation = np.array(
 [1,0,1,0,0.5,7,59,6,3,200,20,350,4],
 dtype=float)
print hypothesis.predict(new_observation)

25.8972783977

Make sure that new observations have the same feature number and order as
in the training X; otherwise, the prediction will be incorrect.

The class model provides information about the quality of the fit using the
score method, as shown here:

hypothesis.score(X,y)

0.74060774286494291

In this case, score returns the coefficient of determination R^2 of the
prediction. R^2 is a measure ranging from 0 to 1, comparing our predictor
to a simple mean. Higher values show that the predictor is working well.
Different learning algorithms may use different scoring functions. Please
consult the online documentation of each algorithm or ask for help on the
Python console:

help(LinearRegression)

222 Part IV: Wrangling Data

The transform class applies transformations derived from the fitting phase
to other data arrays. LinearRegression doesn’t have a transform method,
but most preprocessing algorithms do. For example, MinMaxScaler, from
the Scikit‐learn preprocessing module, can transform values in a specific
range of minimum and maximum values, learning the transformation formula
from an example array.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaler.fit(X)
print scaler.transform(new_observation)

[0.01116872 0. 0.01979472 0.
 0.23662551 0.65893849 0.57775489 0.44288845
 0.08695652 0.02480916 0.78723404 0.88173887
 0.06263797]

In this case, the code applies the min and max values learned from X to the
new_observation variable, and returns a transformation.

Performing the Hashing Trick
Scikit‐learn provides you with most of the data structures and functionality
you need to complete your data science project. There are even classes for
the trickiest and most advanced problems.

For instance, when dealing with text, one of the most useful solutions pro-
vided by the Scikit‐learn package is the hashing trick. You discover how to
work with text by using the bag of words model (as shown in the “Using the
Bag of Words Model and Beyond” section of Chapter 7) and weighting them
with the TF‐IDF. All these powerful transformations can operate properly only
if all your text is known and available in the memory of your computer.

A more serious data science challenge is to analyze online‐generated text
flows, such as from social networks or large online text repositories. This
scenario poses quite a challenge when trying to turn the text into a data
matrix suitable for analysis. When working through such problems, knowing
the hashing trick can give you quite a few advantages:

 ✓ Handling large data matrices based on text on the fly

 ✓ Fixing unexpected values or variables in your textual data

 ✓ Building scalable algorithms for large collections of documents

223 Chapter 12: Stretching Python’s Capabilities

Using hash functions
Hash functions can transform any input into an output whose characteristics
are predictable. Usually they return a value where the output is bound at a
specific interval — whose extremities range from negative to positive num-
bers or just span through positive numbers. You can imagine them as enforc-
ing a standard on your data — no matter what values you provide, they
always return a specific data product.

Their most useful hash function characteristic is that, given a certain input,
they always provide the same numeric output value. Consequently, they’re
called deterministic functions. For example, input a word like dog and the
hashing function always returns the same number.

In a certain sense, hash functions are like a secret code, transforming every-
thing into numbers. Unlike secret codes, however, you can’t convert the
hashed code to its original value. In addition, in some rare cases, different
words generate the same hashed result (also called a hash collision).

Demonstrating the hashing trick
There are many hash functions, with MD5 (often used to check file integrity,
because you can hash entire files) and SHA (used in cryptography) being the
most popular. Python possesses a built‐in hash function named hash that
you can use to compare data objects before storing them in dictionaries. For
instance, you can test how Python hashes its name:

hash('Python')
‐539294296

The Python session on your computer may return a different value than
the one shown on the preceding line. Don’t worry — the built‐in hash func-
tions aren’t always consistent across computers. When you need consistent
output, rely on the Scikit‐learn hash functions instead because the output is
consistent across machines.

A Scikit‐learn hash function can also return an index in a specific positive
range. You can obtain something similar using a built‐in hash by employing
standard division and its remainder:

abs(hash('Python')) % 1000
296

224 Part IV: Wrangling Data

When you ask for the remainder of the absolute number of the result from
the hash function, you get a number that never exceeds the value you used
for the division.

To see how this works, pretend that you want to transform a text string from
the Internet into a numeric vector (a feature vector) so that you can use it for
starting a machine‐learning project. A good strategy for managing this data
science task is to employ one‐hot‐encoding, which produces a bag of words.
Here are the steps for one‐hot‐encoding a string (“Python for data science”)
into a vector.

1. Assign a number to each word, for instance, Python=0 for=1 data=2
 science=3.

2. Initialize the vector, counting the number of unique words that you
assigned a code in Step 1.

3. Use the codes assigned in Step 1 as indexes for populating the vector
with values, assigning a 1 where there is a coincidence with a word exist-
ing in the phrase.

The resulting feature vector is expressed as the sequence [1,1,1,1] and
made of exactly four elements. You have started the machine‐learning pro-
cess, telling the program to expect sequences of four text features, when
suddenly a new phrase arrives and you must vectorize the following text
as well: “Python for machine learning”. Now you have two new words —
“machine learning” — to work with. The following steps help you create the
new vectors:

1. Assign these new codes: machine=4 learning=5.

2. Enlarge the previous vector to include the new words: [1,1,1,1,0,0].

3. Compute the vector for the new string: [1,1,0,0,1,1].

One‐hot‐encoding is quite optimal because it creates efficient and ordered
feature vectors. Unfortunately, one‐hot‐encoding fails and becomes difficult
to handle when your project experiences a lot of variability with regard to its
inputs. This is a common situation in data science projects working with text
or other symbolic features where flow from the Internet or other online envi-
ronments can suddenly create or add to your initial data. Using hash func-
tions is a smarter way to handle unpredictability in your inputs:

1. Define a range for the hash function outputs. All your feature vectors
will use that range. The example uses a range of values from 0 to 24.

2. Compute an index for each word in your string using the hash function.

3. Assign a unit value to vector’s positions according to word indexes.

225 Chapter 12: Stretching Python’s Capabilities

In Python, you can define a simple hashing trick by creating a function and
checking the results using the two test strings:

def hashing_trick(input_string, vector_size=20):
 feature_vector = [0] * vector_size
 for word in input_string.split(' '):
 index = abs(hash(word)) % vector_size
 feature_vector[index] = 1
 return feature_vector

Now you can test both strings.

hashing_trick(input_string='Python for data science',
 vector_size=20)
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
 0]
hashing_trick(input_string='Python for machine learning',
 vector_size=20)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
 0]

When viewing the feature vectors, you should notice that:

 ✓ You don’t know where each word is located. When it’s important to be
able to reverse the process of assigning words to indexes, you must
store the relationship between words and their hashed value separately
(for example, you can use a dictionary where the keys are the hashed
values and the values are the words).

 ✓ For small values of the vector_size function parameter (for example,
vector_size=10), many words overlap in the same positions in the list
representing the feature vector. To keep the overlap to a minimum, you
must create hash function boundaries that are greater than the number
of elements you plan to index later.

The feature vectors in this example are made mostly of zero entries, repre-
senting a waste of memory when compared to the more memory‐efficient
one‐hot‐encoding. One of the ways in which you can solve this problem is to
rely on sparse matrices, as described in the next section.

Working with deterministic selection
Sparse matrices are the answer when dealing with data that has few values,
that is, when most of the matrix values are zeroes. Sparse matrices store just
the coordinates of the cells and their values, instead of storing the informa-
tion for all the cells in the matrix. When an application requests data from

226 Part IV: Wrangling Data

an empty cell, the sparse matrix will return a zero value after looking for the
coordinates and not finding them. Here’s an example vector:

[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
 0]

The following code turns it into a sparse matrix.

from scipy.sparse import csc_matrix
print csc_matrix([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 1, 0])

 (0, 0) 1
 (0, 5) 1
 (0, 16) 1
 (0, 18) 1

Notice that the data representation is in coordinates (expressed in a tuple of
row and column index) and the cell value.

The package SciPy offers a large variety of sparse matrix structures — each
one storing the data in a different way and each one performing in a different
way. (Some are good with slicing; some others are better for computations.)
Usually the csc_matrix (a compressed matrix based on rows) is a good
choice because most Scikit‐learn algorithms accept it as input and it’s opti-
mal for matrix operations.

As a data scientist, you don’t have to worry about programming your own
version of the hashing trick unless you would like some special implementa-
tion of the idea. Scikit‐learn offers HashingVectorizer, a class that rapidly
transforms any collection of text into a sparse data matrix using the hashing
trick. Here’s an example script that replicates the previous example:

import sklearn.feature_extraction.text as txt
one_hot_enconder = txt.CountVectorizer()
one_hot_enconded = one_hot_enconder.fit_transform(
 ['Python for data science',
 'Python for machine learning'])

<2x6 sparse matrix of type '<type 'numpy.int64'>'
with 8 stored elements in Compressed Sparse Row format>

As soon as new text arrives, CountVectorizer stops working:

one_hot_enconded.transform(['New text has arrived'])
AttributeError: transform not found

227 Chapter 12: Stretching Python’s Capabilities

Using HashingVectorizer, there is always a place for new words in the
data matrix. At worst, a word settles in an already occupied position, causing
a word collision.

sklearn_hashing_trick = txt.HashingVectorizer(
 n_features=20, binary=True, norm=None)
text_vector = sklearn_hashing_trick.transform(
 ['Python for data science',
 'Python for machine learning'])
text_vector
<2x20 sparse matrix of type '<type 'numpy.float64'>'
with 8 stored elements in Compressed Sparse Row format>

sklearn_hashing_trick.transform(['New text has arrived'])
<1x20 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>

HashingVectorizer is the perfect function to use when your data can’t fit
into memory and its features aren’t fixed. In the other cases, consider using
the more intuitive CountVectorizer.

Considering Timing and Performance
As the book introduces more and more complex themes, such as Scikit‐learn
machine‐learning classes and SciPy sparse matrices, you may start to wonder
how all this processing might influence application speed. The increased pro-
cessing requirements affect both running time and available memory.

Managing the best use of machine resources is indeed an art, the art of opti-
mization, and it requires time to master. However, you can start immediately
becoming proficient in it by doing some accurate speed measurement and
realizing what your problems really are. Profiling the time that operations
require, measuring how much memory adding more data takes, or perform-
ing a transformation on your data can help you to spot the bottlenecks in
your code and start looking for alternative solutions.

As described in Chapter 11, IPython is the perfect environment for experi-
menting, tweaking, and improving your code. Working on blocks of code,
recording the results and outputs, and writing additional notes and com-
ments will help your data science solutions take shape in a controlled and
reproducible way.

228 Part IV: Wrangling Data

Benchmarking with timeit
While working through the hashing trick example in the “Performing the
Hashing Trick” section, earlier in this chapter, we compare two alterna-
tives for encoding textual information into a data matrix that can address
 different needs:

 ✓ CountVectorizer: Optimally encodes text into a data matrix but
cannot address subsequent novelties in text.

 ✓ HashingVectorizer: Provides flexibility in situations when it is likely
that the application will receive new data, but is less optimal than
 techniques based on hashing functions.

Although their advantages are quite clear in terms of how they handle the
data, you may wonder what impact using one or the other has on your data
processing in terms of speed and memory feasibility.

Concerning speed, IPython offers an easy, out‐of‐the‐box solution, the line
magic %timeit and the cell magic %%timeit:

 ✓ %timeit: Calculates the best performance time for an instruction.

 ✓ %%timeit: Calculates the best time performance for all the instructions
in a cell, apart from the one placed on the same cell line as the cell
magic (which could therefore be an initialization instruction).

Both magic commands report the best performance in r trials repeated for n
loops. When you add the –r and –n parameters, IPython chooses the number
automatically in order to provide a fast answer.

Here is an example of testing whether it is faster to assign a list 10**6 ordinal
values by using list comprehension or by appending the values in a for loop:

%timeit l = [k for k in range(10**6)]

10 loops, best of 3: 94.8 ms per loop

The result for the list comprehension can be tested by incrementing both the
sample performance and repetitions of the test:

%timeit –n 20 –r 5 l = [k for k in range(10**6)]

20 loops, best of 5: 95.6 ms per loop

229 Chapter 12: Stretching Python’s Capabilities

Since the for loop requires an entire cell, the example uses the cell magic,
%%timeit, call. Notice that the first line that assigns the value of 10**6 to a
variable is not considered in the performance.

%%timeit limit = 10**6
l = list()
for k in range(limit):
 l.append(k)

10 loops, best of 3: 176 ms per loop

The results show that list comprehension is about 50 percent faster than
using a for loop. You can then repeat the test using different text encoding
strategies:

import sklearn.feature_extraction.text as txt
sklearn_hashing_trick = txt.HashingVectorizer(
 n_features=20, binary=True, norm=None)
enconder = txt.CountVectorizer()
texts = ['Python for data science',
 'Python for machine learning']

After performing initial loading of the classes and instantiating them, you can
test the two solutions:

%timeit enconded = enconder.fit_transform(texts)

1000 loops, best of 3: 1.27 ms per loop

%timeit hashing = sklearn_hashing_trick.transform(texts)

10000 loops, best of 3: 158 µs per loop

The hashing trick is faster than one hot encoder, and it’s possible to explain
the difference by noting that the latter is an optimized algorithm that keeps
track of how the words are encoded, something that the hashing trick
doesn’t do.

IPython is the best environment to benchmark the speed of your data science
solution code. If you’d like to track performance on the command line or in
a script running from an IDE, you can import the timeit class and use the
timeit function for tracking performance of the command by providing the
input parameter as a string.

If your command needs variables, classes, or functions that aren’t available
in the base Python (such as the Scikit‐learn classes), you can provide them as
a second input parameter. You formulate a string in which Python imports all

230 Part IV: Wrangling Data

the necessary objects from the main environment, as shown in the following
example:

import timeit
cumulative_time = timeit.timeit(
 "hashing = sklearn_hashing_trick.transform(texts)",
 "from __main__ import sklearn_hashing_trick,texts",
 number=10000)
print cumulative_time / 10000.0

Working with the memory profiler
As you’ve seen when testing your application code for performance (speed)
characteristics, you can obtain analogous information about memory usage.
Keeping track of memory consumption could tell you about possible prob-
lems in the way data is processed or transmitted to the learning algorithms.
The memory_profiler package implements the required functionality.
This package is not provided as a default Python or IPython package and it
requires installation. Use the following commands to install the package and
its dependencies from the command line:

ipython –m pip install psutil
ipython –m pip install memory_profiler

Using the preferred installer program (pip)
Python provides a huge number of packages
that you can install. Many of these packages
come as separate, downloadable modules.
Some of them have an executable suitable for
a platform such as Windows, which means
you can easily install the package. However,
many other packages rely on pip, which is a
feature that you can access directly from the
command line when using later versions of
Python, including both 2.7.9 and 3.4.

When working with older versions of Python,
you must first install pip by installing a package
such as distribute (https://pypi.
python.org/pypi/distribute).
When working on some Linux or Mac systems,
you can also rely on sudo to get the job done

by typing sudo apt‐get install python3‐pip
and pressing Enter. You may find that neither
of these techniques works for you, so try the
instructions found at https://pip.pypa.
io/en/latest/installing.html
as well.

To use pip, you open a command line or
terminal. This book uses IPython as its
environment. When you want to install a new
feature, you type ipython to start a copy of
IPython, –m to load a module, pip to start pip,
install to tell pip what action to take, and the
name of the package you want to install. For
example, to install psutil later in the chapter,
you type ipython –m pip install psutil and press
Enter.

https://pypi.python.org/pypi/distribute
https://pypi.python.org/pypi/distribute
https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html

231 Chapter 12: Stretching Python’s Capabilities

Use the following command for each IPython session you want to monitor:

%load_ext memory_profiler

After performing these tasks, you can easily track how much memory a com-
mand consumes:

hashing = sklearn_hashing_trick.transform(texts)
%memit dense_hashing = hashing.toarray()
peak memory: 68.79 MiB, increment: 0.14 MiB

Obtaining a complete overview of memory consumption is possible by saving
an IPython cell to disk and then profiling it using the line magic %mprun on an
externally imported function. (The line magic works only by operating with
external Python scripts.) Profiling produces a detailed report, command by
command, as shown in the following example:

%%writefile example_code.py
import sklearn.feature_extraction.text as txt
def comparison_test():
 sklearn_hashing_trick = txt.HashingVectorizer(
 n_features=20, binary=True, norm=None)
 one_hot_enconder = txt.CountVectorizer()
 texts = ['Python for data science',
 'Python for machine learning']
 one_hot_enconded = one_hot_enconder.fit_transform(
 texts)
 hashing = sklearn_hashing_trick.transform(texts)

from example_code import comparison_test
%mprun ‐f comparison_test comparison_test()

Line # Mem usage Increment Line Contents
==
 2 68.5 MiB 0.0 MiB def comparison_test():
 3 68.5 MiB 0.0 MiB HashingVectorizer(...)
 4 68.5 MiB 0.0 MiB CountVectorizer(...)
 5 68.5 MiB 0.0 MiB texts = [...]
 6 68.7 MiB 0.2 MiB one_hot_enconder.fit_t(...)
 7 68.7 MiB 0.0 MiB sklearn_hashing_trick.(...)

The resulting report details the memory usage from every line in the
 function, pointing out the major increments.

232 Part IV: Wrangling Data

Running in Parallel
Most computers today are multicore (two or more processors in a single
package), some with multiple physical CPUs. One of the most important
 limitations of Python is that it uses a single core by default. (It was created in
a time when single cores were the norm.)

Data science projects require quite a lot of computations. In particular, a part
of the scientific aspect of data science relies on repeated tests and experi-
ments on different data matrices. Don’t forget that working with huge data
quantities means that most time‐consuming transformations repeat observa-
tion after observation (for example, identical and not related operations on
different parts of a matrix).

Using more CPU cores accelerates a computation by a factor that almost
matches the number of cores. For example, having four cores would mean
working at best four times faster. You don’t receive a full fourfold increase
because there is overhead when starting a parallel process — new running
Python instances have to be set up with the right in‐memory information
and launched; consequently, the improvement will be less than potentially
achievable but still significant. Knowing how to use more than one CPU is
therefore an advanced but incredibly useful skill for increasing the number of
analyses completed, and for speeding up your operations both when setting
up and when using your data products.

Multiprocessing works by replicating the same code and memory content in
various new Python instances (the workers), calculating the result for each
of them, and returning the pooled results to the main original console. If
your original instance already occupies much of the available RAM memory,
it won’t be possible to create new instances, and your machine may run out
of memory.

Performing multicore parallelism
To perform multicore parallelism with Python, you integrate the Scikit‐learn
package with the joblib package for time‐consuming operations, such as
replicating models for validating results or for looking for the best hyper‐
parameters. In particular, Scikit‐learn allows multiprocessing when

 ✓ Cross‐validating: Testing the results of a machine‐learning hypothesis
using different training and testing data

 ✓ Grid‐searching: Systematically changing the hyper‐parameters of a
machine‐learning hypothesis and testing the consequent results

233 Chapter 12: Stretching Python’s Capabilities

 ✓ Multilabel prediction: Running an algorithm multiple times against mul-
tiple targets when there are many different target outcomes to predict at
the same time

 ✓ Ensemble machine‐learning methods: Modeling a large host of clas-
sifiers, each one independent from the other, such as when using
RandomForest‐based modeling

You don’t have to do anything special to take advantage of parallel
 computations — you can activate parallelism by setting the n_jobs
 parameter to a number of cores more than 1 or by setting the value to –1,
which means you want to use all the available CPU instances.

If you aren’t running your code from the console or from an IPython
Notebook, it is extremely important that you separate your code from any
package import or global variable assignment in your script by using the
if __name__=='__main__': command at the beginning of any code
that executes multicore parallelism. The if statement checks whether
the program is directly run or is called by an already‐running Python con-
sole, avoiding any confusion or error by the multiparallel process (such as
 recursively calling the parallelism).

Demonstrating multiprocessing
It’s a good idea to use IPython when you run a demonstration of how mul-
tiprocessing can really save you time during data science projects. Using
IPython provides the advantage of using the %timeit magic command
for timing execution. You start by loading a multiclass dataset, a complex
machine‐learning algorithm (the Support Vector Classifier, or SVC), and a
cross‐validation procedure for estimating reliable resulting scores from all
the procedures. You find details about all these tools later in the book. The
most important thing to know is that the procedures become quite large
because the SVC produces 10 models, which it repeats 10 times each using
cross‐validation, for a total of 100 models.

from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data,digits.target
from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score
%timeit single_core_learning = cross_val_score(SVC(), X,
 y, cv=20, n_jobs=1)

Out [1] : 1 loops, best of 3: 17.9 s per loop

234 Part IV: Wrangling Data

After this test, you need to activate the multicore parallelism and time the
results using the following commands:

%timeit multi_core_learning = cross_val_score(SVC(), X, y,
 cv=20, n_jobs=‐1)
Out [2] : 1 loops, best of 3: 11.7 s per loop

The example machine demonstrates a positive advantage using multicore
processing, despite using a small dataset where Python spends most of the
time starting consoles and running a part of the code in each one. This over-
head, a few seconds, is still significant given that the total execution extends
for a handful of seconds. Just imagine what would happen if you worked
with larger sets of data — your execution time could be easily cut by two or
three times.

Although the code works fine with IPython, putting it down in a script and
asking Python to run it in a console or using an IDE may cause errors because
of the internal operations of a multicore task. The solution, as mentioned
before, is to put all the code under an if statement, which checks whether
the program started directly and wasn’t called afterward. Here’s an example
script:

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score
if __name__ == '__main__':
 digits = load_digits()
 X, y = digits.data,digits.target
 multi_core_learning = cross_val_score(SVC(), X, y,
 cv=20, n_jobs=‐1)

Exploring Data Analysis
In This Chapter

 ▶ Understanding the Exploratory Data Analysis (EDA) philosophy

 ▶ Describing numeric and categorical distributions

 ▶ Estimating correlation and association

 ▶ Testing mean differences in groups

 ▶ Visualizing distributions, relationships, and groups

D
ata science relies on complex algorithms for building predictions and
spotting important signals in data, and each algorithm presents dif-

ferent strong and weak points. In short, you select a range of algorithms,
you have them run on the data, you optimize their parameters as much as
you can, and finally you decide which one will best help you build your data
 product or generate insight into your problem.

It sounds a little bit automatic and, partially, it is, thanks to powerful analyti-
cal software and scripting languages like Python. Learning algorithms are
complex, and their sophisticated procedures naturally seem automatic and
a bit opaque to you. However, even if some of these tools seem like black or
even magic boxes, keep this simple acronym in mind: GIGO. GIGO stands for
“Garbage In/Garbage Out.” It has been a well‐known adage in statistics (and
computer science) for a long time. No matter how powerful the machine‐
learning algorithms you use, you won’t obtain good results if your data has
something wrong in it.

Exploratory Data Analysis (EDA) is a general approach to exploring datasets
by means of simple summary statistics and graphic visualizations in order to
gain a deeper understanding of data. EDA helps you become more effective
in the subsequent data analysis and modeling. In this chapter, you discover
all the necessary and indispensable basic descriptions of the data and see
how those descriptions can help you decide how to proceed using the most
appropriate data transformation and solutions.

Chapter 13

236 Part IV: Wrangling Data

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source. The source code for this
chapter appears in the P4DS4D; 13; Exploring Data Analysis.ipynb
source code file. (See the Introduction for details on where to locate this file.)

The EDA Approach
EDA was developed at Bell Labs by John Tukey, a mathematician and statisti-
cian who wanted to promote more questions and actions on data based on
the data itself (the exploratory motif) in contrast to the dominant confirma-
tory approach of the time. A confirmatory approach relies on the use of a
theory or procedure — the data is just there for testing and application. EDA
emerged at the end of the 70s, long before the big data flood appeared. Tukey
could already see that certain activities, such as testing and modeling, were
easy to make automatic. In one of his famous writings, Tukey said:

“The only way humans can do BETTER than computers is to take a chance
of doing WORSE than them.”

This statement explains why, as a data scientist, your role and tools aren’t
limited to automatic learning algorithms but also to manual and creative
exploratory tasks. Computers are unbeatable at optimizing, but humans are
strong at discovery by taking unexpected routes and trying unlikely but very
effective solutions.

If you’ve been through the examples in the previous chapters, you have
already worked on quite a bit of data, but using EDA is a bit different because
it checks beyond the basic assumptions about data workability, which actu-
ally comprises the Initial Data Analysis (IDA). Up to now, the book has shown
how to

 ✓ Complete observations or mark missing cases by appropriate features

 ✓ Transform text or categorical variables

 ✓ Create new features based on domain knowledge of the data problem

 ✓ Have at hand a numeric dataset where rows are observations and
 columns are variables

EDA goes further than IDA. It’s moved by a different attitude: going beyond
basic assumptions. With EDA, you

 ✓ Describe of your data

 ✓ Closely explore data distributions

237 Chapter 13: Exploring Data Analysis

 ✓ Understand the relations between variables

 ✓ Notice unusual or unexpected situations

 ✓ Place the data into groups

 ✓ Notice unexpected patterns within groups

 ✓ Take note of group differences

Defining Descriptive Statistics
for Numeric Data

The first actions that you can take with the data are to produce some syn-
thetic measures to help figure out what is going in it. You acquire knowledge
of measures such as maximum and minimum values, and you define which
intervals are the best place to start.

During your exploration, you use a simple but useful dataset that is used in
previous chapters, the Fisher’s Iris dataset. You can load it from the Scikit‐
learn package by using the following code:

from sklearn.datasets import load_iris
iris = load_iris()

Having loaded the Iris dataset into a variable of a custom Scikit‐learn class,
you can derive a NumPy nparray and a pandas DataFrame from it:

import pandas as pd
import numpy as np
print 'Your pandas version is: %s' % pd.__version__
print 'Your NumPy version is %s' % np.__version__
iris_nparray = iris.data
iris_dataframe = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_dataframe['group'] = pd.Series([iris.target_names[k] for k in iris.target],
 dtype="category")

Your pandas version is: 0.15.2
Your NumPy version is 1.8.1

NumPy, Scikit‐learn, and especially pandas are packages under constant
development, so before you start working with EDA, it’s a good idea to check
the product version numbers. Using an old version could cause your output
to differ from that shown in the book or cause some commands to fail.

238 Part IV: Wrangling Data

This chapter presents a series of pandas and NumPy commands that help
you explore the structure of data. Even though applying single explorative
commands grants you more freedom in your analysis, it’s nice to know
that you can obtain most of these statistics using the describe method
applied to your pandas DataFrame: such as, print iris_dataframe.
describe(), when you’re in a hurry in your data science project.

Measuring central tendency
Mean and median are the first measures to calculate for numeric variables
when starting EDA. They can provide you with an estimate of EDA when the
variables are centered and somehow symmetric.

Using pandas, you can quickly compute both means and medians. Here is
the command for getting the mean from the Iris DataFrame:

print iris_dataframe.mean(numeric_only=True)

sepal length (cm) 5.843333
sepal width (cm) 3.054000
petal length (cm) 3.758667
petal width (cm) 1.198667

Similarly, here is the command that will output the median:

print iris_dataframe.median(numeric_only=True)

sepal length (cm) 5.80
sepal width (cm) 3.00
petal length (cm) 4.35
petal width (cm) 1.30

The median provides the central position in the series of values. When creat-
ing a variable, it is a measure less influenced by anomalous cases or by an
asymmetric distribution of values around the mean. What you should notice
here is that the means are not centered (no variable is zero mean) and that
the median of petal length is quite different from the mean, requiring further
inspection.

When checking for central tendency measures, you should:

 ✓ Verify whether means are zero

 ✓ Check whether they are different from each other

 ✓ Notice whether the median is different from the mean

239 Chapter 13: Exploring Data Analysis

Measuring variance and range
As a next step, you should check the variance by squaring the value of its
standard deviation. The variance is a good indicator of whether a mean is a
suitable indicator of the variable distribution.

print iris_dataframe.std()

sepal length (cm) 0.828066
sepal width (cm) 0.433594
petal length (cm) 1.764420
petal width (cm) 0.763161

In addition, the range, which is the difference between the maximum and
minimum value for each quantitative variable, is quite informative.

print iris_dataframe.max(numeric_only=True)‐iris_dataframe.min(numeric_only=True)

sepal length (cm) 3.6
sepal width (cm) 2.4
petal length (cm) 5.9
petal width (cm) 2.4

Take notice of the standard deviation and the range with respect to the mean
and median. A standard deviation or range that is too high with respect to
the measures of centrality (mean and median) may point to a possible prob-
lem, with extremely unusual values affecting the calculation.

Working with percentiles
Because the median is the value in the central position of your distribution
of values, you may need to consider other notable positions. Apart from the
minimum and maximum, the position at 25 percent of your values (the lower
quartile) and the position at 75 percent (the upper quartile) are useful for fig-
uring how the data distribution works, and they are the basis of an illustrative
graph called a boxplot, which is one of the topics we cover in this chapter.

print iris_dataframe.quantile(np.array([0,.25,.50,.75,1]))

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0.00 4.3 2.0 1.00 0.1
0.25 5.1 2.8 1.60 0.3
0.50 5.8 3.0 4.35 1.3
0.75 6.4 3.3 5.10 1.8
1.00 7.9 4.4 6.90 2.5

240 Part IV: Wrangling Data

The difference between the upper and lower percentile constitutes the inter-
quartile range (IQR) which is a measure of the scale of variables that are
of highest interest. You don’t need to calculate it, but you will find it in the
boxplot because it helps to determinate the plausible limits of your distribu-
tion. What lies between the lower quartile and the minimum, and the upper
quartile and the maximum, are exceptionally rare values that can negatively
affect the results of your analysis. Such rare cases are outliers — and they’re
the topic of Chapter 16.

Defining measures of normality
The last indicative measures of how the numeric variables used for these
examples are structured are skewness and kurtosis:

 ✓ Skewness defines the asymmetry of data with respect to the mean. If the
skew is negative, the left tail is too long and the mass of the observa-
tions are on the right side of the distribution. If it is positive, it is exactly
the opposite.

 ✓ Kurtosis shows whether the data distribution, especially the peak and
the tails, are of the right shape. If the kurtosis is above zero, the distri-
bution has a marked peak. If it is below zero, the distribution is too flat
instead.

Although reading the numbers can help you determine the shape of the data,
taking notice of such measures presents a formal test to select the variables
that may need some adjustment or transformation in order to become more
similar to the Gaussian distribution. Remember that you also visualize the
data later, so this is a first step in a longer process.

As an example, a previous illustration in this chapter shows that the petal
length feature presents differences between the mean and the median (see
“Measuring variance and range,” earlier in this chapter). In this section,
you test the same example for kurtosis and skewness in order to determine
whether the variable requires intervention.

When performing the kurtosis and skewness tests, you determine whether
the p‐value is less than or equal 0.05. If so, you have to reject normality,
which implies that you could obtain better results if you try to transform the
variable into a normal one. The following code shows how to perform the
required test:

from scipy.stats import kurtosis, kurtosistest
k = kurtosis(iris_dataframe['petal length (cm)'])
zscore, pvalue = kurtosistest(iris_dataframe['petal length (cm)'])
print 'Kurtosis %0.3f z‐score %0.3f p‐value %0.3f' % (k, zscore, pvalue)

241 Chapter 13: Exploring Data Analysis

Kurtosis ‐1.395 z‐score ‐14.811 p‐value 0.000

from scipy.stats import skew, skewtest
s = skew(iris_dataframe['petal length (cm)'])
zscore, pvalue = skewtest(iris_dataframe['petal length (cm)'])
print 'Skewness %0.3f z‐score %0.3f p‐value %0.3f' % (s, zscore, pvalue)

Skewness ‐0.272 z‐score ‐1.398 p‐value 0.162

The test results tell you that the data is slightly skewed to the left, but not
enough to make it unusable. The real problem is that the curve is much too
flat to be bell shaped, so you should investigate the matter further.

It’s a good practice to test all variables for kurtosis and skewness auto-
matically. You should then proceed to inspect those whose values are the
highest visually. Non‐normality of a distribution may also conceal different
issues, such as outliers to groups that you can perceive only by a graphical
 visualization.

Counting for Categorical Data
The Iris dataset is made of four metric variables and a qualitative target out-
come. Just as you use means and variance as descriptive measures for metric
variables, so do frequencies strictly relate to qualitative ones.

Because the dataset is made up of metric measurements (width and lengths
in centimeters), you must render it qualitative by dividing it into bins accord-
ing to specific intervals. The pandas package features two useful functions,
cut and qcut, that can transform a metric variable into a qualitative one:

 ✓ cut expects a series of edge values used to cut the measurements or
an integer number of groups used to cut the variables into equal‐width
bins.

 ✓ qcut expects a series of percentiles used to cut the variable.

You can obtain a new categorical DataFrame using the following command,
which concatenates a binning (see the “Understanding binning and discreti-
zation” section of Chapter 8 for details) for each variable:

iris_binned = pd.concat([
pd.qcut(iris_dataframe.ix[:,0], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,1], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,2], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,3], [0, .25, .5, .75, 1]),
], join='outer', axis = 1)

242 Part IV: Wrangling Data

This example relies on binning. However, it could also help to explore when
the variable is above or below a singular hurdle value, usually the mean
or the median. In this case, you set pd.qcut to the 0.5 percentile or pd.cut
to the mean value of the variable.

Binning transforms numerical variables into categorical ones. This transfor-
mation can improve your understanding of data and the machine‐learning
phase that follows by reducing the noise (outliers) or nonlinearity of the
transformed variable.

Understanding frequencies
You can obtain a frequency for each categorical variable of the dataset, both
for the predictive variable and for the outcome, by using the following code:

print iris_dataframe['group'].value_counts()

virginica 50
versicolor 50
setosa 50

print iris_binned['petal length (cm)'].value_counts()

[1, 1.6] 44
(4.35, 5.1] 41
(5.1, 6.9] 34
(1.6, 4.35] 31

This example provides you with some basic frequency information as well,
such as the number of unique values in each variable and the mode of the fre-
quency (top and freq rows in the output).

print iris_binned.describe()

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
count 150 150 150 150
unique 4 4 4 4
top [4.3, 5.1] [2, 2.8] [1, 1.6] [0.1, 0.3]
freq 41 47 44 41

Frequencies can signal a number of interesting characteristics of qualitative
features:

 ✓ The mode of the frequency distribution that is the most frequent
category

 ✓ The other most frequent categories, especially when they are compara-
ble with the mode (bimodal distribution) or if there is a large difference
between them

243 Chapter 13: Exploring Data Analysis

 ✓ The distribution of frequencies among categories, if rapidly decreasing
or equally distributed

 ✓ Rare categories that gather together

Creating contingency tables
By matching different categorical frequency distributions, you can display
the relationship between qualitative variables. The pandas.crosstab func-
tion can match variables or groups of variables, helping to locate possible
data structures or relationships.

In the following example, you check how the outcome variable is related to
petal length and observe how certain outcomes and petal binned classes
never appear together:

print pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])

petal length (cm) (1.6, 4.35] (4.35, 5.1] (5.1, 6.9] [1, 1.6]
group
setosa 6 0 0 44
versicolor 25 25 0 0
virginica 0 16 34 0

The pandas.crosstab function ignores categorical variable ordering and
always displays the row and column categories according to their alphabeti-
cal order. This nuisance is still present in the pandas version used for this
book, 0.15.2, but it may be resolved in the future.

Creating Applied Visualization for EDA
Up to now, the chapter has explored variables by looking at each one sepa-
rately. Technically, if you’ve followed along with the examples, you have cre-
ated a univariate (that is, you’ve paid attention to stand‐alone variations of
the data only) description of the data. The data is rich in information because
it offers a perspective that goes beyond the single variable, presenting more
variables with their reciprocal variations. The way to use more of the data is
to create a bivariate (seeing how couples of variables relate to each other)
exploration. This is also the basis for complex data analysis based on a
multivariate (simultaneously considering all the existent relations between
 variables) approach.

If the univariate approach inspected a limited number of descriptive statis-
tics, then matching different variables or groups of variables increases the
number of possibilities. Such exploration overloads the data scientist with

244 Part IV: Wrangling Data

different tests and bivariate analysis. Using visualization is a rapid way to
limit test and analysis to only interesting traces and hints. Visualizations,
using a few informative graphics, can convey the variety of statistical charac-
teristics of the variables and their reciprocal relationships with greater ease.

Inspecting boxplots
Boxplots provide a way to represent distributions and their extreme ranges,
signaling whether some observations are too far from the core of the data —
a problematic situation for some learning algorithms. The following code
shows how to create a basic boxplot using the iris dataset:

boxplots = iris_dataframe.boxplot(return_type='axes')

In Figure 13-1, you see the structure of each variable’s distribution at its
core, represented by the 25° and 75° percentile (the sides of the box) and the
median (at the center of the box). The lines, the so‐called whiskers, represent
1.5 times the IQR from the box sides (or by the distance to the most extreme
value, if within 1.5 times the IQR). The boxplot marks every observation out-
side the whisker (deemed an unusual value) by a sign.

Boxplots are also extremely useful for visually checking group differences.
Note in Figure 13-2 how a boxplot can hint that the three groups, setosa,
 versicolor, and virginica, have different petal lengths, with only partially
overlapping values at the fringes of the last two of them.

Figure 13-1:
A boxplot

arranged by
variables.

245 Chapter 13: Exploring Data Analysis

Performing t‐tests after boxplots
After you have spotted a possible group difference relative to a variable, a
t‐test (you use a t‐test in situations in which the sampled population has an
exact normal distribution) or a one‐way Analysis Of Variance (ANOVA) can
provide you with a statistical verification of the significance of the difference
between the groups’ means.

from scipy.stats import ttest_ind
group0 = iris_dataframe['group'] == 'setosa'
group1 = iris_dataframe['group'] == 'versicolor'
group2 = iris_dataframe['group'] == 'virginica'
print 'var1 %0.3f var2 %03f' % (iris_dataframe['petal length (cm)'][group1].

var(),
 iris_dataframe['petal length (cm)'][group2].var())

var1 0.221 var2 0.304588

The t‐test compares two groups at a time, and it requires that you define
whether the groups have similar variance or not. So it is necessary to calcu-
late the variance beforehand, like this:

t, pvalue = ttest_ind(iris_dataframe[sepal width (cm)'][group1],
 iris_dataframe['sepal width (cm)'][group2], axis=0, equal_var=False)
print 't statistic %0.3f p‐value %0.3f' % (t, pvalue)

t statistic ‐3.206 p‐value 0.002

Figure 13-2:
A boxplot

arranged by
groups.

246 Part IV: Wrangling Data

You interpret the pvalue as the probability that the calculated t statistic dif-
ference is just due to chance. Usually, when it is below 0.05, you can confirm
that the groups’ means are significantly different.

You can simultaneously check more than two groups using the one‐way
ANOVA test. In this case, the pvalue has an interpretation similar to the t‐test:

from scipy.stats import f_oneway
f, pvalue = f_oneway(iris_dataframe['sepal width (cm)'][group0],
 iris_dataframe['sepal width (cm)'][group1],
 iris_dataframe['sepal width (cm)'][group2])
print "One‐way ANOVA F‐value %0.3f p‐value %0.3f" % (f,pvalue)

One‐way ANOVA F‐value 47.364 p‐value 0.000

Observing parallel coordinates
Parallel coordinates can help spot which groups in the outcome variable you
could easily separate from the other. It is a truly multivariate plot, because at
a glance it represents all your data at the same time. The following example
shows how to use parallel coordinates.

from pandas.tools.plotting import parallel_coordinates
iris_dataframe['labels'] = [iris.target_names[k] for k in
iris_dataframe['group']]
pll = parallel_coordinates(iris_dataframe,'labels')

As shown in Figure 13-3, on the abscissa axis you find all the quantitative
variables aligned. On the ordinate, you find all the observations, carefully
represented as parallel lines, each one of a different color given its ownership
to a different group.

Figure 13-3:
Parallel

coordinates
anticipate

whether
groups are

easily
separable.

247 Chapter 13: Exploring Data Analysis

If the parallel lines of each group stream together along the visualization in
a separate part of the graph far from other groups, the group is easily sepa-
rable. The visualization also provides the means to assert the capability of
certain features to separate the groups.

Graphing distributions
You usually render the information that boxplot and descriptive statistics
provide into a curve or a histogram, which shows an overview of the com-
plete distribution of values. The output shown in Figure 13-4 represents all
the distributions in the dataset. Different variable scales and shapes are
immediately visible, such as the fact that petals’ features display two peaks.

densityplot = iris_dataframe[iris_dataframe.columns[:4]].plot(kind='density')

Histograms present another, more detailed, view over distributions:

single_distribution = iris_dataframe['petal length (cm)'].plot(kind='hist')

Figure 13-5 shows the histogram of petal length. It reveals a gap in the dis-
tribution that could be a promising discovery if you can relate it to a certain
group of Iris flowers.

Figure 13-4:
Features’

distribution
and density.

248 Part IV: Wrangling Data

Plotting scatterplots
In scatterplots, the two compared variables provide the coordinates for
plotting the observations as points on a plane. The result is usually a cloud
of points. When the cloud is elongated and resembles a line, you can per-
ceive the variables as correlated. The following example demonstrates this
 principle.

colors_palette = {0: 'red', 1: 'yellow', 2:'blue'}
colors = [colors_palette[c] for c in iris_dataframe['group']]
simple_scatterplot = iris_dataframe.plot(kind='scatter',
 x='petal length (cm)', y='petal width (cm)', c=colors)

This simple scatterplot, represented in Figure 13-6, compares length and
width of petals. The scatterplot highlights different groups using different
colors. The elongated shape described by the points hints at a strong corre-
lation between the two observed variables, and the division of the cloud into
groups suggests a possible separability of the groups.

Because the number of variables isn’t too large, you can also generate all the
scatterplots automatically from the combination of the variables. This rep-
resentation is a matrix of scatterplots. The following example demonstrates
how to create one:

from pandas.tools.plotting import scatter_matrix
colors_palette = {0: "red", 1: "yellow", 2: "blue"}
colors = [colors_palette[c] for c in iris_dataframe['group']]
matrix_of_scatterplots = scatter_matrix(iris_dataframe,
 figsize=(6, 6), color=colors, diagonal='kde')

Figure 13-5:
Histograms

can detail
better

distributions

249 Chapter 13: Exploring Data Analysis

In Figure 13-7, you can see the resulting visualization for the Iris dataset. The
diagonal representing the density estimation can be replaced by a histogram
using the parameter diagonal='hist'.

Figure 13-6:
A

scatterplot
reveals how

two
variables
relate to

each other.

Figure 13-7:
A matrix of

scatterplots
displays

more
information
at one time.

250 Part IV: Wrangling Data

Understanding Correlation
Just as the relationship between variables is graphically representable, it is
also measurable by a statistical estimate. When working with numeric vari-
ables, the estimate is a correlation, and the Pearson’s correlation is the most
famous. The Pearson’s correlation is the foundation for complex linear esti-
mation models. When you work with categorical variables, the estimate is an
association, and the chi‐square statistic is the most frequently used tool for
measuring association between features.

Using covariance and correlation
Covariance is the first measure of the relationship of two variables. It deter-
mines whether both variables have a coincident behavior with respect to
their mean. If the single values of two variables are usually above or below
their respective averages, the two variables have a positive association. It
means that they tend to agree, and you can figure out the behavior of one
of the two by looking at the other. In such a case, their covariance will be a
positive number, and the higher the number, the higher the agreement.

If, instead, one variable is usually above and the other variable usually below
their respective averages, the two variables are negatively associated. Even
though the two disagree, it’s an interesting situation for making predictions,
because by observing the state of one of them, you can figure out the likely
state of the other (albeit they’re opposite). In this case, their covariance will
be a negative number.

A third state is that the two variables don’t systematically agree or disagree
with each other. In this case, the covariance will tend to be zero, a sign that
the variables don’t share much and have independent behaviors.

Ideally, when you have a numeric target variable, you want the target vari-
able to have a high positive or negative covariance with the predictive vari-
ables. Having a high positive or negative covariance among the predictive
variables is a sign of information redundancy. Information redundancy signals
that the variables point to the same data — that is, the variables are telling
us the same thing in slightly different ways.

Computing a covariance matrix is straightforward using pandas. You can
immediately apply it to the DataFrame of the Iris dataset as shown here:

iris_dataframe.cov()
 sepal length (cm) sepal width (cm) petal length (cm) \

251 Chapter 13: Exploring Data Analysis

sepal length (cm) 0.685694 ‐0.039268 1.273682
sepal width (cm) ‐0.039268 0.188004 ‐0.321713
petal length (cm) 1.273682 ‐0.321713 3.113179
petal width (cm) 0.516904 ‐0.117981 1.296387

 petal width (cm)
sepal length (cm) 0.516904
sepal width (cm) ‐0.117981
petal length (cm) 1.296387
petal width (cm) 0.582414

This matrix output shows variables present on both rows and columns.
By observing different row and column combinations, you can determine
the value of covariance between the variables chosen. After observing
these results, you can immediately understand that little relationship exists
between sepal length and sepal width, meaning that they’re different infor-
mative values. However, there could be a special relationship between petal
width and petal length, but the example doesn’t tell what this relationship is
because the measure is not easily interpretable.

The scale of the variables you observe influences covariance, so you should
use a different, but standard, measure. The solution is to use correlation,
which is the covariance estimation after having standardized the variables.
Here is an example of obtaining a correlation using a simple pandas method:

print iris_dataframe.corr()
 sepal length (cm) sepal width (cm) petal length (cm) \
sepal length (cm) 1.000000 ‐0.109369 0.871754
sepal width (cm) ‐0.109369 1.000000 ‐0.420516
petal length (cm) 0.871754 ‐0.420516 1.000000
petal width (cm) 0.817954 ‐0.356544 0.962757

 petal width (cm)
sepal length (cm) 0.817954
sepal width (cm) ‐0.356544
petal length (cm) 0.962757
petal width (cm) 1.000000

Now that’s even more interesting, because correlation values are bound
between values of –1 and +1, so the relationship between petal width and
length is positive and, with a 0.96, it is almost the maximum possible.

You can compute covariance and correlation matrices also by means of
NumPy commands, as shown here:

covariance_matrix = np.cov(iris_nparray, rowvar=0, bias=1)
correlation_matrix= np.corrcoef(iris_nparray, rowvar=0, bias=1)

252 Part IV: Wrangling Data

In statistics, this kind of correlation is a Pearson correlation, and its coefficient
is a Pearson’s r.

Another nice trick is to square the correlation. By squaring it, you lose
the sign of the relationship. The new number tells you the percentage of
the information shared by two variables. In this example, a correlation of
0.96 implies that 96 percent of the information is shared. You can obtain a
squared correlation matrix using this command: print iris_dataframe.
corr()**2.

Something important to remember is that covariance and correlation are
based on means, so they tend to represent relationships that you can
express using linear formulations. Variables in real‐life datasets usually
don’t have nice linear formulations. Instead they are highly nonlinear, with
curves and bends. You can rely on mathematical transformations to make
the relationships linear between variables anyway. A good rule to remember
is to use correlations only to assert relationships between variables, not to
exclude them.

Using nonparametric correlation
Correlations can work fine when your variables are numeric and their
relationship is strictly linear. Sometimes, your feature could be ordinal (a
numeric variable but with orderings) or you may suspect some nonlinear-
ity due to non‐normal distributions in your data. A possible solution is to
test the doubtful correlations with a nonparametric correlation, such as a
Spearman correlation (which means that it has fewer requirements in terms
of distribution of considered variables). A Spearman correlation transforms
your numeric values into rankings and then correlates the rankings, thus min-
imizing the influence of any nonlinear relationship between the two variables
under scrutiny.

As an example, you verify the relationship between sepals’ length and width
whose Pearson correlation was quite weak:

from scipy.stats import spearmanr
from scipy.stats.stats import pearsonr
spearmanr_coef, spearmanr_p = spearmanr(iris_dataframe['sepal length (cm)'],
 iris_dataframe['sepal width (cm)'])
pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],
 iris_dataframe['sepal width (cm)'])
print 'Pearson correlation %0.3f | Spearman correlation %0.3f' % (pearsonr_coef,
 spearmanr_coef)
Pearson correlation ‐0.109 | Spearman correlation ‐0.159

253 Chapter 13: Exploring Data Analysis

In this case, the code confirms the weak association between the two vari-
ables using the nonparametric test.

Considering chi‐square for tables
You can apply another nonparametric test for relationship when working
with cross‐tables. This test is applicable to both categorical and numeric
data (after it has been discretized into bins). The chi‐square statistic tells
you when the table distribution of two variables is statistically comparable
to a table in which the two variables are hypothesized as not related to each
other (the so‐called independence hypothesis). Here is an example of how
you use this technique:

from scipy.stats import chi2_contingency
table = pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])
chi2, p, dof, expected = chi2_contingency(table.values)
print 'Chi‐square %0.2f p‐value %0.3f' % (chi2, p)

Chi‐square 212.43 p‐value 0.000

As seen before, the p‐value is the chance that the chi‐square difference is just
by chance.

The chi‐square measure value depends on how many cells the table has. Do
not use the chi‐square measure to compare different chi‐square tests unless
you know for sure that the tables in comparison share the same structure.

The chi‐square is particularly interesting for assessing the relationships
between binned numeric variables, even in the presence of strong nonlinear-
ity that can fool Person’s r. Contrary to correlation measures, it can inform
you of a possible association, but it won’t provide clear details of its direc-
tion or absolute magnitude.

Modifying Data Distributions
As a by‐product of data exploration, in an EDA phase you can do the
 following:

 ✓ Obtain new feature creation from the combination of different but
related variables

 ✓ Spot hidden groups or strange values lurking in your data

 ✓ Try some useful modifications of your data distributions by binning
(or other discretizations such as binary variables)

254 Part IV: Wrangling Data

When performing EDA, you need to consider the importance of data transfor-
mation in preparation for the learning phase, which also means using certain
mathematical formulas. The following sections present an overview of the
most common mathematical formulas used for EDA (such as linear regres-
sion). The data transformation you choose depends on the distribution of
your data, with a normal distribution being the most common. In addition,
these sections highlight the need to match the transformation process to the
mathematical formula you use.

Using the normal distribution
The normal, or Gaussian, distribution is the most useful distribution in statis-
tics thanks to its frequent recurrence and particular mathematical proper-
ties. It’s essentially the foundation of many statistical tests and models, with
some of them, such as the linear regression, widely used in data science.

During data science practice, you’ll meet with a wide range of different
 distributions — with some of them named by probabilistic theory, others
not. For some distributions, the assumption that they should behave as a
normal distribution may hold, but for others, it may not, and that could be a
problem depending on what algorithms you use for the learning process. As
a general rule, if your model is a linear regression or part of the linear model
family because it boils down to a summation of coefficients, then both vari-
able standardization and distribution transformation should be considered.

Creating a Z‐score standardization
In your EDA process, you may have realized that your variables have differ-
ent scales and are heterogeneous in their distributions. As a consequence of
your analysis, you need to transform the variables in a way that makes them
easily comparable:

from sklearn.preprocessing import scale
stand_sepal_width = scale(iris_dataframe['sepal width (cm)'])

Transforming other notable distributions
When you check variables with high skewness and kurtosis for their correla-
tion, the results may disappoint you. As you find out earlier in this chapter,
using a nonparametric measure of correlation, such as Spearman’s, may tell

255 Chapter 13: Exploring Data Analysis

you more about two variables than Pearson’s r may tell you. In this case, you
should transform your insight into a new, transformed feature:

tranformations = {'x': lambda x: x, '1/x': lambda x: 1/x, 'x**2': lambda x:
x**2,

 'x**3': lambda x: x**3, 'log(x)': lambda x: np.log(x)}
for transformation in tranformations:
 pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],
 tranformations[transformation](iris_dataframe['sepal width (cm)']))
 print 'Transformation: %s \t Pearson\'s r: %0.3f' % (transformation,

pearsonr_coef)

Transformation: x Pearson's r: ‐0.109
Transformation: x**2 Pearson's r: ‐0.122
Transformation: x**3 Pearson's r: ‐0.131
Transformation: log(x) Pearson's r: ‐0.093
Transformation: 1/x Pearson's r: 0.073

In exploring various possible transformations, using a for loop may tell you
that a power transformation will increase the correlation between the two
variables, thus increasing the performance of a linear machine‐learning algo-
rithm. You may also try other, further transformations such as square root
np.sqrt(x), exponential np.exp(x), and various combinations of all the
transformations, such as log inverse np.log(1/x).

256 Part IV: Wrangling Data

Reducing Dimensionality
In This Chapter

 ▶ Discovering the magic of singular value decomposition

 ▶ Understanding the difference between factors and components

 ▶ Matching unknown images to known ones

 ▶ Automatically retrieving topics from texts

 ▶ Building a movie recommender system

B
ig data is defined as a collection of datasets that is so huge that it
becomes difficult to process using traditional techniques. The manipu-

lation of big data differentiates statistical problems, which are based on small
samples, from data science problems. You typically use traditional statistical
techniques on small problems and data science techniques on big problems.

Data may be viewed as big because it consists of many examples, and this is
the first kind of big that spontaneously comes to mind. Analyzing a database
of millions of customers and interacting with them all simultaneously is really
challenging, but that isn’t the only possible perspective of big data.

Another potential view of big data relates to its production and velocity, that
is, the time dimension. Even if your observations are few, producing data
points for an extended time frame results in a huge stack of information. The
dataset reports each instant’s persistency or change of your cases.

A third view of big data is data dimensionality, which refers to how many
aspects of the cases an application tracks. Data with high dimensionality may
offer many features (variables) — often hundreds or thousands of them. And
that may turn into a real problem. Even if you’re observing only a few cases for a
short time, dealing with too many features can make most analysis intractable.

The complexity of working with so many dimensions drives the necessity
for various data techniques to filter the information — keeping the data that
seems to solve the problem better. The filter reduces dimensionality by
removing redundant information in high‐dimension datasets.

Chapter 14

258 Part IV: Wrangling Data

The focus in this chapter is on reducing data dimensions when the data has
too many repetitions of the same information. You can view this reduction as
a kind of information compression, which is similar to compressing files on a
hard disk in order to save space.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 14; Reducing Dimensionality.ipynb source code file.

Understanding SVD
The core of data reduction magic lies in a form of linear algebra called Singular
Value Decomposition (SVD). SVD is a mathematical method that takes data as
input in the form of a single matrix and gives back three resulting matrices that,
multiplied together, return the original input matrix. The formula of SVD is

M = U * s * Vh

Here is a short explanation of the letters used in the equation:

 ✓ U: Contains all the information about the rows (your observations)

 ✓ Vh: Contains all the information about the columns (your features)

 ✓ s: Records the SVD process (it is kind of a log record)

Creating three matrices out of one seems counterproductive when the goal
is to reduce data dimensions. It would seem that using SVD should be called
data explosion, not reduction! However, SVD conceals the magic in the
 process, because as it builds these new matrices, it separates the information
regarding the rows from the columns of the original matrix. As a result, it com-
presses all the valuable information into the first columns of the new data.

The resulting matrix s shows how the compression happened. The sum of all
the values in s tells you how much information was previously stored in your
original matrix, and each value in r reports how much data has accumulated
in each respective column of U and Vh.

To understand how this all works, you need to look at individual values.
For instance, if the sum of s is 100 and the first value of s is 99, that means
that 99 percent of the information is now stored in the first column of U and
Vh. Therefore, you can happily discard all the remaining columns after the
first column without losing any important information for your data science
knowledge discovery process.

259 Chapter 14: Reducing Dimensionality

Looking for dimensionality reduction
It’s time to see how Python can help you reduce data complexity. The following
example demonstrates a method for reducing your big data. You can use this
technique in many other interesting applications, too.

import numpy as np
M = np.array([[1, 3, 4], [2, 3, 5], [1, 2, 3], [5, 4, 6]])
print(M)

[[1 3 4]
 [2 3 5]
 [1 2 3]
 [5 4 6]]

Let’s say you have a matrix, M, that contains the data that you want to
reduce. M is made of four observations containing three features each. Using
the module linalg from NumPy, you can access the svd function that
exactly splits your original matrix into three variables: U, s, and Vh.

U, s, Vh = np.linalg.svd(M, full_matrices=False)
print np.shape(U), np.shape(s),np.shape(Vh)
print s

(4L, 3L) (3L,) (3L, 3L)
[12.26362747 2.11085464 0.38436189]

The matrix U, representing the rows, has four row values. The matrix Vh is a
square matrix, and its three rows represent the original columns. The matrix
s is a diagonal matrix. A diagonal matrix contains zeros in every element but
its diagonal. The length of its diagonal is exactly that of the three original
 columns. Inside s, you find that most of the values are in the first elements,
indicating that the first column is what holds the most information (more
than 80 percent), the second has some values (about 14 percent), and the
third contains the residual values.

You can check whether the SVD keeps its promises by viewing the example
output. The example reconstructs the original matrix using the dot NumPy
function to multiply U, s (diagonal), and Vh. The dot function performs
matrix multiplication, which is a multiplication procedure slightly different
from the arithmetic one.

print np.dot(np.dot(U, np.diag(s)), Vh) # Full matrix reconstruction

[[1. 3. 4.]
 [2. 3. 5.]
 [1. 2. 3.]
 [5. 4. 6.]]

260 Part IV: Wrangling Data

The reconstruction is perfect. Now it’s time to play with the results a little.
For example, you might want to see what happens when you exclude the
third column, the less important of the three. The following example shows
what happens when you cut the last column from all three matrices.

print np.round(np.dot(np.dot(U[:,:2], np.diag(s[:2])), Vh[:2,:]),1) # k=2
reconstruction

[[1. 2.8 4.1]
 [2. 3.2 4.8]
 [1. 2. 3.]
 [5. 3.9 6.]]

The output is almost perfect. There are a few decimal points of difference. To
take the example further, the following code removes both the second and
third columns.

print np.round(np.dot(np.dot(U[:,:1], np.diag(s[:1])), Vh[:1,:]),1) # k=1
reconstruction

[[2.1 2.5 3.7]
 [2.6 3.1 4.6]
 [1.6 1.8 2.8]
 [3.7 4.3 6.5]]

Now there are more errors. Some elements of the matrix are missing more
than a few decimal points. However, you can see that most of the numeric
information is intact. Just imagine the potential of using such a technique on
a larger matrix, a matrix with hundreds of columns.

One of the difficult issues to consider is determining how many columns to
keep. Creating a cumulated sum of the diagonal matrix s (using the NumPy
cumsum function is perfect for this task) is useful for keeping track of how
information is expressed, and by how many columns. As a general rule, you
should consider solutions maintaining from 70 to 99 percent of the original
information; however, that’s not a strict rule — it really depends on how
important it is for you to be able to reconstruct the original dataset.

Using SVD to measure the invisible
A property of SVD is to compress the original data at such a level and in such
a smart way that, in certain situations, the technique can really create new
meaningful and useful features, not just compressed variables. Therefore,
you could have used the three columns of the U matrix in the previous
 example as new features.

261 Chapter 14: Reducing Dimensionality

If your data contains hints and clues about a hidden cause or motif, an SVD
can put them together and offer you proper answers and insights. That is
especially true when your data is made up of interesting pieces of informa-
tion like the ones in the following list:

 ✓ Text in documents hints at ideas and meaningful categories. Just as
you can make up your mind about treated themes by reading blogs and
newsgroups, so also can SVD help you deduce a meaningful classifica-
tion of groups of documents or the specific topics being written about in
each of them.

 ✓ Reviews of specific movies or books hint at your personal preferences
and at larger product categories. So if you say that you loved the origi-
nal Star Trek series collection on a rating site, it becomes easy to deter-
mine what you like in terms of other films, consumer products, or even
personality types.

An example of a method based on SVD is Latent Semantic Indexing (LSI),
which has been successfully used to associate documents and words on the
basis of the idea that words, though different, tend to have the same mean-
ing when placed in similar contexts. This type of analysis suggests not only
synonymous words but also higher grouping concepts. For example, an LSI
analysis on some sample sports news may group together baseball teams of
the Major League based solely on the co‐occurrence of team names in similar
articles, without any previous knowledge of what a baseball team or the
Major League are.

Performing Factor and Principal
Component Analysis

SVD operates directly on the numeric values in data, but you can also
express data as a relationship between variables. Each feature has a certain
variation. You can calculate the variability as the variance measure around
the mean. The more the variance, the more the information contained inside
the variable. In addition, if you place the variable into a set, you can com-
pare the variance of two variables to determine whether they correlate,
which is a measure of how strongly they have similar values.

262 Part IV: Wrangling Data

Checking all the possible correlations of a variable with the others in the set,
you can discover that you may have two types of variance:

 ✓ Unique variance: Some variance is unique to the variable under exami-
nation. It cannot be associated to what happens to any other variable.

 ✓ Shared variance: Some variance is shared with one or more other vari-
ables, creating redundancy in the data. Redundancy implies that you
can find the same information, with slightly different values, in various
features and across many observations.

Of course, the next step is to determine the reason for shared variance.
Trying to answer such a question, as well as determining how to deal with
unique and shared variances, led to the creation of factor and principal
 component analysis.

Considering the psychometric model
Long before many machine‐learning algorithms were thought up, psychometrics,
the discipline in psychology that is concerned with psychological measure-
ment, tried to find a statistical solution to effectively measure dimensions in
personality. Our personality, as with other aspects of ourselves, is not directly
measurable. For example, it isn’t possible to measure precisely how much a
person is introverted or intelligent. Questionnaires and psychological tests only
hint at these values.

Psychologists knew of SVD and tried to apply it to the problem. Shared
 variance attracted their attention: If some variables are almost the same, they
should have the same root cause, they thought. Psychologists created factor
analysis to perform this task! Instead of applying SVD directly to data, they
applied it to a newly created matrix tracking the common variance, in the
hope of condensing all the information and recovering new useful features
called factors.

Looking for hidden factors
A good way to show how to use factor analysis is to start with the Iris dataset.

from sklearn.datasets import load_iris
from sklearn.decomposition import FactorAnalysis
iris = load_iris()
X, y = iris.data, iris.target
factor = FactorAnalysis(n_components=4, , random_state=101).fit(X)

263 Chapter 14: Reducing Dimensionality

After loading the data and having stored all the predictive features, the
FactorAnalysis class is initialized with a request to look for four factors.
The data is then fitted. You can explore the results by observing the compo-
nents_ attribute, which returns an array containing measures of the rela-
tionship between the newly created factors, placed in rows, and the original
features, placed in columns. At the intersection of each factor and feature,
a positive number indicates that a positive proportion exists between the
two; a negative number, instead, points out that they diverge and one is the
 contrary to the other.

You’ll have to test different values of n_components because it isn’t possible
to know how many factors exist in the data. If the algorithm is required for more
factors than exist, it will generate factors with low values in the components_
array.

import pandas as pd
print pd.DataFrame(factor.components_,columns=iris.feature_names)

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 0.707227 ‐0.153147 1.653151 0.701569
1 0.114676 0.159763 ‐0.045604 ‐0.014052
2 0.000000 ‐0.000000 ‐0.000000 ‐0.000000
3 ‐0.000000 0.000000 0.000000 ‐0.000000

In the test on the Iris dataset, for example, the resulting factors should be a
maximum of 2, not 4, because only two factors have significant connections
with the original features. You can use these two factors as new variables in
your project because they reflect an unseen but important feature that the
previously available data only hinted at.

Using components, not factors
If an SVD could be successfully applied to the common variance, you might
wonder why you can’t apply it to all the variances. Using a slightly modified start-
ing matrix, all the relationships in the data could be reduced and compressed
in a similar way to how SVD does it. The results of this process, which are quite
similar to SVD, are called principal components analysis (PCA). The newly cre-
ated features are named components. In contrast to factors, components aren’t
described as the root cause of the data structure but are just restructured data,
so you can view them as a big, smart summation of selected variables.

For data science applications, PCA and SVD are quite similar. However, PCA
isn’t affected by the scale of the original features (because it works on cor-
relation measures that are all bound between –1 and +1 values) and PCA
focuses on rebuilding the relationship between the variables, thus offering
different results from SVD.

264 Part IV: Wrangling Data

Achieving dimensionality reduction
The procedure to obtain a PCA is quite similar to the factor analysis. The
 difference is that you don’t specify the number of components to extract. You
decide later how many components to keep after checking the explained_
variance_ratio_ attribute, which provides quantification (in percentage)
of the informative value of each extracted component. The following example
shows how to perform this task:

from sklearn.decomposition import PCA
import pandas as pd
pca = PCA().fit(X)
print 'Explained variance by component: %s' % pca.explained_variance_ratio_
print pd.DataFrame(pca.components_,columns=iris.feature_names)

Explained variance by component: [0.92461621 0.05301557 0.01718514
0.00518309]

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 0.361590 ‐0.082269 0.856572 0.358844
1 ‐0.656540 ‐0.729712 0.175767 0.074706
2 0.580997 ‐0.596418 ‐0.072524 ‐0.549061
3 0.317255 ‐0.324094 ‐0.479719 0.751121

In this decomposition of the Iris dataset, the vector array provided by
explained_variance_ratio_ indicates that most of the information is
concentrated into the first component (92.5 percent). You saw this same sort
of result after the factor analysis. It’s therefore possible to reduce the entire
dataset to just two components, providing a reduction of noise and redun-
dant information from the original dataset.

Understanding Some Applications
Understanding the algorithms that compose the family of SVD‐derived data
decomposition techniques is complex because of its mathematical complex-
ity and its numerous variants (such as Factor, PCA, and SVD). A few appli-
cations may instead help you understand the best ways to employ these
powerful data science tools.

In the following paragraphs, you work with some algorithms that you likely
have seen in action when

 ✓ Performing a search by images on a search engine or publishing an
image on a social network

 ✓ Automatically labeling blog posts or questions to Q&A websites

 ✓ Receiving recommendations for your purchases on e‐commerce websites.

265 Chapter 14: Reducing Dimensionality

Recognizing faces with PCA
Our first example deals with images, and more precisely with facial images.
You may have wondered how social networks manage to tag images with the
appropriate label or name. The following example demonstrates how to per-
form this task.

from sklearn.datasets import fetch_olivetti_faces
dataset = fetch_olivetti_faces(shuffle=True, random_state=101)
train_faces = dataset.data[:350,:]
test_faces = dataset.data[350:,:]
train_answers = dataset.target[:350]
test_answers = dataset.target[350:]

The example begins by using the Olivetti faces dataset, a set of images read-
ily available from Scikit‐learn. For this experiment, the code divides the set
of labeled images into a training and a test set. You need to pretend that you
know the labels of the training set but don’t know anything from the test set.
As a result, you want to associate images from the test set to the most similar
image from the training set.

print dataset.DESCR

The Olivetti dataset consists of 400 photos taken from 40 people (so there are
10 photos of each person). Even though the photos represent the same person,
each photo has been taken at different times during the day, with different
light and facial expressions or details (for example, with glasses and without).
The images are 64 x 64 pixels, so unfolding all the pixels into features creates a
dataset made of 400 cases and 4,096 variables.

from sklearn.decomposition import RandomizedPCA
n_components = 25
Rpca = RandomizedPCA(n_components=n_components, whiten=True,
 random_state=101).fit(train_faces)
print 'Explained variance by %i components: %0.3f' % (n_components,
 np.sum(Rpca.explained_variance_ratio_))
compressed_train_faces = Rpca.transform(train_faces)
compressed_test_faces = Rpca.transform(test_faces)

Explained variance by 25 components: 0.794

The RandomizedPCA class is an approximate PCA version, which works
better when the dataset is large (many rows and variables). The decomposi-
tion creates 25 new variables (n_components parameter) and whitening
(whiten=True), thus removing some constant noise (created by textual and
photo granularity) from images. The resulting decomposition uses 25 compo-
nents, which is about 80 percent of information held in 4,096 features.

266 Part IV: Wrangling Data

import matplotlib.pyplot as plt
photo = 17 # This is the photo in the test set we want to know about
print 'We are looking for face id=%i' % test_answers[photo]
plt.subplot(1, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64), cmap=plt.cm.gray,

interpolation='nearest')

Figure 14-1 represents the chosen photo from the test set. It is subject
number 34.

After the decomposition of the test set, the example takes the data relative
only to photo 17 and subtracts it from the decomposition of the training
set. Now the training set is made of differences with respect to the example
photo. The code squares them (to remove negative values) and sums them
by row. That results in a series of summed errors. The most similar photos
are the ones with the least‐squared errors, the ones whose differences are
the least.

mask = compressed_test_faces[photo,] #Just the vector of value components of our
photo

squared_errors = np.sum((compressed_train_faces ‐ mask)**2,axis=1)
minimum_error_face = argmin(squared_errors)
most_resembling = list(np.where(squared_errors < 20)[0])
print 'Best resembling face in train test: %i' % train_answers[minimum_error_

face]

Best resembling face in train test: 34

As it did before, the code can now display photo 17, which is the photo that
best resembles images from the training set.

Figure 14-1:
The

example
application

would like to
find similar

photos.

267 Chapter 14: Reducing Dimensionality

import matplotlib.pyplot as plt
plt.subplot(2, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64), cmap=plt.cm.gray,

interpolation='nearest')
for k,m in enumerate(most_resembling[:3]):
 plt.subplot(2, 2, 2+k)
 plt.title('Match in train set no. '+str(m))
 plt.axis('off')
 plt.imshow(train_faces[m].reshape(64,64), cmap=plt.cm.gray,

interpolation='nearest')
plt.show()

Even though the most similar photo is similar (it’s just scaled slightly differ-
ently), the other two photos are quite different. However, even though those
photos don’t match the text image as well, they really do show the same
person as in photo 17.

Extracting Topics with NMF
Textual data is another field of application for the family of data reduction
algorithms. The idea that prompted such application is that if a group of
people talks or writes about something, those people tend to use words from
a limited set because they refer or are related to the same topic; they share
some meaning or are part of the same group. Consequently, if you have a
collection of texts and don’t know what topics the text references, you can
reverse the previous reasoning — you can simply look for groups of words
that tend to associate together, so their newly formed group by dimensionality
reduction may hint at the topics you’d like to know about.

Figure 14-2:
The output
shows the

results that
resemble

the test
image.

268 Part IV: Wrangling Data

This is a perfect application for the SVD family, because by reducing the
number of columns, the features (in a document, the words are the features)
will gather in dimensions, and you can discover the topics by checking high‐
scoring words. SVD and PCA provide features to relate both positively and
negatively with the newly created dimensions. So a resulting topic may be
expressed by the presence of a word (high positive value) or by the absence
of it (high negative value), making interpretation both tricky and counter-
intuitive for humans. Luckily, Scikit‐learn includes the Non‐Negative Matrix
Factorization (NMF) decomposition class, which allows an original feature to
relate only positively with the resulting dimensions.

This example starts with a new experiment after loading the 20newsgroups
dataset, selecting only the posts regarding objects for sale and automatically
removing headers, footers, and quotes.

from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20newsgroups(shuffle=True, categories = ['misc.forsale'],
 remove=('headers', 'footers', 'quotes'), random_state=101)
print 'Posts: %i' % len(dataset.data)

Posts: 585

The TfidVectorizer class is imported and set up to remove stop words
(common words such as the or and) and keep only distinctive words, produc-
ing a matrix whose columns point to distinct words.

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english')
tfidf = vectorizer.fit_transform(dataset.data)

from sklearn.decomposition import NMF
n_topics = 5
nmf = NMF(n_components=n_topics, random_state=101).fit(tfidf)

Term frequency‐inverse document frequency (Tf‐idf) is a simple calculation
based on the frequency of a word in document. It is weighted by the rarity of
the word between all the documents available. Weighting words is an effec-
tive way to rule out words that cannot help you to classify or to identify the
document when processing text. For example, you can eliminate common
parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the
n_components parameter indicates the number of desired components. If
you’d like to look for more topics, you use a higher number. As the required
number of topics increases, the reconstruction_err_ method reports
lower error rates. It’s up to you to decide when to stop given the trade‐off
between more time spent on computations and more topics.

269 Chapter 14: Reducing Dimensionality

The last part of the script outputs the resulting five topics. By reading the
printed words, you can decide on the meaning of the extracted topics, thanks
to product characteristics (for instance, the words drive, hard, card, and
floppy refer to computers) or the exact product (for instance, comics, car,
stereo, games).

feature_names = vectorizer.get_feature_names()
n_top_words = 15
for topic_idx, topic in enumerate(nmf.components_):
 print "Topic #%d:" % (topic_idx+1),
 print " ".join([feature_names[i] for i in topic.argsort()[:‐n_top_words ‐

1:‐1]])

Topic #1: drive hard card floppy monitor meg ram disk motherboard vga scsi brand
color

 internal modem
Topic #2: 00 50 dos 20 10 15 cover 1st new 25 price man 40 shipping comics
Topic #3: condition excellent offer asking best car old sale good new miles 10

000 tape
 cd
Topic #4: shipping vcr stereo works obo included amp plus great volume vhs unc

mathes
 gibbs radley
Topic #5: email looking games game mail interested send like thanks price

package list
 sale want know

You can explore the resulting model by looking into the attribute compo-
nents_ from the trained NMF model. It consists of a NumPy ndarray hold-
ing positive values for words connected to the topic. By using the argsort
method, you can get the indexes of the top associations, whose high values
indicate that they are the most representative words.

print nmf.components_[0,:].argsort()[:‐n_top_words‐1:‐1] # Gets top words for
topic 0

[1337 1749 889 1572 2342 2263 2803 1290 2353 3615 3017 806 1022 1938 2334]

Decoding the words’ indexes creates readable strings by calling them from
the array derived from the get_feature_names method applied to the
TfidfVectorizer that was previously fitted.

print vectorizer.get_feature_names()[1337] # transform indexes into words
drive

270 Part IV: Wrangling Data

Recommending movies
Other interesting applications for data reduction are systems for generating
recommendations about the things you may like to buy or know more about.
You likely have quite a few occasions to see recommenders in action. On
most e‐commerce websites, after logging‐in, visiting some product pages, and
rating or putting a product into your electronic basket, you see other buying
opportunities based on other customers’ previous experiences (the method
is called collaborative filtering).

You can implement collaborative recommendations based on simple means
or frequencies calculated on other customers’ set of purchased items or on
ratings using SVD. This approach helps you reliably generate recommenda-
tions even in the case of products the vendor seldom sells or that are quite
new to users.

For this example, you use a well‐known database created by the MovieLens
website, collected from its users’ ratings of a movie they liked or disliked.
Because this is an external dataset, you first have to download it from its
Internet location:

http://files.grouplens.org/datasets/movielens/ml‐1m.zip

After downloading it, you have to extract it into your Python working
 directory. You can discover what your working directory is by using these
commands:

import os
print os.getcwd()

Take note of the displayed directory and extract the ml‐1m database there.
Then execute the following code.

import pandas as pd
from scipy.sparse import csr_matrix
users = pd.read_table('ml‐1m/users.dat', sep='::', header=None,

names=['user_id',
 'gender', 'age', 'occupation', 'zip'])
ratings = pd.read_table('ml‐1m/ratings.dat', sep='::', header=None,

names=['user_id',
 'movie_id', 'rating', 'timestamp'])
movies = pd.read_table('ml‐1m/movies.dat', sep='::', header=None,

names=['movie_id',
 'title', 'genres'])
MovieLens = pd.merge(pd.merge(ratings, users), movies)

http://files.grouplens.org/datasets/movielens/ml-1m.zip

271 Chapter 14: Reducing Dimensionality

Using pandas, the code loads the different data tables and then merges them
on the basis of the features with the same name (the user_id and movie_id
variables).

ratings_mtx_df = MovieLens.pivot_table(values='rating', rows='user_id',
cols='title',

 fill_value=0)
movie_index = ratings_mtx_df.columns

pandas will also help create a data table crossing information on rows about
users and in columns about movie titles. A movie index will keep track about
what movie each column represents.

from sklearn.decomposition import TruncatedSVD
recom = TruncatedSVD(n_components=10, random_state=101)
R = recom.fit_transform(ratings_mtx_df.values.T)

The TruncatedSVD class reduces the data table to ten components. This
class offers a more scalable algorithm than SciPy’s linalg.svd used in ear-
lier examples. TruncatedSVD computes result matrices of exactly the shape
you decide by the n_components parameter (the full resulting matrices are
not calculated), resulting in a faster output and less memory usage.

By calculating the Vh matrix, you can reduce the ratings of different but simi-
lar users (each user’s scores are expressed by row) into compressed dimen-
sions that reconstruct general tastes and preferences. Please also notice that
because you’re interested in the Vh matrix (the columns/movies reduction)
but the algorithm provides you with only the U matrix (the decomposition
based on rows), you need to input the transposition of the data table (using
this approach, columns become rows and you obtain TruncatedSVD output,
which is the Vh matrix).

1196::Star Wars: Episode V ‐ The Empire Strikes Back
(1980)::Action|Adventure|Drama|Sci‐Fi|War
favoured_movie_idx = list(movie_index).index(
 'Star Wars: Episode V ‐ The Empire Strikes Back (1980)')
print R[favoured_movie_idx]

[184.72254552 ‐17.7761415 47.33483561 ‐51.46669814 ‐47.9152707
‐17.65000951 ‐14.34294204 ‐12.88678007 ‐17.48586358 ‐5.38370224]

Using the movie label (in such cases, you look for suggestions based on pref-
erence for a Star Wars episode), you can find out what column the movie is in
(column index 3154 in this case) and print the values of the 10 components.
This sequence provides the movie profile. You could try to interpret it, but
the focus is on other movies that are similar based on the users’ ratings.
These movies have similar scores to the target movie and therefore are

272 Part IV: Wrangling Data

highly correlated with it. A good strategy is to calculate a correlation matrix
of all movies, get the slice related to your movie, and find out inside it what
are the most related (characterized by high positive correlation — say at
least 0.98) movie titles using indexing as shown in the following code.

import numpy as np
correlation_matrix = np.corrcoef(R)
P = correlation_matrix[favoured_movie_idx]
print list(movie_index[(P > 0.98) & (P < 1.0)])

['Raiders of the Lost Ark (1981)', 'Star Wars: Episode IV ‐ A New Hope (1977)',
 'Star Wars: Episode VI ‐ Return of the Jedi (1983)']

It seems there are quite a few titles that fans would like, such as Star Wars
Episodes IV and VI (of course). In addition, fans might like Raiders of the
Lost Ark, maybe because they like the actor Harrison Ford, who is the main
 character in all these films.

SVD will always find the best way to relate a row or column in your data,
discovering complex interactions or relations you didn’t imagine before. You
don’t need to imagine anything in advance; it’s fully a data‐driven approach.

Clustering
In This Chapter

 ▶ Exploring the potentialities of unsupervised clustering

 ▶ Making K‐means work with small and big data

 ▶ Trying DBScan as an alternative option

O
ne of the basic abilities that humans have exercised since primitive
times is to divide the known world into separate classes where indi-

vidual objects share common features deemed important by the classifier.
Starting with primitive cave dwellers classifying the natural world they lived
in, distinguishing plants and animals useful or dangerous for their survival, we
arrive at modern times in which marketing departments classify consumers
into target segments and then act with proper marketing plans.

Classifying is crucial to our process of building new knowledge because, by
gathering similar objects, we can

 ✓ Mention all the items in a class by the same denomination

 ✓ Summarize relevant features by an exemplificative class type

 ✓ Associate particular actions or recall specific knowledge automatically

Dealing with big data streams today requires the same classificatory ability,
but on a different scale. To spot unknown groups of signals present in the
data, we need specialized algorithms that are both able to learn how to assign
examples to certain given classes (the supervised approach) and to spot new
interesting classes that we weren’t aware of (unsupervised learning).

Even though your main routine as a data scientist will be to put into practice
your predictive skills, you’ll also have to provide useful insight into possible
structured information present in your data. For example, you’ll often need
to locate new features in order to strengthen the predictive power of your
models, find an easy way to make complex comparisons inside the data, and
discover communities in social networks.

Chapter 15

274 Part IV: Wrangling Data

A data‐driven approach to classification, called clustering, will prove to be
of great help in achieving success for your data project when you need to
 provide new insights from scratch.

Clustering techniques are a set of unsupervised classification methods that
can create meaningful classes by directly processing your data, without any
previous knowledge or hypothesis about the groups that may be present. If
all supervised algorithms need labeled examples (class labels), unsupervised
ones can figure out by themselves what the most appropriate labels could be.

There are a few kinds of clustering techniques. You can distinguish between
them using the guidelines in the following list:

 ✓ Assigning every example to a unique group (partitioning) or to multiple
ones (fuzzy clustering)

 ✓ Determining the heuristic — that is, the rule of thumb — that they use to
figure out whether an example is part of a group

 ✓ Specifying how they quantify the difference between observations, that
is, the so‐called distance measure

Most of the time you use partition‐clustering techniques (a data point can be
part of only one group, so the groups don’t overlap; their membership is
 distinct) and among partitioning methods, you use K‐means the most. But
other useful methods are mentioned in this chapter, which are based on
agglomerative methods and on data density.

Agglomerative methods link data points into clusters based on their distance.
Data density approaches take advantage of the idea that groups are very
dense and continuous, so if you notice a decrease in density when explor-
ing a part of a group of points, it could mean that you arrived at one of its
 borders.

Because you normally don’t know what you’re looking for, different methods
can provide you with different solutions and points of view on the data. The
secret of a successful clustering is to try as many of the recipes as possible,
compare the results, and try to find a reason why you can consider certain
observations as a group in respect to others.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 15; Clustering.ipynb source code file.

275 Chapter 15: Clustering

Clustering with K‐means
K‐means is an iterative algorithm that has become very popular in machine
learning because of its simplicity, speed, and scalability to a large number of
data points. The K‐means algorithm relies on the idea that there are a specific
number of data groups, called clusters. Each data group is scattered around a
central point with which they share some key characteristics.

You can actually imagine the central point of a cluster, called a centroid, as
a sun. The data points distribute around the centroid like planets. Clusters
are also expected to clearly separate from each other, so, as groups of points
they are both internally homogeneous and different from each other.

The K‐means algorithm expects to find clusters in your data. Therefore, it will
find them even when none exist! It’s important to check inside the groups to
determine whether the group is a true gold nugget.

Given such assumptions, all you have to do is to specify the number of
groups you expect (you can use a guess or try a number of possible desirable
 solutions), and the K‐means algorithm will look for them, using a heuristic in
order to recover the position of the central points.

The cluster centroids should be evident by their different characteristics and
positions from each other. Even if you start by randomly guessing where they
could be, in the end, after a few corrections, you always find them by using
the many data points that gravitate around them.

Understanding centroid‐based algorithms
The procedure for finding the centroids is straightforward:

1. Guess a K number of clusters.

K centroids are picked randomly from your data points or chosen so
that they are placed in your data in very distant positions from each
other. All the other points are assigned to their nearest centroid based
on the Euclidean distance.

2. Form the initial clusters.

3. Reiterate the clusters until you notice that your solution doesn’t change
anymore.

You recalculate the centroids as an average of all the points present in
the group. All the data points are reassigned to the groups based on the
distance from the new centroids.

276 Part IV: Wrangling Data

The iterative process of assigning cases to the most plausible centroid and
then averaging the assigned ones to find a new centroid will slowly shift the
centroid position toward the areas where most data points gravitate. The
result is that you end up with the true centroid position.

The procedure has only two weak points that you need to consider. First,
you choose the initial centroids randomly, which means that you could
start from a bad starting point. As a result, the iterative process will stop
at some unlikely solution — for example, having a centroid in the middle of
two groups. To ensure that your solution is the most probable, you have to
try the algorithm a few times and track the results. The more often you try,
the more likely you are to confirm the right solution. The Python Scikit‐learn
implementation of K‐means will do that for you, so you just have to decide
how many times you intend to try. (The trade‐off is that more iterations
 produce better results, but each iteration consumes valuable time.)

The second weak point is due to the distance that K‐means uses, the
Euclidean distance, which is the distance between two points on a plane
(a concept that you likely studied at school). In a K‐means application, each
data point is a vector of features, so when comparing the distance of two
points, you do the following:

1. Create a list containing the differences of the elements in the two
 vectors.

2. Square all the elements of the difference vector.

3. Calculate the square root of the summed elements.

You can try a simple example in Python. Pretend that you have two points,
A and B, and they have three numeric features. If A and B are the data repre-
sentation of two persons, their distinguishing features could be measured in
height (cm), weight (kg), and age (years), as shown in the following code:

import numpy as np
A = np.array([165, 50, 22])
B = np.array([185, 80, 21])

The following example shows how to calculate the differences between the
three elements, square all the resulting elements, and determine the square
root of the squared values:

D = (A‐B)
D = D**2
D = np.sqrt(np.sum(D))
print D

45.0

277 Chapter 15: Clustering

In the end, the Euclidean distance is really just a big sum. When the variables
making up the difference vector are significantly different in scale from each
other (in our example, the height could have been expressed in meters), you
end up with a distance dominated by the elements with the largest scale. It is
very important to rescale the variables so that they use a similar scale before
applying the K‐means algorithm. You can use a fixed range or a statistical
normalization with zero mean and unit variance to achieve this goal.

Another problem that may arise, apart from scale, is due to correlation
between variables, causing redundancy of information. If two variables are
highly correlated, that means that a part of their information content is
repeated. Replication implies counting the same information more than once in
the summation used to calculate the distance. If you’re not aware of the corre-
lation issue, some variables will dominate your distance measure calculation —
a situation that may lead to not finding the useful clusters that you want. The
solution is to remove the correlation thanks to a dimensionality reduction algo-
rithm such as Principle Component Analysis (PCA). Scikit‐learn has a function
in the preprocessing module that can correctly scale your variable, as well as a
function for PCA, but it is up to you to remember to use these functions before
employing K‐means and other clustering techniques using distance measure.

Creating an example with image data
An example with image data demonstrates how to apply the tool and how
to get insight from clusters. An ideal example is clustering the handwritten
digits dataset provided by the Scikit‐learn package. Hand‐written numbers
are naturally different from each other — they possess variability in that
there are several ways to write certain numbers. Of course, we all have differ-
ent writing styles, so it is natural that each person’s numbers differ slightly.
The following code shows how to import the image data.

from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data
ground_truth = digits.target

The example begins by importing the digits dataset from Scikit‐learn and
assigning the data to a variable. It then stores the labels in another variable
for later verification. The next step is to process the data using a PCA.

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
pca = PCA(n_components=40)
Cx = pca.fit_transform(scale(X))
print 'Explained variance %0.3f'
 % sum(pca.explained_variance_ratio_)

Explained variance 0.951

278 Part IV: Wrangling Data

By applying a PCA on scaled data, the code addresses the problems of scale
and correlation. Even though PCA can recreate the same number of variables
as in the input data, the example code drops a few using the n_components
parameter. The decision to use 40 components, as compared to the original
64 variables, allows the example to retain most of the original information
(95 percent of the original variation in data) and simplify the dataset by
removing correlation and some noise.

In this example, the PCA‐transformed data appears in the Cx variable. After
importing the KMeans class, the code defines its main parameters:

 ✓ n_clusters is the K number of centroids to find

 ✓ n_init is the number of times to try the K‐means with different starting
centroids. The code needs to test the procedure a sufficient number of
times, such as 10, as shown here.

from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=10, n_init=10,
 random_state=1)
clustering.fit(Cx)

After creating the parameters, the clustering class is ready for use. You can
apply the fit() method to the Cx variable, which produces a scaled and
dimensionally reduced dataset.

Looking for optimal solutions
As mentioned in the previous section, the example is clustering ten different
numbers. It’s time to start looking for a solution with K = 10. The following
code compares the clustering result to the ground truth — the true labels —
in order to determine whether there is any correspondence.

import numpy as np
import pandas as pd
ms = np.column_stack((ground_truth,clustering.labels_))
df = pd.DataFrame(ms,
 columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
 margins=True)

Converting our solution, given by the labels variable internal to the clus-
tering class, into a pandas DataFrame allows us to apply a cross tabula-
tion and compare the original labels with the labels derived from clustering.
You can observe the results in Figure 15-1. Because rows represent ground
truth, you can look for numbers whose majority of observations are split
among different clusters. These observations are the handwritten examples
that are more difficult to figure out by K‐means.

279 Chapter 15: Clustering

Notice how numbers such as seven or zero are concentrated into their own
cluster, but others, such as 3 and 9, tend to gather together into the same
group, the cluster 1. From such a discovery, you can deduce that certain
handwritten numbers are easy to guess, while others aren’t.

Representing the centroids is also useful. You can use statistics to perform
this task. However, because the data is made up of pixels, you can visualize
the cases that are nearest to each centroid. The following code shows how to
perform this task.

import matplotlib.pyplot as plt
for k,img in enumerate(np.argmin(dist,axis=0)):
 cluster = clustering.labels_[img]
 plt.subplot(2, 5, cluster)
 plt.imshow(digits.images[img],cmap='binary',
 interpolation='none')
 plt.title('cl '+str(cluster))
plt.show()

Observing the depicted centroids can make clear why the cluster 1 contains
most of the numbers 3 and 9 and how a number 8 could be mistaken for
a number 1 in cluster 0. In general, reasoning using clusters’ centroids is
indeed easy because we have reduced thousands of cases into a few clusters
to study and compare.

Clustering can help you to summarize huge quantities of data. It is an effec-
tive technique for presenting data to a nontechnical audience and for feed-
ing a supervised algorithm with group variables, thus providing them with
 concentrated, significant information.

Figure 15-1:
Cross‐

tabulation
of ground
truth and
K‐means
clusters.

280 Part IV: Wrangling Data

Another observation you can make is that even though there are just ten
numbers in this example, there are more types of handwritten forms of each,
hence the necessity of finding more clusters. Of course, the problem is to
determine just how many clusters you need.

You use inertia to measure the viability of a cluster. Inertia is the sum of all
the differences between every cluster member and its centroid. If the exam-
ples in the group are similar to the centroid, the difference is small and so
is the inertia. Inertia as an individual measure reveals little. Moreover, when
comparing inertia from different clusters in general, you notice that the more
groups you have, the less the inertia. What you want to do instead of using
inertia directly is to compare the inertia of a cluster solution with the previ-
ous cluster solution. This comparison provides you with the rate of change,
a more interpretable measure. To obtain the inertia rate of change in Python,
you will have to create a loop. Try progressive cluster solutions inside the
loop, recording their value. Here is a script for the handwritten digit example:

inertia = list()
delta_inertia = list()
for k in range(1,21):
 clustering = KMeans(n_clusters=k, n_init=10,
 random_state=1)
 clustering.fit(Cx)
 if inertia: # So we won't compare the solution k==1
 delta_inertia.append(
 inertia[‐1] ‐ clustering.inertia_)
 inertia.append(clustering.inertia_)

You use the inertia variable inside the clustering class after fitting the
clustering. The inertia variable is a list containing the rate of change of inertia
between a solution and the previous one. Here is some code that prints a line
graph of the rate of change, as depicted by Figure 15-2.

import matplotlib.pyplot as plt
plt.figure()
plt.plot([k for k in range(2,21)], delta_inertia, 'ko‐')
plt.xlabel('Number of clusters')
plt.ylabel('Rate of change of inertia')
plt.show()

When examining inertia’s rate of change, look for jumps in the rate itself.
If the rate jumps up, it means that adding a cluster more than the previous
solution brings much more benefit than expected; if it jumps down instead,
you’re likely forcing a cluster more than necessary. All the cluster solutions
before a jump down may be a good candidate, according to the principle of
parsimony (the jump signals a sophistication in our analysis, but the right
solutions are usually the simplest). In the example, the first jump downward
is at K=14, so the first solution to evaluate is K=13. You can see another inter-
esting jump at K=18, so you should also evaluate K=17, which is a peak.

281 Chapter 15: Clustering

The rate of change in inertia will provide you with just a few tips where there
could be good cluster solutions. It is up to you to decide which to pick if you
need to get some extra insight on data. If, instead, clustering is just a step in
a complex data science project, you can just pass the entire solution to the
next machine‐learning algorithm.

Clustering big data
K‐means is a way to reduce the complexity of your data by summarizing
the many examples in your dataset. To perform this task, you load the data
into your computer’s memory, and that won’t always be feasible, especially
if you are working with big data. Scikit‐learn offers an alternative way to
apply K‐means — the MiniBatchKMeans is a variant that can progressively
cluster separated chunks of data. In fact, a batch learning procedure usually
processes the data part by part. There are only two differences between the
standard K‐means function and MiniBatchKMeans:

 ✓ You cannot automatically test different starting centroids unless you try
running the analysis again.

 ✓ The analysis will start when there is a batch made of at least a minimum
number of cases. This value is usually set to 100 (but the more cases
there are, the better the result) by the batch_size parameter.

A simple demonstration on the previous handwritten dataset shows how
effective and easy it is to use the MiniBatchKMeans clustering class.

Figure 15-2:
Rate of

change of
inertia

for solutions
up to K=20.

282 Part IV: Wrangling Data

from sklearn.cluster import MiniBatchKMeans
batch_clustering = MiniBatchKMeans(n_clusters=10,
 random_state=1)
batch = 100
guessed_labels = list()
inertia = 0
for row in range(0,len(Cx),batch):
 if row+batch < len(Cx):
 feed = Cx[row:row+batch,:]
 else:
 feed = Cx[row:,:]
 batch_clustering.partial_fit(feed)
 # We have to stack results in a list, because
 # MiniBatchKMean does not take track of all the
 # batches
 guessed_labels.append(batch_clustering.labels_)
 inertia += batch_clustering.inertia_
NumPy hstack turns a list of arrays into an array
by inspecting the variable guess_labels you can know
the assigned cluster
guessed_labels = np.hstack(guessed_labels)
print "Kmeans inertia: %0.1f\n" +
 "MiniBatchKmeans inertia: %0.1f"
 % (clustering.inertia_,inertia)

Kmeans inertia: 48591.7
MiniBatchKmeans inertia: 67027.5

This script iterates through the indexes of the previously scaled and PCA
simplified dataset (Cx), creating batches of 100 observations each. Using
the partial_fit method, it fits a K‐means clustering on each batch, using
the centroids found by the previous call. The algorithm stops when it runs
out of data. It then reports its inertia for a 10‐clusters solution, comparing
it with the same solution’s inertia by the standard K‐means class. Usually
MiniBatchKmeans results in a higher inertia than a standard algorithm, so
reserve this solution for those times when you cannot work with in‐memory
datasets.

Performing Hierarchical Clustering
If the K‐means algorithm is concerned with centroids, hierarchical (also
known as agglomerative) clustering tries to link each data point, by a distance
measure, to its nearest neighbor, creating a cluster. Reiterating the algorithm
using different linkage methods, the algorithm gathers all the available points
into a rapidly diminishing number of clusters, until in the end all the points
reunite into a single group.

283 Chapter 15: Clustering

The results, if visualized, will closely resemble the biological classifications
of living beings that you may have studied in school or seen on posters at
the local natural history museum, an upside‐down tree whose branches are
all converging into a trunk. Such a figurative tree is a dendrogram, and you
see it used in medical and biological research. Scikit‐learn implementation of
agglomerative clustering does not offer the possibility of depicting a dendro-
gram from your data because such a visualization technique works fine with
only a few cases, whereas you can expect to work on many examples.

Compared to K‐means, agglomerative algorithms are more cumbersome
and do not scale well to large datasets. Agglomerative algorithms are more
suitable for statistical studies (they can be easily found in natural sciences,
archeology, and sometimes psychology and economics). These algorithms do
offer the advantage of creating a complete range of nested cluster solutions,
so you just need to pick the right one for your purpose.

To use agglomerative clustering effectively, you have to know about the
 different linkage methods (the heuristics for clustering) and the distance
 metrics. There are three linkage methods:

 ✓ Ward: Tends to look for spherical clusters, very cohesive inside and
extremely differentiated from other groups. Another nice characteristic
is that the method tends to find clusters of similar size. It works only
with the Euclidean distance.

 ✓ Complete: Links clusters using their furthest observations, that is, their
most dissimilar data points. Consequently, clusters created using this
method tend to be comprised of highly similar observations, making the
resulting groups quite compact.

 ✓ Average: Links clusters using their centroids and ignoring their bound-
aries. The method creates larger groups than the complete method. In
addition, the clusters can be different sizes and shapes, contrary to the
Ward’s solutions. Consequently, this average, multipurpose, approach
sees successful use in the field of biological sciences.

There are also three distance metrics:

 ✓ Euclidean (euclidean or l2): As seen in K‐means

 ✓ Manhattan (manhattan or l1): Similar to Euclidean, but the distance
is calculated by summing the absolute value of the difference between
the dimensions. In a map, if the Euclidean distance is the shortest route
between two points, the Manhattan distance implies moving straight,
first along one axis and then along the other — as a car in the city
would, reaching a destination by driving along city blocks (the distance
is also known as city block distance).

284 Part IV: Wrangling Data

 ✓ Cosine (cosine): A good choice when there are too many variables and
you worry that some variable may not be significant (just noise). Cosine
distance reduces noise by taking the shape of the variables, more than
their values, into account. It tends to associate observations that have the
same maximum and minimum variables, regardless of their effective value.

If your dataset doesn’t contain too many observations, it’s worth trying
agglomerative clustering with all the combinations of linkage and distance
and then comparing the results carefully. In clustering, you rarely already
know right answers, and agglomerative clustering can provide you with
another useful potential solution. For example, you can recreate the previous
analysis with K‐means and handwritten digits, using the ward linkage and the
Euclidean distance as follows:

from sklearn.cluster import AgglomerativeClustering
Affinity = {"euclidean", "l1", "l2", "manhattan",
"cosine"}
Linkage = {"ward", "complete", "average"}
Hclustering = AgglomerativeClustering(n_clusters=10,
 affinity='euclidean', linkage='ward')
Hclustering.fit(Cx)
ms = np.column_stack((ground_truth,Hclustering.labels_))
df = pd.DataFrame(ms,
 columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
 margins=True)

The results, in this case, are comparable to K‐means, although, you may
have noticed that completing the analysis using this approach takes longer
than using K‐means. When working with a large number of observations, the
computations for a hierarchical cluster solution may take hours to complete,
making this solution less feasible. You can get around the time issue by using
two‐phase clustering, which is faster and provides you with a hierarchical
solution even when you are working with large datasets.

To implement the two‐phase clustering solution, you process the original
observations using K‐means with a large number of clusters. A good rule of
thumb is to take the square root of the number of observations and use that
figure, but you always have to keep the number of clusters in the range of
100–200 for the second phase, based on hierarchical clustering, to work well.
The following example uses 100 clusters.

from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=100, n_init=10,
 random_state=1)
clustering.fit(Cx)

285 Chapter 15: Clustering

At this point, the tricky part is to keep track of what case has been assigned
to what cluster derived from K‐means. You can use a dictionary for such a
purpose.

Kx = clustering.cluster_centers_
Kx_mapping = {case:cluster for case,
 cluster in enumerate(clustering.labels_)}

The new dataset is Kx, which is made up of the cluster centroids that the
K‐means algorithm has discovered. You can think of each cluster as a well‐
represented summary of the original data. If you cluster the summary now, it
will be almost the same as clustering the original data.

from sklearn.cluster import AgglomerativeClustering
Hclustering = AgglomerativeClustering(n_clusters=10,
 affinity='cosine', linkage='complete')
Hclustering.fit(Kx)

You now map the results to the centroids you originally used so that you can
easily determine whether a hierarchical cluster is made of certain K‐means
centroids. The result consists of the observations making up the K‐means
clusters having those centroids.

H_mapping = {case:cluster for case,
 cluster in enumerate(Hclustering.labels_)}
final_mapping = {case:H_mapping[Kx_mapping[case]]
 for case in Kx_mapping}

Now you can evaluate the solution you obtained using a similar confusion
matrix as you did before for both K‐means and hierarchical clustering.

ms = np.column_stack((ground_truth,
 [final_mapping[n] for n in range(max(final_mapping)+1)]))
df = pd.DataFrame(ms,
 columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
 margins=True)

The solution you obtain is analogous to the previous solutions. The result
proves that this approach is a viable method for handling large datasets
or even big data datasets, reducing them to a smaller representations and
then operating with less scalable clustering, but more varied and precise
 techniques. The two‐phase approach also presents another advantage
because it operates well with noisy or outlying data — the initial K‐means
phase filters out such problems well and relegates them to separate cluster
solutions.

286 Part IV: Wrangling Data

Moving Beyond the Round-Shaped
Clusters: DBScan

Both K‐means and agglomerative clustering, especially if you are using the
Ward’s linkage criteria, will produce cohesive groups, similar to bubbles,
equally spread in all directions.

Reality can sometimes produce complex and unsettling results — groups
may have strange forms far from the canonical bubble. The Scikit‐learns’s
datasets module offers a wide range of mind‐teasing shapes that you can’t
successfully crunch using either K‐means or agglomerative clustering: large
circles containing smaller ones, interleaved small circles, and spiraling Swiss
roll datasets (named after the sponge cake roll because of how the data
points are arranged).

DBScan is another clustering algorithm based on a smart intuition that can
solve even the most difficult problems. DBScan relies on the idea that clus-
ters are dense, so to start exploring the data space in every direction and
mark a cluster boundary when the density decreases should be sufficient.
Areas of the data space with insufficient density of points are just considered
empty, and all the points there are noise or outliers, that is, points character-
ized by unusual or strange values.

DBScan is more complex and requires more running time than K‐means
(but it is faster than agglomerative clustering). It automatically guesses the
number of clusters and points out strange data that doesn’t easily fit into any
class. This makes DBScan different from the previous algorithms that try to
force every observation into a class.

Replicating the handwritten digit clustering requires just a few lines of
Python code:

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=4.35, min_samples=25, random_state=1)
DB.fit(Cx)

Using DBScan, you won’t have to set a K number of expected clusters; the
algorithm will find them by itself. Apparently, the lack of a K number seems
to simplify the usage of DBScan; in reality, the algorithm requires you to fix
two essential parameters, eps and min_sample, in order to work properly:

 ✓ eps: The maximum distance between two observations that allows them
to be part of the same neighborhood.

 ✓ min_sample: The minimum number of observations in a neighborhood
that transform them into a core point.

287 Chapter 15: Clustering

The algorithm works by walking around the data and building clusters by
linking observations arranged into neighborhoods. A neighborhood is a
small cluster of data points all within a distance value of eps. If the number
of points in the neighborhood is less than the number min_sample, then
DBScan doesn’t form the neighborhood.

No matter what the shape of the cluster, DBScan links all the neighborhoods
together if they are near enough (under the distance value of eps). When no
more neighborhoods are within reach, DBScan tries to aggregate to group
even single data points, if they are within eps distance. The data points that
aren’t associated with any group are treated as noisy points (too particular
to be part of a group).

Try many values of eps and min_sample. The resulting clusters may also
change drastically with respect to the values set into these two parameters.

Start with a low number of min_samples. Using a lower number allows many
neighborhoods to cluster together. The default number 5 is fine. Then try
different numbers for eps, starting from 0.1 upward. Don’t be disappointed if
you can’t get a viable result initially — keep trying different combinations.

Getting back to the example, after this brief explanation of DBScan details,
some data exploration can allow you to observe the results under the right
point of view. First, count the clusters:

from collections import Counter
print Counter(DB.labels_)

Counter({‐1: 913, 4: 222, 1: 176, 3: 162, 0: 134, 2: 104,
 5: 86})

A large number of observations are assigned to the cluster labeled ‐1, which
represents the noise (noise is defined as examples that are too unusual to
group). Likely, given the high number of dimensions (40 uncorrelated vari-
ables from a PCA analysis) in our data and its high variability (after all, they
are handwritten samples), many cases do not naturally fall together into the
same group.

At this point, print a visual representation of some example characteristics of
the six clusters (as shown in Figure 15-3):

import matplotlib.pyplot as plt
for k,cl in enumerate(np.unique(DB.labels_)):
 if cl >= 0:
 example = np.min(np.where(DB.labels_==cl))
 plt.subplot(2, 3, k)
 plt.imshow(digits.images[example],

288 Part IV: Wrangling Data

 cmap='binary',interpolation='none')
 plt.title('cl '+str(cl))
plt.show()
ms = np.column_stack((ground_truth,DB.labels_))
df = pd.DataFrame(ms,
 columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
 margins=True)

The six examples in Figure 15-3 show the numbers 1, 0, 7, 6, 3, and 4 quite
clearly. Also, the cross tabulation of cluster ownership with the real labels
indicate that DBScan succeeded in finding the numbers precisely and didn’t
mix different numbers together.

The strength of DBScan is to provide reliable, consistent clusters. After all,
DBScan isn’t forced, as are K‐means and agglomerative clustering, to reach a
solution with a certain number of clusters, even when such a solution does
not exist.

(a) (b)

Figure 15-3:
DBScan
clusters’

represen
tatives.

Detecting Outliers in Data
In This Chapter

 ▶ Understanding what is an outlier

 ▶ Distinguishing between extreme values and novelties

 ▶ Using simple statistics for catching outliers

 ▶ Finding out most tricky outliers by advanced techniques

E
rrors happen when you least expect, and that’s also true in regard to
your data. In addition, data errors are difficult to spot, especially when

your dataset contains many variables of different types and scale (a high‐
dimensionality data structure).

Data errors can take a number of forms. For example, the values may be
 systematically missing on certain variables, erroneous numbers could appear
here and there, and the data could include outliers. A red flag has to be
raised when the following characteristics are met:

 ✓ Missing values on certain groups of cases or variables imply that some
specific cause is generating the error.

 ✓ Erroneous values depend on how the application has produced or
manipulated the data. For instance, you need to know whether the
 application has obtained data from a measurement instrument. External
conditions and human error can affect the reliability of instruments.

 ✓ The case is apparently valid, but quite different from the usual values
that characterize that variable. When you can’t explain the reason for
the difference, you could be observing an outlier.

Among the illustrated errors, the trickiest problem to solve is when your
dataset has outliers, because you don’t always have a unique definition of
outliers, or a clear reason to have them in your data. As a result, much is left

Chapter 16

290 Part IV: Wrangling Data

to your investigation and evaluation. The good news is that Python offers you
quite a few tools for spotting outliers and other kinds of unexpected values,
so at least you won’t be looking for a needle in a haystack.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 16; Outliers.ipynb source code file.

Considering Detection of Outliers
As a general definition, outliers are data that differ significantly (they’re
 distant) from other data in a sample. The reason they’re distant is that
one or more values are too high or too low when compared to the major-
ity of the values. They could also display an almost unique combination of
values. For instance, if you are analyzing records of students enlisted in a
university, students who are too young or too old may catch you attention.
Students studying unusual mixes of different subjects would also require
scrutiny.

Outliers skew your data distributions and affect all your basic central
 tendency statistics. Means are pushed upward or downward, influencing all
other descriptive measures. An outlier will always inflate variance and modify
correlations, so you may obtain incorrect assumptions about your data and
the relationships between variables.

This simple example can display the effect (on a small scale) of a single
 outlier with respect to more than one thousand regular observations:

import numpy as np
from scipy.stats.stats import pearsonr
np.random.seed(101)
normal = np.random.normal(loc=0.0, scale= 1.0, size=1000)
print 'Mean: %0.3f Median: %0.3f Variance: %0.3f' % (np.mean(normal),

np.median(normal),
 np.var(normal))

Mean: 0.026 Median: 0.032 Variance: 1.109

Using the NumPy random generator, we created the variable named normal,
which contains 1000 observation derived from a standard normal distribu-
tion. Basic descriptive statistics (mean, median, variance) do not show
 anything unexpected.

291 Chapter 16: Detecting Outliers in Data

Now we change a single value by inserting an outlying value:

outlying = normal.copy()
outlying[0] = 50.0
print 'Mean: %0.3f Median: %0.3f Variance: %0.3f' % (np.mean(outlying),
 np.median(outlying), np.var(outlying))
print 'Pearson'’s correlation coefficient: %0.3f p‐value: %0.3f' % pearsonr(
 normal,outlying)
Mean: 0.074 Median: 0.032 Variance: 3.597
Pearsons correlation coefficient: 0.619 p‐value: 0.000

We call this new variable outlying and put an outlier into it (at index 0, we
have a positive value of 50.0). Now, as for as basic statistics go, the mean
has a value three times higher than before, and so does variance. Only the
median, which relies on position (it tells you the value occupying the middle
position when all the observations are arranged in order) is not affected by
the change.

More significant, the correlation of the original variable and the outlying
 variable is quite far from being +1.0 (the correlation value of a variable in
respect of itself), indicating that the measure of linear relationship between
the two variables has been seriously damaged.

Finding more things that can go wrong
Outliers do not simply shift key measures in your explorative statistics —
they also change the structure of the relationships between variables in your
data. Outliers can affect machine‐learning algorithms in two ways:

 ✓ Algorithms based on coefficients may take the wrong coefficient in order
to minimize their inability to understand the outlying cases. Linear
models are a clear example (they are sums of coefficients), but they are
not the only ones. Outliers can also influence tree‐based learners such
as Adaboost or Gradient Boosting Machines.

 ✓ Because algorithms learn from data samples, outliers may induce the
algorithm to overweight the likelihood of extremely low or high values
given a certain variable configuration.

Both situations limit the capacity of a learning algorithm to generalize well
to new data. In other words, they make your learning process overfit to the
present dataset.

292 Part IV: Wrangling Data

There are a few remedies for outliers — some of them require that you
modify your present data and others that you choose a suitable error func-
tion for your machine‐learning algorithm. (Some algorithms offer you the
 possibility to pick a different error function as a parameter when setting up
the learning procedure.)

Most machine learning algorithms can accept different error functions. The
error function is important because it helps the algorithm to learn by under-
standing errors and enforcing adjustments in the learning process. Some
error functions are extremely sensitive to outliers, while others are quite
resistant to them. When illustrating the different machine‐learning classes
that the Scikit‐learn package offers, the chapter points out the available
error functions or other learning parameters that can increase resistance to
extreme cases.

Understanding anomalies and novel data
Because outliers occur as mistakes or in extremely rare cases, detecting an
outlier is never an easy job; it is, however, an important one for obtaining
effective results from your data science project. In certain fields, detecting
anomalies is itself the purpose of data science: fraud detection in insurance
and banking, fault detection in manufacturing, system monitoring in health
and other critical applications, and event detection in security systems and
for early warning.

An important distinction is when we are looking for existing outliers in data, or
when we are checking to see whether any new data contains anomalies with
respect to the existent one. Maybe we spent a lot of time cleaning our data or
we have developed a machine‐learning application based on available data, so
it would be critical to figure out whether the new data we are providing is sim-
ilar to the old data and whether our algorithms will keep up the good job in
classification or prediction. In such cases, we instead talk of novelty detection,
because what we are interested in is to know how much the new data resem-
bles the old. Being exceptionally new is considered an anomaly: Novelty may
conceal a significant event or may risk preventing our algorithm from working
properly. When working with new data, the algorithm should be retrained.

Examining a Simple Univariate Method
When looking for outliers, a good start, no matter how many variables you
have in your data, is to look at every single variable by itself, using both
graphical and statistical inspection. This is the univariate approach, which

293 Chapter 16: Detecting Outliers in Data

allows you to spot an outlier given an incongruous value on a variable. The
pandas package can make spotting outliers quite easy thanks to

 ✓ A straightforward describe method that informs you on mean, variance,
quartiles, and extremes of your numeric values for each variable

 ✓ A system of automatic boxplot visualizations

Using both techniques in conjunction makes it easy to know when you have
outliers and where to look for them. The diabetes dataset, from the Scikit‐
learn datasets module, is a good example to start with.

from sklearn.datasets import load_diabetes
diabetes = load_diabetes()
X,y = diabetes.data, diabetes.target

All the data is in the X variable, a NumPy ndarray. We transform it into a
pandas DataFrame.

import pandas as pd
pd.options.display.float_format = '{:.2f}'.format
df = pd.DataFrame(X)
print df.describe()

 0 1 2 3 4 5 6 7 8 9
count 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00
mean ‐0.00 0.00 ‐0.00 0.00 ‐0.00 0.00 ‐0.00 0.00 ‐0.00 ‐0.00
std 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
min ‐0.11 ‐0.04 ‐0.09 ‐0.11 ‐0.13 ‐0.12 ‐0.10 ‐0.08 ‐0.13 ‐0.14
25% ‐0.04 ‐0.04 ‐0.03 ‐0.04 ‐0.03 ‐0.03 ‐0.04 ‐0.04 ‐0.03 ‐0.03
50% 0.01 ‐0.04 ‐0.01 ‐0.01 ‐0.00 ‐0.00 ‐0.01 ‐0.00 ‐0.00 ‐0.00
75% 0.04 0.05 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03
max 0.11 0.05 0.17 0.13 0.15 0.20 0.18 0.19 0.13 0.14
[8 rows x 10 columns]

You can spot the problematic variables by looking at the extremities of the
distribution. For example, you must consider whether the minimum and
 maximum values lie respectively far from the 25th and 75th percentile. As
shown in the output, many variables have suspect large maximum values.
A boxplot analysis will clarify the situation. The following command creates
the boxplot of all variables shown in Figure 16-1.

box_plots = df.boxplot()

Boxplots generated from pandas DataFrame will have whiskers set to plus
or minus 1.5 IQR (interquartile range or the distance between the lower and
upper quartile) with respect to the upper and lower side of the box (the
upper and lower quartiles). This boxplot style is called the Tukey boxplot

294 Part IV: Wrangling Data

(from the name of statistician John Tukey, who created and promoted it
among statisticians together with other explanatory data techniques) and
it allows a visualization of the presence of cases outside the whiskers. (All
points outside these whiskers are deemed outliers.)

Leveraging on the Gaussian distribution
Another fast check for outliers in your data is accomplished by leveraging
the normal distribution. Even if your data isn’t normally distributed, stan-
dardizing it will allow you to assume certain probabilities of finding anoma-
lous values. For instance, 99.7% in a standardized normal distribution should
be inside the range of +3 and –3 standard deviations from the mean, as shown
in the following code.

from sklearn.preprocessing import StandardScaler
Xs = StandardScaler().fit_transform(X)
o_idx = np.where(np.abs(Xs)>3)
.any(1) method will avoid duplicating
print df[(np.abs(Xs)>3).any(1)]

 0 1 2 3 4 5 6 7 8 9
58 0.04 ‐0.04 ‐0.06 0.04 0.01 ‐0.06 0.18 ‐0.08 ‐0.00 ‐0.05
123 0.01 0.05 0.03 ‐0.00 0.15 0.20 ‐0.06 0.19 0.02 0.07
216 0.01 0.05 0.04 0.05 0.05 0.07 ‐0.07 0.15 0.05 0.05
...
[12 rows x 10 columns]

Figure 16-1:
Boxplots.

295 Chapter 16: Detecting Outliers in Data

The Scikit‐learn module provides an easy way to standardize your data and
to record all the transformations for later use on different datasets. This
means that all your data, no matter whether it’s for machine‐learning training
or for performance test purposes, is standardized in the same way.

The 68‐95‐99.7 rule says that in a standardized normal distribution, 68 percent
of values are within one standard deviation, 95 percent are within two stan-
dard deviations, and 99.7 percent are within three. When working with skewed
data, the 68‐95‐99.7 rule may not hold true, and in such an occurrence, you
may need some more conservative estimate, such as Chebyshev’s inequality.
Chebyshev’s inequality relies on a formula that says that for k standard devia-
tions around the mean, no more cases than a percentage of 1/k^2 should be
over the mean. Therefore, at seven standard deviations around the mean,
your probability of finding a legitimate value is at most two percent, no matter
what the distribution is (two percent is a low probability; your case could be
an outlier).

Chebyshev’s inequality is conservative. A high probability of being an outlier
corresponds to seven or more standard deviations away from the mean. Use
it when it may be costly to deem a value an outlier when it isn’t. For all other
applications, the 68‐95‐99.7 rule will suffice.

Making assumptions and checking out
Having found some possible univariate outliers, you now have to decide how
to deal with them. If you completely distrust the outlying cases, under the
assumption that they were unfortunate errors or mistakes, you could just
delete them. (In Python, you can just deselect them using fancy indexing.)

Modifying the values in your data or deciding to exclude certain values is a
decision to make after you understand why there are some outliers in your
data. You can rule out unusual values or cases for which you presume that
some error in measurement has occurred, in recording or previous handling
of the data. If instead you realize that the outlying case is a legitimate, though
rare, one, the best approach would be to underweight it (if your learning
algorithms use weight for the observations) or to increase the size of your
data sample.

In our case, deciding to keep the data and having standardized it, we could
just cap the outlying values by using a simple multiplier of the standard
deviation:

Xs_c = Xs.copy()
Xs_c[o_idx] = np.sign(Xs[o_idx]) * 3

296 Part IV: Wrangling Data

In the proposed code, the sign function from NumPy recovers the sign of the
outlying observation (+1 or –1), which is then multiplied by the value of 3 and
then assigned to the respective data point recovered by a Boolean indexing
of the standardized array.

This approach does have a limitation. Being the standard deviation used
both for high and low values, it implies symmetry in your data distribution,
an assumption often unverified in real data. As an alternative, you can use a
bit more sophisticated approach called winsorizing. When using winsorizing,
the values deemed outliers are clipped to the value of specific percentiles
that act as value limits (usually the fifth percentile for the lower bound, the
95th for the upper):

from scipy.stats.mstats import winsorize
Xs_w = winsorize(Xs, limits=(0.05, 0.95))

In this way, you create a different hurdle value for larger and smaller values —
taking into account any asymmetry in the data distribution. Whatever you
decide for capping (by standard deviation or by winsorizing), your data is now
ready for further processing and analysis, and you can cross‐validate or test
the decision of how to deal with outlying data as it is done for machine learn-
ing models (testing decisions and your hypothesis are part of the data science
process).

Developing a Multivariate Approach
Working on single variables allows you to spot a large number of outlying
observations. However, outliers do not necessarily display values too far
from the norm. Sometimes outliers are made of unusual combinations of
values in more variables. They are rare, but influential, combinations that can
especially trick machine learning algorithms.

In such cases, the precise inspection of every single variable won’t suffice to
rule out anomalous cases from your dataset. Only a few selected techniques,
taking in consideration more variables at a time, will manage to reveal
 problems in your data.

The presented techniques approach the problem from different points
of view:

 ✓ Dimensionality reduction

 ✓ Density clustering

 ✓ Nonlinear distribution modeling

297 Chapter 16: Detecting Outliers in Data

Using these techniques allows you to compare their results, taking notice of
the recurring signals on particular cases — sometimes already located by the
univariate exploration, sometimes as yet unknown.

Using principal component analysis
Principal component analysis can completely restructure the data, remov-
ing redundancies and ordering newly obtained components according to the
amount of the original variance that they express. This type of analysis offers
a synthetic and complete view over data distribution, making multivariate
outliers particularly evident.

The first two components, being the most informative in term of variance,
can depict the general distribution of the data if visualized. The output
 provides a good hint at possible evident outliers.

The last two components, being the most residual, depict all the information
that could not be otherwise fitted by the PCA method. They can also provide
a suggestion about possible but less evident outliers.

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from pandas.tools.plotting import scatter_matrix
dim_reduction = PCA()
Xc = dim_reduction.fit_transform(scale(X))
print 'variance explained by the first 2 components: %0.1f%%' % (
 sum(dim_reduction.explained_variance_ratio_[:2]*100))
print 'variance explained by the last 2 components: %0.1f%%' % (
 sum(dim_reduction.explained_variance_ratio_[‐2:]*100))
df = pd.DataFrame(Xc, columns=['comp_'+str(j+1) for j in range(10)])
first_two = df.plot(kind='scatter', x='comp_1', y='comp_2', c='DarkGray', s=50)
last_two = df.plot(kind='scatter', x='comp_9', y='comp_10', c='DarkGray', s=50)

Figure 16-2 shows two scatterplots of the first and last components. Pay
 particular attention to the data points along the axis (where the x axis defines
the independent variable and the y axis defines the dependent variable).
You can see a possible threshold to use for separating regular data from
 suspect data.

Using the two last components, you can locate a few points to investigate
using the threshold of –0.3 for the tenth component and of –1.0 for the ninth.
All cases below these values are possible outliers.

outlying = (Xc[:,‐1] < ‐0.3) | (Xc[:,‐2] < ‐1.0)
print df[outlying]

298 Part IV: Wrangling Data

Using cluster analysis
Outliers are isolated points in the space of variables, and DBScan is a cluster-
ing algorithm that links dense data parts together and marks the too‐sparse
parts. DBScan is therefore an ideal tool for an automated exploration of your
data for possible outliers to verify.

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=2.5, min_samples=25, random_state=101)
DB.fit(Xc)
from collections import Counter
print Counter(DB.labels_),'\n'
print df[DB.labels_==‐1]
Counter({0: 414, ‐1: 28})

 0 1 2 3 4 5 6 7 8 9
15 ‐0.05 0.05 ‐0.02 0.08 0.09 0.11 ‐0.04 0.11 0.04 ‐0.04
23 0.05 0.05 0.06 0.03 0.03 ‐0.05 ‐0.05 0.07 0.13 0.14
29 0.07 0.05 ‐0.01 0.06 ‐0.04 ‐0.10 0.05 ‐0.08 0.06 0.05
... (results partially omitted)
[28 rows x 10 columns]

However, DBSCAN requires two parameters, eps and min_samples. These
two parameters require multiple tries to locate the right values, making using
the parameters a little tricky.

As hinted in the previous chapter, start with a low value of min_samples
and try growing the values of eps from 0.1 upward. After every trial with
modified parameters, check the situation by counting the number of observa-
tions in the class –1 inside the attribute labels, and stop when the number
of outliers seems reasonable for a visual inspection.

(a) (b)

Figure 16-2:
The first

two and last
two com-

ponents of
the principal

component
analysis.

299 Chapter 16: Detecting Outliers in Data

There will always be points on the fringe of the dense parts’ distribution, so it
is hard to provide you with a threshold for the number of cases that might be
classified in the –1 class. Normally, outliers should not be more than 5 percent
of cases, so use this indication as a generic rule of thumb.

Automating outliers detection with SVM
Support Vector Machines (SVM) is a powerful machine learning technique
that’s extensively illustrated in Chapter 19 of the book. OneClassSVM is an
algorithm that specializes in learning the expected distributions in a dataset.
OneClassSVM is especially useful as a novelty detector method if you can
first provide data cleaned from outliers; otherwise, it’s effective as a detector
of multivariate outliers. In order to have OneClassSVM work properly, you
have two key parameters to fix:

 ✓ gamma, telling the algorithm whether to follow or approximate the
 dataset distributions. For novelty detection, it is better to have a value
of 0 or superior (follow the distribution); for outlier detection values,
smaller than 0 values are preferred (approximate the distribution).

 ✓ nu, which can be calculated by the following formula: nu_estimate =
0.95 * f + 0.05, where f is the percentage of expected outliers (a number
from 1 to 0). If your purpose is novelty detection, f will be 0.

Executing the following script, you will get a OneClassSVM working as an
outlier detection system:

from sklearn import svm
outliers_fraction = 0.01 #
nu_estimate = 0.95 * outliers_fraction + 0.05
auto_detection = svm.OneClassSVM(kernel="rbf", gamma=0.01, degree=3,

nu=nu_estimate)
auto_detection.fit(Xc)
evaluation = auto_detection.predict(Xc)
print df[evaluation==‐1]
 0 1 2 3 4 5 6 7 8 9
10 ‐0.10 ‐0.04 ‐0.08 0.01 ‐0.10 ‐0.09 ‐0.01 ‐0.08 ‐0.06 ‐0.03
23 0.05 0.05 0.06 0.03 0.03 ‐0.05 ‐0.05 0.07 0.13 0.14
32 0.03 0.05 0.13 0.03 ‐0.05 ‐0.01 ‐0.10 0.11 0.00 0.03
... (results partially omitted)
[25 rows x 10 columns]

OneClassSVM, like all the family of SVM, works better if you rescale your
variables using the sklearn.preprocessing function scale or the class
StandardScaler.

300 Part IV: Wrangling Data

 See an example of how you can perform a Twitter sentiment analysis at
http://www.dummies.com/extras/pythonfordatascience.

Learning from Data
Part V

http://www.dummies.com/extras/pythonfordatascience

In this part . . .
 ✓ Using four major algorithms to analyze your data

 ✓ Validating, selecting, and optimizing the data analysis process

 ✓ Employing linear and nonlinear tricks to increase complexity

 ✓ Creating applications using the power of many

Exploring Four Simple and
Effective Algorithms

In This Chapter
 ▶ Using linear and logistic regression

 ▶ Understanding Bayes theorem and using it for naive classification

 ▶ Predicting on the basis of cases being similar with kNN

I
n this new part, you start to explore all the algorithms and tools necessary
for learning from data (the training phase) and being capable of predicting

a numeric estimate (for example, house pricing) or a class (for instance, the
species of an Iris flower) given a new example that you didn’t have before. In
this chapter, you start with the simplest algorithms and work toward more
complex ones.

Simple and complex aren’t absolute values in machine learning — they’re
relative to the algorithm’s construction. Some algorithms are simple sum
mations while others require complex calculations (and Python deals with
both the simple and complex algorithms for you). It’s the data that makes the
difference: For some problems, simple algorithms are better; other problems
may instead require complex algorithms.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in the
P4DS4D; 17; Exploring Four Simple and Effective Algorithms.
ipynb source code file.

Chapter 17

304 Part V: Learning from Data

Guessing the Number: Linear Regression
Regression has a long history in statistics, from building simple but effective
linear models of economic, psychological, social, or political data, to hypoth
esis testing for understanding group differences, to modeling more complex
problems with ordinal values, binary and multiple classes, count data, and
hierarchical relationships.

Regression is also a common tool in data science. Stripped of most of its
statistical properties, data science practitioners see linear regression as a
simple, understandable, yet effective algorithm for estimations, and, in its
logistic regression version, for classification as well.

Defining the family of linear models
Linear regression is a statistical model that defines the relationship between
a target variable and a set of predictive features. It does so using a formula of
the following type:

y = a + bx.

You can translate this formula into something readable and useful for many
problems. For instance, if you’re trying to guess your sales based on his
torical results and available data about advertising expenditures, the same
 preceding formula becomes

sales = a + b * (advertising expenditure)

You may already have encountered this formula during high school because
it’s also the formula of a line in a bidimensional plane, which is made of an x
axis (the abscissa) and a y axis (the ordinate).

You can demystify the formula by explaining its components: a is the value
of the intercept (the value of y when x is zero) and b is a coefficient that
expresses the slope of the line (the relationship between x and y). If b is
positive, y increases and decreases as x increases and decreases — when b
is negative, y behaves in the opposite manner. You can understand b as the
unit change in y given a unit change in x. When the value of b is near zero, the
effect of x on y is slight, but if the value of b is high, either positive or nega
tive, the effect of changes in x on y are great.

305 Chapter 17: Exploring Four Simple and Effective Algorithms

Linear regression, therefore, can find the best y = a + bx and represent
the relationship between your target variable, y, with respect to your predic
tive feature, x. Both a (alpha) and b (beta coefficient) are estimated on the
basis of the data and they are found using the linear regression algorithm so
that the difference between all the real y target values and all the y values
derived from the linear regression formula are the minimum possible.

You can express this relationship graphically as the sum of the square of all
the vertical distances between all the data points and the regression line.
Such a sum is always the minimum possible when you calculate the regres
sion line correctly using an estimation called ordinary least squares, which is
derived from statistics or the equivalent gradient descent, a machine‐learning
method. The differences between the real y values and the regression line
(the predicted y values) are defined as residuals (because they are what are
left after a regression: the errors).

Using more variables
When using a single variable for predicting y, you use simple linear
 regression, but when working with many variables, you use multiple linear
regression. When you have many variables, their scale isn’t important in cre
ating precise linear regression predictions. But a good habit is to standardize
X because the scale of the variables is quite important for some variants of
regression (that you see later on) and it is insightful for your understanding
of data to compare coefficients according to their impact on y.

The following example relies on the Boston dataset from Scikit‐learn. It tries
to guess Boston housing prices using a linear regression. The example also
tries to determine which variables influence the result more, so the example
standardizes the predictors.

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X, y = scale(boston.data), boston.target

The regression class in Scikit‐learn is part of the linear_model module.
Having previously scaled the X variable, you have no other preparations or
special parameters to decide when using this algorithm.

from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(X,y)

306 Part V: Learning from Data

Now that the algorithm is fitted, you can use the score method to report
the R2 measure, which is a measure that ranges from 0 to 1 and points out
how using a particular regression model is better in predicting y than using
a simple mean would be. You can also see R2 as being the quantity of target
information explained by the model (the same as the squared correlation),
so getting near 1 means being able to explain most of the y variable using the
model.

print regression.score(X,y)

0.740607742865

In this case, R2 on the previously fitted data is 0.74, a good result for a simple
model.

Calculating R2 on the same set of data used for the training is common in
 statistics. In data science and machine‐learning, it’s always better to test
scores on data that has not been used for training. Algorithms of greater
complexity can memorize the data better than they learn from it, but this
statement can be also true sometimes for simpler models, such as linear
regression.

To understand what drives the estimates in the multiple regression model,
you have to look at the coefficients_ attribute, which is an array contain
ing the regression beta coefficients. Printing at the same time, the boston.
DESCR attribute helps you understand which variable the coefficients refer
ence. The zip function will generate an iterable of both attributes, and you
can print it for reporting.

print [a+':'+str(round(b,1)) for a, b in zip(
 boston.feature_names, regression.coef_,)]

['CRIM:‐0.9', 'ZN:1.1', 'INDUS:0.1', 'CHAS:0.7',
 'NOX:‐2.1', 'RM:2.7', 'AGE:0.0', 'DIS:‐3.1',
 'RAD:2.7', 'TAX:‐2.1', 'PTRATIO:‐2.1', 'B:0.9',
 'LSTAT:‐3.7']

DIS is the weighted distances to five employment centers. It shows the
major absolute unit change. For example, in real estate, a house that’s too
far from people’s interests (such as work) lowers the value. As a contrast,
AGE and INDUS, with both proportions describing building age and show
ing whether nonretail activities are available in the area, don’t influence the
result as much because the absolute value of their beta coefficients is lower
than DIS.

307 Chapter 17: Exploring Four Simple and Effective Algorithms

Understanding limitations and problems
Although linear regression is a simple yet effective estimation tool, it has
quite a few problems. The problems can reduce the benefit of using linear
regressions in some cases, but it really depends on the data. You determine
whether any problems exist by employing the method and testing its efficacy.
Unless you work hard on data (see Chapter 19), you may encounter these
limitations:

 ✓ Linear regression can model only quantitative data. When modeling
 categories as response, you need to modify the data into a logistic
regression.

 ✓ If data is missing and you don’t deal with it properly, the model stops
working. It’s important to impute the missing values or, using the value
of zero for the variable, to create an additional binary variable pointing
out that a value is missing.

 ✓ Also, outliers are quite disruptive for a linear regression because linear
regression tries to minimize the square value of the residuals, and outli
ers have big residuals, forcing the algorithm to focus more on them than
on the mass of regular points.

 ✓ The relation between the target and each predictor variable is based on
a single coefficient — there isn’t an automatic way to represent complex
relations like a parabola (there is a unique value of x maximizing y) or
exponential growth. The only way you can manage to model such rela
tions is to use mathematical transformations of x (and sometimes y) or
add new variables. Chapter 19 explores both the use of transformations
and the addition of variables.

 ✓ The greatest limitation is that linear regression provides a summation
of terms, which can vary independently of each other. It’s hard to
figure out how to represent the effect of certain variables that affect the
result in very different ways according to their value. In short, you can’t
 represent complex situations with your data, just simple ones.

Moving to Logistic Regression
Linear regression is well suited for estimating values, but it isn’t the best tool
for predicting the class of an observation. In spite of the statistical theory
that advises against it, you can actually try to classify a binary class by scor
ing one class as 1 and the other as 0. The results are disappointing most of
the time, so the statistical theory wasn’t wrong!

308 Part V: Learning from Data

The fact is that linear regression works on a continuum of numeric estimates.
In order to classify correctly, you need a more suitable measure, such as
the probability of class ownership. Thanks to the following formula, you can
transform a linear regression numeric estimate into a probability that is more
apt to describe how a class fits an observation:

probability of a class = exp(r) / (1+exp(r))

r is the regression result (the sum of the variables weighted by the coeffi
cients) and exp is the exponential function. exp(r) corresponds to Euler’s
number e elevated to the power of r. A linear regression using such a for
mula (also called a link function) for transforming its results into probabili
ties is a logistic regression.

Applying logistic regression
Logistic regression is similar to linear regression, with the only difference
being the y data, which should contain integer values indicating the class
relative to the observation. Using the Iris dataset from the Scikit‐learn
 datasets module, you can use the values 0, 1, and 2 to denote three classes
that correspond to three species:

from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data[:‐1,:], iris.target[:‐1]

To make the example easier to work with, leave a single value out so that
later you can use this value to test the efficacy of the logistic regression
model on it.

from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression()
logistic.fit(X,y)
print 'Predicted class %s, real class %s' % (
 logistic.predict(iris.data[‐1,:]),iris.target[‐1])
print 'Probabilities for each class from 0 to 2: %s'
 % logistic.predict_proba(iris.data[‐1,:])

Predicted class [2], real class 2
Probabilities for each class from 0 to 2:
 [[0.00168787 0.28720074 0.71111138]]

Contrary to linear regression, logistic regression doesn’t just output the
resulting class (in this case, the class 2), but it also estimates the probability
of the observation’s being part of all three classes. Based on the observation

309 Chapter 17: Exploring Four Simple and Effective Algorithms

used for prediction, logistic regression estimates a probability of 71 percent
of its being from class 2 — a high probability, but not a perfect score, there
fore leaving a margin of uncertainty.

Using probabilities lets you guess the most probable class, but you can also
order the predictions with respect to being part of that class. This is espe
cially useful for medical purposes: Ranking a prediction in terms of likelihood
with respect to others can reveal what patients are at most risk of getting or
already having a disease.

Considering when classes are more
The previous problem, logistic regression, automatically handles a multiple
class problem (it started with three iris species to guess). Most algorithms
provided by Scikit‐learn that predict probabilities or a score for class can
automatically handle multiclass problems using two different strategies:

 ✓ One versus rest: The algorithm compares every class with all the
remaining classes, building a model for every class. If you have ten
classes to guess, you have ten models. This approach relies on the
OneVsRestClassifier class from Scikit‐learn.

 ✓ One versus one: The algorithm compares every class against every
 individual remaining class, building a number of models equivalent to
n * (n‐1) / 2, where n is the number of classes. If you have ten classes,
you have 45 models. This approach relies on the OneVsOneClassifier
class from Scikit‐learn.

In the case of logistic regression, the default multiclass strategy is the one
versus rest. The example in this section shows how to use both the strategies
with the handwritten digit dataset, containing a class for numbers from 0 to 9.
The following code loads the data and places it into variables.

from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data[:1700,:], digits.target[:1700]
tX, ty = digits.data[1700:,:], digits.target[1700:]

The observations are actually a grid of pixel values. The grid’s dimensions
are 8 pixels by 8 pixels. To make the data easier to learn by machine‐learning
algorithms, the code aligns them into a list of 64 elements. The example
reserves a part of the available examples for a test.

310 Part V: Learning from Data

from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
OVR = OneVsRestClassifier(LogisticRegression()).fit(X,y)
OVO = OneVsOneClassifier(LogisticRegression()).fit(X,y)
print 'One vs rest accuracy: %.3f' % OVR.score(tX,ty)
print 'One vs one accuracy: %.3f' % OVO.score(tX,ty)

One vs rest accuracy: 0.938
One vs one accuracy: 0.969

The two multiclass classes OneVsRestClassifier and OneVsOne
Classifier operate by incorporating the estimator (in this case, Logistic
Regression). After incorporation, they usually work just like any other learn
ing algorithm in Scikit‐learn. Interestingly, the one‐versus‐one strategy obtained
the best accuracy thanks to its high number of models in competition.

When working with Anaconda and Python version 3.4, you may receive a
 deprecation warning when working with this example. You’re safe to ignore
the deprecation warning — the example should work as normal. All the
 deprecation warning tells you is that one of the features used in the example
is due for an update or will become unavailable in a future version of Python.

Making Things as Simple as Naïve Bayes
You might wonder why anyone would name an algorithm Naïve Bayes. The
naïve part comes from its formulation — it makes some extreme simplifica
tions to standard probability calculations. The reference to Bayes in its name
relates to the Reverend Bayes and his theorem on probability.

Reverend Thomas Bayes was a statistician and a philosopher who formulated
his theorem during the first half of the eighteenth century. The theorem was
never published while he was alive. It has deeply revolutionized the theory
of probability by introducing the idea of conditional probability — that is,
 probability conditioned by evidence.

Of course, it helps to start from the beginning — probability itself. Probabi
lity tells you the likelihood of an event and is expressed in a numeric form.
The probability of an event is measured in the range from 0 to 1 (from
0 percent to 100 percent) and it’s empirically derived from counting the
number of times the specific event happened with respect to all the events.
You can calculate it from data!

When you observe events (for example, when a feature has a certain charac
teristic), and you want to estimate the probability associated with the event,

311 Chapter 17: Exploring Four Simple and Effective Algorithms

you count the number of times the characteristic appears in the data and
divide that figure by the total number of observations available. The result is
a number ranging from 0 to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you
can apply the probability in each situation. The term for this belief is a priori
because it constitutes the first estimate of probability with regard to an event
(the one that comes to mind first). For example, if you estimate the probabil
ity of a person being a female you might say, after some counting, that it’s
50 percent, which is the prior, the first probability you will stick with.

The prior probability can change in the face of evidence, that is, something
that can radically modify your expectations. For example, the evidence of
whether a person is male or female could be that the person’s hair is long
or short. You can estimate having long hair as an event with 35 percent
 probability for the general population, but within the female population, it’s
60 percent. If the percentage is so high in the female population, contrary to
the general probability (the prior for having long hair), there should be some
useful information that you can use!

Imagine that you have to guess whether a person is male or female and the
evidence is that the person has long hair. This sounds like a predictive
 problem, and in the end, this situation is really similar to predicting a
 categorical variable from data: We have a target variable with different
 categories and you have to guess the probability of each category on the
basis of evidence, the data. Reverend Bayes provided a useful formula:

P(A|B) = P(B|A)*P(A) / P(B)

The formula looks like statistical jargon and is a bit counterintuitive, so it
needs to be explained in depth. Reading the formula using the previous
 example as input makes the meaning behind the formula quite a bit clearer:

 ✓ P(A|B) is the probability of being a female (event A) given long hair
 (evidence B). This part of the formula defines what you want to predict.
In short, it says to predict y given x where y is an outcome (male or
female) and x is the evidence (long or short hair).

 ✓ P(B|A) is the probability of having long hair when the person is a
female. In this case, you already know that it’s 60 percent. In every data
 problem, you can obtain this figure easily by simple cross‐tabulation of
the features against the target outcome.

 ✓ P(A) is the probability of being a female, a 50 percent general chance
(a prior).

 ✓ P(B) is the probability of having long hair, which is 35 percent (another
prior).

312 Part V: Learning from Data

When reading parts of the formula such as P(A|B), you should read them
as follows: probability of A given B. The | symbol translates as given. A
 probability expressed in this way is a conditional probability, because it’s the
probability of A conditioned by the evidence presented by B. In this example,
plugging the numbers into the formula translates into: 60% * 50% / 35% = 85.7%

Therefore, even if being a female is a 50 percent probability, just knowing
evidence like long hair takes it up to 85.7 percent, which is a more favorable
chance for the guess. You can be more confident in guessing that the person
with long hair is a female because you have a bit less than a 15 percent
chance of being wrong.

Finding out that Naïve Bayes
isn’t so naïve
Naive Bayes, leveraging the simple Bayes’ rule, takes advantage of all the
 evidence available in order to modify the prior base probability of your
predictions. Because your data contains so much evidence — that is, it has
many features — the data makes a big sum of all the probabilities derived
from a simplified Naïve Bayes formula.

As discussed in the “Guessing the number: linear regression” section, earlier
in this chapter, summing variables implies that the model takes them as
 separate and unique pieces of information. But this isn’t true in reality,
because applications exist in a world of interconnections, with every piece of
information connecting to many other pieces. Using one piece of information
more than once means giving more emphasis to that particular piece.

Because you don’t know (or simply ignore) the relationships between each
piece of evidence, you probably just plug all of them in to Naïve Bayes. The
simple and naïve move of throwing everything that you know at the formula
works well indeed, and many studies report good performance despite the
fact that you make a naïve assumption. It’s okay to use everything for predic
tion, even though it seems as though it shouldn’t be okay given the strong
association between variables. Here are some of the ways in which you
 commonly see Naïve Bayes used:

 ✓ Building spam detectors (catching all annoying emails in your inbox)

 ✓ Sentiment analysis (guessing whether a text contains positive or
 negative attitudes with respect to a topic, and detecting the mood of the
speaker)

 ✓ Text‐processing tasks such as spell correction, or guessing the language
used to write or classify the text into a larger category

313 Chapter 17: Exploring Four Simple and Effective Algorithms

Naïve Bayes is also popular because it doesn’t need as much data to work. It
can naturally handle multiple classes. With some slight variable modifications
(transforming them into classes), it can also handle numeric variables. Scikit‐
learn provides three Naïve Bayes classes in the sklearn.naive_bayes
module:

 ✓ MultinomialNB: Uses the probabilities derived from a feature’s
 presence. When a feature is present, it assigns a certain probability to
the outcome, which the textual data indicates for the prediction.

 ✓ BernoulliNB: Provides the multinomial functionality of Naïve Bayes,
but it penalizes the absence of a feature. It assigns a different probability
when the feature is present than when it’s absent. In fact, it treats all
 features as dichotomous variables (the distribution of a dichotomous
variable is a Bernoulli distribution). You can also use it with textual data.

 ✓ GaussianNB: Defines a version of Naïve Bayes that expects a normal
distribution of all the features. Hence, this class is suboptimal for
 textual data in which words are sparse (use the multinomial or Bernoulli
 distributions instead). If your variables have positive and negative
values, this is the best choice.

Predicting text classifications
Naïve Bayes is particularly popular for document classification. In textual
problems, you often have millions of features involved, one for each word
spelled correctly or incorrectly. Sometimes the text is associated with other
nearby words in n‐grams, that is, sequences of consecutive words. Naïve
Bayes can learn the textual features quickly and provide fast predictions
based on the input.

This section tests text classifications using the binomial and multinomial
Naïve Bayes models offered by Scikit‐learn. The examples rely on the
20newsgroups dataset, which contains a large number of posts from
20 kinds of newsgroups. The dataset is divided into a training set, for building
your textual models, and a test set, which is comprised of posts that tempo
rally follow the training set. You use the test set to test the accuracy of your
predictions.

from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train',
 remove=('headers', 'footers', 'quotes'))
newsgroups_test = fetch_20newsgroups(subset='test',
 remove=('headers', 'footers', 'quotes'))

314 Part V: Learning from Data

After loading the two sets into memory, you import the two Naïve Bayes
and instantiate them. At this point, you set alpha values, which are useful
for avoiding a zero probability for rare features (a zero probability would
exclude these features from the analysis). You typically use a small value for
alpha, as shown in the following code:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB
Bernoulli = BernoulliNB(alpha=0.01)
Multinomial = MultinomialNB(alpha=0.01)

In Chapter 12, you use the hashing trick to model textual data without fear
of encountering new words when using the model after the training phase.
You can use two different hashing tricks, one counting the words (for the
multinomial approach) and one recording whether a word appeared in a
binary variable (the binomial approach). You can also remove stop words,
that is, common words found in the English language, such as “a,” “the,”
“in,” and so on.

import sklearn.feature_extraction.text as txt
multinomial_hashing_trick = txt.HashingVectorizer(
 stop_words='english', binary=False, norm=None,
 non_negative=True)
binary_hashing_trick = txt.HashingVectorizer(
 stop_words='english', binary=True, norm=None,
 non_negative=True)

At this point, you can train the two classifiers and test them on the test set,
which is a set of posts that temporally appear after the training set. The
test measure is accuracy, which is the percentage of right guesses that the
 algorithm makes.

Multinomial.fit(multinomial_hashing_trick.transform(
 newsgroups_train.data), newsgroups_train.target)
Bernoulli.fit(binary_hashing_trick.transform(
 newsgroups_train.data), newsgroups_train.target)
from sklearn.metrics import accuracy_score
for m, h in [(Bernoulli, binary_hashing_trick),
 (Multinomial, multinomial_hashing_trick)]:
 print 'Accuracy for %s: %.3f' % (m,
 accuracy_score(y_true=newsgroups_test.target,
 y_pred=m.predict(h.transform(
 newsgroups_test.data))))

Accuracy for BernoulliNB(alpha=0.01, binarize=0.0,
 class_prior=None, fit_prior=True): 0.570
Accuracy for MultinomialNB(alpha=0.01, class_prior=None,
 fit_prior=True): 0.651

315 Chapter 17: Exploring Four Simple and Effective Algorithms

You might notice that it won’t take long for both models to train and report
their predictions on the test set. Consider that the training set is made up of
more than 11,000 posts containing 300,000 words, and the test set contains
about 7,500 other posts.

print 'number of posts in training: %i' % len(
 newsgroups_train.data)
D={word:True for post in newsgroups_train.data for word
 in post.split(' ')}
print 'number of distinct words in training: %i' % len(D)
print 'number of posts in test: %i' % len(
 newsgroups_test.data)
number of posts in training: 11314
number of distinct words in training: 300972
number of posts in test: 7532

Learning Lazily with Nearest Neighbors
k‐Nearest Neighbors (kNN) is not about building rules from data based on
coefficients or probability. kNN works on the basis of similarities. When you
have to predict something like a class, it may be the best to find the most
similar observations to the one you want to classify or estimate. You can
then derive the answer you need from the similar cases.

Observing how many observations are similar doesn’t imply learning some
thing, but rather measuring. Because kNN isn’t learning anything, it’s consid
ered lazy, and you’ll hear it referenced as a lazy learner or an instance‐based
learner. The idea is that similar premises usually provide similar results,
and it’s important not to forget to get such low‐hanging fruit before trying to
climb the tree!

The algorithm is fast during training because it only has to memorize data
about the observations. It actually calculates more during predictions.
When there are too many observations, the algorithm can become slow and
memory consuming. You’re best advised not to use it with big data or it may
take almost forever to predict anything! Moreover, this simple and effec
tive algorithm works better when you have distinct data groups without too
many variables involved because the algorithm is also sensitive to the dimen
sionality curse.

The curse of dimensionality happens as the number of variables increases.
Consider a situation in which you’re measuring the distance between obser
vations and, as the space becomes larger and larger, it becomes difficult to
find real neighbors — a problem for kNN, which sometimes mistakes a far

316 Part V: Learning from Data

observation for a near one. Rendering the idea is just like playing chess on a
multidimensional chessboard. When playing on the classic 2D board, most
pieces are near and you can more easily spot opportunities and menaces for
your pawns when you have 32 pieces and 64 positions. However, when you
start playing on a 3D board, such as those found in some sci‐fi films, your
32 pieces can become lost in 512 possible positions. Now just imagine playing
with a 12D chessboard. You can easily misunderstand what is near and what
is far, which is what happens with kNN.

You can still make kNN smart in detecting similarities between observations
by removing redundant information and simplifying the data dimensionality
using data the reduction techniques, as explained in Chapter 14.

Predicting after observing neighbors
For an example showing how to use kNN, you can start with the digit dataset
again. kNN is particularly useful, just like Naïve Bayes, when you have to predict
many classes, or in situations that would require you to build too many models
or rely on a complex model.

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
digits = load_digits()
pca = PCA(n_components=25)
pca.fit(digits.data[:1700,:])
X, y = pca.transform(digits.data[:1700,:]),
 digits.target[:1700]
tX, ty = pca.transform(digits.data[1700:,:]),
 digits.target[1700:]

kNN is an algorithm that’s quite sensitive to outliers. Moreover, you have
to rescale your variables and remove some redundant information. In this
 example, you use PCA. Rescaling is not necessary because the data repre
sents pixels, which means that it’s already scaled.

You can avoid the problem with outliers by keeping the neighborhood small,
that is, by not looking too far for similar examples.

Knowing the data type can save you a lot of time and many mistakes. For
example, in this case, you know that the data represents pixel values. Doing
EDA (as described in Chapter 13) is always the first step and can provide you
with useful insights, but getting additional information about how the data
was obtained and what the data represents is also a good practice and can be
just as useful. To see this task in action, you reserve cases in tX and try a few
cases that kNN won’t look up when looking for neighbors.

317 Chapter 17: Exploring Four Simple and Effective Algorithms

from sklearn.neighbors import KNeighborsClassifier
kNN = KNeighborsClassifier(n_neighbors=5)
kNN.fit(X,y)

kNN uses a distance measure in order to determine which observations to
consider as possible neighbors for the target case. You can easily change the
predefined distance using the p parameter:

 ✓ When p is 2, use the Euclidean distance (discussed as part of the
 clustering topic in Chapter 15).

 ✓ When p is 1, use the Manhattan distance metric, which is the absolute
distance between observations. In a 2D square, when you go from one
corner to the opposite one, the Manhattan distance is the same as walk
ing the perimeter, whereas Euclidean is like walking on the diagonal.
Although the Manhattan distance isn’t the shortest route, it’s a more
realistic measure than Euclidean distance, and it’s less sensitive to noise
and high dimensionality.

Usually, the Euclidean distance is the right measure, but sometimes it can
give you worse results, especially when the analysis involves many corre
lated variables. The following code shows that the analysis seems fine with it.

print 'Accuracy: %.3f' % kNN.score(tX,ty)
print 'Prediction: %s actual: %s' %
 (kNN.predict(tX[:10,:]),ty[:10])

Accuracy: 0.990
Prediction: [5 6 5 0 9 8 9 8 4 1]
 actual: [5 6 5 0 9 8 9 8 4 1]

Choosing your k parameter wisely
A critical parameter that you have to define in kNN is k. As k increases, kNN
considers more points for its predictions, and the decisions are less influ
enced by noisy instances that could exercise an undue influence. Your deci
sions are based on an average of more observations, and they become more
solid. When the k value you use is too large, you start considering neighbors
that are too far, sharing less and less with the case you have to predict.

It’s an important trade‐off. When the value of k is less, you consider a more
homogeneous pool of neighbors but can more easily make an error by taking
the few similar cases for granted. When the value of k is more, you consider
more cases at a higher risk of observing neighbors that are too far or that are

318 Part V: Learning from Data

outliers. Getting back to the previous example with handwritten digit data,
you can experiment with changing the k value, as shown in the following
code:

for k in [1, 5, 10, 100, 200]:
 kNN = KNeighborsClassifier(n_neighbors=k).fit(X,y)
 print 'for k= %3i accuracy is %.3f' %
 (k, kNN.score(tX,ty))

for k= 1 accuracy is 0.979
for k= 5 accuracy is 0.990
for k= 10 accuracy is 0.969
for k= 100 accuracy is 0.959
for k= 200 accuracy is 0.907

Through experimentation, you find that setting n_neighbors (the parameter
representing k) to 5 is the optimum choice, resulting in the highest accuracy.
Using just the nearest neighbor (n_neighbors =1) isn’t a bad choice, but
 setting the value above 5 instead brings decreasing results in the classifica
tion task.

As a rule of thumb, when your dataset doesn’t have many observations, set
k as a number near the squared number of available observations. However,
there is no general rule, and trying different k values is always a good way
to optimize your kNN performance. Always start from low values and work
toward higher values.

Performing Cross‐Validation,
Selection, and Optimization

In This Chapter
 ▶ Learning about overfitting and underfitting

 ▶ Choosing the right metric to monitor

 ▶ Cross‐validating our results

 ▶ Selecting the best features for machine‐learning

 ▶ Optimizing hyperparameters

M
achine‐learning algorithms can indeed learn from data. For instance,
the four algorithms presented in the previous chapter, although quite

simple, can effectively estimate a class or a value after being presented with
examples associated with outcomes. It is all a matter of learning by induction,
which is the process of extracting general rules from specific exemplifica-
tions. From childhood, humans commonly learn by seeing examples, deriving
some general rules or ideas from them, and then successfully applying the
derived rule to new situations as we grow up. For example, if we see someone
being burned after touching fire, we understand that fire is dangerous, and
we don’t need to touch it ourselves to know that.

Learning by example using machine algorithms has pitfalls. Here are a few
issues that might arise:

 ✓ There aren’t enough examples to make a judgment about a rule, no
matter what machine‐learning algorithm you are using.

 ✓ The machine‐learning application is presented with the wrong examples
and consequently cannot reason correctly.

Chapter 18

320 Part V: Learning from Data

 ✓ Even when the application sees enough right examples, it still can’t
figure out rules because they’re too complex. Sir Isaac Newton, the
father of modern physics, narrated the story that he was inspired by the
fall of an apple from a tree in his formulation of gravity. Unfortunately,
deriving a universal law from a series of observations is not an auto-
matic consequence for most of us and the same applies to algorithms.

It’s important to consider these pitfalls when delving into machine learning!
The quantity of data, its quality, and the characteristics of the learning algo-
rithm decide whether a machine‐learning application can generalize well to
new cases. If anything is wrong with any of them, they can pose some serious
limits. As a data science practitioner, you must recognize and learn to avoid
these types of pitfalls in your data science experiments.

You don’t have to type the source code for this chapter manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this chapter appears in
the P4DS4D; 18; Performing Cross Validation, Selection and
Optimization.ipynb source code file.

Pondering the Problem of Fitting a Model
Fitting a model implies learning from data a representation of the rules that
generated the data in the first place. From a mathematical perspective,
 fitting a model is analogous to guessing an unknown function of the kind you
faced in high school, such as, y=4x^2+2x, just by observing its y results.
Therefore, under the hood, machine‐learning algorithms generate mathemati-
cal formulations that should represent how reality works.

Demonstrating whether such formulations are real is beyond the scope of
data science. What is most important is that they work by producing exact
predictions. For example, even though you can describe much of the physi-
cal world using mathematical functions, you often can’t describe social and
 economic dynamics this way — but people try guessing them anyway.

To summarize, as a data scientist, you should always strive to approximate
the real functions underlying the problems you face using the best information
available. The result of your work is evaluated based on your capacity to pre-
dict specific outcomes (the target outcome) given certain premises (the data)
thanks to a useful range of algorithms (the machine‐learning algorithms).

Earlier in the book, you see something akin to a real function or law when
the book presents linear regression, which has its own formulation. The
linear formula y=a + Bx, which mathematically represents a line on a plane,

321 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

can often approximate training data well, even if the data is not represent-
ing a line or something similar to a line. As with linear regression, all other
machine‐learning algorithms have an internal formulation themselves (and
many are indeed available). The linear regression’s formulation is one of the
simplest ones; formulations from other learning algorithms can appear quite
complex. You don’t need to know exactly how they work. You do need to
have an idea of how complex they are, whether they are representing a line
or a curve, and whether they can sense outliers or noisy data. When planning
to learn from data, you should address these problematic aspects based on
the formulation you intend to use:

1. Whether the learning algorithm is the best one that can approximate
the unknown function that you imagine behind the data you are using.
In order to make such a decision, you must consider the learning algo-
rithm’s formulation performance on the data at hand and compare it
with other, alternative formulations from other algorithms.

2. Whether the specific formulation of the learning algorithm is too simple,
with respect to the hidden function, to make an estimate (this is called a
bias problem).

3. Whether the specific formulation of the learning algorithm is too com-
plex, with respect to the hidden function to be guessed (leading to the
variance problem).

Not all algorithms are suitable for every data problem. If you don’t have
enough data or the data is full of erroneous information, it may be too
 difficult for some formulations to figure out the real function.

Understanding bias and variance
If your chosen learning algorithm can’t learn properly from data and is not
performing well, the cause is bias or variance in its estimates.

 ✓ Bias: Given the simplicity of formulation, your algorithm tends to
 overestimate or understimate the real rules behind the data and is
 systematically wrong in certain situations. Simple algorithms have high
bias; having few internal parameters, they tend to represent only simple
formulations well.

 ✓ Variance: Given the complexity of formulation, your algorithm tends to
learn too much information from the data and detect rules that don’t
exist, which causes its predictions to be erratic when faced with new
data. You can think of variance as a problem connected to memoriza-
tion. Complex algorithms can memorize data features thanks to the
 algorithms’ high number of internal parameters.

322 Part V: Learning from Data

Bias and variance depend on the complexity of the formulation at the core of
the learning algorithm with respect to the complexity of the formulation that
is presumed to have generated the data you are observing. However, when
you consider a specific problem using the available data rules, you’re better
off having high bias or variance when

 ✓ You have few observations: Simpler algorithms perform better, no
matter what the unknown function is. Complex algorithms tend to learn
too much from data, estimating with inaccuracy.

 ✓ You have many observations: Complex algorithms always reduce
 variance. The reduction occurs because even complex algorithms can’t
learn all that much from data, so they learn just the rules, not any erratic
noise.

 ✓ You have many variables: Provided that you also have many obser-
vations, simpler algorithms tend to find a way to approximate even
 complex hidden functions.

Defining a strategy for picking models
When faced with a machine‐learning problem, you usually know little about
the problem and don’t know whether a particular algorithm will manage it
well. Consequently, you don’t really know whether the source of a problem is
caused by bias or variance — although you can usually use the rule of thumb
that if an algorithm is simple, it will have high bias, and if it is complex, it will
have high variance. Even when working with common, well‐documented data
science applications, you’ll notice that what works in other situations (as
described in academic and industry papers) often doesn’t operate very well
for your own application because the data is different.

You can summarize this situation using the famous no‐free‐lunch theorem
of the mathematician David Wolpert: Any two machine‐learning algorithms
are equivalent in performance when tested across all possible problems.
Consequently, it isn’t possible to say that one algorithm is always better than
another; it can be better than another one only when used to solve specific
problems. You can view the concept in another way: For every problem,
there is never a fixed recipe! The best and only strategy is just to try every-
thing you can and verify the results using a controlled scientific experiment.
Using this approach ensures that what seems to work is what really works
and, most important, what will keep on working with new data. Although you
may have more confidence when using some learners over others, you can
never tell what machine‐learning algorithm is the best before trying it and
measuring its performance on your problem.

323 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

At this point, you must consider a critical, yet underrated, necessary aspect
to decide upon for the success of your data project. For a best model and
greatest results, it’s essential to define an evaluation metric that distin-
guishes a good model from a bad one with respect to the business or scien-
tific problem that you want to solve. In fact, for some projects, you may need
to avoid predicting negative cases when they are positive; for others, you
may want to absolutely spot all the positive ones; and for still others, all you
need to do is order them so that positive ones come before the negative ones
and you don’t need to check them all.

By picking an algorithm, you automatically also pick an optimization process
ruled by an evaluation metric that reports its performance to the algorithm
so that the algorithm can better adjust its parameters. For instance, when
using a linear regression, the metric is the mean squared error given by the
vertical distance of the observations from the regression line. Therefore,
it is automatic, and you can more easily accept the algorithm performance
 provided by such a default evaluation metric.

Apart from accepting the default metric, some algorithms do let you choose
a preferred evaluation function. In other cases, when you can’t point out a
favorite evaluation function, you can still influence the existing evaluation
metric by appropriately fixing some of its hyperparameters, thus optimizing
the algorithm indirectly for another, different, metric.

Before starting to train your data and create predictions, always consider what
could be the best performance measure for your project. Scikit‐learn offers
access to a wide range of measures for both classification and regression
problems. The sklearn.metrics module allows you to call the optimization
procedures using a simple string or by calling an error function from its mod-
ules. Table 18-1 shows the measures commonly used for regression problems.

The r2 string specifies a statistical measure for linear regression called R
squared. It expresses how the model compares in predictive power with
respect to a simple mean. Machine‐learning applications seldom use this
 measure because it doesn’t explicitly report errors made by the model,

Table 18-1 Regression Evaluation Measures
callable string function
mean_absolute_error sklearn.metrics.mean_absolute_error

mean_squared_error sklearn.metrics.mean_squared_error

r2 sklearn.metrics.r2_score

324 Part V: Learning from Data

although high R squared values imply fewer errors; more viable metrics
for regression models are the mean squared errors and the mean absolute
errors.

Squared errors penalize extreme values more, whereas absolute error
weights all the errors the same. So it is really a matter of considering the
trade‐off between reducing the error on extreme observations as much as
possible (squared error) or trying to reduce the error for the majority of the
observations (absolute error). The choice you make depends on the appli-
cation. When extreme values represent critical situations for your applica-
tion, a squared error measure is better. However, when your concern is to
minimize the common and usual observations, as often happens in forecast-
ing sales problems, you should use a mean absolute error as the reference.
The choices are even for complex classification problems, as you can see in
Table 18-2.

Accuracy is the simplest error measure in classification, counting (as a
percentage) how many of the predictions are correct. It takes into account
whether the machine‐learning algorithm has guessed the right class. This
measure works with both binary and multiclass problems. Even though it’s
a simple measure, optimizing accuracy may cause problems when an imbal-
ance exists between classes. For example, it could be a problem when the
class is frequent or preponderant, such as in fraud detection, where most
transactions are actually legitimate with respect to a few criminal transac-
tions. In such situations, machine‐learning algorithms optimized for accuracy
tend to guess in favor of the preponderant class and be wrong most of time
with the minor classes, which is an undesirable behavior for an algorithm
that you expect to guess all the classes correctly, not just a few selected ones.

Precision and recall, and their conjoint optimization by F1 score, can solve
problems not addressed by accuracy. Precision is about being precise when
guessing. It tracks the percentage of times, when forecasting a class, that a
class was right. For example, you can use precision when diagnosing cancer

Table 18-2 Classification Evaluation Measures
callable string function
accuracy sklearn.metrics.accuracy_score

precision sklearn.metrics.precision_score

recall sklearn.metrics.recall_score

f1 sklearn.metrics.f1_score

roc_auc sklearn.metrics.roc_auc_score

325 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

in patients after evaluating data about their exams. Your precision in this
case is the percentage of patients who really have cancer among those diag-
nosed with cancer. Therefore, if you have diagnosed ten ill patients and nine
are truly ill, your precision is 90 percent.

You face different consequences when you don’t diagnose cancer in a
patient who has it or you do diagnose it in a healthy patient. Precision tells
just a part of the story, because there are patients with cancer that you have
diagnosed as healthy, and that’s a terrible problem. The recall measure tells
the second part of the story. It reports, among an entire class, your percent-
age of correct guesses. For example, when reviewing the previous example,
the recall metric is the percentage of patients that you correctly guessed
have cancer. If there are 20 patients with cancer and you have diagnosed just
9 of them, your recall will be 45 percent.

When using your model, you can be accurate but still have low recall, or have
a high recall but lose accuracy in the process. Fortunately, precision and
recall can be maximized together using the F1 score, which uses the formula:
F1 = 2 * (precision * recall) / (precision + recall). Using
the F1 score ensures that you always get the best precision and recall
 combined.

Receiver Operating Characteristic Area Under Curve (ROC AUC) is useful
when you want to order your classifications according to their probability of
being correct. Therefore, when optimizing ROC AUC in the previous example,
the learning algorithm will first try to order (sort) patients starting from
those most likely to have cancer to those least likely to have cancer. The
ROC AUC is higher when the ordering is good and low when it is bad. If your
model has a high ROC AUC, you need to check the most likely ill patients.
Another example is in a fraud detection problem, when you want to order
customers according to the risk of being fraudulent. If your model has a good
ROC AUC, you need to check just the riskiest customers closely.

Dividing between training and test sets
Having explored how to decide among the different error metrics for clas-
sification and regression, the next step in the strategy for choosing the best
model is to experiment and evaluate the solutions by viewing their ability to
generalize to new cases. As an example of correct procedures for experiment-
ing with machine‐learning algorithms, begin by loading the Boston dataset
(a popular example dataset created in the 1970s), which consists of Boston
housing prices, various house characteristic measurements, and measures of
the residential area where each house is located.

326 Part V: Learning from Data

from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data, boston.target
print X.shape, y.shape

(506L, 13L) (506L,)

Notice that the dataset contains more than 500 observations and 13 features.
The target is a price measure, so you decide to use linear regression and to
optimize the result using the mean squared error. The objective is to ensure
that a linear regression is a good model for the Boston dataset and to quan-
tify how good it is using the mean squared error (which lets you compare it
with alternative models).

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
regression = LinearRegression()
regression.fit(X,y)
print 'Mean squared error: %.2f' % mean_squared_error(
 y_true=y, y_pred=regression.predict(X))

Mean squared error: 21.90

After having fitted the model with the data (which is called the training data
because it provides examples to learn from), the mean_squared_error
error function reports the data prediction error. The mean squared error is
21.90, apparently a good measure but calculated directly on the training set,
so you cannot be sure if it could work as well with new data (machine‐learning
algorithms are both good at learning and at memorizing from examples).

Ideally, you need to perform a test on data that the algorithm has never seen
in order to exclude any memorization. Only in this way can you discover
whether your algorithm works well when new data arrives. To perform this
task, you wait for new data, make the predictions on it, and then confront
predictions and reality. But, performing the task this way may take a long
time and be very risky and expensive, depending on the type of problem you
want to solve by machine learning (for example, some applications such as
cancer detection can be very costly to experiment with because lives are at a
stake).

Luckily, there’s another way to obtain the same result. In order to simulate
having new data, you can divide the observations into test and training
cases. It’s quite common in data science to have a test size of 25 to 30
 percent of the available data and to train the predictive model on the
remaining 70–75 percent.

327 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.30, random_state=5)
print X_train.shape, X_test.shape

(354L, 13L) (152L, 13L)

The example separates training and test X and y variables into distinct
 variables using the train_test_split function. test_size param-
eter indicates a test set made of 30 percent of available observations. The
 function always chooses the test sample randomly.

regression.fit(X_train,y_train)
print 'Train mean squared error: %.2f'
 % mean_squared_error(y_true=y_train,
 y_pred=regression.predict(X_train))

Train mean squared error: 19.07

At this point, you fit the model again and the code reports a new training
error of 19.07, which is somehow different from before. However, the error
you really have to refer to comes from the test set you reserved.

print 'Test mean squared error: %.2f'
 % mean_squared_error(y_true=y_test,
 y_pred=regression.predict(X_test))

Test mean squared error: 30.70

When you the estimate the error on the test set, the results show that the
reported value is 30.70. What a difference, indeed! Somehow, the estimate on
the training set was too optimistic. Using the test set, while more realistic in
error estimation, really makes your result depend on a small portion of the
data. If you change that small portion, the test result will also change.

X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.30, random_state=6)
regression.fit(X_train,y_train)
print 'Train mean squared error: %.2f'
 % mean_squared_error(y_true=y_train,
 y_pred=regression.predict(X_train))
print 'Test mean squared error: %.2f'
 % mean_squared_error(y_true=y_test,
 y_pred=regression.predict(X_test))

Train mean squared error: 19.48
Test mean squared error: 28.33

328 Part V: Learning from Data

What you have experienced in this section is a common problem with
machine‐learning algorithms. You know that each algorithm has a certain bias
or variance in predicting an outcome; the problem is that you can’t estimate
its impact for sure. Moreover, if you have to make choices with regard to the
algorithm, you can’t be sure of which decision might be the most effective one.

Using training data is always unsuitable because the learning algorithm can
actually predict the training data better. This is especially true when an algo-
rithm has a low bias because of its complexity. In this case, you can expect
a low error when predicting the training data, which means that you get an
overly optimistic result that doesn’t compare it fairly with other algorithms
(which may have a different bias/variance profile), nor are the results useful
for our evaluation. You can sample test data differently, on the other hand,
and, by reserving a certain portion of data for test purposes, you can actually
reduce the number of examples used to train the algorithm in an effective way.

Cross‐Validating
If test sets can provide unstable results because of sampling, the solution
is to systematically sample a certain number of test sets and then average
the results. It is a statistical approach (to observe many results and take
an average of them), and that’s the basis of cross‐validation. The recipe is
straightforward:

1. Divide your data into folds (each fold is a container that holds an even
distribution of the cases), usually 10, but fold sizes of 3, 5, and 20 are
viable alternative options.

2. Hold out one fold as a test set and use the others as training sets.

3. Train and record the test set result. If you have little data, it’s better to
use a larger number of folds, because the quantity of data and the use of
additional folds positively affects the quality of training.

4. Perform Steps 2 and 3 again, using each fold in turn as a test set.

5. Calculate the average and the standard deviation of all the folds’ test
results. The average is a reliable estimator of the quality of your predic-
tor. The standard deviation will tell you the predictor reliability (if it
is too high, the cross‐validation error could be imprecise). Expect that
predictors with high variance will have a high cross‐validation standard
deviation.

Even though this technique may appear complicated, Scikit‐learn handles it
using a single class:

>>> from sklearn.cross_validation import cross_val_score

329 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

Using cross‐validation on k folds
In order to run cross‐validation, you first have to initialize an iterator. KFold
is the iterator that implements k folds cross‐validation. There are other
iterators available from the sklearn.cross_validation module, mostly
derived from the statistical practice, but KFolds is the most widely used in
data science practice.

KFolds requires you to specify how many observations are in your sample
(the n parameter), specify the n_folds number, and indicate whether you
want to shuffle the data (by using the shuffle parameter). As a rule, the
higher the expected variance, the more that increasing the number of folds
can provide you a better mean estimate. It’s a good idea to shuffle the data
because ordered data can introduce confusion into the learning processes if
the first observations are different from the last ones.

After setting KFolds, call the cross_val_score function, which returns an
array of results containing a score (from the scoring function) for each cross‐
validation fold. You have to provide cross_val_score with your data (both
X and y) as an input, your estimator (the regression class), and the previously
instantiated KFolds iterator (the cv parameter). In a matter of a few seconds
or minutes, depending on the number of folds and data processed, the function
returns the results. You average these results to obtain a mean estimate, and
you can also compute the standard deviation to check how stable the mean is.

crossvalidation = KFold(n=X.shape[0], n_folds=10,
 shuffle=True, random_state=1)
scores = cross_val_score(regression, X, y,
 scoring='mean_squared_error', cv=crossvalidation,
 n_jobs=1)
print 'Folds: %i, mean squared error: %.2f std: %.2f'
 %(len(scores),np.mean(np.abs(scores)),np.std(scores))

Folds: 10, mean squared error: 23.76 std: 12.13

Cross‐validating can work in parallel because no estimate depends on any
other estimate. You can take advantage of the multiple cores present on your
computer by setting the parameter n_jobs=‐1.

Sampling stratifications for complex data
Cross‐validation folds are decided by random sampling. Sometimes it may be
necessary to track if and how much of a certain characteristic is present in
the training and test folds in order to avoid malformed samples. For instance,
the Boston dataset has a binary variable (a feature that has a value of 1 or 0)

330 Part V: Learning from Data

indicating whether the house bounds the Charles River. This information
is important to understand the value of the house and determine whether
people would like to spend more for it. You can see the effect of this variable
using the following code.

import pandas as pd
df = pd.DataFrame(X, columns=boston.feature_names)
df['target'] = y
boxplot = df.boxplot('target', by='CHAS',
 return_type='axes')

A boxplot, represented in Figure 18-1, reveals that houses on the river tend to
have values higher than other houses. Of course, there are expensive houses
all around Boston, but you have to keep an eye about how many river houses
you are analyzing because your model has to be general for all of Boston, not
just Charles River houses.

In similar situations, when a characteristic is rare or influential, you can’t
be sure when it’s present in the sample because the folds are created in a
random way. Having too many or too few of a particular characteristic in each
fold implies that the machine‐learning algorithm may derive incorrect rules.

The StratifiedKFold class provides a simple way to control the risk
of building malformed samples during cross‐validation procedures. It can
 control the sampling so that certain features, or even certain outcomes
(when the target classes are extremely unbalanced), will always be present in
your folds in the right proportion. You just need to point out the variable you
want to control by using the y parameter, as shown in the following code.

Figure 18-1:
Boxplot of
the target
outcome,

grouped by
CHAS.

331 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

from sklearn.cross_validation import StratifiedKFold
stratification = StratifiedKFold(y=X[:,3], n_folds=10,
 shuffle=True, random_state=1)
scores = cross_val_score(regression, X, y,
 scoring='mean_squared_error', cv=stratification,
 n_jobs=1)
print 'Stratified %i folds cross validation mean ' +
 'squared error: %.2f std: %.2f' % (len(
 scores),np.mean(np.abs(scores)),np.std(scores))

Stratified 10 folds cross validation mean squared error:
 23.70 std: 6.10

Although the validation error is similar, by controlling the CHAR variable,
the standard error of the estimates decreases, making you aware that the
 variable was influencing the previous cross‐validation results.

Selecting Variables Like a Pro
Selecting the right variables can improve the learning process by reducing
the amount of noise (useless information) that can influence the learner’s
estimates. Variable selection, therefore, can effectively reduce the variance of
predictions. In order to involve just the useful variables in training and leave
out the redundant ones, you can use these techniques:

 ✓ Univariate approach: Select the variables most related to the target
 outcome.

 ✓ Greedy or backward approach: Keep only the variables that you can
remove from the learning process without damaging its performance.

Selecting by univariate measures
If you decide to select a variable by its level of association with its target, the
class SelectPercentile provides an automatic procedure for keeping only
a certain percentage of the best, associated features. The available metrics
for association are

 ✓ f_regression: Used only for numeric targets and based on linear
regression performance.

 ✓ f_classif: Used only for categorical targets and based on the Analysis
of Variance (ANOVA) statistical test.

332 Part V: Learning from Data

 ✓ chi2: Performs the chi‐square statistic for categorical targets, which
is less sensible to the nonlinear relationship between the predictive
 variable and its target.

When evaluating candidates for a classification problem, f_classif and
chi2 tend to provide the same set of top variables. It’s still a good practice
to test the selections from both the association metrics.

Apart from applying a direct selection of the top percentile associations,
SelectPercentile can also rank the best variables to make it easier to
decide at what percentile to exclude a feature from participating in the learn-
ing process. The class SelectKBest is analogous in its functionality, but it
selects the top k variables, where k is a number, not a percentile.

from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import f_regression
Selector_f = SelectPercentile(f_regression, percentile=25)
Selector_f.fit(X,y)
for n,s in zip(boston.feature_names,Selector_f.scores_):

 print 'F‐score: %3.2f\t for feature %s ' % (s,n)

F‐score: 88.15 for feature CRIM
F‐score: 75.26 for feature ZN
F‐score: 153.95 for feature INDUS
F‐score: 15.97 for feature CHAS
F‐score: 112.59 for feature NOX
F‐score: 471.85 for feature RM
F‐score: 83.48 for feature AGE
F‐score: 33.58 for feature DIS
F‐score: 85.91 for feature RAD
F‐score: 141.76 for feature TAX
F‐score: 175.11 for feature PTRATIO
F‐score: 63.05 for feature B
F‐score: 601.62 for feature LSTAT

Using the level of association output helps you to choose the most important
variables for your machine‐learning model, but you should watch out for
these possible problems:

 ✓ Some variables with high association could also be highly correlated,
introducing duplicated information, which acts as noise in the learning
process.

333 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

 ✓ Some variables may be penalized, especially binary ones (variables
indicating a status or characteristic using the value 1 when it is present,
0 when it is not). For example, notice that the output shows the binary
variable CHAS as the least associated with the target variable (but
you know from previous examples that it’s influential from the cross‐
validation phase).

The univariate selection process can give you a real advantage when you
have a huge number of variables to select from and all other methods turn
computationally infeasible. The best procedure is to reduce the value of
SelectPercentile by half or more of the available variables, reduce the
number of variables to a manageable number, and consequently allow
the use of a more sophisticated and more precise method such as a
greedy search.

Using a greedy search
When using a univariate selection, you have to decide for yourself how many
variables to keep: Greedy selection automatically reduces the number of
features involved in a learning model on the basis of their effective contribu-
tion to the performance measured by the error measure. The RFECV class,
fitting the data, can provide you with information on the number of useful
features, point them out to you, and automatically transform the X data, by
the method transform, into a reduced variable set, as shown in the following
example:

from sklearn.feature_selection import RFECV
selector = RFECV(estimator=regression, cv=10,
 scoring='mean_squared_error')
selector.fit(X, y)
print("Optimal number of features: %d"
 % selector.n_features_)

Optimal number of features: 6

It’s possible to obtain an index to the optimum variable set by calling the
attribute support_ from the RFECV class after you fit it.

print boston.feature_names[selector.support_]

['CHAS' 'NOX' 'RM' 'DIS' 'PTRATIO' 'LSTAT']

334 Part V: Learning from Data

Notice that CHAS is now included among the most predictive features, which
contrasts with the result from the univariate search in the previous section.
The RFECV method can detect whether a variable is important, no matter
whether it is binary, categorical, or numeric, because it directly evaluates the
role played by the feature in the prediction.

The RFECV method is certainly more efficient, when compared to the
 univariate approach, because it considers highly correlated features and is
tuned to optimize the evaluation measure (which usually is not Chi‐square
or F‐score). Being a greedy process, it’s computationally demanding and may
only approximate the best set of predictors.

As RFECV learns the best set of variables from data, the selection may overfit,
which is what happens with all other machine‐learning algorithms. Trying
RFECV on different samples of the training data can confirm the best variables
to use.

Pumping Up Your Hyperparameters
As a last example for this chapter, you can see the procedures for searching
for the optimal hyperparameters of a machine‐learning algorithm in order
to achieve the best possible predictive performance. Actually, much of the
 performance of your algorithm has already been decided by

1. The choice of the algorithm: Not every machine‐learning algorithm is a
good fit for every type of data, and choosing the right one for your data
can make the difference.

2. The selection of the right variables: Predictive performance is
increased dramatically by feature creation (new created variables
are more predictive than old ones) and feature selection (removing
 redundancies and noise).

Fine‐tuning the correct hyperparameters could provide even better predic-
tive generalizability and pump up your results, especially in the case of com-
plex algorithms that don’t work well using the out‐of‐the‐box default settings.

Hyperparameters are parameters that you have to decide by yourself, since
an algorithm can’t learn them automatically from data. As with all other
aspects of the learning process that involve a decision by the data scientist,
you have to make your choices carefully after evaluating the cross‐validated
results.

335 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

The Scikit‐learn sklearn.grid_search module specializes in hyperparam-
eters optimization. It contains a few utilities for automating and simplifying
the process of searching for the best values of hyperparameters. The follow-
ing code provides an illustration of the correct procedures:

import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
print X.shape, y.shape

(150L, 4L) (150L,)

The example prepares to perform its task by loading the Iris dataset and the
NumPy library. At this point, the example can optimize a machine‐learning
algorithm for predicting Iris species.

Implementing a grid search
The best way to verify the best hyperparameters for an algorithm is to test
them all and then pick the best combination. This means, in the case of com-
plex settings of multiple parameters, that you have to run hundreds, if not
thousands, of slightly differently tuned models. Grid searching is a systematic
search method that combines all the possible combinations of the hyper-
parameters into individual sets. It’s a time‐consuming technique. However,
grid searching provides one of the best ways to optimize a machine‐learning
application that could have many working combinations, but just a single
best one. Hyperparameters that have many acceptable solutions (called local
minima) may trick you into thinking that you have found the best solution
when you could actually improve their performance.

Grid searching is like throwing a net into the sea. It’s better to use a large net
at first, one that has loose meshes. The large net helps you understand where
there are schools of fish in the sea. After you know where the fish are, you
can use a smaller net with tight meshes to get the fish that are in the right
places. In the same way, when performing grid searching, you start first with
a grid search with a few sparse values to test (the loose meshes). After you
understand which hyperparameter values to explore (the schools of fish),
you can perform a more thorough search. In this way, you also minimize the
risk of overfitting by cross‐validating too many variables because as a general
principle in machine‐learning and scientific experimentation, the more things
you try, the greater the chances that some fake good result will appear.

336 Part V: Learning from Data

Grid searching is easy to perform as a parallel task because the results of a
tested combination of hyperparameters are independent from the results of
the others. Using a multicore computer at its full power requires that you
change n_jobs to –1 when instantiating any of the grid search classes from
Scikit‐learn.

You have options other than grid searching. Scikit‐learn implements a
random search algorithm as an alternative to using a grid search. There are
other optimization techniques based on Bayesian optimization or on nonlin-
ear optimization techniques such as the Nelder–Mead method, which aren’t
implemented in the data science packages that you’re using in Python now.

In the example for demonstrating how to implement a grid search effec-
tively, you use one of the previously seen simple algorithms, the K‐neighbors
 classifier:

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5,
 weights='uniform', metric= 'minkowski', p=2)

The K‐neighbors classifier has quite a few hyperparameters that you can set
for optimal performance:

 ✓ The number of neighbor points to consider in the estimate

 ✓ How to weight each of them

 ✓ What metric to use for finding the neighbors

Using a range of possible values for all the parameters, you can easily realize
that you’re going to test a large number of models, exactly 40 in this case:

grid = {'n_neighbors': range(1,11), 'weights': ['uniform',
 'distance'], 'p': [1,2]}
print 'Number of tested models: %i' % np.prod(
 [len(grid[element]) for element in grid])
score_metric = 'accuracy'

Number of tested models: 40

To set the instructions for the search, you have to build a Python dictionary
whose keys are the names of the parameters, and the dictionary’s values are
lists of the values you want to test. For instance, the example records a range
of 1 to 10 for the hyperparameter n_neighbors using the range(1,11)
iterator, which produces the sequence of numbers during the grid search.

337 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

from sklearn.cross_validation import cross_val_score
print 'Baseline with default parameters: %.3f' % np.mean(
 cross_val_score(classifier, X, y, cv=10,
 scoring=score_metric, n_jobs=1))

Baseline with default parameters: 0.967

Using the accuracy metric (the percentage of exact answers), the example
first tests the baseline, which consists of the algorithm’s default parameters
(also explicated when instantiating the classifier variable with its class).
It’s difficult to improve an already high accuracy of 0.967 (or 96.7 percent),
but the search will locate the answer using a tenfold cross‐validation.

from sklearn.grid_search import GridSearchCV
search = GridSearchCV(estimator=classifier,
 param_grid=grid, scoring=score_metric, n_jobs=1,
 refit=True, cv=10)
search.fit(X,y)

After being instantiated with the learning algorithm, the search dictionary,
the scoring metric, and the cross‐validation folds, the GridSearch class
operates with the fit method. Optionally, after the grid search ended, it
refits the model with the best found parameter combination (refit=True),
allowing it to immediately start predicting by using the GridSearch class
itself.

print 'Best parameters: %s' % search.best_params_
print 'CV Accuracy of best parameters: %.3f'
 % search.best_score_

Best parameters: {'n_neighbors': 9, 'weights': 'uniform',
 'p': 1}
CV Accuracy of best parameters: 0.973

When the search is completed, you can inspect the results using the best_
params_ and best_score:_ attributes. The best accuracy found was 0.973,
an improvement over the initial baseline. You can also inspect the complete
sequence of obtained cross‐validation scores and their standard deviation:

>>> search.grid_scores_

By looking through the large number of tested combinations, you notice that
more than a few obtained the score of 0.973 when the combinations had nine
or ten neighbors. To better understand how the optimization works with
respect to the number of neighbors used by your algorithm, you can launch a
Scikit‐learn class for visualization. The validation_curve method provides
you with detailed information about how train and validation behave
when used with different n_neighbors hyperparameter.

338 Part V: Learning from Data

from sklearn.learning_curve import validation_curve
train_scores, test_scores = validation_curve(
 KNeighborsClassifier(weights='uniform',
 metric= 'minkowski', p=1), X, y, 'n_neighbors',
 param_range=range(1,11), cv=10, scoring='accuracy',
 n_jobs=1)

The validation_curve class provides you with two arrays containing
the results arranged with the parameters values on the rows and the cross‐
validation folds on the columns.

mean_train = np.mean(train_scores,axis=1)
mean_test = np.mean(test_scores,axis=1)
import matplotlib.pyplot as plt
plt.plot(range(1,11),mean_train,'ro‐‐', label='Training')
plt.plot(range(1,11),mean_test,'bD‐.',
 label='Cross‐validation')
plt.grid()
plt.xlabel('Number of neighbors')
plt.ylabel('accuracy')
plt.legend(loc='upper right', numpoints= 1)
plt.show()

Projecting the row means creating a graphic visualization, as shown in
Figure 18-2, which helps you understand what is happening with the learning
process.

Figure 18-2:
Validation

curves

339 Chapter 18: Performing Cross‐Validation, Selection, and Optimization

You can obtain two pieces of information from the visualization:

 ✓ The peak cross‐validation accuracy using nine neighbors is higher than
the training score. The training score should always be better than any
cross‐validation score. The higher score points out that the example
overfitted the cross‐validation and luck played a role in getting such a
good cross‐validation score.

 ✓ The second peak of cross‐validation accuracy, at five neighbors, is near
the lowest results. Well‐scoring areas usually surround optimum values,
so this peak is a bit suspect.

Based on the visualization, you should accept the nine‐ neighbors solution
(it is the highest and it is indeed surrounded by other acceptable solutions).
As an alternative, given that nine neighbors is a solution on the limit of the
search, you could instead launch a new grid search, extending the limit to a
higher number of neighbors (above ten) in order to verify whether the accu-
racy stabilizes, decreases, or even improves.

It is part of the data science process to query, test, and query again. Even
though Python and its packages offer you many automated processes in data
learning and discovering, it is up to you to ask the right questions and to
check whether the answers are the best ones by using statistical tests and
visualizations.

Trying a randomized search
Grid searching, though exhaustive, is indeed a time‐consuming activity. It’s
prone to overfitting the cross‐validation folds when you have few observa-
tions in your dataset and you extensively search for an optimization. Instead,
an interesting alternative option is to try a randomized search. In this case,
you define a grid search to test only some of the combinations, picked at
random.

Even though it may sound like betting on blind luck, a grid search is
 actually quite useful because it’s inefficient — if you pick enough random
combinations, you have a high statistical probability of finding an opti-
mum hyperparameter combination, without risking overfitting at all. For
instance, in the previous example, the code tested 40 different models
using a systematic search. Using a randomized search, you can reduce the
number of tests by 75 percent, to just 10 tests, and reach the same level of
optimization!

340 Part V: Learning from Data

Using a randomized search is straightforward. You import the class from the
grid_search module and input the same parameters as the GridSearchCV,
adding a n_iter parameter that indicates how many combinations to
sample. As a rule of thumb, you choose from a quarter or a third of the total
number of hyperparameter combinations:

from sklearn.grid_search import RandomizedSearchCV
random_search = RandomizedSearchCV(estimator=classifier,
 param_distributions=grid, n_iter=10,
 scoring=score_metric, n_jobs=1, refit=True, cv=10,)
random_search.fit(X,y)

Having completed the search using the same technique as before, you can
explore the results by outputting the best scores and parameters:

print 'Best parameters: %s' % random_search.best_params_
print 'CV Accuracy of best parameters: %.3f'
 % random_search.best_score_

Best parameters: {'n_neighbors': 9, 'weights': 'distance',
 'p': 2}
CV Accuracy of best parameters: 0.973

From the reported results, it appears that a random search can actually
obtain results similar to a much more CPU‐expensive grid search.

Increasing Complexity with Linear
and Nonlinear Tricks

In This Chapter
 ▶ Expanding your feature using polynomials

 ▶ Regularizing regression

 ▶ Learning from big data

 ▶ Using support vector machines

P
revious chapters introduced you to some of the simplest, yet effective,
machine‐learning algorithms, such as linear and logistic regression,

Naïve Bayes, and K‐Nearest Neighbors (KNN). At this point, you can success-
fully complete a regression or classification project in data science. This chap-
ter explores even more complex and powerful machine‐learning techniques
including the following: reasoning on how to enhance your data; controlling
the variance of estimates by regularization; and managing to learn from big
data by breaking it into manageable chunks.

This chapter also introduces you to the support vector machine (SVM), a
powerful family of algorithms for classification and regression. SVMs are
able to perform the most difficult data problems and are a perfect substitute
for neural networks such as the multilayer perceptron, which isn’t currently
present in the Scikit‐learn package but is a planned addition in the future.
Given the complexity of the subject, more than half of the chapter is devoted
to SVM, but it’s definitely worth the time.

Using Nonlinear Transformations
Linear models, such as linear and logistic regression, are actually linear
combinations that sum your features (weighted by learned coefficients) and
provide a simple but effective model. In most situations, they offer a good

Chapter 19

342 Part V: Learning from Data

approximation of the complex reality they represent. Even though they’re
characterized by a high bias, using a large number of observations can
improve their coefficients and make them more competitive with complex
algorithms.

However, they can perform better when solving certain problems if you
pre‐analyze the data using the Exploratory Data Analysis (EDA) approach.
After performing the analysis, you can transform and enrich the existing
 features by

 ✓ Linearizing the relationships between features and the target variable
using transformations that increase their correlation and make their
cloud of points in the scatterplot more similar to a line

 ✓ Making variables interact by multiplying them so that you can better
represent their conjoint behavior

 ✓ Expanding the existing variables using the polynomial expansion in
order to represent relationships more realistically (such as ideal point
curves, when there is a peak in the variable representing a maximum,
akin to a parabola).

You don’t have to type the source code for the “Using Nonlinear
Transformations,” “Regularizing Linear Models,” and “Fighting with Big Data
Chunk by Chunk” sections of this chapter manually. In fact, it’s a lot easier
if you use the downloadable source (see the Introduction for download
instructions). The source code for this chapter appears in the P4DS4D; 19;
Increasing Complexity.ipynb source code file.

Doing variable transformations
An example is the best way to explain the kind of transformations you can
successfully apply to data to improve a linear model. The example in this
section, and the “Regularizing Linear Models” and “Fighting with Big Data
Chunk by Chunk” sections that follow, relies on the Boston dataset. The
problem relies on regression, and the data originally has ten variables to
explain the different housing prices in Boston during the 1970s. The dataset
also has implicit ordering. Fortunately, order doesn’t influence most algo-
rithms because they learn the data as a whole. When an algorithm learns in a
progressive manner, ordering can really interfere with effective model build-
ing. By using seed (to fix a preordinated sequence of random numbers) and
shuffle from the random package (to shuffle the index), you can reindex
the dataset.

343 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

from sklearn.datasets import load_boston
from random import shuffle
boston = load_boston()
seed(0) # Creates a replicable shuffling
new_index = range(boston.data.shape[0])
shuffle(new_index) # shuffling the index
X, y = boston.data[new_index], boston.target[new_index]
print X.shape, y.shape

(506L, 13L) (506L,)

Converting the array of predictors and the target variable into a pandas
DataFrame helps support the series of explorations and operations on data.
Moreover, although Scikit‐learn requires an ndarray as input, it will also
accept DataFrame objects.

import pandas as pd
df = pd.DataFrame(X,columns=boston.feature_names)
df['target'] = y

The best way to spot possible transformations is by graphical exploration, and
using a scatterplot can tell you a lot about two variables. You need to make
the relationship between the predictors and the target outcome as linear as
possible, so you should try various combinations, such as the following:

scatter = df.plot(kind='scatter', x='LSTAT', y='target', c='r')

In Figure 19-1, you see a representation of the resulting scatterplot. Notice
that you can approximate the cloud of points by using a curved line rather
than a straight line. In particular, when LSTAT is around 5, the target seems
to vary between values of 20 to 50. As LSTAT increases, the target decreases
to 10, reducing the variation.

Logarithmic transformation can help in such conditions. However, your
values should range from zero to one, such as percentages, as demonstrated
in this example. In other cases, other useful transformations for your x
 variable could include x**2, x**3, 1/x, 1/x**2, 1/x**3, and sqrt(x). The
key is to try them and test the result. As for testing, you can use the following
script as an example:

import numpy as np
from sklearn.feature_selection.univariate_selection import f_regression
F, pval = f_regression(df['LSTAT'],y)
print 'F score for the original feature %.1f' % F
F, pval = f_regression(np.log(df['LSTAT']),y)
print 'F score for the transformed feature %.1f' % F

F score for the original feature 601.6
F score for the transformed feature 1000.2

344 Part V: Learning from Data

The F score is useful for variable selection. You can also use it to assess the
usefulness of a transformation because both f_regression and f_classif
are themselves based on linear models, and are therefore sensitive to every
effective transformation used to make variable relationships more linear.

Creating interactions between variables
In a linear combination, the model reacts to how a variable changes in an
independent way with respect to changes in the other variables. In statistics,
this kind of model is a main effects model.

The Naïve Bayes classifier makes a similar assumption for probabilities, and
it also works well with complex text problems.

Even though machine learning works by using approximations and a set of
independent variables can make your predictions work well in most situa-
tions, sometimes you may miss an important part of the picture. You can
easily catch this problem by depicting the variation in your target associ-
ated with the conjoint variation of two or more variables in two simple and
straightforward ways:

 ✓ Existing domain knowledge of the problem: For instance, in the car
market, having a noisy engine is a nuisance in a city car but considered
a plus for sports cars (everyone wants to hear that you got an ultra‐cool
and expensive car). By knowing a consumer preference, you can model
a noise level variable and a car type variable together to obtain exact
 predictions using a predictive analytic model that guesses the car’s
value based on its features.

Figure 19‐1:
Nonlinear

relationship
between
variable

LSTAT
and target

prices.

345 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

 ✓ Testing combinations of different variables: By performing group tests,
you can see the effect that certain variables have on your target vari-
able. Therefore, even without knowing about noisy engines and sports
cars, you could have caught a different average of preference level when
analyzing your dataset split by type of cars and noise level.

The following example shows how to test and detect interactions in the
Boston dataset. The first task is to load a few helper classes, as shown here:

from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
regression = LinearRegression(normalize=True)
crossvalidation = KFold(n=X.shape[0], n_folds=10, shuffle=True, random_state=1)

The code reinitializes the pandas DataFrame using only the predictor vari-
ables. A for loop matches the different predictors and creates a new variable
containing each interaction. The mathematical formulation of an interaction
is simply a multiplication.

df = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, df, y, scoring='r2',

cv=crossvalidation,
 n_jobs=1))
interactions = list()
for feature_A in boston.feature_names:
 for feature_B in boston.feature_names:
 if feature_A > feature_B:
 df['interaction'] = df[feature_A] * df[feature_B]
 score = np.mean(cross_val_score(regression, df, y, scoring='r2',
 cv=crossvalidation, n_jobs=1))
 if score > baseline:
 interactions.append((feature_A, feature_B, round(score,3)))
print 'Baseline R2: %.3f' % baseline
print 'Top 10 interactions: %s' % sorted(interactions, key=lambda(x):x[2],
 reverse=True)[:10]

Baseline R2: 0.699
Top 10 interactions: [('RM', 'LSTAT', 0.782), ('TAX', 'RM', 0.766), ('RM',

'RAD', 0.759), ('RM', 'PTRATIO', 0.75), ('RM', 'INDUS', 0.748),
('RM', 'NOX', 0.733), ('RM', 'B', 0.731), ('RM', 'AGE', 0.727),
('RM', 'DIS', 0.722), ('ZN', 'RM', 0.716)]

The code tests the specific addition of each interaction to the model using
a 10 folds cross‐validation. (The “Cross‐validating” section of Chapter 18 tells
you more about working with folds.) It records the change in the R2 measure
into a stack (a simple list) that an application can order and explore later.

346 Part V: Learning from Data

The baseline R2 is 0.699, so a reported improvement of the stack of
 interactions to 0.782 looks quite impressive! It’s important to know how
this improvement is made possible. The two variables involved are RM
(the average number of rooms) and LSTAT (the percentage of lower‐status
 population).

colors = ['k' if v > np.mean(y) else 'w' for v in y]
scatter = df.plot(kind='scatter', x='RM', y='LSTAT', c=colors)

The scatterplot in Figure 19-2 clarifies the improvement. In a portion of
houses at the center of the plot, it’s necessary to know both LSTAT and
RM in order to correctly separate the high‐value houses from the low‐value
houses; therefore, an interaction is indispensable in this case.

Adding interactions and transformed variables leads to an extended linear
regression model, a polynomial regression. Data scientists rely on testing and
experimenting to validate an approach to solving a problem, so the following
code slightly modifies the previous code to redefine the set of predictors using
interactions and quadratic terms by squaring the variables:

polyX = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, polyX, y,

scoring='mean_squared_error',
 cv=crossvalidation, n_jobs=1))
improvements = [baseline]
for feature_A in boston.feature_names:
 polyX[feature_A+'^2'] = polyX[feature_A]**2
 improvements.append(np.mean(cross_val_score(regression, polyX, y,
 scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

Figure 19‐2:
Combined
variables

LSTAT and
RM help to

separate
high from

low prices.

347 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

 for feature_B in boston.feature_names:
 if feature_A > feature_B:
 polyX[feature_A+'*'+feature_B] = polyX[feature_A] * polyX[feature_B]
 improvements.append(np.mean(cross_val_score(regression, polyX, y,
 scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

To track improvements as the code adds new, complex terms, the example
places values in the improvements list. Figure 19-3 shows a graph of the
results that demonstrates some additions are great because the squared
error decreases, and other additions are terrible because they increase the
error instead.

Of course, you could perform an ongoing test to add a quadratic term or
interaction optionally, which is called a univariate and greedy approach. This
example is a good foundation for checking other ways of controlling the exist-
ing complexity of your datasets or the complexity that you have to induce
with transformation and feature creation in the course of data exploration
efforts. Before moving on, you check both the shape of the actual dataset and
its cross‐validated mean squared error.

print shape(polyX)
crossvalidation = KFold(n=X.shape[0], n_folds=10, shuffle=True, random_state=1)
print 'Mean squared error %.3f' % abs(np.mean(cross_val_score(regression,

polyX, y,
 scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

(506, 104)
Mean squared error 13.466

Figure 19‐3:
Adding

polynomial
features

increases
the predic-
tive power.

348 Part V: Learning from Data

Even though the mean squared error is good, the ratio between 506 observa-
tions and 104 features isn’t good at all.

As a rule of thumb, there should be 10–20 observations for every coefficient
you want to estimate in linear models. However, experience shows that
having at least 30 of them is better.

Regularizing Linear Models
Linear models have a high bias, but as you add more features, more interac-
tions, and more transformations, they start gaining more adaptability to the
data characteristics and more memorizing power for data noise, thus increas-
ing the variance of their estimates. Trading high variance for having less bias
is not always the best choice, but, as mentioned earlier, sometimes it’s the
only way to increase the predictive power of linear algorithms.

You can introduce L1 and L2 regularization as a way to control the trade‐off
between bias and variance in favor of an increased generalization capabil-
ity of the model. When you introduce one of the regularizations, an additive
function that depends on the complexity of the linear model penalizes the
optimized cost function. In linear regression, the cost function is the squared
error of the predictions, and the cost function is penalized using a summa-
tion of the coefficients of the predictor variables.

If the model is complex but the predictive gain is little, the penalization
forces the optimization procedure to remove the useless variables, or
to reduce their impact on the estimate. The regularization also acts on
 overcorrelated features — smoothing and combining their contribution, thus
stabilizing the results and reducing the consequent variance of the estimates:

 ✓ L1 (also called Lasso): Shrinks some coefficients to zero, making your
coefficients sparse. It really does variable selection.

 ✓ L2 (also called Ridge): Reduces the coefficients of the most problematic
features, making them smaller, but never equal to zero. All coefficients
keep participating in the estimate, but many become small and
 irrelevant.

You can control the strength of the regularization using a hyper‐parameter,
usually a coefficient itself, often called alpha. When alpha approaches 1.0, you
have stronger regularization and a greater reduction of the coefficients. In
some cases, the coefficients are reduced to zero. Don’t confuse alpha with C, a
parameter used by LogisticRegression and by support vector machines,
because C is 1/alpha, so it can be greater than 1. Smaller C numbers actually
correspond to more regularization, exactly the opposite of alpha.

349 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

Regularization works because it is the sum of the coefficients of the predictor
variables, therefore it’s important that they’re on the same scale or the regu-
larization may find it difficult to converge, and variables with larger absolute
coefficient values will greatly influence it, generating an infective regulariza-
tion. It’s good practice to standardize the predictor values or bind them to a
common min‐max, such as the [‐1,+1] range. The following sections dem-
onstrate various methods of using both L1 and L2 regularization to achieve
various effects.

Relying on Ridge regression (L2)
The first example uses the L2 type regularization, reducing the strength of
the coefficients. The Ridge class implements L2 for linear regression. Its
usage is simple; it presents just the parameter alpha to fix. Ridge also has
another parameter, normalize, that automatically normalizes the inputted
predictors to zero mean and unit variance.

from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import Ridge
ridge = Ridge(normalize=True)
search = GridSearchCV(estimator=ridge, param_grid={'alpha':np.logspace(‐5,2,8)},
 scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 0.001}
CV MSE of best parameters: 12.385

A good search space for the alpha value is in the range np.logspace
(‐5,2,8). Of course, if the resulting optimum value is on one of the extremi-
ties of the tested range, you need to enlarge the range and retest.

The polyX and y variables used for the examples in this section and the
sections that follow are created as part of the example in the “Creating inter-
actions between variables” section, earlier in this chapter. If you haven’t
worked through that section, the examples in this section will fail to work
properly.

Using the Lasso (L1)
The second example uses the L1 regularization, the Lasso class, whose
 principal characteristic is to reduce the effect of less useful coefficients down
toward zero. This action enforces sparsity in the coefficients, with just a few

350 Part V: Learning from Data

ones having values above zero. The class uses the same parameters of the
Ridge class that are demonstrated in the previous section.

from sklearn.linear_model import Lasso
lasso = Lasso(normalize=True)
search = GridSearchCV(estimator=lasso, param_grid={'alpha':np.logspace(‐5,2,8)},
 scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 0.0001}
CV MSE of best parameters: 12.644

Leveraging regularization
Because you can indent the sparse coefficients resulting from a L1 regression
as a feature selection procedure, you can effectively use the Lasso class for
selecting the most important variables. By tuning the alpha parameter, you
can select a greater or lesser number of variables. In this case, the code sets
the alpha parameter to 0.01, obtaining a much simplified solution as a result.

lasso = Lasso(normalize=True, alpha=0.01)
lasso.fit(polyX,y)
print polyX.columns[np.abs(lasso.coef_)>0.0001].values

['CRIM*CHAS' 'ZN*CRIM' 'ZN*CHAS' 'INDUS*DIS' 'CHAS*B' 'NOX^2' 'NOX*DIS'
 'RM^2' 'RM*CRIM' 'RM*NOX' 'RM*PTRATIO' 'RM*B' 'RM*LSTAT' 'RAD*B' 'TAX*DIS'
 'PTRATIO*NOX' 'LSTAT^2']

You can apply L1‐based variable selection automatically to both regression
and classification using the RandomizedLasso and RandomizedLogistic
Regression classes. Both classes create a series of randomized L1 regular-
ized models. The code keeps track of the resulting coefficients. At the end
of the process, the application keeps any coefficients that the class didn’t
reduce to zero because they’re considered important. You can train the two
classes using the fit method, but they don’t have a predict method, just
a transform method that effectively reduces your dataset, just like most
classes in the sklearn.preprocessing module.

Combining L1 & L2: Elasticnet
L2 regularization reduces the impact of correlated features, whereas L1
regularization tends to selects them. A good strategy is to mix them using a
weighted sum by using the ElasticNet class. You control both L1 and L2

351 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

effects by using the same alpha parameter, but you can decide the L1 effect’s
share by using the l1_ratio parameter. Clearly, if l1_ratio is 0, you have
a ridge regression; on the other hand, when l1_ratio is 1, you have a lasso.

from sklearn.linear_model import ElasticNet
elastic = ElasticNet(normalize=True)
search = GridSearchCV(estimator=elastic, param_grid={'alpha':np.logspace(‐5,2,8),
 'l1_ratio': [0.25, 0.5, 0.75]},
 scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 1.0, 'l1_ratio': 0.5}
CV MSE of best parameters: 12.162

Fighting with Big Data Chunk by Chunk
Up to this point, the book has dealt with small example databases. Real
data, apart from being messy, can also be quite big — sometimes so big that
it can’t fit in memory, no matter what the memory specifications of your
machine are.

The polyX and y variables used for the examples in the sections that follow
are created as part of the example in the “Creating interactions between
 variables” section, earlier in this chapter. If you haven’t worked through that
section, the examples in this section will fail to work properly.

Determining when there is too much data
In a data science project, data can be deemed big when one of these two
 situations occur:

 ✓ It can’t fit in the available computer memory.

 ✓ Even if the system has enough memory to hold the data, the applica-
tion can’t elaborate the data using machine‐learning algorithms in a
 reasonable amount of time.

Implementing Stochastic Gradient Descent
When you have too much data, you can use the Stochastic Gradient Descent
Regressor (SGDRegressor) or Stochastic Gradient Descent Classifier
(SGDClassifier) as a linear predictor. The only difference with other methods

352 Part V: Learning from Data

described earlier in the chapter is that they actually optimize their coeffi-
cients using only one observation at a time. It therefore takes more iterations
before the code reaches comparable results using a ridge or lasso regression,
but it requires much less memory and time.

This is because both predictors rely on Stochastic Gradient Descent (SGD)
optimization — a kind of optimization in which the parameter adjustment
occurs after the input of every observation, leading to a longer and a bit more
erratic journey toward minimizing the error function. Of course, optimizing
based on single observations, and not on huge data matrices, can have a tre-
mendous beneficial impact on the algorithm’s training time and the amount
of memory resources.

When using the SGDs, apart from different cost functions that you have to
test for their performance, you can also try using L1, L2, and Elasticnet regu-
larization just by setting the penalty parameter and the corresponding
controlling alpha and l1_ratio parameters. Some of the SGDs are more
resistant to outliers, such as modified_huber for classification or huber
for regression.

SGD is sensitive to the scale of variables, and that’s not just because of regu-
larization, it’s because of the way it works internally. Consequently, you must
always standardize your features (for instance, by using StandardScaler)
or you force them in the range [0,+1] or [‐1,+1]. Failing to do so will lead
to poor results.

When using SGDs, you’ll always have to deal with chunks of data unless you
can stretch all the training data into memory. To make the training effective,
you should standardize by having the StandardScaler infer the mean and
standard deviation from the first available data. The mean and standard
 deviation of the entire dataset is most likely different, but the transformation
by an initial estimate will suffice to develop a working learning procedure.

from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
SGD = SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001,

l1_ratio=0.15,
 n_iter=2000)
scaling = StandardScaler()
scaling.fit(polyX)
scaled_X = scaling.transform(polyX)
print 'CV MSE: %.3f' % abs(np.mean(cross_val_score(SGD, scaled_X, y,
 scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

CV MSE: 12.802

353 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

In the preceding example, you used the fit method, which requires that you
preload all the training data into memory. You can train the model in succes-
sive steps by using the partial_fit method instead, which runs a single
iteration on the provided data, then keeps it in memory and adjusts it when
receiving new data.

from sklearn.metrics import mean_squared_error
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.20,
 random_state=2)
SGD = SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001,

l1_ratio=0.15)
improvements = list()
for z in range(1000):
 SGD.partial_fit(X_train, y_train)
 improvements.append(mean_squared_error(y_test, SGD.predict(X_test)))

Having kept track of the algorithm’s partial improvements during 1000 itera-
tions over the same data, you can produce a graph and understand how the
improvements work as shown in the following code. It’s important to note
that you could have used different data at each step.

import matplotlib.pyplot as plt
plt.subplot(1,2,1)
plt.plot(range(1,11),np.abs(improvements[:10]),'o‐‐')
plt.xlabel('Partial fit initial iterations')
plt.ylabel('Test set mean squared error')
plt.subplot(1,2,2)
plt.plot(range(100,1000,100),np.abs(improvements[100:1000:100]),'o‐‐')
plt.xlabel('Partial fit ending iterations')
plt.show()

As visible in the first of the two panes in Figure 19-4, the algorithm initially
starts with a high error rate, but it manages to reduce it in just a few itera-
tions, usually 5. After that, the error rate slowly improves by a smaller
amount each iteration. After 700 iterations, the error rate reaches a minimum
and starts increasing. At that point, you’re starting to overfit because data
has already caught the rules and you’re actually forcing the SGD to learn
more when there is nothing left in data other than noise. Consequently, it
starts learning noise and erratic rules.

Unless you’re working with all the data in memory, grid‐searching and
cross‐validating the best number of iterations will be difficult. A good trick
is to keep a chunk of training data to use for validation apart in memory or
storage. By checking your performance on that untouched part, you can see
when SGD learning performance starts decreasing. At that point, you can
interrupt data iteration (a method known as early stopping).

354 Part V: Learning from Data

Understanding Support Vector Machines
Data scientists deem Support Vector Machines (SVM) to be one of the most
complex and powerful machine‐learning techniques in their toolbox, so you
usually find this topic solely in advanced manuals. However, you shouldn’t
turn away from this great learning algorithm because the Scikit‐learn library
offers you a wide and accessible range of SVM‐supervised classes for regres-
sion and classification. You can even access an unsupervised SVM that
appears in the chapters about outliers. When evaluating whether you want
to try SVM algorithms as a machine‐learning solution, consider these main
benefits:

 ✓ Comprehensive family of techniques for binary and multiclass classifica-
tion, regression, and novelty detection

 ✓ Good prediction generator that provides robust handling of overfitting,
noisy data, and outliers

 ✓ Successful handling of situations that involve many variables

 ✓ Effective when you have more variables than examples

 ✓ Fast, even when you’re working with up to about 10,000 training
 examples

 ✓ Detects nonlinearity in your data automatically, so you don’t have to
apply complex transformations of your variables

Figure 19‐4:
A slow

descent
optimizing

squared
error.

355 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

Wow, that sounds great. However, you should also consider a few relevant
drawbacks before you jump into importing the SVM module:

 ✓ Performs better when applied to binary classification (which was the
initial purpose of SVM), so SVM doesn’t work as well on other prediction
problems

 ✓ Less effective when you have a lot more variables than examples; you
have to look for other solutions like SGD

 ✓ Provides you with only a predicted outcome; you can obtain a prob-
ability estimate for each response at the cost of more time‐consuming
computations

 ✓ Works satisfactorily out of the box, but if you want the best results, you
have to spend time experimenting in order to tune the many parameters

You don’t have to type the source code for this section manually. In fact,
it’s a lot easier if you use the downloadable source (see the Introduction
for download instructions). The source code for this section appears in the
P4DS4D; 19; SVM.ipynb source code file.

Relying on a computational method
Vladimir Vapnik and his colleagues invented SVM in the 1990s while working
at AT&T laboratories. SVM gained success thanks to its high performance in
many challenging problems for the machine‐learning community of the time,
especially when used to help a computer read handwritten input. Today,
data scientists frequently apply SVM to an incredible array of problems, from
medical diagnosis to image recognition and textual classification. You’ll likely
find SVM quite useful for your problems, too!

The idea behind the SVM is simple, but the mathematical implementation is
quite complex and requires many computations to work. This section helps
you understand the technology behind the technique — knowing how a tool
works always helps you figure out where and how to employ it best. Start
considering the problem of separating two groups of data points — stars and
squares scattered on two dimensions. It’s a classic binary classification prob-
lem in which a learning algorithm has to figure out how to separate one class
of instances from the other one using the information provided by the data at
hand. Figure 19-5 shows a representation of a similar problem.

If the two groups are separate from one another, you may solve the problem
in many different ways just by choosing different separating lines. Of course,
you must pay attention to the details and use fine measurements. Even
though it may seem like an easy task, you need to consider what happens

356 Part V: Learning from Data

when the data changes, such as adding more points later. You may not be
able to be sure that you chose the right separation line.

Figure 19-6 shows two possible solutions, but even more can exist. Both
chosen solutions are too near to the existing observations (as shown by the
proximity of the lines to the data points), but there is no reason to think that
new observations will behave precisely like those shown in the figure.

SVM minimizes the risk of choosing the wrong line (as you may have done by
selecting solution A or B from Figure 19-6) by choosing the solution charac-
terized by the largest distance from the bordering points of the two groups.
Having so much space between groups (the maximum possible) should
reduce the chance of picking the wrong solution!

The largest distance between the two groups is the margin. When the margin
is large enough, you can be quite sure that it’ll keep working well, even when
you have to classify previously unseen data. The margin is determined by the
points that are present on the limit of the margin — the support vectors (the
support vector machines algorithm takes its name from them).

Figure 19‐6:
More than

one possible
 solution.

Figure 19‐5:
Dividing

stars and
squares.

357 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

You can see an SVM solution in Figure 19-7. The figure shows the margin as a
dashed line, the separator as the continuous line, and the support vectors as
the circled data points.

Real‐world problems don’t always provide neatly separable classes, as in this
example. However, a well‐tuned SVM can withstand some ambiguity (some
misclassified points). An SVM algorithm with the right parameters can really
do miracles.

When working with example data, it’s easier to look for neat solutions so
that the data points can better explain how the algorithm works and you can
grasp the core concepts. With real data, though, you need approximations
that work. Therefore, you rarely see large and clear margins.

Apart from binary classifications on two dimensions, SVM can also work on
complex data. You can consider the data as complex when you have more
than two dimensions, or in situations that are similar to the layout depicted
in Figure 19-8, when separating the groups by a straight line isn’t possible.

Figure 19‐7:
A viable

SVM
 solution for

the problem
of the two

groups.

(a) (b)

Figure 19‐8:
A more

complex
group layout

is not a
problem for

SVM.

358 Part V: Learning from Data

In the presence of many variables, SVM can use a complex separating plane
(the hyperplane). SVM also works well when you can’t separate classes by a
straight line or plane because it can explore nonlinear solutions in multidi-
mensional space thanks to a computational technique called the kernel trick.

Fixing many new parameters
Although SVM is complex, it’s a great tool. After you find the most suitable SVM
version for your problem, you have to apply it to your data and work a little
to optimize some of the many parameters available and improve your results.
Setting up a working SVM predictive model involves these general steps:

1. Choose the SVM class you’ll use.

2. Train your model with the data.

3. Check your validation error and make it your baseline.

4. Try different values for the SVM parameters.

5. Check whether your validation error improves.

6. Train your model again using the data with the best parameters.

As far as choosing the right SVM class goes, you have to think about your
problem. For example, you could choose a classification (guess a class) or
regression (guess a number). When working with a classification, you must
consider whether you need to classify just two groups (binary classification)
or more than two (multiclass classification). Another important aspect to
consider is the quantity of data you have to process. After taking notes of
all your requirements on a list, a quick glance at Table 19-1 will help you to
narrow your choices.

Table 19‐1 The SVM Module of Learning Algorithms
Class Characteristic usage Key parameters
sklearn.svm.SVC Binary and multiclass

 classification when the number
of examples is less than 10,000

C, kernel, degree,
gamma

sklearn.svm.NuSVC Similar to SVC nu, kernel, degree,
gamma

sklearn.svm.
LinearSVC

Binary and multiclass
 classification when the number
of examples is more than 10,000;
sparse data

Penalty, loss, C

359 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

The first step is to check the number of examples in your data. When you
have more than 10,000 examples, in order to avoid too slow and cumbersome
computations, you can use SVM and still get an acceptable performance only
for classification problems by using sklearn.svm.LinearSVC. If instead
you need to solve a regression problem or the LinearSVC isn’t fast enough,
you need to use a stochastic solution for SVM (as described in the sections
that follow).

The Scikit‐learn SVM module wraps two powerful libraries written in C,
libsvm and liblinear. When fitting a model, there is a flow of data between
Python and the two external libraries. A cache smooths the data exchange
operations. However, if the cache is too small and you have too many data
points, the cache becomes a bottleneck! If you have enough memory, it’s
a good idea to set a cache size greater than the default 200MB (1000MB, if
possible) using the SVM class’ cache_size parameter. Smaller numbers of
examples require only that you decide between classification and regression.

In each case, you’ll have two alternative algorithms. For example, for clas-
sification, you may use sklearn.svm.SVC or sklearn.svm.NuSVC. The
only difference with the Nu version is the parameters it takes and the use of
a slightly different algorithm. In the end, it gets basically the same results, so
you normally choose the non‐Nu version.

After deciding on which algorithm to use, you find out that you have a bunch
of parameters to choose, and the C parameter is always among them. The C
parameter indicates how much the algorithm has to adapt to training points.
When C is small, the SVM adapts less to the points and tends to take an aver-
age direction, just using a few of the points and variables available. Larger C
values tend to force the learning process to follow more of the available train-
ing points and to get involved with many variables.

The right C is usually a middle value, and you can find it after a bit of experi-
mentation. If your C is too large, you risk overfitting, a situation in which your
SVM adapts too much to your data and cannot properly handle new prob-
lems. If your C is too small, your prediction will be rougher and imprecise.

Class Characteristic usage Key parameters

sklearn.svm.SVR Regression problems C, kernel, degree,
gamma, epsilon

sklearn.svm.NuSVR Similar to SVR Nu, C, kernel,
degree, gamma

sklearn.svm.
OneClassSVM

Outliers detection nu, kernel, degree,
gamma

360 Part V: Learning from Data

You’ll experience a situation called underfitting — your model is too simple
for the problem you want to solve.

After deciding the C value to use, the important block of parameters to fix is
kernel, degree, and gamma. All three interconnect and their value depends
on the kernel specification (for instance, the linear kernel doesn’t require
degree or gamma, so you can use any value). The kernel specification deter-
mines whether your SVM model uses a line or a curve in order to guess the
class or the point measure. Linear models are simpler and tend to guess well
on new data, but sometimes underperform when variables in the data relate
to each other in complex ways. Because you can’t know in advance whether a
linear model works for your problem, it’s good practice to start with a linear
kernel, fix its C value, and use that model and its performance as a baseline
for testing nonlinear solutions afterward.

Classifying with SVC
It’s time to build the first SVM model. Because SVM initially performed so
well with handwritten classification, starting with a similar problem is a great
idea. Using this approach can give you an idea of how powerful this machine‐
learning technique is. The example uses the digits dataset available from the
module datasets in the Scikit‐learn package. The digits dataset contains a
series of 8‐x‐8‐pixel images of handwritten numbers ranging from 0 to 9.

from sklearn import datasets
digits = datasets.load_digits()
X,y = digits.data, digits.target

After loading the datasets module, the load.digits function imports all the
data, from which the example extracts the predictors (digits.data) as X
and the predicted classes (digits.target) as y.

You can look at what’s inside this dataset using the matplotlib functions
subplot (for creating an array of drawings arranged in two rows of five
 columns) and imshow (for plotting grayscale pixel values onto an 8‐x‐8 grid).
The code arranges the information inside digits.images as a series of
matrices, each one containing the pixel data of a number.

import matplotlib.pyplot as plt
for k,img in enumerate(range(10)):
 plt.subplot(2, 5, k)
 plt.imshow(digits.images[img],
 cmap='binary',interpolation='none')
plt.show()

361 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

The code displays the first ten numbers as an example of the data used in the
example. You can see the result in Figure 19-9.

By observing the data, you can also start figuring out that SVM could guess
what the number is by associating a probability with the values of specific
pixels in the grid. A number 2 could turn on different pixels than a number 1,
or maybe different groups of pixels. Data science involves testing many pro-
gramming approaches and algorithms before reaching a solid result, but it
helps to be imaginative and intuitive in order to figure how what you can try
first. In fact, if you explore X, you discover that it’s made of exactly 64 vari-
ables, each one representing the grayscale value of a single pixel, and that
you have plentiful examples, exactly 1,797 cases.

print X.shape

(1797L, 64L)

X[0]
array([0., 0., 5., 13., 9., 1., 0., 0., 0., 0., 13.,
 15., 10., 15., 5., 0., 0., 3., 15., 2., 0., 11.,
 8., 0., 0., 4., 12., 0., 0., 8., 8., 0., 0.,
 5., 8., 0., 0., 9., 8., 0., 0., 4., 11., 0.,
 1., 12., 7., 0., 0., 2., 14., 5., 10., 12., 0.,
 0., 0., 0., 6., 13., 10., 0., 0., 0.])

At this point, you might wonder what to do about labels. You can ask for help
from the SciPy package, which provides the itemfreq function:

from scipy.stats import itemfreq
print y.shape, itemfreq(y)

Figure 19‐9:
The first ten
handwritten

digits from
the digits
dataset.

362 Part V: Learning from Data

[[0. 178.]
 [1. 182.]
 [2. 177.]
 [3. 183.]
 [4. 181.]
 [5. 182.]
 [6. 181.]
 [7. 179.]
 [8. 174.]
 [9. 180.]]

The output associates the class label (the first number) with its frequency
and is worth observing. All the class labels present about the same number
of examples. That means that your classes are balanced and that the SVM
won’t be led to think that one class is more probable than any of the others.
If one or more of the classes had a significantly different number of cases,
you’d face an unbalanced class problem. An unbalanced class scenario
requires you to perform an evaluation:

 ✓ Keep the unbalanced class and get predictions biased toward the most
frequent classes

 ✓ Establish equality among the classes using weights, which means
 allowing some observations to count more

 ✓ Use selection to cut some cases from the classes that have too
many cases

An imbalanced class problem requires you to set some additional param-
eters. sklearn.svm.SVC has both a class_weight parameter and a
sample_weight keyword in the fit method. The most straightforward and
easiest way to solve the problem is to set class_weight=’auto’ when
defining your SVC and let the algorithm fix everything by itself.

Now you’re ready to test the SVC with the linear kernel. However, don’t
forget to split your data into training and test sets, or you won’t be able to
judge the effectiveness of the modeling work. Always use a separate data
fraction for performance evaluation or the results will look good now but
turn worse when adding fresh data.

from sklearn.cross_validation import train_test_split, cross_val_score
from sklearn.preprocessing import MinMaxScaler
We keep 30% random examples for test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=101)

The train_test_split function splits X and y into training and test
sets, using the test_size parameter value of 0.3 as a reference for the
split ratio.

363 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

We scale the data in the range [‐1,1]
scaling = MinMaxScaler(feature_range=(‐1, 1)).fit(X_train)
X_train = scaling.transform(X_train)
X_test = scaling.transform(X_test)

As a best practice, after splitting the data into training and test parts, you
scale the numeric values, first by getting scaling parameters from the training
data and then by applying a transformation on both training and test sets.

Another important action to take before feeding the data into an SVM is scaling.
Scaling transforms all the values to the range between –1 to 1 (or from 0 to 1,
if you prefer). Scaling transformation avoids the problem of having some vari-
ables influence the algorithm (they may trick it into thinking they are important
because they have big values) and it makes the computations exact, smooth,
and fast.

The following code fits the training data to an SVC class with a linear kernel.
It also cross‐validates and tests the results in terms of accuracy (the percent-
age of numbers correctly guessed).

from sklearn.svm import SVC
We balance the clasess so you can see how it works
learning_algo = SVC(kernel='linear', class_weight='auto')

The code instructs the SVC to use the linear kernel and to reweight the
classes automatically. Reweighting the classes ensures that they remain
equally sized after the dataset is split into training and test sets.

cv_performance = cross_val_score(learning_algo, X_train, y_train, cv=10)
test_performance = learning_algo.fit(X_train, y_train).score(X_test, y_test)

The code then assigns two new variables. Cross‐validation performance is
recorded by the cross_val_score function, which returns a list with all
ten scores after a ten‐fold cross‐validation (cv=10). The code obtains a test
result by using two methods in sequence on the learning algorithm — fit,
that fits the model, and score, which evaluates the result on the test set
using mean accuracy (mean percentage of correct results among the classes
to predict).

print 'Cross‐validation accuracy score: %0.3f,
 test accuracy score: %0.3f' % (np.mean(cv_performance),test_performance)
Cross‐validation accuracy score: 0.975, test accuracy score: 0.974

Finally, the code prints the two variables and evaluates the result. The result
is quite good: 97.4 percent correct predictions on the test set!

364 Part V: Learning from Data

You might wonder what would happen if you optimize the principal param-
eter C instead of using the default value of 1.0. The following script provides
you with an answer, using gridsearch to look for an optimal value for the C
parameter:

from sklearn.grid_search import GridSearchCV
learning_algo = SVC(kernel='linear', class_weight='auto', random_state=101)
search_space = {'C': np.logspace(‐3, 3, 7)}
gridsearch = GridSearchCV(learning_algo, param_grid=search_space,

scoring='accuracy',
 refit=True, cv=10)
gridsearch.fit(X_train,y_train)

Using GridSearchCV is a little more complex, but it allows you to check
many models in sequence. First, you must define a search space variable
using a Python dictionary that contains the exploration schedule of the pro-
cedure. To define a search space, you create a dictionary (or, if there is more
than one dictionary, a dictionary list) for each tested group of parameters.
Inside the dictionary, you place the name of the parameters as keys and asso-
ciate them with a list (or a function generating a list, as in this case) contain-
ing the values to test.

The NumPy logspace function creates a list of seven C values, ranging from
10^–3 to 10^3. This is a computationally expensive number of values to test,
but it’s also comprehensive, and you can always be safe when you test C and
the other SVM parameters using such a range.

You then initialize GridSearchCV, defining the learning algorithm, search
space, scoring function, and number of cross‐validation folds. The next step
is to instruct the procedure, after finding the best solution, to fit the best
combination of parameters, so that you can have a ready‐to‐use predictive
model:

cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)

In fact, gridsearch now contains a lot of information about the best score
(and best parameters, plus a complete analysis of all the evaluated combina-
tions) and methods, such as score, which are typical of fitted predictive
models in Scikit‐learn.

print 'Cross‐validation accuracy score: %0.3f,
 test accuracy score: %0.3f' % (cv_performance,test_performance)
print 'Best C parameter: %0.1f' % gridsearch.best_params_['C']

Cross‐validation accuracy score: 0.984, test accuracy score: 0.993
Best C parameter: 100.0

365 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

The last step prints the results and shows that using a C=100 increases
 performance quite a bit, both on the cross‐validation and the test set.

Going nonlinear is easy
Having defined a simple liner model as a benchmark for the handwritten digit
project, you can now test a more complex hypothesis, and SVM offers a range
of nonlinear kernels:

 ✓ Polynomial (poly)

 ✓ Radial Basis Function (rbf)

 ✓ Sigmoid (sigmoid)

 ✓ Advanced custom kernels

Even though so many choices exist, you rarely use something different from
the radial basis function kernel (rbf for short) because it’s faster than other
kernels and can approximate almost any nonlinear function.

Here’s a basic, practical explanation about how rbf works: It separates the
data into many clusters, so it’s easy to associate a response to each cluster.

The rbf kernel requires that you set the degree and gamma parameters
besides setting C. They’re both easy to set (and a good grid search will
always find the right value).

The degree parameter has values that begin at 2. It determinates the com-
plexity of the nonlinear function used to separate the points. As a practical
suggestion, don’t worry too much about degree — test values of 2, 3, and 4
on a grid search. If you notice that the best result has a degree of 4, try shift-
ing the grid range upward and test 3, 4, and 5. Continue proceeding upward
as needed, but using a value greater than 5 is rare.

The gamma parameter’s role in the algorithm is similar to C (it provides a
trade‐off between overfit and underfit). It’s exclusive of the rbf kernel. High
gamma values induce the algorithm to create nonlinear functions that have
irregular shapes because they tend to fit the data more closely. Lower values
create more regular, spherical functions, ignoring most of the irregularities
present in the data.

Now that you know the details of the nonlinear approach, it’s time to try rbf on
the previous example. Be warned that, given the high number of combinations

366 Part V: Learning from Data

tested, the computations may take some time to complete, depending on the
characteristics of your computer.

from sklearn.grid_search import GridSearchCV
learning_algo = SVC(class_weight='auto', random_state=101)
search_space = [{'kernel': ['linear'], 'C': np.logspace(‐3, 3, 7)},
 {'kernel': ['rbf'], 'degree':[2,3,4], 'C':np.logspace(‐3, 3, 7),
 'gamma': np.logspace(‐3, 2, 6)}]
gridsearch = GridSearchCV(learning_algo, param_grid=search_space,

scoring='accuracy',
 refit=True, cv=10)
gridsearch.fit(X_train,y_train)
cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)
print 'Cross‐validation accuracy score: %0.3f,
 test accuracy score: %0.3f' % (cv_performance,test_performance)
print 'Best parameters: %s' % gridsearch.best_params_

Cross‐validation accuracy score: 0.988, test accuracy score: 0.987
Best parameters: {'kernel': 'rbf', 'C': 1.0, 'gamma': 0.10000000000000001,

'degree': 2}

Notice that the only difference in this script is that the search space is more
sophisticated. By using a list, you enclose two dictionaries — one containing
the parameters to test for the linear kernel and another for the rbf kernel.
In this way, you can compare the performance of the two approaches at the
same time.

The results tell you that rbf performs better. However, it’s a small margin
of victory over the linear models. In such cases, having more data avail-
able could help in determining the better model with greater confidence.
Unfortunately, getting more data may be expensive in terms of money and
time. When faced with the absence of a clear winning model, the best sugges-
tion is to decide in favor of the simpler model. In this case, the linear kernel
is much simpler than rbf.

Performing regression with SVR
Up to now, you have dealt only with classification, but SVM can also handle
regression problems. Having seen how a classification works, you don’t need
to know much more than that the SVM regression class is SVR and there is a
new parameter to fix, epsilon. Everything else we discuss for classification
works precisely the same with regression.

This example uses a different dataset, a regression dataset. The Boston
house price dataset, taken from the StatLib library maintained at Carnegie

367 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

Mellon University, appears in many machine‐learning and statistical papers
that address regression problems. It has 506 cases and 13 numeric variables
(one of them is a 1/0 binary variable).

from sklearn import datasets
boston = datasets.load_boston()
X,y = boston.data, boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
 random_state=101)
scaling = MinMaxScaler(feature_range=(‐1, 1)).fit(X_train)
X_train = scaling.transform(X_train)
X_test = scaling.transform(X_test)

The target is the median value of houses occupied by an owner, and you’ll try
to guess it using SVR (epsilon‐Support Vector Regression). In addition to C,
kernel, degree, and gamma, SVR also has epsilon. Epsilon is a measure of
how much error the algorithm considers acceptable. A high epsilon implies
fewer support points, while a lower epsilon requires a larger number of
support points. In other words, epsilon provides another way to trade off
underfit against overfit.

As a search space for this parameter, experience tells you that the sequence
[0, 0.01, 0.1, 0.5, 1, 2, 4] works quite fine. Starting from a mini-
mum value of 0 (when the algorithm doesn’t accept any error) and reaching
a maximum of 4, you should enlarge the search space only if you notice that
higher epsilon values bring better performance.

Having included epsilon in the search space and assigning SVR as a learn-
ing algorithm, you can complete the script. Be warned that, given the high
number of combinations evaluated, the computations may take quite some
time, depending on the characteristics of your computer.

from sklearn.svm import SVR
learning_algo = SVR(random_state=101)
search_space = [{'kernel': ['linear'], 'C': np.logspace(‐3, 2, 6), 'epsilon':

[0, 0.01,
 0.1, 0.5, 1, 2, 4]},{'kernel': ['rbf'], 'degree':[2,3], 'C':np.logspace(‐3,

3, 7),
 'gamma': np.logspace(‐3, 2, 6), 'epsilon': [0, 0.01, 0.1, 0.5, 1, 2, 4]}]
gridsearch = GridSearchCV(learning_algo, param_grid=search_space, refit=True,
 scoring= 'r2', cv=10)
gridsearch.fit(X_train,y_train)
cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)
print 'Cross‐validation R2 score: %0.3f,
 test R2 score: %0.3f' % (cv_performance,test_performance)
print 'Best parameters: %s' % gridsearch.best_params_

368 Part V: Learning from Data

Cross‐validation R2 score: 0.833, test R2 score: 0.871
Best parameters: {'epsilon': 2, 'C': 1000.0, 'gamma': 0.10000000000000001,

'degree': 2, 'kernel': 'rbf'}

Note that on the error measure, as a regression, the error is calculated using
R squared, a measure in the range from 0 to 1 that indicates the model’s
 performance (with 1 being the best possible result to achieve).

Creating a stochastic solution with SVM
Now that you’re at the end of the overview of the family of SVM machine‐
learning algorithms, you should see that they’re a fantastic tool for a data
scientist. Of course, even the best solutions have problems. For example, you
might think that the SVM has too many parameters in the SVM. Certainly, the
parameters are a nuisance, especially when you have to test so many combi-
nations of them, which can take a lot of CPU time. However, the key problem
is the time necessary for training the SVM. You may have noticed that the
examples use small datasets with a limited number of variables, and perform-
ing some extensive grid searches still takes a lot of time. Real‐world datasets
are much bigger. Sometimes it may seem to take forever to train and optimize
your SVM on your computer.

A possible solution when you have too many cases (a suggested limit is
10,000 examples) is found inside the same SVM module, the LinearSVC
class. This algorithm works only with the linear kernel and its focus is to
classify (sorry, no regression) large numbers of examples and variables
at a higher speed than the standard SVC. Such characteristics make the
LinearSVC a good candidate for textual‐based classification. LinearSVC has
fewer and slightly different parameters to fix than the usual SVM (it’s similar
to a regression class):

 ✓ C: The penalty parameter. Small values imply more regularization
 (simpler models with attenuated or set to zero coefficients).

 ✓ loss: A value of l1 (just as in SVM) or l2 (errors weight more, so it
strives harder to fit misclassified examples).

 ✓ penalty: A value of l2 (attenuation of less important parameters) or
l1 (unimportant parameters are set to zero).

 ✓ dual: A value of true or false. It refers to the type of optimization
problem solved and, though it won’t change the obtained scoring much,
setting the parameter to false results in faster computations than
when it is set to true.

369 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

The loss, penalty, and dual parameters are also bound by reciprocal
constraints, so please refer to Table 19-2 to plan which combination to use in
advance.

The algorithm doesn’t support the combination of penalty='l1' and
loss='l1'. However, the combination of penalty='l2' and loss='l1'
perfectly replicates the SVC optimization approach.

As mentioned previously, LinearSVC is quite fast, and a speed test against
SVC demonstrates the level of improvement to expect in choosing this
 algorithm.

from sklearn.datasets import make_classification
X,y = make_classification(n_samples=10**4, n_features=15, n_informative=10,
 random_state=101)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
 random_state=101)
from sklearn.svm import SVC, LinearSVC
slow_SVM = SVC(kernel="linear", random_state=101)
fast_SVM = LinearSVC(random_state=101, penalty='l2', loss='l1')
slow_SVM.fit(X_train, y_train)
fast_SVM.fit(X_train, y_train)
print 'SVC test accuracy score: %0.3f' % slow_SVM.score(X_test, y_test)
print 'LinearSVC test accuracy score: %0.3f' % fast_SVM.score(X_test, y_test)

SVC test accuracy score: 0.808
LinearSVC test accuracy score: 0.808

After you create an artificial dataset using make_classfication, the code
obtains confirmation of how the two algorithms arrive at identical results.
At this point, the code tests the speed of the two solutions on the synthetic
dataset in order to understand how they scale to using more data.

Table 19‐2 The loss, penalty, and dual Constraints
penalty loss dual
l1 l2 False

l2 l1 True

l2 l2 True; False

370 Part V: Learning from Data

import timeit
X,y = make_classification(n_samples=10**4, n_features=15, n_informative=10,
 random_state=101)
print 'avg secs for SVC, best of 3: %0.1f'

% np.mean(timeit.timeit("slow_SVM.fit(X, y)",
 "from __main__ import slow_SVM, X, y", number=1))
print 'avg secs for LinearSVC, best of 3: %0.1f' % np.mean(
 timeit.timeit("fast_SVM.fit(X, y)", "from __main__ import fast_SVM,

X, y", number=1))

The example system shows the following result (the output of your system
may differ):

avg secs for SVC, best of 3: 15.9
avg secs for LinearSVC, best of 3: 0.4

Clearly, given the same data quantity, LinearSVC is much faster than SVC.
You can calculate its performance ratio as 15.9 / 0.4 = 39.75 times
faster than SVC. But what if you grow the sample size from 10**4 to 10**5?

avg secs for SVC, best of 3: 3831.6
avg secs for LinearSVC, best of 3: 10.0

The results are quite impressive. LinearSVC is 383.16 times faster than SVC.
Even if LinearSVC is quite fast at performing tasks, you may need to classify
or regress with examples in the range of millions. You need to know whether
LinearSVC is still a better choice.

You previously saw how the SGD class, using SGDClassifier and
SGDRegressor, helps you implement an SVM‐type algorithm in situations
with millions of data rows without investing too much computational power.
All you have to do is to set their loss to 'hinge' for SGDClassifier and
to 'epsilon_insensitive' for SGDRegressor (in which case, you have
to tune the epsilon parameter).

Another performance and speed test makes the advantages and limitations of
using LinearSVC or SGDClassifier clear:

from sklearn.linear_model import SGDClassifier
X,y = make_classification(n_samples=10**6, n_features=15, n_informative=10,
 random_state=101)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
 random_state=101)

The sample is quite big — 1 million cases. If you have enough memory and a
lot of time, you may even want to increase the number of trained cases or the
number of features and more extensively test how the two algorithms scale
with big data.

371 Chapter 19: Increasing Complexity with Linear and Nonlinear Tricks

fast_SVM = LinearSVC(random_state=101)
fast_SVM.fit(X_train, y_train)
print 'LinearSVC test accuracy score: %0.3f' % fast_SVM.score(X_test, y_test)
print 'avg secs for LinearSVC, best of 3: %0.1f' % np.mean(
 timeit.timeit("fast_SVM.fit(X_train, y_train)",
 "from __main__ import fast_SVM, X_train, y_train", number=1))

LinearSVC test accuracy score: 0.806
avg secs for LinearSVC, best of 3: 311.2

On the test computer, LinearSVC completed its computations on 1 million
rows in about five minutes. SGDClassifier instead took about a second for
processing the same data and obtaining an inferior, but comparable, score.

stochastic_SVM = SGDClassifier(loss='hinge', n_iter=5, shuffle=True, random_
state=101)

stochastic_SVM.fit(X_train, y_train)
print 'SGDClassifier test accuracy score: %0.3f' % stochastic_SVM.score(X_test,

y_test)
print 'avg secs for SGDClassifier, best of 3: %0.1f' % np.mean(
 timeit.timeit("stochastic_SVM.fit(X_train, y_train)",
 "from __main__ import stochastic_SVM, X_train, y_train", number=1))
SGDClassifier test accuracy score: 0.799
avg secs for SGDClassifier, best of 3: 0.8

Increasing the n_iter parameter can improve the performance, but it
proportionally increases the computation time. Increasing the number of
iterations up to a certain value (that you have to find out by test) increases
the performance. However, after that value, performance starts to decrease
because of overfitting.

372 Part V: Learning from Data

Understanding the Power
of the Many

In This Chapter
 ▶ Understanding how a decision tree works

 ▶ Using Random Forest and other bagging techniques

 ▶ Taking advantage of the most performing ensembles by boosting

I
n this chapter, you go beyond the single machine‐learning models you’ve
seen until now and explore the power of ensembles, groups of models that

can outperform single models. Ensembles work like the collective intelligence
of crowds, using pooled information to make better predictions. The basic
idea is that a group of nonperforming algorithms can produce better results
than a single well‐trained model.

Maybe you’ve participated in one of those games that ask you to guess the
number of sweets in a jar at parties or fairs. Even though a single person
has a slim chance of guessing the right number, various experiments have
confirmed that if you take the wrong answers of a large number of game
participants and average them, you can get close to the right answer! Such
incredible shared group knowledge (the wisdom of crowds) is possible
because wrong answers tend to distribute around the true one. By taking
a mean or median of these wrong answers, you get the direction of the
right answer.

You can use this technique to win games by listening carefully to others’
answers when participating in such games before providing your informed
answer. Of course, you can employ the technique in ways that are more
practical. In data science projects involving complex predictions, you can
leverage the wisdom of various machine‐learning algorithms and become
more precise and accurate at predictions than you can when using a single
algorithm. This chapter creates a process you can use to leverage the power
of many different algorithms to obtain a better single answer.

Chapter 20

374 Part V: Learning from Data

You don’t have to type the source code for this chapter manually. In fact, it’s a
lot easier if you use the downloadable source (see the Introduction for down-
load instructions). The source code for this chapter appears in the P4DS4D;
20; Understanding the Power of the Many.ipynb source code file.

Starting with a Plain Decision Tree
Decision trees have long been part of data mining tools. The first models date
back to the 1970s or even earlier. Decision trees have enjoyed popularity in
many fields because of their intuitive algorithm, understandable output, and
effectiveness with respect to simple linear models.

With the introduction of better‐performing algorithms, decision trees slowly
went out of the machine‐learning scene for a time, but came back in recent
years as an essential building block of ensemble algorithms. Today, tree
ensembles such as Random Forest or Gradient Boosting Machines are the
core of many data science applications.

Understanding a decision tree
The basis of decision trees is the idea that you can divide your dataset into
smaller and smaller parts using specific rules based on the values of the
 dataset’s features. When dividing the dataset in this way, the algorithm must
choose splits that increase the chance of guessing the target outcome cor-
rectly, either as a class or as an estimate. Therefore, the algorithm must try
to maximize the presence of a certain class or a certain average of values in
each split.

As an example of an application and execution of a decision tree, you could
try to predict the likelihood of passenger survival from the RMS Titanic, the
British passenger liner that sank in the North Atlantic Ocean in April 1912
after colliding with an iceberg. Most datasets available about the Titanic
tragedy have 1,309 recorded passengers with full stats. The survival rate
among passengers was 38.2 percent (of 1,309 passengers, 809 lost their lives).
However, based on the passengers’ characteristics, you (and the decision
tree) can notice that

 ✓ Being male changes the likelihood of survival, lowering it from
38.2 percent to 19.1 percent.

 ✓ Being male, but being younger than 9.5 years of age, raises the chance of
survival to 58.1 percent.

 ✓ Being female, regardless of age, implies a survival probability of
72.7 percent.

375 Chapter 20: Understanding the Power of the Many

Using such knowledge, you can easily to build a tree like the one depicted in
Figure 20-1. Notice that the tree looks upside down (with the root at the top
and all the branches spreading out from there). It starts at the top using the
entire sample. Then it splits on the gender feature, creating two branches,
one that turns into a leaf. A leaf is a terminal segmentation. The diagram clas-
sifies the leaf cases by using the most frequent class or by calculating the
base probability of cases with the same features as the leaf probability. The
second branch is further split by age.

To read nodes of the tree, consider that the topmost node begins by report-
ing the rule used to create the node. The next line is the gini, which is a mea-
sure that indicates the quality of the split. The last line reports the number of
samples, which is all 1,309 passengers in the root node.

Understanding the rule comes next. The tree takes the left branch when the
rule is true and the right one when it is false. So, male <=0.5 rule indicates
that the person is a female, since male is encoded as 1 and female is encoded
as 0 — the female leaf is on the left. When the decision tree reaches a termi-
nal node, the node lacks a rule. Looking at the female node on the left, you
see the results of the rule in brackets. The left number, 127, indicates the
number of deaths, whereas the right number, 339, indicates the number of
survivors.

After the age split, the tree has another split and then the algorithm stops.
The tree has three splits, and the number of times a variable is split is called
the levels. In this case, the number of males that are less than 9.5 years old is
43 and of those 43, 18 died and 25 lived.

Figure 20-1:
A tree

model of
survival

rates from
the Titanic

 disaster.

376 Part V: Learning from Data

In this case, the split is binary, but multiple splits are also possible,
depending on the tree algorithm. In Scikit‐learn, the implemented class
DecisionTreeClassifier and DecisionTreeRegressor in the
sklearn.tree module are all binary trees.

A decision tree can stop splitting the data when

 ✓ There are no more cases to split, so the data appears as part of leaf
nodes.

 ✓ The rule used to split a leaf has fewer than a predefined number of
cases. This action keeps the algorithm from working with leaves that
have little representation in general or are more specific than the data
you’re analyzing, thus preventing overfitting and variance of estimates.

 ✓ One of the resulting leaves has fewer than a predefined number of
cases — another sanity check for avoiding inferring general rules
 without the confidence provided by a good sample size.

Decision trees tend to overfit the data. By setting the right number for splits
and terminal leaves, you can reduce the variance of the estimates. Depending
on your starting sample size, a limit of 30 cases is usually a good choice.

Apart from being intuitive and easy to understand and represent (well, it
does depend on how many branches and leaves you have in your tree), deci-
sion trees offer another strong advantage to the data science practitioner —
they don’t require any particular data treatment or transformation because
they model any nonlinearity using approximations. In fact, they accept any
kind of variable, even categorical variables encoded with arbitrary codes for
the represented classes. In addition, decision trees handle missing cases.
All you need to do is to assign missing cases an unlikely value, such as an
extreme or a negative value (depending on your data distribution of nonmiss-
ing cases). Finally, decision trees are incredibly resistant to outliers!

Creating classification
and regression trees
Data scientists call trees that specialize in guessing classes classification
trees; trees that work with estimation instead are known as regression trees.
Here’s a classification problem, using the Fisher’s Iris dataset (you first use
this dataset in the “Defining Descriptive Statistics for Numeric Data” section
of Chapter 13):

from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
features = iris.feature_names

377 Chapter 20: Understanding the Power of the Many

After loading the data into X, which contains predictors, and y, which holds
the classifications, you can define a cross‐validation for checking the results
using decision trees:

from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)

Using the DecisionTreeClassifier class, you define max_depth inside
an iterative loop to experiment with the effect of increasing the complexity of
the resulting tree. The expectation is to reach an ideal point quickly and then
witness decreasing cross‐validation performance because of overfitting:

from sklearn import tree
for depth in range(1,10):
 tree_classifier = tree.DecisionTreeClassifier(
 max_depth=depth, random_state=0)
 if tree_classifier.fit(X,y).tree_.max_depth < depth:
 break
 score = np.mean(cross_val_score(tree_classifier, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
 print 'Depth: %i Accuracy: %.3f' % (depth,score)

Depth: 1 Accuracy: 0.580
Depth: 2 Accuracy: 0.913
Depth: 3 Accuracy: 0.920
Depth: 4 Accuracy: 0.940
Depth: 5 Accuracy: 0.920

The best solution is a tree with four splits. Figure 20-2 shows the complexity
of the resulting tree.

To obtain an effective reduction and simplification, you can set min_samples_
split to 30 and avoid terminal leaves that are too small. This setting
prunes the small terminal leaves in the new resulting tree, diminishing cross‐
validation accuracy but increasing simplicity and the generalization power of
the solution.

tree_classifier = tree.DecisionTreeClassifier(
 min_samples_split=30, min_samples_leaf=10,
 random_state=0)
tree_classifier.fit(X,y)
score = np.mean(cross_val_score(tree_classifier, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.913

378 Part V: Learning from Data

Figure 20-2:
A tree

model of the
Iris dataset

using a
depth of

four splits.

379 Chapter 20: Understanding the Power of the Many

Similarly, using the DecisionTreeRegressor class, you can model a
regression problem, such as the Boston house price dataset (you first
use this dataset in the “Defining applications for data science” section of
Chapter 12). When dealing with a regression tree, the terminal leaves offer
the average of the cases as the prediction output.

from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data, boston.target
features = boston.feature_names

from sklearn.tree import DecisionTreeRegressor
regression_tree = tree.DecisionTreeRegressor(
 min_samples_split=30, min_samples_leaf=10,
 random_state=0)
regression_tree.fit(X,y)
score = np.mean(cross_val_score(regression_tree, X, y,
 scoring='mean_squared_error', cv=crossvalidation,
 n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 22.593

Making Machine Learning Accessible
Random Forest is a classification and regression algorithm developed by Leo
Breiman and Adele Cutler that uses a large number of decision tree models
in order to provide precise predictions by reducing both the bias and vari-
ance of the estimates. When you aggregate many models together to produce
a single prediction, the result is an ensemble of models. Random Forest isn’t
just an ensemble model, it’s also a simple and effective algorithm to use, as
intended by its creators, as an out‐of‐the‐box algorithm. It makes machine
learning accessible to nonexperts. The Random Forest algorithm uses these
steps to perform its predictions:

1. Create a large number of decision trees, each one different from the
other, based on different subsets of observations and variables.

2. Bootstrap the dataset of observations for each tree (sampled from the
original data with replacement). The same observation can appear mul-
tiple times in the same dataset.

3. Randomly select and use only a part of the variables for each tree.

4. Estimate the performance for each tree using the observations excluded
by sampling (the Out Of Bag, or OOB, estimate).

380 Part V: Learning from Data

5. Obtain the final prediction, which is the average for regression estimates
or the most frequent class for prediction, after all the trees have been
fitted and used for prediction.

You can reduce bias by using these steps, because the decision trees have a
good fit on data and, by their complex splits, can approximate even the most
complex relationships between predictors and predicted outcome. Decision
trees are known to produce a great variance of estimates, but you reduce
this variance by averaging many trees. Noisy predictions, due to variance,
tend to distribute evenly above and below the correct value that you want to
 predict — and when averaged together, they tend to cancel each other, leav-
ing, as a result, a more correct average prediction.

Leo Breiman derived the idea for Random Forest from the bagging technique.
Scikit‐learn has a bagging class for both regression (BaggingRegressor)
and classifying (BaggingClassifier) that you can be use with any other
predictor you prefer to pick from Scikit‐learn modules. The max_samples
and max_features parameters let you decide the proportion of cases and
variables to sample (not bootsrapped, but sampled, so a case can be used
only once) for building each model of the ensemble. The n_estimators
parameter decides the total number of models in the ensemble. Here’s an
example that loads the handwritten digit dataset (used for demonstrations
later with other ensemble algorithms) and then fits the model by bagging:

from sklearn.datasets import load_digits
digit = load_digits()
X, y = digit.data, digit.target
print X.shape, y.shape

(1797L, 64L) (1797L,)

from sklearn.ensemble import BaggingClassifier
from sklearn import tree
tree_classifier = tree.DecisionTreeClassifier(
 random_state=0)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
bagging = BaggingClassifier(tree_classifier,
 max_samples=0.7, max_features=0.7, n_estimators=300)
scores = np.mean(cross_val_score(bagging, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Mean squared error: 0.966

381 Chapter 20: Understanding the Power of the Many

In bagging, as in Random Forest, the more models in the ensemble, the
better. You run no risk of overfitting because every model is different from
the others, and errors tend to spread around the real value. Adding more
models just adds stability to the result.

Another characteristic of the algorithm is that it permits estimation of vari-
able importance while taking the presence of all the other predictors into
account (a true multivariate approach).

In contrast to single decision trees, you can’t easily visualize or understand
Random Forest, making it act as a black box (a black box is a transformation
that doesn’t reveal its inner workings; all you see are its inputs and outputs).
Given its opacity, importance estimation is the only way to understand how
the algorithm works with respect to the features.

Importance estimation in a Random Forest is obtained in a straightforward
way. After building each tree, the code fills each variable with junk data
and the example records how much the predictive power decreases. If the
variable is important, crowding it with casual data harms the prediction;
otherwise, the predictions are left unchanged and the variable is deemed
unimportant.

Working with a Random Forest classifier
The example Random Forest classifier keeps using the previously loaded
digit dataset:

X, y = digit.data, digit.target
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
crossvalidation = KFold(n=X.shape[0], n_folds=3,
 shuffle=True, random_state=1)
RF_cls = RandomForestClassifier(n_estimators=300)
score = np.mean(cross_val_score(RF_cls, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.977

Just setting the number of estimators is sufficient for most problems you
encounter, and setting it correctly is a matter of using the highest number
possible given the time and resource constraints of the host computer. You
can demonstrate this by calculating and drawing a validation curve for the
algorithm.

382 Part V: Learning from Data

from sklearn.learning_curve import validation_curve
train_scores, test_scores = validation_curve(RF_cls, X, y,
 'n_estimators', param_range=[
 10,50,100,200,300,500,800,1000,1500],
 cv=crossvalidation, scoring='accuracy', n_jobs=1)
print 'mean cv accuracy %s' % np.mean(train_scores,axis=1)

mean cv accuracy [0.93600445 0.9738453 0.9771842
 0.97607123 0.9738453 0.97774068
 0.97885364 0.97774068 0.97885364]

Figure 20-3 shows the results provided by the preceding code. The more
estimators, the better the results, though at a certain point the gain becomes
indeed minimal.

Working with a Random Forest regressor
RandomForestRegressor works in a similar way as the Random Forest for
classification, using exactly the same parameters:

X, y = boston.data, boston.target
from sklearn.ensemble import RandomForestRegressor
RF_rg = RandomForestRegressor (n_estimators=300,
 random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
score = np.mean(cross_val_score(RF_rg, X, y,
 scoring='mean_squared_error', cv=crossvalidation,
 n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 19.436

Figure 20-3:
Verifying

the impact
of the

number of
estimators

on Random
Forest.

383 Chapter 20: Understanding the Power of the Many

The Random Forest uses decision trees. Decision trees segment the dataset
into small partitions, called leaves, when estimating regression values. The
Random Forest takes the average of the values in each leaf to create a predic-
tion. Using this procedure causes extreme and high values to disappear from
predictions because of the averaging used for each leaf of the forest, produc-
ing dumped values instead of much higher or much lower values.

Optimizing a Random Forest
Random Forest models are out‐of‐box algorithms that can work quite well
without optimization or worrying about overfitting. (The more estimators
you use, the better the output, depending on your resources.) You can
always improve performance by removing redundant and less informative
variables, fixing a minimum leaf size, and defining a sampling number that
avoids having too many correlated predictors in the sample. The following
example shows how to perform these tasks:

X, y = digit.data, digit.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
RF_cls = RandomForestClassifier(n_estimators=300)
scorer = 'accuracy'

Using the handwritten digit dataset and a first default classifier, you train a
first model to determine the importance of each variable.

RF_cls = RandomForestClassifier(n_estimators=300).fit(X,y)
X = RF_cls.transform(X)
print X.shape

After you train the model, you can transform the initial X by removing the
useless features, thus increasing the algorithm’s speed and capability of pick-
ing the right branches in its multiple decision trees. At this point, you can
optimize both max_features and min_samples_leaf.

When optimizing max_features, you use preconfigured options (auto for
all features, sqrt or log2 functions applied to the number of features) and
integrate them using small feature numbers and a value of 1/3 of the features.
Selecting the right number of features to sample tends to reduce the number
of times when correlated and similar variables are picked together, thus
increasing the predictive performances.

There is a statistical reason to optimize min_samples_leaf. Using leaves
with few cases often corresponds to overfitting to very specific data

384 Part V: Learning from Data

 combinations. You need to have at least 30 observations to achieve a minimal
statistical confidence that data patterns correspond to real and general rules:

from sklearn import grid_search
search_grid = {'max_features': [X.shape[1]/3, 'sqrt',
 'log2', 'auto'], 'min_samples_leaf': [1, 2, 10, 30]}
search_func = grid_search.GridSearchCV(estimator=RF_cls,
 param_grid=search_grid, scoring=scorer, n_jobs=1,
 cv=crossvalidation)
search_func.fit(X,y)
print 'Best parameters: %s' % search_func.best_params_
print 'Best accuracy: %.3f' % search_func.best_score_

Best parameters: {'max_features': 'log2',
 'min_samples_leaf': 1}
Best accuracy: 0.977

Boosting Predictions
Gathering different tree models is not the only ensemble technique possible.
In fact, another machine‐learning technique, called boosting, uses ensembles
effectively. In boosting, you grow many trees sequentially. Each tree tries to
build a model that successfully predicts what trees that were built before it
weren’t able to forecast. In the end, the technique pools subsequent models
together and uses an average or a majority vote to decide the final prediction.

The following sections present two boosting applications, adaboost and gra-
dient boosting machines. You can use all boosting algorithms for both regres-
sion and classification. The examples in these sections start working with
classification. The multilabel dataset of handwritten digits is, as it was with
Random Forest, a good place to start.

If you have already loaded the data using load_digits into the variable
digit, you just need to reassign the X and y variables as follows:

X, y = digit.data, digit.target

Knowing that many weak predictors win
AdaBoostClassifier fits sequential weak predictors. It is used by default
when working with decision trees, but you can choose other algorithms
by changing the base_estimator parameter. Weak predictors are usu-
ally machine‐learning predictors that don’t perform well because they have
too much variance or bias, so they perform slightly better than chance.

385 Chapter 20: Understanding the Power of the Many

The classic example of a weak learner is the decision stump, which is a
decision tree grown to only one level. Usually, decision trees are the best‐
performing option in boosting, so you can safely use the default learner
and concentrate on two important parameters to obtain good predictions:
n_estimators and learning_rate.

learning_rate determinates how each weak predictor contributes to the
final result. A high learning rate requires few n_estimators before converg-
ing to an optimal solution, but it likely won’t be the best solution possible. A
low learning rate takes longer to train because it requires more predictors
before reaching a solution. In addition, it also overfits more slowly.

Contrary to bagging, boosting can overfit if you use too many estimators. A
cross‐validation is always helpful in finding the correct number, keeping in
mind that lower learning rates take longer to overfit, so picking an almost
optimal value by a loose grid‐search is easier.

from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(n_estimators=1000,
 learning_rate=0.01, random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
score = np.mean(cross_val_score(ada, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.826

This example uses the default estimator, which is a full‐blown decision tree. If
you’d like to try a stump (which needs more estimators), you should instanti-
ate the AdaBoostClassifier with base_estimator=DecisionTreeClas
sifier(max_depth=1).

Creating a gradient boosting classifier
The Gradient Boosting Machine (GBM) is a much better‐performing version
of the boosting technique seen with Adaboost, the first boosting algorithm
ever created. In particular, GBM uses an optimization computation for
weighting the subsequent estimators. As with the example in the preceding
section, you can try an example with the digit dataset and explore some extra
parameters available in GBM.

X, y = digit.data, digit.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)

386 Part V: Learning from Data

Apart from the learning rate and the number of estimators, which are key
parameters for optimal learning without overfitting, you must provide values
for subsample and max_depth. subsample introduces subsampling into
the training (so that the training is done on a different dataset every time), as
is done in bagging. max_depth defines the maximum level of the built trees.
It’s usually a good practice to start with three levels, but more levels may be
necessary for modeling complex data.

from sklearn.ensemble import GradientBoostingClassifier
GBC = GradientBoostingClassifier(n_estimators=300,
 subsample=1.0, max_depth=2, learning_rate=0.1,
 random_state=1)
score = np.mean(cross_val_score(GBC, X, y,
 scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.972

An interesting feature of the Scikit‐implementation is the warm_start
parameter. You can’t parallelize boosting as you would when using a
Random Forest. However, given its sequential nature, you can fetch the data
piece‐by‐piece when dealing with big data. To perform this task, you set the
warm_start parameter to True, so the algorithm always keeps the previous
estimators in the sequence.

Creating a gradient boosting regressor
Creating a gradient boosting regressor doesn’t present particular dif-
ferences from creating the classifier. The main difference is the pres-
ence of multiple loss functions that you can use (contrast this with
GradientBoostingClassifier, which has only the deviance loss,
 analogous to the cost function of a logistic regression).

X, y = boston.data, boston.target
from sklearn.ensemble import GradientBoostingRegressor
GBR = GradientBoostingRegressor(n_estimators=1000,
 subsample=1.0, max_depth=3, learning_rate=0.01,
 random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
score = np.mean(cross_val_score(GBR, X, y,
 scoring='mean_squared_error', cv=crossvalidation,
 n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 10.105

387 Chapter 20: Understanding the Power of the Many

The example trains a GradientBoostingRegressor using the default ls
value for the loss parameter, which is analogous to a linear regression. Here
are some other choices:

 ✓ quantile: This guesses a particular quantile that you specify using the
alpha parameter (usually it’s 0.5, which is the median).

 ✓ lad (least absolute deviation): This choice is highly robust to outliers; it
tends to ordinally rank correctly the predictions.

 ✓ huber: This creates a combination of ls and lad. It requires that you
fix the alpha parameter.

Using GBM hyper‐parameters
GBM models are quite sensitive to overfitting when you have too many
sequential estimators and the model starts fitting the noise in the data. It’s
important to check the efficiency of the coupled values of the number of esti-
mators and the learning rate. The following example uses the Boston dataset
of housing prices:

X, y = boston.data, boston.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
 shuffle=True, random_state=1)
GBR = GradientBoostingRegressor(n_estimators=1000,
 subsample=1.0, max_depth=3, learning_rate=0.01,
 random_state=1)

Optimization may take some time because of the computational burden
required by the GBM algorithms, especially if you decide to test high values
of max_depth.

A good strategy is to keep the learning rate fixed and try to optimize sub-
sample and max_depth with respect to n_estimators (keeping in mind
that high values of max_depth usually imply a lesser number of estimators).
After you find the optimum values for subsample and max_depth, you can
start searching for further optimization of n_estimators and learning_
rate.

from sklearn import grid_search
search_grid = {'subsample': [1.0, 0.9], 'max_depth': [2,
 3, 5], 'n_estimators': [500 , 1000, 2000]}
search_func = grid_search.GridSearchCV(estimator=GBR,
 param_grid=search_grid, scoring='mean_squared_error',
 n_jobs=1, cv=crossvalidation)

388 Part V: Learning from Data

search_func.fit(X,y)
print 'Best parameters: %s' % search_func.best_params_
print 'Best mean squared error: %.3f'
 % abs(search_func.best_score_)

Best parameters: {'n_estimators': 2000, 'subsample': 0.9,
 'max_depth': 3}
Best mean squared error: 9.263

 Enjoy an additional Part of Tens article about ten ways to make a living as a data
 scientist at http://www.dummies.com/extras/pythonfordatascience.

The Part of Tens
Part VI

http://www.dummies.com/extras/pythonfordatascience

In this part . . .
 ✓ Discovering all sorts of amazing resources you can use for

data mining and development tasks

 ✓ Getting additional educational materials, many of which
are free

 ✓ Finding open source solutions to your data science questions

 ✓ Using leisure time resources to learn more about data science

 ✓ Obtaining more datasets for your data science experiments

Ten Essential Data Science
Resource Collections

In This Chapter
 ▶ Getting the lowdown on essential learning resources at Data Science Weekly

 ▶ Finding resources at U Climb Higher

 ▶ Learning about data mining and data science with KDnuggets

 ▶ Locating an obscure resource on Data Science Central

 ▶ Educating yourself about open source data science through Masters

 ▶ Obtaining a free education with Quora

 ▶ Discovering answers for advanced topics at Conductrics

 ▶ Reading the Aspirational Data Scientist blog posts

 ▶ Discovering data intelligence and analytics resources at AnalyticBridge

 ▶ Getting the developer resource you need with Jonathan Bower

I
n reading this book, you discover quite a lot about data science and
Python. Before your head explodes from all the new knowledge you gain,

it’s important to realize that this book is really just the tip of the iceberg.
Yes, there really is more information available out there, and that’s what this
chapter is all about. The following sections introduce you to a wealth of data
science resource collections that you really need to make the best use of
your new knowledge.

In this case, a resource collection is simply a listing of really cool links with
some text to tell you why they’re so great. In some cases, you gain access
to articles about data science; in other cases, you’re exposed to new tools.
In fact, data science is such a huge topic that you could easily find more
resources than those discussed here, but the following sections provide a
good place to start.

As with anything else on the Internet, links break, sites go out of business,
and new sites take their place. If you find that a link is broken, please let me
know about it at John@JohnMuellerBooks.com.

Chapter 21

mailto:John@JohnMuellerBooks.com

392 Part VI: The Part of Tens

Gaining Insights with Data
Science Weekly

The Data Science Weekly is a free newsletter that you can sign up for to
obtain the latest information about changes in data science. However, for
this chapter, the most important element is the list of resources you find at
http://www.datascienceweekly.org/data‐science‐resources. The
resources cover the following broad range of topics:

 ✓ Data Science Books

 ✓ Data Science Meetups

 ✓ Data Science Massive Open Online Courses (MOOCs)

 ✓ Data Science Datasets

 ✓ Data Science Most Read Articles

 ✓ Data Scientist Talks

 ✓ Data Scientists on Twitter

 ✓ Data Science Blogs

Obtaining a Resource List
at U Climb Higher

Even with the right connections online and a good search engine, trying to
find just the right resource can be hard. U Climb Higher has published a list
of 24 data science resources at http://blog.udacity.com/2014/12/24‐
data‐science‐resources‐keep‐finger‐pulse.html that’s guaranteed
to help keep your finger on the pulse of new strategies and technologies.
This resource broaches the following topics: trends and happenings; places
to learn more about data science; joining a community; data science news;
people who really know data science well; all the latest research

Getting a Good Start with KDnuggets
Learning about data mining and data science is a process. KDnuggets
breaks the learning process down into a series of steps at http://www.
kdnuggets.com/faq/learning‐data‐mining‐data‐science.html.
Each step provides you with an overview of what you should be doing and
why. You also find links to a variety of resources online to make the learning

http://www.datascienceweekly.org/data-science-resources
http://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
http://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
http://www.kdnuggets.com/faq/learning-data-mining-data-science.html
http://www.kdnuggets.com/faq/learning-data-mining-data-science.html

393 Chapter 21: Ten Essential Data Science Resource Collections

process considerably easier. Even though the site emphasizes the use of
R, Python (clicking the Getting Started With Python For Data
Science link shows that even Kaggle prefers Python 2.7), and SQL (in that
order) to perform data science tasks, the steps will actually work for any of a
number of approaches that you might take.

As with any other learning experience, a procedure like the one shown on the
KDnuggets site will work for some people and not for others. Everyone learns
a little differently. Don’t be afraid to improvise. The resources on this site
might provide insights into other things that you can do to make your learn-
ing process easier.

Accessing the Huge List of Resources
on Data Science Central

Many of the resources you find online cover mainstream topics. Data Science
Central (http://www.datasciencecentral.com/) provides access to a
relatively large number of data science experts that will tell you about the
most obscure facts of data science. One of the more interesting blog posts
appears at http://www.datasciencecentral.com/profiles/blogs/
huge‐trello‐list‐of‐great‐data‐science‐resources.

This resource points you to a Trello list (https://trello.com/) of some
truly amazing resources. Navigating the huge list can be a bit difficult, but the
process is aided by the treelike structure that Trello provides for organizing
information. You want to meander through this sort of list when you have
time and simply want to see what is available. The categories include the
 following (with possibly more by the time you read this book):

 ✓ Data news

 ✓ Data business people track

 ✓ Data journalist track

 ✓ Data padawan track

 ✓ Data scientist track

 ✓ Statistics

 ✓ R

 ✓ Python

 ✓ Big data and other tools

 ✓ Data

 ✓ Others

https://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience
https://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience
http://www.datasciencecentral.com/
http://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
http://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
https://trello.com/

394 Part VI: The Part of Tens

Obtaining the Facts of Open Source
Data Science from Masters

Many organizations now focus on open source for data science solutions. The
focus has become so prevalent that you can now get an Open‐Source Data
Science Masters (OSDSM) education at http:// datasciencemasters.
org/. The emphasis is on providing you with the materials that are normally
lacking from a purely academic education. In other words, the site provides
pointers to courses that fill in gaps in your education so that you become
more marketable in today’s computing environment. The various links pro-
vide you with access to online courses, books, and other resources that help
you gain a better understanding of just how OSDSM works.

Locating Free Learning
Resources with Quora

It’s really hard to resist the word free, especially when it comes to education,
which normally costs many thousands of dollars. The Quora site at http://
www.quora.com/What‐are‐the‐best‐free‐resources‐to‐learn‐
data‐science provides a listing of the best nonpaid learning resource for
data science.

Most of the links take on a question format, such as, “How do I become a data
scientist?” The question‐and‐answer format is helpful because you might be
asking the questions that the site answers. The resulting list of sites, courses,
and resources are introductory, for the most part, but they are a good way to
get started working in the data science field.

A few of the links are for prestigious institutions such as Harvard. The link
provides you with access to course materials such as lecture videos and black-
boards. However, you don’t get the actual course free of charge. If you want the
benefits of the course, you still need to pay for it. Even so, just by viewing the
course materials, you can obtain a lot of useful data science knowledge.

Receiving Help with Advanced
Topics at Conductrics

The Conductrics site (http://conductrics.com/) as a whole is devoted
to selling products that help you perform various data science tasks.
However, the site includes a blog that contains a couple of useful blog posts

http://datasciencemasters.org/
http://datasciencemasters.org/
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://conductrics.com/

395 Chapter 21: Ten Essential Data Science Resource Collections

that answer the sorts of advanced questions that you might find it difficult
to answer elsewhere. The two posts appear at http://conductrics.com/
data‐science‐resources/ and http://conductrics.com/data‐
science‐resources‐2.

The author of the blog posts, Matt Gershoff, makes it clear that the list-
ings are the result of answering people’s questions in the past. The list is
huge, which is why it appears in two posts rather than one, so Matt must
answer many questions. The list focuses mostly on machine learning rather
than hardware or specific coding issues. Therefore, you can expect to
see entries for topics such as Latent Semantic Indexing (LSI); Single Value
Decomposition (SVD); Linear Discriminant Analysis (LDA); non-parametric
Bayesian approaches; statistical machine translation; Reinforcement
Learning (RL); Temporal Difference (TD) learning; context bandits.

The list goes on and on. Many of these entries won’t make much sense to you
right now unless you’re already heavily involved in data science. However,
the authors write many of the articles in a way that helps you pick up the
information even if you aren’t completely familiar with it. In most cases, your
best course of action is to at least scan the article to see whether you can
understand it. If the article starts to make sense, read it in detail. Otherwise,
hold on to the article reference for later use. You might be surprised to dis-
cover that the article you can’t completely understand today becomes some-
thing you understand with ease tomorrow.

Learning New Tricks from the
Aspirational Data Scientist

The Aspirational Data Scientist (http://newdatascientist.blogspot.
com/) blog site provides you with an amazing array of essays on various data
science topics. The author splits the posts into these areas: data science
commentary; online course reviews; becoming a data scientist.

Data science attracts practitioners from all sorts of existing fields. The site
seems mainly devoted to serving the needs of social scientists moving into
the data science field. In fact, the most interesting post that appears at
http://newdatascientist.blogspot.com/p/useful‐links.html
provides a listing of resources to help the social scientist move into the data
scientist field. The list of resources is organized by author, so you may find
names that you already recognize as potential informational resources.

As with any other resource, even if an article is meant for one audience, it
often serves the needs of another audience with equal ease. Even if you aren’t
a social scientist, you might find that the articles contain helpful information
as you progress on the road to fully discovering the wonders of data science.

http://conductrics.com/data-science-resources/
http://conductrics.com/data-science-resources/
http://conductrics.com/data-science-resources-2
http://conductrics.com/data-science-resources-2
http://newdatascientist.blogspot.com/
http://newdatascientist.blogspot.com/
http://newdatascientist.blogspot.com/p/useful-links.html

396 Part VI: The Part of Tens

Finding Data Intelligence and Analytics
Resources at AnalyticBridge

The AnanlyticBridge site (http://www.analyticbridge.com/) contains an
amazing array of helpful resources for the data scientist. One of the more help-
ful resources is the list of data intelligence and analytics resources at http://
www.analyticbridge.com/page/links. This page contains a wealth of
resources you won’t find anywhere else that are organized into the following
categories: general resources; big data; visualization; best and worst of data
science; new analytics startup ideas; rants about healthcare, education, and
other topics; career stuff, training, and salary surveys; miscellaneous.

Zeroing In on Developer Resources
with Jonathan Bower

More than a few interesting resources appear on GitHub (https://github.
com/), a site devoted to collaboration, code review, and code manage-
ment. One of the sites you need to check out is Jonathan Bower’s listing
of data science resources at https://github.com/jonathan‐bower/
DataScienceResources. The majority of these resources will appeal to the
developer, but just about anyone can benefit from them. You find resources
categorized into the following topics:

 ✓ Data science, getting started

 ✓ Data pipeline and tools

 ✓ Product

 ✓ Career resources

 ✓ Open source data science resources

The hierarchical formatting of the various topics makes finding just what you
need easier. Each major category divides into a list of topics. Within each
topic, you find a list of resources that apply to that topic. For example, within
Data Pipeline & Tools, you find Python, which includes a link for Anyone Can
Code. This is one of the most usable sites in the list.

http://www.analyticbridge.com/
http://www.analyticbridge.com/page/links
http://www.analyticbridge.com/page/links
https://github.com/
https://github.com/
https://github.com/jonathan-bower/DataScienceResources
https://github.com/jonathan-bower/DataScienceResources

Ten Data Challenges
You Should Take

In This Chapter
 ▶ Getting started with Data Science London + Scikit‐learn

 ▶ Making the next step by predicting survival on the Titanic

 ▶ Locating other challenges to try

 ▶ Obtaining the Madelon Data Set

 ▶ Finding a movie and building your data science skills at the same time

 ▶ Differentiating between spam and useful emails

 ▶ Performing handwriting analysis and pattern recognition

 ▶ Classifying and analyzing image data

 ▶ Discovering how to work with review data from Amazon.com

 ▶ Working with the largest graph data in the world

D
ata science is all about working with data. While working through this
book, you have used a number of datasets, including the toy datasets

that come with the Scikit‐learn library. Of course, these datasets are all great
for getting you started, but just as a runner wouldn’t stop after conquering
the local fun run, so do you need to start training for the marathons of data
science by working with larger datasets.

This chapter introduces you to a number of challenging datasets that can help
you become a world‐class data scientist. By combining what you discover in
this book with these new datasets, you can learn how to do amazing things. In
fact, some people may view you as a bit of a magician as you pull seemingly
impossible data patterns out of your hat. Each of the following datasets pro-
vides you with specific skills and helps you achieve different goals.

Chapter 22

398 Part VI: The Part of Tens

You can find a wealth of datasets on the Internet. However, not every dataset
is created equal, and you need to choose your challenges with care. These
ten datasets provide well‐known functionality, often provide you with tutori-
als, and appear in scientific papers. These three features make these datasets
stand apart from the competition. Yes, other good datasets are available, but
these ten datasets provide skills needed to conquer even bigger challenges,
such as that database lurking on your company server.

Meeting the Data Science London +
Scikit‐learn Challenge

You use Scikit‐learn quite a bit while using this book, so you may already
understand it a bit. The Kaggle competition at http://www.kaggle.
com/c/data‐science‐london‐Scikit‐learn (the current competition
ended in December 2014, but there should be others) provides a practice
ground for trying, sharing, and creating examples using the Scikit‐learn clas-
sification algorithms. All the tools for the previous competition are still in
place, and it’s still well worth exploring. The goal is to try, create, and share
examples of using Scikit‐learn’s classification capabilities. You can find the
data used for the competition at http://www.kaggle.com/c/data‐
science‐london‐scikit‐learn/data. The rules appear at http://
www.kaggle.com/c/data‐science‐london‐scikit‐learn/rules,
and you can discover how Kaggle evaluates your submissions at http://
www.kaggle.com/c/data‐science‐london‐scikit‐learn/details/
evaluation.

Of course, you might not have any desire to compete. Looking at the leader-
board (http://www.kaggle.com/c/data‐science‐london‐scikit‐
learn/leaderboard) may keep you from seriously considering actual
competition because the contest has attracted some serious data scientists.
However, you can still enjoy the competition by keeping track of the leaders
and also checking out the tutorials at http://www.kaggle.com/c/data‐
science‐london‐scikit‐learn/visualization. Working through the
tutorials will help you better understand how data science works, which may
be the real prize in going to this site.

Because this site builds on knowledge you already have from the book, it’s
actually the best place to begin building new skills. That’s why this site
appears first in the chapter: You can get a good start using other datasets
with techniques you already know.

http://www.kaggle.com/c/data-science-london-scikit-learn
http://www.kaggle.com/c/data-science-london-scikit-learn
http://www.kaggle.com/c/data-science-london-scikit-learn/data
http://www.kaggle.com/c/data-science-london-scikit-learn/data
http://www.kaggle.com/c/data-science-london-scikit-learn/rules
http://www.kaggle.com/c/data-science-london-scikit-learn/rules
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/leaderboard
http://www.kaggle.com/c/data-science-london-scikit-learn/leaderboard
http://www.kaggle.com/c/data-science-london-scikit-learn/visualization
http://www.kaggle.com/c/data-science-london-scikit-learn/visualization

399 Chapter 22: Ten Data Challenges You Should Take

Predicting Survival on the Titanic
You work with the Titanic data to some extent in the book (Chapters 5
and 20) by using Titanic.csv. Even if you chose not to compete in the chal-
lenge described in the previous section, this challenge is actually much easier
because Kaggle designed it for the beginner. You can find it at http://www.
kaggle.com/c/titanic‐gettingStarted. The data model, found at
http://www.kaggle.com/c/titanic‐ gettingStarted/data, is dif-
ferent from the one in the book, but the concepts are the same. You can find
the rules for this competition at http://www.kaggle.com/c/titanic‐
gettingStarted/rules and the method of evaluation at http://www.
kaggle.com/c/titanic‐ gettingStarted/details/evaluation.

You can find the leaderboard for this competition at http://www.kaggle.
com/c/titanic‐gettingStarted/leaderboard. The number of people
who have already achieved what amounts to a perfect score should fill you
with confidence.

The biggest challenge in this case is that the dataset is quite small and
requires that you create new features in order to obtain an accurate score.
The competition helps you apply the skills you learn in the “Considering
the Art of Feature Creation” section of Chapter 8 and see demonstrated in
Chapter 19. You can gain additional insights into the techniques for working
through this challenge by viewing the tutorials at http://www.kaggle.
com/c/titanic‐gettingStarted/prospector#208.

Finding a Kaggle Competition
that Suits Your Needs

Competitions are great at helping you think through solutions in an
 environment in which others are doing the same. In the real world, you may
find yourself pitted against competition on a regular basis, so competitions
provide good experiences in thinking critically and quickly. They also pres-
ent you with an opportunity to learn from others. The best place to find
such competitions is on the Kaggle site at http://www.kaggle.com/
competitions.

This site will help you locate any past or present Kaggle competition. To find
a present competition, click the Active Competitions link. To find a past com-
petition, click the All Competitions link. All the datasets are freely available,

http://www.kaggle.com/c/titanic-gettingStarted
http://www.kaggle.com/c/titanic-gettingStarted
http://www.kaggle.com/c/titanic-gettingStarted/data
http://www.kaggle.com/c/titanic-gettingStarted/rules
http://www.kaggle.com/c/titanic-gettingStarted/rules
http://www.kaggle.com/c/titanic-gettingStarted/details/evaluation
http://www.kaggle.com/c/titanic-gettingStarted/details/evaluation
http://www.kaggle.com/c/titanic-gettingStarted/leaderboard
http://www.kaggle.com/c/titanic-gettingStarted/leaderboard
http://www.kaggle.com/c/titanic-gettingStarted/prospector#208
http://www.kaggle.com/c/titanic-gettingStarted/prospector#208
http://www.kaggle.com/competitions
http://www.kaggle.com/competitions

400 Part VI: The Part of Tens

so you have a chance to try your skills against any real‐world scenario you
might want to select. The Kaggle community will provide you with plenty of
tutorials, benchmarks, and beat‐the‐benchmarks posts.

You don’t have to select an ongoing competition. For example, you might see
a past competition that meets a need and try that instead (benefitting from
the published solutions). If you take an active competition you can post your
questions on the forum and have some of the most skilled data scientists in
the world answer your questions and doubts. Because of the great number of
competitions on this site, it’s likely that you’ll find a competition that will suit
your interests!

It’s interesting to note that the Kaggle competitions come from companies
that don’t normally have access to data scientists, so you really are work-
ing in a real world environment. Check out the write‐up at http://www.
kaggle.com/solutions/competitions (by clicking the Host link on
the main page) to learn more about how Kaggle creates the competitions.
You can also use this site to locate a potential job. Just go to http://www.
kaggle.com/jobs by clicking the Jobs link on the main page.

Honing Your Overfit Strategies
The Madelon Data Set at https://archive.ics.uci.edu/ml/datasets/
Madelon is an artificial dataset containing a two‐class classification problem
with continuous input variables. This NIPS 2003 feature selection challenge
will seriously test your skills in cross‐validating models. The main emphasis
of this challenge is to devise strategies for avoiding overfit — an issue that
you first confront in the “Finding more things that can go wrong” section of
Chapter 16. You find overfit issues mentioned in Chapters 18, 19, and 20 as
well. To obtain the dataset, contact Isabelle Guyon at the address found in
the Source section of the page at https://archive.ics.uci.edu/ml/
datasets/Madelon.

This particular dataset attracted the attention of a number of people
who created papers about it. The best papers appear in the book Feature
Extraction, Foundations and Applications at http://www.springer.com/
us/book/9783540354871. You can also download an associated techni-
cal report from http://clopinet.com/isabelle/Projects/ETH/
TM‐fextract‐class.pdf. The Advances in Neural Information Processing
Systems 17 (NIPS 2004) at http://papers.nips.cc/book/advances‐
in‐neural‐information‐processing‐systems‐17‐2004 also contains
useful links to papers that will help you with this particular dataset.

http://www.kaggle.com/solutions/competitions
http://www.kaggle.com/solutions/competitions
http://www.kaggle.com/jobs
http://www.kaggle.com/jobs
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
http://www.springer.com/us/book/9783540354871
http://www.springer.com/us/book/9783540354871
http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-17-2004
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-17-2004

401 Chapter 22: Ten Data Challenges You Should Take

Trudging Through the MovieLens Dataset
The MovieLens site (https://movielens.org/) is all about helping you
find a movie you might like. After all, with millions of movies out there, find-
ing something new and interesting could take time that you don’t want to
spend. The setup works by asking you to input ratings for movies you already
know about. The MovieLens site then makes recommendations for you based
on your ratings. In short, your ratings teach an algorithm what to look for,
and then the site applies this algorithm to the entire dataset.

You can obtain the MovieLens dataset at http://grouplens.org/
datasets/movielens/. The interesting thing about this site is that you can
download all or part of the dataset based on how you want to interact with it.
You can find downloads in the following sizes:

 ✓ 100,000 ratings from 1,000 users on 1,700 movies

 ✓ 1 million ratings from 6,000 users on 4,000 movies

 ✓ 10 million ratings and 100,000 tag applications applied to 10,000 movies
by 72,000 users

 ✓ 20 million ratings and 465,000 tag applications applied to 27,000 movies
by 138,000 users

 ✓ MovieLens’s latest dataset in small or full sizes (the full size contained
21,000,000 ratings and 470,000 tag applications applied to 27,000 movies
by 230,000 users as of this writing but will increase in size with time)

This dataset presents you with an opportunity to work with user‐generated
data using both supervised and unsupervised techniques. The large datasets
present special challenges that only big data can provide. You can find some
starter information for working with supervised and unsupervised techniques
in Chapters 15 and 19.

Getting Rid of Spam Emails
Everyone wants to get rid of spam email — those time wasters that contain
everything from invitations to join in a fantastic new venture to pornography.
Of course, the best way to accomplish the task is to create an algorithm to
do the sorting for you. However, you need to train the algorithm to perform
its work, which is where the Spambase Data Set comes into play. You can
find the Spambase Data Set at https://archive.ics.uci.edu/ml/
datasets/Spambase.

https://movielens.org/
http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase

402 Part VI: The Part of Tens

This collection of spam emails came from postmasters and individuals who
had filed spam reports. It also includes nonspam email from various sources
to allow the creation of filters that let good emails through. This is a complex
challenge dealing with textual data and complex, different targets.

You can find a number of papers that cite this particular dataset. The follow-
ing list provides a quick overview of the pertinent papers and their host sites:

 ✓ Los Alamos National Laboratory Stability of Unstable Learning
Algorithms (http://rexa.info/paper/ a2734ae038cae739315993
4e860c24a52dc2754d)

 ✓ Modeling for Optimal Probability Prediction (http://rexa.info/
paper/631197638c7e0317c98e1a8d98e5fce8921aa758)

 ✓ Visualization and Data Mining in an 3D Immersive Environment: Summer
Project 2003 (http://rexa.info/paper/48d6beec2a36a87d9d88b
6de85dd85a75e5ed24d)

 ✓ Online Policy Adaptation for Ensemble Classifiers (http://rexa.
info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b)

Working with Handwritten Information
Pattern recognition, especially working with handwritten information, is an
important data science task. The Mixed National Institute of Standards and
Technology (MNIST) dataset of handwritten digits at http://yann.lecun.
com/exdb/mnist/ provides a training set of 60,000 examples, and a test
set of 10,000 examples. This is a subset of the original National Institute of
Standards and Technology (NIST) dataset found at http://srdata.nist.
gov/gateway/gateway?keyword=handwriting+recognition. It’s a
good dataset to use to learn how to work with handwritten data without
having to perform a lot of preprocessing at the outset.

The dataset appears in four files. The two training and two test files contain
images and labels. You need all four files in order to create a complete data-
set for working with digits. A potential problem in working with the MNIST
dataset is that the image files aren’t in a particular format. The format used
for storing the images appears at the bottom of the page. Of course, you
could always build your own Python application for reading them, but using
code that someone else has created is a lot easier. The following list provides
places where you can get code to read the MNIST dataset using Python:

 ✓ http://cs.indstate.edu/~jkinne/cs475‐f2011/code/
mnistHandwriting.py

 ✓ http://g.sweyla.com/blog/2012/mnist‐numpy/

http://rexa.info/paper/a2734ae038cae7393159934e860c24a52dc2754d
http://rexa.info/paper/a2734ae038cae7393159934e860c24a52dc2754d
http://rexa.info/paper/631197638c7e0317c98e1a8d98e5fce8921aa758
http://rexa.info/paper/631197638c7e0317c98e1a8d98e5fce8921aa758
http://rexa.info/paper/48d6beec2a36a87d9d88b6de85dd85a75e5ed24d
http://rexa.info/paper/48d6beec2a36a87d9d88b6de85dd85a75e5ed24d
http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b
http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://srdata.nist.gov/gateway/gateway?keyword=handwriting+recognition
http://srdata.nist.gov/gateway/gateway?keyword=handwriting+recognition
http://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
http://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
http://g.sweyla.com/blog/2012/mnist-numpy/

403 Chapter 22: Ten Data Challenges You Should Take

 ✓ http://martin‐thoma.com/classify‐mnist‐with‐pybrain/

 ✓ https://gist.github.com/akesling/5358964

The host page also contains an important listing of methods used to work
with the training and test set. The list contains an impressive number of clas-
sifiers that should give you some ideas for your own experiments. The point
is that this particular dataset is useful for all sorts of different tasks.

You have worked with the digits toy dataset from Scikit‐learn in a number
of chapters in the book. To use this dataset, you import the digits database
using from sklearn.datasets import load_digits. This particular
dataset appears in Chapters 12, 15, 17, 19, and 20, so you gain a considerable
amount of experience in working with a much smaller digits database when
you work through the examples in those chapters.

Working with Pictures
The Canadian Institute for Advanced Research (CIFAR) datasets at http://
www.cs.toronto.edu/~kriz/cifar.html provide you with graphics
content to work with in various ways. The CIFAR‐10 and CIFAR‐100 datasets
contain labeled subsets of a dataset with 80 million tiny images (you can read
about how the dataset works with the original image dataset in the Learning
Multiple Layers of Features from Tiny Images technical report at http://
www.cs.toronto.edu/~kriz/learning‐features‐2009‐TR.pdf). In
the CIFAR‐10 dataset, you find 60,000 32 x 32 color images in ten classes (for
6,000 images in each class). Here are the classes you find:

 ✓ Airplane

 ✓ Automobile

 ✓ Bird

 ✓ Cat

 ✓ Deer

 ✓ Dog

 ✓ Frog

 ✓ Horse

 ✓ Ship

 ✓ Truck

http://martin-thoma.com/classify-mnist-with-pybrain/
https://gist.github.com/akesling/5358964
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

404 Part VI: The Part of Tens

The CIFAR‐100 dataset contains more classes. Instead of 10 classes, you get
100 classes containing 600 images each. The size of the dataset is the same,
but the number of classes is larger. The classification system is hierarchical
in this case. The 100 classes divide into 20 superclasses. For example, in the
aquatic mammals superclass, you find the beaver, dolphin, otter, seal, and
whale classes.

Both CIFAR datasets come in Python, MATLAB, and binary versions. Make
sure that you download the correct version and follow the instructions for
using them on the download page. Yes, you could use the other versions with
Python, but doing so would require a lot of extra programming, and because
you already have access to a Python version, you wouldn’t gain anything
from the exercise.

This is an excellent challenge to take after you have worked with the digits
dataset described in the previous section. Taking this challenge helps you to
deal with colorful, complex images. If you worked through the examples in
Chapter 14, you already have some experience working with images using the
toy Olivetti Faces dataset.

Analyzing Amazon.com Reviews
If you want to work with a really large dataset, try the Amazon.com review
dataset at https://snap.stanford.edu/data/web‐Amazon.html.
This dataset consists of reviews from Amazon.com taken over a period
of 18 years, including ~35 million reviews up to March 2013. The reviews
include product and user information, ratings, and a plain‐text review. This
is the dataset to tackle after you work through smaller datasets, such as
MovieLens. It can help you understand how to work with user‐generated data
in a business context.

Unlike many of the datasets in this chapter, the Amazon.com dataset comes
in a number of forms. Yes, you can download all.txt.gz to obtain the
entire dataset (11GB of data), but you also have the option to download just
portions of the dataset. For example, you can choose to download just the
184,887 reviews associated with baby products by obtaining Baby.txt.gz
(a 42MB download).

Make sure to check out the bottom of the page. The site owner has thought-
fully provided you with the Python code required to interpret the data. Using
this simple function makes working with the immense dataset a lot easier.
Even if you choose to create a modified version of the function, you at least
have a good starting point.

https://snap.stanford.edu/data/web-Amazon.html

405 Chapter 22: Ten Data Challenges You Should Take

Interacting with a Huge Graph
Imagine trying to work through the connections between 3.5 billion web
pages. You can do just that by downloading the immense dataset at http://
www.bigdatanews.com/profiles/blogs/big‐data‐set‐3‐5‐
billion‐web‐pages‐made‐available‐for‐all‐of‐us. The biggest,
richest, most complex dataset of all is the Internet itself. Start with a subsam-
ple offered by the Common Crawl 2012 web corpus (http://commoncrawl.
org/) and learn how to extract and elaborate data from web sites. The prin-
ciple uses for this dataset are:

 ✓ Search algorithms

 ✓ Spam detection methods

 ✓ Graph analysis algorithms

 ✓ Web science research

Pay particular attention to the Contents section near the middle of the page.
Clicking a link takes you to an entry at http://webdatacommons.org/
hyperlinkgraph/ that explains the dataset in more detail. You need the
additional information to perform most data science tasks. Near the bottom
of the page are links for downloading various levels of the entire graph
(fortunately, you don’t have to download everything, which would be a
45GB download for the index file and a 331GB download for the arc file).

Don’t let the idea of performing an analysis on such a large dataset scare
you. If you worked through the examples in Chapter 7, you have worked with
simple graph data. This dataset is a similar task but on a significantly larger
scale. Yes, size does matter to some extent, but you already know some of
the required techniques for getting the job done.

This particular site provides access to a number of other datasets. Links
for these datasets are at the bottom of the page. For example, you can
find “Great statistical analysis: forecasting meteorite hits” at http://
www. analyticbridge.com/profiles/blogs/great‐statistical‐
analysis‐forecasting‐meteorite‐hits. In short, if analyzing the
entire Internet doesn’t appeal to you, try one of the other amazing (and
huge) datasets.

http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
http://commoncrawl.org/
http://commoncrawl.org/
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
http://www.analyticbridge.com/profiles/blogs/great-statistical-analysis-forecasting-meteorite-hits
http://www.analyticbridge.com/profiles/blogs/great-statistical-analysis-forecasting-meteorite-hits
http://www.analyticbridge.com/profiles/blogs/great-statistical-analysis-forecasting-meteorite-hits

406 Part VI: The Part of Tens

• Symbols and
Numerics •
<< (Left shift) operator, 62
!= operator, 63
= operator, 63
?? (double question mark),

205, 207
!= operator, 63
% operator, 61
%= operator, 60
%cd magic function, 206
%colors magic function, 206
%file magic function, 208
%matplotlib magic

function, 212
%pdef magic function, 208
%pdoc magic function, 208
%pinfo magic function, 208
%pinfo2 magic function, 208
%quickref magic function,

206
%source magic function, 208
%%timeit cell magic,

228–229
%timeit line magic, 228
* operator, 61
** operator, 61
**= operator, 60
*= operator, 60
+ operator, 61
+= operator, 60
- operator, 61
-= operator, 60
/ operator, 61
//= operator, 60
/= operator, 60
= operator, 60
== operator, 63
 operator, 63
= operator, 63
& (And) operator, 62
^ (Exclusive or) operator, 62
| (Or) operator, 62
>> (Right shift) operator, 62
// operator N, 61

• A •
ABC language, 22
academic papers, 152
accessibility of graphics, 169
accuracy error measure in

classification, 324
AdaBoostClassifier, 383, 384
add_edges_from(), 196
addition, time values, 118
add_node(), 196, 198
add_nodes_from(), 196, 198
add_path(), 198
adjacency matrix, 146
adjacency_matrix(), 147
Advances in Neural

Information Processing
Systems 17 (NIPS 2004),
400

agglomerative clustering, 274,
282–286, 288

aggregating data, 128–129
aggregation, defined, 128
algorithms. See also specific

algorithms
machine-learning

bias and variance, 321–322
cross-validation, 328–331
fitting a model. See fitting a

model
in general, 319
no-free-lunch theorem, 322
problematic aspects, 321
searching for optimal

hyperparameters, 334–340
simple and effective, 303–318

k-Nearest Neighbors (kNN),
315–318

linear regression, 304–307
logistic regression, 307–310
Naïve Bayes, 310–315

speed of execution and, 31
SVM (Support Vector

Machines)
classifying with SVC and,

360–365
complex data and, 357–358

fixing many new
parameters, 358–360

main benefits and
drawbacks of, 354–355

margin, 356
nonlinear functions and,

365–366
origin of, 355
outliers detection with, 299
overview, 341, 355–358
steps in setting up a

working model, 358
stochastic solution with,

368–371
align parameter, bar

charts, 182
Al-Kindi, 12
alpha parameter, 348–350, 386
Amazon.com dataset, 404
Anaconda

applications and utilities
in, 25

basic description of, 25–26
Continuum Analytics

Anaconda, 39
installing on Linux, 45
installing on Mac OS X, 46–47
installing on Windows, 41–44
tools, 199–214

IPython console, 200–208
IPython Notebook, 208–214

Anaconda Command Prompt,
26–27

analysis, data
boxplots

in general, 239, 240
inspecting, 244–245
outliers, 293
overview, 184–185
t-tests after, 245–246
Tukey, 293–294

categorical data, 241–242
central tendency measures,

238
chi-square, 253
contingency tables, 243
as core competency of data

science, 13

Index

408 Python for Data Science For Dummies

analysis, data (continued)
descriptive statistics for

numeric data, 237
EDA approach, 236–237
exploratory, 15
frequencies, 242–243
normality measures,

240–241
obtaining insights and data

products, 15–16
overview, 30
parallel coordinates,

246–247
percentiles, 239–240
scikit-learn library, 35
SVD (Singular Value

Decomposition). See
SVD (Singular Value
Decomposition)

variance and range, 239
AnalyticBridge, 396
annotate(), 175
annotations, MatPlotLib,

174–175
anomalies, 292
ANOVA (Analysis Of Variance)

test, 245, 246, 331
Anyone Can Code, 396
APIs (Application

Programming Interfaces),
101

append(), 79, 125
arguments

default value, 72
in general, 69
positional, 71
sending by keyword, 71–72
sending required, 70–71
variable number of, 72–73

arithmetic operators, 61
arrays, performing operations

on, 156–159
ASCII (American Standard

Code for Information
Interchange), 135

Aspirational Data
Scientist, 395

assignment operators, 60
average linkage method, 283
axes

MatPlotLib
formatting, 167
obtaining access to, 167
overview, 166–167

representing time on,
190–191

• B •
bag of words model, 140–142,

222, 224
bagging classes, 379–380
bar charts, 181–182
BaseEstimator (Scikit-learn),

218
Basemap Toolkit, 194
Bayes, Thomas, 310, 311
Beautiful Soup library,

overview, 35–36
Beginning Programming with

Python For Dummies, 10,
24, 57

benchmarking with timeit,
228–230

BernoulliNB, 313
bias, 321–322
big data

clustering, 281–282
defined, 257
determining when there is

too much data, 351
linking data science and, 13
overview, 351–354
Stochastic Gradient Descent

Regressor or Stochastic
Gradient Descent
Classifier, 351–353

binning, 107, 155, 241, 242, 253
bins, histogram, 183
bitwise operators, 62
bivariate analysis, 243, 244
Boolean values, 59, 134
boosting, decision trees and,

383–387
Boston dataset

dividing between training
and test sets, 325–326

overview, 34
sampling stratifications for

complex data, 329–330
Scikit-learn and, 220
variable transformations, 342

Bower, Jonathan, 396
boxplot(), 185
boxplots

in general, 239, 240
inspecting, 244–245
outliers, 293
overview, 184–185
t-tests after, 245–246
Tukey, 293–294

branches of decision trees, 375

Breiman, Leo, 378, 379
bunch, 142, 143

• C •
C parameter, 359, 364, 368, 369
caller, 68
Canadian Institute for

Advanced Research
(CIFAR) datasets, 403–404

Canopy Express, 40
cases

adding new, 125–126
removing, 126–127

categorical data, 241–242
categorical variables

combining levels, 115–116
creating, 113–114
defined, 112
manipulating, 112–116
renaming levels, 114–115

cells, IPython Notebook
overview, 208
styles, 208–210

central tendency, measures
of, 238

centroid-based algorithms,
275–279

CHAR variable, 330, 331
Chebyshev's inequality, 295
checkpoint, restoring a

(IPython Notebook),
210–211

chi-square, 253, 332, 334
CIFAR (Canadian Institute

for Advanced Research)
datasets, 403–404

classes, Scikit-learn, 218–219
classification evaluation

measures, 324
classifiers. See specific

classifiers
bag of words model and, 140

classifying, with SVC, 360–365
class_weight parameter, 362
clause, defined, 74
clear screen (cls), IPython

console, 202
Cleveland, William S., 11
cluster analysis, outliers and,

298–299
clustering

big data, 281–282
centroid-based algorithms,

275–277

409 Index

DBScan, 286–288
defined, 274
downloadable source, 274
hierarchical (agglomerative),

274, 282–286, 288
image data example, 277–278
inertia and, 280–282
kinds of techniques, 274
K-means algorithm, 275, 277,

282, 285
optimal solutions, 278–281
overview, 273–274
partition-clustering

techniques, 274
code blocks, 69
code repository, defining the,

48–54
code reusability, 69
Code style, 208
coding techniques, speed of

execution and, 31
collaborative filtering, 270
colors

histogram, 183
MatPlotLib, 170–171
pie charts, 180
scatterplot, 187

Colors tab, IPython, 203
columns. See also Feature

creation
removing, 127
slicing, 123

Common Crawl 2012 web
corpus, 405

complete linkage method, 283
complex numbers, 59
Component Object Model

(COM) applications, 101
components, defined, 263
computer languages, 22
concatenating data, 124–125
conditional statements, 73
Conductrics, 394–395
contextualizing problems and

data
evaluating a data science

problem, 151
formulating a hypothesis,

152–153
overview, 150–151
researching solutions,

151–152
contingency tables, 243
Continuum Analytics

Anaconda, 39
correlations

nonparametric, 252–253
Pearson, 252
scatterplots, 188–189
Spearman, 252
squaring, 252
using, 250–253

Cosine distance, 284
counterclock parameter, pie

charts, 181
CountVectorizer(), 137
CountVectorizer, 137, 226–228
covariance, 250–252
cross-validation

hyperparameters and,
334–339

on KFolds, 329–331
overview, 232, 328–329
sampling stratifications for

complex data, 329–331
cross_val_score function,

329, 363
csc_matrix, 226
CSV files, reading, 92–94
cumsum function (NumPy), 260
Cutler, Adele, 378
cycle_graph(), 147

• D •
data. See also specific topics

contextualizing
evaluating a data science

problem, 151
form ulating a hypothesis,

152–153
overview, 150–151
researching solutions,

151–152
learning from, 15
overview, 85–86
preparing

data science pipeline, 14
for feature creation,

153–154
indicator variables and,

155–156
overview, 14
steps in, 107

sampling, 89–90
streaming large amounts into

memory, 88–89
in structured flat-file form,

90–91
uploading small amounts into

memory, 87–88

data analysis
boxplots

in general, 239, 240
inspecting, 244–245
outliers, 293
overview, 184–185
t-tests after, 245–246
Tukey, 293–294

categorical data, 241–242
central tendency measures,

238
chi-square, 253
contingency tables, 243
as core competency of data

science, 13
descriptive statistics for

numeric data, 237
EDA approach, 236–237
exploratory, 15
frequencies, 242–243
normality measures,

240–241
obtaining insights and data

products, 15–16
overview, 30
parallel coordinates, 246–247
percentiles, 239–240
scikit-learn library, 35
SVD (Singular Value

Decomposition). See
SVD (Singular Value
Decomposition)

variance and range, 239
data capture, as core

competency of data
science, 12

data density approaches, 274
data dimensionality. See

dimensionality
data errors, forms of, 289
data map

creating a, 110–112
defined, 110
example of, 110–111

data mining, scikit-learn
library, 35

data munging, 217
data pipeline, building a, 30
data plan, 110, 111
data science. See also specific

topics
choosing a language, 10–11
contextualizing problems and

data
evaluating a data science

problem, 151

410 Python for Data Science For Dummies

data science. (continued)
formulating a hypothesis,

152–153
overview, 150–151
researching solutions,

151–152
core competencies of data

scientists, 12–13
emergence of, 11–12
linking big data and, 13
origin of, 11–12
Python's role in, 16–17
resource collections,

391–396
AnalyticBridge, 396
Aspirational Data Scientist,

395
Conductrics, 394–395
Data Science Central, 393
Data Science Weekly, 392
GitHub, 396
KDnuggets, 392–393
overview, 391
Quora, 394
U Climb Higher, 392

the shifting profile of data
scientists, 16–17

understanding the problem,
149–150

Data Science Central, 393
Data Science London + Scikit-

learn Challenge, 398
data science pipeline, creating,

14–16
Data Science Weekly, 392
data shaping, overview,

105–106
data wrangling, 217
databases

NoSQL, 100–101
relational, managing data

from, 98–100
DataFrame

categorical, 241
defined, 107

DataFrame object, 99, 103, 125,
126, 343

DataFrame.to_sql(), 99
datasets

challenging, 397–405
Amazon.com dataset, 404
Canadian Institute for

Advanced Research
(CIFAR) datasets, 403–404

Common Crawl 2012 web
corpus, 405

Data Science London +
Scikit-learn Challenge, 398

Kaggle competitions,
399–400

Madelon Data Set, 400
Mixed National Institute

of Standards and
Technology (MNIST),
402–403

MovieLens dataset, 401
Spambase Data Set, 401–402

downloading, 47
speed of execution and size

of, 30–31
understanding, 54–55, 150

dates
formatting, 117
interacting with, 66–68
representation for, 116

datetime.datetime.now(), 67
DBScan

outliers and, 298–299
overview, 286–288

decision trees
boosting predictions, 383–

387
overview, 374–378

DecisionTreeClassifier class,
Scikit-learn, 376, 377

DecisionTreeRegressor class,
Scikit-learn, 376, 378

deprecation warning, 310
deques, defined, 79
describe(), 111, 112
descriptive statistics for

numeric data, 237–238
deterministic selection,

225–227
diabetes dataset, 293
dicing a dataset, 123–124
dictionaries

defined, 78
indexing data using, 82

DiGraph() constructor, 197
dimensionality

defined, 257
reducing, 257–272

applications, 264–272
defined, 257
extracting topics with NMF,

267–269
factor analysis, 261–263
overview, 257–258
PCA (principal components

analysis), 263–265, 268,
277, 278, 297–298

recognizing faces with PCA,
265–267

recommending movies,
270–272

SVD (Singular Value
Decomposition), 258–264

dir(), 207
in general, 32

directed graphs, 195, 197–198
discretization, 155
distributions

graphing with histograms,
247–248

modifying, 253–254
normal, 254
transforming, 156

Domingos, Pedro, 154
DoSum(), 70–71
dot function, SVD and, 259
double question mark (??),

205, 207
downloadable source code, in

general, 18, 37
drawcoastlines(), 194
drawcountries(), 194
draw_networkx(), 198
drop(), 126
dropna(), 120
dual parameter, LinearSVC,

368, 369
duplicates, removing, 109–110

• E •
EDA (Exploratory Data

Analysis)
applied visualization for,

243–244
approach of, 236–237
downloadable source, 236
Initial Data Analysis (IDE)

and, 236
modifying data distributions,

253–254
nonlinear transformations

and, 342
origin of, 236
overview, 235
Z-score standardization, 254

edges, adding, 196, 198
Edit menu, IPython console, 201
ElasticNet regularization,

350–352
elif clause, 74
else clause, 74

411 Index

embedding plots and
other images (IPython
Notebook), 212

ensemble machine-learning
methods, 233

ensemble of models, 379
ensembles, defined, 373
Enthought Canopy Express, 40
enumerations, 112
eps parameter, 286, 287, 298
epsilon, defined, 367
epsilon-Support Vector

Regression (SVR), 366–368
error functions, 292
errors, data, forms of, 289
escape character, 78
estimator interface,

Scikit-learn, 219–221
ETL (Extract, Transformation,

and Loading), 13
Euclidean distance, 276–277,

283, 284, 317
evaluating a data science

problem, 151
evaluation metrics for

algorithms, 323
examples, from online sites

(IPython Notebook), 212
Excel

CSV files, 92–93
reading files, 94–95

ExcelFile() constructor, 95
Exploratory Data Analysis

(EDA)
applied visualization for,

243–244
approach of, 236–237
downloadable source, 236
Initial Data Analysis (IDE)

and, 236
modifying data distributions,

253–254
nonlinear transformations

and, 342
origin of, 236
overview, 235
Z-score standardization, 254

extracting data, in general, 13

• F •
F score, 344
faces, recognizing, with PCA,

265–267
factor analysis, 261–263

feature creation (feature
engineering), 153–156

binning and discretization,
155

combining variables, 154–155
defined, 153
preparing data, 153–154

Feature Extraction, Foundations
and Applications, 400

features, database, 86, 150
fetch_20newsgroups(), 142–144
fetch_20newsgroups(subset=

'train'), 54
fetch_olivetti_faces(), 54
fillcontinents(), 194
fillna(), 120
filtering data, 122
fit(), 121, 278
fit(X,y), 219–220
fitting a model

bias and variance, 321–322
classification evaluation

measures, 324–325
dividing between training

and test sets, 325–328
overview, 320–321
regression evaluation

measures, 323–324
strategy for picking models,

322–325
flat files, accessing data in,

90–91
F1 score, 324–325
Font tab, IPython, 202
for loop, 75–76
frequencies, 242–243
function arguments

default value, 72
in general, 69
positional, 71
sending by keyword, 71–72
sending required, 70–71
variable number of, 72–73

functional coding style, 17
functions. See also specific

functions
calling, 70–73
creating and using, 68–73
creating reusable, 68–70

• G •
gamma parameter, 299, 360,

365, 367
Gaussian distribution

outliers, 294–295
overview, 254

GaussianNB, 313
GBM (Gradient Boosting

Machine), 385–387
geographical data, plotting,

193–194
Gershoff, Matt, 395
GitHub, 396
gradient boosting classifier,

385
Gradient Boosting Machine

(GBM), 385–387
gradient boosting regressor,

385–386
graph data

adjacency matrix, 146
NetworkX basics, 146–148
overview, 145

Graph() constructor, 196
graphs (graphing). See also

MatPlotLib
directed, 195, 197–198
and multimedia integration,

212
obtaining online, 212–214
types of, 180–186
undirected, 195–196

greedy selection, 331,
333–334

Greenwich Mean Time
(GMT), 117

grid(), 168
grid searching, 335–339
grids, MatPlotLib, 166, 168–169
GridSearch class, 337
GridSearchCV, 340, 364–367
grid-searching, 232
ground truth, 278, 279
groupby(), 111
Guido van Rossum, 22

• H •
hairballs, 146
handles, defined, 167
handwritten information,

402–403
hash(), 223
hash functions, Scikit-learn,

223–225
hashing trick, 222–229, 314
HashingVectorizer, 226–228
hatch parameter, bar

charts, 182

412 Python for Data Science For Dummies

help
IPython, 205
Python, 203–204

help(), 203
help(mylist), 207
help prompt, Python, 203
hierarchical clustering,

282–285
high-dimensional sparse

dataset, 142
histograms, 247–248

MatPlotLib, 183–184
HTML data (HTML

documents), Beautiful
Soup and, 35, 36

HTML pages, 132–134
hyperparameters

defined, 334
GBM (Gradient Boosting

Machine), 386–387
Scikit-learn, 220
searching for optimal

grid searching, 335–339
randomized searches,

339–340
hyperplane, 358
hypothesis, 221

formulating a, 152–153

• I •
IDE (Initial Data Analysis), 236
identity operators, 66
if statement

indentation of, 25
making decisions using,

73–74
immutable tuples, 80
imperative coding style, 17
importing a module, 67
imputing missing data, 120–121
imread() method, 96
imshow() function, 96
in operator, 66
indentation, need for, 25
indicator variables, 155–156
inertia, 280–282
information redundancy, 250
Information Retrieval (IR), 141
Initial Data Analysis

(IDE), 236
instantiation, Scikit-learn, 220
integers, overview, 59
interactive help, Python,

204–205

International Council for
Science, 11

interquartile range (IQR), 240,
244, 293

IPython
benchmarking with timeit,

228–230
help

object help, 207
overview, 205

memory profiler, 230–231
multiprocessing, 233
objects, 207–208
preferred installer program

(pip), 230
timing and performance,

227–231
IPython console, 200–208

Edit menu, 201
magic functions, 205–206
screen text, 200–202
window appearance, 202–203

IPython environment, 27
IPython Notebook

creating a new notebook,
50–52

defining the code repository,
48–54

display system features, 214
exporting a notebook, 52
in general, 18, 20
importing a notebook, 53–54
loading examples from online

sites, 212
multimedia and graphic

integration, 212–214
overview, 25–26
removing a notebook, 52–53
restarting the kernel, 210
restoring a checkpoint,

210–211
starting, 47–48
stopping the IPython

Notebook server, 48
styles, 208–210
using, 47–48, 208–211

IPython QTConsole, 28
IQR (interquartile range), 240,

244, 293
Iris dataset

hidden factors, 262–263
logistic regression and, 308
matrix of scatterplots, 249
overview, 237

is not operator, 66
is operator, 66

isin(), 116
isnull(), 114, 119
iterators, defining useful, 81–82

• J •
Journal of Data Science, 11
jQuery, 101

• K •
Kaggle competitions, 399–400
KDnuggets, 392–393
Kelvin, Lord, 151
kernel

restarting, 210
specification, 360

kernel trick, 358
keywords

Python help, 204
sending arguments by,

71–72
KFolds, cross-validation on,

329–331
K-means algorithm, 275, 277,

281–286
K-neighbors classifier, 336
kNN (k-Nearest Neighbors),

315–318
kurtosis, 240, 241

• L •
L1 regularization (Lasso),

348–350, 352
L2 regularization (Ridge),

348–350, 352
labels, MatPlotLib, 173, 174
Lasso (L1 regularization),

348–350, 352
Latent Semantic Indexing (LSI),

261, 395
Layout tab, IPython, 203
leaf, decision tree, 375
legend(), 176
legends, MatPlotLib, 174–177
levels

combining, 115–116
decision tree, 375–376
defined, 112
renaming, 114–115

libraries, overview of, 33–36
line styles, MatPlotLib, 170

413 Index

linear models, regularizing,
348–351

linear regression
evaluation measures,

323–324
formula, 304–305, 320
in general, 18
limitations and problems

of, 307
Scikit-learn and, 220
using more variables,

305–306
LinearSVC class, 368–371
lines, MatPlotLib

colors, 170–171
markers, 172–173
overview, 169
styles, 170

links, 145
lists, 78–79
load_boston(), 54
load_diabetes(), 54
load_digits([n_class]), 54
loading data

in general, 13
overview, 18
speed of execution and, 31

load_iris(), 54
loc parameter, 176
local minima, 335
local time, 117–118
logical operators, 63–64
logistic regression, 307–310
loop statements, 73
Los Alamos National

Laboratory Stability
of Unstable Learning
Algorithms, 402

loss parameter, LinearSVC,
368, 369

l1_ratio parameter, 351
LSI (Latent Semantic Indexing),

261, 395
LSTAT, nonlinear

transformations and,
343–344, 346

• M •
machine code, 21
machine-learning algorithms

bias and variance, 321–322
cross-validation, 328–331
fitting a model

bias and variance, 321–322

classification evaluation
measures, 324–325

dividing between training
and test sets, 325–328

overview, 320–321
regression evaluation

measures, 323–324
strategy for picking models,

322–325
in general, 319
no-free-lunch theorem, 322
problematic aspects, 321
searching for optimal

hyperparameters
grid searching, 335–339
randomized searches,

339–340
Madelon Data Set, 400
magic functions

IPython console, 205–206
with objects, 208

main effects model, 344–348
make_classfication, 369
Manhattan (manhattan or l1)

distance, 283, 317
Manuscript on Deciphering

Cryptographic Messages
(Al-Kindi), 12

maps, 193–194
Markdown style, 210
markers, MatPlotLib, 172–173
MathJax error, 49–50
MathJax library, 49–50
MATLAB, in general, 13, 163,

164
MATLAB For Dummies, 13, 163
MatPlotLib

annotations, 174–175
axes, ticks, and grids, 166–

169
bar charts, 181–182
box plots, 184–185
defining a plot, 164–165
histograms, 183–184
labels, 173, 174
legends, 174–177
line appearance

colors, 170–171
markers, 172–173
overview, 169
styles, 170

multiple lines and plots, 165
overview, 35, 164
pie charts, 180–181
saving your work, 165–166
scatterplots

colors, 187
in general, 179
importance of, 187
plotting, 248–249
showing correlations,

188–189
time series, 189–193

matrix (matrices)
arithmetic operations on,

157–158
dimensionality reduction

and, 259
multiplication, 159
of scatterplots, 248–249
sparse, 225–227
vector multiplication, 158

max_depth parameter, 385
max_features parameter, 379
max_samples parameter, 379
mean, 238, 239
mean_absolute_error

evaluation measure, 323
mean_squared_error

evaluation measure,
323, 326

median, 238, 239
member operators, 66
memory profiler, 230–231
microservices, 101–102
Microsoft Office files, reading,

94–95
MiniBatchKMeans, 281, 282
Miniconda installer, 39
min_sample parameter, 286,

287, 298, 378
missing data

encoding missingness, 119
finding, 119
imputing, 120–121
linear regression and, 307
overview, 118–119

Mixed National Institute
of Standards and
Technology (MNIST),
402–403

MNIST (Mixed National
Institute of Standards and
Technology), 402–403

model, fitting a
bias and variance,

321–322
classification evaluation

measures, 324–325
dividing between training

and test sets, 325–328
overview, 320–321

414 Python for Data Science For Dummies

model, fitting a (continued)
regression evaluation

measures, 323–324
strategy for picking models,

322–325
in general, 319
no-free-lunch theorem, 322
problematic aspects, 321
searching for optimal

hyperparameters
grid searching, 335–339
randomized searches,

339–340
model interface, Scikit-learn,

219
model object classes,

Scikit-learn, 221
Modeling for Optimal

Probability Prediction, 402
modules, Python help, 204
MovieLens dataset, 401
movies, recommending,

270–272
multicore parallelism, 232–233
MultiDiGraph(), 197
MultiGraph(), 197
multilabel prediction, 233
multimedia

and graphic integration,
212–214

obtaining online graphs and,
212–214

MultinomialNB, 313
multiplication

matrix, 159
matrix vector, 158

multiprocessing, 232, 233
multivariate approach, outliers

and, 296–299
multivariate correlation, 153
mylist?, 207
mylist??, 207
MySQL, 100

• N •
Naïve Bayes algorithm

formula, 311–312
overview, 310–311
predicting text

classifications, 313–315
uses of, 312–313

National Institute of Standards
and Technology (NIST)
dataset, 402

Natural Language Processing
(NLP), 141

Natural Language Toolkit
(NLTK), 136

NBConvert formatting option,
210

ndarray, NumPy, 157, 269, 293,
343

neighborhoods
k-Nearest Neighbors (kNN)

algorithm, 315–318
overview, 287

n_estimators parameter, 379
nesting, 74–75
NetworkX, 146–148
Newton, Sir Isaac, 320
n-grams, 142–144
NIPS 2003 feature selection

challenge, 400
NIST (National Institute

of Standards and
Technology) dataset, 402

n_iter parameter, 340, 371
NLP (Natural Language

Processing), 141
NLTK (Natural Language

Toolkit), 136
NMF (Non-Negative Matrix

Factorization), extracting
topics with, 267–269

nodes, 145
adding, 196–198

no-free-lunch theorem, 322
nonlinear approach, SVM

(Support Vector
Machines) and, 365

nonlinear functions, SVM
(Support Vector
Machines) and, 365–366

nonlinear transformations,
341–348

nonparametric correlation,
252–253

normal distribution, 254
normality, measures of,

240–241
NoSQL databases, interacting

with data from, 100–101
not in operator, 66
Notebook, IPython

creating a new notebook,
50–52

defining the code repository,
48–54

display system features, 214
exporting a notebook, 52

in general, 18, 20
importing a notebook,

53–54
loading examples from online

sites, 212
multimedia and graphic

integration, 212–214
overview, 25–26
removing a notebook, 52–53
restarting the kernel, 210
restoring a checkpoint,

210–211
starting, 47–48
stopping the IPython

Notebook server, 48
styles, 208–210
using, 47–48, 208–211

novel data, 292
now() command, 67
nu, OneClassSVM and, 299
numbers

complex, 59
converting to strings, 65
floating-point value, 59
integers, 59

NumPy library
covariance and correlation,

251
cumsum function, 260
Iris dataset, 237
knowing when to use, 106
linalg module, 259
logspace function, 364
ndarray, 157, 269, 293, 343
overview, 34

• O •
object-oriented coding style,

17
objects

help, 207
magic functions with, 208
specifics about, 207

Olivetti faces dataset, 54, 265,
404

One versus one, 309
One versus rest, 309
OneClassSVM, 299
one-hot-encoding, 224
OneVsOneClassifier class

(Scikit-learn), 309, 310
OneVsRestClassifier class

(Scikit-learn), 309, 310
online articles and blogs, 152

415 Index

Online Policy Adaptation for
Ensemble Classifiers, 402

Open-Source Data Science
Masters (OSDSM), 394

operator precedence, 64–65
operators

arithmetic, 61
assignment, 60
bitwise, 62
identity, 66
logical, 63–64
member, 66
relational, 63
unary, 61, 64

Options tab, IPython, 202
OSDSM (Open-Source Data

Science Masters), 394
outliers

anomalies and novel data,
292

binning and, 155
DBScan, 286
defined, 290
detection of, 290–292
leveraging the normal

distribution, 294–295
linear regression and, 307
machine-learning algorithms

affected by, 291–292
multivariate approach,

296–299
SVM (Support Vector

Machines) for detection
of, 299

univariate approach, 292–296

• P •
pandas library

categorical data, 241
covariance matrix, 250–251
DataFrame, 237, 238
knowing when to use,

106–107
measuring central tendency,

238
NumPy and, 106
outliers, 293
overview, 34
parsers, 91–92
removing duplicates, 109–110
version of, 113

pandas.crosstab function, 243
parallel coordinates, 246–247
parallelism

multicore, 232–233
overview, 232

parsers, 91–92
parsing HTML or XML,

Beautiful Soup library,
35–36

parsing XML and HTML,
132–133

partition-clustering
techniques, 274

pattern matching, 138–139
pattern-matching characters,

138
PCA (principal components

analysis)
image data, 277–278
outliers and, 297–298
overview, 263–265
recognizing faces with,

265–267
Pearson's correlation,

250, 252
Pearson's r, 252
penalty parameter, LinearSVC,

368, 369
PEPs (Python Enhancement

Proposals), 23–24
percentiles, 239–240
pie charts

overview, 180–181
parameters, 181

pipeline, data science, 14–16
placeholder, 78
plot(), 192
plots

defining, 164–165
drawing multiple lines and,

165
embedding, 212

plot.show(), 164
plotting with matplotlib, 35
plt.axes(), 167
plt.plot(), 164, 165
polyfit(), 189
positional arguments, 71
PostgreSQL, 100
precision, error measure in

classification, 324–325
predictor class, 220, 221
predictor interface, Scikit-

learn, 219
preferred installer program

(pip), 230
preparing data

data science pipeline, 14
for feature creation, 153–154

indicator variables and,
155–156

overview, 14
steps in, 107

presentation, as core
competency of data
science, 13

presenting a result, 30
principal components analysis

(PCA)
image data, 277–278
outliers and, 297–298
overview, 263–265
recognizing faces with,

265–267
probability, Naïve Bayes

algorithm and, 310–315
procedural coding style, 17
processors, speed of execution

and, 31
programming, understanding

role of, 13–14
programming languages,

criteria for choosing, 14
Properties dialog box,

IPython, 202
prototyping, 29–30
psychometrics, 262
Python

applications, 23
capabilities and

characteristics of, 21–24
coding styles supported

by, 17
core philosophy of, 23
development goals of, 23–24
documentation, 152
in general, 10
help, interactive help,

204–205
help mode, 203–204
history of, 23
as multipurpose, simple, and

efficient language, 17
overview of, 24–29
quick overview, 18
versions of, 23

Python 3.4.2, 38, 58, 78
Python console, 200
Python Enhancement

Proposals (PEPs), 23–24
Python interpreter, 26–27
Python Software Foundation

(PSF), 23
Python 2.7.x, 38, 39, 58
pythonxy, 40–41

416 Python for Data Science For Dummies

• Q •
QTConsole, 28
quartiles, 184
queues, defined, 79
Quora, 394

• R •
R language, in general, 10
Random Forest algorithm

optimizing, 382–383
overview, 378–379
working with a Random

Forest classifier, 380–381
working with a Random

Forest regressor, 382
randomized searches, 339–340
RandomizedLasso class, 350
RandomizedLogistic class, 350
RandomizedPCA class, 265
range, 239
range(), bar charts, 182
Raw NBConvert style, 210
raw text

bag of words model, 140–142,
222, 224

n-grams, 142–144
regular expressions, 137–140
shaping, 134
stemming and removing stop

words, 136–137
TF-IDF (Term Frequency

times Inverse
Document Frequency)
transformations, 144–145

Unicode and, 134–135
rbf (radial basis function), 365
read_sql(), 99
read_sql_query(), 99
read_sql_table(), 99
recall, error measure in

classification, 324–325
Receiver Operating

Characteristic Area Under
Curve (ROC AUC), 325

regression, with SVR, 366–368
regular expressions, 137–140
regularization

ElasticNet, 350–352
Elasticnet, 350–351
L1 (Lasso), 348–350, 352
L2 (Ridge), 348–350, 352
leveraging, 350

regularizing, linear models,
348–351

relational databases, managing
data from, 98–100

relational operators, 63
removing data, 126–127
reset_index(), 125, 128
Restart Kernel, IPython

Notebook, 210
RFECV class, 333–334
Ridge (L2 regularization),

348–350, 352
ROC AUC (Receiver Operating

Characteristic Area Under
Curve), 325

rows, slicing, 122–123
r2 (R squared), 323–324

• S •
sample_weight keyword, 362
sampling, stratifications for

complex data, 329–331
sampling data, 89–90
SAS (Statistical Analysis

System) language, in
general, 10–11

saving your work, MatPlotLib,
165–166

scaling, SVM (Support Vector
Machines) and, 363

scatterplots
colors, 187
in general, 179
importance of, 187
plotting, 248–249
showing correlations, 188–189
time series, 189–193

Scikit-learn library
bagging classes, 379–380
classes in, 218–219
classification evaluation

measures, 324–325
cross-validation, 328
defining applications for data

science, 219–222
grid searching, 336
Iris dataset, 237
Kaggle competition, 398
K-means, 276, 277
logistic regression and, 308
multiclass problems, 309–310
multiprocessing, 232–233
Naïve Bayes algorithm and,

313–315

object-based interfaces, 219
outliers, 293, 295
overview, 35, 217
regression evaluation

measures, 323–324
SVM module, 359, 360, 364
toy datasets, 86

SciPy
itemfreq function, 361–362
overview, 33–34
sparse matrices, 226

screenshots, 44
selecting data, 122
sentiment analysis,

Naïve Bayes algorithm
and, 312

sequences, types of, 78–79
sets, performing operations

on, 77–78
set_xlim(), 167
set_xticks(), 167
set_ylim(), 167
set_yticks(), 167
SGD (Stochastic Gradient

Descent) optimization,
352–353

SGDClassifier (Stochastic
Gradient Descent
Classifier), 351–353,
370, 371

SGDRegressor (Stochastic
Gradient Descent
Regressor), 351–353, 370

shadow parameter, pie
charts, 181

shaping data
HTML pages, 132–134
overview, 105, 131
parsing XML and HTML,

132–133
prototyping and

experimentation
process, 30

raw text, 134–140
XPath for data extraction,

133–134
shared variance, 262
show() function, 96
shuffling data, 127–128
skewness, 240, 241
sklearn.grid_search, 335
sklearn.metrics.accuracy_

score, 324
sklearn.metrics.f1_score, 324
sklearn.metrics.precision_

score, 324

417 Index

sklearn.metrics.recall_score,
324

sklearn.metrics.roc_auc_score,
324

sklearn.svm.LinearSVC, 358,
359

sklearn.svm.NuSVC, 358, 359
sklearn.svm.NuSVR, 359
sklearn.svm.OneClassSVM, 359
sklearn.svm.SVC, 358, 359
sklearn.svm.SVR, 359
slicing and dicing data,

122–124
social scientists, 395
sort_index(), 128
sorting data, 127–128
spam detectors, 312
Spambase Data Set, 401–402
sparse matrices, 225–227
Spearman correlation, 252, 254
speed of execution, 30–31
Spyder, 28–29
SQL (Structured Query

Language), in general,
11, 99

SQL Server, 100
sqlalchemy library, 100
SQLite, 100
stacks, defined, 79
standard deviation, 239
stem words, 136–137
stemming, defined, 136
Stochastic Gradient Descent

Classifier (SGDClassifier),
351–353

Stochastic Gradient Descent
(SGD) optimization,
352–353

Stochastic Gradient
Descent Regressor
(SGDRegressor), 351–353,
370

stochastic solution with SVM,
368–371

stop words
Naïve Bayes algorithm and,

314
overview, 136–137

str()
converting numbers to

strings, 65
time and date conversions,

117
StratifiedKFold class, 330
streaming, large amounts of

data, into memory, 88–89

strftime(), 117
strings

creating and using, 65–66
defined, 65

strtobool(), 133
style conventions, 58
styles, IPython Notebook,

208–210
subsample parameter, 385
subtraction, time values, 118
suffixes, removing, to create

stem words, 136
support vectors, defined, 356
SVC (Support Vector

Classifier)
classifying with, 360–365
LinearSVC as faster than,

369, 370
multiprocessing and, 233–234

SVD (Singular Value
Decomposition)

defined, 258
extracting topics, 268
factor and principal

component analysis,
261–262

measuring the invisible with,
260–261

SVM (Support Vector
Machines)

classifying with SVC and,
360–365

complex data and, 357–358
fixing many new parameters,

358–360
main benefits and drawbacks

of, 354–355
margin, 356
nonlinear functions and,

365–366
origin of, 355
outliers detection with, 299
overview, 341, 355–358
steps in setting up a working

model, 358
stochastic solution with,

368–371
SVR (epsilon-Support Vector

Regression), 366–368
Swiss roll datasets, 286

• T •
tables, chi-square for, 253
telephone numbers, 139, 140

test_size parameter, 362
text files. See also Raw text

extracting topics with NMF
(Non-Negative Matrix
Factorization), 267–269

Naïve Bayes algorithm and,
312–315

reading from, 91–92
TF-IDF (Term Frequency

times Inverse
Document Frequency)
transformations, 144–145

TfidfTransformer(), 145
TfidVectorizer class, 268, 269
Thucydides, 12
ticks, MatPlotLib, 166
time

on axes, 190–191
formatting, 117
plotting trends over, 191–192

time series, plotting, 189–193
time values, 116–117
time zones, 117–118
time() command, 67
timedelta(), 118
timeit, benchmarking with,

228–230
timing and performance, 86,

227–231
Titanic.csv, 86, 92, 399
title(), 181
tolist(), 128
tolower(), 134
topics, Python help, 204
toy datasets, Scikit-learn,

86–88, 403
training, Scikit-learn, 221
train_test_split function.test_

size parameter, 327, 362
transform(), 121, 129, 137
transform class, Scikit-learn,

222
transformations (transforming

data)
distributions, 156, 254–255
in general, 13, 14
nonlinear, 341–348
process of, 125
TF-IDF (Term Frequency

times Inverse Document
Frequency), 144–145

variable, 342–344
transformer interface, Scikit-

learn, 219
Trello, 393
trendline, 188, 189, 191, 192

418 Python for Data Science For Dummies

trends, over time, 191–192
TruncatedSVD class, 271
t-tests, after boxplots, 245–246
Tukey, John, 236, 294
Tukey boxplots, 293–294
tuples

creating and using, 80–81
defined, 78

20newsgroups dataset, 141,
143, 145, 268, 313

• U •
U Climb Higher, 392
unary operators, 61, 64
unbalanced class scenario, 362
underfitting, SVM model, 360
undirected graphs, 195–196
Unicode, Beautiful Soup

and, 36
unique variance, 262
univariate approach

to outliers, 292–296
overview, 243
selecting variables, 331–333

unstack(), 111
unstructured data files, 95–98
unsupervised classification,

273, 274
uploading small amounts of

data into memory, 87–88
UTF-8 (Universal

Transformation Format
8-bit), 135

Beautiful Soup and, 36

• V •
validating data

figuring out what's in your
data, 108–109

overview, 107–108
removing duplicates, 109–110

validation curves, 338
validation_curve class, 338
van Rossum, Guido, 22
Vapnik, Vladimir, 355
variable transformations,

342–344
variables

adding new, 125–126
assignment operators, 60
boxplots arranged by, 244
categorical

combining levels, 115–116
creating, 113–114
defined, 112
manipulating, 112–116
renaming levels, 114–115

combining, feature creation
and, 154–155

covariance and correlation,
252

database, 86
in general, 150
indicator, 155–156
interactions between,

344–348
outliers, 290–291
removing, 126–127
selecting the right

greedy selection, 333–334
univariate approach,

331–333
variance

in general, 239
overview, 321–322
shared, 262
unique, 262

vectorization, 157, 158
vectors, arithmetic operations

on, 157–158
visualization. See also graphs

in general, 15
maps, 193–194
overview, 32–33, 179

Visualization and Data Mining
in an 3D Immersive
Environment: Summer
Project 2003, 402

• W •
Ward linkage method, 283
warm_start parameter, 385
web services, 101–102
web-based data, accessing,

101–103
while statement, 76–77
whiskers, 184
width, bar charts, 182
Windows console, IPython,

202–203
WinPython, 41
winsorizing, 296
Wolpert, David, 322

• X •
xlabel(), 174
XML data

accessing, 102–103
Beautiful Soup and, 35
shaping, 132–133

XPath, for data extraction,
133–134

xpath(), 133

• Z •
Z-score standardization, 254

About the Authors
Luca Massaron is a data scientist and a marketing research director who
 specializes in multivariate statistical analysis, machine learning, and customer
insight, with over a decade of experience in solving real-world problems and gen-
erating value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potentiality
of data‐driven knowledge discovery to both experts and non experts. Favoring
simplicity over unnecessary sophistication, he believes that a lot can be
achieved in data science by understanding and practicing the essentials of it.

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 97 books and more than 600 articles to date. The
topics range from networking to artificial intelligence and from database
management to heads‐down programming. Some of his current books include
a book on Python for beginners and a book about MATLAB. He has also writ-
ten a Java e‐learning kit, a book on HTML5 development with JavaScript, and
another on CSS3. His technical editing skills have helped more than 63
authors refine the content of their manuscripts. John has provided technical
editing services to both Data Based Advisor and Coast Compute magazines. It
was during his time with Data Based Advisor that John was first exposed to
MATLAB, and he has continued to follow the progress in MATLAB develop-
ment ever since. During his time at Cubic Corporation, John was exposed to
reliability engineering and has continued his interest in probability. Be sure
to read John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the
garden, cutting wood, or generally enjoying nature. John also likes making
wine, baking cookies, and knitting. When not occupied with anything else, he
makes glycerin soap and candles, which come in handy for gift baskets. You
can reach John on the Internet at John@JohnMuellerBooks.com. John is also
setting up a website at http://www.johnmuellerbooks.com/. Feel free to
take a look and make suggestions on how he can improve it.

Luca’s Dedication
I would like to dedicate this book to my parents, Renzo and Licia, who both love
simple and well‐explained ideas and who now, by reading the book we wrote,
will understand more of my daily work in data science and how this new disci-
pline is going to change the way we understand the world and operate in it.

John’s Dedication
This book is dedicated to the scientists, engineers, dreamers, and philoso-
phers of the world — that unheralded group who makes such a large differ-
ence in the lives of everyone on the planet.

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/

Luca’s Acknowledgments
My greatest thanks to my family, Yukiko and Amelia, for their support and
loving patience.

I also thank all my fellow Kagglers for their help and unstoppable exchanging
of ideas and opinions. My thanks in particular to Alberto Boschetti, Giuliano
Janson, Bastiaan Sjardin, and Zacharias Voulgaris.

John’s Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in
every book I write, in every word that appears on the page. She believed in
me when no one else would.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. Russ worked
exceptionally hard helping with the research for this book by locating hard-
to-find URLs and also offering a lot of suggestions.

Matt Wagner, my agent, deserves credit for helping me get the contract in the
first place and taking care of all the details that most authors don’t really
consider. I always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the
approach, test scripts, and generally provide input that all readers wish they
could have. These unpaid volunteers helped in ways too numerous to men-
tion here. I especially appreciate the efforts of Eva Beattie, Glenn A. Russell,
Osvaldo Téllez Almirall, and Thomas Zinckgraf, who provided general input,
read the entire book, and selflessly devoted themselves to this project.

Finally, I would like to thank Kyle Looper, Susan Christophersen, and the rest
of the editorial and production staff.

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Project and Copy Editor: Susan Christophersen

Technical Editor: Russ Mullen

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Vinitha Vikraman

Cover Image: © iStock.com/Magnilion; © iStock.
com/nadla

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with Python for Data Science
	Chapter 1 Discovering the Match between Data Science and Python
	Defining the Sexiest Job of the 21st Century
	Considering the emergence of data science
	Outlining the core competencies of a data scientist
	Linking data science and big data
	Understanding the role of programming

	Creating the Data Science Pipeline
	Preparing the data
	Performing exploratory data analysis
	Learning from data
	Visualizing
	Obtaining insights and data products

	Understanding Python’s Role in Data Science
	Considering the shifting profile of data scientists
	Working with a multipurpose, simple, and efficient language

	Learning to Use Python Fast
	Loading data
	Training a model
	Viewing a result

	Chapter 2 Introducing Python’s Capabilities and Wonders
	Why Python?
	Grasping Python’s core philosophy
	Discovering present and future development goals

	Working with Python
	Getting a taste of the language
	Understanding the need for indentation
	Working at the command line or in the IDE

	Performing Rapid Prototyping and Experimentation
	Considering Speed of Execution
	Visualizing Power
	Using the Python Ecosystem for Data Science
	Accessing scientific tools using SciPy
	Performing fundamental scientific computing using NumPy
	Performing data analysis using pandas
	Implementing machine learning using Scikit‐learn
	Plotting the data using matplotlib
	Parsing HTML documents using Beautiful Soup

	Chapter 3 Setting Up Python for Data Science
	Considering the Off‐the‐Shelf Cross‐Platform Scientific Distributions
	Getting Continuum Analytics Anaconda
	Getting Enthought Canopy Express
	Getting pythonxy
	Getting WinPython

	Installing Anaconda on Windows
	Installing Anaconda on Linux
	Installing Anaconda on Mac OS X
	Downloading the Datasets and Example Code
	Using IPython Notebook
	Defining the code repository
	Understanding the datasets used in this book

	Chapter 4 Reviewing Basic Python
	Working with Numbers and Logic
	Performing variable assignments
	Doing arithmetic
	Comparing data using Boolean expressions

	Creating and Using Strings
	Interacting with Dates
	Creating and Using Functions
	Creating reusable functions
	Calling functions in a variety of ways

	Using Conditional and Loop Statements
	Making decisions using the if statement
	Choosing between multiple options using nested decisions
	Performing repetitive tasks using for
	Using the while statement

	Storing Data Using Sets, Lists, and Tuples
	Performing operations on sets
	Working with lists
	Creating and using Tuples

	Defining Useful Iterators
	Indexing Data Using Dictionaries

	Part II Getting Your Hands Dirty with Data
	Chapter 5 Working with Real Data
	Uploading, Streaming, and Sampling Data
	Uploading small amounts of data into memory
	Streaming large amounts of data into memory
	Sampling data

	Accessing Data in Structured Flat‐File Form
	Reading from a text file
	Reading CSV delimited format
	Reading Excel and other Microsoft Office files

	Sending Data in Unstructured File Form
	Managing Data from Relational Databases
	Interacting with Data from NoSQL Databases
	Accessing Data from the Web

	Chapter 6 Conditioning Your Data
	Juggling between NumPy and pandas
	Knowing when to use NumPy
	Knowing when to use pandas

	Validating Your Data
	Figuring out what’s in your data
	Removing duplicates
	Creating a data map and data plan

	Manipulating Categorical Variables
	Creating categorical variables
	Renaming levels
	Combining levels

	Dealing with Dates in Your Data
	Formatting date and time values
	Using the right time transformation

	Dealing with Missing Data
	Finding the missing data
	Encoding missingness
	Imputing missing data

	Slicing and Dicing: Filtering and Selecting Data
	Slicing rows
	Slicing columns
	Dicing

	Concatenating and Transforming
	Adding new cases and variables
	Removing data
	Sorting and shuffling

	Aggregating Data at Any Level

	Chapter 7 Shaping Data
	Working with HTML Pages
	Parsing XML and HTML
	Using XPath for data extraction

	Working with Raw Text
	Dealing with Unicode
	Stemming and removing stop words
	Introducing regular expressions

	Using the Bag of Words Model and Beyond
	Understanding the bag of words model
	Working with n‐grams
	Implementing TF‐IDF transformations

	Working with Graph Data
	Understanding the adjacency matrix
	Using NetworkX basics

	Chapter 8 Putting What You Know in Action
	Contextualizing Problems and Data
	Evaluating a data science problem
	Researching solutions
	Formulating a hypothesis
	Preparing your data

	Considering the Art of Feature Creation
	Defining feature creation
	Combining variables
	Understanding binning and discretization
	Using indicator variables
	Transforming distributions

	Performing Operations on Arrays
	Using vectorization
	Performing simple arithmetic on vectors and matrices
	Performing matrix vector multiplication
	Performing matrix multiplication

	Part III Visualizing the Invisible
	Chapter 9 Getting a Crash Course in MatPlotLib
	Starting with a Graph
	Defining the plot
	Drawing multiple lines and plots
	Saving your work

	Setting the Axis, Ticks, Grids
	Getting the axes
	Formatting the axes
	Adding grids

	Defining the Line Appearance
	Working with line styles
	Using colors
	Adding markers

	Using Labels, Annotations, and Legends
	Adding labels
	Annotating the chart
	Creating a legend

	Chapter 10 Visualizing the Data
	Choosing the Right Graph
	Showing parts of a whole with pie charts
	Creating comparisons with bar charts
	Showing distributions using histograms
	Depicting groups using box plots
	Seeing data patterns using scatterplots

	Creating Advanced Scatterplots
	Depicting groups
	Showing correlations

	Plotting Time Series
	Representing time on axes
	Plotting trends over time

	Plotting Geographical Data
	Visualizing Graphs
	Developing undirected graphs
	Developing directed graphs

	Chapter 11 Understanding the Tools
	Using the IPython Console
	Interacting with screen text
	Changing the window appearance
	Getting Python help
	Getting IPython help
	Using magic functions
	Discovering objects

	Using IPython Notebook
	Working with styles
	Restarting the kernel
	Restoring a checkpoint

	Performing Multimedia and Graphic Integration
	Embedding plots and other images
	Loading examples from online sites
	Obtaining online graphics and multimedia

	Part IV Wrangling Data
	Chapter 12 Stretching Python’s Capabilities
	Playing with Scikit‐learn
	Understanding classes in Scikit‐learn
	Defining applications for data science

	Performing the Hashing Trick
	Using hash functions
	Demonstrating the hashing trick
	Working with deterministic selection

	Considering Timing and Performance
	Benchmarking with timeit
	Working with the memory profiler

	Running in Parallel
	Performing multicore parallelism
	Demonstrating multiprocessing

	Chapter 13 Exploring Data Analysis
	The EDA Approach
	Defining Descriptive Statistics for Numeric Data
	Measuring central tendency
	Measuring variance and range
	Working with percentiles
	Defining measures of normality

	Counting for Categorical Data
	Understanding frequencies
	Creating contingency tables

	Creating Applied Visualization for EDA
	Inspecting boxplots
	Performing t‐tests after boxplots
	Observing parallel coordinates
	Graphing distributions
	Plotting scatterplots

	Understanding Correlation
	Using covariance and correlation
	Using nonparametric correlation
	Considering chi‐square for tables

	Modifying Data Distributions
	Using the normal distribution
	Creating a Z‐score standardization
	Transforming other notable distributions

	Chapter 14 Reducing Dimensionality
	Understanding SVD
	Looking for dimensionality reduction
	Using SVD to measure the invisible

	Performing Factor and Principal Component Analysis
	Considering the psychometric model
	Looking for hidden factors
	Using components, not factors
	Achieving dimensionality reduction

	Understanding Some Applications
	Recognizing faces with PCA
	Extracting Topics with NMF
	Recommending movies

	Chapter 15 Clustering
	Clustering with K‐means
	Understanding centroid‐based algorithms
	Creating an example with image data
	Looking for optimal solutions
	Clustering big data

	Performing Hierarchical Clustering
	Moving Beyond the Round-Shaped Clusters: DBScan

	Chapter 16 Detecting Outliers in Data
	Considering Detection of Outliers
	Finding more things that can go wrong
	Understanding anomalies and novel data

	Examining a Simple Univariate Method
	Leveraging on the Gaussian distribution
	Making assumptions and checking out

	Developing a Multivariate Approach
	Using principal component analysis
	Using cluster analysis
	Automating outliers detection with SVM

	Part V Learning from Data
	Chapter 17 Exploring Four Simple and Effective Algorithms
	Guessing the Number: Linear Regression
	Defining the family of linear models
	Using more variables
	Understanding limitations and problems

	Moving to Logistic Regression
	Applying logistic regression
	Considering when classes are more

	Making Things as Simple as Naïve Bayes
	Finding out that Naïve Bayes isn’t so naïve
	Predicting text classifications

	Learning Lazily with Nearest Neighbors
	Predicting after observing neighbors
	Choosing your k parameter wisely

	Chapter 18 Performing Cross‐Validation, Selection, and Optimization
	Pondering the Problem of Fitting a Model
	Understanding bias and variance
	Defining a strategy for picking models
	Dividing between training and test sets

	Cross‐Validating
	Using cross‐validation on k folds
	Sampling stratifications for complex data

	Selecting Variables Like a Pro
	Selecting by univariate measures
	Using a greedy search

	Pumping Up Your Hyperparameters
	Implementing a grid search
	Trying a randomized search

	Chapter 19 Increasing Complexity with Linear and Nonlinear Tricks
	Using Nonlinear Transformations
	Doing variable transformations
	Creating interactions between variables

	Regularizing Linear Models
	Relying on Ridge regression (L2)
	Using the Lasso (L1)
	Leveraging regularization
	Combining L1 & L2: Elasticnet

	Fighting with Big Data Chunk by Chunk
	Determining when there is too much data
	Implementing Stochastic Gradient Descent

	Understanding Support Vector Machines
	Relying on a computational method
	Fixing many new parameters
	Classifying with SVC
	Going nonlinear is easy
	Performing regression with SVR
	Creating a stochastic solution with SVM

	Chapter 20 Understanding the Power of the Many
	Starting with a Plain Decision Tree
	Understanding a decision tree
	Creating classification and regression trees

	Making Machine Learning Accessible
	Working with a Random Forest classifier
	Working with a Random Forest regressor
	Optimizing a Random Forest

	Boosting Predictions
	Knowing that many weak predictors win
	Creating a gradient boosting classifier
	Creating a gradient boosting regressor
	Using GBM hyper‐parameters

	Part VI The Part of Tens
	Chapter 21 Ten Essential Data Science Resource Collections
	Gaining Insights with Data Science Weekly
	Obtaining a Resource List at U Climb Higher
	Getting a Good Start with KDnuggets
	Accessing the Huge List of Resources on Data Science Central
	Obtaining the Facts of Open Source Data Science from Masters
	Locating Free Learning Resources with Quora
	Receiving Help with Advanced Topics at Conductrics
	Learning New Tricks from the Aspirational Data Scientist
	Finding Data Intelligence and Analytics Resources at AnalyticBridge
	Zeroing In on Developer Resources with Jonathan Bower

	Chapter 22 Ten Data Challenges You Should Take
	Meeting the Data Science London + Scikit‐learn Challenge
	Predicting Survival on the Titanic
	Finding a Kaggle Competition that Suits Your Needs
	Honing Your Overfit Strategies
	Trudging Through the MovieLens Dataset
	Getting Rid of Spam Emails
	Working with Handwritten Information
	Working with Pictures
	Analyzing Amazon.com Reviews
	Interacting with a Huge Graph

	Index
	EULA

