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Y 
ou rely on data science absolutely every day to perform an amazing  
array of tasks or to obtain services from someone else. In fact, you’ve 

probably used data science in ways that you never expected. For example, 
when you used your favorite search engine this morning to look for some-
thing, it made suggestions on alternative search terms. Those terms are 
 supplied by data science. When you went to the doctor last week and 
 discovered the lump you found wasn’t cancer, it’s likely the doctor made his 
prognosis with the help of data science. In fact, you might work with data 
science every day and not even know it. Python for Data Science For Dummies 
not only gets you started using data science to perform a wealth of practical 
tasks but also helps you realize just how many places data science is used. 
By knowing how to answer data science problems and where to employ data 
science, you gain a significant advantage over everyone else, increasing your 
chances at promotion or that new job you really want.

About This Book
The main purpose of Python for Data Science For Dummies is to take the scare 
factor out of data science by showing you that data science is not only really 
interesting but also quite doable using Python. You might assume that you 
need to be a computer science genius to perform the complex tasks normally 
associated with data science, but that’s far from the truth. Python comes 
with a host of useful libraries that do all the heavy lifting for you in the back-
ground. You don’t even realize how much is going on, and you don’t need to 
care. All you really need to know is that you want to perform specific tasks 
and that Python makes these tasks quite accessible.

Part of the emphasis of this book is on using the right tools. You start with 
Anaconda, a product that includes IPython and IPython Notebook — two 
tools that take the sting out of working with Python. You experiment with 
IPython in a fully interactive environment. The code you place in IPython 
Notebook is presentation quality, and you can mix a number of presentation 
elements right there in your document. It’s not really like using a develop-
ment environment at all.

You also discover some interesting techniques in this book. For example, 
you can create plots of all your data science experiments using MatPlotLib, 
for which this book provides you with all the details. This book also spends 
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 considerable time showing you just what is available and how you can use 
it to perform some really interesting calculations. Many people would like to 
know how to perform handwriting recognition — and if you’re one of them, 
you can use this book to get a leg up on the process.

Of course, you might still be worried about the whole programming environ-
ment issue, and this book doesn’t leave you in the dark there, either. At the 
beginning, you find complete installation instructions for Anaconda and a 
quick primer (with references) to the basic Python programming you need 
to perform. The emphasis is on getting you up and running as quickly as 
possible, and to make examples straightforward and simple so that the code 
doesn’t become a stumbling block to learning.

To make absorbing the concepts even easier, this book uses the following 
conventions:

 ✓ Text that you’re meant to type just as it appears in the book is in bold. 
The exception is when you’re working through a step list: Because each 
step is bold, the text to type is not bold.

 ✓ When you see words in italics as part of a typing sequence, you need to 
replace that value with something that works for you. For example, if 
you see “Type Your Name and press Enter,” you need to replace Your 
Name with your actual name.

 ✓ Web addresses and programming code appear in monofont. If you’re 
reading a digital version of this book on a device connected to the 
Internet, note that you can click the web address to visit that website, 
like this: http://www.dummies.com.

 ✓ When you need to type command sequences, you see them separated by 
a special arrow, like this: File➪New File. In this case, you go to the File 
menu first and then select the New File entry on that menu. The result is 
that you see a new file created.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about  
you — after all, we haven’t even met you yet! Although most assumptions 
are indeed foolish, we made these assumptions to provide a starting point 
for the book.

It’s important that you’re familiar with the platform you want to use because 
the book doesn’t provide any guidance in this regard. (Chapter 3 does 
 provide Anaconda installation instructions.) To provide you with maximum 

http://www.dummies.com/


3  Introduction

information about Python concerning how it applies to data science, this 
book doesn’t discuss any platform‐specific issues. You really do need to 
know how to install applications, use applications, and generally work with 
your chosen platform before you begin working with this book.

This book isn’t a math primer. Yes, you see lots of examples of complex 
math, but the emphasis is on helping you use Python and data science to 
 perform analysis tasks rather than learn math theory. Chapters 1 and 2 
 provide you with a better understanding of precisely what you need to know 
in order to use this book successfully.

This book also assumes that you can access items on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance 
your learning experience. However, these added sources are useful only if 
you actually find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of 
interest (or not, as the case may be).This section briefly describes each icon 
in this book.

Tips are nice because they help you save time or perform some task  without 
a lot of extra work. The tips in this book are time‐saving techniques or 
 pointers to resources that you should try in order to get the maximum 
 benefit from Python or in performing data science–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, 
you might find that your application fails to work as expected, you get incor-
rect answers from seemingly bulletproof equations, or (in the worst‐case 
scenario) you lose data.

Whenever you see this icon, think advanced tip or technique. You might find 
these tidbits of useful information just too boring for words, or they could 
contain the solution you need to get a program running. Skip these bits of 
information whenever you like.

If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This text usually contains an essential 
process or a bit of information that you must know to work with Python or to 
perform data science–related tasks successfully.
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Beyond the Book
This book isn’t the end of your Python or data science experience — it’s 
really just the beginning. We provide online content to make this book more 
flexible and better able to meet your needs. That way, as we receive email 
from you, we can address questions and tell you how updates to either 
Python or its associated add‐ons affect book content. In fact, you gain access 
to all these cool additions:

 ✓ Cheat sheet: You remember using crib notes in school to make a better 
mark on a test, don’t you? You do? Well, a cheat sheet is sort of like 
that. It provides you with some special notes about tasks that you can 
do with Python, IPython, IPython Notebook, and data science that not 
every other person knows. You can find the cheat sheet for this book at 
http://www.dummies.com/cheatsheet/pythonfordatascience. 
It contains really neat information such as the most common program-
ming mistakes that cause people woe when using Python.

 ✓ Dummies.com online articles: A lot of readers were skipping past the 
parts pages in For Dummies books, so the publisher decided to remedy 
that. You now have a really good reason to read the parts pages — 
online content. Every parts page has an article associated with it that 
provides additional interesting information that wouldn’t fit in the book. 
You can find the articles for this book at http://www.dummies.com/
extras/pythonfordatascience.

 ✓ Updates: Sometimes changes happen. For example, we might not 
have seen an upcoming change when we looked into our crystal ball 
during the writing of this book. In the past, this possibility simply 
meant that the book became outdated and less useful, but you can now 
find updates to the book at http://www.dummies.com/extras/ 
pythonfordatascience.

In addition to these updates, check out the blog posts with answers to 
reader questions and demonstrations of useful book‐related techniques 
at http://blog.johnmuellerbooks.com/.

 ✓ Companion files: Hey! Who really wants to type all the code in the book 
and reconstruct all those plots manually? Most readers would prefer 
to spend their time actually working with Python, performing data sci-
ence tasks, and seeing the interesting things they can do, rather than 
typing. Fortunately for you, the examples used in the book are available 
for download, so all you need to do is read the book to learn Python for 
data science usage techniques. You can find these files at http://www.
dummies.com/extras/matlab.

http://www.dummies.com/cheatsheet/
http://www.dummies.com/extras/
http://www.dummies.com/extras/
http://www.dummies.com/extras/matlab
http://www.dummies.com/extras/matlab
http://blog.johnmuellerbooks.com/
http://www.dummies.com/extras/matlab
http://www.dummies.com/extras/matlab
http://www.dummies.com/cheatsheet/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience
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Where to Go from Here
It’s time to start your Python for data science adventure! If you’re completely 
new to Python and its use for data science tasks, you should start with 
Chapter 1 and progress through the book at a pace that allows you to absorb 
as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with Python for data 
science as quickly as possible, you can skip to Chapter 3 with the under-
standing that you may find some topics a bit confusing later. Skipping to 
Chapter 4 is possible if you already have Anaconda (the programming prod-
uct used in the book) installed, but be sure to at least skim Chapter 3 so that 
you know what assumptions we made when writing this book. Make sure to 
install Anaconda with Python version 2.7.9 installed to obtain the best results 
from the book’s source code.

Readers who have some exposure to Python and have Anaconda installed 
can save reading time by moving directly to Chapter 5. You can always go 
back to earlier chapters as necessary when you have questions. However, it’s 
important that you understand how each technique works before moving to 
the next one. Every technique, coding example, and procedure has important 
lessons for you, and you could miss vital content if you start skipping too 
much information.
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In this part . . .
 ✓ Discovering why being a data scientist is so cool

 ✓ Defining how Python makes data science easier

 ✓ Specifying the process normally used for data science tasks

 ✓ Installing Python so that it works well for data science tasks

 ✓ Getting up to speed on Python essentials



Discovering the Match between 
Data Science and Python

In This Chapter
 ▶ Discovering the wonders for data science

 ▶ Exploring how data science works

 ▶ Creating the connection between Python and data science

 ▶ Getting started with Python

D 
ata science may seem like one of those technologies that you’d 
never use, but you’d be wrong. Yes, data science involves the use of 

advanced math techniques, statistics, and big data. However, data science 
also involves helping you make smart decisions, creating suggestions for 
options based on previous choices, and making robots see objects. In fact, 
people use data science in so many different ways that you literally can’t look 
anywhere or do anything without feeling the effects of data science on your 
life. In short, data science is the person behind the partition in the experi
ence of the wonderment of technology. Without data science, much of what 
you accept as typical and expected today wouldn’t even be possible. This 
is the reason that being a data scientist is the sexiest job of the twenty‐first 
century.

To make data science doable by someone who’s less than a math genius, you 
need tools. You could use any of a number of tools to perform data science 
tasks, but Python is uniquely suited to making it easier to work with data 
 science. For one thing, Python provides an incredible number of math‐related 
libraries that help you perform tasks with a less‐than‐perfect understanding 
of precisely what is going on. However, Python goes further by  supporting 
multiple coding styles and doing other things to make your job easier. 
Therefore, yes, you could use other languages to write data science applica
tions, but Python reduces your workload, so it’s a natural choice for those 
who really don’t want to work hard, but rather to work smart.

Chapter 1
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This chapter gets you started with Python. Even though this book isn’t 
designed to provide you with a complete Python tutorial, exploring some 
basic Python issues will reduce the time needed for you to get up to speed. 
(If you do need a good starting tutorial, please get my Beginning Programming 
with Python For Dummies, published by John Wiley & Sons, Inc.) You’ll find 
that the book provides pointers to tutorials and other aids as needed to fill in 
any gaps that you may have in your Python education.

Choosing a data science language
There are many different programming 
languages in the world — and most were 
designed to perform tasks in a certain way or 
even make it easier for a particular profession’s 
work to be done with greater ease. Choosing 
the correct tool makes your life easier. It’s 
akin to using a hammer to drive a screw rather 
than a screwdriver. Yes, the hammer works, 
but the screwdriver is much easier to use and 
definitely does a better job. Data scientists 
usually use only a few languages because they 
make working with data easier. With this in 
mind, here are the four top languages for data 
science work in order of preference (used by 
91 percent of the data scientists out there):

 ✓ Python (general purpose): Many data 
scientists prefer to use Python because 
it provides a wealth of libraries, such as 
NumPy, SciPy, MatPlotLib, pandas, and 
Scikit‐learn, to make data science tasks 
significantly easier. Python is also a pre-
cise language that makes it easy to use 
multi‐processing on large datasets — 
reducing the time required to analyze them. 
The data science community has also 
stepped up with specialized IDEs, such 
as Anaconda, that implement the IPython 
Notebook concept, which makes work-
ing with data science calculations sig-
nificantly easier (Chapter 3 demonstrates 
how to use IPython, so don’t worry about 

it in this chapter). Besides all of these 
things in Python’s favor, it’s also an excel-
lent language for creating glue code with 
languages such as C/C++ and Fortran. The 
Python documentation actually shows how 
to create the required extensions. Most 
Python users rely on the language to see 
patterns, such as allowing a robot to see 
a group of pixels as an object. It also sees 
use for all sorts of scientific tasks.

 ✓ R (special purpose statistical): In many 
respects, Python and R share the same 
sorts of functionality but implement it in dif-
ferent ways. Depending on which source 
you view, Python and R have about the 
same number of proponents, and some 
people use Python and R interchangeably 
(or sometimes in tandem). Unlike Python, 
R provides its own environment, so you 
don’t need a third‐party product such as 
Anaconda. However, R doesn’t appear to 
mix with other languages with the ease that 
Python provides.

 ✓ SAS (business statistical analysis): The 
Statistical Analysis System (SAS) language 
is popular because it makes data analy-
sis, business intelligence, data manage-
ment, and predictive analytics easy. The 
SAS Institute originally created SAS as a 
means to perform statistical analysis. In 
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Defining the Sexiest Job  
of the 21st Century

At one point, the world viewed anyone working with statistics as a sort of 
accountant or perhaps a mad scientist. Many people consider statistics and 
analysis of data boring. However, data science is one of those occupations in 
which the more you learn, the more you want to learn. Answering one ques
tion often spawns more questions that are even more interesting than the 
one you just answered. However, the thing that makes data science so sexy 
is that you see it everywhere and used in an almost infinite number of ways. 
The following sections provide you with more details on why data science is 
such an amazing field of study.

Considering the emergence  
of data science
Data science is a relatively new term. William S. Cleveland coined the term in 
2001 as part of a paper entitled “Data Science: An Action Plan for Expanding 
the Technical Areas of the Field of Statistics.” It wasn’t until a year later that 
the International Council for Science actually recognized data science and 
created a committee for it. Columbia University got into the act in 2003 by 
beginning publication of the Journal of Data Science.

other words, this is a business‐specific 
language — one used to make decisions 
rather than to perform handwriting analysis 
or to detect specific natural patterns.

 ✓ SQL (database management): The most 
important thing to remember about 
Structured Query Language (SQL) is 
that it focuses on data rather than tasks. 
Businesses can’t operate without good 
data management — the data is the busi-
ness. Large organizations use some sort 
of relational database, which is normally 
accessible with SQL, to store their data. 
Most Database Management System 

(DBMS) products rely on SQL as their 
main language, and DBMS usually has a 
large number of data analysis and other 
data science features built in. Because 
you’re accessing the data natively, there is 
often a significant speed gain in perform-
ing data science tasks this way. Database 
Administrators (DBAs) generally use SQL 
to manage or manipulate the data rather 
than necessarily perform detailed analysis 
of it. However, the data scientist can also 
use SQL for various data science tasks and 
make the resulting scripts available to the 
DBAs for their needs.
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However, the mathematical basis behind data science is centuries old because 
data science is essentially a method of viewing and analyzing  stati stics and 
probability. The first essential use of statistics as a term comes in 1749, 
but  statistics are certainly much older than that. People have used statis
tics to recognize patterns for thousands of years. For example, the  historian 
Thucydides (in his History of the Peloponnesian War) describes how the 
Athenians calculated the height of the wall of Platea in fifth century BC by 
counting bricks in an unplastered section of the wall. Because the count 
needed to be accurate, the Athenians took the average of the count by several 
solders.

The process of quantifying and understanding statistics is relatively new, 
but the science itself is quite old. An early attempt to begin documenting the 
 importance of statistics appears in the ninth century when Al‐Kindi wrote 
Manuscript on Deciphering Cryptographic Messages. In this paper, Al‐Kindi 
describes how to use a combination of statistics and frequency analysis to 
 decipher encrypted messages. Even in the beginning, statistics saw use in 
 practical application of science to tasks that seemed virtually impossible to 
complete. Data science continues this process, and to some people it might 
actually seem like magic.

Outlining the core competencies  
of a data scientist
Like most complex trades today, the data scientist requires knowledge of 
a broad range of skills in order to perform the required tasks. In fact, so 
many different skills are required that data scientists often work in teams. 
Someone who is good at gathering data might team up with an analyst and 
someone gifted in presenting information. It would be hard to find a single 
person with all the required skills. With this in mind, the following list 
describes areas in which a data scientist could excel (with more compet
encies being better):

 ✓ Data capture: It doesn’t matter what sort of math skills you have if you 
can’t obtain data to analyze in the first place. The act of capturing data 
begins by managing a data source using database management skills. 
However, raw data isn’t particularly useful in many situations — you 
must also understand the data domain so that you can look at the 
data and begin formulating the sorts of questions to ask. Finally, you 
must have data‐modeling skills so that you understand how the data is 
 connected and whether the data is structured.
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 ✓ Analysis: After you have data to work with and understand the 
 complexities of that data, you can begin to perform an analysis on it. 
You perform some analysis using basic statistical tool skills, much like 
those that just about everyone learns in college. However, the use of 
specialized math tricks and algorithms can make patterns in the data 
more obvious or help you draw conclusions that you can’t draw by 
reviewing the data alone.

 ✓ Presentation: Most people don’t understand numbers well. They can’t 
see the patterns that the data scientist sees. It’s important to provide a 
graphical presentation of these patterns to help others visualize what 
the numbers mean and how to apply them in a meaningful way. More 
important, the presentation must tell a specific story so that the impact 
of the data isn’t lost.

Linking data science and big data
Interestingly enough, the act of moving data around so that someone can 
 perform analysis on it is a specialty called Extract, Transformation, and 
Loading (ETL). The ETL specialist uses programming languages such as 
Python to extract the data from a number of sources. Corporations tend not 
to keep data in one easily accessed location, so finding the data required 
to perform analysis takes time. After the ETL specialist finds the data, a 
programming language or other tool transforms it into a common format 
for analysis purposes. The loading process takes many forms, but this book 
relies on Python to perform the task. In a large, real‐world operation, you 
might find yourself using tools such as Informatica, MS SSIS, or Teradata to 
perform the task.

Understanding the role of programming
A data scientist may need to know several programming languages in order to 
achieve specific goals. For example, you may need SQL knowledge to extract 
data from relational databases. Python can help you perform data loading, 
transformation, and analysis tasks. However, you might choose a product such 
as MATLAB (which has its own programming language) or PowerPoint (which 
relies on VBA) to present the information to others. (If you’re interested to see 
how MATLAB compares to the use of Python, you can get my book, MATLAB 
For Dummies, published by John Wiley & Sons, Inc.) The immense datasets 
that data scientists rely on often require multiple levels of redundant process
ing to transform into useful processed data. Manually performing these tasks 
is time consuming and error prone, so programming presents the best method 
for achieving the goal of a coherent, usable data source.
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Given the number of products that most data scientists use, it may not 
be possible to use just one programming language. Yes, Python can load 
data, transform it, analyze it, and even present it to the end user, but it 
works only when the language provides the required functionality. You 
may have to choose other languages to fill out your toolkit. The languages 
you choose depend on a number of criteria. Here are the things you should 
consider:

 ✓ How you intend to use data science in your code (you have a number 
of tasks to consider, such as data analysis, classification, and 
 regression)

 ✓ Your familiarity with the language

 ✓ The need to interact with other languages

 ✓ The availability of tools to enhance the development environment

 ✓ The availability of APIs and libraries to make performing tasks easier

Creating the Data Science Pipeline
Data science is partly art and partly engineering. Recognizing patterns 
in data, considering what questions to ask, and determining which 
 algorithms work best are all part of the art side of data science. However, 
to make the art part of data science realizable, the engineering part relies 
on a specific process to achieve specific goals. This process is the data 
 science pipeline, which requires the data scientist to follow particular 
steps in the preparation, analysis, and presentation of the data. The 
 following sections help you understand the data science pipeline better 
so that you can understand how the book employs it during the presen
tation of examples.

Preparing the data
The data that you access from various sources doesn’t come in an easily 
 packaged form, ready for analysis — quite the contrary. The raw data not 
only may vary substantially in format, but you may also need to trans
form it to make all the data sources cohesive and amenable to analysis. 
Transformation may require changing data types, the order in which data 
appears, and even the creation of data entries based on the information pro
vided by existing entries.
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Performing exploratory data analysis
The math behind data analysis relies on engineering principles in that the 
results are provable and consistent. However, data science provides access 
to a wealth of statistical methods and algorithms that help you discover 
patterns in the data. A single approach doesn’t ordinarily do the trick. You 
typically use an iterative process to rework the data from a number of 
 perspectives. The use of trial and error is part of the data science art.

Learning from data
As you iterate through various statistical analysis methods and apply 
 algorithms to detect patterns, you begin learning from the data. The data 
might not tell the story that you originally thought it would, or it might have 
many stories to tell. Discovery is part of being a data scientist. In fact, it’s the 
fun part of data  science because you can’t ever know in advance precisely 
what the data will reveal to you.

Of course, the imprecise nature of data and the finding of seemingly random 
patterns in it means keeping an open mind. If you have preconceived ideas of 
what the data contains, you won’t find the information it actually does con
tain. You miss the discovery phase of the process, which translates into lost 
opportunities for both you and the people who depend on you.

Visualizing
Visualization means seeing the patterns in the data and then being able to 
react to those patterns. It also means being able to see when data is not part 
of the pattern. Think of yourself as a data sculptor — removing the data that 
lies outside the patterns (the outliers) so that others can see the masterpiece 
of information beneath. Yes, you can see the masterpiece, but until others 
can see it, too, it remains in your vision alone.

Obtaining insights and data products
The data scientist may seem to simply be looking for unique methods of 
viewing data. However, the process doesn’t end until you have a clear under
standing of what the data means. The insights you obtain from manipulating 
and analyzing the data help you to perform real‐world tasks. For example, 
you can use the results of an analysis to make a business decision.
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In some cases, the result of an analysis creates an automated response. For 
example, when a robot views a series of pixels obtained from a camera, the 
pixels that form an object have special meaning and the robot’s programming 
may dictate some sort of interaction with that object. However, until the data 
scientist builds an application that can load, analyze, and visualize the pixels 
from the camera, the robot doesn’t see anything at all.

Understanding Python’s Role  
in Data Science

Given the right data sources, analysis requirements, and presentation needs, 
you can use Python for every part of the data science pipeline. In fact, that’s 
precisely what you do in this book. Every example uses Python to help you 
understand another part of the data science equation. Of all the languages 
you could choose for performing data science tasks, Python is the most flex
ible and capable because it supports so many third‐party libraries devoted 
to the task. The following sections help you better understand why Python is 
such a good choice for many (if not most) data science needs.

Considering the shifting profile  
of data scientists
Some people view the data scientist as an unapproachable nerd who performs 
miracles on data with math. The data scientist is the person behind the cur
tain in an Oz‐like experience. However, this perspective is changing. In many 
respects, the world now views the data scientist as either an adjunct to a 
developer or as a new type of developer. The ascendance of applications of all 
sorts that can learn is the essence of this change. For an application to learn, 
it has to be able to manipulate large databases and discover new patterns 
in them. In addition, the application must be able to create new data based 
on the old data — making an informed prediction of sorts. The new kinds of 
applications affect people in ways that would have seemed like science  fiction 
just a few years ago. Of course, the most noticeable of these applications 
define the behaviors of robots that will interact far more closely with people 
 tomorrow than they do today.

From a business perspective, the necessity of fusing data science and appli
cation development is obvious: Businesses must perform various sorts 
of analysis on the huge databases it has collected — to make sense of the 
information and use it to predict the future. In truth, however, the far greater 
impact of the melding of these two branches of science — data science and 
application development — will be felt in terms of creating altogether new 
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kinds of applications, some of which aren’t even possibly to imagine with 
clarity today. For example, new applications could help students learn with 
greater precision by analyzing their learning trends and creating new instruc
tional methods that work for that particular student. This combination of 
sciences might also solve a host of medical problems that seem impossible 
to solve today — not only in keeping disease at bay, but also by solving prob
lems, such as how to create truly usable prosthetic devices that look and act 
like the real thing.

Working with a multipurpose, simple,  
and efficient language
Many different ways are available for accomplishing data science tasks. This 
book covers only one of the myriad methods at your disposal. However, 
Python represents one of the few single‐stop solutions that you can use to 
solve complex data science problems. Instead of having to use a number of 
tools to perform a task, you can simply use a single language, Python, to get 
the job done. The Python difference is the large number scientific and math 
libraries created for it by third parties. Plugging in these libraries greatly 
extends Python and allows it to easily perform tasks that other languages 
could perform, but with great difficulty.

Python’s libraries are its main selling point; however, Python offers more 
than reusable code. The most important thing to consider with Python is that 
it supports four different coding styles:

 ✓ Functional: Treats every statement as a mathematical equation and 
avoids any form of state or mutable data. The main advantage of this 
approach is having no side effects to consider. In addition, this coding 
style lends itself better than the others to parallel processing because 
there is no state to consider. Many developers prefer this coding style 
for recursion and for lambda calculus.

 ✓ Imperative: Performs computations as a direct change to program state. 
This style is especially useful when manipulating data structures and 
produces elegant, but simple, code.

 ✓ Object‐oriented: Relies on data fields that are treated as objects and 
manipulated only through prescribed methods. Python doesn’t fully sup
port this coding form because it can’t implement features such as data 
hiding. However, this is a useful coding style for complex applications 
because it supports encapsulation and polymorphism. This coding style 
also favors code reuse.

 ✓ Procedural: Treats tasks as step‐by‐step iterations where common 
tasks are placed in functions that are called as needed. This coding style 
favors iteration, sequencing, selection, and modularization.
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Learning to Use Python Fast
It’s time to try using Python to see the data science pipeline in action. The 
following sections provide a brief overview of the process you explore in 
detail in the rest of the book. You won’t actually perform the tasks in the 
 following sections. In fact, you don’t install Python until Chapter 3, so for 
now, just follow along in the text. Don’t worry about understanding every 
aspect of the process at this point. The purpose of these sections is to help 
you gain an understanding of the flow of using Python to perform data sci
ence tasks. Many of the details may seem difficult to understand at this point, 
but the rest of the book will help you understand them.

The examples in this book rely on a web‐based application named IPython 
Notebook. The screenshots you see in this and other chapters reflect how 
IPython Notebook looks in Firefox on a Windows 7 system. The view you see 
will contain the same data, but the actual interface may differ a little depend
ing on platform (such as using a notebook instead of a desktop system), oper
ating system, and browser. Don’t worry if you see some slight differences 
between your display and the screenshots in the book.

You don’t have to type the source code for this chapter in by hand. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction for 
details on downloading the source code). The source code for this chapter 
appears in the P4DS4D; 01; Quick Overview.ipynb source code file.

Loading data
Before you can do anything, you need to load some data. The book shows 
you all sorts of methods for performing this task. In this case, Figure 11 
shows how to load a dataset called Boston that contains housing prices 
and other facts about houses in the Boston area. The code places the entire 
dataset in the boston variable and then places parts of that data in variables 
named X and y. Think of variables as you would storage boxes. The variables 
are important because they make it possible to work with the data.

Training a model
Now that you have some data to work with, you can do something with it. All 
sorts of algorithms are built into Python. Figure 12 shows a linear regression 
model. Again, don’t worry precisely how this works; later chapters discuss 
linear regression in detail. The important thing to note in Figure 12 is that 
Python lets you perform the linear regression using just two statements and 
to place the result in a variable named hypothesis.
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Figure 1-1:  
Loading 
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Figure 1-2:  
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Viewing a result
Performing any sort of analysis doesn’t pay unless you obtain some benefit 
from it in the form of a result. This book shows all sorts of ways to view 
output, but Figure 13 starts with something simple. In this case, you see the 
coefficient output from the linear regression analysis.

One of the reasons that this book uses IPython Notebook is that the product 
helps you to create nicely formatted output as part of creating the applica
tion. Look again at Figure 13 and you see a report that you could simply 
print and offer to a colleague. The output isn’t suitable for many people, but 
those experienced with Python and data science will find it quite usable and 
 informative.

Figure 1-3:   
Outputting 

a result as a 
response to 

the model.



Introducing Python’s Capabilities 
and Wonders

In This Chapter
 ▶ Delving into why Python came about

 ▶ Getting a quick start with Python

 ▶ Using Python for rapid prototyping and experimentation

 ▶ Defining how Python provides speed of execution

 ▶ Defining the power of Python for the data scientist

 ▶ Exploring the Python and data science relationship

A 
ll computers run on just one language — machine code. However, 
unless you want to learn how to talk like a computer in 0s and 1s, 

machine code isn’t particularly useful. You’d never want to try to define data 
science problems using machine code. It would take an entire lifetime (if not 
longer) just to define one problem. Higher‐level languages make it possible 
to write a lot of code that humans can understand quite quickly. The tools 
used with these languages make it possible to translate the human‐readable 
code into machine code that the machine understands. Therefore, the choice 
of languages depends on the human need, not the machine need. With this 
in mind, this chapter introduces you to the capabilities that Python provides 
that make it a practical choice for the data scientist. After all, you want to 
know why this book uses Python and not another language, such as Java or 
C++. These other languages are perfectly good choices for some tasks, but 
they’re not as suited to meet data science needs.

The chapter begins with a short history of Python so that you know a little 
about why developers created Python in the first place. You also see some 
simple Python examples to get a taste for the language. As part of explor-
ing Python in this chapter, you discover all sorts of interesting features that 
Python provides. Python gives you access to a host of libraries that are espe-
cially suited to meet the needs of the data scientist. In fact, you use a number 

Chapter 2
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of these libraries throughout the book as you work through the coding exam-
ples. Knowing about these libraries in advance will help you understand the 
programming examples and why the book shows how to perform tasks in a 
certain way.

Even though this chapter does show examples of working with Python, you 
don’t really begin using Python in earnest until Chapter 4. This chapter pro-
vides you with an overview so that you can better understand what Python 
can do. Chapter 3 shows how to install the particular version of Python used 
for this book, and Chapter 4 gives you basic hands‐on exercises on how 
to work with Python. In short, if you don’t quite understand an example in 
this chapter, don’t worry: You get plenty of additional information in later 
 chapters.

Why Python?
Python is the vision of a single person, Guido van Rossum. You might be sur-
prised to learn that Python has been around a long time — Guido started the 
language in December 1989 as a replacement for the ABC language. Not much 
information is available as to the precise goals for Python, but it does retain 
ABC’s ability to create applications using less code. However, it far exceeds 
the ability of ABC to create applications of all types, and in contrast to ABC, 
boasts four programming styles. In short, Guido took ABC as a starting point, 
found it limited, and created a new language without those limitations. It’s an 
example of creating a new language that really is better than its predecessor.

Using the right language for the job
Computer languages provide a means 
for humans to write down instructions in 
a systematic and understandable way. 
Computers don’t actually understand 
computer languages — a computer relies on 
machine‐code for instructions. The reason 
languages are so important is that humans 
don’t characteristically understand machine 
language, so the conversion from something 
humans understand to something machines 
understand is essential. Python provides a 

specific set of features that make writing 
data science applications easier. As with any 
other language, it provides the right toolset for 
some situations and not for others. Use Python 
(or any other language) when it provides the 
functionality you need to accomplish a task. 
If you start finding the language getting in the 
way, it’s time to choose a different language 
because in the end, the computer doesn’t care 
which language you use. Computer languages 
are for people, not the other way around.
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Python has gone through a number of iterations and currently has two 
development paths. The 2.x path is backward compatible with previous 
versions of Python, while the 3.x path isn’t. The compatibility issue is one 
that figures into how data science uses Python because at least some of the 
libraries won’t work with 3.x. In addition, some versions use different licens-
ing because Guido was working at various companies during Python’s devel-
opment. You can see a listing of the versions and their respective licenses 
at https://docs.python.org/3/license.html. The Python Software 
Foundation (PSF) owns all current versions of Python, so unless you use an 
older version, you really don’t need to worry about the licensing issue.

Grasping Python’s core philosophy
Guido actually started Python as a skunkworks project. The core concept 
was to create Python as quickly as possible, yet create a language that is 
flexible, runs on any platform, and provides significant potential for exten-
sion. Python provides all these features and many more. Of course, there 
are always bumps in the road, such as figuring out just how much of the 
underlying system to expose. You can read more about the Python design 
philosophy at http://python‐history.blogspot.com/2009/01/
pythons‐design‐philosophy.html. The history of Python at http://
python‐history.blogspot.com/2009/01/introduction‐and‐ 
overview.html also provides some useful information.

Discovering present and future 
 development goals
The original development (or design) goals for Python don’t quite match 
what has happened to the language since that time. Guido originally intended 
Python as a second language for developers who needed to create one‐off 
code but who couldn’t quite achieve their goals using a scripting language. 
The original target audience for Python was the C developer. You can read 
about these original goals in the interview at http://www.artima.com/
intv/pyscale.html.

You can find a number of applications written in Python today, so the idea of 
using it solely for scripting didn’t come to fruition. In fact, you can find list-
ings of Python applications at https://www.python.org/about/apps/ 
and https://www.python.org/about/success/.

Naturally, with all these success stories to go on, people are enthusiastic 
about adding to Python. You can find lists of Python Enhancement Proposals 

https://docs.python.org/3/license.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://www.artima.com/intv/pyscale.html
http://www.artima.com/intv/pyscale.html
https://www.python.org/about/apps/
https://www.python.org/about/success/
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(PEPs) at http://legacy.python.org/dev/peps/. These PEPs may or 
may not see the light of day, but they prove that Python is a living, growing 
language that will continue to provide features that developers truly need to 
create great applications of all types, not just those for data science.

Working with Python
This book doesn’t provide you with a full Python tutorial. (However, you 
can get a great start with my book, Beginning Programming with Python For 
Dummies, published by John Wiley & Sons, Inc.) You do get a quick review 
of the language in Chapter 4. However, for now, it’s helpful to get a brief 
 overview of what Python looks like and how you interact with it, as in the 
 following sections.

Getting a taste of the language
Python is designed to provide clear language statements but to do so in an 
incredibly small space. A single line of Python code may perform tasks that 
another language usually takes several lines to perform. For example, if you 
want to display something on‐screen, you simply tell Python to print it,  
like this:

print "Hello There!"

This is an example of a 2.x print statement. The “Why Phython?” section of 
this chapter mentions that there are differences between the 2.x path and the 
3.x path. If you use this line of code in 3.x, you get an error message:

  File "<stdin>", line 1
    print "Hello There!"
                       ^
SyntaxError: invalid syntax

It turns out that the 3.x version of the same statement looks like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or 
 anything else using a simple statement. You don’t really need too much in 
the way of advanced programming skills. When you want to end your  session, 
you simply type quit() and press Enter.

http://legacy.python.org/dev/peps/
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Understanding the need for indentation
Python relies on indentation to create various language features, such as 
 conditional statements. One of the most common errors that developers 
encounter is not providing the proper indentation for code. You see this prin-
ciple in action later in the book, but for now, always be sure to pay attention 
to indentation as you work through the book examples. For example, here is 
an if statement (a conditional that says that if something meets the condi-
tion, perform the code that follows) with proper indentation.

if 1 < 2:
    print("1 is less than 2")

The print statement must appear indented below the conditional statement. 
Otherwise, the condition won’t work as expected, and you might see an error 
message, too.

Working at the command line or in the IDE
Anaconda is a product that makes using Python even easier. It comes with a 
number of utilities that help you work with Python in a variety of ways. The 
vast majority of this book relies on IPython Notebook, which is part of the 
Anaconda installation you create in Chapter 3. You saw this editor used in 

Understanding the Anaconda package
The book approaches Anaconda as a product. In 
fact, you do install and interact with Anaconda 
as you would any other single product. 
However, Anaconda is actually a compilation of 
several open source applications. You can use 
these applications individually or in cooperation 
with each other to achieve specific coding 
goals. In most of the book, you use a single 
application, IPython Notebook, to accomplish 
tasks. However, you want to know about the 
other applications bundled in Anaconda to get 
the best use out of the product as a whole.

A large number of data scientists rely on the 
Anaconda product bundling, which is why 

this book uses it. However, you might find that 
some of the open source products come in a 
newer form when downloaded separately. For 
example, IPython actually comes in a newer 
form called Jupyter (http://jupyter.
org/). Because of the differences in Jupyter 
and the fact that it hasn’t been accepted by 
a large number of data scientists (because 
of file incompatibilities with IPython), you 
need to make the update to Jupyter carefully. 
Jupyter does work much the same as IPython, 
though, so you should be able to use it with the 
examples in this book with some modification if 
you choose.

http://jupyter.org/
http://jupyter.org/
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Chapter 1 and you see it again later in the book. In fact, this book doesn’t use 
any of the other Anaconda utilities much at all. However, they do exist, and 
sometimes they’re helpful in playing with Python (as you do in Chapter 4). 
The following sections provide a brief overview of the other Anaconda utili-
ties for creating Python code. You may want to experiment with them as you 
work through various coding techniques in the book.

Creating new sessions with Anaconda Command Prompt
Only one of the Anaconda utilities provides direct access to the command 
line, Anaconda Command Prompt. When you start this utility, you see a 
command prompt at which you can type commands. The main advantage of 
this utility is that you can start an Anaconda utility with any of the switches 
it provides to modify that utility’s standard environment. Of course, you 
start all the utilities using the Python interpreter that you access using the 
python.exe command. (If you have both Python 3.4 and Python 2.7 installed 
on your system and open a regular command prompt or terminal window, 
you may see the Python 3.4 version start instead of the Python 2.7 version, so 
it’s always best to open an Anaconda Command Prompt to ensure that you 
get the right version of Python.) So you could simply type python and press 
Enter to start a copy of the Python interpreter should you wish to do so. 
Figure 2-1 shows how the plain Python interpreter looks.

You quit the interpreter by typing quit() and pressing Enter. Once back at 
the command line, you can discover the list of python.exe command‐line 
switches by typing python ‐? and pressing Enter. Figure 2-2 shows just some 
of the ways in which you can change the Python interpreter environment.

Figure 2-1:  
A view of 
the plain 

Python 
interpreter.
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If you want, you can create a modified form of any of the utilities provided 
by Anaconda by starting the interpreter with the correct script. The scripts 
appear in the Scripts subdirectory. For example, type python scripts/
ipython‐script.py and press Enter to start the IPython environment without 
using the graphical command for your platform.

Entering the IPython environment
The Interactive Python (IPython) environment provides enhancements to the 
standard Python interpreter. The main purpose of the environment shown 
in Figure 2-3 is to help you use Python with less work. To see these enhance-
ments, type %quickref and press Enter.

One of the more interesting additions to IPython is a fully functional clear 
screen (cls) command. You can’t clear the screen easily when working in 
the Python interpreter, which means that things tend to get a bit messy after 

Figure 2-2:  
The Python 
interpreter 

includes 
all sorts of 
command‐ 

line 
switches.

Figure 2-3:  
The IPython 
environment 

is easier to 
use than the 

standard 
Python 

interpreter.
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a while. It’s also possible to perform tasks such as searching for variables 
using wildcard matches. Later in the book, you see how to use the magic 
functions to perform tasks such as capturing the amount of time it takes to 
perform a task for the purpose of optimization.

Entering IPython QTConsole environment
Trying to remember Python commands and functions is hard — and trying 
to remember the enhanced IPython additions is even harder. In fact, some 
people would say that the task is impossible (and perhaps they’re right). 
This is where the IPython QTConsole comes into play. It adds a GUI on top 
of IPython that makes using the enhancements that IPython provides a lot 
easier, as shown in Figure 2-4. Of course, you give up a little screen real 
estate to get this feature, and some hardcore programmers don’t like the idea 
of using a GUI, so you have to choose what sort of environment to work with 
when programming.

The enhanced commands appear in menus across the top of the window. All 
you need to do is choose the command you want to use. For example, to see 
the current application directory, choose Magic ➪ OS Magics ➪ %cd.

Editing scripts using Spyder
Spyder is a fully functional Integrated Development Environment (IDE). You 
use it to load scripts, edit them, run them, and perform debugging tasks. 
Figure 2-5 shows the default windowed environment.

Figure 2-4:  
Use the 

QTConsole 
to make 
working 

with IPython 
easier.
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The Spyder IDE is much like any other IDE that you might have used in the 
past. The left side contains an editor in which you type code. Any code you 
create is placed in a script file, and you must save the script before running 
it. The upper‐right window contains various tabs for inspecting objects, 
exploring variables, and interacting with files. The lower‐right window con-
tains the Python console, a history log, and the IPython console. Across the 
top, you see menu options for performing all the tasks that you normally 
associate with working with an IDE.

Performing Rapid Prototyping  
and Experimentation

Python is all about creating applications quickly and then experimenting with 
them to see how things work. The act of creating an application design in 
code without necessarily filling in all the details is prototyping. Python uses 
less code than other languages to perform tasks, so prototyping goes faster. 
The fact that many of the actions you need to perform are already defined as 
part of libraries that you load into memory makes things go faster still.

Data science doesn’t rely on static solutions. You may have to try multiple 
solutions to find the particular solution that works best. This is where 
 experimentation comes into play. After you create a prototype, you use it 

Figure 2-5:  
Spyder is a 
traditional 

style IDE for 
developers 

who need 
one.
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to experiment with various algorithms to determine which algorithm works 
best in a particular situation. The algorithm you use varies depending on the 
answers you see and the data you use, so there are too many variables to 
consider for any sort of canned solution.

The prototyping and experimentation process occurs in several phases. As 
you go through the book, you discover that these phases have distinct uses 
and appear in a particular order. The following list shows the phases in the 
order in which you normally perform them.

1. Building a data pipeline. To work with the data, you must create a pipe-
line to it. It’s possible to load some data into memory. However, after 
the dataset gets to a certain size, you need to start working with it on 
disk or by using other means to interact with it. The technique you use 
for gaining access to the data is important because it impacts how fast 
you get a result.

2. Performing the required shaping. The shape of the data — the way in 
which it appears and its characteristics (such a data type), is important 
in performing analysis. To perform an apples‐to‐apples comparison, 
like data has to be shaped the same. However, just shaping the data the 
same isn’t enough. The shape has to be correct for the algorithms you 
employ to analyze it. Later chapters (starting with Chapter 6) help you 
understand the need to shape data in various ways.

3. Analyzing the data. When analyzing data, you seldom employ a single 
algorithm and call it good enough. You can’t know which algorithm will 
produce the same results at the outset. To find the best result from your 
dataset, you experiment on it using several algorithms. This practice is 
emphasized in the later chapters of the book when you start performing 
serious data analysis.

4. Presenting a result. A picture is worth a thousand words, or so they 
say. However, you need the picture to say the correct words or your 
message gets lost. Using the MATLAB plotting functionality provided by 
the matplotlib library, you can create multiple presentations of the same 
data, each of which describes the data graphically in different ways. To 
ensure that your meaning really isn’t lost, you must experiment with 
various presentation methods and determine which one works best.

Considering Speed of Execution
Computers are known for their prowess in crunching numbers. Even so, anal-
ysis takes considerable processing power. The datasets are so large that you 
can bog down even an incredibly powerful system. In general, the following 
factors control the speed of execution for your data science application:
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 ✓ Dataset size: Data science relies on huge datasets in many cases. Yes, 
you can make a robot see objects using a modest dataset size, but 
when it comes to making business decisions, larger is better in most 
situations. The application type determines the size of your dataset 
in part, but dataset size also relies on the size of the source data. 
Underestimating the effect of dataset size is deadly in data science 
applications, especially those that need to operate in real time (such as 
self‐driving cars).

 ✓ Loading technique: The method you use to load data for analysis is 
critical, and you should always use the fastest means at your disposal, 
even if it means upgrading your hardware to do so. Working with data 
in memory is always faster than working with data stored on disk. 
Accessing local data is always faster than accessing it across a network. 
Performing data science tasks that rely on Internet access through web 
services is probably the slowest method of all. Chapter 5 helps you 
understand loading techniques in more detail. You also see the effects of 
loading technique later in the book.

 ✓ Coding style: Some people will likely try to tell you that Python’s pro-
gramming paradigms make writing a slow application nearly impossible. 
They’re wrong. Anyone can create a slow application using any language 
by employing coding techniques that don’t make the best use of pro-
gramming language functionality. To create fast data science applica-
tions, you must use best‐of‐method coding techniques. The techniques 
demonstrated in this book are a great starting point.

 ✓ Machine capability: Running data science applications on a memory‐
constrained system with a slower processor is impossible. The system 
you use needs to have the best hardware you can afford. Given that data 
science applications are both processor and disk bound, you can’t really 
cut corners in any area and expect great results.

 ✓ Analysis algorithm: The algorithm you use determines the kind of result 
you obtain and controls execution speed. Many of the chapters in the 
latter parts of this book demonstrate multiple methods to achieve a goal 
using different algorithms. However, you must still experiment to find 
the best algorithm for your particular dataset.

A number of the chapters in this book emphasize performance, most nota-
bly speed and reliability, because both factors are critical to data science 
applications. Even though database applications tend to emphasize the need 
for speed and reliability to some extent, the combination of huge dataset 
access (disk‐bound issues) and data analysis (processor‐bound issues) in 
data science applications makes the need to make good choices even  
more critical.
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Visualizing Power
Python makes it possible to explore the data science environment without 
resorting to using a debugger or debugging code, as would be needed in 
many other languages. The print statement (or function, depending on the 
version of Python you use) and dir() function let you examine any object 
interactively. In short, you can load something up and play with it for a while 
to see just how the developer put it together. Playing with the data, visualiz-
ing what it means to you personally, can often help you gain new insights and 
create new ideas. Judging by many online conversations, playing with the 
data is the part of data science that its practitioners find the most fun.

You can play with data using any of the tools found in Anaconda, but one of 
the best tools for the job is IPython because you don’t really have to worry too 
much about the environment, and nothing you create is permanent. After all, 
you’re playing with the data. Therefore, you can load a dataset to see just what 
it has to offer, as shown in Figure 2-6. Don’t worry if this code looks  foreign 
and hard to understand right now. Chapter 4 provides an overview that helps 
explain it. Just follow along with the concept of playing with data for now.

In this case, you use Python code to discover all the key‐related functions 
included with the dataset. You can use these functions to perform useful 
work with the dataset as part of building your application. For example, in 
Figure 2-7, you can see how the keys() function displays a list of keys you 
can use to access data.

When you have a list of keys you can use, you can access individual data 
items. For example, Figure 2-8 shows a list of all the feature names contained 
in the Boston dataset. Python really does make it possible to know quite a lot 
about a dataset before you have to work with it in depth.

Figure 2-6:  
Load a 

dataset and 
play with it a 

little.
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Using the Python Ecosystem  
for Data Science

You have already seen the need to load libraries in order to perform data 
science tasks in Python. The following sections provide an overview of the 
libraries you use for the data science examples in this book. Various book 
examples show the libraries at work.

Accessing scientific tools using SciPy
The SciPy stack (http://www.scipy.org/) contains a host of other librar-
ies that you can also download separately. These libraries provide support 
for mathematics, science, and engineering. When you obtain SciPy, you get 

Figure 2-7:  
Use a 

 function to 
learn more 

information.

Figure 2-8:  
Access 
 specific 

data using 
a key.

http://www.scipy.org/
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a set of libraries designed to work together to create applications of various 
sorts. These libraries are

 ✓ NumPy

 ✓ SciPy

 ✓ matplotlib

 ✓ IPython

 ✓ Sympy

 ✓ pandas

The SciPy library itself focuses on numerical routines, such as routines for 
numerical integration and optimization. SciPy is a general‐purpose library 
that provides functionality for multiple problem domains. It also provides 
support for domain‐specific libraries, such as Scikit‐learn, Scikit‐image, and 
statsmodels.

Performing fundamental scientific 
 computing using NumPy
The NumPy library (http://www.numpy.org/) provides the means for 
performing n‐dimensional array manipulation, which is critical for data sci-
ence work. The Boston dataset used in the examples in Chapters 1 and 2 is an 
example of an n‐dimensional array, and you couldn’t easily access it without 
NumPy functions that include support for linear algebra, Fourier transform, 
and random‐number generation (see the listing of functions at http://
docs.scipy.org/doc/numpy/reference/routines.html).

Performing data analysis  
using pandas
The pandas library (http://pandas.pydata.org/) provides support for 
data structures and data analysis tools. The library is optimized to perform 
data science tasks especially fast and efficiently. The basic principle behind 
pandas is to provide data analysis and modeling support for Python that is 
similar to other languages, such as R.

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/routines.html
http://docs.scipy.org/doc/numpy/reference/routines.html
http://pandas.pydata.org/
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Implementing machine learning  
using Scikit‐learn
The Scikit‐learn library (http://scikit‐learn.org/stable/) is one of a 
number of Scikit libraries that build on the capabilities provided by NumPy 
and SciPy to allow Python developers to perform domain‐specific tasks. In 
this case, the library focuses on data mining and data analysis. It provides 
access to the following sorts of functionality:

 ✓ Classification

 ✓ Regression

 ✓ Clustering

 ✓ Dimensionality reduction

 ✓ Model selection

 ✓ Preprocessing

A number of these functions appear as chapter headings in the book. As a 
result, you can assume that Scikit‐learn is the most important library for the 
book (even though it relies on other libraries to perform its work).

Plotting the data using matplotlib
The matplotlib library (http://matplotlib.org/) provides you with a 
MATLAB‐like interface for creating data presentations of the analysis you 
perform. The library is currently limited to 2D output, but it still provides you 
with the means to express graphically the data patterns you see in the data 
you analyze. Without this library, you couldn’t create output that people out-
side the data science community could easily understand.

Parsing HTML documents using  
Beautiful Soup
The Beautiful Soup library (http://www.crummy.com/software/
BeautifulSoup/) download is actually found at https://pypi.python.
org/pypi/beautifulsoup4/4.3.2. This library provides the means for 
parsing HTML or XML data in a manner that Python understands. It allows 
you to work with tree‐based data.

http://scikit-learn.org/stable/
http://matplotlib.org/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
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Besides providing a means for working with tree‐based data, Beautiful Soup 
takes a lot of the work out of working with HTML documents. For example, 
it automatically converts the encoding (the manner in which characters are 
stored in a document) of HTML documents from UTF‐8 to Unicode. A Python 
developer would normally need to worry about things like encoding, but with 
Beautiful Soup, you can focus on your code instead.



Setting Up Python for  
Data Science

In This Chapter
 ▶ Obtaining an off‐the‐shelf solution

 ▶ Creating an Anaconda installation on Linux, Mac OS, and Windows

 ▶ Getting and installing the datasets and example code

B  
efore you can do too much with Python or use it to solve data 
 science problems, you need a workable installation. In addition, you 

need access to the datasets and code used for this book. Downloading 
the sample code and installing it on your system is the best way to get a 
good learning experience from the book. This chapter helps you get your 
system set up so that you can easily follow the examples in the remainder 
of the book.

Using the downloadable source doesn’t prevent you from typing the examples 
on your own, following them using a debugger, expanding them, or working 
with the code in all sorts of ways. The downloadable source is there to help 
you get a good start with your data science and Python learning experience. 
After you see how the code works when it’s correctly typed and configured, 
you can try to create the examples on your own. If you make a mistake, you 
can compare what you’ve typed with the downloadable source and discover 
precisely where the error exists. You can find the downloadable source 
for this chapter in the P4DS4D; 03; Sample.ipynb and P4DS4D; 03; 
Dataset Load.ipynb files. (The Introduction tells you where to download 
the source code for this book.)

Chapter 3
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Considering the Off‐the‐Shelf Cross‐
Platform Scientific Distributions

It’s entirely possible to obtain a generic copy of Python and add all of the 
required data science libraries to it. The process can be difficult because  
you need to ensure that you have all the required libraries in the correct  
versions to ensure success. In addition, you need to perform the configura-
tion required to ensure that the libraries are accessible when you need them. 
Fortunately, going through the required work is not necessary because a 
number of Python data science products are available for you to use. These 
products provide everything needed to get started with data science projects.

Using Python 2.7.x for this book
There are currently two parallel Python 
developments. Most books rely on the newest 
version of a language for examples. However, 
there are actually two newest versions of 
Python that you can use as of this writing: 
2.7.9 and 3.4.2. Python is unique in that some 
groups use one version and other groups use 
the other version. Because data scientists 
use the 2.7.x version of Python, for the most 
part, this book concentrates on that version. 
Using the 2.7.x version means that you’re 
better able to work with other data scientists 
when you complete this book. If the book 
used the 3.4.x version instead, you might find 
it hard to understand examples that you see 
in real‐world applications.

If you truly want to use the 3.4.x version with 
this book, you can do so, but you need to 
understand that the examples may not always 
work as written. For example, when using 
the Python 2.7 print() function, you don’t 
absolutely need to include parenthesis. The 
Python 3.4 version of the same function raises 
an error unless you do use the parenthesis. 
Even though it seems like a minor difference, 
it’s enough to cause confusion for some people 

and you need to keep it in mind as you work 
through the examples.

Fortunately, you can find a number of 
online sites that document the version 2.7 
and version 3.4 differences. One of the 
easiest sites to understand is nbviewer at 
http://nbviewer.ipython.org/
github/rasbt/python_reference/
blob/master/tutorials/key_
differences_between_python_2_
and_3.ipynb. Another good place to look is 
Spartan Ideas at http://spartanideas.
m s u . e d u / 2 0 1 4 / 0 6 / 0 1 / 
the‐key‐differences‐between‐
python‐2‐7‐x‐and‐python‐3‐x‐
with‐examples/. These sites will help 
you if you choose to use version 3.4 with this 
book. However, the book only supports version 
2.7 and you use version 3.4 at your own risk. 
Make sure you keep an eye out for changes 
as data science evolves on the book’s blog at 
http://blog.johnmuellerbooks.
com/category/technical/python‐
for‐data‐science‐for‐dummies/. 
The blog will help you make any adjustments 
should they be needed to keep current.

http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://spartanideas.msu.edu/2014/06/01/the-key-differences-between-python-2-7-x-and-python-3-x-with-examples/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/
http://blog.johnmuellerbooks.com/category/technical/python-for-data-science-for-dummies/
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You can use any of the packages mentioned in the following sections to 
work with the examples in this book. However, the book’s source code and 
downloadable source rely on Continuum Analytics Anaconda because this 
particular package works on every platform this book is designed to support: 
Linux, Mac OS X, and Windows. The book doesn’t mention a specific package 
in the chapters that follow, but any screenshots reflect how things look when 
using Anaconda on Windows. You may need to tweak the code to use another 
 package, and the screens will look different if you use Anaconda on some 
other platform.

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download that you obtain at https://
store.continuum.io/cshop/anaconda/. Simply click Download 
Anaconda to obtain access to the free product. You do need to provide an 
email address in order to get a copy of Anaconda. After you provide your 
email address, you go to another page, where you can choose your platform 
and the installer for that platform. Anaconda supports the following  
platforms:

 ✓ Windows 32‐bit and 64‐bit (the installer may offer you only the 64‐bit or 
32‐bit version, depending on which version of Windows it detects)

 ✓ Linux 32‐bit and 64‐bit

 ✓ Mac OS X 64‐bit

The default download version installed Python 2.7, which is the version used 
in this book (see the “Using Python 2.7.x for this book” sidebar for details). 
You can also choose to install Python 3.4 by clicking the I Want Python 3.4 
link. Both Windows and Mac OS X provide graphical installers. When using 
Linux, you rely on the bash utility.

It’s possible to obtain Anaconda with older versions of Python. If you want to 
use an older version of Python, click the installer archive link about halfway 
down the page. You should use only an older version of Python when you 
have a pressing need to do so.

The Miniconda installer can potentially save time by limiting the number of 
features you install. However, trying to figure out precisely which packages 
you do need is an error‐prone and time‐consuming process. In general, you 
want to perform a full installation to ensure that you have everything needed 
for your projects. Even a full install doesn’t require much time or effort to 
download and install on most systems.

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
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The free product is all you need for this book. However, when you look on 
the site, you see that many other add‐on products are available. These prod-
ucts can help you create robust applications. For example, when you add 
Accelerate to the mix, you obtain the ability to perform multicore and GPU‐
enabled operations. The use of these add‐on products is outside the scope of 
this book, but the Anaconda site provides details on using them.

Getting Enthought Canopy Express
Enthought Canopy Express is a free product for producing both technical 
and scientific applications using Python. You can obtain it at https://www.
enthought.com/canopy‐express/. Click Download Free on the main 
page to see a listing of the versions that you can download. Only Canopy 
Express is free, the full Canopy product comes at a cost. However, you can 
use Canopy Express to work with the examples in this book. Canopy Express 
supports the following platforms:

 ✓ Windows 32‐bit and 64‐bit

 ✓ Linux 32‐bit and 64‐bit

 ✓ Mac OS X 32‐bit and 64‐bit

Choose the platform and version you want to download. When you click 
Download Canopy Express, you see an optional form for providing informa-
tion about yourself. The download starts automatically, even if you don’t 
 provide personal information to the company.

One of the advantages of Canopy Express is that Enthought is heavily 
involved in providing support for both students and teachers. People also 
can take classes, including online classes, that teach the use of Canopy 
Express in various ways (see https://training.enthought.com/
courses). Also offered is live classroom training specifically designed for the 
data scientist; read about this training at https://www.enthought.com/
services/training/data‐science.

Getting pythonxy
The pythonxy Integrated Development Environment (IDE) is a community 
project hosted on Google at https://code.google.com/p/pythonxy/. 
It’s a Windows‐only product, so you can’t easily use it for cross‐platform 
needs. (In fact, it supports only Windows Vista, Windows 7, and Windows 8.) 
However, it does come with a full set of libraries, and you can easily use it for 
this book, if desired.

https://www.enthought.com/canopy-express/
https://www.enthought.com/canopy-express/
https://training.enthought.com/courses
https://training.enthought.com/courses
https://www.enthought.com/services/training/data-science
https://www.enthought.com/services/training/data-science
https://code.google.com/p/pythonxy/
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Because pythonxy uses the GNU General Public License (GPL) v3 (see 
http://www.gnu.org/licenses/gpl.html), you have no add‐ons, 
 training, or other paid features to worry about. No one will come calling at 
your door hoping to sell you something. In addition, you have access to all 
the source code for pythonxy, so you can make modifications if desired.

Getting WinPython
The name tells you that WinPython is a Windows‐only product that you can 
find at http://winpython.sourceforge.net/. This product is  actually 
a takeoff of pythonxy and isn’t meant to replace it. Quite the contrary: 
WinPython is simply a more flexible way to work with pythonxy. You can read 
about the motivation for creating WinPython at http://sourceforge.
net/p/winpython/wiki/Roadmap/.

The bottom line for this product is that you gain flexibility at the cost of 
friendliness and a little platform integration. However, for developers who 
need to maintain multiple versions of an IDE, WinPython may make a sig-
nificant difference. When using WinPython with this book, make sure to 
pay particular attention to configuration issues or you’ll find that even the 
 downloadable code has little chance of working.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so 
getting a good install means using a wizard, much as you would for any other 
installation. Of course, you need a copy of the installation file before you 
begin, and you can find the required download information in the “Getting 
Continuum Analytics Anaconda” section of this chapter. The following 
 procedure should work fine on any Windows system, whether you use the 
32‐bit or the 64‐bit version of Anaconda.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as 
Anaconda‐2.1.0‐Windows‐x86.exe for 32‐bit systems and 
Anaconda‐2.1.0‐Windows‐x86_64.exe for 64‐bit systems. The 
version number is embedded as part of the filename. In this case, the 
filename refers to version 2.1.0, which is the version used for this book. 
If you use some other version, you may experience problems with the 
source code and need to make adjustments when working with it.

http://www.gnu.org/licenses/gpl.html
http://winpython.sourceforge.net/
http://sourceforge.net/p/winpython/wiki/Roadmap/
http://sourceforge.net/p/winpython/wiki/Roadmap/
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2. Double‐click the installation file.

(You may see an Open File – Security Warning dialog box that asks 
whether you want to run this file. Click Run if you see this dialog box 
pop up.) You see an Anaconda 2.1.0 Setup dialog box similar to the one 
shown in Figure 3-1. The exact dialog box you see depends on which 
version of the Anaconda installation program you download. If you have 
a 64‐bit operating system, it’s always best to use the 64‐bit version of 
Anaconda so that you obtain the best possible performance. This first 
dialog box tells you when you have the 64‐bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in 
Figure 3-2. In most cases, you want to install the product just for  yourself. 
The exception is if you have multiple people using your system and they 
all need access to Anaconda.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. 
The book assumes that you use the default location. If you choose some 
other location, you may have to modify some procedures later in the book 
to work with your setup.

Figure 3-1:  
The setup 

 process 
begins by 

telling you 
whether you 

have the  
64‐bit  

version.
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6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These 
options are selected by default and there isn’t a good reason to change 
them in most cases. You might need to change them if Anaconda won’t 
provide your default Python 2.7 (or Python 3.4) setup. However, the 
book assumes that you’ve set up Anaconda using the default options.

7. Change the advanced installation options (if necessary) and then 
click Install.

Figure 3-2:  
Tell the 

wizard how 
to install 

Anaconda 
on your 
 system.

Figure 3-3:  
Specify an 
installation 

 location.
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You see an Installing dialog box with a progress bar. The installation 
 process can take a few minutes, so get yourself a cup of coffee and read 
the comics for a while. When the installation process is over, you see a 
Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

9. Click Finish.

You’re ready to begin using Anaconda.

Figure 3-4:  
Configure 

the 
advanced 

installation 
options.

A word about the screenshots
As you work your way through the book, you’ll 
use an IDE of your choice to open the Python 
and IPython Notebook files containing the 
book’s source code. Every screenshot that 
contains IDE‐specific information relies on 
Anaconda because Anaconda runs on all 
three platforms supported by the book. The 
use of Anaconda doesn’t imply that it’s the best 
IDE or that the authors are making any sort of 
recommendation for it — Anaconda simply 
works well as a demonstration product.

When you work with Anaconda, the name 
of the graphical (GUI) environment, IPython 

(Py 2.7) Notebook, is precisely the same 
across all three platforms, and you won’t 
even see any significant difference in the 
presentation. The differences you do see are 
minor, and you should ignore them as you 
work through the book. With this in mind, 
the book does rely heavily on Windows 7 
screenshots. When working on a Linux, Mac 
OS X, or other Windows version platform, 
you should expect to see some differences 
in presentation, but these differences 
shouldn’t reduce your ability to work with 
the examples.
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Installing Anaconda on Linux
You use the command line to install Anaconda on Linux — there is no graphi-
cal installation option. Before you can perform the install, you must down-
load a copy of the Linux software from the Continuum Analytics site. You can 
find the required download information in the “Getting Continuum Analytics 
Anaconda” section of this chapter. The following procedure should work 
fine on any Linux system, whether you use the 32‐bit or the 64‐bit version of 
Anaconda.

1. Open a copy of Terminal.

You see the Terminal window appear.

2. Change directories to the downloaded copy of Anaconda on your 
system.

The name of this file varies, but normally it appears as Anaconda‐2.1.0‐
Linux‐x86.sh for 32‐bit systems and Anaconda‐2.1.0‐Linux‐
x86_64.sh for 64‐bit systems. The version number is embedded as part 
of the filename. In this case, the filename refers to version 2.1.0, which is 
the version used for this book. If you use some other version, you may 
experience problems with the source code and need to make adjustments 
when working with it.

3. Type bash Anaconda‐2.1.0‐Linux‐x86 (for the 32‐bit version) or 
Anaconda‐2.1.0‐Linux‐x86_64.sh (for the 64‐bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms 
for using Anaconda.

4. Read the licensing agreement and accept the terms using the method 
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. 
The book assumes that you use the default location of ~/anaconda. If 
you choose some other location, you may have to modify some proce-
dures later in the book to work with your setup.

5. Provide an installation location (if necessary) and press Enter (or click 
Next).

You see the application extraction process begin. After the extraction is 
complete, you see a completion message.

6. Add the installation path to your PATH statement using the method 
required for your version of Linux.

You’re ready to begin using Anaconda.
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Installing Anaconda on Mac OS X
The Mac OS X installation comes only in one form: 64‐bit. Before you can 
perform the install, you must download a copy of the Mac software from the 
Continuum Analytics site. You can find the required download information 
in the “Getting Continuum Analytics Anaconda” section of this chapter. The 
 following steps help you install Anaconda 64‐bit on a Mac system.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda‐2.1.0‐
MacOSX‐x86_64.pkg. The version number is embed ded as part of the 
filename. In this case, the filename refers to version 2.1.0, which is the 
version used for this book. If you use some other  version, you may experi-
ence problems with the source code and need to make adjustments when 
working with it.

2. Double‐click the installation file.

You see an introduction dialog box.

3. Click Continue.

The wizard asks whether you want to review the Read Me materials. 
You can read these materials later. For now, you can safely skip the 
 information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The 
destination controls whether the installation is for an individual user or 
a group.

You may see an error message stating that you can’t install Anaconda on 
the system. The error message occurs because of a bug in the installer 
and has nothing to do with your system. To get rid of the error message, 
choose the Install Only for Me option. You can’t install Anaconda for a 
group of users on a Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the 
installation type. Click Change Install Location if you want to modify 
where Anaconda is installed on your system (the book assumes that 
you use the default path of ~/anaconda). Click Customize if you want to 
modify how the installer works. For example, you can choose not to add 
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Anaconda to your PATH statement. However, the book assumes that you 
have chosen the default install options and there isn’t a good reason to 
change them unless you have another copy of Python 2.7 installed some-
where else.

7. Click Install.

You see the installation begin. A progress bar tells you how the installa-
tion process is progressing. When the installation is complete, you see a 
completion dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.

Downloading the Datasets  
and Example Code

This book is about using Python to perform data science tasks. Of course, 
you could spend all your time creating the example code from scratch, 
debugging it, and only then discovering how it relates to data science, or you 
can take the easy way and download the prewritten code so that you can 
get right to work. Likewise, creating datasets large enough for data science 
purposes would take quite a while. Fortunately, you can access standard-
ized, precreated data sets quite easily using features provided in some of the 
data science libraries. The following sections help you download and use the 
example code and datasets so that you can save time and get right to work 
with data science–specific tasks.

Using IPython Notebook
To make working with the relatively complex code in this book easier, you use 
IPython Notebook. This interface makes it easy to create Python notebook files 
that can contain any number of examples, each of which can run individually. 
The program runs in your browser, so which platform you use for develop-
ment doesn’t matter; as long as it has a browser, you should be OK.

Starting IPython Notebook
Most platforms provide an icon to access IPython (Py 2.7) Notebook (the 
version number may be different on your system). All you need to do is open 
this icon to access IPython Notebook. For example, on a Windows system, 
you choose Start ➪ All Programs ➪ Anaconda ➪ IPython (Py 2.7) Notebook. 
Figure 3-5 shows how the interface looks when viewed in a Firefox browser. 
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The precise appearance on your system depends on the browser you use and 
the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can 
use these steps to access IPython Notebook:

1. Open a Command Prompt or Terminal Window on your system.

You see the window open so that you can type commands.

2. Change directories to the \Anaconda\Scripts directory on your 
machine.

Most systems let you use the CD command for this task.

3. Type ..\python ipython‐script.py notebook and press Enter.

The IPython Notebook page opens in your browser.

Stopping the IPython Notebook server
No matter how you start IPython Notebook (or just Notebook, as it appears 
in the remainder of the book), the system generally opens a command 
prompt or terminal window to host Notebook. This window contains a server 
that makes the application work. After you close the browser window when a 
session is complete, select the server window and press Ctrl+C or Ctrl+Break 
to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your 
hard drive. Think of a repository as a kind of filing cabinet where you put your 
code. Notebook opens a drawer, takes out the folder, and shows the code to 

Figure 3-5:  
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you. You can modify it, run individual examples within the folder, add new 
examples, and simply interact with your code in a natural manner. The fol-
lowing sections get you started with Notebook so that you can see how this 
whole repository concept works.

Dealing with the MathJax error
You may find yourself staring at an odd error like the one shown in Figure 3-6 
when you try to perform certain tasks, such as creating a new notebook. The 
book doesn’t actually use the MathJax library, so you can simply dismiss the 
message box if you like.

However, you may eventually need the MathJax library, so the best approach 
is to fix the problem. The following steps help you install a local copy of the 
MathJax library so that you no longer see the error message.

1. Open a Command Prompt or Terminal Window on your system.

The window opens so that you can type commands.

2. Change directories to the \Anaconda directory on your machine.

Most systems let you use the CD command for this task.

3. Type python and press Enter.

A new copy of Python starts.

4. Type from IPython.external import mathjax; mathjax.install_mathjax() 
and press Enter.

Python tells you that it’s extracting a copy of the mathjax library to a 
specific location on your system.

Figure 3-6:  
It’s safe to 
ignore the 

MathJax 
error when 
working in 
this book.



50 Part I: Getting Started with Python for Data Science  

The extraction process can take a long time to complete. Get a cup of 
coffee, discuss the latest sports with a friend, or read a good book, but 
don’t disturb the download process or you won’t get a complete copy of 
the MathJax library. The result will be that Notebook could fail to work 
properly (if it works at all). After some period of time, the extraction 
 process is complete and you return to the Python prompt.

5. Type quit() and press Enter.

The MathJax library is now ready for use. You must restart any 
Notebook servers before proceeding.

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples 
within the file folder, just as you would sheets of paper into a physical file 
folder. Each example appears in a cell. You can put other sorts of things 
in the file folder, too, but you see how these things work as the book 
 progresses. Use these steps to create a new notebook.

1. Click New Notebook.

You see a new tab open in the browser with the new notebook, as shown 
in Figure 3-7. Notice that the notebook contains a cell and that Notebook 
has highlighted the cell so that you can begin typing code in it. The title 
of the notebook is Untitled0 right now. That’s not a particularly helpful 
title, so you need to change it.

2. Click Untitled0 on the page.

Notebook asks whether you want to use as a new name, as shown in 
Figure 3-8.

Figure 3-7:  
A notebook 
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3. Type P4DS4D; 03; Sample and press Enter.

The new name tells you that this is a file for Python for Data Science For 
Dummies, Chapter 3, Sample.ipynb. Using this naming convention will 
make it easy for you to differentiate these files from other files in your 
repository.

Of course, the Sample notebook doesn’t contain anything just yet. Place the 
cursor in the cell, type print ‘Python is really cool!’, and then click the Run 
button (the button with the right‐pointing arrow on the toolbar). You see the 
output shown in Figure 3-9. The output is part of the same cell as the code. 
However, Notebook visually separates the output from the code so that you 
can tell them apart. Notebook automatically creates a new cell for you.

Figure 3-8:  
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Figure 3-9:  
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When you finish working with a notebook, it’s important to shut it down. To 
close a notebook, choose File ➪ Close and Halt. You return to the Home page, 
where you can see the notebook you just created added to the list, as shown 
in Figure 3-10.

Exporting a notebook
It isn’t much fun to create notebooks and keep them all to yourself. At some 
point, you want to share them with other people. To perform this task, you 
must export your notebook from the repository to a file. You can then send 
the file to someone else who will import it into his or her repository.

The previous section shows how to create a notebook named P4DS4D; 03; 
Sample. You can open this notebook by clicking its entry in the repository 
list. File reopens so that you can see your code again. To export this code, 
choose File ➪ Download As ➪ IPython Notebook. What you see next depends 
on your browser, but you generally see some sort of dialog box for saving the 
notebook as a file. Use the same method for saving the IPython Notebook file 
as you use for any other file you save using your browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with 
them any longer. Rather than allow your repository to get clogged with 
files you don’t need, you can remove these unwanted notebooks from the 
list. Notice the Delete button next to the P4DS4D; 03; Sample.ipynb entry in 
Figure 3-10. Use these steps to remove the file:

1. Click Delete.

You see a Delete notebook warning message like the one shown in 
Figure 3-11.

Figure 3-10:  
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2. Click Delete.

Notebook removes the notebook file from the list. However, you won’t 
actually see the change.

3. Click Refresh Notebook List (the button with two arrows forming a 
circle in it).

You see the file removed from the list.

Importing a notebook
In order to use the source code from this book, you must import the 
 downloaded files into your repository. The source code comes in an archive 
file that you extract to a location on your hard drive. The archive contains 
a list of .ipynb (IPython Notebook) files containing the source code for this 
book (see the Introduction for details on downloading the source code). The 
following steps tell how to import these files into your repository:

1. Click the Click Here link on the Notebook Home page.

What you see depends on your browser. In most cases, you see some 
type of File Upload dialog box that provides access to the files on your 
hard drive.

2. Navigate to the directory containing the files you want to import into 
Notebook.

3. Highlight one or more files to import and click the Open (or other, 
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-12. The file 
isn’t part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

Figure 3-11:  
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Understanding the datasets  
used in this book
This book uses a number of datasets, all of which appear in the Scikit‐learn 
library. These datasets demonstrate various ways in which you can interact 
with data, and you use them in the examples to perform a variety of tasks. 
The following list provides a quick overview of the function used to import 
each of the datasets into your Python code:

 ✓ load_boston(): Regression analysis with the Boston house‐prices 
dataset

 ✓ load_iris(): Classification with the iris dataset

 ✓ load_diabetes(): Regression with the diabetes dataset

 ✓ load_digits([n_class]): Classification with the digits dataset

 ✓ fetch_20newsgroups(subset=’train’): Data from 20 newsgroups

 ✓ fetch_olivetti_faces(): Olivetti faces dataset from AT&T

The technique for loading each of these datasets is the same across examples. 
The following example shows how to load the Boston house‐prices dataset. 
You can find the code in the P4DS4D; 03; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston
Boston = load_boston()
print Boston.data.shape

Figure 3-12:  
The files 

you want to 
add to the 
repository 
appear as 
part of an 

upload list.

sklearn.datasets.fetch_olivetti_faces
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To see how the code works, click Run Cell. The output from the print call is 
(506L, 13L). You can see the output shown in Figure 3-13.

Figure 3-13:  
The Boston 

object 
contains 

the loaded 
 dataset.
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Reviewing Basic Python
In This Chapter

 ▶ Using numbers and logic

 ▶ Interacting with strings

 ▶ Delving into dates

 ▶ Developing modular code

 ▶ Making decisions and performing tasks repetitively

 ▶ Organizing information into sets, lists, and tuples

 ▶ Iterating through data

 ▶ Making data easier to find using dictionaries

C 
hapter 3 helped you create a Python installation that’s specific to data 
science. However, you can use this installation to perform common 

Python tasks as well, and that’s actually the best way to test your setup to 
know that it works as intended. If you already know Python, you might be 
able to skip this chapter and move on to the next chapter; however, it’s prob-
ably best to skim the material as a minimum and test some of the examples, 
just to be sure you have a good installation.

The focus of this chapter is to provide you with a good overview of how 
Python works as a language. Of course, part of that focus is how you use 
Python to solve data science problems. However, you can’t use this book to 
learn Python from scratch. To learn Python from scratch, you need a book 
such as my book Beginning Programming with Python For Dummies (published 
by John Wiley & Sons, Inc.) or a tutorial such as the one at https://docs.
python.org/2/tutorial/. The chapter assumes that you’ve worked with 
other programming languages and have at least an idea of how Python works. 
This limitation aside, the chapter gives you a good reminder of how things 
work in Python, which is all that many people really need.

Chapter 4

https://docs.python.org/2/tutorial/
https://docs.python.org/2/tutorial/
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This book uses Python 2.7.x. The latest version of Python as of this writing 
is version 2.7.9. If you try to use this book with Python 3.4.2 (or above), you 
may need to modify the examples to compensate for the differences in that 
version. The “Using Python 2.7.x for this book” sidebar in Chapter 3 provides 
you with details about Python version differences. Going through the exam-
ples in this chapter will help you know what to expect with other examples 
in the book should you decide to use version 3.4.2 when solving data science 
problems.

Stylistic concerns with Python
Python developers designed Python to be 
easy to read and understand. For this reason, 
it comes with certain style conventions. You 
can see these conventions listed in Pep‐8 
(https://www.python.org/dev/
peps/pep‐0008/). If you want to exchange 
your code with someone else or use it in a public 
venue, you need to follow the conventions 
relatively closely. However, personal code or 
example code that you create need not follow 
the conventions precisely.

You must use the whitespace rules when 
writing your code because Python uses them 
to determine where code segments begin and 
end. In addition, Python has some odd rules 
that might seem randomly implemented, but 
they make the code easier to work with. For 
example, you can’t mix tabs and spaces in the 
same document to create whitespace when 
working with Python 3 (Python 2 does allow 
mixing of tabs and spaces). The preference is 
to use spaces, and the Python editors on the 
market tend to use spaces by default.

Some stylistic concerns are more about 
preference than about making the code work. 

For example, method names are supposed to 
use all lowercase letters and use underscores 
to separate words, such as my_method. 
However, you can use camel case when desired, 
such as myMethod, or even pascal case, such 
as MyMethod, and the code will compile just 
fine. If you want to make a method private, 
however, you must use a leading underscore 
for it, such as _my_method. Adding two 
underscores, such as __my_method, invokes 
Python’s name mangling to make it harder 
(albeit not impossible) for someone to use the 
method. The point is that you don’t have to be 
a slave to the stylistic rules as long as you’re 
willing to live with the consequences of not 
following them completely.

Python does include magic words, such as __
init__, __import__, and __file__. You 
don’t ever create these names yourself, and you 
use only the existing magic words as defined by 
Python. A listing of these magic words appears 
at http://www.rafekettler.com/
magicmethods.html. The guide tells you 
the most common uses for the magic words 
as well.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
http://www.rafekettler.com/magicmethods.html
http://www.rafekettler.com/magicmethods.html
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Working with Numbers and Logic
Data science involves working with data of various sorts, but much of the 
work involves numbers. In addition, you use logical values to make decisions 
about the data you use. For example, you might need to know whether two 
values are equal or whether one value is greater than another value. Python 
supports these number and logic value types:

 ✓ Any whole number is an integer. For example, the value 1 is a whole 
number, so it’s an integer. On the other hand, 1.0 isn’t a whole number; 
it has a decimal part to it, so it’s not an integer. Integers are repre-
sented by the int data type. On most platforms, you can store numbers 
between –9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 within 
an int (which is the maximum value that fits in a 64‐bit variable).

 ✓ Any number that includes a decimal portion is a floating point value. 
For example, 1.0 has a decimal part, so it’s a floating‐point value. Many 
people get confused about whole numbers and floating‐point numbers, 
but the difference is easy to remember. If you see a decimal in the 
number, it’s a floating‐point value. Python stores floating‐point values in 
the float data type. The maximum value that a floating‐point variable 
can contain is ±1.7976931348623157 × 10308 and the minimum value that 
a floating point variable can contain is ±2.2250738585072014 × 10‐308 on 
most platforms.

 ✓ A complex number consists of a real number and an imaginary number 
that are paired together. Just in case you’ve completely forgotten 
about complex numbers, you can read about them at http://www. 
mathsisfun.com/numbers/complex‐numbers.html. The imaginary 
part of a complex number always appears with a j after it. So, if you want 
to create a complex number with 3 as the real part and 4 as the imagi-
nary part, you make an assignment like this: myComplex = 3 + 4j.

 ✓ Logical arguments require Boolean values, which are named after 
George Bool. When using a Boolean value in Python, you rely on the 
bool type. A variable of this type can contain only two values: True or 
False. You can assign a value by using the True or False keywords, 
or you can create an expression that defines a logical idea that equates 
to true or false. For example, you could say myBool = 1 > 2, which 
would equate to False because 1 is most definitely not greater than 2.

Now that you have the basics down, it’s time to see the data types in action. 
The following paragraphs provide a quick overview of how you can work with 
both numeric and logical data in Python.

http://www.mathsisfun.com/numbers/complex-numbers.html
http://www.mathsisfun.com/numbers/complex-numbers.html
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Performing variable assignments
When working with applications, you store information in variables. A vari-
able is a kind of storage box. Whenever you want to work with the informa-
tion, you access it using the variable. If you have new information you want 
to store, you put it in a variable. Changing information means accessing the 
variable first and then storing the new value in the variable. Just as you store 
things in boxes in the real world, so you store things in variables (a kind of 
storage box) when working with applications. To store data in a variable, you 
assign the data to it using any of a number of assignment operators (special 
symbols that tell how to store the data). Table 4-1 shows the assignment 
operators that Python supports.

Table 4-1 Python Assignment Operators
Operator Description Example
= Assigns the value found in the right  operand 

to the left operand
MyVar = 2 results in 
MyVar containing 2

+= Adds the value found in the right operand 
to the value found in the left operand and 
places the result in the left operand

MyVar += 2 results in 
MyVar containing 7

‐= Subtracts the value found in the right oper
and from the value found in the left operand 
and places the result in the left operand

MyVar ‐= 2 results in 
MyVar containing 3

*= Multiplies the value found in the right oper
and by the value found in the left operand 
and places the result in the left operand

MyVar *= 2 results in 
MyVar containing 10

/= Divides the value found in the left operand 
by the value found in the right operand and 
places the result in the left operand

MyVar /= 2 results in 
MyVar containing 2.5

%= Divides the value found in the left operand 
by the value found in the right operand and 
places the remainder in the left operand

MyVar %= 2 results in 
MyVar containing 1

**= Determines the exponential value found in 
the left operand when raised to the power 
of the value found in the right operand and 
places the result in the left operand

MyVar ** 2 results in 
MyVar containing 25

//= Divides the value found in the left operand 
by the value found in the right operand and 
places the integer (whole number) result in 
the left operand

MyVar //= 2 results in 
MyVar containing 2
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Doing arithmetic
Storing information in variables makes it easily accessible. However, in order 
to perform any useful work with the variable, you usually perform some type 
of arithmetic operation on it. Python supports the common arithmetic opera-
tors you use to perform tasks by hand. They appear in Table 4-2.

Sometimes you need to interact with just one variable. Python supports a 
number of unary operators, those that work with just one variable, as shown 
in Table 4-3.

Table 4-2 Python Arithmetic Operators
Operator Description Example
+ Adds two values together 5 + 2 = 7

‐ Subtracts the right‐hand operand from left operand 5 – 2 = 3

* Multiplies the right‐hand operand by the left  operand 5 * 2 = 10

/ Divides the left‐hand operand by the right operand 5 / 2 = 2.5

% Divides the left‐hand operand by the right operand and 
returns the remainder

5 % 2 = 1

** Calculates the exponential value of the right  operand by 
the left operand

5 ** 2 = 25

// Performs integer division, in which the left operand is 
divided by the right operand and only the whole number 
is returned (also called floor division)

5 // 2 = 2

Table 4-3 Python Unary Operators
Operator Description Example
~ Inverts the bits in a number so that all of the 0 bits 

become 1 bits and vice versa.
~4 results in a 
value of –5

‐ Negates the original value so that positive 
becomes negative and vice versa.

–(–4) results in 
4 and –4 results 
in –4

+ Is provided purely for the sake of completeness. 
This operator returns the same value that you 
 provide as input.

+4 results in a 
value of 4
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Computers can perform other sorts of math tasks because of the way in 
which the processor works. It’s important to remember that computers store 
data as a series of individual bits. Python makes it possible to access these 
individual bits using bitwise operators, as shown in Table 4-4.

Comparing data using Boolean expressions
Using arithmetic to modify the content of variables is a kind of data manipula-
tion. To determine the effect of data manipulation, a computer must compare 
the current state of the variable against its original state or the state of a 
known value. In some cases, detecting the status of one input against another 
is also necessary. All these operations check the relationship between two 
variables, so the resulting operators are relational operators, as shown 
in Table 4-5.

Table 4-4 Python Bitwise Operators
Operator Description Example
& (And) Determines whether both individual 

bits within two operators are true 
and sets the resulting bit to true 
when they are.

0b1100 & 0b0110 = 
0b0100

| (Or) Determines whether either of the indi
vidual bits within two operators are 
true and sets the resulting bit to true 
when they are.

0b1100 | 0b0110 = 0b1110

^ (Exclusive or) Determines whether just one of the 
individual bits within two operators 
is true and sets the resulting bit to 
true when one is. When both bits are 
true or both bits are false, the result 
is false.

0b1100 ^ 0b0110 = 0b1010

~ (One’s 
 complement)

Calculates the one’s complement 
value of a number.

~0b1100 = –0b1101 
~0b0110 = –0b0111

<< (Left shift) Shifts the bits in the left operand left 
by the value of the right operand. All 
new bits are set to 0 and all bits that 
flow off the end are lost.

0b00110011 << 2 = 
0b11001100

>> (Right shift) Shifts the bits in the left operand right 
by the value of the right operand. All 
new bits are set to 0 and all bits that 
flow off the end are lost.

0b00110011 >> 2 = 
0b00001100
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Sometimes a relational operator can’t tell the whole story of the comparison 
of two values. For example, you might need to check a condition in which two 

separate comparisons are needed, such as MyAge > 40 and MyHeight < 74.  
The need to add conditions to the comparison requires a logical  operator of 
the sort shown in Table 4-6.

Table 4-5 Python Relational Operators
Operator Description Example
== Determines whether two values are equal. Notice 

that the relational operator uses two equals signs. 
A mistake many developers make is using just 
one equals sign, which results in one value being 
assigned to another.

1 == 2 is False

!= Determines whether two values are not equal. 
Some older versions of Python allowed you to 
use the <> operator in place of the != operator. 
Using the <> operator results in an error in current 
 versions of Python.

1 != 2 is True

> Verifies that the left operand value is greater than 
the right operand value.

1 > 2 is False

< Verifies that the left operand value is less than the 
right operand value.

1 < 2 is True

>= Verifies that the left operand value is greater than 
or equal to the right operand value.

1 >= 2 is False

<= Verifies that the left operand value is less than or 
equal to the right operand value.

1 <= 2 is True

Table 4-6 Python Logical Operators
Operator Description Example
and Determines whether both  operands 

are true.
True and True is True

True and False is False

False and True is False

False and False is False
(continued)
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Computers provide order to comparisons by making some operators more 
significant than others. The ordering of operators is operator  precedence. 
Table 4-7 shows the operator precedence of all the common Python opera-
tors, including a few you haven’t seen as part of a discussion yet. When 
making comparisons, always consider operator precedence because other-
wise, the assumptions you make about a comparison outcome will likely be 
wrong.

Operator Description Example

or Determines when one of two 
 operands is true.

True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a  
single operand. A true value 
becomes false and a false  
value becomes true.

not True is False

not False is True

Table 4-6 (continued)

Table 4-7 Python Operator Precedence
Operator Description
() You use parentheses to group expressions and to override 

the default precedence so that you can force an operation of 
lower precedence (such as addition) to take precedence over 
an operation of higher precedence (such as multiplication).

** Exponentiation raises the value of the left operand to the 
power of the right operand.

~ + ‐ Unary operators interact with a single variable or expression.

* / % // Multiply, divide, modulo, and floor division.

+ ‐ Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.
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Creating and Using Strings
Of all the data types, strings are the most easily understood by humans 
and not understood at all by computers. A string is simply any grouping  
of  characters you place within double quotation marks. For example,  
myString = "Python is a great language." assigns a string of  
characters to  myString.

The computer doesn’t see letters at all. Every letter you use is represented 
by a number in memory. For example, the letter A is actually the number 65. 
To see this for yourself, type ord("A") at the Python prompt and press Enter. 
You see 65 as output. It’s possible to convert any single letter to its numeric 
equivalent using the ord() command.

Because the computer doesn’t really understand strings, but strings are so 
useful in writing applications, you sometimes need to convert a string to a 
number. You can use the int() and float() commands to perform this 
conversion. For example, if you type myInt = int("123") and press Enter at the 
Python prompt, you create an int named myInt that contains the value 123.

You can convert numbers to a string as well by using the str() command. 
For example, if you type myStr = str(1234.56) and press Enter, you create a 
string containing the value "1234.56" and assign it to myStr. The point is 
that you can go back and forth between strings and numbers with great ease. 
Later chapters demonstrate how these conversions make many seemingly 
impossible tasks quite doable.

Operator Description

== != Equality operators.

= %= /= //= ‐= += 
*= **=

Assignment operators.

is

is not

Identity operators.

in

not in

Membership operators.

not or and Logical operators.
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As with numbers, you can use some special operators with strings (and many 
objects). The member operators make it possible to determine when a string 
contains specific content. Table 4-8 shows these operators.

The discussion in this section also makes it obvious that you need to know 
the kind of data that variables contain. You use the identity operators to 
 perform this task, as shown in Table 4-9.

Interacting with Dates
Dates and times are items that most people work with quite a bit. Society 
bases almost everything on the date and time that a task needs to be or 
was completed. We make appointments and plan events for specific dates 

Table 4-8 Python Membership Operators
Operator Description Example
in Determines whether the value in the 

left operand appears in the sequence 
found in the right operand

“Hello” in “Hello 
Goodbye“ is True

not in Determines whether the value in 
the left operand is missing from the 
sequence found in the right operand

“Hello“ not in “Hello 
Goodbye“ is False

Table 4-9 Python Identity Operators
Operator Description Example
is Evaluates to true when the type of the 

value or expression in the right oper
and points to the same type in the left 
operand

type(2) is int is True

is not Evaluates to true when the type of the 
value or expression in the right operand 
points to a different type than the value 
or expression in the left operand

type(2) is not int is False
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and times. Most of our day revolves around the clock. Because of the time‐ 
oriented nature of humans, it’s a good idea to look at how Python deals with 
interacting with date and time (especially storing these values for later use). 
As with everything else, computers understand only numbers — date and 
time don’t really exist.

To work with dates and times, you must issue a special import datetime 
command. Technically, this act is called importing a module. Don’t worry how 
the command works right now — just use it whenever you want to do some-
thing with date and time.

Computers do have clocks inside them, but the clocks are for the humans 
using the computer. Yes, some software also depends on the clock, but again, 
the emphasis is on human needs rather than anything the computer might 
require. To get the current time, you can simply type datetime.datetime.
now() and press Enter. You see the full date and time information as found on 
your computer’s clock (see Figure 4-1).

You may have noticed that the date and time are a little hard to read in the 
existing format. Say that you want to get just the current date, and in a read-
able format. To accomplish this task, you access just the date portion of the 
output and convert it into a string. Type str(datetime.datetime.now().date()) 
and press Enter. Figure 4-2 shows that you now have something a little more 
usable.

Interestingly enough, Python also has a time() command, which you can 
use to obtain the current time. You can obtain separate values for each of the 
components that make up date and time using the day, month, year, hour, 
minute, second, and microsecond values. Later chapters help you under-
stand how to use these various date and time features to make working with 
data science applications easier.

Figure 4-1: 
Get the 
 current 

date and 
time using 

the now() 
command.
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Creating and Using Functions
To manage information properly, you need to organize the tools used to 
 perform the required tasks. Each line of code that you create performs a 
specific task, and you combine these lines of code to achieve a desired 
result. Sometimes you need to repeat the instructions with different data, 
and in some cases your code becomes so long that it’s hard to keep track 
of what each part does. Functions serve as organization tools that keep 
your code neat and tidy. In addition, functions make it easy to reuse the 
instructions you’ve created as needed with different data. This section of 
the  chapter tells you all about functions. More important, in this section you 
start creating your first serious applications in the same way that profes-
sional developers do.

Creating reusable functions
You go to your closet, take out pants and shirt, remove the labels, and put 
them on. At the end of the day, you take everything off and throw it in the 
trash. Hmmm . . . that really isn’t what most people do. Most people take 
the clothes off, wash them, and then put them back into the closet for reuse. 
Functions are reusable, too. No one wants to keep repeating the same task; 
it becomes monotonous and boring. When you create a function, you define 
a package of code that you can use over and over to perform the same task. 
All you need to do is tell the computer to perform a specific task by telling it 
which function to use. The computer faithfully executes each instruction in 
the function absolutely every time you ask it to do so.

When you work with functions, the code that needs services from the func-
tion is named the caller, and it calls upon the function to perform tasks for 
it. Much of the information you see about functions refers to the caller. The 
caller must supply information to the function, and the function returns 
 information to the caller.

Figure 4-2: 
Make the 
date and 

time more 
readable 
using the 
str() 

command.
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At one time, computer programs didn’t include the concept of code reusabil-
ity. As a result, developers had to keep reinventing the same code. It didn’t 
take long for someone to come up with the idea of functions, though, and 
the concept has evolved over the years until functions have become quite 
flexible. You can make functions do anything you want. Code reusability is a 
necessary part of applications to

 ✓ Reduce development time

 ✓ Reduce programmer error

 ✓ Increase application reliability

 ✓ Allow entire groups to benefit from the work of one programmer

 ✓ Make code easier to understand

 ✓ Improve application efficiency

In fact, functions do a whole list of things for applications in the form of 
 reusability. As you work through the examples in this book, you see how 
reusability makes your life significantly easier. If not for reusability, you’d 
still be programming by plugging 0s and 1s into the computer by hand.

Creating a function doesn’t require much work. To see how functions work, 
open a copy of IPython and type in the following code (pressing Enter at the 
end of each line):

def SayHello():
    print('Hello There!')

To end the function, you press Enter a second time after the last line. A 
 function begins with the keyword def (for define). You provide a function 
name, parentheses that can contain function arguments (data used in the 
function), and a colon. The editor automatically indents the next line for 
you. Python relies on whitespace to define code blocks (statements that are 
 associated with each other in a function).

You can now use the function. Simply type SayHello( ) and press Enter. The 
parentheses after the function name are important because they tell Python 
to execute the function, rather than tell you that you are accessing a function 
as an object (to determine what it is). Figure 4-3 shows the output from this 
function.
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Calling functions in a variety of ways
Functions can accept arguments (additional bits of data) and return values. 
The ability to exchange data makes functions far more useful than they 
 otherwise might be. The following sections describe how to call functions in 
a variety of ways to both send and receive data.

Sending required arguments
A function can require the caller to provide arguments to it. A required 
 argument is a variable that must contain data for the function to work. Open 
a copy of IPython and type the following code:

def DoSum(Value1, Value2):
    return Value1 + Value2

You have a new function, DoSum(). This function requires that you  provide 
two arguments to use it. At least, that’s what you’ve heard so far. Type 
DoSum() and press Enter. You see an error message, as shown in Figure 4-4, 
telling you that DoSum requires two arguments.

Figure 4-3: 
Creating 

and using 
functions 

is straight
forward.

Figure 4-4: 
You must 
supply an 
argument 
or you get 

an error 
 message.
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Trying DoSum() with just one argument would result in another error 
 message. In order to use DoSum() you must provide two argument. To see 
how this works, type DoSum(1, 2) and press Enter. You see the result in 
Figure 4-5.

Notice that DoSum() provides an output value of 3 when you supply 1 and 2 
as inputs. The return statement provides the output value. Whenever you 
see return in a function, you know the function provides an output value.

Sending arguments by keyword
As your functions become more complex and the methods to use them do as 
well, you may want to provide a little more control over precisely how you 
call the function and provide arguments to it. Until now, you have  positional 
arguments, which means that you have supplied values in the order in which  
they appear in the argument list for the function definition. However, Python 
also has a method for sending arguments by keyword. In this case, you 
supply the name of the argument followed by an equals sign (=) and the 
 argument value. To see how this works, open a copy of IPython and type the 
following code:

def DisplaySum(Value1, Value2):
    print(str(Value1) + ' + ' + str(Value2) + ' = ' +
    str((Value1 + Value2)))

Notice that the print() function argument includes a list of items to print 
and that those items are separated by plus signs (+). In addition, the argu-
ments are of different types, so you must convert them using the str() 
function. Python makes it easy to mix and match arguments in this manner. 
This function also introduces the concept of automatic line continuation. The 
print() function actually appears on two lines, and Python automatically 
continues the function from the first line to the second.

Figure 4-5: 
Supplying two 

arguments 
provides the 

expected 
 output.
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Next, it’s time to test DisplaySum(). Of course, you want to try the function 
using positional arguments first, so type DisplaySum(2, 3) and press Enter. 
You see the expected output of 2 + 3 = 5. Now type DisplaySum(Value2 
= 3, Value1 = 2) and press Enter. Again, you receive the output 2 + 3 = 5 
even though the position of the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword 
 arguments, the functions to this point have required that you supply a value. 
Sometimes a function can use default values when a common value is avail-
able. Default values make the function easier to use and less likely to cause 
errors when a developer doesn’t provide an input. To create a default value, 
you simply follow the argument name with an equals sign and the default 
value. To see how this works, open a copy of IPython and type the following 
code:

def SayHello(Greeting = "No Value Supplied"):
    print(Greeting)

The SayHello() function provides an automatic value for Greeting when a 
caller doesn’t provide one. When someone tries to call SayHello() without 
an argument, it doesn’t raise an error. Type SayHello() and press Enter to see 
for yourself — you see the default message. Type SayHello("Howdy!") to see 
a normal response.

Creating functions with a variable number of arguments
In most cases, you know precisely how many arguments to provide with 
your function. It pays to work toward this goal whenever you can because 
functions with a fixed number of arguments are easier to troubleshoot later. 
However, sometimes you simply can’t determine how many arguments the 
function will receive at the outset. For example, when you create a Python 
application that works at the command line, the user might provide no argu-
ments, the maximum number of arguments (assuming there is one), or any 
number of arguments in between.

Fortunately, Python provides a technique for sending a variable number of 
arguments to a function. You simply create an argument that has an asterisk 
in front of it, such as *VarArgs. The usual technique is to provide a second 
argument that contains the number of arguments passed as an input. To see 
how this works, open a copy of IPython and type the following code:

def DisplayMulti(ArgCount = 0, *VarArgs):
    print('You passed ' + str(ArgCount) + ' arguments.',
    Var Args)
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Notice that the print() function displays a string and then the list of 
arguments. Because of the way this function is designed, you can type 
DisplayMulti( ) and press Enter to see that it’s possible to pass zero argu-
ments. To see multiple arguments at work, type DisplayMulti(3, 'Hello', 1, 
True) and press Enter. The output of ('You passed 3 arguments.', 
('Hello', 1, True)) shows that you need not pass values of any 
 particular type.

Using Conditional and Loop Statements
Computer applications aren’t very useful if they perform precisely the same 
tasks the same number of times every time you run them. Yes, they can 
 perform useful work, but life seldom offers situations in which conditions 
remain the same. In order to accommodate changing conditions, applica-
tions must make decisions and perform tasks a variable number of times. 
Conditional and loop statements make it possible to perform this task as 
described in the sections that follow.

Making decisions using the if statement
You use “if” statements regularly in everyday life. For example, you may say 
to yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if 
statement is a little less verbose, but it follows precisely the same pattern. To 
see how this works, open a copy of IPython and type the following code:

def TestValue(Value):
    if Value == 5:
        print('Value equals 5!')
    elif Value == 6:
        print('Value equals 6!')
    else:
        print('Value is something else.')
        print('It equals ' + str(Value))

Every Python if statement begins, oddly enough, with the word if. When 
Python sees if, it knows that you want it to make a decision. After the word 
if comes a condition. A condition simply states what sort of comparison you 
want Python to make. In this case, you want Python to determine whether 
Value contains the value 5.

Notice that the condition uses the relational equality operator, ==, and not 
the assignment operator, =. A common mistake that developers make is to 
use the assignment operator rather than the equality operator.
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The condition always ends with a colon (:). If you don’t provide a colon, 
Python doesn’t know that the condition has ended and will continue to look 
for additional conditions on which to base its decision. After the colon comes 
any tasks you want Python to perform.

You may need to perform multiple tasks using a single if statement. The elif 
clause makes it possible to add an additional condition and associated tasks. 
A clause is an addendum to a previous condition, which is an if statement in 
this case. The elif clause always provides a condition, just like the if state-
ment, and it has its own associated set of tasks to perform.

Sometimes you need to do something no matter what the condition might 
be. In this case, you add the else clause. The else clause tells Python to do 
something in particular when the conditions of the if statement aren’t met.

Notice how indenting is becoming more important as the functions become 
more complex. The function contains an if statement. The if statement 
 contains just one print() statement. The else clause contains two 
print() statements.

To see this function in action, type TestValue(1) and press Enter. You see the 
output from the else clause. Type TestValue(5) and press Enter. The output 
now reflects the if statement output. Type TestValue(6) and press Enter. 
The output now shows the results of the elif clause. The result is that this 
function is more flexible than previous functions in the chapter because it 
can make decisions.

Choosing between multiple options  
using nested decisions
Nesting is the process of placing a subordinate statement within another 
statement. You can nest any statement within any other statement in most 
cases. To see how this works, open a copy of IPython and type the following 
code:

def SecretNumber():
   One = int(input("Type a number between 1 and 10: "))
   Two = int(input("Type a number between 1 and 10: "))

   if (One >= 1) and (One <= 10):
      if (Two >= 1) and (Two <= 10):
         print('Your secret number is: ' + str(One * Two))
      else:
         print("Incorrect second value!")
   else:
      print("Incorrect first value!")
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In this case, SecretNumber() asks you to provide two inputs. Yes, you can 
get inputs from a user when needed by using the input() function. The 
int() function converts the inputs to a number.

There are two levels of if statement this time. The first level checks for the 
validity of the number in One. The second level checks for the validity of the 
number in Two. When both One and Two have values between 1 and 10, then 
SecretNumber() outputs a secret number for the user.

To see SecretNumber() in action, type SecretNumber() and press Enter. 
Type 20 and press Enter when asked for the first input value, and type 10 
and press Enter when asked for the second. You see an error message telling 
you that the first value is incorrect. Type SecretNumber() and press Enter 
again. This time, use values of 10 and 20. The function will tell you that the 
second input is incorrect. Try the same sequence again using input values  
of 10 and 10.

Performing repetitive tasks using for
Sometimes you need to perform a task more than one time. You use the 
for loop statement when you need to perform a task a specific number of 
times. The for loop has a definite beginning and a definite end. The number 
of times that that loop executes depends on the number of elements in the 
 variable you provide. To see how this works, open a copy of IPython and 
type the following code:

def DisplayMulti(*VarArgs):
    for Arg in VarArgs:
        if Arg.upper() == 'CONT':
            continue
            print('Continue Argument: ' + Arg)
        elif Arg.upper() == 'BREAK':
            break
            print('Break Argument: ' + Arg)
        print('Good Argument: ' + Arg)

In this case, the for loop attempts to process each element in VarArgs. 
Notice that there is a nested if statement in the loop and it tests for two 
ending conditions. In most cases, the code skips the if statement and simply 
prints the argument. However, when the if statement finds the words CONT 
or BREAK in the input values, it performs one of these two tasks:

 ✓ continue: Forces the loop to continue from the current point of 
 execution with the next entry in VarArgs.

 ✓ break: Stops the loop from executing.
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The keywords can appear capitalized in any way because the upper() 
function converts them to uppercase. The DisplayMulti() func-
tion can process any number of input strings. To see it in action, type 
DisplayMulti('Hello', 'Goodbye', 'First', 'Last') and press Enter. You see 
each of the input strings presented on a separate line in the output. Now 
type DisplayMulti('Hello', 'Cont', 'Goodbye', 'Break', 'Last') and press Enter. 
Notice that the words Cont and Break don’t appear in the output because 
they’re keywords. In addition, the word Last doesn’t appear in the output 
because the for loop ends before this word is processed.

Using the while statement
The while loop statement continues to perform tasks until such time that 
a condition is no longer true. As with the for statement, the while state-
ment supports both the continue and break keywords for ending the loop 
 prematurely. To see how this works, open a copy of IPython and type the 
 following code:

def SecretNumber():
   GotIt = False
   while GotIt == False:
      One = int(input("Type a number between 1 and 10: "))
      Two = int(input("Type a number between 1 and 10: "))

      if (One >= 1) and (One <= 10):
         if (Two >= 1) and (Two <= 10):
            print('Secret number is: ' + str(One * Two))
            GotIt = True
            continue
         else:
            print("Incorrect second value!")
      else:
         print("Incorrect first value!")
      print("Try again!")

This is an expansion of the SecretNumber() function first described in the 
“Choosing between multiple options using nested decisions” section, earlier 
in this chapter. However, in this case, the addition of a while loop statement 
means that the function continues to ask for input until it receives a valid 
response.

To see how the while statement works, type SecretNumber( ) and press Enter. 
Type 20 and press Enter for the first prompt. Type 10 and press Enter for the 
second prompt. The example tells you that the first number is wrong and then 
tells you to try again. Try a second time using values of 10 and 20. This time 
the second number is wrong and you still need to try again. On the third try, 
use values of 10 and 10. This time you get a secret number. Notice that the use 
of a continue clause means that the application doesn’t tell you to try again.
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Storing Data Using Sets, Lists,  
and Tuples

Python provides a host of methods for storing data in memory. Each method 
has advantages and disadvantages. Choosing the most appropriate method 
for your particular need is important. The following sections discuss three 
common techniques used for storing data for data science needs.

Performing operations on sets
Most people have used sets at one time or another in school to create lists of 
items that belong together. These lists then became the topic of manipulation 
using math operations such as intersection, union, difference, and symmet-
ric difference. Sets are the best option to choose when you need to perform 
membership testing and remove duplicates from a list. You can’t perform 
sequence‐related tasks using sets, such a indexing or slicing. To see how you 
can work with sets, start a copy of IPython and type the following code:

from sets import Set
SetA = Set(['Red', 'Blue', 'Green', 'Black'])
SetB = Set(['Black', 'Green', 'Yellow', 'Orange'])
SetX = SetA.union(SetB)
SetY = SetA.intersection(SetB)
SetZ = SetA.difference(SetB)

Notice that you must import the Set capability into your Python application. 
The module sets contain a Set class that you import into your application 
in order to use the resulting functionality. If you try to use the Set class 
without first importing it, Python displays an error message. The book uses a 
number of imported libraries, so knowing how to use the import statement 
is important.

You now have five different sets to play with, each of which has some 
common elements. To see the results of each math operation, type print 
’{0}\n{1}\n{2}’.format(SetX, SetY, SetZ) and press Enter. You see one set 
printed on each line, like this:

Set(['Blue', 'Yellow', 'Green', 'Orange', 'Black', 'Red'])
Set(['Green', 'Black'])
Set(['Blue', 'Red'])
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The outputs show the results of the math operations: union(), intersec-
tion(), and difference(). (When working with Python 3.4, the output 
may vary from the Python 2.7 output shown. All output in the book is for 
Python 2.7, so you may see differences from time to time when using Python 
3.4.) Python’s fancier print formatting can be useful in working with collec-
tions such as sets. The format() function tells Python which objects to 
place within each of the placeholders in the string. A placeholder is a set of 
curly brackets ({}) with an optional number in it. The escape character (essen-
tially a kind of control or special character), /n, provides a newline character 
between entries. You can read more about fancy formatting at https://
docs.python.org/2/tutorial/inputoutput.html.

You can also test relationships between the various sets. For example, type 
SetA.issuperset(SetY) and press Enter. The output value of True tells you 
that SetA is a superset of SetY. Likewise, if you type SetA.issubset(SetX) and 
press Enter, you find that SetA is a subset of SetX.

It’s important to understand that sets are either mutable or immutable. 
All the sets in this example are mutable, which means that you can add or 
remove elements from them. For example, if you type SetA.add('Purple') and 
press Enter, SetA receives a new element. If you type SetA.issubset(SetX) 
and press Enter now, you find that SetA is no longer a subset of SetX 
because SetA has the 'Purple' element in it.

Working with lists
The Python specification defines a list as a kind of sequence. Sequences 
simply provide some means of allowing multiple data items to exist together 
in a single storage unit, but as separate entities. Think about one of those 
large mail holders you see in apartment buildings. A single mail holder con-
tains a number of small mailboxes, each of which can contain mail. Python 
supports other kinds of sequences as well:

 ✓ Tuples: A tuple is a collection used to create complex list‐like 
sequences. An advantage of tuples is that you can nest the content of 
a tuple. This feature lets you create structures that can hold employee 
records or x‐y coordinate pairs.

 ✓ Dictionaries: As with the real dictionaries, you create key/value pairs 
when using the dictionary collection (think of a word and its associated 
definition). A dictionary provides incredibly fast search times and makes 
ordering data significantly easier.

https://docs.python.org/2/tutorial/inputoutput.html
https://docs.python.org/2/tutorial/inputoutput.html
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 ✓ Stacks: Most programming languages support stacks directly. However, 
Python doesn’t support the stack, although there’s a workaround for 
that. A stack is a first in/first out (LIFO) sequence. Think of a pile of 
pancakes: You can add new pancakes to the top and also take them off 
of the top. A stack is an important collection that you can simulate in 
Python using a list.

 ✓ Queues: A queue is a last in/first out (FIFO) collection. You use it to 
track items that need to be processed in some way. Think of a queue as 
a line at the bank. You go into the line, wait your turn, and are eventually 
called to talk with a teller.

 ✓ Deques: A double‐ended queue (deque) is a queue‐like structure that 
lets you add or remove items from either end, but not from the middle. 
You can use a deque as a queue or a stack or any other kind of collec-
tion to which you’re adding and from which you’re removing items in 
an orderly manner (in contrast to lists, tuples, and dictionaries, which 
allow randomized access and management).

Of all the sequences, lists are the easiest to understand and are the most 
directly related to a real‐world object. Working with lists helps you become 
better able to work with other kinds of sequences that provide greater func-
tionality and improved flexibility. The point is that the data is stored in a 
list much as you would write it on a piece of paper — one item comes after 
another. The list has a beginning, a middle, and an end. As shown in the 
figure, the items are numbered. (Even if you might not normally number them 
in real life, Python always numbers the items for you.) To see how you can 
work with lists, start a copy of IPython and type the following code:

ListA = [0, 1, 2, 3]
ListB = [4, 5, 6, 7]
ListA.extend(ListB)
ListA

When you type the last line of code, you see the output of [0, 1, 2, 3, 
4, 5, 6, 7]. The extend() function adds the members of ListB to 
ListA. Beside extending lists, you can also add to them using the append() 
function. Type ListA.append(‐5) and press Enter. When you type ListA and 
press Enter again, you see that Python has added –5 to the end of the list. 
You may find that you need to remove items again and you do that using the 
remove() function. For example, type ListA.remove(‐5) and press Enter. 
When you list ListA again, you see that the added entry is gone.

Lists also support concatenation using the plus (+) sign. For example, if you 
type ListX = ListA + ListB and press Enter, you find that the newly created 
ListX contains both ListA and ListB in it with the elements of ListA 
coming first.
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Creating and using Tuples
A tuple is a collection used to create complex lists, in which you can embed 
one tuple within another. This embedding lets you create hierarchies with 
tuples. A hierarchy could be something as simple as the directory listing of 
your hard drive or an organizational chart for your company. The idea is that 
you can create complex data structures using a tuple.

Tuples are immutable, which means you can’t change them. You can create 
a new tuple with the same name and modify it in some way, but you can’t 
modify an existing tuple. Lists are mutable, which means that you can change 
them. So, a tuple can seem at first to be at a disadvantage, but immutabil-
ity has all sorts of advantages, such as being more secure as well as faster. 
In addition, immutable objects are easier to use with multiple processors. 
To see how you can work with tuples, start a copy of IPython and type the 
 following code:

MyTuple = (1, 2, 3, (4, 5, 6, (7, 8, 9)))

MyTuple is nested three levels deep. The first level consists of the values 1, 
2, and 3, and a tuple. The second level consists of the values 4, 5, and 6, and 
yet another tuple. The third level consists of the values 7, 8, and 9. To see 
how this works, type the following code into IPython:

for Value1 in MyTuple:
    if type(Value1) == int:
        print Value1
    else:
        for Value2 in Value1:
            if type(Value2) == int:
                print "\t", Value2
            else:
                for Value3 in Value2:
                   print "\t\t", Value3

When you run this code, you find that the values really are at three different 
levels. You can see the indentations showing the level:

1
2
3
        4
        5
        6
                7
                8
                9
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It is possible to perform tasks such as adding new values, but you must do it 
by adding the original entries and the new values to a new tuple. In addition, 
you can add tuples to an existing tuple only. To see how this works, type 
MyNewTuple = MyTuple.__add__((10, 11, 12, (13, 14, 15))) and press Enter. 
MyNewTuple contains new entries at both the first and second levels, like 
this: (1, 2, 3, (4, 5, 6, (7, 8, 9)), 10, 11, 12, (13, 14, 
15)). If you were to run the previous code against MyNewTuple, you’d see 
entries at the appropriate levels in the output, as shown here.

1
2
3
        4
        5
        6
                7
                8
                9
10
11
12
        13
        14
        15

Defining Useful Iterators
The chapters that follow use all kinds of techniques to access individual 
values in various types of data structures. For this section, you use two 
simple lists, defined as the following:

ListA = ['Orange', 'Yellow', 'Green', 'Brown']
ListB = [1, 2, 3, 4]

The simplest method of accessing a particular value is to use an index. For 
example, if you type ListA[1] and press Enter, you see 'Yellow' as the 
output. All indexes in Python are zero‐based, which means that the first entry 
is 0, not 1.

Ranges present another simple method of accessing values. For example, if 
you type ListB[1:3] and press Enter, the output is [2, 3]. You could use the 
range as input to a for loop, such as

for Value in ListB[1:3]:
    print Value
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Instead of the entire list, you see just 2 and 3 as outputs, printed on separate 
lines. The range has two values separated by a colon. However, the values 
are optional. For example, ListB[:3] would output [1, 2, 3]. When you 
leave out a value, the range starts at the beginning or the end of the list, as 
appropriate.

Sometimes you need to process two lists in parallel. The simplest method 
of doing this is to use the zip() function. Here’s an example of the zip() 
 function in action:

for Value1, Value2 in zip(ListA, ListB):
    print Value1, '\t', Value2

This code processes both ListA and ListB at the same time. The process-
ing ends when the for loop reaches the shortest of the two lists. In this case, 
you see the following:

Orange  1
Yellow  2
Green   3
Brown   4

This is the tip of the iceberg. You see a host of iterator types used through-
out the book. The idea is to make it possible to list just the items you want, 
rather than all of the items in a list or other data structure. Some of the itera-
tors used in upcoming chapters are a little more complicated than what you 
see here, but this is an important start.

Indexing Data Using Dictionaries
A dictionary is a special kind of sequence that uses a name and value pair. 
The use of a name makes it easy to access particular values with something 
other than a numeric index. To create a dictionary, you enclose name and 
value pairs in curly brackets. Create a test dictionary by typing MyDict = 
{'Orange':1, 'Blue':2, 'Pink':3} and pressing Enter.

To access a particular value, you use the name as an index. For example, 
type MyDict['Pink'] and press Enter to see the output value of 3. The use of 
dictionaries as data structures makes it easy to access incredibly complex 
data sets using terms that everyone can understand. In many other respects, 
working with a dictionary is the same as working with any other sequence.

Dictionaries do have some special features. For example, type MyDict.keys( ) 
and press Enter to see a list of the keys. You can use the values() function 
to see the list of values in the dictionary.



 See an example of how you can use IPython Notebook to view intermediate results of 
tasks at http://www.dummies.com/extras/pythonfordatascience.

Getting Your Hands  
Dirty with Data

Part II

http://www.dummies.com/extras/pythonfordatascience


In this part . . .
 ✓ Importing data from various sources

 ✓ Validating your data and making it complete

 ✓ Using only part of the data for analysis

 ✓ Performing data shaping

 ✓ Defining the problem and creating a solution for it



Working with Real Data
In This Chapter

 ▶ Manipulating data streams

 ▶ Working with flat files

 ▶ Working with unstructured files

 ▶ Interacting with relational databases

 ▶ Using NoSql as a data source

 ▶ Interacting with web‐based data

D 
ata science applications require data by definition. It would be nice if 
you could simply go to a data store somewhere, purchase the data you 

need in an easy‐open package, and then write an application to access that 
data. However, data is messy. It appears in all sorts of places, in many differ
ent forms, and you can interpret it in many different ways. Every organization 
has a different method of viewing data and stores it in a different manner as 
well. Even when the data management system used by one company is the 
same as the data management system used by another company, the chances 
are slim that the data will appear in the same format or even use the same 
data types. In short, before you can do any data science work, you must dis
cover how to access the data in all its myriad forms. Real data requires a lot 
of work to use and fortunately, Python is up to the task of manipulating it as 
needed.

This chapter helps you understand the techniques required to access data 
in a number of forms and locations. For example, memory streams represent 
a form of data storage that your computer supports natively; flat files exist 
on your hard drive; relational databases commonly appear on networks 
(although smaller relational databases, such as those found in Access, could 
appear on your hard drive as well); and web‐based data usually appears on 
the Internet. You won’t visit every form of data storage available (such as 
that stored on a point‐of‐sale, or POS, system). Quite possibly, an entire book 
on the topic wouldn’t suffice to cover the topic of data formats in any detail. 

Chapter 5
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However, the techniques in this chapter do demonstrate how to access  
data in the formats you most commonly encounter when working with  
real‐world data.

The Scikit‐learn library includes a number of toy datasets (small datasets 
meant for you to play with). These datasets are complex enough to perform a 
number of tasks, such as experimenting with Python to perform data science 
tasks. Because this data is readily available, and making the examples too 
complicated to understand is a bad idea, this book relies on these toy data
sets as input for many of the examples. Even though the book does use these 
toy datasets for the sake of reducing complexity and making the examples 
clearer, the techniques that the book demonstrates work equally well on  
real‐world data that you access using the techniques shown in this chapter.

You don’t have to type the source code for this chapter in by hand. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 05; Dataset Load.ipynb source code file.

It’s essential that the Colors.txt, Titanic.csv, Values.xls, and 
XMLData.xml files that come with the downloadable source code appear in 
the same folder (directory) as your IPython Notebook files. Otherwise, the 
examples in the following sections fail with an input/output (IO) error. The 
file location varies according to the platform you’re using. For example, on a 
Windows system, you find the notebooks stored in the C:\Users\Username\
My Documents\IPython Notebooks folder, where Username is your 
login name. To make the examples work, simply copy the four files from the 
 downloadable source folder into your IPython Notebook folder.

Uploading, Streaming,  
and Sampling Data

Storing data in local computer memory represents the fastest and most  
reliable means to access it. The data could reside anywhere. However, you 
don’t actually interact with the data in its storage location. You load the data 
into memory from the storage location and then interact with it in memory. 
This is the technique the book uses to access all the toy datasets found in the 
Scikit‐learn library, so you see this technique used relatively often in  
the book.

Data scientists call the columns in a database features or variables. The 
rows are cases. Each row represents a collection of variables that you can 
analyze.
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Uploading small amounts  
of data into memory
The most convenient method that you can use to work with data is to load it 
directly into memory. This technique shows up a couple of times earlier in 
the book but uses the toy dataset from the Scikit‐learn library. This section 
uses the Colors.txt file, shown in Figure 51, for input.

The example also relies on native Python functionality to get the task done. 
When you load a file (of any type), the entire dataset is available at all times 
and the loading process is quite short. Here is an example of how this tech
nique works.

with open("Colors.txt", 'rb') as open_file:
    print 'Colors.txt content:\n' + open_file.read()

The example begins by using the open() method to obtain a file object. The 
open() function accepts the filename and an access mode. In this case, the 
access mode is read binary (rb). (When using Python 3.x, you may have to 
change the mode to read (r) in order to avoid error messages.) It then uses the 
read() method of the file object to read all the data in the file. If you were to 
specify a size argument as part of read(), such as read(15), Python would 
read only the number of characters that you specify or stop when it reaches 
the End Of File (EOF). When you run this example, you see the following 
output:

Colors.txt content:
Color     Value
Red       1
Orange    2
Yellow    3
Green     4

Figure 5-1:  
Format 

of the 
Colors.
txt file.
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Blue      5
Purple    6
Black     7
White     8

The entire dataset is loaded from the library into free memory. Of course, the 
loading process will fail if your system lacks sufficient memory to hold the 
dataset. When this problem occurs, you need to consider other techniques 
for working with the dataset, such as streaming it or sampling it. In short, 
before you use this technique, you must ensure that the dataset will actually 
fit in memory. You won’t normally experience any problems when working 
with the toy datasets in the Scikit‐learn library.

Streaming large amounts of data  
into memory
Some datasets will be so large that you won’t be able to fit them entirely 
in memory at one time. In addition, you may find that some datasets load 
slowly because they reside on a remote site. Streaming answers both needs 
by making it possible to work with the data a little at a time. You download 
individual pieces, making it possible to work with just part of the data and 
to work with it as you receive it, rather than waiting for the entire dataset to 
download. Here’s an example of how you can stream data using Python:

with open("Colors.txt", 'rb') as open_file:
    for observation in open_file:
        print 'Reading Data: ' + observation

This example relies on the Colors.txt file, which contains a header, and 
then a number of records that associate a color name with a value. The 
open_file file object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to 
the next record. Each record appears one at a time in observation. The 
code outputs the value in observation using a print statement. You 
should receive this output:

Reading Data: Color     Value

Reading Data: Red       1

Reading Data: Orange    2

Reading Data: Yellow    3
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Reading Data: Green     4

Reading Data: Blue      5

Reading Data: Purple    6

Reading Data: Black     7

Reading Data: White     8

Python streams each record from the source. This means that you must per
form a read for each record you want.

Sampling data
Data streaming obtains all the records from a data source. You may find that 
you don’t need all the records. You can save time and resources by simply 
sampling the data. This means retrieving records a set number of records 
apart, such as every fifth record, or by making random samples. The follow
ing code shows how to retrieve every other record in the Colors.txt file:

n = 2
with open("Colors.txt", 'rb') as open_file:
    for j, observation in enumerate(open_file):
        if j % n==0:
            print('Reading Line: ' + str(j) + 
            ' Content: ' + observation)

The basic idea of sampling is the same as streaming. However, in this case, 
the application uses enumerate() to retrieve a row number. When  
j % n == 0, the row is one that you want to keep and the application  
outputs the information. In this case, you see the following output:

Reading Line: 0 Content: Color     Value

Reading Line: 2 Content: Orange    2

Reading Line: 4 Content: Green     4

Reading Line: 6 Content: Purple    6

Reading Line: 8 Content: White     8

The value of n is important in determining which records appear as part of 
the dataset. Try changing n to 3. The output will change to sample just the 
header and rows 3 and 6.
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You can perform random sampling as well. All you need to do is randomize 
the selector, like this:

from random import random
sample_size = 0.25
with open("Colors.txt", 'rb') as open_file:
    for j, observation in enumerate(open_file):
        if random()<=sample_size:
            print('Reading Line: ' + str(j) + 
            ' Content: ' + observation)

To make this form of selection work, you must import the random class. 
The random() method outputs a value between 0 and 1. However, Python 
randomizes the output so that you don’t know what value you receive. The 
sample_size variable contains a number between 0 and 1 to determine the 
sample size. For example, 0.25 selects 25 percent of the items in the file.

The output will still appear in numeric order. For example, you won’t see 
Green come before Orange. However, the items selected are random, and 
you won’t always get precisely the same number of return values. The spaces 
between return values will differ as well. Here is an example of what you 
might see as output (although your output will likely vary):

Reading Line: 1 Content: Red       1

Reading Line: 4 Content: Green     4

Reading Line: 8 Content: White     8

Accessing Data in Structured  
Flat‐File Form

In many cases, the data you need to work with won’t appear within a library, 
such as the toy datasets in the Scikit‐learn library. Real‐world data usually 
appears in a file of some type. A flat file presents the easiest kind of file to 
work with. The data appears as a simple list of entries that you can read one 
at a time, if desired, into memory. Depending on the requirements for your 
project, you can read all or part of the file.

A problem with using native Python techniques is that the input isn’t intel
ligent. For example, when a file contains a header, Python simply reads it 
as yet more data to process, rather than as a header. You can’t easily select 
a particular column of data. The pandas library used in the sections that 
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follow makes it much easier to read and understand flat‐file data. Classes and 
 methods in the pandas library interpret (parse) the flat‐file data to make it 
easier to manipulate.

The least formatted and therefore easiest‐to‐read flat‐file format is the text 
file. However, a text file also treats all data as strings, so you often have to 
convert numeric data into other forms. A comma‐separated value (CSV) file 
provides more formatting and more information, but it requires a little more 
effort to read. At the high end of flat‐file formatting are custom data formats, 
such as an Excel file, which contains extensive formatting and could include 
multiple datasets in a single file.

The following sections describe these three levels of flat‐file dataset and 
show how to use them. These sections assume that the file structures the 
data in some way. For example, the CSV file uses commas to separate data 
fields. A text file might rely on tabs to separate data fields. An Excel file uses 
a complex method to separate data fields and to provide a wealth of informa
tion about each field. You can work with unstructured data as well, but work
ing with structured data is much easier because you know where each field 
begins and ends.

Reading from a text file
Text files can use a variety of storage formats. However, a common format 
is to have a header line that documents the purpose of each field, followed 
by another line for each record in the file. The file separates the fields using 
tabs. Refer to Figure 51 for an example of the Colors.txt file used for the 
example in this section.

Native Python provides a wide variety of methods you can use to read such a 
file. However, it’s far easier to let someone else do the work. In this case, you 
can use the pandas library to perform the task. Within the pandas library, 
you find a set of parsers, code used to read individual bits of data and deter
mine the purpose of each bit according to the format of the entire file. Using 
the correct parser is essential if you want to make sense of file content. In 
this case, you use the read_table() method to accomplish the task, as 
shown in the following code:

import pandas as pd
color_table = pd.io.parsers.read_table("Colors.txt")
print color_table

The code imports the pandas library, uses the read_table() method to 
read Colors.txt into a variable named color_table, and then displays 
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the resulting memory data onscreen using the print function. Here’s the 
output you can expect to see from this example.

    Color  Value
0     Red      1
1  Orange      2
2  Yellow      3
3   Green      4
4    Blue      5
5  Purple      6
6   Black      7
7   White      8

Notice that the parser correctly interprets the first row as consisting of 
field names. It numbers the records from 0 through 7. Using read_table() 
method arguments, you can adjust how the parser interprets the input 
file, but the default settings usually work best. You can read more about 
the read_table() arguments at http://pandas.pydata.org/
pandas‐docs/dev/generated/pandas.io.parsers.read_table.
html#pandas.io.parsers.read_table.

Reading CSV delimited format
A CSV file provides more formatting than a simple text file. In fact, CSV files 
can become quite complicated. There is a standard that defines the format of 
CSV files, and you can see it at https://tools.ietf.org/html/rfc4180. 
The CSV file used for this example is quite simple:

 ✓ A header defines each of the fields

 ✓ Fields are separated by commas

 ✓ Records are separated by linefeeds

 ✓ Strings are enclosed in double quotes

 ✓ Integers and real numbers appear without double quotes

Figure 52 shows the raw format for the Titanic.csv file used for this 
 example. You can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they 
become easier to read. Figure 53 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features 
such as data sorting, you could select header columns to obtain the desired 

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.io.parsers.read_table.html#pandas.io.parsers.read_table
https://tools.ietf.org/html/rfc4180
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result. Fortunately, pandas also makes it possible to work with the CSV file as 
formatted data, as shown in the following example:

import pandas as pd
titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]
print X

Notice that the parser of choice this time is read_csv(), which understands 
CSV files and provides you with new options for working with it. (You  
can read more about this parser at http://pandas.pydata.org/ 
pandas‐docs/dev/io.html#io‐read‐csv‐table.) Selecting a specific 
field is quite easy — you just supply the field name as shown. The output 
from this example looks like this (some values omitted for the sake of space):

            age
0       29.0000

Figure 5-2:  
The raw 

format of 
a CSV file 
is still text 
and quite 
 readable.

Figure 5-3:  
Use an 

 application 
such as 
Excel to 
create a 

 formatted 
CSV 

 presentation.

http://pandas.pydata.org/pandas-docs/dev/io.html#io-read-csv-table
http://pandas.pydata.org/pandas-docs/dev/io.html#io-read-csv-table
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1        0.9167
2        2.0000
3       30.0000
4       25.0000
5       48.0000
...
1304    14.5000
1305  9999.0000
1306    26.5000
1307    27.0000
1308    29.0000
[1309 rows x 1 columns]

Of course, a human readable output like this one is nice when working 
through an example, but you might also need the output as a list. To create 
the output as a list, you simply change the third line of code to read X = 
titanic[[’age’]].values. Notice the addition of the values property. 
The output changes to something like this (some values omitted for the sake 
of space):

 [[ 29.        ]
 [  0.91670001]
 [  2.        ]
 ..., 
 [ 26.5       ]
 [ 27.        ]
 [ 29.        ]]

Reading Excel and other  
Microsoft Office files
Excel and other Microsoft Office applications provide highly formatted 
 content. You can specify every aspect of the information these files contain. 
The Values.xls file used for this example provides a listing of sine,  
cosine, and tangent values for a random list of angles. You can see this file  
in Figure 54.

When you work with Excel or other Microsoft Office products, you begin to 
experience some complexity. For example, an Excel file can contain more 
than one worksheet, so you need to tell pandas which worksheet to process. 
In fact, you can choose to process multiple worksheets, if desired. When 
working with other Office products, you have to be specific about what to 
process. Just telling pandas to process something isn’t good enough. Here’s 
an example of working with the Values.xls file.
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import pandas as pd
xls = pd.ExcelFile("Values.xls")
trig_values = xls.parse('Sheet1', index_col=None, 
                        na_values=['NA'])
print trig_values

The code begins by importing the pandas library as normal. It then creates 
a pointer to the Excel file using the ExcelFile() constructor. This pointer, 
xls, lets you access a worksheet, define an index column, and specify how to 
present empty values. The index column is the one that the worksheet uses 
to index the records. Using a value of None means that pandas should gener
ate an index for you. The parse() method obtains the values you request. 
You can read more about the Excel parser options at http://pandas.
pydata.org/pandas‐docs/dev/io.html#io‐excel.

You don’t absolutely have to use the two‐step process of obtaining a file 
pointer and then parsing the content. You can also perform the task using a 
single step like this: trig_values = pd.read_excel("Values.xls", 
'Sheet1', index_col=None, na_values=['NA']). Because Excel files 
are more complex, using the two‐step process is often more convenient and 
efficient because you don’t have to reopen the file for each read of the data.

Sending Data in Unstructured File Form
Unstructured data files consist of a series of bits. The file doesn’t separate 
the bits from each other in any way. You can’t simply look into the file and 
see any structure because there isn’t any to see. Unstructured file formats 
rely on the file user to know how to interpret the data. For example, each 

Figure 5-4:  
An Excel 
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and might 

contain 
information 

of various 
types.

http://pandas.pydata.org/pandas-docs/dev/io.html#io-excel
http://pandas.pydata.org/pandas-docs/dev/io.html#io-excel
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pixel of a picture file could consist of three 32‐bit fields. Knowing that each 
field is 32‐bits is up to you. A header at the beginning of the file may provide 
clues about interpreting the file, but even so, it’s up to you to know how to 
interact with the file.

The example in this section shows how to work with a picture as an unstruc
tured file. The example image is a public domain offering from http:// 
commons.wikimedia.org/wiki/Main_Page. To work with images, you 
need to access the Scikit‐image library (http://scikit‐image.org/), 
which is a free‐of‐charge collection of algorithms used for image process
ing. You can find a tutorial for this library at http://scipy‐lectures.
github.io/packages/scikit‐image/. The first task is to be able to 
display the image onscreen using the following code. (This code can require 
a little time to run. The image is ready when the busy indicator disappears 
from the IPython Notebook tab.)

from skimage.io import imread
from skimage.transform import resize 
from matplotlib import pyplot as plt
import matplotlib.cm as cm

example_file = ("http://upload.wikimedia.org/" +
    "wikipedia/commons/7/7d/Dog_face.png")
image = imread(example_file, as_grey=True)
plt.imshow(image, cmap=cm.gray)
plt.show()

The code begins by importing a number of libraries. It then creates a string 
that points to the example file online and places it in example_file. This 
string is part of the imread() method call, along with as_grey, which is set 
to True. The as_grey argument tells Python to turn any color images into 
gray scale. Any images that are already in gray scale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to 
display onscreen. The imshow() function performs the rendering and uses a 
grayscale color map. The show() function actually displays image for you, 
as shown in Figure 55.

Close the image when you’re finished viewing it. (The asterisk in the In [*]: 
entry tells you that the code is still running and you can’t move on to the 
next step.) The act of closing the image ends the code segment. You now 
have an image in memory and you may want to find out more about it. When 
you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" % 
      (type(image), image.shape))

http://commons.wikimedia.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://scikit-image.org/
http://scipy-lectures.github.io/packages/scikit-image/
http://scipy-lectures.github.io/packages/scikit-image/


97  Chapter 5: Working with Real Data

The output from this call tells you that the image type is a numpy.ndarray  
and that the image size is 90 pixels by 90 pixels. The image is actually an 
array of pixels that you can manipulate in various ways. For example, if you 
want to crop the image, you can use the following code to manipulate the 
image array:

image2 = image[5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

The numpy.ndarray in image2 is smaller than the one in image, so the 
output is smaller as well. Figure 56 shows typical results. The purpose of 
cropping the image is to make it a specific size. Both images must be the 
same size for you to analyze them. Cropping is one way to ensure that the 
images are the correct size for analysis.

Another method that you can use to change the image size is to resize it. 
The following code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='nearest')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" % 
      (type(image3), image3.shape))

The output from the print() function tells you that the image is now 
30 pixels by 30 pixels in size. You can compare it to any image with the same 
dimensions.

Figure 5-5:  
The image 
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onscreen 
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render and 
show it.
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After you have all the images the right size, you need to flatten them. A 
 dataset row is always a single dimension, not two dimensions. The image 
is currently an array of 30 pixels by 30 pixels, so you can’t make it part of a 
dataset. The following code flattens image3 so that it becomes an array of 
900 elements that is stored in image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" % 
      (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a 
dataset and then use the dataset for analysis purposes. The size is 900 ele
ments, as anticipated.

Managing Data from Relational 
Databases

Databases come in all sorts of forms. For example, AskSam (http://
asksam.en.softonic.com/) is a kind of free‐form textual database. 
However, the vast majority of data used by organizations rely on relational 
databases because these databases provide the means for organizing 
 massive amounts of complex data in an organized manner that makes the 

Figure 5-6:  
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http://asksam.en.softonic.com/
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data easy to manipulate. The goal of a database manager is to make data 
easy to manipulate. The focus of most data storage is to make data easy to 
retrieve.

Relational databases accomplish both the manipulation and data retrieval 
objectives with relative ease. However, because data storage needs come 
in all shapes and sizes for a wide range of computing platforms, there are 
many different relational database products. In fact, for the data scientist, the 
 proliferation of different Database Management Systems (DBMSs) using vari
ous data layouts is one of the main problems you encounter with creating a 
comprehensive dataset for analysis.

The one common denominator between many relational databases is that 
they all rely on a form of the same language to perform data manipulation, 
which does make the data scientist’s job easier. The Structured Query 
Language (SQL) lets you perform all sorts of management tasks in a relational 
database, retrieve data as needed, and even shape it in a particular way so 
that the need to perform additional shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For 
one thing, you need to know how to connect to that particular database. 
However, you can divide the process into smaller pieces. The first step is to 
gain access to the database engine. You use two lines of code similar to the 
following code (but the code presented here is not meant to execute and 
 perform a task):

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

After you have access to an engine, you can use the engine to perform tasks 
specific to that DBMS. The output of a read method is always a DataFrame 
object that contains the requested data. To write data, you must create a 
DataFrame object or use an existing DataFrame object. You normally use 
these methods to perform most tasks:

 ✓ read_sql_table(): Reads data from a SQL table to a DataFrame 
object

 ✓ read_sql_query(): Reads data from a database using a SQL query to 
a DataFrame object

 ✓ read_sql(): Reads data from either a SQL table or query to a 
DataFrame object

 ✓ DataFrame.to_sql(): Writes the content of a DataFrame object to 
the specified tables in the database
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The sqlalchemy library provides support for a broad range of SQL databases. 
The following list contains just a few of them:

 ✓ SQLite

 ✓ MySQL

 ✓ PostgreSQL

 ✓ SQL Server

 ✓ Other relational databases, such as those you can connect to using 
Open Database Connectivity (ODBC)

You can discover more about working with databases at http://pandas.
pydata.org/pandas‐docs/dev/io.html#sql‐queries. The techniques 
that you discover in this book using the toy databases also work with  
relational databases.

Interacting with Data from 
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a 
wealth of databases of all sorts that don’t have to rely on SQL. These Not 
only SQL (NoSQL) databases are used in large data storage scenarios in 
which the relational model can become overly complex or can break down 
in other ways. The databases generally don’t use the relational model. Of 
course, you find fewer of these DBMSes used in the corporate environment 
because they require special handling and training. Still, some common 
DBMSes are used because they provide special functionality or meet unique 
requirements. The process is essentially the same for using NoSQL databases 
as it is for relational databases:

1. Import required database engine functionality.

2. Create a database engine.

3. Make any required queries using the database engine and the functional
ity supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with 
your particular database product. For example, when working with MongoDB 
(https://www.mongodb.org/), you must obtain a copy of the PyMongo 
library (https://api.mongodb.org/python/current/) and use the 
MongoClient class to create the required engine. The MongoDB engine 

http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries
http://pandas.pydata.org/pandas-docs/dev/io.html#sql-queries
https://www.mongodb.org/
https://api.mongodb.org/python/current/
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relies heavily on the find() function to locate data. Here’s a pseudo‐code 
example of a MongoDB session:

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

Accessing Data from the Web
It would be incredibly difficult (perhaps impossible) to find an organization 
today that doesn’t rely on some sort of web‐based data. Most organizations 
use web services of some type. A web service is a kind of web application that 
provides a means to ask questions and receive answers. Web services usu
ally host a number of input types. In fact, a particular web service may host 
entire groups of query inputs.

Another type of query system is the microservice. Unlike the web service, 
microservices have a specific focus and provide only one specific query input 

APIs and other web entities
A data scientist may have a reason to rely 
on various web Application Programming 
Interfaces (APIs) to access and manipulate 
data. In fact, the focus of an analysis might 
be the API itself. This book doesn’t discuss 
APIs in any detail because each API is 
unique, and APIs operate outside the normal 
scope of what a data scientist might do. For 
example, you might use a product such as 
jQuery (http://jquery.com/) to access 
data and manipulate it in various ways when 
working with a web application. However, the 
techniques for doing so are more along the 
lines of writing an application than employing 
a data science technique.

It’s important to realize that APIs can be data 
sources and that you might need to use one 
to achieve some data input or data‐shaping 
goals. In fact, you find many data entities that 
resemble APIs but don’t appear in this book. 
Windows developers can create Component 
Object Model (COM) applications that output 
data onto the web that you could possibly use 
for analysis purposes. In fact, the number of 
potential sources is nearly endless. This book 
focuses on the sources that you use most often 
and in the most conventional manner. Keeping 
your eyes open for other possibilities, though, is 
always a good idea.

http://jquery.com/
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and output. Using microservices has specific benefits that are outside the 
scope of this book to address, but essentially they work like tiny web ser
vices, so that’s how this book addresses them.

One of the most beneficial data access techniques to know when working 
with web data is accessing XML. All sorts of content types rely on XML, even 
some web pages. Working with web services and microservices means work
ing with XML. With this in mind, the example in this section works with XML 
data found in the XMLData.xml file, shown in Figure 57. In this case, the 
file is simple and uses only a couple of levels. XML is hierarchical and can 
become quite a few levels deep.

The technique for working with XML, even simple XML, can be a bit harder 
than anything else you’ve worked with so far. Here’s the code for this 
 example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):
    obj = root.getchildren()[i].getchildren()

Figure 5-7:  
XML is a 
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    row = dict(zip(['Number', 'String', 'Boolean'], 
                   [obj[0].text, obj[1].text, 
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
    
print df

The example begins by importing libraries and parsing the data file using 
the objectify.parse() method. Every XML document must contain a 
root node, which is <MyDataset> in this case. The root node encapsulates 
the rest of the content, and every node under it is a child. To do anything 
 practical with the document, you must obtain access to the root node using 
the getroot() method.

The next step is to create an empty DataFrame object that contains the 
 correct column names for each record entry: Number, String, and Boolean. 
As with all other pandas data handling, XML data handling relies on a 
DataFrame. The for loop fills the DataFrame with the four records from 
the XML file (each in a <Record> node).

The process looks complex but follows a logical order. The obj variable 
 contains all the children for one <Record> node. These children are loaded 
into a dictionary object in which the keys are Number, String, and Boolean 
to match the DataFrame columns.

There is now a dictionary object that contains the row data. The code cre
ates an actual row for the DataFrame next. It gives the row the value of the 
 current for loop iteration. It then appends the row to the DataFrame. To 
see that everything worked as expected, the code prints the result, which 
looks like this:

  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True
3      4  Fourth   False
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Conditioning Your Data
In This Chapter

 ▶ Working with NumPy and pandas

 ▶ Knowing your data

 ▶ Working with symbolic variables

 ▶ Considering the effect of dates

 ▶ Fixing missing data

 ▶ Creating data slices

 ▶ Adding data elements together and modifying data types

 ▶ Combing data at any level

T 
he characteristics, content, type, and other elements that define your 
data in its entirety is the data shape. The shape of your data determines 

the kinds of tasks you can perform with it. In order to make your data amena-
ble to certain types of analysis, you must shape it into a different form. Think 
of the data as clay and you as the potter, because that’s the sort of relation-
ship that exists. However, instead of using your hands to shape the data, you 
rely on functions and algorithms to perform the task. This chapter helps you 
understand the tools you have available to shape data and the ramifications 
of shaping it.

Also in this chapter, you consider the problems associated with shaping. For 
example, you need to know what to do when data is missing from a dataset. 
It’s important to shape the data correctly or you end up with an analysis that 
simply doesn’t make sense. Likewise, some data types, such as dates, can 
present problems. Again, you need to tread carefully to ensure that you get 
the desired result so that the dataset becomes more useful and amenable to 
analysis of various sorts.

The goal of some types of data shaping is to create a larger dataset. In many 
cases, the data you need to perform an analysis doesn’t appear in a single 
database or in a particular form. You need to shape the data and then com-
bine it so that you have a single dataset in a known format before you can 

Chapter 6



106 Part II: Getting Your Hands Dirty with Data  

begin the analysis. Combining data successfully can be an art form because 
data often defies simple analysis or quick fixes.

You don’t have to type the source code for this chapter in by hand. In fact, 
it’s a lot easier if you use the downloadable source. The source code for this 
chapter appears in the P4DS4D; 06; Getting Your Data in Shape.
ipynb source code file; see the Introduction for the location of this file.

Juggling between NumPy  
and pandas

There is no question that you need NumPy at all times. The pandas library 
is actually built on top of NumPy. However, you do need to make a choice 
between NumPy and pandas when performing tasks. You need the low‐level 
functionality of NumPy to perform some tasks, but pandas makes things 
so much easier that you want to use it as often as possible. The following 
 sections describe when to use each library in more detail.

Knowing when to use NumPy
It’s essential to realize that developers built pandas on top of NumPy. As a 
result, every task you perform using pandas also goes through NumPy. To 
obtain the benefits of pandas, you pay a performance penalty that some 
testers say is 100 times slower than NumPy for a similar task (see http://
penandpants.com/2014/09/05/performance‐of‐pandas‐series‐
vs‐numpy‐arrays/). Given that computer hardware can make up for a lot 
of performance differences today, the speed issue may not be a concern at 
times, but when speed is essential, NumPy is always the better choice.

Knowing when to use pandas
You use pandas to make writing code easier and faster. Because pandas does 
a lot of the work for you, you could make a case for saying that using pandas 
also reduces the potential for coding errors. The essential consideration, 
though, is that the pandas library provides rich time‐series functionality, 
data alignment, NA‐friendly statistics, groupby, merge, and join methods. 
Normally, you need to code these features when using NumPy, which means 
you keep reinventing the wheel.

http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
http://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
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As the book progresses, you discover just how useful pandas can be perform-
ing such tasks as binning (a data preprocessing technique designed to reduce 
the effect of observational errors) and working with a dataframe (a two‐
dimensional labeled data structure with columns that can potentially contain 
different data types) so that you can calculate statistics on it. For example, 
in Chapter 8, you discover how to perform both discretization and binning. 
Chapter 13 shows actual binning examples, such as obtaining a frequency 
for each categorical variable of a dataset. In fact, many of the examples in 
Chapter 13 don’t work without binning. In other words, don’t worry too much 
right now about knowing precisely what binning is or why you need to use 
it — examples later in the book discuss the topic in detail. All you really need 
to know is that pandas does make your work considerably easier.

Validating Your Data
When it comes to data, no one really knows what a large database contains.  
Yes, everyone has seen bits and pieces of it, but when you consider the size 
of some databases, viewing it all would be physically impossible. Because 
you don’t know what’s in there, you can’t be sure that your analysis will 
 actually work as desired and provide valid results. In short, you must 
 validate your data before you use it to ensure that the data is at least close 
to what you expect it to be. This means performing tasks such as removing 

It’s all in the preparation
This book may seem to spend a lot of time 
massaging data and little time in actually 
analyzing it. However, the majority of a data 
scientist’s time is actually spent preparing data 
because the data is seldom in any order to 
actually perform analysis. To prepare data for 
use, a data scientist must:

✓ Get the data

✓ Aggregate the data

✓ Create data subsets

✓ Clean the data

✓ Develop a single dataset by merging 
 various datasets together

Fortunately, you don’t need to die of boredom 
while wading your way through these various 
tasks. Using Python and the various libraries it 
provides makes the task a lot simpler, faster, 
and more efficient, which is the point of 
spending all of the time on seemingly mundane 
topics in these early chapters. The better you 
know how to use Python to speed your way 
through these repetitive tasks, the sooner you 
begin having fun performing various sorts of 
analysis on the data.
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duplicate records before you use the data for any sort of analysis (duplicates 
would unfairly weight the results).

However, you do need to consider what validation actually does for you. It 
doesn’t tell you that the data is correct or that there won’t be values outside 
the expected range. In fact, later chapters help you understand the tech-
niques for handling these sorts of issues. What validation does is ensure that 
you can perform an analysis of the data and reasonably expect that analysis 
to succeed. Later, you need to perform additional massaging of the data to 
obtain the sort of results that you need in order to perform the task you set 
out to perform in the first place.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by 
hand is sometimes simply impossible due to the number of observations and 
variables. In addition, hand verifying the content is time consuming, error 
prone, and, most important, really boring. Finding duplicates is important 
because you end up

 ✓ Spending more computational time to process duplicates, which slows 
your algorithms down.

 ✓ Obtaining false results because duplicates implicitly overweight the 
results. Because some entries appear more than once, the algorithm 
considers these entries more important.

As a data scientist, you want your data to enthrall you, so it’s time to get it to 
talk to you — not figuratively, of course, but through the wonders of pandas, 
as shown in the following example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))

for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'], 
                   [obj[0].text, obj[1].text, 
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
    
search = pd.DataFrame.duplicated(df)



109  Chapter 6: Conditioning Your Data

print df
print
print search[search == True]

This example shows how to find duplicate rows. It relies on a modified ver-
sion of the XMLData.xml file, XMLData2.xml, which contains a simple 
repeated row in it. A real data file contains thousands (or more) of records 
and possibly hundreds of repeats, but this simple example does the job. The 
example begins by reading the data file into memory using the same tech-
nique you explored in Chapter 5. It then places the data into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row. 
However, you can get rid of the duplicated row by searching for it. The first 
task is to create a search object containing a list of duplicated rows by calling 
pd.DataFrame.duplicated(). The duplicated rows contain a True next 
to their row number.

Of course, now you have an unordered list of rows that are and aren’t 
 duplicated. The easiest way to determine which rows are duplicated is 
to create an index in which you use search == True as the expression. 
Following is the output you see from this example. Notice that row 1 is 
duplicated in the DataFrame output and that row 1 is also called out in the 
search results:

  Number  String Boolean
0      1   First    True
1      1   First    True
2      2  Second   False
3      3   Third    True
1    True
dtype: bool

Removing duplicates
To get a clean dataset, you want to remove the duplicates from it. 
Fortunately, you don’t have to write any weird code to get the job done — 
pandas does it for you, as shown in the following example:

from lxml import objectify
import pandas as pd

xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
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for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'], 
                   [obj[0].text, obj[1].text, 
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
    
print df.drop_duplicates()

As with the previous example, you begin by creating a DataFrame that 
 contains the duplicate record. To remove the errant record, all you need to 
do is call drop_duplicates(). Here’s the result you get.

  Number  String Boolean
0      1   First    True
2      2  Second   False
3      3   Third    True

Creating a data map and data plan
You need to know about your dataset — that is, how it looks statically. A data 
map is an overview of the dataset. You use it to spot potential problems in 
your data, such as

 ✓ Redundant variables

 ✓ Possible errors

 ✓ Missing values

 ✓ Variable transformations

Checking for these problems goes into a data plan, which is a list of tasks you 
have to perform to ensure the integrity of your data. The following example 
shows a data map, A, with two datasets, B and C:

import pandas as pd

df = pd.DataFrame({'A': [0,0,0,0,0,1,1],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})

a_group_desc = df.groupby('A').describe()
print a_group_desc
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In this case, the data map uses 0s for the first series and 1s for the second 
series. The groupby() function places the datasets, B and C, into groups. 
To determine whether the data map is viable, you obtain statistics using 
describe(). What you end up with is a dataset B, series 0 and 1, and data-
set C, series 0 and 1, as shown in the following output.

                B         C
A                          
0 count  5.000000  5.000000
  mean   3.000000  2.800000
  std    1.581139  1.788854
  min    1.000000  1.000000
  25%    2.000000  1.000000
  50%    3.000000  3.000000
  75%    4.000000  4.000000
  max    5.000000  5.000000
1 count  2.000000  2.000000
  mean   3.500000  2.500000
  std    2.121320  0.707107
  min    2.000000  2.000000
  25%    2.750000  2.250000
  50%    3.500000  2.500000
  75%    4.250000  2.750000
  max    5.000000  3.000000

These statistics tell you about the two dataset series. The breakup of the two 
datasets using specific cases is the data plan. As you can see, the statistics 
tell you that this data plan may not be viable because some statistics are 
relatively far apart.

The output from describe() can be hard to read. The data is crammed 
together, but you can break it apart, as shown here:

unstacked = a_group_desc.unstack()
print unstacked

Using unstack() creates a new presentation. Here’s the output formatted 
nicely so that you can see it better:

      B
  count mean       std min   25%  50%   75% max
A                                                                          
0     5  3.0  1.581139   1  2.00  3.0  4.00   5
1     2  3.5  2.121320   2  2.75  3.5  4.25   5

      C
  count mean       std min   25%  50%   75% max  
A                       
0     5  2.8  1.788854   1  1.00  3.0  4.00   5
1     2  2.5  0.707107   2  2.25  2.5  2.75   3



112 Part II: Getting Your Hands Dirty with Data  

Of course, you may not want all the data that describe() provides. Perhaps 
you really just want to see the number of items in each series and their mean. 
Here’s how you reduce the size of the information output:

print unstacked.loc[:,(slice(None),['count','mean']),]

Using loc lets you obtain specific columns. Here’s the final output from 
the example showing just the information you absolutely need to make a 
 decision:

      B          C     
  count mean count mean
A                      
0     5  3.0     5  2.8
1     2  3.5     2  2.5

Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a 
limited selection of values. The number of values is usually fixed. Many devel-
opers will know categorical variables by the moniker enumerations. Each of 
the potential values that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a vari-
able expressing the color of an object, such as a car, and that the user can 
select blue, red, or green. To express the car’s color in a way that computers 
can represent and effectively compute, an application assigns each color a 
numeric value, so blue is 1, red is 2, and green is 3. Normally when you print 
each color, you see the value rather than the color.

If you use pandas.DataFrame (http://pandas.pydata.org/ 
pandas‐docs/dev/generated/pandas.DataFrame.html), you can still 
see the symbolic value (blue, red, and green), even though the computer 
stores it as a numeric value. Sometimes you need to rename and combine 
these named values to create new symbols. Symbolic variables are just a 
 convenient way of representing and storing qualitative data.

When using categorical variables for machine learning, it’s important to 
 consider the algorithm used to manipulate the variables. Some algorithms, 
such as trees and ensembles of three, can work directly with the numeric 
variables behind the symbols. Other algorithms, such as linear and logistic 
regression and SVM, require that you encode the categorical values into 
binary variables. For example, if you have three levels for a color variable 
(blue, red, and green), you have to create three binary variables:

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
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 ✓ One for blue (1 when the value is blue, 0 when it is not)

 ✓ One for red (1 when the value is red, 0 when it is not)

 ✓ One for green (1 when the value is green, 0 when it is not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them 
incredibly valuable in performing a number of data science tasks. For exam-
ple, imagine trying to find values that are out of range in a huge dataset. In 
this example, you see one method for creating a categorical variable and then 
using it to check whether some data falls within the specified limits.

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'], 
dtype='category')

car_data = pd.Series(
    pd.Categorical(['Yellow', 'Green', 'Red', 'Blue', 

'Purple'],
                   categories=car_colors, ordered=False))

find_entries = pd.isnull(car_data)

print car_colors
print
print car_data
print
print find_entries[find_entries == True]

Checking your version of pandas
The categorical variable examples in this 
section depend on your having a minimum 
version of pandas 0.15.0 installed on your 
system (using pandas 0.16.0 or above is actually 
better because it includes a large number of 
bug fixes). However, your version of Anaconda 
may have pandas version 0.14.1 installed 
instead. To check your version of pandas, type 
import pandas as pd and press Enter; then, 

type print pd.version.version and press Enter. 
You see the version number of pandas you 
have installed. If you have an older version, 
download the newest version from http://
pandas.pydata.org/ and follow the 
instructions at http://pandas.pydata.
org/pandas‐docs/version/0.15.2/
install.html to install it.

http://pandas.pydata.org/
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html
http://pandas.pydata.org/pandas-docs/version/0.15.2/install.html
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The example begins by creating a categorical variable, car_colors. The 
variable contains the values Blue, Red, and Green as colors that are 
 acceptable for a car. Notice that you must specify a dtype property value of 
 category.

The next step is to create another series. This one uses a list of actual car 
colors, named car_data, as input. Not all the car colors match the pre-
defined acceptable values. When this problem occurs, pandas outputs Not a 
Number (NaN) instead of the car color.

Of course, you could search the list manually for the nonconforming cars, but 
the easiest method is to have pandas do the work for you. In this case, you 
ask pandas which entries are null using isnull() and place them in find_
entries. You can then output just those entries that are actually null. Here’s 
the output you see from the example:

0     Blue
1      Red
2    Green
dtype: category
Categories (3, object): [Blue < Green < Red]

0      NaN
1    Green
2      Red
3     Blue
4      NaN
dtype: category
Categories (3, object): [Blue, Red, Green]

0    True
4    True
dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4 
equal NaN. The output from find_entries verifies this fact for you. If this 
were a large dataset, you could quickly locate and correct errant entries in 
the dataset before performing an analysis on it.

Renaming levels
There are times when the naming of the categories you use is inconvenient 
or otherwise wrong for a particular need. Fortunately, you can rename the 
 categories as needed using the technique shown in the following example.

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'], 
                       dtype='category')
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car_data = pd.Series(
    pd.Categorical(
        ['Blue', 'Green', 'Red', 'Blue', 'Red'],
        categories=car_colors, ordered=False))

car_colors.cat.categories = ["Purple", "Yellow", "Mauve"]
car_data.cat.categories = car_colors

print car_data

All you really need to do is set the cat.categories property to a new 
value, as shown. Here is the output from this example:

0    Purple
1    Yellow
2     Mauve
3    Purple
4     Mauve
dtype: category
Categories (3, object): [Purple, Mauve, Yellow]

Combining levels
A particular categorical level might be too small to offer significant data 
for analysis. Perhaps there are only a few of the values, which may not be 
enough to create a statistical difference. In this case, combining several small 
categories might offer better analysis results. The following example shows 
how to combine categories:

import pandas as pd

car_colors = pd.Series(['Blue', 'Red', 'Green'], 
                       dtype='category')
car_data = pd.Series(
    pd.Categorical(
        ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],
        categories=car_colors, ordered=False))

car_data.cat.categories = ["Blue_Red", "Red", "Green"]
print car_data.ix[car_data.isin(['Red'])]

car_data.ix[car_data.isin(['Red'])] = 'Blue_Red'

print
print car_data
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What this example shows you is that there is only one Blue item and only 
two Red items, but there are three Green items, which places Green in the 
majority. Combining Blue and Red together is a two‐step process. First, you 
change the Blue category to the Blue_Red category so that when you see 
the output, you know that the two are combined. Then you change the Red 
entries to Blue_Red, which creates the combined category.

However, before you can change the Red entries to Blue_Red entries, you 
must find them. This is where a combination of calls to isin(), which 
locates the Red entries, and ix[], which obtains their index, provides 
 precisely what you need. The first print statement shows the result of using 
this combination. Here’s the output from this example.

2    Red
4    Red
dtype: category
Categories (3, object): [Blue_Red, Red, Green]

0    Blue_Red
1       Green
2    Blue_Red
3       Green
4    Blue_Red
5       Green
dtype: category
Categories (3, object): [Blue_Red, Red, Green]

Notice that there are now three Blue_Red entries and three Green entries. 
The Blue category no longer exists and the Red category is no longer in use. 
The result is that the levels are now combined as expected.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as 
numeric values. However, the precise value of the number depends on the 
representation for the particular platform and could even depend on the 
users’ preferences. For example, Excel users can choose to start dates in 
1900 or 1904 (https://support.microsoft.com/en‐us/kb/180162). 
The numeric encoding for each is different, so the same date can have two 
numeric values depending on the starting date.

In addition to problems of representation, you also need to consider how 
to work with time values. Creating a time value format that represents a 
value the user can understand is hard. For example, you might need to use 

https://support.microsoft.com/en-us/kb/180162
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Greenwich Mean Time (GMT) in some situations but a local time zone in 
others. Transforming between various times is also problematic. With this 
in mind, the following sections provide you with details on dealing with time 
issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing 
analysis a lot easier. For example, you often have to change the representa-
tion to obtain a correct sorting of values. Python provides two common 
methods of formatting date and time. The first technique is to call str(), 
which simply turns a datetime value into a string without any formatting. 
The strftime() function requires more work because you must define 
how you want the datetime value to appear after conversion. When using 
strftime(), you must provide a string containing special directives that 
define the formatting. You can find a listing of these directives at http://
strftime.org/.

Now that you have some idea of how time and date conversions work, it’s 
time to see an example. The following example creates a datetime object 
and then converts it into a string using two different approaches:

import datetime as dt

now = dt.datetime.now()

print str(now)
print now.strftime('%a, %d %B %Y')

In this case, you can see that using str() is the easiest approach. However, 
as shown by the following output, it may not provide the output you need. 
Using strftime() is infinitely more flexible.

2015‐04‐16 17:26:45.986000
Thu, 16 April 2015

Using the right time transformation
Time zones and differences in local time can cause all sorts of problems 
when performing analysis. For that matter, some types of calculations simply 
require a time shift in order to get the right results. No matter what the 
reason, you may need to transform one time into another time at some point. 

http://strftime.org/
http://strftime.org/
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The following examples show some techniques you can employ to perform 
the task.

import datetime as dt

now = dt.datetime.now()
timevalue = now + dt.timedelta(hours=2)

print now.strftime('%H:%M:%S')
print timevalue.strftime('%H:%M:%S')
print timevalue ‐ now

The timedelta() function makes the time transformation straightforward. 
You can use any of these parameter names with timedelta() to change a 
time and date value:

 ✓ days

 ✓ seconds

 ✓ microseconds

 ✓ milliseconds

 ✓ minutes

 ✓ hours

 ✓ weeks

You can also manipulate time by performing addition or subtraction on time 
values. You can even subtract two time values to determine the difference 
between them. Here’s the output from this example:

17:44:40
19:44:40
2:00:00

Notice that now is the local time, timevalue is two time zones different from 
this one, and there is a two‐hour difference between the two times. You can 
perform all sorts of transformations using these techniques to ensure that 
your analysis always shows precisely the time‐oriented values you need.

Dealing with Missing Data
Sometimes the data you receive is missing information in specific fields. For 
example, a customer record might be missing an age. If enough records are 
missing entries, any analysis you perform will be skewed and the results 
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of the analysis weighted in an unpredictable manner. Having a strategy for 
dealing with missing data is important. The following sections give you some 
ideas on how to work through these issues and produce better results.

Finding the missing data
It’s essential to find missing data in your dataset to avoid getting incorrect 
results from your analysis. The following code shows how you could obtain a 
listing of missing values without too much effort.

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.isnull()

print
print s[s.isnull()]

A dataset could represent missing data in several ways. In this example, you 
see missing data represented as np.NaN (NumPy Not a Number) and the 
Python None value.

Use the isnull() method to detect the missing values. The output shows 
True when the value is missing. By adding an index into the dataset, you 
obtain just the entries that are missing. The example shows the following 
output:

0    False
1    False
2    False
3     True
4    False
5    False
6     True
dtype: bool

3   NaN
6   NaN
dtype: float64

Encoding missingness
After you figure out that your dataset is missing information, you need to 
consider what to do about it. The three possibilities are to ignore the issue, 
fill in the missing items, or remove (drop) the missing entries from the 
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 dataset. Ignoring the problem could lead to all sorts of problems for your 
analysis, so it’s the option you use least often. The following example shows 
one technique for filling in missing data or dropping the errant entries from 
the dataset:

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

print s.fillna(int(s.mean()))
print
print s.dropna()

The two methods of interest are fillna(), which fills in the missing entries, 
and dropna(), which drops the missing entries. When using fillna(), you 
must provide a value to use for the missing data. This example uses the mean 
of all the values, but you could choose a number of other approaches. Here’s 
the output from this example:

0    1
1    2
2    3
3    3
4    5
5    6
6    3
dtype: float64

0    1
1    2
2    3
4    5
5    6
dtype: float64

Working with a series is straightforward because the dataset is so simple. 
When working with a DataFrame, however, the problem becomes signifi-
cantly more complicated. You still have the option of dropping the entire 
row. When a column is sparsely populated, you might drop the column 
instead. Filling in the data also becomes more complex because you must 
consider the dataset as a whole, in addition to the needs of the individual 
feature.

Imputing missing data
The previous section hints at the process of imputing missing data (ascrib-
ing characteristics based on how the data is used). The technique you use 
depends on the sort of data you’re working with. For example, when working 
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with a tree ensemble (you can find discussions of trees in the “Performing 
Hierarchical Clustering” section of Chapter 15 and the “Starting with a Plain 
Decision Tree” section of Chapter 20), you may simply replace missing values 
with a –1 and rely on the imputer (a transformer algorithm used to complete 
missing values) to define the best possible value for the missing data. The 
following example shows a technique you can use to impute missing data 
values:

import pandas as pd
import numpy as np
from sklearn.preprocessing import Imputer

s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])

imp = Imputer(missing_values='NaN', 
              strategy='mean', axis=0)

imp.fit([1, 2, 3, 4, 5, 6, 7])

x = pd.Series(imp.transform(s).tolist()[0])

print x

In this example, s is missing some values. The code creates an Imputer 
to replace these missing values. The missing_values parameter defines 
what to look for, which is NaN. You set the axis parameter to 0 to impute 
along columns and 1 to impute along rows. The strategy parameter 
defines how to replace the missing values (you can discover more about the 
Imputer parameters at http://scikit‐learn.org/stable/modules/ 
generated/sklearn.preprocessing.Imputer.html):

 ✓ mean: Replaces the values by using the mean along the axis

 ✓ median: Replaces the values by using the medium along the axis

 ✓ most_frequent: Replaces the values by using the most frequent value 
along the axis

Before you can impute anything, you must provide statistics for the Imputer 
to use by calling fit(). The code then calls transform() on s to fill in the 
missing values. However, the output is no longer a series. To create a series, 
you must convert the Imputer output to a list and use the resulting list as 
input to Series(). Here’s the result of the process with the missing values 
filled in:

0    1
1    2
2    3
3    4

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
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4    5
5    6
6    7
dtype: float64

Slicing and Dicing: Filtering  
and Selecting Data

You may not need to work with all the data in a dataset. In fact, looking at 
just one particular column might be beneficial, such as age, or a set of rows 
with a significant amount of information. You perform two steps to obtain 
just the data you need to perform a particular task:

1. Filter rows to create a subject of the data that meets the criterion you 
select (such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze. For 
example, you probably don’t need the individuals’ names unless you 
want to perform some analysis based on name.

The act of slicing and dicing data, gives you a subset of the data suitable for 
analysis. The following sections describe various ways to obtain specific 
pieces of data to meet particular needs.

Slicing rows
Slicing can occur in multiple ways when working with data, but the technique 
of interest in this section is to slice data from a row of 2D or 3D data. A 2D 
array may contain temperatures (x axis) over a specific timeframe (y axis). 
Slicing a row would mean seeing the temperatures at a specific time. In some 
cases, you might associate rows with cases in a dataset.

A 3D array might include an axis for place (x axis), product (y axis), and time 
(z axis) so that you can see sales for items over time. Perhaps you want to 
track whether sales of an item are increasing, and specifically where they 
are increasing. Slicing a row would mean seeing all the sales for one specific 
product for all locations at any time. The following example demonstrates 
how to perform this task:

x = np.array([[[1, 2, 3],  [4, 5, 6],  [7, 8, 9],],
              [[11,12,13], [14,15,16], [17,18,19],],
              [[21,22,23], [24,25,26], [27,28,29]]])

x[1]
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In this case, the example builds a 3D array. It then slices row 1 of that array 
to produce the following output:

array([[11, 12, 13],
       [14, 15, 16],
       [17, 18, 19]])

Slicing columns
Using the examples from the previous section, slicing columns would obtain 
data at a 90‐degree angle from rows. In other words, when working with the 
2D array, you would want to see the times at which specific temperatures 
occurred. Likewise, you might want to see the sales of all products for a 
 specific location at any time when working with the 3D array. In some cases, 
you might associate columns with features in a dataset. The following exam-
ple demonstrates how to perform this task using the same array as in the 
previous section:

x = np.array([[[1, 2, 3],  [4, 5, 6],  [7, 8, 9],],
              [[11,12,13], [14,15,16], [17,18,19],],
              [[21,22,23], [24,25,26], [27,28,29]]])

x[:,1]

Notice that the indexing now occurs at two levels. The first index refers to 
the row. Using the colon (:) for the row means to use all the rows. The second 
index refers to a column. In this case, the output will contain column 1. Here’s 
the output you see:

array([[ 4,  5,  6],
       [14, 15, 16],
       [24, 25, 26]])

This is a 3D array. Therefore, each of the columns contains all the z axis 
 elements. What you see is every row — 0 through 2 for column 1 with every z 
axis element 0 through 2 for that column.

Dicing
The act of dicing a dataset means to perform both row and column slicing 
such that you end up with a data wedge. For example, when working with the 
3D array, you might want to see the sales of a specific product in a specific 
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location at any time. The following example demonstrates how to perform 
this task using the same array as in the previous two sections:

x = np.array([[[1, 2, 3],  [4, 5, 6],  [7, 8, 9],],
              [[11,12,13], [14,15,16], [17,18,19],],
              [[21,22,23], [24,25,26], [27,28,29]]])

print x[1,1]
print x[:,1,1]
print x[1,:,1]
print
print x[1:2, 1:2]

This example dices the array in four different ways. First, you get row 1, 
column 1. Of course, what you may actually want is column 1, z axis 1. If 
that’s not quite right, you could always request row 1, z axis 1 instead. Then 
again, you may want rows 1 and 2 of columns 1 and 2. Here’s the output of all 
four requests:

[14 15 16]
[ 5 15 25]
[12 15 18]

[[[14 15 16]
  [17 18 19]]

 [[24 25 26]
  [27 28 29]]]

Concatenating and Transforming
Data used for data science purposes seldom comes in a neat package. You 
may need to work with multiple databases in various locations — each of 
which has its own data format. It’s impossible to perform analysis on such 
disparate sources of information with any accuracy. To make the data useful, 
you must create a single dataset (by concatenating, or combining, the data 
from various sources).

Part of the process is to ensure that each field you create for the combined 
dataset has the same characteristics. For example, an age field in one data-
base might appear as a string, but another database could use an integer for 
the same field. For the fields to work together, they must appear as the same 
type of information.
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The following sections help you understand the process involved in con-
catenating and transforming data from various sources to create a single 
dataset. After you have a single dataset from these sources, you can begin to 
perform tasks such as analysis on the data. Of course, the trick is to create a 
single dataset that truly represents the data in all those disparate datasets — 
 modifying the data would result in skewed results.

Adding new cases and variables
You often find a need to combine datasets in various ways or even to add 
new information for the sake of analysis purposes. The result is a combined 
dataset that includes either new cases or variables. The following example 
shows techniques for performing both tasks:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})

df1 = pd.DataFrame({'A': [4],
                    'B': [4],
                    'C': [4]})

df = df.append(df1)
df = df.reset_index(drop=True)
print df

df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print
print df

df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})

df = pd.DataFrame.join(df, df2)
print
print df

The easiest way to add more data to an existing DataFrame is to rely on the 
append() method. You can also use the concat() method (a technique 
shown in Chapter 13). In this case, the three cases found in df are added 
to the single case found in df1. To ensure that the data is appended as 
anticipated, the columns in df and df1 must match. When you append two 
DataFrame objects in this manner, the new DataFrame contains the old 
index values. Use the reset_index() method to create a new index to make 
accessing cases easier.
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You can also add another case to an existing DataFrame by creating the new 
case directly. Any time you add a new entry at a position that is one greater 
than the last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In 
this case, you rely on join() to perform the task. The resulting DataFrame 
will match cases with the same index value, so indexing is important. 
In  addition, unless you want blank values, the number of cases in both 
DataFrame objects must match. Here’s the output from this example:

   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4

   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4
4  5  5  5

   A  B  C  D
0  2  1  5  1
1  3  2  3  2
2  1  3  4  3
3  4  4  4  4
4  5  5  5  5

Removing data
At some point, you may need to remove cases or variables from a dataset 
because they aren’t required for your analysis. In both cases, you rely on 
the drop() method to perform the task. The difference in removing cases or 
variables is in how you describe what to remove, as shown in the following 
example:

import pandas as pd

df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})

df = df.drop(df.index[[1]])
print df

df = df.drop('B', 1)
print
print df
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The example begins by removing a case from df. Notice how the code relies 
on an index to describe what to remove. You can remove just one case (as 
shown), ranges of cases, or individual cases separated by commas. The main 
concern is to ensure that you have the correct index numbers for the cases 
you want to remove.

Removing a column is different. This example shows how to remove a 
column using a column name. You can also remove a column by using an 
index. In both cases, you must specify an axis as part of the removal process 
(normally 1). Here’s the output from this example:

   A  B  C
0  2  1  5
2  1  3  4

   A  C
0  2  5
2  1  4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order. 
In the first case, you put the data into order, while in the second, you remove 
any systematic patterning from the order. In general, you don’t sort datasets 
for the purpose of analysis because doing so can cause you to get incorrect 
results. However, you might want to sort data for presentation purposes. The 
following example shows both sorting and shuffling:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [2,1,2,3,3,5,4],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})

df = df.sort_index(by=['A', 'B'], ascending=[True, True])
df = df.reset_index(drop=True)
print df

index = df.index.tolist()
np.random.shuffle(index)
df = df.ix[index]
df = df.reset_index(drop=True)
print
print df



128 Part II: Getting Your Hands Dirty with Data  

It turns out that sorting the data is a bit easier than shuffling it. To sort the 
data, you use the sort_index() method and define which columns to use 
for indexing purposes. You can also determine whether the index is in ascend-
ing or descending order. Make sure to always call reset_index() when 
you’re done so that the index appears in order for analysis or other purposes.

To shuffle the data, you first acquire the current index using df.index.
tolist() and place it in index. A call to random.shuffle() creates a 
new order for the index. You then apply the new order to df using ix[]. As 
always, you call reset_index() to finalize the new order. Here’s the output 
from this example:

   A  B  C
0  1  2  3
1  2  1  5
2  2  3  4
3  3  4  1
4  3  5  1
5  4  5  3
6  5  2  2

   A  B  C
0  2  3  4
1  3  5  1
2  3  4  1
3  1  2  3
4  4  5  3
5  5  2  2
6  2  1  5

Aggregating Data at Any Level
Aggregation is the process of combining or grouping data together into a 
set, bag, or list. The data may or may not be alike. However, in most cases, 
an aggregation function combines several rows together statistically using 
 algorithms such as average, count, maximum, median, minimum, mode, or 
sum. There are several reasons to aggregate data:

 ✓ Make it easier to analyze

 ✓ Reduce the ability of anyone to deduce the data of an individual from 
the dataset for privacy or other reasons

 ✓ Create a combined data element from one data source that matches a 
combined data element in another source
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The most important use of data aggregation is to promote anonymity in 
order to meet legal or other concerns. Sometimes even data that should be 
anonymous turns out to provide identification of an individual using the 
proper analysis techniques. For example, researchers have found that it’s 
possible to identify individuals based on just three credit card purchases 
(see http://www.computerworld.com/article/2877935/how‐three‐
small‐credit‐card‐transactions‐could‐reveal‐your‐identity.
html for details). Here’s an example that shows how to perform aggregation 
tasks:

import pandas as pd

df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],
                   'Values': [1,2,3,5,4,2,5]})

df['S'] = df.groupby('Map')['Values'].transform(np.sum)
df['M'] = df.groupby('Map')['Values'].transform(np.mean)
df['V'] = df.groupby('Map')['Values'].transform(np.var)

print df

In this case, you have two initial features for this DataFrame. The values in 
Map define which elements in Values belong together. For example, when 
calculating a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map 
values. You then index into Values and rely on transform() to create the 
aggregated data using one of several algorithms found in NumPy, such as np.
sum. Here are the results of this calculation:

   Map  Values  S    M    V
0    0       1  6  2.0  1.0
1    0       2  6  2.0  1.0
2    0       3  6  2.0  1.0
3    1       5  9  4.5  0.5
4    1       4  9  4.5  0.5
5    2       2  7  3.5  4.5
6    2       5  7  3.5  4.5

http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
http://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
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Shaping Data
In This Chapter

 ▶ Manipulating HTML data

 ▶ Manipulating raw text

 ▶ Discovering the bag of words model and other techniques

 ▶ Manipulating graph data

C 
hapter 6 demonstrates techniques for working with data as an entity —  
as something you work with in Python. However, data doesn’t exist in 

a vacuum. It doesn’t just suddenly appear within Python for absolutely no 
reason at all. As demonstrated in Chapter 5, you load the data. However, 
loading may not be enough — you may have to shape the data as part of 
loading it. That’s the purpose of this chapter. You discover how to work with 
a variety of container types in a way that makes it possible to load data from 
a number of complex container types, such as HTML pages. In fact, you even 
work with graphics, images, and sounds.

As you progress through the book, you discover that data takes all kinds of 
forms and shapes. As far as the computer is concerned, data consists of 0s 
and 1s. Humans give the data meaning by formatting, storing, and interpret-
ing it in a certain way. The same group of 0s and 1s could be a number, date, 
or text, depending on the interpretation. The data container provides clues 
as to how to interpret the data, so that’s why this chapter is so important to 
you as a data scientist using Python to discover data patterns. You find that 
you can discover patterns in places where you might have thought patterns 
couldn’t exist.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 07; Shaping Data.ipynb source code file.

Chapter 7
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Working with HTML Pages
HTML pages contain data in a hierarchical format. You often find HTML con-
tent in a strict HTML form or as XML. The HTML form can present problems 
because it doesn’t always necessarily follow strict formatting rules. XML 
does follow strict formatting rules because of the standards used to define it, 
which makes it easier to parse. However, in both cases, you use similar tech-
niques to parse a page. The first section that follows describes how to parse 
HTML pages in general.

Sometimes you don’t need all the data on a page. Instead you need specific 
data, which is where XPath comes into play. You can use XPath to locate spe-
cific data on the HTML page and extract it for your particular needs.

Parsing XML and HTML
Simply extracting data from an XML file as you do in Chapter 5 may not be 
enough. The data may not be in the correct format. Using the approach in 
Chapter 5, you end up with a DataFrame containing three columns of type 
str. Obviously, you can’t perform much data manipulation with strings. 
The following example shapes the XML data from Chapter 5 to create a new 
DataFrame containing just the <Number> and <Boolean> elements in the 
correct format.

from lxml import objectify
import pandas as pd
from distutils import util

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'Boolean'))

for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'Boolean'], 
                   [obj[0].pyval, 
                    bool(util.strtobool(obj[2].text))]))
    row_s = pd.Series(row)
    row_s.name = obj[1].text
    df = df.append(row_s)

print type(df.ix['First']['Number'])
print type(df.ix['First']['Boolean'])

Obtaining a numeric value from the <Number> element consists of using the 
pyval output, rather than the text output. The result isn’t an int, but it is 
numeric.
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The conversion of the <Boolean> element is a little harder. You must  
convert the string to a numeric value using the strtobool() function in 
distutils.util. The output is a 0 for False values and a 1 for True 
values. However, that’s still not a Boolean value. To create a Boolean value, 
you must convert the 0 or 1 using bool().

This example also shows how to access individual values in the DataFrame. 
Notice that the name property now uses the <String> element value for 
easy access. You provide an index value using ix and then access the indi-
vidual feature using a second index. The output from this example is

<type 'numpy.float64'>
<type 'bool'>

Using XPath for data extraction
Using XPath to extract data from your dataset can greatly reduce the com-
plexity of your code and potentially make it faster as well. The following 
example shows an XPath version of the example in the previous section. 
Notice that this version is shorter and doesn’t require the use of a for loop.

from lxml import objectify
import pandas as pd
from distutils import util

xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()

data = zip(map(int, root.xpath('Record/Number')), 
           map(bool, map(util.strtobool, 
                map(str, root.xpath('Record/Boolean')))))

df = pd.DataFrame(data, 
                  columns=('Number', 'Boolean'), 
                  index=map(str, 
                        root.xpath('Record/String')))

print df
print type(df.ix['First']['Number'])
print type(df.ix['First']['Boolean'])

The example begins just like the previous example, with the importing of 
data and obtaining of the root node. At this point, the example creates a 
data object that contains record number and Boolean value pairs. Because 
the XML file entries are all strings, you must use the map() function to con-
vert the strings to the appropriate values. Working with the record number 
is straightforward — all you do is map it to an int. The xpath() function 
accepts a path from the root node to the data you need, which is 'Record/
Number' in this case.
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Mapping the Boolean value is a little more difficult. As in the previous sec-
tion, you must use the util.strtobool() function to convert the string 
Boolean values to a number that bool() can convert to a Boolean equiva-
lent. However, if you try to perform just a double mapping, you’ll encoun-
ter an error message saying that lists don’t include a required function, 
tolower().To overcome this obstacle, you perform a triple mapping and 
convert the data to a string using the str() function first.

Creating the DataFrame is different, too. Instead of adding individual rows, 
you add all the rows at one time by using data. Setting up the column names 
is the same as before. However, now you need some way of adding the row 
names, as in the previous example. This task is accomplished by setting 
the index parameter to a mapped version of the xpath() output for the 
'Record/String' path. Here’s the output you can expect:

        Number Boolean
First        1    True
Second       2   False
Third        3    True
Fourth       4   False
<type 'numpy.int64'>
<type 'numpy.bool_'>

Working with Raw Text
Even though it might seem as if raw text wouldn’t present a problem in pars-
ing because it doesn’t contain any special formatting, you do have to con-
sider how the text is stored and whether it contains special words within it. 
The multiple forms of Unicode can present interpretation problems that you 
need to consider as you work through the text. Using regular expressions can 
help you locate specific information within a raw‐text file. You can use regu-
lar expressions for both data cleaning and pattern matching. The following 
sections help you understand the techniques used to shape raw‐text files.

Dealing with Unicode
Text files are pure text — this much is certain. The way the text is encoded 
can differ. For example, a character can use either seven or eight bits for 
encoding purposes. The use of special characters can differ as well. In short, 
the interpretation of bits used to create characters differs from encoding to 
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encoding. You can see a host of encodings at http://www.i18nguy.com/
unicode/codepages.html.

Sometimes you need to work with encodings other than the default encoding 
set within the Python environment. When working with Python 3.x, you must 
rely on Universal Transformation Format 8‐bit (UTF‐8) as the encoding used 
to read and write files. This environment is always set for UTF‐8, and trying to 
change it causes an error message. However, when working with Python 2.x,  
you can choose other encodings. In this case, the default encoding is the 
American Standard Code for Information Interchange (ASCII), but you can 
change it to some other encoding.

You can use this technique in any IPython Notebook file, but you won’t actu-
ally see output from it. In order to see output, you need to work with the 
IPython prompt. The following steps help you see how to deal with Unicode 
characters, but only when working with Python 2.x (these steps will cause 
errors in the Python 3.x environment).

1. Open a copy of the IPython command prompt.

You see the IPython window.

2. Type the following code, pressing Enter after each line.

import sys
sys.getdefaultencoding()

You see the default encoding for Python, which is ascii in most cases.

3. Type reload(sys) and press Enter.

Python reloads the sys module and makes a special function available.

4. Type sys.setdefaultencoding(‘utf‐8’) and press Enter.

Python does change the encoding, but you won’t know that for certain 
until after the next step.

5. Type sys.getdefaultencoding( ) and press Enter.

You see that the default encoding has now changed to utf‐8.

Changing the default encoding at the wrong time and in the incorrect way 
can prevent you from performing tasks such as importing modules. Make 
sure to test your code carefully and completely to ensure that any change 
in the default encoding won’t affect your ability to run the application. Good 
additional articles to read on this topic appear at http://blog.notdot.
net/2010/07/Getting‐unicode‐right‐in‐Python and http://web.
archive.org/web/20120722170929/http://boodebr.org/main/
python/all‐about‐python‐and‐unicode.

http://www.i18nguy.com/unicode/codepages.html
http://www.i18nguy.com/unicode/codepages.html
http://blog.notdot.net/2010/07/Getting-unicode-right-in-Python
http://blog.notdot.net/2010/07/Getting-unicode-right-in-Python
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode
http://web.archive.org/web/20120722170929/http://boodebr.org/main/python/all-about-python-and-unicode
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Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This 
task isn’t the same as understanding that some words come from Latin or 
other roots, but instead makes like words equal to each other for the pur-
pose of comparison or sharing. For example, the words cats, catty, and catlike 
all have the stem cat. The act of stemming helps you analyze sentences by 
tokenizing them.

Removing suffixes to create stem words and generally tokenizing sentences 
are only two parts of the process, however, of creating something like a natu-
ral language interface. Languages include a great number of glue words that 
don’t mean much to a computer but have significant meaning to humans, 
such as a, as, the, that, and so on in English. These short, less useful words 
are stop words. Sentences don’t make sense without them to humans, but for 
your computer, they can act as a means of stopping sentence analysis.

The act of stemming and removing stop words simplifies the text and 
reduces the number of textual elements so that just the essential elements 
remain. In addition, you keep just the terms that are nearest to the true sense 
of the phrase. By reducing phrases in such a fashion, a computational algo-
rithm can work faster and process the text more effectively.

This example requires the use of the Natural Language Toolkit (NLTK), which 
Anaconda (see Chapter 3 for details on Anaconda) doesn’t install by default. To 
use this example, you must download and install NLTK using the instructions 
found at http://www.nltk.org/install.html for your platform. Make 
certain that you install the NLTK for whatever version of Python you’re using 
for this book when you have multiple versions of Python installed on your 
system. After you install NLTK, you must also install the packages associated 
with it. The instructions at http://www.nltk.org/data.html tell you how 
to perform this task (install all the packages to ensure you have everything).

The following example demonstrates how to perform stemming and remove 
stop words from a sentence. It begins by training an algorithm to perform 
the required analysis using a test sentence. Afterward, the example checks a 
second sentence for words that appear in the first.

import sklearn.feature_extraction.text as ext
from nltk import word_tokenize          
from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer()

def stem_tokens(tokens, stemmer):
    stemmed = []
    for item in tokens:
        stemmed.append(stemmer.stem(item))

http://www.nltk.org/install.html
http://www.nltk.org/data.html
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    return stemmed

def tokenize(text):
    tokens = word_tokenize(text)
    stems = stem_tokens(tokens, stemmer)
    return stems

vocab = ['Sam loves swimming so he swims all the time']
vect = ext.CountVectorizer(tokenizer=tokenize, 
                           stop_words='english')
vec = vect.fit(vocab)

sentence1 = vec.transform(['George loves swimming too!'])

print vec.get_feature_names()
print sentence1.toarray()

At the outset, the example creates a vocabulary using a test sentence and 
places it in vocab. It then creates a CountVectorizer, vect, to hold a list 
of stemmed words, but excludes the stop words. The tokenizer parameter 
defines the function used to stem the words. The stop_words parameter 
refers to a pickle file that contains stop words for a specific language, which 
is English in this case. There are also files for other languages, such as French 
and German. (You can see other parameters for the CountVectorizer() at 
http://scikit‐learn.org/stable/modules/generated/sklearn.
feature_extraction.text.CountVectorizer.html.) The vocabulary 
is fitted into another CountVectorizer, vec, which is used to perform the 
actual transformation on a test sentence using the transform() function. 
Here’s the output from this example.

 [u'love', u'sam', u'swim', u'time']
[[1 0 1 0]]

The first output shows the stemmed words. Notice that the list contains only 
swim, not swimming and swims. All the stop words are missing as well. For 
example, you don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in 
the test sentence. In this case, a love variant appears once and a swim variant 
appears once as well. The words sam and time don’t appear in the second 
sentence, so those values are set to 0.

Introducing regular expressions
Regular expressions present the data scientist with an interesting array 
of tools for parsing raw text. At first, it may seem daunting to figure out 
precisely how regular expressions work. However, sites such as http://
regexr.com/ let you play with regular expressions so that you can see how 

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://regexr.com/
http://regexr.com/
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the use of various expressions performs specific types of pattern matching. 
Of course, the first requirement is to discover pattern matching, which is the 
use of special characters to tell a parsing engine what to find in the raw text 
file. Table 7-1 provides a list of pattern‐matching characters and tells you 
how to use them.

Table 7-1 Pattern‐Matching Characters Used in Python
Character Interpretation
(re) Groups regular expressions and remembers the matched text

(?: re) Groups regular expressions without remembering matched text

(?#...) Indicates a comment, which isn’t processed

re? Matches 0 or 1 occurrence of preceding expression (but no 
more than 0 or 1 occurrence)

re* Matches 0 or more occurrences of the preceding expression

re+ Matches 1 or more occurrences of the preceding expression

(?> re) Matches an independent pattern without backtracking

. Matches any single character except the newline (\n) character 
(adding the m option allows it to match the newline character as 
well)

[^...] Matches any single character or range of characters not found 
within the brackets

[...] Matches any single character or range of characters that 
appears within the brackets

re{ n, m} Matches at least n and at most m occurrences of the preceding 
expression

\n, \t, etc. Matches control characters such as newlines (\n), carriage 
returns (\r), and tabs (\t)

\d Matches digits (which is equivalent to using [0‐9])

a|b Matches either a or b

re{ n} Matches exactly the number of occurrences of preceding 
expression specified by n

re{ n,} Matches n or more occurrences of the preceding expression

\D Matches nondigits

\S Matches nonwhitespace

\B Matches nonword boundaries

\W Matches nonword characters
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Using regular expressions helps you manipulate complex text before using 
other techniques described in this chapter. In the following example, you 
see how to extract a telephone number from a sentence no matter where the 
telephone number appears. This sort of manipulation is helpful when you 
have to work with text of various origins and in irregular format. You can see 
some additional telephone number manipulation routines at http://www.
diveintopython.net/regular_expressions/phone_numbers.html. 
The big thing is that this example helps you understand how to extract any 
text you need from text you don’t.

Character Interpretation

\1...\9 Matches nth grouped subexpression

\10 Matches nth grouped subexpression if it matched already 
( otherwise the pattern refers to the octal representation of a 
character code)

\A Matches the beginning of a string

^ Matches the beginning of the line

\z Matches the end of a string

\Z Matches the end of string (when a newline exists, it matches just 
before newline)

$ Matches the end of the line

\G Matches the point where the last match finished

\s Matches whitespace (which is equivalent to using [\t\n\r\f])

\b Matches word boundaries when outside the brackets  
Matches the backspace (0x08) when inside the brackets

\w Matches word characters

(?= re) Specifies a position using a pattern (this pattern doesn’t have a 
range)

(?! re) Specifies a position using pattern negation (this pattern doesn’t 
have a range)

(?‐imx) Toggles the i, m, or x options temporarily off within a regular 
expression (when this pattern appears in parentheses, only the 
area within the parentheses is affected)

(?imx) Toggles the i, m, or x options temporarily on within a regular 
expression (when this pattern appears in parentheses, only the 
area within the parentheses is affected)

(?‐imx: re) Toggles the i, m, or x options within parentheses temporarily off

(?imx: re) Toggles the i, m, or x options within parentheses temporarily on

http://www.diveintopython.net/regular_expressions/phone_numbers.html
http://www.diveintopython.net/regular_expressions/phone_numbers.html
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import re

data1 = 'My phone number is: 800‐555‐1212.'
data2 = '800‐555‐1234 is my phone number.'

pattern = re.compile(r'(\d{3})‐(\d{3})‐(\d{4})')

dmatch1 = pattern.search(data1).groups()
dmatch2 = pattern.search(data2).groups()

print dmatch1
print dmatch2

The example begins with two telephone numbers placed in sentences in vari-
ous locations. Before you can do much, you need to create a pattern. Always 
read a pattern from left to right. In this case, the pattern is looking for three 
digits, followed by a dash, three more digits, followed by another dash, and 
finally four digits.

To make the process faster and easier, the code calls the compile() func-
tion to create a compiled version of the pattern so that Python doesn’t have 
to recreate the pattern every time you need it. The compiled pattern appears 
in pattern.

The search() function looks for the pattern in each of the test sentences. 
It then places any matched text that it finds into groups and outputs a tuple 
into one of two variables. Here’s the output from this example.

('800', '555', '1212')
('800', '555', '1234')

Using the Bag of Words Model  
and Beyond

The goal of most data imports is to perform some type of analysis. Before 
you can perform analysis on textual data, you must tokenize every word 
within the dataset. The act of tokenizing the words creates a bag of words. 
You can then use the bag of words to train classifiers, a special kind of 
algorithm used to break words down into categories. The following section 
provides additional insights into the bag of words model and shows how to 
work with it.
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Understanding the bag of words model
As mentioned in the introduction, in order to perform textual analysis of 
various sorts, you need to first tokenize the words and create a bag of words 
from them. The bag of words uses numbers to represent words, word fre-
quencies, and word locations that you can manipulate mathematically to see 
patterns in the way that the words are structured and used. The bag of words 
model ignores grammar and even word order — the focus is on simplifying 
the text so that you can easily analyze it.

The creation of a bag of words revolves around Natural Language Processing 
(NLP) and Information Retrieval (IR). Before you perform this sort of process-
ing, you normally remove any special characters (such as HTML formatting 
from a web source), remove the stop words, and possibly perform stem-
ming as well (as described in the “Stemming and removing stop words” sec-
tion, earlier this chapter). For the purpose of this example, you use the 20 
Newsgroups dataset directly. Here’s an example of how you can obtain tex-
tual input and create a bag of words from it:

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['comp.graphics', 'misc.forsale', 
              'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset='train',
                                  categories=categories, 

Getting the 20 Newsgroups dataset
The examples in the sections that follow rely 
on the 20 Newsgroups dataset (http://
qwone.com/~jason/20Newsgroups/) 
that’s part of the Scikit‐learn installation. The 
host site provides some additional information 
about the dataset, but essentially it’s a good 
dataset to use to demonstrate various kinds of 
text analysis.

You don’t have to do anything special to 
work with the dataset because Scikit‐learn 
already knows about it. However, when you 
run the first example, you see the message 
“WARNING:sk learn .datasets . twenty_

newsgroups:Downloading dataset from 
http://people.csail.mit.edu/
jrennie/20Newsgroups/20news‐
bydate.tar.gz (14 MB).” All this message 
tells you is that you need to wait for the data 
download to complete. There is nothing wrong 
with your system. Look at the left side of the 
code cell in IPython Notebook and you see the 
familiar In [*]: entry. When this entry changes to 
show a number, the download is complete. The 
message doesn’t go away until the next time 
you run the cell.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
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                                  shuffle=True, 
                                  random_state=42)

count_vect = ext.CountVectorizer()
X_train_counts = count_vect.fit_transform(
    twenty_train.data)

print X_train_counts.shape

A number of the examples you see online are unclear as to where the 
list of categories they use come from. The host site at http://qwone.
com/~jason/20Newsgroups/ provides you with a listing of the categories 
you can use. The category list doesn’t come from a magic hat somewhere, 
but many examples online simply don’t bother to document some informa-
tion sources. Always refer to the host site when you have questions about 
issues such as dataset categories.

The call to fetch_20newsgroups() loads the dataset into memory. You see 
the resulting training object, twenty_train, described as a bunch. At this 
point, you have an object that contains a listing of categories and associated 
data, but the application hasn’t tokenized the data, and the algorithm used to 
work with the data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag 
of words with it. The bag of words process begins by assigning an integer 
value (an index of a sort) to each unique word in the training set. In addition, 
each document receives an integer value. The next step is to count every 
occurrence of these words in each document and create a list of document 
and count pairs so that you know which words appear how often in each 
 document.

Naturally, some words from the master list aren’t used in some documents, 
thereby creating a high‐dimensional sparse dataset. The scipy.sparse 
matrix is a data structure that lets you store only the nonzero elements of the 
list in order to save memory. When the code makes the call to count_vect.
fit_transform(), it places the resulting bag of words into X_train_
counts. You can see the resulting number of entries by accessing the shape 
property. The result, using the categories defined for this example, is

 (2356, 34750)

Working with n‐grams
An n‐gram is a continuous sequence of items in the text you want to ana-
lyze. The items are phonemes, syllables, letters, words, or base pairs. The n 
in n‐gram refers to a size. An n‐gram that has a size of one, for example, is a 

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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unigram. The example in this section uses a size of three, making a trigram. 
You use n‐grams in a probabilistic manner to perform tasks such as predict-
ing the next sequence in a series, which wouldn’t seem very useful until you 
start thinking about applications such as search engines that try to predict 
the word you want to type based on the previous letters you’ve supplied. 
However, the technique has all sorts of applications, such as in DNA sequenc-
ing and data compression. The following example shows how to create  
n‐grams from the 20 Newsgroups dataset.

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train', 
        categories=categories, 
        remove=('headers', 'footers', 'quotes'),
        shuffle=True, 
        random_state=42)

count_chars = ext.CountVectorizer(analyzer='char_wb', 
        ngram_range=(3,3), 
        max_features=10).fit(twenty_train['data'])
count_words = ext.CountVectorizer(analyzer='word', 
        ngram_range=(2,2),
        max_features=10, 
        stop_words='english').fit(twenty_train['data'])
X = count_chars.transform(twenty_train.data)

print count_words.get_feature_names()
print X[1].todense()
print count_words.get_feature_names()

The beginning code is the same as in the previous section. You still begin by 
fetching the dataset and placing it into a bunch. However, in this case, the 
vectorization process takes on new meaning. The arguments process the 
data in a special way.

In this case, the analyzer parameter determines how the application cre-
ates the n‐grams. You can choose words (word), characters (char), or char-
acters within word boundaries (char_wb). The ngram_range parameter 
requires two inputs in the form of a tuple: The first determines the minimum 
n‐gram size and the second determines the maximum n‐gram size. The third 
argument, max_features, determines how many features the vectorizer 
returns. In the second vectorizer call, the stop_words argument removes 
the terms contained in the English pickle (see the “Stemming and removing 
stop words” section, earlier in the chapter, for details). At this point, the 
application fits the data to the transformation algorithm.
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The example provides three outputs. The first shows the top ten trigrams for 
characters from the document. The second is the n‐gram for the first docu-
ment. It shows the frequency of the top ten trigrams. The third is the top ten 
trigrams for words. Here’s the output from this example:

[u'ax ax', u'ax max', u'distribution world', u'don know',
 u'edu organization', u'max ax', u'nntp posting',
 u'organization university', u'posting host',
 u'writes article']
[[0 0 5 1 0 0 4 2 5 1]]
[u'ax ax', u'ax max', u'distribution world', u'don know',
 u'edu organization', u'max ax', u'nntp posting',
 u'organization university', u'posting host',
 u'writes article']

Implementing TF‐IDF transformations
The Term Frequency times Inverse Document Frequency (TF‐IDF) transfor-
mation is a technique used to help compensate for the lengths of different 
documents. A short document and a long document might discuss the same 
topics, but the long document will have higher bag of word counts because it 
contains more words. When performing a comparison between the short and 
long document, the long document will receive unfair weighting without this 
transformation. Search engines often need to weigh documents equally, so 
you see this transformation used quite often in search engine applications.

However, what this transformation is really telling you is the importance of 
a particular word to a document. The greater the frequency of a word in a 
document, the more important it is to that document. However, the measure-
ment is offset by the document size — the total number of words the docu-
ment contains. The TF part of the equation determines how frequently the 
term appears in the document, while the IDF part of the equation determines 
the term’s importance. You can see some actual calculations of this particu-
lar measure at http://www.tfidf.com/. Here’s an example of how you’d 
calculate TF‐IDF using Python:

from sklearn.datasets import fetch_20newsgroups
import sklearn.feature_extraction.text as ext

categories = ['sci.space']

twenty_train = fetch_20newsgroups(subset='train', 
        categories=categories, 
        remove=('headers', 'footers', 'quotes'),
        shuffle=True, 
        random_state=42)

http://www.tfidf.com/
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count_vect = ext.CountVectorizer()
X_train_counts = count_vect.fit_transform(
    twenty_train.data)

tfidf = ext.TfidfTransformer().fit(X_train_counts)
X_train_tfidf = tfidf.transform(X_train_counts)

print X_train_tfidf.shape

This example begins much like the other examples in this section have, by 
fetching the 20 Newsgroups dataset. It then creates a word bag, much like the 
example in the “Understanding the bag of words model” section, earlier in 
this chapter. However, now you see something you can do with the word bag.

In this case, the code calls upon TfidfTransformer() to convert the raw 
newsgroup documents into a matrix of TF‐IDF features. The use_idf con-
trols the use of inverse‐document‐frequency reweighting, which it turned off 
in this case. The vectorized data is fitted to the transformation algorithm. 
The next step, calling tf_transformer.transform(), performs the actual 
transformation process. Here’s the result you get from this example:

(593, 13564)

TF‐IDF helps you to locate the most important word or n‐grams and exclude 
the least important ones. It is also very helpful as an input for linear models, 
because they work better with TF‐IDF scores than word counts. At this point, 
you normally train a classifier and perform various sorts of analysis. Don’t 
worry about this next part of the process just yet. Starting with Chapters 12 
and 15, you get introduced to classifiers. In Chapter 17, you begin working 
with classifiers in earnest.

Working with Graph Data
Imagine data points that are connected to other data points, such as how 
one web page is connected to another web page through hyperlinks. Each 
of these data points is a node. The nodes connect to each other using links. 
Not every node links to every other node, so the node connections become 
important. By analyzing the nodes and their links, you can perform all sorts 
of interesting tasks in data science, such as defining the best way to get 
from work to your home using streets and highways. The following sections 
describe how graphs work and how to perform basic tasks with them.
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Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph. 
When there is a connection between one node and another, the matrix indi-
cates it as a value greater than 0. The precise representation of connections 
in the matrix depends on whether the graph is directed (where the direction 
of the connection matters) or undirected.

A problem with many online examples is that the authors keep them simple 
for explanation purposes. However, real‐world graphs are often immense and 
defy easy analysis simply through visualization. Just think about the number 
of nodes that even a small city would have when considering street intersec-
tions (with the links being the streets themselves). Many other graphs are far 
larger, and simply looking at them will never reveal any interesting patterns. 
Data scientists call the problem in presenting any complex graph using an 
adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For 
example, you might choose to sort the data according to properties other 
than the actual connections. A graph of street connections might include 
the date the street was last paved with the data, making it possible for you 
to look for patterns that direct someone based on the streets that are in 
the best repair. In short, making the graph data useful becomes a matter of 
manipulating the organization of that data in specific ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code 
from scratch. Fortunately, the NetworkX package for Python makes it easy to 
create, manipulate, and study the structure, dynamics, and functions of com-
plex networks (or graphs). Even though this book covers only graphs, you 
can use the package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs. The 
use of simple calls hides much of the complexity of working with graphs and 
adjacency matrices from view. The following example shows how to create a 
basic adjacency matrix from one of the NetworkX‐supplied graphs:

import networkx as nx

G = nx.cycle_graph(10)
A = nx.adjacency_matrix(G)

print(A.todense())
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The example begins by importing the required package. It then creates a 
graph using the cycle_graph() template. The graph contains ten nodes. 
Calling adjacency_matrix() creates the adjacency matrix from the graph. 
The final step is to print the output as a matrix, as shown here:

[[0 1 0 0 0 0 0 0 0 1]
 [1 0 1 0 0 0 0 0 0 0]
 [0 1 0 1 0 0 0 0 0 0]
 [0 0 1 0 1 0 0 0 0 0]
 [0 0 0 1 0 1 0 0 0 0]
 [0 0 0 0 1 0 1 0 0 0]
 [0 0 0 0 0 1 0 1 0 0]
 [0 0 0 0 0 0 1 0 1 0]
 [0 0 0 0 0 0 0 1 0 1]
 [1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes. 
The NetworkX site documents a number of standard graph types that 
you can use, all of which are available within IPython. The list appears at 
https://networkx.github.io/documentation/latest/reference/
generators.html.

It’s interesting to see how the graph looks after you generate it. The following 
code displays the graph for you. Figure 7-1 shows the result of the plot.

import matplotlib.pyplot as plt
nx.draw_networkx(G)
plt.show()

Figure 7-1:  
Plotting 

the original 
graph.

https://networkx.github.io/documentation/latest/reference/generators.html
https://networkx.github.io/documentation/latest/reference/generators.html
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The plot shows that you can add an edge between nodes 1 and 5. Here’s the 
code needed to perform this task using the add_edge() function. Figure 7-2 
shows the result.

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

Figure 7-2:  
Plotting the 

graph  
addition.



Putting What You Know in Action
In This Chapter

 ▶ Putting data science problems and data into perspective

 ▶ Defining and using feature creation to your benefit

 ▶ Working with arrays

P 
revious chapters have all been preparatory in nature. You have discov-
ered how to perform essential data science tasks using Python. In addi-

tion, you spent time working with the various tools that Python provides to 
make data science tasks easier. All this information is essential, but it doesn’t 
help you see the big picture — where all the pieces go. This chapter shows 
you how to employ the techniques you discovered in previous chapters to 
solve real data science problems.

This chapter isn’t the end of the journey — it’s the beginning. Think of previ-
ous chapters in the same way as you think about packing your bags, making 
reservations, and creating an itinerary before you go on a trip. This chapter 
is the trip to the airport, during which you start to see everything come 
together.

The chapter begins by looking at the aspects you normally have to consider 
when trying to solve a data science problem. You can’t just jump in and 
start performing an analysis; you must understand the problem first, as well 
as consider the resources (in the form of data, algorithms, computational 
resources) to solve it. Putting the problem into a context, a setting of a sort, 
helps you understand the problem and define how the data relates to that 
problem. The context is essential because, like language, context alters the 
meaning of both the problem and its associated data. For example, when you 
say, “I have a red rose” to your significant other, the meaning behind the sen-
tence has one connotation. If you say the same sentence to a fellow gardener, 
the connotation is different. The rose is a sort of data and the person you’re 
speaking to is the context. There is no meaning to saying, “I have a red rose.” 
unless you know the context in which the statement is made. Likewise, data 
has no meaning; it doesn’t answer any question until you know the context in 

Chapter 8
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which the data is used. Saying “I have data” expresses a question, “What does 
the data mean?”

In the end, you’ll need one or more datasets. Two dimensional data tables 
(datasets) consist of cases (the rows) and features (the columns). You can 
also refer to features as variables when using a statistical terminology. The 
features you decide to use for any given dataset determine the kinds of analy-
sis you can perform, the ways in which you can manipulate the data, and 
ultimately the sorts of results you obtain. Determining what sorts of features 
you can create from source data and how you must transform the data to 
ensure that it works for the analysis you want to perform is an essential part 
of developing a data science solution.

After you get a picture of what your problem is, the resources you have to 
solve it, and the inputs you need to work with to solve it, you’re ready to 
perform some actual work. The last section of this chapter shows you how to 
perform simple tasks efficiently. You can usually perform tasks using more 
than one methodology, but when working with big data, the fastest routes are 
better. By working with arrays and matrices to perform specific tasks, you’ll 
notice that certain operations can take a long time unless you leverage some 
computational tricks. Using computational tricks is one of the most basic 
forms of manipulation you perform, but knowing about them from the begin-
ning is essential. Applying these techniques paves the road to later chapters 
when you start to look at the magic that data science can truly accomplish in 
helping you see more in the data you have than is nominally apparent.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 08; Operations on Arrays and Matrices.ipynb source 
code file.

Contextualizing Problems and Data
Putting your problem in the correct context is an essential part of develop-
ing a data science solution for any given problem and associated data. Data 
science is definitively applied science, and abstract manual approaches may 
not work all that well on your specific situation. Running a Hadoop cluster or 
building a deep neural network may sound cool in front of fellow colleagues 
and make you feel you are doing great data science projects, but they may 
not provide what you need to solve your problem. Putting the problem in the 
correct context isn’t just a matter of deliberating whether to use a certain 
algorithm or that you must transform the data in a certain way — it’s the art 
of critically examining the problem and the available resources and creating 
an environment in which to solve the problem and obtain a desired solution.
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The key point here is the desired solution, in that you could come up with 
solutions that aren’t desirable because they don’t tell you what you need to 
know — or, even when they do tell you what you need to know, they waste 
too much time and resources. The following sections provide an overview of 
the process you follow to contextualize both problems and data.

Evaluating a data science problem
When working through a data science problem, you need to start by consid-
ering your goal and the resources you have available for achieving that goal. 
The resources are data, computational resources such as available memory, 
CPUs, and disk space. In the real world, no one will hand you ready‐made 
data and tell you to perform a particular analysis on it. Most of the time, you 
have to face completely new problems, and you have to build your solution 
from scratch. During your first evaluation of a data science problem, you 
need to consider the following:

 ✓ The data available in terms of accessibility, quantity, and quality. You 
must also consider the data in terms of possible biases that could influ-
ence or even distort its characteristics and content. Data never contains 
absolute truths, only relative truths that offer you a more or less useful 
view of a problem. Always be aware of the truthfulness of data and apply 
critical reasoning as part of your analysis of it.

 ✓ The methods you can feasibly use to analyze the dataset. Consider 
whether the methods are simple or complex. You must also decide 
how well you know a particular methodology. Start by using simple 
approaches, and never fall in love with any particular technique. There 
are neither free lunches nor Holy Grails in data science.

 ✓ The questions you want to answer by performing your analysis and 
how you can quantitatively measure whether you achieved a satisfac-
tory answer to them. “If you can not measure it, you can not improve it,” 
as Lord Kelvin stated (see http://zapatopi.net/kelvin/quotes/). 
If you can measure performance, you can determine the impact of 
your work and even make a monetary estimation. Stakeholders will be 
delighted to know that you’ve figured out what to do and what benefits 
your data science project will bring about.

Researching solutions
Data science is a complex system of knowledge at the intersection of com-
puter science, math, statistics, and business. Very few people can know 
everything about it, and, if someone has already faced the same problem or 
dilemmas as you face, reinventing the wheel makes little sense. Now that you 

http://zapatopi.net/kelvin/quotes/
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have contextualized your project, you know what you’re looking for and you 
can search for it in different ways.

 ✓ Check the Python documentation. You might be able to find examples 
that suggest a possible solution. NumPy (http://docs.scipy.org/
doc/numpy/user/), SciPy (http://docs.scipy.org/doc/), pandas 
(http://pandas.pydata.org/pandas‐docs/version/0.15.2/), 
and especially Scikit‐learn (http://scikit‐learn.org/stable/
user_guide.html) have detailed in‐line and online documentation 
with plenty of data science–related examples.

 ✓ Seek out online articles and blogs that hint at how other practitioners 
solved similar problems. Q&A websites such as Quora (http://www.
quora.com/), Stack Overflow (http://stackoverflow.com/), and 
Cross Validated (http://stats.stackexchange.com/) can provide 
you with plenty of answers to similar problems.

 ✓ Consult academic papers. For example, you can query your problem 
on Google Scholar at https://scholar.google.it/ or Microsoft 
Academic Search at http://academic.research.microsoft.com/. 
You can find a series of scientific papers that can tell you about prepar-
ing the data or detail the kind of algorithms that work better for a par-
ticular problem.

It may seem trivial, but the solutions you create have to reflect the problem 
you’re trying to solve. As you research solutions, you may find that some of 
them seem promising at first, but then you can’t successfully apply them to 
your case because something in their context is different. For instance, your 
dataset may be incomplete or may not provide enough input to solve the 
problem. In addition, the analysis model you select may not actually provide 
the answer you need or the answer might prove inaccurate. As you work 
through the problem, don’t be afraid to perform your research multiple times 
as you discover, test, and evaluate possible solutions that you could apply 
given the resources available and your actual constraints.

Formulating a hypothesis
At some point, you have everything you think you need to solve the problem. 
Of course, it’s a mistake to assume now that the solutions you create can 
actually solve the problem. You have a hypothesis, rather than a solution, 
because you have to demonstrate the efficacy of the potential solution in a 
scientific way. In order to form and test a hypothesis, you must train a model 
using a training dataset and then test it using an entirely different dataset. 
Later chapters in the book spend a great deal of time helping you through 
the process of training and testing the algorithms used to perform analysis, 
so don’t worry too much if you don’t understand this aspect of the process 
right now.

http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/numpy/user/
http://docs.scipy.org/doc/
http://pandas.pydata.org/pandas-docs/version/0.15.2/
http://stats.stackexchange.com/
http://academic.research.microsoft.com/
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Preparing your data
After you have some idea of the problem and its solution, you know the 
inputs required to make the algorithm work. Unfortunately, your data prob-
ably appears in multiple forms, you get it from multiple sources, and some 
data is missing entirely. Moreover, the developers of the features that exist-
ing data sources provide may have devised them for different purposes (such 
as accountancy or marketing) than yours and you have to transform them so 
that you can use your algorithm at its fullest power. To make the algorithm 
work, you must prepare the data. This means checking for missing data, cre-
ating new features as needed, and possibly manipulating the dataset to get it 
into a form that your algorithm can actually use to make a prediction.

Considering the Art of Feature Creation
Features have to do with the columns in your dataset. Of course, you need 
to determine what those columns should contain. They might not end up 
looking precisely like the data in the original data source. The original data 
source may present the data in a form that leads to inaccurate analysis or 
even prevent you from getting a desired outcome because it’s not completely 
suited to your algorithm or your objectives. For example, the data may con-
tain too much information redundancy inside multiple variables, which is a 
problem called multivariate correlation. The task of making the columns work 
in the best manner for data analysis purposes is feature creation (also called 
feature engineering). The following sections help you understand feature cre-
ation and why it’s important. (Future chapters provide all sorts of examples 
of how you actually employ feature creation to perform analysis.)

Defining feature creation
Feature creation may seem a bit like magic or weird science to some people, 
but it really does have a firm basis in math. The task is to take existing data 
and transform it into something that you can work with to perform an analy-
sis. For example, numeric data could appear as strings in the original data 
source. To perform an analysis, you must convert the string data to numeric 
values in many cases. The immediate goal of feature creation is to achieve 
better performance from the algorithms used to accomplish the analysis than 
you can when using the original data.

In many cases, the transformation is less than straightforward. You may have 
to combine values in some way or perform math operations on them. The 
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information you can access may appear in all sorts of forms, and the trans-
formation process lets you work with the data in new ways so that you can 
see patterns in it. For example, consider this popular Kaggle competition: 
http://www.kaggle.com/c/march‐machine‐learning‐mania‐2015. 
The goal is to use all sorts of statistics to determine who will win the NCAA 
Basketball Tournament. Imagine trying to derive disparate measures from 
public information on a match, such as the geographic location the team will 
travel to or the unavailability of key players, and you can begin to grasp the 
need to create features in a dataset.

As you might imagine, feature creation truly is an art form, and everyone has 
an opinion on precisely how to perform it. This book provides you with some 
good basic information on feature creation as well as a number of examples, 
but it leaves advanced techniques to experimentation and trial. As Pedro 
Domingos, professor at Washington University, stated in his Data Science 
paper, “A Few Useful Things to Know about Machine Learning” (see http://
homes.cs.washington.edu/~pedrod/papers/cacm12.pdf ), feature 
engineering is “easily the most important factor” in determining the success 
or failure of a machine‐learning project, and nothing can really replace the 
“smarts you put into feature engineering.”

Combining variables
Data often comes in a form that doesn’t work at all for an algorithm. Consider 
a simple real‐life situation in which you need to determine whether one 
person can lift a board at a lumber yard. You receive two data tables. The 
first contains the height, width, thickness, and wood types of boards. The 
second contains a list of wood types and the amount they weigh per board 
foot (a piece of wood 12" x 12" x 1"). Not every wood type comes in every 
size, and some shipments come unmarked, so you don’t actually know what 
type of wood you’re working with. The goal is to create a prediction so that 
the company knows how many people to send to work with the shipments.

In this case, you create a two‐dimensional dataset by combining variables. 
The resulting dataset contains only two features. The first feature contains 
just the length of the boards. It’s reasonable to expect a single person to 
carry a board that is up to ten feet long, but you want two people carrying 
a board ten feet or longer. The second feature is the weight of the board. 
A board that is 10 feet long, 12 inches wide, and 2 inches thick contains 20 
board feet. If the board is made of ponderosa pine (with a board foot rating 
of 2.67), the overall weight of the board is 53.4 pounds — one person could 
probably lift it. However, when the board is made of hickory (with a board 
foot rating of 4.25), the overall weight is now 85 pounds. Unless you have the 
Hulk working for you, you really do need two people lifting that board, even 
though the board is short enough for one person to lift.

https://www.kaggle.com/c/march-machine-learning-mania-2015
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
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Getting the first feature for your dataset is easy. All you need is the lengths 
of each of the boards that you stock. However, the second feature requires 
that you combine variables from both tables: length in feet * width in feet * 
thickness in inches * board foot rating. The resulting dataset will contain the 
weight for each length of each kind of wood you stock. Having this informa-
tion means that you can create a model that predicts whether a particular 
task will require one, two, or even three people to perform.

Understanding binning and  
discretization
In order to perform some types of analysis, you need to break numeric values 
into classes. For example, you might have a dataset that includes entries for 
people from ages 0 to 80. To derive statistics that work in this case (such as 
running the Naïve Bayes algorithm), you might want to view the variable as 
a series of levels in ten‐year increments. The process of breaking the dataset 
up into these ten‐year increments is binning. Each bin is a numeric category 
that you can use.

Binning may improve the accuracy of predictive models by reducing noise 
or by helping model nonlinearity. In addition, it allows easy identification of 
outliers (values outside the expected range) and invalid or missing values of 
numerical variables.

Binning works exclusively with single numeric features. Discretization is a 
more complex process, in which you place combinations of values from 
different features in a bucket — limiting the number of states in any given 
bucket. In contrast to binning, discretization works with both numeric and 
string values. It’s a more generalized method of creating categories. For 
example, you can obtain a discretization as a byproduct of cluster analysis.

Using indicator variables
Indicator variables are features that can take on a value of 0 or 1. Another 
name for indicator variables is dummy variables. No matter what you call 
them, these variables serve an important purpose in making data easier to 
work with. For example, if you want to create a dataset in which individu-
als under 25 are treated one way and individuals 25 and over are treated 
another, you could replace the age feature with an indicator variable that 
contains a 0 when the individual is under 25 or a 1 when the individual is 25 
and older.
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Using an indicator variable lets you perform analysis faster and categorize 
cases with greater accuracy than you can without this variable. The indicator 
variable removes shades of gray from the dataset. Someone is either under 
25 or 25 and older — there is no middle ground. Because the data is simpli-
fied, the algorithm can perform its task faster, and you have less ambiguity to 
contend with.

Transforming distributions
A distribution is an arrangement of the values of a variable that shows the 
frequency at which various values occur. After you know how the values are 
distributed, you can begin to understand the data better. All sorts of distribu-
tions exist (see a gallery of distributions at http://www.itl.nist.gov/
div898/handbook/eda/section3/eda366.htm), and most algorithms 
can easily deal with them. However, you must match the algorithm to the 
distribution.

Pay particular attention to uniform and skewed distributions. They are quite 
difficult to deal with for different reasons. The bell‐shaped curve, the normal 
distribution, is always your friend. When you see a distribution shaped 
 differently from a bell distribution, you should think about performing a 
transformation.

When working with distributions, you might find that the distribution of 
values is skewed in some way and that, because of the skewed values, any 
algorithm applied to the set of values produces output that simply won’t 
match your expectations. Transforming a distribution means to apply some 
sort of function to the values in order to achieve specific objectives, such as 
fixing the data skew, so that the output of your algorithm is closer to what 
you expected. In addition, transformation helps make the distribution friend-
lier, such as when you transform a dataset to appear as a normal distribu-
tion. Transformations that you should always try on your numeric features 
are

 ✓ Logarithm np.log(x) and exponential np.exp(x)

 ✓ Inverse 1/x, square root np.sqrt(x), and cube root x**(1.0/3.0)

 ✓ Polynomial transformations such as, x**2, x**3, and so on.

Performing Operations on Arrays
A basic form of data manipulation is to place the data in an array or matrix 
and then use standard math‐based techniques to modify its form. Using this 
approach puts the data in a convenient form to perform other operations 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
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done at the level of every single observation, such as in iterations, because 
they can leverage your computer architecture and some highly optimized 
numerical linear algebra routines present in CPUs. These routines are call-
able from every operating system. The larger the data and the computations, 
the more time you can save. In addition, using these techniques also spare 
you writing long and complex Python code. The following sections describe 
how to work with arrays for data science purposes.

Using vectorization
Your computer provides you with powerful routine calculations, and you 
can use them when your data is in the right format. NumPy’s ndarray is a 
multidimensional data storage structure that you can use as a dimensional 
datatable. In fact, you can use it as a cube or even a hypercube when there 
are more than three dimensions.

Using ndarray makes computations easy and fast. The following example 
creates a dataset of three observations with seven features for each observa-
tion. In this case, the example obtains the maximum value for each observa-
tion and subtracts it from the minimum value to obtain the range of values 
for each observation.

import numpy as np
dataset = np.array([[2, 4, 6, 8, 3, 2, 5], 
                    [7, 5, 3, 1, 6, 8, 0], 
                    [1, 3, 2, 1, 0, 0, 8]])
print np.max(dataset, axis=1) ‐ np.min(dataset, axis=1)

The print statement obtains the maximum value from each observation using 
np.max() and then subtracts it from the minimum value using np.min(). 
The maximum value in each observation is [8 8 8]. The minimum value for 
each observation is [2 0 0]. As a result, you get the following output:

[6 8 8]

Performing simple arithmetic on  
vectors and matrices
Most operations and functions from NumPy that you apply to arrays leverage 
vectorization, so they’re fast and efficient — much more efficient than any 
other solution or handmade code. Even the simplest operations such as addi-
tions or divisions can take advantage of vectorization.
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For instance, many times, the form of the data in your dataset won’t quite 
match the form you need. A list of numbers could represent percentages as 
whole numbers when you really need them as fractional values. In this case, 
you can usually perform some type of simple math to solve the problem, as 
shown here:

import numpy as np
a = np.array([15.0, 20.0, 22.0, 75.0, 40.0, 35.0])
a = a*.01
print a

The example creates an array, fills it with whole number percentages, and 
then uses 0.01 as a multiplier to create fractional percentages. You can then 
multiply these fractional values against other numbers to determine how the 
percentage affects that number. The output from this example is

[ 0.15  0.2   0.22  0.75  0.4   0.35]

Performing matrix vector multiplication
The most efficient vectorization operations are matrix manipulations in 
which you add and multiply multiple values against other multiple values. 
NumPy makes performing multiplication of a vector by a matrix easy, which 
is handy if you have to estimate a value for each observation as a weighted 
summation of the features. Here’s an example of this technique:

import numpy as np
a = np.array([2, 4, 6, 8])
b = np.array([[1, 2, 3, 4],
              [2, 3, 4, 5],
              [3, 4, 5, 6],
              [4, 5, 6, 7]])
c = np.dot(a, b)
print c

Notice that the array formatted as a vector must appear before the array 
formatted as a matrix in the multiplication or you get an error. The example 
outputs these values:

[60 80 100 120]

To obtain the values shown, you multiply every value in the array against 
the matching column in the matrix — you multiply the first value in the 
array against the first column, first row of the matrix. For example, the first 
value in the output is 2 * 1 + 4 * 2 + 6 * 3 + 8 * 4, which equals 60.
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Performing matrix multiplication
You can also multiply one matrix against another. In this case, the output 
is the result of multiplying rows in the first matrix against columns in the 
second matrix. Here is an example of how you multiply one NumPy matrix 
against another:

import numpy as np

a = np.array([[2, 4, 6, 8],
              [1, 3, 5, 7]])
b = np.array ([[1, 2],
              [2, 3],
              [3, 4],
              [4, 5]])
c = np.dot(a, b)
print c

In this case, you end up with a 2 x 2 matrix as output. Here are the values you 
should see when you run the application:

[[60 80]
 [50 66]]

Each row in the first matrix is multiplied by each column of the second 
matrix. For example, to get the value 50 shown in row 2, column 1 of the 
output, you match up the values in row two of matrix a with column 1 of 
matrix b, like this: 1 * 1 + 3 * 2 + 5 * 3 + 7 * 4.
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 See an example of how you can plot a sound file at http://www.dummies.com/
extras/pythonfordatascience.

Visualizing the Invisible
Part III

http://www.dummies.com/extras/pythonfordatascience
http://www.dummies.com/extras/pythonfordatascience


In this part . . .
 ✓ Creating graphs and charts

 ✓ Changing the appearance of graphs and charts

 ✓ Using scatterplots effectively

 ✓ Working with geographical data and other nontraditional  
data types

 ✓ Using the IPython tools to your advantage



Getting a Crash Course  
in MatPlotLib

In This Chapter
 ▶ Creating a basic graph

 ▶ Adding measurement lines to your graph

 ▶ Dressing your graph up with styles and color

 ▶ Documenting your graph with labels, annotations, and legends

M 
ost people visualize information better when they see it in graphic, 
versus textual, format. Graphics help people see relationships and 

make comparisons with greater ease. Even if you can deal with the abstrac-
tion of textual data with ease, performing data analysis is all about commu-
nication. Unless you can communicate your ideas to other people, the act 
of obtaining, shaping, and analyzing the data has little value beyond your 
own personal needs. Fortunately, Python makes the task of converting your 
 textual data into graphics relatively easy using MatPlotLib, which is actually 
a simulation of the MATLAB application. You can see a comparison of the 
two at http://www.pyzo.org/python_vs_matlab.html.

If you already know how to use MATLAB (see my book, MATLAB For Dummies, 
published by John Wiley & Sons, Inc., if you’d like to learn), moving over to 
MatPlotLib is relatively easy because they both use the same sort of state 
machine to perform tasks and they have a similar method of defining graphic 
elements. A number of people feel that MatPlotLib is superior to MATLAB 
because you can do things like perform tasks using less code when working with 
MatPlotLib than when using MATLAB (see http://phillipmfeldman.org/
Python/Advantages_of_Python_Over_Matlab.html). Others have noted 
that the transition from MATLAB to MatPlotLib is relatively straightforward 
(see https://vnoel.wordpress.com/2008/05/03/bye‐matlab‐hello‐
python‐thanks‐sage/). However, what matters most is what you think. You 
may find that you like to experiment with data using MATLAB and then create 
applications based on your findings using Python with MatPlotLib. It’s a matter 
of personal taste rather than one of a strict correct answer.

Chapter 9

http://www.pyzo.org/python_vs_matlab.html
http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
http://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://vnoel.wordpress.com/2008/05/03/bye-matlab-hello-python-thanks-sage/
https://vnoel.wordpress.com/2008/05/03/bye-matlab-hello-python-thanks-sage/
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This chapter focuses on getting you up to speed quickly with MatPlotLib. You 
do use MatPlotLib quite a few times later in the book, so this short overview 
of how it works is important, even if you already know how to work with 
MATLAB. That said, the MATLAB experience will be incredibly helpful as you 
progress through the chapter, and you may find that you can simply skim 
through some sections. Make sure to keep this chapter in mind as you start 
working with MatPlotLib in more detail later in the book.

You don’t have to type the source code for this chapter manually. In fact, it’s 
a lot easier if you use the downloadable source code. The source code for 
this chapter appears in the P4DS4D; 09; Getting a Crash Course in 
MatPlotLib.ipynb source code file (see the Introduction for where to find 
this code).

Starting with a Graph
A graph or chart is simply a visual representation of numeric data. MatPlotLib 
makes a large number of graph and chart types available to you. Of course, 
you can choose any of the common graph and graph types such as bar 
charts, line graphs, or pie charts. As with MATLAB, you also have access to a 
huge number of statistical plot types, such as box plots, error bar charts, and 
histograms. You can see a gallery of the various graph types that MatPlotLib 
supports at http://matplotlib.org/gallery.html. However, it’s 
important to remember that you can combine graphic elements in an almost 
infinite number of ways to create your own presentation of data no matter 
how complex that data might be. The following sections describe how to 
create a basic graph, but remember that you have access to a lot more 
 functionality than these sections tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you 
need some values, the matplotlib.pyplot module, and an idea of what 
you want to display, as shown in the following code.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.show()

In this case, the code tells the plt.plot() function to create a plot using 
x‐axis values between 1 and 11 and y‐axis values as they appear in values. 
Calling plot.show() displays the plot in a separate dialog box, as shown in 
Figure 9-1. Notice that the output is a line graph. Chapter 10 shows you how 
to create other chart and graph types.

http://matplotlib.org/gallery.html
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Drawing multiple lines and plots
You encounter many situations in which you must use multiple plot lines, 
such as when comparing two sets of values. To create such plots using 
MatPlotLib, you simply call plt.plot() multiple times — once for each plot 
line, as shown in the following example.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.plot(range(1,11), values2)
plt.show()

When you run this example, you see two plot lines, as shown in Figure 9-2. 
Even though you can’t see it in the printed book, the line graphs are different 
colors so that you can tell them apart.

Saving your work
Often you need to save a copy of your work to disk for later reference or to 
use as part of a larger report. The easiest way to accomplish this task is to 
click Save the Figure (the floppy disk icon in Figure 9-2). You see a dialog box 
that you can use to save the figure to disk.

Figure 9-1:  
Creating a 
basic plot 

that shows 
just one line.
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However, you sometimes need to save the graphic automatically rather than 
wait for the user to do it. In this case, you can save it programmatically using 
the plt.savefig() function, as shown in the following code:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values)
plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the 
filename. You may optionally include a path for saving the file. The second 
input is the file format. In this case, the example saves the file in Portable 
Network Graphic (PNG) format, but you have other options: Portable 
Document Format (PDF), Postscript (PS), Encapsulated Postscript (EPS), and 
Scalable Vector Graphics (SVG).

Setting the Axis, Ticks, Grids
It’s hard to know what the data actually means unless you provide a unit of 
measure or at least some means of performing comparisons. The use of axes, 
ticks, and grids make it possible to illustrate graphically the relative size of 
data elements so that the viewer gains an appreciation of comparative mea-
sure. You won’t use these features with every graphic, and you may employ 
the features differently based on viewer needs, but it’s important to know 
that these features exist and how you can use them to help document your 
data within the graphic environment.

Figure 9-2:  
Defining 

a plot that 
contains 
multiple 

lines.
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Getting the axes
The axes define the x and y plane of the graphic. The x axis runs horizon-
tally, and the y axis runs vertically. In many cases, you can allow MatPlotLib 
to perform any required formatting for you. However, sometimes you need 
to obtain access to the axes and format them manually. The following code 
shows how to obtain access to the axes for a plot:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
plt.plot(range(1,11), values)
plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them 
directly is to make writing the code simpler and more efficient. In this case, 
you simply turn on the default axes by calling plt.axes(); then you place a 
handle to the axes in ax. A handle is a sort of pointer to the axes. Think of it 
as you would a frying pan. You wouldn’t lift the frying pan directly but would 
instead use its handle when picking it up.

Formatting the axes
Simply displaying the axes won’t be enough in many cases. You want to change 
the way MatPlotLib displays them. For example, you may not want the highest 
value t to reach to the top of the graph. The following example shows just a 
small number of tasks you can perform after you have access to the axes:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([‐1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.plot(range(1,11), values)
plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes 
limits — the length of each axis. The set_xticks() and set_yticks() 
calls change the ticks used to display data. The ways in which you can 
change a graph using these calls can become quite detailed. For example, you 
can choose to change individual tick labels if you want. Figure 9-3 shows the 
output from this example. Notice how the changes affect how the line graph 
displays.
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Adding grids
Grid lines make it possible to see the precise value of each element of a graph. 
You can more quickly determine both the x and y coordinate, which allow 
you to perform comparisons of individual points with greater ease. Of course, 
grids also add noise and make seeing the actual flow of data harder. The point 
is that you can use grids to good effect to create particular effects. The follow-
ing code shows how to add a grid to the graph in the previous section:

values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([‐1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.grid()
plt.plot(range(1,11), values)
plt.show()

All you really need to do is call the grid() function. As with many other 
MatPlotLib functions, you can add parameters to create the grid precisely 
as you want to see it. For example, you can choose whether to add the x 
grid lines, y grid lines, or both. The output from this example appears in 
Figure 9-4.

Figure 9-3:  
Specifying 

how the 
axes should 

appear to 
the viewer.
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Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the 
viewer understand the importance of your data. In most cases, you need to 
use different line styles to ensure that the viewer can tell one data grouping 
from another. However, to emphasize the importance or value of a particular 
data grouping, you need to employ color. The use of color communicates all 
sorts of ideas to the viewer. For example, green often denotes that something 
is safe, while red communicates danger. The following sections help you 
understand how to work with line style and color to communicate ideas and 
concepts to the viewer without using any text.

Figure 9-4:  
Adding 

grids makes 
the values 

easier to 
read.

Making graphics accessible
Avoiding assumptions about someone’s 
ability to see your graphic presentation is 
essential. For example, someone who is color 
blind may not be able to tell that one line is 
green and the other red. Likewise, someone 
with low‐vision problems may not be able to 

distinguish between a line that is dashed and 
one that has a combination of dashes and 
dots. Using multiple methods to distinguish 
each line helps ensure that everyone can see 
your data in a manner that is comfortable to 
each person.
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Working with line styles
Line styles help differentiate graphs by drawing the lines in various ways. 
Using a unique presentation for each line helps you distinguish each line so 
that you can call it out (even when the printout is in shades of gray). You 
could also call out a particular line graph by using a different line style for it 
(and using the same style for the other lines). Table 9-1 shows the various 
MatPlotLib line styles.

The line style appears as a third argument to the plot() function call. You 
simply provide the desired string for the line type, as shown in the following 
example.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, '‐‐')
plt.plot(range(1,11), values2, ':')
plt.show()

In this case, the first line graph uses a dashed line style, while the second 
line graph uses a dotted line style. You can see the results of the changes in 
Figure 9-5.

Using colors
Color is another way in which to differentiate line graphs. Of course, this 
method has certain problems. The most significant problem occurs when 
someone makes a black‐and‐white copy of your colored graph — hiding  
the color differences as shades of gray. Another problem is that someone 
with color blindness may not be able to tell one line from the other. All this 
said, color does make for a brighter, eye‐grabbing presentation. Table 9-2 
shows the colors that MatPlotLib supports.

Table 9-1 MatPlotLib Line Styles
Character Line Style
'‐' Solid line

'‐‐' Dashed line

'‐.' Dash‐dot line

':' Dotted line
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As with line styles, the color appears in a string as the third argument to the 
plot() function call. In this case, the viewer sees two lines — one in red 
and the other in magenta. The actual presentation looks like Figure 9-2, but 
with specific colors, rather than the default colors used in that screenshot. 
If you’re reading the printed version of the book, Figure 9-2 actually uses 
shades of gray.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, 'r')
plt.plot(range(1,11), values2, 'm')
plt.show()

Figure 9-5:  
Line styles 

help 
 differentiate 

between 
plots.

Table 9-2 MatPlotLib Colors
Character Color
'b' Blue

'g' Green

'r' Red

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White
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Adding markers
Markers add a special symbol to each data point in a line graph. Unlike line 
style and color, markers tend to be a little less susceptible to accessibility 
and printing issues. Even when the specific marker isn’t clear, people can 
usually differentiate one marker from the other. Table 9-3 shows the list of 
markers that MatPlotLib provides.

Table 9-3 MatPlotLib Markers
Character Marker Type
'.' Point

',' Pixel

'o' Circle

'v' Triangle 1 down

'^' Triangle 1 up

'<' Triangle 1 left

'>' Triangle 1 right

'1' Triangle 2 down

'2' Triangle 2 up

'3' Triangle 2 left

'4' Triangle 2 right

's' Square

'p' Pentagon

'*' Star

'h' Hexagon style 1

'H' Hexagon style 2

'+' Plus

'x' X

'D' Diamond

'd' Thin diamond

'|' Vertical line

'_' Horizontal line
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As with line style and color, you add markers as the third argument to a 
plot() call. In the following example, you see the effects of combining line 
style with a marker to provide a unique line graph presentation.

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
plt.plot(range(1,11), values, 'o‐‐')
plt.plot(range(1,11), values2, 'v:')
plt.show()

Notice how the combination of line style and marker makes each line stand 
out in Figure 9-6. Even when printed in black and white, you can easily dif-
ferentiate one line from the other, which is why you usually want to combine 
presentation techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations, 
and legends. Each of these elements has a different purpose, as follows:

 ✓ Label: Provides positive identification of a particular data element or 
grouping. The purpose is to make it easy for the viewer to know the 
name or kind of data illustrated.

Figure 9-6:  
Markers 

help to 
emphasize 

individual 
values.
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 ✓ Annotation: Augments the information the viewer can immediately see 
about the data with notes, sources, or other useful information. In con-
trast to a label, the purpose of annotation is to help extend the viewer’s 
knowledge of the data rather than simply identify it.

 ✓ Legend: Presents a listing of the data groups within the graph and often 
provides cues (such as line type or color) to make identification of the 
data group easier. For example, all the red points may belong to group 
A, while all the blue points may belong to group B.

The following sections help you understand the purpose and usage of vari-
ous documentation aids provided with MatPlotLib. These documentation 
aids help you create an environment in which the viewer is certain as to the 
source, purpose, and usage of data elements. Some graphs work just fine 
without any documentation aids, but in other cases, you might find that you 
need to use all three in order to communicate with your viewer fully.

Adding labels
Labels help people understand the significance of each axis of any graph  
you create. Without labels, the values portrayed don’t have any significance. 
In addition to a moniker, such as rainfall, you can also add units of measure, 
such as inches or centimeters, so that your audience knows how to interpret 
the data shown. The following example shows how to add labels to  
your graph:

values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.xlabel('Entries')
plt.ylabel('Values')
plt.plot(range(1,11), values)
plt.show()

The call to xlabel() documents the x axis of your graph, while the call the 
ylabel() documents the y axis of your graph. Figure 9-7 shows the output 
of this example.

Annotating the chart
You use annotation to draw special attention to points of interest on a graph. 
For example, you may want to point out that a specific data point is outside 
the usual range expected for a particular dataset. The following example 
shows how to add annotation to a graph.
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values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
import matplotlib.pyplot as plt
plt.annotate(xy=[1,1], s='First Entry')
plt.plot(range(1,11), values)
plt.show()

The call to annotate() provides the labeling you need. You must provide 
a location for the annotation by using the xy parameter, as well as provide 
text to place at the location by using the s parameter. The annotate() 
function also provides other parameters that you can use to create special 
formatting or placement onscreen. Figure 9-8 shows the output from  
this example.

Creating a legend
A legend documents the individual elements of a plot. Each line is presented 
in a table that contains a label for it so that people can differentiate between 
each line. For example, one line may represent sales in 2014 and another line 
may represent sales in 2015, so you include an entry in the legend for each 
line that is labeled 2014 and 2015. The following example shows how to add a 
legend to your plot.

Figure 9-7:  
Use labels 
to identify 
the axes.
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values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
import matplotlib.pyplot as plt
line1 = plt.plot(range(1,11), values)
line2 = plt.plot(range(1,11), values2)
plt.legend(['First', 'Second’], loc=4)
plt.show()

The call to legend() occurs after you create the plots, not before, as with 
some of the other functions described in this chapter. You must provide a 
handle to each of the plots. Notice how line1 is set equal to the first plot() 
call and line2 is set equal to the second plot() call.

The default location for the legend is the upper‐right corner of the plot, 
which proved inconvenient for this particular example. Adding the loc 
parameter lets you place the legend in a different location. See the legend() 
function documentation at http://matplotlib.org/api/pyplot_api.
html#matplotlib.pyplot.legend for additional legend locations. 
Figure 9-9 shows the output from this example.

Figure 9-8:  
Annotation 

can identify 
points of 
interest.

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend
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Figure 9-9:  
Use legends 

to identify 
 individual 

lines.
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Visualizing the Data
In This Chapter

 ▶ Selecting the right graph for the job

 ▶ Working with advanced scatterplots

 ▶ Exploring time‐related data

 ▶ Exploring geographical data

 ▶ Creating graphs

C 
hapter 9 helped you understand the mechanics of working with 
MatPlotLib, which is an important first step toward using it. This 

 chapter takes the next step in helping you use MatPlotLib to perform useful 
work. The main goal of this chapter is to help you visualize your data in 
 various ways. Creating a graphic presentation of your data is essential if you 
want to help other people understand what you’re trying to say. Even though 
you can see what the numbers mean in your mind, other people will likely 
need graphics to see what point you’re trying to make by manipulating data 
in various ways.

The chapter starts by looking at some basic graph types that MatPlotLib 
 supports. You don’t find the full list of graphs and plots listed in this  chapter — 
it could take an entire book to explore them all in detail. However, you do find 
the most common types.

In the remainder of the chapter, you begin exploring specific sorts of plot-
ting as it relates to data science. Of course, no book on data science would 
be complete without exploring scatterplots, which are used to help people 
see patterns in seemingly unrelated data points. Because much of the data 
that you work with today is time related or geographic in nature, the chapter 
devotes two special sections to these topics. You also get to work with both 
directed and undirected graphs, which is fine for social media analysis.

You don’t have to type the source code for this chapter manually. In fact, it’s a 
lot easier if you use the downloadable source. The source code for this chapter 
appears in the P4DS4D; 10; Visualizing the Data.ipynb source code 
file (see the Introduction for details on how to find that source file).

Chapter 10
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Choosing the Right Graph
The kind of graph you choose determines how people view the associated 
data, so choosing the right graph from the outset is important. For example, 
if you want to show how various data elements contribute toward a whole, 
you really need to use a pie chart. On the other hand, when you want people 
to form opinions on how data elements compare, you use a bar chart. The 
idea is to choose a graph that naturally leads people to draw the conclusion 
that you need them to draw about the data that you’ve carefully massaged 
from various data sources. (You also have the option of using line graphs — a 
technique demonstrated in Chapter 9.) The following sections describe the 
various graph types and provide you with basic examples of how to use them.

Showing parts of a whole with pie charts
Pie charts focus on showing parts of a whole. The entire pie would be 100 
percent. The question is how much of that percentage each value occupies. 
The following example shows how to create a pie chart with many of the 
 special features in place:

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]
colors = ['b', 'g', 'r', 'c', 'm', 'y']
labels = ['A', 'B', 'C', 'D', 'E', 'F']
explode = (0, 0.2, 0, 0, 0, 0)

plt.pie(values, colors=colors, labels=labels, 
        explode=explode, autopct='%1.1f%%',
        counterclock=False, shadow=True)
plt.title('Values')

plt.show()

The essential part of a pie chart is the values. You could create a basic pie 
chart using just the values as input.

The colors parameter lets you choose custom colors for each pie wedge. 
You use the labels parameter to identify each wedge. In many cases, you 
need to make one wedge stand out from the others, so you add the explode 
parameter with list of explode values. A value of 0 keeps the wedge in 
place — any other value moves the wedge out from the center of the pie.

Each pie wedge can show various kinds of information. This example shows 
the percentage occupied by each wedge with the autopct parameter. You 
must provide a format string to format the percentages.
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Some parameters affect how the pie chart is drawn. Use the counterclock 
parameter to determine the direction of the wedges. The shadow param-
eter determines whether the pie appears with a shadow beneath it (for a 3D 
effect). You can find other parameters at http://matplotlib.org/api/
pyplot_api.html.

In most cases, you also want to give your pie chart a title so that others 
know what it represents. You do this using the title() function. Figure 10-1 
shows the output from this example.

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one 
value to another as a line graph would do. Fortunately, you have all sorts of 
methods at your disposal for emphasizing specific values and performing other 
tricks. The following example shows just some of the things you can do with a 
vertical bar chart. 

import matplotlib.pyplot as plt

values = [5, 8, 9, 10, 4, 7]
widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]
colors = ['b', 'r', 'b', 'b', 'b', 'b']
plt.bar(range(0, 6), values, width=widths, 
        color=colors, align='center')

plt.show()

Figure 10-1:  
Pie charts 

show a 
 percentage 

of the 
whole.

http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/api/pyplot_api.html
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To create even a basic bar chart, you must provide a series of x coordinates 
and the heights of the bars. The example uses the range() function to 
create the x coordinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and MatPlotLib pro-
vides a number of ways to get the job done. In this case, the example uses the 
width parameter to control the width of each bar, emphasizing the second 
bar by making it slightly larger. The larger width would show up even in a 
black‐and‐white printout. It also uses the color parameter to change the 
color of the target bar to red (the rest are blue).

As with other chart types, the bar chart provides some special features 
that you can use to make your presentation stand out. The example uses 
the align parameter to center the data on the x coordinate (the standard 
position is to the left). You can also use other parameters, such as hatch, 
to enhance the visual appearance of your bar chart. Figure 10-2 shows the 
output of this example.

This chapter helps you get started using MatPlotLib to create a variety of 
chart and graph types. Of course, more examples are better, so you can 
also find some more advanced examples on the MatPlotLib site at http:// 
matplotlib.org/1.2.1/examples/index.html. Some of the examples, 
such as those that demonstrate animation techniques, become quite 
advanced, but with practice you can use any of them to improve your own 
charts and graphs.

Figure 10-2:  
Bar charts 

make it 
easier to 
perform 

compari-
sons.

http://matplotlib.org/1.2.1/examples/index.html
http://matplotlib.org/1.2.1/examples/index.html
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Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains 
a subset of the data range. A histogram then displays the number of items 
in each bin so that you can see the distribution of data and the progression 
of data from bin to bin. In most cases, you see a curve of some type, such as 
a bell curve. The following example shows how to create a histogram with 
 randomized data:

import numpy as np
import matplotlib.pyplot as plt

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(‐50, 50), histtype='stepfilled',
         align='mid', color='g', label='Test Data')
plt.legend()
plt.title('Step Filled Histogram')
plt.show()

In this case, the input values are a series of random numbers. The distribu-
tion of these numbers should show a type of bell curve. As a minimum, you 
must provide a series of values, x in this case, to plot. The second argument 
contains the number of bins to use when creating the data intervals. The 
default value is 10. Using the range parameter helps you focus the histogram 
on the relevant data and exclude any outliers.

You can create multiple histogram types. The default setting creates a bar 
chart. You can also create a stacked bar chart, stepped graph, or filled 
stepped graph (the type shown in the example). In addition, it’s possible to 
control the orientation of the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special 
features to the output. For example, the align parameter determines the 
alignment of each bar along the baseline. Use the color parameter to  
control the colors of the bars. The label parameter doesn’t actually  
appear unless you also create a legend (as shown in this example).  
Figure 10-3 shows  typical output from this example.

Random data varies call by call. Every time you run the example, you  
see slightly different results because the random‐generation process  
differs.
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Depicting groups using box plots
Box plots provide a means of depicting groups of numbers through their 
quartiles (three points dividing a group into four equal parts). A box plot may 
also have lines, called whiskers, indicating data outside the upper and lower 
quartiles. The spacing shown within a box plot helps indicate the skew and 
dispersion of the data. The following example shows how to create a box plot 
with randomized data.

import numpy as np
import matplotlib.pyplot as plt

spread = 100 * np.random.rand(100)
center = np.ones(50) * 50
flier_high = 100 * np.random.rand(10) + 100
flier_low = ‐100 * np.random.rand(10)
data = np.concatenate((spread, center, 
                       flier_high, flier_low))

plt.boxplot(data, sym='gx', widths=.75, notch=True)
plt.show()

To create a usable dataset, you need to combine several different number‐
generation techniques, as shown at the beginning of the example. Here are 
how these techniques work:

 ✓ spread: Contains a set of random numbers between 0 and 100

 ✓ center: Provides 50 values directly in the center of the range of 50

Figure 10-3:  
Histograms 
let you see 

distributions 
of numbers.
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 ✓ flier_high: Simulates outliers between 100 and 200

 ✓ flier_low: Simulates outliers between 0 and –100

The code combines all  these values into a single dataset using  concatenate(). 
Being randomly generated with specific characteristics (such as a large number 
of points in the middle), the output will show specific  characteristics but will 
work fine for the example.

The call to boxplot()requires only data as input. All other parameters 
have default settings. In this case, the code sets the presentation of outliers 
to green Xs by setting the sym parameter. You use widths to modify the 
size of the box (made extra large in this case to make the box easier to see). 
Finally, you can create a square box or a box with a notch using the notch 
parameter (which normally defaults to False). Figure 10-4 shows typical 
output from this example.

The box shows the three data points as the box, with the red line in the middle 
being the median. The two black horizontal lines connected to the box by 
whiskers show the upper and lower limits (for four quartiles). The outliers 
appear above and below the upper and lower limit lines as green Xs.

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or 
discrete values (as with bar charts). The purpose of a scatterplot is to help 

Figure 10-4:  
Use box 
plots to 
present 

groups of 
numbers.
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you see data patterns. The following example shows how to create a scatter-
plot using randomized data:

import numpy as np
import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)
y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)
y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')
plt.show()

The example begins by generating random x and y coordinates. For each 
x coordinate, you must have a corresponding y coordinate. It’s possible to 
create a scatterplot using just the x and y coordinates.

It’s possible to dress up a scatterplot in a number of ways. In this case, the 
s parameter determines the size of each data point. The marker parameter 
determines the data point shape. You use the c parameter to define the 
colors for all the data points, or you can define a separate color for individual 
data points. Figure 10-5 shows the output from this example.

Figure 10-5:  
Use 

 scatterplots 
to show 

groups of 
data points 

and their 
associated 

patterns.
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Creating Advanced Scatterplots
Scatterplots are especially important for data science because they can show 
data patterns that aren’t obvious when viewed in other ways. You can see 
data groupings with relative ease and help the viewer understand when data 
belongs to a particular group. You can also show overlaps between groups 
and even demonstrate when certain data is outside the expected range. 
Showing these various kinds of relationships in the data is an advanced tech-
nique that you need to know in order to make the best use of MatPlotLib. The 
following sections demonstrate how to perform these advanced techniques 
on the scatterplot you created earlier in the chapter.

Depicting groups
Color is the third axis when working with a scatterplot. Using color lets you 
highlight groups so that others can see them with greater ease. The following 
example shows how you can use color to show groups within a scatterplot:

import numpy as np
import matplotlib.pyplot as plt

x1 = 5 * np.random.rand(50)
x2 = 5 * np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)
x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(50)
y2 = 5 * np.random.rand(50) + 25
y3 = 30 * np.random.rand(25)
y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[50], marker='D', c=color_array)
plt.show()

The example works essentially the same as the scatterplot example in the 
previous section, except that this example uses an array for the colors. 
Unfortunately, if you’re seeing this in the printed book, the differences 
between the shades of gray in Figure 10-6 will be hard to see. However, the 
first group is blue, followed by green for the second group. Any outliers 
appear in red.
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Showing correlations
In some cases, you need to know the general direction that your data is 
taking when looking at a scatterplot. Even if you create a clear depiction of 
the groups, the actual direction that the data is taking as a whole may not 
be clear. In this case, you add a trendline to the output. Here’s an example 
of adding a trendline to a scatterplot that includes groups but isn’t quite as 
clear as the scatterplot shown previously in Figure 10-6.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as plb

x1 = 15 * np.random.rand(50)
x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(30)
x = np.concatenate((x1, x2, x3))

y1 = 15 * np.random.rand(50)
y2 = 15 * np.random.rand(50) + 15
y3 = 30 * np.random.rand(30)
y = np.concatenate((y1, y2, y3))

color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25

plt.scatter(x, y, s=[90], marker='*', c=color_array)

Figure 10-6:  
Color arrays 

can make 
the scatter-
plot groups 

stand out 
better.
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z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plb.plot(x, p(x), 'm‐')

plt.show()

The code for creating the scatterplot is essentially the same as in the example 
in the “Depicting groups” section, earlier in the chapter, but the plot doesn’t 
define the groups as clearly. Adding a trendline means calling the NumPy 
polyfit() function with the data, which returns a vector of coefficients, p, 
that minimizes the least squares error. (Least square regression is a method 
for finding a line that summarizes the relationship between two variables, x 
and y in this case, at least within the domain of the explanatory variable x. 
The third polyfit() parameter expresses the degree of the polynomial fit.)

The vector output of polyfit() is used as input to poly1d(), which calcu-
lates the actual y‐axis data points. The call to plot() creates the trendline 
on the scatterplot. You can see a typical result of this example in Figure 10-7.

Plotting Time Series
Nothing is truly static. When you view most data, you see an instant of time — 
a snapshot of how the data appeared at one particular moment. Of course, 
such views are both common and useful. However, sometimes you need to 
view data as it moves through time — to see it as it changes. Only by viewing 

Figure 10-7:  
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general data 

direction.
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the data as it changes can you expect to understand the underlying forces 
that shape it. The following sections describe how to work with data on a 
time‐related basis.

Representing time on axes
Many times, you need to present data over time. The data could come in 
many forms, but generally you have some type of time tick (one unit of time), 
followed by one or more features that describe what happens during that 
particular tick. The following example shows a simple set of days and sales 
on those days for a particular item in whole (integer) amounts.

import datetime as dt
import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2015, 7,1)
end_date = dt.datetime(2015, 7,10)
daterange = pd.date_range(start_date, end_date)

for single_date in daterange:
    row = dict(zip(['Time', 'Sales'],
                   [single_date,
                    int(50*np.random.rand(1))]))
    row_s = pd.Series(row)
    row_s.name = single_date.strftime('%b %d')
    df = df.append(row_s)

df.ix['Jul 01':'Jul 07', ['Time', 'Sales']].plot()
plt.ylim(0, 50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.show()

The example begins by creating a DataFrame to hold the information. The 
source of the information could be anything, but the example generates it 
randomly. Notice that the example creates a date_range to hold the start-
ing and ending date time frame for easier processing using a for loop.

An essential part of this example is the creation of individual rows. Each row 
has an actual time value so that you don’t lose information. However, notice 
that the index (row_s.name property) is a string. This string should appear 
in the form that you want the dates to appear when presented in the plot.
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Using ix[] lets you select a range of dates from the total number of entries 
available. Notice that this example uses only some of the generated data for 
output. It then adds some amplifying information about the plot and displays it 
onscreen. Figure 10-8 show typical output from the randomly generated data.

Plotting trends over time
As with any other data presentation, sometimes you really can’t see what 
direction the data is headed in without help. The following example starts 
with the plot from the previous section and adds a trendline to it:

import datetime as dt
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pylab as plb

df = pd.DataFrame(columns=('Time', 'Sales'))

start_date = dt.datetime(2015, 7,1)
end_date = dt.datetime(2015, 7,10)
daterange = pd.date_range(start_date, end_date)

for single_date in daterange:
    row = dict(zip(['Time', 'Sales'],
                   [single_date,
                    int(50*np.random.rand(1))]))

Figure 10-8:  
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    row_s = pd.Series(row)
    row_s.name = single_date.strftime('%b %d')
    df = df.append(row_s)

df.ix['Jul 01':'Jul 10', ['Time', 'Sales']].plot()

z = np.polyfit(range(0, 10), 
               df.as_matrix(['Sales']).flatten(), 1)

p = np.poly1d(z)
plb.plot(df.as_matrix(['Sales']), 
         p(df.as_matrix(['Sales'])), 'm‐')

plt.ylim(0, 50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.legend(['Sales', 'Trend'])
plt.show()

The technique for adding the trendline is the same as for the example in the 
“Showing correlations” section, earlier in this chapter, with some interesting 
differences. Because the data appears within a DataFrame, you must export 
it using as_matrix() and then flatten the resulting array using flatten() 
before you can use it as input to polyfit(). Likewise, you must export the 
data before you can call plot() to display the trendline onscreen.

When you plot the initial data, the call to plot() automatically generates a 
legend for you. MatPlotLib doesn’t automatically add the trendline, so you 
must also create a new legend for the plot. Figure 10-9 shows typical output 
from this example using randomly generated data.

Figure 10-9:  
Add a trend-
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the average 
direction of 

change in 
a chart or 

graph.
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Plotting Geographical Data
Knowing where data comes from or how it applies to a specific place can 
be important. For example, if you want to know where food shortages have 
occurred and plan how to deal with them, you need to match the data you 
have to geographical locations. The same holds true for predicting where 
future sales will occur. You may find that you need to use existing data to 
determine where to put new stores. Otherwise, you could put a store in a 
location that won’t receive much in the way of sales, and the effort will lose 
money rather than make it. The following example shows how to draw a map 
and place pointers to specific locations on it:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

austin = (‐97.75, 30.25)
hawaii = (‐157.8, 21.3)
washington = (‐77.01, 38.90)
chicago = (‐87.68, 41.83)
losangeles = (‐118.25, 34.05)

m = Basemap(projection='merc',llcrnrlat=10,urcrnrlat=50,
            llcrnrlon=‐160,urcrnrlon=‐60)

m.drawcoastlines()
m.fillcontinents(color='lightgray',lake_color='lightblue')
m.drawparallels(np.arange(‐90.,91.,30.))
m.drawmeridians(np.arange(‐180.,181.,60.))
m.drawmapboundary(fill_color='aqua')

m.drawcountries()

x, y = m(*zip(*[hawaii, austin, washington, 
                chicago, losangeles]))
m.plot(x, y, marker='o', markersize=6, 
       markerfacecolor='red', linewidth=0)

plt.title("Mercator Projection")
plt.show()

The example begins by defining the longitude and latitude for various cities. 
It then creates the basic map. The projection parameter defines the 
basic map appearance. The next four parameters, llcrnrlat, urcrnrlat, 
llcrnrlon, and urcrnrlon define the sides of the map. You can define 
other parameters, but these parameters generally create a useful map.
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The next set of calls defines the map particulars. For example, drawcoast-
lines() determines whether the coastlines are highlighted to make them 
easy to see. To make landmasses easy to discern from water, you want to 
call fillcontinents() with the colors of your choice. When working with 
specific locations, as the example does, you want to call drawcountries() 
to ensure that the country boundaries appear on the map. At this point, you 
have a map that’s ready to fill in with data.

In this case, the example creates x and y coordinates using the previously 
stored longitude and latitude values. It then plots these locations on the map 
in a contrasting color so that you can easily see them. The final step is to 
 display the map, as shown in Figure 10-10.

Figure 10-10:  
Maps can 

illustrate 
data in 

ways other 
 graphics 

can’t.

Getting the Basemap Toolkit
Before you can work with mapping data, you 
need a library that supports the required 
mapping functionality. A number of such 
packages are available, but the easiest 
to work with and install is the Basemap 
Toolkit. You can obtain this toolkit from 
http://matplotlib.org/basemap/
users/intro.html. The site includes 
supplementary information about the toolkit 

and provides download instructions. Unlike 
some other packages, this one does include 
instructions for Mac, Windows, and Linux users. 
In addition, you can obtain a Windows‐specific 
installer. Make sure to also check out the usage 
video at http://nbviewer.ipython.
org/github/mqlaql/geospatial‐
data/blob/master/Geospatial‐
Data‐with‐Python.ipynb.

http://matplotlib.org/basemap/users/intro.html
http://matplotlib.org/basemap/users/intro.html
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
http://nbviewer.ipython.org/github/mqlaql/geospatial-data/blob/master/Geospatial-Data-with-Python.ipynb
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Visualizing Graphs
A graph is a depiction of data showing the connections between data points 
using lines. The purpose is to show that some data points relate to other data 
points, but not all the data points that appear on the graph. Think about a 
map of a subway system. Each of the stations connects to other stations, but 
no single station connects to all the stations in the subway system. Graphs 
are a popular data science topic because of their use in social media analysis. 
When performing social media analysis, you depict and analyze networks of 
relationships, such as friends or business connections, from social hubs such 
as Facebook, Google+, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph 
simply shows lines between data elements, and directed, where arrows added 
to the line show that data flows in a particular direction. For example, con-
sider a depiction of a water system. The water would flow in just one direc-
tion in most cases, so you could use a directed graph to depict not only the 
connections between sources and targets for the water but also to show 
water direction by using arrows. The following sections help you understand 
the two types of graphs better and show you how to create them.

Developing undirected graphs
As previously stated, an undirected graph simply shows connections between 
nodes. The output doesn’t provide a direction from one node to the next. For 
example, when establishing connectivity between web pages, no direction is 
implied. The following example shows how to create an undirected graph.

import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph()
H = nx.Graph()
G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 7))
H.add_node(7)
G.add_nodes_from(H)

G.add_edge(1, 2)
G.add_edge(1, 1)
G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])
H.add_edges_from([(4,7), (5,7), (6,7)])
G.add_edges_from(H.edges())

nx.draw_networkx(G)
plt.show()
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In contrast to the canned example found in the “Using NetworkX basics” 
section of Chapter 7, this example builds the graph using a number of 
 different techniques. It begins by importing the Networkx package you 
use in Chapter 7. To create a new undirected graph, the code calls the 
Graph() constructor, which can take a number of input arguments to use 
as  attributes. However, you can build a perfectly usable graph without using 
 attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number. 
You can also add a list, dictionary, or range() of nodes using add_nodes_
from(). In fact, you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have 
to use numbers for your nodes. A node can use a single letter, a string, or 
even a date. Nodes do have some restrictions. For example, you can’t create 
a node using a Boolean value.

Nodes don’t have any connectivity at the outset. You must define  connections 
(edges) between them. To add a single edge, you call add_edge() with 
the numbers of the nodes that you want to add. As with nodes, you can use 
add_edges_from() to create more than one edge using a list, dictionary, 
or another graph as input. Figure 10-11 shows the output from this example 
(your output may differ slightly but should have the same connections).

Figure 10-11:  
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Developing directed graphs
You use directed graphs when you need to show a direction, say from a start 
point to an end point. When you get a map that shows you how to get from 
one specific point to another, the starting node and ending node are marked 
as such and the lines between these nodes (and all the intermediate nodes), 
show direction.

Your graphs need not be boring. You can dress them up in all sorts of ways 
so that the viewer gains additional information in different ways. For example, 
you can create custom labels, use specific colors for certain nodes, or rely 
on color to help people see the meaning behind your graphs. You can also 
change edge line weight and use other techniques to mark a specific path 
between nodes as the better one to choose. The following example shows 
many (but not nearly all) the ways in which you can dress up a directed graph 
and make it more interesting:

import networkx as nx
import matplotlib.pyplot as plt

G = nx.DiGraph()

G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 6))
G.add_path([6, 7, 8])

G.add_edge(1, 2)
G.add_edges_from([(1,4), (4,5), (2,3), (3,6), (5,6)])

colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']
labels = {1:'Start', 2:'2', 3:'3', 4:'4', 
          5:'5', 6:'6', 7:'7', 8:'End'}
sizes = [800, 300, 300, 300, 300, 600, 300, 800]

nx.draw_networkx(G, node_color=colors, node_shape='D', 
                 with_labels=True, labels=labels,
                 node_size=sizes)
plt.show()

The example begins by creating a directional graph using the DiGraph() 
constructor. You should note that the NetworkX package also supports 
MultiGraph() and MultiDiGraph() graph types. You can see a list-
ing of all the graph types at http://networkx.lanl.gov/reference/
classes.html.

http://networkx.lanl.gov/reference/classes.html
http://networkx.lanl.gov/reference/classes.html
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Adding nodes is much like working with an undirected graph. You can add 
single nodes using add_node() and multiple nodes using add_nodes_from(). 
The add_path() call lets you create nodes and edges at the same time. The 
order of nodes in the call is important. The flow from one node to another is 
from left to right in the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. 
You can use add_edge() to add a single edge or add_edges_from() to 
add multiple edges at one time. However, the order of the node numbers is 
important. The flow goes from the left node to the right node in each pair.

This example adds special node colors, labels, shape (only one shape is 
used), and sizes to the output. You still call on draw_networkx() to perform 
the task. However, adding the parameters shown changes the appearance 
of the graph. Note that you must set with_labels to True in order to see 
the labels provided by the labels parameter. Figure 10-12 shows the output 
from this example.

Figure 10-12:  
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Understanding the Tools
In This Chapter

 ▶ Working with the IPython console

 ▶ Working with IPython Notebook

 ▶ Interacting with multimedia and graphics

U 
p to this point, the book spends a lot of time working with Python 
to perform data science tasks without actually engaging the tools 

 provided by Anaconda much. Yes, a good deal of what you do involves typing 
in code and seeing what happens. However, if you don’t actually know how 
to use your tools well, you miss opportunities to perform tasks easier and 
faster. Automation is an essential part of performing data science tasks in 
Python.

This chapter is about working with the two main Anaconda tools, IPython 
console and IPython Notebook. Earlier chapters give you some experience 
with both tools, but those chapters don’t explore either tool in any detail, and 
you need to know these tools a lot better for upcoming chapters. The skills 
you develop in this chapter will help you perform tasks in later  chapters with 
greater speed and far less effort.

The chapter also looks at tasks you can perform with your newfound skills. 
You develop even more skills as the book progresses, but these tasks help 
put your new skills into perspective and appreciate how you can use them to 
make working with Python even easier.

You don’t have to manually type the source code for this chapter. In fact, 
it’s a lot easier if you use the downloadable source. The source code for this 
chapter appears in the P4DS4D; 11; Understanding the Tools.ipynb 
source code file. (See the Introduction for details on where to locate this file.)

Chapter 11
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Using the IPython Console
The Python console is where you can experiment with data science inter-
actively. You can try things and see the results immediately. If you make a 
mistake, you can simply close the console and create a new one. The console 
is for playing around and considering what might be possible. The following 
sections help you understand what you can do to make your IPython console 
experience better.

The standard Python console and the IPython console look similar, and you 
can perform many of the same tasks using them. If you already know how to 
use the Python console, you have an advantage when it comes to working 
with the IPython console. However, they also have differences. The IPython 
console provides enhancements that don’t come with the Python console. 
In addition, performing certain tasks, such as pasting large amounts of text, 
differs between the two consoles, so even if you know how to use the Python 
console, reading the sections that follow will help you.

Interacting with screen text
When you first start IPython, you see a screen similar to the one shown in 
Figure 11-1. The screen seems loaded with text, but all of it provides useful 
information. The top three lines tell you about your version of Python and 
Anaconda. Below that are three help terms (copyright, credits, and license) 
that you can type to obtain more information about your version of these 
two products. For example, when you type credits and press Enter, you see a 
 listing of the contributors to this version of the product.

Figure 11-1:   
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Below the product text, you see another text area containing information 
about IPython. The four commands that follow, ?, %quickref, help, and 
object? tell you how to obtain additional information about

 ✓ Using IPython to perform useful work

 ✓ Obtaining information about the magic functions that IPython provides

 ✓ Learning about the Python programming language

 ✓ Discovering facts about the packages, objects, and methods you use in 
Python to interact with data

Depending on your operating system, you should be able to right‐click the 
IPython window and see a context menu containing options for working with 
the text in the window. Figure 11-2 shows the context menu for Windows. 
This menu is important because it lets you interact with the text and copy 
the results of your experimentation in a more permanent form.

You can obtain access to the same menu of options by choosing the System 
menu (click the icon in the upper‐left corner of the window) and selecting the 
Edit menu. The options you commonly see are the following:

 ✓ Mark: Selects the specific text you want to copy.

 ✓ Copy: Places the text you have marked onto the Clipboard (you can also 
press Enter after marking the text to perform a copy).

 ✓ Paste: Moves text from the Clipboard to the window. Unfortunately, this 
command doesn’t work right with IPython for copying multiple lines of 
text. Use the %paste magic function to copy multiple lines of text instead.

 ✓ Select All: Performs a mark on all the text visible in the window.

 ✓ Scroll: Makes it possible to scroll the window when using the arrow 
keys. Press Enter to stop scrolling.

 ✓ Find: Displays a Find dialog box that you can use to locate text anywhere 
in the screen buffer. This is actually an exceptionally useful command 
because you can quickly locate text that you previously entered and 
want to reuse in some way.

Figure 11-2:  
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this context 
menu.
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One feature that IPython provides that you don’t find when working with 
the standard Python console is cls, or clear screen. To clear the screen and 
make typing new commands easier, simply type cls and press Enter.

Changing the window appearance
The Windows console lets you change the IPython window appearance with 
ease. Depending on the console and platform you use, you may find that you 
have other options as well. If your console doesn’t provide any flexibility in 
changing the IPython appearance, you can still do so using a magic function 
as described in the “Using magic functions” section later in the chapter to 
change the window appearance.

To change the Windows console, click the system menu and choose 
Properties. You see a dialog box like the one shown in Figure 11-3.

Each tab controls a different aspect of the window appearance. Even though 
you’re working with IPython, the underlying console still affects what you 
see. Here are the purposes for each of the tabs shown in Figure 11-3:

 ✓ Options: Determines the size of the cursor (a large cursor works better 
in bright settings), how many commands the window remembers, and 
how editing works (such as whether you’re in Insert mode).

 ✓ Font: Defines the font used to display text in the window. The Raster 
Fonts option appears to work best for most people, but trying other font 
options may help you see the text better under certain conditions.

Figure 11-3:  
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 ✓ Layout: Specifies the window size, position onscreen, and size of the 
buffer used to hold information that scrolls out of view. If you find that 
old commands scroll off too quickly, increasing the size of the window 
can help. Likewise, if you find that you can’t locate older commands, 
increasing the size of the buffer can help.

 ✓ Colors: Determines the basic color settings for the window. The default 
setting of a black background with gray text is hard for many people to 
use. Using a white background with black text is much easier. However, 
you need to choose the color settings that work best for you. These colors 
are augmented by the colors used by the %colors magic function.

Getting Python help
No one can remember absolutely everything about a programming language. 
Even the best coders have memory lapses. This is why having language‐ 
specific help is so important. Without this help, programmers would spend 
a great deal of time researching packages, classes, methods, and properties 
online. Yes, they’ve used them in the past, but they can’t quite bring the 
required information to mind today.

The Python portion of the IPython console provides two methods of getting 
help: help mode and interactive help. You use help mode when you want to 
explore the language and plan to spend some while doing it. Interactive help 
is better when you know specifically what you need help with and don’t want 
to spend a lot of time looking at other sorts of information. The following sec-
tions tell you how to get help on the Python language whenever you need it.

Entering help mode
To enter help mode, type help( ) and press Enter. The console enters a new 
mode, in which you can type help‐related commands as needed to discover 
more about Python. You can’t type Python commands in this mode. The 
prompt changes to a help> prompt, as shown in Figure 11-4, to remind you 
that you’re in help mode.

Figure 11-4:  
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To obtain help about any object or command, simply type the object or 
command name and press Enter. You can also type any of the following 
 commands to obtain a listing of other topics of discussion.

 ✓ modules: Compiles a list of the currently loaded modules. This list 
varies by how your copy of Python is configured at any given time, 
so the list won’t be the same every time you use this command. The 
 command can take a while to execute, and the output list is usually quite 
large (unlike the standard Python console, in which the list is relatively 
small). In some cases, the command actually fails because of the way in 
which Anaconda interacts with Python.

 ✓ keywords: Presents a list of Python keywords that you can ask about. 
For example, you can type assert and learn more about the assert 
 keyword.

 ✓ topics: Displays a list of general Python topics, such as CONVERSIONS. 
The topics appear in uppercase rather than lowercase.

Requesting help in help mode
To obtain help in help mode, you simply type the name of the module, 
 keyword, or topic you want to learn more about and press Enter. Help mode 
is Python specific, which means that you can ask about a list, but not an 
object based on a list named mylist. You also can’t ask about IPython‐ 
specific features, such as the cls command.

When working with features that are part of a module, you need to include 
the module name. For example, if you want to find out about the version() 
method within the sys module, you type sys.version and press Enter at the 
help prompt, rather than just type version.

If a help topic is too large to present as a single screen of information, you 
see ‐‐ More ‐‐ at the bottom of the display. Press Enter to advance the help 
information one line at a time or the spacebar to advance the help informa-
tion a full screen a time. You can’t go backward in the help listing. Pressing Q 
ends the help information immediately.

Exiting help mode
After you finish exploring help, you need to get back to the Python prompt to 
type more commands. Simply press Enter without entering anything at the 
help prompt or type quit and press Enter at the help prompt.

Getting interactive help
Sometimes you don’t want to leave the Python prompt to get help. In this 
case, you can type help('<topic>') and press Enter to obtain help 
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information. For example, to receive help on the print command, you type 
help('print') and press Enter. Notice that the help topic is in single quota-
tion marks. If you try to request help without enclosing the topic in single 
 quotation marks, you see an error message.

Interactive help works with any module, keyword, or topic that Python 
supports. For example, you can type help('CONVERSIONS') and press 
Enter to receive help about the CONVERSIONS topic. It’s important to note 
that case is still important when working with interactive help. Typing 
help('conversions') and pressing Enter displays a message telling you that 
help isn’t available.

Getting IPython help
Getting help with IPython is different from getting help with Python. When 
you obtain IPython help, you work with the development environment 
rather than the programming language. To obtain IPython help, type ? and 
press Enter. You see a long listing of the various ways in which you can use 
IPython help.

Some of the more essential forms of help rely on typing a keyword with 
a question mark. For example, if you want to learn more about the cls 
 command, you type cls? or ?cls and press Enter. It doesn’t matter 
whether the question mark appears before or after the command.

Interestingly enough, you can kick IPython help up a notch. If you want to 
obtain more details about a command or other IPython feature, use two 
question marks. For example, ??cls displays the source code for the cls 
command. The double question mark (??) may not always return additional 
information if there isn’t any more information to find.

If you want to stop displaying IPython information early, press Q to quit. 
Otherwise, you can press Space or Enter to display each screen of  information 
until the help system has displayed everything available.

Using magic functions
It’s amazing to think that you really can get magic on your computer! IPython 
provides a special feature called magic functions. The functions let you 
 perform all sorts of amazing tasks with your IPython console. The following 
sections provide an overview of the magic functions. You do see some of them 
used later in the book as well. However, it pays to spend some time checking 
out these functions for yourself.



206 Part III: Visualizing the Invisible  

Obtaining the magic functions list
The best way to start working with magic functions is to obtain a list of them 
by typing %quickref and pressing Enter. What you see is a help screen similar 
to the one shown in Figure 11-5. The listing can be a little confusing to read, 
so make sure you take your time with it.

Working with magic functions
Most magic functions start with either a single percent sign (%) or two percent 
signs (%%). Those with a single percent sign work at the command‐line level, 
while those that have two percent signs work at the cell level. The IPython 
Notebook discussion later in the chapter talks more about cells. For now, all 
you really need to know is that you generally use magic functions with a single 
percent sign within the IPython console.

Most of the magic functions display status information when you use them 
by themselves. For example, when you type %cd and press Enter, you see 
the current directory. To change directories, you type %cd plus the new 
directory location on your system. There are some exceptions to this rule, 
however. For example, %cls clears the screen when used alone because it 
doesn’t take any parameters.

One of the more interesting magic functions is %colors. You can use this 
function to change the colors used to display information onscreen, which 
is helpful when you use various devices. The available options are NoColor 
(everything is in black and white), Linux (the default setting), and LightBG 
(which uses a blue‐and‐green color scheme). This particular function is 
another exception to the rule. Typing %colors alone doesn’t display the 
 current color scheme but displays an error message instead.

Figure 11-5:  
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Discovering objects
Python is all about objects. In fact, you can’t do anything in Python without 
working with some sort of object. With this in mind, it’s a good idea to know 
how to discover precisely what object you’re working with and what features 
it provides. The following sections help you discover the Python objects you 
use as you code.

Getting object help
With IPython, you can request information about specific objects using the 
object name and a question mark (?). For example, if you want to know more 
about a list object named mylist, simply type mylist? and press Enter. 
You see output showing the mylist type, content in string form, length, and 
a document string providing a quick overview of mylist.

When you need detailed help about mylist, you type help(mylist) and press 
Enter instead. You see the same help that you should when requesting infor-
mation about the Python list. However, you receive the information that’s 
appropriate to the particular object you need help with, rather than having to 
first discover the object type and then request information for that object.

Obtaining object specifics
The dir() function is often overlooked, but it’s an essential way to learn 
about object specifics. To see a list of properties and methods associated 
with any object, use dir(<object name>). For example, if you create a list 
called mylist and want to know what sorts of things you can do with it, type 
dir(mylist) and press Enter. IPython displays a list of methods and properties 
that are specific to mylist.

Using IPython object help
Python provides one level of help about your objects — and IPython provides 
another. When you want to know more about your object than Python tells 
you, try using the question mark with it. For example, when working with a 
list named mylist, you can type mylist? and press Enter to discover the 
object type, content, length, and associated docstring. The docstring 
provides you with a quick overview of usage information for the type — 
enough that you can find more details with what you now know about the 
object.

Using a single question mark does cause IPython to clip long content. If you 
want to obtain the full content for an object, you need to use the double 
question mark (??). For example, type mylist?? and press Enter to see any 
clipped details (although there may not be any additional details). Whenever 
possible, IPython provides you with the full source code for the object 
(assuming that the source code is available).
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You can use magic functions with objects as well. These functions simplify 
the help output and provide only the information you need, as shown here:

 ✓ %pdoc: Displays the docstring for the object

 ✓ %pdef: Shows how to call the object (assuming that the object is 
 callable)

 ✓ %source: Displays the source code for the object (assuming that the 
source is available)

 ✓ %file: Outputs the name of the file that contains the source code for 
the object

 ✓ %pinfo: Displays detailed information about the object (often more 
than provided by help alone)

 ✓ %pinfo2: Displays extra detailed information about the object (when 
available)

Using IPython Notebook
So far, the chapter has told you about using IPython Notebook to input code, 
and that’s about it. Of course, it works fine for that purpose. However, the 
IDE can do more for you. The following sections help you understand some of 
the interesting things that IPython Notebook can help you do.

Working with styles
One of the ways in which IPython Notebook excels over just about any 
other Integrated Development Environment (IDE) you’ll ever use is that you 
can use it to create nice‐looking output. Rather than have a screen full of a 
whole bunch of plain old code, you can use iPython to create sections and 
add styles so that the output is nicely formatted. What you can end up with 
is a good‐looking report that just happens to contain executable code. The 
reason for this improved output is the use of styles.

When you type code into IPython Notebook, you place the code in a cell. 
Each section of code you create goes into a separate cell. When you need to 
create a new cell, you click Insert Cell Below (the button with a plus sign in 
a black circle) on the toolbar. Likewise, when you decide that you no longer 
need a cell, you select it and then click Cut Cell (the button with a scissors).

The default style for a cell is Code. However, when you click the down arrow 
next to the Code entry, you see a listing of styles, as shown in Figure 11-6.



209  Chapter 11: Understanding the Tools

The various styles shown help you format content in various ways. The head-
ings are most definitely used to separate varies entries. To try it for yourself, 
type the heading for this main chapter section, Using IPython Notebook, in 
the first cell; next, select Heading 1 from the drop‐down list and click Run 
Cell. The content changes to a heading. Now add another cell by clicking 
Insert Cell Below and type Working with styles as a Heading 2. Figure 11-7 
shows that the two entries are indeed headings and that the second entry is 
smaller than the first.

Figure 11-6:  
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You can add HTML content to your documents as well. Simply select the 
Markdown style. The HTML content can contain anything a web page contains 
with regard to standard HTML tags. In general, you use this style to provide 
documentation and links to outside material. Relying on HTML tags makes it 
possible to include things like lists or even pictures. In short, you can actually 
include an HTML document fragment as part of your notebook, which makes 
an IPython Notebook much more than a simple means of writing down code.

The use of the Raw NBConvert formatting option is outside the scope of 
this book. However, it provides you the means for included information that 
shouldn’t be modified by the notebook converter (NBConvert). You can 
output IPython Notebooks in a variety of formats, and NBConvert performs 
this task for you. You can read about this feature at https://ipython.
org/ipython‐doc/dev/notebook/nbconvert.html#nbconvert. The 
goal of the Raw NBConvert style is to allow you to include special content, 
such as Lamport TeX (LaTeX) content. The LaTeX document system isn’t tied 
to a particular editor — it’s simply a means of encoding scientific documents.

Restarting the kernel
Every time you perform a task in your notebook, you create variables, import 
modules, and perform a wealth of other tasks that corrupt the environ-
ment. At some point, you can’t really be sure that something is working as 
it should. To overcome this problem, you click Restart Kernel after saving 
your document by clicking Save and Checkpoint. You can then run your code 
again to ensure that it does work as you thought it would.

Sometimes an error also causes the kernel to crash. Your document starts 
acting oddly, updates slowly, or shows other signs of corruption. Again, the 
answer is to restart the kernel to ensure that you have a clean environment 
and that the kernel is running as it should.

Whenever you click Restart Kernel, you see the warning message shown 
in Figure 11-8. Make certain that you pay attention to the warning because 
you could lose temporary changes during a kernel restart. Always save your 
 document before you restart the kernel.

Restoring a checkpoint
At some point, you may find that you made a mistake. IPython Notebook is 
notably missing an Undo button: You won’t find one anywhere. Instead, you 
create checkpoints each time you finish a task. Creating checkpoints when 
your document is stable and working properly helps you recover faster from 
mistakes.

https://ipython.org/ipython-doc/dev/notebook/nbconvert.html#nbconvert
https://ipython.org/ipython-doc/dev/notebook/nbconvert.html#nbconvert
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To restore your setup to the condition contained in a checkpoint, choose 
File➪Revert to Checkpoint. You see a listing of available checkpoints. Simply 
select the one you want to use. When you select the checkpoint, you see a 
warning message like the one shown in Figure 11-9. When you click Revert, 
any old information is gone and the information found in the checkpoint 
becomes the current information.

Figure 11-8:  
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Performing Multimedia and  
Graphic Integration

Pictures say a lot of things that words can’t say (or at least they do it with far 
less effort). IPython Notebook is both a coding platform and a presentation 
platform. You may be surprised at just what you can do with it. The following 
sections provide a brief overview of some of the more interesting features.

Embedding plots and other images
At some point, you might have spotted an IPython Notebook with multi-
media or graphics embedded into it and wondered why you didn’t see the 
same effects in your own files. In fact, all the graphics examples to this point 
in the book have appeared as separate figures and not part of the code. 
Fortunately, you cam perform some more magic  by using the %matplotlib 
magic function. The possible values for this function are: 'gtk', 'gtk3', 
'inline', 'nbagg', 'osx', 'qt', 'qt4', 'qt5', 'tk', and 'wx', each of 
which defines a different plotting backend (the code used to actually render 
the plot) used to present information onscreen.

When you run %matplotlib inline, any plots you create appear as part 
of the document. When you try this technique with the “Showing parts of a 
whole with pie charts” example from Chapter 10, you get the output shown in 
Figure 11-10.

Loading examples from online sites
Because some examples you see online can be hard to understand unless 
you have them loaded on your own system, you should also keep the %load 
magic function in mind. All you need is the URL of an example you want 
to see on your system. For example, try %load http://matplotlib.
sourceforge.net/mpl_examples/pylab_examples/integral_demo.py. 
When you click Run Cell, IPython Notebook loads the example directly below 
the cell. You can then run the example and see the output from it on your 
own system.

Obtaining online graphics and multimedia
A lot of the functionality required to perform special multimedia and graph-
ics processing appears within IPython.display. By importing a required 

http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py
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class, you can perform tasks such as embedding images into your notebook. 
Here’s an example of embedding one of the pictures from the author’s blog 
into the notebook for this chapter:

from IPython.display import Image
Embed = Image(
    'http://blog.johnmuellerbooks.com/' +
    'wp‐content/uploads/2015/04/Layer‐Hens.jpg')
Embed

The code begins by importing the required class, Image, and then using 
features from it to first define what to embed and then actually embed the 
image. The output you see from this example appears in Figure 11-11.

If you expect an image to change over time, you might want to create a  
link to it instead of embedding it. You must refresh a link because 
the content in the notebook is only a reference rather than the actual 
image. However, as the image changes, you see the change in your 
notebook as well. To accomplish this task, you use SoftLinked = 
Image(url='http://blog.johnmuellerbooks.com/wp‐content/
uploads/2015/04/Layer‐Hens.jpg') instead of Embed.

Figure 11-10:  
You can 
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 graphics 
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notebook.

http://blog.johnmuellerbooks.com/wp%E2%80%90content/uploads/2015/04/Layer%E2%80%90Hens.jpg
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When working with embedded images on a regular basis, you might want to 
set the form in which the images are embedded. For example, you may prefer 
to embed them as PDFs. To perform this task, you use code similar to this:

from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')

You have access to a wide number of formats when working with a notebook. 
The commonly supported formats are 'png', 'retina', 'jpeg', 'svg', 
and 'pdf'.

The IPython display system is nothing short of amazing, and this section 
hasn’t even begun to tap the surface for you. For example, you can import a 
YouTube video and place it directly into your notebook as part of your pre-
sentation if you want. You can see quite a few more of the display features 
demonstrated at http://nbviewer.ipython.org/github/ipython/
ipython/blob/1.x/examples/notebooks/Part 5 ‐ Rich Display 
System.ipynb.

Figure 11-11:  
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http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part 5 - Rich Display System.ipynb


 See an example of how you can analyze a sound file using a Fast Fourier Transform 
(FFT) at http://www.dummies.com/extras/pythonfordatascience.

Wrangling Data
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In this part . . .
 ✓ Using programming tricks to solve data science problems

 ✓ Performing data analysis

 ✓ Making data easier to analyze

 ✓ Developing merged datasets

 ✓ Finding data that lies outside the predicted range



Stretching Python’s Capabilities
In This Chapter

 ▶ Understanding how Scikit‐learn works with classes

 ▶ Using sparse matrices and the hashing trick

 ▶ Testing performances and memory consumption

 ▶ Saving time with multicore algorithms

I 
f you’ve gone through the previous chapters, by this point you’ve dealt 
with all the basic data loading and manipulation methods offered by 

Python. Now it’s time to start using some more complex instruments for data 
wrangling (or munging) and for machine learning. The final step of most data 
science projects is to build a data tool able to automatically summarize, pre-
dict, and recommend directly from your data.

Before taking that final step, you still have to massage your data by enforcing 
transformations that are even more radical. That’s the data wrangling or data 
munging part, where sophisticated transformations are followed by visual 
and statistical explorations, and then again by further transformations. In the 
following sections, you learn how to handle huge streams of text, explore the 
basic characteristics of a dataset, optimize the speed of your experiments, 
compress data and create new synthetic features, generate new groups and 
classifications, and detect unexpected or exceptional cases that may cause 
your project to go wrong.

From here onward, you use the Scikit‐learn package more and more (which 
means knowing more about it — the full documentation appears at http://
scikit‐learn.org/stable/documentation.html). The Scikit‐learn 
package, in fact, offers a single repository containing almost all the tools that 
you need to be a data scientist and for your data science project to be suc-
cessful. In this chapter, you discover important characteristics of Scikit‐learn, 
structured in modules, classes, and functions, and some advanced Python 
time savers for improving performance with big unstructured data and highly 
time‐consuming computational operations.

Chapter 12

http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/documentation.html
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You don’t have to type the source code for this chapter in by hand. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in 
the P4DS4D; 12; Stretching Pythons Capabilities.ipynb source 
code file.

Playing with Scikit‐learn
Sometimes the best way to discover how to use something is to spend time 
playing with it. The more complex a tool, the more important play becomes. 
Given the complex math tasks you perform using Scikit‐learn, playing becomes 
especially important. The following sections use the idea of playing with Scikit‐
learn to help you discover important concepts in using Scikit‐learn to perform 
amazing feats of data science work.

Understanding classes in Scikit‐learn
Understanding how classes work is an important prerequisite for being able 
to use the Scikit‐learn package appropriately. Scikit‐learn is the package for 
machine learning and data science experimentation favored by most data sci-
entists. It contains a wide range of well‐established learning algorithms, error 
functions, and testing procedures.

At its core, Scikit‐learn features some base classes on which all the algo-
rithms are built. Apart from BaseEstimator, the class from which all other 
classes inherit, there are four class types covering all the basic machine‐
learning functionalities:

 ✓ Classifying

 ✓ Regressing

 ✓ Grouping by clusters

 ✓ Transforming data

Even though each base class has specific methods and attributes, the core 
functionalities for data processing and machine learning are guaranteed by 
one or more series of methods and attributes called interfaces. The inter-
faces provide a uniform Application Programming Interface (API) to enforce 
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similarity of methods and attributes between all the different algorithms 
present in the package. There are four Scikit‐learn object‐based interfaces:

 ✓ estimator: For fitting parameters, learning them from data, according 
to the algorithm

 ✓ predictor: For generating predictions from the fitted parameters

 ✓ transformer: For transforming data, implementing the fitted parameters

 ✓ model: For reporting goodness of fit or other score measures

The package groups the algorithms built on base classes and one or more 
object interfaces into modules, each module displaying a specialization in 
a particular type of machine‐learning solution. For example, the linear_
model module is for linear modeling, and metrics is for score and loss 
 measure.

In order to find a specific algorithm in Scikit‐learn, you must first find the 
module containing the same kind of algorithm that interests you, and then 
select it from the list of contents of the module. The algorithm is typically a 
class itself, whose methods and attributes are already known because they’re 
common to other algorithms in Scikit‐learn.

Getting accustomed to the Scikit‐learn class approach may take some time. 
However, the API is the same for all the tools available in the package, so 
learning one class necessarily tells you about all the other classes. The best 
approach is to learn one class completely and then apply what you know to 
other classes.

Defining applications for data science
Figuring out ways to use data science to obtain constructive results is 
 important. For example, you can apply the estimator interface to a

 ✓ Classification problem: Guessing that a new observation is from a 
 certain group

 ✓ Regression problem: Guessing the value of a new observation

It works with the method fit(X,y) where X is the bidimensional array of 
predictors (the set of observations to learn) and y is the target outcome 
(another array, unidimensional).

By applying fit, the information in X is related to y, so that, knowing some 
new information with the same characteristics of X, we can guess correctly y. 
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In the process, some parameters are estimated internally by the fit method. 
Using fit makes it possible to distinguish between parameters, which are 
learned, and hyper‐parameters, which instead are fixed by you when you 
instantiate the learner.

Instantiation involves assigning a Scikit‐learn class to a Python variable. In 
addition to hyper‐parameters, you can also fix other working parameters, 
such as requiring normalization or setting a random seed to reproduce the 
same results for each call, given the same input data.

Here is an example with linear regression, a very basic and common machine‐
learning algorithm. You must upload some data to use this example, and 
Scikit‐learn provides some useful examples. The Boston dataset, for instance, 
contains predictor variables that the example code can match against house 
prices, which helps build a predictor that can figure out the value of a house 
given some characteristics of it.

from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data,boston.target
print X.shape, y.shape

(506L, 13L) (506L,)

The output specifies that both arrays have the same row number and that 
the X has 13 features. The shape method performs the analysis on the arrays 
and reports their dimensions.

The rows of X have to be of the same length as y. You also have to take care 
that X and y correspond, because learning from data happens when the 
algorithm matches the rows of X with the corresponding element of y. If you 
shuffle the two arrays, no learning is possible.

The characteristics of X, expressed as X’s columns, are called variables (a 
more statistical term) or features (a term more related to machine learning).

Now, after importing the LinearRegression class, we can instantiate a 
variable called hypothesis and set a parameter indicating the algorithm to 
standardize (that is to set mean zero and unit standard deviation for all the 
variables, a statistical operation for having all the variables at a similar level) 
before estimating the parameters to learn.

from sklearn.linear_model import LinearRegression
hypothesis = LinearRegression(normalize=True)
hypothesis.fit(X,y)
print hypothesis.coef_
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[ ‐1.07170557e‐01   4.63952195e‐02   2.08602395e‐02
   2.68856140e+00  ‐1.77957587e+01   3.80475246e+00
   7.51061703e‐04  ‐1.47575880e+00   3.05655038e‐01
  ‐1.23293463e‐02  ‐9.53463555e‐01   9.39251272e‐03
  ‐5.25466633e‐01]

After fitting, hypothesis holds the learned parameters, and you can 
visualize them using the coef_ method, which is typical of all the linear 
models (where the model output is a summation of variables weighted by 
 coefficients). You can also call this fitting activity training (as in, “training  
a machine learning algorithm”).

A hypothesis is a way to describe a learning algorithm trained with data. The 
hypothesis defines a possible representation of y given X that you test for 
validity. Therefore, it’s a hypothesis in both scientific and machine‐learning 
language.

Apart from the estimator class, the predictor and the model object classes 
are also important. The predictor class, which predicts the probability of a 
certain result, obtains the result of new observations using the predict and 
predict_proba methods, as in this script:

import numpy as np
new_observation = np.array(
     [1,0,1,0,0.5,7,59,6,3,200,20,350,4],
          dtype=float) 
print hypothesis.predict(new_observation)

25.8972783977

Make sure that new observations have the same feature number and order as 
in the training X; otherwise, the prediction will be incorrect.

The class model provides information about the quality of the fit using the 
score method, as shown here:

hypothesis.score(X,y)

0.74060774286494291

In this case, score returns the coefficient of determination R^2 of the 
prediction. R^2 is a measure ranging from 0 to 1, comparing our predictor 
to a simple mean. Higher values show that the predictor is working well. 
Different learning algorithms may use different scoring functions. Please 
consult the online documentation of each algorithm or ask for help on the 
Python console:

help(LinearRegression)
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The transform class applies transformations derived from the fitting phase 
to other data arrays. LinearRegression doesn’t have a transform method, 
but most preprocessing algorithms do. For example, MinMaxScaler, from 
the Scikit‐learn preprocessing module, can transform values in a specific 
range of minimum and maximum values, learning the transformation formula 
from an example array.

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaler.fit(X)
print scaler.transform(new_observation)

[ 0.01116872  0.          0.01979472  0.          
  0.23662551  0.65893849  0.57775489  0.44288845
  0.08695652  0.02480916  0.78723404  0.88173887
  0.06263797]

In this case, the code applies the min and max values learned from X to the 
new_observation variable, and returns a transformation.

Performing the Hashing Trick
Scikit‐learn provides you with most of the data structures and functionality 
you need to complete your data science project. There are even classes for 
the trickiest and most advanced problems.

For instance, when dealing with text, one of the most useful solutions pro-
vided by the Scikit‐learn package is the hashing trick. You discover how to 
work with text by using the bag of words model (as shown in the “Using the 
Bag of Words Model and Beyond” section of Chapter 7) and weighting them 
with the TF‐IDF. All these powerful transformations can operate properly only 
if all your text is known and available in the memory of your computer.

A more serious data science challenge is to analyze online‐generated text 
flows, such as from social networks or large online text repositories. This 
scenario poses quite a challenge when trying to turn the text into a data 
matrix suitable for analysis. When working through such problems, knowing 
the hashing trick can give you quite a few advantages:

 ✓ Handling large data matrices based on text on the fly

 ✓ Fixing unexpected values or variables in your textual data

 ✓ Building scalable algorithms for large collections of documents
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Using hash functions
Hash functions can transform any input into an output whose characteristics 
are predictable. Usually they return a value where the output is bound at a 
specific interval — whose extremities range from negative to positive num-
bers or just span through positive numbers. You can imagine them as enforc-
ing a standard on your data — no matter what values you provide, they 
always return a specific data product.

Their most useful hash function characteristic is that, given a certain input, 
they always provide the same numeric output value. Consequently, they’re 
called deterministic functions. For example, input a word like dog and the 
hashing function always returns the same number.

In a certain sense, hash functions are like a secret code, transforming every-
thing into numbers. Unlike secret codes, however, you can’t convert the 
hashed code to its original value. In addition, in some rare cases, different 
words generate the same hashed result (also called a hash collision).

Demonstrating the hashing trick
There are many hash functions, with MD5 (often used to check file integrity, 
because you can hash entire files) and SHA (used in cryptography) being the 
most popular. Python possesses a built‐in hash function named hash that 
you can use to compare data objects before storing them in dictionaries. For 
instance, you can test how Python hashes its name:

hash('Python')
‐539294296

The Python session on your computer may return a different value than 
the one shown on the preceding line. Don’t worry — the built‐in hash func-
tions aren’t always consistent across computers. When you need consistent 
output, rely on the Scikit‐learn hash functions instead because the output is 
consistent across machines.

A Scikit‐learn hash function can also return an index in a specific positive 
range. You can obtain something similar using a built‐in hash by employing 
standard division and its remainder:

abs(hash('Python')) % 1000
296
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When you ask for the remainder of the absolute number of the result from 
the hash function, you get a number that never exceeds the value you used 
for the division.

To see how this works, pretend that you want to transform a text string from 
the Internet into a numeric vector (a feature vector) so that you can use it for 
starting a machine‐learning project. A good strategy for managing this data 
science task is to employ one‐hot‐encoding, which produces a bag of words. 
Here are the steps for one‐hot‐encoding a string (“Python for data science”) 
into a vector.

1. Assign a number to each word, for instance, Python=0 for=1 data=2 
 science=3.

2. Initialize the vector, counting the number of unique words that you 
assigned a code in Step 1.

3. Use the codes assigned in Step 1 as indexes for populating the vector 
with values, assigning a 1 where there is a coincidence with a word exist-
ing in the phrase.

The resulting feature vector is expressed as the sequence [1,1,1,1] and 
made of exactly four elements. You have started the machine‐learning pro-
cess, telling the program to expect sequences of four text features, when 
suddenly a new phrase arrives and you must vectorize the following text 
as well: “Python for machine learning”. Now you have two new words — 
“machine learning” — to work with. The following steps help you create the 
new vectors:

1. Assign these new codes: machine=4 learning=5.

2. Enlarge the previous vector to include the new words: [1,1,1,1,0,0].

3. Compute the vector for the new string: [1,1,0,0,1,1].

One‐hot‐encoding is quite optimal because it creates efficient and ordered 
feature vectors. Unfortunately, one‐hot‐encoding fails and becomes difficult 
to handle when your project experiences a lot of variability with regard to its 
inputs. This is a common situation in data science projects working with text 
or other symbolic features where flow from the Internet or other online envi-
ronments can suddenly create or add to your initial data. Using hash func-
tions is a smarter way to handle unpredictability in your inputs:

1. Define a range for the hash function outputs. All your feature vectors 
will use that range. The example uses a range of values from 0 to 24.

2. Compute an index for each word in your string using the hash function.

3. Assign a unit value to vector’s positions according to word indexes.
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In Python, you can define a simple hashing trick by creating a function and 
checking the results using the two test strings:

def hashing_trick(input_string, vector_size=20):
   feature_vector = [0] * vector_size
   for word in input_string.split(' '):
       index = abs(hash(word)) % vector_size
       feature_vector[index] = 1
   return feature_vector 

Now you can test both strings.

hashing_trick(input_string='Python for data science',
     vector_size=20)
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
 0]
hashing_trick(input_string='Python for machine learning',
     vector_size=20)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
 0]

When viewing the feature vectors, you should notice that:

 ✓ You don’t know where each word is located. When it’s important to be 
able to reverse the process of assigning words to indexes, you must 
store the relationship between words and their hashed value separately 
(for example, you can use a dictionary where the keys are the hashed 
values and the values are the words).

 ✓ For small values of the vector_size function parameter (for example, 
vector_size=10), many words overlap in the same positions in the list 
representing the feature vector. To keep the overlap to a minimum, you 
must create hash function boundaries that are greater than the number 
of elements you plan to index later.

The feature vectors in this example are made mostly of zero entries, repre-
senting a waste of memory when compared to the more memory‐efficient 
one‐hot‐encoding. One of the ways in which you can solve this problem is to 
rely on sparse matrices, as described in the next section.

Working with deterministic selection
Sparse matrices are the answer when dealing with data that has few values, 
that is, when most of the matrix values are zeroes. Sparse matrices store just 
the coordinates of the cells and their values, instead of storing the informa-
tion for all the cells in the matrix. When an application requests data from 
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an empty cell, the sparse matrix will return a zero value after looking for the 
coordinates and not finding them. Here’s an example vector:

[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
 0]

The following code turns it into a sparse matrix.

from scipy.sparse import csc_matrix
print csc_matrix([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                  0, 0, 0, 1, 0, 1, 0])

  (0, 0)     1
  (0, 5)     1
  (0, 16)    1
  (0, 18)    1

Notice that the data representation is in coordinates (expressed in a tuple of 
row and column index) and the cell value.

The package SciPy offers a large variety of sparse matrix structures — each 
one storing the data in a different way and each one performing in a different 
way. (Some are good with slicing; some others are better for computations.) 
Usually the csc_matrix (a compressed matrix based on rows) is a good 
choice because most Scikit‐learn algorithms accept it as input and it’s opti-
mal for matrix operations.

As a data scientist, you don’t have to worry about programming your own 
version of the hashing trick unless you would like some special implementa-
tion of the idea. Scikit‐learn offers HashingVectorizer, a class that rapidly 
transforms any collection of text into a sparse data matrix using the hashing 
trick. Here’s an example script that replicates the previous example:

import sklearn.feature_extraction.text as txt
one_hot_enconder = txt.CountVectorizer()
one_hot_enconded = one_hot_enconder.fit_transform(
     ['Python for data science', 
      'Python for machine learning'])

<2x6 sparse matrix of type '<type 'numpy.int64'>'
with 8 stored elements in Compressed Sparse Row format>

As soon as new text arrives, CountVectorizer stops working:

one_hot_enconded.transform(['New text has arrived'])
AttributeError: transform not found
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Using HashingVectorizer, there is always a place for new words in the 
data matrix. At worst, a word settles in an already occupied position, causing 
a word collision.

sklearn_hashing_trick = txt.HashingVectorizer(
     n_features=20, binary=True, norm=None)
text_vector = sklearn_hashing_trick.transform(
     ['Python for data science',
      'Python for machine learning'])
text_vector
<2x20 sparse matrix of type '<type 'numpy.float64'>'
with 8 stored elements in Compressed Sparse Row format>

sklearn_hashing_trick.transform(['New text has arrived'])
<1x20 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>

HashingVectorizer is the perfect function to use when your data can’t fit 
into memory and its features aren’t fixed. In the other cases, consider using 
the more intuitive CountVectorizer.

Considering Timing and Performance
As the book introduces more and more complex themes, such as Scikit‐learn 
machine‐learning classes and SciPy sparse matrices, you may start to wonder 
how all this processing might influence application speed. The increased pro-
cessing requirements affect both running time and available memory.

Managing the best use of machine resources is indeed an art, the art of opti-
mization, and it requires time to master. However, you can start immediately 
becoming proficient in it by doing some accurate speed measurement and 
realizing what your problems really are. Profiling the time that operations 
require, measuring how much memory adding more data takes, or perform-
ing a transformation on your data can help you to spot the bottlenecks in 
your code and start looking for alternative solutions.

As described in Chapter 11, IPython is the perfect environment for experi-
menting, tweaking, and improving your code. Working on blocks of code, 
recording the results and outputs, and writing additional notes and com-
ments will help your data science solutions take shape in a controlled and 
reproducible way.
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Benchmarking with timeit
While working through the hashing trick example in the “Performing the 
Hashing Trick” section, earlier in this chapter, we compare two alterna-
tives for encoding textual information into a data matrix that can address 
 different needs:

 ✓ CountVectorizer: Optimally encodes text into a data matrix but 
cannot address subsequent novelties in text.

 ✓ HashingVectorizer: Provides flexibility in situations when it is likely 
that the application will receive new data, but is less optimal than 
 techniques based on hashing functions.

Although their advantages are quite clear in terms of how they handle the 
data, you may wonder what impact using one or the other has on your data 
processing in terms of speed and memory feasibility.

Concerning speed, IPython offers an easy, out‐of‐the‐box solution, the line 
magic %timeit and the cell magic %%timeit:

 ✓ %timeit: Calculates the best performance time for an instruction.

 ✓ %%timeit: Calculates the best time performance for all the  instructions 
in a cell, apart from the one placed on the same cell line as the cell 
magic (which could therefore be an initialization instruction).

Both magic commands report the best performance in r trials repeated for n 
loops. When you add the –r and –n parameters, IPython chooses the number 
automatically in order to provide a fast answer.

Here is an example of testing whether it is faster to assign a list 10**6 ordinal 
values by using list comprehension or by appending the values in a for loop:

%timeit l = [k for k in range(10**6)]

10 loops, best of 3: 94.8 ms per loop

The result for the list comprehension can be tested by incrementing both the 
sample performance and repetitions of the test:

%timeit –n 20 –r 5 l = [k for k in range(10**6)]

20 loops, best of 5: 95.6 ms per loop
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Since the for loop requires an entire cell, the example uses the cell magic, 
%%timeit, call. Notice that the first line that assigns the value of 10**6 to a 
variable is not considered in the performance.

%%timeit limit = 10**6
l = list()
for k in range(limit):
    l.append(k)

10 loops, best of 3: 176 ms per loop

The results show that list comprehension is about 50 percent faster than 
using a for loop. You can then repeat the test using different text encoding 
strategies:

import sklearn.feature_extraction.text as txt
sklearn_hashing_trick = txt.HashingVectorizer(
     n_features=20, binary=True, norm=None) 
enconder = txt.CountVectorizer()
texts = ['Python for data science',
         'Python for machine learning']

After performing initial loading of the classes and instantiating them, you can 
test the two solutions:

%timeit enconded = enconder.fit_transform(texts)

1000 loops, best of 3: 1.27 ms per loop

%timeit  hashing = sklearn_hashing_trick.transform(texts)

10000 loops, best of 3: 158 µs per loop

The hashing trick is faster than one hot encoder, and it’s possible to explain 
the difference by noting that the latter is an optimized algorithm that keeps 
track of how the words are encoded, something that the hashing trick 
doesn’t do.

IPython is the best environment to benchmark the speed of your data science 
solution code. If you’d like to track performance on the command line or in 
a script running from an IDE, you can import the timeit class and use the 
timeit function for tracking performance of the command by providing the 
input parameter as a string.

If your command needs variables, classes, or functions that aren’t available 
in the base Python (such as the Scikit‐learn classes), you can provide them as 
a second input parameter. You formulate a string in which Python imports all 



230 Part IV: Wrangling Data  

the necessary objects from the main environment, as shown in the following 
example:

import timeit
cumulative_time = timeit.timeit(
     "hashing = sklearn_hashing_trick.transform(texts)", 
     "from __main__ import sklearn_hashing_trick,texts", 
     number=10000)
print cumulative_time / 10000.0

Working with the memory profiler
As you’ve seen when testing your application code for performance (speed) 
characteristics, you can obtain analogous information about memory usage. 
Keeping track of memory consumption could tell you about possible prob-
lems in the way data is processed or transmitted to the learning algorithms. 
The memory_profiler package implements the required functionality. 
This package is not provided as a default Python or IPython package and it 
requires installation. Use the following commands to install the package and 
its dependencies from the command line:

ipython –m pip install psutil
ipython –m pip install memory_profiler

Using the preferred installer program (pip)
Python provides a huge number of packages 
that you can install. Many of these packages 
come as separate, downloadable modules. 
Some of them have an executable suitable for 
a platform such as Windows, which means 
you can easily install the package. However, 
many other packages rely on pip, which is a 
feature that you can access directly from the 
command line when using later versions of 
Python, including both 2.7.9 and 3.4.

When working with older versions of Python, 
you must first install pip by installing a package 
such as distribute (https://pypi.
python.org/pypi/distribute ). 
When working on some Linux or Mac systems, 
you can also rely on sudo to get the job done 

by typing sudo apt‐get install python3‐pip 
and pressing Enter. You may find that neither 
of these techniques works for you, so try the 
instructions found at https://pip.pypa.
io/en/latest/installing.html  
as well.

To use pip, you open a command line or 
terminal. This book uses IPython as its 
environment. When you want to install a new 
feature, you type ipython to start a copy of 
IPython, –m to load a module, pip to start pip, 
install to tell pip what action to take, and the 
name of the package you want to install. For 
example, to install psutil later in the chapter, 
you type ipython –m pip install psutil and press 
Enter.

https://pypi.python.org/pypi/distribute
https://pypi.python.org/pypi/distribute
https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html
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Use the following command for each IPython session you want to monitor:

%load_ext memory_profiler

After performing these tasks, you can easily track how much memory a com-
mand consumes:

hashing = sklearn_hashing_trick.transform(texts)
%memit dense_hashing = hashing.toarray()
peak memory: 68.79 MiB, increment: 0.14 MiB

Obtaining a complete overview of memory consumption is possible by saving 
an IPython cell to disk and then profiling it using the line magic %mprun on an 
externally imported function. (The line magic works only by operating with 
external Python scripts.) Profiling produces a detailed report, command by 
command, as shown in the following example:

%%writefile example_code.py
import sklearn.feature_extraction.text as txt
def comparison_test():
    sklearn_hashing_trick = txt.HashingVectorizer(
        n_features=20, binary=True, norm=None) 
    one_hot_enconder = txt.CountVectorizer()
    texts = ['Python for data science',
             'Python for machine learning']
    one_hot_enconded = one_hot_enconder.fit_transform(
        texts)
    hashing = sklearn_hashing_trick.transform(texts)

from example_code import comparison_test
%mprun ‐f comparison_test comparison_test()

Line # Mem usage Increment Line Contents
========================================
     2  68.5 MiB   0.0 MiB def comparison_test():
     3  68.5 MiB   0.0 MiB     HashingVectorizer(...)
     4  68.5 MiB   0.0 MiB     CountVectorizer(...)
     5  68.5 MiB   0.0 MiB     texts = [...]
     6  68.7 MiB   0.2 MiB     one_hot_enconder.fit_t(...)
     7  68.7 MiB   0.0 MiB     sklearn_hashing_trick.(...)

The resulting report details the memory usage from every line in the 
 function, pointing out the major increments.
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Running in Parallel
Most computers today are multicore (two or more processors in a single 
package), some with multiple physical CPUs. One of the most important 
 limitations of Python is that it uses a single core by default. (It was created in 
a time when single cores were the norm.)

Data science projects require quite a lot of computations. In particular, a part 
of the scientific aspect of data science relies on repeated tests and experi-
ments on different data matrices. Don’t forget that working with huge data 
quantities means that most time‐consuming transformations repeat observa-
tion after observation (for example, identical and not related operations on 
different parts of a matrix).

Using more CPU cores accelerates a computation by a factor that almost 
matches the number of cores. For example, having four cores would mean 
working at best four times faster. You don’t receive a full fourfold increase 
because there is overhead when starting a parallel process — new running 
Python instances have to be set up with the right in‐memory information 
and launched; consequently, the improvement will be less than potentially 
achievable but still significant. Knowing how to use more than one CPU is 
therefore an advanced but incredibly useful skill for increasing the number of 
analyses completed, and for speeding up your operations both when setting 
up and when using your data products.

Multiprocessing works by replicating the same code and memory content in 
various new Python instances (the workers), calculating the result for each 
of them, and returning the pooled results to the main original console. If 
your original instance already occupies much of the available RAM memory, 
it won’t be possible to create new instances, and your machine may run out 
of memory.

Performing multicore parallelism
To perform multicore parallelism with Python, you integrate the Scikit‐learn 
package with the joblib package for time‐consuming operations, such as 
replicating models for validating results or for looking for the best hyper‐ 
parameters. In particular, Scikit‐learn allows multiprocessing when

 ✓ Cross‐validating: Testing the results of a machine‐learning hypothesis 
using different training and testing data

 ✓ Grid‐searching: Systematically changing the hyper‐parameters of a 
machine‐learning hypothesis and testing the consequent results
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 ✓ Multilabel prediction: Running an algorithm multiple times against mul-
tiple targets when there are many different target outcomes to predict at 
the same time

 ✓ Ensemble machine‐learning methods: Modeling a large host of clas-
sifiers, each one independent from the other, such as when using 
RandomForest‐based modeling

You don’t have to do anything special to take advantage of parallel 
 computations — you can activate parallelism by setting the n_jobs 
 parameter to a number of cores more than 1 or by setting the value to –1, 
which means you want to use all the available CPU instances.

If you aren’t running your code from the console or from an IPython 
Notebook, it is extremely important that you separate your code from any 
package import or global variable assignment in your script by using the 
if __name__=='__main__': command at the beginning of any code 
that executes multicore parallelism. The if statement checks whether 
the  program is directly run or is called by an already‐running Python con-
sole, avoiding any confusion or error by the multiparallel process (such as 
 recursively calling the parallelism).

Demonstrating multiprocessing
It’s a good idea to use IPython when you run a demonstration of how mul-
tiprocessing can really save you time during data science projects. Using 
IPython provides the advantage of using the %timeit magic command 
for timing execution. You start by loading a multiclass dataset, a complex 
machine‐learning algorithm (the Support Vector Classifier, or SVC), and a 
cross‐validation procedure for estimating reliable resulting scores from all 
the procedures. You find details about all these tools later in the book. The 
most important thing to know is that the procedures become quite large 
because the SVC produces 10 models, which it repeats 10 times each using 
cross‐validation, for a total of 100 models.

from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data,digits.target
from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score
%timeit single_core_learning = cross_val_score(SVC(), X,
     y, cv=20, n_jobs=1)

Out [1] : 1 loops, best of 3: 17.9 s per loop
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After this test, you need to activate the multicore parallelism and time the 
results using the following commands:

%timeit multi_core_learning = cross_val_score(SVC(), X, y,
     cv=20, n_jobs=‐1)
Out [2] : 1 loops, best of 3: 11.7 s per loop

The example machine demonstrates a positive advantage using multicore 
processing, despite using a small dataset where Python spends most of the 
time starting consoles and running a part of the code in each one. This over-
head, a few seconds, is still significant given that the total execution extends 
for a handful of seconds. Just imagine what would happen if you worked 
with larger sets of data — your execution time could be easily cut by two or 
three times.

Although the code works fine with IPython, putting it down in a script and 
asking Python to run it in a console or using an IDE may cause errors because 
of the internal operations of a multicore task. The solution, as mentioned 
before, is to put all the code under an if statement, which checks whether 
the program started directly and wasn’t called afterward. Here’s an example 
script:

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score
if __name__ == '__main__':
       digits = load_digits()
       X, y = digits.data,digits.target 
       multi_core_learning = cross_val_score(SVC(), X, y,
           cv=20, n_jobs=‐1) 



Exploring Data Analysis
In This Chapter

 ▶ Understanding the Exploratory Data Analysis (EDA) philosophy

 ▶ Describing numeric and categorical distributions

 ▶ Estimating correlation and association

 ▶ Testing mean differences in groups

 ▶ Visualizing distributions, relationships, and groups

D 
ata science relies on complex algorithms for building predictions and 
spotting important signals in data, and each algorithm presents dif-

ferent strong and weak points. In short, you select a range of algorithms, 
you have them run on the data, you optimize their parameters as much as 
you can, and finally you decide which one will best help you build your data 
 product or generate insight into your problem.

It sounds a little bit automatic and, partially, it is, thanks to powerful analyti-
cal software and scripting languages like Python. Learning algorithms are 
complex, and their sophisticated procedures naturally seem automatic and 
a bit opaque to you. However, even if some of these tools seem like black or 
even magic boxes, keep this simple acronym in mind: GIGO. GIGO stands for 
“Garbage In/Garbage Out.” It has been a well‐known adage in statistics (and 
computer science) for a long time. No matter how powerful the machine‐
learning algorithms you use, you won’t obtain good results if your data has 
something wrong in it.

Exploratory Data Analysis (EDA) is a general approach to exploring datasets 
by means of simple summary statistics and graphic visualizations in order to 
gain a deeper understanding of data. EDA helps you become more effective 
in the subsequent data analysis and modeling. In this chapter, you discover 
all the necessary and indispensable basic descriptions of the data and see 
how those descriptions can help you decide how to proceed using the most 
appropriate data transformation and solutions.

Chapter 13
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You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source. The source code for this 
chapter appears in the P4DS4D; 13; Exploring Data Analysis.ipynb 
source code file. (See the Introduction for details on where to locate this file.)

The EDA Approach
EDA was developed at Bell Labs by John Tukey, a mathematician and statisti-
cian who wanted to promote more questions and actions on data based on 
the data itself (the exploratory motif) in contrast to the dominant confirma-
tory approach of the time. A confirmatory approach relies on the use of a 
theory or procedure — the data is just there for testing and application. EDA 
emerged at the end of the 70s, long before the big data flood appeared. Tukey 
could already see that certain activities, such as testing and modeling, were 
easy to make automatic. In one of his famous writings, Tukey said:

“The only way humans can do BETTER than computers is to take a chance 
of doing WORSE than them.”

This statement explains why, as a data scientist, your role and tools aren’t 
limited to automatic learning algorithms but also to manual and creative 
exploratory tasks. Computers are unbeatable at optimizing, but humans are 
strong at discovery by taking unexpected routes and trying unlikely but very 
effective solutions.

If you’ve been through the examples in the previous chapters, you have 
already worked on quite a bit of data, but using EDA is a bit different because 
it checks beyond the basic assumptions about data workability, which actu-
ally comprises the Initial Data Analysis (IDA). Up to now, the book has shown 
how to

 ✓ Complete observations or mark missing cases by appropriate features

 ✓ Transform text or categorical variables

 ✓ Create new features based on domain knowledge of the data problem

 ✓ Have at hand a numeric dataset where rows are observations and 
 columns are variables

EDA goes further than IDA. It’s moved by a different attitude: going beyond 
basic assumptions. With EDA, you

 ✓ Describe of your data

 ✓ Closely explore data distributions
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 ✓ Understand the relations between variables

 ✓ Notice unusual or unexpected situations

 ✓ Place the data into groups

 ✓ Notice unexpected patterns within groups

 ✓ Take note of group differences

Defining Descriptive Statistics 
for Numeric Data

The first actions that you can take with the data are to produce some syn-
thetic measures to help figure out what is going in it. You acquire knowledge 
of measures such as maximum and minimum values, and you define which 
intervals are the best place to start.

During your exploration, you use a simple but useful dataset that is used in 
previous chapters, the Fisher’s Iris dataset. You can load it from the Scikit‐
learn package by using the following code:

from sklearn.datasets import load_iris
iris = load_iris()

Having loaded the Iris dataset into a variable of a custom Scikit‐learn class, 
you can derive a NumPy nparray and a pandas DataFrame from it:

import pandas as pd
import numpy as np
print  'Your pandas version is: %s' % pd.__version__
print 'Your NumPy version is %s' % np.__version__
iris_nparray = iris.data
iris_dataframe = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_dataframe['group'] = pd.Series([iris.target_names[k] for k in iris.target],
   dtype="category")

Your pandas version is: 0.15.2
Your NumPy version is 1.8.1

NumPy, Scikit‐learn, and especially pandas are packages under constant 
development, so before you start working with EDA, it’s a good idea to check 
the product version numbers. Using an old version could cause your output 
to differ from that shown in the book or cause some commands to fail.
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This chapter presents a series of pandas and NumPy commands that help 
you explore the structure of data. Even though applying single explorative 
commands grants you more freedom in your analysis, it’s nice to know 
that you can obtain most of these statistics using the describe method 
applied to your pandas DataFrame: such as, print iris_dataframe.
describe(), when you’re in a hurry in your data science project.

Measuring central tendency
Mean and median are the first measures to calculate for numeric variables 
when starting EDA. They can provide you with an estimate of EDA when the 
variables are centered and somehow symmetric.

Using pandas, you can quickly compute both means and medians. Here is 
the command for getting the mean from the Iris DataFrame:

print iris_dataframe.mean(numeric_only=True)

sepal length (cm)    5.843333
sepal width (cm)     3.054000
petal length (cm)    3.758667
petal width (cm)     1.198667

Similarly, here is the command that will output the median:

print iris_dataframe.median(numeric_only=True)

sepal length (cm)    5.80
sepal width (cm)     3.00
petal length (cm)    4.35
petal width (cm)     1.30

The median provides the central position in the series of values. When creat-
ing a variable, it is a measure less influenced by anomalous cases or by an 
asymmetric distribution of values around the mean. What you should notice 
here is that the means are not centered (no variable is zero mean) and that 
the median of petal length is quite different from the mean, requiring further 
inspection.

When checking for central tendency measures, you should:

 ✓ Verify whether means are zero

 ✓ Check whether they are different from each other

 ✓ Notice whether the median is different from the mean



239  Chapter 13: Exploring Data Analysis

Measuring variance and range
As a next step, you should check the variance by squaring the value of its 
standard deviation. The variance is a good indicator of whether a mean is a 
suitable indicator of the variable distribution.

print iris_dataframe.std()

sepal length (cm)    0.828066
sepal width (cm)     0.433594
petal length (cm)    1.764420
petal width (cm)     0.763161

In addition, the range, which is the difference between the maximum and 
minimum value for each quantitative variable, is quite informative.

print iris_dataframe.max(numeric_only=True)‐iris_dataframe.min(numeric_only=True)

sepal length (cm)    3.6
sepal width (cm)     2.4
petal length (cm)    5.9
petal width (cm)     2.4

Take notice of the standard deviation and the range with respect to the mean 
and median. A standard deviation or range that is too high with respect to 
the measures of centrality (mean and median) may point to a possible prob-
lem, with extremely unusual values affecting the calculation.

Working with percentiles
Because the median is the value in the central position of your distribution 
of values, you may need to consider other notable positions. Apart from the 
minimum and maximum, the position at 25 percent of your values (the lower 
quartile) and the position at 75 percent (the upper quartile) are useful for fig-
uring how the data distribution works, and they are the basis of an illustrative 
graph called a boxplot, which is one of the topics we cover in this chapter.

print iris_dataframe.quantile(np.array([0,.25,.50,.75,1]))

      sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0.00                4.3               2.0               1.00               0.1
0.25                5.1               2.8               1.60               0.3
0.50                5.8               3.0               4.35               1.3
0.75                6.4               3.3               5.10               1.8
1.00                7.9               4.4               6.90               2.5 
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The difference between the upper and lower percentile constitutes the inter-
quartile range (IQR) which is a measure of the scale of variables that are 
of highest interest. You don’t need to calculate it, but you will find it in the 
boxplot because it helps to determinate the plausible limits of your distribu-
tion. What lies between the lower quartile and the minimum, and the upper 
quartile and the maximum, are exceptionally rare values that can negatively 
affect the results of your analysis. Such rare cases are outliers — and they’re 
the topic of Chapter 16.

Defining measures of normality
The last indicative measures of how the numeric variables used for these 
examples are structured are skewness and kurtosis:

 ✓ Skewness defines the asymmetry of data with respect to the mean. If the 
skew is negative, the left tail is too long and the mass of the observa-
tions are on the right side of the distribution. If it is positive, it is exactly 
the opposite.

 ✓ Kurtosis shows whether the data distribution, especially the peak and 
the tails, are of the right shape. If the kurtosis is above zero, the distri-
bution has a marked peak. If it is below zero, the distribution is too flat 
instead.

Although reading the numbers can help you determine the shape of the data, 
taking notice of such measures presents a formal test to select the variables 
that may need some adjustment or transformation in order to become more 
similar to the Gaussian distribution. Remember that you also visualize the 
data later, so this is a first step in a longer process.

As an example, a previous illustration in this chapter shows that the petal 
length feature presents differences between the mean and the median (see 
“Measuring variance and range,” earlier in this chapter). In this section, 
you test the same example for kurtosis and skewness in order to determine 
whether the variable requires intervention.

When performing the kurtosis and skewness tests, you determine whether 
the p‐value is less than or equal 0.05. If so, you have to reject normality, 
which implies that you could obtain better results if you try to transform the 
variable into a normal one. The following code shows how to perform the 
required test:

from scipy.stats import kurtosis, kurtosistest
k = kurtosis(iris_dataframe['petal length (cm)'])
zscore, pvalue = kurtosistest(iris_dataframe['petal length (cm)'])
print 'Kurtosis %0.3f z‐score %0.3f p‐value %0.3f' % (k, zscore, pvalue)
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Kurtosis ‐1.395 z‐score ‐14.811 p‐value 0.000

from scipy.stats import skew, skewtest
s = skew(iris_dataframe['petal length (cm)'])
zscore, pvalue = skewtest(iris_dataframe['petal length (cm)'])
print 'Skewness %0.3f z‐score %0.3f p‐value %0.3f' % (s, zscore, pvalue)

Skewness ‐0.272 z‐score ‐1.398 p‐value 0.162

The test results tell you that the data is slightly skewed to the left, but not 
enough to make it unusable. The real problem is that the curve is much too 
flat to be bell shaped, so you should investigate the matter further.

It’s a good practice to test all variables for kurtosis and skewness auto-
matically. You should then proceed to inspect those whose values are the 
highest visually. Non‐normality of a distribution may also conceal different 
issues, such as outliers to groups that you can perceive only by a graphical 
 visualization.

Counting for Categorical Data
The Iris dataset is made of four metric variables and a qualitative target out-
come. Just as you use means and variance as descriptive measures for metric 
variables, so do frequencies strictly relate to qualitative ones.

Because the dataset is made up of metric measurements (width and lengths 
in centimeters), you must render it qualitative by dividing it into bins accord-
ing to specific intervals. The pandas package features two useful functions, 
cut and qcut, that can transform a metric variable into a qualitative one:

 ✓ cut expects a series of edge values used to cut the measurements or 
an integer number of groups used to cut the variables into equal‐width 
bins.

 ✓ qcut expects a series of percentiles used to cut the variable.

You can obtain a new categorical DataFrame using the following command, 
which concatenates a binning (see the “Understanding binning and discreti-
zation” section of Chapter 8 for details) for each variable:

iris_binned = pd.concat([
pd.qcut(iris_dataframe.ix[:,0], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,1], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,2], [0, .25, .5, .75, 1]),
pd.qcut(iris_dataframe.ix[:,3], [0, .25, .5, .75, 1]),
], join='outer', axis = 1)
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This example relies on binning. However, it could also help to explore when 
the variable is above or below a singular hurdle value, usually the mean 
or the median. In this case, you set pd.qcut to the 0.5 percentile or pd.cut 
to the mean value of the variable.

Binning transforms numerical variables into categorical ones. This transfor-
mation can improve your understanding of data and the machine‐learning 
phase that follows by reducing the noise (outliers) or nonlinearity of the 
transformed variable.

Understanding frequencies
You can obtain a frequency for each categorical variable of the dataset, both 
for the predictive variable and for the outcome, by using the following code:

print iris_dataframe['group'].value_counts()

virginica     50
versicolor    50
setosa        50

print iris_binned['petal length (cm)'].value_counts()

[1, 1.6]       44
(4.35, 5.1]    41
(5.1, 6.9]     34
(1.6, 4.35]    31

This example provides you with some basic frequency information as well, 
such as the number of unique values in each variable and the mode of the fre-
quency (top and freq rows in the output).

print iris_binned.describe()

       sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
count                150              150               150              150
unique                 4                4                 4                4
top           [4.3, 5.1]         [2, 2.8]          [1, 1.6]       [0.1, 0.3]
freq                  41               47                44               41

Frequencies can signal a number of interesting characteristics of qualitative 
features:

 ✓ The mode of the frequency distribution that is the most frequent  
category

 ✓ The other most frequent categories, especially when they are compara-
ble with the mode (bimodal distribution) or if there is a large difference 
between them
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 ✓ The distribution of frequencies among categories, if rapidly decreasing 
or equally distributed

 ✓ Rare categories that gather together

Creating contingency tables
By matching different categorical frequency distributions, you can display 
the relationship between qualitative variables. The pandas.crosstab func-
tion can match variables or groups of variables, helping to locate possible 
data structures or relationships.

In the following example, you check how the outcome variable is related to 
petal length and observe how certain outcomes and petal binned classes 
never appear together:

print pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])

petal length (cm)  (1.6, 4.35]  (4.35, 5.1]  (5.1, 6.9]  [1, 1.6]
group                                                            
setosa                       6            0           0        44
versicolor                  25           25           0         0
virginica                    0           16          34         0

The pandas.crosstab function ignores categorical variable ordering and 
always displays the row and column categories according to their alphabeti-
cal order. This nuisance is still present in the pandas version used for this 
book, 0.15.2, but it may be resolved in the future.

Creating Applied Visualization for EDA
Up to now, the chapter has explored variables by looking at each one sepa-
rately. Technically, if you’ve followed along with the examples, you have cre-
ated a univariate (that is, you’ve paid attention to stand‐alone variations of 
the data only) description of the data. The data is rich in information because 
it offers a perspective that goes beyond the single variable, presenting more 
variables with their reciprocal variations. The way to use more of the data is 
to create a bivariate (seeing how couples of variables relate to each other) 
exploration. This is also the basis for complex data analysis based on a 
multivariate (simultaneously considering all the existent relations between 
 variables) approach.

If the univariate approach inspected a limited number of descriptive statis-
tics, then matching different variables or groups of variables increases the 
number of possibilities. Such exploration overloads the data scientist with 
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different tests and bivariate analysis. Using visualization is a rapid way to 
limit test and analysis to only interesting traces and hints. Visualizations, 
using a few informative graphics, can convey the variety of statistical charac-
teristics of the variables and their reciprocal relationships with greater ease.

Inspecting boxplots
Boxplots provide a way to represent distributions and their extreme ranges, 
signaling whether some observations are too far from the core of the data — 
a problematic situation for some learning algorithms. The following code 
shows how to create a basic boxplot using the iris dataset:

boxplots = iris_dataframe.boxplot(return_type='axes')

In Figure 13-1, you see the structure of each variable’s distribution at its 
core, represented by the 25° and 75° percentile (the sides of the box) and the 
median (at the center of the box). The lines, the so‐called whiskers, represent 
1.5 times the IQR from the box sides (or by the distance to the most extreme 
value, if within 1.5 times the IQR). The boxplot marks every observation out-
side the whisker (deemed an unusual value) by a sign.

Boxplots are also extremely useful for visually checking group differences. 
Note in Figure 13-2 how a boxplot can hint that the three groups, setosa, 
 versicolor, and virginica, have different petal lengths, with only partially 
overlapping values at the fringes of the last two of them.

Figure 13-1:  
A boxplot 

arranged by 
variables.
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Performing t‐tests after boxplots
After you have spotted a possible group difference relative to a variable, a 
t‐test (you use a t‐test in situations in which the sampled population has an 
exact normal distribution) or a one‐way Analysis Of Variance (ANOVA) can 
provide you with a statistical verification of the significance of the difference 
between the groups’ means.

from scipy.stats import ttest_ind
group0 = iris_dataframe['group'] == 'setosa'
group1 = iris_dataframe['group'] == 'versicolor'
group2 = iris_dataframe['group'] == 'virginica'
print 'var1 %0.3f var2 %03f' % (iris_dataframe['petal length (cm)'][group1].

var(),
   iris_dataframe['petal length (cm)'][group2].var())

var1 0.221 var2 0.304588

The t‐test compares two groups at a time, and it requires that you define 
whether the groups have similar variance or not. So it is necessary to calcu-
late the variance beforehand, like this:

t, pvalue = ttest_ind(iris_dataframe[sepal width (cm)'][group1], 
   iris_dataframe['sepal width (cm)'][group2], axis=0, equal_var=False)
print 't statistic %0.3f p‐value %0.3f' % (t, pvalue)

t statistic ‐3.206 p‐value 0.002

Figure 13-2:  
A boxplot 

arranged by 
groups.
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You interpret the pvalue as the probability that the calculated t statistic dif-
ference is just due to chance. Usually, when it is below 0.05, you can confirm 
that the groups’ means are significantly different.

You can simultaneously check more than two groups using the one‐way 
ANOVA test. In this case, the pvalue has an interpretation similar to the t‐test:

from scipy.stats import f_oneway      
f, pvalue = f_oneway(iris_dataframe['sepal width (cm)'][group0], 
                     iris_dataframe['sepal width (cm)'][group1], 
                     iris_dataframe['sepal width (cm)'][group2])
print "One‐way ANOVA F‐value %0.3f p‐value %0.3f" % (f,pvalue)

One‐way ANOVA F‐value 47.364 p‐value 0.000

Observing parallel coordinates
Parallel coordinates can help spot which groups in the outcome variable you 
could easily separate from the other. It is a truly multivariate plot, because at 
a glance it represents all your data at the same time. The following example 
shows how to use parallel coordinates.

from pandas.tools.plotting import parallel_coordinates
iris_dataframe['labels'] = [iris.target_names[k] for k in 
iris_dataframe['group']]
pll = parallel_coordinates(iris_dataframe,'labels')

As shown in Figure 13-3, on the abscissa axis you find all the quantitative 
variables aligned. On the ordinate, you find all the observations, carefully 
represented as parallel lines, each one of a different color given its ownership 
to a different group.

Figure 13-3:  
Parallel 

coordinates 
anticipate 

whether 
groups are 

easily  
separable.
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If the parallel lines of each group stream together along the visualization in 
a separate part of the graph far from other groups, the group is easily sepa-
rable. The visualization also provides the means to assert the capability of 
certain features to separate the groups.

Graphing distributions
You usually render the information that boxplot and descriptive statistics 
provide into a curve or a histogram, which shows an overview of the com-
plete distribution of values. The output shown in Figure 13-4 represents all 
the distributions in the dataset. Different variable scales and shapes are 
immediately visible, such as the fact that petals’ features display two peaks.

densityplot = iris_dataframe[iris_dataframe.columns[:4]].plot(kind='density')

Histograms present another, more detailed, view over distributions:

single_distribution = iris_dataframe['petal length (cm)'].plot(kind='hist')

Figure 13-5 shows the histogram of petal length. It reveals a gap in the dis-
tribution that could be a promising discovery if you can relate it to a certain 
group of Iris flowers.

Figure 13-4:  
Features’  

distribution 
and density.



248 Part IV: Wrangling Data  

Plotting scatterplots
In scatterplots, the two compared variables provide the coordinates for 
plotting the observations as points on a plane. The result is usually a cloud 
of points. When the cloud is elongated and resembles a line, you can per-
ceive the variables as correlated. The following example demonstrates this 
 principle.

colors_palette = {0: 'red', 1: 'yellow', 2:'blue'}
colors = [colors_palette[c] for c in iris_dataframe['group']]
simple_scatterplot = iris_dataframe.plot(kind='scatter', 
   x='petal length (cm)', y='petal width (cm)', c=colors)

This simple scatterplot, represented in Figure 13-6, compares length and 
width of petals. The scatterplot highlights different groups using different 
colors. The elongated shape described by the points hints at a strong corre-
lation between the two observed variables, and the division of the cloud into 
groups suggests a possible separability of the groups.

Because the number of variables isn’t too large, you can also generate all the 
scatterplots automatically from the combination of the variables. This rep-
resentation is a matrix of scatterplots. The following example demonstrates 
how to create one:

from pandas.tools.plotting import scatter_matrix
colors_palette = {0: "red", 1: "yellow", 2: "blue"}
colors = [colors_palette[c] for c in iris_dataframe['group']]
matrix_of_scatterplots = scatter_matrix(iris_dataframe, 
   figsize=(6, 6), color=colors, diagonal='kde')

Figure 13-5:  
Histograms 

can detail 
better  

distributions
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In Figure 13-7, you can see the resulting visualization for the Iris dataset. The 
diagonal representing the density estimation can be replaced by a histogram 
using the parameter diagonal='hist'.

Figure 13-6:  
A  

scatterplot 
reveals how 

two  
variables 
relate to 

each other.

Figure 13-7:  
A matrix of 

scatterplots 
displays 

more  
information 
at one time.
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Understanding Correlation
Just as the relationship between variables is graphically representable, it is 
also measurable by a statistical estimate. When working with numeric vari-
ables, the estimate is a correlation, and the Pearson’s correlation is the most 
famous. The Pearson’s correlation is the foundation for complex linear esti-
mation models. When you work with categorical variables, the estimate is an 
association, and the chi‐square statistic is the most frequently used tool for 
measuring association between features.

Using covariance and correlation
Covariance is the first measure of the relationship of two variables. It deter-
mines whether both variables have a coincident behavior with respect to 
their mean. If the single values of two variables are usually above or below 
their respective averages, the two variables have a positive association. It 
means that they tend to agree, and you can figure out the behavior of one 
of the two by looking at the other. In such a case, their covariance will be a 
positive number, and the higher the number, the higher the agreement.

If, instead, one variable is usually above and the other variable usually below 
their respective averages, the two variables are negatively associated. Even 
though the two disagree, it’s an interesting situation for making predictions, 
because by observing the state of one of them, you can figure out the likely 
state of the other (albeit they’re opposite). In this case, their covariance will 
be a negative number.

A third state is that the two variables don’t systematically agree or disagree 
with each other. In this case, the covariance will tend to be zero, a sign that 
the variables don’t share much and have independent behaviors.

Ideally, when you have a numeric target variable, you want the target vari-
able to have a high positive or negative covariance with the predictive vari-
ables. Having a high positive or negative covariance among the predictive 
variables is a sign of information redundancy. Information redundancy signals 
that the variables point to the same data — that is, the variables are telling 
us the same thing in slightly different ways.

Computing a covariance matrix is straightforward using pandas. You can 
immediately apply it to the DataFrame of the Iris dataset as shown here:

iris_dataframe.cov()
                   sepal length (cm)  sepal width (cm)  petal length (cm)  \



251  Chapter 13: Exploring Data Analysis

sepal length (cm)           0.685694         ‐0.039268           1.273682   
sepal width (cm)           ‐0.039268          0.188004          ‐0.321713   
petal length (cm)           1.273682         ‐0.321713           3.113179   
petal width (cm)            0.516904         ‐0.117981           1.296387   

                   petal width (cm)  
sepal length (cm)          0.516904  
sepal width (cm)          ‐0.117981  
petal length (cm)          1.296387  
petal width (cm)           0.582414

This matrix output shows variables present on both rows and columns. 
By observing different row and column combinations, you can determine 
the value of covariance between the variables chosen. After observing 
these results, you can immediately understand that little relationship exists 
between sepal length and sepal width, meaning that they’re different infor-
mative values. However, there could be a special relationship between petal 
width and petal length, but the example doesn’t tell what this relationship is 
because the measure is not easily interpretable.

The scale of the variables you observe influences covariance, so you should 
use a different, but standard, measure. The solution is to use correlation, 
which is the covariance estimation after having standardized the variables. 
Here is an example of obtaining a correlation using a simple pandas method:

print iris_dataframe.corr()
                   sepal length (cm)  sepal width (cm)  petal length (cm)  \
sepal length (cm)           1.000000         ‐0.109369           0.871754   
sepal width (cm)           ‐0.109369          1.000000          ‐0.420516   
petal length (cm)           0.871754         ‐0.420516           1.000000   
petal width (cm)            0.817954         ‐0.356544           0.962757   

                   petal width (cm)  
sepal length (cm)          0.817954  
sepal width (cm)          ‐0.356544  
petal length (cm)          0.962757  
petal width (cm)           1.000000

Now that’s even more interesting, because correlation values are bound 
between values of –1 and +1, so the relationship between petal width and 
length is positive and, with a 0.96, it is almost the maximum possible.

You can compute covariance and correlation matrices also by means of 
NumPy commands, as shown here:

covariance_matrix = np.cov(iris_nparray, rowvar=0, bias=1)
correlation_matrix= np.corrcoef(iris_nparray, rowvar=0, bias=1)
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In statistics, this kind of correlation is a Pearson correlation, and its coefficient 
is a Pearson’s r.

Another nice trick is to square the correlation. By squaring it, you lose 
the sign of the relationship. The new number tells you the percentage of 
the information shared by two variables. In this example, a correlation of 
0.96 implies that 96 percent of the information is shared. You can obtain a 
squared correlation matrix using this command: print iris_dataframe.
corr()**2.

Something important to remember is that covariance and correlation are 
based on means, so they tend to represent relationships that you can 
express using linear formulations. Variables in real‐life datasets usually 
don’t have nice linear formulations. Instead they are highly nonlinear, with 
curves and bends. You can rely on mathematical transformations to make 
the relationships linear between variables anyway. A good rule to remember 
is to use correlations only to assert relationships between variables, not to 
exclude them.

Using nonparametric correlation
Correlations can work fine when your variables are numeric and their 
relationship is strictly linear. Sometimes, your feature could be ordinal (a 
numeric variable but with orderings) or you may suspect some nonlinear-
ity due to non‐normal distributions in your data. A possible solution is to 
test the doubtful correlations with a nonparametric correlation, such as a 
Spearman correlation (which means that it has fewer requirements in terms 
of distribution of considered variables). A Spearman correlation transforms 
your numeric values into rankings and then correlates the rankings, thus min-
imizing the influence of any nonlinear relationship between the two  variables 
under scrutiny.

As an example, you verify the relationship between sepals’ length and width 
whose Pearson correlation was quite weak:

from scipy.stats import spearmanr
from scipy.stats.stats import pearsonr
spearmanr_coef, spearmanr_p = spearmanr(iris_dataframe['sepal length (cm)'],
   iris_dataframe['sepal width (cm)'])
pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],
   iris_dataframe['sepal width (cm)'])
print 'Pearson correlation %0.3f | Spearman correlation %0.3f' % (pearsonr_coef,
   spearmanr_coef)
Pearson correlation ‐0.109 | Spearman correlation ‐0.159
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In this case, the code confirms the weak association between the two vari-
ables using the nonparametric test.

Considering chi‐square for tables
You can apply another nonparametric test for relationship when working 
with cross‐tables. This test is applicable to both categorical and numeric 
data (after it has been discretized into bins). The chi‐square statistic tells 
you when the table distribution of two variables is statistically comparable 
to a table in which the two variables are hypothesized as not related to each 
other (the so‐called independence hypothesis). Here is an example of how 
you use this technique:

from scipy.stats import chi2_contingency
table = pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)'])
chi2, p, dof, expected = chi2_contingency(table.values)
print 'Chi‐square %0.2f p‐value %0.3f' % (chi2, p)

Chi‐square 212.43 p‐value 0.000

As seen before, the p‐value is the chance that the chi‐square difference is just 
by chance.

The chi‐square measure value depends on how many cells the table has. Do 
not use the chi‐square measure to compare different chi‐square tests unless 
you know for sure that the tables in comparison share the same structure.

The chi‐square is particularly interesting for assessing the relationships 
between binned numeric variables, even in the presence of strong nonlinear-
ity that can fool Person’s r. Contrary to correlation measures, it can inform 
you of a possible association, but it won’t provide clear details of its direc-
tion or absolute magnitude.

Modifying Data Distributions
As a by‐product of data exploration, in an EDA phase you can do the 
 following:

 ✓ Obtain new feature creation from the combination of different but 
related variables

 ✓ Spot hidden groups or strange values lurking in your data

 ✓ Try some useful modifications of your data distributions by binning  
(or other discretizations such as binary variables)



254 Part IV: Wrangling Data  

When performing EDA, you need to consider the importance of data transfor-
mation in preparation for the learning phase, which also means using certain 
mathematical formulas. The following sections present an overview of the 
most common mathematical formulas used for EDA (such as linear regres-
sion). The data transformation you choose depends on the distribution of 
your data, with a normal distribution being the most common. In addition, 
these sections highlight the need to match the transformation process to the 
mathematical formula you use.

Using the normal distribution
The normal, or Gaussian, distribution is the most useful distribution in statis-
tics thanks to its frequent recurrence and particular mathematical  proper-
ties. It’s essentially the foundation of many statistical tests and models, with 
some of them, such as the linear regression, widely used in data science.

During data science practice, you’ll meet with a wide range of different 
 distributions — with some of them named by probabilistic theory, others 
not. For some distributions, the assumption that they should behave as a 
normal distribution may hold, but for others, it may not, and that could be a 
problem depending on what algorithms you use for the learning process. As 
a general rule, if your model is a linear regression or part of the linear model 
family because it boils down to a summation of coefficients, then both vari-
able standardization and distribution transformation should be considered.

Creating a Z‐score standardization
In your EDA process, you may have realized that your variables have differ-
ent scales and are heterogeneous in their distributions. As a consequence of 
your analysis, you need to transform the variables in a way that makes them 
easily comparable:

from sklearn.preprocessing import scale
stand_sepal_width = scale(iris_dataframe['sepal width (cm)'])

Transforming other notable distributions
When you check variables with high skewness and kurtosis for their correla-
tion, the results may disappoint you. As you find out earlier in this chapter, 
using a nonparametric measure of correlation, such as Spearman’s, may tell 
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you more about two variables than Pearson’s r may tell you. In this case, you 
should transform your insight into a new, transformed feature:

tranformations = {'x': lambda x: x, '1/x': lambda x: 1/x, 'x**2': lambda x: 
x**2,

   'x**3': lambda x: x**3, 'log(x)': lambda x: np.log(x)}
for transformation in tranformations:
   pearsonr_coef, pearsonr_p = pearsonr(iris_dataframe['sepal length (cm)'],
      tranformations[transformation](iris_dataframe['sepal width (cm)']))
   print 'Transformation: %s \t Pearson\'s r: %0.3f' % (transformation, 

pearsonr_coef)

Transformation: x         Pearson's r: ‐0.109
Transformation: x**2      Pearson's r: ‐0.122
Transformation: x**3      Pearson's r: ‐0.131
Transformation: log(x)    Pearson's r: ‐0.093
Transformation: 1/x       Pearson's r:  0.073

In exploring various possible transformations, using a for loop may tell you 
that a power transformation will increase the correlation between the two 
variables, thus increasing the performance of a linear machine‐learning algo-
rithm. You may also try other, further transformations such as square root 
np.sqrt(x), exponential np.exp(x), and various combinations of all the 
transformations, such as log inverse np.log(1/x).
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Reducing Dimensionality
In This Chapter

 ▶ Discovering the magic of singular value decomposition

 ▶ Understanding the difference between factors and components

 ▶ Matching unknown images to known ones

 ▶ Automatically retrieving topics from texts

 ▶ Building a movie recommender system

B 
ig data is defined as a collection of datasets that is so huge that it 
becomes difficult to process using traditional techniques. The manipu-

lation of big data differentiates statistical problems, which are based on small 
samples, from data science problems. You typically use traditional statistical 
techniques on small problems and data science techniques on big problems.

Data may be viewed as big because it consists of many examples, and this is 
the first kind of big that spontaneously comes to mind. Analyzing a database 
of millions of customers and interacting with them all simultaneously is really 
challenging, but that isn’t the only possible perspective of big data.

Another potential view of big data relates to its production and velocity, that 
is, the time dimension. Even if your observations are few, producing data 
points for an extended time frame results in a huge stack of information. The 
dataset reports each instant’s persistency or change of your cases.

A third view of big data is data dimensionality, which refers to how many 
aspects of the cases an application tracks. Data with high dimensionality may 
offer many features (variables) — often hundreds or thousands of them. And 
that may turn into a real problem. Even if you’re observing only a few cases for a 
short time, dealing with too many features can make most analysis intractable.

The complexity of working with so many dimensions drives the necessity 
for various data techniques to filter the information — keeping the data that 
seems to solve the problem better. The filter reduces dimensionality by 
removing redundant information in high‐dimension datasets.

Chapter 14
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The focus in this chapter is on reducing data dimensions when the data has 
too many repetitions of the same information. You can view this reduction as 
a kind of information compression, which is similar to compressing files on a 
hard disk in order to save space.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 14; Reducing Dimensionality.ipynb source code file.

Understanding SVD
The core of data reduction magic lies in a form of linear algebra called Singular 
Value Decomposition (SVD). SVD is a mathematical method that takes data as 
input in the form of a single matrix and gives back three resulting matrices that, 
multiplied together, return the original input matrix. The formula of SVD is

M = U * s * Vh

Here is a short explanation of the letters used in the equation:

 ✓ U: Contains all the information about the rows (your observations)

 ✓ Vh: Contains all the information about the columns (your features)

 ✓ s: Records the SVD process (it is kind of a log record)

Creating three matrices out of one seems counterproductive when the goal 
is to reduce data dimensions. It would seem that using SVD should be called 
data explosion, not reduction! However,  SVD conceals the magic in the 
 process, because as it builds these new matrices, it separates the information 
regarding the rows from the columns of the original matrix. As a result, it com-
presses all the valuable information into the first columns of the new data.

The resulting matrix s shows how the compression happened. The sum of all 
the values in s tells you how much information was previously stored in your 
original matrix, and each value in r reports how much data has accumulated 
in each respective column of U and Vh.

To understand how this all works, you need to look at individual values. 
For instance, if the sum of s is 100 and the first value of s is 99, that means 
that 99 percent of the information is now stored in the first column of U and 
Vh. Therefore, you can happily discard all the remaining columns after the 
first column without losing any important information for your data science 
knowledge discovery process.
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Looking for dimensionality reduction
It’s time to see how Python can help you reduce data complexity. The following 
example demonstrates a method for reducing your big data. You can use this 
technique in many other interesting applications, too.

import numpy as np
M = np.array([[1, 3, 4], [2, 3, 5], [1, 2, 3], [5, 4, 6]])
print(M)

[[1 3 4]
 [2 3 5]
 [1 2 3]
 [5 4 6]]

Let’s say you have a matrix, M, that contains the data that you want to 
reduce. M is made of four observations containing three features each. Using 
the module linalg from NumPy, you can access the svd function that 
exactly splits your original matrix into three variables: U, s, and Vh. 

U, s, Vh = np.linalg.svd(M, full_matrices=False)
print np.shape(U), np.shape(s),np.shape(Vh)
print s

(4L, 3L) (3L,) (3L, 3L)
[ 12.26362747   2.11085464   0.38436189]

The matrix U, representing the rows, has four row values. The matrix Vh is a 
square matrix, and its three rows represent the original columns. The matrix 
s is a diagonal matrix. A diagonal matrix contains zeros in every element but 
its diagonal. The length of its diagonal is exactly that of the three original 
 columns. Inside s, you find that most of the values are in the first elements, 
indicating that the first column is what holds the most information (more 
than 80 percent), the second has some values (about 14 percent), and the 
third contains the residual values.

You can check whether the SVD keeps its promises by viewing the example 
output. The example reconstructs the original matrix using the dot NumPy 
function to multiply U, s (diagonal), and Vh. The dot function performs 
matrix multiplication, which is a multiplication procedure slightly different 
from the arithmetic one.

print np.dot(np.dot(U, np.diag(s)), Vh) # Full matrix reconstruction

[[ 1.  3.  4.]
 [ 2.  3.  5.]
 [ 1.  2.  3.]
 [ 5.  4.  6.]]
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The reconstruction is perfect. Now it’s time to play with the results a little. 
For example, you might want to see what happens when you exclude the 
third column, the less important of the three. The following example shows 
what happens when you cut the last column from all three matrices.

print np.round(np.dot(np.dot(U[:,:2], np.diag(s[:2])), Vh[:2,:]),1) # k=2 
reconstruction

[[ 1.   2.8  4.1]
 [ 2.   3.2  4.8]
 [ 1.   2.   3. ]
 [ 5.   3.9  6. ]]

The output is almost perfect. There are a few decimal points of difference. To 
take the example further, the following code removes both the second and 
third columns.

print np.round(np.dot(np.dot(U[:,:1], np.diag(s[:1])), Vh[:1,:]),1) # k=1 
reconstruction

[[ 2.1  2.5  3.7]
 [ 2.6  3.1  4.6]
 [ 1.6  1.8  2.8]
 [ 3.7  4.3  6.5]]

Now there are more errors. Some elements of the matrix are missing more 
than a few decimal points. However, you can see that most of the numeric 
information is intact. Just imagine the potential of using such a technique on 
a larger matrix, a matrix with hundreds of columns.

One of the difficult issues to consider is determining how many columns to 
keep. Creating a cumulated sum of the diagonal matrix s (using the NumPy 
cumsum function is perfect for this task) is useful for keeping track of how 
information is expressed, and by how many columns. As a general rule, you 
should consider solutions maintaining from 70 to 99 percent of the original 
information; however, that’s not a strict rule — it really depends on how 
important it is for you to be able to reconstruct the original dataset.

Using SVD to measure the invisible
A property of SVD is to compress the original data at such a level and in such 
a smart way that, in certain situations, the technique can really create new 
meaningful and useful features, not just compressed variables. Therefore, 
you could have used the three columns of the U matrix in the previous 
 example as new features.
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If your data contains hints and clues about a hidden cause or motif, an SVD 
can put them together and offer you proper answers and insights. That is 
especially true when your data is made up of interesting pieces of informa-
tion like the ones in the following list:

 ✓ Text in documents hints at ideas and meaningful categories. Just as 
you can make up your mind about treated themes by reading blogs and 
newsgroups, so also can SVD help you deduce a meaningful classifica-
tion of groups of documents or the specific topics being written about in 
each of them.

 ✓ Reviews of specific movies or books hint at your personal preferences 
and at larger product categories. So if you say that you loved the origi-
nal Star Trek series collection on a rating site, it becomes easy to deter-
mine what you like in terms of other films, consumer products, or even 
personality types.

An example of a method based on SVD is Latent Semantic Indexing (LSI), 
which has been successfully used to associate documents and words on the 
basis of the idea that words, though different, tend to have the same mean-
ing when placed in similar contexts. This type of analysis suggests not only 
synonymous words but also higher grouping concepts. For example, an LSI 
analysis on some sample sports news may group together baseball teams of 
the Major League based solely on the co‐occurrence of team names in  similar 
articles, without any previous knowledge of what a baseball team or the 
Major League are.

Performing Factor and Principal 
Component Analysis

SVD operates directly on the numeric values in data, but you can also 
express data as a relationship between variables. Each feature has a certain 
variation. You can calculate the variability as the variance measure around 
the mean. The more the variance, the more the information contained inside 
the variable. In addition, if you place the variable into a set, you can com-
pare the variance of two variables to determine whether they correlate, 
which is a measure of how strongly they have similar values.
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Checking all the possible correlations of a variable with the others in the set, 
you can discover that you may have two types of variance:

 ✓ Unique variance: Some variance is unique to the variable under exami-
nation. It cannot be associated to what happens to any other variable.

 ✓ Shared variance: Some variance is shared with one or more other vari-
ables, creating redundancy in the data. Redundancy implies that you 
can find the same information, with slightly different values, in various 
features and across many observations.

Of course, the next step is to determine the reason for shared variance. 
Trying to answer such a question, as well as determining how to deal with 
unique and shared variances, led to the creation of factor and principal 
 component analysis.

Considering the psychometric model
Long before many machine‐learning algorithms were thought up, psychometrics, 
the discipline in psychology that is concerned with psychological measure-
ment, tried to find a statistical solution to effectively measure dimensions in 
personality. Our personality, as with other aspects of ourselves, is not directly 
measurable. For example, it isn’t possible to measure precisely how much a 
person is introverted or intelligent. Questionnaires and psychological tests only 
hint at these values.

Psychologists knew of SVD and tried to apply it to the problem. Shared 
 variance attracted their attention: If some variables are almost the same, they 
should have the same root cause, they thought. Psychologists created factor 
analysis to perform this task! Instead of applying SVD directly to data, they 
applied it to a newly created matrix tracking the common variance, in the 
hope of condensing all the information and recovering new useful features 
called factors.

Looking for hidden factors
A good way to show how to use factor analysis is to start with the Iris dataset.

from sklearn.datasets import load_iris
from sklearn.decomposition import FactorAnalysis
iris = load_iris()
X, y = iris.data, iris.target
factor = FactorAnalysis(n_components=4, , random_state=101).fit(X)
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After loading the data and having stored all the predictive features, the 
FactorAnalysis class is initialized with a request to look for four factors. 
The data is then fitted. You can explore the results by observing the compo-
nents_ attribute, which returns an array containing measures of the rela-
tionship between the newly created factors, placed in rows, and the original 
features, placed in columns. At the intersection of each factor and feature, 
a positive number indicates that a positive proportion exists between the 
two; a negative number, instead, points out that they diverge and one is the 
 contrary to the other.

You’ll have to test different values of n_components because it isn’t possible 
to know how many factors exist in the data. If the algorithm is required for more 
factors than exist, it will generate factors with low values in the  components_ 
array.

import pandas as pd
print pd.DataFrame(factor.components_,columns=iris.feature_names)

   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0           0.707227         ‐0.153147           1.653151          0.701569
1           0.114676          0.159763          ‐0.045604         ‐0.014052
2           0.000000         ‐0.000000          ‐0.000000         ‐0.000000
3          ‐0.000000          0.000000           0.000000         ‐0.000000

In the test on the Iris dataset, for example, the resulting factors should be a 
maximum of 2, not 4, because only two factors have significant connections 
with the original features. You can use these two factors as new variables in 
your project because they reflect an unseen but important feature that the 
previously available data only hinted at.

Using components, not factors
If an SVD could be successfully applied to the common variance, you might 
wonder why you can’t apply it to all the variances. Using a slightly modified start-
ing matrix, all the relationships in the data could be reduced and compressed 
in a similar way to how SVD does it. The results of this process, which are quite 
similar to SVD, are called principal components analysis (PCA). The newly cre-
ated features are named components. In contrast to factors, components aren’t 
described as the root cause of the data structure but are just restructured data, 
so you can view them as a big, smart summation of selected variables.

For data science applications, PCA and SVD are quite similar. However, PCA 
isn’t affected by the scale of the original features (because it works on cor-
relation measures that are all bound between –1 and +1 values) and PCA 
focuses on rebuilding the relationship between the variables, thus offering 
different results from SVD.
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Achieving dimensionality reduction
The procedure to obtain a PCA is quite similar to the factor analysis. The 
 difference is that you don’t specify the number of components to extract. You 
decide later how many components to keep after checking the explained_
variance_ratio_ attribute, which provides quantification (in percentage) 
of the informative value of each extracted component. The following example 
shows how to perform this task:

from sklearn.decomposition import PCA
import pandas as pd
pca = PCA().fit(X)
print 'Explained variance by component: %s' % pca.explained_variance_ratio_
print pd.DataFrame(pca.components_,columns=iris.feature_names)

Explained variance by component: [ 0.92461621  0.05301557  0.01718514  
0.00518309]

   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0           0.361590         ‐0.082269           0.856572          0.358844
1          ‐0.656540         ‐0.729712           0.175767          0.074706
2           0.580997         ‐0.596418          ‐0.072524         ‐0.549061
3           0.317255         ‐0.324094          ‐0.479719          0.751121

In this decomposition of the Iris dataset, the vector array provided by 
explained_variance_ratio_ indicates that most of the information is 
concentrated into the first component (92.5 percent). You saw this same sort 
of result after the factor analysis. It’s therefore possible to reduce the entire 
dataset to just two components, providing a reduction of noise and redun-
dant information from the original dataset.

Understanding Some Applications
Understanding the algorithms that compose the family of SVD‐derived data 
decomposition techniques is complex because of its mathematical complex-
ity and its numerous variants (such as Factor, PCA, and SVD). A few appli-
cations may instead help you understand the best ways to employ these 
powerful data science tools.

In the following paragraphs, you work with some algorithms that you likely 
have seen in action when

 ✓ Performing a search by images on a search engine or publishing an 
image on a social network

 ✓ Automatically labeling blog posts or questions to Q&A websites

 ✓ Receiving recommendations for your purchases on e‐commerce websites.
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Recognizing faces with PCA
Our first example deals with images, and more precisely with facial images. 
You may have wondered how social networks manage to tag images with the 
appropriate label or name. The following example demonstrates how to per-
form this task.

from sklearn.datasets import fetch_olivetti_faces
dataset = fetch_olivetti_faces(shuffle=True, random_state=101)
train_faces = dataset.data[:350,:]
test_faces  = dataset.data[350:,:]
train_answers = dataset.target[:350]
test_answers = dataset.target[350:]

The example begins by using the Olivetti faces dataset, a set of images read-
ily available from Scikit‐learn. For this experiment, the code divides the set 
of labeled images into a training and a test set. You need to pretend that you 
know the labels of the training set but don’t know anything from the test set. 
As a result, you want to associate images from the test set to the most similar 
image from the training set.

print dataset.DESCR

The Olivetti dataset consists of 400 photos taken from 40 people (so there are 
10 photos of each person). Even though the photos represent the same person, 
each photo has been taken at different times during the day, with different 
light and facial expressions or details (for example, with glasses and without). 
The images are 64 x 64 pixels, so unfolding all the pixels into features creates a 
dataset made of 400 cases and 4,096 variables.

from sklearn.decomposition import RandomizedPCA
n_components = 25
Rpca = RandomizedPCA(n_components=n_components, whiten=True,
     random_state=101).fit(train_faces)
print 'Explained variance by %i components: %0.3f' % (n_components,
     np.sum(Rpca.explained_variance_ratio_))
compressed_train_faces = Rpca.transform(train_faces)
compressed_test_faces  = Rpca.transform(test_faces)

Explained variance by 25 components: 0.794

The RandomizedPCA class is an approximate PCA version, which works 
better when the dataset is large (many rows and variables). The decomposi-
tion creates 25 new variables (n_components parameter) and whitening 
(whiten=True), thus removing some constant noise (created by textual and 
photo granularity) from images. The resulting decomposition uses 25 compo-
nents, which is about 80 percent of information held in 4,096 features.
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import matplotlib.pyplot as plt
photo = 17 # This is the photo in the test set we want to know about
print 'We are looking for face id=%i' % test_answers[photo]
plt.subplot(1, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64), cmap=plt.cm.gray, 

interpolation='nearest')

Figure 14-1 represents the chosen photo from the test set. It is subject 
number 34.

After the decomposition of the test set, the example takes the data relative 
only to photo 17 and subtracts it from the decomposition of the training 
set. Now the training set is made of differences with respect to the example 
photo. The code squares them (to remove negative values) and sums them 
by row. That results in a series of summed errors. The most similar photos 
are the ones with the least‐squared errors, the ones whose differences are 
the least.

mask = compressed_test_faces[photo,] #Just the vector of value components of our 
photo

squared_errors = np.sum((compressed_train_faces ‐ mask)**2,axis=1)
minimum_error_face = argmin(squared_errors)
most_resembling = list(np.where(squared_errors < 20)[0])
print 'Best resembling face in train test: %i' % train_answers[minimum_error_

face]

Best resembling face in train test: 34

As it did before, the code can now display photo 17, which is the photo that 
best resembles images from the training set.

Figure 14-1:  
The 

example 
application 

would like to 
find similar 

photos.
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import matplotlib.pyplot as plt
plt.subplot(2, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64), cmap=plt.cm.gray, 

interpolation='nearest')
for k,m in enumerate(most_resembling[:3]):
   plt.subplot(2, 2, 2+k)
   plt.title('Match in train set no. '+str(m))
   plt.axis('off')
   plt.imshow(train_faces[m].reshape(64,64), cmap=plt.cm.gray, 

interpolation='nearest')
plt.show()

Even though the most similar photo is similar (it’s just scaled slightly differ-
ently), the other two photos are quite different. However, even though those 
photos don’t match the text image as well, they really do show the same 
person as in photo 17.

Extracting Topics with NMF
Textual data is another field of application for the family of data reduction 
algorithms. The idea that prompted such application is that if a group of 
people talks or writes about something, those people tend to use words from 
a limited set because they refer or are related to the same topic; they share 
some meaning or are part of the same group. Consequently, if you have a 
collection of texts and don’t know what topics the text references, you can 
reverse the previous reasoning — you can simply look for groups of words 
that tend to associate together, so their newly formed group by dimensionality 
reduction may hint at the topics you’d like to know about.

Figure 14-2:  
The output 
shows the 

results that 
resemble 

the test 
image.
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This is a perfect application for the SVD family, because by reducing the 
number of columns, the features (in a document, the words are the features) 
will gather in dimensions, and you can discover the topics by checking high‐
scoring words. SVD and PCA provide features to relate both positively and 
negatively with the newly created dimensions. So a resulting topic may be 
expressed by the presence of a word (high positive value) or by the absence 
of it (high negative value), making interpretation both tricky and counter-
intuitive for humans. Luckily, Scikit‐learn includes the Non‐Negative Matrix 
Factorization (NMF) decomposition class, which allows an original feature to 
relate only positively with the resulting dimensions.

This example starts with a new experiment after loading the 20newsgroups 
dataset, selecting only the posts regarding objects for sale and automatically 
removing headers, footers, and quotes.

from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20newsgroups(shuffle=True, categories = ['misc.forsale'],
     remove=('headers', 'footers', 'quotes'), random_state=101)
print 'Posts: %i' % len(dataset.data)

Posts: 585

The TfidVectorizer class is imported and set up to remove stop words 
(common words such as the or and) and keep only distinctive words, produc-
ing a matrix whose columns point to distinct words.

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english')
tfidf = vectorizer.fit_transform(dataset.data)

from sklearn.decomposition import NMF
n_topics = 5
nmf = NMF(n_components=n_topics, random_state=101).fit(tfidf)

Term frequency‐inverse document frequency (Tf‐idf) is a simple calculation 
based on the frequency of a word in document. It is weighted by the rarity of 
the word between all the documents available. Weighting words is an effec-
tive way to rule out words that cannot help you to classify or to identify the 
document when processing text. For example, you can eliminate common 
parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the 
n_components parameter indicates the number of desired components. If 
you’d like to look for more topics, you use a higher number. As the required 
number of topics increases, the reconstruction_err_ method reports 
lower error rates. It’s up to you to decide when to stop given the trade‐off 
between more time spent on computations and more topics.
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The last part of the script outputs the resulting five topics. By reading the 
printed words, you can decide on the meaning of the extracted topics, thanks 
to product characteristics (for instance, the words drive, hard, card, and 
floppy refer to computers) or the exact product (for instance, comics, car, 
stereo, games).

feature_names = vectorizer.get_feature_names()
n_top_words = 15
for topic_idx, topic in enumerate(nmf.components_):
   print "Topic #%d:" % (topic_idx+1),
   print " ".join([feature_names[i] for i in topic.argsort()[:‐n_top_words ‐ 

1:‐1]])

Topic #1: drive hard card floppy monitor meg ram disk motherboard vga scsi brand 
color

    internal modem
Topic #2: 00 50 dos 20 10 15 cover 1st new 25 price man 40 shipping comics
Topic #3: condition excellent offer asking best car old sale good new miles 10 

000 tape
    cd
Topic #4: shipping vcr stereo works obo included amp plus great volume vhs unc 

mathes
    gibbs radley
Topic #5: email looking games game mail interested send like thanks price 

package list
    sale want know

You can explore the resulting model by looking into the attribute compo-
nents_ from the trained NMF model. It consists of a NumPy ndarray hold-
ing positive values for words connected to the topic. By using the argsort 
method, you can get the indexes of the top associations, whose high values 
indicate that they are the most representative words.

print nmf.components_[0,:].argsort()[:‐n_top_words‐1:‐1] # Gets top words for 
topic 0

[1337 1749  889 1572 2342 2263 2803 1290 2353 3615 3017  806 1022 1938 2334]

Decoding the words’ indexes creates readable strings by calling them from 
the array derived from the get_feature_names method applied to the 
TfidfVectorizer that was previously fitted.

print vectorizer.get_feature_names()[1337] # transform indexes into words
drive



270 Part IV: Wrangling Data  

Recommending movies
Other interesting applications for data reduction are systems for generating 
recommendations about the things you may like to buy or know more about. 
You likely have quite a few occasions to see recommenders in action. On 
most e‐commerce websites, after logging‐in, visiting some product pages, and 
rating or putting a product into your electronic basket, you see other buying 
opportunities based on other customers’ previous experiences (the method 
is called collaborative filtering).

You can implement collaborative recommendations based on simple means 
or frequencies calculated on other customers’ set of purchased items or on 
ratings using SVD. This approach helps you reliably generate recommenda-
tions even in the case of products the vendor seldom sells or that are quite 
new to users.

For this example, you use a well‐known database created by the MovieLens 
website, collected from its users’ ratings of a movie they liked or disliked. 
Because this is an external dataset, you first have to download it from its 
Internet location:

http://files.grouplens.org/datasets/movielens/ml‐1m.zip

After downloading it, you have to extract it into your Python working 
 directory. You can discover what your working directory is by using these 
commands:

import os
print os.getcwd()

Take note of the displayed directory and extract the ml‐1m database there. 
Then execute the following code.

import pandas as pd
from scipy.sparse import csr_matrix
users = pd.read_table('ml‐1m/users.dat', sep='::', header=None,  

names=['user_id',
    'gender', 'age', 'occupation', 'zip'])
ratings = pd.read_table('ml‐1m/ratings.dat', sep='::', header=None,  

names=['user_id',
    'movie_id', 'rating', 'timestamp'])
movies = pd.read_table('ml‐1m/movies.dat', sep='::', header=None,  

names=['movie_id',
    'title', 'genres'])
MovieLens = pd.merge(pd.merge(ratings, users), movies)

http://files.grouplens.org/datasets/movielens/ml-1m.zip
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Using pandas, the code loads the different data tables and then merges them 
on the basis of the features with the same name (the user_id and movie_id 
variables).

ratings_mtx_df = MovieLens.pivot_table(values='rating', rows='user_id', 
cols='title',

    fill_value=0)
movie_index = ratings_mtx_df.columns

pandas will also help create a data table crossing information on rows about 
users and in columns about movie titles. A movie index will keep track about 
what movie each column represents.

from sklearn.decomposition import TruncatedSVD
recom = TruncatedSVD(n_components=10, random_state=101)
R = recom.fit_transform(ratings_mtx_df.values.T)

The TruncatedSVD class reduces the data table to ten components. This 
class offers a more scalable algorithm than SciPy’s linalg.svd used in ear-
lier examples. TruncatedSVD computes result matrices of exactly the shape 
you decide by the n_components parameter (the full resulting matrices are 
not calculated), resulting in a faster output and less memory usage.

By calculating the Vh matrix, you can reduce the ratings of different but simi-
lar users (each user’s scores are expressed by row) into compressed dimen-
sions that reconstruct general tastes and preferences. Please also notice that 
because you’re interested in the Vh matrix (the columns/movies reduction) 
but the algorithm provides you with only the U matrix (the decomposition 
based on rows), you need to input the transposition of the data table (using 
this approach, columns become rows and you obtain TruncatedSVD output, 
which is the Vh matrix).

# 1196::Star Wars: Episode V ‐ The Empire Strikes Back
# (1980)::Action|Adventure|Drama|Sci‐Fi|War
favoured_movie_idx = list(movie_index).index(
    'Star Wars: Episode V ‐ The Empire Strikes Back (1980)')
print R[favoured_movie_idx]

[ 184.72254552  ‐17.7761415    47.33483561  ‐51.46669814  ‐47.9152707  
‐17.65000951  ‐14.34294204  ‐12.88678007  ‐17.48586358   ‐5.38370224]

Using the movie label (in such cases, you look for suggestions based on pref-
erence for a Star Wars episode), you can find out what column the movie is in 
(column index 3154 in this case) and print the values of the 10 components. 
This sequence provides the movie profile. You could try to interpret it, but 
the focus is on other movies that are similar based on the users’ ratings. 
These movies have similar scores to the target movie and therefore are 
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highly correlated with it. A good strategy is to calculate a correlation matrix 
of all movies, get the slice related to your movie, and find out inside it what 
are the most related (characterized by high positive correlation — say at 
least 0.98) movie titles using indexing as shown in the following code.

import numpy as np
correlation_matrix = np.corrcoef(R)
P = correlation_matrix[favoured_movie_idx]
print list(movie_index[(P > 0.98) & (P < 1.0)])

['Raiders of the Lost Ark (1981)', 'Star Wars: Episode IV ‐ A New Hope (1977)',
 'Star Wars: Episode VI ‐ Return of the Jedi (1983)']

It seems there are quite a few titles that fans would like, such as Star Wars 
Episodes IV and VI (of course). In addition, fans might like Raiders of the 
Lost Ark, maybe because they like the actor Harrison Ford, who is the main 
 character in all these films.

SVD will always find the best way to relate a row or column in your data, 
discovering complex interactions or relations you didn’t imagine before. You 
don’t need to imagine anything in advance; it’s  fully a data‐driven approach.



Clustering
In This Chapter

 ▶ Exploring the potentialities of unsupervised clustering

 ▶ Making K‐means work with small and big data

 ▶ Trying DBScan as an alternative option

O 
ne of the basic abilities that humans have exercised since primitive 
times is to divide the known world into separate classes where indi-

vidual objects share common features deemed important by the classifier. 
Starting with primitive cave dwellers classifying the natural world they lived 
in, distinguishing plants and animals useful or dangerous for their survival, we 
arrive at modern times in which marketing departments classify consumers 
into target segments and then act with proper marketing plans.

Classifying is crucial to our process of building new knowledge because, by 
gathering similar objects, we can

 ✓ Mention all the items in a class by the same denomination

 ✓ Summarize relevant features by an exemplificative class type

 ✓ Associate particular actions or recall specific knowledge automatically

Dealing with big data streams today requires the same classificatory ability, 
but on a different scale. To spot unknown groups of signals present in the 
data, we need specialized algorithms that are both able to learn how to assign 
examples to certain given classes (the supervised approach) and to spot new 
interesting classes that we weren’t aware of (unsupervised learning).

Even though your main routine as a data scientist will be to put into practice 
your predictive skills, you’ll also have to provide useful insight into possible 
structured information present in your data. For example, you’ll often need 
to locate new features in order to strengthen the predictive power of your 
models, find an easy way to make complex comparisons inside the data, and 
discover communities in social networks.

Chapter 15
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A data‐driven approach to classification, called clustering, will prove to be 
of great help in achieving success for your data project when you need to 
 provide new insights from scratch.

Clustering techniques are a set of unsupervised classification methods that 
can create meaningful classes by directly processing your data, without any 
previous knowledge or hypothesis about the groups that may be present. If 
all supervised algorithms need labeled examples (class labels), unsupervised 
ones can figure out by themselves what the most appropriate labels could be.

There are a few kinds of clustering techniques. You can distinguish between 
them using the guidelines in the following list:

 ✓ Assigning every example to a unique group (partitioning) or to multiple 
ones (fuzzy clustering)

 ✓ Determining the heuristic — that is, the rule of thumb — that they use to 
figure out whether an example is part of a group

 ✓ Specifying how they quantify the difference between observations, that 
is, the so‐called distance measure

Most of the time you use partition‐clustering techniques (a data point can be 
part of only one group, so the groups don’t overlap; their membership is 
 distinct) and among partitioning methods, you use K‐means the most. But 
other useful methods are mentioned in this chapter, which are based on 
agglomerative methods and on data density.

Agglomerative methods link data points into clusters based on their distance. 
Data density approaches take advantage of the idea that groups are very 
dense and continuous, so if you notice a decrease in density when explor-
ing a part of a group of points, it could mean that you arrived at one of its 
 borders.

Because you normally don’t know what you’re looking for, different methods 
can provide you with different solutions and points of view on the data. The 
secret of a successful clustering is to try as many of the recipes as possible, 
compare the results, and try to find a reason why you can consider certain 
observations as a group in respect to others.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 15; Clustering.ipynb source code file.
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Clustering with K‐means
K‐means is an iterative algorithm that has become very popular in machine 
learning because of its simplicity, speed, and scalability to a large number of 
data points. The K‐means algorithm relies on the idea that there are a specific 
number of data groups, called clusters. Each data group is scattered around a 
central point with which they share some key characteristics.

You can actually imagine the central point of a cluster, called a centroid, as 
a sun. The data points distribute around the centroid like planets. Clusters 
are also expected to clearly separate from each other, so, as groups of points 
they are both internally homogeneous and different from each other.

The K‐means algorithm expects to find clusters in your data. Therefore, it will 
find them even when none exist! It’s important to check inside the groups to 
determine whether the group is a true gold nugget.

Given such assumptions, all you have to do is to specify the number of 
groups you expect (you can use a guess or try a number of possible desirable 
 solutions), and the K‐means algorithm will look for them, using a heuristic in 
order to recover the position of the central points.

The cluster centroids should be evident by their different characteristics and 
positions from each other. Even if you start by randomly guessing where they 
could be, in the end, after a few corrections, you always find them by using 
the many data points that gravitate around them.

Understanding centroid‐based algorithms
The procedure for finding the centroids is straightforward:

1. Guess a K number of clusters.

K centroids are picked randomly from your data points or chosen so 
that they are placed in your data in very distant positions from each 
other. All the other points are assigned to their nearest centroid based 
on the Euclidean distance.

2. Form the initial clusters.

3. Reiterate the clusters until you notice that your solution doesn’t change 
anymore.

You recalculate the centroids as an average of all the points present in 
the group. All the data points are reassigned to the groups based on the 
distance from the new centroids.
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The iterative process of assigning cases to the most plausible centroid and 
then averaging the assigned ones to find a new centroid will slowly shift the 
centroid position toward the areas where most data points gravitate. The 
result is that you end up with the true centroid position.

The procedure has only two weak points that you need to consider. First, 
you choose the initial centroids randomly, which means that you could 
start from a bad starting point. As a result, the iterative process will stop 
at some unlikely solution — for example, having a centroid in the middle of 
two groups. To ensure that your solution is the most probable, you have to 
try the algorithm a few times and track the results. The more often you try, 
the more likely you are to confirm the right solution. The Python Scikit‐learn 
implementation of K‐means will do that for you, so you just have to decide 
how many times you intend to try. (The trade‐off is that more iterations 
 produce better results, but each iteration consumes valuable time.)

The second weak point is due to the distance that K‐means uses, the 
Euclidean distance, which is the distance between two points on a plane  
(a concept that you likely studied at school). In a K‐means application, each 
data point is a vector of features, so when comparing the distance of two 
points, you do the following:

1. Create a list containing the differences of the elements in the two 
 vectors.

2. Square all the elements of the difference vector.

3. Calculate the square root of the summed elements.

You can try a simple example in Python. Pretend that you have two points, 
A and B, and they have three numeric features. If A and B are the data repre-
sentation of two persons, their distinguishing features could be measured in 
height (cm), weight (kg), and age (years), as shown in the following code:

import numpy as np
A = np.array([165, 50, 22])
B = np.array([185, 80, 21])

The following example shows how to calculate the differences between the 
three elements, square all the resulting elements, and determine the square 
root of the squared values:

D = (A‐B)
D = D**2
D = np.sqrt(np.sum(D))
print D

45.0
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In the end, the Euclidean distance is really just a big sum. When the variables 
making up the difference vector are significantly different in scale from each 
other (in our example, the height could have been expressed in meters), you 
end up with a distance dominated by the elements with the largest scale. It is 
very important to rescale the variables so that they use a similar scale before 
applying the K‐means algorithm. You can use a fixed range or a statistical 
normalization with zero mean and unit variance to achieve this goal.

Another problem that may arise, apart from scale, is due to correlation 
between variables, causing redundancy of information. If two variables are 
highly correlated,  that means that a part of their information content is 
repeated. Replication implies counting the same information more than once in 
the summation used to calculate the distance. If you’re not aware of the corre-
lation issue, some variables will dominate your distance measure calculation — 
a situation that may lead to not finding the useful clusters that you want. The 
solution is to remove the correlation thanks to a dimensionality reduction algo-
rithm such as Principle Component Analysis (PCA). Scikit‐learn has a function 
in the preprocessing module that can correctly scale your variable, as well as a 
function for PCA, but it is up to you to remember to use these functions before 
employing K‐means and other clustering techniques using distance measure.

Creating an example with image data
An example with image data demonstrates how to apply the tool and how 
to get insight from clusters. An ideal example is clustering the handwritten 
digits dataset provided by the Scikit‐learn package. Hand‐written numbers 
are naturally different from each other — they possess variability in that 
there are several ways to write certain numbers. Of course, we all have differ-
ent writing styles, so it is natural that each person’s numbers differ slightly. 
The following code shows how to import the image data.

from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data
ground_truth = digits.target

The example begins by importing the digits dataset from Scikit‐learn and 
assigning the data to a variable. It then stores the labels in another variable 
for later verification. The next step is to process the data using a PCA.

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
pca = PCA(n_components=40)
Cx = pca.fit_transform(scale(X))
print 'Explained variance %0.3f'
     % sum(pca.explained_variance_ratio_)

Explained variance 0.951
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By applying a PCA on scaled data, the code addresses the problems of scale 
and correlation. Even though PCA can recreate the same number of variables 
as in the input data, the example code drops a few using the n_components 
parameter. The decision to use 40 components, as compared to the original 
64 variables, allows the example to retain most of the original information  
(95 percent of the original variation in data) and simplify the dataset by 
removing correlation and some noise.

In this example, the PCA‐transformed data appears in the Cx variable. After 
importing the KMeans class, the code defines its main parameters:

 ✓ n_clusters is the K number of centroids to find

 ✓ n_init is the number of times to try the K‐means with different starting 
centroids. The code needs to test the procedure a sufficient number of 
times, such as 10, as shown here.

from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=10, n_init=10,
     random_state=1)
clustering.fit(Cx)

After creating the parameters, the clustering class is ready for use. You can 
apply the fit() method to the Cx variable, which produces a scaled and 
dimensionally reduced dataset.

Looking for optimal solutions
As mentioned in the previous section, the example is clustering ten different 
numbers. It’s time to start looking for a solution with K = 10. The following 
code compares the clustering result to the ground truth — the true labels — 
in order to determine whether there is any correspondence. 

import numpy as np
import pandas as pd
ms = np.column_stack((ground_truth,clustering.labels_))
df = pd.DataFrame(ms,
     columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
     margins=True)

Converting our solution, given by the labels variable internal to the clus-
tering class, into a pandas DataFrame allows us to apply a cross tabula-
tion and compare the original labels with the labels derived from clustering. 
You can observe the results in Figure 15-1. Because rows represent ground 
truth, you can look for numbers whose majority of observations are split 
among different clusters. These observations are the handwritten examples 
that are more difficult to figure out by K‐means.
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Notice how numbers such as seven or zero are concentrated into their own 
cluster, but others, such as 3 and 9, tend to gather together into the same 
group, the cluster 1. From such a discovery, you can deduce that certain 
handwritten numbers are easy to guess, while others aren’t.

Representing the centroids is also useful. You can use statistics to perform 
this task. However, because the data is made up of pixels, you can visualize 
the cases that are nearest to each centroid. The following code shows how to 
perform this task.

import matplotlib.pyplot as plt
for k,img in enumerate(np.argmin(dist,axis=0)):
   cluster = clustering.labels_[img]
   plt.subplot(2, 5, cluster)
   plt.imshow(digits.images[img],cmap='binary',
      interpolation='none')
   plt.title('cl '+str(cluster))
plt.show()

Observing the depicted centroids can make clear why the cluster 1 contains 
most of the numbers 3 and 9 and how a number 8 could be mistaken for 
a number 1 in cluster 0. In general, reasoning using clusters’ centroids is 
indeed easy because we have reduced thousands of cases into a few clusters 
to study and compare.

Clustering can help you to summarize huge quantities of data. It is an effec-
tive technique for presenting data to a nontechnical audience and for feed-
ing a supervised algorithm with group variables, thus providing them with 
 concentrated, significant information.

Figure 15-1:  
Cross‐

tabulation 
of ground 
truth and 
K‐means 
clusters.



280 Part IV: Wrangling Data  

Another observation you can make is that even though there are just ten 
numbers in this example, there are more types of handwritten forms of each, 
hence the necessity of finding more clusters. Of course, the problem is to 
determine just how many clusters you need.

You use inertia to measure the viability of a cluster. Inertia is the sum of all 
the differences between every cluster member and its centroid. If the exam-
ples in the group are similar to the centroid,  the difference is small and so 
is the inertia. Inertia as an individual measure reveals little. Moreover, when 
comparing inertia from different clusters in general, you notice that the more 
groups you have, the less the inertia. What you want to do instead of using 
inertia directly is to compare the inertia of a cluster solution with the previ-
ous cluster solution. This comparison provides you with the rate of change, 
a more interpretable measure. To obtain the inertia rate of change in Python, 
you will have to create a loop. Try progressive cluster solutions inside the 
loop, recording their value. Here is a script for the handwritten digit example:

inertia = list()
delta_inertia = list()
for k in range(1,21):
   clustering = KMeans(n_clusters=k, n_init=10,
      random_state=1)
   clustering.fit(Cx)
   if inertia: # So we won't compare the solution k==1
       delta_inertia.append(
           inertia[‐1] ‐ clustering.inertia_)
   inertia.append(clustering.inertia_)  

You use the inertia variable inside the clustering class after fitting the 
clustering. The inertia variable is a list containing the rate of change of inertia 
between a solution and the previous one. Here is some code that prints a line 
graph of the rate of change, as depicted by Figure 15-2.

import matplotlib.pyplot as plt
plt.figure()
plt.plot([k for k in range(2,21)], delta_inertia, 'ko‐')
plt.xlabel('Number of clusters')
plt.ylabel('Rate of change of inertia')
plt.show()

When examining inertia’s rate of change, look for jumps in the rate itself. 
If the rate jumps up, it means that adding a cluster more than the previous 
solution brings much more benefit than expected; if it jumps down instead, 
you’re likely forcing a cluster more than necessary. All the cluster solutions 
before a jump down may be a good candidate, according to the principle of 
parsimony (the jump signals a sophistication in our analysis, but the right 
solutions are usually the simplest). In the example, the first jump downward 
is at K=14, so the first solution to evaluate is K=13. You can see another inter-
esting jump at K=18, so you should also evaluate K=17, which is a peak.
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The rate of change in inertia will provide you with just a few tips where there 
could be good cluster solutions. It is up to you to decide which to pick if you 
need to get some extra insight on data. If, instead, clustering is just a step in 
a complex data science project, you can just pass the entire solution to the 
next machine‐learning algorithm.

Clustering big data
K‐means is a way to reduce the complexity of your data by summarizing 
the many examples in your dataset. To perform this task, you load the data 
into your computer’s memory, and that won’t always be feasible, especially 
if you are working with big data. Scikit‐learn offers an alternative way to 
apply K‐means — the MiniBatchKMeans is a variant that can progressively 
cluster separated chunks of data. In fact, a batch learning procedure usually 
processes the data part by part. There are only two differences between the 
standard K‐means function and MiniBatchKMeans:

 ✓ You cannot automatically test different starting centroids unless you try 
running the analysis again.

 ✓ The analysis will start when there is a batch made of at least a minimum 
number of cases. This value is usually set to 100 (but the more cases 
there are, the better the result) by the batch_size parameter.

A simple demonstration on the previous handwritten dataset shows how 
effective and easy it is to use the MiniBatchKMeans clustering class.

Figure 15-2:  
Rate of 

change of 
inertia  

for solutions 
up to K=20.
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from sklearn.cluster import MiniBatchKMeans
batch_clustering = MiniBatchKMeans(n_clusters=10,
   random_state=1)
batch = 100
guessed_labels = list()
inertia = 0
for row in range(0,len(Cx),batch):
    if row+batch < len(Cx):
        feed = Cx[row:row+batch,:]
    else:
        feed = Cx[row:,:]
    batch_clustering.partial_fit(feed)
    # We have to stack results in a list, because 
    # MiniBatchKMean does not take track of all the
    # batches
    guessed_labels.append(batch_clustering.labels_)
    inertia += batch_clustering.inertia_
# NumPy hstack turns a list of arrays into an array
# by inspecting the variable guess_labels you can know 
# the assigned cluster
guessed_labels = np.hstack(guessed_labels)
print "Kmeans inertia: %0.1f\n" +
      "MiniBatchKmeans inertia: %0.1f"
      % (clustering.inertia_,inertia)

Kmeans inertia: 48591.7
MiniBatchKmeans inertia: 67027.5

This script iterates through the indexes of the previously scaled and PCA 
simplified dataset (Cx), creating batches of 100 observations each. Using 
the partial_fit method, it fits a K‐means clustering on each batch, using 
the centroids found by the previous call. The algorithm stops when it runs 
out of data. It then reports its inertia for a 10‐clusters solution, comparing 
it with the same solution’s inertia by the standard K‐means class. Usually 
MiniBatchKmeans results in a higher inertia than a standard algorithm, so 
reserve this solution for those times when you cannot work with in‐memory 
datasets.

Performing Hierarchical Clustering
If the K‐means algorithm is concerned with centroids, hierarchical (also 
known as agglomerative) clustering tries to link each data point, by a distance 
measure, to its nearest neighbor, creating a cluster. Reiterating the algorithm 
using different linkage methods, the algorithm gathers all the available points 
into a rapidly diminishing number of clusters, until in the end all the points 
reunite into a single group.
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The results, if visualized, will closely resemble the biological classifications 
of living beings that you may have studied in school or seen on posters at 
the local natural history museum, an upside‐down tree whose branches are 
all converging into a trunk. Such a figurative tree is a dendrogram, and you 
see it used in medical and biological research. Scikit‐learn implementation of 
agglomerative clustering does not offer the possibility of depicting a dendro-
gram from your data because such a visualization technique works fine with 
only a few cases, whereas you can expect to work on many examples.

Compared to K‐means, agglomerative algorithms are more cumbersome 
and do not scale well to large datasets. Agglomerative algorithms are more 
suitable for statistical studies (they can be easily found in natural sciences, 
archeology, and sometimes psychology and economics). These algorithms do 
offer the advantage of creating a complete range of nested cluster solutions, 
so you just need to pick the right one for your purpose.

To use agglomerative clustering effectively, you have to know about the 
 different linkage methods (the heuristics for clustering) and the distance 
 metrics. There are three linkage methods:

 ✓ Ward: Tends to look for spherical clusters, very cohesive inside and 
extremely differentiated from other groups. Another nice characteristic 
is that the method tends to find clusters of similar size. It works only 
with the Euclidean distance.

 ✓ Complete: Links clusters using their furthest observations, that is, their 
most dissimilar data points. Consequently, clusters created using this 
method tend to be comprised of highly similar observations, making the 
resulting groups quite compact.

 ✓ Average: Links clusters using their centroids and ignoring their bound-
aries. The method creates larger groups than the complete method. In 
addition, the clusters can be different sizes and shapes, contrary to the 
Ward’s solutions. Consequently, this average, multipurpose, approach 
sees successful use in the field of biological sciences.

There are also three distance metrics:

 ✓ Euclidean (euclidean or l2): As seen in K‐means

 ✓ Manhattan (manhattan or l1): Similar to Euclidean, but the distance 
is calculated by summing the absolute value of the difference between 
the dimensions. In a map, if the Euclidean distance is the shortest route 
between two points, the Manhattan distance implies moving straight, 
first along one axis and then along the other — as a car in the city 
would, reaching a destination by driving along city blocks (the distance 
is also known as city block distance).
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 ✓ Cosine (cosine): A good choice when there are too many variables and 
you worry that some variable may not be significant (just noise). Cosine 
distance reduces noise by taking the shape of the variables, more than 
their values, into account. It tends to associate observations that have the 
same maximum and minimum variables, regardless of their effective value.

If your dataset doesn’t contain too many observations, it’s worth trying 
agglomerative clustering with all the combinations of linkage and distance 
and then comparing the results carefully. In clustering, you rarely already 
know right answers, and agglomerative clustering can provide you with 
another useful potential solution. For example, you can recreate the previous 
analysis with K‐means and handwritten digits, using the ward linkage and the 
Euclidean distance as follows:

from sklearn.cluster import AgglomerativeClustering
# Affinity = {"euclidean", "l1", "l2", "manhattan",
# "cosine"}
# Linkage = {"ward", "complete", "average"}
Hclustering = AgglomerativeClustering(n_clusters=10,
   affinity='euclidean', linkage='ward')
Hclustering.fit(Cx)
ms = np.column_stack((ground_truth,Hclustering.labels_))
df = pd.DataFrame(ms,
   columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
   margins=True)

The results, in this case, are comparable to K‐means, although, you may 
have noticed that completing the analysis using this approach takes longer 
than using K‐means. When working with a large number of observations, the 
computations for a hierarchical cluster solution may take hours to complete, 
making this solution less feasible. You can get around the time issue by using 
two‐phase clustering, which is faster and provides you with a hierarchical 
solution even when you are working with large datasets.

To implement the two‐phase clustering solution, you process the original 
observations using K‐means with a large number of clusters. A good rule of 
thumb is to take the square root of the number of observations and use that 
figure, but you always have to keep the number of clusters in the range of 
100–200 for the second phase, based on hierarchical clustering, to work well. 
The following example uses 100 clusters.

from sklearn.cluster import KMeans
clustering = KMeans(n_clusters=100, n_init=10,
   random_state=1)
clustering.fit(Cx)
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At this point, the tricky part is to keep track of what case has been assigned 
to what cluster derived from K‐means. You can use a dictionary for such a 
purpose.

Kx = clustering.cluster_centers_
Kx_mapping = {case:cluster for case,
   cluster in enumerate(clustering.labels_)}

The new dataset is Kx, which is made up of the cluster centroids that the  
K‐means algorithm has discovered. You can think of each cluster as a well‐
represented summary of the original data. If you cluster the summary now, it 
will be almost the same as clustering the original data.

from sklearn.cluster import AgglomerativeClustering
Hclustering = AgglomerativeClustering(n_clusters=10,
   affinity='cosine', linkage='complete')
Hclustering.fit(Kx)

You now map the results to the centroids you originally used so that you can 
easily determine whether a hierarchical cluster is made of certain K‐means 
centroids. The result consists of the observations making up the K‐means 
clusters having those centroids.

H_mapping = {case:cluster for case,
   cluster in enumerate(Hclustering.labels_)}
final_mapping = {case:H_mapping[Kx_mapping[case]]
   for case in Kx_mapping}

Now you can evaluate the solution you obtained using a similar confusion 
matrix as you did before for both K‐means and hierarchical clustering.

ms = np.column_stack((ground_truth,
 [final_mapping[n] for n in range(max(final_mapping)+1)]))
df = pd.DataFrame(ms,
   columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
   margins=True)

The solution you obtain is analogous to the previous solutions. The result 
proves that this approach is a viable method for handling large datasets 
or even big data datasets, reducing them to a smaller representations and 
then operating with less scalable clustering, but more varied and precise 
 techniques. The two‐phase approach also presents another advantage 
because it operates well with noisy or outlying data — the initial K‐means 
phase filters out such problems well and relegates them to separate cluster 
solutions.
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Moving Beyond the Round-Shaped 
Clusters: DBScan

Both K‐means and agglomerative clustering, especially if you are using the 
Ward’s linkage criteria, will produce cohesive groups, similar to bubbles, 
equally spread in all directions.

Reality can sometimes produce complex and unsettling results — groups 
may have strange forms far from the canonical bubble. The Scikit‐learns’s 
datasets module offers a wide range of mind‐teasing shapes that you can’t 
successfully crunch using either K‐means or agglomerative clustering: large 
circles containing smaller ones, interleaved small circles, and spiraling Swiss 
roll datasets (named after the sponge cake roll because of how the data 
points are arranged).

DBScan is another clustering algorithm based on a smart intuition that can 
solve even the most difficult problems. DBScan relies on the idea that clus-
ters are dense, so to start exploring the data space in every direction and 
mark a cluster boundary when the density decreases should be sufficient. 
Areas of the data space with insufficient density of points are just considered 
empty, and all the points there are noise or outliers, that is, points character-
ized by unusual or strange values.

DBScan is more complex and requires more running time than K‐means 
(but it is faster than agglomerative clustering). It automatically guesses the 
number of clusters and points out strange data that doesn’t easily fit into any 
class. This makes DBScan different from the previous algorithms that try to 
force every observation into a class.

Replicating the handwritten digit clustering requires just a few lines of 
Python code:

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=4.35, min_samples=25, random_state=1)
DB.fit(Cx)

Using DBScan, you won’t have to set a K number of expected clusters; the 
algorithm will find them by itself. Apparently, the lack of a K number seems 
to simplify the usage of DBScan; in reality, the algorithm requires you to fix 
two essential parameters, eps and min_sample, in order to work properly:

 ✓ eps: The maximum distance between two observations that allows them 
to be part of the same neighborhood.

 ✓ min_sample: The minimum number of observations in a neighborhood 
that transform them into a core point.
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The algorithm works by walking around the data and building clusters by 
linking observations arranged into neighborhoods. A neighborhood is a 
small cluster of data points all within a distance value of eps. If the number 
of points in the neighborhood is less than the number min_sample, then 
DBScan doesn’t form the neighborhood.

No matter what the shape of the cluster, DBScan links all the neighborhoods 
together if they are near enough (under the distance value of eps). When no 
more neighborhoods are within reach, DBScan tries to aggregate to group 
even single data points, if they are within eps distance. The data points that 
aren’t associated with any group are treated as noisy points (too particular 
to be part of a group).

Try many values of eps and min_sample. The resulting clusters may also 
change drastically with respect to the values set into these two parameters.

Start with a low number of min_samples. Using a lower number allows many 
neighborhoods to cluster together. The default number 5 is fine. Then try 
different numbers for eps, starting from 0.1 upward. Don’t be disappointed if 
you can’t get a viable result initially — keep trying different combinations.

Getting back to the example, after this brief explanation of DBScan details, 
some data exploration can allow you to observe the results under the right 
point of view. First, count the clusters:

from collections import Counter
print Counter(DB.labels_)

Counter({‐1: 913, 4: 222, 1: 176, 3: 162, 0: 134, 2: 104,
   5: 86})

A large number of observations are assigned to the cluster labeled ‐1, which 
represents the noise (noise is defined as examples that are too unusual to 
group). Likely, given the high number of dimensions (40 uncorrelated vari-
ables from a PCA analysis) in our data and its high variability (after all, they 
are handwritten samples), many cases do not naturally fall together into the 
same group.

At this point, print a visual representation of some example characteristics of 
the six clusters (as shown in Figure 15-3):

import matplotlib.pyplot as plt
for k,cl in enumerate(np.unique(DB.labels_)):
    if cl >= 0:
        example = np.min(np.where(DB.labels_==cl))
        plt.subplot(2, 3, k)
        plt.imshow(digits.images[example],
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            cmap='binary',interpolation='none')
        plt.title('cl '+str(cl))
plt.show()
ms = np.column_stack((ground_truth,DB.labels_))
df = pd.DataFrame(ms,
   columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'],
   margins=True)

The six examples in Figure 15-3 show the numbers 1, 0, 7, 6, 3, and 4 quite 
clearly. Also, the cross tabulation of cluster ownership with the real labels 
indicate that DBScan succeeded in finding the numbers precisely and didn’t 
mix different numbers together.

The strength of DBScan is to provide reliable, consistent clusters. After all, 
DBScan isn’t forced, as are K‐means and agglomerative clustering, to reach a 
solution with a certain number of clusters, even when such a solution does 
not exist.

(a) (b)

Figure 15-3:  
DBScan 
clusters’ 

represen
tatives.



Detecting Outliers in Data
In This Chapter

 ▶ Understanding what is an outlier

 ▶ Distinguishing between extreme values and novelties

 ▶ Using simple statistics for catching outliers

 ▶ Finding out most tricky outliers by advanced techniques

E 
rrors happen when you least expect, and that’s also true in regard to 
your data. In addition, data errors are difficult to spot, especially when 

your dataset contains many variables of different types and scale (a high‐
dimensionality data structure).

Data errors can take a number of forms. For example, the values may be 
 systematically missing on certain variables, erroneous numbers could appear 
here and there, and the data could include outliers. A red flag has to be 
raised when the following characteristics are met:

 ✓ Missing values on certain groups of cases or variables imply that some 
specific cause is generating the error.

 ✓ Erroneous values depend on how the application has produced or 
manipulated the data. For instance, you need to know whether the 
 application has obtained data from a measurement instrument. External 
conditions and human error can affect the reliability of instruments.

 ✓ The case is apparently valid, but quite different from the usual values 
that characterize that variable. When you can’t explain the reason for 
the difference, you could be observing an outlier.

Among the illustrated errors, the trickiest problem to solve is when your 
dataset has outliers, because you don’t always have a unique definition of 
outliers, or a clear reason to have them in your data. As a result, much is left 

Chapter 16
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to your investigation and evaluation. The good news is that Python offers you 
quite a few tools for spotting outliers and other kinds of unexpected values, 
so at least you won’t be looking for a needle in a haystack.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 16; Outliers.ipynb source code file.

Considering Detection of Outliers
As a general definition, outliers are data that differ significantly (they’re 
 distant) from other data in a sample. The reason they’re distant is that 
one or more values are too high or too low when compared to the major-
ity of the values. They could also display an almost unique combination of 
values. For instance, if you are analyzing records of students enlisted in a 
university,  students who are too young or too old may catch you attention. 
Students studying unusual mixes of different subjects would also require 
scrutiny.

Outliers skew your data distributions and affect all your basic central 
 tendency statistics. Means are pushed upward or downward, influencing all 
other descriptive measures. An outlier will always inflate variance and modify 
correlations, so you may obtain incorrect assumptions about your data and 
the relationships between variables.

This simple example can display the effect (on a small scale) of a single 
 outlier with respect to more than one thousand regular observations:

import numpy as np
from scipy.stats.stats import pearsonr
np.random.seed(101)
normal = np.random.normal(loc=0.0, scale= 1.0, size=1000)
print 'Mean: %0.3f Median: %0.3f Variance: %0.3f' % (np.mean(normal), 

np.median(normal),
               np.var(normal))

Mean: 0.026 Median: 0.032 Variance: 1.109

Using the NumPy random generator, we created the variable named normal, 
which contains 1000 observation derived from a standard normal distribu-
tion. Basic descriptive statistics (mean, median, variance) do not show 
 anything unexpected.
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Now we change a single value by inserting an outlying value:

outlying = normal.copy()
outlying[0] = 50.0
print 'Mean: %0.3f Median: %0.3f Variance: %0.3f' % (np.mean(outlying),
   np.median(outlying), np.var(outlying))
print 'Pearson'’s correlation coefficient: %0.3f p‐value: %0.3f' % pearsonr(
  normal,outlying)
Mean: 0.074 Median: 0.032 Variance: 3.597
Pearsons correlation coefficient: 0.619 p‐value: 0.000

We call this new variable outlying and put an outlier into it (at index 0, we 
have a positive value of 50.0). Now, as for as basic statistics go, the mean 
has a value three times higher than before, and so does variance. Only the 
median, which relies on position (it tells you the value occupying the middle 
position when all the observations are arranged in order) is not affected by 
the change.

More significant, the correlation of the original variable and the outlying 
 variable is quite far from being +1.0 (the correlation value of a variable in 
respect of itself), indicating that the measure of linear relationship between 
the two variables has been seriously damaged.

Finding more things that can go wrong
Outliers do not simply shift key measures in your explorative statistics — 
they also change the structure of the relationships between variables in your 
data. Outliers can affect machine‐learning algorithms in two ways:

 ✓ Algorithms based on coefficients may take the wrong coefficient in order 
to minimize their inability to understand the outlying cases. Linear 
models are a clear example (they are sums of coefficients), but they are 
not the only ones. Outliers can also influence tree‐based learners such 
as Adaboost or Gradient Boosting Machines.

 ✓ Because algorithms learn from data samples, outliers may induce the 
algorithm to overweight the likelihood of extremely low or high values 
given a certain variable configuration.

Both situations limit the capacity of a learning algorithm to generalize well 
to new data. In other words, they make your learning process overfit to the 
present dataset.
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There are a few remedies for outliers — some of them require that you 
modify your present data and others that you choose a suitable error func-
tion for your machine‐learning algorithm. (Some algorithms offer you the 
 possibility to pick a different error function as a parameter when setting up 
the learning procedure.)

Most machine learning algorithms can accept different error functions. The 
error function is important because it helps the algorithm to learn by under-
standing errors and enforcing adjustments in the learning process. Some 
error functions are extremely sensitive to outliers, while others are quite 
resistant to them. When illustrating the different machine‐learning classes 
that the Scikit‐learn package offers, the chapter points out the available 
error functions or other learning parameters that can increase resistance to 
extreme cases.

Understanding anomalies and novel data
Because outliers occur as mistakes or in extremely rare cases, detecting an 
outlier is never an easy job; it is, however, an important one for obtaining 
effective results from your data science project. In certain fields, detecting 
anomalies is itself the purpose of data science: fraud detection in insurance 
and banking, fault detection in manufacturing, system monitoring in health 
and other critical applications, and event detection in security systems and 
for early warning.

An important distinction is when we are looking for existing outliers in data, or 
when we are checking to see whether any new data contains anomalies with 
respect to the existent one. Maybe we spent a lot of time cleaning our data or 
we have developed a machine‐learning application based on available data, so 
it would be critical to figure out whether the new data we are providing is sim-
ilar to the old data and whether our algorithms will keep up the good job in 
classification or prediction. In such cases, we instead talk of novelty detection, 
because what we are interested in is to know how much the new data resem-
bles the old. Being exceptionally new is considered an anomaly: Novelty may 
conceal a significant event or may risk preventing our algorithm from working 
properly. When working with new data, the algorithm should be retrained.

Examining a Simple Univariate Method
When looking for outliers, a good start, no matter how many variables you 
have in your data, is to look at every single variable by itself, using both 
graphical and statistical inspection. This is the univariate approach, which 
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allows you to spot an outlier given an incongruous value on a variable. The 
pandas package can make spotting outliers quite easy thanks to

 ✓ A straightforward describe method that informs you on mean,  variance, 
quartiles, and extremes of your numeric values for each variable

 ✓ A system of automatic boxplot visualizations

Using both techniques in conjunction makes it easy to know when you have 
outliers and where to look for them. The diabetes dataset, from the Scikit‐
learn datasets module, is a good example to start with.

from sklearn.datasets import load_diabetes
diabetes = load_diabetes()
X,y = diabetes.data, diabetes.target

All the data is in the X variable, a NumPy ndarray. We transform it into a 
pandas DataFrame.

import pandas as pd
pd.options.display.float_format = '{:.2f}'.format
df = pd.DataFrame(X)
print df.describe()

           0      1      2      3      4      5      6      7      8      9
count 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00 442.00
mean   ‐0.00   0.00  ‐0.00   0.00  ‐0.00   0.00  ‐0.00   0.00  ‐0.00  ‐0.00
std     0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05
min    ‐0.11  ‐0.04  ‐0.09  ‐0.11  ‐0.13  ‐0.12  ‐0.10  ‐0.08  ‐0.13  ‐0.14
25%    ‐0.04  ‐0.04  ‐0.03  ‐0.04  ‐0.03  ‐0.03  ‐0.04  ‐0.04  ‐0.03  ‐0.03
50%     0.01  ‐0.04  ‐0.01  ‐0.01  ‐0.00  ‐0.00  ‐0.01  ‐0.00  ‐0.00  ‐0.00
75%     0.04   0.05   0.03   0.04   0.03   0.03   0.03   0.03   0.03   0.03
max     0.11   0.05   0.17   0.13   0.15   0.20   0.18   0.19   0.13   0.14
[8 rows x 10 columns]

You can spot the problematic variables by looking at the extremities of the 
distribution. For example, you must consider whether the minimum and 
 maximum values lie respectively far from the 25th and 75th percentile. As 
shown in the output, many variables have suspect large maximum values.  
A boxplot analysis will clarify the situation. The following command creates 
the boxplot of all variables shown in Figure 16-1.

box_plots = df.boxplot()

Boxplots generated from pandas DataFrame will have whiskers set to plus 
or minus 1.5 IQR (interquartile range or the distance between the lower and 
upper quartile) with respect to the upper and lower side of the box (the 
upper and lower quartiles). This boxplot style is called the Tukey boxplot 
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(from the name of statistician John Tukey, who created and promoted it 
among statisticians together with other explanatory data techniques) and 
it allows a visualization of the presence of cases outside the whiskers. (All 
points outside these whiskers are deemed outliers.)

Leveraging on the Gaussian distribution
Another fast check for outliers in your data is accomplished by leveraging 
the normal distribution. Even if your data isn’t normally distributed, stan-
dardizing it will allow you to assume certain probabilities of finding anoma-
lous values. For instance, 99.7% in a standardized normal distribution should 
be inside the range of +3 and –3 standard deviations from the mean, as shown 
in the following code.

from sklearn.preprocessing import StandardScaler
Xs = StandardScaler().fit_transform(X)
o_idx = np.where(np.abs(Xs)>3)
# .any(1) method will avoid duplicating 
print df[(np.abs(Xs)>3).any(1)]

        0     1     2     3     4     5     6     7     8     9
58   0.04 ‐0.04 ‐0.06  0.04  0.01 ‐0.06  0.18 ‐0.08 ‐0.00 ‐0.05
123  0.01  0.05  0.03 ‐0.00  0.15  0.20 ‐0.06  0.19  0.02  0.07
216  0.01  0.05  0.04  0.05  0.05  0.07 ‐0.07  0.15  0.05  0.05
...
[12 rows x 10 columns]

Figure 16-1: 
Boxplots.
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The Scikit‐learn module provides an easy way to standardize your data and 
to record all the transformations for later use on different datasets. This 
means that all your data, no matter whether it’s for machine‐learning training 
or for performance test purposes, is standardized in the same way.

The 68‐95‐99.7 rule says that in a standardized normal distribution, 68 percent 
of values are within one standard deviation, 95 percent are within two stan-
dard deviations, and 99.7 percent are within three. When working with skewed 
data, the 68‐95‐99.7 rule may not hold true, and in such an occurrence, you 
may need some more conservative estimate, such as Chebyshev’s inequality. 
Chebyshev’s inequality relies on a formula that says that for k standard devia-
tions around the mean, no more cases than a percentage of 1/k^2 should be 
over the mean. Therefore, at seven standard deviations around the mean, 
your probability of finding a legitimate value is at most two percent, no matter 
what the distribution is (two  percent is a low probability; your case could be 
an outlier).

Chebyshev’s inequality is conservative. A high probability of being an outlier 
corresponds to seven or more standard deviations away from the mean. Use 
it when it may be costly to deem a value an outlier when it isn’t. For all other 
applications, the 68‐95‐99.7 rule will suffice.

Making assumptions and checking out
Having found some possible univariate outliers, you now have to decide how 
to deal with them. If you completely distrust the outlying cases, under the 
assumption that they were unfortunate errors or mistakes, you could just 
delete them. (In Python, you can just deselect them using fancy indexing.)

Modifying the values in your data or deciding to exclude certain values is a 
decision to make after you understand why there are some outliers in your 
data. You can rule out unusual values or cases for which you presume that 
some error in measurement has occurred, in recording or previous handling 
of the data. If instead you realize that the outlying case is a legitimate, though 
rare, one, the best approach would be to underweight it (if your learning 
algorithms use weight for the observations) or to increase the size of your 
data sample.

In our case, deciding to keep the data and having standardized it, we could 
just cap the outlying values by using a simple multiplier of the standard 
deviation:

Xs_c = Xs.copy()
Xs_c[o_idx] = np.sign(Xs[o_idx]) * 3
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In the proposed code, the sign function from NumPy recovers the sign of the 
outlying observation (+1 or –1), which is then multiplied by the value of 3 and 
then assigned to the respective data point recovered by a Boolean indexing 
of the standardized array.

This approach does have a limitation. Being the standard deviation used 
both for high and low values, it implies symmetry in your data distribution, 
an assumption often unverified in real data. As an alternative, you can use a 
bit more sophisticated approach called winsorizing. When using winsorizing, 
the values deemed outliers are clipped to the value of specific percentiles 
that act as value limits (usually the  fifth percentile for the lower bound, the 
95th for the upper):

from scipy.stats.mstats import winsorize
Xs_w = winsorize(Xs, limits=(0.05, 0.95))

In this way, you create a different hurdle value for larger and smaller values —  
taking into account any asymmetry in the data distribution. Whatever you 
decide for capping (by standard deviation or by winsorizing), your data is now 
ready for further processing and analysis, and you can cross‐validate or test 
the decision of how to deal with outlying data as it is done for machine learn-
ing models (testing decisions and your hypothesis are part of the data science 
process).

Developing a Multivariate Approach
Working on single variables allows you to spot a large number of outlying 
observations. However, outliers do not necessarily display values too far 
from the norm. Sometimes outliers are made of unusual combinations of 
values in more variables. They are rare, but influential, combinations that can 
especially trick machine learning algorithms.

In such cases, the precise inspection of every single variable won’t suffice to 
rule out anomalous cases from your dataset. Only a few selected techniques, 
taking in consideration more variables at a time, will manage to reveal 
 problems in your data.

The presented techniques approach the problem from different points  
of view:

 ✓ Dimensionality reduction

 ✓ Density clustering

 ✓ Nonlinear distribution modeling
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Using these techniques allows you to compare their results, taking notice of 
the recurring signals on particular cases — sometimes already located by the 
univariate exploration, sometimes as yet unknown.

Using principal component analysis
Principal component analysis can completely restructure the data, remov-
ing redundancies and ordering newly obtained components according to the 
amount of the original variance that they express. This type of analysis offers 
a synthetic and complete view over data distribution, making multivariate 
outliers particularly evident.

The first two components, being the most informative in term of variance, 
can depict the general distribution of the data if visualized. The output 
 provides a good hint at possible evident outliers.

The last two components, being the most residual, depict all the information 
that could not be otherwise fitted by the PCA method. They can also provide 
a suggestion about possible but less evident outliers.

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from pandas.tools.plotting import scatter_matrix
dim_reduction = PCA()
Xc = dim_reduction.fit_transform(scale(X))
print 'variance explained by the first 2 components: %0.1f%%' % (
   sum(dim_reduction.explained_variance_ratio_[:2]*100))
print 'variance explained by the last 2 components: %0.1f%%' % (
   sum(dim_reduction.explained_variance_ratio_[‐2:]*100))
df = pd.DataFrame(Xc, columns=['comp_'+str(j+1) for j in range(10)])
first_two = df.plot(kind='scatter', x='comp_1', y='comp_2', c='DarkGray', s=50)
last_two  = df.plot(kind='scatter', x='comp_9', y='comp_10', c='DarkGray', s=50)

Figure 16-2 shows two scatterplots of the first and last components. Pay 
 particular attention to the data points along the axis (where the x axis defines 
the independent variable and the y axis defines the dependent variable). 
You can see a possible threshold to use for separating regular data from 
 suspect data.

Using the two last components, you can locate a few points to investigate 
using the threshold of –0.3 for the tenth component and of –1.0 for the ninth. 
All cases below these values are possible outliers.

outlying = (Xc[:,‐1] < ‐0.3) | (Xc[:,‐2] < ‐1.0)
print df[outlying]
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Using cluster analysis
Outliers are isolated points in the space of variables, and DBScan is a cluster-
ing algorithm that links dense data parts together and marks the too‐sparse 
parts. DBScan is therefore an ideal tool for an automated exploration of your 
data for possible outliers to verify.

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=2.5, min_samples=25, random_state=101)
DB.fit(Xc)
from collections import Counter
print Counter(DB.labels_),'\n'
print df[DB.labels_==‐1]
Counter({0: 414, ‐1: 28})

        0     1     2     3     4     5     6     7     8     9
15  ‐0.05  0.05 ‐0.02  0.08  0.09  0.11 ‐0.04  0.11  0.04 ‐0.04
23   0.05  0.05  0.06  0.03  0.03 ‐0.05 ‐0.05  0.07  0.13  0.14
29   0.07  0.05 ‐0.01  0.06 ‐0.04 ‐0.10  0.05 ‐0.08  0.06  0.05
... (results partially omitted)
[28 rows x 10 columns]

However, DBSCAN requires two parameters, eps and min_samples. These 
two parameters require multiple tries to locate the right values, making using 
the parameters a little tricky.

As hinted in the previous chapter, start with a low value of min_samples 
and try growing the values of eps from 0.1 upward. After every trial with 
modified parameters, check the situation by counting the number of observa-
tions in the class –1 inside the attribute labels, and stop when the number 
of outliers seems reasonable for a visual inspection.

(a) (b)

Figure 16-2: 
The first 

two and last 
two com-

ponents of 
the principal 

component 
analysis.



299  Chapter 16: Detecting Outliers in Data

There will always be points on the fringe of the dense parts’ distribution, so it 
is hard to provide you with a threshold for the number of cases that might be 
classified in the –1 class. Normally, outliers should not be more than 5 percent 
of cases, so use this indication as a generic rule of thumb.

Automating outliers detection with SVM
Support Vector Machines (SVM) is a powerful machine learning technique 
that’s extensively illustrated in Chapter 19 of the book. OneClassSVM is an 
algorithm that specializes in learning the expected distributions in a dataset. 
OneClassSVM is especially useful as a novelty detector method if you can 
first provide data cleaned from outliers; otherwise, it’s effective as a detector 
of multivariate outliers. In order to have OneClassSVM work properly, you 
have two key parameters to fix:

 ✓ gamma, telling the algorithm whether to follow or approximate the 
 dataset distributions. For novelty detection, it is better to have a value 
of 0 or superior (follow the distribution); for outlier detection values, 
smaller than 0 values are preferred (approximate the distribution).

 ✓ nu, which can be calculated by the following formula: nu_estimate =  
0.95 * f + 0.05, where f is the percentage of expected outliers (a number 
from 1 to 0). If your purpose is novelty detection, f will be 0.

Executing the following script, you will get a OneClassSVM working as an 
outlier detection system:

from sklearn import svm
outliers_fraction = 0.01 # 
nu_estimate = 0.95 * outliers_fraction + 0.05
auto_detection = svm.OneClassSVM(kernel="rbf", gamma=0.01, degree=3,  

nu=nu_estimate)
auto_detection.fit(Xc)
evaluation = auto_detection.predict(Xc)
print df[evaluation==‐1]
        0     1     2     3     4     5     6     7     8     9
10  ‐0.10 ‐0.04 ‐0.08  0.01 ‐0.10 ‐0.09 ‐0.01 ‐0.08 ‐0.06 ‐0.03
23   0.05  0.05  0.06  0.03  0.03 ‐0.05 ‐0.05  0.07  0.13  0.14
32   0.03  0.05  0.13  0.03 ‐0.05 ‐0.01 ‐0.10  0.11  0.00  0.03
... (results partially omitted)
[25 rows x 10 columns]

OneClassSVM, like all the family of SVM, works better if you rescale your 
variables using the sklearn.preprocessing function scale or the class 
StandardScaler.
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 See an example of how you can perform a Twitter sentiment analysis at  
http://www.dummies.com/extras/pythonfordatascience.

Learning from Data
Part V

http://www.dummies.com/extras/pythonfordatascience


In this part . . .
 ✓ Using four major algorithms to analyze your data

 ✓ Validating, selecting, and optimizing the data analysis process

 ✓ Employing linear and nonlinear tricks to increase complexity

 ✓ Creating applications using the power of many



Exploring Four Simple and 
Effective Algorithms

In This Chapter
 ▶ Using linear and logistic regression

 ▶ Understanding Bayes theorem and using it for naive classification

 ▶ Predicting on the basis of cases being similar with kNN

I 
n this new part, you start to explore all the algorithms and tools necessary 
for learning from data (the training phase) and being capable of predicting 

a numeric estimate (for example, house pricing) or a class (for instance, the 
species of an Iris flower) given a new example that you didn’t have before. In 
this chapter, you start with the simplest algorithms and work toward more 
complex ones.

Simple and complex aren’t absolute values in machine learning — they’re 
relative to the algorithm’s construction. Some algorithms are simple sum
mations while others require complex calculations (and Python deals with 
both the simple and complex algorithms for you). It’s the data that makes the 
difference: For some problems, simple algorithms are better; other problems 
may instead require complex algorithms.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in the 
P4DS4D; 17; Exploring Four Simple and Effective Algorithms.
ipynb source code file.

Chapter 17
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Guessing the Number: Linear Regression
Regression has a long history in statistics, from building simple but effective 
linear models of economic, psychological, social, or political data, to hypoth
esis testing for understanding group differences, to modeling more complex 
problems with ordinal values, binary and multiple classes, count data, and 
hierarchical relationships.

Regression is also a common tool in data science. Stripped of most of its 
statistical properties, data science practitioners see linear regression as a 
simple, understandable, yet effective algorithm for estimations, and, in its 
logistic regression version, for classification as well.

Defining the family of linear models
Linear regression is a statistical model that defines the relationship between 
a target variable and a set of predictive features. It does so using a formula of 
the following type:

y = a + bx.

You can translate this formula into something readable and useful for many 
problems. For instance, if you’re trying to guess your sales based on his
torical results and available data about advertising expenditures, the same 
 preceding formula becomes

sales = a + b * (advertising expenditure)

You may already have encountered this formula during high school because 
it’s also the formula of a line in a bidimensional plane, which is made of an x 
axis (the abscissa) and a y axis (the ordinate).

You can demystify the formula by explaining its components: a is the value 
of the intercept (the value of y when x is zero) and b is a coefficient that 
expresses the slope of the line (the relationship between x and y). If b is 
positive, y increases and decreases as x increases and decreases — when b 
is negative, y behaves in the opposite manner. You can understand b as the 
unit change in y given a unit change in x. When the value of b is near zero, the 
effect of x on y is slight, but if the value of b is high, either positive or nega
tive, the effect of changes in x on y are great.
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Linear regression, therefore, can find the best y = a + bx and represent 
the relationship between your target variable, y, with respect to your predic
tive feature, x. Both a (alpha) and b (beta coefficient) are estimated on the 
basis of the data and they are found using the linear regression algorithm so 
that the difference between all the real y target values and all the y values 
derived from the linear regression formula are the minimum possible.

You can express this relationship graphically as the sum of the square of all 
the vertical distances between all the data points and the regression line. 
Such a sum is always the minimum possible when you calculate the regres
sion line correctly using an estimation called ordinary least squares, which is 
derived from statistics or the equivalent gradient descent, a machine‐learning 
method. The differences between the real y values and the regression line 
(the predicted y values) are defined as residuals (because they are what are 
left after a regression: the errors).

Using more variables
When using a single variable for predicting y, you use simple linear 
 regression, but when working with many variables, you use multiple linear 
regression. When you have many variables, their scale isn’t important in cre
ating precise linear regression predictions. But a good habit is to standardize 
X because the scale of the variables is quite important for some variants of 
regression (that you see later on) and it is insightful for your understanding 
of data to compare coefficients according to their impact on y.

The following example relies on the Boston dataset from Scikit‐learn. It tries 
to guess Boston housing prices using a linear regression. The example also 
tries to determine which variables influence the result more, so the example 
standardizes the predictors.

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X, y = scale(boston.data), boston.target

The regression class in Scikit‐learn is part of the linear_model module. 
Having previously scaled the X variable, you have no other preparations or 
special parameters to decide when using this algorithm.

from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(X,y)
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Now that the algorithm is fitted, you can use the score method to report 
the R2 measure, which is a measure that ranges from 0 to 1 and points out 
how using a particular regression model is better in predicting y than using 
a simple mean would be. You can also see R2 as being the quantity of target 
information explained by the model (the same as the squared correlation), 
so getting near 1 means being able to explain most of the y variable using the 
model.

print regression.score(X,y)

0.740607742865

In this case, R2 on the previously fitted data is 0.74, a good result for a simple 
model.

Calculating R2 on the same set of data used for the training is common in 
 statistics. In data science and machine‐learning, it’s always better to test 
scores on data that has not been used for training. Algorithms of greater 
complexity can memorize the data better than they learn from it, but this 
statement can be also true sometimes for simpler models, such as linear 
regression.

To understand what drives the estimates in the multiple regression model, 
you have to look at the coefficients_ attribute, which is an array contain
ing the regression beta coefficients. Printing at the same time, the boston.
DESCR attribute helps you understand which variable the coefficients refer
ence. The zip function will generate an iterable of both attributes, and you 
can print it for reporting.

print [a+':'+str(round(b,1)) for a, b in zip(
   boston.feature_names, regression.coef_,)]

['CRIM:‐0.9', 'ZN:1.1', 'INDUS:0.1', 'CHAS:0.7',
 'NOX:‐2.1', 'RM:2.7', 'AGE:0.0', 'DIS:‐3.1',
 'RAD:2.7', 'TAX:‐2.1', 'PTRATIO:‐2.1', 'B:0.9',
 'LSTAT:‐3.7']

DIS is the weighted distances to five employment centers. It shows the 
major absolute unit change. For example, in real estate, a house that’s too 
far from people’s interests (such as work) lowers the value. As a contrast, 
AGE and INDUS, with both proportions describing building age and show
ing whether nonretail activities are available in the area, don’t influence the 
result as much because the absolute value of their beta coefficients is lower 
than DIS.
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Understanding limitations and problems
Although linear regression is a simple yet effective estimation tool, it has 
quite a few problems. The problems can reduce the benefit of using linear 
regressions in some cases, but it really depends on the data. You determine 
whether any problems exist by employing the method and testing its efficacy. 
Unless you work hard on data (see Chapter 19), you may encounter these 
limitations:

 ✓ Linear regression can model only quantitative data. When modeling 
 categories as response, you need to modify the data into a logistic 
regression.

 ✓ If data is missing and you don’t deal with it properly, the model stops 
working. It’s important to impute the missing values or, using the value 
of zero for the variable, to create an additional binary variable pointing 
out that a value is missing.

 ✓ Also, outliers are quite disruptive for a linear regression because linear 
regression tries to minimize the square value of the residuals, and outli
ers have big residuals, forcing the algorithm to focus more on them than 
on the mass of regular points.

 ✓ The relation between the target and each predictor variable is based on 
a single coefficient — there isn’t an automatic way to represent complex 
relations like a parabola (there is a unique value of x maximizing y) or 
exponential growth. The only way you can manage to model such rela
tions is to use mathematical transformations of x (and sometimes y) or 
add new variables. Chapter 19 explores both the use of transformations 
and the addition of variables.

 ✓ The greatest limitation is that linear regression provides a summation  
of terms, which can vary independently of each other. It’s hard to 
figure out how to represent the effect of certain variables that affect the 
result in very different ways according to their value. In short, you can’t 
 represent complex situations with your data, just simple ones.

Moving to Logistic Regression
Linear regression is well suited for estimating values, but it isn’t the best tool 
for predicting the class of an observation. In spite of the statistical theory 
that advises against it, you can actually try to classify a binary class by scor
ing one class as 1 and the other as 0. The results are disappointing most of 
the time, so the statistical theory wasn’t wrong!
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The fact is that linear regression works on a continuum of numeric estimates. 
In order to classify correctly, you need a more suitable measure, such as 
the probability of class ownership. Thanks to the following formula, you can 
transform a linear regression numeric estimate into a probability that is more 
apt to describe how a class fits an observation:

probability of a class =  exp(r) / (1+exp(r))

r is the regression result (the sum of the variables weighted by the coeffi
cients) and exp is the exponential function. exp(r) corresponds to Euler’s 
number e elevated to the power of r. A linear regression using such a for
mula (also called a link function) for transforming its results into probabili
ties is a logistic regression.

Applying logistic regression
Logistic regression is similar to linear regression, with the only difference 
being the y data, which should contain integer values indicating the class 
relative to the observation. Using the Iris dataset from the Scikit‐learn 
 datasets module, you can use the values 0, 1, and 2 to denote three classes 
that correspond to three species:

from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data[:‐1,:], iris.target[:‐1]

To make the example easier to work with, leave a single value out so that 
later you can use this value to test the efficacy of the logistic regression 
model on it.

from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression()
logistic.fit(X,y)
print 'Predicted class %s, real class %s' % (
   logistic.predict(iris.data[‐1,:]),iris.target[‐1])
print 'Probabilities for each class from 0 to 2: %s'
   % logistic.predict_proba(iris.data[‐1,:])

Predicted class [2], real class 2
Probabilities for each class from 0 to 2: 
  [[ 0.00168787  0.28720074  0.71111138]]

Contrary to linear regression, logistic regression doesn’t just output the 
resulting class (in this case, the class 2), but it also estimates the probability 
of the observation’s being part of all three classes. Based on the observation 
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used for prediction, logistic regression estimates a probability of 71 percent 
of its being from class 2 — a high probability, but not a perfect score, there
fore leaving a margin of uncertainty.

Using probabilities lets you guess the most probable class, but you can also 
order the predictions with respect to being part of that class. This is espe
cially useful for medical purposes: Ranking a prediction in terms of likelihood 
with respect to others can reveal what patients are at most risk of getting or 
already having a disease.

Considering when classes are more
The previous problem, logistic regression, automatically handles a multiple 
class problem (it started with three iris species to guess). Most algorithms 
provided by Scikit‐learn that predict probabilities or a score for class can 
automatically handle multiclass problems using two different strategies:

 ✓ One versus rest: The algorithm compares every class with all the 
remaining classes, building a model for every class. If you have ten 
classes to guess, you have ten models. This approach relies on the 
OneVsRestClassifier class from Scikit‐learn.

 ✓ One versus one: The algorithm compares every class against every 
 individual remaining class, building a number of models equivalent to  
n * (n‐1) / 2, where n is the number of classes. If you have ten classes, 
you have 45 models. This approach relies on the OneVsOneClassifier 
class from Scikit‐learn.

In the case of logistic regression, the default multiclass strategy is the one 
versus rest. The example in this section shows how to use both the strategies 
with the handwritten digit dataset, containing a class for numbers from 0 to 9. 
The following code loads the data and places it into variables.

from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data[:1700,:], digits.target[:1700]
tX, ty = digits.data[1700:,:], digits.target[1700:]

The observations are actually a grid of pixel values. The grid’s dimensions  
are 8 pixels by 8 pixels. To make the data easier to learn by machine‐learning   
algorithms, the code aligns them into a list of 64 elements. The example 
reserves a part of the available examples for a test.
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from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
OVR = OneVsRestClassifier(LogisticRegression()).fit(X,y)
OVO = OneVsOneClassifier(LogisticRegression()).fit(X,y)
print 'One vs rest accuracy: %.3f' % OVR.score(tX,ty)
print 'One vs one accuracy: %.3f' % OVO.score(tX,ty)

One vs rest accuracy: 0.938
One vs one accuracy: 0.969

The two multiclass classes OneVsRestClassifier and OneVsOne 
Classifier operate by incorporating the estimator (in this case, Logistic 
Regression). After incorporation, they usually work just like any other learn
ing algorithm in Scikit‐learn. Interestingly, the one‐versus‐one strategy obtained 
the best accuracy thanks to its high number of models in competition.

When working with Anaconda and Python version 3.4, you may receive a 
 deprecation warning when working with this example. You’re safe to ignore 
the deprecation warning — the example should work as normal. All the 
 deprecation warning tells you is that one of the features used in the example 
is due for an update or will become unavailable in a future version of Python.

Making Things as Simple as Naïve Bayes
You might wonder why anyone would name an algorithm Naïve Bayes. The 
naïve part comes from its formulation — it makes some extreme simplifica
tions to standard probability calculations. The reference to Bayes in its name 
relates to the Reverend Bayes and his theorem on probability.

Reverend Thomas Bayes was a statistician and a philosopher who formulated 
his theorem during the first half of the eighteenth century. The theorem was 
never published while he was alive. It has deeply revolutionized the theory 
of probability by introducing the idea of conditional probability — that is, 
 probability conditioned by evidence.

Of course, it helps to start from the beginning — probability itself. Probabi
lity tells you the likelihood of an event and is expressed in a numeric form. 
The probability of an event is measured in the range from 0 to 1 (from  
0  percent to 100 percent) and it’s empirically derived from counting the 
number of times the specific event happened with respect to all the events. 
You can calculate it from data!

When you observe events (for example, when a feature has a certain charac
teristic), and you want to estimate the probability associated with the event, 
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you count the number of times the characteristic appears in the data and 
divide that figure by the total number of observations available. The result is 
a number ranging from 0 to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you 
can apply the probability in each situation. The term for this belief is a priori 
because it constitutes the first estimate of probability with regard to an event 
(the one that comes to mind first). For example, if you estimate the probabil
ity of a person being a female you might say, after some counting, that it’s  
50 percent, which is the prior, the first probability you will stick with.

The prior probability can change in the face of evidence, that is, something 
that can radically modify your expectations. For example, the evidence of 
whether a person is male or female could be that the person’s hair is long 
or short. You can estimate having long hair as an event with 35 percent 
 probability for the general population, but within the female population, it’s 
60 percent. If the percentage is so high in the female population, contrary to 
the general probability (the prior for having long hair), there should be some 
useful information that you can use!

Imagine that you have to guess whether a person is male or female and the 
evidence is that the person has long hair. This sounds like a predictive  
 problem, and in the end, this situation is really similar to predicting a 
 categorical variable from data: We have a target variable with different 
 categories and you have to guess the probability of each category on the 
basis of evidence, the data. Reverend Bayes provided a useful formula:

P(A|B) = P(B|A)*P(A) / P(B)

The formula looks like statistical jargon and is a bit counterintuitive, so it 
needs to be explained in depth. Reading the formula using the previous 
 example as input makes the meaning behind the formula quite a bit clearer:

 ✓ P(A|B) is the probability of being a female (event A) given long hair 
 (evidence B). This part of the formula defines what you want to predict. 
In short, it says to predict y given x where y is an outcome (male or 
female) and x is the evidence (long or short hair).

 ✓ P(B|A) is the probability of having long hair when the person is a 
female. In this case, you already know that it’s 60 percent. In every data 
 problem, you can obtain this figure easily by simple cross‐tabulation of 
the features against the target outcome.

 ✓ P(A) is the probability of being a female, a 50 percent general chance  
(a prior).

 ✓ P(B) is the probability of having long hair, which is 35 percent (another 
prior).
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When reading parts of the formula such as P(A|B), you should read them 
as follows: probability of A given B. The | symbol translates as given. A 
 probability expressed in this way is a conditional probability, because it’s the 
probability of A conditioned by the evidence presented by B. In this example, 
plugging the numbers into the formula translates into: 60% * 50% / 35% = 85.7%

Therefore, even if being a female is a 50 percent probability, just knowing 
evidence like long hair takes it up to 85.7 percent, which is a more favorable 
chance for the guess. You can be more confident in guessing that the person 
with long hair is a female because you have a bit less than a 15 percent 
chance of being wrong.

Finding out that Naïve Bayes  
isn’t so naïve
Naive Bayes, leveraging the simple Bayes’ rule, takes advantage of all the 
 evidence available in order to modify the prior base probability of your 
predictions. Because your data contains so much evidence — that is, it has 
many features — the data makes a big sum of all the probabilities derived 
from a simplified Naïve Bayes formula.

As discussed in the “Guessing the number: linear regression” section,  earlier 
in this chapter, summing variables implies that the model takes them as 
 separate and unique pieces of information. But this isn’t true in reality, 
because applications exist in a world of interconnections, with every piece of 
information connecting to many other pieces. Using one piece of information 
more than once means giving more emphasis to that particular piece.

Because you don’t know (or simply ignore) the relationships between each 
piece of evidence, you probably just plug all of them in to Naïve Bayes. The 
simple and naïve move of throwing everything that you know at the formula 
works well indeed, and many studies report good performance despite the 
fact that you make a naïve assumption. It’s okay to use everything for predic
tion, even though it seems as though it shouldn’t be okay given the strong 
association between variables. Here are some of the ways in which you 
 commonly see Naïve Bayes used:

 ✓ Building spam detectors (catching all annoying emails in your inbox)

 ✓ Sentiment analysis (guessing whether a text contains positive or 
 negative attitudes with respect to a topic, and detecting the mood of the 
speaker)

 ✓ Text‐processing tasks such as spell correction, or guessing the language 
used to write or classify the text into a larger category
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Naïve Bayes is also popular because it doesn’t need as much data to work. It 
can naturally handle multiple classes. With some slight variable modifications 
(transforming them into classes), it can also handle numeric variables. Scikit‐
learn provides three Naïve Bayes classes in the sklearn.naive_bayes 
module:

 ✓ MultinomialNB: Uses the probabilities derived from a feature’s 
 presence. When a feature is present, it assigns a certain probability to 
the outcome, which the textual data indicates for the prediction.

 ✓ BernoulliNB: Provides the multinomial functionality of Naïve Bayes, 
but it penalizes the absence of a feature. It assigns a different probability 
when the feature is present than when it’s absent. In fact, it treats all 
 features as dichotomous variables (the distribution of a dichotomous 
variable is a Bernoulli distribution). You can also use it with textual data.

 ✓ GaussianNB: Defines a version of Naïve Bayes that expects a normal 
distribution of all the features. Hence, this class is suboptimal for 
 textual data in which words are sparse (use the multinomial or Bernoulli 
 distributions instead). If your variables have positive and negative 
values, this is the best choice.

Predicting text classifications
Naïve Bayes is particularly popular for document classification. In textual 
problems, you often have millions of features involved, one for each word 
spelled correctly or incorrectly. Sometimes the text is associated with other 
nearby words in n‐grams, that is, sequences of consecutive words. Naïve 
Bayes can learn the textual features quickly and provide fast predictions 
based on the input.

This section tests text classifications using the binomial and multinomial 
Naïve Bayes models offered by Scikit‐learn. The examples rely on the 
20newsgroups dataset, which contains a large number of posts from  
20 kinds of newsgroups. The dataset is divided into a training set, for building 
your textual models, and a test set, which is comprised of posts that tempo
rally follow the training set. You use the test set to test the accuracy of your 
predictions.

from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train',
   remove=('headers', 'footers', 'quotes'))
newsgroups_test = fetch_20newsgroups(subset='test',
   remove=('headers', 'footers', 'quotes'))
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After loading the two sets into memory, you import the two Naïve Bayes 
and instantiate them. At this point, you set alpha values, which are useful 
for avoiding a zero probability for rare features (a zero probability would 
exclude these features from the analysis). You typically use a small value for 
alpha, as shown in the following code:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB
Bernoulli = BernoulliNB(alpha=0.01)
Multinomial = MultinomialNB(alpha=0.01)

In Chapter 12, you use the hashing trick to model textual data without fear 
of encountering new words when using the model after the training phase. 
You can use two different hashing tricks, one counting the words (for the 
multinomial approach) and one recording whether a word appeared in a 
binary variable (the binomial approach). You can also remove stop words, 
that is, common words found in the English language, such as “a,” “the,” 
“in,” and so on.

import sklearn.feature_extraction.text as txt
multinomial_hashing_trick = txt.HashingVectorizer(
   stop_words='english', binary=False, norm=None,
   non_negative=True)
binary_hashing_trick = txt.HashingVectorizer(
   stop_words='english', binary=True, norm=None,
   non_negative=True)

At this point, you can train the two classifiers and test them on the test set, 
which is a set of posts that temporally appear after the training set. The 
test measure is accuracy, which is the percentage of right guesses that the 
 algorithm makes.

Multinomial.fit(multinomial_hashing_trick.transform(
   newsgroups_train.data), newsgroups_train.target)
Bernoulli.fit(binary_hashing_trick.transform(
   newsgroups_train.data), newsgroups_train.target)
from sklearn.metrics import accuracy_score
for m, h in [(Bernoulli, binary_hashing_trick),
   (Multinomial, multinomial_hashing_trick)]:
   print 'Accuracy for %s: %.3f' % (m,
       accuracy_score(y_true=newsgroups_test.target,
          y_pred=m.predict(h.transform(
            newsgroups_test.data))))

Accuracy for BernoulliNB(alpha=0.01, binarize=0.0,
   class_prior=None, fit_prior=True): 0.570
Accuracy for MultinomialNB(alpha=0.01, class_prior=None,
   fit_prior=True): 0.651
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You might notice that it won’t take long for both models to train and report 
their predictions on the test set. Consider that the training set is made up of 
more than 11,000 posts containing 300,000 words, and the test set contains 
about 7,500 other posts.

print 'number of posts in training: %i' % len(
   newsgroups_train.data)
D={word:True for post in newsgroups_train.data for word
   in post.split(' ')}
print 'number of distinct words in training: %i' % len(D)
print 'number of posts in test: %i' % len(
   newsgroups_test.data)
number of posts in training: 11314
number of distinct words in training: 300972
number of posts in test: 7532

Learning Lazily with Nearest Neighbors
k‐Nearest Neighbors (kNN) is not about building rules from data based on 
coefficients or probability. kNN works on the basis of similarities. When you 
have to predict something like a class, it may be the best to find the most 
similar observations to the one you want to classify or estimate. You can 
then derive the answer you need from the similar cases.

Observing how many observations are similar doesn’t imply learning some
thing, but rather measuring. Because kNN isn’t learning anything, it’s consid
ered lazy, and you’ll hear it referenced as a lazy learner or an instance‐based 
learner. The idea is that similar premises usually provide similar results, 
and it’s important not to forget to get such low‐hanging fruit before trying to 
climb the tree!

The algorithm is fast during training because it only has to memorize data 
about the observations. It actually calculates more during predictions. 
When there are too many observations, the algorithm can become slow and 
memory consuming. You’re best advised not to use it with big data or it may 
take almost forever to predict anything! Moreover, this simple and effec
tive algorithm works better when you have distinct data groups without too 
many variables involved because the algorithm is also sensitive to the dimen
sionality curse.

The curse of dimensionality happens as the number of variables increases. 
Consider a situation in which you’re measuring the distance between obser
vations and, as the space becomes larger and larger, it becomes difficult to 
find real neighbors — a problem for kNN, which sometimes mistakes a far 
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observation for a near one. Rendering the idea is just like playing chess on a 
multidimensional chessboard. When playing on the classic 2D board, most 
pieces are near and you can more easily spot opportunities and menaces for 
your pawns when you have 32 pieces and 64 positions. However, when you 
start playing on a 3D board, such as those found in some sci‐fi films, your  
32 pieces can become lost in 512 possible positions. Now just imagine playing 
with a 12D chessboard. You can easily misunderstand what is near and what 
is far, which is what happens with kNN.

You can still make kNN smart in detecting similarities between observations 
by removing redundant information and simplifying the data dimensionality 
using data the reduction techniques, as explained in Chapter 14.

Predicting after observing neighbors
For an example showing how to use kNN, you can start with the digit  dataset 
again. kNN is particularly useful, just like Naïve Bayes, when you have to  predict 
many classes, or in situations that would require you to build too many models 
or rely on a complex model.

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
digits = load_digits()
pca = PCA(n_components=25)
pca.fit(digits.data[:1700,:])
X, y = pca.transform(digits.data[:1700,:]),
   digits.target[:1700]
tX, ty = pca.transform(digits.data[1700:,:]),
   digits.target[1700:]

kNN is an algorithm that’s quite sensitive to outliers. Moreover, you have 
to rescale your variables and remove some redundant information. In this 
 example, you use PCA. Rescaling is not necessary because the data repre
sents pixels, which means that it’s already scaled.

You can avoid the problem with outliers by keeping the neighborhood small, 
that is, by not looking too far for similar examples.

Knowing the data type can save you a lot of time and many mistakes. For 
example, in this case, you know that the data represents pixel values. Doing 
EDA (as described in Chapter 13) is always the first step and can provide you 
with useful insights, but getting additional information about how the data 
was obtained and what the data represents is also a good practice and can be 
just as useful. To see this task in action, you reserve cases in tX and try a few 
cases that kNN won’t look up when looking for neighbors.
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from sklearn.neighbors import KNeighborsClassifier
kNN = KNeighborsClassifier(n_neighbors=5)
kNN.fit(X,y)

kNN uses a distance measure in order to determine which observations to 
consider as possible neighbors for the target case. You can easily change the 
predefined distance using the p parameter:

 ✓ When p is 2, use the Euclidean distance (discussed as part of the 
 clustering topic in Chapter 15).

 ✓ When p is 1, use the Manhattan distance metric, which is the absolute 
distance between observations. In a 2D square, when you go from one 
corner to the opposite one, the Manhattan distance is the same as walk
ing the perimeter, whereas Euclidean is like walking on the diagonal. 
Although the Manhattan distance isn’t the shortest route, it’s a more 
realistic measure than Euclidean distance, and it’s less sensitive to noise 
and high dimensionality.

Usually, the Euclidean distance is the right measure, but sometimes it can 
give you worse results, especially when the analysis involves many corre
lated variables. The following code shows that the analysis seems fine with it.

print 'Accuracy: %.3f' % kNN.score(tX,ty)
print 'Prediction: %s actual: %s' % 
   (kNN.predict(tX[:10,:]),ty[:10])

Accuracy: 0.990
Prediction: [5 6 5 0 9 8 9 8 4 1] 
   actual: [5 6 5 0 9 8 9 8 4 1]

Choosing your k parameter wisely
A critical parameter that you have to define in kNN is k. As k increases, kNN 
considers more points for its predictions, and the decisions are less influ
enced by noisy instances that could exercise an undue influence. Your deci
sions are based on an average of more observations, and they become more 
solid. When the k value you use is too large, you start considering neighbors 
that are too far, sharing less and less with the case you have to predict.

It’s an important trade‐off. When the value of k is less, you consider a more 
homogeneous pool of neighbors but can more easily make an error by taking 
the few similar cases for granted. When the value of k is more, you consider 
more cases at a higher risk of observing neighbors that are too far or that are 
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outliers. Getting back to the previous example with handwritten digit data, 
you can experiment with changing the k value, as shown in the following 
code:

for k in [1, 5, 10, 100, 200]:
    kNN = KNeighborsClassifier(n_neighbors=k).fit(X,y)
    print 'for k= %3i accuracy is %.3f' % 
        (k, kNN.score(tX,ty))

for k=   1 accuracy is 0.979
for k=   5 accuracy is 0.990
for k=  10 accuracy is 0.969
for k= 100 accuracy is 0.959
for k= 200 accuracy is 0.907

Through experimentation, you find that setting n_neighbors (the parameter 
representing k) to 5 is the optimum choice, resulting in the highest accuracy. 
Using just the nearest neighbor (n_neighbors =1) isn’t a bad choice, but 
 setting the value above 5 instead brings decreasing results in the classifica
tion task.

As a rule of thumb, when your dataset doesn’t have many observations, set 
k as a number near the squared number of available observations. However, 
there is no general rule, and trying different k values is always a good way 
to optimize your kNN performance. Always start from low values and work 
toward higher values.



Performing Cross‐Validation, 
Selection, and Optimization

In This Chapter
 ▶ Learning about overfitting and underfitting

 ▶ Choosing the right metric to monitor

 ▶ Cross‐validating our results

 ▶ Selecting the best features for machine‐learning

 ▶ Optimizing hyperparameters

M 
achine‐learning algorithms can indeed learn from data. For instance, 
the four algorithms presented in the previous chapter, although quite 

simple, can effectively estimate a class or a value after being presented with 
examples associated with outcomes. It is all a matter of learning by induction, 
which is the process of extracting general rules from specific exemplifica-
tions. From childhood, humans commonly learn by seeing examples, deriving 
some general rules or ideas from them, and then successfully applying the 
derived rule to new situations as we grow up. For example, if we see someone 
being burned after touching fire, we understand that fire is dangerous, and 
we don’t need to touch it ourselves to know that.

Learning by example using machine algorithms has pitfalls. Here are a few 
issues that might arise:

 ✓ There aren’t enough examples to make a judgment about a rule, no 
matter what machine‐learning algorithm you are using.

 ✓ The machine‐learning application is presented with the wrong examples 
and consequently cannot reason correctly.

Chapter 18
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 ✓ Even when the application sees enough right examples, it still can’t 
figure out rules because they’re too complex. Sir Isaac Newton, the 
father of modern physics, narrated the story that he was inspired by the 
fall of an apple from a tree in his formulation of gravity. Unfortunately, 
deriving a universal law from a series of observations is not an auto-
matic consequence for most of us and the same applies to algorithms.

It’s important to consider these pitfalls when delving into machine learning! 
The quantity of data, its quality, and the characteristics of the learning algo-
rithm decide whether a machine‐learning application can generalize well to 
new cases. If anything is wrong with any of them, they can pose some serious 
limits. As a data science practitioner, you must recognize and learn to avoid 
these types of pitfalls in your data science experiments.

You don’t have to type the source code for this chapter manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for download instructions). The source code for this chapter appears in 
the P4DS4D; 18; Performing Cross Validation, Selection and 
Optimization.ipynb source code file.

Pondering the Problem of Fitting a Model
Fitting a model implies learning from data a representation of the rules that 
generated the data in the first place. From a mathematical perspective, 
 fitting a model is analogous to guessing an unknown function of the kind you 
faced in high school, such as, y=4x^2+2x, just by observing its y results. 
Therefore, under the hood, machine‐learning algorithms generate mathemati-
cal formulations that should represent how reality works.

Demonstrating whether such formulations are real is beyond the scope of 
data science. What is most important is that they work by producing exact 
predictions. For example, even though you can describe much of the physi-
cal world using mathematical functions, you often can’t describe social and 
 economic dynamics this way — but people try guessing them anyway.

To summarize, as a data scientist, you should always strive to approximate 
the real functions underlying the problems you face using the best information 
available. The result of your work is evaluated based on your capacity to pre-
dict specific outcomes (the target outcome) given certain premises (the data) 
thanks to a useful range of algorithms (the machine‐learning  algorithms).

Earlier in the book, you see something akin to a real function or law when 
the book presents linear regression, which has its own formulation. The 
linear formula y=a + Bx, which mathematically represents a line on a plane, 
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can often approximate training data well, even if the data is not represent-
ing a line or something similar to a line. As with linear regression, all other 
machine‐learning algorithms have an internal formulation themselves (and 
many are indeed available). The linear regression’s formulation is one of the 
simplest ones; formulations from other learning algorithms can appear quite 
complex. You don’t need to know exactly how they work. You do need to 
have an idea of how complex they are, whether they are representing a line 
or a curve, and whether they can sense outliers or noisy data. When planning 
to learn from data, you should address these problematic aspects based on 
the formulation you intend to use:

1. Whether the learning algorithm is the best one that can approximate 
the unknown function that you imagine behind the data you are using. 
In order to make such a decision, you must consider the learning algo-
rithm’s formulation performance on the data at hand and compare it 
with other, alternative formulations from other algorithms.

2. Whether the specific formulation of the learning algorithm is too simple, 
with respect to the hidden function, to make an estimate (this is called a 
bias problem).

3. Whether the specific formulation of the learning algorithm is too com-
plex, with respect to the hidden function to be guessed (leading to the 
variance problem).

Not all algorithms are suitable for every data problem. If you don’t have 
enough data or the data is full of erroneous information, it may be too 
 difficult for some formulations to figure out the real function.

Understanding bias and variance
If your chosen learning algorithm can’t learn properly from data and is not 
performing well, the cause is bias or variance in its estimates.

 ✓ Bias: Given the simplicity of formulation, your algorithm tends to 
 overestimate or understimate the real rules behind the data and is 
 systematically wrong in certain situations. Simple algorithms have high 
bias; having few internal parameters, they tend to represent only simple 
formulations well.

 ✓ Variance: Given the complexity of formulation, your algorithm tends to 
learn too much information from the data and detect rules that don’t 
exist, which causes its predictions to be erratic when faced with new 
data. You can think of variance as a problem connected to memoriza-
tion. Complex algorithms can memorize data features thanks to the 
 algorithms’ high number of internal parameters.



322 Part V: Learning from Data  

Bias and variance depend on the complexity of the formulation at the core of 
the learning algorithm with respect to the complexity of the formulation that 
is presumed to have generated the data you are observing. However, when 
you consider a specific problem using the available data rules, you’re better 
off having high bias or variance when

 ✓ You have few observations: Simpler algorithms perform better, no 
matter what the unknown function is. Complex algorithms tend to learn 
too much from data, estimating with inaccuracy.

 ✓ You have many observations: Complex algorithms always reduce 
 variance. The reduction occurs because even complex algorithms can’t 
learn all that much from data, so they learn just the rules, not any erratic 
noise.

 ✓ You have many variables: Provided that you also have many obser-
vations, simpler algorithms tend to find a way to approximate even 
 complex hidden functions.

Defining a strategy for picking models
When faced with a machine‐learning problem, you usually know little about 
the problem and don’t know whether a particular algorithm will manage it 
well. Consequently, you don’t really know whether the source of a problem is 
caused by bias or variance — although you can usually use the rule of thumb 
that if an algorithm is simple, it will have high bias, and if it is complex, it will 
have high variance. Even when working with common, well‐documented data 
science applications, you’ll notice that what works in other situations (as 
described in academic and industry papers) often doesn’t operate very well 
for your own application because the data is different.

You can summarize this situation using the famous no‐free‐lunch theorem 
of the mathematician David Wolpert: Any two machine‐learning algorithms 
are equivalent in performance when tested across all possible problems. 
Consequently, it isn’t possible to say that one algorithm is always better than 
another; it can be better than another one only when used to solve specific 
problems. You can view the concept in another way: For every problem, 
there is never a fixed recipe! The best and only strategy is just to try every-
thing you can and verify the results using a controlled scientific experiment. 
Using this approach ensures that what seems to work is what really works 
and, most important, what will keep on working with new data. Although you 
may have more confidence when using some learners over others, you can 
never tell what machine‐learning algorithm is the best before trying it and 
measuring its performance on your problem.
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At this point, you must consider a critical, yet underrated, necessary aspect 
to decide upon for the success of your data project. For a best model and 
greatest results, it’s essential to define an evaluation metric that distin-
guishes a good model from a bad one with respect to the business or scien-
tific problem that you want to solve. In fact, for some projects, you may need 
to avoid predicting negative cases when they are positive; for others, you 
may want to absolutely spot all the positive ones; and for still others, all you 
need to do is order them so that positive ones come before the negative ones 
and you don’t need to check them all.

By picking an algorithm, you automatically also pick an optimization process 
ruled by an evaluation metric that reports its performance to the algorithm 
so that the algorithm can better adjust its parameters. For instance, when 
using a linear regression, the metric is the mean squared error given by the 
vertical distance of the observations from the regression line. Therefore, 
it is automatic, and you can more easily accept the algorithm performance 
 provided by such a default evaluation metric.

Apart from accepting the default metric, some algorithms do let you choose 
a preferred evaluation function. In other cases, when you can’t point out a 
favorite evaluation function, you can still influence the existing evaluation 
metric by appropriately fixing some of its hyperparameters, thus  optimizing 
the algorithm indirectly for another, different, metric.

Before starting to train your data and create predictions, always consider what 
could be the best performance measure for your project. Scikit‐learn offers 
access to a wide range of measures for both classification and regression 
problems. The sklearn.metrics module allows you to call the optimization 
procedures using a simple string or by calling an error function from its mod-
ules. Table 18-1 shows the measures commonly used for regression problems.

The r2 string specifies a statistical measure for linear regression called R 
squared. It expresses how the model compares in predictive power with 
respect to a simple mean. Machine‐learning applications seldom use this 
 measure because it doesn’t explicitly report errors made by the model, 

Table 18-1 Regression Evaluation Measures
callable string function
mean_absolute_error sklearn.metrics.mean_absolute_error

mean_squared_error sklearn.metrics.mean_squared_error

r2 sklearn.metrics.r2_score
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although high R squared values imply fewer errors; more viable metrics 
for regression models are the mean squared errors and the mean absolute 
errors.

Squared errors penalize extreme values more, whereas absolute error 
weights all the errors the same. So it is really a matter of considering the 
trade‐off between reducing the error on extreme observations as much as 
possible (squared error) or trying to reduce the error for the majority of the 
observations (absolute error). The choice you make depends on the appli-
cation. When extreme values represent critical situations for your applica-
tion, a squared error measure is better. However, when your concern is to 
minimize the common and usual observations, as often happens in forecast-
ing sales problems, you should use a mean absolute error as the reference. 
The choices are even for complex classification problems, as you can see in 
Table 18-2.

Accuracy is the simplest error measure in classification, counting (as a 
percentage) how many of the predictions are correct. It takes into account 
whether the machine‐learning algorithm has guessed the right class. This 
measure works with both binary and multiclass problems. Even though it’s 
a simple measure, optimizing accuracy may cause problems when an imbal-
ance exists between classes. For example, it could be a problem when the 
class is frequent or preponderant, such as in fraud detection, where most 
transactions are actually legitimate with respect to a few criminal transac-
tions. In such situations, machine‐learning algorithms optimized for accuracy 
tend to guess in favor of the preponderant class and be wrong most of time 
with the minor classes, which is an undesirable behavior for an algorithm 
that you expect to guess all the classes correctly, not just a few selected ones.

Precision and recall, and their conjoint optimization by F1 score, can solve 
problems not addressed by accuracy. Precision is about being precise when 
guessing. It tracks the percentage of times, when forecasting a class, that a 
class was right. For example, you can use precision when diagnosing cancer 

Table 18-2 Classification Evaluation Measures
callable string function
accuracy sklearn.metrics.accuracy_score

precision sklearn.metrics.precision_score

recall sklearn.metrics.recall_score

f1 sklearn.metrics.f1_score

roc_auc sklearn.metrics.roc_auc_score
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in patients after evaluating data about their exams. Your precision in this 
case is the percentage of patients who really have cancer among those diag-
nosed with cancer. Therefore, if you have diagnosed ten ill patients and nine 
are truly ill, your precision is 90 percent.

You face different consequences when you don’t diagnose cancer in a 
patient who has it or you do diagnose it in a healthy patient. Precision tells 
just a part of the story, because there are patients with cancer that you have 
diagnosed as healthy, and that’s a terrible problem. The recall measure tells 
the second part of the story. It reports, among an entire class, your percent-
age of correct guesses. For example, when reviewing the previous example, 
the recall metric is the percentage of patients that you correctly guessed 
have cancer. If there are 20 patients with cancer and you have diagnosed just 
9 of them, your recall will be 45 percent.

When using your model, you can be accurate but still have low recall, or have 
a high recall but lose accuracy in the process. Fortunately, precision and 
recall can be maximized together using the F1 score, which uses the  formula: 
F1 = 2 * (precision * recall) / (precision + recall). Using 
the F1 score ensures that you always get the best precision and recall 
 combined.

Receiver Operating Characteristic Area Under Curve (ROC AUC) is useful 
when you want to order your classifications according to their probability of 
being correct. Therefore, when optimizing ROC AUC in the previous example, 
the learning algorithm will first try to order (sort) patients starting from 
those most likely to have cancer to those least likely to have cancer. The 
ROC AUC is higher when the ordering is good and low when it is bad. If your 
model has a high ROC AUC, you need to check the most likely ill patients. 
Another example is in a fraud detection problem, when you want to order 
customers according to the risk of being fraudulent. If your model has a good 
ROC AUC, you need to check just the riskiest customers closely.

Dividing between training and test sets
Having explored how to decide among the different error metrics for clas-
sification and regression, the next step in the strategy for choosing the best 
model is to experiment and evaluate the solutions by viewing their ability to 
generalize to new cases. As an example of correct procedures for experiment-
ing with machine‐learning algorithms, begin by loading the Boston dataset 
(a popular example dataset created in the 1970s), which consists of Boston 
housing prices, various house characteristic measurements, and measures of 
the residential area where each house is located.
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from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data, boston.target
print X.shape, y.shape

(506L, 13L) (506L,)

Notice that the dataset contains more than 500 observations and 13 features. 
The target is a price measure, so you decide to use linear regression and to 
optimize the result using the mean squared error. The objective is to ensure 
that a linear regression is a good model for the Boston dataset and to quan-
tify how good it is using the mean squared error (which lets you compare it 
with alternative models).

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
regression = LinearRegression()
regression.fit(X,y)
print 'Mean squared error: %.2f' % mean_squared_error(
   y_true=y, y_pred=regression.predict(X))

Mean squared error: 21.90

After having fitted the model with the data (which is called the training data 
because it provides examples to learn from), the mean_squared_error 
error function reports the data prediction error. The mean squared error is 
21.90, apparently a good measure but calculated directly on the training set, 
so you cannot be sure if it could work as well with new data (machine‐learning 
algorithms are both good at learning and at memorizing from examples).

Ideally, you need to perform a test on data that the algorithm has never seen 
in order to exclude any memorization. Only in this way can you discover 
whether your algorithm works well when new data arrives. To perform this 
task, you wait for new data, make the predictions on it, and then confront 
predictions and reality. But, performing the task this way may take a long 
time and be very risky and expensive, depending on the type of problem you 
want to solve by machine learning (for example, some applications such as 
cancer detection can be very costly to experiment with because lives are at a 
stake).

Luckily, there’s another way to obtain the same result. In order to  simulate 
having new data, you can divide the observations into test and  training 
cases. It’s quite common in data science to have a test size of 25 to 30 
 percent of the available data and to train the predictive model on the 
remaining 70–75 percent.
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from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
   test_size=0.30, random_state=5)
print X_train.shape, X_test.shape

(354L, 13L) (152L, 13L)

The example separates training and test X and y variables into distinct 
 variables using the train_test_split function. test_size param-
eter indicates a test set made of 30 percent of available observations. The 
 function always chooses the test sample randomly.

regression.fit(X_train,y_train)
print 'Train mean squared error: %.2f' 
   % mean_squared_error(y_true=y_train,
      y_pred=regression.predict(X_train))

Train mean squared error: 19.07

At this point, you fit the model again and the code reports a new training 
error of 19.07, which is somehow different from before. However, the error 
you really have to refer to comes from the test set you reserved.

print 'Test mean squared error: %.2f' 
   % mean_squared_error(y_true=y_test,
      y_pred=regression.predict(X_test))

Test mean squared error: 30.70

When you the estimate the error on the test set, the results show that the 
reported value is 30.70. What a difference, indeed! Somehow, the estimate on 
the training set was too optimistic. Using the test set, while more realistic in 
error estimation, really makes your result depend on a small portion of the 
data. If you change that small portion, the test result will also change.

X_train, X_test, y_train, y_test = train_test_split(X, y,
   test_size=0.30, random_state=6)
regression.fit(X_train,y_train)
print 'Train mean squared error: %.2f' 
   % mean_squared_error(y_true=y_train,
      y_pred=regression.predict(X_train))
print 'Test mean squared error: %.2f' 
   % mean_squared_error(y_true=y_test,
      y_pred=regression.predict(X_test))

Train mean squared error: 19.48
Test mean squared error: 28.33
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What you have experienced in this section is a common problem with 
machine‐learning algorithms. You know that each algorithm has a certain bias 
or variance in predicting an outcome; the problem is that you can’t  estimate 
its impact for sure. Moreover, if you have to make choices with regard to the 
algorithm, you can’t be sure of which decision might be the most effective one.

Using training data is always unsuitable because the learning algorithm can 
actually predict the training data better. This is especially true when an algo-
rithm has a low bias because of its complexity. In this case, you can expect 
a low error when predicting the training data, which means that you get an 
overly optimistic result that doesn’t compare it fairly with other algorithms 
(which may have a different bias/variance profile), nor are the results useful 
for our evaluation. You can sample test data differently, on the other hand, 
and, by reserving a certain portion of data for test purposes, you can actually 
reduce the number of examples used to train the algorithm in an effective way.

Cross‐Validating
If test sets can provide unstable results because of sampling, the solution 
is to systematically sample a certain number of test sets and then average 
the results. It is a statistical approach (to observe many results and take 
an  average of them), and that’s the basis of cross‐validation. The recipe is 
straightforward:

1. Divide your data into folds (each fold is a container that holds an even 
distribution of the cases), usually 10, but fold sizes of 3, 5, and 20 are 
viable alternative options.

2. Hold out one fold as a test set and use the others as training sets.

3. Train and record the test set result. If you have little data, it’s better to 
use a larger number of folds, because the quantity of data and the use of 
additional folds positively affects the quality of training.

4. Perform Steps 2 and 3 again, using each fold in turn as a test set.

5. Calculate the average and the standard deviation of all the folds’ test 
results. The average is a reliable estimator of the quality of your predic-
tor. The standard deviation will tell you the predictor reliability (if it 
is too high, the cross‐validation error could be imprecise). Expect that 
predictors with high variance will have a high cross‐validation standard 
deviation.

Even though this technique may appear complicated, Scikit‐learn handles it 
using a single class:

>>> from sklearn.cross_validation import cross_val_score
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Using cross‐validation on k folds
In order to run cross‐validation, you first have to initialize an iterator. KFold 
is the iterator that implements k folds cross‐validation. There are other 
iterators available from the sklearn.cross_validation module, mostly 
derived from the statistical practice, but KFolds is the most widely used in 
data science practice.

KFolds requires you to specify how many observations are in your sample 
(the n parameter), specify the n_folds number, and indicate whether you 
want to shuffle the data (by using the shuffle parameter). As a rule, the 
higher the expected variance, the more that increasing the number of folds 
can provide you a better mean estimate. It’s a good idea to shuffle the data 
because ordered data can introduce confusion into the learning processes if 
the first observations are different from the last ones.

After setting KFolds, call the cross_val_score function, which returns an 
array of results containing a score (from the scoring function) for each cross‐
validation fold. You have to provide cross_val_score with your data (both 
X and y) as an input, your estimator (the regression class), and the previously 
instantiated KFolds iterator (the cv parameter). In a matter of a few seconds 
or minutes, depending on the number of folds and data processed, the function 
returns the results. You average these results to obtain a mean estimate, and 
you can also compute the standard deviation to check how stable the mean is.

crossvalidation = KFold(n=X.shape[0], n_folds=10,
   shuffle=True, random_state=1)
scores = cross_val_score(regression, X, y,
   scoring='mean_squared_error', cv=crossvalidation,
   n_jobs=1)
print 'Folds: %i, mean squared error: %.2f std: %.2f' 
   %(len(scores),np.mean(np.abs(scores)),np.std(scores))

Folds: 10, mean squared error: 23.76 std: 12.13

Cross‐validating can work in parallel because no estimate depends on any 
other estimate. You can take advantage of the multiple cores present on your 
computer by setting the parameter n_jobs=‐1.

Sampling stratifications for complex data
Cross‐validation folds are decided by random sampling. Sometimes it may be 
necessary to track if and how much of a certain characteristic is present in 
the training and test folds in order to avoid malformed samples. For instance, 
the Boston dataset has a binary variable (a feature that has a value of 1 or 0)  
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indicating whether the house bounds the Charles River. This information 
is important to understand the value of the house and determine whether 
people would like to spend more for it. You can see the effect of this variable 
using the following code.

import pandas as pd
df = pd.DataFrame(X, columns=boston.feature_names)
df['target'] = y
boxplot = df.boxplot('target', by='CHAS',
   return_type='axes')

A boxplot, represented in Figure 18-1, reveals that houses on the river tend to 
have values higher than other houses. Of course, there are expensive houses 
all around Boston, but you have to keep an eye about how many river houses 
you are analyzing because your model has to be general for all of Boston, not 
just Charles River houses.

In similar situations, when a characteristic is rare or influential, you can’t 
be sure when it’s present in the sample because the folds are created in a 
random way. Having too many or too few of a particular characteristic in each 
fold implies that the machine‐learning algorithm may derive incorrect rules.

The StratifiedKFold class provides a simple way to control the risk 
of building malformed samples during cross‐validation procedures. It can 
 control the sampling so that certain features, or even certain outcomes 
(when the target classes are extremely unbalanced), will always be present in 
your folds in the right proportion. You just need to point out the variable you 
want to control by using the y parameter, as shown in the following code.

Figure 18-1: 
Boxplot of 
the target 
outcome, 

grouped by 
CHAS.
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from sklearn.cross_validation import StratifiedKFold
stratification = StratifiedKFold(y=X[:,3], n_folds=10,
   shuffle=True, random_state=1)
scores = cross_val_score(regression, X, y,
   scoring='mean_squared_error', cv=stratification,
   n_jobs=1)
print 'Stratified %i folds cross validation mean ' + 
      'squared error: %.2f std: %.2f' % (len(
         scores),np.mean(np.abs(scores)),np.std(scores))

Stratified 10 folds cross validation mean squared error:
   23.70 std: 6.10

Although the validation error is similar, by controlling the CHAR variable, 
the standard error of the estimates decreases, making you aware that the 
 variable was influencing the previous cross‐validation results.

Selecting Variables Like a Pro
Selecting the right variables can improve the learning process by reducing 
the amount of noise (useless information) that can influence the learner’s 
estimates. Variable selection, therefore, can effectively reduce the variance of 
predictions. In order to involve just the useful variables in training and leave 
out the redundant ones, you can use these techniques:

 ✓ Univariate approach: Select the variables most related to the target 
 outcome.

 ✓ Greedy or backward approach: Keep only the variables that you can 
remove from the learning process without damaging its performance.

Selecting by univariate measures
If you decide to select a variable by its level of association with its target, the 
class SelectPercentile provides an automatic procedure for keeping only 
a certain percentage of the best, associated features. The available metrics 
for association are

 ✓ f_regression: Used only for numeric targets and based on linear 
regression performance.

 ✓ f_classif: Used only for categorical targets and based on the Analysis 
of Variance (ANOVA) statistical test.
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 ✓ chi2: Performs the chi‐square statistic for categorical targets, which 
is less sensible to the nonlinear relationship between the predictive 
 variable and its target.

When evaluating candidates for a classification problem, f_classif and 
chi2 tend to provide the same set of top variables. It’s still a good practice 
to test the selections from both the association metrics.

Apart from applying a direct selection of the top percentile associations, 
SelectPercentile can also rank the best variables to make it easier to 
decide at what percentile to exclude a feature from participating in the learn-
ing process. The class SelectKBest is analogous in its functionality, but it 
selects the top k variables, where k is a number, not a percentile.

from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import f_regression
Selector_f = SelectPercentile(f_regression, percentile=25)
Selector_f.fit(X,y)
for n,s in zip(boston.feature_names,Selector_f.scores_):

    print 'F‐score: %3.2f\t for feature %s ' % (s,n)

F‐score: 88.15     for feature CRIM 
F‐score: 75.26     for feature ZN 
F‐score: 153.95    for feature INDUS 
F‐score: 15.97     for feature CHAS 
F‐score: 112.59    for feature NOX 
F‐score: 471.85    for feature RM 
F‐score: 83.48     for feature AGE 
F‐score: 33.58     for feature DIS 
F‐score: 85.91     for feature RAD 
F‐score: 141.76    for feature TAX 
F‐score: 175.11    for feature PTRATIO 
F‐score: 63.05     for feature B 
F‐score: 601.62    for feature LSTAT

Using the level of association output helps you to choose the most important 
variables for your machine‐learning model, but you should watch out for 
these possible problems:

 ✓ Some variables with high association could also be highly correlated, 
introducing duplicated information, which acts as noise in the  learning 
process.
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 ✓ Some variables may be penalized, especially binary ones (variables 
indicating a status or characteristic using the value 1 when it is present, 
0 when it is not). For example, notice that the output shows the binary 
variable CHAS as the least associated with the target variable (but 
you know from previous examples that it’s influential from the cross‐ 
validation phase).

The univariate selection process can give you a real advantage when you 
have a huge number of variables to select from and all other methods turn 
computationally infeasible. The best procedure is to reduce the value of 
SelectPercentile by half or more of the available variables, reduce the 
number of variables to a manageable number, and consequently allow  
the use of a more sophisticated and more precise method such as a  
greedy search.

Using a greedy search
When using a univariate selection, you have to decide for yourself how many 
variables to keep: Greedy selection automatically reduces the number of 
features involved in a learning model on the basis of their effective contribu-
tion to the performance measured by the error measure. The RFECV class, 
fitting the data, can provide you with information on the number of useful 
features, point them out to you, and automatically transform the X data, by 
the method transform, into a reduced variable set, as shown in the following 
example:

from sklearn.feature_selection import RFECV
selector = RFECV(estimator=regression, cv=10,
   scoring='mean_squared_error')
selector.fit(X, y)
print("Optimal number of features: %d" 
   % selector.n_features_)

Optimal number of features: 6

It’s possible to obtain an index to the optimum variable set by calling the 
attribute support_ from the RFECV class after you fit it.

print boston.feature_names[selector.support_]

['CHAS' 'NOX' 'RM' 'DIS' 'PTRATIO' 'LSTAT']
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Notice that CHAS is now included among the most predictive features, which 
contrasts with the result from the univariate search in the previous section. 
The RFECV method can detect whether a variable is important, no matter 
whether it is binary, categorical, or numeric, because it directly evaluates the 
role played by the feature in the prediction.

The RFECV method is certainly more efficient, when compared to the 
 univariate approach, because it considers highly correlated features and is 
tuned to optimize the evaluation measure (which usually is not Chi‐square 
or F‐score). Being a greedy process, it’s computationally demanding and may 
only approximate the best set of predictors.

As RFECV learns the best set of variables from data, the selection may overfit, 
which is what happens with all other machine‐learning algorithms. Trying 
RFECV on different samples of the training data can confirm the best  variables 
to use.

Pumping Up Your Hyperparameters
As a last example for this chapter, you can see the procedures for searching 
for the optimal hyperparameters of a machine‐learning algorithm in order 
to achieve the best possible predictive performance. Actually, much of the 
 performance of your algorithm has already been decided by

1. The choice of the algorithm: Not every machine‐learning algorithm is a 
good fit for every type of data, and choosing the right one for your data 
can make the difference.

2. The selection of the right variables: Predictive performance is 
increased dramatically by feature creation (new created variables 
are more predictive than old ones) and feature selection (removing 
 redundancies and noise).

Fine‐tuning the correct hyperparameters could provide even better predic-
tive generalizability and pump up your results, especially in the case of com-
plex algorithms that don’t work well using the out‐of‐the‐box default settings.

Hyperparameters are parameters that you have to decide by yourself, since 
an algorithm can’t learn them automatically from data. As with all other 
aspects of the learning process that involve a decision by the data scientist, 
you have to make your choices carefully after evaluating the cross‐validated 
results.
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The Scikit‐learn sklearn.grid_search module specializes in hyperparam-
eters optimization. It contains a few utilities for automating and simplifying 
the process of searching for the best values of hyperparameters. The follow-
ing code provides an illustration of the correct procedures:

import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
print X.shape, y.shape

(150L, 4L) (150L,)

The example prepares to perform its task by loading the Iris dataset and the 
NumPy library. At this point, the example can optimize a machine‐learning 
algorithm for predicting Iris species.

Implementing a grid search
The best way to verify the best hyperparameters for an algorithm is to test 
them all and then pick the best combination. This means, in the case of com-
plex settings of multiple parameters, that you have to run hundreds, if not 
thousands, of slightly differently tuned models. Grid searching is a systematic 
search method that combines all the possible combinations of the hyper-
parameters into individual sets. It’s a time‐consuming technique. However, 
grid searching provides one of the best ways to optimize a machine‐learning 
application that could have many working combinations, but just a single 
best one. Hyperparameters that have many acceptable solutions (called local 
minima) may trick you into thinking that you have found the best solution 
when you could actually improve their performance.

Grid searching is like throwing a net into the sea. It’s better to use a large net 
at first, one that has loose meshes. The large net helps you understand where 
there are schools of fish in the sea. After you know where the fish are, you 
can use a smaller net with tight meshes to get the fish that are in the right 
places. In the same way, when performing grid searching, you start first with 
a grid search with a few sparse values to test (the loose meshes). After you 
understand which hyperparameter values to explore (the schools of fish), 
you can perform a more thorough search. In this way, you also minimize the 
risk of overfitting by cross‐validating too many variables because as a general 
principle in machine‐learning and scientific experimentation, the more things 
you try, the greater the chances that some fake good result will appear.



336 Part V: Learning from Data  

Grid searching is easy to perform as a parallel task because the results of a 
tested combination of hyperparameters are independent from the results of 
the others. Using a multicore computer at its full power requires that you 
change n_jobs to –1 when instantiating any of the grid search classes from 
Scikit‐learn.

You have options other than grid searching. Scikit‐learn implements a 
random search algorithm as an alternative to using a grid search. There are 
other optimization techniques based on Bayesian optimization or on nonlin-
ear optimization techniques such as the Nelder–Mead method, which aren’t 
implemented in the data science packages that you’re using in Python now.

In the example for demonstrating how to implement a grid search effec-
tively, you use one of the previously seen simple algorithms, the K‐neighbors 
 classifier:

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5,
   weights='uniform', metric= 'minkowski', p=2)

The K‐neighbors classifier has quite a few hyperparameters that you can set 
for optimal performance:

 ✓ The number of neighbor points to consider in the estimate

 ✓ How to weight each of them

 ✓ What metric to use for finding the neighbors

Using a range of possible values for all the parameters, you can easily realize 
that you’re going to test a large number of models, exactly 40 in this case:

grid = {'n_neighbors': range(1,11), 'weights': ['uniform',
   'distance'], 'p': [1,2]}
print 'Number of tested models: %i' % np.prod(
   [len(grid[element]) for element in grid])
score_metric = 'accuracy'

Number of tested models: 40

To set the instructions for the search, you have to build a Python dictionary 
whose keys are the names of the parameters, and the dictionary’s values are 
lists of the values you want to test. For instance, the example records a range 
of 1 to 10 for the hyperparameter n_neighbors using the range(1,11) 
iterator, which produces the sequence of numbers during the grid search.
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from sklearn.cross_validation import cross_val_score
print 'Baseline with default parameters: %.3f' % np.mean(
   cross_val_score(classifier, X, y, cv=10,
      scoring=score_metric, n_jobs=1))

Baseline with default parameters: 0.967

Using the accuracy metric (the percentage of exact answers), the example 
first tests the baseline, which consists of the algorithm’s default parameters 
(also explicated when instantiating the classifier variable with its class). 
It’s difficult to improve an already high accuracy of 0.967 (or 96.7 percent), 
but the search will locate the answer using a tenfold cross‐validation.

from sklearn.grid_search import GridSearchCV
search = GridSearchCV(estimator=classifier,
   param_grid=grid, scoring=score_metric, n_jobs=1,
   refit=True, cv=10)
search.fit(X,y)

After being instantiated with the learning algorithm, the search dictionary, 
the scoring metric, and the cross‐validation folds, the GridSearch class 
operates with the fit method. Optionally, after the grid search ended, it 
refits the model with the best found parameter combination (refit=True), 
allowing it to immediately start predicting by using the GridSearch class 
itself.

print 'Best parameters: %s' % search.best_params_
print 'CV Accuracy of best parameters: %.3f' 
   % search.best_score_

Best parameters: {'n_neighbors': 9, 'weights': 'uniform',
   'p': 1}
CV Accuracy of best parameters: 0.973

When the search is completed, you can inspect the results using the best_
params_ and best_score:_ attributes. The best accuracy found was 0.973, 
an improvement over the initial baseline. You can also inspect the complete 
sequence of obtained cross‐validation scores and their standard deviation:

>>> search.grid_scores_

By looking through the large number of tested combinations, you notice that 
more than a few obtained the score of 0.973 when the combinations had nine 
or ten neighbors. To better understand how the optimization works with 
respect to the number of neighbors used by your algorithm, you can launch a 
Scikit‐learn class for visualization. The validation_curve method provides 
you with detailed information about how train and validation behave 
when used with different n_neighbors hyperparameter.



338 Part V: Learning from Data  

from sklearn.learning_curve import validation_curve
train_scores, test_scores = validation_curve(
   KNeighborsClassifier(weights='uniform', 
      metric= 'minkowski', p=1), X, y, 'n_neighbors',
      param_range=range(1,11), cv=10, scoring='accuracy',
      n_jobs=1)

The validation_curve class provides you with two arrays containing 
the results arranged with the parameters values on the rows and the cross‐ 
validation folds on the columns.

mean_train  = np.mean(train_scores,axis=1)
mean_test   = np.mean(test_scores,axis=1)
import matplotlib.pyplot as plt
plt.plot(range(1,11),mean_train,'ro‐‐', label='Training')
plt.plot(range(1,11),mean_test,'bD‐.', 
   label='Cross‐validation')
plt.grid()
plt.xlabel('Number of neighbors')
plt.ylabel('accuracy')
plt.legend(loc='upper right', numpoints= 1)
plt.show()

Projecting the row means creating a graphic visualization, as shown in  
Figure 18-2, which helps you understand what is happening with the learning 
process.

Figure 18-2: 
Validation 

curves
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You can obtain two pieces of information from the visualization:

 ✓ The peak cross‐validation accuracy using nine neighbors is higher than 
the training score. The training score should always be better than any 
cross‐validation score. The higher score points out that the example 
overfitted the cross‐validation and luck played a role in getting such a 
good cross‐validation score.

 ✓ The second peak of cross‐validation accuracy, at five neighbors, is near 
the lowest results. Well‐scoring areas usually surround optimum values, 
so this peak is a bit suspect.

Based on the visualization, you should accept the nine‐ neighbors solution 
(it is the highest and it is indeed surrounded by other acceptable solutions). 
As an alternative, given that nine neighbors is a solution on the limit of the 
search, you could instead launch a new grid search, extending the limit to a 
higher number of neighbors (above ten) in order to verify whether the accu-
racy stabilizes, decreases, or even improves.

It is part of the data science process to query, test, and query again. Even 
though Python and its packages offer you many automated processes in data 
learning and discovering, it is up to you to ask the right questions and to 
check whether the answers are the best ones by using statistical tests and 
visualizations.

Trying a randomized search
Grid searching, though exhaustive, is indeed a time‐consuming activity. It’s 
prone to overfitting the cross‐validation folds when you have few observa-
tions in your dataset and you extensively search for an optimization. Instead, 
an interesting alternative option is to try a randomized search. In this case, 
you define a grid search to test only some of the combinations, picked at 
random.

Even though it may sound like betting on blind luck, a grid search is 
 actually quite useful because it’s inefficient — if you pick enough random 
combinations, you have a high statistical probability of finding an opti-
mum hyperparameter combination, without risking overfitting at all. For 
instance, in the previous example, the code tested 40 different models 
using a systematic search. Using a randomized search, you can reduce the 
number of tests by 75 percent, to just 10 tests, and reach the same level of 
optimization!
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Using a randomized search is straightforward. You import the class from the 
grid_search module and input the same parameters as the GridSearchCV, 
adding a n_iter parameter that indicates how many combinations to 
sample. As a rule of thumb, you choose from a quarter or a third of the total 
number of hyperparameter combinations:

from sklearn.grid_search import RandomizedSearchCV
random_search = RandomizedSearchCV(estimator=classifier,
   param_distributions=grid, n_iter=10,
   scoring=score_metric, n_jobs=1, refit=True, cv=10, )
random_search.fit(X,y)

Having completed the search using the same technique as before, you can 
explore the results by outputting the best scores and parameters:

print 'Best parameters: %s' % random_search.best_params_
print 'CV Accuracy of best parameters: %.3f' 
   % random_search.best_score_

Best parameters: {'n_neighbors': 9, 'weights': 'distance',
   'p': 2}
CV Accuracy of best parameters: 0.973

From the reported results, it appears that a random search can actually 
obtain results similar to a much more CPU‐expensive grid search.



Increasing Complexity with Linear 
and Nonlinear Tricks

In This Chapter
 ▶ Expanding your feature using polynomials

 ▶ Regularizing regression

 ▶ Learning from big data

 ▶ Using support vector machines

P 
revious chapters introduced you to some of the simplest, yet effective, 
machine‐learning algorithms, such as linear and logistic regression, 

Naïve Bayes, and K‐Nearest Neighbors (KNN). At this point, you can success-
fully complete a regression or classification project in data science. This chap-
ter explores even more complex and powerful machine‐learning techniques 
including the following: reasoning on how to enhance your data; controlling 
the variance of estimates by regularization; and managing to learn from big 
data by breaking it into manageable chunks.

This chapter also introduces you to the support vector machine (SVM), a 
powerful family of algorithms for classification and regression. SVMs are 
able to perform the most difficult data problems and are a perfect substitute 
for neural networks such as the multilayer perceptron, which isn’t currently 
present in the Scikit‐learn package but is a planned addition in the future. 
Given the complexity of the subject, more than half of the chapter is devoted 
to SVM, but it’s definitely worth the time.

Using Nonlinear Transformations
Linear models, such as linear and logistic regression, are actually linear 
combinations that sum your features (weighted by learned coefficients) and 
provide a simple but effective model. In most situations, they offer a good 

Chapter 19
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approximation of the complex reality they represent. Even though they’re 
characterized by a high bias, using a large number of observations can 
improve their coefficients and make them more competitive with complex 
algorithms.

However, they can perform better when solving certain problems if you  
pre‐analyze the data using the Exploratory Data Analysis (EDA) approach. 
After performing the analysis, you can transform and enrich the existing 
 features by

 ✓ Linearizing the relationships between features and the target variable 
using transformations that increase their correlation and make their 
cloud of points in the scatterplot more similar to a line

 ✓ Making variables interact by multiplying them so that you can better 
represent their conjoint behavior

 ✓ Expanding the existing variables using the polynomial expansion in 
order to represent relationships more realistically (such as ideal point 
curves, when there is a peak in the variable representing a maximum, 
akin to a parabola).

You don’t have to type the source code for the “Using Nonlinear 
Transformations,” “Regularizing Linear Models,” and “Fighting with Big Data 
Chunk by Chunk” sections of this chapter manually. In fact, it’s a lot easier 
if you use the downloadable source (see the Introduction for download 
instructions). The source code for this chapter appears in the P4DS4D; 19; 
Increasing Complexity.ipynb source code file.

Doing variable transformations
An example is the best way to explain the kind of transformations you can 
successfully apply to data to improve a linear model. The example in this 
section, and the “Regularizing Linear Models” and “Fighting with Big Data 
Chunk by Chunk” sections that follow, relies on the Boston dataset. The 
problem relies on regression, and the data originally has ten variables to 
explain the different housing prices in Boston during the 1970s. The dataset 
also has implicit ordering. Fortunately, order doesn’t influence most algo-
rithms because they learn the data as a whole. When an algorithm learns in a 
progressive manner, ordering can really interfere with effective model build-
ing. By using seed (to fix a preordinated sequence of random numbers) and 
shuffle from the random package (to shuffle the index), you can reindex 
the dataset.
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from sklearn.datasets import load_boston
from random import shuffle
boston = load_boston()
seed(0) # Creates a replicable shuffling
new_index = range(boston.data.shape[0])
shuffle(new_index) # shuffling the index
X, y = boston.data[new_index], boston.target[new_index]
print X.shape, y.shape

(506L, 13L) (506L,)

Converting the array of predictors and the target variable into a pandas 
DataFrame helps support the series of explorations and operations on data. 
Moreover, although Scikit‐learn requires an ndarray as input, it will also 
accept DataFrame objects.

import pandas as pd
df = pd.DataFrame(X,columns=boston.feature_names)
df['target'] = y

The best way to spot possible transformations is by graphical exploration, and 
using a scatterplot can tell you a lot about two variables. You need to make 
the relationship between the predictors and the target outcome as linear as 
possible, so you should try various combinations, such as the  following:

scatter = df.plot(kind='scatter', x='LSTAT', y='target', c='r')

In Figure 19-1, you see a representation of the resulting scatterplot. Notice 
that you can approximate the cloud of points by using a curved line rather 
than a straight line. In particular, when LSTAT is around 5, the target seems 
to vary between values of 20 to 50. As LSTAT increases, the target decreases 
to 10, reducing the variation.

Logarithmic transformation can help in such conditions. However, your 
values should range from zero to one, such as percentages, as demonstrated 
in this example. In other cases, other useful transformations for your x 
 variable could include x**2, x**3, 1/x, 1/x**2, 1/x**3, and sqrt(x). The 
key is to try them and test the result. As for testing, you can use the following 
script as an example:

import numpy as np
from sklearn.feature_selection.univariate_selection import f_regression
F, pval = f_regression(df['LSTAT'],y)
print 'F score for the original feature %.1f' % F
F, pval = f_regression(np.log(df['LSTAT']),y)
print 'F score for the transformed feature %.1f' % F

F score for the original feature 601.6
F score for the transformed feature 1000.2
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The F score is useful for variable selection. You can also use it to assess the 
usefulness of a transformation because both f_regression and f_classif 
are themselves based on linear models, and are therefore sensitive to every 
effective transformation used to make variable relationships more linear.

Creating interactions between variables
In a linear combination, the model reacts to how a variable changes in an 
independent way with respect to changes in the other variables. In statistics, 
this kind of model is a main effects model.

The Naïve Bayes classifier makes a similar assumption for probabilities, and 
it also works well with complex text problems.

Even though machine learning works by using approximations and a set of 
independent variables can make your predictions work well in most situa-
tions, sometimes you may miss an important part of the picture. You can 
easily catch this problem by depicting the variation in your target associ-
ated with the conjoint variation of two or more variables in two simple and 
straightforward ways:

 ✓ Existing domain knowledge of the problem: For instance, in the car 
market, having a noisy engine is a nuisance in a city car but considered 
a plus for sports cars (everyone wants to hear that you got an ultra‐cool 
and expensive car). By knowing a consumer preference, you can model 
a noise level variable and a car type variable together to obtain exact 
 predictions using a predictive analytic model that guesses the car’s 
value based on its features.

Figure 19‐1: 
Nonlinear 

relationship 
between 
variable 

LSTAT 
and target 

prices.
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 ✓ Testing combinations of different variables: By performing group tests, 
you can see the effect that certain variables have on your target vari-
able. Therefore, even without knowing about noisy engines and sports 
cars, you could have caught a different average of preference level when 
analyzing your dataset split by type of cars and noise level.

The following example shows how to test and detect interactions in the 
Boston dataset. The first task is to load a few helper classes, as shown here:

from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
regression = LinearRegression(normalize=True)
crossvalidation = KFold(n=X.shape[0], n_folds=10, shuffle=True, random_state=1)

The code reinitializes the pandas DataFrame using only the predictor vari-
ables. A for loop matches the different predictors and creates a new variable 
containing each interaction. The mathematical formulation of an interaction 
is simply a multiplication.

df = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, df, y, scoring='r2', 

cv=crossvalidation,
   n_jobs=1))
interactions = list()
for feature_A in boston.feature_names:
   for feature_B in boston.feature_names:
       if feature_A > feature_B:
           df['interaction'] = df[feature_A] * df[feature_B]
           score = np.mean(cross_val_score(regression, df, y, scoring='r2',
              cv=crossvalidation, n_jobs=1))
           if score > baseline:
               interactions.append((feature_A, feature_B, round(score,3)))
print 'Baseline R2: %.3f' % baseline
print 'Top 10 interactions: %s' % sorted(interactions, key=lambda(x):x[2],
   reverse=True)[:10]

Baseline R2: 0.699
Top 10 interactions: [('RM', 'LSTAT', 0.782), ('TAX', 'RM', 0.766), ('RM', 

'RAD', 0.759), ('RM', 'PTRATIO', 0.75), ('RM', 'INDUS', 0.748), 
('RM', 'NOX', 0.733), ('RM', 'B', 0.731), ('RM', 'AGE', 0.727), 
('RM', 'DIS', 0.722), ('ZN', 'RM', 0.716)]

The code tests the specific addition of each interaction to the model using 
a 10 folds cross‐validation. (The “Cross‐validating” section of Chapter 18 tells 
you more about working with folds.) It records the change in the R2 measure 
into a stack (a simple list) that an application can order and explore later.
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The baseline R2 is 0.699, so a reported improvement of the stack of 
 interactions to 0.782 looks quite impressive! It’s important to know how 
this improvement is made possible. The two variables involved are RM 
(the  average number of rooms) and LSTAT (the percentage of lower‐status 
 population).

colors = ['k' if v > np.mean(y) else 'w' for v in y]
scatter = df.plot(kind='scatter', x='RM', y='LSTAT', c=colors)

The scatterplot in Figure 19-2 clarifies the improvement. In a portion of 
houses at the center of the plot, it’s necessary to know both LSTAT and 
RM in order to correctly separate the high‐value houses from the low‐value 
houses; therefore, an interaction is indispensable in this case.

Adding interactions and transformed variables leads to an extended linear 
regression model, a polynomial regression. Data scientists rely on testing and 
experimenting to validate an approach to solving a problem, so the following 
code slightly modifies the previous code to redefine the set of predictors using 
interactions and quadratic terms by squaring the variables:

polyX = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, polyX, y,  

scoring='mean_squared_error',
   cv=crossvalidation, n_jobs=1))
improvements = [baseline]
for feature_A in boston.feature_names: 
   polyX[feature_A+'^2'] = polyX[feature_A]**2
   improvements.append(np.mean(cross_val_score(regression, polyX, y,
      scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

Figure 19‐2: 
Combined 
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   for feature_B in boston.feature_names:
       if feature_A > feature_B:
           polyX[feature_A+'*'+feature_B] = polyX[feature_A] * polyX[feature_B]
           improvements.append(np.mean(cross_val_score(regression, polyX, y,
              scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

To track improvements as the code adds new, complex terms, the example 
places values in the improvements list. Figure 19-3 shows a graph of the 
results that demonstrates some additions are great because the squared 
error decreases, and other additions are terrible because they increase the 
error instead.

Of course, you could perform an ongoing test to add a quadratic term or 
interaction optionally, which is called a univariate and greedy approach. This 
example is a good foundation for checking other ways of controlling the exist-
ing complexity of your datasets or the complexity that you have to induce 
with transformation and feature creation in the course of data exploration 
efforts. Before moving on, you check both the shape of the actual dataset and 
its cross‐validated mean squared error.

print shape(polyX)
crossvalidation = KFold(n=X.shape[0], n_folds=10, shuffle=True, random_state=1)
print 'Mean squared error %.3f' % abs(np.mean(cross_val_score(regression,  

polyX, y,
   scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

(506, 104)
Mean squared error 13.466

Figure 19‐3: 
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Even though the mean squared error is good, the ratio between 506 observa-
tions and 104 features isn’t good at all.

As a rule of thumb, there should be 10–20 observations for every coefficient 
you want to estimate in linear models. However, experience shows that 
having at least 30 of them is better.

Regularizing Linear Models
Linear models have a high bias, but as you add more features, more interac-
tions, and more transformations, they start gaining more adaptability to the 
data characteristics and more memorizing power for data noise, thus increas-
ing the variance of their estimates. Trading high variance for having less bias 
is not always the best choice, but, as mentioned earlier, sometimes it’s the 
only way to increase the predictive power of linear algorithms.

You can introduce L1 and L2 regularization as a way to control the trade‐off 
between bias and variance in favor of an increased generalization capabil-
ity of the model. When you introduce one of the regularizations, an additive 
function that depends on the complexity of the linear model penalizes the 
optimized cost function. In linear regression, the cost function is the squared 
error of the predictions, and the cost function is penalized using a summa-
tion of the coefficients of the predictor variables.

If the model is complex but the predictive gain is little, the penalization 
forces the optimization procedure to remove the useless variables, or 
to reduce their impact on the estimate. The regularization also acts on 
 overcorrelated features — smoothing and combining their contribution, thus 
stabilizing the results and reducing the consequent variance of the estimates:

 ✓ L1 (also called Lasso): Shrinks some coefficients to zero, making your 
coefficients sparse. It really does variable selection.

 ✓ L2 (also called Ridge): Reduces the coefficients of the most  problematic 
features, making them smaller, but never equal to zero. All  coefficients 
keep participating in the estimate, but many become small and 
 irrelevant.

You can control the strength of the regularization using a hyper‐parameter, 
usually a coefficient itself, often called alpha. When alpha approaches 1.0, you 
have stronger regularization and a greater reduction of the coefficients. In 
some cases, the coefficients are reduced to zero. Don’t confuse alpha with C, a 
parameter used by LogisticRegression and by support vector machines, 
because C is 1/alpha, so it can be greater than 1. Smaller C numbers actually 
correspond to more regularization, exactly the opposite of alpha.
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Regularization works because it is the sum of the coefficients of the predictor 
variables, therefore it’s important that they’re on the same scale or the regu-
larization may find it difficult to converge, and variables with larger absolute 
coefficient values will greatly influence it, generating an infective regulariza-
tion. It’s good practice to standardize the predictor values or bind them to a 
common min‐max, such as the [‐1,+1] range. The following sections dem-
onstrate various methods of using both L1 and L2 regularization to achieve 
various effects.

Relying on Ridge regression (L2)
The first example uses the L2 type regularization, reducing the strength of 
the coefficients. The Ridge class implements L2 for linear regression. Its 
usage is simple; it presents just the parameter alpha to fix. Ridge also has 
another parameter, normalize, that automatically normalizes the inputted 
predictors to zero mean and unit variance.

from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import Ridge
ridge = Ridge(normalize=True)
search = GridSearchCV(estimator=ridge, param_grid={'alpha':np.logspace(‐5,2,8)}, 
                     scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 0.001}
CV MSE of best parameters: 12.385

A good search space for the alpha value is in the range np.logspace 
(‐5,2,8). Of course, if the resulting optimum value is on one of the extremi-
ties of the tested range, you need to enlarge the range and retest.

The polyX and y variables used for the examples in this section and the 
sections that follow are created as part of the example in the “Creating inter-
actions between variables” section, earlier in this chapter. If you haven’t 
worked through that section, the examples in this section will fail to work 
properly.

Using the Lasso (L1)
The second example uses the L1 regularization, the Lasso class, whose 
 principal characteristic is to reduce the effect of less useful coefficients down 
toward zero. This action enforces sparsity in the coefficients, with just a few 
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ones having values above zero. The class uses the same parameters of the 
Ridge class that are demonstrated in the previous section.

from sklearn.linear_model import Lasso
lasso = Lasso(normalize=True)
search = GridSearchCV(estimator=lasso, param_grid={'alpha':np.logspace(‐5,2,8)}, 
                  scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 0.0001}
CV MSE of best parameters: 12.644

Leveraging regularization
Because you can indent the sparse coefficients resulting from a L1 regression 
as a feature selection procedure, you can effectively use the Lasso class for 
selecting the most important variables. By tuning the alpha parameter, you 
can select a greater or lesser number of variables. In this case, the code sets 
the alpha parameter to 0.01, obtaining a much simplified solution as a result.

lasso = Lasso(normalize=True, alpha=0.01)
lasso.fit(polyX,y)
print polyX.columns[np.abs(lasso.coef_)>0.0001].values

['CRIM*CHAS' 'ZN*CRIM' 'ZN*CHAS' 'INDUS*DIS' 'CHAS*B' 'NOX^2' 'NOX*DIS'
 'RM^2' 'RM*CRIM' 'RM*NOX' 'RM*PTRATIO' 'RM*B' 'RM*LSTAT' 'RAD*B' 'TAX*DIS'
 'PTRATIO*NOX' 'LSTAT^2']

You can apply L1‐based variable selection automatically to both regression  
and classification using the RandomizedLasso and RandomizedLogistic 
Regression classes. Both classes create a series of randomized L1 regular-
ized models. The code keeps track of the resulting coefficients. At the end 
of the process, the application keeps any coefficients that the class didn’t 
reduce to zero because they’re considered important. You can train the two 
classes using the fit method, but they don’t have a predict method, just 
a  transform method that effectively reduces your dataset, just like most 
classes in the sklearn.preprocessing module.

Combining L1 & L2: Elasticnet
L2 regularization reduces the impact of correlated features, whereas L1 
regularization tends to selects them. A good strategy is to mix them using a 
weighted sum by using the ElasticNet class. You control both L1 and L2 
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effects by using the same alpha parameter, but you can decide the L1 effect’s 
share by using the l1_ratio parameter. Clearly, if l1_ratio is 0, you have 
a ridge regression; on the other hand, when l1_ratio is 1, you have a lasso.

from sklearn.linear_model import ElasticNet
elastic = ElasticNet(normalize=True)
search = GridSearchCV(estimator=elastic, param_grid={'alpha':np.logspace(‐5,2,8),
   'l1_ratio': [0.25, 0.5, 0.75]},
   scoring='mean_squared_error', n_jobs=1, refit=True, cv=10)
search.fit(polyX,y)
print 'Best parameters: %s' % search.best_params_
print 'CV MSE of best parameters: %.3f' % abs(search.best_score_)

Best parameters: {'alpha': 1.0, 'l1_ratio': 0.5}
CV MSE of best parameters: 12.162

Fighting with Big Data Chunk by Chunk
Up to this point, the book has dealt with small example databases. Real 
data, apart from being messy, can also be quite big — sometimes so big that 
it can’t fit in memory, no matter what the memory specifications of your 
machine are.

The polyX and y variables used for the examples in the sections that follow 
are created as part of the example in the “Creating interactions between 
 variables” section, earlier in this chapter. If you haven’t worked through that 
section, the examples in this section will fail to work properly.

Determining when there is too much data
In a data science project, data can be deemed big when one of these two 
 situations occur:

 ✓ It can’t fit in the available computer memory.

 ✓ Even if the system has enough memory to hold the data, the applica-
tion can’t elaborate the data using machine‐learning algorithms in a 
 reasonable amount of time.

Implementing Stochastic Gradient Descent
When you have too much data, you can use the Stochastic Gradient Descent 
Regressor (SGDRegressor) or Stochastic Gradient Descent Classifier 
(SGDClassifier) as a linear predictor. The only difference with other methods 
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described earlier in the chapter is that they actually optimize their coeffi-
cients using only one observation at a time. It therefore takes more iterations 
before the code reaches comparable results using a ridge or lasso regression, 
but it requires much less memory and time.

This is because both predictors rely on Stochastic Gradient Descent (SGD) 
optimization — a kind of optimization in which the parameter adjustment 
occurs after the input of every observation, leading to a longer and a bit more 
erratic journey toward minimizing the error function. Of course, optimizing 
based on single observations, and not on huge data matrices, can have a tre-
mendous beneficial impact on the algorithm’s training time and the amount 
of memory resources.

When using the SGDs, apart from different cost functions that you have to 
test for their performance, you can also try using L1, L2, and Elasticnet regu-
larization just by setting the penalty parameter and the corresponding 
controlling alpha and l1_ratio parameters. Some of the SGDs are more 
resistant to outliers, such as modified_huber for classification or huber 
for regression.

SGD is sensitive to the scale of variables, and that’s not just because of regu-
larization, it’s because of the way it works internally. Consequently, you must 
always standardize your features (for instance, by using StandardScaler) 
or you force them in the range [0,+1] or [‐1,+1]. Failing to do so will lead 
to poor results.

When using SGDs, you’ll always have to deal with chunks of data unless you 
can stretch all the training data into memory. To make the training effective, 
you should standardize by having the StandardScaler infer the mean and 
standard deviation from the first available data. The mean and standard 
 deviation of the entire dataset is most likely different, but the transformation 
by an initial estimate will suffice to develop a working learning procedure.

from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
SGD = SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001,  

l1_ratio=0.15,
               n_iter=2000)
scaling = StandardScaler()
scaling.fit(polyX)
scaled_X = scaling.transform(polyX)
print 'CV MSE: %.3f' % abs(np.mean(cross_val_score(SGD, scaled_X, y,
   scoring='mean_squared_error', cv=crossvalidation, n_jobs=1)))

CV MSE: 12.802
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In the preceding example, you used the fit method, which requires that you 
preload all the training data into memory. You can train the model in succes-
sive steps by using the partial_fit method instead, which runs a single 
iteration on the provided data, then keeps it in memory and adjusts it when 
receiving new data.

from sklearn.metrics import mean_squared_error
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.20,
   random_state=2)
SGD = SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001,  

l1_ratio=0.15)
improvements = list()
for z in range(1000):
   SGD.partial_fit(X_train, y_train)
   improvements.append(mean_squared_error(y_test, SGD.predict(X_test)))

Having kept track of the algorithm’s partial improvements during 1000 itera-
tions over the same data, you can produce a graph and understand how the 
improvements work as shown in the following code. It’s important to note 
that you could have used different data at each step.

import matplotlib.pyplot as plt
plt.subplot(1,2,1) 
plt.plot(range(1,11),np.abs(improvements[:10]),'o‐‐')
plt.xlabel('Partial fit initial iterations')
plt.ylabel('Test set mean squared error')
plt.subplot(1,2,2) 
plt.plot(range(100,1000,100),np.abs(improvements[100:1000:100]),'o‐‐')
plt.xlabel('Partial fit ending iterations')
plt.show()

As visible in the first of the two panes in Figure 19-4, the algorithm initially 
starts with a high error rate, but it manages to reduce it in just a few itera-
tions, usually 5. After that, the error rate slowly improves by a smaller 
amount each iteration. After 700 iterations, the error rate reaches a minimum 
and starts increasing. At that point, you’re starting to overfit because data 
has already caught the rules and you’re actually forcing the SGD to learn 
more when there is nothing left in data other than noise. Consequently, it 
starts learning noise and erratic rules.

Unless you’re working with all the data in memory, grid‐searching and 
cross‐validating the best number of iterations will be difficult. A good trick 
is to keep a chunk of training data to use for validation apart in memory or 
storage. By checking your performance on that untouched part, you can see 
when SGD learning performance starts decreasing. At that point, you can 
interrupt data iteration (a method known as early stopping).
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Understanding Support Vector Machines
Data scientists deem Support Vector Machines (SVM) to be one of the most 
complex and powerful machine‐learning techniques in their toolbox, so you 
usually find this topic solely in advanced manuals. However, you shouldn’t 
turn away from this great learning algorithm because the Scikit‐learn library 
offers you a wide and accessible range of SVM‐supervised classes for regres-
sion and classification. You can even access an unsupervised SVM that 
appears in the chapters about outliers. When evaluating whether you want 
to try SVM algorithms as a machine‐learning solution, consider these main 
benefits:

 ✓ Comprehensive family of techniques for binary and multiclass classifica-
tion, regression, and novelty detection

 ✓ Good prediction generator that provides robust handling of overfitting, 
noisy data, and outliers

 ✓ Successful handling of situations that involve many variables

 ✓ Effective when you have more variables than examples

 ✓ Fast, even when you’re working with up to about 10,000 training 
 examples

 ✓ Detects nonlinearity in your data automatically, so you don’t have to 
apply complex transformations of your variables

Figure 19‐4: 
A slow 

descent 
optimizing 

squared 
error.
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Wow, that sounds great. However, you should also consider a few relevant 
drawbacks before you jump into importing the SVM module:

 ✓ Performs better when applied to binary classification (which was the 
initial purpose of SVM), so SVM doesn’t work as well on other prediction 
problems

 ✓ Less effective when you have a lot more variables than examples; you 
have to look for other solutions like SGD

 ✓ Provides you with only a predicted outcome; you can obtain a prob-
ability estimate for each response at the cost of more time‐consuming 
computations

 ✓ Works satisfactorily out of the box, but if you want the best results, you 
have to spend time experimenting in order to tune the many parameters

You don’t have to type the source code for this section manually. In fact, 
it’s a lot easier if you use the downloadable source (see the Introduction 
for  download instructions). The source code for this section appears in the 
P4DS4D; 19; SVM.ipynb source code file.

Relying on a computational method
Vladimir Vapnik and his colleagues invented SVM in the 1990s while working 
at AT&T laboratories. SVM gained success thanks to its high performance in 
many challenging problems for the machine‐learning community of the time, 
especially when used to help a computer read handwritten input. Today, 
data scientists frequently apply SVM to an incredible array of problems, from 
medical diagnosis to image recognition and textual classification. You’ll likely 
find SVM quite useful for your problems, too!

The idea behind the SVM is simple, but the mathematical implementation is 
quite complex and requires many computations to work. This section helps 
you understand the technology behind the technique — knowing how a tool 
works always helps you figure out where and how to employ it best. Start 
considering the problem of separating two groups of data points — stars and 
squares scattered on two dimensions. It’s a classic binary classification prob-
lem in which a learning algorithm has to figure out how to separate one class 
of instances from the other one using the information provided by the data at 
hand. Figure 19-5 shows a representation of a similar problem.

If the two groups are separate from one another, you may solve the problem 
in many different ways just by choosing different separating lines. Of course, 
you must pay attention to the details and use fine measurements. Even 
though it may seem like an easy task, you need to consider what happens 
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when the data changes, such as adding more points later. You may not be 
able to be sure that you chose the right separation line.

Figure 19-6 shows two possible solutions, but even more can exist. Both 
chosen solutions are too near to the existing observations (as shown by the 
proximity of the lines to the data points), but there is no reason to think that 
new observations will behave precisely like those shown in the figure.

SVM minimizes the risk of choosing the wrong line (as you may have done by 
selecting solution A or B from Figure 19-6) by choosing the solution charac-
terized by the largest distance from the bordering points of the two groups. 
Having so much space between groups (the maximum possible) should 
reduce the chance of picking the wrong solution!

The largest distance between the two groups is the margin. When the margin 
is large enough, you can be quite sure that it’ll keep working well, even when 
you have to classify previously unseen data. The margin is determined by the 
points that are present on the limit of the margin — the support vectors (the 
support vector machines algorithm takes its name from them).

Figure 19‐6: 
More than 

one possible 
 solution.

Figure 19‐5: 
Dividing 

stars and 
squares.
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You can see an SVM solution in Figure 19-7. The figure shows the margin as a 
dashed line, the separator as the continuous line, and the support vectors as 
the circled data points.

Real‐world problems don’t always provide neatly separable classes, as in this 
example. However, a well‐tuned SVM can withstand some ambiguity (some 
misclassified points). An SVM algorithm with the right parameters can really 
do miracles.

When working with example data, it’s easier to look for neat solutions so 
that the data points can better explain how the algorithm works and you can 
grasp the core concepts. With real data, though, you need approximations 
that work. Therefore, you rarely see large and clear margins.

Apart from binary classifications on two dimensions, SVM can also work on 
complex data. You can consider the data as complex when you have more 
than two dimensions, or in situations that are similar to the layout depicted 
in Figure 19-8, when separating the groups by a straight line isn’t possible.

Figure 19‐7: 
A viable 

SVM 
 solution for 

the problem 
of the two 

groups.

(a) (b)

Figure 19‐8: 
A more 

complex 
group layout 

is not a 
problem for 

SVM.



358 Part V: Learning from Data  

In the presence of many variables, SVM can use a complex separating plane 
(the hyperplane). SVM also works well when you can’t separate classes by a 
straight line or plane because it can explore nonlinear solutions in multidi-
mensional space thanks to a computational technique called the kernel trick.

Fixing many new parameters
Although SVM is complex, it’s a great tool. After you find the most suitable SVM 
version for your problem, you have to apply it to your data and work a little 
to optimize some of the many parameters available and improve your results. 
Setting up a working SVM predictive model involves these general steps:

1. Choose the SVM class you’ll use.

2. Train your model with the data.

3. Check your validation error and make it your baseline.

4. Try different values for the SVM parameters.

5. Check whether your validation error improves.

6. Train your model again using the data with the best parameters.

As far as choosing the right SVM class goes, you have to think about your 
problem. For example, you could choose a classification (guess a class) or 
regression (guess a number). When working with a classification, you must 
consider whether you need to classify just two groups (binary classification) 
or more than two (multiclass classification). Another important aspect to 
consider is the quantity of data you have to process. After taking notes of 
all your requirements on a list, a quick glance at Table 19-1 will help you to 
narrow your choices.

Table 19‐1 The SVM Module of Learning Algorithms
Class Characteristic usage Key parameters
sklearn.svm.SVC Binary and multiclass 

 classification when the number 
of examples is less than 10,000

C, kernel, degree, 
gamma

sklearn.svm.NuSVC Similar to SVC nu, kernel, degree, 
gamma

sklearn.svm.
LinearSVC

Binary and multiclass 
 classification when the number 
of examples is more than 10,000; 
sparse data

Penalty, loss, C
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The first step is to check the number of examples in your data. When you 
have more than 10,000 examples, in order to avoid too slow and cumbersome 
computations, you can use SVM and still get an acceptable performance only 
for classification problems by using sklearn.svm.LinearSVC. If instead 
you need to solve a regression problem or the LinearSVC isn’t fast enough, 
you need to use a stochastic solution for SVM (as described in the sections 
that follow).

The Scikit‐learn SVM module wraps two powerful libraries written in C, 
libsvm and liblinear. When fitting a model, there is a flow of data between 
Python and the two external libraries. A cache smooths the data exchange 
operations. However, if the cache is too small and you have too many data 
points, the cache becomes a bottleneck! If you have enough memory, it’s 
a good idea to set a cache size greater than the default 200MB (1000MB, if 
possible) using the SVM class’ cache_size parameter. Smaller numbers of 
examples require only that you decide between classification and regression.

In each case, you’ll have two alternative algorithms. For example, for clas-
sification, you may use sklearn.svm.SVC or sklearn.svm.NuSVC. The 
only difference with the Nu version is the parameters it takes and the use of 
a slightly different algorithm. In the end, it gets basically the same results, so 
you normally choose the non‐Nu version.

After deciding on which algorithm to use, you find out that you have a bunch 
of parameters to choose, and the C parameter is always among them. The C 
parameter indicates how much the algorithm has to adapt to training points. 
When C is small, the SVM adapts less to the points and tends to take an aver-
age direction, just using a few of the points and variables available. Larger C 
values tend to force the learning process to follow more of the available train-
ing points and to get involved with many variables.

The right C is usually a middle value, and you can find it after a bit of experi-
mentation. If your C is too large, you risk overfitting, a situation in which your 
SVM adapts too much to your data and cannot properly handle new prob-
lems. If your C is too small, your prediction will be rougher and imprecise. 

Class Characteristic usage Key parameters

sklearn.svm.SVR Regression problems C, kernel, degree, 
gamma, epsilon

sklearn.svm.NuSVR Similar to SVR Nu, C, kernel, 
degree, gamma

sklearn.svm.
OneClassSVM

Outliers detection nu, kernel, degree, 
gamma
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You’ll experience a situation called underfitting — your model is too simple 
for the problem you want to solve.

After deciding the C value to use, the important block of parameters to fix is 
kernel, degree, and gamma. All three interconnect and their value depends 
on the kernel specification (for instance, the linear kernel doesn’t require 
degree or gamma, so you can use any value). The kernel specification deter-
mines whether your SVM model uses a line or a curve in order to guess the 
class or the point measure. Linear models are simpler and tend to guess well 
on new data, but sometimes underperform when variables in the data relate 
to each other in complex ways. Because you can’t know in advance whether a 
linear model works for your problem, it’s good practice to start with a linear 
kernel, fix its C value, and use that model and its performance as a baseline 
for testing nonlinear solutions afterward.

Classifying with SVC
It’s time to build the first SVM model. Because SVM initially performed so 
well with handwritten classification, starting with a similar problem is a great 
idea. Using this approach can give you an idea of how powerful this machine‐
learning technique is. The example uses the digits dataset available from the 
module datasets in the Scikit‐learn package. The digits dataset contains a 
series of 8‐x‐8‐pixel images of handwritten numbers ranging from 0 to 9.

from sklearn import datasets
digits = datasets.load_digits()
X,y = digits.data, digits.target

After loading the datasets module, the load.digits function imports all the 
data, from which the example extracts the predictors (digits.data) as X 
and the predicted classes (digits.target) as y.

You can look at what’s inside this dataset using the matplotlib functions 
subplot (for creating an array of drawings arranged in two rows of five 
 columns) and imshow (for plotting grayscale pixel values onto an 8‐x‐8 grid). 
The code arranges the information inside digits.images as a series of 
matrices, each one containing the pixel data of a number.

import matplotlib.pyplot as plt
for k,img in enumerate(range(10)):
   plt.subplot(2, 5, k)
   plt.imshow(digits.images[img],
   cmap='binary',interpolation='none')
plt.show()
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The code displays the first ten numbers as an example of the data used in the 
example. You can see the result in Figure 19-9.

By observing the data, you can also start figuring out that SVM could guess 
what the number is by associating a probability with the values of specific 
pixels in the grid. A number 2 could turn on different pixels than a number 1, 
or maybe different groups of pixels. Data science involves testing many pro-
gramming approaches and algorithms before reaching a solid result, but it 
helps to be imaginative and intuitive in order to figure how what you can try 
first. In fact, if you explore X, you discover that it’s made of exactly 64 vari-
ables, each one representing the grayscale value of a single pixel, and that 
you have plentiful examples, exactly 1,797 cases.

print X.shape

(1797L, 64L)

X[0]
array([  0.,   0.,   5.,  13.,   9.,   1.,   0.,   0.,   0.,   0.,  13.,
        15.,  10.,  15.,   5.,   0.,   0.,   3.,  15.,   2.,   0.,  11.,
         8.,   0.,   0.,   4.,  12.,   0.,   0.,   8.,   8.,   0.,   0.,
         5.,   8.,   0.,   0.,   9.,   8.,   0.,   0.,   4.,  11.,   0.,
         1.,  12.,   7.,   0.,   0.,   2.,  14.,   5.,  10.,  12.,   0.,
         0.,   0.,   0.,   6.,  13.,  10.,   0.,   0.,   0.])

At this point, you might wonder what to do about labels. You can ask for help 
from the SciPy package, which provides the itemfreq function:

from scipy.stats import itemfreq
print y.shape, itemfreq(y)

Figure 19‐9: 
The first ten 
handwritten 

digits from 
the digits 
dataset.
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[[   0.  178.]
 [   1.  182.]
 [   2.  177.]
 [   3.  183.]
 [   4.  181.]
 [   5.  182.]
 [   6.  181.]
 [   7.  179.]
 [   8.  174.]
 [   9.  180.]]

The output associates the class label (the first number) with its frequency 
and is worth observing. All the class labels present about the same number 
of examples. That means that your classes are balanced and that the SVM 
won’t be led to think that one class is more probable than any of the others. 
If one or more of the classes had a significantly different number of cases, 
you’d face an unbalanced class problem. An unbalanced class scenario 
requires you to perform an evaluation:

 ✓ Keep the unbalanced class and get predictions biased toward the most 
frequent classes

 ✓ Establish equality among the classes using weights, which means 
 allowing some observations to count more

 ✓ Use selection to cut some cases from the classes that have too 
many cases

An imbalanced class problem requires you to set some additional param-
eters. sklearn.svm.SVC has both a class_weight parameter and a 
sample_weight keyword in the fit method. The most straightforward and 
easiest way to solve the problem is to set class_weight=’auto’ when 
defining your SVC and let the algorithm fix everything by itself.

Now you’re ready to test the SVC with the linear kernel. However, don’t 
forget to split your data into training and test sets, or you won’t be able to 
judge the effectiveness of the modeling work. Always use a separate data 
fraction for performance evaluation or the results will look good now but 
turn worse when adding fresh data.

from sklearn.cross_validation import train_test_split, cross_val_score
from sklearn.preprocessing import MinMaxScaler
# We keep 30% random examples for test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,  

random_state=101)

The train_test_split function splits X and y into training and test 
sets, using the test_size parameter value of 0.3 as a reference for the 
split ratio.
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# We scale the data in the range [‐1,1]
scaling = MinMaxScaler(feature_range=(‐1, 1)).fit(X_train)
X_train = scaling.transform(X_train)
X_test  = scaling.transform(X_test)

As a best practice, after splitting the data into training and test parts, you 
scale the numeric values, first by getting scaling parameters from the training 
data and then by applying a transformation on both training and test sets.

Another important action to take before feeding the data into an SVM is  scaling. 
Scaling transforms all the values to the range between –1 to 1 (or from 0 to 1, 
if you prefer). Scaling transformation avoids the problem of having some vari-
ables influence the algorithm (they may trick it into thinking they are important 
because they have big values) and it makes the computations exact, smooth, 
and fast.

The following code fits the training data to an SVC class with a linear kernel. 
It also cross‐validates and tests the results in terms of accuracy (the percent-
age of numbers correctly guessed).

from sklearn.svm import SVC
# We balance the clasess so you can see how it works
learning_algo = SVC(kernel='linear', class_weight='auto')

The code instructs the SVC to use the linear kernel and to reweight the 
classes automatically. Reweighting the classes ensures that they remain 
equally sized after the dataset is split into training and test sets.

cv_performance = cross_val_score(learning_algo, X_train, y_train, cv=10)
test_performance = learning_algo.fit(X_train, y_train).score(X_test, y_test)

The code then assigns two new variables. Cross‐validation performance is 
recorded by the cross_val_score function, which returns a list with all 
ten scores after a ten‐fold cross‐validation (cv=10). The code obtains a test 
result by using two methods in sequence on the learning algorithm — fit, 
that fits the model, and score, which evaluates the result on the test set 
using mean accuracy (mean percentage of correct results among the classes 
to predict).

print 'Cross‐validation accuracy score: %0.3f,
   test accuracy score: %0.3f' % (np.mean(cv_performance),test_performance)
Cross‐validation accuracy score: 0.975, test accuracy score: 0.974

Finally, the code prints the two variables and evaluates the result. The result 
is quite good: 97.4 percent correct predictions on the test set!
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You might wonder what would happen if you optimize the principal param-
eter C instead of using the default value of 1.0. The following script provides 
you with an answer, using gridsearch to look for an optimal value for the C 
parameter:

from sklearn.grid_search import GridSearchCV
learning_algo = SVC(kernel='linear', class_weight='auto', random_state=101)
search_space = {'C': np.logspace(‐3, 3, 7)}
gridsearch = GridSearchCV(learning_algo, param_grid=search_space, 

scoring='accuracy',
   refit=True, cv=10)
gridsearch.fit(X_train,y_train)

Using GridSearchCV is a little more complex, but it allows you to check 
many models in sequence. First, you must define a search space variable 
using a Python dictionary that contains the exploration schedule of the pro-
cedure. To define a search space, you create a dictionary (or, if there is more 
than one dictionary, a dictionary list) for each tested group of parameters. 
Inside the dictionary, you place the name of the parameters as keys and asso-
ciate them with a list (or a function generating a list, as in this case) contain-
ing the values to test.

The NumPy logspace function creates a list of seven C values, ranging from 
10^–3 to 10^3. This is a computationally expensive number of values to test, 
but it’s also comprehensive, and you can always be safe when you test C and 
the other SVM parameters using such a range.

You then initialize GridSearchCV, defining the learning algorithm, search 
space, scoring function, and number of cross‐validation folds. The next step 
is to instruct the procedure, after finding the best solution, to fit the best 
combination of parameters, so that you can have a ready‐to‐use predictive 
model:

cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)

In fact, gridsearch now contains a lot of information about the best score 
(and best parameters, plus a complete analysis of all the evaluated combina-
tions) and methods, such as score, which are typical of fitted predictive 
models in Scikit‐learn.

print 'Cross‐validation accuracy score: %0.3f,
   test accuracy score: %0.3f' % (cv_performance,test_performance)
print 'Best C parameter: %0.1f' % gridsearch.best_params_['C']

Cross‐validation accuracy score: 0.984, test accuracy score: 0.993
Best C parameter: 100.0
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The last step prints the results and shows that using a C=100 increases 
 performance quite a bit, both on the cross‐validation and the test set.

Going nonlinear is easy
Having defined a simple liner model as a benchmark for the handwritten digit 
project, you can now test a more complex hypothesis, and SVM offers a range 
of nonlinear kernels:

 ✓ Polynomial (poly)

 ✓ Radial Basis Function (rbf)

 ✓ Sigmoid (sigmoid)

 ✓ Advanced custom kernels

Even though so many choices exist, you rarely use something different from 
the radial basis function kernel (rbf for short) because it’s faster than other 
kernels and can approximate almost any nonlinear function.

Here’s a basic, practical explanation about how rbf works: It separates the 
data into many clusters, so it’s easy to associate a response to each cluster.

The rbf kernel requires that you set the degree and gamma parameters 
besides setting C. They’re both easy to set (and a good grid search will 
always find the right value).

The degree parameter has values that begin at 2. It determinates the com-
plexity of the nonlinear function used to separate the points. As a practical 
suggestion, don’t worry too much about degree — test values of 2, 3, and 4 
on a grid search. If you notice that the best result has a degree of 4, try shift-
ing the grid range upward and test 3, 4, and 5. Continue proceeding upward 
as needed, but using a value greater than 5 is rare.

The gamma parameter’s role in the algorithm is similar to C (it provides a 
trade‐off between overfit and underfit). It’s exclusive of the rbf kernel. High 
gamma values induce the algorithm to create nonlinear functions that have 
irregular shapes because they tend to fit the data more closely. Lower values 
create more regular, spherical functions, ignoring most of the irregularities 
present in the data.

Now that you know the details of the nonlinear approach, it’s time to try rbf on 
the previous example. Be warned that, given the high number of combinations 
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tested, the computations may take some time to complete, depending on the 
characteristics of your computer.

from sklearn.grid_search import GridSearchCV
learning_algo = SVC(class_weight='auto', random_state=101)
search_space = [{'kernel': ['linear'], 'C': np.logspace(‐3, 3, 7)},
            {'kernel': ['rbf'], 'degree':[2,3,4], 'C':np.logspace(‐3, 3, 7),
             'gamma': np.logspace(‐3, 2, 6)}]
gridsearch = GridSearchCV(learning_algo, param_grid=search_space, 

scoring='accuracy',
   refit=True, cv=10)
gridsearch.fit(X_train,y_train)
cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)
print 'Cross‐validation accuracy score: %0.3f,
   test accuracy score: %0.3f' % (cv_performance,test_performance)
print 'Best parameters: %s' % gridsearch.best_params_

Cross‐validation accuracy score: 0.988, test accuracy score: 0.987
Best parameters: {'kernel': 'rbf', 'C': 1.0, 'gamma': 0.10000000000000001, 

'degree': 2}

Notice that the only difference in this script is that the search space is more 
sophisticated. By using a list, you enclose two dictionaries — one containing 
the parameters to test for the linear kernel and another for the rbf kernel. 
In this way, you can compare the performance of the two approaches at the 
same time.

The results tell you that rbf performs better. However, it’s a small margin 
of victory over the linear models. In such cases, having more data avail-
able could help in determining the better model with greater confidence. 
Unfortunately, getting more data may be expensive in terms of money and 
time. When faced with the absence of a clear winning model, the best sugges-
tion is to decide in favor of the simpler model. In this case, the linear kernel 
is much simpler than rbf.

Performing regression with SVR
Up to now, you have dealt only with classification, but SVM can also handle 
regression problems. Having seen how a classification works, you don’t need 
to know much more than that the SVM regression class is SVR and there is a 
new parameter to fix, epsilon. Everything else we discuss for classification 
works precisely the same with regression.

This example uses a different dataset, a regression dataset. The Boston 
house price dataset, taken from the StatLib library maintained at Carnegie 
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Mellon University, appears in many machine‐learning and statistical papers 
that address regression problems. It has 506 cases and 13 numeric variables 
(one of them is a 1/0 binary variable).

from sklearn import datasets
boston = datasets.load_boston()
X,y = boston.data, boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
   random_state=101)
scaling = MinMaxScaler(feature_range=(‐1, 1)).fit(X_train)
X_train = scaling.transform(X_train)
X_test  = scaling.transform(X_test)

The target is the median value of houses occupied by an owner, and you’ll try 
to guess it using SVR (epsilon‐Support Vector Regression). In addition to C, 
kernel, degree, and gamma, SVR also has epsilon. Epsilon is a measure of 
how much error the algorithm considers acceptable. A high epsilon implies 
fewer support points, while a lower epsilon requires a larger number of 
support points. In other words, epsilon provides another way to trade off 
underfit against overfit.

As a search space for this parameter, experience tells you that the sequence 
[0, 0.01, 0.1, 0.5, 1, 2, 4] works quite fine. Starting from a mini-
mum value of 0 (when the algorithm doesn’t accept any error) and reaching 
a maximum of 4, you should enlarge the search space only if you notice that 
higher epsilon values bring better performance.

Having included epsilon in the search space and assigning SVR as a learn-
ing algorithm, you can complete the script. Be warned that, given the high 
number of combinations evaluated, the computations may take quite some 
time, depending on the characteristics of your computer.

from sklearn.svm import SVR
learning_algo = SVR(random_state=101)
search_space = [{'kernel': ['linear'], 'C': np.logspace(‐3, 2, 6), 'epsilon': 

[0, 0.01,
   0.1, 0.5, 1, 2, 4]},{'kernel': ['rbf'], 'degree':[2,3], 'C':np.logspace(‐3, 

3, 7),
   'gamma': np.logspace(‐3, 2, 6), 'epsilon': [0, 0.01, 0.1, 0.5, 1, 2, 4]}]
gridsearch = GridSearchCV(learning_algo, param_grid=search_space, refit=True,
   scoring= 'r2', cv=10)
gridsearch.fit(X_train,y_train)
cv_performance = gridsearch.best_score_
test_performance = gridsearch.score(X_test, y_test)
print 'Cross‐validation R2 score: %0.3f,
   test R2 score: %0.3f' % (cv_performance,test_performance)
print 'Best parameters: %s' % gridsearch.best_params_
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Cross‐validation R2 score: 0.833, test R2 score: 0.871
Best parameters: {'epsilon': 2, 'C': 1000.0, 'gamma': 0.10000000000000001, 

'degree': 2, 'kernel': 'rbf'}

Note that on the error measure, as a regression, the error is calculated using 
R squared, a measure in the range from 0 to 1 that indicates the model’s 
 performance (with 1 being the best possible result to achieve).

Creating a stochastic solution with SVM
Now that you’re at the end of the overview of the family of SVM machine‐
learning algorithms, you should see that they’re a fantastic tool for a data 
scientist. Of course, even the best solutions have problems. For example, you 
might think that the SVM has too many parameters in the SVM. Certainly, the 
parameters are a nuisance, especially when you have to test so many combi-
nations of them, which can take a lot of CPU time. However, the key problem 
is the time necessary for training the SVM. You may have noticed that the 
examples use small datasets with a limited number of variables, and perform-
ing some extensive grid searches still takes a lot of time. Real‐world datasets 
are much bigger. Sometimes it may seem to take forever to train and optimize 
your SVM on your computer.

A possible solution when you have too many cases (a suggested limit is 
10,000 examples) is found inside the same SVM module, the LinearSVC 
class. This algorithm works only with the linear kernel and its focus is to 
classify (sorry, no regression) large numbers of examples and variables 
at a higher speed than the standard SVC. Such characteristics make the 
LinearSVC a good candidate for textual‐based classification. LinearSVC has 
fewer and slightly different parameters to fix than the usual SVM (it’s similar 
to a regression class):

 ✓ C: The penalty parameter. Small values imply more regularization 
 (simpler models with attenuated or set to zero coefficients).

 ✓ loss: A value of l1 (just as in SVM) or l2 (errors weight more, so it 
strives harder to fit misclassified examples).

 ✓ penalty: A value of l2 (attenuation of less important parameters) or 
l1 (unimportant parameters are set to zero).

 ✓ dual: A value of true or false. It refers to the type of optimization 
problem solved and, though it won’t change the obtained scoring much, 
setting the parameter to false results in faster computations than 
when it is set to true.
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The loss, penalty, and dual parameters are also bound by reciprocal 
constraints, so please refer to Table 19-2 to plan which combination to use in 
advance.

The algorithm doesn’t support the combination of penalty='l1' and 
loss='l1'. However, the combination of penalty='l2' and loss='l1' 
perfectly replicates the SVC optimization approach.

As mentioned previously, LinearSVC is quite fast, and a speed test against 
SVC demonstrates the level of improvement to expect in choosing this 
 algorithm.

from sklearn.datasets import make_classification
X,y = make_classification(n_samples=10**4, n_features=15, n_informative=10,
   random_state=101)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
   random_state=101)
from sklearn.svm import SVC, LinearSVC
slow_SVM = SVC(kernel="linear", random_state=101)
fast_SVM = LinearSVC(random_state=101, penalty='l2', loss='l1')
slow_SVM.fit(X_train, y_train)
fast_SVM.fit(X_train, y_train)
print 'SVC test accuracy score: %0.3f' % slow_SVM.score(X_test, y_test)
print 'LinearSVC test accuracy score: %0.3f' % fast_SVM.score(X_test, y_test)

SVC test accuracy score: 0.808
LinearSVC test accuracy score: 0.808

After you create an artificial dataset using make_classfication, the code 
obtains confirmation of how the two algorithms arrive at identical results. 
At this point, the code tests the speed of the two solutions on the synthetic 
dataset in order to understand how they scale to using more data.

Table 19‐2 The loss, penalty, and dual Constraints
penalty loss dual
l1 l2 False

l2 l1 True

l2 l2 True; False
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import timeit
X,y = make_classification(n_samples=10**4, n_features=15, n_informative=10,
   random_state=101)
print 'avg secs for SVC, best of 3: %0.1f'  

% np.mean(timeit.timeit("slow_SVM.fit(X, y)",
   "from __main__ import slow_SVM, X, y", number=1))
print 'avg secs for LinearSVC, best of 3: %0.1f' % np.mean(
   timeit.timeit("fast_SVM.fit(X, y)", "from __main__ import fast_SVM,  

X, y", number=1))

The example system shows the following result (the output of your system 
may differ):

avg secs for SVC, best of 3: 15.9
avg secs for LinearSVC, best of 3: 0.4

Clearly, given the same data quantity, LinearSVC is much faster than SVC. 
You can calculate its performance ratio as 15.9 / 0.4 = 39.75 times 
faster than SVC. But what if you grow the sample size from 10**4 to 10**5?

avg secs for SVC, best of 3: 3831.6
avg secs for LinearSVC, best of 3: 10.0

The results are quite impressive. LinearSVC is 383.16 times faster than SVC. 
Even if LinearSVC is quite fast at performing tasks, you may need to classify 
or regress with examples in the range of millions. You need to know whether 
LinearSVC is still a better choice.

You previously saw how the SGD class, using SGDClassifier and 
SGDRegressor, helps you implement an SVM‐type algorithm in situations 
with millions of data rows without investing too much computational power. 
All you have to do is to set their loss to 'hinge' for SGDClassifier and 
to 'epsilon_insensitive' for SGDRegressor (in which case, you have 
to tune the epsilon parameter).

Another performance and speed test makes the advantages and limitations of 
using LinearSVC or SGDClassifier clear:

from sklearn.linear_model import SGDClassifier
X,y = make_classification(n_samples=10**6, n_features=15, n_informative=10,
   random_state=101)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
   random_state=101)

The sample is quite big — 1 million cases. If you have enough memory and a 
lot of time, you may even want to increase the number of trained cases or the 
number of features and more extensively test how the two algorithms scale 
with big data.
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fast_SVM = LinearSVC(random_state=101)
fast_SVM.fit(X_train, y_train)
print 'LinearSVC test accuracy score: %0.3f' % fast_SVM.score(X_test, y_test)
print 'avg secs for LinearSVC, best of 3: %0.1f' % np.mean(
   timeit.timeit("fast_SVM.fit(X_train, y_train)",
      "from __main__ import fast_SVM, X_train, y_train", number=1))

LinearSVC test accuracy score: 0.806
avg secs for LinearSVC, best of 3: 311.2

On the test computer, LinearSVC completed its computations on 1 million 
rows in about five minutes. SGDClassifier instead took about a second for 
processing the same data and obtaining an inferior, but comparable, score.

stochastic_SVM = SGDClassifier(loss='hinge', n_iter=5, shuffle=True, random_
state=101)

stochastic_SVM.fit(X_train, y_train)
print 'SGDClassifier test accuracy score: %0.3f' % stochastic_SVM.score(X_test, 

y_test)
print 'avg secs for SGDClassifier, best of 3: %0.1f' % np.mean(
   timeit.timeit("stochastic_SVM.fit(X_train, y_train)",
      "from __main__ import stochastic_SVM, X_train, y_train", number=1))
SGDClassifier test accuracy score: 0.799
avg secs for SGDClassifier, best of 3: 0.8

Increasing the n_iter parameter can improve the performance, but it 
proportionally increases the computation time. Increasing the number of 
iterations up to a certain value (that you have to find out by test) increases 
the performance. However, after that value, performance starts to decrease 
because of overfitting.
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Understanding the Power 
of the Many

In This Chapter
 ▶ Understanding how a decision tree works

 ▶ Using Random Forest and other bagging techniques

 ▶ Taking advantage of the most performing ensembles by boosting

I 
n this chapter, you go beyond the single machine‐learning models you’ve 
seen until now and explore the power of ensembles, groups of models that 

can outperform single models. Ensembles work like the collective intelligence 
of crowds, using pooled information to make better predictions. The basic 
idea is that a group of nonperforming algorithms can produce better results 
than a single well‐trained model.

Maybe you’ve participated in one of those games that ask you to guess the 
number of sweets in a jar at parties or fairs. Even though a single person 
has a slim chance of guessing the right number, various experiments have 
confirmed that if you take the wrong answers of a large number of game 
participants and average them, you can get close to the right answer! Such 
incredible shared group knowledge (the wisdom of crowds) is possible 
because wrong answers tend to distribute around the true one. By taking 
a mean or median of these wrong answers, you get the direction of the 
right answer.

You can use this technique to win games by listening carefully to others’ 
answers when participating in such games before providing your informed 
answer. Of course, you can employ the technique in ways that are more 
practical. In data science projects involving complex predictions, you can 
leverage the wisdom of various machine‐learning algorithms and become 
more precise and accurate at predictions than you can when using a single 
algorithm. This chapter creates a process you can use to leverage the power 
of many different algorithms to obtain a better single answer.

Chapter 20
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You don’t have to type the source code for this chapter manually. In fact, it’s a 
lot easier if you use the downloadable source (see the Introduction for down-
load instructions). The source code for this chapter appears in the P4DS4D; 
20; Understanding the Power of the Many.ipynb source code file.

Starting with a Plain Decision Tree
Decision trees have long been part of data mining tools. The first models date 
back to the 1970s or even earlier. Decision trees have enjoyed popularity in 
many fields because of their intuitive algorithm, understandable output, and 
effectiveness with respect to simple linear models.

With the introduction of better‐performing algorithms, decision trees slowly 
went out of the machine‐learning scene for a time, but came back in recent 
years as an essential building block of ensemble algorithms. Today, tree 
ensembles such as Random Forest or Gradient Boosting Machines are the 
core of many data science applications.

Understanding a decision tree
The basis of decision trees is the idea that you can divide your dataset into 
smaller and smaller parts using specific rules based on the values of the 
 dataset’s features. When dividing the dataset in this way, the algorithm must 
choose splits that increase the chance of guessing the target outcome cor-
rectly, either as a class or as an estimate. Therefore, the algorithm must try 
to maximize the presence of a certain class or a certain average of values in 
each split.

As an example of an application and execution of a decision tree, you could 
try to predict the likelihood of passenger survival from the RMS Titanic, the 
British passenger liner that sank in the North Atlantic Ocean in April 1912 
after colliding with an iceberg. Most datasets available about the Titanic 
tragedy have 1,309 recorded passengers with full stats. The survival rate 
among passengers was 38.2 percent (of 1,309 passengers, 809 lost their lives). 
However, based on the passengers’ characteristics, you (and the decision 
tree) can notice that

 ✓ Being male changes the likelihood of survival, lowering it from 
38.2  percent to 19.1 percent.

 ✓ Being male, but being younger than 9.5 years of age, raises the chance of 
survival to 58.1 percent.

 ✓ Being female, regardless of age, implies a survival probability of 
72.7  percent.
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Using such knowledge, you can easily to build a tree like the one depicted in 
Figure 20-1. Notice that the tree looks upside down (with the root at the top 
and all the branches spreading out from there). It starts at the top using the 
entire sample. Then it splits on the gender feature, creating two branches, 
one that turns into a leaf. A leaf is a terminal segmentation. The diagram clas-
sifies the leaf cases by using the most frequent class or by calculating the 
base probability of cases with the same features as the leaf probability. The 
second branch is further split by age.

To read nodes of the tree, consider that the topmost node begins by report-
ing the rule used to create the node. The next line is the gini, which is a mea-
sure that indicates the quality of the split. The last line reports the number of 
samples, which is all 1,309 passengers in the root node.

Understanding the rule comes next. The tree takes the left branch when the 
rule is true and the right one when it is false. So, male <=0.5 rule indicates 
that the person is a female, since male is encoded as 1 and female is encoded 
as 0 — the female leaf is on the left. When the decision tree reaches a termi-
nal node, the node lacks a rule. Looking at the female node on the left, you 
see the results of the rule in brackets. The left number, 127, indicates the 
number of deaths, whereas the right number, 339, indicates the number of 
survivors.

After the age split, the tree has another split and then the algorithm stops. 
The tree has three splits, and the number of times a variable is split is called 
the levels. In this case, the number of males that are less than 9.5 years old is 
43 and of those 43, 18 died and 25 lived.

Figure 20-1: 
A tree 

model of 
survival 

rates from 
the Titanic 

 disaster.
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In this case, the split is binary, but multiple splits are also possible, 
depending on the tree algorithm. In Scikit‐learn, the implemented class 
DecisionTreeClassifier and DecisionTreeRegressor in the 
sklearn.tree module are all binary trees.

A decision tree can stop splitting the data when

 ✓ There are no more cases to split, so the data appears as part of leaf 
nodes.

 ✓ The rule used to split a leaf has fewer than a predefined number of 
cases. This action keeps the algorithm from working with leaves that 
have little representation in general or are more specific than the data 
you’re analyzing, thus preventing overfitting and variance of estimates.

 ✓ One of the resulting leaves has fewer than a predefined number of 
cases — another sanity check for avoiding inferring general rules 
 without the confidence provided by a good sample size.

Decision trees tend to overfit the data. By setting the right number for splits 
and terminal leaves, you can reduce the variance of the estimates. Depending 
on your starting sample size, a limit of 30 cases is usually a good choice.

Apart from being intuitive and easy to understand and represent (well, it 
does depend on how many branches and leaves you have in your tree), deci-
sion trees offer another strong advantage to the data science practitioner — 
they don’t require any particular data treatment or transformation because 
they model any nonlinearity using approximations. In fact, they accept any 
kind of variable, even categorical variables encoded with arbitrary codes for 
the represented classes. In addition, decision trees handle missing cases. 
All you need to do is to assign missing cases an unlikely value, such as an 
extreme or a negative value (depending on your data distribution of nonmiss-
ing cases). Finally, decision trees are incredibly resistant to outliers!

Creating classification 
and  regression trees
Data scientists call trees that specialize in guessing classes classification 
trees; trees that work with estimation instead are known as regression trees. 
Here’s a classification problem, using the Fisher’s Iris dataset (you first use 
this dataset in the “Defining Descriptive Statistics for Numeric Data” section 
of Chapter 13):

from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
features = iris.feature_names
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After loading the data into X, which contains predictors, and y, which holds 
the classifications, you can define a cross‐validation for checking the results 
using decision trees:

from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)

Using the DecisionTreeClassifier class, you define max_depth inside 
an iterative loop to experiment with the effect of increasing the complexity of 
the resulting tree. The expectation is to reach an ideal point quickly and then 
witness decreasing cross‐validation performance because of overfitting:

from sklearn import tree
for depth in range(1,10):
   tree_classifier = tree.DecisionTreeClassifier(
      max_depth=depth, random_state=0)
   if tree_classifier.fit(X,y).tree_.max_depth < depth:
    break
   score = np.mean(cross_val_score(tree_classifier, X, y,
      scoring='accuracy', cv=crossvalidation, n_jobs=1))
   print 'Depth: %i Accuracy: %.3f' % (depth,score)

Depth: 1 Accuracy: 0.580
Depth: 2 Accuracy: 0.913
Depth: 3 Accuracy: 0.920
Depth: 4 Accuracy: 0.940
Depth: 5 Accuracy: 0.920

The best solution is a tree with four splits. Figure 20-2 shows the complexity 
of the resulting tree.

To obtain an effective reduction and simplification, you can set min_samples_ 
split to 30 and avoid terminal leaves that are too small. This setting 
prunes the small terminal leaves in the new resulting tree, diminishing cross‐ 
validation accuracy but increasing simplicity and the generalization power of 
the solution.

tree_classifier = tree.DecisionTreeClassifier(
   min_samples_split=30, min_samples_leaf=10,
      random_state=0)
tree_classifier.fit(X,y)
score = np.mean(cross_val_score(tree_classifier, X, y,
   scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.913
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Figure 20-2: 
A tree 

model of the 
Iris dataset 

using a 
depth of 

four splits.
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Similarly, using the DecisionTreeRegressor class, you can model a 
regression problem, such as the Boston house price dataset (you first 
use this dataset in the “Defining applications for data science” section of 
Chapter 12). When dealing with a regression tree, the terminal leaves offer 
the average of the cases as the prediction output.

from sklearn.datasets import load_boston
boston = load_boston()
X, y = boston.data, boston.target
features = boston.feature_names

from sklearn.tree import DecisionTreeRegressor
regression_tree = tree.DecisionTreeRegressor(
   min_samples_split=30, min_samples_leaf=10,
      random_state=0)
regression_tree.fit(X,y)
score = np.mean(cross_val_score(regression_tree, X, y,
   scoring='mean_squared_error', cv=crossvalidation,
      n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 22.593

Making Machine Learning Accessible
Random Forest is a classification and regression algorithm developed by Leo 
Breiman and Adele Cutler that uses a large number of decision tree models 
in order to provide precise predictions by reducing both the bias and vari-
ance of the estimates. When you aggregate many models together to produce 
a single prediction, the result is an ensemble of models. Random Forest isn’t 
just an ensemble model, it’s also a simple and effective algorithm to use, as 
intended by its creators, as an out‐of‐the‐box algorithm. It makes machine 
learning accessible to nonexperts. The Random Forest algorithm uses these 
steps to perform its predictions:

1. Create a large number of decision trees, each one different from the 
other, based on different subsets of observations and variables.

2. Bootstrap the dataset of observations for each tree (sampled from the 
original data with replacement). The same observation can appear mul-
tiple times in the same dataset.

3. Randomly select and use only a part of the variables for each tree.

4. Estimate the performance for each tree using the observations excluded 
by sampling (the Out Of Bag, or OOB, estimate).
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5. Obtain the final prediction, which is the average for regression estimates 
or the most frequent class for prediction, after all the trees have been 
fitted and used for prediction.

You can reduce bias by using these steps, because the decision trees have a 
good fit on data and, by their complex splits, can approximate even the most 
complex relationships between predictors and predicted outcome. Decision 
trees are known to produce a great variance of estimates, but you reduce 
this variance by averaging many trees. Noisy predictions, due to variance, 
tend to distribute evenly above and below the correct value that you want to 
 predict — and when averaged together, they tend to cancel each other, leav-
ing, as a result, a more correct average prediction.

Leo Breiman derived the idea for Random Forest from the bagging technique. 
Scikit‐learn has a bagging class for both regression (BaggingRegressor) 
and classifying (BaggingClassifier) that you can be use with any other 
predictor you prefer to pick from Scikit‐learn modules. The max_samples 
and max_features parameters let you decide the proportion of cases and 
variables to sample (not bootsrapped, but sampled, so a case can be used 
only once) for building each model of the ensemble. The n_estimators 
parameter decides the total number of models in the ensemble. Here’s an 
example that loads the handwritten digit dataset (used for demonstrations 
later with other ensemble algorithms) and then fits the model by bagging:

from sklearn.datasets import load_digits
digit = load_digits()
X, y = digit.data, digit.target
print X.shape, y.shape

(1797L, 64L) (1797L,)

from sklearn.ensemble import BaggingClassifier
from sklearn import tree
tree_classifier = tree.DecisionTreeClassifier(
   random_state=0)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
bagging = BaggingClassifier(tree_classifier,
   max_samples=0.7, max_features=0.7, n_estimators=300)
scores = np.mean(cross_val_score(bagging, X, y,
   scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Mean squared error: 0.966
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In bagging, as in Random Forest, the more models in the ensemble, the 
better. You run no risk of overfitting because every model is different from 
the others, and errors tend to spread around the real value. Adding more 
models just adds stability to the result.

Another characteristic of the algorithm is that it permits estimation of vari-
able importance while taking the presence of all the other predictors into 
account (a true multivariate approach).

In contrast to single decision trees, you can’t easily visualize or understand 
Random Forest, making it act as a black box (a black box is a transformation 
that doesn’t reveal its inner workings; all you see are its inputs and outputs). 
Given its opacity, importance estimation is the only way to understand how 
the algorithm works with respect to the features.

Importance estimation in a Random Forest is obtained in a straightforward 
way. After building each tree, the code fills each variable with junk data 
and the example records how much the predictive power decreases. If the 
variable is important, crowding it with casual data harms the prediction; 
otherwise, the predictions are left unchanged and the variable is deemed 
unimportant.

Working with a Random Forest classifier
The example Random Forest classifier keeps using the previously loaded 
digit dataset:

X, y = digit.data, digit.target
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
crossvalidation = KFold(n=X.shape[0], n_folds=3,
   shuffle=True, random_state=1)
RF_cls = RandomForestClassifier(n_estimators=300)
score = np.mean(cross_val_score(RF_cls, X, y,
   scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.977

Just setting the number of estimators is sufficient for most problems you 
encounter, and setting it correctly is a matter of using the highest number 
possible given the time and resource constraints of the host computer. You 
can demonstrate this by calculating and drawing a validation curve for the 
algorithm.
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from sklearn.learning_curve import validation_curve
train_scores, test_scores = validation_curve(RF_cls, X, y,
   'n_estimators', param_range=[
      10,50,100,200,300,500,800,1000,1500], 
   cv=crossvalidation, scoring='accuracy', n_jobs=1)
print 'mean cv accuracy %s' % np.mean(train_scores,axis=1)

mean cv accuracy [ 0.93600445  0.9738453   0.9771842
                   0.97607123  0.9738453   0.97774068
                   0.97885364  0.97774068  0.97885364]

Figure 20-3 shows the results provided by the preceding code. The more 
estimators, the better the results, though at a certain point the gain becomes 
indeed minimal.

Working with a Random Forest regressor
RandomForestRegressor works in a similar way as the Random Forest for 
classification, using exactly the same parameters:

X, y = boston.data, boston.target
from sklearn.ensemble import RandomForestRegressor
RF_rg = RandomForestRegressor (n_estimators=300,
   random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
score = np.mean(cross_val_score(RF_rg, X, y,
   scoring='mean_squared_error', cv=crossvalidation,
      n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 19.436

Figure 20-3: 
Verifying 

the impact 
of the 

number of 
estimators 

on Random 
Forest.
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The Random Forest uses decision trees. Decision trees segment the dataset 
into small partitions, called leaves, when estimating regression values. The 
Random Forest takes the average of the values in each leaf to create a predic-
tion. Using this procedure causes extreme and high values to disappear from 
predictions because of the averaging used for each leaf of the forest, produc-
ing dumped values instead of much higher or much lower values.

Optimizing a Random Forest
Random Forest models are out‐of‐box algorithms that can work quite well 
without optimization or worrying about overfitting. (The more estimators 
you use, the better the output, depending on your resources.) You can 
always improve performance by removing redundant and less informative 
variables, fixing a minimum leaf size, and defining a sampling number that 
avoids having too many correlated predictors in the sample. The following 
example shows how to perform these tasks:

X, y = digit.data, digit.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
RF_cls = RandomForestClassifier(n_estimators=300)
scorer = 'accuracy'

Using the handwritten digit dataset and a first default classifier, you train a 
first model to determine the importance of each variable.

RF_cls = RandomForestClassifier(n_estimators=300).fit(X,y)
X = RF_cls.transform(X)
print X.shape

After you train the model, you can transform the initial X by removing the 
useless features, thus increasing the algorithm’s speed and capability of pick-
ing the right branches in its multiple decision trees. At this point, you can 
optimize both max_features and min_samples_leaf.

When optimizing max_features, you use preconfigured options (auto for 
all features, sqrt or log2 functions applied to the number of features) and 
integrate them using small feature numbers and a value of 1/3 of the features. 
Selecting the right number of features to sample tends to reduce the number 
of times when correlated and similar variables are picked together, thus 
increasing the predictive performances.

There is a statistical reason to optimize min_samples_leaf. Using leaves 
with few cases often corresponds to overfitting to very specific data 
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 combinations. You need to have at least 30 observations to achieve a minimal 
statistical confidence that data patterns correspond to real and general rules:

from sklearn import grid_search
search_grid =  {'max_features': [X.shape[1]/3, 'sqrt',
   'log2', 'auto'], 'min_samples_leaf': [1, 2, 10, 30]}
search_func = grid_search.GridSearchCV(estimator=RF_cls,
   param_grid=search_grid, scoring=scorer, n_jobs=1,
      cv=crossvalidation)
search_func.fit(X,y)
print 'Best parameters: %s' % search_func.best_params_
print 'Best accuracy: %.3f' % search_func.best_score_

Best parameters: {'max_features': 'log2',
                  'min_samples_leaf': 1}
Best accuracy: 0.977

Boosting Predictions
Gathering different tree models is not the only ensemble technique possible. 
In fact, another machine‐learning technique, called boosting, uses ensembles 
effectively. In boosting, you grow many trees sequentially. Each tree tries to 
build a model that successfully predicts what trees that were built before it 
weren’t able to forecast. In the end, the technique pools subsequent models 
together and uses an average or a majority vote to decide the final prediction.

The following sections present two boosting applications, adaboost and gra-
dient boosting machines. You can use all boosting algorithms for both regres-
sion and classification. The examples in these sections start working with 
classification. The multilabel dataset of handwritten digits is, as it was with 
Random Forest, a good place to start.

If you have already loaded the data using load_digits into the variable 
digit, you just need to reassign the X and y variables as follows:

X, y = digit.data, digit.target

Knowing that many weak predictors win
AdaBoostClassifier fits sequential weak predictors. It is used by default 
when working with decision trees, but you can choose other algorithms 
by changing the base_estimator parameter. Weak predictors are usu-
ally machine‐learning predictors that don’t perform well because they have 
too much variance or bias, so they perform slightly better than chance. 
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The  classic example of a weak learner is the decision stump, which is a 
decision tree grown to only one level. Usually, decision trees are the best‐
performing option in boosting, so you can safely use the default learner 
and concentrate on two important parameters to obtain good predictions: 
n_estimators and learning_rate.

learning_rate determinates how each weak predictor contributes to the 
final result. A high learning rate requires few n_estimators before converg-
ing to an optimal solution, but it likely won’t be the best solution possible. A 
low learning rate takes longer to train because it requires more predictors 
before reaching a solution. In addition, it also overfits more slowly.

Contrary to bagging, boosting can overfit if you use too many estimators. A 
cross‐validation is always helpful in finding the correct number, keeping in 
mind that lower learning rates take longer to overfit, so picking an almost 
optimal value by a loose grid‐search is easier.

from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(n_estimators=1000,
   learning_rate=0.01, random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
score = np.mean(cross_val_score(ada, X, y,
   scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.826

This example uses the default estimator, which is a full‐blown decision tree. If 
you’d like to try a stump (which needs more estimators), you should instanti-
ate the AdaBoostClassifier with base_estimator=DecisionTreeClas
sifier(max_depth=1).

Creating a gradient boosting classifier
The Gradient Boosting Machine (GBM) is a much better‐performing version 
of the boosting technique seen with Adaboost, the first boosting algorithm 
ever created. In particular, GBM uses an optimization computation for 
weighting the subsequent estimators. As with the example in the preceding 
section, you can try an example with the digit dataset and explore some extra 
parameters available in GBM.

X, y = digit.data, digit.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
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Apart from the learning rate and the number of estimators, which are key 
parameters for optimal learning without overfitting, you must provide values 
for subsample and max_depth. subsample introduces subsampling into 
the training (so that the training is done on a different dataset every time), as 
is done in bagging. max_depth defines the maximum level of the built trees. 
It’s usually a good practice to start with three levels, but more levels may be 
necessary for modeling complex data.

from sklearn.ensemble import GradientBoostingClassifier
GBC = GradientBoostingClassifier(n_estimators=300,
   subsample=1.0, max_depth=2, learning_rate=0.1,
   random_state=1)
score = np.mean(cross_val_score(GBC, X, y,
   scoring='accuracy', cv=crossvalidation, n_jobs=1))
print 'Accuracy: %.3f' % score

Accuracy: 0.972

An interesting feature of the Scikit‐implementation is the warm_start 
parameter. You can’t parallelize boosting as you would when using a 
Random Forest. However, given its sequential nature, you can fetch the data 
piece‐by‐piece when dealing with big data. To perform this task, you set the 
warm_start parameter to True, so the algorithm always keeps the previous 
estimators in the sequence.

Creating a gradient boosting regressor
Creating a gradient boosting regressor doesn’t present particular dif-
ferences from creating the classifier. The main difference is the pres-
ence of multiple loss functions that you can use (contrast this with 
GradientBoostingClassifier, which has only the deviance loss, 
 analogous to the cost function of a logistic regression).

X, y = boston.data, boston.target
from sklearn.ensemble import GradientBoostingRegressor
GBR = GradientBoostingRegressor(n_estimators=1000,
   subsample=1.0, max_depth=3, learning_rate=0.01,
   random_state=1)
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
score = np.mean(cross_val_score(GBR, X, y,
   scoring='mean_squared_error', cv=crossvalidation,
   n_jobs=1))
print 'Mean squared error: %.3f' % abs(score)

Mean squared error: 10.105
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The example trains a GradientBoostingRegressor using the default ls 
value for the loss parameter, which is analogous to a linear regression. Here 
are some other choices:

 ✓ quantile: This guesses a particular quantile that you specify using the 
alpha parameter (usually it’s 0.5, which is the median).

 ✓ lad (least absolute deviation): This choice is highly robust to outliers; it 
tends to ordinally rank correctly the predictions.

 ✓ huber: This creates a combination of ls and lad. It requires that you 
fix the alpha parameter.

Using GBM hyper‐parameters
GBM models are quite sensitive to overfitting when you have too many 
sequential estimators and the model starts fitting the noise in the data. It’s 
important to check the efficiency of the coupled values of the number of esti-
mators and the learning rate. The following example uses the Boston dataset 
of housing prices:

X, y = boston.data, boston.target
crossvalidation = KFold(n=X.shape[0], n_folds=5,
   shuffle=True, random_state=1)
GBR = GradientBoostingRegressor(n_estimators=1000,
   subsample=1.0, max_depth=3, learning_rate=0.01,
   random_state=1)

Optimization may take some time because of the computational burden 
required by the GBM algorithms, especially if you decide to test high values 
of max_depth.

A good strategy is to keep the learning rate fixed and try to optimize sub-
sample and max_depth with respect to n_estimators (keeping in mind 
that high values of max_depth usually imply a lesser number of estimators). 
After you find the optimum values for subsample and max_depth, you can 
start searching for further optimization of n_estimators and learning_
rate.

from sklearn import grid_search
search_grid =  {'subsample': [1.0, 0.9], 'max_depth': [2,
   3, 5], 'n_estimators': [500 , 1000, 2000]}
search_func = grid_search.GridSearchCV(estimator=GBR,
   param_grid=search_grid, scoring='mean_squared_error',
   n_jobs=1, cv=crossvalidation)
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search_func.fit(X,y)
print 'Best parameters: %s' % search_func.best_params_
print 'Best mean squared error: %.3f' 
  % abs(search_func.best_score_)

Best parameters: {'n_estimators': 2000, 'subsample': 0.9,
   'max_depth': 3}
Best mean squared error: 9.263



 Enjoy an additional Part of Tens article about ten ways to make a living as a data 
 scientist at http://www.dummies.com/extras/pythonfordatascience.

The Part of Tens
Part VI

http://www.dummies.com/extras/pythonfordatascience


In this part . . .
 ✓ Discovering all sorts of amazing resources you can use for  

data mining and development tasks

 ✓ Getting additional educational materials, many of which  
are free

 ✓ Finding open source solutions to your data science questions

 ✓ Using leisure time resources to learn more about data science

 ✓ Obtaining more datasets for your data science experiments



Ten Essential Data Science 
Resource Collections

In This Chapter
 ▶ Getting the lowdown on essential learning resources at Data Science Weekly

 ▶ Finding resources at U Climb Higher

 ▶ Learning about data mining and data science with KDnuggets

 ▶ Locating an obscure resource on Data Science Central

 ▶ Educating yourself about open source data science through Masters

 ▶ Obtaining a free education with Quora

 ▶ Discovering answers for advanced topics at Conductrics

 ▶ Reading the Aspirational Data Scientist blog posts

 ▶ Discovering data intelligence and analytics resources at AnalyticBridge

 ▶ Getting the developer resource you need with Jonathan Bower

I 
n reading this book, you discover quite a lot about data science and 
Python. Before your head explodes from all the new knowledge you gain, 

it’s important to realize that this book is really just the tip of the iceberg. 
Yes, there really is more information available out there, and that’s what this 
chapter is all about. The following sections introduce you to a wealth of data 
science resource collections that you really need to make the best use of 
your new knowledge.

In this case, a resource collection is simply a listing of really cool links with 
some text to tell you why they’re so great. In some cases, you gain access 
to articles about data science; in other cases, you’re exposed to new tools. 
In fact, data science is such a huge topic that you could easily find more 
resources than those discussed here, but the following sections provide a 
good place to start.

As with anything else on the Internet, links break, sites go out of business, 
and new sites take their place. If you find that a link is broken, please let me 
know about it at John@JohnMuellerBooks.com.

Chapter 21
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Gaining Insights with Data 
Science Weekly

The Data Science Weekly is a free newsletter that you can sign up for to 
obtain the latest information about changes in data science. However, for 
this chapter, the most important element is the list of resources you find at 
http://www.datascienceweekly.org/data‐science‐resources. The 
resources cover the following broad range of topics:

 ✓ Data Science Books

 ✓ Data Science Meetups

 ✓ Data Science Massive Open Online Courses (MOOCs)

 ✓ Data Science Datasets

 ✓ Data Science Most Read Articles

 ✓ Data Scientist Talks

 ✓ Data Scientists on Twitter

 ✓ Data Science Blogs

Obtaining a Resource List 
at U Climb Higher

Even with the right connections online and a good search engine, trying to 
find just the right resource can be hard. U Climb Higher has published a list 
of 24 data science resources at http://blog.udacity.com/2014/12/24‐
data‐science‐resources‐keep‐finger‐pulse.html that’s guaranteed 
to help keep your finger on the pulse of new strategies and technologies. 
This resource broaches the following topics: trends and happenings; places 
to learn more about data science; joining a community; data science news; 
people who really know data science well; all the latest research

Getting a Good Start with KDnuggets
Learning about data mining and data science is a process. KDnuggets 
breaks the learning process down into a series of steps at http://www. 
kdnuggets.com/faq/learning‐data‐mining‐data‐science.html. 
Each step provides you with an overview of what you should be doing and 
why. You also find links to a variety of resources online to make the  learning 

http://www.datascienceweekly.org/data-science-resources
http://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
http://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
http://www.kdnuggets.com/faq/learning-data-mining-data-science.html
http://www.kdnuggets.com/faq/learning-data-mining-data-science.html
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process considerably easier. Even though the site emphasizes the use of 
R, Python (clicking the Getting Started With Python For Data 
Science link shows that even Kaggle prefers Python 2.7), and SQL (in that 
order) to perform data science tasks, the steps will actually work for any of a 
number of approaches that you might take.

As with any other learning experience, a procedure like the one shown on the 
KDnuggets site will work for some people and not for others. Everyone learns 
a little differently. Don’t be afraid to improvise. The resources on this site 
might provide insights into other things that you can do to make your learn-
ing process easier.

Accessing the Huge List of Resources 
on Data Science Central

Many of the resources you find online cover mainstream topics. Data Science 
Central (http://www.datasciencecentral.com/) provides access to a 
relatively large number of data science experts that will tell you about the 
most obscure facts of data science. One of the more interesting blog posts 
appears at http://www.datasciencecentral.com/profiles/blogs/
huge‐trello‐list‐of‐great‐data‐science‐resources.

This resource points you to a Trello list (https://trello.com/) of some 
truly amazing resources. Navigating the huge list can be a bit difficult, but the 
process is aided by the treelike structure that Trello provides for organizing 
information. You want to meander through this sort of list when you have 
time and simply want to see what is available. The categories include the 
 following (with possibly more by the time you read this book):

 ✓ Data news

 ✓ Data business people track

 ✓ Data journalist track

 ✓ Data padawan track

 ✓ Data scientist track

 ✓ Statistics

 ✓ R

 ✓ Python

 ✓ Big data and other tools

 ✓ Data

 ✓ Others

https://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience
https://www.kaggle.com/wiki/GettingStartedWithPythonForDataScience
http://www.datasciencecentral.com/
http://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
http://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
https://trello.com/
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Obtaining the Facts of Open Source 
Data Science from Masters

Many organizations now focus on open source for data science solutions. The 
focus has become so prevalent that you can now get an Open‐Source Data 
Science Masters (OSDSM) education at http:// datasciencemasters.
org/. The emphasis is on providing you with the materials that are normally 
lacking from a purely academic education. In other words, the site provides 
pointers to courses that fill in gaps in your education so that you become 
more marketable in today’s computing environment. The various links pro-
vide you with access to online courses, books, and other resources that help 
you gain a better understanding of just how OSDSM works.

Locating Free Learning 
Resources with Quora

It’s really hard to resist the word free, especially when it comes to education, 
which normally costs many thousands of dollars. The Quora site at http://
www.quora.com/What‐are‐the‐best‐free‐resources‐to‐learn‐
data‐science provides a listing of the best nonpaid learning resource for 
data science.

Most of the links take on a question format, such as, “How do I become a data 
scientist?” The question‐and‐answer format is helpful because you might be 
asking the questions that the site answers. The resulting list of sites, courses, 
and resources are introductory, for the most part, but they are a good way to 
get started working in the data science field.

A few of the links are for prestigious institutions such as Harvard. The link 
provides you with access to course materials such as lecture videos and black-
boards. However, you don’t get the actual course free of charge. If you want the 
benefits of the course, you still need to pay for it. Even so, just by viewing the 
course materials, you can obtain a lot of useful data science knowledge.

Receiving Help with Advanced 
Topics at Conductrics

The Conductrics site (http://conductrics.com/) as a whole is devoted 
to selling products that help you perform various data science tasks. 
However, the site includes a blog that contains a couple of useful blog posts 

http://datasciencemasters.org/
http://datasciencemasters.org/
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
http://conductrics.com/
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that answer the sorts of advanced questions that you might find it difficult 
to answer elsewhere. The two posts appear at http://conductrics.com/
data‐science‐resources/ and http://conductrics.com/data‐ 
science‐resources‐2.

The author of the blog posts, Matt Gershoff, makes it clear that the list-
ings are the result of answering people’s questions in the past. The list is 
huge, which is why it appears in two posts rather than one, so Matt must 
answer many questions. The list focuses mostly on machine learning rather 
than hardware or specific coding issues. Therefore, you can expect to 
see entries for topics such as Latent Semantic Indexing (LSI); Single Value 
Decomposition (SVD); Linear Discriminant Analysis (LDA); non-parametric 
Bayesian approaches; statistical machine translation; Reinforcement 
Learning (RL); Temporal Difference (TD) learning; context bandits.

The list goes on and on. Many of these entries won’t make much sense to you 
right now unless you’re already heavily involved in data science. However, 
the authors write many of the articles in a way that helps you pick up the 
information even if you aren’t completely familiar with it. In most cases, your 
best course of action is to at least scan the article to see whether you can 
understand it. If the article starts to make sense, read it in detail. Otherwise, 
hold on to the article reference for later use. You might be surprised to dis-
cover that the article you can’t completely understand today becomes some-
thing you understand with ease tomorrow.

Learning New Tricks from the 
Aspirational Data Scientist

The Aspirational Data Scientist (http://newdatascientist.blogspot.
com/) blog site provides you with an amazing array of essays on various data 
science topics. The author splits the posts into these areas: data science 
commentary; online course reviews; becoming a data scientist.

Data science attracts practitioners from all sorts of existing fields. The site 
seems mainly devoted to serving the needs of social scientists moving into 
the data science field. In fact, the most interesting post that appears at 
http://newdatascientist.blogspot.com/p/useful‐links.html 
provides a listing of resources to help the social scientist move into the data 
scientist field. The list of resources is organized by author, so you may find 
names that you already recognize as potential informational resources.

As with any other resource, even if an article is meant for one audience, it 
often serves the needs of another audience with equal ease. Even if you aren’t 
a social scientist, you might find that the articles contain helpful  information 
as you progress on the road to fully discovering the wonders of data science.

http://conductrics.com/data-science-resources/
http://conductrics.com/data-science-resources/
http://conductrics.com/data-science-resources-2
http://conductrics.com/data-science-resources-2
http://newdatascientist.blogspot.com/
http://newdatascientist.blogspot.com/
http://newdatascientist.blogspot.com/p/useful-links.html
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Finding Data Intelligence and Analytics 
Resources at AnalyticBridge

The AnanlyticBridge site (http://www.analyticbridge.com/) contains an 
amazing array of helpful resources for the data scientist. One of the more help-
ful resources is the list of data intelligence and analytics resources at http://
www.analyticbridge.com/page/links. This page contains a wealth of 
resources you won’t find anywhere else that are organized into the following 
categories: general resources; big data; visualization; best and worst of data 
science; new analytics startup ideas; rants about healthcare, education, and 
other topics; career stuff, training, and salary surveys; miscellaneous.

Zeroing In on Developer Resources 
with Jonathan Bower

More than a few interesting resources appear on GitHub (https://github.
com/), a site devoted to collaboration, code review, and code manage-
ment. One of the sites you need to check out is Jonathan Bower’s listing 
of data science resources at https://github.com/jonathan‐bower/
DataScienceResources. The majority of these resources will appeal to the 
developer, but just about anyone can benefit from them. You find resources 
categorized into the following topics:

 ✓ Data science, getting started

 ✓ Data pipeline and tools

 ✓ Product

 ✓ Career resources

 ✓ Open source data science resources

The hierarchical formatting of the various topics makes finding just what you 
need easier. Each major category divides into a list of topics. Within each 
topic, you find a list of resources that apply to that topic. For example, within 
Data Pipeline & Tools, you find Python, which includes a link for Anyone Can 
Code. This is one of the most usable sites in the list.

http://www.analyticbridge.com/
http://www.analyticbridge.com/page/links
http://www.analyticbridge.com/page/links
https://github.com/
https://github.com/
https://github.com/jonathan-bower/DataScienceResources
https://github.com/jonathan-bower/DataScienceResources


Ten Data Challenges 
You Should Take

In This Chapter
 ▶ Getting started with Data Science London + Scikit‐learn

 ▶ Making the next step by predicting survival on the Titanic

 ▶ Locating other challenges to try

 ▶ Obtaining the Madelon Data Set

 ▶ Finding a movie and building your data science skills at the same time

 ▶ Differentiating between spam and useful emails

 ▶ Performing handwriting analysis and pattern recognition

 ▶ Classifying and analyzing image data

 ▶ Discovering how to work with review data from Amazon.com

 ▶ Working with the largest graph data in the world

D 
ata science is all about working with data. While working through this 
book, you have used a number of datasets, including the toy datasets 

that come with the Scikit‐learn library. Of course, these datasets are all great 
for getting you started, but just as a runner wouldn’t stop after conquering 
the local fun run, so do you need to start training for the marathons of data 
science by working with larger datasets.

This chapter introduces you to a number of challenging datasets that can help 
you become a world‐class data scientist. By combining what you discover in 
this book with these new datasets, you can learn how to do amazing things. In 
fact, some people may view you as a bit of a magician as you pull seemingly 
impossible data patterns out of your hat. Each of the following datasets pro-
vides you with specific skills and helps you achieve different goals.

Chapter 22
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You can find a wealth of datasets on the Internet. However, not every dataset 
is created equal, and you need to choose your challenges with care. These 
ten datasets provide well‐known functionality, often provide you with tutori-
als, and appear in scientific papers. These three features make these datasets 
stand apart from the competition. Yes, other good datasets are available, but 
these ten datasets provide skills needed to conquer even bigger challenges, 
such as that database lurking on your company server.

Meeting the Data Science London + 
Scikit‐learn Challenge

You use Scikit‐learn quite a bit while using this book, so you may already 
understand it a bit. The Kaggle competition at http://www.kaggle.
com/c/data‐science‐london‐Scikit‐learn (the current competition 
ended in December 2014, but there should be others) provides a practice 
ground for trying, sharing, and creating examples using the Scikit‐learn clas-
sification algorithms. All the tools for the previous competition are still in 
place, and it’s still well worth exploring. The goal is to try, create, and share 
examples of using Scikit‐learn’s classification capabilities. You can find the 
data used for the competition at http://www.kaggle.com/c/data‐ 
science‐london‐scikit‐learn/data. The rules appear at http://
www.kaggle.com/c/data‐science‐london‐scikit‐learn/rules, 
and you can discover how Kaggle evaluates your submissions at http://
www.kaggle.com/c/data‐science‐london‐scikit‐learn/details/
evaluation.

Of course, you might not have any desire to compete. Looking at the leader-
board (http://www.kaggle.com/c/data‐science‐london‐scikit‐
learn/leaderboard) may keep you from seriously considering actual 
competition because the contest has attracted some serious data scientists. 
However, you can still enjoy the competition by keeping track of the leaders 
and also checking out the tutorials at http://www.kaggle.com/c/data‐
science‐london‐scikit‐learn/visualization. Working through the 
tutorials will help you better understand how data science works, which may 
be the real prize in going to this site.

Because this site builds on knowledge you already have from the book, it’s 
actually the best place to begin building new skills. That’s why this site 
appears first in the chapter: You can get a good start using other datasets 
with techniques you already know.

http://www.kaggle.com/c/data-science-london-scikit-learn
http://www.kaggle.com/c/data-science-london-scikit-learn
http://www.kaggle.com/c/data-science-london-scikit-learn/data
http://www.kaggle.com/c/data-science-london-scikit-learn/data
http://www.kaggle.com/c/data-science-london-scikit-learn/rules
http://www.kaggle.com/c/data-science-london-scikit-learn/rules
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/details/evaluation
http://www.kaggle.com/c/data-science-london-scikit-learn/leaderboard
http://www.kaggle.com/c/data-science-london-scikit-learn/leaderboard
http://www.kaggle.com/c/data-science-london-scikit-learn/visualization
http://www.kaggle.com/c/data-science-london-scikit-learn/visualization
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Predicting Survival on the Titanic
You work with the Titanic data to some extent in the book (Chapters 5 
and 20) by using Titanic.csv. Even if you chose not to compete in the chal-
lenge described in the previous section, this challenge is actually much easier 
because Kaggle designed it for the beginner. You can find it at http://www.
kaggle.com/c/titanic‐gettingStarted. The data model, found at 
http://www.kaggle.com/c/titanic‐ gettingStarted/data, is dif-
ferent from the one in the book, but the concepts are the same. You can find 
the rules for this competition at http://www.kaggle.com/c/titanic‐
gettingStarted/rules and the method of evaluation at http://www.
kaggle.com/c/titanic‐ gettingStarted/details/evaluation.

You can find the leaderboard for this competition at http://www.kaggle.
com/c/titanic‐gettingStarted/leaderboard. The number of people 
who have already achieved what amounts to a perfect score should fill you 
with confidence.

The biggest challenge in this case is that the dataset is quite small and 
requires that you create new features in order to obtain an accurate score. 
The competition helps you apply the skills you learn in the “Considering 
the Art of Feature Creation” section of Chapter 8 and see demonstrated in 
Chapter 19. You can gain additional insights into the techniques for working 
through this challenge by viewing the tutorials at http://www.kaggle.
com/c/titanic‐gettingStarted/prospector#208.

Finding a Kaggle Competition 
that Suits Your Needs

Competitions are great at helping you think through solutions in an 
 environment in which others are doing the same. In the real world, you may 
find yourself pitted against competition on a regular basis, so  competitions 
provide good experiences in thinking critically and quickly. They also pres-
ent you with an opportunity to learn from others. The best place to find 
such competitions is on the Kaggle site at http://www.kaggle.com/ 
competitions.

This site will help you locate any past or present Kaggle competition. To find 
a present competition, click the Active Competitions link. To find a past com-
petition, click the All Competitions link. All the datasets are freely available, 

http://www.kaggle.com/c/titanic-gettingStarted
http://www.kaggle.com/c/titanic-gettingStarted
http://www.kaggle.com/c/titanic-gettingStarted/data
http://www.kaggle.com/c/titanic-gettingStarted/rules
http://www.kaggle.com/c/titanic-gettingStarted/rules
http://www.kaggle.com/c/titanic-gettingStarted/details/evaluation
http://www.kaggle.com/c/titanic-gettingStarted/details/evaluation
http://www.kaggle.com/c/titanic-gettingStarted/leaderboard
http://www.kaggle.com/c/titanic-gettingStarted/leaderboard
http://www.kaggle.com/c/titanic-gettingStarted/prospector#208
http://www.kaggle.com/c/titanic-gettingStarted/prospector#208
http://www.kaggle.com/competitions
http://www.kaggle.com/competitions
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so you have a chance to try your skills against any real‐world scenario you 
might want to select. The Kaggle community will provide you with plenty of 
tutorials, benchmarks, and beat‐the‐benchmarks posts.

You don’t have to select an ongoing competition. For example, you might see 
a past competition that meets a need and try that instead (benefitting from 
the published solutions). If you take an active competition you can post your 
questions on the forum and have some of the most skilled data scientists in 
the world answer your questions and doubts. Because of the great number of 
competitions on this site, it’s likely that you’ll find a competition that will suit 
your interests!

It’s interesting to note that the Kaggle competitions come from companies 
that don’t normally have access to data scientists, so you really are work-
ing in a real world environment. Check out the write‐up at http://www.
kaggle.com/solutions/competitions (by clicking the Host link on 
the main page) to learn more about how Kaggle creates the competitions. 
You can also use this site to locate a potential job. Just go to http://www.
kaggle.com/jobs by clicking the Jobs link on the main page.

Honing Your Overfit Strategies
The Madelon Data Set at https://archive.ics.uci.edu/ml/datasets/
Madelon is an artificial dataset containing a two‐class classification problem 
with continuous input variables. This NIPS 2003 feature selection challenge 
will seriously test your skills in cross‐validating models. The main emphasis 
of this challenge is to devise strategies for avoiding overfit — an issue that 
you first confront in the “Finding more things that can go wrong” section of 
Chapter 16. You find overfit issues mentioned in Chapters 18, 19, and 20 as 
well. To obtain the dataset, contact Isabelle Guyon at the address found in 
the Source section of the page at https://archive.ics.uci.edu/ml/
datasets/Madelon.

This particular dataset attracted the attention of a number of people 
who created papers about it. The best papers appear in the book Feature 
Extraction, Foundations and Applications at http://www.springer.com/
us/book/9783540354871. You can also download an associated techni-
cal report from http://clopinet.com/isabelle/Projects/ETH/
TM‐fextract‐class.pdf. The Advances in Neural Information Processing 
Systems 17 (NIPS 2004) at http://papers.nips.cc/book/advances‐
in‐neural‐information‐processing‐systems‐17‐2004 also contains 
useful links to papers that will help you with this particular dataset.

http://www.kaggle.com/solutions/competitions
http://www.kaggle.com/solutions/competitions
http://www.kaggle.com/jobs
http://www.kaggle.com/jobs
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Madelon
http://www.springer.com/us/book/9783540354871
http://www.springer.com/us/book/9783540354871
http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
http://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-17-2004
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-17-2004
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Trudging Through the MovieLens Dataset
The MovieLens site (https://movielens.org/) is all about helping you 
find a movie you might like. After all, with millions of movies out there, find-
ing something new and interesting could take time that you don’t want to 
spend. The setup works by asking you to input ratings for movies you already 
know about. The MovieLens site then makes recommendations for you based 
on your ratings. In short, your ratings teach an algorithm what to look for, 
and then the site applies this algorithm to the entire dataset.

You can obtain the MovieLens dataset at http://grouplens.org/ 
datasets/movielens/. The interesting thing about this site is that you can 
download all or part of the dataset based on how you want to interact with it. 
You can find downloads in the following sizes:

 ✓ 100,000 ratings from 1,000 users on 1,700 movies

 ✓ 1 million ratings from 6,000 users on 4,000 movies

 ✓ 10 million ratings and 100,000 tag applications applied to 10,000 movies 
by 72,000 users

 ✓ 20 million ratings and 465,000 tag applications applied to 27,000 movies 
by 138,000 users

 ✓ MovieLens’s latest dataset in small or full sizes (the full size contained 
21,000,000 ratings and 470,000 tag applications applied to 27,000 movies 
by 230,000 users as of this writing but will increase in size with time)

This dataset presents you with an opportunity to work with user‐generated 
data using both supervised and unsupervised techniques. The large datasets 
present special challenges that only big data can provide. You can find some 
starter information for working with supervised and unsupervised techniques 
in Chapters 15 and 19.

Getting Rid of Spam Emails
Everyone wants to get rid of spam email — those time wasters that contain 
everything from invitations to join in a fantastic new venture to pornography. 
Of course, the best way to accomplish the task is to create an algorithm to 
do the sorting for you. However, you need to train the algorithm to perform 
its work, which is where the Spambase Data Set comes into play. You can 
find the Spambase Data Set at https://archive.ics.uci.edu/ml/ 
datasets/Spambase.

https://movielens.org/
http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/Spambase
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This collection of spam emails came from postmasters and individuals who 
had filed spam reports. It also includes nonspam email from various sources 
to allow the creation of filters that let good emails through. This is a complex 
challenge dealing with textual data and complex, different targets.

You can find a number of papers that cite this particular dataset. The follow-
ing list provides a quick overview of the pertinent papers and their host sites:

 ✓ Los Alamos National Laboratory Stability of Unstable Learning 
Algorithms (http://rexa.info/paper/ a2734ae038cae739315993
4e860c24a52dc2754d)

 ✓ Modeling for Optimal Probability Prediction (http://rexa.info/  
paper/631197638c7e0317c98e1a8d98e5fce8921aa758)

 ✓ Visualization and Data Mining in an 3D Immersive Environment: Summer 
Project 2003 (http://rexa.info/paper/48d6beec2a36a87d9d88b
6de85dd85a75e5ed24d)

 ✓ Online Policy Adaptation for Ensemble Classifiers (http://rexa.
info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b)

Working with Handwritten Information
Pattern recognition, especially working with handwritten information, is an 
important data science task. The Mixed National Institute of Standards and 
Technology (MNIST) dataset of handwritten digits at http://yann.lecun.
com/exdb/mnist/ provides a training set of 60,000 examples, and a test 
set of 10,000 examples. This is a subset of the original National Institute of 
Standards and Technology (NIST) dataset found at http://srdata.nist.
gov/gateway/gateway?keyword=handwriting+recognition. It’s a 
good dataset to use to learn how to work with handwritten data without 
having to perform a lot of preprocessing at the outset.

The dataset appears in four files. The two training and two test files contain 
images and labels. You need all four files in order to create a complete data-
set for working with digits. A potential problem in working with the MNIST 
dataset is that the image files aren’t in a particular format. The format used 
for storing the images appears at the bottom of the page. Of course, you 
could always build your own Python application for reading them, but using 
code that someone else has created is a lot easier. The following list provides 
places where you can get code to read the MNIST dataset using Python:

 ✓ http://cs.indstate.edu/~jkinne/cs475‐f2011/code/ 
mnistHandwriting.py

 ✓ http://g.sweyla.com/blog/2012/mnist‐numpy/

http://rexa.info/paper/a2734ae038cae7393159934e860c24a52dc2754d
http://rexa.info/paper/a2734ae038cae7393159934e860c24a52dc2754d
http://rexa.info/paper/631197638c7e0317c98e1a8d98e5fce8921aa758
http://rexa.info/paper/631197638c7e0317c98e1a8d98e5fce8921aa758
http://rexa.info/paper/48d6beec2a36a87d9d88b6de85dd85a75e5ed24d
http://rexa.info/paper/48d6beec2a36a87d9d88b6de85dd85a75e5ed24d
http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b
http://rexa.info/paper/3cb3fbd5512e3cd12111b598fece53fcb42c484b
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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http://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
http://g.sweyla.com/blog/2012/mnist-numpy/
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 ✓ http://martin‐thoma.com/classify‐mnist‐with‐pybrain/

 ✓ https://gist.github.com/akesling/5358964

The host page also contains an important listing of methods used to work 
with the training and test set. The list contains an impressive number of clas-
sifiers that should give you some ideas for your own experiments. The point 
is that this particular dataset is useful for all sorts of different tasks.

You have worked with the digits toy dataset from Scikit‐learn in a number 
of chapters in the book. To use this dataset, you import the digits database 
using from sklearn.datasets import load_digits. This particular 
dataset appears in Chapters 12, 15, 17, 19, and 20, so you gain a considerable 
amount of experience in working with a much smaller digits database when 
you work through the examples in those chapters.

Working with Pictures
The Canadian Institute for Advanced Research (CIFAR) datasets at http://
www.cs.toronto.edu/~kriz/cifar.html provide you with graphics 
content to work with in various ways. The CIFAR‐10 and CIFAR‐100 datasets 
contain labeled subsets of a dataset with 80 million tiny images (you can read 
about how the dataset works with the original image dataset in the Learning 
Multiple Layers of Features from Tiny Images technical report at http://
www.cs.toronto.edu/~kriz/learning‐features‐2009‐TR.pdf). In 
the CIFAR‐10 dataset, you find 60,000 32 x 32 color images in ten classes (for 
6,000 images in each class). Here are the classes you find:

 ✓ Airplane

 ✓ Automobile

 ✓ Bird

 ✓ Cat

 ✓ Deer

 ✓ Dog

 ✓ Frog

 ✓ Horse

 ✓ Ship

 ✓ Truck

http://martin-thoma.com/classify-mnist-with-pybrain/
https://gist.github.com/akesling/5358964
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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The CIFAR‐100 dataset contains more classes. Instead of 10 classes, you get 
100 classes containing 600 images each. The size of the dataset is the same, 
but the number of classes is larger. The classification system is hierarchical 
in this case. The 100 classes divide into 20 superclasses. For example, in the 
aquatic mammals superclass, you find the beaver, dolphin, otter, seal, and 
whale classes.

Both CIFAR datasets come in Python, MATLAB, and binary versions. Make 
sure that you download the correct version and follow the instructions for 
using them on the download page. Yes, you could use the other versions with 
Python, but doing so would require a lot of extra programming, and because 
you already have access to a Python version, you wouldn’t gain anything 
from the exercise.

This is an excellent challenge to take after you have worked with the digits 
dataset described in the previous section. Taking this challenge helps you to 
deal with colorful, complex images. If you worked through the examples in 
Chapter 14, you already have some experience working with images using the 
toy Olivetti Faces dataset.

Analyzing Amazon.com Reviews
If you want to work with a really large dataset, try the Amazon.com review 
dataset at https://snap.stanford.edu/data/web‐Amazon.html. 
This dataset consists of reviews from Amazon.com taken over a period 
of 18 years, including ~35 million reviews up to March 2013. The reviews 
include product and user information, ratings, and a plain‐text review. This 
is the dataset to tackle after you work through smaller datasets, such as 
MovieLens. It can help you understand how to work with user‐generated data 
in a business context.

Unlike many of the datasets in this chapter, the Amazon.com dataset comes 
in a number of forms. Yes, you can download all.txt.gz to obtain the 
entire dataset (11GB of data), but you also have the option to download just 
portions of the dataset. For example, you can choose to download just the 
184,887 reviews associated with baby products by obtaining Baby.txt.gz 
(a 42MB download).

Make sure to check out the bottom of the page. The site owner has thought-
fully provided you with the Python code required to interpret the data. Using 
this simple function makes working with the immense dataset a lot easier. 
Even if you choose to create a modified version of the function, you at least 
have a good starting point.

https://snap.stanford.edu/data/web-Amazon.html
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Interacting with a Huge Graph
Imagine trying to work through the connections between 3.5 billion web 
pages. You can do just that by downloading the immense dataset at http://
www.bigdatanews.com/profiles/blogs/big‐data‐set‐3‐5‐ 
billion‐web‐pages‐made‐available‐for‐all‐of‐us. The biggest, 
richest, most complex dataset of all is the Internet itself. Start with a subsam-
ple offered by the Common Crawl 2012 web corpus (http://commoncrawl.
org/) and learn how to extract and elaborate data from web sites. The prin-
ciple uses for this dataset are:

 ✓ Search algorithms

 ✓ Spam detection methods

 ✓ Graph analysis algorithms

 ✓ Web science research

Pay particular attention to the Contents section near the middle of the page. 
Clicking a link takes you to an entry at http://webdatacommons.org/
hyperlinkgraph/ that explains the dataset in more detail. You need the 
additional information to perform most data science tasks. Near the bottom 
of the page are links for downloading various levels of the entire graph 
( fortunately, you don’t have to download everything, which would be a 
45GB download for the index file and a 331GB download for the arc file).

Don’t let the idea of performing an analysis on such a large dataset scare 
you. If you worked through the examples in Chapter 7, you have worked with 
simple graph data. This dataset is a similar task but on a significantly larger 
scale. Yes, size does matter to some extent, but you already know some of 
the required techniques for getting the job done.

This particular site provides access to a number of other datasets. Links 
for these datasets are at the bottom of the page. For example, you can 
find “Great statistical analysis: forecasting meteorite hits” at http://
www. analyticbridge.com/profiles/blogs/great‐statistical‐ 
analysis‐forecasting‐meteorite‐hits. In short, if analyzing the 
entire Internet doesn’t appeal to you, try one of the other amazing (and 
huge) datasets.

http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us
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%source magic function, 208
%%timeit cell magic,  
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* operator, 61
** operator, 61
**= operator, 60
*= operator, 60
+ operator, 61
+= operator, 60
- operator, 61
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/ operator, 61
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/= operator, 60
= operator, 60
== operator, 63
 operator, 63
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analysis, data (continued)
descriptive statistics for 
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exploratory, 15
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overview, 30
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bivariate analysis, 243, 244
Boolean values, 59, 134
boosting, decision trees and, 

383–387
Boston dataset
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for Advanced Research) 
datasets, 403–404

classes, Scikit-learn, 218–219
classification evaluation 

measures, 324
classifiers. See specific 

classifiers
bag of words model and, 140

classifying, with SVC, 360–365
class_weight parameter, 362
clause, defined, 74
clear screen (cls), IPython 

console, 202
Cleveland, William S., 11
cluster analysis, outliers and, 

298–299
clustering

big data, 281–282
centroid-based algorithms, 

275–277
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DBScan, 286–288
defined, 274
downloadable source, 274
hierarchical (agglomerative), 

274, 282–286, 288
image data example, 277–278
inertia and, 280–282
kinds of techniques, 274
K-means algorithm, 275, 277, 

282, 285
optimal solutions, 278–281
overview, 273–274
partition-clustering 

techniques, 274
code blocks, 69
code repository, defining the, 

48–54
code reusability, 69
Code style, 208
coding techniques, speed of 

execution and, 31
collaborative filtering, 270
colors

histogram, 183
MatPlotLib, 170–171
pie charts, 180
scatterplot, 187

Colors tab, IPython, 203
columns. See also Feature 

creation
removing, 127
slicing, 123

Common Crawl 2012 web 
corpus, 405

complete linkage method, 283
complex numbers, 59
Component Object Model 

(COM) applications, 101
components, defined, 263
computer languages, 22
concatenating data, 124–125
conditional statements, 73
Conductrics, 394–395
contextualizing problems and 

data
evaluating a data science 

problem, 151
formulating a hypothesis, 

152–153
overview, 150–151
researching solutions, 

151–152
contingency tables, 243
Continuum Analytics 

Anaconda, 39
correlations

nonparametric, 252–253
Pearson, 252
scatterplots, 188–189
Spearman, 252
squaring, 252
using, 250–253

Cosine distance, 284
counterclock parameter, pie 

charts, 181
CountVectorizer( ), 137
CountVectorizer, 137, 226–228
covariance, 250–252
cross-validation

hyperparameters and, 
334–339

on KFolds, 329–331
overview, 232, 328–329
sampling stratifications for 

complex data, 329–331
cross_val_score function,  

329, 363
csc_matrix, 226
CSV files, reading, 92–94
cumsum function (NumPy), 260
Cutler, Adele, 378
cycle_graph( ), 147

• D •
data. See also specific topics

contextualizing
evaluating a data science 

problem, 151
form ulating a hypothesis, 

152–153
overview, 150–151
researching solutions, 

151–152
learning from, 15
overview, 85–86
preparing

data science pipeline, 14
for feature creation,  

153–154
indicator variables and, 

155–156
overview, 14
steps in, 107

sampling, 89–90
streaming large amounts into 

memory, 88–89
in structured flat-file form, 

90–91
uploading small amounts into 

memory, 87–88

data analysis
boxplots

in general, 239, 240
inspecting, 244–245
outliers, 293
overview, 184–185
t-tests after, 245–246
Tukey, 293–294

categorical data, 241–242
central tendency measures, 

238
chi-square, 253
contingency tables, 243
as core competency of data 

science, 13
descriptive statistics for 

numeric data, 237
EDA approach, 236–237
exploratory, 15
frequencies, 242–243
normality measures,  

240–241
obtaining insights and data 

products, 15–16
overview, 30
parallel coordinates, 246–247
percentiles, 239–240
scikit-learn library, 35
SVD (Singular Value 

Decomposition). See 
SVD (Singular Value 
Decomposition)

variance and range, 239
data capture, as core 

competency of data 
science, 12

data density approaches, 274
data dimensionality. See 

dimensionality
data errors, forms of, 289
data map

creating a, 110–112
defined, 110
example of, 110–111

data mining, scikit-learn 
library, 35

data munging, 217
data pipeline, building a, 30
data plan, 110, 111
data science. See also specific 

topics
choosing a language, 10–11
contextualizing problems and 

data
evaluating a data science 

problem, 151
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data science. (continued)
formulating a hypothesis, 

152–153
overview, 150–151
researching solutions, 

151–152
core competencies of data 

scientists, 12–13
emergence of, 11–12
linking big data and, 13
origin of, 11–12
Python's role in, 16–17
resource collections,  

391–396
AnalyticBridge, 396
Aspirational Data Scientist, 

395
Conductrics, 394–395
Data Science Central, 393
Data Science Weekly, 392
GitHub, 396
KDnuggets, 392–393
overview, 391
Quora, 394
U Climb Higher, 392

the shifting profile of data 
scientists, 16–17

understanding the problem, 
149–150

Data Science Central, 393
Data Science London + Scikit-

learn Challenge, 398
data science pipeline, creating, 

14–16
Data Science Weekly, 392
data shaping, overview, 

105–106
data wrangling, 217
databases

NoSQL, 100–101
relational, managing data 

from, 98–100
DataFrame

categorical, 241
defined, 107

DataFrame object, 99, 103, 125, 
126, 343

DataFrame.to_sql( ), 99
datasets

challenging, 397–405
Amazon.com dataset, 404
Canadian Institute for 

Advanced Research 
(CIFAR) datasets, 403–404

Common Crawl 2012 web 
corpus, 405

Data Science London + 
Scikit-learn Challenge, 398

Kaggle competitions, 
399–400

Madelon Data Set, 400
Mixed National Institute 

of Standards and 
Technology (MNIST), 
402–403

MovieLens dataset, 401
Spambase Data Set, 401–402

downloading, 47
speed of execution and size 

of, 30–31
understanding, 54–55, 150

dates
formatting, 117
interacting with, 66–68
representation for, 116

datetime.datetime.now( ), 67
DBScan

outliers and, 298–299
overview, 286–288

decision trees
boosting predictions, 383–

387
overview, 374–378

DecisionTreeClassifier class, 
Scikit-learn, 376, 377

DecisionTreeRegressor class, 
Scikit-learn, 376, 378

deprecation warning, 310
deques, defined, 79
describe( ), 111, 112
descriptive statistics for 

numeric data, 237–238
deterministic selection, 

225–227
diabetes dataset, 293
dicing a dataset, 123–124
dictionaries

defined, 78
indexing data using, 82

DiGraph( ) constructor, 197
dimensionality

defined, 257
reducing, 257–272

applications, 264–272
defined, 257
extracting topics with NMF, 

267–269
factor analysis, 261–263
overview, 257–258
PCA (principal components 

analysis), 263–265, 268, 
277, 278, 297–298

recognizing faces with PCA, 
265–267

recommending movies, 
270–272

SVD (Singular Value 
Decomposition), 258–264

dir( ), 207
in general, 32

directed graphs, 195, 197–198
discretization, 155
distributions

graphing with histograms, 
247–248

modifying, 253–254
normal, 254
transforming, 156

Domingos, Pedro, 154
DoSum( ), 70–71
dot function, SVD and, 259
double question mark (??), 

205, 207
downloadable source code, in 

general, 18, 37
drawcoastlines( ), 194
drawcountries( ), 194
draw_networkx( ), 198
drop( ), 126
dropna( ), 120
dual parameter, LinearSVC, 

368, 369
duplicates, removing, 109–110

• E •
EDA (Exploratory Data 

Analysis)
applied visualization for, 

243–244
approach of, 236–237
downloadable source, 236
Initial Data Analysis (IDE) 

and, 236
modifying data distributions, 

253–254
nonlinear transformations 

and, 342
origin of, 236
overview, 235
Z-score standardization, 254

edges, adding, 196, 198
Edit menu, IPython console, 201
ElasticNet regularization, 

350–352
elif clause, 74
else clause, 74
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embedding plots and 
other images (IPython 
Notebook), 212

ensemble machine-learning 
methods, 233

ensemble of models, 379
ensembles, defined, 373
Enthought Canopy Express, 40
enumerations, 112
eps parameter, 286, 287, 298
epsilon, defined, 367
epsilon-Support Vector 

Regression (SVR), 366–368
error functions, 292
errors, data, forms of, 289
escape character, 78
estimator interface,  

Scikit-learn, 219–221
ETL (Extract, Transformation, 

and Loading), 13
Euclidean distance, 276–277, 

283, 284, 317
evaluating a data science 

problem, 151
evaluation metrics for 

algorithms, 323
examples, from online sites 

(IPython Notebook), 212
Excel

CSV files, 92–93
reading files, 94–95

ExcelFile( ) constructor, 95
Exploratory Data Analysis 

(EDA)
applied visualization for, 

243–244
approach of, 236–237
downloadable source, 236
Initial Data Analysis (IDE) 

and, 236
modifying data distributions, 

253–254
nonlinear transformations 

and, 342
origin of, 236
overview, 235
Z-score standardization, 254

extracting data, in general, 13

• F •
F score, 344
faces, recognizing, with PCA, 

265–267
factor analysis, 261–263

feature creation (feature 
engineering), 153–156

binning and discretization, 
155

combining variables, 154–155
defined, 153
preparing data, 153–154

Feature Extraction, Foundations 
and Applications, 400

features, database, 86, 150
fetch_20newsgroups( ), 142–144
fetch_20newsgroups(subset= 

'train'), 54
fetch_olivetti_faces( ), 54
fillcontinents( ), 194
fillna( ), 120
filtering data, 122
fit( ), 121, 278
fit(X,y), 219–220
fitting a model

bias and variance, 321–322
classification evaluation 

measures, 324–325
dividing between training 

and test sets, 325–328
overview, 320–321
regression evaluation 

measures, 323–324
strategy for picking models, 

322–325
flat files, accessing data in, 

90–91
F1 score, 324–325
Font tab, IPython, 202
for loop, 75–76
frequencies, 242–243
function arguments

default value, 72
in general, 69
positional, 71
sending by keyword, 71–72
sending required, 70–71
variable number of, 72–73

functional coding style, 17
functions. See also specific 

functions
calling, 70–73
creating and using, 68–73
creating reusable, 68–70

• G •
gamma parameter, 299, 360, 

365, 367
Gaussian distribution

outliers, 294–295
overview, 254

GaussianNB, 313
GBM (Gradient Boosting 

Machine), 385–387
geographical data, plotting, 

193–194
Gershoff, Matt, 395
GitHub, 396
gradient boosting classifier, 

385
Gradient Boosting Machine 

(GBM), 385–387
gradient boosting regressor, 

385–386
graph data

adjacency matrix, 146
NetworkX basics, 146–148
overview, 145

Graph( ) constructor, 196
graphs (graphing). See also 

MatPlotLib
directed, 195, 197–198
and multimedia integration, 

212
obtaining online, 212–214
types of, 180–186
undirected, 195–196

greedy selection, 331,  
333–334

Greenwich Mean Time  
(GMT), 117

grid( ), 168
grid searching, 335–339
grids, MatPlotLib, 166, 168–169
GridSearch class, 337
GridSearchCV, 340, 364–367
grid-searching, 232
ground truth, 278, 279
groupby( ), 111
Guido van Rossum, 22

• H •
hairballs, 146
handles, defined, 167
handwritten information, 

402–403
hash( ), 223
hash functions, Scikit-learn, 

223–225
hashing trick, 222–229, 314
HashingVectorizer, 226–228
hatch parameter, bar  

charts, 182
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help
IPython, 205
Python, 203–204

help( ), 203
help(mylist), 207
help prompt, Python, 203
hierarchical clustering, 

282–285
high-dimensional sparse 

dataset, 142
histograms, 247–248

MatPlotLib, 183–184
HTML data (HTML 

documents), Beautiful 
Soup and, 35, 36

HTML pages, 132–134
hyperparameters

defined, 334
GBM (Gradient Boosting 

Machine), 386–387
Scikit-learn, 220
searching for optimal

grid searching, 335–339
randomized searches, 

339–340
hyperplane, 358
hypothesis, 221

formulating a, 152–153

• I •
IDE (Initial Data Analysis), 236
identity operators, 66
if statement

indentation of, 25
making decisions using, 

73–74
immutable tuples, 80
imperative coding style, 17
importing a module, 67
imputing missing data, 120–121
imread( ) method, 96
imshow( ) function, 96
in operator, 66
indentation, need for, 25
indicator variables, 155–156
inertia, 280–282
information redundancy, 250
Information Retrieval (IR), 141
Initial Data Analysis  

(IDE), 236
instantiation, Scikit-learn, 220
integers, overview, 59
interactive help, Python, 

204–205

International Council for 
Science, 11

interquartile range (IQR), 240, 
244, 293

IPython
benchmarking with timeit, 

228–230
help

object help, 207
overview, 205

memory profiler, 230–231
multiprocessing, 233
objects, 207–208
preferred installer program 

(pip), 230
timing and performance, 

227–231
IPython console, 200–208

Edit menu, 201
magic functions, 205–206
screen text, 200–202
window appearance, 202–203

IPython environment, 27
IPython Notebook

creating a new notebook, 
50–52

defining the code repository, 
48–54

display system features, 214
exporting a notebook, 52
in general, 18, 20
importing a notebook, 53–54
loading examples from online 

sites, 212
multimedia and graphic 

integration, 212–214
overview, 25–26
removing a notebook, 52–53
restarting the kernel, 210
restoring a checkpoint, 

210–211
starting, 47–48
stopping the IPython 

Notebook server, 48
styles, 208–210
using, 47–48, 208–211

IPython QTConsole, 28
IQR (interquartile range), 240, 

244, 293
Iris dataset

hidden factors, 262–263
logistic regression and, 308
matrix of scatterplots, 249
overview, 237

is not operator, 66
is operator, 66

isin( ), 116
isnull( ), 114, 119
iterators, defining useful, 81–82

• J •
Journal of Data Science, 11
jQuery, 101

• K •
Kaggle competitions, 399–400
KDnuggets, 392–393
Kelvin, Lord, 151
kernel

restarting, 210
specification, 360

kernel trick, 358
keywords

Python help, 204
sending arguments by,  

71–72
KFolds, cross-validation on, 

329–331
K-means algorithm, 275, 277, 

281–286
K-neighbors classifier, 336
kNN (k-Nearest Neighbors), 

315–318
kurtosis, 240, 241

• L •
L1 regularization (Lasso), 

348–350, 352
L2 regularization (Ridge), 

348–350, 352
labels, MatPlotLib, 173, 174
Lasso (L1 regularization), 

348–350, 352
Latent Semantic Indexing (LSI), 

261, 395
Layout tab, IPython, 203
leaf, decision tree, 375
legend( ), 176
legends, MatPlotLib, 174–177
levels

combining, 115–116
decision tree, 375–376
defined, 112
renaming, 114–115

libraries, overview of, 33–36
line styles, MatPlotLib, 170
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linear models, regularizing, 
348–351

linear regression
evaluation measures,  

323–324
formula, 304–305, 320
in general, 18
limitations and problems  

of, 307
Scikit-learn and, 220
using more variables,  

305–306
LinearSVC class, 368–371
lines, MatPlotLib

colors, 170–171
markers, 172–173
overview, 169
styles, 170

links, 145
lists, 78–79
load_boston( ), 54
load_diabetes( ), 54
load_digits([n_class]), 54
loading data

in general, 13
overview, 18
speed of execution and, 31

load_iris( ), 54
loc parameter, 176
local minima, 335
local time, 117–118
logical operators, 63–64
logistic regression, 307–310
loop statements, 73
Los Alamos National 

Laboratory Stability 
of Unstable Learning 
Algorithms, 402

loss parameter, LinearSVC, 
368, 369

l1_ratio parameter, 351
LSI (Latent Semantic Indexing), 

261, 395
LSTAT, nonlinear 

transformations and, 
343–344, 346

• M •
machine code, 21
machine-learning algorithms

bias and variance, 321–322
cross-validation, 328–331
fitting a model

bias and variance, 321–322

classification evaluation 
measures, 324–325

dividing between training 
and test sets, 325–328

overview, 320–321
regression evaluation 

measures, 323–324
strategy for picking models, 

322–325
in general, 319
no-free-lunch theorem, 322
problematic aspects, 321
searching for optimal 

hyperparameters
grid searching, 335–339
randomized searches, 

339–340
Madelon Data Set, 400
magic functions

IPython console, 205–206
with objects, 208

main effects model, 344–348
make_classfication, 369
Manhattan (manhattan or l1) 

distance, 283, 317
Manuscript on Deciphering 

Cryptographic Messages 
(Al-Kindi), 12

maps, 193–194
Markdown style, 210
markers, MatPlotLib, 172–173
MathJax error, 49–50
MathJax library, 49–50
MATLAB, in general, 13, 163, 

164
MATLAB For Dummies, 13, 163
MatPlotLib

annotations, 174–175
axes, ticks, and grids, 166–

169
bar charts, 181–182
box plots, 184–185
defining a plot, 164–165
histograms, 183–184
labels, 173, 174
legends, 174–177
line appearance

colors, 170–171
markers, 172–173
overview, 169
styles, 170

multiple lines and plots, 165
overview, 35, 164
pie charts, 180–181
saving your work, 165–166
scatterplots

colors, 187
in general, 179
importance of, 187
plotting, 248–249
showing correlations, 

188–189
time series, 189–193

matrix (matrices)
arithmetic operations on, 

157–158
dimensionality reduction 

and, 259
multiplication, 159
of scatterplots, 248–249
sparse, 225–227
vector multiplication, 158

max_depth parameter, 385
max_features parameter, 379
max_samples parameter, 379
mean, 238, 239
mean_absolute_error 

evaluation measure, 323
mean_squared_error 

evaluation measure,  
323, 326

median, 238, 239
member operators, 66
memory profiler, 230–231
microservices, 101–102
Microsoft Office files, reading, 

94–95
MiniBatchKMeans, 281, 282
Miniconda installer, 39
min_sample parameter, 286, 

287, 298, 378
missing data

encoding missingness, 119
finding, 119
imputing, 120–121
linear regression and, 307
overview, 118–119

Mixed National Institute 
of Standards and 
Technology (MNIST), 
402–403

MNIST (Mixed National 
Institute of Standards and 
Technology), 402–403

model, fitting a
bias and variance,  

321–322
classification evaluation 

measures, 324–325
dividing between training 

and test sets, 325–328
overview, 320–321
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model, fitting a (continued)
regression evaluation 

measures, 323–324
strategy for picking models, 

322–325
in general, 319
no-free-lunch theorem, 322
problematic aspects, 321
searching for optimal 

hyperparameters
grid searching, 335–339
randomized searches, 

339–340
model interface, Scikit-learn, 

219
model object classes,  

Scikit-learn, 221
Modeling for Optimal 

Probability Prediction, 402
modules, Python help, 204
MovieLens dataset, 401
movies, recommending, 

270–272
multicore parallelism, 232–233
MultiDiGraph( ), 197
MultiGraph( ), 197
multilabel prediction, 233
multimedia

and graphic integration, 
212–214

obtaining online graphs and, 
212–214

MultinomialNB, 313
multiplication

matrix, 159
matrix vector, 158

multiprocessing, 232, 233
multivariate approach, outliers 

and, 296–299
multivariate correlation, 153
mylist?, 207
mylist??, 207
MySQL, 100

• N •
Naïve Bayes algorithm

formula, 311–312
overview, 310–311
predicting text 

classifications, 313–315
uses of, 312–313

National Institute of Standards 
and Technology (NIST) 
dataset, 402

Natural Language Processing 
(NLP), 141

Natural Language Toolkit 
(NLTK), 136

NBConvert formatting option, 
210

ndarray, NumPy, 157, 269, 293, 
343

neighborhoods
k-Nearest Neighbors (kNN) 

algorithm, 315–318
overview, 287

n_estimators parameter, 379
nesting, 74–75
NetworkX, 146–148
Newton, Sir Isaac, 320
n-grams, 142–144
NIPS 2003 feature selection 

challenge, 400
NIST (National Institute 

of Standards and 
Technology) dataset, 402

n_iter parameter, 340, 371
NLP (Natural Language 

Processing), 141
NLTK (Natural Language 

Toolkit), 136
NMF (Non-Negative Matrix 

Factorization), extracting 
topics with, 267–269

nodes, 145
adding, 196–198

no-free-lunch theorem, 322
nonlinear approach, SVM 

(Support Vector 
Machines) and, 365

nonlinear functions, SVM 
(Support Vector 
Machines) and, 365–366

nonlinear transformations, 
341–348

nonparametric correlation, 
252–253

normal distribution, 254
normality, measures of, 

240–241
NoSQL databases, interacting 

with data from, 100–101
not in operator, 66
Notebook, IPython

creating a new notebook, 
50–52

defining the code repository, 
48–54

display system features, 214
exporting a notebook, 52

in general, 18, 20
importing a notebook,  

53–54
loading examples from online 

sites, 212
multimedia and graphic 

integration, 212–214
overview, 25–26
removing a notebook, 52–53
restarting the kernel, 210
restoring a checkpoint, 

210–211
starting, 47–48
stopping the IPython 

Notebook server, 48
styles, 208–210
using, 47–48, 208–211

novel data, 292
now( ) command, 67
nu, OneClassSVM and, 299
numbers

complex, 59
converting to strings, 65
floating-point value, 59
integers, 59

NumPy library
covariance and correlation, 

251
cumsum function, 260
Iris dataset, 237
knowing when to use, 106
linalg module, 259
logspace function, 364
ndarray, 157, 269, 293, 343
overview, 34

• O •
object-oriented coding style, 

17
objects

help, 207
magic functions with, 208
specifics about, 207

Olivetti faces dataset, 54, 265, 
404

One versus one, 309
One versus rest, 309
OneClassSVM, 299
one-hot-encoding, 224
OneVsOneClassifier class 

(Scikit-learn), 309, 310
OneVsRestClassifier class 

(Scikit-learn), 309, 310
online articles and blogs, 152
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Online Policy Adaptation for 
Ensemble Classifiers, 402

Open-Source Data Science 
Masters (OSDSM), 394

operator precedence, 64–65
operators

arithmetic, 61
assignment, 60
bitwise, 62
identity, 66
logical, 63–64
member, 66
relational, 63
unary, 61, 64

Options tab, IPython, 202
OSDSM (Open-Source Data 

Science Masters), 394
outliers

anomalies and novel data, 
292

binning and, 155
DBScan, 286
defined, 290
detection of, 290–292
leveraging the normal 

distribution, 294–295
linear regression and, 307
machine-learning algorithms 

affected by, 291–292
multivariate approach, 

296–299
SVM (Support Vector 

Machines) for detection 
of, 299

univariate approach, 292–296

• P •
pandas library

categorical data, 241
covariance matrix, 250–251
DataFrame, 237, 238
knowing when to use, 

106–107
measuring central tendency, 

238
NumPy and, 106
outliers, 293
overview, 34
parsers, 91–92
removing duplicates, 109–110
version of, 113

pandas.crosstab function, 243
parallel coordinates, 246–247
parallelism

multicore, 232–233
overview, 232

parsers, 91–92
parsing HTML or XML, 

Beautiful Soup library, 
35–36

parsing XML and HTML, 
132–133

partition-clustering 
techniques, 274

pattern matching, 138–139
pattern-matching characters, 

138
PCA (principal components 

analysis)
image data, 277–278
outliers and, 297–298
overview, 263–265
recognizing faces with, 

265–267
Pearson's correlation,  

250, 252
Pearson's r, 252
penalty parameter, LinearSVC, 

368, 369
PEPs (Python Enhancement 

Proposals), 23–24
percentiles, 239–240
pie charts

overview, 180–181
parameters, 181

pipeline, data science, 14–16
placeholder, 78
plot( ), 192
plots

defining, 164–165
drawing multiple lines and, 

165
embedding, 212

plot.show( ), 164
plotting with matplotlib, 35
plt.axes( ), 167
plt.plot( ), 164, 165
polyfit( ), 189
positional arguments, 71
PostgreSQL, 100
precision, error measure in 

classification, 324–325
predictor class, 220, 221
predictor interface, Scikit-

learn, 219
preferred installer program 

(pip), 230
preparing data

data science pipeline, 14
for feature creation, 153–154

indicator variables and, 
155–156

overview, 14
steps in, 107

presentation, as core 
competency of data 
science, 13

presenting a result, 30
principal components analysis 

(PCA)
image data, 277–278
outliers and, 297–298
overview, 263–265
recognizing faces with, 

265–267
probability, Naïve Bayes 

algorithm and, 310–315
procedural coding style, 17
processors, speed of execution 

and, 31
programming, understanding 

role of, 13–14
programming languages, 

criteria for choosing, 14
Properties dialog box,  

IPython, 202
prototyping, 29–30
psychometrics, 262
Python

applications, 23
capabilities and 

characteristics of, 21–24
coding styles supported  

by, 17
core philosophy of, 23
development goals of, 23–24
documentation, 152
in general, 10
help, interactive help, 

204–205
help mode, 203–204
history of, 23
as multipurpose, simple, and 

efficient language, 17
overview of, 24–29
quick overview, 18
versions of, 23

Python 3.4.2, 38, 58, 78
Python console, 200
Python Enhancement 

Proposals (PEPs), 23–24
Python interpreter, 26–27
Python Software Foundation 

(PSF), 23
Python 2.7.x, 38, 39, 58
pythonxy, 40–41
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• Q •
QTConsole, 28
quartiles, 184
queues, defined, 79
Quora, 394

• R •
R language, in general, 10
Random Forest algorithm

optimizing, 382–383
overview, 378–379
working with a Random 

Forest classifier, 380–381
working with a Random 

Forest regressor, 382
randomized searches, 339–340
RandomizedLasso class, 350
RandomizedLogistic class, 350
RandomizedPCA class, 265
range, 239
range( ), bar charts, 182
Raw NBConvert style, 210
raw text

bag of words model, 140–142, 
222, 224

n-grams, 142–144
regular expressions, 137–140
shaping, 134
stemming and removing stop 

words, 136–137
TF-IDF (Term Frequency 

times Inverse 
Document Frequency) 
transformations, 144–145

Unicode and, 134–135
rbf (radial basis function), 365
read_sql( ), 99
read_sql_query( ), 99
read_sql_table( ), 99
recall, error measure in 

classification, 324–325
Receiver Operating 

Characteristic Area Under 
Curve (ROC AUC), 325

regression, with SVR, 366–368
regular expressions, 137–140
regularization

ElasticNet, 350–352
Elasticnet, 350–351
L1 (Lasso), 348–350, 352
L2 (Ridge), 348–350, 352
leveraging, 350

regularizing, linear models, 
348–351

relational databases, managing 
data from, 98–100

relational operators, 63
removing data, 126–127
reset_index( ), 125, 128
Restart Kernel, IPython 

Notebook, 210
RFECV class, 333–334
Ridge (L2 regularization), 

348–350, 352
ROC AUC (Receiver Operating 

Characteristic Area Under 
Curve), 325

rows, slicing, 122–123
r2 (R squared), 323–324

• S •
sample_weight keyword, 362
sampling, stratifications for 

complex data, 329–331
sampling data, 89–90
SAS (Statistical Analysis 

System) language, in 
general, 10–11

saving your work, MatPlotLib, 
165–166

scaling, SVM (Support Vector 
Machines) and, 363

scatterplots
colors, 187
in general, 179
importance of, 187
plotting, 248–249
showing correlations, 188–189
time series, 189–193

Scikit-learn library
bagging classes, 379–380
classes in, 218–219
classification evaluation 

measures, 324–325
cross-validation, 328
defining applications for data 

science, 219–222
grid searching, 336
Iris dataset, 237
Kaggle competition, 398
K-means, 276, 277
logistic regression and, 308
multiclass problems, 309–310
multiprocessing, 232–233
Naïve Bayes algorithm and, 

313–315

object-based interfaces, 219
outliers, 293, 295
overview, 35, 217
regression evaluation 

measures, 323–324
SVM module, 359, 360, 364
toy datasets, 86

SciPy
itemfreq function, 361–362
overview, 33–34
sparse matrices, 226

screenshots, 44
selecting data, 122
sentiment analysis,  

Naïve Bayes algorithm 
and, 312

sequences, types of, 78–79
sets, performing operations 

on, 77–78
set_xlim( ), 167
set_xticks( ), 167
set_ylim( ), 167
set_yticks( ), 167
SGD (Stochastic Gradient 

Descent) optimization, 
352–353

SGDClassifier (Stochastic 
Gradient Descent 
Classifier), 351–353,  
370, 371

SGDRegressor (Stochastic 
Gradient Descent 
Regressor), 351–353, 370

shadow parameter, pie  
charts, 181

shaping data
HTML pages, 132–134
overview, 105, 131
parsing XML and HTML, 

132–133
prototyping and 

experimentation  
process, 30

raw text, 134–140
XPath for data extraction, 

133–134
shared variance, 262
show( ) function, 96
shuffling data, 127–128
skewness, 240, 241
sklearn.grid_search, 335
sklearn.metrics.accuracy_

score, 324
sklearn.metrics.f1_score, 324
sklearn.metrics.precision_

score, 324
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sklearn.metrics.recall_score, 
324

sklearn.metrics.roc_auc_score, 
324

sklearn.svm.LinearSVC, 358, 
359

sklearn.svm.NuSVC, 358, 359
sklearn.svm.NuSVR, 359
sklearn.svm.OneClassSVM, 359
sklearn.svm.SVC, 358, 359
sklearn.svm.SVR, 359
slicing and dicing data,  

122–124
social scientists, 395
sort_index( ), 128
sorting data, 127–128
spam detectors, 312
Spambase Data Set, 401–402
sparse matrices, 225–227
Spearman correlation, 252, 254
speed of execution, 30–31
Spyder, 28–29
SQL (Structured Query 

Language), in general, 
11, 99

SQL Server, 100
sqlalchemy library, 100
SQLite, 100
stacks, defined, 79
standard deviation, 239
stem words, 136–137
stemming, defined, 136
Stochastic Gradient Descent 

Classifier (SGDClassifier), 
351–353

Stochastic Gradient Descent 
(SGD) optimization, 
352–353

Stochastic Gradient 
Descent Regressor 
(SGDRegressor), 351–353, 
370

stochastic solution with SVM, 
368–371

stop words
Naïve Bayes algorithm and, 

314
overview, 136–137

str( )
converting numbers to 

strings, 65
time and date conversions, 

117
StratifiedKFold class, 330
streaming, large amounts of 

data, into memory, 88–89

strftime( ), 117
strings

creating and using, 65–66
defined, 65

strtobool( ), 133
style conventions, 58
styles, IPython Notebook, 

208–210
subsample parameter, 385
subtraction, time values, 118
suffixes, removing, to create 

stem words, 136
support vectors, defined, 356
SVC (Support Vector 

Classifier)
classifying with, 360–365
LinearSVC as faster than,  

369, 370
multiprocessing and, 233–234

SVD (Singular Value 
Decomposition)

defined, 258
extracting topics, 268
factor and principal 

component analysis, 
261–262

measuring the invisible with, 
260–261

SVM (Support Vector 
Machines)

classifying with SVC and, 
360–365

complex data and, 357–358
fixing many new parameters, 

358–360
main benefits and drawbacks 

of, 354–355
margin, 356
nonlinear functions and, 

365–366
origin of, 355
outliers detection with, 299
overview, 341, 355–358
steps in setting up a working 

model, 358
stochastic solution with, 

368–371
SVR (epsilon-Support Vector 

Regression), 366–368
Swiss roll datasets, 286

• T •
tables, chi-square for, 253
telephone numbers, 139, 140

test_size parameter, 362
text files. See also Raw text

extracting topics with NMF 
(Non-Negative Matrix 
Factorization), 267–269

Naïve Bayes algorithm and, 
312–315

reading from, 91–92
TF-IDF (Term Frequency 

times Inverse 
Document Frequency) 
transformations, 144–145

TfidfTransformer( ), 145
TfidVectorizer class, 268, 269
Thucydides, 12
ticks, MatPlotLib, 166
time

on axes, 190–191
formatting, 117
plotting trends over, 191–192

time series, plotting, 189–193
time values, 116–117
time zones, 117–118
time( ) command, 67
timedelta( ), 118
timeit, benchmarking with, 

228–230
timing and performance, 86, 

227–231
Titanic.csv, 86, 92, 399
title( ), 181
tolist( ), 128
tolower( ), 134
topics, Python help, 204
toy datasets, Scikit-learn, 

86–88, 403
training, Scikit-learn, 221
train_test_split function.test_

size parameter, 327, 362
transform( ), 121, 129, 137
transform class, Scikit-learn, 

222
transformations (transforming 

data)
distributions, 156, 254–255
in general, 13, 14
nonlinear, 341–348
process of, 125
TF-IDF (Term Frequency 

times Inverse Document 
Frequency), 144–145

variable, 342–344
transformer interface, Scikit-

learn, 219
Trello, 393
trendline, 188, 189, 191, 192
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trends, over time, 191–192
TruncatedSVD class, 271
t-tests, after boxplots, 245–246
Tukey, John, 236, 294
Tukey boxplots, 293–294
tuples

creating and using, 80–81
defined, 78

20newsgroups dataset, 141, 
143, 145, 268, 313

• U •
U Climb Higher, 392
unary operators, 61, 64
unbalanced class scenario, 362
underfitting, SVM model, 360
undirected graphs, 195–196
Unicode, Beautiful Soup  

and, 36
unique variance, 262
univariate approach

to outliers, 292–296
overview, 243
selecting variables, 331–333

unstack( ), 111
unstructured data files, 95–98
unsupervised classification, 

273, 274
uploading small amounts of 

data into memory, 87–88
UTF-8 (Universal 

Transformation Format 
8-bit), 135

Beautiful Soup and, 36

• V •
validating data

figuring out what's in your 
data, 108–109

overview, 107–108
removing duplicates, 109–110

validation curves, 338
validation_curve class, 338
van Rossum, Guido, 22
Vapnik, Vladimir, 355
variable transformations, 

342–344
variables

adding new, 125–126
assignment operators, 60
boxplots arranged by, 244
categorical

combining levels, 115–116
creating, 113–114
defined, 112
manipulating, 112–116
renaming levels, 114–115

combining, feature creation 
and, 154–155

covariance and correlation, 
252

database, 86
in general, 150
indicator, 155–156
interactions between, 

344–348
outliers, 290–291
removing, 126–127
selecting the right

greedy selection, 333–334
univariate approach, 

331–333
variance

in general, 239
overview, 321–322
shared, 262
unique, 262

vectorization, 157, 158
vectors, arithmetic operations 

on, 157–158
visualization. See also graphs

in general, 15
maps, 193–194
overview, 32–33, 179

Visualization and Data Mining 
in an 3D Immersive 
Environment: Summer 
Project 2003, 402

• W •
Ward linkage method, 283
warm_start parameter, 385
web services, 101–102
web-based data, accessing, 

101–103
while statement, 76–77
whiskers, 184
width, bar charts, 182
Windows console, IPython, 

202–203
WinPython, 41
winsorizing, 296
Wolpert, David, 322

• X •
xlabel( ), 174
XML data

accessing, 102–103
Beautiful Soup and, 35
shaping, 132–133

XPath, for data extraction, 
133–134

xpath( ), 133

• Z •
Z-score standardization, 254
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