

PYTHON
BASICS

LICENSE,	DISCLAIMER	OF	LIABILITY,	AND	LIMITED	WARRANTY

By	purchasing	 or	 using	 this	 book	 (the	 “Work”),	 you	 agree	 that	 this	 license	 grants	 permission	 to	 use	 the
contents	contained	herein,	but	does	not	give	you	the	right	of	ownership	to	any	of	the	textual	content	in	the
book	 or	 ownership	 to	 any	 of	 the	 information	 or	 products	 contained	 in	 it.	 This	 license	 does	 not	 permit
uploading	of	 the	Work	onto	 the	 Internet	or	on	a	network	(of	any	kind)	without	 the	written	consent	of	 the
Publisher.	 Duplication	 or	 dissemination	 of	 any	 text,	 code,	 simulations,	 images,	 etc.,	 contained	 herein	 is
limited	to	and	subject	to	licensing	terms	for	the	respective	products,	and	permission	must	be	obtained	from
the	Publisher	or	the	owner	of	the	content,	etc.,	in	order	to	reproduce	or	network	any	portion	of	the	textual
material	(in	any	media)	that	is	contained	in	the	Work.

MERCURY	LEARNING	AND	INFORMATION	 (“MLI”	or	 “the	Publisher”)	 and	 anyone	 involved	 in	 the
creation,	writing,	production,	accompanying	algorithms,	code,	or	computer	programs	(“the	software”),	and
any	accompanying	Web	site	or	software	of	the	Work,	cannot	and	do	not	warrant	the	performance	or	results
that	might	be	obtained	by	using	the	contents	of	the	Work.	The	author,	developers,	and	the	Publisher	have
used	 their	 best	 efforts	 to	 insure	 the	 accuracy	 and	 functionality	 of	 the	 textual	 material	 and/or	 programs
contained	in	this	package;	we,	however,	make	no	warranty	of	any	kind,	express	or	implied,	regarding	the
performance	of	these	contents	or	programs.	The	Work	is	sold	“as	is”	without	warranty	(except	for	defective
materials	used	in	manufacturing	the	book	or	due	to	faulty	workmanship).

The	 author,	 developers,	 and	 the	 publisher	 of	 any	 accompanying	 content,	 and	 anyone	 involved	 in	 the
composition,	production,	and	manufacturing	of	this	work	will	not	be	liable	for	damages	of	any	kind	arising
out	of	the	use	of	(or	the	inability	to	use)	the	algorithms,	source	code,	computer	programs,	or	textual	material
contained	 in	 this	 publication.	 This	 includes,	 but	 is	 not	 limited	 to,	 loss	 of	 revenue	 or	 profit,	 or	 other
incidental,	physical,	or	consequential	damages	arising	out	of	the	use	of	this	Work.

The	sole	remedy	in	the	event	of	a	claim	of	any	kind	is	expressly	limited	to	replacement	of	the	book	and	only
at	the	discretion	of	the	Publisher.	The	use	of	“implied	warranty”	and	certain	“exclusions”	vary	from	state	to
state,	and	might	not	apply	to	the	purchaser	of	this	product.

PYTHON
BASICS

H.	Bhasin

MERCURY	LEARNING	AND	INFORMATION
Dulles,	Virginia

Boston,	Massachusetts
New	Delhi

Copyright	©2019	by	MERCURY	LEARNING	AND	INFORMATION	LLC.	All	rights	reserved.
ISBN:	978-1-683923-53-4.	Reprinted	and	revised	with	permission.

Original	Title	and	Copyright:	Python	for	Beginners.
Copyright	©2019	by	New	Age	International	(P)	Ltd.	Publishers.	All	rights	reserved.
ISBN:	978-93-86649-49-2

This	publication,	portions	of	it,	or	any	accompanying	software	may	not	be	reproduced	in	any	way,	stored	in
a	 retrieval	 system	 of	 any	 type,	 or	 transmitted	 by	 any	 means,	 media,	 electronic	 display	 or	 mechanical
display,	 including,	 but	 not	 limited	 to,	 photocopy,	 recording,	 Internet	 postings,	 or	 scanning,	without	 prior
permission	in	writing	from	the	publisher.

Publisher:	David	Pallai
MERCURY	LEARNING	AND	INFORMATION
22841	Quicksilver	Drive
Dulles,	VA	20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

H.	Bhasin.	Python	Basics.
ISBN:	978-1-683923-53-4

The	publisher	 recognizes	 and	 respects	 all	marks	 used	by	 companies,	manufacturers,	 and	 developers	 as	 a
means	 to	 distinguish	 their	 products.	 All	 brand	 names	 and	 product	 names	 mentioned	 in	 this	 book	 are
trademarks	or	service	marks	of	their	respective	companies.	Any	omission	or	misuse	(of	any	kind)	of	service
marks	or	trademarks,	etc.	is	not	an	attempt	to	infringe	on	the	property	of	others.

Library	of	Congress	Control	Number:	2018962670

181920321				Printed	on	acid-free	paper	in	the	United	States	of	America.

Our	 titles	 are	 available	 for	 adoption,	 license,	 or	 bulk	 purchase	 by	 institutions,	 corporations,	 etc.	 For
additional	information,	please	contact	the	Customer	Service	Dept.	at	800-232-0223(toll	free).

All	of	our	titles	are	available	in	digital	format	at	authorcloudware.com	and	other	digital	vendors.	The	sole
obligation	 of	MERCURY	LEARNING	 AND	 INFORMATION	 to	 the	 purchaser	 is	 to	 replace	 the	 book,
based	on	defective	materials	or	faulty	workmanship,	but	not	based	on	the	operation	or	functionality	of	the
product.

mailto:info@merclearning.com
http://www.merclearning.com
http://authorcloudware.com

To
My	Mother

Chapter	1:
1.1
1.2

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9

1.3
1.3.1
1.3.2
1.3.3

1.4
1.4.1
1.4.2

1.5
1.6

Chapter	2:
2.1

CONTENTS

Introduction	to	Python
Introduction
Features	of	Python

Easy
Type	and	Run
Syntax
Mixing
Dynamic	Typing
Built	in	Object	Types
Numerous	Libraries	and	Tools
Portable
Free

The	Paradigms
Procedural
Object-Oriented
Functional

Chronology	and	Uses
Chronology
Uses

Installation	of	Anaconda
Conclusion

Python	Objects
Introduction

2.2
2.2.1

2.3
2.4

2.4.1
2.4.2
2.4.3

2.5

Chapter	3:
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Chapter	4:
4.1
4.2
4.3
4.4
4.5

Chapter	5:
5.1
5.2

5.2.1
5.2.2
5.2.3

5.3

Basic	Data	Types	Revisited
Fractions

Strings
Lists	and	Tuples

List
Tuples
Features	of	Tuples

Conclusion

Conditional	Statements
Introduction
if,	if-else,	and	if-elif-else	constructs
The	if-elif-else	Ladder
Logical	Operators
The	Ternary	Operator
The	get	Construct
Examples
Conclusion

Looping
Introduction
While
Patterns
Nesting	and	Applications	of	Loops	in	Lists
Conclusion

Functions
Introduction
Features	of	a	Function

Modular	Programming
Reusability	of	Code
Manageability

Basic	Terminology

5.3.1
5.3.2
5.3.3

5.4
5.4.1

5.5
5.5.1

5.6
5.7
5.8

5.8.1
5.8.2

5.9

Chapter	6:
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter	7:
7.1
7.2
7.3
7.4

7.4.1
7.4.2
7.4.3

7.5

Name	of	a	Function
Arguments
Return	Value

Definition	and	Invocation
Working

Types	of	Function
Advantage	of	Arguments

Implementing	Search
Scope
Recursion

Rabbit	Problem
Disadvantages	of	Using	Recursion

Conclusion

Iterations,	Generators,	and	Comprehensions
Introduction
The	Power	of	“For”
Iterators
Defining	an	Iterable	Object
Generators
Comprehensions
Conclusion

File	Handling
Introduction
The	File	Handling	Mechanism
The	Open	Function	and	File	Access	Modes
Python	Functions	for	File	Handling

The	Essential	Ones
The	OS	Methods
Miscellaneous	Functions	and	File	Attributes

Command	Line	Arguments

7.6
7.7

Chapter	8:
8.1
8.2
8.3

8.3.1
8.3.2
8.3.3

8.4

8.4.8
8.5

Chapter	9:
9.1
9.2
9.3

9.3.1
9.3.2

9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7

Implementation	and	Illustrations
Conclusion

Strings
Introduction
The	Use	of	“For”	and	“While”
String	Operators

The	Concatenation	Operator	(+)
The	Replication	Operator
The	Membership	Operator

Functions	for	String	Handling
len()

Capitalize()

find()

count

Endswith()

Encode

Decode

Miscellaneous	Functions
Conclusion

Introduction	to	Object	Oriented	Paradigm
Introduction
Creating	New	Types
Attributes	and	Functions

Attributes
Functions

Elements	of	Object-Oriented	Programming
Class
Object
Encapsulation
Data	Hiding
Inheritance

9.4.6
9.4.7

9.5

Chapter	10:
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Chapter	11:
11.1

11.1.1
11.1.2

11.2
11.2.1
11.2.2

11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5

11.4
11.5
11.6

Chapter	12:

Polymorphism
Reusability

Conclusion

Classes	and	Objects
Introduction	to	Classes
Defining	a	Class
Creating	an	Object
Scope	of	Data	Members
Nesting
Constructor
Constructor	Overloading
Destructors
Conclusion

Inheritance
Introduction	to	Inheritance	and	Composition

Inheritance	and	Methods
Composition

Inheritance:	Importance	and	Types
Need	for	Inheritance
Types	of	Inheritance

Methods
Bound	Methods
Unbound	Method
Methods	are	Callable	Objects
The	Importance	and	Usage	of	Super
Calling	the	Base	Class	Function	Using	Super

Search	in	Inheritance	Tree
Class	Interface	and	Abstract	Classes
Conclusion

Operator	Overloading

12.1
12.2

12.2.1
12.3
12.4
12.5
12.6
12.7

12.8
12.9

Chapter	13:
13.1
13.2

13.2.1
13.2.2

13.3
13.4

13.4.1
13.4.2

13.5
13.6
13.7

Chapter	14:
14.1
14.2
14.3
14.4
14.5

14.5.1

Introduction
init	Revisited

Overloading	_init_	(sort	of)
Methods	for	Overloading	Binary	Operators
Overloading	Binary	Operators:	The	Fraction	Example
Overloading	the	+=	Operator
Overloading	the	>	and	<	Operators
Overloading	the	_boolEan_	Operators:	Precedence	of
_bool_over	_len_

Destructors
Conclusion

Exception	Handling
Introduction
Importance	and	Mechanism

An	Example	of	Try/Catch
Manually	Raising	Exceptions

Built-In	Exceptions	in	Python
The	Process

Exception	Handling:	Try/Except
Raising	Exceptions

Crafting	User	Defined	Exceptions
An	Example	of	Exception	Handling
Conclusion

Introduction	to	Data	Structures
Introduction
Abstract	Data	Type
Algorithms
Arrays
Iterative	and	Recursive	Algorithms

Iterative	Algorithms

14.5.2
14.6

Chapter	15:
15.1
15.2
15.3
15.4
15.5

15.5.1
15.5.2

15.6
15.7

Chapter	16:
16.1
16.2
16.3
16.4
16.5

Chapter	17:
17.1
17.2

17.2.1
17.2.2
17.2.3
17.2.4

17.3
17.3.1
17.3.2
17.3.3

17.4

Recursive	Algorithms
Conclusion

Stacks	and	Queues
Introduction
Stack
Dynamic	Implementation	of	Stacks
Dynamic	Implementation:	Another	Way
Applications	of	Stacks

Reversing	a	String
Infix,	Prefix,	and	Postfix	Expressions

Queue
Conclusion

Linked	Lists
Introduction
Operations
Implementing	Stack	Using	a	Linked	List
Queue	Using	a	Linked	List
Conclusion

Binary	Search	Trees
Introduction
Definition	and	Terminology

Graphs:	Definition	and	Representation
Trees:	Definition,	Classification,	and	Representation
Representation	of	a	Binary	Tree
Tree	Traversal:	In-order,	Pre-order,	and	Post-order

Binary	Search	Tree
Creation	and	Insertion
Traversal
Maximum	and	Minimum	Elements

Conclusion

Chapter	18:
18.1
18.2
18.3

18.3.1

18.4
18.5
18.6
18.7

Chapter	19:
19.1
19.2
19.3
19.4
19.5

Chapter	20:
20.1
20.2

20.2.1
20.2.2
20.2.3
20.2.4

20.3
20.4
20.5
20.6

20.6.1
20.6.2

18.3.2
18.3.3

Introduction	to	NUMPY
Introduction
Introduction	to	NumPy	and	Creation	of	a	Basic	Array
Functions	for	Generating	Sequences

arange()
linspace()

logspace()

Aggregate	Functions
Broadcasting
Structured	Arrays
Conclusion

Introduction	to	MATPLOTLIB
Introduction
The	Plot	Function
Subplots
3	Dimensional	Plotting
Conclusion

Introduction	to	Image	Processing
Introduction
Opening,	Reading,	and	Writing	an	Image

Opening	an	Image
Reading
Writing	an	Image	to	a	File
Displaying	an	Image

The	Contour	Function
Clipping
Statistical	Information	of	an	Image
Basic	Transformation

Translation
Rotation

20.6.3
20.7

Appendix	A:

Appendix	B:

Appendix	C:

Appendix	D:

Appendix	E:

Scaling
Conclusion

Multithreading	in	Python

Regular	Expressions

Exercises	for	Practice:	Programming	Questions

Problems	for	Practice:	Multiple	Choice	Questions

Answer	to	the	Multiple	Choice	Questions

Bibliography

Index

1.1

CHAPTER	1

INTRODUCTION	TO	PYTHON

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	chronology	of	Python
• Appreciate	the	importance	and	features	of	Python
• Discover	the	areas	in	which	Python	can	be	used
• Install	Anaconda

INTRODUCTION

Art	is	an	expression	of	human	creative	skill,	hence	programming	is	an	art.	The
choice	of	programming	 language	 is,	 therefore,	 important.	This	book	 introduces
Python,	which	will	 help	 you	 to	 become	 a	 great	 artist.	A.	 J.	 Perlis,	who	was	 a
professor	at	the	Purdue	University,	and	who	was	the	recipient	of	the	first	Turing
award,	stated

“A	language	that	doesn’t	affect	 the	way	you	think	about	programming	is
not	worth	knowing.”

Python	 is	 worth	 knowing.	 Learning	 Python	 will	 not	 only	 motivate	 you	 to	 do
highly	complex	tasks	in	the	simplest	manners	but	will	also	demolish	the	myths
of	conventional	programming	paradigms.	It	is	a	language	which	will	change	the
way	you	program	and	hence	look	at	a	problem.

Python	is	a	strong,	procedural,	object-oriented,	functional	language	crafted	in	the
late	1980s	by	Guido	Van	Rossum.	The	language	is	named	after	Monty	Python,	a
comedy	 group.	 The	 language	 is	 currently	 being	 used	 in	 diverse	 application
domains.	These	include	software	development,	web	development,	Desktop	GUI
development,	 education,	 and	 scientific	 applications.	So,	 it	 spans	 almost	 all	 the
facets	 of	 development.	 Its	 popularity	 is	 primarily	 owing	 to	 its	 simplicity	 and
robustness,	 though	 there	are	many	other	 factors	 too	which	are	discussed	 in	 the

1.2

chapters	that	follow.

There	 are	 many	 third	 party	 modules	 for	 accomplishing	 the	 above	 tasks.	 For
example	Django,	an	immensely	popular	Web	framework	dedicated	to	clean	and
fast	 development,	 is	 developed	 on	 Python.	 This,	 along	 with	 the	 support	 for
HTML,	E-mails,	FTP,	etc.,	makes	it	a	good	choice	for	web	development.

Third	 party	 libraries	 are	 also	 available	 for	 software	 development.	 One	 of	 the
most	common	examples	is	Scions,	which	is	used	for	build	controls.	When	joined
with	 the	 inbuilt	 features	 and	 support,	 Python	 also	 works	 miracles	 for	 GUI
development	 and	 for	 developing	 mobile	 applications,	 e.g.,	 Kivy	 is	 used	 for
developing	multi-touch	applications.

Python	 also	 finds	 its	 applications	 in	 scientific	 analysis.	 SciPy	 is	 used	 for
Engineering	and	Mathematics,	and	IPython	is	used	for	parallel	computing.	Those
of	 you	 working	 in	 statistics	 and	 machine	 learning	 would	 find	 some	 of	 these
libraries	 extremely	 useful	 and	 easy	 to	 use.	 SciPy	 provides
MATLABMATLABMATLAB	 like	 features	 and	 can	 be	 used	 for	 processing
multidimensional	arrays.	Figure	1.1	summarizes	the	above	discussion.

FIGURE	1.1 Some	of	the	applications	of	Python

This	chapter	introduces	the	Python	programming	language.	The	chapter	has	been
organized	as	 follows.	Section	1.2	discusses	 the	 features	of	Python,	Section	1.3
discusses	 the	 paradigms	 and	 Section	 1.4	 discusses	 the	 development	 and	 uses.
The	installation	of	Anaconda	has	been	introduced	in	Section	1.5.	The	last	section
concludes	the	chapter.

FEATURES	OF	PYTHON

1.2.1

1.2.2

1.2.3

1.2.4

As	stated	earlier,	Python	is	a	simple	but	powerful	language.	Python	is	portable.	It
has	built-in	object	types,	many	libraries	and	is	free.	This	section	briefly	discusses
the	features	and	strengths	of	Python.

Easy

Python	 is	 easy	 to	 learn	 and	understand.	As	 a	matter	 of	 fact,	 if	 you	 are	 from	a
programming	background	you	will	find	it	elegant	and	uncluttered.	The	removal
of	 braces	 and	 parentheses	makes	 the	 code	 short	 and	 sweet.	Also,	 some	 of	 the
tasks	in	Python	are	pretty	easy.	For	example,	swapping	numbers	in	Python	is	as
easy	as	writing	(a,	b)=	(b,	a).

It	 may	 also	 be	 stated	 here	 that	 learning	 something	 new	 is	 an	 involved	 and
intricate	 task.	However,	 the	 simplicity	of	Python	makes	 it	 almost	a	cake	walk.
Moreover,	learning	advanced	features	in	Python	is	a	bit	intricate,	but	is	worth	the
effort.	 It	 is	 also	 easy	 to	 understand	 a	 project	 written	 in	 Python.	 The	 code,	 in
Python,	is	concise	and	effective	and	therefore	understandable	and	manageable.

Type	and	Run

In	most	projects,	testing	something	new	requires	scores	of	changes	and	therefore
recompilations	 and	 re-runs.	 This	 makes	 testing	 of	 code	 a	 difficult	 and	 time
consuming	task.	In	Python,	a	code	can	be	run	easily.	As	a	matter	of	fact,	we	run
scripts	in	Python.

As	 we	 will	 see	 later	 in	 this	 chapter,	 Python	 also	 provides	 the	 user	 with	 an
interactive	environment,	in	which	one	can	run	independent	commands.

Syntax

The	syntax	of	Python	is	easy;	this	makes	the	learning	and	understanding	process
easy.	According	to	most	of	authors,	the	three	main	features	which	make	Python
attractive	are	that	it’s	simple,	small,	and	flexible.

Mixing

If	one	is	working	on	a	big	project,	with	perhaps	a	large	team,	it	might	be	the	case
that	some	of	the	team	members	are	good	in	other	programming	languages.	This

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

may	 lead	 to	 some	 of	 the	 modules	 in	 some	 other	 languages	 wanting	 to	 be
embedded	with	the	core	Python	code.	Python	allows	and	even	supports	this.

Dynamic	Typing

Python	has	its	own	way	of	managing	memory	associated	with	objects.	When	an
object	is	created	in	Python,	memory	is	dynamically	allocated	to	it.	When	the	life
cycle	 of	 the	 object	 ends,	 the	 memory	 is	 taken	 back	 from	 it.	 This	 memory
management	of	Python	makes	the	programs	more	efficient.

Built	in	Object	Types

As	we	will	see	in	the	next	chapter	Python	has	built	in	object	types.	This	makes
the	task	to	be	accomplished	easy	and	manageable.	Moreover,	 the	issues	related
to	these	objects	are	beautifully	handled	by	the	language.

Numerous	Libraries	and	Tools

In	 Python,	 the	 task	 to	 be	 accomplished	 becomes	 easy—really	 easy.	 This	 is
because	most	of	the	common	tasks	(as	a	matter	of	fact,	not	so	common	tasks	too)
have	already	been	handled	 in	Python.	For	example,	Python	has	 libraries	which
help	 users	 to	 develop	 GUI’s,	 write	 mobile	 applications,	 incorporate	 security
features	 and	 even	 read	MRI’s.	 As	 we	 will	 see	 in	 the	 following	 chapters,	 the
libraries	 and	 supporting	 tools	 make	 even	 the	 intricate	 tasks	 like	 pattern
recognition	easy.

Portable

A	 program	 written	 in	 Python	 can	 run	 in	 almost	 every	 known	 platform,	 be	 it
Windows,	Linux,	or	Mac.	It	may	also	be	stated	here	that	Python	is	written	in	C.

Free

Python	 is	 not	 propriety	 software.	 One	 can	 download	 Python	 compilers	 from
among	the	various	available	choices.	Moreover,	there	are	no	known	legal	issues
involved	in	the	distribution	of	the	code	developed	in	Python.

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

THE	PARADIGMS

Procedural

In	a	procedural	language,	a	program	is	actually	a	set	of	statements	which	execute
sequentially.	 The	 only	 option	 a	 program	 has,	 in	 terms	 of	 manageability,	 is
dividing	 the	 program	 into	 small	 modules.	 “C,”	 for	 example,	 is	 a	 procedural
language.	 Python	 supports	 procedural	 programming.	 The	 first	 section	 of	 this
book	deals	with	procedural	programming.

Object-Oriented

This	type	of	language	primarily	focuses	on	the	instance	of	a	class.	The	instance
of	 a	 class	 is	 called	 an	 object.	 A	 class	 is	 a	 real	 or	 a	 virtual	 entity	 that	 has	 an
importance	 to	 the	 problem	 at	 hand,	 and	 has	 sharp	 physical	 boundaries.	 For
example	 in	a	program	 that	deals	with	 student	management,	 “student”	can	be	a
class.	 Its	 instances	 are	 made	 and	 the	 task	 at	 hand	 can	 be	 accomplished	 by
communicating	 via	methods.	 Python	 is	 object-oriented.	 Section	 2	 of	 this	 book
deals	with	the	object-oriented	programming.

Functional

Python	 also	 supports	 functional	 programming.	 Moreover,	 Python	 supports
immutable	data,	tail	optimization,	etc.	This	must	be	music	to	the	ears	for	those
from	 a	 functional	 programming	 background.	 Here	 it	 may	 be	 stated	 that
functional	programming	is	beyond	the	scope	of	this	book.	However,	some	of	the
above	features	would	be	discussed	in	the	chapters	that	follow.

So	Python	is	a	procedural,	object-oriented	and	functional	language.

CHRONOLOGY	AND	USES

Having	 seen	 the	 features,	 let	 us	 now	 move	 onto	 the	 chronology	 and	 uses	 of
Python.	This	section	briefly	discusses	the	development	and	uses	of	Python	and
will	motivate	the	reader	to	bind	with	the	language.

Chronology

1.4.2

Python	is	written	in	C.	It	was	developed	by	Guido	Van	Rossum,	who	is	now	the
Benevolent	Director	 for	Life	of	Python.	The	 reader	 is	expected	 to	 take	note	of
the	fact	that	Python	has	got	nothing	to	do	with	pythons	or	snakes.	The	name	of
the	language	comes	from	the	show	“Monty	Python’s	Flying	Circus,”	which	was
one	 of	 the	 favorite	 shows	 of	 the	 developer,	Guido	 van	Rossum.	Many	 people
attribute	the	fun	part	of	the	language	to	the	inspiration.

Python	 is	 easy	 to	 learn	 as	 the	 core	 of	 the	 language	 is	 pretty	 concise.	 The
simplicity	 of	 Python	 can	 also	 be	 attributed	 to	 the	 desire	 of	 the	 developers	 to
make	a	language	that	was	very	simple,	easy	to	learn	but	quite	powerful.

The	 continuous	 betterment	 of	 the	 language	 has	 been	 possible	 because	 of	 a
dedicated	group	of	people,	committed	 to	supporting	 the	cause	of	providing	 the
world	with	an	easy	yet	powerful	language.	The	growth	of	the	language	has	given
rise	to	the	creation	of	many	interest	groups	and	forums	for	Python.	A	change	in
the	 language	can	be	brought	about	by	what	 is	generally	 referred	 to	as	 the	PEP
(Python	 Enhancement	 Project).	 The	 PSF	 (Python	 Software	 Foundation)	 takes
care	of	this.

Uses

Python	is	being	used	to	accomplish	many	tasks,	the	most	important	of	which	are
as	follows:

Graphical	User	Interface	(GUI)	development
Scripting	web	pages
Database	programming
Prototyping
Gaming
Component	based	programming

If	you	are	working	 in	Unix	or	Linux,	you	don’t	need	 to	 install	Python.	This	 is
because	in	Unix	and	Linux	systems,	Python	is	generally	pre-installed.	However,
if	you	work	in	Windows	or	Mac	then	you	need	to	download	Python.	Once	you
have	 decided	 to	 download	 Python,	 look	 for	 its	 latest	 version.	 The	 reader	 is
requested	to	ensure	that	the	version	he/she	intends	to	download	is	not	an	alpha	or
a	 beta	 version.	 Reference	 1	 at	 the	 end	 of	 the	 book	 gives	 a	 brief	 overview	 of
distinctions	between	two	of	 the	most	famous	versions.	The	next	section	briefly

1.5

discusses	 the	 steps	 for	 downloading	 Anaconda,	 an	 open	 source	 distribution
software.

Many	development	environments	are	available	for	Python.	Some	of	them	are	as
follows:

1. PyDev	with	Eclipse

2. Emacs

3. Vim

4. TextMate

5. Gedit

6. Idle

7. PIDA	(Linux)(VIM	based)

8. NotePad++	(Windows)

9. BlueFish	(Linux)

There	 are	 some	 more	 options	 available.	 However,	 this	 book	 uses	 IDLE	 and
Anaconda.	 The	 next	 section	 presents	 the	 steps	 involved	 in	 the	 installation	 of
Anaconda.

INSTALLATION	OF	ANACONDA

In	 order	 to	 install	 Anaconda,	 go	 to	 https://docs.continuum.io/anaconda/install
and	select	the	installer	(Windows	or	Mac	OS	or	Linux).	This	section	presents	the
steps	 involved	 in	 the	 installation	 of	 Anaconda	 on	 the	 Windows	 Operating
System.

First	of	 all,	 one	must	 choose	 the	 installer	 (32	bit	or	64	bit).	 In	order	 to	do	 so,
click	on	the	selected	installer	and	download	the	 .exe	file.	The	installer	will	ask
you	to	install	it	on	the	default	location.	You	can	provide	a	location	that	does	not
contain	 any	 spaces	 or	 Unicode	 characters.	 It	 may	 happen	 that	 during	 the
installation	you	might	have	to	disable	your	anti-virus	software.	Figures	1.2(a)	to
1.2(g)	take	the	reader	through	the	steps	of	installation.

https://docs.continuum.io/anaconda/install

FIGURE	1.2(a) The	welcome	screen	of	the	installer,	which	asks	the	user	to	close	all	running
applications	and	then	click	Next

FIGURE	1.2(b) The	license	agreement	to	install	Anaconda3	4.3.0	(32	bit)

FIGURE	1.2(c) In	the	third	step,	the	user	is	required	to	choose	whether	he	wants	to	install
Anaconda	for	a	single	user	or	for	all	the	users

FIGURE	1.2(d) The	user	then	needs	to	select	the	folder	in	which	it	will	install

FIGURE	1.2(e) The	user	then	must	decide	whether	he	wants	to	add	Anaconda	to	path
environment	variable	and	whether	to	register	Anaconda	as	the	default	Python	3.6

The	installation	then	starts.	After	installation,	the	following	screen	will	appear:

FIGURE	1.2(f) When	the	installation	is	complete,	this	screen	appears

FIGURE	1.2(g) You	can	also	share	your	notebooks	on	cloud

Once	Anaconda	is	installed,	you	can	open	Anaconda	and	run	your	scripts.	Figure
1.3	shows	the	Anaconda	navigator.	From	the	various	options	available	you	can
choose	 the	 appropriate	 option	 for	 you.	 For	 example,	 you	 can	 open	 the
QTConsole	 and	 run	 the	 commands/	 scripts.	 Figure	 1.4	 shows	 the	 snapshot	 of
QTConsole.	The	commands	written	may	appear	gibberish	at	this	point,	but	will
become	clear	in	the	chapters	that	follow.

FIGURE	1.3 The	Anaconda	navigator

1.6

FIGURE	1.4 The	QtConsole

CONCLUSION

Before	proceeding	any	 further,	 the	 reader	must	 take	note	of	 the	 fact	 that	 some
things	 in	 Python	 are	 different	 when	 compared	 to	 any	 other	 language.	 The
following	points	must	be	noted	to	avoid	any	confusion.

In	 Python,	 statements	 do	 not	 end	 with	 any	 special	 characters.	 Python
considers	 the	 newline	 character	 as	 an	 indication	 of	 the	 fact	 that	 the
statement	has	ended.	 If	a	statement	 is	 to	span	more	 than	a	single	 line,	 the
next	line	must	be	preceded	with	a	(\).
In	Python,	indentation	is	used	to	detect	the	presence	of	loops.	The	loops	in
Python	do	not	began	or	end	with	delimiters	or	keywords.
A	file	in	Python	is	generally	saved	with	a	.py	extension.
The	shell	can	be	used	as	a	handy	calculator.
The	type	of	a	variable	need	not	to	be	mentioned	in	a	program.

Choice	 at	 every	 step	 is	 good	 but	 can	 also	 be	 intimidating.	 As	 stated	 earlier,
Python’s	core	is	small	and	therefore	it	is	easy	to	learn.	Moreover,	there	are	some
things	 like	 (if/else),	 loops	and	exception	handling	which	are	used	 in	almost	all
the	programs.

The	chapter	 introduces	Python	and	discusses	 the	 features	of	Python.	One	must
appreciate	the	fact	that	Python	supports	all	three	paradigms:	procedural,	object-
oriented,	and	functional.	This	chapter	also	paves	the	way	for	the	topics	presented
in	the	following	chapters.	It	may	also	be	stated	that	 the	codes	presented	in	this
book	will	run	on	versions	3.X.

GLOSSARY

PEP:	Python	Enhancement	Project

PSF:	Python	Software	Foundation

POINTS	TO	REMEMBER

Python	 is	a	 strong	procedural,	object-oriented,	 functional	 language	crafted
in	late	1980s	by	Guido	Van	Rossum.
Python	is	open	source.
The	 applications	 of	 Python	 include	 software	 development,	 web
development,	 desktop	 GUI	 development,	 education	 and	 scientific
applications.
Python	is	popular	due	to	its	simplicity	and	robustness.
It	is	easy	to	interface	with	C++	and	Java.
SciPy	 is	 used	 for	 engineering	 and	 mathematics,	 IPython	 for	 parallel
computing	etc.,	Scions	is	used	for	build	control.
The	various	development	environments	for	Python	are	PyDev	with	Eclipse,
Emacs,	Vim,	TextMate,	Gedit,	Idle,	PIDA	(Linux)(VIM	Based),	NotePad++
(Windows),	and	BlueFish	(Linux).

RESOURCES

To	download	Python,	visit	www.python.org
The	documentation	is	available	at	www.python.org/doc/

EXERCISES

http://www.python.org
http://www.python.org/doc/

MULTIPLE	CHOICE	QUESTIONS

1. Python	can	subclass	a	class	made	in

(a) Python	only

(b) Python,	C++

(c) Python,	C++,	C#,	Java

(d) None	of	the	above

2. Who	created	Python?

(a) Monty	Python

(b) Guido	Van	Rossum

(c) Dennis	Richie

(d) None	of	the	above

3. Monty	Python	was

(a) Creator	of	Python	Programming	Language

(b) British	Comedy	Group

(c) American	Band

(d) Brother	of	Dosey	Howser

4. In	Python,	libraries	and	tools

(a) Not	supported

(b) Supported	but	not	encouraged

(c) Supported	and	encouraged

(d) Supported	(only	that	of	PSF’s)

5. Python	has

(a) Built	in	object	types

(b) Data	types

(c) Both

(d) None	of	the	above

6. Python	is	a

(a) Procedural	language

(b) object-oriented	Language

(c) Fictional

(d) All	of	the	above

7. There	 is	no	data	 type,	so	a	code	 in	Python	 is	applicable	 to	whole	range	of
Objects.	This	is	called

(a) Dynamic	Binding

(b) Dynamic	Typing

(c) Dynamic	Leadership

(d) None	of	the	above

8. Which	of	the	following	is	automatic	memory	management?

(a) Automatically	assigning	memory	to	objects

(b) Taking	back	the	memory	at	the	end	of	life	cycle

(c) Both

(d) None	of	the	above

9. PEP	is

(a) Python	Ending	Procedure

(b) Python	Enhancement	proposal

(c) Python	Endearment	Project

(d) none	of	the	above

10. PSF	is

(a) Python	Software	Foundation

(b) Python	Selection	Function

(c) Python	segregation	function

(d) None	of	the	above

11. What	can	be	done	in	Python

(a) GUI

(b) Internet	scripting

(c) Games

(d) All	of	the	above

12. What	can	be	done	using	Python?

(a) System	programming

(b) Component	based	programming

(c) Scientific	programming

(d) All	of	the	above

13. Python	is	used	in

(a) Google

(b) Raspberry	Pi

(c) Bit	Torrent

(d) All	of	the	above

14. Python	is	used	in

(a) App	Engine

(b) YouTube	sharing

(c) Real	time	programming

(d) All	of	the	above

15. Which	is	faster?

(a) PyPy

(b) IDLE

(c) Both	are	equally	good

(d) depends	on	the	task

THEORY

1. Write	the	names	of	three	projects	which	are	using	Python.

2. Explain	a	few	applications	of	Python.

3. What	type	of	language	is	Python?	(Procedural,	object-oriented	or	functional)

4. What	is	PEP?

5. What	is	PSF?

6. Who	manages	Python?

7. Is	Python	open	source	or	proprietary?

8. What	languages	can	be	supported	by	Python?

9. Explain	the	chronology	of	the	development	of	Python.

10. Name	a	few	editors	for	Python.

11. What	are	the	features	of	Python?

12. What	is	the	advantage	of	using	Python	over	other	languages?

13. What	is	Dynamic	Typing?

14. Does	Python	have	data	types?

15. How	is	Python	different	from	Java?

2.1

CHAPTER	2

PYTHON	OBJECTS

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	meaning	and	importance	of	variables,	operators,	keywords,	and	objects
• Use	numbers	and	fractions	in	a	program
• Appreciate	the	importance	of	strings
• Understand	slicing	and	indexing	in	strings
• Use	of	lists	and	tuples
• Understand	the	importance	of	tuples

INTRODUCTION

To	be	able	to	write	a	program	in	Python	the	programmer	can	use	Anaconda,	the
installation	 of	 which	 was	 described	 in	 the	 previous	 chapter—or	 you	 can	 use
IDLE,	 which	 can	 be	 downloaded	 from	 the	 reference	 given	 at	 the	 end	 of	 the
Chapter	1.	IDLE	has	an	editor	specially	designed	for	writing	a	Python	program.

As	stated	earlier	Python	is	an	interpreted	language,	so	one	need	not	to	compile
every	piece	of	code.	The	programmer	can	 just	write	 the	command	and	see	 the
output	at	the	command	prompt.	For	example,	when	writing	2+3	on	the	command
line	we	get

>>2+3

5

As	 a	 matter	 of	 fact	 you	 can	 add,	 subtract,	 multiply,	 divide	 and	 perform
exponentiation	 in	 the	 command	 line.	 Multiplication	 can	 be	 done	 using	 the	 *
operator,	the	division	can	be	performed	using	the	/	operator,	the	exponentiation
can	 be	 done	 using	 the	 **	 operator	 and	 the	modulo	 can	 be	 found	 using	 the	%
operator.	The	modulo	operator	finds	 the	remained	 if	 the	first	number	 is	greater
than	the	other,	otherwise	it	returns	the	first	number	as	the	output.	The	results	of
the	operations	have	been	demonstrated	as	follows:

>>>	2*3

6

>>>	2/3

0.6666666666666666

>>>	2**3

8

>>>	2%3

2

>>>	3%2

1

>>>

In	the	above	case,	the	Python	interpreter	is	used	to	execute	the	commands.	This
is	 referred	 to	 as	 a	 script	mode.	 This	 mode	 works	 with	 small	 codes.	 Though
simple	commands	can	be	executed	on	the	command	line,	the	complex	programs
can	be	written	in	a	file.	A	file	can	be	created	as	follows:

Step	1.	Go	to	FILE NEW

Step	2.	Save	the	file	as	calc.py

Step	3.	Write	the	following	code	in	the	file

print(2+3)

print(2*3)

print(2**3)

print(2/3)

print(2%3)

print(3/2)

Step	 4.	 Go	 to	 debug	 and	 run	 the	 program.	 The	 following	 output	 will	 be
displayed.

>>>

============	RUN	C:/Python/Chapter	2/calc.py	============

5

6

8

0.6666666666666666

2

1.5

>>>

Conversely,	 the	 script	 can	 be	 executed	 by	 writing	 Python	 calc.py	 on	 the
command	prompt.	 In	order	 to	exit	 IDLE	go	 to	FILE->EXIT	or	write	 the	exit()
function	at	the	command	prompt.

In	 order	 to	 store	 values,	 we	 need	 variables.	 Python	 empowers	 the	 user	 to
manipulate	variables.	These	variables	help	us	to	use	the	values	later.	As	a	matter
of	fact,	everything	in	Python	is	an	object.	This	chapter	focuses	on	objects.	Each
object	has	identity,	a	type,	and	a	value	(given	by	the	user	/	or	a	default	value).
The	identity,	in	Python,	refers	to	the	address	and	does	not	change.	The	type	can
be	any	of	the	following.

None:	This	represents	the	absence	of	a	value.

Numbers:	Python	has	three	types	of	numbers:

Integer:	It	does	not	have	any	fractional	part
Floating	Point:	It	can	store	number	with	a	fractional	part
Complex:	It	can	store	real	and	imaginary	parts

Sequences:	These	are	ordered	collections	of	elements.	There	are	three	types	of
sequences	in	Python:

String
Tuples
Lists

2.2

These	types	have	been	discussed	in	the	sections	that	follow.

Sets:	This	is	an	un-ordered	collection	of	elements.

Keywords:	These	are	words	having	special	meanings	and	are	understood	by	the
interpreter.	For	example,	and,	del,	from,	not,	while,	as,	elif,	global,
else,	 if,	 pass,	 Yield,	 break,	 except,	 import,	 class,	 raise,

continue,	finally,	return,	def,	for,	and	try	are	some	of	 the	keywords
which	have	been	extensively	used	in	the	book.	For	a	complete	list	of	keywords,
the	reader	may	refer	to	the	Appendix.

Operators:	 These	 are	 special	 symbols	 which	 help	 the	 user	 to	 carry	 out
operations	 like	 addition,	 subtraction,	 etc.	 Python	 provides	 following	 type	 of
operators:

Arithmetic	operators:	+,	–,	*,	/,	%,	**	and	//.
Assignment	operators:	=,	+	=,	–	=,	*=,	/=,	%=,	**=	and	//=
Logical	operators:	or,	and,	and	not
Relational	operators:	<,	<=,	>,	>=,	!=	or	<	>	and	==.

This	chapter	deals	with	the	basic	data	types	in	Python	and	their	uses.	The	chapter
has	 been	 organized	 as	 follows:	 Section	 2	 of	 this	 chapter	 deals	 with	 the
introduction	to	programming	in	Python	and	basic	data	types,	and	Section	3	deals
with	strings.	Section	4	deals	with	lists	and	tuples.	The	last	section	of	this	chapter
concludes	the	chapter.	The	readers	are	advised	to	go	through	the	references	at	the
end	of	this	book	for	comprehensive	coverage	of	the	topic.

BASIC	DATA	TYPES	REVISITED

The	 importance	 of	 data	 types	 has	 already	 been	 discussed.	 There	 is	 another
reason	to	understand	and	to	be	able	to	deal	with	built-in	data	types,	which	is	that
they	generally	are	an	intrinsic	part	of	 the	bigger	 types	which	can	be	developed
by	the	user.

The	data	types	provided	by	Python	are	not	only	powerful	but	also	can	be	nested
within	 others.	 In	 the	 following	 discussion	 the	 concept	 of	 nested	 lists	 has	 been
presented,	which	is	basically	a	list	within	a	list.	The	power	of	data	types	can	be
gauged	by	the	fact	that	Python	provides	the	user	with	dictionaries,	which	makes

mapping	easy	and	efficient.

Numbers	 are	 the	 simplest	 data	 types.	 Numbers	 comprise	 of	 integers,	 floats,
decimals,	and	complexes	in	Python.	The	type	of	numbers	and	their	explanations
have	been	summarized	in	Table	2.1.	The	operators	supported	by	numbers	have
been	presented	in	Table	2.2.

Table	2.1		Numbers

Numbers Explanation

Integers Which	do	not	have	any	fractional	part
Floating	point	numbers That	do	have	a	fractional	part
Complex	numbers The	numbers	having	a	real	and	an	imaginary	part
Decimal Those	having	fixed	precision
Rational Those	having	a	numerator	and	a	denominator
Sets Abstraction	of	a	mathematical	set

Table	2.2		Operators	supported	in	numbers

+ Addition
– Subtraction
* Multiplication
** Power
% Modulo

In	addition	to	the	above,	Python	is	practically	free	from	the	problems	of	C	and
C++	and	can	calculate	very,	very	large	integers.	Let	us	now	have	a	look	at	how
to	use	these	operators.	For	example	if	one	needs	to	calculate	the	square	root	of	a
number,	then	importing	math	and	using	math.sqrt()	is	a	solution.	Some	of	the
most	important	functions	have	been	explained	in	the	following	sneak	peek.

Sneak	Peek

1. Ceil:	 The	 ceiling	 of	 a	 given	 number	 is	 the	 nearest	 integer	 greater	 than	 or
equal	to	that	number.	For	example,	the	ceiling	of	2.678	is	3.
>>>	import	math

>>>math.ceil(2.678)

3

That	of	2	is	2.

>>>math.ceil(2)

2

>>>

2. Copy	sign:	The	sign	of	the	second	argument	is	returned	along	with	the	result
on	the	execution	of	this	function.
math.copysign(x,	y)

Return	x	with	the	sign	of	y.

On	a	platform	that	supports	signed	zeros,	copy	sign	(1.0,	–	0.0)	returns	–1.0.

3. Fabs:	 The	 absolute	 value	 of	 a	 number	 is	 its	 positive	 value;	 that	 is	 if	 the
number	 is	positive	 then	the	number	 itself	 is	returned.	If,	on	the	other	hand,
the	number	is	negative	then	it	is	multiplied	by	–1	and	returned.

In	Python,	this	task	is	accomplished	with	the	function	fabs	(x).

The	fabs(x)	returns	the	absolute	value	of	x.
>>>math.fabs(-2.45)

2.45

>>>math.fabs(x)

Return	the	absolute	value	of	x.

4. Factorial:	The	factorial	of	a	number	x	is	defined	as	the	continued	product	of
the	numbers	from	1	to	that	value.	That	is:
Factorial(x)	=	1	×	2	×	3	×	…	×	n.

In	Python,	the	task	can	be	accomplished	by	the	factorial	function	math.

factorial(x).

It	 returns	 the	 factorial	of	 the	number	x.	Also	 if	 the	given	number	 is	not	an
integer	or	is	negative,	then	an	exception	is	raised.

5. Floor:	 The	 floor	 of	 a	 given	 number	 is	 the	 nearest	 integer	 smaller	 than	 or
equal	to	that	number.	For	example	the	floor	of	2.678	is	2	and	that	of	2	is	also
2.

2.2.1

>>>	import	math

>>>math.floor(2.678)

2

>>>math.floor(2)

2

>>>

Fractions

Python	also	provides	the	programmer	the	liberty	to	deal	with	fractions.	The	use
of	fractions	and	decimals	has	been	shown	in	the	following	listing.

Listing

from	fractions	import	Fraction

print(Fraction(128,	-26))

print(Fraction(256))

print(Fraction())

print(Fraction('2/5'))

print(Fraction('	-5/7'))

print(Fraction('2.675438	'))

print(Fraction('-32.75'))

print(Fraction('5e-3'))

print(Fraction(7.85))

print(Fraction(1.1))

print(Fraction(2476979795053773,	2251799813685248))

from	decimal	import	Decimal

print(Fraction(Decimal('1.1')))

>>>

Output

==========	RUN	C:/Python/Chapter	2/Fraction.py	==========

-64/13

256

0

2/5

-5/7

1337719/500000

-131/4

2.3

1/200

4419157134357299/562949953421312

2476979795053773/2251799813685248

2476979795053773/2251799813685248

11/10

>>>

STRINGS

In	Python	a	string	is	a	predefined	object	which	contains	characters.	The	string	in
Python	 is	 non-mutable;	 that	 is,	 once	 defined	 the	 value	 of	 a	 string	 cannot	 be
changed.	However,	as	we	proceed	 further,	 the	exceptions	 to	 the	above	premise
will	 be	 discussed.	 To	 begin	 with,	 let	 us	 consider	 a	 string	 containing	 value
“Harsh,”	that	is:

name	=	'Harsh'

The	value	of	this	string	can	be	displayed	simply	by	typing	the	name	of	the	object
(name	in	this	case)	into	the	command	prompt.

>>>name

Harsh

The	value	can	also	be	printed	by	using	the	print	function,	explained	previously.

print(name)

The	value	 at	 a	 particular	 location	of	 a	 string	 can	be	 displayed	using	 indexing.
The	syntax	of	the	above	is	as	follows.

<name	of	the	String>[index]

It	may	be	stated	here	that	the	index	of	the	first	location	is	0.	So,	name[0]	would
print	the	first	letter	of	the	string,	which	is	“H.”

print(name[0])

H

Negative	 indexing	 in	 a	 string	 refers	 to	 the	 character	present	 at	 the	nth	position

beginning	from	the	end.	In	the	above	case,	name[-2]	would	generate	“s.”

print(name[-2])

s

The	length	of	a	string	can	be	found	by	calling	the	len	function.	len(str)	returns
the	 length	 of	 the	 string	 “str.”	 For	 example,	 len(name)	 would	 return	 5,	 as
'harsh'	has	5	characters.

The	last	character	of	a	given	string	can	also	be	printed	using	the	following.

print(name[len(name)-1])

The	 +	 operator	 concatenates,	 in	 the	 case	 of	 a	 string.	 For	 example	 “harsh”	 +
“arsh”	would	return	“Harsharsh,”	that	is

name	=	name	+	'arsh'

print(name)

Harsharsh

After	concatenation,	 if	 the	first	and	the	second	last	characters	are	 to	be	printed
then	the	following	can	be	used.

print(name[0])

print(name[-2])

print(name[len(name)-1→2])

H

S

s

The	*	operator,	of	string,	concatenates	a	given	string	the	number	of	times,	given
as	the	first	argument.	For	example,	3*name	would	return	“harsharshharsharsh.”
The	complete	script	as	follows:

Listing

name	=	'Harsh'

print(name)

print(name[0])

print(name[-2])

print(name[len(name)-1])

name	=	name	+	'arsh'

print(name)

print(name[0])

print(name[-2])

print(name[len(name)-1])

>>>

Output

===========	RUN	C:/Python/Chapter	2/String.py	===========

Harsh

H

s

h

Harsharsh

H

s

h

>>>

Slicing:	 Slicing,	 in	 strings,	 refers	 to	 removing	 some	 part	 of	 a	 string.	 For
example:

>>>name	=	'Sonam'

>>>name

'Sonam'

Here,	if	we	intend	to	extract	the	portion	after	the	first	letter	we	can	write	[1:].

>>>	name1=name[1:]

>>>	name1

'onam'

In	 the	 same	 way	 the	 portion	 of	 the	 string	 after	 the	 first	 two	 letters	 can	 be
extracted	as	follows.

>>>name	=	name[2:]

>>>name

'nam'

Now,	we	modify	the	string	by	adding	“man	man”

>>>name	=	“man”+name

>>>name

'mannam'

It	may	be	noted	that	the	last	two	characters	cannot	be	removed	in	the	same	way
as	the	first	two.	Observe	the	following	output	in	order	to	understand	the	concept.

>>>name	=	name[:2]

>>>name

'ma'

>>>name	=	“man	manam”

In	order	to	accomplish	the	above	task,	negative	indexing	ought	to	be	used.

>>>name

'manmanam'

>>>	name2	=	name[:-2]

>>>	name2

'man	man'

>>>

Immutability	of	Strings

It	may	be	noted	that	when	we	write

name	=	'Hello'	+	name

we	don’t	actually	change	 the	string;	as	a	matter	of	 fact	we	create	a	new	string
having	 the	 value	 'Hello'	 concatenated	 with	 the	 value	 stored	 in	 name.	 The
concept	can	be	understood	by	the	fact	that	when	we	try	to	change	the	value	of	a
particular	character	in	a	string,	an	error	crops	up.

>>>name='Anupam'

>>>name

'Anupam'

>>>name[2]='p'

Traceback	(most	recent	call	last):

File	“<pyshell#17>”,	line	1,	in	<module>

2.4

2.4.1

name[2]='p'

TypeError:	'str'	object	does	not	support	item	assignment

>>>

LISTS	AND	TUPLES

List

A	list,	 in	Python,	is	a	collection	of	objects.	As	per	Lutz	“It	 is	 the	most	general
sequence	provided	by	the	language.”	Unlike	strings,	lists	are	mutable.	That	is,	an
element	at	a	particular	position	can	be	changed	in	a	list.	A	list	is	useful	in	dealing
with	homogeneous	and	heterogeneous	sequences.

A	list	can	be	one	of	the	following:

A	list	can	be	a	collection	of	similar	elements	(homogeneous),	 for	example
[1,	2,	3]
It	can	also	contain	different	elements	(heterogeneous),	like	[1,	“abc,”	2.4]
A	list	can	also	be	empty	([])
A	list	can	also	contain	a	list	(discussed	in	Chapter	4,	of	this	book)

For	example,	the	following	list	of	authors	has	elements	“Harsh	Bhasin,”	“Mark
Lutz,”	and	“Shiv.”	The	list	can	be	printed	using	the	usual	print	function.	In	the
following	example,	the	second	list	in	the	following	listing	contains	a	number,	a
string,	a	float,	and	a	string.	“list	3”	is	a	null	list	and	list-of-list	contains	list	as	its
elements.

Listing

authors	=	['Harsh	Bhasin',	'Mark	Lutz',	'Shiv']

print(authors)

combined	=[1,	'Harsh',	23.4,	'a']

print(combined)

list3=	[]

print(list3)

listoflist	=	[1,	[1,2],	3]

print(listoflist)

>>>

2.4.2

Output

============	RUN	C:/Python/Chapter	2/Lists.py	===========

['Harsh	bhasin',	'Mark	Lutz',	'Shiv']

[1,	'Harsh',	23.4,	'a']

[]

[1,	[1,	2],	3]

>>>

An	element	of	a	list	can	be	accessed	by	indexing;	for	example	if	list	1	contains
[1,	2,	3],	then	list	1[1]	contains	“2”	and	list	1[-1]	contains	“3.”

Listing

list1	=	[1,	2,	3]

print(list1[1])

print(list1[-1])

>>>

Output

===========	RUN	C:/Python/Chapter	2/list2.py	============

2

3

>>>

A	list	can	also	contain	 list(s).	The	 topic	has	been	discussed	 in	Chapter	4.	Lists
also	support	slicing.

Tuples

A	 tuple	 contains	 elements	which	 can	 be	 treated	 individually	 or	 as	 a	 group.	A
tuple	(say	(x,	y))	can	be	printed	using	the	standard	print()	function.	The	elements
of	a	tuple	can	be	accessed	by	assigning	it	to	a	tuple,	as	shown	in	the	following
listing.	A	 tuple	may	 also	 contain	 heterogeneous	 elements.	 For	 example,	 in	 the
following	listing,	tup2	and	tup3	contain	a	string	and	an	integer.

Listing

tup1=	(2,	3)

print(tup1)

(a,	b)	=	tup1

print('The	first	element	is	',a)

print('The	second	element	is	',b)

tup2=(101,	'Hari')

tup3=(102,'Shiv')

(code1,	name1)=tup1

(code2,	name2)=tup2

print('The	code	of	',	name1,'	is	',code1,'\nThe	code	of

',name2,	'	is	',code2)

>>>

Output

===========	RUN	C:/Python/Chapter	2/tuple.py	============

(2,	3)

The	first	element	is	2

The	second	element	is	3

The	code	of	3	is	2

The	code	of	Hari	is	101

>>>

Tuples	are	extremely	useful	in	operations	like	swapping	etc.	Swapping	in	Python
is	as	simple	as	assigning	(a,	b)	to	(b,	a).	The	program	for	swapping	two	numbers
using	tuples	has	been	given	as	follows.

Illustration	2.1:	Write	a	program	to	swap	two	numbers	using	tuples.

Solution:

print('Enter	the	first	number\t:')

num1=	int(input())

print('Enter	the	second	number\t:')

num2=	int(input())

print('\nThe	numbers	entered	are	',num1,'	&	',	num2)

(num1,	num2)	=	(num2,	num1)

print('\nThe	numbers	now	are	',num1,'	&	',	num2)

>>>

Output

============	RUN	C:/Python/Chapter	2/swap.py	============

Enter	the	first	number	:

2.4.3

2.5

2

Enter	the	second	number	:

3

The	numbers	entered	are	2&	3

The	numbers	now	are	3&	2

>>>

Features	of	Tuples

Tuples	are	immutable—an	element	of	a	tuple	cannot	be	assigned	a	different
value	once	it	has	been	set.	For	example,
tup1	=	(2,	3)

tup1[1]	=	4

would	raise	an	exception.

The	“+”	operator	in	a	tuple	concatenates	two	tuples.	For	example,
>>>	tup1=	(1,2)

>>>	tup2=(3,4)

>>>	tup3=	tup1+tup2

>>>	tup3

(1,	2,	3,	4)

>>>

CONCLUSION

In	a	program,	instructions	are	given	to	a	computer	to	perform	a	task.	To	be	able
to	do	so,	the	operators	operate	on	what	are	referred	to	as	“objects.”	This	chapter
explains	the	various	types	of	objects	in	Python	and	gives	a	brief	overview	of	the
operators	 that	act	upon	them.	The	objects	can	be	built	 in	or	user	defined.	As	a
matter	of	fact,	everything	that	will	be	operated	upon	is	an	object.

The	first	section	of	this	chapter	describes	various	built-in	objects	in	Python.	The
readers	familiar	with	“C”	must	have	an	idea	as	to	what	a	procedural	language	is.
In	 “C,”	 for	 example,	 a	 program	 is	 divided	 into	manageable	modules,	 each	 of
which	performs	a	particular	task.	The	division	of	bigger	tasks	into	smaller	parts
makes	 parts	manageable	 and	 the	 tracking	 of	 bugs	 easy.	 There	 are	many	more
advantages	of	using	modules,	some	of	which	have	been	stated	in	Chapter	1.

These	modules	contain	a	set	of	statements,	which	are	equivalent	to	instructions
(or	 no	 instruction,	 e.g.	 in	 case	 of	 a	 comment).	 The	 statements	 may	 contain
expressions,	in	which	objects	are	operated	upon	by	operators.	As	stated	earlier,
Python	gives	 its	user	 the	 liberty	 to	define	 their	own	objects.	This	will	be	dealt
with	 in	 the	chapter	on	classes	and	objects.	This	chapter	 focuses	on	 the	built	 in
objects.

In	C	(or	for	that	matter	C++),	one	needs	to	be	careful	not	only	about	the	built-in
type	used	but	also	about	the	issues	relating	to	the	allocation	of	memory	and	data
structures.	However,	Python	spares	the	user	of	these	problems	and	can	therefore
focus	on	the	task	at	hand.	The	use	of	built-in	data	types	makes	things	easy	and
efficient.

GLOSSARY

None:	This	represents	the	absence	of	value.

Numbers:	Python	has	three	types	of	numbers:	integers,	floating	point,	complex.

Sequences:	These	are	ordered	collections	of	elements.	There	are	three	types	of
sequences	in	Python:

String
Tuples
Lists

POINTS	TO	REMEMBER

In	order	to	store	values,	we	need	variables.
Everything	in	Python	is	an	object.
Each	object	has	identity,	a	type,	and	a	value.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. >>>	a	=	5

>>>	a	+	2.7

>>>	a

(a) 7.7

(b) 7

(c) None	of	the	above

(d) An	exception	is	raised

2. >>>	a	=	5

>>>	b	=	2

>>>	a/b

(a) 2

(b) 2.5

(c) 3

(d) None	of	the	above

3. >>>	a	=	5

>>>	b	=	2

>>>	c	=	float	(a)/b
>>>	c

(a) 2

(b) 2.5

(c) 3

(d) An	exception	is	raised

4. >>>	a	=	2

>>>	b	=	'A'

>>>	c	=	a	+	b

>>>	c

(a) 67

(b) 60

(c) None	of	the	above

(d) An	exception	is	raised

5. >>>	a	=	'A'

>>>	2*A

(a) ‘AA’

(b) 2A

(c) A2

(d) None	of	the	above

6. >>>	a	=	'A'

>>>	b	=	'B'

>>>	a	+	b

(a) A	+	B

(b) AB

(c) BA

(d) None	of	the	above

7. >>>	(a,	b)	=	(2,	5)

>>>	(a,	b)	=	(b,	a)

>>>	(a,	b)

(a) (2,	5)

(b) (5,	2)

(c) (5,	5)

(d) None	of	the	above

8. >>>	a	=	5

>>>	b	=	2

>>>	a	=	a	+	b

>>>	b	=	a	-	b

>>>	a	=	a	-	b

>>>	a

(a) 5

(b) 2

(c) None	of	the	above

(d) An	exception	is	raised

9. >>>	a	=	5

>>>	b	*	b	=	a

>>>	b

(a) 2.7

(b) 25

(c) None	of	the	above

(d) An	exception	is	raised

10. >>>	(a,	b)	=	(2,	3)

>>>	(c,	d)	=	(4,	5)

>>>	(a,	b)	+	(c,	d)

(a) (6,	8)

(b) (2,	3,	4,	5)

(c) (8,	6)

(d) None	of	the	above

11. In	the	above	question	what	would	(a,	b)	–	(c,	d)	generate

(a) (6,	8)

(b) (2,	3,	4,	5)

(c) (8,	6)

(d) None	of	the	above

12. In	the	above	question	what	would	(a,	b)	*	(c,	d)	generate

(a) (6,	8)

(b) (2,	3,	4,	5)

(c) (8,	6)

(d) None	of	the	above

13. >>>	a	=	'harsh'

>>>	b	=	a[1:	len(a)]

>>>	b

(a) arsh

(b) hars

(c) harsh

(d) None	of	the	above

14. >>>a	=	'harsh'

>>>b	=	[-3,	len	(a)]

(a) rsh

(b) arsh

(c) harsh

(d) None	of	the	above

15. >>>b

>>>a	=	'tar'

>>>b	=	'rat'

>>>2*(a	+	b)	is

(a) tarrattarrat

(b) rattarrattar

(c) tarratrattar

(d) None	of	the	above

PROGRAMS

1. Write	a	program	to	swap	two	numbers.

2. Ask	the	user	to	enter	the	coordinates	of	a	point	and	find	the	distance	of	the
point	from	the	origin.

3. Ask	the	user	to	enter	two	points	(x	and	y	coordinates)	and	find	the	distance
between	them.

4. Ask	the	user	to	enter	three	points	and	find	whether	they	are	collinear.

5. In	 the	 above	question,	 if	 the	points	 are	 not	 collinear	 then	 find	 the	 type	of
triangle	formed	by	them	(equilateral,	isosceles	or	scalene).

6. In	the	above	question,	check	if	the	triangle	is	right	angled.

7. In	question	number	4,	find	the	angles	of	the	triangle.

8. Ask	the	user	to	enter	two	points	and	find	if	they	are	at	equal	distances	from
the	origin.

9. In	question	number	8,	find	the	angle	between	the	line	joining	the	points	and
the	origin.

10. Ask	the	user	 to	enter	4	points	and	arrange	 them	in	order	of	 their	distances
from	the	origin.

11. In	question	10,	arrange	the	above	points	in	order	of	their	x	co-ordinates.

3.1

CHAPTER	3

CONDITIONAL	STATEMENTS

After	reading	this	chapter,	the	reader	will	be	able	to

• Use	conditional	statements	in	programs
• Appreciate	the	importance	of	the	if-else	construct
• Use	the	if-elif-else	ladder

• Use	the	ternary	operator
• Understand	the	importance	of	&	and	|

• Handle	conditional	statements	using	the	get	construct

INTRODUCTION

The	preceding	chapters	presented	the	basic	data	types	and	simple	statements	in
Python.	 The	 concepts	 studied	 so	 far	 are	 good	 for	 the	 execution	 of	 a	 program
which	has	no	branches.	However,	a	programmer	would	seldom	find	a	problem
solving	approach	devoid	of	branches.

Before	 proceeding	 any	 further	 let	 us	 spare	 some	 time	 contemplating	 life.	 Can
you	move	forward	in	 life	without	making	decisions?	The	answer	 is	NO.	In	 the
same	way	the	problem	solving	approach	would	not	yield	results	until	the	power
of	decision	making	is	 incorporated.	This	 is	 the	reason	one	must	understand	the
implementation	of	decision	making	and	looping.	This	chapter	describes	the	first
concept.	This	is	needed	to	craft	a	program	which	has	branches.	Decision	making
empowers	us	 to	 change	 the	control-flow	of	 the	program.	 In	C,	C++,	 Java,	C#,
etc.,	 there	 are	 two	major	 ways	 to	 accomplish	 the	 above	 task.	 One	 is	 the	 ‘if’
construct	and	the	other	 is	‘switch’.	The	‘if’	block	 in	a	program	is	executed	 if
the	 ‘test’	 condition	 is	 true	 otherwise	 it	 is	 not	 executed.	 Switch	 is	 used	 to
implement	 a	 scenario	 in	 which	 there	 are	 many	 ‘test’	 conditions,	 and	 the
corresponding	block	executes	in	case	a	particular	test	condition	is	true.

The	 chapter	 introduces	 the	 concept	 of	 conditional	 statements,	 compound

3.2

statements,	 the	 if-elif	 ladder	 and	 finally	 the	 get	 statement.	 The	 chapter
assumes	 importance	 as	 conditional	 statements	 are	 used	 in	 every	 aspect	 of
programming,	 be	 it	 client	 side	 development,	 web	 development,	 or	 mobile
application	development.

The	 chapter	 has	 been	 organized	 as	 follows.	The	 second	 section	 introduces	 the
‘if’	construct.	Section	3.3	introduces	‘if-elif’	ladder.	Section	3.4	discusses	the
use	 of	 logic	 operators.	 Section	 3.5	 introduces	 ternary	 operators.	 Section	 3.6
presents	the	get	statement	and	the	last	section	concludes	the	chapter.	The	reader
is	advised	to	go	through	the	basic	data	types	before	proceeding	further.

IF,	IF-ELSE,	AND	IF-ELIF-ELSE	CONSTRUCTS

Implementing	 decision	making	 gives	 the	 power	 to	 incorporate	 branching	 in	 a
program.	As	stated	earlier,	a	program	is	a	set	of	instructions	given	to	a	computer.
The	 instructions	 are	 given	 to	 accomplish	 a	 task	 and	 any	 task	 requires	making
decisions.	So,	conditional	statements	form	an	integral	part	of	programming.	The
syntax	of	the	construct	is	as	follows:

General	Format

1. if
if	<test	condition>:

<block	if	the	test	condition	is	true>

2. if-else
if	<test	condition>:

<block	if	the	test	condition	is	true>

else:

<block	if	the	test	condition	is	not	true>

...

3. If	else	ladder	(discussed	in	the	next	section)
if	<test	condition>:

<block	if	the	test	condition	is	true>

elif	<test	2>:

<second	block>

elif	<test	3>:

<third	block>

else:

<block	if	the	test	condition	is	true>

Note	 that	 indentation	 is	 important,	 as	 Python	 recognizes	 a	 block	 through
indentation.	 So,	 make	 sure	 that	 the	 'if	 (<condition>):'	 is	 followed	 by	 a
block,	each	statement	of	which	is	at	the	same	alignment.	In	order	to	understand
the	 concept,	 let	 us	 consider	 a	 simple	 example.	 A	 student	 generally	 clears	 a
university	exam	in	India	if	he	scores	more	than	40%.	In	order	to	implement	the
logic,	 the	 user	 is	 asked	 to	 enter	 the	 value	 of	 the	 percentage.	 If	 the	 percentage
entered	 is	 more	 than	 40	 then	 “exam	 cleared”	 is	 printed,	 otherwise	 “failed”	 is
printed.	The	situation	has	been	depicted	in	the	following	figure	(Figure	3.1).

FIGURE	3.1 Flow	chart	for	example	1

Illustration	3.1:	Ask	the	user	to	enter	the	marks	of	a	student	in	a	subject.	If	the
marks	entered	are	greater	than	40	then	print	“pass,”	if	they	are	lower	print	“fail.”

Program

>>>a	=	input("Enter	marks	:	")

if	int(a)>	40:

print('Pass')

else:

print('Fail')

...

Output	1

Enter	Marks	:	50

Pass

Output	2

Enter	Marks	:	30

Fail

Let	us	have	a	look	at	another	example.	In	the	problem,	the	user	is	asked	to	enter
a	 three	digit	number	 to	 find	 the	number	obtained	by	reversing	 the	order	of	 the
digits	 of	 the	 number;	 then	 find	 the	 sum	 of	 the	 number	 and	 that	 obtained	 by
reversing	the	order	of	the	digits	and	finally,	find	whether	this	sum	contains	any
digit	in	the	original	number.	In	order	to	accomplish	the	task,	the	following	steps
(presented	in	Illustration	3.2)	must	be	carried	out.

Illustration	3.2:	Ask	the	user	to	enter	a	three	digit	number.	Call	it	'num'.	Find
the	 number	 obtained	 by	 reversing	 the	 order	 of	 the	 digits.	 Find	 the	 sum	of	 the
given	number	and	that	obtained	by	reversing	the	order	of	the	digits.	Finally,	find
if	any	digit	in	the	sum	obtained	is	the	same	as	that	in	the	original	number.

Solution:

The	problem	can	be	solved	as	follows:

When	the	user	enters	a	number,	check	whether	it	 is	between	100	and	999,
both	inclusive.
Find	the	digits	at	unit’s,	ten’s	and	hundred’s	place.	Call	them	'u',	't'	and
'h'	respectively.
Find	 the	 number	 obtained	 by	 reversing	 the	 order	 of	 the	 digits	 (say,	 ‘rev’)
using	the	following	formula.
Number	obtained	by	reversing	the	order	of	the	digits,	rev	=	h	+	t	×	10	+	u	×
100

Find	the	sum	of	the	two	numbers.
Sum	=	rev	+	num

The	sum	may	be	a	three	digit	or	a	four	digit	number.	In	any	case,	find	the
digits	of	this	sum.	Call	them	'u1',	't1',	'h1'	and	'th1'	(if	required).
Set	'flag=0'.
Check	the	following	condition.	If	any	one	is	true,	set	the	value	of	flag	to	1.
If	“sum”	is	a	three	digit	number

u	=	=	u1

u	=	=	t1

u	=	=	h1

t	=	=	u1

t	=	=	t1

t	=	=	h1

h	=	=	u1

h	=	=	t1

h	=	=	h1

If	 “sum”	 is	 a	 four	 digit	 number	 the	 above	 conditions	 need	 to	 be	 checked
along	with	the	following	conditions:
u	=	=	th1

h	=	=	th1

t	=	=	th1

The	 above	 conditions	 would	 henceforth	 be	 referred	 to	 as	 “set	 1.”	 If	 the
value	of	“flag”	is	1,	then	print	'true'	else	print	'false'.
The	above	process	has	been	depicted	in	the	following	figure	(Figure	3.2).

FIGURE	3.2 Flow	chart	for	Illustration	2

Program

Output:	First	run

>>>

=========	RUN	C:/Python/Conditional/Problem	2.py	=========

Enter	a	three	digit	number	:4

You	have	not	entered	a	number	between	100	and	999

>>>

Output:	Second	run

>>>

=========	RUN	C:/Python/Conditional/Problem	2.py	=========

Enter	a	three	digit	number	:343

o	:	3	t	:	4	h	:	3

Number	obtained	by	reversing	the	order	of	the	digits	:	343

No	digit	of	the	sum	is	same	as	the	original	number

>>>

Output:	Third	run

>>>

=========	RUN	C:/Python/Conditional/Problem	2.py	=========

Enter	a	three	digit	number	:	435

o	:	5	t	:	3	h	:	4

Number	obtained	by	reversing	the	order	of	the	digits	:	534

No	digit	of	the	sum	is	same	as	the	original	number

>>>

Output:	Fourth	run

>>>

=========	RUN	C:/Python/Conditional/Problem	2.py	=========

Enter	a	three	digit	number	:121

o	:	1	t	:	2	h	:	1

Number	obtained	by	reversing	the	order	of	the	digits	:	121

Sum	of	the	number	and	that	obtained	by	reversing	the	order

of	digits	:	242

o1	:	2	t1	:	4	h1	:	2

Condition	true

>>>

.

Tip

One	must	be	careful	regarding	the	indentation,	failing	which	the	program	would
not	compile.	The	 indentation	decides	 the	beginning	and	ending	of	a	particular
block	in	Python.	It	 is	advisable	not	to	use	a	combination	of	spaces	and	tabs	in
indentation.	Many	versions	of	Python	may	treat	this	as	a	syntax	error.

The	if-elif	ladder	can	also	be	implemented	using	the	get	statement,	explained
later	in	the	chapter.	The	important	points	regarding	the	conditional	statements	in

3.3

Python	are	as	follows:

The	if	<test>	is	followed	by	a	colon.
There	 is	 no	 need	 of	 parentheses	 for	 this	 test	 condition.	 Though	 enclosing
test	in	parentheses	will	not	result	in	an	error.
The	 nested	 blocks	 in	 Python	 are	 determined	 by	 indentation.	 Therefore,
proper	indentation	in	Python	is	essential.	As	a	matter	of	fact,	an	inconsistent
indentation	or	no	indentation	will	result	in	errors.
An	if	can	have	any	number	of	if's	nested	within.
The	test	condition	in	if	must	result	in	a	True	or	a	False.

Illustration	 3.3:	 Write	 a	 program	 to	 find	 the	 greatest	 of	 the	 three	 numbers
entered	by	the	user.

Solution:	 First	 of	 all,	 three	 variables	 (say	 num1,	 num2,	 and	 num3)	 are	 needed.
These	variables	will	get	 their	values	from	the	user.	This	input	will	be	followed
by	 the	 condition	 checking	 as	 depicted	 in	 the	 following	 program.	 Finally,	 the
greatest	number	will	be	displayed.	The	listing	is	given	as	follows:

Program

THE	IF-ELIF-ELSE	LADDER

3.4

If	there	are	multiple	conditions	and	the	outcomes	decide	the	action,	then	an	if-
elif-	else	ladder	can	be	used.	This	section	discusses	the	construct	and	presents
the	concept	using	relevant	examples.	The	syntax	of	this	construct	is	as	follows:

Syntax

if	<test	condition	1>:

#	The	task	to	be	performed	if	the	condition	1	is	true

elif	<test	condition	2>:

#	The	task	to	be	performed	if	the	condition	2	is	true

elif	<test	condition	3>:

#	The	task	to	be	performed	if	the	condition	1	is	true

else:

#	The	task	to	be	performed	if	none	of	the	above	condition

is	true

The	flow	of	the	program	can	be	managed	using	the	above	construct.	Figure	3.3
shows	 the	 diagram	 depicting	 the	 flow	 of	 the	 program	 which	 uses	 the	 above
constructs.

In	the	figure,	the	left	edge	depicts	the	scenario	where	the	condition	C	is	true	and
the	 right	 edge	 depicts	 the	 scenario	where	 the	 condition	 is	 false.	 In	 the	 second
graph,	conditions	C1,	C2,	C3,	and	C4	 lead	 to	different	paths	 [Programming	 in
C#,	Harsh	Bhasin,	2014].

FIGURE	3.3 The	flow	graph	of	if	and	elif	ladder

The	following	section	has	programs	that	depict	the	use	of	the	elif	ladder.	It	may
be	noted	that	if	there	are	multiple	else	statements,	then	the	second	else	is	taken
along	with	the	nearest	if.

LOGICAL	OPERATORS

In	many	cases	the	execution	of	a	block	depends	on	the	truth	value	of	more	than
one	statement.	 In	 such	cases	 the	operators	“and”	 (“&”)	and	“or”	 (“|”)	 come	 to
our	rescue.	The	first	('and')	is	used	when	the	output	is	'true',	when	both	the
conditions	are	'true'.	The	second	('or')	is	used	if	the	output	is	'true',	if	any
of	the	conditions	are	'true'.

The	truth	table	of	'and'	and	'or'	 is	given	as	follows.	In	 the	 tables	 that	follow
“T”	stands	for	“true”	and	“F”	stands	for	“false.”

Table	3.1		Truth	table	of	a&b

a b a&b

t T T
t F F
F T F
F F F

Table	3.2		Truth	table	of	a|b

a b a|b

t T T
t F T
F T T
F F F

The	 above	 statement	 helps	 the	 programmer	 to	 easily	 handle	 compound
statements.	As	an	example,	consider	a	program	to	find	the	greatest	of	the	three
numbers	entered	by	the	user.	The	numbers	entered	by	the	user	are	(say)	'a',	'b',
and	'c',	 then	'a'	 is	greatest	 if	(a	>	b)	 and	(a	>	c).	This	 can	be	written	 as
follows:

if((a>b)&(a>c))

print('The	value	of	a	greatest')

In	 the	 same	 way,	 the	 condition	 of	 ‘b’	 being	 greatest	 can	 be	 crafted.	 Another
example	can	be	 that	of	 a	 triangle.	 If	 all	 the	 three	 sides	of	 a	 triangle	are	 equal,

3.5

then	it	is	an	equilateral	triangle.

if((a==b)||(b==c)||(c==a))

//The	triangle	is	equilateral;

THE	TERNARY	OPERATOR

The	 conditional	 statements	 explained	 in	 the	 above	 section	 are	 immensely
important	to	write	any	program	that	contains	conditions.	However,	the	code	can
still	be	reduced	further	by	using	the	ternary	statements	provided	by	Python.	The
ternary	operator	performs	the	same	task	as	the	if-else	construct.	However,	it	has
the	same	disadvantage	as	in	the	case	of	C	or	C++.	The	problem	is	that	each	part
caters	to	a	single	statement.	The	syntax	of	the	statement	is	given	as	follows.

Syntax

<Output	variable>	=	<The	result	when	the	condition	is	true>

if	<condition>	else	<The	result	when	the	condition	is	not

true>

For	 example,	 the	 conditional	 operator	 can	 be	 used	 to	 check	which	 of	 the	 two
numbers	entered	by	the	user	is	greater.

great	=	a	if	(a>b)	else	b

Finding	the	greatest	of	the	three	given	numbers	is	a	bit	intricate.	The	following
statement	puts	the	greatest	of	the	three	numbers	in	“great.”

great	=	a	if	(a	if	(a	>	b)	else	c))	else(b	if	(b>c)	else	c))

The	 program	 that	 finds	 the	 greatest	 of	 the	 three	 numbers	 entered	 by	 the	 user
using	a	ternary	operator	is	as	follows.

Illustration	3.4:	Find	the	greatest	of	three	numbers	entered	by	the	user,	using	a
ternary	operator.

Program

a	=	int(input('Enter	the	first	number\t:'))

b	=	int(input('Enter	the	second	number\t:'))

c	=	int(input('Enter	the	third	number\t:'))

3.6

big	=	(a	if	(a>c)	else	c)	if	(a>b)	else	(b	if	(b>c)	else	c)

print('The	greatest	of	the	three	numbers	is	'+str(big))

>>>

Output

==========	RUN	C:/Python/Conditional/big3.py	==========

Enter	the	first	number	2

Enter	the	second	number	3

Enter	the	third	number	4

The	greatest	of	the	three	numbers	is	4

>>>

THE	GET	CONSTRUCT

In	C	or	C++	(even	in	C#	and	Java)	a	switch	is	used	in	the	case	where	different
conditions	 lead	 to	different	 actions.	This	can	also	be	done	using	 the'if-elif'
ladder,	as	explained	in	the	previous	sections.	However,	the	get	construct	greatly
eases	this	task	in	the	case	of	dictionaries.

In	 the	 example	 that	 follows	 there	 are	 three	 conditions.	 However,	 in	 many
situations	 there	 are	 many	 more	 conditions.	 The	 contact	 can	 be	 used	 in	 such
cases.	The	syntax	of	the	construct	is	as	follows:

Syntax

<dictionary	name>.get('<value	to	be	searched>',	'default

value>')

Here,	the	expression	results	in	some	value.	If	the	value	is	value	1,	then	block	1
is	executed.	If	it	is	value	2,	block	2	is	executed,	and	so	on.	If	the	value	of	the
expression	does	not	match	any	of	the	cases,	then	the	statements	in	the	default
block	are	executed.	Illustration	5	demonstrates	the	use	of	the	get	construct.

Illustration	3.5:	This	illustration	has	a	directory	containing	the	names	of	books
and	the	corresponding	year	they	were	published.	The	statements	that	follow	find
the	 year	 of	 publication	 for	 a	 given	 name.	 If	 the	 name	 is	 not	 found	 the	 string
(given	as	the	second	argument,	in	get)	is	displayed.

Program

hbbooks	=	{'programming	in	C#':	2014,	'Algorithms':	2015,

'Python':	2016}

print(hbbooks.get('Progarmming	in	C#',	'Bad	Choice'))

print(hbbooks.get('Algorithms',	'Bad	Choice'))

print(hbbooks.get('Python',	'Bad	Choice'))

print(hbbooks.get('Theory	Theory,	all	the	way',	'Bad

Choice'))

Output

>>>

==========	RUN	C:/Python/Conditional/switch.py	==========

Bad	Choice

2015

2016

Bad	Choice

>>>

Note	 that	 in	 the	 first	 case	 the	 “P”	 of	 “Programming”	 is	 capital,	 hence	 “Bad
Choice”	is	displayed.	In	the	second	and	the	third	cases,	the	get	function	is	able	to
find	the	requisite	value.	In	the	last	case	the	value	is	not	found	and	so	the	second
argument	of	the	get	function	appears.	Note	that	it	is	similar	to	the	default	of	the
“C”	 type	 switch	 statement.	 The	 flow	 diagram	 given	 in	 Figure	 3.4	 shows	 a
program	that	has	many	branches.

FIGURE	3.4 A	program	having	multiple	conditional	statements

3.7

Observation

In	Python,	dictionaries	and	lists	form	an	integral	part	of	the	language	basics.	The
use	 of	 the	 get	 construct	 was	 not	 explained	 in	 Chapter	 2	 of	 this	 book,	 as	 it
implements	 the	 concept	 of	 conditional	 selection.	 It	 may	 be	 noted	 that	 this
construct	 greatly	 reduces	 the	 problems	 of	 dealing	 with	 the	 situations	 where
mapping	is	required	and	is	therefore	important.

EXAMPLES

The	 'if'	 condition	 is	 also	 used	 for	 input	 validation.	 The	 process	 will	 be
explained	 in	 the	 following	 sections	 of	 this	 book.	 However,	 the	 idea	 has	 been
used	in	the	example	that	follows.	The	program	asks	the	user	to	enter	a	character
and	checks	whether	its	ASCII	value	is	greater	a	certain	value.

Illustration	3.6:	Ask	 the	user	 to	 enter	 a	number	and	check	whether	 its	ASCII
value	is	greater	than	80.

Program

inp	=	input('Enter	a	character	:')

if	ord(inp)	>	80:

print('ASCII	value	is	greater	than	80')

else:

print('ASCII	value	is	less	than	80')

Output	1:

>>>Enter	a	character:	A

ASCII	value	is	less	than	80

...

Output	2

>>>Enter	a	character:	Z

ASCII	value	is	greater	than	80

>>>

The	construct	can	also	be	used	to	find	the	value	of	a	multi-valued	function.	For
example,	consider	the	following	function:

The	following	example	asks	 the	user	 to	enter	 the	value	of	x	 and	calculates	 the
value	of	the	function	as	per	the	given	value	of	x.

Illustration	 3.7:	 Implement	 the	 above	 function	 and	 find	 the	 values	 of	 the
function	at	x	=	2	and	x	=	4.

Program

Output

==========	RUN	C:\Python\Conditional\func.py	==========

Enter	the	value	of	x	:4

Value	of	function	f(x)	=	39

>>>

==========	RUN	C:\Python\Conditional\func.py	==========

Enter	the	value	of	x	:1

Value	of	function	f(x)	=	4

>>>

The	'if-else'	construct,	as	stated	earlier,	can	be	used	to	find	the	outcome	based
on	 certain	 conditions.	 For	 example	 two	 lines	 are	 parallel	 if	 the	 ratio	 of	 the
coefficients	of	x’s	is	same	as	that	of	those	of	y’s.

For	a1x	+	b1y	+	c1	=	0	and	a2x	+	b2y	+	c2	=	0.	Then	the	condition	of	lines	being
parallel	is:

The	following	program	checks	whether	two	lines	are	parallel	or	not.

Illustration	3.8:	Ask	the	user	to	enter	the	coefficients	of	a1x	+	b1y	+	c1	=	0	and
a2x	 +	b2y	 +	c2	 =	 0	 and	 find	 out	whether	 the	 two	 lines	 depicted	 by	 the	 above
equations	are	parallel	or	not.

Program

Output

>>>

==========	RUN	C:\Python\Conditional\parallel.py	==========

Enter	Coefficients	of	the	first	equation	[a1x	+	b1y	+	c1	=

0]

Enter	the	value	of	a1:	2

Enter	the	value	of	b1:	3

Enter	the	value	of	c1:	4

Enter	Coefficients	of	second	equation	[a2x	+	b2y	+	c2	=	0]

Enter	the	value	of	a2:	4

Enter	the	value	of	b2:	6

Enter	the	value	of	c2:	7

Lines	are	parallel

>>>

The	above	program	can	be	extended	to	find	whether	the	lines	are	intersecting	or
overlapping:	two	lines	intersect	if	the	following	condition	is	true.

a1x	+	b1y	+	c1	=	0	and	a2x	+	b2y	+	c2	=	0.	Then	the	lines	intersect	if:

And	the	two	lines	overlap	if:

The	following	flow-chart	shows	the	flow	of	control	of	the	program	(Figure	3.5).

FIGURE	3.5 Checking	whether	lines	are	parallel,	overlapping,	or	if	they	intersect

The	following	program	implements	the	above	logic.

Illustration	3.9:	Ask	the	user	to	enter	the	values	of	a1,	a2,	b1,	b2,	c1,	and	c2	and
find	whether	the	lines	are	parallel,	or	if	they	overlap	or	intersect.

Program

3.8

Output

>>>

==========	RUN	C:/Python/Conditional/Lines.py	==========

Enter	Coefficients	of	the	first	equation	[a1x	+	b1y	+	c1	=

0]

Enter	the	value	of	a1:	2

Enter	the	value	of	b1:	3

Enter	the	value	of	c1:	4

Enter	Coefficients	of	second	equation	[a2x	+	b2y	+	c2	=	0]

Enter	the	value	of	a2:	1

Enter	the	value	of	b2:	2

Enter	the	value	of	c2:	3

Lines	intersect

>>>

CONCLUSION

As	stated	in	the	first	chapter,	we	write	a	program	with	a	purpose.	The	purpose	to
be	 accomplished	 by	 a	 program	 generally	 requires	 making	 decisions.	 This
decision	 making	 capacity	 also	 empowers	 a	 programmer	 to	 write	 a	 code	 that
requires	branching.	Python	greatly	 reduces	unnecessary	clutter	when	compared
to	C	or	C++.	In	a	Python	code	there	is	hardly	a	need	for	braces,	or	for	that	matter
handling	 obvious	 conditions.	 Python	 also	 provides	 us	 with	 a	 switch-like
construct	 to	 handle	 multiple	 conditions.	 This	 chapter	 discusses	 the	 basics	 of
conditional	 statements	 and	 presents	 ample	 illustrations	 to	 make	 things	 clear.
These	 conditional	 statements	 are	 used	 everywhere;	 from	 a	 basic	 program	 to
decision	 support	 systems	 and	 expert	 systems.	 The	 reader	 is	 required	 to	 go
through	 the	 points	 to	 remember,	 and	 implement	 the	 problems	 given	 in	 the
exercise	 for	 better	 understanding	 of	 this.	 One	 must	 also	 understand	 that	 the
conditional	 statements	 are	 the	 first	 step	 towards	 programming.	 However
understanding	 conditional	 statements,	 though	 essential,	 is	 just	 the	 beginning.
Your	journey	of	becoming	a	programmer	has	just	started.

GLOSSARY

1. The	syntax	of	“if”	is	as	follows.
if	<test	condition>:

<block	if	the	test	condition	is	true>

2. The	“if	else”	construct	is	written	as	follows.
if	<test	condition>

<block	if	the	test	condition	is	true>

else:

<block	if	the	test	condition	is	not	true>

...

3. The	syntax	of	the	“if	else	ladder”
if	<test	condition>:

<block	if	the	test	condition	is	true>

elif	<test	2>:

<second	block>

elif	<test	3>:

<third	block>

else:

<block	if	the	test	condition	is	true>

POINTS	TO	REMEMBER

The	'if'	statement	implements	conditional	branching.
The	 test	 condition	 is	 a	 Boolean	 expression	 which	 results	 in	 a	 true	 or	 a
false.
The	block	of	'if'	executes	if	the	test	condition	it	true.
The	else	part	executes	if	the	test	condition	is	false.
Multiple	branches	can	be	implemented	using	the	if-elif	ladder.
Any	number	of	if-elif	can	be	nested.
A	ternary	if	can	be	implemented	in	Python.
Logical	operators	can	be	used	in	implementing	conditional	statements.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. What	will	be	the	output	of	the	following?
if	28:

 print('Hi')

else:

 print('Bye')

(a) Hi

(b) Bye

(c) None	of	the	above

(d) The	above	snippet	will	not	compile

2. a	=	5

b	=	7

c	=	9

if	a>b:

  if	b>c:
   print(b)

  else:
   print(c)

else:

  if	b>c:
   print(c)

  else:
   print(b)

(a) 7

(b) 9

(c) 34

(d) None	of	the	following

3. a	=	34

b	=	7

c	=	9

if	a>b:

  if	b>c:
   print(b)

  else:
   print(c)

else:

  if	b>c:
   print(c)

  else:
   print(b)

(a) 7

(b) 9

(c) None	of	the	above

(d) The	code	will	not	compile

4. a	=	int(input('First	number\t:'))

b	=	int(input('Second	number\t'))

c	=	int(input('Third	number\t:'))

if	((a>b)	&	(a>c)):

   print(a)
elif	((b>a)	&(b>c)):

   print(b)
else:

   print(c)

(a) The	greatest	of	the	three	numbers	entered	by	the	user

(b) The	smallest	of	the	three	numbers	entered	by	the	user

(c) None

(d) The	code	will	not	compile

5. n	=	int(input('Enter	a	three	digit	number\t:'))

if	(n%10)==(n/100):

   print('Hi')
else:

   print('Bye')
   #	The	three	digit	number	entered	by	the	user	is	453

(a) Hi

(b) Bye

(c) None	of	the	above

(d) The	code	will	not	compile

6. In	the	above	question,	if	the	number	entered	is	545,	what	would	the	answer
be?

(a) Hi

(b) Bye

(c) None	of	the	above

(d) The	code	will	not	compile

7. hb1	=	['Programming	in	C#','Oxford	University	Press',	2014]

hb2	=	['Algorithms',	'Oxford	University	Press',	2015]

if	hb1[1]==hb2[1]:

   print('Same')
else:

   print('Different')

(a) same

(b) Different

(c) No	output

(d) The	code	would	not	compile

8. hb1	=	['Programming	in	C#','Oxford	University	Press',	2014]

hb2	=	['Algorithms',	'Oxford	University	Press',	2015]

if	(hb1[0][3]==hb2[0][3]):

   print('Same')
else:

   print('Different')

(a) Same

(b) Different

(c) No	output

(d) The	code	will	not	compile

9. In	 the	 snippet	 given	 in	 question	8,	 the	 following	 changes	 are	made.	What
will	the	output	be?
hb1	=	['Programming	in	C#','Oxford	University	Press',	2014]

hb2	=	['Algorithms',	'Oxford	University	Press',	2015]

if	(str(hb1[0][3])==str(hb2[0][3])):

   print('Same')
else:

   print('Different')

(a) Same

(b) Different

(c) No	output

(d) The	code	will	not	compile

10. Finally,	 the	 code	 in	question	8	 is	 changed	 to	 the	 following.	What	will	 the
output	be?
hb1	=	['Programming	in	C#','Oxford	University	Press',	2014]

hb2	=	['Algorithms',	'Oxford	University	Press',	2015]

if	(char(hb1[0][3])==char(hb2[0][3])):

   print('Same')
else:

   print('Different')

(a) Same

(b) Different

(c) No	output

(d) The	code	will	not	compile

PROGRAMMING	EXERCISE

1. Ask	the	user	 to	enter	a	number	and	find	the	number	obtained	by	reversing
the	order	of	the	digits.

2. Ask	the	user	to	enter	a	four	digit	number	and	check	whether	the	sum	of	the
first	and	the	last	digits	is	same	as	the	sum	of	the	second	and	the	third	digits.

3. In	the	above	question	if	the	answer	is	true	then	obtain	a	number	in	which	the
second	and	the	third	digit	are	one	more	than	that	in	the	given	number.
Example:	Number	5342,	 sum	of	 the	 first	 and	 the	 last	digit	=	7	 that	of	 the
second	and	the	third	digit	=	7.	New	number:	5452

4. Ask	the	user	to	enter	the	concentration	of	hydrogen	ions	in	a	given	solution
(C)	and	find	the	PH	of	the	solution	using	the	following	formula.

PH	=	log10	C

5. If	the	PH	is	<7	then	the	solution	is	deemed	acidic,	else	it	is	deemed	as	basic.
Find	if	the	given	solution	is	acidic.

6. In	 the	 above	 question	 find	 whether	 the	 solution	 is	 neutral.	 (A	 solution	 is
neutral	if	the	PH	is	7)

7. The	centripetal	force	acting	on	a	body	(mass	m),	moving	with	a	velocity	v,
in	a	circle	of	radius	r,	is	given	by	the	formula	mv2/r.	The	gravitational	force
on	 the	 body	 is	 given	 by	 the	 formula	 (GmM)/R2,	 where	m	 and	M	 are	 the
masses	of	the	body	and	earth	and	R	is	the	radius	of	the	earth.	Ask	the	user	to
enter	the	requisite	data	and	find	whether	the	two	forces	are	equal	or	not.

8. Ask	the	user	to	enter	his	salary	and	calculate	the	TADA,	which	is	10%	of	the
salary;	the	HRA,	which	is	20%	of	the	salary	and	the	gross	income,	which	is
the	sum	total	of	the	salary,	TADA	and	the	HRA.

9. In	the	above	question	find	whether	the	net	salary	is	greater	than	$300,000.

10. Use	the	Tax	Tables	of	the	current	year	to	find	the	tax	on	the	above	income
(question	number	8),	assuming	that	the	savings	are	$100,000.

11. Find	whether	a	number	entered	by	the	user	is	divisible	by	3	and	13.

12. Find	whether	the	number	entered	by	the	user	is	a	perfect	square.

13. Ask	the	user	to	enter	a	string	and	find	the	alphanumeric	characters	from	the
string.

14. In	the	above	question	find	the	digits	in	the	strings.

15. In	question	13,	find	all	the	components	of	the	string	which	are	not	digits	or
alphabets.

4.1

CHAPTER	4

LOOPING

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	and	use	of	loops
• Appreciate	the	importance	of	the	while	and	for
• Use	range

• Process	list	of	lists
• Understand	nesting	of	loops	and	design	patterns

INTRODUCTION

When	we	were	young,	we	were	taught	tables	of	numbers.	The	table	of	a	number
had	 a	 pattern.	 Writing	 a	 table	 in	 an	 examination	 required	 writing,	 say,	 “n×”
followed	by	“i”	(i	varying	from	1	to	n)	and	then	the	result	of	calculations	(that	is
n	×	1,	n	×	2	and	so	on).	Many	such	situations	require	us	to	repeat	a	given	task
many	times.	This	repetition	can	be	used	to	calculate	the	value	of	a	function,	to
print	a	pattern	or	 to	simply	repeat	something.	This	chapter	discusses	 loops	and
iterations,	which	are	an	integral	part	of	procedural	programming.	Looping	means
repeating	a	set	of	statements	until	a	condition	is	true.	The	number	of	times	this
set	is	repeated	depends	on	the	test	condition.	Also,	what	is	to	be	repeated	needs
to	be	chalked	out	with	due	deliberation.	In	general,	repeating	a	block	requires	the
following	(Figure	4.1).

FIGURE	4.1 Looping

Python	provides	two	types	of	loops:	for	and	while	(Figure	4.2).

FIGURE	4.2 Loops	in	Python

While	loop	is	one	of	the	most	general	constructs	in	any	programming	language.
If	 you	 come	 from	 a	 “C”	 background,	 you	 must	 be	 equipped	 with	 the	 above
construct.	While	 loop	 retains	most	 of	 its	 features	 in	 Python	 as	well,	 however,
there	are	notable	differences	too.

The	while	loop	repeats	a	block,	identified	by	indentation,	until	the	test	condition
remains	true.	As	we	will	see	in	the	following	discussion,	one	can	come	out	of	the
loop	using	break	and	continue.	Also,	to	decide	if	the	loop	repeats	as	per	the	test
condition	after	which	the	else	condition	executes.	This	is	an	additional	feature
in	Python.

The	 use	 of	 for	 in	 Python	 is	 a	 bit	 different	 to	 “C”-like	 languages.	 The	 for
construct	 in	Python	 is	 generally	 used	 for	 lists,	 tuples,	 strings,	 etc.	The	 chapter
presents	range,	which	will	help	the	programmer	to	select	a	value	from	a	given
range.	 The	 reader	 is	 advised	 to	 go	 through	 the	 discussion	 of	 lists	 and	 tuples
presented	in	Chapter	2	of	this	book	before	starting	with	the	for	loop.

The	chapter	has	been	organized	as	follows.	Section	4.2	of	this	chapter	presents
the	basics	of	the	while	loop.	Section	4.3	uses	looping	to	create	patterns.	Section

4.2

4.4	 introduces	 the	 concept	 of	 nesting	 and	 presents	 the	 processing	 of	 lists	 and
tuples	using	for	loops.	The	last	section	concludes	the	chapter.

WHILE

In	Python,	the	while	 loop	is	the	most	commonly	used	construct	for	repeating	a
task	over	 and	over	 again.	The	 task	 is	 repeated	until	 the	 test	 condition	 remains
true,	after	which	the	loop	ends	and	if	 the	exit	occurs	without	a	break,	 then	 the
else	part	of	the	construct	executes.	The	syntax	of	the	loop	is	as	follows:

Syntax

while	test:

...

...

else:

...

It	may	be	stated	here	that	the	body	of	the	loop	is	determined	by	indentation.	This
is	the	reason	why	you	must	be	extremely	careful	with	indentation.	Also,	the	else
part	is	an	addition	in	Python	when	compared	to	“C”-like	languages.	In	order	to
understand	the	concept,	let	us	go	through	the	following	illustrations.

Illustration	4.1:	Ask	the	user	to	enter	a	number	and	calculate	its	factorial.

Solution:	The	factorial	of	a	number	n	is	defined	as	follows.

factorial	=	1	×	2	×	3	×	…	×	n

That	is	the	factorial	of	a	number,	n,	is	the	product	of	n	terms	starting	from	1.	To
calculate	the	factorial	of	a	given	number,	first	of	all	the	user	is	asked	to	input	a
number.	The	number	 is	 then	converted	 into	an	 integer.	This	 is	 followed	by	 the
initialization	of	“factorial”	by	1.	Then	a	while	loop	successively	multiplies	i
to	'factorial'	(note	that	after	each	iteration	the	value	of	i	increases	by	1).	The
following	program	calculates	the	factorial	of	a	number	entered	by	the	user.

Program

n	=	input('Enter	number	whose	factorial	is	required')#ask

user	to	enter	number

m	=	int(n)#convert	the	input	to	an	integer

factorial	=	1#initialize

i=1#	counter

while	i<=m:

factorial	=factorial*i

i=i+1

print('\factorial	of	'+str(m)+'	is	'+str(factorial))

Output

>>>

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/factorial.py

Enter	number	whose	factorial	is	required6

Factorial	of	6	is	720

Illustration	4.2:	Ask	 the	user	 to	enter	 two	numbers	“a”	and	“b”	 and	 calculate
“a”	to	the	power	of	“b.”

Solution:	“a”	raised	to	the	power	of	“b”	can	be	defined	as	follows.

power	=	a	×	a	×	a	×	..	×	a	(b	times)

That	 is,	 the	power	of	a	number	“a”	raised	 to	“b”	 is	 the	product	of	 the	number
“a,”	“b”	times.	To	calculate	the	power,	first	of	all	the	user	is	asked	to	input	two
numbers.	The	numbers	are	then	converted	into	integers.	This	is	followed	by	the
initialization	of	'power'	by	1.	Then	a	while	loop	successively	multiplies	'a'	to
'power'	 (note	 that	 after	 each	 iteration	 the	 value	 of	 i	 increases	 by	 1).	 The
following	program	implements	the	above	logic.

Program

>>>

a	=	int(input('Enter	the	first	number'))

b	=	int(input('Enter	the	second	number'))

power=1

i	=	1

while	i	<	=	b:

power	=	power*a

i=i+1

else:

print(str(a)+'	to	the	power	of	'+str(b)+'	is

'+str(power))

Output

>>>

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/power.py

Enter	the	first	number4

Enter	the	second	number5

4	to	the	power	of	5	is	1024

>>>

Illustration	4.3:	The	arithmetic	progression	is	obtained	by	adding	the	common
difference	“d”	to	the	first	 term	“a,”	successively.	The	 ith	 term	of	 the	arithmetic
progression	is	given	by	the	following	formula:

T	(i)	=	a	+	(i	–	1)	×	d

Ask	the	user	to	enter	the	value	of	“a,”	“d,”	and	“n”	(the	number	of	terms),	and
find	all	the	terms	of	the	AP.	Also,	find	the	sum	of	all	the	terms.

Solution:	The	following	program	asks	the	user	to	enter	the	values	of	“a,”	“d,”
and	“n.”	Note	that	the	input	is	converted	into	integers.	Also,	since	all	the	terms
are	to	be	calculated,	this	evaluation	is	done	inside	a	loop.	The	'sum'	is	initialized
to	0	and	the	terms	are	added	to	'sum'	in	each	iteration.

Program

>>>

a	=	int(input('Enter	the	first	term	of	the	Arithmetic

Progression\t:'))

d	=	int(input('Enter	the	common

difference\t:'))	n	=	int(input('Enter	the	number	of

terms\t:'))	i	=	1

sum	=	0#initialize

while	i<=n:

term	=	a	+(i-1)*d

print('The	'+str(i)+'th	term	is	'+str(term))

sum	=	sum	+	term

i=i+1

else:

print('The	sum	of	'+str(n)+'	terms	is\t:'+str(sum))

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/AP.py

Enter	the	first	term	of	the	Arithmetic	Progression	:5

Enter	the	common	difference	:6

Enter	the	number	of	terms	:7

The	1th	term	is	5

The	2th	term	is	11

The	3th	term	is	17

The	4th	term	is	23

The	5th	term	is	29

The	6th	term	is	35

The	7th	term	is	41

The	sum	of	7	terms	is	:161

Illustration	 4.4:	 The	 geometric	 progression	 is	 obtained	 by	 multiplying	 the
common	 ratio	 'r'	 to	 the	 first	 term	 'a',	 successively.	 The	 ith	 term	 of	 the
progression	is	given	by	the	following	formula.	T(i)	=	a	×	ri	–	1

Ask	the	user	to	enter	the	value	of	'a',	'r',	and	'n'(the	number	of	 terms),	and
find	all	the	terms	of	the	GP.	Also,	find	the	sum	of	all	the	terms.

Solution:	The	following	program	asks	the	user	to	enter	the	values	of	'a',	'r',
and	'n'.	Since	all	the	terms	are	to	be	calculated,	this	evaluation	is	done	inside	a
loop.	 The	 'sum'	 is	 initialized	 to	 0	 and	 the	 terms	 are	 added	 to	 'sum'	 in	 each
iteration.

Program

>>>

a	=	int(input('Enter	the	first	term	of	the	Geometric

Progression\t:'))

r	=	int(input('Enter	the	common	ratio\t:'))

4.3

n	=	int(input('Enter	the	number	of	terms\t:'))

i	=	1

sum	=	0#initialize

while	i<=n:

term	=	a	*	(r**(i-1))

print('The	'+str(i)+'th	term	is	'+str(term))

sum	=	sum	+	term

i=i+1

else:

print('The	sum	of	'+str(n)+'	terms	is\t:'+str(sum))

Output

>>>

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python	35-

32/Tools/scripts/GP.py

Enter	the	first	term	of	the	Arithmetic	Progression	:5

Enter	the	common	ratio	3

Enter	the	number	of	terms	5

The	1th	term	is	5

The	2th	term	is	15

The	3th	term	is	45

The	4th	term	is	135

The	5th	term	is	405

The	sum	of	5	terms	is	605

>>>

PATTERNS

Have	you	ever	wondered	why	quizzes	and	riddles	 form	an	 integral	part	of	any
intelligence	 test?	The	 following	 incident	will	help	 the	 reader	 to	understand	 the
importance	of	patterns.	During	World	War	 II,	 the	British	were	 striving	hard	 to
break	Enigma,	the	machine	used	by	the	Germans	for	encrypting	their	messages.
The	 army	 somehow	 recruited	 Alan	 Turing,	 who	 was	 never	 in	 his	 lifetime
recognized,	 for	 the	 above	 task.	 He	 wanted	 a	 team	 to	 help	 him,	 for	 which	 he
conducted	an	exam.	Many	of	you	would	be	amazed	 to	know	what	he	asked	 in
that	 exam	 which	 would	 determine	 the	 destiny	 of	 a	 country!	 He	 asked	 the
candidates	 to	 solve	 the	given	puzzles	 in	a	given	 time.	This	 incident	underlines

the	importance	of	comprehending	patterns.	What	happened	thereafter	is	history.
Decoding	patterns	and	solving	puzzles	helps	 to	 judge	 the	 intellect	of	a	person.
This	is	much	more	important	than	learning	a	formula.	This	section	presents	the
designing	of	 patterns	 using	 loops	 to	 help	 the	 reader	 understand	 the	 concept	 of
nesting.	 Moreover,	 this	 book	 also	 intends	 to	 inculcate	 the	 problem	 solving
approach	in	the	reader.	Therefore	this	section	becomes	all	the	more	important.

The	 following	 illustrations	 show	 how	 to	 assign	 values	 to	 the	 counters	 of	 the
inner	and	the	outer	loops	to	carry	out	the	given	task.	The	patterns,	as	such,	may
not	be	very	useful.	However,	doing	the	following	program	would	help	the	reader
to	comprehend	the	concept	of	nesting.	The	methodology	of	making	a	pattern	has
been	explained	in	each	of	the	following	programs.

Illustration	4.5:	Write	a	program	to	generate	the	following	pattern	in	Python.

The	number	of	rows	would	be	entered	by	the	user.

Solution:	The	number	of	rows	n,	will	determine	the	value	of	the	counter	(from	0
to	n).	The	value	of	i	denotes	the	row	number	in	the	following	program.	In	each
row,	 the	number	of	 stars	 is	 equal	 to	 the	 row	number.	The	values	of	j,	 in	 each
iteration,	denotes	the	number	of	stars	in	each	row.	This	loop	is	therefore	nested.
Also,	note	that	after	the	inner	loop	ends	a	new	line	is	printed	using	the	print()
function.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/loop2.py

Enter	the	number	of	rows	5

*

*	*

*	*	*

*	*	*	*

Illustration	4.6:	Write	a	program	to	generate	the	following	pattern	in	Python.

1

2	2

3	3	3

4	4	4	4

The	number	of	rows	would	be	entered	by	the	user.

Solution:	The	number	of	rows	will	determine	the	value	of	the	counter	i,	(from	0
to	n).	The	value	of	i	denotes	the	row	number	in	the	following	program.	In	each
row,	the	number	of	elements	is	equal	to	the	row	number.	The	values	of	j	in	each
iteration	 denote	 the	 number	 of	 elements	 in	 each	 row.	 This	 loop	 is	 therefore
nested.	The	element	printed	 is	 the	value	of	i+1.	Also,	note	 that	 after	 the	 inner
loop	ends	a	new	line	is	printed	using	the	print()	function.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/loop2.py

Enter	the	number	of	rows5

1

2	2

3	3	3

4	4	4	4

5	5	5	5	5

Illustration	4.7:	Write	a	program	to	generate	the	following	pattern	in	Python.

2

2	3

2	3	4

2	3	4	5

The	number	of	rows	would	be	entered	by	the	user.

Solution:	The	number	of	rows,	entered	by	the	user,	will	determine	the	value	of	i
(from	0	to	n).	The	value	of	i	denotes	the	row	number	in	the	following	program.
In	each	row,	the	number	of	elements	is	equal	to	the	row	number.	The	values	of	j
in	 each	 iteration	 denote	 the	 number	 of	 elements	 in	 each	 row.	 This	 loop	 is
therefore	nested.	The	element	printed	is	the	value	of	j+1.	Also	note	that	after	the
inner	loop	ends	a	new	line	is	printed	using	the	print()	function.

Program

Output

>>>

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/loop3.py

Enter	the	number	of	rows5

2

2	3

2	3	4

2	3	4	5

2	3	4	5	6

Illustration	4.8:	Write	a	program	to	generate	the	following	pattern	in	Python.

1

2	3

4	5	6

7	8	9	10

The	number	of	rows	would	be	entered	by	the	user.

Solution:	The	value	of	i	denotes	the	row	number	in	the	following	program.	In
each	row,	the	number	of	elements	is	equal	to	the	row	number.	The	values	of	i	in
each	 iteration	 will	 denote	 the	 number	 of	 elements	 in	 each	 row.	 This	 loop	 is
therefore	nested.	The	element	printed	is	the	value	of	k,	which	starts	from	1	and
incrementally	increases	in	each	iteration.	Also	note	that	after	the	inner	loop	ends
a	new	line	is	printed	using	the	print()	function.

Program

Output

>>>

RUN	C:\Users\ACER	ASPIRE\AppData\Local\Programs\Python\

Python35-32\Tools\scripts\loop1.py

Enter	the	number	of	rows7

1

2	3

4	5	6

7	8	9	10

11	12	13	14	15

16	17	18	19	20	21

22	23	24	25	26	27	28

Illustration	4.9:	Write	a	program	to	generate	the	following	pattern	in	Python.

*

The	number	of	rows	would	be	entered	by	the	user.

Solution:	The	value	of	i	denotes	the	row	number	in	the	following	program.	In
each	row,	the	number	of	stars	is	equal	to	the	row	number.	The	values	of	k	in	each
iteration	denote	 the	number	of	 stars	 in	each	 row,	which	 ranges	 from	0	 to	(2*i
+1).	This	loop	is	therefore	nested.	The	leading	spaces	are	governed	by	the	value
of	j,	which	ranges	from	0	to	(m-i-1).	This	is	because	if	the	value	of	i	is	0,	the
number	of	spaces	should	be	4	(if	the	value	of	n	is	5).	In	case	the	value	of	i	is	1,
the	number	of	spaces	should	be	3	and	so	on.	Also	note	that	after	the	inner	loop
ends	a	new	line	is	printed	using	the	print()	function.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

4.4

32/Tools/scripts/loop5.py

Enter	the	number	of	rows	6

*

NESTING	AND	APPLICATIONS	OF	LOOPS	IN	LISTS

Nested	loops	can	be	used	to	generate	matrices.	In	order	to	do	this,	the	outer	loop
is	designed	 to	govern	 the	rows	and	 the	 inner	 loop	 to	govern	each	element	of	a
particular	 row.	 The	 following	 illustration	 shows	 the	 generation	 of	 a	 matrix
having	ith	element	given	by	the	following	formula:

ai,	j	=	5	×	(i	+	j)2

Note	that	in	the	following	illustration,	two	loops	have	been	used.	The	outer	loop
runs	n	 times	where	 n	 is	 the	 number	 of	 rows,	 and	 the	 inner	 loop	 runs	 m	 times
where	m	is	the	number	of	columns.	The	number	of	columns	can	be	perceived	as
the	number	of	elements	in	each	row.

The	 inner	 loop	has	one	 statement,	which	calculates	 the	element.	At	 the	end	of
each	 iteration	 (of	 the	 outer	 loop)	 a	 new	 line	 is	 printed	 using	 the	 print()
function.

Illustration	4.10:	Generate	a	n	×	m,	matrix,	wherein	each	element	(aij),	is	given
by

ai,	j	=	5	×	(i	+	j)2

Solution:	The	concept	has	been	explained	in	the	above	discussion.	There	will	be
two	 loops;	 the	 outer	 loop	 for	 the	 number	 of	 rows	 and	 the	 inner	 loop	 for	 the
number	of	columns.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/matrixgeneartion.py

Enter	the	number	of	rows3

Enter	the	number	of	columns3

0	5	20

5	20	45

20	45	80

>>>

It	may	be	noted	that	in	the	following	chapters,	this	nesting	is	used	to	deal	with
most	of	the	operations	of	matrices.	As	a	matter	of	fact	addition	and	subtraction
of	 two	matrices	 requires	 two	 levels	 of	 nesting,	 whereas	multiplication	 of	 two
matrices	requires	three	levels	of	nesting.

Illustration	4.11:	Handling	list	of	lists:	Note	that	in	the	following	program	the
first	 list’s	 second	 element	 is	 itself	 a	 list.	 Its	 first	 element	 can	 be	 accessed	 by
writing	hb[0][1]	and	the	first	letter	of	the	first	element	of	the	nested	list	would
be	hb[0][1][0].

Program

Output

The	following	two	illustrations	handle	the	list	of	lists	using	nested	loops.	Kindly
note	the	output	and	the	corresponding	mappings.

Illustration	 4.12:	Handling	 list	 of	 lists	 using	 loops:	 The	 elements	 of	 nested
lists	can	also	be	dealt	with	using	nested	loops	as	shown	in	this	illustration.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/listfor.py

[['Programming	in	C#',	['Oxford	University	Press',	2015]],

['SE	is	everything',	['Obscure	Publishers',	2015]]]

0	0	Programming	in	C#

0	1	['Oxford	University	Press',	2015]

1	0	SE	is	everything

1	1	['Obscure	Publishers',	2015]

>>>

Illustration	4.13:	Another	 illustration	of	 the	use	of	 loops	 in	processing	nested
lists.	The	user	is	expected	to	observe	the	output	and	infer	what	happened.

Program

Output

RUN	C:/Users/ACER

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/listfor.py

[['Programming	in	C#',	['Oxford	University	Press',	2015]],

['SE	is	everything',	['Obscure	Publishers',	2015]]]

0	0	0	P

0	0	1	r

0	0	2	o

0	0	3	g

0	0	4	r

0	0	5	a

0	0	6	m

0	0	7	m

0	0	8	i

0	0	9	n

0	0	10	g

0	0	11

0	0	12	i

0	0	13	n

0	0	14

0	0	15	C

0	0	16	#

0	1	0	Oxford	University	Press

0	1	1	2015

1	0	0	S

1	0	1	E

1	0	2

1	0	3	i

1	0	4	s

1	0	5

1	0	6	e

1	0	7	v

1	0	8	e

1	0	9	r

1	0	10	y

1	0	11	t

1	0	12	h

1	0	13	i

1	0	14	n

1	0	15	g

1	1	0	Obscure	Publishers

4.5

1	1	1	2015

CONCLUSION

Repeating	 a	 task	 is	 an	 immensely	 important	 job.	 This	 is	 needed	 in	 a	 whole
variety	 of	 situations	 to	 accomplish	 different	 tasks.	 This	 chapter	 introduces	 the
two	most	important	looping	constructs	in	Python.	The	chapter	demonstrated	the
use	 of	 these	 looping	 constructs	 by	 showing	 simple	 examples.	 Having	 a	 loop
within	 a	 loop	 is	 called	nesting.	The	nesting	of	 loops	has	been	explained	using
patterns	and	lists	of	lists.	Chapter	6	revisits	one	of	the	constructs	and	compares
the	use	of	iterators	and	generators.	The	reader	is	expected	to	solve	the	problems
given	 at	 the	 end	 of	 the	 chapter	 for	 better	 understanding.	 However,	 Python
provides	us	with	other	constructs	which	greatly	simplify	program	writing.	At	the
moment	 try	 various	 permutations	 and	 combinations,	 observe	 the	 outputs	 and
learn.

GLOSSARY

1. Looping	means	repeating	a	task	a	certain	number	of	times.

2. Syntax	of	for	loop
for	i	in	range(n):

...

...
OR
for	i	in	range(n,	m):

...

...
OR
for	i	in	(_,	_,...)

...

...

...

3. Syntax	of	while	loop
while	<test	condition>:

...

POINTS	TO	REMEMBER

In	order	 to	repeat	a	set	of	statements	a	certain	number	of	 times	 looping	 is
used.
Looping	in	Python	can	be	implemented	using	while	and	for.
'while'	is	the	most	common	looping	construct	in	Python.
The	statements	in	the	while	block	executes	until	the	test	condition	remains
true.
The	else	part	executes	if	the	loop	ends	without	a	break.
'for'	can	be	used	for	all	the	purposes	for	which	a	'while'	is	used.
'for'	is	generally	used	for	processing	lists,	tuples,	matrices,	etc.
range	(n)	means	values	from	0	to	(n	–	1).
range	(m,	n)	means	all	the	values	from	m	to	(n	–	1).
A	loop	can	be	nested	in	a	loop.
There	can	be	any	number	of	nestings,	although	this	is	undesirable.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. What	will	be	the	output	of	the	following?
a=8

i=1

while	a:

 print(a)

 i=i+1

 a=a-i

print(i)

(a) 8,	6,	3

(b) 8,	6,	3,	–1

(c) 8,	6,	3,	–1,	...

(d) None	of	the	above

2. a=8

i=1

while	a:

print(a)

i=i+1

a=a/2

print(i)

(a) 8,	4,	2,	1

(b) 8,	4,	2,	1,	0

(c) 8,	4,	2,	1,	0.5

(d) Infinite	loop

3. How	many	times	will	the	following	loop	execute?
n	=	int(input('Enter	number'))

i	=	n

while	(i>0):

print(n)

i=i+1

n	=	int(n/2)

print(i)

#The	value	of	n	entered	by	the	user	is	10

(a) 4

(b) 5

(c) Infinite

(d) The	code	will	not	compile

4. Which	loop	can	be	used	when	the	number	of	iterations	is	not	known?

(a) while

(b) for

(c) both

(d) None	of	the	above

5. How	many	levels	of	nesting	are	possible	in	for?

(a) 2

(b) 3

(c) Both

(d) The	code	will	not	compile

6. n	=	int(input('Enter	number'))

for	i	in	(0,7):

print('i	is	'+str(i))

i	=	i+1;

else:

print('bye')

How	many	values	would	be	printed?

(a) 2

(b) 3

(c) 6

(d) None	of	the	above

7. n	=	int(input('Enter	number'))

for	i	in	range(n,	1,	-1):

for	j	in	range(i):

print(i,	j)

#value	entered	by	the	user	is	5

(a) (5,	0),	(5,	1),	...(2,	1)

(b) (5,	1),	(5,2),...(2,	0)

(c) (0,1),	(0,2),	...(5,	2)

(d) None	of	the	above

8. In	order	 to	print	 the	 elements	of	 a	given	matrix	which	of	 the	 following	 is
essential?

(a) Nested	loops

(b) Single	loop

(c) if-else

(d) None	of	the	above

9. What	is	meant	by	range	(5)?

(a) Integers	from	0	to	4

(b) Integers	from	0	to	5

(c) Integers	from	1	to	4

(d) Integers	from	1	to	5

10. What	is	meant	by	range	(3,	8)?

(a) 3,	4,	5,	6,	7,	8

(b) 3,	4,	5,	6,	7

(c) 1,	2,	4,	5,	6,	7,	8

(d) 8,	8,	8

PROGRAMMING

1. Ask	the	user	to	enter	a	number	and	find	whether	it	is	a	prime	number.

2. Ask	the	user	to	enter	a	number	and	find	all	its	factors.

3. Find	whether	the	number	entered	by	the	user	is	a	perfect	square.
Example:	If	number	=	30,	then	factors	are	2,	3,	and	5

4. Ask	 the	 user	 to	 enter	 two	numbers	 and	 find	 the	 lowest	 common	multiple.
Example:	If	numbers	are	30	and	20,	then	LCM	is	60,	as	both	20	and	30	are
factors	of	60

5. Ask	 the	 user	 to	 enter	 two	 numbers	 and	 find	 the	 highest	 common	 factor.
Example:	If	numbers	are	30	and	20,	the	HCF	is	10

6. Find	the	mean	of	numbers	entered	by	the	user.

7. Find	the	variance	and	standard	deviation	of	the	numbers	entered	by	the	user.

8. Ask	the	user	to	enter	the	values	of	a	and	b	and	find	aba.

9. Find	the	common	factor	of	n	numbers	entered	by	a	user.

10. Ask	 the	 user	 to	 enter	 three	 numbers	 and	 find	 all	 possible	 permutations	 of
these	numbers.

11. In	 the	 above	 question,	what	 happens	 if	we	 have	 four	 numbers	 in	 place	 of
three?

12. Can	the	above	logic	be	extended	for	n	numbers?

13. Ask	 the	 user	 to	 enter	 n	 numbers	 and	 find	 the	 minimum	 of	 the	 numbers
without	using	arrays.

14. Ask	 the	 user	 to	 enter	 n	 numbers	 and	 find	 the	 maximum	 of	 the	 numbers
without	using	arrays.

15. Create	 a	 list	 of	 authors	 in	 which	 the	 record	 of	 each	 author	 is	 itself	 a	 list
consisting	of	the	name	of	the	book,	publisher,	year	of	publication,	ISSN,	and
the	city.	Now	process	the	list	using	for	loop.

5.1

CHAPTER	5

FUNCTIONS

After	reading	this	chapter,	the	reader	will	be	able	to

• Appreciate	the	importance	of	modular	programming
• Define	and	classify	functions
• Understand	the	concept	of	the	scope	of	a	variable
• Understand	and	use	recursion

INTRODUCTION

If	you	have	to	perform	a	bigger	task,	then	it	is	advisable	to	divide	it	into	smaller,
more	manageable	tasks.	This	division	has	many	advantages,	which	are	discussed
in	 the	following	sections.	The	units	of	programs,	which	can	be	called	on	as	 its
basis,	take	some	input,	process	it	and	may	generate	some	output	which	i	referred
to	as	functions.

Functions	are	units	which	perform	a	particular	task,	take	some	input,	and
which	may	give	some	output.

This	concept	is	the	soul	of	procedural	programming.	The	readers	familiar	with	C
(or	for	that	matter	C++,	Java,	C#,	etc.)	will	be	familiar	with	the	idea	and	use	of
functions.	 However,	 a	 brief	 discussion	 on	 the	 futures	 and	 advantages	 of
functions	follows	in	the	next	section.

This	chapter	introduces	the	concept	of	functions.	The	chapter	has	been	organized
as	follows.	The	next	section	briefly	explains	the	features	of	a	function;	the	third
section	explains	 the	basic	 terminology,	 and	 the	 following	 section	discusses	 the
definition	and	use	of	a	function.	The	fifth	section	presents	a	brief	discussion	on
the	scope	of	a	variable.	The	sixth	section	presents	recursion	and	the	last	section
of	the	chapter	concludes.

5.2

5.2.1

5.2.2

5.2.3

FEATURES	OF	A	FUNCTION

As	discussed	earlier,	functions	form	the	basis	of	procedural	programming.	One
of	the	most	obvious	advantages	is	 the	division	of	a	program	into	smaller	parts.
This	 section	 briefly	 discusses	 the	 advantages	 of	 dividing	 the	 program	 into
functions.

Modular	Programming
If	a	program	is	divided	 into	small	parts	 in	such	a	way	 that	different	parts	each
perform	some	specific	task,	then	each	part	can	be	called	as	per	the	requirement.

Reusability	of	Code
A	 function	 can	 be	 called	 many	 times.	 This	 spares	 the	 programmer	 from	 the
horror	of	rewriting	the	same	code	again,	which	in	turn	can	reduce	the	length	of
the	program.

Manageability
Dividing	a	bigger	task	into	smaller	functions	makes	the	program	manageable.	It
becomes	 easy	 to	 locate	 bugs	 and	 therefore	make	 the	 program	 reliable.	 It	 also
becomes	 easy	 to	 carry	 out	 local	 optimization	 in	 a	 function.	 To	 summarize,
manageability	leads	to	the	following:

5.2.3.1 Easy	Debugging

In	order	to	understand	why	creating	functions	will	make	debugging	easy,	let	us
consider	White	Box	Testing.	This	 type	of	 testing,	which	uses	 code	 for	 testing,
requires	elicitation	of	paths	and	crafting	test	cases	catering	to	them.	In	this	case
it	 becomes	 easy	 to	 effectively	 analyze	 smaller	 functions	 rather	 than	 the	whole
task.

5.2.3.2 Efficient

It	 is	 essential	 to	make	 code	 efficient	 both	 in	 terms	 of	 time	 and	memory.	As	 a
matter	of	fact,	even	in	“C’s”	compiler	most	of	the	code	optimization	is	attributed
to	the	developer	rather	than	the	compiler.

The	above	factors	point	to	the	fact	that	dividing	the	task	into	functions	is	good
practice.	It	may	be	noted	here	that	even	object-oriented	programming,	described

5.3

5.3.1

5.3.2

5.3.3

5.4

in	Section	2	of	this	book,	relies	on	functions	for	implementing	the	behavior	of	a
class.

BASIC	TERMINOLOGY

The	 importance	 of	 functions	 in	 procedural	 programming	 has	 already	 been
discussed	in	the	previous	section.	This	section	briefly	introduces	the	terminology
of	functions	and	presents	the	syntax	which	will	form	the	foundation	stone	of	the
discussion	that	follows.

Name	of	a	Function
A	 function	 can	 have	 any	 legal	 literal	 name.	 For	 example,	 sum1	 is	 a	 valid
function	name	as	 it	 satisfies	 all	 the	 requisite	 constraints.	 It	may	be	 stated	here
that	 in	 a	 class	 we	 can	 have	more	 than	 one	 function	with	 the	 same	 name	 and
different	 parameters.	 This	 is	 referred	 to	 as	 overloading.	 The	 concept	 has	 been
discussed	in	Section	2	of	this	book.

Arguments
The	arguments	of	a	function	denote	the	input	given	to	a	function.	A	function	can
have	any	number	of	arguments.	As	a	matter	of	fact,	it	is	possible	that	a	function
may	not	have	any	argument.

Return	Value
A	 function	 may	 or	 may	 not	 return	 a	 value.	 The	 beauty	 of	 Python	 lies	 in	 not
specifying	the	return	type	and	therefore	using	the	same	functions	for	various	data
types.

In	 Python	 a	 function	 can	 be	made	 in	 the	 command	 prompt.	 This	 implies	 that
unlike	C	(or	for	that	matter	C++,	Java,	or	C#)	a	function	need	not	be	a	part	of	a
program.	 Moreover,	 the	 return	 type	 as	 described	 in	 this	 section	 need	 not	 be
mentioned.	This	inculcates	flexibility	in	the	procedures.

DEFINITION	AND	INVOCATION

This	section	discusses	how	to	define	a	function	and	call	a	function	that	has	been

defined.	The	definition	of	 a	 function	depicts	 the	behavior	of	 the	 function.	The
task	 to	 be	 performed	 by	 the	 function	 is	 contained	 in	 the	 definition.	 In	 the
discussion	 that	 follows,	 the	components	of	a	definition	have	been	explained	 in
detail.

The	invocation	of	a	function	refers	to	calling	a	function.	As	explained	in	Section
5.6,	a	function	can	also	be	called	within	itself.	This	is	referred	to	as	recursion.	It
may	also	be	noted	that	a	function	is	defined	only	once.	However,	it	can	be	called
any	number	of	times.

FIGURE	5.1 Example	of	a	function

The	definition	of	a	function	contains	the	following:

Name	of	a	function:	The	name	of	a	function	is	any	valid	identifier.	It	should	be
noted	though	that	the	name	of	a	function	should	be	meaningful	and,	if	possible,
convey	the	task	to	be	performed	by	the	function.

Parameter:	 The	 list	 of	 parameters	 (separated	 by	 commas)	 is	 given	 in	 the
parentheses	following	the	name	of	the	function.	The	parameters	are	basically	the
input	to	the	function.	A	function	may	have	any	parameters.

Body	 of	 the	 function:	 The	 body	 of	 the	 function	 contains	 the	 code	 that
implements	the	task	to	be	performed	by	the	function.

Figure	5.1	 shows	 the	 name	 of	 the	 function	 (fun),	 the	 list	 of	 parameters	 in	 the
parentheses	 following	 the	 name	 of	 the	 function	 (in	 this	 case	 there	 are	 no
parameters)	and	the	body	of	the	function.

It	may	 also	 be	 noted	 that	 the	 closing	 parentheses	 containing	 the	 parameters	 is
followed	by	a	colon.	The	body	of	a	function	starts	with	a	proper	indentation.

The	invocation	of	a	function	can	be	at	any	place	after	 the	definition.	However,

5.4.1

exceptions	to	this	premise	are	found	in	the	case	of	recursion.

The	syntax	of	a	function	is	depicted	in	Figure	5.2.

Syntax

FIGURE	5.2 Syntax	of	a	function

Working
Consider	a	function	which	multiplies	two	numbers	passed	as	parameters.

def	product(num1,	num2):

prod=	num1*num2

print('The	product	of	the	numbers	is	\t:'+str(prod))

The	name	of	this	function	is	product.	It	takes	two	arguments	as	input	(num1	and
num2),	calculates	the	product	and	displays	the	results.

The	function	can	be	invoked	as	follows:

num1=int(input('Enter	the	first	number\t:'))

num2=int(input('Enter	the	second	number\t:'))

print('Calling	the	function...')

product(num1,	num2)

print('Back	to	the	calling	function');

Here	calling	product	shifts	the	control	to	the	function,	inside	which	the	product
is	 calculated	 and	 the	 result	 is	 displayed.	 The	 control	 then	 comes	 back	 to	 the
calling	function	(Figure	5.3).

FIGURE	5.3 Calling	a	function

A	function	can	be	called	any	number	of	times.	The	following	example	shows	a
function	 which	 does	 not	 take	 any	 input	 and	 does	 not	 return	 anything.	 The
function	called	just	prints	the	lines	of	Ecclesiastes.	The	following	listing	shows
the	function,	and	the	output	of	the	program	follows.

Illustration	5.1:	Basic	Function

Listing

def	Ecclesiastes_3():

print('To	everything	there	is	a	season\nA	time	for	every

purpose	under	Heaven')

print('A	time	to	be	born\nand	a	time	to	die\nA	time	to

plant\nand	a	time	to	reap')

print('A	time	to	kill\nand	a	time	to	heal\nA	time	to

break	down\nand	a	time	to	build	up')

print('A	time	to	cast	away	stones\nand	a	time	to	gather

stones\nA	time	to	embrace\nand	a	time	to	refrain')

print('A	time	to	gain\nand	a	time	to	lose\nA	time	to

keep\nand	a	time	to	cast	away')

print('A	time	of	love\nand	a	time	of	hate\nA	time	of	war\

nand	a	time	of	peace')

print('Calling	function\n')

Ecclesiastes_3()

print('Calling	function	again\n')

Ecclesiastes_3()

>>>

5.5

Output

Calling	function

To	everything	there	is	a	season

A	time	for	every	purpose	under	Heaven

A	time	to	be	born

and	a	time	to	die

A	time	to	plant

and	a	time	to	reap

A	time	to	kill

and	a	time	to	heal

A	time	to	break	down

and	a	time	to	build	up

A	time	to	cast	away	stones

and	a	time	to	gather	stones

A	time	to	embrace

and	a	time	to	refrain

A	time	to	gain

and	a	time	to	lose

A	time	to	keep

and	a	time	to	cast	away

A	time	of	love

and	a	time	of	hate

A	time	of	war

and	a	time	of	peace

TYPES	OF	FUNCTION

Based	on	 the	parameters	and	 the	 return	 type,	 functions	can	be	divided	 into	 the
following	categories.	The	first	 type	of	 function	does	not	 take	any	parameter	or
return	anything.	The	program	given	in	Illustration	5.1	shows	one	such	function.

The	 second	 type	 of	 function	 takes	 parameters	 but	 does	 not	 return	 anything.
Illustration	 5.2	 is	 an	 example	 of	 a	 function.	 The	 third	 type	 of	 function	 takes
parameters	and	 returns	an	output.	The	example	 that	 follows	adds	 two	numbers
using	functions.	The	task	has	been	accomplished	in	three	different	ways	–	in	the
first	 function	 (sum1)	 the	 input	 is	 taken	 inside	 the	 function	 and	 the	 result	 is
displayed	in	a	print	statement,	which	is	also	present	inside	the	function.

The	second	function	takes	the	two	numbers	as	input	(via	parameters),	adds	them
and	prints	 the	 result	 inside	 the	 function	 itself.	The	 third	 function	(sum3)	 takes
two	parameters	and	returns	the	sum.

Illustration	 5.2:	Write	 a	 program	 to	 add	 two	 numbers	 using	 functions.	 Craft
three	functions,	one	of	which	does	not	take	any	parameters	and	does	not	return
anything.	The	second	function	should	 take	parameters	and	not	 return	anything.
The	third	function	should	take	two	numbers	as	parameters	and	should	return	the
sum.

Program

>>>

def	sum1():

num1=int(input('Enter	the	first	number\t:'))

num2=int(input('Enter	the	second	number\t:'))

sum=	num1+num2

print('The	sum	of	the	numbers	is	\t:'+str(sum))

def	sum2(num1,	num2):

sum=	num1+num2

print('The	sum	of	the	numbers	is	\t:'+str(sum))

def	sum3(num1,	num2):

sum=	num1+num2

return(sum)

print('Calling	the	first	function...')

sum1()

num1=int(input('Enter	the	first	number\t:'))

num2=int(input('Enter	the	second	number\t:'))

print('Calling	the	second	function...')

sum2(num1,	num2)

print('Calling	the	third	function...')

result=sum3(num1,	num2)

print(result)

>>>

Output

RUN	C:/Users/ACER

5.5.1

ASPIRE/AppData/Local/Programs/Python/Python35-

32/Tools/scripts/sum_of_numbers.py

Calling	the	first	function...

Enter	the	first	number	3

Enter	the	second	number	4

The	sum	of	the	numbers	is	7

Enter	the	first	number	2

Enter	the	second	number	1

Calling	the	second	function...

The	sum	of	the	numbers	is	3

Calling	the	third	function...

3

>>>

Advantage	of	Arguments
In	Python,	unlike	“C”	while	defining	a	function	the	types	of	arguments	are	not
specified.	This	has	 the	advantage	of	giving	different	 types	of	arguments	 in	 the
same	 function.	 For	 example	 in	 the	 function	 that	 follows,	 the	 first	 invocation
passes	an	 integer	value	 in	 the	 function.	The	 function	multiplies	 the	number	by
two.	In	the	case	of	the	second	invocation	the	multiply	operator	repeats	the	string,
passed	as	a	parameter,	n	number	of	times.

Illustration	5.3:	Types	of	functions.

Listing	1

def	sum1(num1,	num2):

return	(num1+num2)

Output

>>>	sum1(3,2)

5

>>>	sum1('hi',	'there')

'hithere'

>>>

Listing	2

>>>

5.6

def	sum1(num1,	num2):

return	(num1+num2)

print('Calling	function	with	integer	arguments\t:	Result:

'+str(sum1(2,3)))

print('Calling	the	function	with	string	arguments\t:	Result:

'+sum1('this','	world'))

Output

Calling	function	with	integer	arguments	:	Result:	5

Calling	the	function	with	string	arguments	:	Result:	this

world

>>>

IMPLEMENTING	SEARCH

This	section	demonstrates	one	of	the	most	important	uses	of	the	topics	studied	so
far:	Searching.	 In	 the	 search	 problem	 if	 the	 element	 is	 present	 in	 a	 given	 list
then	its	position	should	be	printed,	otherwise	a	message	“Not	Found”	should	be
displayed.	There	are	two	major	strategies	used	to	accomplish	the	task.	They	are
linear	search	and	binary	search.	In	linear	search,	the	elements	are	iterated	one	by
one.	If	the	required	element	is	found,	the	position	of	the	element	is	printed.	The
absence	 of	 an	 element	 can	 be	 judged	 using	 a	 flag.	 The	 algorithm	 has	 been
implemented	in	Illustration	5.4.

Illustration	5.4:	Write	a	program	to	implement	a	linear	search.

Solution:

5.7

Output

Position	5

Not	found

>>>

The	 above	 search	 strategy	 works	 well.	 However,	 there	 is	 another	 strategy	 of
search	called	binary	search.	In	binary	search,	the	input	list	must	be	sorted.	The
algorithm	checks	whether	the	item	to	be	searched	is	present	at	the	first	position,
at	 the	 last	 position	 or	 at	 the	 middle	 position.	 If	 the	 requisite	 element	 is	 not
present	at	any	of	these	positions	and	it	is	less	than	the	middle	element,	then	the
left	part	of	the	list	becomes	the	input	of	the	procedure;	else	the	right	part	of	the
element	becomes	the	input	to	the	procedure.	The	reader	is	advised	to	implement
binary	search.

The	complexity	of	the	binary	search	is	O(logn).

SCOPE

The	scope	of	a	variable	in	Python	is	the	part	of	the	program	wherein	its	value	is
legal	 or	 valid.	 It	 may	 be	 seated	 here	 that	 although	 Python	 allows	 a	 global
variable,	the	value	of	a	local	variable	must	be	assigned	before	being	referenced.
Illustration	5.5	exemplifies	this	concept.	The	illustration	has	three	listings.	In	the
first	 listing	 the	value	of	'a'	 has	been	 assigned	outside	 the	 function	 as	well	 as
inside	 the	 function.	This	 leads	 to	a	problem	as	a	variable	cannot	be	 referenced
before	being	assigned.

In	the	second	case	this	contention	is	resolved.	Finally,	the	last	listing	shows	that
global	variables	are	very	much	allowed	in	Python	for	some	strange	reason.	As	an
active	programmer,	I	firmly	believe	that	should	not	have	been	allowed	and	there
are	 multiple	 reasons	 for	 not	 allowing	 global	 variables	 in	 a	 programming
language.

Illustration	5.5:	Listings	to	scope	of	a	variable.

Listing	1

#	Note	that	a	=	1does	not	hold	when	function	is	called

a	=	1

def	fun1():

print(a)

a=7

print(a)

def	fun2():

print(a)

a=3

print(a)

fun1()

fun2()

>>>

Output

============	RUN	C:/Python/Functions/scope.py	===========

Traceback	(most	recent	call	last):

File	"C:/Python/Functions/scope.py",	line	12,	in

<module>	fun1()

File	"C:/Python/Functions/scope.py",	line	3,	in	fun1

print(a)

UnboundLocalError:	local	variable	'a'	referenced	before

assignment

>>>

Listing	2

a	=	1

def	fun1():

a=1

print(a)

a=7

print(a)

def	fun2():

a=1

print(a)

a=3

print(a)

fun1()

fun2()

5.8

Output

>>>

===========	RUN	C:/Python/Functions/scope.py	===========

1

7

1

3

>>>

Also,	 note	 that	 had	 “a”	 been	 not	 assigned	 in	 the	 functions,	 the	 global	 value
would	have	sufficed.

Listing	3

Output

>>>

===========	RUN	C:/Python/Functions/scope.py	============

1

1

>>>

RECURSION

At	times	a	function	needs	to	be	called	within	itself.	Calling	a	function	in	itself	is
referred	to	as	recursion.	The	concept	is	used	to	accomplish	many	tasks	easily	and
intuitively.	For	example,	consider	the	following	series:

1,	1,	2,	3,	5,	8,	13,	...

Note	that	each	term	is	the	sum	of	the	previous	two	terms;	the	first	and	the	second
term	being	1	and	1	respectively.	This	series	is	referred	to	as	the	Fibonacci	series.
The	 series	 is	 due	 to	 a	 famous	 rabbit	 problem	 which	 has	 been	 described	 as

5.8.1

follows	in	mathematics.

Rabbit	Problem
A	pair	of	 rabbits	does	not	breed	 for	 the	 first	 two	months	 together,	 after	which
they	 generate	 a	 pair	 of	 rabbits	 each	month.	 This	way	 there	 is	 a	 single	 pair	 of
rabbit	 for	 the	 first	 two	 months,	 after	 which	 the	 growth	 follows	 a	 fascinating
sequence	(Table	5.1).

Table	5.1		Fibonacci	series

Month Pair	of	Rabbits Number	of
Pairs

1 R0 1
2 R0 1
3 R0	 	R01 2
4 R0	 	R01,	R02 3
5 R0	 	R01	(R010),	R02,	R03 5
6 R0	 	R01	(R010,	R011),	R02	(R020),	R03,

R04
8

Note	that	in	the	above	series,	each	term	is	the	sum	of	the	two	preceding	terms.
The	series	can	be	represented	as	follows:

Illustration	 5.6	 depicts	 the	 implementation	 of	 the	 Fibonacci	 series	 using
recursion.

Illustration	5.6:	Ask	the	user	to	enter	the	value	of	n	and	find	the	nth	Fibonacci
term.

Solution:

Output

==========	RUN	C:/Python/Functions/factoorial.py	==========

Enter	the	number:5

The	nth	fib	term	is	5

Note	that	the	calculation	of	Fibonacci	uses	the	Fibonacci	term	calculated	earlier.
For	 example,	 the	 calculation	 of	 the	 5th	 Fibonacci	 term	 requires	 the	 following
calculations:	fib(5)	requires	fib(4)	and	fib(3),	fib(4)	requires	fib(3)	and	fib(2)	and
fib(3)	requires	fib(2)	and	fib(1)	(Figure	5.4).

FIGURE	5.4 Calculation	of	the	5th	Fibonacci	term

The	 next	 example	 calculates	 the	 factorial	 of	 a	 number	 using	 recursion.	 The
factorial	of	a	number	n	(positive,	integer)	is	the	product	of	all	the	integers	from	1
to	n.	That	is:

n!	=	1	×	2	×	3	×	...	×	n
Note	that	since (n	–	1)!	=	1	×	2	×	3	...	×	(n	–	1)
Therefore, n!	=	n	×	(n	–	1)!

Also	 the	 factorial	of	1	 is	1,	 that	 is,	1!	=	1	which	can	be	used	as	 the	base	case
while	implementing	factorial	using	recursion.	The	program	has	been	depicted	in

Illustration	5.7.

Illustration	5.7:	Ask	the	user	to	enter	the	value	of	n	and	calculate	the	factorial
of	n	using	recursion.

Solution:

Output

>>>

==========	RUN	C:/Python/Functions/factoorial.py	==========

Enter	the	number	5

Factorial	of 5 is 120

>>>

The	 power	 of	 a	 number	 raised	 to	 the	 power	 of	 another	 can	 also	 be	 calculated
using	recursion.	Since	that	 is	power	(a,	b)	=	a*power	(a,	b	–	1).	Also,	a1,
that	 is	 power	 (a,	 1)	 =	 1.	 The	 above	 logic	 has	 been	 implemented	 in	 the
illustration	that	follows.

Illustration	5.8:	Ask	the	user	to	enter	the	values	of	a	and	b	and	calculate	a	to	the
power	of	b,	using	recursion.

Program

def	power(a,	b):

if	b==1:

return	a

else:

return	(a*power(a,	b-1))

a	=	int(input('Enter	the	first	number\t:'))

b	=	int(input('Enter	the	second	number\t:'))

p	=	power(a,b)

5.8.2

5.9

print(a,	'	to	the	power	of	',b,'	is	',	p)

Output

>>>

==========	RUN	C:/Python/Functions/power.py	==========

Enter	the	first	number	3

Enter	the	second	number	4

3 to	the	power	of 4 is 81

>>>

>>>

Disadvantages	of	Using	Recursion
In	 spite	 of	 the	 fact	 that	 recursion	makes	 things	 easy	 and	 helps	 to	 accomplish
some	of	 the	 tasks	 intuitively,	 there	 is	a	 flip	 side.	Consider	 the	 first	 illustration.
Though	the	program	calculates	the	nth	Fibonacci	term	easily,	the	complexity	of
the	procedure	is	too	high	(O())	where	Φ	is	gold	number.	The	same	task	can	be
accomplished	in	linear	time	using	a	paradigm	called	dynamic	programming.

Similarly,	 the	 recursive	 procedures	 in	 divide	 and	 conquer	 also	 require	 a	 huge
amount	 of	 time.	 In	 addition	 to	 the	 above	 problem,	 there	 is	 another	 flip	 side.
Recursion	requires	a	lot	of	memory.	Though	a	portion	of	the	memory	is	reserved
for	stacks,	a	recursive	procedure	may	eat	up	all	the	available	memory.	However,
recursion	is	fun	so	let’s	enjoy	recursion.

CONCLUSION

The	chapter	introduces	the	concept	of	functions.	The	idea	of	dividing	the	given
program	 into	 various	 parts	 is	 central	 to	 manageability.	 The	 chapter	 forms	 the
foundation	stone	of	the	chapters	that	follow.	It	may	also	be	stated	that	function
implements	 the	 behavior	 of	 a	 class;	 therefore	 before	 moving	 to	 the	 object-
oriented	paradigms,	one	must	be	familiar	with	functions	and	procedures.

The	 concept	 of	 recursion	 is	 also	 central	 to	 the	 implementations	which	 involve
the	ideas	of	divide	and	conquer	and	that	of	dynamic	programming.	So,	one	must
also	 be	 equipped	 with	 the	 power	 of	 recursion	 and	 should	 be	 able	 to	 use	 the
concept	to	solve	problems	if	possible.

The	 discussion	 continues	 in	 the	 next	 chapter	 where	 the	 ideas	 of	 iterators,
generators,	and	comprehensions	have	been	introduced.	As	a	matter	of	fact,	all	of
them	are	functions	but	with	special	purposes.

GLOSSARY

Function:	Functions	accomplish	a	particular	task.	They	help	with	making	a
program	manageable.
Argument:	Arguments	are	the	values	passed	in	a	function.
Recursion:	A	function	may	call	itself.	This	is	referred	to	as	recursion.

POINTS	TO	REMEMBER

A	function	can	have	any	number	of	arguments.
A	function	may	return	a	maximum	of	one	value.
A	function	may	not	even	return	a	value.
A	function	may	call	itself.
A	function	can	be	called	any	number	of	times.
A	function	needs	to	be	called	in	order	to	be	able	to	accomplish	a	particular
task.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	keywords	is	used	to	define	a	function?

(a) Def

(b) Define

(c) Definition

(d) None	of	the	above

2. The	values	passed	in	a	function	are	called

(a) Arguments

(b) Return	values

(c) Yield

(d) None	of	the	above

3. A	recursive	function	is	one	that	calls

(a) Itself

(b) Other	function

(c) The	main	function

(d) None	of	the	above

4. Which	of	the	following	should	be	present	in	a	recursive	function?

(a) Initial	values

(b) Final	values

(c) Both

(d) None	of	the	above

5. Which	of	the	following	can	be	accomplished	using	recursion?

(a) Binary	search

(b) Fibonacci	series

(c) Power

(d) All	of	the	above

6. Which	of	the	following	is	allowed	in	a	function?

(a) if

(b) while

(c) Calling	a	function

(d) None	of	the	above

7. Which	types	of	functions	are	supported	in	Python?

(a) Build	in

(b) User	defined

(c) Both

(d) None	of	the	above

8. Which	of	the	following	is	true?

(a) A	function	helps	in	dividing	a	program	in	small	parts

(b) A	function	can	be	called	any	number	of	times

(c) Both

(d) None	of	the	above

9. Which	of	the	following	is	true?

(a) One	can	have	a	function	that	called	any	number	of	functions

(b) Only	a	limited	number	of	functions	can	be	called	from	a	function

(c) Nested	functions	are	not	allowed	in	Python

(d) Nested	functions	are	allowed	only	in	certain	conditions

10. Nested	functions	incorporates	the	concept	of

(a) Stack

(b) Queue

(c) Linked	List

(d) None	of	the	above

PROGRAMMING	EXERCISE

1. Write	a	function	that	calculates	the	mean	of	numbers	entered	by	the	user.

2. Write	a	function	that	calculates	the	mode	of	numbers	entered	by	the	user.

3. Write	a	function	that	calculates	the	median	of	numbers	entered	by	the	user.

4. Write	 a	 function	 that	 calculates	 the	 standard	 deviation	 of	 the	 numbers
entered	by	a	user.

5. Write	a	function	that	finds	the	maximum	of	the	numbers	from	a	given	list.

6. Write	a	function	that	finds	the	minimum	of	the	numbers	from	a	given	list.

7. Write	 a	 function	 that	 finds	 the	 second	 maximum	 of	 the	 numbers	 from	 a
given	list.

8. Write	 a	 function	 that	 finds	 the	maximum	of	 three	numbers	 entered	by	 the
user.

9. Write	 a	 function	 that	 converts	 the	 temperature	 in	 Celsius	 to	 that	 in
Fahrenheit.

10. Write	a	function	that	searches	for	an	element	from	a	given	list.

11. Write	a	function	that	sorts	a	given	list.

12. White	a	function	that	takes	two	lists	as	input	and	returns	the	merged	list.

13. Write	a	function	that	finds	all	the	factors	of	a	given	number.

14. Write	a	function	that	finds	common	factors	of	two	given	numbers.

15. Write	 a	 function	 that	 returns	 a	 number	 obtained	 by	 reversing	 the	 order	 of
digits	of	a	given	number.

QUESTIONS	BASED	ON	RECURSION

Use	recursion	to	solve	the	following	problems

1. Find	the	sum	of	two	given	numbers.

2. Find	the	product	of	two	given	numbers.

3. Given	two	numbers,	find	the	first	number	to	the	power	of	the	second.

4. Given	two	numbers,	find	the	greatest	common	divisor	of	the	numbers.

5. Given	two	numbers,	find	the	least	common	multiples	of	the	numbers.

6. Generate	n	Fibonacci	terms.
In	a	series	the	first	three	terms	are	1,	1	and	1;	the	ith	term	is	obtained	using

the	following	formula
f	(i)	=	2	×	f	(i	–	1)	+	3	×	f	(i	–	2)

Write	a	function	to	generate	n	terms	of	the	sequence.
Find	the	element	in	a	given	sorted	list.
Find	the	maximum	from	a	given	list.
Reverse	the	order	of	digits	of	a	given	number.

THEORY

1. What	are	the	advantages	of	using	functions	in	a	program?

2. What	is	a	function?	What	are	the	components	of	a	function?

3. What	 is	 the	 importance	of	parameter	 and	 return	 type	 in	a	 function?	Can	a
function	have	more	than	one	return	value?

4. What	 is	 recursion?	 Which	 data	 structure	 is	 used	 internally	 while
implementing	recursion?

5. What	are	the	disadvantages	of	recursion?

EXTRA	QUESTIONS

1. What	will	be	the	output	of	the	following	program?

(a) 1

(b) 5

(c) 3

(d) Maximum	iteration	depth	reached

2. What	will	be	the	output	of	the	following?

(a) 5

(b) 27

(c) Maximum	iteration	depth	reached

(d) None	of	the	above

3. What	will	be	the	output	of	the	following?

(a) 5

(b) 100

(c) 25

(d) Maximum	iteration	depth	reached

4. What	will	be	the	output	of	the	following?

(a) 1	2	8	28	100	356	1268	4516	16084

(b) 1	3	5	7	9	11	13	15

(c) Maximum	iteration	depth	reached

(d) None	of	the	above

5. What	will	be	the	output	of	the	following?

(a) 1	2	8	28	100	356	1268	4516	16084

(b) 1	3	5	7	9	11	13	15

(c) Maximum	iteration	depth	reached

(d) None	of	the	above

6. What	will	be	the	output	of	the	following?

(a) I	am	in	main

I	am	in	fun	1

I	am	in	fun	2

I	am	back	in	fun	1

I	am	back	in	main

(b) Reverse	of	the	above

(c) None	of	the	above

(d) The	program	does	not	execute

7. Conceptually	which	data	structure	is	implemented	in	the	above	program?

(a) Stack

(b) Queue

(c) Graph

(d) Tree

8. Which	technique	is	implemented	in	the	following	code?

(a) Linear	search

(b) Binary	search

(c) None	of	the	above

(d) The	code	does	not	execute

9. What	is	the	complexity	of	the	above?

(a) O	(n)

(b) O	(n2)

(c) O	(log	n)

(d) None	of	the	above

10. Which	is	better	-	linear	search	or	binary	search?

(a) Linear

(b) Binary

(c) Both	are	equally	good

(d) Depends	on	the	input	list.

6.1

CHAPTER	6

ITERATIONS,	GENERATORS,	AND
COMPREHENSIONS

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	use	and	application	of	iterators
• Use	iterators	to	produce	sequences
• Use	generators	to	generate	sequences
• Understand	and	use	list	comprehensions

INTRODUCTION

So	 far	 basic	 data	 types,	 operators	 and	 control	 structures	 have	 been	 covered.
These	 are	 essential	 part	 of	 any	 procedural	 language.	 Python	 also	 provides	 the
programmers	with	 lists,	 strings,	 tuples,	 dictionary,	 and	 files,	which	makes	 it	 a
powerful	 language.	 However,	 one	 should	 be	 able	 to	 efficiently	 access	 and
manipulate	 these	 elements	 to	 accomplish	 the	 given	 task.	 For	 example	 if	 the
formula	 of	 the	 ith	 element	 of	 a	 list	 is	 known,	 then	 the	 whole	 list	 can	 be
generated/accessed	 in	 one	 go.	To	 accomplish	 this	 task,	for	 loop	 comes	 to	 our
rescue.	 However,	 Python	 also	 comes	 with	 better	 options	 like	 iterators,	 which
help	us	to	do	the	said	task	easily.	One	can	also	define	iterable	objects	in	Python.
There	 is	 another	 marvel	 in	 Python	 that	 facilitates	 the	 generation	 of	 lists	 and
sequences,	which	is	generator.	This	chapter	also	introduces	comprehension.

The	chapter	has	been	organized	as	 follows.	The	 second	 section	of	 this	 chapter
revisits	 for.	 The	 iterators	 have	 been	 introduced	 in	 the	 third	 section	 of	 this
chapter.	 The	 fourth	 section	 explains	 so	 as	 to	 how	 to	 define	 your	 own	 iterable
objects.	 The	 generators	 are	 introduced	 and	 explained	 in	 section	 five	 of	 this
chapter.	 The	 sixth	 section	 of	 this	 chapter	 deals	 with	 comprehensions,	 which
makes	 the	 task	 of	 generating	 specific	 lists,	 etc.,	 easy	 and	 the	 last	 section
concludes	the	chapter.

6.2

The	chapter	assumes	importance	as	it	forms	the	foundation	stone	of	many	of	the
difficult	tasks	presented	in	the	following	chapters.	Also,	the	knowledge	of	these
will	make	the	day	to	day	tasks	easy	and	spare	the	programmer	from	the	horror	of
writing	long	codes.

THE	POWER	OF	“FOR”

A	for	loop	can	be	used	to	iterate	through	a	list,	tuple,	string,	or	a	dictionary.	This
section	briefly	explains	how	to	use	the	loop	for	the	above	iterable	objects.	Let	us
start	with	the	syntax	of	for.

Syntax

for	i	in	L:

#do	something

L	is	list,	string,	tuple	or	dictionary

When	one	writes	"	i	in	L",	where	L	is	a	list,	i	becomes	the	first	element	of	the
list	 and	 as	 the	 iteration	 progresses,	 i	 becomes	 the	 second	 element,	 the	 third
element	and	so	on.	These	elements	can	be	then	independently	manipulated.	The
concept	 has	 been	 exemplified	 in	 Illustration	 6.1.	 The	 illustration	 shows	 the
manipulation	 of	 a	 list	 using	 the	 for	 loop.	 In	 the	 illustration	 the	 given	 list
contains	 a	 set	 of	 numbers,	 some	 of	 them	 positive	 and	 some	 negative.	 The
negative	numbers	are	appended	to	a	list	called	N,	where	the	positive	numbers	are
appended	in	a	list	called	P.

Illustration	6.1:	From	a	given	list,	put	all	 the	positive	numbers	 in	one	list	and
negative	numbers	in	the	other	list.

Solution:	Create	two	lists,	P	and	N.	Initialize	both	of	them	to	[].	Now	check	each
number	 in	 the	 list.	 If	 the	 number	 is	 positive	 put	 it	 in	 P	 and	 if	 the	 number	 is
negative	put	it	in	N.

Program

Output

==========	RUN	C:/Python/Iterations/for	list.py	==========

The	list	of	positive	numbers	:	[1,	2,	5,	7,	3,	7]

The	list	of	negative	numbers	:	[-1,	-6]

>>>

A	 for	 loop	 can	 also	 be	 used	 to	manipulate	 strings.	When	 one	writes	 "	 i	 in
str",	where	str	is	a	string,	i	becomes	the	first	character	of	the	string	and	as	the
iteration	progresses,	i	becomes	the	second	character,	 the	 third	character	and	so
on.	 These	 characters	 can	 be	 then	 independently	manipulated.	 The	 concept	 has
been	 exemplified	 in	 Illustration	 6.2,	 in	which	 the	 vowels	 and	 consonants	 of	 a
given	string	are	put	in	two	strings.

Illustration	 6.2:	 Ask	 the	 user	 to	 enter	 a	 string	 and	 put	 all	 the	 vowels	 of	 the
string	in	one	string	and	the	consonants	in	the	other	string.

Solution:	Create	 two	strings:	str1	and	str2.	 Initialize	both	 to	"".	Now,	 check
each	 character	 in	 the	 given	 string.	 If	 it	 is	 a	 vowel,	 concatenate	 it	 with	 str1
otherwise	concatenate	it	with	str2.

Program

Similarly,	 a	 for	 loop	 can	 be	 used	 to	 iterate	 through	 a	 tuple	 and	 keys	 of	 a
dictionary	as	shown	in	Illustrations	6.3	and	6.4.

Illustration	 6.3:	 This	 illustration	 demonstrates	 the	 use	 of	 for	 for	 iterating
through	a	tuple.

Solution:

T=(1,	2,	3)

for	i	in	T:

print(i)

print(T)

>>>

Output

==========	RUN	C:/Python/Iterations/forTuple.py	==========

1

2

3

(1,	2,	3)

>>>

Illustration	 6.4:	 This	 illustration	 demonstrates	 the	 use	 of	 for	 for	 iterating
through	a	dictionary.

Solution:

Dictionary={'Programming	in	C#':	499,	'Algorithms	Analysis

and	Design':599}

print(Dictionary)

6.3

for	i	in	Dictionary:

print(i)

>>>

Output

==========	RUN	C:/Python/Iterations/for	dic.py	==========

{'Programming	in	C#':	499,	'Algorithms	Analysis	and	Design':

599}

Programming	in	C#

Algorithms	Analysis	and	Design

>>>

ITERATORS

The	above	tasks	(Illustrations	6.1-6.4)	can	also	be	accomplished	using	iterators.
The	"iter"	function	returns	the	iterator	of	the	object	passed	as	an	argument.	The
iterator	can	be	used	 to	manipulate	 lists,	 strings,	 tuples,	 files,	 and	dictionary,	 in
the	same	way	as	a	for	 loop.	However,	 the	use	of	an	iterator	ensures	flexibility
and	additional	power	to	a	programmer.	This	will	be	established	in	the	following
sections.

An	iterator	can	be	set	on	a	list	using	the	following:

<name	of	the	iterator>	=	iter(<name	of	the	List>

The	 iterator	 can	 move	 to	 the	 next	 element,	 using	 the	 _next_()	 method.	 An
iterator,	as	 stated	earlier,	 can	 iterate	 through	any	 iterable	object	 including	 lists,
tuples,	 strings	 or	 a	 directory.	 When	 there	 are	 no	 more	 elements	 then	 a
StopIteration	exception	is	raised.

The	following	illustration	shows	the	manipulation	of	a	list	using	iterators.	In	the
illustration,	the	given	list	contains	a	set	of	numbers,	some	of	them	positive	and
some	negative.	The	negative	numbers	are	appended	 to	a	 list	called	N,	whereas
the	 positive	 numbers	 are	 appended	 in	 a	 list	 called	 P.	 The	 same	 problem	 was
solved	using	the	for	loop	in	Illustration	6.1.

Illustration	 6.5:	 Using	 iterators	 the	 program	 puts	 the	 positive	 and	 negative
numbers	 of	 a	 list	 into	 two	 separate	 lists	 and	 raises	 an	 error	 at	 the	 end	 of	 the
program.

Solution:

The	next	example	deals	with	a	string.	The	 iterator	 is	set	 to	 the	first	element	of
the	string	and	is	then	set	to	the	second	element,	third	element	and	so	on.	If	the
character	is	a	vowel	it	is	appended	to	vow,	otherwise	it	is	appended	to	cons.	The
following	illustration	uses	the	same	problem	as	that	stated	in	Illustration	6.2.

Illustration	6.6:	Write	a	program	that	uses	iterators	to	separate	the	vowels	and
consonants	of	a	given	string	and	raises	an	error	at	the	end	of	the	program.

Solution:	The	vow	and	cons	strings	are	initialized	to	""	and	each	character	of	the
given	list	is	checked.	If	the	character	is	a	consonant	it	is	concatenated	to	cons,
otherwise	it	is	concatenated	to	vow.

6.4

A	slightly	more	complex	application	of	iterators	has	been	shown	in	the	following
illustration.

Illustration	 6.7:	 Write	 a	 program	 to	 add	 the	 corresponding	 elements	 of	 two
given	lists	and	sort	the	final	list.

Solution:

#The	program	concatenates	two	lists	into	one	by	iterating

over	individual	elements	of	the	lists	using	the	list

function	and	then	sorts	the	concatenated	list.

l1	=	[3,	6,	1,	8,	5]

l2	=	[7,	4,	6,	2,	9]

i1	=	iter(l1)

i2	=	iter(l2)

l3	=	sorted(list(i1)	+	list(i2))

print('List1	-	',	l1,	'\nList2	-	',	l2,	'\nSortedCombn	-	',

l3)

DEFINING	AN	ITERABLE	OBJECT

One	can	define	a	class,	in	which	_init_,	_iter_,	and	_next_	can	be	defined	as
per	the	requirement.	The	init	function	initializes	the	variables	of	the	class,	the
iter	 defines	 the	mechanism	 of	 iterations	 and	 the	 next	method	 implements	 the
jump	to	the	next	item.

6.5

Illustration	 6.8:	 Generate	 the	 terms	 of	 an	 arithmetic	 progression	 using	 an
iterator	by	creating	an	iterable	object.

Solution:

Output

===========	RUN	C:/Python/Iterations/Class.py	===========

Enter	the	first	term	:1

Enter	the	common	differnce	:2

<class	'	main	.yrange'>

1

3

5

>>>

GENERATORS

Generators	are	functions	that	generate	the	requisite	sequences.	However,	there	is

an	inherent	difference	between	a	normal	function	and	a	generator.	In	a	generator,
the	values	are	generated	as	and	when	we	proceed.	So,	if	one	comes	back	to	the
function	once	 a	particular	value	 is	 generated,	 then	 instead	of	 starting	 from	 the
beginning	the	function	starts	from	the	point	where	we	left	off.

The	 task	 seems	 difficult	 but	 has	 an	 advantage.	 The	 concept	 can	 help	 the
programmer	 to	 generate	 lists	 containing	 the	desired	 sequences.	For	 example	 if
one	wants	to	generate	a	list	containing	the	terms	of	an	arithmetic	progression	in
which	each	term	is	“d”	more	than	the	first	term,	generators	come	to	the	rescue.
Similarly,	 the	 sequences	 like	geometric	 progression,	Fibonacci	 series,	 etc.,	 can
be	easily	generated	using	generator.

Python	comes	with	'yield',	which	helps	 to	start	 from	the	point	where	we	 left
off.	This	 is	markedly	different	 from	'return'	 used	 in	normal	 functions	which
does	 not	 save	 the	 state	 where	 we	 left	 off.	 If	 the	 function	 having	 'return'	 is
called	again,	it	starts	all	over	again.

The	 following	 illustration	 exemplifies	 the	 use	 of	 generators	 to	 produce	 simple
sequences	 like	 arithmetic	progression,	 geometric	progression,	Fibonacci	 series,
etc.

Illustration	6.9:	Write	 a	 generator	 to	produce	 arithmetic	progression	where	 in
the	first	term,	the	common	difference	and	the	number	of	terms	is	entered	by	the
user.

Solution:

Output

=========	RUN	C:/Python/Iterations/generator	1.py	=========

Enter	the	first	term	of	the	arithmetic	progression	:3

Enter	the	common	difference	of	the	arithmetic	progression	:5

Enter	the	number	of	terms	of	the	arithmetic	progression	:8

<generator	object	arithmetic_progression	at	0x031C2DE0>

3

8

13

18

23

28

33

38

>>>

Illustration	6.10:	Write	a	generator	to	produce	geometric	progression,	where	in
the	first	term	the	common	ratio	and	the	number	of	terms	is	entered	by	the	user.

Solution:

Output

========	RUN	C:/Python/Iterations/generators	gp.py	========

Enter	the	first	term	of	the	geometric	progression	:3

Enter	the	common	ratio	of	the	geometric	progression	:4

Enter	the	number	o0f	terms	of	the	geometric	progession	:7

3

9

27

81

243

729

2187

>>>

Illustration	6.11:	Write	a	generator	to	produce	a	Fibonacci	series.

Solution:

In	order	to	understand	the	concept,	let	us	go	through	the	following	illustration.

Illustration	6.12:	This	illustration	demonstrates	the	effect	of	yield	on	the	value
of	the	counter.

Solution:	The	reader	is	expected	to	note	the	change	in	the	value	after	and	before
yield.

Program

Output

==========	RUN	C:/Python/Iterations/generator.	py	==========

Start

Value	of	i	before	yield	:	0

0

Value	of	i	after	yield		:	0

Value	of	i	before	yield	:	1

1

Value	of	i	after	yield		:	1

Value	of	i	before	yield	:	2

2

Value	of	i	after	yield		:	2

Value	of	i	before	yield	:	3

3

Value	of	i	after	yield		:	3

Value	of	i	before	yield	:	4

4

Value	of	i	after	yield		:	4

Value	of	i	before	yield	:	5

5

Value	of	i	after	yield		:	5

Value	of	i	before	yield	:	6

6

Value	of	i	after	yield		:	6

Value	of	i	before	yield	:	7

7

Value	of	i	after	yield		:	7

Value	of	i	before	yield	:	8

8

Value	of	i	after	yield		:	8

Value	of	i	before	yield	:	9

9

Value	of	i	after	yield		:	9

Value	of	i	before	yield	:	10

10

Value	of	i	after	yield		:	10

Value	of	i	before	yield	:	11

11

Value	of	i	after	yield		:	11

Value	of	i	before	yield	:	12

6.6

12

Value	of	i	after	yield		:	12

Value	of	i	before	yield	:	13

13

Value	of	i	after	yield		:	13

Value	of	i	before	yield	:	14

14

Value	of	i	after	yield		:	14

Value	of	i	before	yield	:	15

15

Value	of	i	after	yield		:	15

Value	of	i	before	yield	:	16

16

Value	of	i	after	yield		:	16

Value	of	i	before	yield	:	17

17

Value	of	i	after	yield		:	17

Value	of	i	before	yield	:	18

18

Value	of	i	after	yield		:	18

Value	of	i	before	yield	:	19

19

Value	of	i	after	yield		:	19

End

>>>

COMPREHENSIONS

The	 aim	 of	 a	 programming	 language	 should	 be	 to	 make	 things	 easy	 for	 a
programmer.	A	task	can	be	performed	in	many	ways	but	one	which	requires	the
least	coding	 is	 the	most	appealing	 to	a	coder.	Python	has	many	features	which
facilitate	 programming.	 Comprehensions	 are	 one	 of	 them.	 Comprehensions
allow	sequences	to	be	built	from	other	sequences.	Comprehensions	can	be	used
for	 lists,	 dictionary	 and	 set	 comprehension.	 In	 the	 earlier	 version	 of	 Python
(Python	 2.0)	 only	 list	 comprehensions	 were	 allowed.	 However,	 in	 the	 newer
versions	comprehensions	can	be	used	with	dictionary	and	sets	also.

The	following	illustration	explains	the	use	of	comprehensions	to	generate	lists	in

various	cases:

The	range	(n)	function	generates	numbers	up	to	n.	The	first	comprehension
generates	the	list	of	numbers	which	are	cubes	of	all	the	numbers	generated
by	the	range	function.
The	 second	comprehension	works	 in	 the	 same	way	but	generates	3	 to	 the
power	of	x.
The	third	comprehension	generates	a	list	having	numbers	generated	by	the
range	(n)	function,	which	are	multiples	of	5.

In	the	fourth	comprehension	the	comprehension	takes	the	words	of	the	sentence
“Winter	is	coming”	and	generates	a	list	containing	the	word	in	caps,	in	running
and	the	length	of	the	word.

Illustration	6.13:	Generate	the	following	lists	using	comprehensions

x3,	i	from	0	to	9
3x,	i	from	2	to	10
All	the	multiples	of	5	from	the	previous	list
The	 caps,	 running	 version	 and	 the	 length	 of	 each	 word	 in	 the	 sentence
“Winter	is	coming”

Solution:

L1	=	[x**3	for	x	in	range(10)]

print(L1)

L2	=	[3**x	for	x	in	range(2,	10,	1)]

print(L2)

L3	=	[x	for	x	in	L2	if	x%5==0]

print(L3)

String	=	"Winter	is	comming".split()

print(String)

String_cases=[[w.upper(),	w.lower(),	len(w)]	for	w	in

String]

for	i	in	String_cases:

print(i)

list1	=	[1,	'4',	9,	'a',	0,	4]

square_int	=	[x**2	for	x	in	list1	if	type(x)==int]

print(square_int)

>>>

Output

>>>

======	RUN	C:/Python/Iterations/Comprehensions	1.py	======

[0,	1,	8,	27,	64,	125,	216,	343,	512,	729]

[9,	27,	81,	243,	729,	2187,	6561,	19683]

[]

['Winter',	'is',	'comming']

['WINTER',	'winter',	6]

['IS',	'is',	2]

['COMMING',	'comming',	7]

[1,	81,	0,	16]

>>>

A	 comprehension	 contains	 the	 input	 sequence	 along	 with	 the	 expression	 that
represents	 the	members.	A	comprehension	may	also	have	an	optional	predicate
expression.

In	order	to	understand	the	concept	let	us	consider	one	more	illustration.	The	list
of	 temperatures	 in	 Celsius	 is	 given	 and	 the	 corresponding	 list	 containing	 the
temperatures	 in	 Kelvin	 is	 to	 be	 generated.	 It	 may	 be	 stated	 here	 that	 the
temperatures	in	Celsius	and	Kelvin	are	related	as	follows.

Kelvin	(T)	=	Celsius(T)+273.16

Illustration	6.14:	Given	a	list	containing	temperatures	in	Celsius,	generate	a	list
containing	temperatures	in	Kelvin.

Solution:	The	list	L_kelvin,	is	a	list	where	in	each	element	is	273.16	more	than
the	corresponding	element	in	L_cel.	Note	that	the	task	has	been	accomplished	in
the	definition	of	the	list	L_Kelvin	itself.

Program

L_Cel	=	[21.2,	56.6,	89.2,	90,1,	78.1]

L_Kelvin	=	[x	+273.16	for	x	in	L_Cel]

print('The	output	list')

for	i	in	L_Kelvin:

print(i)

Output

>>>

======	RUN	C:/Python/Iterations/comprehension_cel.py	======

The	output	list

294.36

329.76000000000005

362.36

363.16

274.16

351.26

>>>

Another	 important	 application	 of	 comprehension	 is	 to	 generate	 the	 Cartesian
product	of	two	sets.	The	cross	product	of	two	sets,	A	and	B,	is	a	set	containing
tuples	of	the	form	(x,	y),	where	x	belongs	to	the	set	A	and	y	belongs	to	the	set	B.
Illustration	6.15	implements	the	program.

Illustration	6.15:	Find	the	Cartesian	product	of	two	given	sets.

Solution:

A=	['a',	'b',	'c']

B=	[1,	2,	3,	4]

AXB	=	[(x,	y)	for	x	in	A	for	y	in	B]

for	i	in	AXB:

 print(i)

 >>>

Output

========	RUN	C:/Python/Iterations/cross_product.py	========

('a',	1)

('a',	2)

('a',	3)

('a',	4)

('b',	1)

('b',	2)

('b',	3)

('b',	4)

('c',	1)

('c',	2)

6.7

('c',	3)

('c',	4)

>>>

The	above	program	is	 important	because	 the	concept	of	relations	and	 therefore
functions	in	mathematics	originates	from	the	cross	product.	As	a	matter	of	fact
any	subset	of	A	×	B	is	a	relation	from	A	to	B.	There	are	four	types	of	relations	in
mathematics:	one	to	one,	one	to	many,	many	to	one,	and	many	to	many.	Out	of
these	relations,	one	to	one	and	many	to	one	are	referred	to	as	functions.

CONCLUSION

The	chapter	 explains	 the	use	of	for	 for	 iterating	over	 a	 list,	 string,	 tuple,	 or	 a
dictionary.	It	may	be	stated	here	that	in	C	or	C++,	for	 is	generally	used	for	the
same	 purpose	 as	 while.	 However	 in	 Python,	 for	 can	 be	 used	 to	 visit	 each
element	individually.	Note	that	this	can	also	be	done	in	Java	or	C#.	In	order	to
define	an	 iterable	object,	_iter	and	_next	 need	 to	be	defined	 for	 the	 requisite
class.	The	reader	is	also	expected	to	take	note	of	the	fact	that	yield	and	return
perform	different	tasks	in	Python.	The	use	of	these	two	has	been	demonstrated	in
the	 illustrations	 presented	 in	 this	 chapter.	 Finally,	 while	 defining	 a	 list	 each
element	can	be	crafted	as	per	the	need	of	the	question.	This	can	be	done	with	the
help	 of	 comprehensions.	 The	 chapter,	 though	 easy,	 becomes	 important	 in	 the
light	 of	 excessive	 use	 of	 these	 techniques	 in	 machine	 learning	 and	 pattern
recognition	tasks	which	are	introduced	in	the	last	section	of	this	book.

GLOSSARY

Iterator	takes	an	iterable	object	and	helps	to	traverse	the	object.
next():	The	next	function	helps	in	iterating	over	the	value	of	the	iterable
object.
iter():	It	helps	in	creating	a	user	defined	iterable	object.
yield():	It	does	not	return	anything.

POINTS	TO	REMEMBER

for	 statement	 can	 be	 used	 for	 looping	 over	 a	 list,	 string,	 tuple,	 file,	 and

dictionary
iter	takes	an	object	and	returns	the	corresponding	iterator
The	_next_	gives	us	the	next	element
Built	in	functions,	lists,	etc.,	accept	iterator	as	arguments
A	generator	produces	a	sequence	of	results
Yield	 is	 used	 when	 many	 values	 are	 to	 be	 produced	 from	 a
function/generator

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	can	be	an	argument	in	_iter()_?

(a) String

(b) Tuple

(c) List

(d) Dictionary

(e) All	of	the	above

2. The	iter	takes	which	type	of	object?

(a) Iterable

(b) Any	object

(c) Comprehension

(d) Generator

3. What	is	the	function	of	_next()_?

(a) To	iterate	over	the	items	of	an	iterable	object.

(b) To	produce	a	new	iteration

(c) To	iterate	through	a	generator

(d) None	of	the	above

4. Which	of	the	following	transfers	the	control	to	the	calling	function?

(a) return

(b) yield

(c) Both

(d) None	of	the	above

5. Which	of	the	following	does	not	transfer	the	control	to	the	calling	function?

(a) return

(b) yield

(c) Both

(d) None	of	the	above

6. Which	of	the	following	is	essentially	used	in	generators?

(a) yield

(b) return

(c) Both

(d) None	of	the	above

7. Which	of	the	following	is	true?

(a) One	can	use	iterators	with	generators

(b) One	can	use	iterators	with	list

(c) One	can	use	iterators	with	comprehensions

(d) All	of	the	above

8. Which	of	the	following	can	be	iterated	using	a	for	loop

(a) String

(b) List

(c) Tuple

(d) All	of	the	above

9. Which	of	the	following	can	be	iterated	using	a	for	loop

(a) String

(b) Comprehension

(c) File

(d) All	of	the	above

10. Which	of	the	following	behaves	in	the	same	manner	as	the	combination	of
iter()	and	_next()_?

(a) for

(b) if

(c) Both

(d) None	of	the	above

THEORY

1. Explain	how	a	for	can	be	used	to	iterate	over	an	iterable	object.

2. Explain	the	iteration	protocol	in	Python.

3. What	is	the	function	of	a	generator?

4. What	is	the	difference	between	yield	and	return?

5. What	 are	 list	 comprehensions?	 Explain	 how	 comprehensions	 help	 in
generating	a	sequence.

6. Explore	some	iteration	tools	in	Python.

7. Do	you	believe	that	iter	improves	the	time	complexity	vis-a-vis	for?

PROGRAMMING	EXERCISE

1. Write	a	generator	that	produces	the	terms	of	arithmetic	progression.

2. For	the	above	question	write	the	corresponding	iterator	class.

3. Write	a	generator	that	produces	the	terms	of	a	geometrical	progression.

4. For	the	above	question	write	the	corresponding	iterator	class.

5. Write	a	generator	that	produces	the	terms	of	a	harmonic	progression.

6. For	the	above	question	write	the	corresponding	iterator	class.

7. Write	a	generator	that	produces	all	the	prime	numbers	up	to	a	given	number.

8. For	the	above	question	write	the	corresponding	iterator	class.

9. Write	a	generator	that	produces	all	the	Fibonacci	numbers	up	to	n.

10. For	the	above	question	write	the	corresponding	iterator	class.

11. Write	a	generator	that	produces	all	the	Armstrong	numbers	up	to	n.

12. For	the	above	question	write	the	corresponding	iterator	class.

13. Write	a	generator	that	produces	Pythagoras	triples	in	the	range	(1,	20).

14. For	the	above	question	write	the	corresponding	iterator	class.

15. Write	 a	 generator	 that	 produces	 all	 the	 multiples	 of	 6	 up	 to	 the	 given
number.

16. For	the	above	question	write	the	corresponding	iterator	class.

17. Write	a	list	comprehension	that	produces	all	the	numbers	that	are	multiple	of
2	or	5.

18. Write	a	list	comprehension	that	converts	a	list	containing	the	temperature	in
degrees	Celsius	to	that	in	Fahrenheit.

19. Write	a	list	comprehension	that	produces	all	the	prime	numbers.

20. Write	 a	 list	 comprehension	 that	 produces	 all	 the	 numbers	 which	 leave
remainder	1	when	divided	by	5.

21. Write	a	list	comprehension	that	produces	all	the	vowels	of	a	given	string.

22. Write	a	list	comprehension	that	produces	the	fourth	power	of	numbers	of	a
given	list.

23. Write	a	list	comprehension	that	produces	the	absolute	values	of	numbers	in	a
given	list.

7.1

CHAPTER	7

FILE	HANDLING

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	file	handling
• Appreciate	the	mechanisms	of	file	handling	in	Python
• Learn	various	file	access	modes	and	the	open	function
• Understand	various	functions	for	file	handling	in	Python
• Implement	the	concepts	studied	in	the	chapter

INTRODUCTION

The	data	types	and	control	structures	discussed	so	far	will	help	us	to	accomplish
many	simple	tasks.	The	problem	so	far	is	that	we	have	not	been	able	to	store	the
data	 or	 the	 results	 obtained	 for	 future	 use.	 Moreover,	 at	 times	 the	 results
produced	 by	 a	 program	 are	 voluminous.	 In	 such	 cases	 it	 becomes	 difficult	 to
store	data	 in	 the	memory	or	 even	 to	 read	 the	data.	 In	 such	 cases	 file	 handling
comes	to	our	rescue.

The	 reader	will	 also	 appreciate	 the	 fact	 that	 the	main	memory	 is	 volatile.	The
data	produced	by	a	program	cannot	be	used	for	future	endeavors.	Many	times	it
is	 required	 to	 store	 the	 data	 for	 use	 in	 future.	 For	 example,	 if	 one	 develops	 a
student	management	system,	the	user	should	be	able	to	retrieve	the	data	as	and
when	required.

As	we	understand,	 the	data	 is	 stored	 in	 the	binary	 format	 in	a	disk.	Therefore,
while	 storing	 data	 the	 format	 of	 the	 data	 should	 be	 taken	 care	 of.	 At	 the
programmer’s	 level,	 however,	 the	 data	 can	 be	 stored	 in	 files	 or	 in	 databases.
Databases	store	and	manage	related	data.	The	ease	of	retrieval,	the	security	and
the	 flexibility	 make	 databases	 one	 of	 the	 most	 important	 topics	 in	 computer
science.	 The	 concept	 of	 databases,	 their	 usage,	 and	 related	 issues	 constitute	 a
dedicated	subject.	This	chapter	only	concentrates	on	file	handling.	A	file	can	be

7.2

perceived	 as	 set	 of	 records	 where	 each	 record	 has	 some	 fields.	 The	 fields,	 in
turn,	have	certain	bytes.	Files,	as	discussed	 later,	can	have	many	formats.	This
chapter	 concentrates	 on	 binary	 and	 text	 files.	 The	 two	 formats	 differ	 in	 the
representation	of	the	end	of	the	file	and	in	the	storage	of	standard	data	types.	A
file	may	have	certain	permissions	associated	with	it.	For	example,	one	may	not
have	write	permissions	for	a	file	which	is	to	be	used	by	the	operating	system.	For
that	 matter,	 a	 user	 may	 not	 even	 have	 read	 permissions	 for	 such	 files.	 Such
constraints	need	to	be	kept	in	mind	while	writing	programs	for	file	handling.

Python	provides	many	functions	to	carry	out	operations	related	to	file	handling.
The	 creation	 of	 a	 file,	 writing	 data	 to	 a	 file,	 reading	 the	 data,	 appending
something	 to	 the	 file	 and	 standard	 directory	 operations	 are	 discussed	 in	 this
chapter.	Moreover,	to	make	things	interesting	the	use	of	the	above	operations	in
encryption	has	also	been	discussed.

The	 chapter	 has	 been	 organized	 as	 follows.	 The	 second	 section	 discusses	 the
general	file	handling	mechanism.	The	third	section	discusses	the	open()	function
and	 the	 various	 modes	 in	 which	 a	 file	 can	 be	 opened.	 The	 fourth	 section
discusses	 the	 functions	 for	 reading	 and	 writing	 to	 the	 file.	 This	 section	 also
introduces	 the	 functions	 to	 get	 and	 set	 the	 position	 of	 a	 cursor	 in	 a	 file.	 The
fourth	section	also	discusses	some	important	factions	to	carry	out	various	tasks
and	 the	 fifth	 section	 briefly	 discusses	 the	 command	 line	 arguments.	 The	 last
section	of	this	chapter	concludes.

THE	FILE	HANDLING	MECHANISM

In	Python,	files	are	accessed	using	the	file	objects.	As	a	matter	of	fact,	 the	file
objects	help	us	to	access	not	just	normal	disk	files	but	can	help	us	to	accomplish
many	other	tasks	involving	other	kinds	of	files,	which	are	explained	later	in	this
chapter.

The	file	handling	mechanism	in	Python	 is	 simple.	The	 file	needs	 to	be	opened
first.	As	in,	the	file	is	hooked	to	an	Object	[1].	This	is	done	with	the	help	of	the
open()	 function.	 The	 function	 takes	 the	 name	 of	 the	 file	 and	 the	mode	 as	 its
arguments.	In	fact,	the	function	can	have	three	arguments.	The	third	is	discussed
in	 the	next	 section.	The	open	 function	 returns	an	object	of	 the	 file.	The	object
then	uses	the	library	functions	to	read	the	file,	write	into	it	or	append	it.	Finally,
the	memory	 space	occupied	by	 the	object	 is	 freed	using	 the	close()	 function.

7.3

The	mechanism	has	been	depicted	in	the	following	figure	(Figure	7.1).

FIGURE	7.1 File	handling	in	Python

FIGURE	7.2(a) The	open	function

FIGURE	7.2(b) The	close	function

Having	discussed	the	mechanism	of	handling	a	file,	now	let	us	move	on	to	the
file	access	modes	and	the	open	function	in	Python.

THE	OPEN	FUNCTION	AND	FILE	ACCESS	MODES

The	files	are	accessed	using	the	object	created	with	the	help	of	open()	function.
In	fact,	there	are	many	more	functions	used	to	create	an	object	of	the	file	type.
Note	 that	 the	 said	 functions	 return	 a	 file	 object	 or	 a	 file	 like	 object.	 This
abstraction	is	helpful	for	considering	files	as	interfaces	for	communication.	This
communication	 can	 be	 perceived	 as	 a	 transfer	 of	 bytes	 and	 the	 file	 can	 be

considered	as	a	sequence	of	bytes.

So,	 in	order	 to	be	able	 to	do	input/output	 to/from	a	file,	 the	open()	function	is
needed.	If	the	file	is	opened	successfully,	the	file	object	is	returned.	If	the	file	is
not	opened	successfully,	the	IOERROR	exception	is	raised.

The	open	function	takes	three	arguments.	The	first	argument	is	the	name	of	the
file,	the	second	the	mode	in	which	the	file	is	opened	and	the	third	indicates	the
buffer	string.	As	a	matter	of	fact,	the	third	will	rarely	be	used.	The	first	argument
is	a	string	of	characters,	which	is	either	a	valid	filename	or	a	path.	The	path	can
be	 relative	or	absolute.	The	access	mode	 is	 the	mode	 in	which	 the	 file	will	be
opened	(Figure	7.2).	The	various	modes	have	been	presented	in	Figure	7.3.	The
modes	open	the	file	 in	read,	write	or	append	mode.	 In	 the	read	mode	(“r”)	 the
file	is	opened,	if	it	exists.	The	write	mode	(“w”)	opens	the	file	for	writing.	If	the
file	 already	 exists,	 the	 existing	 contents	 of	 the	 file	 are	 truncated.	 The	 append
mode	(“a”)	opens	the	file	for	writing	but	does	not	truncate	the	existing	contents.
In	this	mode	if	the	file	does	not	exist,	it	will	be	created.

FIGURE	7.3 File	opening	modes	in	Python

The	modes	can	be	 suffixed	with	a	 letter	 “b”	 indicating	binary	access.	The	“+”
suffix	can	be	used	to	grant	read	and	write	access	to	the	file.	Table	7.1	presents
the	various	modes	and	the	corresponding	operations	that	can	be	performed.

Table	7.1		Access	modes	for	File

7.4

7.4.1

File	Mode Operations

r reading	from	a	file
w write	to	a	file;	creates	the	file	if	it	does	not	exist;	truncate	the

file	if	it	already	exists.
a append	to	the	file;	if	the	file	does	not	exist	this	creates	the	file
r+ open	for	read	and	write
w+ w	for	both	read	and	write
a+ a	for	both	read	and	write
rb read	a	binary	file
wb write	mode	for	a	binary	file
ab append	mode	for	a	binary	file
rb+ r+	for	a	binary	file
wb+ w+	for	a	binary	file
ab+ a+	for	a	binary	file

PYTHON	FUNCTIONS	FOR	FILE	HANDLING

Python	 provides	 various	 library	 functions	 to	 carry	 out	 the	 standard	 tasks.	 The
functions	help	us,	say,	to	read	from	a	file,	write	to	a	file	and	to	append	something
in	 the	 existing	 file.	 Moreover,	 Python	 also	 provides	 the	 programmer	 with
functions	 to	 take	 the	 cursor	 to	 a	 particular	 location,	 or	 to	 read	 from	 a	 given
location.

The	Essential	Ones
This	section	briefly	introduces	the	various	functions.	The	use	of	these	functions
has	 been	 explained	 in	 the	 following	 sections.	 The	 reader	 is	 expected	 to
experiment	with	the	functions	in	order	to	get	a	clear	insight	into	them.

The	read()	function

The	function	reads	bytes	in	a	string.	It	may	take	an	integer	argument	indicating
the	number	of	bytes	to	read.	If	the	argument	is	-1,	the	files	must	be	read	to	the
end.	Also	if	no	argument	is	given,	the	default	is	taken	as	-1.

Tip

read()	is	same	as	read(-1)

If	the	content	of	the	file	is	larger	than	the	memory	then	only	the	content	which
can	fit	into	the	memory	will	be	read.	Moreover,	when	the	read	operation	ends	a	“
“(an	empty	string)	is	returned.

readline()	and	readlines()

The	readline()	method	is	used	to	read	a	line	until	the	newline	character	is	read.
It	may	be	stated	here	 that	 the	newline	character	 is	 retained	 in	 the	string	 that	 is
returned.	 The	 readlines()	 method	 reads	 all	 the	 lines	 from	 a	 given	 file	 and
returns	a	list	of	strings.

write()	and	writelines()

The	 write()	 method	 writes	 the	 string	 in	 a	 given	 file.	 The	 method	 is
complementary	to	the	read()	method.	The	writelines()	method	writes	a	list	of
strings	to	the	file.

Tip

There	is	no	writeline()	method	in	Python	3.x

seek()

The	seek()	method	takes	the	cursor	to	the	starting	position	in	the	given	file.	The
position	is	decided	with	respect	to	the	offset	given.	The	offset	can	be	0,	1,	or	2.
“0”	 indicates	 the	 beginning	 of	 the	 file.	 The	 value	 “1”	 indicates	 the	 current
position	and	the	value	“2”	indicates	the	“end	of	the	file.”

tell()

tell()	 is	 complementary	 to	 the	 seek()	 function.	 The	 function	 returns	 the
position	of	the	cursor.

close()

The	close()	 function	closes	 the	file.	The	object	should	be	assigned	 to	another
file	after	 it	 is	closed.	Though	Python	closes	a	file	after	a	program	finishes	(see
garbage	 collection	 in	 the	 following	 chapters),	 it	 is	 advisable	 to	 close	 the	 file
when	the	required	task	is	accomplished.	The	repercussions	of	not	closing	the	file
can	be	observed	at	the	most	unexpected	times.

7.4.2

7.4.3

fileno()

The	 fileno()	 function	 returns	 a	 descriptor	 for	 the	 file.	 For	 example,	 the
descriptor	of	the	file	named	“Textfile.txt,”	in	the	following	snippet	is	3.

>>>	f=open('Textfile.txt')

>>>	f.fileno()

3

>>>

The	OS	Methods
The	 methods	 that	 deal	 with	 the	 issues	 related	 to	 operating	 systems	 help	 the
programmer	 to	 create	 a	 generic	 program.	 The	 methods	 also	 spare	 the
programmer	 from	 the	 horror	 of	 dealing	 with	 uncanny	 formatting	 details.	 For
example,	the	end	of	a	line	is	represented	by	different	character	sets	in	different
operating	systems.	In	Unix,	a	newline	is	indicated	by	“\n,”	In	MAC	the	newline
character	 is,	“\r”	and	 in	DOS	 it	 is	 “\r\n.”	Similarly,	 file	 separator	Unix	 is	 “/,”,
whereas	 that	 in	Windows	 is	 “\”	 and	 that	 in	MAC	 is	 “:.”	Their	 inconsistencies
make	 the	 life	 of	 a	 programmer	miserable.	This	 is	 the	 reason	why	 a	 consistent
approach	is	needed	to	handle	such	situations.	Table	7.2	presents	the	names	and
functions	of	OS	methods.

Table	7.2		OS	methods

os	method Function

linesep string	used	to	separate	lines	in	a	file
sep used	to	separate	file	pathname	components
pathsep delimit	a	set	of	file	pathnames
curdir current	directory
pardir parent	directory

Miscellaneous	Functions	and	File	Attributes
As	well	as	the	functions	stated	above,	flush	and	isatty	are	also	used	to	make	a
program	more	robust.

flush():	The	flush	function	flushes	the	internal	buffer.

isatty():	The	function	returns	a	“1,”	if	the	file	is	a	tty-like	device.

For	more	such	functions,	the	reader	may	refer	to	the	Appendix	of	this	book.

File	attributes

It	may	also	be	stated	here	that	the	file	attributes	help	the	programmer	to	see	the
state	of	a	file	and	its	features	like	the	name,	mode,	and	the	softspace.	Table	7.3
presents	some	of	the	most	important	file	attributes.

Table	7.3		File	attributes

File	Attribute Importance

file.closed 1	if	file	is	closed,	0	otherwise
file.mode access	mode
file.name name	of	the	file

The	following	illustration	demonstrates	the	use	of	the	above	attributes.

Illustration	7.1:	Open	 a	 file	 called	 “Textfile.txt”	 in	 the	 read	mode.	Check	 the
name	of	the	file,	its	mode,	and	find	whether	it	is	closed	using	the	file	attributes.

Solution:

f=open('Textfile.txt','r')

print('Name	of	the	file\t:',f.name)

print('Mode\t:',f.mode)

print('File	closed?\t:',f.closed)

f.close()

print('Mode\t:',f.mode)

print('File	cloased?\t:',f.closed)

Output

>>>

=========	RUN	C:/Python/file	handling/fileattar.py	=========

Name	of	the	file	:	Textfile.txt

Mode	:	r

File	closed?	:	False

Mode	:	r

7.5

File	closed?	:	True

>>>

COMMAND	LINE	ARGUMENTS

If	the	compiler	knows	the	name	of	the	script,	then	the	name	of	the	script	along
with	the	additional	arguments	that	may	be	given	along	are	stored	in	a	list	called
argv.	The	argv	 variable	 is	 in	 the	sys	module.	 The	 arguments,	 along	with	 the
name	of	the	script,	are	called	the	command	line	arguments.	It	may	be	noted	here
that	even	the	name	of	the	script	is	part	of	the	list.	As	a	matter	of	fact,	the	name	of
the	script	is	the	first	element	of	the	list.	The	rest	of	the	arguments	are	stored	in
the	succeeding	locations	of	the	list.	The	argv	can	be	accessed	by	importing	the
sys	module.	The	following	illustration	demonstrates	the	use	of	the	argv	variable.

Illustration	 7.2:	 Display	 the	 number	 of	 command	 line	 arguments	 and	 the
individual	arguments.

Solution:

import	sys

print('The	number	of	arguments',len(sys.argv))

print('Arguments\n')

for	x	in	sys.argv:

print('Argument\t:',x)

Output

>>>

=======	RUN	C:/Python/file	handling/commandLine.py	=======

The	number	of	arguments	1

Arguments

Argument	:	C:/Python/file	handling/commandLine.py

>>>

The	following	example	presents	the	bubble	sort	which	takes	the	numbers	entered
at	the	command	line	as	the	input.

Illustration	7.3:	Sort	 the	numbers	(using	bubble	sort)	entered	as	 the	command
line	arguments.

7.6

Solution:

IMPLEMENTATION	AND	ILLUSTRATIONS

Having	seen	the	mechanism	of	file	handling,	the	functions	and	the	attributes,	let
us	now	have	a	look	at	the	usage	of	the	above	functions.	We	will	begin	with	the
most	 basic	 tasks	 and	 then	 use	 the	 functions	 to	 write	 something	 to	 a	 file	 (say
“TextFile.txt”),	and	open	 the	 file	 in	 the	write	mode.	The	open	 function,	 in	 this
case,	will	have	 two	parameters:	name	of	 the	 file	 (“TextFile.txt”)	and	 the	mode
(“w”).	Also,	the	file	needs	to	be	closed.	Note	that	the	write	function	returns	the
number	of	bytes	written	in	the	file.

>>>	f	=	open('TextFile.txt','w')

>>>	f.write('Hi	there\nHow	are	you?')

21

>>>	f.close()

The	read	function	reads	the	bytes	of	the	given	file.	The	open	function,	as	stated
earlier,	may	not	take	any	argument.	This	implies	reading	a	file	until	the	end.	The
read	text	can	be	stored	in	a	string	(“text”).

>>>	text=f.read()

>>>	text

'Hi	there\nHow	are	you?'

>>>	f.close()

>>>

A	 file	 can	 be	 renamed	using	 the	rename	 function	of	OS.	The	 rename	 function
takes	two	arguments:	the	first	being	the	name	of	the	original	file	and	the	second
being	 the	 new	 name	 of	 the	 file.	 In	 the	 following	 snippet,	 a	 file	 called
“TextFile.txt”	 is	 renamed	 to	 “TextFile1.txt”	 and	 read	 into	 “str”	 using	 the	 open
function.

>>>	import	os

>>>	os.rename('TextFile.txt','TextFile1.txt')

>>>	f=open('TextFile1.txt','r')

>>>	str=f.read()

>>>	str

'Hi	thereHow	are	you'

>>>

Writing	a	list	of	strings	in	a	file

As	 stated	 earlier,	 a	 list	 of	 strings	 can	 be	 written	 into	 a	 file	 using	 the
writelines()	function.	The	use	of	the	function	has	been	illustrated	as	follows.
In	the	following	snippet,	the	lines	entered	by	the	user	are	put	into	a	list,	L,	and
this	list	is	then	written	into	the	file	f.

Illustration	7.4:	Write	a	program	to	ask	the	user	to	enter	lines	of	text.	The	user
should	be	able	to	enter	any	number	of	lines.	In	order	to	stop,	he	must	enter	“\e.”
The	lines	should	be	appended	to	an	empty	list	(say	L).	This	list	should	then	be
written	 to	 a	 file	 called	 lines.txt.	 The	 program	 should	 then	 read	 the	 lines	 of
lines.txt.

Solution:

print('Enter	text,	press	\'\\e\'	to	exit')

L=[]

i=1

in1=input('Line	number'+str(i)+'\t:')

while(in1	!='\e'):

L.append(in1)

i=i+1

in1=input('Line	number'+str(i)+'\t:')

print(L)

f=open('Lines.txt','w')

f.writelines(L)

f.close()

f=open('lines.txt','r')

for	l	in	f.readline():

print(l,	end='	')

f.close()>>>

Output

==========	RUN	C:/Python/file	handling/Write.py	==========

Enter	text,	press	'\e'	to	exit

Line	number1	:Hi	there

Line	number2	:How	are	you

Line	number3	:I	am	good

Line	number4	:\e

['Hi	there',	'How	are	you',	'I	am	good']

Hi	there	How	are	youI	am	good

>>>

Reading	n	characters	and	the	seek()	function

The	use	of	the	read(n)	function,	which	reads	the	first	“n”	characters	of	the	file
has	been	demonstrated	 in	 the	 following	 illustration	 (Illustration	7.5).	Note	 that
the	 tell	 function	 tells	 the	position	of	 the	cursor,	which	 is	why	 the	value	of	pos
changes	 as	 and	 when	 we	 move	 forward.	 The	 seek()	 function	 takes	 two
parameters,	 the	 first	 being	 the	 offset	 and	 the	 second	 the	 position.	 Note	 that
seek(0,	0)	positions	the	cursor	at	the	first	position	from	the	beginning.

Illustration	7.5:	Open	a	file	TextFile.txt	and	write	a	few	lines	in	it.	Now	open
the	file	in	the	read	mode	and	read	the	first	15	characters	from	the	file.	Then	read
the	next	five	characters.	In	each	step	show	the	position	of	the	cursor	in	the	file.
Now,	go	back	to	the	first	position	in	the	file	and	read	20	characters	from	the	file.

Solution:

f=open('TextFile.txt','w')

f.writelines(['Hi	there',	'How	are	you'])

f.close()

f	=	open('TextFile.txt',	'r+')

str	=	f.read(15)

print('String	str\t:	',	str)

pos	=	f.tell()

print('Current	position\t:',	pos)

str1=f.read(5)

print('Str1\t:',str1)

pos	=	f.seek(0,	0)

print('Current	position\t:',pos)

str	=	f.read(20);

print('Again	read	String	is	:	',	str)

f.close()

Output

>>>

=========	RUN	C:\Python\file	handling\Position.py	=========

String	str	:	Hi	thereHow	are

Current	position	:	15

Str1	:	you

Current	position	:	0

Again	read	String	is	:	Hi	thereHow	are	you

>>>

Creating	directories	and	navigating	between	them

One	 can	 also	 create	 directories	 in	 Python	 using	 the	 mkdir()	 function.	 The
function	takes	the	name	of	the	directory	as	one	of	the	essential	arguments.	The
reader	is	advised	go	through	the	appendix	of	this	book	for	a	detailed	description.
The	chdir()	 function	changes	 the	current	directory	and	 the	getpwd()	 function
prints	the	name	(along	with	the	path)	of	the	current	working	directory.	The	use	of
these	functions	has	been	demonstrated	as	follows:

'>>>	import	os

>>>	os.mkdir('PythonDirectory')

>>>	os.chdir('PythonDirectory')

>>>	os.getcwd()

'C:\\Python\\file	handling\\PythonDirectory'

>>>

An	example	of	encryption

The	following	illustration	uses	the	ord(c)	function	which	prints	the	ASCII	value
of	 the	character	“c,”	and	 that	of	 the	chr(n)	 function	which	 returns	a	character
corresponding	to	the	ASCII	value	n.

Illustration	 7.6:	Write	 “Hi	 there	 how	 are	 you”	 in	 a	 file	 called	 “TextFile.txt.”
Now,	read	characters	from	the	file,	one	by	one	and	write	the	character	obtained
by	 adding	 k	 (entered	 by	 the	 user)	 to	 the	 ASCII	 value	 of	 the	 character.	 Also,
decrypt	the	string	in	the	second	file	by	subtracting	“k”	from	the	ASCII	values	of
the	characters	in	the	second	file.

Solution:

Output

Enter	a	number4

Character	H	Ascii	value	:	72

Character	i	Ascii	value	:	105

Character	Ascii	value			:	32

Character	t	Ascii	value	:	116

Character	h	Ascii	value	:	104

Character	e	Ascii	value	:	101

Character	r	Ascii	value	:	114

Character	e	Ascii	value	:	101

Character	Ascii	value			:	32

Character	h	Ascii	value	:	104

Character	o	Ascii	value	:	111

Character	w	Ascii	value	:	119

Character	Ascii	value			:	32

Character	a	Ascii	value	:	97

Character	r	Ascii	value	:	114

Character	e	Ascii	value	:	101

Character	Ascii	value			:	32

Character	y	Ascii	value	:	121

Character	o	Ascii	value	:	111

Character	u	Ascii	value	:	117

Lm$xlivi$ls{evi}sy

Character	L	Ascii	value	:	76

Character	m	Ascii	value	:	109

Character	$	Ascii	value	:	36

Character	x	Ascii	value	:	120

Character	l	Ascii	value	:	108

Character	i	Ascii	value	:	105

Character	v	Ascii	value	:	118

Character	i	Ascii	value	:	105

Character	$	Ascii	value	:	36

Character	l	Ascii	value	:	108

Character	s	Ascii	value	:	115

Character	{ Ascii	value	:	123
Character	$	Ascii	value	:	36

Character	e	Ascii	value	:	101

Character	v	Ascii	value	:	118

Character	i	Ascii	value	:	105

Character	$	Ascii	value	:	36

Character	}	Ascii	value	:	125

Character	s	Ascii	value	:	115

7.7

Character	y	Ascii	value	:	121

Hi	there	how	are	you

>>>

CONCLUSION

File	handing	provides	the	user	with	the	power	of	persistence.	The	user	must	be
equipped	 with	 the	 knowhow	 of	 the	 file	 access	 modes,	 the	 open(),	 close()
functions	 and	 the	 functions	which	help	 in	 reading	 a	 file	 and	writing	 to	 it.	The
chapter	 briefly	 explains	 the	 most	 essential	 functions	 used	 for	 file	 handling	 in
Python.	The	chapter	also	introduces	the	user	to	OS	methods	and	the	essential	file
attributes	to	help	the	user	achieve	the	task	at	hand.	The	chapter	includes	ample
illustrations	and	explanations	to	make	the	concept	clear	in	the	simplest	manner.
The	 reader	 is	advised	 to	go	 through	 the	appendix	 for	a	detailed	explanation	of
the	different	 types	of	 files	 in	Python	and	a	detailed	write	up	on	command	 line
arguments.

POINTS	TO	REMEMBER

The	open	function	takes	three	arguments.
The	mode	of	opening	file	decides	the	tasks	that	can	be	accomplished.
The	file	should	be	closed	after	the	required	task	has	been	completed.
The	seek	method	helps	to	move	the	cursor	within	a	file.
The	file	name	attribute	prints	the	name	of	the	file.
The	file	mode	attribute	gives	the	file	access	mode.
The	os.getpwd	function	returns	the	present	working	directory.
The	os.chdir	function	changes	the	directory.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	a	solid	argument	for	using	file	handling?

(a) It	is	not	possible	to	store	all	data	produced	by	the	program	in	the	main
memory

(b) It	is	used	for	persistent	storage

(c) Both

(d) None	of	the	above

2. In	which	of	the	formats	is	the	end	of	the	line	denoted	by	“\n”	and	“\r”?

(a) Text

(b) Binary

(c) Both

(d) None	of	the	above

3. To	be	able	to	use	a	file	it	must	be	opened.	The	reason	for	doing	so	is

(a) To	allocate	memory	to	the	object	formed

(b) To	specify	the	access	mode

(c) To	specify	the	offset	(optional)

(d) All	of	the	above

4. In	f	=	open(“abc.txt”,	“r”),	the	offset	is

(a) 0	from	the	beginning

(b) 0	from	the	end

(c) Random

(d) None	of	the	above

5. How	many	arguments	does	the	open	function	take?

(a) 1

(b) 2

(c) 3

(d) None	of	the	above

6. The	file	must	be	closed	if	it	is	opened	in	which	of	the	following	modes?

(a) r

(b) w

(c) Both

(d) None	of	the	above

7. If	 the	 file	 is	not	opened	successfully,	which	of	 the	 following	exceptions	 is
raised?

(a) File	not	found

(b) IOERROR

(c) IO

(d) None	of	the	above

8. In	f	=	open(“abc.txt”,	“w”),	if	the	file	“abc.txt”	does	not	exist,	then

(a) IOERROR	is	raised

(b) The	program	does	not	compile

(c) A	new	file	is	created

(d) None	of	the	above

9. Which	suffix	is	used	for	opening	a	binary	file

(a) b

(b) bin

(c) ab

(d) None	of	the	above

10. The	+	suffix	allows

(a) Read

(b) Read	and	write

(c) Read	or	write

(d) None	of	the	above

11. How	many	file	access	modes	are	there	in	Python?

(a) 3

(b) 6

(c) 9

(d) 12

12. The	integer	argument	in	the	read()	function	denotes	the	number	of	bytes	to
be	 read;	 if	 no	 argument	 is	 given,	 which	 of	 the	 following	 is	 the	 default
argument?

(a) –1

(b) 0

(c) len(file)

(d) None	of	the	above

13. To	read	all	the	lines	in	a	file,	which	of	the	following	functions	can	be	used?

(a) readline	()

(b) readlines	()

(c) Both

(d) None	of	the	above

14. Which	of	 the	 following	methods	can	be	used	 to	write	a	 list	of	 strings	 in	a
file?

(a) writeline	()

(b) writelines	()

(c) write	()

(d) None	of	the	above

15. Which	of	the	following	arguments	in	the	seek()	function	denotes	the	end	of
the	file?

(a) 1

(b) 2

(c) 0

(d) None	of	the	above

16. Which	function	returns	the	descriptor	of	the	file?

(a) fileno	()

(b) filedisp()

(c) descriptor	()

(d) None	of	the	above

17. The	linesep	function	is	used	to	find	which	of	the	following?

(a) The	new	line

(b) The	end	of	the	file

(c) The	current	directory

(d) None	of	the	above

18. Which	of	the	following	is	not	a	file	attribute?

(a) Closed

(b) Opened

(c) Name

(d) Softspace

19. In	which	of	the	following	variables	is	the	command	line	argument	saved?

(a) argv

(b) argc

(c) Both

(d) None	of	the	above

20. Which	of	the	following	functions	helps	to	create	a	directory?

(a) os.mkdir()

(b) os.chdir()

(c) os.getpwd()

(d) None	of	the	above

21. Which	of	the	following	functions	helps	to	change	the	current	directory?

(a) os.mkdir()

(b) os.chdir()

(c) os.getpwd()

(d) None	of	the	above

22. Which	 of	 the	 following	 functions	 helps	 to	 print	 the	 name	 of	 the	 current
directory?

(a) os.mkdir()

(b) os.chdir()

(c) os.getpwd()

(d) None	of	the	above

23. Which	function	is	used	to	find	the	ASCII	value	of	a	character?

(a) ascii

(b) ord

(c) chord

(d) None	of	the	above

24. Which	of	the	following	is	not	a	file	access	mode	in	Python?

(a) a

(b) ab

(c) ab+

(d) abc

25. Which	of	the	following	is	incorrect?

(a) f	=	open	(‘file.txt’)

(b) f	=	open(‘file.txt’,’r’)

(c) f	=	open	(‘file.txt’,’r’,0)

(d) None	of	the	above	is	incorrect

THEORY

1. What	 is	 the	 importance	 of	 file	 handling?	 Explain	 the	 mechanism	 of	 file
handling	in	Python.

2. Explain	various	file	access	modes.

3. Explain	the	signature	and	usage	of	the	following	functions

(a) open

(b) close

(c) read

(d) write

(e) readline

(f) readlines

(g) writeline

(h) seek

4. What	are	file	attributes?	Explain	the	file	attributes	provided	by	Python.

5. Briefly	explain	the	usage	of	the	following	os	functions	in	Python

(a) mkdir

(b) chdir

(c) getpwds

PROGRAMMING

1. Write	a	program	to	copy	the	contents	of	one	file	to	another.

2. Write	a	program	to	capitalize	the	first	character	of	each	word	in	a	file.

3. Write	a	program	to	find	the	ASCII	value	of	each	character	in	a	file.

4. Write	a	program	to	find	the	frequency	of	each	character	in	a	file.

5. Write	a	program	to	find	all	occurrences	of	a	word,	entered	by	the	user,	in	a
given	file.

6. Write	a	program	to	replace	a	given	character	with	another	in	a	file.

7. Write	a	program	to	replace	a	given	word	with	another,	in	a	given	file.

8. Write	a	program	to	find	the	frequency	of	a	given	word	in	a	file.

9. Write	a	program	to	find	the	word	used	the	minimum	number	of	 times	in	a
given	file.

10. Write	 a	 program	 to	 change	 the	 name	of	 a	 file	 to	 the	 name	 entered	 by	 the
user.

11. Write	a	program	to	create	a	directory	and	then	create	a	new	file	in	it.

12. Write	 a	 program	 to	 print	 the	 name,	 number	 of	 characters,	 and	 number	 of
spaces	in	a	file.

13. Write	a	program	to	convert	the	characters	of	a	given	file	to	binary	format.

14. Write	a	program	to	find	the	words	starting	with	a	vowel	from	a	given	file.

15. Write	a	program	to	implement	any	substitution	cipher	on	the	text	of	a	given
file.

8.1

CHAPTER	8

STRINGS

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	concept	and	importance	of	strings
• Understand	various	string	operators
• Learn	about	the	built	in	functions	to	manipulate	strings
• Learn	how	to	solve	problems	using	strings

INTRODUCTION

Strings	are	a	sequence	of	characters.	These	data	structures	are	used	to	store	text.
For	example	 if	one	wants	 to	 store	 the	name	of	a	person,	or	 for	 that	matter	his
address,	then	string	is	the	most	appropriate	data	structure.	As	a	matter	of	fact,	the
knowledge	of	 strings	 is	essential	 in	 the	development	of	many	applications	 like
word	processor	and	parser.

Strings	in	Python	can	be	enclosed	in	single	quotes	or	double	quotes,	or	even	in
triple	quotes.	However,	there	is	no	difference	between	a	string	enclosed	in	single
quotes	or	double	quotes.	That	 is	 “harsh”	 is	 same	as	 “harsh.”	Triple	quotes	 are
generally	used	in	special	cases	discussed	later	 in	 the	chapter.	Strings	in	Python
come	with	a	wide	variety	of	operators	and	built-in	functions.

The	 chapter	 examines	 various	 aspects	 of	 strings	 like	 non-mutability,	 traversal,
operators,	and	built-in	functions.	One	of	the	most	prominent	differences	between
a	string	and	a	list	is	non-mutability.	Once	a	value	is	given	to	a	string,	one	cannot
change	 the	 value	 of	 a	 character	 present	 at	 a	 particular	 position.	 For	 the	 users
familiar	 with	 C,	 C++,	 C#,	 or	 Java,	 the	 operators	 discussed	 in	 the	 chapter	 -
notably	the	*	operator	-	will	be	a	pleasant	surprise.	Moreover,	Python	provides
many	built	in	functions	to	help	the	programmers	to	handle	strings.

This	 chapter	 examines	 the	 above	 issues	 and	 provides	 examples	 of	 them.	 The

8.2

chapter	 has	 been	 organized	 as	 follows.	 The	 second	 section	 of	 the	 chapter
explores	 the	 use	 of	 standard	 'for'	 and	 'while'	 loops	 in	 strings.	 The	 third
section	 deals	 with	 the	 operators	 that	 can	 be	 used	 with	 strings.	 The	 built-in
functions	used	for	accomplishing	various	tasks	have	been	dealt	with	in	the	fourth
section	and	the	last	section	concludes	the	chapter.

THE	USE	OF	“FOR”	AND	“WHILE”

The	 traversal	of	a	string	has	already	been	discussed	 in	Chapter	4	of	 this	book.
This	section	revisits	the	'for'	and	'while'	and	their	applications	in	strings.

As	stated	 in	 the	second	and	the	fourth	chapter,	strings	are	 iterable	objects.	The
standard	loops	(read	'for'	and	'while')	can	be	used	to	iterate	over	a	string.	The
'for'	 loop	 helps	 to	 iterate	 through	 each	 character	 by	 storing	 the	 character	 in
some	variable.	The	following	illustration	depicts	the	use	of	a	for	loop	to	iterate
the	string.

The	 examples	 that	 follow	use	 the	for	 loop	 to	 carry	 out	 some	 basic	 and	 some
intricate	tasks.	Basic	tasks	like	calculating	the	length	of	a	given	string	have	been
exemplified	 in	 Illustration	 8.2.	 Illustrations	 8.3,	 8.4,	 and	 8.5	 implement
transposition	and	substitution.

Illustration	8.1:	Write	a	program	to	traverse	a	string.

Solution:	Writing	for	i	in	<string>	helps	us	to	access	one	character	at	a	time
from	a	given	string.	The	variable	'str1'	stores	the	string	entered	by	the	user	and
it	is	iterated	using	the	for	loop.

Listing

str1=	input('Enter	a	string\t:')

for	i	in	str1:

print('Character	\t:',i)>>>

Output

===============	RUN	C:/Python/String/str2.py	===============

Enter	a	string	:harsh

Character	:h

Character	:a

Character	:r

Character	:s

Character	:h

The	above	methodology	can	also	help	us	to	find	the	length	of	string.	Note	that
there	 is	 a	 built-in	 function	 to	 accomplish	 the	 said	 task.	However,	 the	 purpose
here	is	to	be	able	to	use	the	'for'	 loop	in	order	to	imitate	the	len	 function.	 In
the	 following	 illustration,	 a	 variable	 called	 length	 is	 initialized	 to	 0	 and	 is
incremented	as	we	proceed.

Illustration	8.2:	Write	a	program	to	find	the	length	of	the	string	entered	by	the
user.

Solution:	The	concept	has	already	been	explained	in	the	above	discussion.	The
code	follows.

Listing

name=input('Enter	your	name\t');

length=0

for	i	in	name:

length=length	+1

print('The	length	of	',name,'	is	',length)

Output

===============	RUN	C:/Python/String/str1.py	===============

Enter	your	name	harsh

The	length	of	harsh	is	5

>>>

The	ability	 to	handle	each	character	 individually	 in	a	string	gives	 the	power	 to
manipulate	a	given	string.	One	of	 the	exciting	tasks	can	be	to	 implement	basic
cryptography	techniques.	The	example	that	follows	displaces	the	characters	two
positions	to	the	right.	This	is	referred	to	as	transposition.	The	next	example	shifts
the	characters	by	“k”	positions,	“k”	being	entered	by	the	user.

Illustration	8.3:	Ask	the	user	to	enter	a	string	and	displace	two	characters	to	the
right.

Solution:	Note	that	in	each	iteration,	the	position	of	the	characters	is	shifted	by

two	positions.	The	code	follows:

str1=input('Enter	the	string\t:')

i=0

str2=""

while	i<len(str1):

str2[i]=str1[(i+2)%len(str1)]

print(str2)

Illustration	8.4:	Ask	 the	user	 to	enter	a	string	and	displace	k	characters	 to	 the
right.

Solution:	Note	that	in	each	iteration,	the	position	of	the	characters	is	shifted	by	k
positions.	The	code	follows:

str1=input('Enter	the	string\t:')

k=int(input('Enter	the	value	of	k\t:'))

i=0

str2=""

while	i<len(str1):

str2+=str1[(i+k)%len(str1)]

print(str2)

i+=1

print(str2)

>>>

Output

==========	RUN	C:/Python/String/transposition.py	==========

Enter	the	string	:harsh

Enter	the	value	of	k	4

h

hh

hha

hhar

hhars

hhars

>>>

Another	method	of	encryption	 is	substitution.	The	replacement	of	a	symbol	by
some	 other	 symbol	 is	 referred	 to	 as	 substitution.	 The	 example	 that	 follows

8.3

8.3.1

implements	one	of	the	most	basic	types	of	substitutions.	Here,	each	character	is
replaced	 by	 a	 character	 obtained	 by	 adding	 two	 to	 the	 ASCII	 value	 of	 the
character,	and	finding	the	requisite	character.

Illustration	8.5:	Ask	 the	user	 to	enter	a	string.	Replace	each	character	by	 that
obtained	by	adding	two	to	the	ASCII	value	of	that	character.

Solution:

str1=input('Enter	the	string\t:')

k=int(input('Enter	the	value	of	k\t:'))

i=0

str2=""

while	i<len(str1):

str2+=str((ascii(str1[i])+k))

print(str2)

i+=1

print(str2)

STRING	OPERATORS

Python	 provides	 the	 programmer	 with	 a	 wide	 variety	 of	 extremely	 useful
operators	 to	manipulate	 strings.	 These	 operators	 help	 a	 user	 perform	 involved
tasks	with	 ease	 and	 efficiency.	Here,	 it	may	 be	 stated	 that	 the	 replication	 and
membership	 operators	 make	 Python	 stand	 apart	 from	 its	 counterparts.	 This
section	briefly	introduces	and	exemplifies	these	operators.

The	Concatenation	Operator	(+)
The	concatenation	operator	takes	two	strings	and	produces	a	concatenated	string.
The	operator	acts	on	values	as	well	as	variables.	In	the	examples	that	follow,	the
concatenation	operator’s	result	has	been	stored	 in	variables	called	result1	and
str2.

name=input('Enter	your	name\t:')

result1	=	'Hi'+'	there'

print(result1)

str1='Hello'

str2=str1	+'	'+name

print(str2)

8.3.2

8.3.3

Output

>>>

=============	RUN	C:/Python/String/operator1.py

=============

Enter	your	name	:Harsh

Hi	there

Hello	Harsh

>>>

Note	that	the	same	operator	is	used	for	adding	two	integers.

The	Replication	Operator
The	 replication	 operator	 in	 Python	 replicates	 the	 strings	 as	many	 times	 as	 the
first	operand.	The	operator	operates	on	 two	operands:	 the	 first	being	a	number
and	the	second	being	a	string.	The	result	is	a	string	in	which	the	input	string	is
repeated	as	many	 times	 as	 the	 first	 argument.	 In	 the	 example	 that	 follows,	 the
result	has	been	stored	in	a	variable	called	result1.

name=input('Enter	your	name\t:')

print('Hi',	'	',	name)

str1=input('Enter	a	string\t:')

num=int(input('Enter	a	number\t:'))

result1=num*str1

print(result1)

Output

>>>

=============	RUN	C:/Python/String/operato2.py	=============

Enter	your	name	:harsh

Hi	harsh

Enter	a	string	:abc

Enter	a	number	4

abcabcabcabc

>>>

The	Membership	Operator
The	membership	operator	checks	whether	a	given	string	is	present	in	a	given	list

8.4

or	not.	The	operator	 returns	a	True	 if	 the	 first	 string	 is	a	part	of	 the	given	 list,
otherwise	it	returns	a	False.

>>>	'Hari'	in	['Har',	'Hari',	'Hai']

True

>>>

>>>	'Hari'	in	['Har',	'hari',	'Hai']

False

>>>

It	may	be	noted	here	 that	 this	operator	 is	also	used	for	manipulating	iterations.
The	 reader	 is	 advised	 to	 go	 through	 Chapter	 4	 of	 this	 book	 for	 a	 detailed
discussion	regarding	the	use	of	“in”	in	for.	It	may	also	be	noted	that	the	operator
can	also	be	used	in	tuples.	In	the	listing	that	follows,	the	string	“Hari”	is	present
in	the	given	tuple	and	hence	True	is	returned.

>>>	'Hari'	in	('Hari',	'Har')

True

>>>

The	reader	may	also	note	that	corresponding	to	the	“in”	operator,	there	is	a	“not
in”	operator	which	works	in	the	exactly	opposite	manner	vis-a-vis	“in.”

A	 string	 in	 Python	 can	 span	 over	 many	 lines.	 This	 can	 be	 accomplished	 by
putting	a	“\”	at	the	end	of	the	line.	For	example,	str2	is	"Harsh	Bhasin	Author
Delhi".	However,	it	has	been	written	in	three	lines	using	the	“\”	character.

>>>	str2="'Harsh	Bhasin\

Author\

Delhi'"

>>>	str2

"'Harsh	BhasinAuthorDelhi'"

FUNCTIONS	FOR	STRING	HANDLING

This	 section	 presents	 some	of	 the	most	 common	 functions	 used	 to	manipulate
strings	in	Python.	It	may	be	stated	here	that,	although	all	the	following	tasks	can
be	 done	 without	 the	 predefined	 functions	 with	 varying	 degree	 of	 ease,	 the
presence	 of	 these	 functions	 help	 the	 programmer	 to	 do	 the	 task	 easily	 and

8.4.1

8.4.2

efficiently.	 Moreover	 when	 one	 crafts	 and	 implements	 one’s	 version	 of	 a
function,	 the	 implementation	may	not	be	efficient	 in	 terms	of	 time	or	 space	or
both.	However,	while	 crafting	 these	 predefined	 functions	 in	 Python	 the	 issues
related	 to	memory	and	 time	should	be	handled.	Let	us	now	have	a	 look	at	 the
names,	meanings,	and	usage	of	the	pre-defined	functions	in	Python.

len()

Usage:

>>>	len()

Explanation:

The	 function	 returns	 the	 number	 of	 characters	 in	 a	 string.	 For	 example	 if	 a
variable	called	str1	stores	'Harsh	Bhasin',	then	the	length	of	the	string	can	be
calculated	 by	 writing	 len(str1).	 Note	 that	 the	 space	 between	 'Harsh'	 and
'Bhasin'	 has	 also	 been	 taken	 into	 account	while	 calculating	 the	 length	 of	 the
string.	The	function	takes	a	string	argument	and	returns	an	integer,	which	is	the
length	of	the	string.

Example	(s):

>>>	str1	='Harsh	Bhasin'

>>>	len(str1)

12

>>>

>>>	len('Harsh	Bhasin')

12

>>>

>>>	len('')

0

Capitalize()

Usage:

>>>	capitalize()

Explanation:

The	function	capitalizes	the	first	character	of	the	string.	Note	that	only	the	first
character	will	be	capitalized.	If	one	wants	to	capitalize	the	first	characters	of	all
the	words	in	the	string	the	title()	function	can	be	used.

8.4.3

8.4.4

Example	(s):

>>>	str2='harsh	bhasin'

>>>	str2

'harsh	bhasin'

>>>	str2.capitalize()

'Harsh	bhasin'

find()

Usage:

>>><name	of	the	string>.find(<parameter(s)>)

Explanation:

The	 location	of	a	given	 sub-string	 in	a	given	 string	can	be	 found	by	using	 the
function	find.	Also,	if	the	location	of	a	sub-string	after	a	particular	position	(and
before	 a	 particular	 index)	 is	 to	 be	 determined,	 then	 three	 arguments	 can	 be
passed	 to	 the	 function:	 the	 sub-string,	 initial	 index,	 and	 the	 final	 index.	 The
following	examples	show	the	usage	of	the	function.

Example(s):

>>>	str2.find('ha')

0

>>>

>>>	str2.find('ha',3,len(str2))

7

count

Usage:

>>><name	of	the	string>.count(<parameter(s)>)

Explanation:

The	number	of	occurrences	of	a	particular	substring	can	be	found	with	the	count
function.	 The	 function	 takes	 three	 arguments:	 the	 sub-string,	 the	 initial	 index,
and	the	final	index.	The	following	examples	show	the	usage	of	the	function.

Example(s):

>>>	str3.count('ha',0,len(str3))

1

8.4.6

8.4.7

8.4.5

>>>	str3.count('ka',0,len(str3))

0

Endswith()

Usage:	<name	of	the	string>.endswith(<parameter(s)>)

Explanation:

One	can	determine	if	a	string	ends	with	a	particular	sub-string.	This	can	be	done
using	the	endswith()	function.	The	function	returns	a	'True'	if	the	given	string
ends	with	the	given	sub-string,	otherwise	it	returns	a	'False'.

Example(s):

>>>	str3.endswith('n')

True

Encode

Usage:	<name	of	the	string>.encode(<parameter(s)>)

>>>

Explanation:

Python	 provides	 a	 function	 to	 encode	 a	 given	 string	 in	 various	 formats.	 The
function	 is	 encode.	 It	 takes	 two	 arguments:	 encoding=<value>	 and	 errors=
<value>.	The	encoding	can	be	one	of	the	many	encodings	given	in	Appendix	B
of	this	book.	The	following	examples	demonstrate	the	use	of	this	function.

Example(s):

>>>	str3.encode(encoding='utf32',errors='strict')

b'\xff\xfe\x00\x00H\x00\x00\x00A\x00\x00\x00R\x00\x00\

x00S\x00\x00\x00H\x00\x00\x00\x00\x00\x00b\x00\x00\

x00h\x00\x00\x00a\x00\x00\x00s\x00\x00\x00i\x00\x00\

x00n\x00\x00\x00'

Decode
Usage:

>>><name	of	the	string>.decode(<parameter(s)>)

8.4.8

Explanation:

The	function	returns	the	decoded	string.

Miscellaneous	Functions
Though	the	purpose,	usage	and	examples	of	 the	most	 important	functions	have
been	explained,	the	following	functions	are	also	important.	A	list	of	some	more
functions	follows.	The	list	is	followed	by	a	brief	explanation.

List:

1.	isanum()

2.	isalpha()

3.	isdecimal()

4.	isdigit()

5.	isidentifier()

6.	islower()

7.	isupper()

8.	swapcase()

9.	isspace()

10.	lstrip()

11.	rstrip()

12.	replace()

13.	join()

Explanation:

The	contents	of	a	given	string	can	be	checked	using	the	following	functions.	The
isalnum()	function	if	the	given	string	is	alphanumeric.	The	other	functions	like
isalpha()	and	isdecimal()	also	check	the	type	of	contents	in	a	given	string.

Whether	a	given	string	contains	only	digits	can	be	checked	using	the	isdigit()
function.	Similarly,	whether	a	given	string	is	an	identifier	can	be	checked	using
the	isidentifier()	function.	The	islower()	function	checks	if	the	given	string
contains	 only	 lower	 case	 characters	 and	 the	 isupper()	 function	 checks	 if	 the
given	 string	 contains	 only	 upper	 case	 characters.	 The	 swapcase()	 function
swaps	 the	 case	of	 the	given	 string,	 as	 in	 converts	 the	upper	 case	 to	 lower	 and
lower	 to	 upper.	 The	 presence	 of	 spaces	 (only)	 can	 be	 checked	 using	 the
isspace()	 function.	 Extra	 spaces	 can	 be	 removed	 from	 the	 left	 and	 the	 right
hand	 sides	 by	 using	 the	 lstrip()	 and	 rstrip()	 functions.	 The	 replace()

function	replaces	the	instances	of	the	first	argument	by	the	string	in	the	second
argument.	The	split	function	splits	the	given	strings	into	tokens.	Illustration	8.6
depicts	the	use	of	this	function	for	splitting	the	string	into	constituent	words.	The
function	of	join()	is	exactly	the	opposite	as	that	of	split.

Example(s):

>>>	str3.isalnum()

False

>>>	str3.isalpha()

False

>>>

>>>	str3.isdecimal()

False

>>>

>>>	str3.isdigit()

False

>>>

>>>	str3.isidentifier()

False

>>>

>>>	str3.islower()

False

>>>

>>>	str3.isnumeric()

False

>>>

>>>	str3.replace('h','p')

'HARSH	bpasin'

>>>

Illustration	8.6:	A	string	str4	contains	a	sentence	“I	am	a	good	boy.”	Split	 the
string	and	also	display	each	token	using	a	for	loop.

Solution:

>>>	str4='I	am	a	good	boy'

>>>	str4.split()

['I',	'am',	'a',	'good',	'boy']

>>>

>>>	for	i	in	str4.split():

8.5

print('Token\t:',i)

Output

Token	:	I

Token	:	am

Token	:	a

Token	:	good

Token	:	boy

CONCLUSION

In	C	and	C++,	strings	used	to	be	character	arrays.	They	were	a	special	 type	of
arrays	with	a	“\0”	character	at	the	end.	Strings	in	“C”	came	with	a	set	of	built-in
functions.	 However,	 there	 were	 two	 problems.	 Firstly	 string	 was	 not	 an
independent	data	 type,	and	secondly	an	 individual	character	could	be	changed.
In	 Python,	 the	 importance	 of	 strings	 has	 been	 duly	 recognized	 by	 creating	 an
object	type.	Moreover	strings,	in	Python,	are	non-mutable.	Strings	come	with	a
wide	 range	 of	 built-in	 functions.	 Also	 there	 are	 useful	 operators	 to	 help	 the
programmer	 accomplish	 a	 given	 task	 easily	 and	 efficiently.	 This	 chapter
introduces	the	concept,	operators	and	functions	of	strings.	However,	the	reader	is
expected	to	complete	the	end-chapter	exercise	to	be	able	to	understand	and	use
strings.

GLOSSARY

String:	Strings	are	 a	 sequence	of	 characters.	These	data	 structures	 are	used	 to
store	text.

IMPORTANT	POINTS

Strings	in	Python	are	non-mutable.
The	negative	index	denotes	the	characters	from	the	right	hand.
Strings	are	iterable	objects.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	true?

(a) A	string	in	Python	is	iterable

(b) A	string	in	Python	is	not	iterable

(c) Iterablity	of	a	string	depends	upon	the	situation

(d) None	of	the	above

2. Is	a	string	in	Python	mutable?

(a) No

(b) Yes

(c) Depends	on	the	situation

(d) None	of	the	above

3. If	str1='Hari',	what	is	the	output	of	print(str1[4])

(a) i

(b) \0

(c) Exception	is	raised

(d) None	of	the	above

4. If	str1='Hari',	what	is	the	output	of	print(str1[-3])

(a) “a”

(b) “H”

(c) Exception	is	raised

(d) None	of	the	above

5. What	is	the	output	of	"Hari"=="hari"

(a) True

(b) False

(c) An	exception	is	raised

(d) None	of	the	above

6. What	is	the	output	of	'a'<>'A'

(a) True

(b) False

(c) Exception	is	raised

(d) None	of	the	above

7. What	is	the	output	of	'567'>'989'

(a) True

(b) False

(c) An	exception	is	raised

(d) None	of	the	above

8. Which	of	the	following	helps	to	find	the	ASCII	value	of	“C”?

(a) ord('C')

(b) chr('C')

(c) both

(d) None	of	the	above

9. Which	 of	 the	 following	 helps	 to	 find	 the	 character	 represented	 by	ASCII
value	67?

(a) ord(67)

(b) chr(67)

(c) Both

(d) None	of	the	above

10. What	are	'in'	and	'not	in',	in	Python?

(a) Relational	operators

(b) Membership	operators

(c) Concatenation	operators

(d) None	of	the	above

11. What	is	the	output	of	'A'	+	'B'

(a) 'A+B'

(b) 'AB'

(c) 131

(d) None	of	the	above

12. What	is	the	output	of	3*'A'

(a) '3A'

(b) Character	corresponding	to	the	ascii	value	65	×	3?

(c) 'AAA'

(d) None	of	the	above

13. Which	function	capitalizes	the	first	character	of	a	given	string?

(a) capitilize()

(b) titlecase()

(c) toupper()

(d) None	of	the	above

14. The	find()	function	in	Python	takes

(a) 1	argument

(b) 3	arguments

(c) Both

(d) None	of	the	above

15. If	str1='hari',	then	what	would	be	the	output	of	str1.asalnum()?

(a) True

(b) False

(c) Exception	is	raised

(d) None	of	the	above

16. If	str1='hari3',	then	what	would	be	the	output	of	str1.asalnum()?

(a) True

(b) False

(c) Exception	is	raised

(d) None	of	the	above

17. If	str1='hari	feb',	then	what	would	be	the	output	of	str1.asalnum()?

(a) True

(b) False

(c) Exception	is	raised

(d) None	of	the	above

18. If	str1='123h',	then	what	would	be	the	output	of	str1.digit()?

(a) True

(b) False

(c) Exception	is	raised

(d) None	of	the	above

19. Which	 function	 checks	whether	 all	 the	 characters	 in	 a	 given	 string	 are	 in
lower	case?

(a) lower()

(b) islower()

(c) istitle()

(d) None	of	the	above

20. Which	 function	 checks	whether	 all	 the	 characters	 in	 a	 given	 string	 are	 in
upper	case?

(a) upper()

(b) isupper()

(c) istitle()

(d) None	of	the	above

21. Which	 function	 removes	 the	 whitespaces	 from	 the	 right	 hand	 of	 a	 given
string?

(a) rstrip()

(b) strip()

(c) lstrip()

(d) None	of	the	above

22. Which	of	the	following	functions	convert	a	given	string	into	a	list	of	words?

(a) split()

(b) break()

(c) breakup()

(d) None	of	the	above

23. Which	 of	 the	 following	 helps	 in	 breaking	 a	 string	 into	 two	 substrings	 of
desirable	length?

(a) Slicing

(b) Splitting

(c) Both

(d) None	of	the	above

24. Which	 of	 the	 following	 functions	 combines	 the	 strings	 given	 as	 the
argument?

(a) Split

(b) Join

(c) Slice

(d) None	of	the	above

25. Which	 of	 the	 following	 is	 illegal	 in	 Python	 (assume	 that	str1	 is	 a	 string,
having	initial	value	'hari')?

(a) str1=	'Harsh'

(b) str1[0]=	't'

(c) str1[0]=str[2]

(d) None	of	the	above

THEORY

1. What	is	a	string?	Explain	non-mutability.	Is	there	any	difference	between	a
string	in	double	quotes	and	that	in	triple	quotes?

2. Explain	the	following	functions	vis-vis	strings.

+
*
in
not-in

3. Explain	the	following	string	operators	by	giving	an	example.
capitalize()

title()

len()

find()

count()

endswith()

encode()

decode()

4. What	is	the	difference	between	a	string	in	Python	and	a	string	in	“C”?

5. What	is	the	difference	between	a	list	and	a	string?

PROGRAMMING	PROBLEMS

1. Write	a	program	to	reverse	a	string.

2. Write	a	program	to	encode	a	string	in	UTF	format.

3. Write	a	program	to	find	the	sum	of	ASCII	values	of	the	characters	of	a	given
string.

4. Write	a	program	to	find	a	particular	substring	in	a	given	string.

5. Write	a	program	to	split	a	given	text	into	tokens.

6. Write	a	program	to	check	which	of	the	tokens	obtained	in	the	above	question
are	keywords.

7. Write	a	program	 to	check	how	many	alphanumeric	 strings	 there	are	 in	 the
tokens	obtained	in	question	5.

8. Write	 a	 program	 to	 check	 how	many	 alpha	 strings	 there	 are	 in	 the	 tokens
obtained	in	question	5.

9. Write	a	program	to	check	how	many	numeric	strings	there	are	in	the	tokens
obtained	in	question	5.

10. Write	 a	 program	 to	 convert	 a	 string	 entered	 by	 a	 user	 to	 that	 obtained	 by
adding	“k”	to	each	character’s	ASCII	value.

11. Implement	 the	 first	phase	of	compiler	design	 (for	“C”).	Please	 refer	 to	 the
following	link	for	a	brief	overview	of	compiler	design.

12. In	the	above	question	design	deterministic	finite	acceptors	for	the	keywords.

USEFUL	LINKS

Strings	and	regular	expressions	are	extensively	used	in	developing	the	first	phase
of	a	compiler.	The	following	links	will	be	helpful	to	understand	the	topic:

https://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/07-lex.pdf
http://www.iith.ac.in/~ramakrishna/Compilers-Aug15/slides/02-lexical-
analysis-part-1.pdf
https://www.cs.utexas.edu/users/novak/cs375contents.html

https://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/07-lex.pdf
http://www.iith.ac.in/~ramakrishna/Compilers-Aug15/slides/02-lexical-analysis-part-1.pdf
https://www.cs.utexas.edu/users/novak/cs375contents.html

9.1

CHAPTER	9

INTRODUCTION	TO	OBJECT
ORIENTED	PARADIGM

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	procedural,	modular	and	object	oriented	paradigm
• Understand	the	concept	of	class
• Design	a	class
• Understand	the	elements	of	object	oriented	programming

INTRODUCTION

In	the	preceding	chapters,	 the	control	structures	of	Python	were	discussed.	The
first	 section	 discussed	 loops,	 conditional	 statements,	 etc.	 However,	 these
constructs	were	an	integral	part	of	C	as	well,	which	is	a	procedural	language.	The
procedural	programming	is	one	that	uses	procedures.	Each	procedure	is	a	set	of
instructions	 where	 each	 instruction	 directs	 the	 computer	 what	 is	 to	 be	 done.
Python	 also	 supports	 object-oriented	 programming	 (OOP).	 This	 chapter
introduces	 the	 principles	 of	 OOP	 and	 explains	 the	 need	 and	 importance	 of
classes	and	objects.	The	chapter	also	discusses	the	difference	between	OOP	and
procedural	programming	to	give	an	insight	of	why	OOP	is	needed.

It	may	be	stated	here	that	the	topics	discussed	in	this	chapter	will	be	discussed	in
detail	 in	the	following	chapters.	Some	of	the	readers	not	familiar	with	C++	(or
for	 that	 matter	 C#	 or	 Java)	 may	 find	 the	 discussion	 abstract,	 but	 things	 will
become	clear	as	we	proceed.

As	 stated	 earlier,	 in	 procedural	 programming	 each	 statement	 tells	 the	 program
what	to	do.	For	example	the	following	code	asks	the	user	for	the	input,	calculates
the	square	root	and	displays	the	result.

Code

>>>	a	=	float(input("Enter	a	number\t:"))

Enter	a	number:	67

>>>	b	=	math.sqrt(a)

>>>	b

8.18535277187245

>>>

FIGURE	9.1 Programming	paradigms

This	 strategy	 is	 good	 if	 the	 program	 is	 very	 small.	Often	 telling	 the	 computer
what	 to	 do,	 step	 by	 step,	 works	 if	 the	 task	 to	 be	 accomplished	 is	 not	 very
complex.	In	such	cases	no	other	paradigm	is	needed.

In	 case	 of	 a	moderately	 large	 program,	 division	 into	 functions	makes	 the	 task
easier.	 The	 division	 of	 a	 larger	 program	 into	 functions	 makes	 the	 program
manageable	 and	 helps	 to	 achieve	 reusability	 of	 code.	 The	 functions	 generally
accomplish	 a	 clearly	 defined	 task	 and	 become	 handy	whenever	 that	 particular
task	 is	 to	be	accomplished.	The	reader	 is	advised	 to	go	 through	 the	chapter	on
functions	 in	 order	 to	 understand	 the	 advantages	 of	 functions.	 The	 clubbing
together	of	functions	on	some	basis	give	rise	to	what	are	commonly	referred	to
as	modules.	The	programming	paradigm	is	called	modular	programming.

The	 problem	 with	 this	 paradigm	 is	 that	 the	 accidental	 clubbing	 together	 of
unrelated	 functions,	 far	 from	 the	 real	 world	 situations,	 become	 a	 source	 of
problems	 at	 some	 point	 in	 time.	Moreover,	 the	 approach	 does	 not	 restrict	 the
access	of	data	in	any	module	and	may	jeopardize	the	sanctity	of	the	data.

It	may	be	noted	 that	 the	data	 should	not	be	accessible	 to	all	 the	modules.	The
accessibility	 of	 data	 must	 be	 managed	 with	 utmost	 care	 otherwise	 a	 module,

9.2

which	should	not	have	alerted	the	data	as	per	 the	program	logic,	might	change
the	data.

In	order	to	understand	the	gravity	of	the	problem,	let	us	take	an	example	of	C.	In
C,	a	variable	can	be	global	or	local.	If	it	is	global,	then	any	module	can	change
it.	 If	 it	 is	 local,	 then	 other	 modules	 cannot	 access	 it.	 So	 there	 is	 nothing	 in
between.	 That	 is,	 we	 cannot	 make	 a	 variable	 which	 can	 be	 accessed	 only	 by
designated	methods	not	data.

The	solution	to	 the	above	problem	is	 to	model	 the	software	 in	such	a	way	that
the	design	is	conceptually	as	close	to	the	real	world	as	possible.	This	modelling
of	 real	world	 situations	 requires	 the	 creation	 of	 entities	 having	 both	 attributes
and	 behavior.	The	 clubbing	 together	 of	 data	 and	 the	 functions	 that	manipulate
the	 data	 are	 be	 helpful	 in	 crafting	 the	 above	 entities.	 These	 entities	 will
henceforth	be	referred	to	as	classes.	The	instances	of	classes	are	objects	and
the	 paradigm	 is	 called	 object	 oriented	 paradigm.	 Various	 programming
paradigms	and	their	disadvantages	have	been	summarized	in	Figure	9.1.

CREATING	NEW	TYPES

Though	types	are	not	explicitly	declared	in	Python,	the	types	were	important	in
other	 languages	 (well	 most	 of	 them).	 For	 example,	 when	 one	 says	 that	 a
“number”	is	of	integer	type,	then	he	not	only	states	the	type	of	information	but
also	its	maximum	and	minimum	value.	Assume	that	an	integer	takes	two	bytes;
the	 maximum	 value	 of	 “number”	 would	 be	 32,	 767	 and	 the	 minimum	 value
would	 be	 –32,	 768.	 Moreover,	 saying	 that	 “number”	 is	 of	 integer	 type	 also
specifies	the	operations	that	can	be	performed	on	the	number.

Integer	is	a	pre-defined	type.	Most	of	the	languages	also	allow	the	user	to	create
custom	types	and	hence	extend	the	power	of	built-in	 types.	This	 is	essential	as
the	 ability	 to	 create	 new	data	 types	will	 help	 us	 to	 create	 programs	which	 are
near	 to	 the	 real	 world.	 For	 example	 if	 one	 has	 to	 design	 an	 inventory
management	 system	 then	 a	 type	 called	 “item”	 would	 make	 the	 matters
uncomplicated.	This	item	can	have	variables	which	are	of	predefined	types,	like
integers	and	strings.

A	new	type	can	be	created	by	declaring	a	class.	A	class	has	many	components,
most	important	of	which	are	attributes	and	functions.	This	clubbing	together	of
functions	and	data	forms	the	basis	of	OOP.	The	functions,	as	we	will	see	 later,

9.3

9.3.1

generally	manipulate	the	data	members	of	a	class.	Before	proceeding	any	further
let	us	have	an	overview	of	attributes	and	functions.

ATTRIBUTES	AND	FUNCTIONS

One	can	perceive	a	class	as	a	prototype	and	an	object	as	an	instance	of	a	class.
For	 example,	 "movie"	 is	 a	 class	 and	 "The	 Fault	 in	 Our	 Stars",	 "Love

Actually"	 and	 "Sarat"	 are	 objects	 (Figure	 2).	 A	 class	 has	 attributes	 and
behavior.	 The	 attributes	 generally	 store	 data	 and	 the	 behavior	 is	 implemented
using	functions.	A	class	can	be	depicted	using	a	class	diagram.	A	class	diagram
has,	generally,	 three	parts;	 the	 first	part	contains	 the	name,	 the	second	part	has
attributes,	 and	 the	 third	 part	 shows	 the	 functions	 of	 a	 class.	 The	 basics	 of
attributes	and	behavior	are	discussed	in	the	following	section.	In	Figure	9.2,	 the
class	diagram	(movie)	has	only	the	name.

FIGURE	9.2 Example	of	a	class	and	objects

Attributes
The	attributes	here	depict	the	characteristics	of	the	entity	that	we	are	concerned
with.	For	example,	when	creating	a	website	 that	gives	 the	details	of	movies,	 a
class	'movie'	will	be	needed.	Say	after	detailed	deliberations	it	was	decided	that
this	class	would	have	attributes	like	name,	year,	genre,	director,	producer,	actors,
music	director,	and	story	writer.

Note	 that	 for	 the	 said	 purpose,	 only	 the	 above	 details	 are	 needed.	 Storing
unnecessary	details	will	not	only	make	data	management	difficult,	but	will	also
violate	one	of	the	core	principles	-	that	of	including	only	the	details	pertaining	to
the	problem	at	hand.	These	attributes	are	generally	shown	in	the	second	section
of	 the	 class	 diagram.	 In	 Figure	 9.3,	 the	 attributes	 of	 "movie"	 class	 have	 been

9.3.2

shown.

FIGURE	9.3 Name	and	attributes	of	a	movie	class

Functions
The	 next	 step	will	 be	 to	 include	 functions	 in	 the	 above	 class.	 In	 our	 example
there	 are	 two	 functions	 -	 getdata()	 and	 putdata().	 The	 getdata()	 function
asks	 for	 the	 values	 of	 the	 variables	 from	 the	 user	 and	 the	putdata()	 function
will	 display	 the	 data.	 Functions	 implement	 the	 behavior	 of	 a	 class.	 The
functions,	as	stated	earlier,	accomplish	a	particular	task.	In	a	class	there	can	be
any	number	of	 functions,	 each	 accomplishing	 a	particular	 task.	As	 a	matter	 of
fact	 we	 have	 special	 functions	 for	 initializing	 the	 data	members	 of	 a	 class	 as
well.	 The	 functions	 of	 a	 class	 will	 henceforth	 be	 referred	 to	 as	 member
functions.	The	functions	(or	behavior)	are	shown	in	 the	third	section	of	a	class
diagram.	 In	 Figure	 9.4,	 the	 functions	 of	 the	 “movie”	 class	 (getdata()and
putdata())	have	been	shown	in	the	third	box.

FIGURE	9.4 Name,	attributes,	and	functions	of	a	movie	class

The	following	example	shows	a	class	called	movies.	The	class	has	the	following
data	members:

Name
Year
Genre
Director
Producer
Actors
Music_Director
Story_writer

The	class	has	two	functions	-	getdata(),	which	asks	the	user	to	enter	the	values
of	the	data	members	and	putdata(),	which	displays	the	values	of	the	variables.
In	 order	 to	 call	 the	 functions	 getdata()	 and	 putdata(),	 an	 instance	 of	 the
employee	 class	 is	 created	 ('m').	As	we	will	 see	 later,	 the	 functions	 are	 called
using	the	dot	operator.	The	details	regarding	the	syntax	will	be	explained	in	the
following	chapter.

The	following	code	implements	the	above	class.	Though	the	syntax	etic..	has	not
been	discussed	as	of	yet,	the	code	has	been	given	to	give	an	idea	of	how	things
actually	work.

Code

Output

============	RUN	C:/Python/Class/class_basic2.py============

Enter	name	:Kapoor

Enter	year	:2016

Enter	genre	:Drama

Enter	the	name	of	the	director	:ABC

Enter	the	producer	:Karan

Enter	the	name	of	the	actor	:Siddarth

Press	'y'	for	more	'n'	to	quity

Enter	the	name	of	the	actor	:Fawad

Enter	'y'	for	more	'n'	to	quitn

Enter	the	name	of	the	music	director	:XYZ

9.4

9.4.1

Name	:Kapoor

Year	2016

Genre	:Drama

Director	:ABC

Producer	:Karan

Music_director	:XYZ

Actors	:['Siddarth',	'Fawad']

>>>

In	object-oriented	 languages,	a	special	 function	 initializes	 the	value	of	 the	data
members.	This	 function	generally	has	 the	 same	name	as	 that	 of	 the	 class.	The
function	is	called	constructor.

One	 can	 create	 a	 default	 constructor	 in	 a	 class,	 which	 does	 not	 take	 any
parameters.	 The	 parameterized	 constructor,	 on	 the	 other	 hand,	 takes
arguments	 and	 initializes	 the	 data	 members	 using	 those	 arguments.	 The
implementation	 of	 constructors	 and	 their	 uses	 will	 be	 dealt	 with	 in	 the	 next
chapter.

When	the	lifetime	of	an	object	ends,	a	destructor	is	called.	A	destructor	can	be
called	using	'del'	in	Python.	The	concept	has	been	explained	in	the	next	chapter
of	this	book.

Tip

A	constructor	acts	when	an	object	is	created	and	a	destructor	is	called	when	the
lifetime	of	an	object	ends.

ELEMENTS	OF	OBJECT-ORIENTED	PROGRAMMING

The	 following	 discussion	 briefly	 outlines	 the	 principles	 of	 object-oriented
programming.	The	 concepts	 encapsulation,	 data	 hiding,	 and	polymorphism	are
all	discussed	in	this	section.

Class
A	class	is	a	real	or	a	virtual	entity,	which	has	relevance	to	the	problem	at	hand
and	 has	 sharp	 physical	 boundaries.	A	 class	 can	 be	 a	 real	 entity.	 For	 example,
when	one	develops	software	 for	a	car	wash	company,	 then	'Car',	 is	central	 to

9.4.2

the	software	and	therefore	there	will	be	a	class	called	'Car'.	A	class	can	also	be
a	virtual	entity.	Another	example	is	that	when	developing	a	student	management
system,	 a	 'student'	 class	 is	 crafted	 which	 is	 a	 virtual	 entity.	 In	 both	 the
examples,	the	entity	was	crafted	as	it	was	important	to	the	problem	at	hand.

The	 example	of	 the	'student'	 class	 can	be	 taken	 further.	The	 class	will	 have
attributes,	 which	 are	 needed	 in	 the	 program.	 The	 selection	 of	 attributes	 will
decide	on	the	physical	boundaries	of	the	class.	The	fact	of	the	matter	is	we	will
not	 be	 needing	 unnecessary	 details	 like	 the	 number	 of	 cars	 a	 student	 has	 or
where	he	went	last	evening	in	an	educational	institute	for	which	we	are	making
the	student	management	system,	so	there	is	no	point	storing	those	details.

Examples	 of	 some	 of	 the	 classes	 that	 are	 central	 to	 the	 stated	 software	 are	 as
follows	(Table	9.1).

Table	9.1		Examples	of	classes	central	in	various	systems

System class	central	to	the	software

Student	Management	System Student
Employee	Management	System Employee
Inventory	Control Item
Library	Management Book
Movie	Review Movie
Airline	Management Flight
Examination Test

Object
Consider	a	student	management	system	that	stores	the	data	of	each	student	of	a
school.	Note	that	while	entering	data	the	operator	would	deal	with	an	individual
student,	not	the	idea	of	a	student.	The	idea	of	a	student	is	a	class,	whereas	each
student	is	an	instance	of	class	or	an	object.

An	object	is	an	instance	of	a	class.	The	objects	interact	with	each	other	and	get
the	work	done.	Generally,	a	class	can	have	any	number	of	objects.	One	can	even
form	an	array	of	objects.	The	example	of	'movie'	 had	'm'	 as	 an	 object.	As	 a
matter	of	fact,	we	make	an	object	and	call	 the	methods	of	a	class	(those	which

9.4.3

9.4.4

can	be	called).

In	 object-oriented	 paradigm,	 the	 program	 revolves	 around	 an	 object	 and
therefore	 the	 type	 of	 programming	 is	 termed	 as	 an	 object-oriented	 program.
Calling	a	method	of	an	object	is	equivalent	to	sending	message	to	an	object.

Encapsulation
The	class	is	an	entity,	which	has	both	data	and	functions.	The	clubbing	together
of	 the	 data	 and	 the	 functions	 that	 operate	 on	 the	 data	 is	 called	 encapsulation.
Encapsulation	 is	 one	 of	 the	 core	 principles	 of	 object-oriented	 paradigm.
Encapsulation	not	only	makes	 it	easier	 to	handle	objects	but	also	 improves	 the
manageability	of	the	software.

Moreover,	 the	 functions	 in	 a	 class	 can	 be	 used	 in	 variety	 of	 ways.	 Their
accessibility	of	data	members	and	member	functions	can	also	be	managed	using
access	specifiers,	as	explained	in	the	following	sub-section.

Data	Hiding
Data	hiding	 is	another	 important	principle	of	object-oriented	programming.	As
stated	 in	 the	 above	 discussion,	 the	 accessibility	 of	 data	 can	 be	 governed	 in	 a
class.	 The	 data,	 in	 the	 case	 of	 procedural	 programming,	 is	 accessible	 to	 all
throughout	the	program.	This	is	referred	to	as	global	data.	The	data	private	to	a
class	is	one	which	can	be	accessed	only	by	the	members	of	the	class.	There	are
other	access	specifiers	as	well,	explained	in	the	following	sections.

In	C++,	for	example,	 the	data	in	a	class	 is	generally	kept	private.	That	 is,	only
the	member	functions	of	the	class	can	access	the	data.	This	ensures	that	the	data
is	not	accidently	changed.	The	functions,	on	the	other	hand,	are	public	in	C++.
The	public	functions	can	be	accessed	anywhere	in	the	program	(Figure	9.5).	 In
C++,	 Java,	 C#,	 etc.,	 there	 is	 another	 access	 specifier,	 which	 is	 protected.	 If	 a
member	 is	 to	 be	 accessed	 in	 the	 class	 and	 the	 derived	 class,	 then	 a	 protected
specifier	is	used.	C#	and	Java	also	have	some	other	specifiers	like	internal.

9.4.5

FIGURE	9.5 Access	specifiers,	public	and	private

Having	 discussed	 the	 data	 access,	 it	 must	 be	 clarified	 that	 deciding	 what	 is
private	and	what	is	public	is	up	to	the	discretion	of	the	design	and	development
team	of	the	project.	There	is	no	hard	and	fast	rule	as	to	what	should	be	private
and	what	should	be	public.	The	designers	must	decide	on	the	accessibility	of	a
member	based	on	their	needs.

This	 protection	 of	 data	 is	 not	 related	 to	 the	 security	 of	 data	 but	 to	 accidental
change.	This	 is	 needed	 so	 that	 the	data	 can	be	 changed	only	via	 the	 functions
which	have	the	authority	to	change	data.

Inheritance
Classes	are	made	so	that	they	can	be	sub-classed.	This	art	of	dividing	the	class
into	subclass(es)	is	inheritance.	For	example,	the	movie	class	can	be	sub-classed
into	 various	 classes	 like	 art_movie,	 commercial_movie,	 etc.	 Likewise,	 the
student	 class	 can	 be	 sub	 classed	 into	 'regular	 student'	 and
'part_time_student'.	In	both	the	examples	the	subclass	has	many	things	which
are	there	in	the	base	class	(the	class	from	which	the	sub-class	has	been	derived)
in	common.	In	addition,	each	subclass	can	have	functions	and	data	that	belongs
to	the	sub-class	only.

For	 example,	 the	 student	 class	 can	 have	 attributes	 namely	 name,	 date_of_

birth,	 address	 etc.	 The	 subclass	 regular	 student	 will	 use	 all	 the	 above	 data
members	 and	 can	 also	 have	 attributes	 like	 attendance	 associated	 with	 it.	 The
class	from	which	classes	will	be	sub-classed	is	referred	to	as	the	base	class	and
the	subclasses	would	be	called	derived	classes.

For	example	 in	Figure	9.6,	movie	 is	 the	base	class	and	commercial_movie	and
art_movie	are	the	sub-classes.

9.4.6

9.4.7

9.5

FIGURE	9.6 Deriving	classes	from	other	classes	is	inheritance.	There	are	many	types	of
inheritance.	The	above	figure	shows	hierarchical	inheritance

Polymorphism
Poly	means	many	and	morphism	is	forms,	so	polymorphism	means	many	forms.
Polymorphism	can	be	implemented	in	many	ways.	One	of	the	simplest	examples
of	polymorphism	is	operator	overloading.	Operator	overloading	means	using	the
same	operator	in	more	than	one	way.	For	example	“+”	is	used	between	integers
to	add,	with	strings	for	concatenation	and	even	can	be	used	in	user	defined	data
types	as	explained	in	Chapter	12	of	this	book.

Likewise	 function	 overloading	means	 having	more	 than	 one	 function	with	 the
same	name	in	a	class	with	different	arguments.	Various	forms	of	polymorphism
are	explained	in	Chapters	10	and	11	of	this	book.

Reusability
The	 procedural	 programming	 came	 with	 almost	 no	 reusability.	 Modular
programming	allowed	reusability	but	only	to	certain	extend.	The	functions	could
be	 used	 on	 an	 “as	 is	 basis”	 in	 modular	 programming.	 In	 object-oriented
programming,	 the	 concept	 of	 reusability	 can	 be	 used	 in	 its	 full	 force.	 The
concept	 of	 inheritance,	 introduced	 above	 and	 explained	 in	 Chapter	 10	 of	 this
book,	helps	the	programmer	to	reuse	a	code	as	per	their	requirements.	a	matter	of
fact,	reusability	is	one	of	the	USPs	of	the	object-oriented	paradigm.

However,	 there	 is	 a	 catch.	 Lately,	 some	 researchers	 have	 cast	 doubts	 on	 the
ability	of	OOP	vis-a-vis	reusability.

CONCLUSION

While	designing	software,	one	must	keep	in	mind	the	entities	he	is	going	to	work
on.	The	nitty-gritty	can	be	decided	at	a	later	stage.	As	a	matter	of	fact,	popular
literature	does	not	consider	the	details	of	the	operation	as	a	matter	of	concern	for
the	object-oriented	programming.	Hiding	unnecessary	details	 are,	 therefore,	 an
important	part	of	object-oriented	programming.

For	 example,	while	 developing	 a	website	 for	movies,	 the	 entity	 central	 to	 the
problem	 is	 “Movie.”	 So,	 one	 starts	 with	 an	 empty	 class	 called	 "movie".	 The
designer	must	 then	decide	on	 the	attributes	needed	to	 implement	 the	functions.
The	attributes	constitute	the	data	members	of	the	said	class.	The	behavior	of	the
entity	is	then	deliberated	upon.	The	member	function	determines	the	behavior	of
a	 class.	 The	 functions	 are	 then	 designed.	 The	 things	 like	 inheritance	 and
polymorphism,	 discussed	 later	 in	 this	 section,	 come	 into	 play.	And	 finally	 the
system	is	created.

This	journey	of	the	formation	of	a	class	has	been	depicted	in	the	following	figure
(Figure	9.7).

FIGURE	9.7 The	design	of	a	movie	class

Programming	is	an	art.	A	good	programmer	should	be	well-versed	in	the	syntax
of	 the	 language,	 the	 data	 structures	 and	 the	 concepts	 of	 algorithm	 analysis.	 In
addition	to	the	above,	a	programmer	needs	to	decide	the	programming	paradigm
that	 he	 is	 going	 to	 use.	 The	 chapter	 briefly	 introduces	 various	 programming
paradigms	 and	 the	 advantages	 and	 disadvantages	 of	 them.	 The	 chapter
introduces	the	concept	of	object-oriented	programming.	The	definitions	of	class,

object,	etc.,	have	been	discussed	in	the	chapter.	The	chapter	also	introduces	the
features	 of	 OOP.	 The	 concepts	 introduced	 in	 this	 chapter	 will	 form	 the
foundation	of	the	rest	of	the	chapter	of	this	section.	As	already	stated	some	of	the
concepts	may	appear	abstract	at	this	stage,	but	the	following	chapters	will	revisit
the	concepts	and	will	demonstrate	the	implementation	of	the	ideas	dealt	with	in
this	chapter.	In	order	to	be	able	to	make	a	program	that	uses	OOP,	one	must	get
out	of	the	mindset	of	doing	things	in	procedural	way	and	start	thinking	about	the
program	that	is	centered	on	real	world	entities	having	attributes	and	behaviors.

It	 may	 also	 be	 stated	 that	 the	 designing	 of	 an	 object-oriented	 program	 is
generally	preceded	by	the	design	of	class	diagrams	and	sequence	diagrams	etc.
These	are	part	of	Unified	Modelling	Language.	The	concept	of	class	diagrams
has	 been	 introduced	 in	 this	 chapter	 and	 UML	 has	 been	 introduced	 in	 the
references	 at	 the	 end	 of	 the	 chapter.	 The	 reader	 is	 advised	 to	 go	 through	 the
references	at	the	end	of	the	chapter	before	proceeding	any	further.

GLOSSARY

Class:	A	class	is	a	real	or	a	virtual	entity	that	has	relevance	to	the	problem
at	hand	and	has	sharp	physical	boundaries.
Object:	An	object	is	an	instance	of	a	class.
Encapsulation:	 The	 clubbing	 together	 of	 the	 data	 and	 the	 functions	 that
operate	on	the	data	is	called	encapsulation.
Inheritance:	The	art	of	dividing	the	class	into	subclass(es)	is	inheritance.
Operator	overloading:	Operator	overloading,	 in	general,	means	using	the
same	operator	in	more	than	one	way.
Function	overloading:	This	means	having	more	than	one	function	with	the
same	name	in	a	class	with	different	arguments.

POINTS	TO	REMEMBER

Telling	 the	 computer	 what	 to	 do,	 step	 by	 step,	 works	 if	 the	 task	 to	 be
accomplished	 is	 not	 very	 complex.	 In	 such	 cases	 no	 other	 paradigm	 is
needed.
In	the	case	of	a	moderately	large	program,	division	into	functions	makes	the
task	easier.

The	 division	 of	 a	 larger	 program	 into	 modules	 makes	 the	 program
manageable	and	helps	to	achieve	reusability	of	code.
The	 clubbing	 together	 of	 functions,	 on	 some	 basis,	 gives	 rise	 to	 what	 is
commonly	 referred	 to	 as	 modules.	 The	 programming	 paradigm	 is	 called
modular	programming.
A	class	has	two	important	components:	attributes	and	behavior.
A	constructor	initializes	the	members	of	a	class.
The	destructor	frees	the	memory	occupied	by	an	object.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	not	object-oriented	language?

(a) C

(b) C++

(c) Python

(d) C#

2. Which	of	the	following	is	object-oriented	language?

(a) Python

(b) C#

(c) Java

(d) All	of	the	above

3. A	student	is	a	conceptual	entity,	which	acts	as	a	blueprint	for	each	student.
The	mapping	is	similar	to	which	of	the	following?

(a) Class	and	object

(b) Method	and	modular	programming

(c) Both

(d) None	of	the	above

4. Which	of	the	following	are	the	two	most	important	components	of	a	class?

(a) Methods	and	attributes

(b) List	and	tuple

(c) Arrays	and	functions

(d) None	of	the	following

5. In	object-oriented	paradigm,	a	variable	of	a	class	is	called

(a) Data	member

(b) Member	function

(c) Global	data

(d) None	of	the	above

6. In	object-oriented	paradigm,	the	functions	of	a	class	are

(a) Member	functions

(b) Data	members

(c) Global	functions

(d) None	of	the	above

7. An	instance	of	a	class	is	called

(a) Object

(b) Subject

(c) Inject

(d) None	of	the	above

8. The	clubbing	 together	of	data	and	 the	functions	 that	operate	on	 the	data	 is
called

(a) Abstraction

(b) Encapsulation

(c) Overloading

(d) None	of	the	above

9. Allowing	the	selective	access	of	data	members	in	a	class	is	the	same	as

(a) Data	Hiding

(b) Encapsulation

(c) Abstraction

(d) None	of	the	above

10. If	we	have	the	same	name	functions	in	a	class,	then	it	is	called

(a) Function	overloading

(b) Overriding

(c) Encapsulation

(d) None	of	the	above

11. “+”	can	be	used	for	adding	two	number	types.	However,	a	programmer	can
use	 “+”	 for	 the	 addition	 of	 two	 user	 defined	 data	 types	 (for	 example,
complex	numbers).
This	is

(a) Method	overloading

(b) Operator	overloading

(c) Encapsulation

(d) None	of	the	above

12. Inheritance	is	helpful	in	handling

(a) Reusability

(b) Redundancy

(c) Overhead

(d) None	of	the	above

13. If	a	function	in	the	base	class	is	extended	in	the	derived	class,	then	it	is

(a) Overloading

(b) Abstraction

(c) Encapsulation

(d) None	of	the	above

14. Which	of	the	following	is	not	a	type	of	inheritance?

(a) Simple

(b) Multiple

(c) Hierarchical

(d) All	of	them	are	types	of	inheritance

15. Which	of	the	following	initializes	the	members	of	a	class?

(a) Constructor

(b) Destructor

(c) Both

(d) None	of	the	above

16. Which	of	the	following	is	true	for	a	well-defined	class?

(a) It	has	importance	to	a	problem	at	hand

(b) It	has	sharp	physical	boundaries

(c) It	is	a	real	or	a	physical	entity

(d) All	of	the	above

17. A	language	in	which	one	can	define	a	new	data	type	is

(a) Comprehensive

(b) Extensible

(c) Both

(d) None	of	the	above

18. In	object-oriented	paradigm,	the	focus	is	on

(a) Data

(b) Way	a	work	is	done

(c) Data	Types

(d) None	of	the	above

19. UML	is

(a) Ultra-Modern	Language

(b) Unified	Modelling	Language

(c) United	Model	League

(d) None	of	the	above

20. Which	of	the	following	is	not	a	principle	of	object-oriented	paradigm?

(a) Inheritance

(b) Data	hiding

(c) Encapsulation

(d) Divide	and	conquer

THEORY

1. Briefly	explain	the	various	paradigms	of	programming.

2. What	 is	 the	 difference	 between	 object-oriented	 paradigm	 and	 procedural
programming?

3. What	 is	 a	 class?	 What	 are	 the	 essential	 components	 of	 a	 class?	 Define
attributes	and	functions	of	a	class.

4. What	is	the	relation	between	an	object	and	a	class?

5. What	is	a	class	diagram?	Give	an	example	of	a	class	diagram.

6. Explain	the	importance	of	encapsulation.

7. Explain	 the	 importance	 of	 data	 hiding.	 Is	 it	 related	 to	 the	 security	 of	 the
data?

8. What	 is	 polymorphism?	 Explain	 the	 concept	 of	 operator	 overloading	 and
function	overloading.

9. What	is	the	advantage	of	reusability?	Explain	the	concept	of	reusability	vis-
a-vis	object-oriented	paradigm.

10. Explore	some	of	the	problems	in	object-oriented	programming?

EXPLORE	AND	DESIGN

The	 reader	 is	 expected	 to	 go	 through	 material	 on	 the	 subject:	 Database
Management	System.	The	chapters	on	entity	relationship	diagrams	have	details
of	 entities	 involved	 therein.	Create	 class	 diagrams	 of	 the	 classes	mentioned	 in
Table	9.1,	based	on	your	research.

10.1

CHAPTER	10

CLASSES	AND	OBJECTS

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	how	to	create	a	class	in	Python
• Instantiate	a	class
• Use	objects
• Create	member	functions
• Differentiate	between	instance	and	class	variables
• Use	constructors	and	destructors
• Understand	the	type	of	constructors

INTRODUCTION	TO	CLASSES

Classes	are	 real	or	virtual	entities	which	have	an	 importance	 to	 the	problem	at
hand	and	sharp	physical	boundaries.	The	concept	of	classes	has	been	discussed
in	the	previous	chapter.	This	chapter	takes	these	discussions	forward.	It	is	easier
to	make	a	class	in	Python	than	in	any	other	programming	languages.	A	class	in
Python	 can	 hold	 any	 kind	 and	 any	 amount	 of	 data.	 Those	 with	 a	 C++
background	might	find	the	syntax	and	use	of	variables	odd.	As	a	matter	of	fact
the	 mechanism	 of	 classes	 in	 Python	 is	 inspired	 not	 just	 by	 C++	 but	 also	 by
Modula-3.

A	 class	 in	 Python	 can	 be	 sub-classed.	 All	 types	 of	 inheritance,	 including
multiple	 inheritances,	 are	 supported	 in	 Python.	 Method	 overriding	 is	 also
allowed	 in	 Python.	The	dynamic	nature	 of	 classes	makes	 Python	 stand	 apart
from	 other	 languages.	 Classes	 can	 be	 created	 at	 runtime	 and	 can	 even	 be
changed	as	and	when	the	program	runs.

In	a	class	all	data	members	are	public	 in	nature;	 that	 is	 they	can	be	accessed
anywhere	in	the	program.	The	member	functions	in	a	class	are	all	virtual.	In	a
class	 all	 the	 member	 functions	 must	 have	 the	 first	 argument	 as	 the	 object

10.2

representing	that	class,	from	now	on	referred	to	as	'self'.	Interestingly,	all	the
built	in	types	are	themselves	classes	in	Python	and	they	can	be	extended	by	the
programmer.

The	reader	is	advised	to	revisit	the	chapter	on	lists.	Note	that	multiple	names	can
be	associated	with	the	same	object.	Using	pointers,	for	example,	an	object	can	be
passed	to	a	function	using	just	one	argument	and	in	addition	to	that,	the	change
done	by	the	function	is	visible	to	the	calling	function	also.	In	the	case	of	Python,
aliasing	(having	multiple	names	for	the	same	object)	can	be	used	to	accomplish
the	above	task.

This	chapter	has	been	organized	as	follows.	Section	10.2	presents	the	definition
of	 a	 class.	 Section	 10.3	 presents	 the	 concept	 of	 objects	 and	 discusses	 the
instantiation	 of	 a	 class.	 Section	 10.4	 discusses	 the	 scope	 of	 data	 members.
Section	 10.6	 discusses	 constructor	 overloading.	 Section	 10.7	 discusses
destructors	and	the	last	section	concludes	the	chapter.

DEFINING	A	CLASS

In	Python,	a	class	can	be	defined	using	the	class	keyword.	The	class	keyword
is	followed	by	the	name	of	the	class.	The	body	of	the	class	follows.	It	must	have
proper	indentations.

Syntax

For	example	the	employee	class	having	data	members	name	and	age	and	member
functions	getdata()	and	putdata()	can	be	defined	as	 follows	(testing).	 It	was
stated	earlier	 that	 every	 function	 in	 the	class	must	have	at	 least	one	argument,
self.	The	functions	of	 this	class	have	been	defined	 in	 the	 traditional	way.	The
getdata()	function	here	asks	for	the	values	of	name	and	age	from	the	user.	The
data	members	are	accessed	via	 the	self	object	as	 they	belong	 to	 the	class	and
not	just	the	function.	Likewise	the	putdata()	function	displays	the	values	of	the
data	members.	Note	that	the	members	of	a	class	are	accessed	via	self.

Tip

10.3

A	class	definition	has	functions	but	can	also	have	other	members.
The	attribute	of	an	object	is	data	attribute,	and	the	function	that	belongs	to
an	object	is	method.

CREATING	AN	OBJECT

An	 object	 is	 created	 by	 associating	 a	 name	 with	 an	 instance	 of	 the	 class,
initialized	using	the	default	constructor.	For	example,	in	creating	an	object	of	the
employee	class	the	following	statements	are	used.

e1=employee()

Here,	e1	is	the	name	of	the	object	and	employee()	is	the	constructor	of	the	class.
An	object	can	also	be	created	using	a	parameterized	constructor,	as	explained	in
the	following	sections.	The	creation	of	an	object	is	referred	to	as	instantiation.

The	function	of	a	class	can	be	called	using	the	dot	operator	with	a	given	class.
For	example,	to	call	the	getdata()	function	of	the	employee	class	the	following
statements	are	used.

e1.getdata()

Likewise,	the	other	methods	of	a	class	can	be	called	using	the	dot	operator.

Code

10.4

Tip

An	object	support	the	following	operations
Instantiation
Attribute	references

SCOPE	OF	DATA	MEMBERS

The	scope	of	a	namespace	is	the	region	where	it	is	directly	accessible.	In	fact,	in
Python	scopes	are	used	dynamically.	In	determining	the	scope	of	a	namespace,
the	following	rules	are	followed:

First	of	all,	the	innermost	scope	is	searched
Then	the	scope	of	enclosing	functions	are	searched
Then	the	global	namespaces	are	searched
Then	the	built-in	names	are	seen

The	 nonlocal	 statements	 rebind	 the	 variables	 in	 the	 global	 scope.	 In	 order	 to
understand	the	above	concept,	consider	the	following	code.	The	following	points
concerning	the	code	are	worth	noting:

The	value	of	a	for	all	instances	of	the	class	is	5,	until	a	function	that	changes
the	value	of	a	is	called.

In	putdata()	a	does	not	exist,	a	is	local	to	getdata()
b	can	be	accessed	in	both	the	functions	as	b	 is	a	data	member	of	the	class
(note	that	every	time	b	is	called,	'self.b'	is	used)
On	 the	basis	of	 the	above	discussion	 the	 reader	 is	 expected	 to	decode	 the
following	program.

Code

In	the	following	code,	'a'	is	common	for	all	the	classes.	'b'	is	a	member	of	the
class.	 Here,'self.b=b'	 means	 the	 data	 member	 'b'	 of	 the	 class	 (self.b)	 is
assigned	value	'b',	 which	 is	 the	 second	 argument	 of	 the	 function	 getdata().
'c'	is	local	to	getdata(),	so	'c'	of	getdata()	is	not	same	as	that	of	putdata().

Definition:	Instance	variable	and	class	variable

An	instance	variable	is	one	which	is	unique	to	each	instance	and	a	class	variable
is	one	which	is	shared	by	all	instances.	For	example,	in	the	following	code	b	can
be	assigned	a	different	value	in	each	instance	but	c	remains	the	same.

Code

In	 addition	 to	 the	 above	 a	 global	 data	member	 can	be	made	outside	 the	 class,
which	 is	 accessible	 to	 all	 the	methods	 (until	 the	 scope	 of	 the	 data	member	 is
changed).	In	the	following	code	'a'	is	common	for	all	instances	of	the	class,	'b'
is	the	data	member	of	the	class	and	'c'	is	a	local	variable.

Code

10.5 NESTING

The	 designing	 of	 a	 class	 requires	 conceptualization	 of	 an	 entity,	 which	 has
attributes	and	behavior.	The	object	of	a	class	can	be	made	in	another	class	also.
That	is,	a	class	can	also	have	the	objects	of	another	class	as	its	members.	This	is
called	nesting.	Note	that	the	attributes	of	a	class	can	themselves	be	entities.	For
example,	 in	 the	 following	 code	 an	 instance	 of	 the	 date	 class	 is	 created	 in	 the
student	 class.	 This	 makes	 sense,	 as	 student	 is	 an	 entity	 made	 up	 of	 other
entities	(like	date).

Code

10.6 CONSTRUCTOR

Note	 that	 each	 time	 a	 class	 is	 instantiated,	 a	 constructor	 (for	 example,	 e1=
employee())	is	used.	In	C++	terminology,	a	constructor	is	a	function	which	has
the	same	name	as	that	of	the	class	and	initializes	the	data	members.	The	above
examples	 used	default	 constructors,	which	were	not	made	by	 the	programmer.
One	 can	 initialize	 the	 objects	 as	 per	 the	 need,	 by	 crafting	 constructors.	 The
following	 discussion	 focuses	 on	 two	 types	 of	 constructors:	 default	 and
parameterized.	A	default	constructor	does	not	take	any	argument	(for	example
the	 employee()	 constructor).	 In	 Python,	 the	 constructors	 are	 called	 using	 the
functions	 having	 the	 same	 name	 as	 that	 of	 the	 class.	 However,	 they	 are
implemented	by	making	the	_init_()	function	inside	the	class.

In	the	following	code,	the	object	e1	behaves	as	expected.	The	values	entered	by
the	user	 in	 the	getdata()	 function	are	displayed	when	putdata()	 is	called.	 In
the	case	of	e2	the	function	getdata()	is	not	called,	therefore	the	values	assigned
in	_init_()	are	displayed.

Code

A	parameterized	constructor	is	one	which	takes	arguments	-	for	example	in	the
following	code,	the	parameterized	constructor	which	takes	two	parameters	name
and	 age	 has	 been	 created.	 In	 order	 to	 assign	 the	 values	 to	 the	 object,	 the
instantiation	must	be	of	the	form:

e2=employee('Naved',	32)

Note	 that	 while	 defining	 the	 parameterized	 __init__,	 the	 first	 parameter	 is
always	'self'	 and	 the	 rest	 of	 the	 parameters	 are	 the	 values	 to	 be	 assigned	 to
different	 data	 members	 of	 the	 class.	 In	 the	 case	 of	 employee	 class,	 three
parameters	'self',	'name',	and	'age'	are	given.

10.7

Code

CONSTRUCTOR	OVERLOADING

Having	the	same	name	function	in	a	class	with	a	different	number	of	parameters,
or	different	type	of	parameters,	is	called	function	overloading.	In	C++,	Java,	C#,
etc.,	the	constructors	can	also	be	overloaded	-	that	is	one	can	have	more	than	one
constructors	 with	 each	 having	 different	 parameters.	 In	 Python,	 however,	 we
cannot	have	more	than	one	_init_	in	a	class.	For	example,	if	we	try	executing
the	following	code	an	error	crops	up.

The	 reason	 is	 that	 is	 one	makes	 a	parameterized	_init_.	Python	 looks	 for	 the
rest	of	the	parameters	in	the	instantiation.

Code

Having	 studied	 the	 importance	and	 implementation	of	 constructors,	 let	us	now
implement	 a	 constructor	 and	 let’s	 consider	 the	 "movie"	 class,	 discussed	 here.
The	 following	 code	 has	 a	 movie	 class,	 which	 contains	 a	 getdata()	 and
putdata()	function	and	init	(self)	for	initializing	the	variables.	Note	that	the
object	'm'	does	not	call	the	getdata()	function	but	just	putdata().	The	values
assigned	in	the	constructor	are	displayed.

Code

10.8 DESTRUCTORS

A	constructor	 initializes	 the	data	members	of	a	class	and	a	destructor	 frees	 the
memory.	 The	 destructor	 is	 created	 using	 _del_	 and	 called	 by	 writing	 the
keyword	 del	 and	 the	 name	 of	 the	 object.	 The	 following	 code	 exemplifies	 a
destructor	in	the	employee	class	described	in	the	previous	sections.

Code

The	next	example	is	the	same	as	the	previous	one.	However,	the	following	code
also	demonstrates	 the	use	of	_class_.	_name_,	which	displays	 the	name	of	 the
object	 that	 calls	 the	 function.	 This	 is	 useful	 as	 the	 name	 of	 the	 object	 whose

destructor	(or	for	that	matter	any	method)	is	being	called.

Code

The	reader	is	advised	to	go	through	the	references	for	if	name	=	“_main__”:
The	docstring	associated	with	the	class	can	be	mentioned	in	the	definition	of
the	class	within	three	double	quotes	(“””	...”””).
The	 docstring	 associated	 with	 the	 class	 can	 be	 accessed	 through	 doc,	 as
shown	in	the	following	example.

Code

10.9

The	above	chapter	discusses	what	is	referred	to	as	an	instance	method.	However
another	type	of	method	can	be	created	in	a	class,	which	is	referred	to	as	a	class
method.

CONCLUSION

The	 last	 chapter	 introduced	 the	concepts	of	object-oriented	programming.	This
chapter	takes	the	topic	further.	The	chapter	introduces	the	syntax	of	a	class	and
the	 creation	 of	 objects.	 The	 concept	 of	 constructors,	 their	 creation,	 types	 and
implementation	 have	 also	 been	 discussed	 in	 the	 chapter.	 The	 chapter	 also
introduces	 the	 idea	 of	 destructors.	 Ample	 examples	 have	 been	 given	 in	 the
chapter,	 which	 explain	 the	 implementation	 of	 the	 concepts	 introduced	 earlier.
The	following	chapter	will	introduce	the	idea	of	inheritance	and	polymorphism,
which	 are	 essential	 to	 object-oriented	 programming.	 However	 to	 be	 able	 to
inherit	a	class	or	 implement	operator	overloading,	one	must	be	versed	with	the
creation	of	a	class	and	its	use.

GLOSSARY

Data	attribute	and	method:	The	 attribute	 of	 an	 object	 is	data	 attribute
and	the	function	that	belongs	to	an	object	is	method.
Instance	variable	and	class	variable:	An	instance	variable	is	one	which	is
unique	 to	each	 instance	and	a	class	variable	 is	one	which	 is	 shared	by	all
instances.
Constructor:	A	constructor	initializes	the	data	members.
A	parameterized	constructor	is	one	which	takes	arguments.

POINTS	TO	REMEMBER

The	classes	in	Python	can	be	sub-classed.
All	 types	 of	 inheritance	 including	 multiple	 inheritances	 are	 supported	 in
Python.
A	class	can	be	defined	using	the	class	keyword	in	Python.
An	 object	 is	 created	 by	 associating	 a	 name	with	 an	 instance	 of	 the	 class,
initialized	using	the	default	constructor.
The	 function	 of	 a	 class	 can	 be	 called	 using	 the	 dot	 operator	with	 a	 given
class.
While	defining	the	parameterized	init	the	first	parameter	is	always	'self',
and	the	rest	of	the	parameters	are	the	values	to	be	assigned	to	different	data
members	of	the	class.
A	constructor	initializes	the	data	members	of	a	class	and	a	destructor	frees
the	memory.
The	destructor	is	created	using	del	and	called	by	writing	the	keyword	del
and	the	name	of	the	object.
__class__.__name__	displays	the	name	of	the	object	that	calls	the	function.
The	docstring	associated	with	the	class	can	be	accessed	through	doc.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. A	class	generally	has

(a) Function	and	data	members

(b) Function	and	lists

(c) Lists	and	tuples

(d) None	of	the	above

2. A	class	can	have

(a) Any	number	of	functions

(b) Any	type	of	data	members

(c) A	variable	local	to	a	function

(d) All	of	the	above

3. 'self'	is

(a) Object	of	the	same	class

(b) Object	of	the	base	class

(c) Object	of	a	predefined	class

(d) None	of	the	above

4. Each	function	in	Python	must	have	at	least	one	parameter,	which	is

(a) Data

(b) List

(c) self

(d) None	of	the	above

5. The	init	function

(a) Initializes	the	data	members

(b) Is	compulsory

(c) Must	be	overloaded

(d) None	of	the	above

6. The	init	function	in	a	class

(a) Must	be	overloaded

(b) Can	be	overloaded

(c) Cannot	be	overloaded

(d) None	of	the	above

7. The	docstring	of	a	class	can	be	accessed	using

(a) __init

(b) __doc__

(c) __class

(d) None	of	the	above

8. A	global	variable

(a) Can	be	accessed	anywhere

(b) Can	be	accessed	only	in	init__

(c) Both	of	the	above

(d) None	of	the	above

9. The	nonlocal	variable

(a) Is	generally	associated	and	then	used

(b) Must	not	be	associated

(c) Does	not	exist

(d) None	of	the	above

10. A	variable	shared	by	all	the	instances	of	a	class	is

(a) Class	variable

(b) Instance	variable

(c) Both

(d) None	of	the	above

11. A	variable	unique	to	an	instance	is

(a) Instance	variable

(b) Class	variable

(c) Both

(d) None	of	the	above

12. Which	of	the	following	keywords	is	used	to	define	a	class?

(a) class

(b) def

(c) del

(d) None	of	the	above

13. Which	of	the	following	is	used	to	define	a	function	that	acts	as	a	destructor?

(a) del

(b) init

(c) Both

(d) None	of	the	above

14. Which	of	the	following	operations	are	supported	by	an	object?

(a) Instantiation

(b) Attribute	reference

(c) Both

(d) None	of	the	above

15. Suppose	e1	is	an	object,	which	of	the	following	codes	is	used	to	call	del?

(a) del	e1

(b) e1.	del__

(c) Both

(d) None	of	the	above

16. If	 the	 name	 of	 the	 object	 is	 to	 be	 displayed	 in	 a	 function	 of	 a	 class,	 then
which	of	the	following	can	be	used?

(a) __class	.	name__

(b) object	.	name__

(c) Both

(d) None	of	the	above

17. In	a	class	all	variables	are	_	by	default?

(a) Public

(b) Private

(c) Cannot	say

(d) Depends	on	the	type	of	variables

18. In	Python,	which	of	the	following	operators	is	used	to	access	methods?

(a) Dot

(b) Plus

(c) []

(d) None	of	the	above

19. Can	a	list	of	objects	be	created?

(a) Yes,	if	the	type	of	variables	is	public

(b) Yes,	in	all	cases

(c) No,	in	all	cases

(d) Yes,	if	the	type	of	variables	is	private

20. Data	members	of	a	class

(a) Must	be	private

(b) Can	be	private

(c) Must	be	public

(d) None	of	the	above

THEORY

1. What	is	an	object?	How	is	an	object	created	in	Python?

2. Explain	the	scope	of	variables	in	a	class.	Give	an	example	of	data	members
of	a	class	which	are	shared	by	all	the	objects	and	of	those	which	are	unique
to	an	object.

3. What	 is	 a	 constructor?	 What	 are	 the	 different	 types	 of	 constructors	 in
Python?

4. Can	we	overload	a	constructor	in	Python?

5. How	can	one	access	the	name	of	the	docstring	in	Python?

6. How	can	one	access	the	name	of	an	object	in	Python?

7. What	is	a	destructor?	How	is	a	constructor	created	in	Python?

8. Give	an	example	of	use	of	a	destructor	in	Python.

9. Give	an	example	of	instantiation	of	a	class.

10. Explain	the	concept	of	aliasing	in	Python.

PROGRAMMING	EXERCISES

A	start-up	employs	interns.	The	following	details	of	interns	are	stored

first_name
last_name
address
mobile_number
e_mail

1. Create	 a	 class	 called	 Intern,	 which	 stores	 the	 above	 details.	 Craft	 two
functions	 getdata()	 which	 asks	 the	 user	 to	 enter	 data	 and	 putdata()	 to
display	the	data.

2. In	the	above	program	create	init	which	takes	only	one	parameter	(self).

3. In	question	1,	create	init,	which	takes	6	parameters	-	the	first	being	“self”
and	the	rest	the	values	of	variables	stated	in	question	1.

4. In	the	above	question,	craft	a	destructor.

5. A	library	management	system	is	to	be	created,	in	which	the	following	details
of	a	“Book”	are	to	be	stored.

Name
Publisher
Year
ISBN
Authors

The	authors,	above,	is	a	list	consisting	of	all	the	authors	of	that	book.

Create	 a	 class	 called	 Book,	 which	 stores	 the	 above	 details.	 Craft	 two
functions	-	getdata()	which	asks	 the	user	 to	 enter	data	 and	putdata()	 to
display	the	data.

6. In	the	above	program,	create	init	which	takes	only	one	parameter	(self).

7. In	 question	 6,	 create	 init,	 which	 takes	 6	 parameters	 with	 the	 first	 being
“self”	and	the	rest	the	values	of	variables	stated	in	question	5.

8. In	the	above	question,	craft	a	destructor	and	call	it.

9. Create	 a	 class	 called	complex,	having	real_part	 and	ima_part	 as	 its	 two
data	members	and	getdata()	and	putdata()	as	its	member	functions.

10. In	the	above	question,	craft	init	and	del.

11. Create	 a	 function	 called	 add,	 which	 takes	 two	 complex	 numbers	 as	 its
parameters	and	returns	the	sum	of	the	two	complex	numbers.

12. Create	 a	 function	 called	 sub,	 which	 takes	 two	 complex	 numbers	 as	 its
parameters	and	returns	the	difference	of	the	two	complex	numbers.

13. Create	a	function	called	multiply,	which	takes	two	complex	numbers	as	 its

parameters	and	returns	the	product	of	the	two	complex	numbers.

14. Create	 a	 function	 called	 div,	 which	 takes	 two	 complex	 numbers	 as	 its
parameters	and	returns	the	result	of	division	of	the	two	complex	numbers.

15. Create	a	class	called	date	having	day,	month,	and	year	as	its	data	members
and	getdata()	and	putdata()	as	its	member	functions.	Instantiate	the	class,
ask	user	to	enter	data	and	display	the	data.

11.1

CHAPTER	11

INHERITANCE

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	concept	and	importance	of	inheritance
• Differentiate	between	inheritance	and	composition
• Understand	the	types	of	inheritance
• Appreciate	the	role	of	‘self’	in	methods
• Understand	the	search	in	an	inheritance	tree
• Understand	the	concept	and	importance	of	super
• Appreciate	the	need	of	an	abstract	class

INTRODUCTION	TO	INHERITANCE	AND
COMPOSITION

Those	 of	 you	 from	 a	 C++	 background	 will	 have	 studied	 the	 importance	 of
inheritance	 and	 composition.	 Inheritance	 was	 projected	 as	 a	 path	 breaking
concept,	which	promised	to	solve	all	the	problems	and	bring	about	a	change	in
the	way	 programming	 is	 done.	 But	 you	must	 have	 understood	 that	 those	who
make	such	tall	claims	generally	create	more	problems	than	they	claim	to	solve.
Inheritance	may	also	create	problems;	many	more	than	you	can	imagine.

Many	 programmers	 believe	 that	 inheritance	 is	 a	 black	 hole	 which	 somehow
attracts	 programmers,	 who	 falls	 in	 the	 trap	 of	 tall	 claims	 and	 end	 up	 landing
themselves	 in	 a	 situation	 which	 tempts	 them	 to	 use	 multiple	 inheritance.
Multiple	 inheritance	 is	 like	 Voldemort,	 and	 the	 object-oriented	 programming
environment	is	Hogwart’s.	Therefore,	it	is	better	to	avoid	multiple	inheritance	as
much	as	possible.

Object-oriented	 programming	 has	 its	 charms	 but	 also	 comes	 with	 its	 own
problems,	 it	 is	 like	 demonetization.	 So,	 use	 inheritance	 only	 if	 required.	 Also
remember	never	ever	 to	use	multiple	 inheritance.	Remember	 that	anything	 that

11.1.1

can	be	done	using	inheritance	can	be	done	also	in	another	way	too.	Composition,
introduced	 later	 in	 the	 chapter,	 can	 be	 easily	 used	 to	 accomplish	 most	 of	 the
tasks	that	can	be	done	using	inheritance.

In	hindsight,	inheritance	means	a	class	would	get	features	(all	or	some)	from	the
parent	class.	So,	when	one	writes

class	SoftwareDeveloper(Employee):

...

it	implies	that	the	class	SoftwareDeveloper	is	a	subclass	of	the	class	Employee.
This	 relationship	 falls	 in	 the	 category	 of	 an	 “is	 a”	 type	 relationship.	 That	 is,
'SoftwareDeveloper'	is-a	'Employee'.

The	class	from	which	class(es)	are	derived	from	is	called	a	base	class	and	those
that	 inherit	 features	 from	 the	 base	 class	 are	 derived	 classes.	 In	 the	 above
example,	Employee	is	the	base	class	and	SoftwareEmpolyee	is	the	derived	class.
Note	that	inheritance	does	not	affect	the	base	class.	The	derived	class	can	use	the
modules	of	the	base	class	in	a	variety	of	ways	which	are	discussed	as	follows.

Inheritance	and	Methods
As	far	as	modules	are	concerned,	inheritance	can	help	the	programmer	to	derive
the	features	by	one	of	the	following	ways.

The	method	is	not	present	in	the	child	class,	but	only	in	the	parent	class:	In
such	 cases	 if	 an	 instance	 of	 the	 child	 class	 calls	 the	 said	 method,	 the	 parent
class’s	method	is	called.	For	instance,	in	the	following	snippet	the	derived	class
does	not	have	a	method	called	show()	so	calling	show	using	an	instance	of	the
derived	class	(consider,	in	this	case)	calls	the	method	of	the	parent	class.

Code

The	method	is	present	in	both	the	parent	class	and	in	the	derived	class:	 In
such	cases,	if	this	method	is	invoked	using	an	instance	of	the	derived	class	then
the	 method	 of	 the	 derived	 class	 is	 called.	 If	 the	 method	 is	 called	 using	 an
instance	of	 the	 base	 class,	 the	method	of	 the	 base	 class	 is	 called.	Note	 that	 in
such	cases,	the	derived	class	redefines	the	method.	This	overriding	ensures	that
the	 search	of	 the	method	 in	 the	 inheritance	 tree	 ends	 up	 invoking	 this	method
only.	For	example,	in	the	following	snippet	x.show()	calls	the	show()	method	of
the	derived	class,	whereas	y.show()	calls	the	method	of	the	base	class.

Code

The	inherited	class	modifies	the	method	of	the	base	class	and	in	this	process
invokes	the	method	of	the	base	class	inside	the	method	of	the	derived	class	also.
Note	that	in	the	following	snippet	the	show	method	of	the	derived	class	prints	a
message,	 then	 calls	 the	 method	 of	 the	 base	 class	 and	 finally	 prints	 another
message.	Note	 that	 in	 this	 case,	 the	method	of	 the	base	class	 can	be	called	by
qualifying	the	name	of	the	method	with	the	name	of	the	base	class.	For	example
in	the	following	snippet	the	show	method	of	the	base	class	can	be	called	using

ABC.show(self).	The	 importance	of	 the	self	 argument	has	been	explained	 in
Section	11.3.

Code

The	 first	 type	 of	 inheritance	 will	 henceforth	 be	 referred	 to	 as	 implicit
inheritance.	 In	 this	 type	 the	method	 of	 the	 base	 class	 can	 be	 called	 using	 an
instance	of	the	derived	class.

The	 second	 type	 of	 inheritance	 will	 henceforth	 be	 referred	 to	 as	 explicit
overriding.	As	stated	earlier,	 the	derived	class	will	 redefine	 the	method	of	 the
base	 class	 and	 calling	 this	method	 using	 an	 instance	 of	 the	 derived	 class	will
invoke	the	method	of	the	derived	class.

The	 third	 type	 of	 inheritance	 is	 the	 most	 important	 and	 practical	 form	 of
overriding	methods.	This	type	of	inheritance	leaves	the	room	of	not	making	an
instance	of	the	base	class,	if	not	required,	still	using	the	function.

The	following	illustration	combines	the	three	types	of	inheritance:

Illustration	 11.1:	 Create	 a	 class	 called	 Student	 having	 _init_	 and	 show
methods.	The	Student	class	should	have	a	data	member	called	name.	The	_init_
should	assign	value	 to	name	and	show	 should	display	 the	value.	Create	 another
class	 called	 RegularStudent,	 which	 will	 be	 the	 derived	 class	 of	 the	 Student
class.	The	class	should	have	two	methods	_init_	and	show.	The	_init_	 should
assign	values	 to	age	and	should	call	 the	_init_	 of	 the	base	class	and	pass	 the
value	of	name	 to	 the	base	class.	The	show	method	must	display	 the	data	of	 the

RegularStudent.	 In	 addition	 to	 the	 above	 both	 classes	 should	 have	 methods
called	random,	both	of	which	should	be	independent	of	each	other	(Figure	11.1).
Find	what	happens	when	the	methods	of	 the	base	class	and	the	derived	classes
are	called	using	the	instances	of	the	base	and	the	derived	classes.

FIGURE	11.1 Class	hierarchy	for	Illustration	11.1

Solution:

Code

11.1.2 Composition
Making	an	instance	of	another	class	inside	a	class	makes	things	easy	and	helps
the	programmer	 to	accomplish	many	 tasks.	 In	order	 to	understand	 the	concept,
let	 us	 consider	 an	 example.	 Consider	 that	 a	 Student	 and	 his	 PhDguide	 are
subclasses	of	the	person	class.	Also,	the	data	of	the	PhD	guide	 includes	the	list
of	students	guided	by	him/her.	This	is	where	composition	comes	into	play.	The

instantiation	of	the	students	in	the	PhDGuide	class	can	be	done	as	explained	in
the	following	illustration.

Illustration	11.2:	 Create	 a	 class	 called	 Student,	 having	name	 and	email	 as	 its
data	 members	 and	 _init_(self,	 name,	 email)	 and	 putdata(self)	 as	 bound
methods.	The	_init_	function	should	assign	the	values	passed	as	parameters	to
the	 requisite	 variables.	 The	 putdata	 function	 should	 display	 the	 data	 of	 the
student.	Create	another	class	called	PhDguide	having	name,	email,	and	students
as	its	data	members.	Here,	the	students	variable	is	the	list	of	students	under	the
guide.	The	PhDguide	class	should	have	four	bound	methods:	_init_,	putdata,
add,	and	remove.	The	_init_	method	should	initialize	the	variables,	the	putdata
should	show	the	data	of	 the	guide,	 include	 the	 list	of	students,	 the	add	method
should	add	a	student	to	the	list	of	students	of	the	guide	and	the	remove	function
should	 remove	 the	 student	 (if	 the	 student	 exists	 in	 the	 list	 of	 students	 of	 that
guide)	from	the	list	of	students.

Solution:

The	details	of	the	classes	have	been	shown	in	Figure	11.2.	It	may	be	noted	that
since	 students	 is	 a	 list	 therefore	 a	 for	 loop	 is	 needed	 to	 display	 the	 list	 of
students.	 Also,	 while	 adding	 the	 student	 to	 the	 list	 the	 data	 of	 the	 passed
parameter	has	been	stored	in	s	(an	instance	of	Student)	and	s	has	been	added	to
the	 list	 of	 the	 students.	 The	 same	 procedure	 has	 been	 adopted	 to	 remove	 a
student.	The	code	is	as	follows:

FIGURE	11.2 Details	of	classes	for	Illustration	11.2

Code

Output

11.2 INHERITANCE:	IMPORTANCE	AND	TYPES

The	concept	of	classes	was	introduced	in	the	previous	chapter.	It	was	mentioned
that	classes	are	real	or	conceptual	entities	which	have	sharp	physical	boundaries
and	relevance	to	the	problem	at	hand.	A	class	has	attributes	(data	members)	and
behavior	 (class	methods).	However,	at	 times	 these	classes	must	be	extended	 to
be	 able	 to	 solve	 some	 specific	 problem	 without	 having	 to	 meddle	 with	 the
original	class.	To	be	able	to	do	so,	the	language	should	support	inheritance.	As	a
matter	of	fact,	the	presence	of	classes	in	the	language	is	primarily	because	it	can
be	inherited.	Inheritance	is,	as	per	most	of	the	authors,	one	of	the	most	essential
features	of	object-oriented	language.

Using	inheritance	one	can	create	new	classes	(derived	classes)	from	an	existing
class	 (base	 class(es)).	 Note	 that	 a	 derived	 class	 can	 have	 even	more	 than	 one
base	 class,	 referred	 to	 as	 multiple	 inheritance,	 which	 is	 one	 of	 the	 most
undesirable	forms	of	inheritance.	Also	a	base	class	can	itself	be	a	derived	class
of	some	other	class.	The	derived	class	will	have	all	 the	allowed	features	of	 the
base	class	plus	some	features	of	its	own.

A	 class	 can	 be	 depicted	 using	 a	 class	 diagram.	 A	 class	 diagram	 is	 the
diagrammatic	representation	of	a	class,	which	generally	has	three	sections.	In	the
representation	used	next,	the	first	section	has	the	name	of	the	class.	The	second
section	 has	 the	 attributes	 and	 the	 third	 section	 has	 the	 class	 methods.	 The
following	figure	(Figure	11.3)	shows	the	class	diagram	in	which	the	Book	class	is
the	base	class	and	the	Text_Book	class	is	the	derived	class.	Note	that	the	arrow	is
from	the	derived	class	to	the	base	class.	The	arrow	indicates	“is	derived	from”	or
“is	 inherited	 from.”	The	 next	 figure	 (Figure	11.4)	 gives	 the	 details	 of	 the	 two

classes.	Note	that	the	Book	class	has	the	following	attributes:

name
authors
publisher
ISBN
year

The	class	methods	of	 this	class	are	getdata()	and	putdata().	The	Text_Book
class	has	another	attribute,	course.	Figure	11.5	shows	the	class	browser	showing
the	 two	 classes	 and	 the	 relation	 between	 them.	 The	 corresponding	 program	 is
presented	in	Illustration	11.3.

FIGURE	11.3 Text_book	is	the	derived	class	of	the	Book	class

FIGURE	11.4 A	class	diagram	generally	has	three	components:	the	name	of	the	class,	the	data

11.2.1

members,	and	the	methods	of	the	class.	The	book	class	and	the	textbook	class	have	attributes
and	methods	as	shown	in	the	figure.

FIGURE	11.5 The	book	examples’	class	hierarchy	in	the	class	browser	of	Python

Need	for	Inheritance
In	 really	 large	 programs,	 it	 is	 difficult	 to	 code	 and	 debug	 a	 class.	 Once	 the
programmer	 has	 crafted	 a	 class,	 there	 is	 little	 need	 to	 meddle	 with	 it.	 If	 one
needs	 to	 craft	 classes	 having	 the	 same	 features	 as	 the	 class	 that	 has	 been
developed	 (and	 add	 some	 more	 features	 to	 it),	 then	 it	 makes	 sense	 to	 derive
classes	from	the	existing	class.	So,	inheritance	helps	to	reuse	a	code.	Reusing	the
code	 has	 its	 own	 advantages.	 It	 not	 only	 saves	 time	 but	 also	 money.	 The
reliability	of	the	program	also	increases	by	reusing	a	code.	One	can	also	develop
his	class	by	extending	classes	developed	by	others.	That	is,	inheritance	helps	in
distributing	 libraries.	 Inheritance	also	helps	 to	 implement	a	design	 that	 is	more
intuitive,	 better,	 and	 more	 practical.	 Inheritance	 also	 has	 some	 disadvantages,
which	were	discussed	in	the	previous	section.

Inheritance	is	important	because	of	the	following	factors:

Reusability
Increased	reliability
Distributing	libraries

11.2.2

Intuitive,	better	programs

Types	of	Inheritance
This	section	presents	various	 types	of	 inheritance	and	corresponding	examples.
Note	that	the	reader	is	expected	to	execute	the	problem	given	in	the	illustrations
and	 analyze	 the	 output.	 As	 explained	 earlier,	 inheritance	 means	 deriving	 new
classes	 from	 the	 existing	 classes.	 The	 classes	 from	 which	 features	 have	 been
derived	are	called	the	base	classes	and	the	class	which	derives	features	is	called
the	 derived	 class.	 There	 are	 five	 types	 of	 inheritance:	 simple,	 hierarchical,
multilevel,	multiple,	and	hybrid.

11.2.2.1 Simple	Inheritance

The	 simple	 inheritance	 has	 a	 single	 base	 class	 and	 a	 single	 derived	 class.
Illustration	11.3	exemplifies	this	type.	The	following	illustration	has	two	classes:
Book	and	Text_Book.	The	Book	class	has	 two	methods:	getdata	 and	putdata.
The	 getdata	method	 asks	 the	 user	 to	 enter	 the	 name	 of	 the	 book,	 number	 of
authors,	 the	list	of	 authors,	 publisher,	 ISBN,	 and	 year.	 The	 derived	 class
Text_Book	 has	 another	 attribute	 called	 course.	 The	 getdata	 and	 the	 putdata
methods	extend	the	base	class	methods	(refer	to	the	previous	section).

Illustration	 11.3:	 Implement	 the	 following	 hierarchy	 (Figure	 11.6).	 The	 Book
function	has	name,	n	(number	of	authors),	authors	 (list	of	authors),	publisher,
ISBN,	and	year	as	its	data	members	and	the	derived	class	has	course	as	its	data
member.	The	derived	class	method	overrides	(extends)	the	methods	of	the	base
class.

FIGURE	11.6 The	class	hierarchy	for	Illustration	11.3

Solution:

The	following	code	implements	the	above	hierarchy.	The	output	of	the	program
follows.

Code

Output

11.2.2.2 Hierarchical	Inheritance

In	hierarchical	 inheritance,	a	 single	base	class	has	at	 least	 two	derived	classes.
Illustration	 11.4	 exemplifies	 this	 type.	 The	 following	 illustration	 has	 three
classes:	 Staff,	 Teaching,	 and	 NonTeaching.	 Both	 Teaching	 and	 NonTeaching
are	 the	 derived	 classes	 of	 the	 Staff	 class.	 The	 Staff	 class	 has	 two	methods:
getdata	and	putdata.	The	getdata	method	asks	the	user	to	enter	the	name	and
the	 salary	 of	 the	member	 of	 the	 staff.	 The	 derived	 class	Teaching	 has	 another

attribute	called	subject.	The	getdata	and	the	putdata	methods	extend	the	base
class	methods.	Similarly,	 the	derived	class	NonTeaching	has	an	attribute	called
department.	 The	 getdata	 and	 the	 putdata	 methods	 extend	 the	 base	 class
methods.

Illustration	11.4:	 Implement	 the	 following	hierarchy	 (Figure	11.7).	The	Staff
function	has	name	and	salary	as	 its	data	members,	 the	derived	class	Teaching
has	subject	as	its	data	member	and	the	class	NonTeaching	has	department	as	its
data	member.	The	derived	class	method	overrides	(extends)	 the	methods	of	 the
base	class.

FIGURE	11.7 The	class	hierarchy	for	Illustration	11.4

Solution:

The	following	code	implements	the	above	hierarchy.	The	output	of	the	program
follows.

Code

Output

11.2.2.3 Multilevel	Inheritance

In	 multilevel	 inheritance	 a	 base	 class	 has	 derived	 classes	 which	 themselves
becomes	a	base	class	for	some	other	class.	Illustration	11.5	exemplifies	this	type.
The	following	illustration	has	three	classes:	Person,	Employee,	and	Programmer.
The	Person	class	is	the	base	class.	The	Employee	class	has	been	derived	from	the
Person	class.	The	programmer	class	has	been	derived	from	the	Employee	class.
The	Person	class	has	two	attributes	-	name	and	age	and	two	methods	-	getdata
and	putdata.	The	getdata	method	asks	the	user	to	enter	the	name	and	the	age	of
the	 member	 of	 the	 staff.	 The	 derived	 class	 Employee	 has	 another	 attribute
called	emp_code.	The	getdata	 and	 the	putdata	methods	 extend	 the	 base	 class
methods.	Similarly,	the	class	Programmer	has	another	attribute	called	language.
The	getdata	and	the	putdata	methods	extend	its	base	class	methods	(Employee
class).

Illustration	11.5:	 Implement	 the	 following	hierarchy	 (Figure	11.8).	The	Staff
class	has	name	and	salary	as	its	data	members,	the	derived	class	Teaching	has

subject	 as	 its	 data	member	 and	 the	 class	NonTeaching	 has	department	 as	 its
data	member.	The	derived	class	method	overrides	(extends)	 the	methods	of	 the
base	class.

FIGURE	11.8 The	class	hierarchy	for	Illustration	11.5

Solution:

The	following	code	implements	the	above	hierarchy.	The	output	of	the	program
follows.

Code

Output

11.2.2.4 Multiple	Inheritance	and	Hybrid	Inheritance

In	multiple	 inheritance	 a	 class	 can	 be	 derived	 from	more	 than	 one	 base	 class.
This	 type	 of	 inheritance	 can	 be	 problematic	 as	 it	 can	 lead	 to	 ambiguity.	 It	 is
therefore	advised	 to	avoid	 this	kind	of	 inheritance	as	far	as	possible.	However,
the	following	sections	throw	some	light	on	this	type	and	the	problems	associated
with	this	type.

A	design	may	have	a	combination	of	more	than	one	type	of	 inheritance.	In	 the
following	figure	(Figure	11.9)	two	classes	B	and	C	have	been	derived	from	class
A.	However,	for	 the	class	D,	 the	classes	B	and	C	are	 the	base	classes.	This	 is	an
example	 of	 combining	 hierarchical	 and	 multiple	 inheritance.	 Such	 a	 type	 is
referred	to	as	hybrid	inheritance.

11.3

FIGURE	11.9 Classes	B	and	C	have	been	derived	from	A	(hierarchical	inheritance)	and	D	is
derived	from	B	and	C	(multiple	inheritance)

FIGURE	11.10 Classes	B	and	C	have	been	derived	from	A	(hierarchical	inheritance)	and	D	is
derived	from	B	and	C	(multiple	inheritance)

METHODS

The	 importance	 of	 functions	 and	methods	 has	 already	 been	 stated	 in	 the	 first
section	of	this	book.	Methods	are,	as	stated	earlier,	just	functions	with	a	special
positional	 parameter	within	 a	 class.	Methods,	 in	 fact,	 help	 the	 programmer	 to
accomplish	 many	 tasks.	 Methods	 can	 be	 bound	 or	 unbound.	 The	 unbound
methods	 do	 not	 have	'self'	 as	 a	 parameter.	While	 calling	 such	methods,	 the
first	argument	must	be	the	instance	of	the	class	itself.	It	is	worth	mentioning	here
that,	 in	 Python	 3.X,	 the	 unbound	 methods	 are	 same	 as	 functions	 whereas	 in
Python	 2.X	 they	 are	 a	 different	 type.	 The	 bound	methods,	 on	 the	 other	 hand,
have	'self'	as	the	first	positional	parameter	when	a	method	is	accessed	through
qualifying	an	instance	of	a	class.	Here,	the	instance	of	the	class	needs	not	to	be

11.3.1

passed.

In	 spite	 of	 the	 above	 differences,	 the	 following	 similarities	 between	 the	 two
types	may	not	be	missed:

A	method	in	Python	is	also	an	object.	Both	bound	and	unbound	methods	are
objects.
The	 same	 method	 can	 be	 invoked	 as	 a	 bound	 method	 and	 an	 unbound
method.	The	discussion	and	illustrations	that	follow	will	clarify	the	second
point.

Bound	Methods
A	method	can	be	invoked	in	a	variety	of	ways.	If	the	first	positional	parameter	of
the	method	is	"self",	it	is	bound.	In	such	cases,	the	instance	of	the	class	can	call
the	method	by	passing	the	requisite	parameters.

A	variable	which	holds	<Object	name>.<method	name>	(Hari.	display),	in	the
following	example,	can	also	be	used	to	invoke	the	method.	Those	of	you	from	a
C#	background	may	find	the	concept	similar	to	that	of	delegates.

A	method	can	also	be	 invoked	by	creating	an	unmanned	 instance	of	 the	 class.
The	third	call	of	the	display	method	depicts	this	way	of	calling	method.

Illustration	11.6:	Calling	a	bound	method

This	 illustration	 has	 a	 class	 called	 student.	 The	 Student	 class	 has	 a	 display
method,	which	takes	two	arguments	-	the	first	being	the	positional	parameter	and
the	second	being	a	string	that	is	printed.	Note	that	the	display	method	is	a	bound
method	and	hence	is	called	through	an	instance	of	the	class.

Code

11.3.2

Output

>>>

=========	RUN	C:\Python\Inheritance\BoundUnbound.py

=========

Hi	I	am	Hari

Hi	I	am	through	X

Caling	diaplay	again

>>>

Unbound	Method
An	 unbound	 method	 does	 not	 have	 self.	 Therefore	 the	 positional	 parameter
needs	not	to	be	passed	in	method.	In	such	methods,	the	variables	should	not	be
qualified	 by	 'self'.	 Calling	 such	 methods	 in	 the	 same	 way	 as	 before	 would
result	 in	 an	error,	 as	 shown	 in	 the	output	of	Listing	1	of	 Illustration	11.7.	The
second	 listing	 calls	 the	 unbound	method	 in	 an	 appropriate	way.	Such	methods
must	 be	 called	by	 the	name	of	 the	 class	 and	not	 the	object.	 In	Python	3.X,	 as
stated	 earlier,	 such	methods	work	 in	 the	 same	manner	 as	 functions.	Also	 note
that	normal	functions	can	be	called	using	the	class,	of	which	they	are	members,
as	shown	in	the	previous	illustration.

Illustration	11.7:	Calling	an	unbound	method

This	illustration	extends	the	previous	illustration	and	adds	the	getdata	method,
which	does	not	take	self	as	a	parameter	and	therefore	is	called	by	the	class	itself.
Note	that	this	is	similar	to	the	static	methods	in	C++.

Code

Output

>>>

=========	RUN	C:/Python/Inheritance/BoundUnbound.py

=========

Enter	the	name	of	the	student	:Naved

Enter	the	age	of	the	student	:22

Traceback	(most	recent	call	last):

File	"C:/Python/Inheritance/BoundUnbound.py",	line	21,	in

<module>

Naved.getdata(name,age)

>>>

Snippet	2:

Code

Output

>>>

11.3.3

========	RUN	C:/Python/Inheritance/BoundUnbound1.py	========

Enter	the	name	of	the	student	:Naved

Enter	the	age	of	the	student	:22

Name	:	Naved

Age	:	22

>>>

Methods	are	Callable	Objects
Methods,	like	any	other	object	in	Python,	can	be	stored	in	a	list	and	called	as	per
the	 requirement.	 In	 the	 illustration	 that	 follows	 the	 class	 operations	 has	 a
constructor	 _init_(self,	 number),	 which	 assigns	 the	 value	 of	 the	 second
parameter	to	the	data	member	called	number.	The	class	has	two	methods	square
and	cube.	The	first	method	calculates	(and	returns)	the	square	of	the	number	and
the	second	calculates	(and	returns)	the	cube	of	the	number.	Two	instances	of	the
class	operations	have	been	created:	X	and	Y.	X	is	initialized	to	5	and	Y	to	4.	The
list	 List	 stores	 the	 objects	 X.square,	 X.cube,	 Y.square,	 and	 Y.cube.	 The
elements	of	the	list	are	then	called	one	by	one	and	invoked.

Illustration	11.8:	Methods	as	callable	objects

Code

Output

>>>

=======	RUN	C:/Python/Inheritance/CallableObjects.py	=======

25

125

11.3.4

16

64

>>>

The	Importance	and	Usage	of	Super
A	class	may	have	data	members	and	member	 functions	 (method).	A	method	 is
just	a	function	in	a	class,	defined	using	the	keyword	'def'.	As	discussed	in	the
earlier	 chapters,	 the	 methods	 depict	 the	 behavior	 of	 a	 class.	 Generally,	 the
method’s	 first	 argument	 is	 an	 instance	 of	 the	 class	 itself.	 The	 first	 argument,
generally	referred	to	as	self,	is	similar	to	'this'	of	C++.	Using	self	with	the
variable	name	indicates	that	the	reference	is	to	the	instance	variable,	not	that	in
the	global	scope.	For	example	in	the	following	snippet,	the	_init_	method	has
two	arguments:	 the	 first	 being	self	 and	 the	 second	being	 the	name.	 Assigning
name	 to	 self.name	 implies	 that	 the	 local	 variable	 name	 is	 given	 value	 “name”
(the	second	argument	of	_init_).	Similarly,	the	putdata	method	has	a	positional
parameter	 indicating	 the	 data	 for	 the	 instance	which	 invokes	putdata	must	 be
shown.	Note	 that	 the	 output	 reinforces	 the	 fact	 that	 self-binds	 the	method	 call
with	the	instances.

Code

Output

============	RUN	C:/Python/Inheritance/Basic.py	============

name	:	Hari

name	:	Nakul

>>>

However,	methods	can	also	be	crafted	without	the	'self'	argument.	These	are
unbound	 methods.	 The	 concept	 has	 been	 discussed	 in	 Section	 11.3.2	 of	 this

11.3.5

chapter.	A	method	of	a	class	is	an	instance	method	by	default.	So,	generally,	the
method	of	a	class	can	be	called	by	creating	an	instance	of	the	class	and	using	the
dot	operator	to	call	the	method.	Note	that	this	was	the	case	in	languages	like	C#,
Java,	etc.	Note	that	 there	are	other	ways	of	 invoking	a	method,	as	discussed	in
this	chapter.

However,	 there	 are	 other	 types	 of	 methods	 as	 well.	 For	 example,	 the	 static
methods	do	not	require	the	instance	of	a	class	as	their	first	argument.

Calling	the	Base	Class	Function	Using	Super
The	functions	of	the	base	class	can	be	called	using	super.	In	fact,	super	can	be
used	to	call	any	function	of	the	base	class	and	it	clearly	depicts	the	calling	of	the
base	class’s	function.	In	order	to	understand	the	usage	of	super,	let	us	go	through
the	following	example.	In	the	following	example,	BaseClass	has	two	methods:
init	and	printData.	_init_	has	one	positional	parameter	and	one	parameter
that	initializes	“data”	(the	data	member	of	the	BaseClass.)	The	DerivedClass	is
the	 derived	 class	 of	 the	 BaseClass.	 This	 class	 has	 _init_,	 which	 takes	 a
positional	parameter	(self),	and	 two	other	parameters.	The	first	 initializes	 the
data	member	of	DerivedClass	and	the	second	is	passed	onto	the	init	of	the	base
class	 (BaseClass)	 using	 super.	 The	 super	 takes	 the	 name	 of	 the	 class
(DerivedClass),	 the	 positional	 parameter	 (self)	 and	 calls	 the	 _init_	 of	 the
base	class	by	passing	all	parameters	except	 the	positional	parameter.	Note	 that
the	second	function	also	uses	super	in	the	same	manner.

Code

Output

11.4

>>>

==========	RUN	C:/Python/Inheritance/superDemo.py	==========

Data	of	the	base	class	:	4

Data	of	the	base	class	:	5

Data	of	the	derived	class	:	6

>>>

SEARCH	IN	INHERITANCE	TREE

An	object	is	searched	for	in	the	inheritance	tree	in	a	bottom	up	fashion.	First	of
all,	the	class	is	searched	for	the	given	object.	If	it	is	found	then	the	found	object
is	used	 to	accomplish	 the	given	 task.	 If	not,	 then	 its	 super	class	 (base	class)	 is
searched	 for	 the	 object.	 In	 case	 of	 more	 than	 one	 base	 class,	 ambiguity	 can
occur.

For	example,	 in	 the	 following	 illustration	 the	Derived1	 class	has	been	derived
from	BaseClass.	The	show()	method	of	this	class	displays	the	values	of	'data1'
and	 'data'.	 The	 former	 is	 in	 the	 class	 and	 therefore	 its	 value	 is	 displayed.
However	the	former	is	not	in	the	class,	so	the	inheritance	tree	is	searched	for	the
object.	Note	 that	'data'	exists	 in	 the	base	class	(BaseClass)	and	 therefore	 its
value	will	be	displayed.	This	is	true	for	methods	also.	Even	if	the	derived	class
does	 not	 have	 a	 particular	method,	 it	 can	 be	 invoked	 if	 it	 exists	 in	 the	 parent
class	or	in	any	other	class	up	the	inheritance	tree.	It	may	also	be	stated	here	that
the	objects	are	generally	searched	from	left	to	right	in	a	particular	level.

FIGURE	11.11 The	class	hierarchy	for	given	illustration

Code

11.5

Output

=======	RUN	C:/Python/Inheritance/InheritanceTree.py	=======

Data	:	1

1

Data	:	3

Base	class	data	:	2

Data	:	5

Base	class	data	:	4

>>>

CLASS	INTERFACE	AND	ABSTRACT	CLASSES

At	 times	 the	 classes	 are	 crafted	 so	 that	 they	 can	 be	 sub	 classed.	 While
designating,	 there	 is	 no	 intention	 of	 instantiating	 the	 class.	 The	 classes	which
will	 not	 be	 instantiated	 but	will	 only	 be	 used	 to	 create	 base	 classes	 are	 called
abstract	classes.	In	order	to	understand	the	concept,	let	us	consider	an	example.
The	 following	 example	has	 four	 classes:	BaseClass,	Derived1,	 Derived2,	 and
Derived3.

The	BaseClass	 has	 two	methods:	method1	 and	method2.	 The	 first	method	 has
some	 task	 associated	 with	 it,	 whereas	 the	 second	 wants	 the	 derived	 class	 to
implement	 it.	 The	 derived	 class	 should,	 to	 be	 able	 to	 call	 this	method,	 have	 a
method	called	action.	The	first	derived	class	(Derived1),	replaces	method1.	So
if	an	instance	of	Derived1	calls	method1,	the	version	defined	in	Derived1	would
be	 called.	The	 second	method	 extends	method1,	 it	 adds	 something	 to	method1
and	also	calls	the	BaseClass	version	of	method1.	When	method1	 is	called	from
Derived2,	 the	BaseClass	version	 is	called	as	 the	 search	 in	 the	 inheritance	 tree
invokes	the	base	class	version	of	the	method.	The	third	derived	class	(Derived3)
also	 implements	 the	 action	method	 defined	 in	 the	 base	 class.	 Note	 that	 when
method2	 is	 called	 through	 an	 instance	 of	 Derived3,	 the	 base	 class	 version	 of
method2	is	invoked.	This	version	calls	action	and	a	new	search	is	initiated,	thus
resulting	in	the	invocation	of	action	of	Derived3.	 Illustration	11.9	presents	 the
code.

Note	that	the	above	concept	can	be	extended	and	a	class	may	have	methods	that
would	 be	 implemented	 by	 the	 derived	 classes.	 Interestingly,	 Python	 has
provisions	that	such	classes	would	not	be	instantiated	until	all	such	methods	are
not	defined.	Such	base	classes	are	called	abstract	classes.	The	implementation	of
abstract	classes	has	been	discussed	in	the	appendix	of	this	book.

Illustration	 11.9:	 Implement	 the	 following	 hierarchy.	 'method1'	 of	 Derived1
should	 replace	method1	 of	 the	 base	 class,	method1	 of	Derived2	 should	 extend
method1	of	the	base	class	and	action	of	Derived3	should	implement	method2	of
the	BaseClass.

FIGURE	11.12 Class	hierarchy	for	Illustration	11.9

Solution:

11.6

Output

>>>

============	RUN	C:/Windows/System32/Abstract.py

============

Class	:	<class	'_main__.Derived1'>

A	new	method,	has	got	nothing	to	do	with	that	of	the	base

class

Class	:	<class	'_main__.Derived2'>

A	method	that	extends	the	base	class	method

In	BaseClass	from	method1

Class	:	<class	'_main__.Derived3'>

In	BaseClass	from	method1

Implementing	the	base	class	method

FIGURE	11.13 Searching	in	an	inheritance	tree

CONCLUSION

The	 chapter	 introduces	 the	 concept	 of	 inheritance,	 which	 is	 one	 of	 the	 most
important	ingredients	of	object-oriented	programming.	Inheritance,	as	explained
in	 the	chapter,	helps	 the	program	 in	 reusing	 the	code	and	making	 the	program
more	structured.	However	it	should	be	used	wisely,	as	in	many	cases	it	leads	to
problems	 like	 ambiguity.	The	 reader	must	 also	 appreciate	 that	 it	 is	 not	 always
necessary	 to	 use	 inheritance.	 Most	 of	 the	 tasks	 can	 be	 accomplished	 using
composition.	However	 even	 if	 using	 inheritance	 becomes	 a	 necessity,	 be	 clear
about	the	type	of	inheritance	required,	the	type	of	method	calls	required	and	the
use	 of	 bound	 methods.	 The	 discussion	 on	 object-oriented	 programming
paradigms	 continues	 in	 the	 next	 chapter	 also,	 where	 the	 concept	 of	 operator
overloading	has	been	introduced.	The	last	chapter,	this	chapter	and	the	next	one
will	help	the	reader	to	successfully	develop	a	software	using	OOP.

GLOSSARY

Inheritance:	 Inheritance	 is	 the	 process	 of	 creating	 subclasses	 from	 existing
classes.

Base	class	and	derived	class:	The	class	from	which	other	classes	are	derived	is
the	 base	 class	 and	 the	 classes	 that	 inherit	 from	 the	 base	 class	 are	 the	 derived
classes.

Implicit	 inheritance:	 In	 this	 type,	 the	method	 of	 the	 base	 class	 can	 be	 called
using	an	instance	of	the	derived	class.

Explicit	overriding:	 In	 this	 type	of	 inheritance,	 the	derived	class	will	 redefine
the	method	 of	 the	 base	 class	 and	 calling	 this	method	 using	 an	 instance	 of	 the
derived	class	would	invoke	the	method	of	the	derived	class.

POINTS	TO	REMEMBER

Inheritance	provides	reusability	and	increased	reliability.
Types	of	inheritance	are	simple	inheritance,	multiple	inheritance,	multilevel
inheritance,	hierarchical	inheritance,	and	hybrid	inheritance.
Multiple	inheritance	may	lead	to	ambiguity.
A	bound	method	has	a	“self”	parameter	whereas	an	unbound	method	does
not	have	“self”	parameter.
A	class	can	also	be	instantiated	in	another	class.
Super	can	be	used	to	access	the	base	class	methods.
The	inheritance	tree	is	searched	to	find	the	version	of	method	to	be	invoked.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. A	class	that	cannot	be	instantiated	until	all	its	methods	have	been	defined	by
its	subclass(es)	is	called

(a) Abstract	class

(b) Meta	class

(c) Base	class

(d) None	of	the	above

A	class	called	operation	has	an_init__,	which	takes	a	positional	parameter
and	an	 integer	as	an	argument.	Two	instances	of	operations	Num1	and	Num2
have	 been	 defined	 as	 follows.	 The	 class	 has	 two	 functions;	 the	 first
calculates	the	square	of	a	number	and	the	second	calculates	the	cube.	A	list
called	List1	 is	created	which	contains	the	names	of	the	four	methods	(two
of	Num1	 and	 two	 of	Num2).	A	 for	 loop	 is	 then	 used	 to	 call	 the	methods	 as
shown	in	the	following	snippet:
Num1=operations(5)

Num2=operations(4)

List=	[Num1.square,	Num1.cube,	Num2.square,	Num2.cube]

for	callable_object	in	List:

print(callable_object())

2. The	program	containing	the	above	code	(assume	that	the	rest	of	the	code	is
correct)

(a) Has	no	syntax	error	but	does	not	execute

(b) Has	syntax	error

(c) Has	no	syntax	error	and	executes

(d) Insufficient	information

3. In	the	above	question,	what	would	the	output	be	(if	the	code	is	correct)?

(a) The	code	is	not	correct

(b) 25	125	16	64

(c) 125	25	64	16

(d) None	of	the	above

4. The	names	of	the	methods	in	the	list	(question	2)	are	similar	to	(in	‘C#’)

(a) Meta	classes

(b) Delegates

(c) Both

(d) None	of	the	above

5. 'self'	in	Python	is	similar	to

(a) 'this'	is	‘C#’

(b) 'me'	in	‘C#’

(c) Delegate	in	‘C#’

(d) None	of	the	above

6. class	Student:

def	display(self,	something):

print("\n"+something)

def	getdata(name,age):

name=name

age=age

print("\nName\t:",name,"\nAge\t:",age)

In	the	above	snippet,	how	would	you	invoke	getdata?	(assume	that	Hari	is
an	instance	of	Student).

(a) Student.getdata("Harsh",	22)

(b) Hari.getdata("Harsh",	24)

(c) Both	are	correct

(d) None	of	the	above

7. Can	a	method	also	be	invoked	by	creating	an	un-named	instance	of	a	class?

(a) Yes

(b) No

(c) Insufficient	data

(d) There	in	nothing	called	unnamed	instance	of	a	class	in	Python

8. Which	of	the	following	is	used	in	searching	an	inheritance	tree?

(a) Breadth	First	search

(b) Depth	First	search

(c) Both

(d) None	of	the	above

9. In	an	 inheritance	 tree	at	 the	 same	 level,	which	policy	 is	used	 to	 search	an
object?

(a) Left	to	right

(b) Right	to	left

(c) Any

(d) None	of	the	above

10. 'super'	can	be	used	to	call

(a) The	init	of	the	base	class

(b) Any	method	of	the	base	class

(c) Cannot	be	used	to	call	methods	of	the	base	class

(d) None	 of	 the	 above.	 The	 usage	 of	 'super'	 depends	 on	 the	 type	 of
inheritance

11. Which	type	of	inheritance	leads	to	ambiguity?

(a) Multiple

(b) Multilevel

(c) Both

(d) None

12. Which	type	of	inheritance	has	just	one	base	class	and	a	single	derived	class?

(a) Simple

(b) Hierarchical

(c) Multiple

(d) None	of	the	above

13. Which	 type	 of	 inheritance	 has	 more	 than	 one	 base	 class(es)	 and	 a	 single
derived	class?

(a) Simple

(b) Hierarchical

(c) Multiple

(d) None	of	the	above

14. Which	type	of	inheritance	has	more	than	one	derived	class(es)	and	a	single
derived	class?

(a) Simple

(b) Hierarchical

(c) Multiple

(d) None	of	the	above

15. Can	a	derived	class	be	a	base	class	of	some	other	class?

(a) Yes

(b) No

(c) Insufficient	data

(d) None	of	the	above

THEORY

1. What	is	inheritance?	Explain	the	importance	of	inheritance.

2. What	 are	 the	 disadvantages	 of	 inheritance?	 Explain	 with	 reference	 to
multiple	inheritance.

3. What	are	the	various	types	of	inheritance?	Give	examples.

4. What	are	the	problems	in	implementing	multiple	inheritance?	How	are	they
resolved?

5. What	is	composition?	Is	it	a	type	of	inheritance?

6. Is	inheritance	mandatory	in	object-oriented	programming?	Justify.

7. What	 is	 the	 difference	 between	 “is	 a”	 and	 “has	 a”	 relationships?	 Explain
with	the	help	of	examples.

8. Which	 is	 better,	 inheritance	 or	 composition?	Can	 all	 that	 can	 be	 achieved
using	inheritance	be	done	using	composition?

9. Explain	the	use	of	“super.”	How	can	it	be	used	to	call	methods	of	the	base
class?

10. Are	 methods	 in	 Python	 objects?	 Justify	 your	 answer.	 What	 is	 meant	 by
callable	object?

11. What	is	an	abstract	class?	How	does	an	abstract	class	help	in	achieving	the
goals	of	OOPs?

12. What	are	bound	methods?	What	are	the	various	ways	of	invoking	a	bound
method?

13. Differentiate	between	a	bound	and	an	unbound	method.	Give	examples.

14. What	is	the	importance	of	'self'	in	Python?

15. Explain	the	mechanism	of	search	in	an	inheritance	tree.

PROGRAMMING	EXERCISE

1. A	 class	 called	 Base1	 has	 two	 methods:	 method1(self,	 message)	 and
method2(self).	The	first	method	prints	the	message	passed	as	an	argument
to	 the	method.	The	second	invokes	another	method	called	action1(self),
which	would	be	defined	by	the	sub-class	(Derived2)	of	Base1.	Derived1,
another	 derived	 class	 of	 Base1,	 redefines	 method1	 and	 does	 nothing	 with
method2.	 Derived2,	 on	 the	 other	 hand,	 does	 nothing	 with	 method1.
Implement	the	hierarchy	and	find	what	happens	in	the	following	cases:

(a) An	instance	of	Base1	calls	method1

(b) An	instance	of	Derived1	calls	method1

(c) An	instance	of	Derived2	calls	method1

(d) An	instance	of	Base1	calls	method2

(e) An	instance	of	Derived2	calls	method2

(f) An	instance	of	Derived1	calls	method2

(g) An	instance	of	Derived2	calls	action

2. A	class	called	operation	has	an	_init_,	which	takes	a	positional	parameter
and	 an	 integer	 as	 an	 argument.	 The	 class	 has	 two	 functions;	 the	 first
calculates	 the	 square	 root	of	 a	number	 and	 the	 second	calculates	 the	 cube
root.	Two	 instances	of	operations,	Num1	 and	Num2	 are	 to	 be	 created.	A	 list
called	List1	is	to	be	created	which	contains	the	names	of	the	four	methods
(two	of	Num1	and	two	of	Num2).	Implement	the	above	and	use	a	for	loop	to
call	all	the	callable	objects	from	the	list.

3. A	 class	 employee	 has	 two	 methods	 getdata(name,	 age)	 and
getdata1(self,	 name,	 age).	 The	 getdata	 method	 stores	 the	 values	 in	 the
local	 variables.	 Another	 method	 called	 putdata	 shows	 the	 data.	 Write	 a
program	 to	 call	 the	methods	 (the	 first	 is	not	bound	but	 the	 second	 is)	 and
display	the	data.

4. Create	 the	 following	 hierarchy	 and	 explain	 the	 search	 process	 of	 method
called	"show".

12.1

CHAPTER	12

OPERATOR	OVERLOADING

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	operator	overloading
• Implement	constructor	overloading
• Understand	and	be	able	to	use	various	methods	used	for	overloading	operators
• Implement	operator	overloading	for	complex	numbers	and	fractions
• Understand	the	importance	of	destructors

INTRODUCTION

Operators	 are	 defined	 for	 primary	 data	 structures	 in	 all	 the	 languages.	 For
example,	 in	 Python	 the	 +	 operator	 adds	 two	 numbers	 or	 two	 floats	 or
concatenates	two	strings.	However,	for	user	defined	data	types	the	programmer
can't	use	these	operators	directly.

Operator	overloading	helps	the	programmer	to	define	existing	operators	for	user
defined	 objects.	This	makes	 the	 language	 powerful	 and	 the	work	 simple.	This
simplicity	and	intuitiveness	in	turn	makes	programming	fun.

In	Python,	operator	overloading	is	done	by	defining	specific	methods	discussed
in	the	sections	that	follow.	Operator	overloading	can	be	used	to	intercept	Python
operators	 by	 classes	 and	 even	 to	 overload	 built-in	 operations,	 e.g.	 attribute
access.	The	said	methods	which	help	in	operator	overloading	have	been	specially
named	 and	 Python	 calls	 these	 methods	 when	 instances	 of	 classes	 use	 the
associated	operator.	Moreover,	it’s	not	always	the	case	that	operator	overloading
must	be	implemented.

This	chapter	discusses	operator	overloading.	The	chapter	is	organized	as	follows.
Section	 12.2	 revisits	 _init_	 and	 discusses	 how	 it	 can	 be	 overloaded.	 Section
12.3	presents	some	of	the	common	operator	overloading	methods.	Section	12.4

12.2

presents	an	example	of	overloading	the	binary	operators.	Section	12.5	discusses
iadd.	Section	12.6	discusses	the	comparison	operators.	Section	12.7	discusses
bool	and	len	and	 the	next	section	presents	 the	concept	of	destructors.	The	 last
section	concludes	the	chapter.

INIT	REVISITED

The	_init_	function	has	already	been	explained	in	Chapter	10	of	this	book.	The
function	 initializes	 the	members	 of	 a	 class.	Those	 of	 you	 from	 a	C++	or	 Java
background	will	 find	 it	 hard	 to	 ignore	 the	 similarity	 between	 the	 constructors
(which	 have	 the	 same	 name	 as	 that	 of	 the	 class	 in	C++,	 etc.)	 and	 the	 _init_
function.	Earlier	it	was	stated	that	_init_	cannot	be	overloaded,	which	is	partly
true.	Though	one	cannot	have	two	_init_	functions	in	the	same	class,	there	is	a
way	 to	 implement	 constructor	 overloading	 as	 explained	 in	 the	 following
discussion.

As	stated	earlier	the	purpose	of	_init_	is	to	initialize	the	members	of	the	class.
In	 the	 following	 example	 (Illustration	 12.1),	 a	 class	 called	 complex	 has	 two
members:	real	 and	imaginary,	 which	 are	 initialized	 by	 the	 parameters	 of	 the
init	function.	Note	that	the	members	of	the	class	are	denoted	by	self.real
and	self.imaginary	and	the	parameters	of	the	functions	are	initialized	by	real
and	imaginary.	The	example	has	a	function	called	putData	to	display	the	values
of	the	members.	In	the	_main_()	function,	c1	is	an	instance	of	the	class	complex.
The	object	c1	is	initialized	by	5	and	3	and	the	putData()	of	the	class	has	been
invoked	to	display	the	'Complex	Number'.

Illustration	12.1:	Create	a	class	called	complex,	having	two	members	-	real	and
imaginary.	 The	 class	 should	 have	 _init_,	 which	 takes	 two	 parameters	 to
initialize	 the	 values	 of	 real	 and	 imaginary	 respectively	 and	 a	 function	 called
putData	 to	 display	 the	 complex	 number.	 Create	 an	 instance	 of	 the	 complex
number	in	the	_main_()	 function,	 initialize	it	by	(5,	3)	and	display	the	number
by	invoking	the	putData	function.

Code

Output

===	RUN	C:\Python\Operator	Overlaoding_init_\Example1.py

===

5	+	i	3

>>>

Let	us	consider	another	example	of	_init_.	The	example	(Illustration	12.2)	deals
with	 the	 implementation	 of	 vectors.	 In	 the	 example,	 a	 class	 called	Vector	has
two	data	members	called	args	and	length.	Since	arg	can	contain	any	number	of
items,	the	_init_	has	*args	as	the	parameter.	The	putData	function	displays	the
vector	 and	 the	 _len_	 function	 calculates	 the	 length	 of	 the	 Vector	 (as	 in	 the
number	of	arguments).

Illustration	12.2:	Create	a	class	called	Vector,	which	can	be	instantiated	with	a
vector	 of	 any	 length.	 Design	 the	 requisite	 _init_	 function	 and	 a	 function	 to
overload	 the	 len	 operator.	 The	 class	 should	 also	 have	 a	 putData	 function	 to
display	the	vector.	Instantiate	the	class	with	a	vector	having:

no	element
one	element
two	elements
three	elements

Display	each	vector	and	also	display	the	length.

Code

12.2.1

Output

>>>

===	RUN	C:\Python\Operator	Overlaoding_init_\Example2.py

===

()

Length					0

(2,)

Length					1

(3,	4)

Length					2

(7,	8,	9)

Length					3

>>>

Note	 that	 in	 the	 above	 example,	 _init_	 has	 the	 same	 effect	 as	 having	 many
constructors	 with	 different	 parameters.	 Although	 _init_	 has	 not	 been
overloaded	 in	 the	 literal	 sense,	 the	program	has	 the	 same	effect	 as	 that	 of	 one
having	overloaded	constructors.

Overloading	_init_	(sort	of)

Constructors	can	be	overloaded	by	assigning	None	to	the	arguments	(some	or	all,
except	for	the	positional	argument).	In	order	to	understand	the	point,	consider	a
class	called	Complex.	The	class	must	have	two	constructors;	one	which	takes	two
arguments	 and	 one	 when	 no	 argument	 is	 given.	 In	 the	 first	 case	 the	 real	 and
imaginary	 part	 of	Complex	 should	 be	 initialized	with	 the	 arguments	 of	_init_
and	 in	 the	 second	 the	 real	 and	 imaginary	 should	 become	 zero.	 One	 of	 the
simplest	 solutions	 is	 to	check	 if	 the	 two	arguments	 are	None	 or	 not.	 If	 both	of
them	are	None,	the	data	members	should	be	made	zero.	In	the	second	case	they
should	contain	the	arguments,	passed	in	_init_.	Though	the	following	program
(Illustration	 12.3)	 does	 not	 have	 two	 _init_,	 nevertheless	 the	 above	 task	 has
been	accomplished.

Illustration	12.3:	Construct	a	class	called	Complex	having	real	and	ima	 as	 its
data	members.	The	class	should	have	an	_init_	for	initializing	the	data	members
and	putData	for	displaying	the	complex	number.

Code

Output

>>>

==	RUN	C:/Python/Operator	Overlaoding/_init_/Example	10.py

==

5	+i	3

0	+i	0

>>>

12.3

12.4

METHODS	FOR	OVERLOADING	BINARY	OPERATORS

The	following	methods	(Table	12.1)	help	in	overloading	the	binary	operators	like
+,	–,	*,	and	/.	The	operators	operate	on	two	operands:	self	and	another	instance
of	 the	 requisite	 class.	 When	 an	 operator	 is	 used	 between	 objects,	 the
corresponding	methods	are	invoked.	For	example	for	objects	c1	and	c2	of	a	class
called	 Complex,	 c1+c2	 invokes	 the	 _add_	 method.	 Similarly,	 the	 –	 operator
would	invoke	the	_sub_	method,	 the	*	would	 invoke	 the	_mul_	method	and	so
one.	Table	12.1	shows	the	method	and	the	operator	due	to	which	the	method	is
invoked.

Table	12.1		Methods	for	overloading	binary	operators

Task Method Explanation

Addition _add_ Helps	in	overloading	the	+	operator.	Generally,
this	takes	two	arguments:	the	positional
parameter	and	the	instance	to	be	added.

Subtraction _sub_ Helps	in	overloading	the	–	operator.	Generally,
this	takes	two	arguments:	the	positional
parameter	and	the	instance	to	be	subtracted.

Multiplication _mul_ Helps	in	overloading	the	*	operator.	Generally,
this	takes	two	arguments:	the	positional
parameter	and	the	instance	to	be	multiplied.

Division _truediv_ Helps	in	overloading	the	/	operator.	Generally,
this	takes	two	arguments:	the	positional
parameter	and	the	instance	to	be	divided.

The	use	of	the	above	operators	has	been	explained	in	the	following	section.

OVERLOADING	BINARY	OPERATORS:	THE
FRACTION	EXAMPLE

The	 overloading	 of	 the	 operators	 shown	 in	 the	 above	 table	 can	 be	 easily
understood	by	 the	 example	 that	 follows.	The	 following	 example	overloads	 the
addition	 (+),	 subtraction	 (-),	multiplication	 (*),	 and	division	 (/)	 operators	 for	 a
class	 fraction.	 The	 fraction	 class	 depicts	 the	 standard	 fraction,	 having	 a

numerator	 and	 a	 denominator.	 The	 details	 of	 the	 methods	 of	 the	 class	 are	 as
follows:

1. _init_

The	 _init_	 initializes	 the	 class	 by	 setting	 the	 numerator	 to	 0	 and	 the
denominator	to	1.	The	statement

x=fraction()

therefore,	creates	a	fraction	0/1.

2. _add_

The	_add_	helps	in	overloading	the	+	operator.	The	statement
z=x+y

calls	the	_add_	of	x	and	takes	y	as	the	“other”	argument.	Therefore,	it	must
have	two	arguments:	a	positional	parameter	(self)	and	a	fraction	(other).
The	addition	of	two	fractions	 	is	done	as	follows.	The	LCM	of	b1
and	b2	becomes	the	denominator	of	the	resultant	fraction.	The	numerator	is
calculated	using	the	following	formula.

Note	that	the	resultant	fraction	is	stored	in	another	fraction	(s).	The	method
add	returns	s.

3. _sub_

The	_sub_	helps	in	overloading	the	-	operator.	The	statement
t=x-y

calls	the	_sub_	of	x	and	takes	y	as	the	“other”	argument.	Therefore,	it	must
have	two	arguments:	a	positional	parameter	(self)	and	a	fraction	(other).
The	difference	of	two	fractions	 	is	done	as	follows.	The	LCM	of	b1
and	b2	becomes	the	denominator	of	the	resultant	fraction.	The	numerator	is
calculated	using	the	following	formula.

Note	that	the	resultant	fraction	is	stored	in	another	fraction	(d).	The	method
sub	returns	d.

4. _mul_

The	_mul_	helps	in	overloading	the	*	operator.	The	statement
prod=x*y

calls	the	_mul_	of	x	and	takes	y	as	the	“other”	argument.	Therefore,	it	must
have	two	arguments:	a	positional	parameter	(self)	and	a	fraction	(other).	The
product	of	two	fractions	 	is	calculated	as	follows.	The	numerator	is
calculated	using	the	following	formula.

numerator	=	a1	×	a2
And	the	denominator	is	calculated	as	follows.

denominator	=	b1	×	b2
Note	that	the	resultant	fraction	is	stored	in	another	fraction	(m).	The	method
mul	returns	m.

5. _truediv_

The	 _truediv_	 helps	 in	 overloading	 the	 /	 operator	 (which	 returns	 an
integer).	The	statement

div	=	x/y

calls	the	_truediv_	of	x	and	takes	y	as	the	“other”	argument.	Therefore,	 it
must	 have	 two	 arguments:	 a	 positional	 parameter	 (self)	 and	 a	 fraction
(other).

The	division	of	two	fractions	 	is	done	as	follows.	The	numerator	is
calculated	using	the	following	formula.

numerator	=	a1	×	b2
and	the	denominator	is	calculated	as	follows.

denominator	=	b1	×	a2

Note	 that	 the	 resultant	 fraction	 is	 stored	 in	 another	 fraction	 (answer).	 The
method	_truediv_	returns	the	answer.

Illustration	 12.4:	 Create	 a	 class	 called	 fraction	 having	 numerator	 and
denominator	as	its	members.	Overload	the	following	operators	for	the	class

+
–
*
/

Create	 LCM	 and	 GCD	methods	 in	 order	 to	 accomplish	 the	 above	 tasks.	 The
LCM	method	should	find	the	LCM	of	two	numbers	and	the	GCD	method	should
find	the	GCD	of	the	two	numbers.	Note	that	LCM(x,	y)	×	GCD(x,	y)	=	x	×	y.

Solution:	The	 implementation	has	already	been	discussed.	The	 following	code
performs	the	requisite	tasks	and	the	output	follows.

Code

Output

==	RUN	C:/Python/Operator	Overlaoding/Add/Fraction_add.py	==

Enter	the	numerator	:2

Enter	the	denominator	:3

First	fraction	:

2	/	3

Enter	the	numerator	:4

Enter	the	denominator	:5

Second	fraction	:

4	/	5

Sum	:

22	/	15

Difference	:

12.5

-2	/	15

Product

8	/	15

Division

10	/	12

>>>

Was	it	really	needed?

Note	 that	 the	above	 illustration	has	been	 included	 in	 the	chapter	 to	explain	 the
overloading	of	binary	operators.	Python,	as	such,	provides	addition,	subtraction,
multiplication	and	division	for	fractions	(refer	to	Chapter	2).	The	same	task	can
be	done	without	overloading	the	operators	as	follows:

>>>	from	fractions	import	Fraction

>>>	X=Fraction	(20,4)

>>>	X

Fraction	(5,	1)

>>>	Y=Fraction	(3,5)

>>>	Y

Fraction	(3,	5)

>>>	X+Y

Fraction	(28,	5)

>>>	X-Y

Fraction	(22,	5)

>>>	X*Y

Fraction	(3,	1)

>>>	X/Y

Fraction	(25,	3)

>>>

OVERLOADING	THE	+=	OPERATOR

The	+=	operator	adds	a	quantity	to	the	given	object.	For	example	if	the	value	of
“a”	 is	5,	 then	a+=4	would	make	 it	9.	However,	 the	operator	works	 for	 integer,
reals	and	strings.	The	use	of	+=	for	 integer,	 real	and	string	has	been	shown	as
follows:

>>>	a=5

>>>	a+=4

>>>	a

9

>>>	a=2.3

>>>	a+=1.3

>>>	a

3.5999999999999996

>>>	a="Hi"

>>>	a+="	There"

>>>	a

'Hi	There'

>>>

However,	 in	 order	 to	make	 it	work	 for	 a	 user	 defined	 data	 type	 (or	 object),	 it
needs	 to	 be	 overloaded.	 The	 _idd_	 helps	 in	 accomplishing	 this	 task.	 The
following	illustration	(Illustration	12.5)	depicts	the	use	of	_idd_	for	an	object	of
the	 complex	 class.	 A	 complex	 number	 has	 a	 real	 part	 and	 an	 imaginary	 part.
Adding	 another	 complex	 number	 to	 a	 given	 complex	 number	 adds	 their
respective	 real	 parts	 and	 imaginary	 parts.	 The	 program	 follows.	 Note	 that,
iadd	 takes	 two	 arguments.	 The	 first	 being	 the	 positional	 parameter	 and	 the
second	another	object	called	“other.”	The	real	part	of	“other”	is	added	to	the	real
part	 of	 the	 object	 and	 the	 imaginary	 part	 of	 “other”	 is	 added	 to	 the	 imaginary
part.	The	_iadd_	 returns	“self.”	Likewise,	 the	 reader	may	overload	 the	_iadd_
operator	for	his	class,	as	per	the	requirements.

Illustration	12.5:	Overloading	+=	for	complex	class	(Illustrations	12.1	and	12.3)

Code

12.6

Output

OVERLOADING	THE	>	AND	<	OPERATORS

The	greater	than	(>)	and	less	than	(<)	operators	work	in	the	usual	manner	for	the
integers,	 fractions	and	some	other	predefined	 types.	However	 to	be	able	 to	use
these	 operators	 for	 user	 defined	 classes,	 the	 programmer	 must	 overload	 the
operators.	In	Python,	greater	than	(>)	and	less	than	(<)	can	be	overloaded	using
the	_gt_	and	_lt_.	The	_gt_	 returns	a	 true	or	a	 false	depending	upon	whether
the	first	object	is	greater	than	the	second	or	not.	Similarly,	the	_lt_	returns	a	true
or	a	false	depending	upon	whether	the	first	object	is	less	than	the	second	or	not.

The	following	example	overloads	the	_gt_	and	_lt_	for	a	class	called	Data.	The
Data	 class	has	a	data	member	called	“value.”	The	_gt_	 compares	 the	value	of

12.7

the	 instance	 (self)	 and	 that	 of	 another	 instance	 (other).	 If	 the	 value	 of	 the
instance	is	greater	than	that	of	the	other	instance	then	a	true	is	retuned,	otherwise
a	false	is	returned.	Similarly,	The	_lt_	compares	the	value	of	the	instance	(self)
and	that	of	another	 instance	(other).	If	 the	value	of	 the	instance	is	smaller	 than
that	of	the	other	instance	then	a	true	is	returned,	otherwise	a	false	is	returned.

Illustration	12.6:	Write	a	program	to	create	a	class	called	Data	having	“value”
as	 its	 data	 member.	 Overload	 the	 (>)	 and	 the	 (<)	 operator	 for	 the	 class.
Instantiate	the	class	and	compare	the	objects	using	_lt_	and	_gt_.

Solution:	The	mechanism	of	the	_gt_	and	_lt_	has	already	been	discussed.	The
program	follows.

Code

Output

>>>	`

====	RUN	C:/Python/Operator	Overlaoding/Comparision.py	====

True

False

>>>

print(X<Y)

OVERLOADING	THE	_BOOLEAN_	OPERATORS:
PRECEDENCE	OF	_BOOL_OVER	_LEN_

In	using	“if”	and	“while”	the	programmer	checks	the	condition	passed	in	“if”	or
“while.”	If	the	condition	is	true	the	block	following	“if”	or	“while”	is	executed,
otherwise	it	is	not	executed.	We	can	also	define	the	Boolean	operators	for	a	user
defined	object.	 In	 order	 to	 accomplish	 this,	 the	 programmer	will	 require	 some
method	that	helps	in	the	overloading.	Python	provides	two	Boolean	operators	-
bool	and	_len_.	The	_bool_	method	returns	a	true	if	the	requisite	condition	is
met,	otherwise	it	returns	a	false.	The	_len_	method	finds	the	length	of	the	data
member	 and	 returns	 false	 if	 it	 is	 null.	 The	Boolean	 condition	 can	 be	 checked
using	the	_len_	method,	only	if	the	_bool_	for	that	class	is	not	defined.	In	case
both	 _len_	 and	 _bool_	 are	 defined	 in	 a	 class,	 _bool_	 takes	 precedence	 over
len.

For	example	in	the	following	illustration,	writing	if	(X),	where	X	is	an	instance
of	the	class	returns	a	false	if	no	argument	is	passed	while	instantiating	the	class.
Note	 that	 the	 first	 listing	 uses	 _len_.	 The	 next	 illustration	 (Illustration	 12.7)
checks	 the	 length	of	 the	data	member	“value”	 to	return	a	 true	 if	“value”	 is	not
null	and	false	otherwise.

Illustration	 12.7:	 The	 following	 illustration	 creates	 a	 class	 called	 data.	 If	 no
argument	 is	passed	while	 instantiating	 the	class	a	false	 is	 returned,	otherwise	a
true	is	returned.

Program

class	Data:

def_len_(self):	return	0

X=Data()

if	X:

print("True	returned")

else:

print("False	returned")

Output

>>>

========	RUN	C:/Python/Operator	Overlaoding/len.py	========

False	returned

>>>

Illustration	12.8:	Another	variant	of	the	above	example	has	'value'	as	its	data
member.	If	the	'value'	is	null	a	false	is	returned,	otherwise	a	true	is	returned.

Program

Output

========	RUN	C:/Python/Operator	Overlaoding/len.py	========

True	returned

False	returned

>>>

Also	note	that	if	_bool_	is	also	defined	in	the	class,	then	it	takes	precedence	over
the	 _len_	 method.	 The	 _bool_	 returns	 a	 true	 or	 a	 false	 as	 per	 the	 given
condition.	Although	overloading	_bool_	may	not	be	of	much	use	as	every	object
is	either	 true	or	false	 in	Python.	Illustration	12.9	presents	an	example	in	which
both	_bool_	and	_len_	are	defined.

Illustration	12.9:	An	example	in	which	both	_bool_	and	_len_	are	defined.

12.8

Program

Output

======	RUN	C:/Python/Operator	Overlaoding/_bool_.py	======

From	Bool

True	returned

From	Bool

False	returned

>>>

DESTRUCTORS

Destructors	 are	 called	 automatically	when	 the	 space	 of	 an	 object	 of	 a	 class	 is
reclaimed.	 Destructors	 are	 complementary	 to	 constructors.	 Constructors	 are
called	when	a	new	object	is	created	and	the	destructors	are	called	when	its	space

is	reclaimed.	It	may	be	noted	that	the	destructors	are	not	as	important	in	Python
as	they	are	in	some	other	object-oriented	languages.	In	fact,	many	programmers
consider	the	destructors	as	“obsolete.”	The	reasons	for	this	are	as	follows.

Garbage	collection:	Garbage	collection	is	one	of	the	characteristics	of	Python.
That	is,	the	memory	allocated	to	an	object	is	reclaimed	as	soon	as	the	object	(an
instance	of	a	class)	is	reclaimed.	So,	there	is	little	need	of	an	explicit	destructor.

Moreover,	 it	 becomes	 difficult	 to	 predict	 the	 position	 at	 which	 the	 destructor
needs	to	be	called.	For	example,	in	the	following	listing	the	destructor	is	called
as	soon	as	a	value	is	assigned	to	the	object.	But	conceptually,	the	user	may	want
to	use	the	object	in	the	remaining	task.

No	garbage	collection:	There	is	another	reason	for	not	using	destructors.	They,
at	times,	hinder	garbage	collection.	This	is	good,	if	deliberate,	but	bad	if	not	used
without	 due	 deliberation.	 Most	 of	 the	 time	 the	 garbage	 collection	 done	 by
Python	 is	 good.	 The	 following	 illustration	 (Illustration	 12.10)	 presents	 a	 class
called	 Data,	 which	 has	 an	 explicit	 destructor	 (_del_).	 Note	 that	 when	 the
memory	is	reclaimed,	a	destructor	is	called.

Illustration	12.10:	Use	of	destructor

Code

Having	 discussed	 the	 problems	 of	 destructor,	 it	 is	 always	 better	 to	 craft	 an
explicit	method	for	the	termination	activities	rather	than	allowing	a	destructor	to
be	called.

12.9 CONCLUSION

Overloading	means	many	meanings	for	the	same	symbol.	Primarily	overloading
can	be	segregated	into	two	classes:	name	overloading	and	symbol	overloading.
An	 operator,	 which	 is	 a	 symbol	 that	 tells	 the	 compiler	 to	 perform	 some
mathematical	 operation,	 can	 also	 be	 overloaded.	 That	 is,	 operator	 overloading
can	 be	 defined	 as	 giving	 multiple	 definitions	 to	 an	 operator.	 Python	 allows
operators	 to	 be	 overloaded	 for	 user	 defined	 data	 types.	 In	 Python,	 operator
overloading	can	be	accomplished	by	overriding	the	requisite	methods	and	calling
them	as	and	when	required.	It	may	be	stated	here	that	the	overload	operator	is	a
member	of	a	class.	This	chapter	introduces	the	concept	of	operator	overloading
and	explains	 the	 idea	using	ample	examples.	The	reader	 is	expected	 to	attempt
the	problems	given	 in	 the	exercise	 to	get	a	clear	 insight	and	be	able	 to	use	 the
methods	introduced	in	the	chapter	in	practical	situations.

GLOSSARY

Operator	overloading:	This	is	the	mechanism	of	assigning	a	new	meaning
to	an	existing	object.

POINTS	TO	REMEMBER

Operator	overloading	helps	 the	programmer	 to	define	an	existing	operator
for	user	defined	objects.
In	Python	all	expression	operators	can	be	overloaded.
Operator	overloading	can	be	implemented	using	special	methods.
bool	has	higher	priority	over	_len_.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Using	operator	overloading,	the	programmer	can

(a) Define	an	existing	operator	for	user	defined	data	type

(b) Create	new	operators

(c) Both

(d) None	of	the	above

2. In	Python,	operator	overloading	can	be	implemented	by

(a) Defining	 corresponding	methods	 in	 the	 class	 for	which	 user	 defined
objects	would	be	made

(b) Operators	are	redefined	in	the	same	way	as	in	C++

(c) Python	has	predefined	methods	for	defining	operators

(d) None	of	the	above

3. Can	_init_	be	overloaded?

(a) Yes

(b) No

(c) It	can	be	overloaded	only	for	specific	classes

(d) None	of	the	above

4. If	the	same	_init_	is	to	be	designed	to	accept	varying	number	of	arguments,
which	of	the	following	is	the	correct	representation?

(a) def	_init_(self)

(b) def	_init_(self,	*args)

(c) def	_init_(self,	args)

(d) Both	(b)	and	(c)

5. The	above	task	can	be	accomplished	by

(a) Not	giving	any	arguments	in	_init_

(b) Equating	some	of	the	arguments	to	NONE

(c) Both

(d) None	of	the	above

6. Which	of	the	following	methods	is	used	to	overload	the	+	operator?

(a) _add_

(b) _iadd_

(c) _sum_

(d) None	of	the	above

7. Which	of	the	following	is	used	to	overload	the	–	operator?

(a) _diff_

(b) _sub_

(c) _minus_

(d) None	of	the	above

8. Which	of	the	following	is	used	to	overload	the	*	operator?

(a) _prod_

(b) _mul_

(c) Both

(d) None	of	the	above

9. For	which	of	the	following,	operator	overloading	is	really	needed?

(a) Complex

(b) Fraction

(c) Polar	coordinates

(d) None	of	the	above

10. Which	of	the	following	is	overloaded	using	_iadd_?

(a) +

(b) +	=

(c) ++

(d) None	of	the	above

11. Can	>	and	<	operators	be	overloaded	in	Python?

(a) Yes

(b) No

(c) Only	for	specific	classes

(d) None	of	the	above

12. Which	has	more	priority	_bool_	or	_len_?

(a) _bool_

(b) _len_

(c) Both

(d) None	of	the	above

THEORY

1. What	is	operator	overloading?	Explain	its	importance.

2. Explain	the	mechanism	of	overloading	operators	in	Python.

3. Can	all	Python	operators	be	overloaded?

4. The	 membership	 can	 be	 tested	 using	 the	 'in'	 operator.	 The	 contains
method	 can	 be	 used	 for	 testing	 the	membership	 in	 Python.	Create	 a	 class
having	three	lists	and	overload	the	membership	operator	for	the	class.

5. Explain	 the	 following	methods	and	explain	operator	overloading	using	 the
operators.

(a) _add_

(b) _iadd_

(c) _sub_

(d) _mul_

(e) _div_

(f) _len_

(g) _bool_

(h) _gt_

(i) _lt_

(j) _del_

6. The	following	methods	have	not	been	discussed	in	the	chapter.	Explore	the
following	and	use	them	for	complex	class.

(a) _getitem_

(b) _setitem_

(c) _iter_

(d) _next_

PROGRAMMING

1. Create	 a	 class	 called	 Distance	 having	 meter	 and	 centimeter	 as	 its	 data
members.	The	member	 functions	 of	 the	 class	would	 be	putData(),	which
takes	 the	values	of	meter	and	centimeter	 from	 the	user;	putData(),	which
displays	the	data	members	and	add,	which	adds	the	two	distances.

The	 addition	 of	 two	 instances	 of	 distances	 (say	d1	 and	d2)	would	 require
addition	of	corresponding	centimeters	(d1.centimeter	+s2.centimeter),	if	the
sum	 is	 less	 than	 100,	 otherwise	 it	 would	 be	 (d1.centimeter
+s2.centimeter)%100.	The	“meter”	of	the	sum	would	be	the	sum	of	meters
of	the	two	instances	(d1.meter	+d2.meter),	if	(d1.centimeter	+d2.centimeter)
<100,	otherwise	it	would	be	(d1.meter	+d2.meter+1).

2. Overload	the	+	operator	for	the	above	class.	The	+	operator	should	carry	out
the	same	task	as	is	done	by	the	add	function.

The	subtraction	of	two	instances	of	distances	(say	d1	and	d2)	would	require
the	subtraction	of	corresponding	centimeters	(d1.centimeter	 -s2.centimeter).
The	 “meter”	 of	 the	 difference	 would	 be	 the	 sum	 of	 meters	 of	 the	 two
instances	(d1.meter	-	d2.meter).

3. Overload	the	–	operator	for	 the	distance	class.	Assume	that	d1-d2,	would
always	mean	d1>d2.

4. Overload	 the	 +=	 operator	 for	 Distance	 class.	 The	 +=	 operator	 (that	 is
d1+=d2)	would	require	the	addition	of	d1	and	d2	(as	explained	earlier)	and

updating	d1	with	(d1+d2).	Note	that,	the	value	of	d2	is	not	altered.

5. Overload	the	*	operator	for	the	Distance	class.

The	government	of	a	developing	country	intends	to	do	away	with	the	present
currency	 and	 intends	 to	 introduce	 a	 barter	 system,	 in	 which	 12	 bottles	 of
“Tanjali”	 would	 be	 equivalent	 to	 a	 unit	 of	 currency.	 This	 in	 turn	 would
increase	the	sales	of	the	company.	Hari	and	Aslam	have	37	and	92	bottles	of
‘Tanjali’	and	would	like	to	exchange	the	bottles	to	buy	tickets	to	a	movie.	If
each	ticket	is	60	Units,	would	they	be	able	to	watch	the	movie?

6. Now,	help	the	people	of	the	country	by	developing	a	program	having	a	class
called	nat_currency	and	overload	the	+	operator,	which	adds	two	instances
of	nat_currency.

7. For	the	above	question,	overload	the	–	operator.

8. For	the	nat_currency	class	of	question	6,	overload	the	+=	operator.

9. For	the	nat_currency	class	of	question	6,	overload	the	*	operator.

10. Create	a	class	called	date	having	members’	dd,	mm,	and	yyyy	 (date,	month,
and	year).	Overload	the	+	operator,	which	adds	the	two	instances	of	the	date
class.

A	 hypothetical	 number	 called	 irr,	 of	 the	 form	 c ,	 has	 b	 constant.	 Two
instances	of	irr	can	be	added	as	follows.	If	the	first	irr	number	is	r1	=	a1	+
c1 	and	the	second	is	r2	=	a2	+	2 ,	the	addition	of	r1	and	r2	would	be	r	=
r1	+	r2	=	(a1	+	a2)	+	(c1	+	c2) .

The	difference	of	r1	and	r2	would	be	r	=	r1	–	r2	=	(a1	–	a2)	+	(c1	–	c2) .

The	product	of	r1	and	r2	would	be	r	=	r1	×	r2	=	 (a1a2	+	c1c2	d)	+	(a1c2	 +
a2c1) .

11. Create	a	class	called	irr	and	overload	the	+	operator.

12. For	the	irr	class,	overload	the	–	operator.

13. For	the	irr	class,	overload	the	+=	operator

14. For	the	irr	class,	overload	the	*	operator.

A	vector	is	written	as	a 	+	b 	+	c ,	where	 	is	a	unit	vector	in	the	x	axis,	 	is
the	 unit	 vector	 in	 the	 y	 axis	 and	 	 is	 the	 unit	 vector	 is	 the	 z	 axis.	 The
addition	 of	 two	 vectors	 requires	 the	 addition	 of	 the	 corresponding	
components,	addition	of	the	corresponding	 	components	and	the	addition	of
the	corresponding	 	components.	That	is,	for	two	vectors	v1	=	a1 	+	b1 	+	c1
	and	v2	=	a2 	+	b2 	+	c2 ,	the	sum	would	be	v	=	v1	+	v2	=	(a1	+	a2) 	+	(b1	+
b2) 	 +	 (c1	 +	 c2) .	 Likewise,	 the	 difference	 of	 two	 vectors	 requires	 the
subtraction	 of	 the	 corresponding	 	 components,	 subtraction	 of	 the
corresponding	 	 components	 and	 the	 subtraction	 of	 the	 corresponding	
components.	That	is,	for	two	vectors	v1	=	a1 	+	b1 	+	c1 	and	v2	=	a2 	+	b2 	+
c2 ,	the	difference	would	be	v	=	v1	–	v2	=	(a1	-	a2) 	+	(b1	-	b2) 	+	(c1	-	c2) .

15. Create	a	class	called	vector	having	three	data	members	a,	b,	and	c.	The	class
must	have	the	getData()	function	to	ask	the	user	to	enter	the	values	of	a,	b,
and	c;	the	putData()	function	to	display	the	vector.

16. Overload	the	+	operator	for	the	vector	class.

17. Overload	the	–	operator	for	the	vector	class.

18. Overload	the	+=	operator	for	the	vector	class.

13.1

CHAPTER	13

EXCEPTION	HANDLING

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	concept	of	exception	handling
• Appreciate	the	importance	of	exception	handling
• Use	try/except
• Manually	throw	exceptions
• Craft	a	program	that	raises	user	defined	exceptions

INTRODUCTION

Writing	 a	 program	 is	 an	 involved	 task.	 It	 requires	 due	 deliberation,	 command
over	the	syntax	and	problem	solving	capabilities.	In	spite	of	all	efforts,	there	is	a
possibility	of	some	error	cropping	up	or	of	an	unexpected	output.	These	errors
can	be	classified	as	follows.	The	first	types	of	errors	are	those	due	to	syntax	or
those	which	can	be	intercepted	by	the	compiler.	On	compiling	a	program	having
such	errors,	some	standard	message	appears.	These	can	be	handled	by	learning
the	syntax	or	changing	the	code	as	per	the	requirement	of	the	problem	at	hand.
The	following	is	an	example	of	a	code	having	syntax	error.	Note	that	the	closing
parenthesis	is	missing	in	the	statement	funl('Harsh'.	The	code	is	followed	by
the	message	that	appears	when	executing	the	code.

Code

def	fun1(a):

print('\nArgument\t:',a)

print('\nType\t:',type(a))

fun1(34)

fun1(34.67)

fun1('Harsh'

The	 second	 type	 is	 more	 complex.	 At	 times	 the	 program	 stops	 working	 or
behaves	in	an	undesirable	way	on	execution.	This	may	be	due	to	incorrect	user
input,	inability	to	open	a	file,	accessing	something	which	the	program	does	not
have	authority	to	do	and	so	on.	These	are	referred	to	as	exceptions.	Exceptions
are	 “events	 that	 modify	 the	 follow	 of	 the	 program”[1].	 Python	 invokes	 these
events	when	errors	occur,	or	the	programmer	can	explicitly	invoke	them.

Exceptions	 are	 used	 to	 handle	 some	 situations.	 So	 if	 something	 undeniable
comes	up,	the	programmer	must	have	a	place	to	go	(part	of	the	code)	where	that
situation	can	be	handled.	In	order	to	understand	the	point,	consider	the	following
example.

Suppose	you	intend	to	design	a	machine	learning	technique	to	identity	whether	a
given	EEG	shows	an	epileptic	 spike.	You	decide	 the	algorithm	 to	be	used,	 the
language,	and	the	tool,	etc.	However,	you	are	not	able	to	get	the	data.	What	will
you	do?	Simply	abandon	the	project	and	go	to	the	exception	handling	part.	That
is,	an	exception	is	raised	when	situations	like	the	above	crop	up.	Let	us	consider
one	 of	 the	most	 common	 examples	 of	 exception	 handling.	 If	 one	 is	 crafting	 a
program	 to	 divide	 two	 numbers	 entered	 by	 the	 user,	 an	 exception	 should	 be
raised	if	the	denominator	entered	is	zero.

One	 of	 the	 most	 common	 ways	 of	 handling	 an	 exception	 is	 to	 craft	 a	 block,
where	one	expects	exception	to	occur.	If	somewhere	in	that	block	an	exception	is
raised,	the	control	goes	to	the	part	which	handles	the	exception.	The	block	where
you	 expect	 the	 exception	 to	 come	 is	 the	 try	 block	 and	 the	 part	 where	 it	 is
handled	 is	 the	expect	block.	The	chapter	discusses	some	more	ways	 to	handle
exceptions.	However,	the	readers	from	C++	or	C#	backgrounds	will	be	familiar
with	the	above	technique	and	should	find	this	easy	and	intuitive.	Though	Python
has	a	mechanism	to	handle	exceptions,	the	reader	is	expected	to	learn	to	code	his
own	classes	to	handle	exceptions.	Therefore,	the	reader	must	revisit	the	chapter
on	classes	and	objects.

13.2

Exception	handling	in	Python	can	be	done	using	any	of	the	following:

try/expect
try/expect/finally
raise
assert

This	chapter	concentrates	on	 the	first	 three.	The	chapter	has	been	organized	as
follows.	 Section	 13.2	 discusses	 the	 importance	 and	 mechanisms	 of	 exception
handling,	 Section	 13.3	 presents	 some	 of	 the	 built-in	 exceptions	 in	 Python,
Section	 13.4	 summarizes	 the	 process	 by	 taking	 an	 example,	 Section	 13.5
presents	 another	 example	of	 exception	handling	 and	 the	 last	 section	 concludes
the	chapter.

IMPORTANCE	AND	MECHANISM

Exception	handling	mechanisms	can	help	 the	programmer	 to	notify	something.
For	example,	consider	the	problem	discussed	in	the	previous	section.	You	have
the	EEG	of	the	patients	and	you	want	to	find	the	epileptic	spike	in	the	EEG.	If
you	 are	 not	 able	 to	 find	 the	 spike,	 you	 can	 simply	 raise	 an	 exception.	 This
technique	is	better	than	the	conventional	method	of	returning	an	integer	code	on
being	able	to	find	something	(or	for	that	matter,	not	find	something).	Likewise,
on	 detecting	 some	 special	 case	 or	 an	 unusual	 condition	 an	 exception	 can	 be
raised.

At	the	runtime	if	an	error	crops	up	an	exception	is	raised.	This	exception	can	be
handled	 by	 the	 corresponding	 expect	 or	 can	 be	 simply	 ignored.	Moreover,	 if
there	 is	no	provision	 to	handle	 the	exception	 in	 the	code	 then	Python’s	default
error	handling	mechanism	comes	into	play.	As	stated	earlier,	on	encountering	an
error	condition	the	execution	is	restored	after	the	try	statement.

Python	also	has	the	try/finally	statements	to	handle	the	termination	condition.
Those	 of	 you	 from	 a	 Java	 background	will	 be	 familiar	with	finally.	 It	 is	 for
handling	 the	 termination	 condition,	whether	 or	 not	 an	 exception	 has	 occurred.
For	example	in	designing	software	the	concluding	screen	must	appear,	whether
or	not	an	exception	has	occurred	or	for	that	matter	the	memory	of	objects	must
be	reclaimed	at	the	end.	For	such	type	of	situations	finally	is	immensely	helpful.

13.2.1 An	Example	of	Try/Catch
A	list	contains	an	ordered	set	of	students.	The	first	location	contains	the	name	of
the	 students	 who	 got	 the	 highest	 marks,	 the	 second	 student’s	 name	 is	 at	 the
second	position,	and	so	on.

>>>L	=	['Harsh',	'Naved',	'Snigdha',	'Gaurav']

In	order	to	access	an	element	at	a	given	location,	 the	user	is	asked	to	enter	the
index

>>>Index=input('Enter	the	index')

Now,	the	element	at	that	position	is	accessed	using	the	following	statement

>>>print(L[int(index)])

So,	if	the	user	enters	1,	‘Naved’	would	be	the	output,	if	he	enters	2,	“Snigdha”
would	 be	 the	 output.	 However,	 the	 following	 message	 appears	 if	 he	 enters
anything	above	3.

The	error	can	be	handled	using	try/catch	as	shown.

Code

Note	 that	 the	 try	block	contains	 the	part	of	 the	 code	where	 the	 exception	may
come	up.	If	a	runtime	error	is	there,	the	except	part	handles	it.	Also	note	that	the
except	may	have	the	name	of	the	predefined	exception.	The	statement	after	the
except	always	executes,	whether	or	not	an	exception	has	been	raised.	The	reader

13.2.2

13.3

is	expected	to	take	note	of	the	fact	that	the	control	does	not	go	back	to	the	point
where	 the	 expectation	 really	 occurred.	 It	 can	 only	 handle	 the	 exception	 in	 the
requisite	block,	 after	which	 the	normal	 execution	continues.	The	 syntax	of	 the
exception	handling	mechanism	is	as	follows.

Syntax

try:

##code	where	exception	is	expected

expect	<Exception>:

##code	to	handle	the	exception

##	rest	of	the	program

Manually	Raising	Exceptions
The	discussion	so	far	has	been	concentrated	on	the	situations	wherein	exceptions
were	raised	and	caught	by	Python	itself.	In	Python,	one	can	also	manually	raise
the	exceptions.	The	keyword	'raise'	is	used	to	explicitly	trigger	an	exception.
The	 keyword	 is	 followed	 by	 the	 <exception	 name>	 (same	 as	 that	 which	 is
caught).	The	mechanism	of	handling	 such	 exceptions	 is	 the	 same	as	described
above.	 That	 is,	 the	 corresponding	 expect	 would	 handle	 the	 thrown	 exception.
The	syntax	is	as	follows.

Syntax

try:

raise	<something>

expect	<something>:

##code	which	handles	the	exception

##rest	of	the	code

If	such	exceptions	are	not	caught,	they	are	handled	in	the	same	fashion	as	in	the
above	section.	The	examples	in	Section	13.4	present	codes	where	the	exceptions
have	been	raised	and	caught.

BUILT-IN	EXCEPTIONS	IN	PYTHON

If	the	programmer	is	able	to	raise	specific	exceptions,	the	program	will	be	more
effective.	 To	 be	 able	 to	 do	 so	 one	 must	 know	 the	 predefined	 exceptions	 in
Python	and	 then	use	 these	at	appropriate	places.	This	section	presents	some	of

the	most	common	exceptions	in	Python.	The	following	sections	present	the	use
of	these	exceptions:

AssertionError
When	an	assert	statement	fails,	the	AssertionError	is	raised.
AttributeError
When	an	assignment	fails,	the	AttributeError	is	raised
EOFError
When	the	last	word	of	the	file	is	reached	and	the	program	attempts	to	read
any	further,	the	EOFError	is	raised.
FloatingPointError
This	exception	is	raised	when	floating	point	operations	fail.
ImportError
If	the	import	statement	written	in	the	code	cannot	load	the	said	module,	this
exception	is	raised.	This	is	same	as	the	ModuleNotFoundError	in	the	later
versions	of	Python.
IndexError
When	the	sequence	is	out	of	range,	this	exception	is	raised.
KeyError
If	in	a	dictionary	the	key	is	not	found,	then	this	exception	is	raised.
OverflowError
Note	that	each	data	type	can	hold	some	value	and	there	is	always	a
maximum	limit	to	what	it	can	hold.	When	this	limit	is	reached,	the
OverflowError	is	raised.
RecursionError
While	executing	a	code	that	uses	recursion,	at	times	maximum	iteration
depth	is	reached.	At	this	point	in	time,	the	recursionError	is	raised.
RuntimeError
If	an	error	occurs	and	it	does	not	fall	in	any	of	the	said	categories,	then	this
exception	is	raised.
StopIteration
If	one	is	using	the	_next_()	and	there	are	no	more	objects	that	can	be
processed,	then	this	exception	is	raised.
SyntaxError
When	the	syntax	of	the	code	is	incorrect,	this	exception	is	raised.	For

13.4

example,	not	writing	the	import	statements	or	any	such	thing.
IntendationError
When	incorrect	use	of	indentation	is	done,	then	this	exception	comes	up.
TabError
An	inconsistent	use	of	spaces	or	tabs	leads	to	this	type	of	error.
SystemError
If	some	internal	error	is	found,	then	this	exception	is	raised.	The	exception
displays	the	problem	that	was	encountered	due	to	which	the	exception	is
raised.
NotImplementedError
If	an	object	is	not	supported	or	the	part	that	provides	support	has	not	been
implemented,	then	the	NotImplementedError	is	raised.
TypeError
If	an	argument	is	passed	and	is	not	expected,	the	TypeError	is	raised.	For
example,	in	a	program	that	divides	two	numbers	entered	by	the	user,	a
character	is	passed,	then	TypeError	is	raised.
ValueError
When	an	incorrect	value	is	passed	in	a	function	(or	an	attempt	is	made	to
enter	it	in	a	variable),	the	ValueError	is	raised.	For	example	if	a	value	which
is	outside	the	bounds	of	an	integer	is	passed	then	this	exception	is	raised.
UnboundLocalError
This	exception	is	raised	when	a	reference	is	made	to	a	variable	which	does
not	have	any	value	in	that	scope.
UnicodeError
This	is	raised	when	errors	related	to	Unicode	encoding	or	decoding	come
up.
ZeroDivisionError
The	division	and	the	modulo	operation	has	two	arguments.	If	the	second
argument	is	zero,	this	exception	is	raised.

THE	PROCESS

This	section	revisits	the	division	of	two	numbers	and	summarizes	how	to	apply
the	concepts	studied	so	far.	Consider	a	function	that	takes	two	numbers	as	input
and	 divides	 those	 two	 numbers.	 If	 the	 function	 is	 called	 and	 two	 integers	 are

13.4.1

passed	as	arguments	(say,	3	and	2),	an	expected	output	is	produced	if	the	second
number	 is	 not	 zero.	 However	 if	 the	 second	 number	 is	 zero,	 a	 runtime	 error
occurs	 and	 an	 error	message	 (shown	 as	 follows)	 is	 produced.	 That	 is,	 Python
handles	exceptions	automatically.

The	 program	 can	 be	 made	 user	 friendly	 by	 printing	 a	 user	 friendly,	 easy	 to
understand	message.	This	can	be	done	by	using	exception	handling.

Code

def	divide(a,b):

result	=a/b

print('Result	is\t:',result)

divide(3,2)

divide(3,0)

>>>

Output

Exception	Handling:	Try/Except
The	above	problem	can	be	handled	by	using	the	try/except	construct	to	handle
the	run	time	error.	The	part	of	the	code	where	the	exception	is	likely	to	be	raised
is	put	in	the	try	block.	If	an	exception	is	raised,	it	will	be	handled	in	the	except
block.	The	except	 block	can	have	 the	user	 friendly	error	message	or	 the	 code
which	would	handle	the	exception.	The	following	code	shows	the	use	of	the	try
block	 and	 displays	 how	 a	 run	 time	 error	 can	 be	 handled	 in	 the	except	block.
Note	 the	 statement	which	 divides	 the	 two	 numbers	 is	 in	 the	 try	 block.	 If	 the
second	 number	 is	 zero	 an	 exception	 will	 be	 raised	 and	 the	 statements	 in	 the
except	block	will	be	executed.

13.4.2

Code

Output

========	RUN	C:/Python/Exception	handling/divide.py	========

Result	is	:	0.6666666666666666

Exception	caught

>>>

Raising	Exceptions
One	can	also	 raise	 specific	 exceptions.	For	example,	 the	 following	code	 raises
the	 ZeroDivisionError	 if	 the	 second	 number	 is	 zero.	 Note	 that	 the
corresponding	except	block	catches	this	exception.	This	can	be	done	if	the	user
is	sure	which	exception	to	raise	in	a	given	situation.	Moreover,	there	is	a	chance
that	 the	 programmer	 fails	 to	 raise	 the	 correct	 exception	 thus	 leading	 to	 the
invocation	of	the	automatic	exception	handling	mechanism	of	Python.

Some	 of	 the	 common	 exceptions	 and	 their	 meanings	 have	 already	 been
presented	 in	 Section	 13.3.	 However,	 there	 are	 many	 more.	 The	 list	 of	 such
exceptions	can	be	found	at	the	link	provided	in	the	references	at	the	end	of	this
book.

Code

13.5

Output

=====	RUN	C:/Python/Exception	handling/divide	raise.py	=====

Result	is	:	0.6666666666666666

Exception	caught:ZeroDivisionError

>>>

CRAFTING	USER	DEFINED	EXCEPTIONS

So	 far	 we	 have	 seen	 the	 automatic	 exception	 handling	 capabilities	 of	 Python.
That	is,	even	if	 there	is	no	try/except,	Python	handles	exceptions.	The	use	of
try/except	 has	 also	 been	 discussed.	 The	 use	 of	 raise	 makes	 the	 exception
handling	more	meaningful,	as	one	can	raise	specific	exceptions	as	per	the	needs.
However,	so	far	we	have	not	seen	how	to	deal	with	the	situation,	which	requires
us	to	raise	a	user	defined	exception.	This	section	discusses	the	crafting	and	use
of	user	defined	exceptions.

Suppose	 there	 is	a	 situation	where	a	 specific	exception	 (as	per	 the	need	of	 the
program)	 is	 to	 be	 raised.	However,	 there	 is	 no	 predefined	 exception	 to	 handle
that	situation.	In	such	cases	a	class	which	would	handle	the	exception	that	needs
to	be	created.	The	said	class	should	be	a	subclass	of	 the	Exception	class,	 so
that	it	can	be	used	for	raising	exceptions.	When	the	situation	arises	the	exception
can	 be	 raised,	 as	 shown	 in	 the	 following	 illustration.	 In	 the	 illustration	 that
follows,	a	class	called	My	Error,	which	 is	derived	from	Exception,	 is	created.
The	_init_	of	 this	class	may	contain	 the	message	which	will	be	printed	when
the	exception	is	raised.	While	raising	the	exception	the	keyword	raise,	followed
by	the	name	of	the	class	is	written.	The	reader	is	expected	to	observe	the	output
and	understand	that	first	 the	message	written	 in	_init_	 is	printed,	 followed	by
the	message	in	the	except	block.	Though	this	is	just	a	dummy	example,	it	gives

13.6

an	idea	as	to	how	to	craft	classes	that	handle	exceptions.

Code

Output

======	RUN	C:\Python\Exception	handling\MyException.py

======

Result	is	:	0.6666666666666666

My	Error	type	error

Exception	caught:	My	Error

>>>

AN	EXAMPLE	OF	EXCEPTION	HANDLING

The	following	program	finds	the	maximum	number	from	a	given	list.	The	idea	is
simple.	Initially,	the	first	item	is	taken	as	“max.”	The	items	of	the	given	list	are
then	 traversed.	While	 traversing,	 if	 any	 element	 is	 greater	 than	 that	 stored	 in
“max”	then	that	number	is	stored	in	the	variable	“max.”	At	the	end	the	value	of
“max”	is	printed.	The	program	and	the	corresponding	output	follow.

Code

Output

====	RUN	C:/Python/Exception	handling/Example/findMax.py

====

Maximum	:	89

>>>

Note	 that	 if	 the	 contents	of	L	 are	 strings	 (e.g.	L=[“Harsh,”	 “Nakul,”	 “Naved,”
“Sahil”]),	 the	 strings	 would	 be	 compared	 as	 per	 the	 rules	 and	 the	 largest
(“Sahil”)	would	 be	 printed.	 That	 is	 the	 program	works	 for	 integers,	 strings	 or
floats.	However,	for	the	following	list	an	exception	would	be	raised:

L=	[2,	'Harsh',	3.67]

Output

The	problem	can	be	handled	by	putting	the	part	of	the	code	where	the	problem	is
likely	 to	 come	 in	 the	 try	block.	Moreover,	 if	 all	 the	 items	of	 the	 list	 are	 to	be
entered	by	 the	user	 then	 the	possibility	of	 a	 runtime	error	 cropping	up	will	 be
higher.	In	such	cases	the	programmer	must	make	sure	that	everything,	including
the	 input	of	 items	and	calling	 the	 function,	are	 in	 the	 try	block.	The	 following
code	presents	the	version	of	the	program	where	items	are	entered	by	the	user	and
exception	handling	is	implemented.	Note	that	the	first	run	produces	an	excepted

result,	whereas	the	second	run	results	in	a	runtime	error	and	hence	the	exception
handling	mechanism	is	invoked.

Code

Output	(First	run)

Also	note	that	if	a	'finally'	is	added	to	the	code,	the	statements	in	finally	are
always	executed	whether	or	not	an	exception	occurs.	The	code	that	contains	both
finally	and	except	is	presented	as	follows.	Note	that	the	first	output	produces
the	expected	result	and	also	prints	the	statements	given	in	finally.	The	second
output	 results	 in	 a	 runtime	 error	 and	 invokes	 exception	 handling	mechanisms
and	also	prints	the	message	in	finally.	The	reader	is	also	expected	to	appreciate
that	 there	was	 no	 need	whatsoever	 of	 the	except	 as	finally	 is	 already	 there.

The	 code	 would	 have	 run	 correctly,	 as	 in	 handled	 the	 runtime	 error	 with	 a
finally,	however	both	have	been	included	to	bring	home	the	point	that	expect
does	 its	 intended	 job	 with	 a	 finally	 and	 finally	 can	 be	 used	 for	 cleanup
actions	or	for	de-allocating	memory	and	so	on.

Code

Output	(first	run)

>>>

==	RUN	C:/Python/Exception	handling/Example/findMax

exception.py	==

Enter	items	(press	0	to	end)

1

Enter	item	(press	0	to	end)

4

Enter	item	(press	0	to	end)

2

Enter	item	(press	0	to	end)

89

Enter	item	(press	0	to	end)

3

13.7

Enter	item	(press	0	to	end)

0

List

['1',	'4',	'2',	'89',	'3']

Maximum	:	89

This	is	always	executed

>>>

Output	(second	run)

>>>

==	RUN	C:/Python/Exception	handling/Example/findMax

exception.py	==

Enter	items	(press	0	to	end)

3

Enter	item	(press	0	to	end)

1

Enter	item	(press	0	to	end)

7

Enter	item	(press	0	to	end)

harsh

Run	time	error

This	is	always	executed

>>>

CONCLUSION

The	chapter	presents	a	remarkable	way	to	deal	with	exceptions.	Though	Python
has	an	 inbuilt	mechanism	 to	deal	with	exceptions,	 the	knowledge	of	exception
handling	makes	programming	more	effective,	user	friendly,	and	robust.	The	first
step	will	be	to	identify	the	part	of	the	code	where	exceptions	are	likely	to	come,
and	put	that	part	in	the	try	block.	The	exceptions	can	also	be	manually	caught
and	 handled	 in	 the	 except	 block.	 The	 finally	 block	 handles	 the	 unhandled
exceptions	 and	 also	 executes	 even	 if	 there	 is	 no	 exception.	 The	 chapter	 also
presents	some	of	the	most	common	exceptions	that	can	be	caught	in	Python.	The
reader	is	expected	to	use	the	concepts	learned	in	this	chapter	in	his/her	programs.
Happy	programming!

GLOSSARY

try/except	:Syntax

try:

##code	where	exception	is	expected

expect	<Exception>:

##code	to	handle	the	exception

##	rest	of	the	program

Manually	raising	exceptions:	Syntax

try:

raise	<something>

expect	<something>:

##code	which	handles	the	exception

##rest	of	the	code

POINTS	TO	REMEMBER

At	the	runtime,	if	an	error	crops	up	then	an	exception	is	raised.
Exception	handling	in	Python	can	be	done	using	any	of	the	following:
– try/catch
– try/finally
– raise
– assert
In	Python,	one	can	also	manually	raise	the	exceptions.
The	part	of	the	code	where	the	exception	is	likely	to	be	raised	is	put	in	the
try	block.	If	an	exception	is	raised,	it	will	be	handled	in	the	except	block.
The	class	that	helps	to	raise	user	defined	exceptions	should	be	a	subclass	of
the	Exception	class.
The	statements	in	finally	are	always	executed,	whether	or	not	exceptions
occur.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Exception	handling

(a) Handles	runtime	errors

(b) Provides	robustness	in	a	program

(c) Both

(d) None	of	the	above

2. Exception	handling	is	needed	for

(a) Syntax	errors

(b) Run	time	errors

(c) Both

(d) None	of	the	above

3. Which	of	the	following	is	not	supported	in	Python?

(a) Nested	try

(b) Re-throwing	an	exception

(c) Both	are	supported

(d) None	of	the	above	is	supported

4. Which	of	the	following	is	raised	in	the	case	of	division	by	zero?

(a) Divide

(b) Zero	Divide

(c) Both

(d) None	of	the	above

5. Which	 of	 the	 following	 is	 raised	 in	 the	 case	 when	 an	 index	 outside	 the
bounds	is	accessed?

(a) Array	index	out	of	bound

(b) Out	of	bound

(c) Array

(d) None	of	the	above

6. Which	of	the	following	is	true?

(a) For	each	try	there	is	exactly	one	catch

(b) Every	try	must	include	a	raise

(c) A	catch	can	handle	any	type	of	exception

(d) A	catch	can	handle	the	exception	for	which	it	is	designed,	unless	it	is
catch	all	in	which	case	it	handles	all	the	exceptions

7. How	many	“expect’s”	can	a	try	have?

(a) Single

(b) Two,	only	in	specific	conditions

(c) Any	number	of	catch

(d) None	of	the	above

8. Which	type	of	exception	can	be	raised?

(a) Predefined

(b) User	defined

(c) Both

(d) None	of	the	above

9. What	is	the	base	class	of	a	class,	of	whose	exception	is	to	be	raised?

(a) Exception

(b) Error

(c) Both

(d) None	of	the	above

10. Which	is	the	correct	syntax	of	raise?

(a) raise	<name	of	the	exception>

(b) raise(<name	of	the	exception>)

(c) raise(new	<user	defined	exception>)

(d) All	of	the	above

THEORY

1. What	is	the	difference	between	compile	time	and	runtime	error?

2. What	is	exception	handling?

3. Explain	the	mechanisms	of	exception	handling.

4. Explain	how	to	create	a	class	that	derives	from	the	exception	class.	How	is
this	class	used	to	raise	exceptions?

5. Explain	the	function	of	the	following	exception	classes

PROGRAMMING

The	roots	of	a	quadratic	equation	ax2	+	bx	+	c	=	0	are	given	by	 the	 formula	

.	Write	a	program	to	ask	the	user	to	enter	the	values	of	a,	b	and

c	and	calculate	the	roots.

1. Use	try/except	in	the	above	question	to	handle	the	following	situations.

(a) Calculating	the	root	of	a	negative	number

(b) Division	by	zero

(c) Incorrect	format

2. Create	 a	 class	 called	 negative_discriminant,	 which	 is	 a	 subclass	 of	 the
exception	 class.	 Now	 in	 question	 1	 raise	 the	 negative_discriminant
exception	when	the	value	of	b2	–	4ac	is	negative.

The	division	of	two	complex	numbers	is	defined	as	follows.	If	c1	=	a1	+	ib1
is	the	first	complex	number	c2	=	a2	+	ib2	and	is	the	second	complex
number,	then	the	complex	number

c	=	(a1	×	a2	–	b1b2)/(a22	+	b22)	+	i(a1	×	b2	+	b1a2)/(a22	+	b22)

3. Create	 a	 class	 called	 Complex	 and	 implement	 exception	 handling	 in	 the
method	that	carries	out	division.

4. For	 the	 complex	 class	 defined	 in	 the	 previous	 question,	 use	 exception
handling	 to	 prevent	 the	 user	 from	 entering	 a	 non-real	 number	 (as	 real	 or
imaginary	part).

5. In	the	complex	class,	create	a	function	that	converts	complex	numbers	to	the
polar	form.

6. Implement	stacks	using	lists.	Incorporate	exception	handling.

7. Implement	queues	using	lists.	Incorporate	exception	handling.

8. Implement	 the	 operations	 of	 linked	 list,	 and	 throw	 an	 exception	when	 the
number	 entered	 by	 the	 user	 is	 negative.	 Assume	 that	 the	 data	 part	 of	 the
linked	list	would	contain	numbers	only.

9. Write	a	program	 that	 takes	 the	ppm	of	chorine	 in	water	 from	 the	user	and
finds	whether	the	ppm	is	within	permissible	limits.	If	it	is	not,	the	program
should	raise	an	exception.

10. Write	 a	 program	 that	 finds	 the	 inverse	 of	 a	 given	 matrix.	 The	 program
should	raise	an	exception	when	the	determinant	of	the	matrix	is	zero.

14.1

CHAPTER	14

INTRODUCTION	TO	DATA
STRUCTURES

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	data	structures
• Classify	data	structures
• Define	stack,	queue,	tree,	and	graph
• Define	algorithms	and	appreciate	the	characteristics	of	an	algorithm
• Understand	abstract	data	types
• Differentiate	between	iterative	and	recursive	algorithms
• Implement	bubble	sort,	selection	sort,	merge,	and	merge	sort

INTRODUCTION

The	 last	 two	 sections	 introduced	 procedural	 and	 object-oriented	 programming.
The	concepts	studied	so	far	constitute	the	basis	of	programming.	Having	learned
the	basic	concepts,	 let	us	move	towards	becoming	a	programmer.	To	become	a
programmer	the	knowledge	of	data	structure	 is	essential.	 In	any	project	storing
data,	its	organization	and	ways	to	access	the	data	are	some	of	the	most	important
tasks.	The	organization	of	the	data	comes	under	what	are	generally	referred	to	as
data	structures.	The	knowledge	of	these	not	only	help	us	to	make	an	efficient
and	 effective	 program	but	 also	 to	 solve	 various	 problems	 at	 hand	by	virtue	 of
their	inherent	characteristics.	This	chapter	briefly	introduces	the	concept	of	data
structures	and	discusses	some	of	 the	algorithms	of	some	of	 the	most	 important
data	structures.

We	 begin	 with	 the	 classification	 of	 a	 data	 structure.	 Data	 structures	 may	 be
primary	or	secondary.	Primary	data	structures	are	those	which	are	provided	by
the	 language.	 For	 example,	 in	 C,	 “int,”	 “float,”	 and	 “char”	 are	 primary	 data
structures.	 The	 primary	 data	 structures	 or	 data	 types	 of	 Python	 have	 been

discussed	in	Chapter	2	of	this	book.

The	secondary	data	structures	are	formed	from	primary	data	structures.	Stacks,
queues,	 trees,	and	graphs	are	some	examples	of	secondary	data	structures.	The
secondary	data	structures	can	further	be	classified	as	linear	and	nonlinear.	Stacks
and	queues	are	linear	data	structures	whereas	trees	and	graphs	are	nonlinear	data
structures.	The	classification	has	been	depicted	in	Figure	14.1.

FIGURE	14.1 Classification	of	data	structures

We	begin	our	discussion	with	one	of	the	simplest	data	structures,	an	array.	An
array	 consists	 of	 homogeneous	 elements	 at	 consecutive	 memory	 locations.
Arrays	 are	used	 to	 store	 elements	which	 are	 similar,	 and	 accessing	many	 such
elements	will	take	less	time	if	they	are	stored	in	consecutive	memory	locations.
Arrays	 are	 an	 integral	 part	 of	 languages	 like	C,	C++,	 Java,	 and	C.	 In	 Python,
however,	 arrays	 can	 be	 accessed	 using	 library.	 The	 formation,	 usage	 and
applications	 of	multi-dimensional	 arrays	 have	 been	 discussed	 in	 the	 following
chapter	 -	 Chapter	 18.	 Section	 14.4	 of	 this	 chapter	 discusses	 the	 various
algorithms	related	to	arrays	in	detail.

Definition

Array:	 An	 array	 consists	 of	 homogeneous	 elements	 at	 consecutive	 memory
locations

A	stack	is	a	linear	data	structure,	which	follows	the	principle	of	Last	In	First	Out
(LIFO).	 In	 order	 to	 understand	 the	 concept	 of	 stacks,	 consider	 opening	 a
document	 in	Microsoft	Word.	When	 one	 opens	 a	 document	 using	 the	 “Open”
dialog	and	finds	the	document	using	the	“Browse”	window,	he	cannot	close	the
“Open”	dialog	until	he	closes	the	“Browse”	window.	Also	the	application	can	be
closed	only	if	one	closes	the	“Open”	dialog.	The	“Browse”	window,	which	was

opened	at	 the	end,	has	to	be	closed	first.	This	is	 just	 like	a	pile	of	books,	from
which	only	the	book	which	was	kept	the	end	can	be	taken	out.	Stacks	are	used	in
sub	procedure	calls	and	backtracking.	The	stacks	are	characterized	by	an	index
called	TOP,	which	 is	 initially	 -1.	The	value	of	TOP	 increases	as	and	when	 the
elements	are	added	in	the	stack.	The	algorithms	of	stack	and	its	applications	are
discussed	in	Chapter	15.

Definition

Stack:	A	stack	is	a	linear	data	structure	that	follows	the	principle	of	Last	In	First
Out	(LIFO).

Queue	is	a	data	structure	that	follows	the	principle	of	First	In	First	Out	(FIFO).
Customer	services	use	the	idea	of	Queue.	The	person	who	enters	first	is	served
earlier	than	the	person	who	entered	later.	When	we	give	many	print	commands
to	 a	 printer,	 the	 commands	 are	 stored	 in	 a	 queue	 and	 the	 corresponding
documents	are	printed	in	the	order	in	which	the	command	was	given.	Queues	are
used	 in	 scheduling	 algorithms	 by	 the	 operating	 systems,	 in	 spooling	 (e.g.	 for
printer)	 and	 inapt	many	 other	 places.	 The	 queues	 (static)	 are	 characterized	 by
two	indices	-	REAR	and	FRONT.	The	initial	value	of	both	the	indices	is	-1.	The
value	 of	 REAR	 increases	 as	 elements	 are	 inserted	 in	 the	 queue	 and	 that	 of
FRONT	increases	when	elements	are	 removed	from	the	queue.	The	algorithms
of	insertion	and	deletion	in	a	queue	are	presented	in	Chapter	15.	The	chapter	also
presents	some	of	the	important	applications	of	queue.

Definition

Queue:	A	queue	 is	a	 linear	data	 structure	 that	 follows	 the	principle	of	First	 In
First	Out	(FIFO).

A	graph	may	be	defined	as	a	set	containing	two	finite	sets:	the	set	of	vertices	(V)
and	the	set	of	edges	(E).	They	are	represented	using	two-dimensional	arrays	or
linked	 lists.	A	graph	can	be	weighted,	 in	which	 case	 the	 corresponding	matrix
would	 have	 weights	 at	 the	 requisite	 positions.	 Graphs	 are	 traversed	 using
methods	 like	 breadth	 first	 search	 or	 depth	 first	 search.	 Interestingly,	 these
traversals	 use	 linear	 data	 structures	 like	 stacks	 and	 queues.	 Graphs	 are
extensively	used	 in	many	computational	problems.	 In	 fact,	 there	 is	a	dedicated
branch	 of	 algorithms	 for	 solving	 problems	 using	 graphs.	 The	 concept	 of
algorithms	and	applications	of	graphs	are	discussed	in	Chapter	17	of	this	book.

Definition

14.2

Graph:	A	graph	may	be	defined	as	G	=	(V,	E),	where	V	is	a	finite,	non-empty
set	of	vertices	and	E	is	a	finite,	non-empty	set	of	edges.	Each	element	of	E	is	(x,
y),	where	x	and	y	belong	to	the	set	of	vertices.

A	tree	is	a	graph	which	does	not	have	any	cycle	or	isolated	vertex	(or	edges).	A
tree	is	a	graph	and	therefore	it	has	vertices	and	edges.	The	absence	of	cycles	and
isolated	 vertices	 makes	 it	 usable	 for	 many	 problems	 like	 searching,	 finding
complexity,	 and	 so	 on.	A	 tree	 is	 generally	 used	 for	 representing	 a	 hierarchical
relationship.	 A	 special	 tree	 called	 a	 binary	 tree	 has	 only	 a	 maximum	 of	 two
children	at	each	level.	Trees	have	been	discussed	in	Chapter	17	of	this	book.

Definition

Tree:	A	tree	is	a	graph	that	does	not	have	any	cycle	or	isolated	vertex	or	edge.

In	 the	 following	 chapters,	 the	 concepts	 related	 to	 trees	 and	 graphs	 have	 been
discussed.	 Trees	 are	 graphs	 and	 fall	 under	 the	 category	 of	 non-linear	 data
structures.	 As	 stated	 earlier	 these	 are	 extensively	 used	 in	 searching,	 sorting,
finding	 minimum	 spanning	 trees,	 and	 solving	 some	 of	 the	 most	 important
problems	in	the	field	of	computer	science.

As	well	as	the	above	there	are	other	data	structures	like	Plex,	which	are	beyond
the	scope	of	this	book.	The	concept	of	file	has	already	been	discussed	in	chapter
9	 of	 this	 book.	 The	 organization	 of	 a	 file	 is	 a	 fascinating	 topic	 used	 in	many
fields,	including	data	base	management	system.

The	 chapter	 has	 been	 organized	 as	 follows.	 This	 section	 has	 introduced	 the
definitions	 of	 a	 data	 structures	 and	 their	 types.	 The	 definitions	 of	 linear	 data
structures	 like	 stacks	 and	queues	 and	nonlinear	data	 structures	 like	graphs	 and
trees	 have	 also	 been	 presented	 in	 this	 section.	 The	 second	 section	 discusses
Abstract	 Data	 Types	 (ADT)	 and	 the	 third	 section	 discusses	 the	 definition	 of
algorithms.	 Section	 14.4	 discusses	 arrays	 and	 Section	 14.5	 discusses	 iterative
and	non-iterative	algorithms.	The	 topic	has	been	discussed	by	 taking	examples
of	 three	popular	sorting	 techniques:	selection	sort,	bubble	sort,	and	merge	sort.
The	last	section	concludes	the	chapter.

ABSTRACT	DATA	TYPE

Each	language	has	predefined	data	types	like	int,	float,	etc.	The	operations	that

can	 be	 applied	 to	 these	 data	 types	 are	 also	 defined	 for	 each	 type.	 As	 stated
earlier,	user	defined	data	types	are	needed	so	languages	support	such	data	types.
Now,	 the	 operations	 that	 can	 be	 applied	 to	 these	 data	 types	 must	 be	 at	 least
declared,	 if	not	defined	for	 these	 types.	The	higher	 level	abstraction	makes	 the
purpose	and	use	of	these	data	types	clear.

Abstract	 Data	 Types	 contain	 elements	 along	 with	 the	 set	 of	 operations	 to
manipulate	the	elements.	The	operations	tell	us	what	is	to	be	done,	not	how	it	is
to	be	done.	That	is,	ADTs	are	not	about	implementation,	as	long	as	it	is	correct,
but	about	 the	 tasks.	The	higher	 level	abstraction	of	 the	 task	 is	 important.	As	a
matter	of	fact,	it	is	the	designer’s	decision	as	to	what	operations	will	constitute
the	ADT.	There	is	no	hard	and	fast	rule	on	the	number	of	operations	and	the	type
of	operations.	An	example	of	ADT	is	a	stack.	A	stack,	as	explained	earlier,	is	a
linear	 data	 structure	 that	 follows	 the	 principle	 of	 Last	 In	 First	Out	 (LIFO).	A
stack	can	be	described	with	the	help	of	the	following	operations:

push(item):	Inserts	'item'	at	the	top	of	the	stack
pop():	Takes	an	element	out	of	the	stack
isfull():	Returns	true	if	the	stack	is	full
isempty():	Returns	true	if	the	stack	is	empty
overflow():	Returns	true	if	an	overflow	exception	is	raised
underflow():	Returns	true	if	an	underflow	exception	is	raised

Note	that	in	the	above	description,	the	various	functions	are	clear	about	what	is
to	be	done	not	how	 it	 is	 to	be	done.	Other	examples	of	ADTs	 include	queues,
lists,	trees,	graphs,	etc.	The	reader	may	also	note	that	languages	like	C++,	Java,
C#,	Python,	etc.,	support	ADTs	via	classes.

The	 implementation	 of	 an	 ADT	 requires	 data	 structures.	 The	 choice	 of	 data
structure,	therefore,	becomes	one	of	the	most	contentious	issues.	An	appropriate
data	structure	must	be	chosen	as	per	 the	problem	at	hand,	keeping	 in	view	 the
efficiency	part	too.

For	example,	 the	stack	data	structure	can	be	implemented	using	data	structures
like:

Array
Linked	list

14.3

Having	studied	the	definitions	of	data	structures,	let	us	shift	our	focus	to	the	way
a	problem	is	solved.	The	next	section	introduces	the	notion	of	algorithms	and	the
following	section	presents	arrays.

ALGORITHMS

In	 order	 to	 accomplish	 any	 task,	 one	 needs	 to	 plan	 the	 chain	 of	 action.	 For
example	you	are	required	to	complete	a	task	consisting	of	4	subtasks,	where	each
subtask	can	be	performed	only	on	the	completion	of	 the	previous	subtask.	You
would	probably	perform	the	first	subtask,	followed	by	the	second,	followed	by
the	 third	 and	 finally	 the	 fourth.	An	 example	 of	 such	 a	 process	 follows.	 In	 the
process,	 it	 is	 assumed	 that	 the	 person	 has	 ingredients	 required	 for	 the	 Indian
recipe	(of	kheer)	that	follows.

Ingredients:	1	L	milk,	¼	cup	rice,	6	tablespoon	sugar,	some	dry	fruits	(almonds,
raisins,	cashews).

The	steps	to	make	Indian	“kheer”	have	been	depicted	in	Figure	14.2.

FIGURE	14.2 Making	Kheer

A	 set	 of	 steps	 required	 to	 accomplish	 a	 particular	 task	 is	 called	 an	 algorithm.
Though	 there	 can	 be	many	ways	 of	 achieving	 a	 particular	 task,	 the	 algorithm
designer	must	look	for	the	most	efficient	way	of	doing	so;	both	in	terms	of	space
and	time.	However,	this	efficiency	must	not	come	at	the	expense	of	correctness.
Moreover,	 each	 statement	 of	 an	 algorithm	 must	 be	 unambiguous.	 The
characteristics	of	a	good	algorithm	can	be	summarized	as	follows:

Correctness:	An	algorithm	must	produce	correct	 results	 in	all	cases	or	 it	must

14.4

explicitly	state	for	which	cases	it	will	not	work.

Unambiguous:	Each	statement	of	an	algorithm	must	be	deterministic.

Efficiency:	The	time	required	by	the	algorithm	must	be	as	low	as	possible,	and
the	space	required	must	also	be	also	be	as	low	as	possible.

Finiteness:	The	number	of	steps	in	a	given	algorithm	must	be	finite.

The	 time	 or	 space	 complexity	 of	 an	 algorithm	 can	 be	 stated	 in	 terms	 of
asymptotic	 functions.	 These	 functions	 give	 an	 idea	 of	 an	 algorithm’s
comparative	performance.	As	a	matter	of	fact	we	are	not	interested	in	the	exact
equation	 which	 relates	 the	 time	 taken	 by	 the	 size	 of	 the	 problem,	 but	 only	 a
function	that	tells	us	how	the	algorithm	would	behave	with	larger	values	of	n.

Big	 Oh:	 The	 O	 (big	 Oh)	 notation	 depicts	 the	 upper	 bound	 of	 an	 algorithm.
Formally,	for	a	function	f	(t),	O(f	(t)	is	defined	as	follows:

g	(t)	=	O	(f	(t)),	if	g	(t)	≤	cf	(t)	for	some	n	≥	n0

Omega:	 The	 Ω(Omega)	 notation	 depicts	 the	 lower	 bound	 of	 an	 algorithm.
Formally,	for	a	function	f	(t),	Ω	(f	(t)	is	defined	as	follows:

g	(t)	=	Ω(f	(t)),	if	g	(t)	≥	cf	(t)	for	some	n	≥	n0

Theta:	The	θ(big	Oh)	notation	depicts	the	tight	bound	of	an	algorithm.	Formally,
for	a	function	f	(t),	θ	(f	(t)	is	defined	as	follows:

g	(t)	=	θ(f	(t)),	c1g(t)	≤	f	(t)	≤	c2	g(t)	for	some	n	≥	n0

ARRAYS

An	 array	 is	 a	 linear	 data	 structure	 that	 has	 the	 same	 type	 of	 elements.	 The
elements	of	an	array	are	stored	in	consecutive	memory	locations.	Those	of	you
from	a	C	background	will	have	already	studied	arrays.	This	section	implements
insertion	and	deletion	from	an	array.	An	insertion	can	be	done	at	the	beginning,
at	the	end	and	somewhere	in-between.	Likewise,	a	deletion	can	be	done	from	the
beginning,	from	the	end	and	from	anywhere	in-between.	Inserting	an	element	at
the	beginning	 requires	all	elements	 to	be	shifted	one	position	 to	 the	 right,	 thus

making	way	for	the	“item.”	After	this,	the	element	“item”	is	inserted	at	the	first
position	and	the	length	of	the	array	in	incremented	by	unity.	That	is,

##Shift	each	element	of	the	array	one	position	to	the	right

arr[0]	=	item

length	=	length	+1

The	first	step	requires	O(n)	time	and	the	second	and	the	third	would	require	O(1)
each.	 Therefore	 the	 complexity	 of	 inserting	 an	 element	 at	 the	 first	 position	 is
O(n).	Inserting	an	element	at	the	end	requires	increasing	the	length	of	the	given
array	 by	 one.	 The	 task,	 thus	 becomes	 O(1),	 as	 we	 are	 keeping	 track	 of	 the
number	of	elements	in	the	variable	“length.”

arr[length]	=	item

length	=	length	+1

Inserting	an	element	after	a	certain	position	 requires	 shifting	all	 elements	after
that	 position	 by	 one,	 followed	 by	 putting	 the	 element	 at	 that	 position	 and
increasing	the	length	of	the	array	by	one.

#shift	all	elements	after	'position'	by	one.

arr[pos]	=	item

length	=	length	+1

The	 average	 case	 complexity	 of	 the	 above	 task	 would	 be	 O(n).	 Deleting	 an
element	from	the	beginning	requires	shifting	all	 the	elements,	starting	from	the
second	element,	to	the	right	(by	one)	and	then	reducing	the	length	of	the	array	by
one.	That	is,

#shift	all	the	elements	to	the	right	(starting	from	the

second	element)

length	=	length	-1

The	complexity	of	shifting	all	the	elements	to	one	position	to	the	right	would	be
O(n)	 and	 hence	 the	 complexity	 of	 the	 procedure	 would	 be	 O(n).	 Deleting	 an
element	after	a	particular	position	requires	shifting	all	the	elements,	starting	from
(position	+1),	to	the	right	(by	one)	and	then	reducing	the	length	of	the	array	by
one.	That	is,

#shift	all	the	elements	to	the	right	(starting	from	position

+1)

length	=	length	-1

The	complexity	of	shifting	all	the	elements	to	one	position	to	the	right	would	be
O(n)	 and	 hence	 the	 complexity	 of	 the	 procedure	 would	 be	 O(n).	 Deleting	 an
element	from	the	end	requires	reducing	the	length	of	the	array	by	one.	This	takes
O(1),	time.	That	is,

length	=	length	-1

The	task	can	be	done	by	using	functions	in	C	but	it	requires	the	use	of	pointers.
The	C	program	to	implement	insertion	and	deletion	in	an	array	is	as	follows.

Inserting	an	element	in	a	given	array,	deleting	an	element	from	a	given	array	(In	C)

Note	 that	 in	 C	 the	 modular	 approach	 used	 to	 accomplish	 the	 above	 task	 is
complex	 and	 intricate.	 It	 requires	 the	 use	 of	 pointers	 and	 passing	 of	 both	 the
address	of	the	array	and	its	length	in	each	function.	The	insertion	and	deletion	of
an	element	in	an	array	is	simple	in	Python.	It	requires	the	use	of	the	array	class.
The	functions	to	accomplish	different	tasks	have	been	presented	in	Table	14.1.

Table	14.1		Functions	for	array

Name	of	the	function Task

append Adding	an	element	at	the	end
insert Adding	the	element	at	the	specified	position.	The

function	has	two	arguments:	first	is	the	element
and	the	second	is	the	position

count This	counts	the	number	of	times	the	argument	is
repeated

pop Takes	out	the	top	element	from	the	array
remove Removes	the	element	from	a	given	position
reverse Reverses	the	order	of	elements	in	the	array
tostring Converts	the	given	array	into	a	string

from	array	import	array

arr	=	array('i')

arr.append(3)

arr

14.5

Out[4]:	array('i',	[3])

arr.append(5)

arr

Out[6]:	array('i',	[3,	5])

arr.insert(1,23)

arr

Out[8]:	array('i',	[3,	23,	5])

arr.insert(0,32)

arr

Out[11]:	array('i',	[32,	3,	23,	5])

arr.count(3)

Out[12]:	1

arr.pop(2)

Out[13]:	23

arr

Out[14]:	array('i',	[32,	3,	5])

arr.remove(3)

arr

Out[16]:	array('i',	[32,	5])

arr.reverse()

arr

Out[18]:	array('i',	[5,	32])

arr.tostring()

Out[19]:	b'\x05\x00\x00\x00	\x00\x00\x00'

arr.write(file)

--
AttributeError	Traceback	(most	recent	call	last)

<ipython-input-20-e7f729e1f6ad>	in	<module>()

---->	1	arr.write(file)

AttributeError:	'array.array'	object	has	no	attribute

'write'.

ITERATIVE	AND	RECURSIVE	ALGORITHMS

In	 order	 to	 understand	 the	 difference	 between	 an	 iterative	 and	 a	 recursive
algorithm,	we	will	consider	the	examples	of	three	algorithms	for	sorting:	bubble,
selection,	and	merge	sort.	The	first	two	are	examples	of	iterative	algorithms	and

14.5.1

the	third	is	an	example	of	a	recursive	algorithm.

Iterative	Algorithms
Iterative	 procedure	 is	 one	 in	which	 each	 statement	 happens	 one	 after	 another.
Linear	 search,	 bubble	 sort,	 and	 selection,	 etc.,	 are	 examples	 of	 iterative
algorithms.

Bubble	Sort

In	bubble	sort	the	first	element	is	compared	with	the	second,	the	second	with	the
third	 and	 so	 on;	 if	 the	 element	 to	 be	 compared	 is	 smaller	 than	 the	 first,	 the
elements	are	swapped.	After	the	first	iteration,	the	maximum	element	is	placed	at
the	last	position.	The	process	is	repeated	for	the	second	element	and	so	on.	The
process	has	been	presented	in	the	following	algorithm:

Analysis

The	 number	 of	 times	 each	 statement	 is	 executed	 has	 been	 presented	 in	 Table
14.2.	The	 first	 statement	 is	 executed	 (n+1)	 times	and	 the	 statements	 inside	 the
loop	 are	 executed	 n	 times.	 Each	 time	 the	 inner	 loop	 executes	 (n-i)	 times
therefore	 making	 the	 total	 number	 as	 n(n-i-1).	 The	 execution	 of	 the	 if	 block
depends	 on	 the	 data.	 Note	 that	 the	 total	 number	 of	 executions	 has	 n2	 as	 the
highest	degree	term.	Therefore	the	complexity	of	the	algorithm	is	O(n2).

Table	14.2		Analysis	of	bubble	sort

FIGURE	14.3 An	example	of	bubble	sort

Selection	Sort

In	selection	sort	the	first	element	is	compared	with	the	rest	of	the	elements	and
whichever	 is	 smaller	 is	 replaced	 with	 the	 first.	 This	 results	 in	 the	 minimum
element	 coming	 at	 the	 first	 position.	 The	 process	 is	 repeated	 for	 the	 second
element	and	so	on.	The	process	has	been	presented	in	the	following	algorithm:

Analysis:	Note	that	the	algorithm	has	a	nested	loop.	The	outer	loop	executes	n
times	and	the	inner’s	execution	makes	the	complexity	O(n2).

The	process	has	been	exemplified	in	Figure	14.3.	The	first	position	has	4,	 it	 is
compared	 with	 the	 second	 position	 and	 since	 the	 second	 position	 has	 1,	 the
numbers	are	swapped.	Now,	1	is	compared	with	6,	2,	8,	and	3,	one	by	one.	Since
none	of	these	is	smaller	than	1,	the	numbers	remain	at	their	respective	positions.

14.5.2

FIGURE	14.4 An	example	of	selection	sort

Recursive	Algorithms
Recursive	 algorithms	 are	 those	 in	 which	 the	 procedure	 is	 called	 in	 the	 same
procedure.	Recursion	requires	a	base	case,	the	solution	of	which	must	be	known.
If	the	base	case	is	not	given	the	algorithms	will	not	terminate,	thus	resulting	in
stack	 overflow	when	 the	 program	 executes.	 Examples	 of	 recursive	 algorithms
are	binary	search,	merge	sort,	quick	sort,	etc.

Merge

Given	two	sorted	lists	a1	and	a2,	having	n1	and	n2	elements,	the	merged	list	is	a
sorted	 list	 having	 at	most	 (n1	 +	n2)	 elements.	 The	 procedure	 for	 merge	 is	 as
follows.

The	two	lists	are	merged	as	follows.	The	pointer	i	is	kept	at	the	first	index	of	the

first	 list	 and	 j	 at	 the	 first	 index	 of	 the	 second	 list.	 The	 resultant	 array,	 c,	 is
initialized	to	[]	and	pointer	k	points	to	the	first	position	of	c.	If	the	element	at	a
is	less	than	that	at	b,	the	ith	element	of	a	is	copied	to	c,	and	the	pointers	i	and	k
are	incremented.	If	the	element	at	a	is	greater	than	that	at	b,	the	jth	element	of	b
is	copied	to	c,	and	the	pointers	j	and	k	are	incremented.	If	the	elements	at	a	and
b	are	equal,	 the	 ith	element	of	a	 is	copied	 to	c,	and	 the	pointers	i,	j	and	k	are
incremented.	The	process	 is	 repeated	 till	i	 becomes	n1	 or	j	 becomes	n2,	 after
which	 the	 elements	 of	 the	 first	 array	 (if	 i<n1)	 are	 copied	 to	 c.	 Otherwise	 (if
j<n2)	the	elements	of	the	second	array	are	copied	to	c.

Merge	Sort

Merge	sort	works	as	follows.	Low	points	to	the	first	index	of	the	array	and	high
points	to	the	last	index	of	the	array	to	be	sorted.	If	the	value	of	low	is	equal	to
that	 of	 high,	 there	 is	 only	 one	 element	 in	 the	 array	 and	 hence	 the	 array	 is

14.6

returned	(an	array	having	a	single	element	is	deemed	to	be	sorted).	Otherwise	the
array	is	split	 into	two	halves,	merge	sort	is	recursively	applied	to	the	two	parts
and	the	result	is	merged	using	the	procedure	explained	above.

Analysis

The	complexity	of	merge	is	O(n)	(note	that	there	are	loops	which	run	one	after
another).	The	merge	sort	divides	the	array	into	two	parts	until	a	single	element
array	is	formed.	Therefore,	if	the	number	of	elements	is	initially	n,	after	the	first
iteration	 the	 two	 parts	 will	 have	 n/2	 elements	 each.	 In	 the	 next	 iteration,	 the
number	 of	 elements	 in	 the	 two	 parts	 will	 be	 n/4	 and	 so	 on.	 The	 process
terminates	if	the	number	of	elements	becomes	1.	That	is	 .	That	is	i	=	log2
n.	The	complexity	of	merge	sort	becomes	O(n	logn).

CONCLUSION

One	 of	 the	 most	 important	 things	 while	 designing	 a	 program	 is	 to	 do	 a	 task
efficiently.	The	 efficiency	must	be	both	 in	 terms	of	 space	 and	 time.	Managing
time	 complexity	 requires	 developing	 better	 algorithms	 whereas	 the	 space
complexity	 can	 be	 managed	 with	 various	 factors.	 This	 chapter	 introduces	 the
concept	of	data	structures	for	efficient	storage,	management	and	access	of	data.
The	 classification	 of	 algorithms	 has	 been	 discussed	 and	 definitions	 of	 various
data	structures	have	been	presented.	The	chapter	also	introduces	the	concept	of
complexity.	The	examples	of	iterative	and	recursive	algorithms	have	been	given

to	 explain	 the	 concept.	 The	 reader	 is	 expected	 to	 implement	 the	 concepts
presented	here.	The	following	chapters	take	the	discussion	forward	and	explain
various	 applications	 of	 stacks,	 queues,	 and	 implementation	 of	 linked	 lists.	 To
conclude	 “Bad	 programmers	 worry	 about	 the	 code,	 good	 programmers	 worry
about	the	data	structures.”

GLOSSARY

Array:	 An	 array	 consists	 of	 homogeneous	 elements	 at	 consecutive	 memory
locations.

Stack:	A	stack	is	a	linear	data	structure	that	follows	the	principle	of	Last	In	First
Out	(LIFO).

Queue:	A	queue	 is	a	 linear	data	 structure	 that	 follows	 the	principle	of	First	 In
First	Out	(FIFO).

Graph:	A	graph	may	be	defined	as	G=	(V,	E),	where	V	is	a	finite,	non-empty	set
of	vertices	and	E	is	a	finite,	non-empty	set	of	edges.	Each	element	of	E	is	(x,	y),
where	x	and	y	belong	to	the	set	of	vertices.

Tree:	A	tree	is	a	graph	that	does	not	have	any	cycle	or	isolated	vertex	or	edge.

Big	 Oh:	 The	 O	 (big	 Oh)	 notation	 depicts	 the	 upper	 bound	 of	 an	 algorithm.
Formally,	for	a	function	f	(t),	O(f	(t)	is	defined	as	follows.

g(t)	=	O(f	(t)),	if	g(t)	≤	c	f	(t)	f	or	some	n	≥	n0

Omega:	 The	 (Omega)	 notation	 depicts	 the	 lower	 bound	 of	 an	 algorithm.
Formally,	for	a	function	f	(t),	(f	(t)	is	defined	as	follows.

g(t)	=	Ω(f	(t)),	if	g(t)	≥	c	f	(t)	f	or	some	n	≥	n0

Theta:	The	θ(big	Oh)	notation	depicts	the	tight	bound	of	an	algorithm.	Formally,
for	a	function	f	(t),	θ(f	(t)	is	defined	as	follows.

g(t)	=	θ(f	(t)),	if	c1g(t)	≤	f	(t)	≤	c2g(t)	f	or	some	n	≥	n0

POINTS	TO	REMEMBER

Algorithms	should	have	the	following	features.

(a) Correctness

(b) Unambiguous

(c) Efficiency

(d) Finiteness
An	array	is	a	linear	data	structure	that	has	the	same	type	of	elements.
Iterative	procedure	is	one	in	which	each	statement	runs	after	another.
Linear	 search,	 bubble	 sort,	 selection	 sort,	 etc.,	 are	 examples	 of	 iterative
algorithms.
The	complexity	of	bubble	sort	is	O(n2).
The	complexity	of	selection	sort	is	O(n2).
The	complexity	of	merge	sort	is	O(n	log	n).

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	correct?

(a) A	data	structure	is	used	to	organize	elements.

(b) Data	structures	may	be	used	to	access	elements	efficiently.

(c) The	 knowledge	 of	 data	 structures	 helps	 the	 programmer	 to	 make
efficient	programs.

(d) All	of	the	above.

2. Which	of	the	following	is	an	example	of	a	basic	data	structure?

(a) int

(b) float

(c) char

(d) All	of	the	above

3. Which	of	the	following	is	a	linear	data	structure?

(a) Queue

(b) Stack

(c) Tree

(d) All	of	the	above

4. Which	of	the	following	is	an	example	of	a	nonlinear	data	structure?

(a) Tree

(b) Graph

(c) Both

(d) None	of	the	above

5. A	linear	data	structure	which	follows	the	principle	of	First	In	First	Out	is

(a) Queue

(b) Stack

(c) File

(d) None	of	the	above

6. A	linear	data	structure	which	follows	the	principle	of	Last	In	First	Out	is

(a) Queue

(b) Stack

(c) File

(d) None	of	the	above

7. Which	 queue	 is	 more	 efficient	 with	 respect	 to	 the	 available	 space
utilization?

(a) Linear	queue

(b) Circular	queue

(c) Both	are	equally	efficient

(d) No	basis	for	comparison

8. A	queue	can	be	used	in	which	of	the	following	applications?

(a) Round	robin	scheduling

(b) Spooling

(c) Customer	services

(d) All	of	the	above

9. Which	search	uses	queue?

(a) Depth	first	search

(b) Breadth	first	search

(c) Both

(d) None	of	the	above

10. Which	search	uses	stack?

(a) Depth	first	search

(b) Breadth	first	search

(c) Both

(d) None	of	the	above

11. A	tree

(a) May	have	an	isolated	edge.

(b) May	have	a	loop.

(c) May	have	an	isolated	vertex.

(d) None	of	the	above.

12. A	graph

(a) May	have	a	loop

(b) May	have	an	isolated	edge

(c) May	have	an	isolated	vertex

(d) All	of	the	above

THEORY

1. What	is	a	data	structure?	Explain	the	importance	of	data	structures.

2. Classify	data	structures	on	the	basis	of	basic	and	non-basic.	Give	examples
of	each	type.

3. Classify	data	structures	on	the	basis	of	linear	and	non-linear.	Give	examples
of	each	type.

4. What	 is	 a	 queue?	 Write	 an	 algorithm	 for	 the	 static	 implementation	 of	 a
queue.

5. What	is	a	stack?	Write	an	algorithm	for	the	static	implementation	of	a	stack.

6. State	a	few	applications	of	stack.	Explain	how	a	stack	can	be	used	in	blind
search.

7. Define	a	tree.	What	is	the	difference	between	a	graph	and	a	tree?

8. What	is	a	graph?	State	a	few	applications	of	a	graph.

9. Differentiate	between	iterative	and	recursive	algorithms.	Give	an	example	of
each.

10. What	is	an	abstract	data	type?	Explain	with	the	help	of	an	example.

11. What	is	an	array?	Write	algorithms	for	the	following.

(a) Inserting	an	element	at	the	beginning

(b) Inserting	an	element	at	the	end

(c) Inserting	an	element	after	a	given	element

(d) Deleting	an	element	from	the	beginning

(e) Deleting	an	element	from	the	end

(f) Deleting	a	given	element	from	an	array

12. Explain	bubble	sort.	What	is	the	complexity	of	bubble	sort?

(i)

(ii)

(iii)

(iv)

(v)

(vi)

13. Suggest	a	change	in	bubble	sort,	so	that	the	complexity	can	be	improved.

14. Explain	selection	sort.	What	is	the	complexity	of	selection	sort?

15. Suggest	a	change	in	selection	sort,	so	that	the	complexity	can	be	improved
to	O(n	log	n).

16. Write	an	algorithm	to	merge	to	sorted	arrays.	State	its	complexity.

17. Write	an	algorithm	to	implement	merge	sort.	What	is	its	complexity?

18. Which	is	better	-	bubble	sort	or	selection	sort?

19. Which	is	better	-	selection	sort	or	merge	sort?

20. Which	is	better	in	terms	of	space	complexity	-	merge	sort	or	selection	sort?

PROGRAMMING	EXERCISE

1. Write	a	program	to	implement	a	stack.

2. Write	a	program	to	implement	a	queue.

3. Write	a	program	to	carry	out	the	following	operations	in	an	array

Inserting	an	element	at	the	beginning

Inserting	an	element	at	the	end

Inserting	an	element	after	a	given	element

Deleting	an	element	from	the	beginning

Deleting	an	element	from	the	end

Deleting	a	given	element	from	an	array

4. Write	a	program	to	implement	bubble	sort.	What	is	the	complexity	of	bubble
sort?

5. Write	a	program	to	implement	selection	sort.

6. Write	a	program	to	implement	to	merge	to	sorted	arrays.	Write	a	program	to

implement	merge	sort.

7. Write	a	program	to	concatenate	two	given	arrays.

8. Write	a	program	to	find	the	maximum	element	from	a	given	array.

9. Write	a	program	to	find	the	second	maximum	element	from	a	given	array.

10. Write	a	program	to	reverse	the	order	of	elements	of	a	given	array.

15.1

CHAPTER	15

STACKS	AND	QUEUES

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	stacks	and	queues
• Using	dynamic	tables	for	implementing	stacks
• Understand	postfix,	prefix,	and	infix	expressions
• Convert	infix	to	postfix,	infix,	to	prefix,	and	postfix	to	infix
• Understand	the	applications	of	stacks	and	queues

INTRODUCTION

Stacks	 and	queues	were	 introduced	 in	 the	previous	 chapter.	This	 chapter	 takes
the	 topic	 forward	 and	 explains	 various	 implementations	 and	 applications	 of
stacks	and	queues.	The	data	structures	are	important	as	they	find	applications	in
recursive	 algorithms,	 conversion	 and	 evaluation	 of	 expressions,	 operating
systems,	and	in	popular	CPU	scheduling	algorithms	like	round	robin,	etc.	It	may
be	 stated	 here	 that	 Python	 provides	 libraries	 for	 both	 stacks	 and	 queues.
However,	 a	 programmer	 is	 expected	 to	 know	 the	 implementations	 of	 the	 said
data	 structures	and	 to	understand	 the	advantages	and	problems	associated	with
various	implementations.

This	 chapter	 also	 introduces	 infix,	 postfix,	 and	 prefix	 expressions.	Conversion
and	evaluation	of	expressions	have	been	discussed	in	detail	in	this	chapter.	This
topic	 finds	 applications	 in	 compiler	 design	 too.	 The	 linked	 list	 based
implementation	of	stacks	and	queues	have	been	deferred	to	the	next	chapter,	as
linked	lists	have	been	formally	introduced	in	the	next	chapter.

This	 chapter	 has	 been	 organized	 as	 follows.	 Section	 15.2	 presents	 the	 basic
terminology	and	array	based	implementation	of	stack.	Section	15.3	discusses	one
of	the	dynamic	implementations	of	stack	and	the	discussion	continues	in	the	next
section.	Section	15.5	discusses	two	important	applications	of	stacks:	reversal	of

15.2

string	and	infix,	postfix	and	prefix	expressions.	Section	15.6	presents	the	basics
of	 queues	 and	 its	 implementation.	The	 last	 section	 concludes	 the	 chapter.	 The
reader	is	expected	to	revisit	Chapter	14	before	proceeding	any	further.

STACK

A	stack	 is	a	 linear	data	structure	 that	 follows	 the	principle	of	Last	 In	First	Out
(LIFO)	or	First	In	Last	Out	(FILO).	A	stack	can	be	implemented	using	an	array
which	has	 a	 fixed	 capacity	 (say	n).	The	TOP	 denotes	 the	position	 at	which	 the
element	 is	 to	 be	 inserted.	 Initially,	 the	 value	 of	 TOP	 is	 -1.	 As	 elements	 are
inserted	 onto	 the	 stack,	 the	 value	 of	 TOP	 is	 increased	 by	 one	 until	 its	 value
becomes	(n-1),	after	which	the	'Overflow'	exception	is	raised.	The	insertion	in
a	stack	 is	 referred	 to	as	'push'.	The	algorithm	for	push	has	been	presented	as
follows	(Algorithm	15.1).

Algorithm	15.1

An	element	is	deleted	from	the	top	of	the	stack	if	the	value	of	TOP	is	not	-1,	in
which	case	an	underflow	 exception	 is	 raised.	Otherwise,	 the	element	at	TOP	 is
returned	and	the	value	of	TOP	is	decremented	by	1.	This	operation	is	referred	to
as	'pop'.	The	algorithm	for	pop	is	as	follows	(Algorithm	15.2).

Algorithm	15.2

The	push	and	pop	operations	take	O(1)	time	each.	Supposing	all	the	placeholders
of	the	given	stack	are	full	and	each	element	is	to	be	popped,	the	total	time	would

be	n	×	O(1)	=	O(n).

The	 above	 implementation	 is	 static	 implementation.	 The	 following	 illustration
implements	the	above	algorithm	(Illustration	15.1).

Illustration	15.1:	Write	a	program	to	implement	a	stack.

Solution:	The	theory	has	already	been	discussed.

15.3

Output

>>>

============	RUN	C:\Windows\System32\stack.py	============

TOP	=	0

TOP	=	1

TOP	=	2

TOP	=	3

TOP	=	4

Overflow...

TOP=	3

21

TOP=	2

1

TOP=	1

4

TOP=	0

2

TOP=	-1

3

>>>

DYNAMIC	IMPLEMENTATION	OF	STACKS

The	 problem	with	 the	 above	 implementation	 is	 that	 as	 soon	 as	 the	maximum
limit	is	reached	(of	the	maximum	number	of	elements	that	the	stack	can	have),
overflow	occurs.	One	of	 the	ways	of	handling	 the	problem	 is	 to	 increment	 the
size	of	 the	 stack	by	1	as	and	when	a	new	element	 is	 inserted	after	 the	 limit	 is
reached.	However,	this	is	not	a	very	appropriate	solution	of	the	problem	as	each
time	a	new	array	is	created	the	values	of	the	previous	arrays	are	copied	into	the
new	array.	So,	for	the	first	item	a	new	array	is	created	(initial	array).	The	second
insertion	increases	the	size	of	the	stack	by	1	and	copies	the	previous	item	in	the
new	stack.	This	implies	that	there	would	be	one	copy	operation	and	1	insertion
in	inserting	the	second	element.	In	the	third	insertion,	there	would	be	two	copy
operations	 and	1	 insertion.	Note	 that	 in	 the	nth	 insertion,	 there	would	 be	 (n-1)
copy	 operations	 and	 1	 insertion	 operation.	 In	 total	 there	would	 be	O(n2)	 copy
operations.

Output

======	RUN	C:/Python/Data	Structure/Stack_dynamic1.py	======

TOP	=	0

TOP	=	1

15.4

TOP	=	2

TOP	=	3

TOP	=	4

TOP	=	5

TOP=	4

71

TOP=	3

21

TOP=	2

1

TOP=	1

4

TOP=	0

2

>>>

DYNAMIC	IMPLEMENTATION:	ANOTHER	WAY

The	problem	with	the	above	implementation	can	be	handled	by	doubling	the	size
of	the	array	after	the	limit	is	reached.	This	solution	is	better	than	other	solutions
where	the	size	of	the	array	is	incremented	by	1,	as	the	number	of	copy	operations
using	 this	method	 is	O(n).	So,	 for	 the	 first	 item,	a	new	array	 is	created	 (initial
array).	The	second	insertion	increases	the	size	of	 the	stack	by	1	and	copies	the
previous	 item	 into	 the	 new	 stack.	 This	 implies	 that	 there	 will	 be	 one	 copy
operation	and	1	insertion	in	inserting	the	second	element.	In	the	third	insertion,	a
new	 stack	 of	 size	 4	 is	 created	 and	 there	would	 be	 two	 copy	 operations	 and	 1
insertion.	 In	 the	 fourth	 insertion,	 there	 is	 no	 need	 to	 create	 a	 new	 stack.	 The
reader	 is	 expected	 to	 carry	 out	 the	mathematical	 analysis.	Note	 that	 this	 gives
you	an	idea	of	amortized	analysis.	Those	of	you	interested	may	refer	to	the	links
at	the	end	of	this	book.	The	following	code	presents	the	implementation.

Code

15.5

15.5.1

The	implementation	of	stacks	using	linked	lists	has	been	dealt	with	 in	 the	next
chapter.	We	now	move	on	to	some	of	the	applications	of	a	stack.

APPLICATIONS	OF	STACKS

Stacks	 can	 be	 used	 to	 carry	 out	 a	 variety	 of	 tasks	 like	 reversing	 a	 string,
evaluation	of	a	postfix	expression,	conversion	of	infix	to	postfix,	and	evaluation
of	postfix.	Let	us	begin	with	reversing	a	string	of	characters.

Reversing	a	String
A	string	can	be	 reversed	using	a	 stack	by	adopting	 the	procedure	 that	 follows.

From	a	given	string	one	character	is	taken	at	a	time	and	put	in	the	stack.	When
all	 the	characters	are	over,	we	start	popping	out	characters	 from	 the	stack.	For
example	if	the	input	string	is	“harsh,”	the	process	of	reversing	the	string	using	a
stack	has	been	depicted	in	Figure	15.1.

FIGURE	15.1 A	stack	can	be	used	to	reverse	the	order	of	characters	of	a	string

Illustration	15.1:	Ask	 the	user	 to	 enter	 a	 string	and	 reverse	 the	 string	using	a
stack	(use	a	list	as	stack).

Solution:	The	theory	has	already	been	discussed.	The	program	is	as	follows.

Code

str=	input('Enter	a	string\t:')

rev_string=''

a=[]

for	i	in	str:

a.append(i)

i=0

while	i<len(str):

x=a.pop()

rev_string=rev_string+	x

i=i+1

print(rev_string)

Output

>>>

==========	RUN	C:/Python/Data	Structure/reverse.py

==========

Enter	a	string	:harsh

hsrah

15.5.2

>>>

Illustration	 15.2:	 Reverse	 a	 line	 entered	 by	 the	 user	 using	 stacks.	 The	 stack
need	not	be	implemented.	You	can	use	a	list	as	a	stack.

Solution:	 The	 process	 remains	 same.	 However,	 to	 split	 a	 line	 into	 words	 the
split()	function	is	used.

line=input('Enter	a	line\t:')

a=[]

rev_line=''

words=line.split()

print(words)

for	i	in	words:

a.append(i)

i=0

while	i<len(words):

rev_line+=a.pop()

rev_line+='	'

i+=1

print(rev_line)

Output

>>>

==========	RUN	C:/Python/Data	Structure/revline.py

==========

Enter	a	line	:I	am	Harsh

['I',	'am',	'Harsh']

Harsh	am	I

>>>

Infix,	Prefix,	and	Postfix	Expressions
Another	important	application	of	stack	is	to	convert	an	infix	expression	to	that	in
postfix	 and	 prefix.	 In	 order	 to	 understand	 this,	 let	 us	 first	 see	 what	 postfix,
prefix,	 and	 infix	 expressions	 are.	 When	 a	 binary	 operator	 is	 between	 two
operands,	 the	expression	 is	 referred	 to	as	 infix.	 If	 the	operator	 is	 after	 the	 two
operands,	 the	 expression	 is	 in	 the	 postfix	 form.	 If	 the	 operator	 is	 before	 the
operands,	the	expression	is	in	the	prefix	form.	For	example,	the	addition	of	“a”

and	“b”	can	be	written	as	follows,	in	different	forms:

Infix:	a	+	b
Postfix:	ab	+
Prefix:	+	ab

The	evaluation	of	a	postfix	expression	can	be	done	by	employing	the	following
procedure.

Evaluation	of	Postfix

Step	1:	Initialize	the	postfix	expression,	P	by	NULL	and	let	the	stack	be	initially
empty.

Step	2:	For	an	incoming	symbol,	s,	in	expression	E

Repeat	the	following	steps	till	there	is	a	symbol	in	the	given	string

If	it	is	a	operand,	put	in	the	stack

Else	if	it	is	an	operator	pop	two	symbols	from	the	stack	(say	x;	and	y,	in
that	order)

Apply	the	operator	as	x	+	y,	and	put	the	result	in	the	stack.

In	 order	 to	 understand	 the	 above	 procedure,	 let	 us	 consider	 an
expression	E

E	=	ab	+	c	×	d/

The	 steps	of	 evaluation	of	 this	 postfix	 expression	have	been	depicted	 in	Table
15.1,	shown	as	follows.

Table	15.1		An	example	of	conversion	of	a	postfix	expression	to	that	in
prefix

Symbol Stack Processing
a A push(a)
b a,	b push(b)
+ . x	=	pop(),	y	=	pop(),	x+y
. (a+b) push((a+b))
c (a+b),	c push(c)

X . x	=	pop(),	y	=	pop(),	x+y
. c	X	(a+b) (push((c	X	(a+b)))
d (c	X	(a+b)),	d push(d)
/ . x	=	pop(),	y	=	pop(),	x+y
. (c	X	(a+b))/d) .push((c	X	(a+b))/d)

We	now	come	 to	 the	 conversion	 of	 an	 infix	 expression	 to	 that	 in	 postfix.	The
conversion	 of	 an	 infix	 expression	 to	 that	 in	 postfix	 can	 be	 carried	 out	 by
employing	the	following	procedure.

Postfix	Conversion

Put	a	closing	parenthesis	at	the	end	of	the	given	expression	E.
Put	an	opening	parenthesis	at	the	top	of	the	stack.
Initialize	P	to	NULL.
Repeat	the	following	steps	until	there	is	a	symbol	remaining	in	E.
For	each	symbol,	s.
If	“s”	is	an	operand,	put	it	in	P
If	“s”	is	an	opening	parenthesis,	put	in	the	stack
If	“s”	is	an	operator,
Put	“s”	in	stack,	if	the	top	of	the	stack	contains	an	operator	having	a	lower
priority	operator	(or	for	that	matter,	no	operator).
Otherwise	pop	the	topmost	symbol	from	the	stack,	put	it	in	P	and	push	the
incoming	operator	in	the	stack.
If	“s”	is	closing	parentheses,	continue	popping	symbols	from	the	stack	until
an	opening	parentheses	is	found	(including	the	opening	parentheses).

The	conversion	of	an	infix	expression	to	that	in	postfix	is	similar.	However,	the
given	string	needs	to	be	reversed	first.	This	is	followed	by	the	application	of	the
above	 procedure,	 after	 which	 the	 resulting	 string	 should	 be	 reversed.	 The
conversion	 of	 an	 infix	 expression	 to	 that	 in	 prefix	 can	 be	 carried	 out	 by
employing	the	following	procedure.

Prefix	Conversion

Reverse	the	given	expression	E,	call	it	E’.
Put	a	closing	parenthesis	at	the	end	of	the	given	expression	E’.

15.6

Put	an	opening	parenthesis	at	the	top	of	the	stack.
Initialize	P	to	NULL.
Repeat	the	following	steps	till	there	is	a	symbol	remaining	in	E.
For	each	symbol,	s.
 If	“s”	is	an	operand,	put	it	in	P
 If	“s”	is	an	opening	parenthesis,	put	in	the	stack
 If	“s”	is	an	operator,
Put	“s”	in	stack,	if	the	top	of	the	stack	contains	an	operator	having	a	lower
priority	operator	(or	for	that	matter,	no	operator).
Otherwise	pop	the	topmost	symbol	from	the	stack,	put	it	in	P	and	push	the
incoming	operator	in	the	stack.
If	 “s”	 is	 a	 closing	 parenthesis,	 continue	 popping	 symbols	 from	 the	 stack
until	an	opening	parenthesisis	found	(including	the	opening	parenthesis).

Reverse	the	output	obtained	P,	call	it	P’.

QUEUE

As	stated	 in	 the	first	section,	a	queue	 is	a	 linear	data	structure	 that	 follows	 the
principle	 of	 First	 In	 First	Out	 (FIFO).	A	 queue	 is	 characterized	 by	 FRONT	and
REAR.	Initially,	the	value	of	FRONT	and	REAR	are	both	-1.	When	a	new	element	is
added	to	a	queue,	 the	value	of	REAR	 is	 incremented,	 if	 the	value	of	REAR	 is	not
(n-1).	 When	 an	 element	 is	 deleted	 from	 the	 queue,	 the	 value	 of	 FRONT	 is
incremented	by	1	if	FRONT	is	not	-1.	In	the	first	insertion	REAR	and	FRONT	are	both
incremented	and	the	value	of	REAR	(and	FRONT)	become	0.	In	the	case	of	deletion
where	 the	 value	 of	 REAR	 and	 FRONT	 are	 same,	 the	 value	 of	 REAR	 and	 FRONT
become	-1.	The	algorithms	for	insertion	in	a	queue	and	deletion	from	a	queue	are
as	follows:

The	 algorithm	 (both	 places)	 for	 the	 deletion	 from	 a	 queue	 is	 as	 follows.	 The
algorithm	(both	places)	 returns	 the	value	which	 is	deleted	 from	the	queue.	 If	a
“-1”	is	returned,	it	indicates	an	underflow.

The	following	illustration	depicts	the	static	implementation	of	a	queue.

Illustration	15.3:	Implement	queue	using	a	list.

Solution:	In	the	program	that	follows,	the	queue	has	been	implemented	using	a
list	called	“a.”	The	initial	values	of	FRONT	and	REAR	are	both	-1.

Output

15.7 CONCLUSION

Many	 researchers	 consider	 data	 structures	more	 important	 than	 the	 procedure.
Stacks	and	queues	are	the	most	important	aspects	of	these	important	things.	The
implementations	of	stacks	and	queues	have	been	discussed	 in	 this	chapter.	The
conversion	of	a	postfix	expression	to	that	in	infix,	infix	to	postfix,	infix,	to	prefix
have	not	been	implemented	and	have	been	left	as	an	exercise	for	the	reader.	The
reader	is	also	expected	to	visit	the	links	provided	at	the	end	of	this	book	to	find
some	more	applications	of	stacks	and	queues	and	try	to	implement	them.	Lastly,
the	linked	list	based	implementation	has	been	discussed	in	the	next	chapter.

GLOSSARY

Stack:	A	 linear	 data	 structure	which	 follows	 the	 principle	 of	Last	 in	 First	 out
(LIFO).

Queue:	A	linear	data	structure	which	follows	the	principle	of	First	 in	First	out
(FIFO).

IMPORTANT	POINTS

Complexity	of	insertion	and	deletion	in	both	stack	and	queue	is	O(1).
If	the	value	of	TOP	is	-1,	stack	is	empty.
In	the	static	implementation,	if	 the	value	of	TOP	is	(n-1),	 the	stack	 is	 full,
where	n	is	the	maximum	number	of	elements	a	stack	can	hold.
On	inserting	an	element,	in	a	stack	the	value	of	TOP	increases	by	1.
On	removing	an	element	from	a	stack,	the	value	of	TOP	decreases	by	-1.
Evaluation	of	postfix	expression,	conversion	of	infix	to	postfix,	and	that	to
prefix	requires	stack.
Applications	 of	 queues	 include	 customer	 services,	 round	 robin,	 printer
spooling,	etc.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Books	are	kept	one	over	another	such	that	the	book	which	is	kept	at	the	end
would	be	picked	up	first.	Which	data	structure	resembles	this	structure?

(a) Stacks

(b) Queues

(c) Graphs

(d) Trees

2. What	is	the	time	complexity	of	a	POP	operation	in	the	static	implementation
of	stack?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

3. What	 is	 the	 time	 complexity	 of	 a	 PUSH	 operation	 in	 the	 static
implementation	of	stack?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

4. What	 is	 the	 space	 complexity	 of	 a	 PUSH	 operation	 in	 the	 static
implementation	of	stack?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

5. In	the	dynamic	implementation	of	stack	which	data	structure	can	be	used?

(a) Graphs

(b) Trees

(c) Linked	lists

(d) None	of	the	above

6. Which	one	is	more	flexible	-	static	or	dynamic	implementation	of	stack?

(a) Static

(b) Dynamic

(c) Both	of	the	above

(d) Cannot	determine

7. What	is	the	prefix	form	of	the	expression:	((a-b)	×	c)/d.

(a) /×-1bcd

(b) –abcx/d

(c) /×-abcd

(d) None	of	the	above

8. What	is	the	postfix	form	of	the	above	expression?

(a) ab-c	×	d/

(b) ab-cd	×	/

(c) abc+-/

(d) None	of	the	above

9. Which	of	the	following	is	true?

(a) The	prefix	of	an	expression	is	just	the	reverse	of	the	postfix

(b) Conversion	of	an	infix	expression	to	postfix	and	that	to	prefix	follows
similar	procedures

(c) Both	the	statements	are	true

(d) None	of	the	statements	is	true

10. Evaluation	of	postfix	requires	which	of	the	following	data	structures?

(a) Stacks

(b) Queues

(c) Graphs

(d) Trees

11. Customer	services	resemble	which	of	the	following	data	structures?

(a) Stacks

(b) Queues

(c) Graphs

(d) Trees

12. Round	robin	algorithm	requires	which	of	the	following	data	structures?

(a) Stacks

(b) Queues

(c) Graphs

(d) Trees

13. What	 is	 the	 time	 complexity	 of	 the	 addition	 of	 an	 element	 in	 the	 static
implementation	of	a	queue?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

14. The	dynamic	implementation	of	queue	requires	which	of	the	following	data
structures?

(a) Graphs

(b) Trees

(c) Linked	lists

(d) None	of	the	above

15. Which	of	the	following	is	an	application	of	circular	queue?

(a) Traffic	lights

(b) Memory	management

(c) Adding	large	integers

(d) All	of	the	above

THEORY

1. Write	 an	 algorithm	 for	 static	 implementation	 of	 a	 stack.	 What	 are	 the
problems	in	the	implementation?

2. State	any	two	methods	to	address	the	above	problems.

3. State	any	two	applications	of	stack.	Implement	any	one.

4. Write	an	algorithm	to	implement	a	queue	from	two	stacks.

5. State	 a	 few	 applications	 of	 a	 queue.	How	 is	 a	 queue	 useful	 in	 scheduling
using	a	round	robin	algorithm?	Explain.

6. What	 is	 a	 circular	 queue?	Write	 an	 algorithm	 for	 implementing	 a	 circular
queue.

7. What	is	a	doubly	ended	queue?

8. Write	 an	 algorithm	 for	 converting	 an	 infix	 expression	 to	 a	 postfix
expression.

9. Write	an	algorithm	for	converting	an	infix	expression	to	a	prefix	expression.

10. Write	 an	 algorithm	 for	 converting	 a	 postfix	 expression	 to	 an	 infix
expression.

NUMERICAL

1. Evaluate	the	following	postfix	expressions:

(a) ab	–	c	×

(b) ab	–	cd	/	×

(c) ab	+	cd	/	–	f	+

(d) ab	·	c	–

(e) xSin

2. Convert	the	following	to	postfix:

(a) (a	+	b)	–	(c	/	d)	×	f

(b) (a	/	b)	×	(c	+	d)

(c) a	/(b	+	c))	–	d

(d) (c	·	d)	×	((a	+	b)	/	f)

(e) a	+	((b	/	c)	×	(d	·	f))

3. Convert	the	following	into	prefix:

(a) a	–	((b	/	d)	×	f)

(b) a	/	(b	×	(c	+	d))

(c) (b	/(a	+	c))	×	(d	–	f)

(d) c	·	((d	×	(a	–	b))	/	f)

(e) (a	+	b)	/	c	×	(d	·	f)

PROGRAMMING	EXERCISES

1. Write	a	program	for	static	implementation	of	a	stack.

2. Write	a	program	to	implement	a	queue	from	two	stacks.

3. Implement	a	round	robin	algorithm.

4. What	 is	 a	 circular	 queue?	 Write	 a	 program	 for	 implementing	 a	 circular
queue.

5. Write	a	program	for	converting	an	infix	expression	to	a	postfix	expression.

6. Write	a	program	for	converting	an	infix	expression	to	a	prefix	expression.

7. Write	a	program	for	converting	a	postfix	expression	to	an	infix	expression.

USEFUL	LINK

1. Lecture	 notes:	 https://www.cs.cmu.edu/~rjsimmon/15122-s13/09-
queuestack.pdf.

https://www.cs.cmu.edu/~rjsimmon/15122-s13/09-queuestack.pdf

16.1

CHAPTER	16

LINKED	LISTS

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	need	and	importance	of	linked	lists
• Insert	and	delete	an	item	in	a	given	linked	list
• Implement	stack	and	queue	using	a	linked	list
• Understand	the	problems	associated	with	linked	lists

INTRODUCTION

The	 previous	 chapter	 introduced	 two	 of	 the	 most	 important	 data	 structures;
namely	stack	and	queue.	Stacks	follow	the	principle	of	Last	In	First	Out	(LIFO)
whereas	queues	are	linear	data	structures	which	follow	the	principle	of	First	In
First	 Out	 (FIFO).	 That	 is,	 an	 element	 can	 be	 added	 or	 removed	 only	 from	 a
specific	 position	 in	 these	 data	 structures.	 The	 data	 structure	 introduced	 in	 this
chapter	 is	 far	more	 flexible	 in	 terms	of	 the	 insertion	and	 removal	of	 elements.
The	 previous	 chapter	 also	 discussed	 the	 static	 implementation	 of	 stacks	 and
queues.	But	the	discussion	on	the	dynamic	implementation	using	linked	lists	was
deliberately	delayed.	The	linked	list	discussed	in	this	chapter	will	help	the	user
in	 the	dynamic	 implementation	of	stack	and	queue.	Here,	 it	may	be	stated	 that
Python	provides	functions	for	creation	of	linked	lists	and	supported	operations.
The	purpose	of	this	chapter	is	to	make	the	user	familiar	with	the	mechanism	of
the	operations.

Linked	list	is	a	data	structure	whose	basic	unit	is	node.	Each	node	has	two	parts
namely:	DATA	and	LINK.	The	DATA	part	contains	the	value	whereas	the	LINK
part	has	the	address	of	the	next	node	(Figure	16.1).

FIGURE	16.1 The	basic	unit	of	a	linked	list	is	a	node.	A	linked	list	may	have	any	number	of
nodes.	The	last	node	has	NULL	in	its	LINK	part.

Linked	 lists	 are	 used	 in	 many	 problems	 like	 the	 implementation	 of	 dynamic
stacks	 and	 queues	 and	 implementing	 non-linear	 data	 structures	 like	 trees	 and
graphs.	 It	 may	 be	 stated	 here	 that	 although	 the	 use	 of	 linked	 lists	 makes	 the
dynamic	 implementation	 easy,	 they	 come	 with	 their	 own	 problems.	 In	 some
cases	 linked	 lists	are	not	used	 in	 the	 implementation	of	 trees.	 In	 implementing
non-linear	data	structures	the	need	of	linked	lists	must	be	deliberated	upon.	For
example,	 if	we	have	a	balanced	binary	 tree	or	a	heap	 then	 the	use	of	arrays	 is
much	better	than	a	linked	list.

A	 linked	 list	 consists	of	nodes	connected	 together	via	LINK.	As	 stated	earlier,
each	 node	 has	 data	 and	 a	 LINK,	 where	 data	 may	 be	 a	 primary	 or	 even	 a
secondary	data	 structure	 and	 the	LINK	 is	 a	pointer	 to	 the	next	 node.	The	 first
node	of	a	linked	list	will	henceforth	be	denoted	by	HEAD.	It	may	also	be	noted
that	the	LINK	of	the	last	node	is	NULL,	indicating	that	there	is	no	node	after	the
last	node.	Therefore	 it	becomes	easy	 to	 identify	 the	first	and	 the	 last	node	 in	a
linked	list.	The	following	operations	can	be	carried	out	in	a	linked	list:

1. Insertion	at	beginning

2. Insertion	at	middle

3. Insertion	at	end

4. Deletion	at	beginning

5. Deletion	at	middle

6. Deletion	at	end

The	 following	 section	 explains	 each	 of	 the	 above	 operations	 in	 detail.	 Each
algorithm	is	followed	by	a	figure,	which	exemplifies	the	procedure	explained	in

16.2

the	example.

OPERATIONS

A	 linked	 list	 can	 be	 used	 in	 various	 applications.	 However,	 to	 be	 able	 to	 use
them,	one	must	be	equipped	with	the	procedures	to	insert	and	delete	elements	at
the	beginning,	at	the	end	and	at	the	specified	position.	The	following	discussion
throws	light	on	the	requisite	procedures.

Insertion	at	beginning

In	order	to	insert	a	node	at	the	beginning,	a	new	node	(say	TEMP)	is	created	and
the	data	 is	 inserted	 in	 the	DATA	part	of	 the	TEMP.	Now,	 the	NEXT	of	TEMP
would	point	to	the	HEAD	of	the	linked	list	and	finally,	TEMP	becomes	the	new
HEAD.	The	 insert_beg(VALUE)	presents	 the	 algorithm	 to	 insert	 a	 node	 at	 the
beginning	and	Figure	16.2	presents	the	implementation	of	this	process.

Algorithm

insert_beg	(VALUE)

{

//Create	a	node	called	TEMP.

TEMP	=	node()

//Now	put	the	given	value	(VALUE)	in	the	data	part	of	TEMP.

TEMP->DATA	=	VALUE

//Set	the	LINK	part	of	TEMP	to	FIRST.

TEMP->LINK	=	FIRST

Rename	TEMP	to	FIRST.

}

The	algorithm	has	been	explained	in	the	following	figure	(Fig.	16.2).

FIGURE	16.2 Inserting	a	node	at	the	beginning

Insertion	after	a	particular	node

In	 order	 to	 insert	 a	 node	 after	 a	 particular	 node,	 a	 node	 pointer	 called	PTR	 is
created.	 Initially	 PTR	 points	 to	 the	 HEAD.	 The	 LINK	 of	 PTR	 becomes	 the
LINK	of	 the	 current	 node	until	 the	 current	 node	 has	 the	 value	 after	which	we
intend	to	insert	the	new	node.	A	new	node	called	TEMP	is	created	and	VALUE
is	inserted	in	its	DATA	part.	Let	the	LINK	of	PTR	be	PTR1.	Finally,	the	LINK	of
PTR	will	point	 to	TEMP	and	 the	LINK	of	TEMP	will	point	 to	 the	PTR1.	The
insert_middle(VAL,	 VALUE)	 presents	 the	 algorithm	 to	 insert	 a	 node	 after	 a
given	 node	 (having	 data	 VAL)	 and	 Figure	 16.3	 shows	 an	 example	 of	 this
process.

Algorithm

The	algorithm	has	been	explained	in	the	following	figure	(Figure	16.3).

FIGURE	16.3 Insertion	after	a	particular	position

Insertion	at	the	end

In	order	to	insert	a	node	at	the	end,	a	node	pointer	called	PTR	is	created.	Initially
PTR	points	to	the	HEAD.	The	LINK	of	PTR	becomes	the	LINK	of	the	current
node	till	the	current	node’s	LINK	is	NULL.	A	new	node	called	TEMP	is	created
and	VALUE	is	 inserted	in	its	data	part.	Finally,	 the	LINK	of	PTR	will	point	 to
TEMP	and	the	LINK	of	TEMP	will	be	NULL.	The	insert_end(VALUE)	presents
the	 algorithm	 to	 insert	 a	 node	 after	 a	 given	 node	 and	 Figure	 16.4	 shows	 an
example	of	this	process.

Algorithm

FIGURE	16.4 Insertion	at	the	end

Deletion	From	the	Beginning

In	order	to	delete	a	node	from	the	beginning,	the	LINK	of	HEAD	becomes	the
new	 HEAD.	 Also,	 if	 required,	 the	 DATA	 of	 HEAD	 may	 be	 stored	 in	 some
memory	location.	The	del_beg()	presents	the	algorithm	to	delete	the	first	node
of	the	linked	list	and	Figure	16.5	shows	an	example	of	this	process.

Algorithm

Delete_beg()

{

Set	backup	=	HEAD->DATA

Rename	HEAD->LINK	as	HEAD

}

FIGURE	16.5 Deleting	a	node	from	the	beginning

Deletion	of	a	node	after	a	particular	node	(having	VALUE	=	VAL)

In	 order	 to	 delete	 a	 node	 which	 is	 after	 a	 particular	 node,	 the	 following
procedure	is	employed.	A	node	pointer	PTR	is	created,	which	initially	points	to
the	 HEAD.	 The	 LINK	 of	 PTR	 becomes	 PTR LINK	 till	 the	 PTR DATA
becomes	VAL.	If	the	LINK	of	this	PTR	point	to	PTR1	and	PTR1’s	LINK	points
to	PTR2,	 the	LINK	of	PTR	will	 point	 to	PTR2	 and,	 if	 required,	 the	DATA	of
PTR1	can	be	saved.	The	del_middle()	presents	the	algorithm	to	accomplish	the

above	task	and	Figure	16.6	shows	an	example	of	this	process.

Algorithm

FIGURE	16.6 Deleting	a	node	from	a	particular	position

Deletion	of	a	node	from	the	end

In	order	to	delete	a	node	from	the	end,	the	following	procedure	is	employed.	A
node	pointer	PTR	is	created,	which	initially	points	to	the	HEAD.	The	LINK	of
PTR	 becomes	 PTR->LINK	 till	 the	 PTR->LINK->LINK	 becomes	 NULL.
Finally,	 the	LINK	of	PTR	will	 point	 to	NULL.	 If	 required	 the	DATA	of	PTR-
>LINK	can	be	saved.	The	del_end()	presents	 the	algorithm	to	accomplish	 the
above	task	and	Figure	16.7	shows	an	example	of	this	process.

Algorithm

FIGURE	16.7 Deleting	a	node	from	the	end

Illustration	16.1:	Write	a	program	to	implement	various	operations	of	a	singly
linked	list.

Code:	 The	 algorithm	 of	 each	 operation	 has	 already	 been	 discussed.	 The
following	code	presents	the	Python	implementation	of	the	above	code.	Note	that
the	 code	 has	 6	 functions	 (in	 the	 linked	 list	 class),	 each	 implementing	 the
corresponding	algorithm.

Output

List

List

2

List

5	2

List

7	5	2

List

7	5	8	2

List

7	5	8	2	9

Length	5

List

5	8	2	9

List

5	8	9

List

5	8

List

Cannot	delete

>>>

The	above	linked	list	is	referred	to	as	a	singly	linked	list.	There	are	other	variants
as	well,	such	as	a	doubly	linked	list.	In	a	doubly	linked	list,	each	node	has	two
pointers	 PREVIOUS	 and	 NEXT	 along	 with	 the	 data	 part.	 The	 PREVIOUS
connects	the	node	to	the	previous	node	and	the	NEXT	connects	the	node	to	the
next	node.	Also	the	NEXT	of	the	last	node	is	NULL,	indicating	that	this	node	is

16.3

not	 connected	 to	 any	other	node.	The	 first	node	of	 a	doubly	 linked	 list	 is	 also
given	a	special	name.

For	example,	if	A	and	B	are	connected	as	shown	in	the	figure	then	the	“NEXT”
of	 A	 is	 address	 of	 B	 and	 the	 “PREVIOUS”	 of	 B	 is	 the	 address	 of	 A	 (Figure
16.8).

FIGURE	16.8 Node	of	a	doubly	linked	list	are	connected	via	two	pointers:	NEXT	and	PREV

In	a	doubly	linked	list	the	following	operations	can	be	carried	out:

1. Insertion	at	beginning

2. Insertion	at	middle

3. Insertion	at	end

4. Deletion	at	beginning

5. Deletion	at	middle

6. Deletion	at	end

There	 is	 another	 variant	 of	 a	 linked	 list,	 which	 is	 a	 circular	 linked	 list.	 In	 a
circular	linked	list	last	node	is	connected	to	the	first	node.	That	is,	the	“NEXT”
of	the	last	node	contains	the	address	of	the	first	node.

IMPLEMENTING	STACK	USING	A	LINKED	LIST

A	stack,	as	explained	earlier,	supports	only	two	operations:	 insertion	at	 the	end
and	 deletion	 from	 the	 end.	 The	 implementation	 of	 a	 stack	 using	 a	 linked	 list,
therefore,	 requires	 only	 these	 two	 operations	 to	 be	 implemented.	A	 linked	 list
having	 only	 two	 operations	 insert_end	 (VAL)	 and	 del_end	 (Section	 16.2)
would	 be	 a	 stack.	 The	 first	 operation	 is	 equivalent	 to	 push	 and	 the	 second	 is
equivalent	 to	 pop().	 Illustration	 16.2	 presents	 the	 implementation	 of	 a	 stack
using	linked	list.

Illustration	16.2:	Write	a	program	to	implement	stack	using	linked	list.

Code

Output

>>>

16.4

==========	RUN	C:/Python/Data	Structures/Stack.py	==========

Stack

Stack

2

Stack

2	5

Stack

2	5	3

5	popped

Stack

2	5

2	popped

Stack

2

>>>

QUEUE	USING	A	LINKED	LIST

A	queue,	as	explained	earlier,	supports	only	two	operations:	insertion	at	the	end
and	deletion	from	the	beginning.	The	implementation	of	a	queue	using	a	linked
list,	 therefore,	 requires	only	 these	 two	operations	 to	be	 implemented.	A	 linked
list	h	aving	only	two	operations	Insrt_end(VAL)	and	del_beg,	would	be	a	queue.
The	 first	operation	 is	 the	 same	as	en_queue	 and	 the	 second	 is	 the	 same	as	 the
de_queue().	 Illustration	 16.3	 presents	 the	 implementation	 of	 a	 queue	 using
linked	list.

Illustration	16.3:	Write	a	program	to	implement	queue	using	linked	list.

Code

Output

>>>

==========	RUN	C:/Python/Data	Structures/Queue.py	==========

Queue

Queue

2

Queue

2	5

Queue

2	5	7

Queue

5	7

16.5

Queue

7

>>>

CONCLUSION

A	linked	list	contains	connected	nodes.	Each	node	has	two	parts:	the	DATA	part
and	 the	 LINK	 part.	 The	 DATA	 part	 may	 contain	 a	 basic	 or	 a	 complex	 data
structure.	The	LINK	part	contains	 the	address	of	 the	next	node.	The	 last	node,
therefore,	 has	 NULL	 in	 its	 LINK	 part.	 One	 can	 have	 linked	 lists	 of	 integers,
float,	char,	or	even	strings.	The	reader	is	expected	to	explore	the	linked	lists	of
user	defined	data	structures	and	use	them	in	solving	problems.	Problems	related
to	 polynomial	 addition	 and	 subtraction	 have	 been	 discussed	 in	 the	 references
given	at	the	end	of	the	book.	The	reader	is	expected	to	go	through	the	theory	and
implement	 the	 operations	 using	 a	 linked	 list.	 Moreover,	 the	 algorithms	 of	 a
doubly	and	a	circular	linked	list	may	be	developed	in	a	way	similar	to	that	of	a
singly	linked	list	given	in	the	chapter.	Having	studied	linked	lists	and	arrays	the
reader	is	also	encouraged	to	find	the	advantages	of	using	linked	lists	and	also	its
disadvantages	 (for	example	extra	overhead,	pointers,	etc.).	The	most	 important
attribute	of	a	linked	list	is	its	flexibility.

GLOSSARY

Node:	A	node	is	the	basic	unit	of	linked	list.	It	has	two	parts:	data	and	link.	The
link	points	to	the	next	node.

POINTS	TO	REMEMBER

The	link	of	the	last	node	of	a	linked	is	NULL
Complexities	of	operations,	discussed	in	the	chapter

Operation Complexity

Insertion	at	the	beginning O(1)

Insertion	at	end O(n)

Insertion	in	the	middle O(n)
O(1)

Deletion	from	the	beginning
Deletion	from	the	end O(n)

Deletion	from	the	middle O(n)

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. The	last	element	of	a	singly	linked	list	points	to

(a) The	first	element

(b) NULL

(c) Any	element

(d) None	of	the	above

2. A	linked	list	can

(a) Grow

(b) Shrink

(c) Both

(d) None	of	the	above

3. In	a	problem	we	need	a	maximum	of	100	items;	which	data	structure	would
be	best	suited	if	only	the	last	element	of	the	data	structure	is	to	be	accessed?

(a) Stack

(b) Queue

(c) Linked	list

(d) Both	stack	and	linked	list

4. In	a	linked	list	an	element	can	be	inserted	at

(a) The	first	position

(b) The	last	position

(c) At	any	position

(d) None	of	the	above

5. Which	of	the	following	makes	arrays	less	advantageous	when	compared	to
linked	lists?

(a) Array	have	a	fixed	size

(b) The	elements	of	an	array	are	stored	at	consecutive	memory	locations

(c) It	is	difficult	to	add/delete	an	element	from	a	given	position

(d) All	of	the	above

6. What	is	the	complexity	of	indexing	in	a	linked	list?

(a) O(n)

(b) O(1)

(c) O(n2)

(d) None	of	the	above

7. What	is	the	complexity	of	indexing	in	a	dynamic	array?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

8. What	is	the	complexity	of	inserting	an	element	at	the	end	in	an	array?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

9. What	is	the	complexity	of	inserting	an	element	at	the	end	in	a	linked	list?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

10. When	wasted	space	is	concerned	(pointers	etc.),	what	is	space	complexity	in
a	linked	list?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

11. When	wasted	space	is	concerned	(pointers	etc.),	what	is	space	complexity	in
an	array?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

12. When	wasted	space	is	concerned	(pointers	etc.),	what	is	space	complexity	in
a	dynamic	table?

(a) O(1)

(b) O(n)

(c) O(n2)

(d) None	of	the	above

13. Which	 is	better	 in	 terms	of	 time	complexity	 for	 the	operation	 that	adds	an
element	in	the	middle?

(a) Array

(b) Linked	List

(c) Both

(d) None	of	the	above

14. Which	 is	better	 in	 terms	of	 time	complexity	 for	 the	operation	 that	adds	an
element	in	the	middle?

(a) Array

(b) Linked	List

(c) Both

(d) None	of	the	above

15. In	a	circular	linked	list	the	last	element	points	to

(a) The	first	element

(b) The	middle	element

(c) NULL

(d) None	of	the	above

THEORY

1. What	is	a	linked	list?	Write	an	algorithm	for	the	following

(a) Inserting	an	element	at	the	beginning	of	a	linked	list

(b) Inserting	an	element	at	the	end	of	a	linked	list

(c) Inserting	an	element	after	a	given	element	of	a	linked	list

(d) Deleting	an	element	from	the	beginning	of	a	linked	list

(e) Deleting	an	element	from	the	end	of	a	linked	list

(f) Deleting	an	element	after	a	given	element	from	a	linked	list

2. Derive	the	time	complexity	of	each	of	the	above.

3. What	is	a	doubly	linked	list?	Write	an	algorithm	for	the	following

(a) Inserting	an	element	at	the	beginning	of	a	doubly	linked	list

(b) Inserting	an	element	at	the	end	of	a	doubly	linked	list

(c) Inserting	an	element	after	a	given	element	of	a	doubly	linked	list

(d) Deleting	an	element	from	the	beginning	of	a	doubly	linked	list

(e) Deleting	an	element	from	the	end	of	a	doubly	linked	list

(f) Deleting	an	element	after	a	given	element	from	a	doubly	linked	list

4. Derive	the	complexity	for	each	of	the	above	algorithms.

5. Write	an	algorithm	to	implement	a	stack	using	a	linked	list.

6. Write	an	algorithm	to	implement	a	queue	using	a	linked	list.

7. Write	an	algorithm	to	invert	a	linked	list.

8. Write	an	algorithm	to	implement	a	queue	using	two	stacks.

9. Write	an	algorithm	to	find	whether	a	given	string	is	a	palindrome.

10. Write	an	algorithm	to	find	the	maximum	element	in	a	linked	list.

PROGRAMMING

Implement	Q1,	Q3,	&	Q5-Q10	of	the	above	section.

EXPLORE

The	chapter	gives	an	introduction	to	linked	lists.	The	reader	is	expected	to	read
and	implement	the	algorithms	of	doubly	linked	lists	and	circular	linked	lists.

For	doubly	linked	lists,	the	reader	may	refer	to:
https://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture11.pdf

https://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture11.pdf

17.1

CHAPTER	17

BINARY	SEARCH	TREES

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	terminology	and	representation	of	trees	and	graphs
• Understand	the	importance	of	a	binary	search	tree
• Implement	insertion,	searching,	and	traversal	in	a	BST

INTRODUCTION

Consider	the	hierarchical	structure	of	your	college.	The	college	should	have	the
head	under	which	the	deans	of	various	faculties	work.	The	faculty	is	made	up	of
various	 departments,	 which	 have	 their	 respective	 heads.	 These	 heads	 take	 the
help	of	the	chairs	of	various	committees.	This	heretical	structure	can	be	viewed
as	a	tree	with	the	head	of	the	institute	at	the	Oth	level,	the	deans	at	the	first	level,
and	the	heads	of	the	departments	at	the	second	level	and	so	on.

Let	us	take	another	example,	that	of	tic-tac-toe.	At	the	beginning,	the	first	player
may	fill	any	of	the	9	cells	in	a	3	×	3	grid.	After	this	move	the	second	user	may
fill	 the	 other	 symbol	 in	 any	 of	 the	 remaining	 squares,	 keeping	 in	 mind	 the
constraints.	The	game	can	thus	be	represented	as	a	tree.	Likewise,	a	tournament
can	be	represented	using	a	tournament	tree.

In	the	case	of	machine	learning,	the	decision	trees	help	us	to	learn.	The	heap,	a
type	of	tree,	helps	us	to	find	the	maximum	or	minimum	in	O(1)	time.

There	 are	 numerous	 applications	 of	 trees	 and	 graphs.	 This	 chapter	 introduces
trees	 and	 graphs	 and	 concentrates	 on	 a	 specific	 type	 of	 tree	 called	 the	 binary
search	 tree,	 which	 is	 important	 in	 searching	 and	 is	 the	 basis	 of	 many	 other
important	topics.

The	 chapter	 has	 been	 organized	 as	 follows.	 The	 second	 section	 presents	 the

17.2

17.2.1

definition,	terminology,	and	representation	of	trees	and	graphs.	The	third	section
discusses	 the	 binary	 search	 trees	 (BST)	 and	 the	 last	 section	 concludes	 the
chapter.

DEFINITION	AND	TERMINOLOGY

So	 far	 linear	data	 structures,	 like	 stacks	and	queues,	have	been	discussed.	The
data	 structures,	 their	 implementations	 and	 applications	 were	 presented	 in	 the
previous	 chapter.	 However,	 there	 are	 many	 applications	 where	 nonlinear	 data
structures	 are	 required.	 This	 chapter	 introduces	 two	 nonlinear	 data	 structures;
namely	graphs	and	 trees.	However,	 the	 focus	of	 this	 chapter	will	be	on	 trees	 -
mainly	a	specific	kind	of	tree	called	a	binary	search	tree.	Let	us	begin	with	the
definition	of	a	graph	and	its	representation.

Graphs:	Definition	and	Representation
Graph:	A	graph	 is	a	set	 (V,	E),	where	V	is	a	 finite,	non-empty	set	of	vertices.
The	set	E	consists	of	tuples	(x,	y),	where	x	and	y	belong	to	the	set	V.	Figure	17.1
shows	a	graph	G	=	(V,	E),	where	V	is	(A,	B,	C,	D)	and	the	set	E	is	{(A,	B),	(A,
D),	(B,	C),	(B,	D),	(C,	D)}.

FIGURE	17.1 A	graph	G	=	(V,	E),	V	=	{A,	B,	C,	D}	and	E=	{(A,	B),	(A,	D),	(B,	C),	(B,	D),	(C,	D)}

The	edges	of	a	graph	may	have	weights,	in	which	case	the	graph	is	referred	to	as
a	weighted	graph.	A	graph	may	be	 represented	using	a	matrix	or	 a	 linked	 list.
The	element	at	the	ith	row	and	the	jth	column	in	the	matrix	will	be	1,	if	an	edge
exists	between	the	vertex	i	and	the	vertex	j,	otherwise	the	element	will	be	zero.
In	the	case	of	a	weighted	graph,	these	elements	may	represent	the	weights	of	the
corresponding	edges.	The	matrix	corresponding	to	the	graph	of	Figure	17.1	is	as
follows:

17.2.2

Note	that	the	element	at	the	first	row	and	the	second	column	is	1,	as	there	is	an
edge	between	the	first	vertex	(A)	and	the	second	vertex	(B).	Likewise	there	is	an
edge	between	A	and	D,	hence	the	element	at	the	first	row	and	fourth	column	is	1.
Graphs	may	also	be	represented	using	a	set	of	linked	lists,	in	which	each	linked
list	will	point	to	the	vertices	connected	to	the	corresponding	vertex.	The	linked
list	representation	of	the	graph	of	Figure	17.1	is	as	follows	(Figure	17.2).	Note
that	the	list	of	A	contains	B	and	D	as	A	is	connected	to	B	and	D.	Likewise,	the
list	of	B	contains	A,	C,	and	D.

FIGURE	17.2 The	linked	list	representation	of	the	graph	presented	in	Figure	17.1

Graph	 is	 one	 of	 the	 most	 important	 data	 structures.	 This	 data	 structure	 has
applications	in	a	wide	variety	of	tasks	like	finding	the	shortest	paths,	ranking	of
web	 pages,	 etc.	 As	 a	 matter	 of	 fact,	 there	 is	 a	 dedicated	 subject	 on	 graph
algorithms.

Trees:	Definition,	Classification,	and	Representation
Tree:	A	tree	is	a	non-linear	data	structure.	It	is	basically	a	graph	which	does	not
form	 any	 cycle	 and	 does	 not	 have	 isolated	 edges	 or	 vertices.	 Figure	 17.3	 (a)
shows	an	example	of	a	graph	which	is	not	a	 tree,	as	 there	exists	a	cycle	 in	 the
graph.	The	Figure	17.3	(b)	 is	a	 tree	as	 it	does	not	contain	any	cycle	or	 isolated
vertex	 or	 edge.	 The	 graph	 of	 Figure	 17.3	 (c)	 is	 not	 a	 tree,	 as	 it	 contains	 an
isolated	edge.

FIGURE	17.3 The	examples	of	graphs,	which	are	not	trees	((a)	and	(c))	and	an	example	of	a	tree
(b)

Trees	can	be	classified	on	the	basis	of	the	number	of	children	of	a	node.	If	each
node	of	a	tree	has	a	maximum	of	two	children,	it	is	called	a	binary	tree.	If	each
node	of	a	tree	has	two	children	except	for	the	last	level	at	which	a	node	has	no
child,	 it	 is	 called	a	complete	binary	 tree.	Figure	17.5	 shows	a	complete	binary
tree.	The	root	of	a	tree	is	always	at	level	0,	the	children	of	the	root	at	level	1	and
so	 on.	 The	 tree	 of	 Figure	 17.4	 is	 a	 binary	 tree,	 as	 each	 node	 has	 0,	 1,	 or	 2
children.	Note	that	the	node	A	is	at	level	0,	the	nodes	B	and	C	are	at	level	1,	and
the	nodes	D,	E,	and	F	are	at	level	2.

FIGURE	17.4 Binary	tree;	each	node	has	0,	1,	or	2	children

FIGURE	17.5 Complete	binary	tree;	each	node	has	2	children	except	for	the	nodes	at	the	last
level,	at	which	each	node	has	0	children

The	 number	 of	 nodes	 in	 a	 complete	 binary	 tree	 having	 two	 levels	 is	 3,	 that
having	three	levels	is	7	and	that	having	four	levels	is	15.	A	complete	binary	tree
having	n	levels	has	2n	nodes.	In	the	tree	shown	in	Figure	17.5,	A	is	the	root	of
the	tree	as	it	is	at	level	0.	The	nodes	B	and	C	are	siblings,	as	they	have	the	same
parent	(A).	Also,	the	nodes	D	and	E	are	siblings	and	so	are	F	and	G.	The	nodes

17.2.3

D,	 E,	 F,	 and	 G	 are	 the	 leaves,	 as	 they	 have	 no	 children.	 The	 following	 table
(Table	17.1)	presents	the	terminology	of	a	tree.

Table	17.1		Terminology	of	a	tree

Edge:	A	line	which	connects	two	nodes.
Parent:	A	node	from	which	the	given	node	has	been	derived.
Root:	A	node	which	does	not	have	a	parent	is	called	the	root.
Degree	of	a	node:	The	degree	of	a	node	is	the	number	of	children	of	a	given
node.
Degree	of	a	tree:	The	degree	of	a	tree	is	represented	by	the	maximum
number	of	children.
Level	of	a	tree:	The	root	of	a	tree	is	at	level	0,	the	children	of	root	are	at	level
1	and	so	on.

Representation	of	a	Binary	Tree
A	binary	 tree	 can	be	 stored	 in	 a	 computer	 using	 an	 array	or	 a	 linked	 list.	The
array	 representation	 of	 a	 binary	 tree	 requires	 the	 root	 to	 be	 stored	 at	 the	 Oth

index.	For	each	node	stored	at	the	nth	index,	its	left	child	would	be	stored	at	the
(2n+1)th	index	and	the	right	child	at	(2n+2)th	index.

FIGURE	17.6 Calculation	of	index	for	the	array	representation	of	a	binary	search	tree

For	example,	in	the	above	tree	(Figure	17.6)	the	root	would	be	stored	at	the	0th
index.

The	left	child	of	the	root	(B)	would	be	stored	at	the	index,	given	by	the
formula

2	×	n	+	1	=	2	×	0	+	1	=	1
The	 right	 child	 of	 the	 root	 would	 be	 stored	 at	 the	 index,	 given	 by	 the
formula

2	×	n	+	2	=	2	×	0	+	2	=	2
That	is	B	would	be	stored	at	the	1st	index	and	C	at	the	2nd	index
Likewise	 the	 left	 child	 of	 C	 would	 be	 stored	 at	 the	 index,	 given	 by	 the
formula

2	×	n	+	1	=	2	×	2	+	1	=	5

The	left	child	of	D	would	be	stored	at	the	11th	index	and	the	right	child	would	be
stored	at	the	12th	index.	Finally,	the	left	and	the	right	child	of	F	would	be	stored
at	the	25rd	and	the	26th	index.	The	array	representation	of	the	tree	of	Figure	17.6
is	therefore	as	follows:

As	is	evident	from	the	above	array,	 this	 representation	suffers	from	wastage	of
space.	 That	 is	 a	 lot	 of	 space	 is	 wasted	 if	 the	 given	 tree	 is	 not	 a	 completely
balanced	 tree.	 Note	 that	 in	 the	 case	 of	 a	 completely	 balanced	 tree,	 no	 space
would	be	wasted	in	the	array	representation.

There	is	another	way	in	which	a	binary	tree	can	be	stored,	which	is	by	using	a
doubly	linked	list.	In	the	representation,	a	node’s	left	child’s	address	is	stored	at
the	previous	pointer	and	its	right	child’s	address	is	stored	at	the	next	pointer.	The
following	figure	(Figure	17.7)	shows	the	linked	list	representation	of	the	tree	in
Figure	17.6.

17.2.4

FIGURE	17.7 Doubly	linked	list	representation	of	a	binary	tree

Tree	Traversal:	In-order,	Pre-order,	and	Post-order
A	tree	can	be	traversed	in	in-order,	pre-order,	and	post-order.

In	the	in-order	traversal,	the	root	of	a	tree	is	given	as	an	input	to	the	algorithm.
The	algorithm	works	as	follows.	The	left	child	of	the	root	is	given	as	the	input	to
the	same	algorithm	(recursion).	This	 is	 followed	by	 the	processing	of	 the	 root,
following	 which	 the	 right	 child	 of	 the	 root	 is	 given	 as	 an	 input	 to	 the	 same
algorithm	 (recursion).	 The	 algorithm	 has	 been	 presented	 as	 follows.	 The
implementation	 has	 been	 presented	 in	 the	 next	 section.	 Though	 there	 is	 a
corresponding	 non-recursive	 procedure	 to	 accomplish	 the	 task,	 it	 has	 not	 been
discussed	in	this	chapter.	The	reader	may	refer	to	the	links	at	the	end	of	this	book
for	a	more	detailed	study.

In	the	pre-order	traversal,	the	root	of	a	tree	is	given	as	an	input	to	the	algorithm.
The	algorithm	works	as	follows.	The	data	of	the	root	is	processed	first.	This	is
followed	by	the	output	obtained	by	giving	the	left	child	of	the	root	as	an	input	to
the	 same	 algorithm	 (recursion),	 following	which	 the	 right	 child	 of	 the	 root	 is
given	 as	 an	 input	 to	 the	 same	 algorithm	 (recursion).	 The	 algorithm	 has	 been
presented	as	follows.	The	implementation	has	been	presented	in	the	next	section.
Though	there	is	a	corresponding	non-recursive	procedure	to	accomplish	the	task,
it	has	not	been	discussed	 in	 the	chapter.	The	reader	should	refer	 to	 the	 links	at
the	end	of	this	book	for	a	more	detailed	study.

In	the	post-order	traversal,	the	root	of	a	tree	is	given	as	an	input	to	the	algorithm.
The	algorithm	works	as	follows.	The	output	obtained	by	giving	the	left	child	of
the	root	to	the	algorithm	itself	is	followed	by	the	output	obtained	by	giving	the
right	child	of	the	root	as	an	input	to	the	same	algorithm	(recursion)	after	which
the	 root	 is	 processed.	 The	 algorithm	 has	 been	 presented	 as	 follows.	 The
implementation	 has	 been	 presented	 in	 the	 next	 section.	 Though	 there	 is	 a
corresponding	 non-recursive	 procedure	 to	 accomplish	 the	 task,	 it	 has	 not	 been
discussed	in	this	chapter.

17.3 BINARY	SEARCH	TREE

One	of	the	advantages	of	trees	is	that	they	help	in	efficient	searches.	One	of	the
variants	of	binary	tree	called	binary	search	tree	helps	to	find	an	element	in	O(log
n)	time	(average	case).	A	binary	search	tree	is	a	binary	tree	in	which	each	node
satisfies	the	following	property:

The	 tree	 shown	 in	 Figure	 17.8	 is	 a	 binary	 search	 tree,	whereas	 that	 shown	 in
Figure	17.9	is	not.

FIGURE	17.8 An	example	of	a	binary	search	tree;	note	that	each	node’s	left	child	has	value	less
than	the	value	in	the	data	part	and	its	right	child	has	data	greater	than	the	node’s	data

17.3.1

FIGURE	17.9 An	example	of	a	tree	which	is	not	a	binary	search	tree,	note	that	right	child	of	node
having	data	10	is	less	than	10

Creation	and	Insertion
The	 creation	 of	 a	BST	 is	 simple.	The	 first	 value	 becomes	 the	 data	 part	 of	 the
root.	To	insert	a	new	value	in	the	tree	a	new	node	is	created,	its	correct	position
is	 found	 and	 the	 new	node	 is	 placed	 at	 its	 correct	 position.	The	 algorithm	 for
inserting	a	new	node	in	a	BST	is	as	follows.

In	 order	 to	 understand	 the	 procedure,	 let	 us	 consider	 Illustration	 17.1.	 This
illustration	 is	 followed	 by	 another	 which	 implements	 the	 algorithm	 for	 the

insertion	in	a	BST.

Illustration	17.1:	Insert	47,	in	the	BST	of	Figure	17.10.

FIGURE	17.10 Binary	Search	Tree	for	Illustration	17.1

Solution:	The	process	has	been	depicted	 in	Figure	17.11	(a)	 to	 17.11	(d).	 The
reader	 is	 expected	 to	 follow	 the	 steps	 and	 map	 them	 to	 those	 given	 in	 the
algorithm.

FIGURE	17.11(a) The	search	begins	at	the	root.	Since	the	value	to	be	searched	is	greater	than
that	at	root,	the	right	sub	tree	is	searched

FIGURE	17.11(b) The	root	of	the	right	sub	tree	is	40.	Since	the	value	to	be	searched	(47)	is
greater	than	that	at	root,	the	right	sub	tree	of	this	node	is	searched

FIGURE	17.11(c) The	root	of	the	right	sub	tree	is	51.	Since	the	value	to	be	searched	(47)	is	less
than	that	at	ptr,	the	left	is	searched

FIGURE	17.11(d) 47	is	inserted

Illustration	17.2:	Write	a	program	to	insert	the	value	entered	by	the	user	in	the
binary	search	tree.

Program

17.3.2

Output

>>>

============	RUN	C:\Python\Data	Structure\BST.py

============

Tree	:

10

Tree	:

5	10	20

Tree	:

1	2	5	10	15	17	20

>>>

Traversal
As	stated	 in	 the	previous	section,	a	binary	 tree	can	be	 traversed	 in	 three	ways:
In-order,	 pre-order,	 and	 post-order	 traversal.	 The	 following	 illustration
implements	in-order,	pre-order,	and	post-order	traversal	of	a	binary	search	tree.

Illustration	17.3:	Write	 a	program	 to	 implement	pre-order,	post-order,	 and	 in-
order	traversal	of	a	binary	search	tree.

Program

Output

>>>

======	RUN	C:\Python\Data	Structure\Tree	Traversal.py	======

In-order	Traversal	of	the	BST	:

17.3.3

1	2	5	10	15	17	20

Pre-order	Traversal	of	the	BST	:

10	5	2	1	20	15	17

Post-order	Traversal	of	the	BST	:

1	2	5	17	15	20	10

>>>

Maximum	and	Minimum	Elements
The	maximum	 element	 can	 be	 found	 by	 finding	 the	 rightmost	 element	 of	 the
tree.	The	pointer	is	first	set	to	the	root	and	iteratively	set	to	the	root	of	the	right
sub	 tree,	 until	 ptr	 reaches	 terminal	 node.	 Logic	 can	 be	 extended	 to	 the
complementary	problem	of	finding	the	minimum	element	from	the	tree.

Illustration	 17.4:	 Write	 a	 program	 to	 find	 the	 maximum	 and	 the	 minimum
element	from	a	binary	search	tree.

Program

17.4

Output

>>>

==========	RUN	C:\Python\Data	Structure\BST	max.py

==========

Maximum	:	20

Minimum	:	1

>>>

CONCLUSION

The	chapter	 introduces	one	of	 the	most	 important	data	 structures	called	a	 tree.
Since	the	set	of	 trees	 is	a	subset	of	graphs,	 the	definition	and	representation	of
graphs	have	also	been	included	in	the	chapter.	Moreover,	the	programs	given	in
the	 chapter	 use	 linked	 list	 representations	 of	 a	 tree	 as	 the	 array	 based
implementation	 becomes	 inefficient	 in	 terms	 of	 space	 if	 the	 tree	 is	 not	 a
completely	 balanced	 tree.	 Trees	 can	 be	 traversed	 in	 variety	 of	 ways.	 The	 in-
order,	post-order,	and	the	pre-order	traversal	have	been	described	in	the	chapter.
One	of	the	most	important	trees	called	binary	search	trees	has	been	introduced	in
the	 chapter.	 The	 algorithm	 and	 the	 corresponding	 program	 for	 searching	 an
element	 in	 a	 binary	 search	 tree	 and	 insertion	 have	 also	 been	 included	 and
exemplified.	 The	 reader	 is	 expected	 to	 visit	 the	 links	 given	 at	 the	 end	 of	 the
chapter	and	explore	the	algorithm	for	deleting	a	node	from	a	binary	search	tree.
The	 appendix	 of	 this	 book	 discusses	 some	 of	 the	 important	 graph	 algorithms
also.	Moreover,	this	is	just	a	beginning	of	the	topic;	explore	trees	and	dive	into
the	exciting	world	of	problem	solving	through	trees.

GLOSSARY

Graph:	A	graph	 is	a	set	 (V,	E),	where	V	is	a	 finite,	non-empty	set	of	vertices.
The	set	E	is	a	set	consisting	of	tuples	(x,	y),	where	x	and	y	belong	to	the	set	V.

Tree:	A	tree	is	a	non-linear	data	structure.	It	is	basically	a	graph	which	does	not
form	any	cycle	and	which	does	not	have	isolated	edges	or	vertices.

Edge:	A	line	which	connects	two	nodes.

Parent:	A	node	from	which	the	given	node	has	been	derived.

Root:	A	node	which	does	not	have	a	parent	is	called	the	root.

Degree	of	a	node:	The	degree	of	 a	node	 is	 the	number	of	 children	of	 a	given
node.

Degree	of	a	tree:	The	degree	of	a	tree	is	the	maximum	degree	of	any	node	of	the
tree.

Level	of	a	tree:	The	root	of	a	tree	is	at	level	0,	the	children	of	root	are	at	level	1
and	so	on.

Binary	 Search	 Tree:	 It	 is	 a	 binary	 tree	 in	 which	 each	 node	 satisfies	 the
following	property:

POINTS	TO	REMEMBER

The	complexity	of	insertion	in	a	binary	search	tree	is	O	(log	n),	if	the	tree	is
balanced.
A	 tree	 can	 be	 represented	 using	 arrays.	 In	 this	 representation,	 the	 root	 is
placed	at	the	0th	index,	the	right	child	of	a	node	at	the	nth	index	is	at	(2n	+
2)th	index	and	the	left	child	at	the	(2n	+	1)th	index.
The	linked	list	representation	of	a	tree	is	efficient	in	terms	of	space.
From	 a	 binary	 search	 tree,	 the	 complexity	 of	 finding	 the
maximum/minimum	element	is	O(log	n),	if	the	tree	is	balanced.
From	 a	 binary	 search	 tree,	 the	 complexity	 of	 finding	 the
maximum/minimum	element	is	O(log	n),	if	the	tree	is	skewed.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	true?

(a) Every	tree	is	a	graph

(b) Every	graph	is	a	tree

(c) A	tree	cannot	have	a	cycle

(d) A	tree	cannot	have	an	isolated	edge

2. If	G	is	the	set	of	all	the	graphs,	T	is	the	set	of	all	the	trees	and	BST	is	the	set
of	all	the	binary	search	trees,	then	which	of	the	following	is	false?

(a) G	⊆	T
(b) T	⊆	G
(c) BST	⊆	T
(d) BST	⊆	G

3. What	is	the	depth	of	a	balanced	tree	having	n	nodes?

(a) O(n)

(b) O(log	n)

(c) O(1)

(d) None	of	the	above

4. What	is	the	depth	of	a	skewed	tree	having	n	nodes?

(a) O(n)

(b) O(log	n)

(c) O(1)

(d) None	of	the	above

5. In	which	of	the	following	applications	trees	can	be	sued?

(a) Searching

(b) Sorting

(c) Priority	queues

(d) All	of	the	above

6. What	is	the	best	case	complexity	of	insertion	in	a	binary	search	tree?

(a) O(1)

(b) O(log	n)

(c) O(n)

(d) None	of	the	above

7. What	is	the	average	case	complexity	of	insertion	in	a	binary	search	tree?

(a) O(1)

(b) O(log	n)

(c) O(n)

(d) None	of	the	above

8. What	is	the	worst	case	complexity	of	insertion	in	a	binary	search	tree?

(a) O(1)

(b) O(log	n)

(c) O(n)

(d) None	of	the	above

9. A	BST	is	created	out	of	sorted	list	of	n	numbers;	what	is	the	complexity	of
inserting	an	element	in	the	tree?

(a) O(1)

(b) O(n)

(c) O(log	n)

(d) None	of	the	above

10. A	balanced	BST	is	given,	what	is	the	complexity	of	inserting	an	element?

(a) O(1)

(b) O(n)

(c) O(log	n)

(d) None	of	the	above

NUMERICAL

1. Create	a	BST	out	of	the	following	list	of	numbers

(a) 2,	23,	14,	29,	35,	28,	19,	1,	3,	7,	16,	15

(b) 1,	2,	3,	4,	5,	6,	7

(c) 10,	8,	6,	4,	2,	1

(d) 10,	15,	18,	17,	16,	19,	14,	21

(e) 1,	2,	3,	4,	10,	9,	8,	7

2. Which	of	the	above	is	balanced?

3. Which	of	the	above	(Q1)	is	skewed?

4. The	list	(b)	(Q1)	is	a	sequence;	find	the	nth	element	of	the	sequence	and	the
complexity	to	insert	the	nth	element

5. In	Q1	(d),	what	is	the	average	complexity	of	inserting	an	element?

6. Write	the	in-order	traversal	of	(a)	to	(e)	(Q1).

7. Write	the	post-order	traversal	of	(a)	to	(e)	(Q1).

8. Write	the	pre-order	traversal	of	(a)	to	(e)	(Q1).

9. In	Q1,	use	the	in-order	and	post-order	traversal	of	(a)	to	recreate	the	tree.

10. In	Q1,	use	the	in-order	and	pre-order	traversal	of	(b)	to	recreate	the	tree.

FIGURE	17.12 A	Binary	Search	Tree

11. Write	the	in-order	traversal	of	the	tree	in	Figure	17.12.

12. Write	the	pre-order	traversal	of	the	tree	in	Figure	17.12.

13. Write	the	post-order	traversal	of	the	tree	in	Figure	17.12.

14. Write	the	level	order	traversal	of	the	tree	in	Figure	17.12.

15. Insert	 the	 following	 in	 the	 tree	 in	 Figure	17.12	 and	 show	 the	 new	 tree	 in
each	step.

(a) 2

(b) 5

(c) 32

(d) 31

(e) 29

PROGRAMMING

1. Write	a	program	to	create	a	binary	search	tree	from	a	list	of	numbers	entered
by	the	user.

2. Write	a	program	to	traverse	the	above	tree	in

(a) In-order	traversal

(b) Post-order	traversal

(c) Pre-order	traversal

3. Write	a	program	to	find	a	given	element	from	a	binary	search	tree.

4. Write	a	program	to	find	the	maximum	element	from	a	binary	search	tree.

5. Write	a	program	to	find	the	minimum	element	from	a	binary	search	tree.

6. Write	a	program	to	find	the	second	maximum	element	from	a	given	binary
search	tree.

7. Write	a	program	to	find	the	sum	of	elements	of	a	binary	search	tree.

8. Write	a	program	to	find	the	depth	of	a	binary	search	tree.

9. Write	a	program	to	find	the	sibling	of	an	element	from	a	binary	tree.

10. Write	a	program	to	find	the	parent	of	an	element	from	a	binary	tree.

11. Write	a	program	to	find	all	ancestors	of	a	given	element	of	a	binary	search
tree.

12. Write	a	program	to	find	all	children	of	a	given	node	of	a	binary	tree.

13. Write	a	program	to	delete	an	element	from	a	given	binary	tree.

14. Write	a	program	to	find	the	rightmost	child	of	the	left	sub	tree	of	a	node	in	a
given	binary	tree.

15. Write	a	program	to	find	the	leftmost	child	of	the	right	sub	tree	of	a	node	in	a
given	binary	tree.

18.1

CHAPTER	18

INTRODUCTION	TO	NUMPY

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	downside	of	Dynamic	Typing
• Understand	the	importance	of	NumPy
• Create	unidimensional	and	multi-dimensional	arrays
• Understand	broadcasting
• Understand	the	importance	and	creation	of	structured	arrays

INTRODUCTION

One	 of	 the	 most	 important	 features	 of	 Python	 is	 dynamic	 typing.	 In	 C,	 the
programmer	declares	the	type	of	variable	and	then	starts	working	on	it.	Though
some	amount	of	typecasting	is	possible,	in	general	one	cannot	change	the	type	of
the	variable	in	the	program.	For	example	if	the	programmer	declares	a	variable,
say	num,	of	integer	type,	and	assigns	some	value	to	it,	he	cannot	assign	a	string
(say)	to	it.

int	num;

num=5;

printf("%d",	num);

num="Harsh";//error

However,	in	the	case	of	Python,	one	needs	not	declare	the	type	of	variable.	For
example,	 in	 the	 following	 code,	 5	 is	 assigned	 to	 num	 and	 the	 value	 of	 num	 is
printed.	In	the	succeeding	statements	the	string	"Harsh"	 is	assigned	to	num	and
the	value	stored	in	num	is	printed.	Note	that	the	code	executes	just	fine.

num	=	5

print(num)

num	=	'Harsh'

print(num)

18.2

This	 is	due	 to	dynamic	 typing,	which	makes	Python	stand	apart	 from	 its	other
counterparts.	However,	this	comes	at	a	cost.	Each	time	the	variable	is	assigned	a
value	 the	 operations	 that	 can	 be	 applied	 to	 that	 variable	 must	 be	 elucidated,
which	 takes	 time.	 If	 in	 a	 particular	 situation	 the	 type	 of	 a	 variable	would	 not
change,	 there	 is	hardly	any	need	 for	 such	maneuveration.	This	 is	 also	 relevant
for	 procedures	 which	 deal	 with	 numbers	 and	 scientific	 and	 statistical
calculations.	In	such	situations,	the	codes	can	be	made	efficient	by	casting	them
to	defined	types	and	manipulating	them.	This	chapter	throws	light	on	a	package
which	comes	to	our	rescue	in	such	situations.	The	package	is	NumPy.

The	 chapter	 has	 been	 organized	 as	 follows.	 The	 second	 section	 introduces
NumPy	and	discusses	the	creation	of	a	basic	array.	The	section	also	throws	light
on	the	data	types	provided	by	the	package.	The	third	section	discusses	some	of
the	 standard	 functions	 for	 generating	 sequences.	 The	 fourth	 section	 discusses
some	 important	 aggregate	 functions.	 The	 concept	 of	 broadcasting	 has	 been
introduced	in	the	fifth	section.	The	sixth	section	discusses	structured	arrays	and
the	last	section	concludes	the	chapter.

INTRODUCTION	TO	NUMPY	AND	CREATION	OF	A
BASIC	ARRAY

NumPy	is	a	Python	package,	which	stands	for	Numerical	Python.	NumPy	contains
multidimensional	array	objects	and	the	routines	which	process	these	arrays.	The
package	 was	 created	 by	 Travis	 Oliphant.	 It	 has	 almost	 all	 the	 features	 of
Numeric,	its	predecessor,	and	Numarray.	One	of	the	greatest	advantages	of	NumPy
(when	used	along	with	SciPy,	Scientific	Python,	and	MATPLOTLIB)	is	its	ability	to
perform	operations	similar	to	those	in	MATLAB.	Note	that	NumPy	is	open	source	as
against	 MATLAB.	 The	 package	 can	 be	 easily	 installed	 ON	 your	 computer	 from
htpps://www.continuum.io.	 You	 can	 download	 Anaconda,	 which	 is	 a	 free
distribution	software	for	SciPy	and	related	packages.

Using	 NumPy,	 multidimensional	 arrays	 can	 be	 subjected	 to	 mathematical	 and
logical	 operations,	 transforms	 like	Fourier	Transforms	 and	operators	 related	 to
linear	algebra	and	random	numbers.	The	ability	to	manipulate	multidimensional
arrays	 assumes	 importance	 as	 they	 are	 used	 in	 various	 algorithms	 including
those	of	machine	learning.

The	ndarray	is	the	most	important	object	in	NumPy,	as	it	helps	to	create	an	array.

https://www.continuum.io

These	 arrays	 are	 zero	 based	 indexed.	 The	 elements	 of	 the	 array	 are	 assigned
consecutive	 memory	 locations.	 These	 elements	 are	 then	 arranged	 in	 the	 row
major	 style	 (as	 in	 the	 case	 of	 C)	 or	 column	 major	 style	 (as	 in	 the	 case	 of
FORTRAN).	 In	 Python	 a	 basic	 array	 can	 be	 created	 using	 the	 numpy.array
function.	The	function	takes	the	following	arguments:

Object:	It	returns	an	array	or	nested	sequence
dtype:	The	data	type	of	the	array	is	represented	by	dtype
copy:	The	object	is	copied	if	the	value	of	this	argument	is	true
order:	An	array	can	be	row	major	(C)	or	column	major	(F)	or	any	(A)
subok:	Returned	array	forced	is	to	be	a	base	class	array
ndmin:	This	argument	specifies	the	minimum	number	of	dimensions

In	order	to	understand	the	concept,	let	us	have	a	look	at	some	simple	examples.
In	 the	 code	 that	 follows,	 the	 NumPy	 package	 is	 imported	 as	 'np'.	 The	 array
function	of	np	is	then	used	to	create	an	array	([7,	14,	21,	28,	35]).	Finally,	the
value	of	the	array1	is	displayed:

>>>import	numpy	as	np

>>>array1	=	np.array([7,	14,	21,	28,	35])

>>>array1

array([7,	14,	21,	28,	35])

Let	 us	 have	 a	 look	 at	 another	 example.	 In	 the	 following	 code,	 the	 NumPy
package	 is	 imported	as	'np'.	The	array	 function	of	np	 is	 then	used	 to	create	a
two	dimensional	array	([1,	2,	3],	[4,	5,	6],	[7,	8,	9]).	That	is	the	first	row
of	the	array	is	[1,	2,	3];	the	second	row	is	[4,	5,	6]	and	the	third	row	is	[7,	8,
9].	Finally,	the	value	of	the	array2	variable	is	displayed:

>>>array2=np.array([[1,2,3],[4,5,6],[7,8,9]])

>>>array2

array([[1,	2,	3],

[4,	5,	6],

[7,	8,	9]])

An	array	of	string	type	can	be	created	by	specifying	the	datatype	(dtype	=	str)	in
the	 array	 function	 of	 np.	 The	 procedure	 has	 been	 depicted	 in	 the	 following
snippet:

>>>array2=np.array([[1,2,3],[4,5,6],[7,8,9]],	dtype=str)

>>>array2

array([['1',	'2',	'3'],

['4',	'5',	'6'],

['7',	'8',	'9']],

dtype='<U1')

One	of	the	most	obvious	questions	is	why	the	need	to	use	these	arrays	in	place	of
those	 provided	 by	 Python?	 The	 first	 reason	 is	 the	 wide	 variety	 of	 data	 types
provided	by	NumPy.	The	variety	of	data	 types	provided	by	 the	package	makes
the	task	at	hand	easy.

Some	of	the	important	data	types	provided	by	NumPy	are	as	follows:

bool_:	Boolean
int_:	default	integer	type
intc:	Same	as	that	of	‘C’

NumPy	also	provides	int8,	int16,	int32,	and	int64	data	types.	The	first	(int8)
uses	8	bits	 and	hence	can	 store	(-27)	to	(27-1)	 (that	 is	 -128	 to	+127).	int16
takes	 16	 bits	 and	 hence	 can	 store	 values	 from	 -32,768	 to	 +32,767.	 Likewise
int32	and	int64	 take	32	and	64	bits.	The	corresponding	unsigned	 integers	are
unit8,	uint16,	uint32,	and	uint64.	The	difference	between	int	and	uint	is	that
in	the	former,	one	bit	is	reserved	for	sign	and	in	the	latter	all	the	bits	are	used	for
storing	the	numbers,	and	hence	the	unsigned	integers	can	store	larger	values.	For
example	unit8	can	store	values	from	0	to	255.	The	data	types	for	floating	point
numbers	are	as	follow:

float_

float16:	It	has	10	bit	mantissa
float32:	It	has	23	bit	mantissa
flaot64:	It	has	52	bit	mantissa

The	data	types	for	complex	numbers	are	as	follows:

complex_

complex64

complex128

18.3

18.3.1

Here	 it	 may	 be	 stated	 that	 the	 data	 type	 object	 describes	 the	 interpretation	 of
fixed	blocks	of	memory.	It	has	information	about:

Type	of	data
Size
Order
The	shape	and	data	type	in	case	of	a	subarray

FUNCTIONS	FOR	GENERATING	SEQUENCES

Having	 gone	 through	 the	 basics	 of	 NumPy	 arrays,	 let	 us	 visit	 some	 of	 the
remarkable	functions	which	help	when	creating	useful	arrays.

arange()

The	 arange	 function	 helps	 to	 print	 a	 sequence,	 having	 some	 initial	 value
(start),	some	final	value	(stop),	the	difference	between	the	consecutive	terms
(step),	and	the	datatype	(dtype).	The	syntax	of	the	function	is	as	follows.	The
description	of	each	of	the	parameters	follows:

numpy.arange(start,	stop,	step,	dtype)

Start:	The	starting	value	of	the	sequence
Stop:	The	value	up	 to	which	 the	 sequence	 is	 generated	 (not	 inducing	 the
value	itself)
Step:	The	difference	between	the	consecutive	values
dtype:	The	data	type

The	above	function	has	been	exemplified	in	the	following	code	which	generates
an	arithmetic	progression	having	first	term	3,	the	last	term	23	(less	than	25),	and
the	 difference	 between	 the	 two	 consecutive	 terms	 2.	 The	 data	 type	 of	 the
elements	is	'int'.

>>a=np.arange(3,25,2,	int)

>>a

array([3,	5,	7,	9,	11,	13,	15,	17,	19,	21,	23])

arange	can	also	 take	a	single	argument.	Writing	np.arange(6)	will	generate	 a

18.3.2

sequence	having	first	value	0,	the	difference	between	the	consecutive	terms	as	1,
and	the	last	term	5,	that	is:

>>b=np.arange(6)

>>b

array([0,	1,	2,	3,	4,	5)]

In	the	arange	function	one	can	also	specify	the	data	type	along	with	the	above,
in	order	to	change	the	default	data	type	of	the	elements.

>>c=np.arange(6,	dtype=float)

>>c

array([0.,	1.,	2.,	3.,	4.,	5.])

linspace()

The	 linspace	 function	 divides	 the	 given	 range	 into	 a	 specified	 number	 of
segregations	 and	 returns	 the	 sequence	 so	 formed.	 The	 function	 takes	 the
following	parameters:

start:	The	first	value	of	the	sequence
stop:	The	last	value	(included	until	endpoint	=	False)
num:	The	number	of	items
endpoint:	If	endpoint	is	False	then	the	“stop”	value	is	not	included	in	the
sequence
retstep:	If	this	is	True,	the	step	size	is	returned
dtype:	The	data	type	of	the	elements	of	the	sequence;	if	not	specified	then
the	data	type	is	inferred	by	the	start	and	the	stop	values

Example:	 In	the	sequence	generated	by	the	following	code	the	first	number	of
the	 sequence	 is	 1	 and	 the	 last	 value	 is	 27.	 The	 number	 of	 elements	 in	 the
sequence	is	11.

>>d=np.linspace(11,	227,	11)

>>d

array([11.,	12.6,	14.2,	15.8,	17.4,	19.,	20.6,	22.2,	23.8,

25.4,	27.])

If	the	value	of	the	“endpoint”	argument	is	false,	the	last	value	(in	this	case,	27)	is

18.3.3

18.4

not	included.

>>e=np.linspace(11,	227,	11,	endpoint=False)

>>e

array([11.,	12.45454545,	13.90909091,	15.36363636,

16.01010102,	18.27272727,	19.72727273,	21.10101010,

22.63636364,	24.09090909,	25.54545455])

The	 value	 of	 the	 step	 can	 be	 viewed	 by	 assigning	 “True”	 to	 the	 retstep;
argument.	For	example,	in	the	sequence	generated	by	dividing	the	range	11-26	in
12	parts,	the	gap	(the	last	argument	of	the	result)	is	1.45454545454546.

>>f=np.linspace(11,	227,	11,	endpoint=False,	retstep=True)

>>f

(array([11.,	12.45454545,	13.90909091,	15.36363636,

16.01010102,	18.27272727,	19.72727273,	21.10101010,

22.63636364,	24.09090909,	25.54545455]),	1.4545454545454546)

logspace()

The	 logspace	 function	 generates	 a	 sequence	 which	 is	 equally	 spaced	 in	 the
logspace.	 That	 is	 the	 elements	 of	 the	 sequence	 will	 be	 between	 basestart	 and
basestop	“,”	where	the	value	of	the	base	is	provided	in	the	argument.	The	default
value	of	base	is	10.	The	dtype	signifies	the	data	type	of	the	elements.	Like	in	the
case	of	the	previous	function,	endpoint=	False	would	exclude	basestop	NumPy.

logspace	(start,	stop,	num,	endpoint,	base,	dtype)

AGGREGATE	FUNCTIONS

The	 numpy	 module	 contains	 many	 aggregate	 functions.	 The	 various	 functions
along	with	a	brief	explanation	are	as	follows:

numpy.sum	This	finds	the	sum	of	the	elements	of	the	argument	(e.g.	a	list
or	an	array)
numpy.prod	This	finds	the	product	of	the	elements	of	the	argument	(e.g.	a
list	or	an	array)
numpy.mean	This	 finds	 the	mean	of	 the	elements	of	 the	argument	 (e.g.	a
list	or	an	array)

numpy.std	 This	 finds	 the	 standard	 deviation	 of	 the	 elements	 of	 the
argument
numpy.var	This	finds	the	variance	of	the	elements	of	the	argument
numpy.max	This	finds	the	maximum	element	of	the	argument.	In	the	case
of	a	list	or	a	1D	array,	the	maximum	element	will	be	displayed.	However,	in
the	case	of	a	2D	array	the	axis	along	which	the	maximum	element	is	desired
can	also	be	mentioned.	Here,	axis=0	indicates	columns	and	axis=1	indicates
rows.
numpy.min	This	finds	the	minimum	element	of	the	argument.	In	the	case	of
a	 list	or	a	1D	array,	 the	minimum	element	will	be	displayed.	However,	 in
the	case	of	a	2D	array	the	axis	along	which	the	minimum	element	is	desired
can	also	be	mentioned.	Here,	axis=0	indicates	columns	and	axis=1	indicates
rows.
numpy.argmin	This	finds	the	position	(index)	of	the	maximum	element
numpy.argmax	This	finds	the	position	of	the	minimum	element
numpy.median	This	finds	the	median	of	the	elements	of	the	argument
numpy.percentile	This	finds	the	percentile	of	the	elements	of	the	argument.
The	percentile	(25	etc.)	is	the	second	argument.
numpy.any	This	finds	if	any	element	of	the	given	argument	is	there
numpy.all	This	finds	if	all	the	arguments	of	the	given	argument	are	there

The	 following	 code	 exemplifies	 the	 above	 functions	 by	 generating	 a	 set	 of	 50
values.	The	values	are	between	0	and	100	(the	np.random.random(50)	has	been
multiplied	 by	 100).	 The	 maximum,	 minimum,	 argument	 of	 the	 maximum,
argument	 of	 the	minimum,	 average,	median,	 standard	 deviation,	 variance,	 25th

percentile,	and	75th	percentile	of	the	elements	have	been	found	using	the	above
functions.

import	numpy	as	np

Values1=100*(np.random.random(50))

Values1

Output

Output

The	data	can	be	visualized	using	the	matplotlib	module	discussed	 in	 the	next
chapter.	The	following	code	plots	the	histogram	of	the	above	data.

plt.hist(Values1)

plt.title('Values	Generated')

plt.xlabel('Values')

plt.ylabel('Number')

plt.show()

The	 above	 functions	 can	 also	 be	 applied	 on	 2	 dimensional	 arrays,	 as	 stated
earlier.	 The	 following	 code	 exemplifies	 the	 above	 functions	 by	 generating	 a	 2
dimensional	array	having	three	rows	and	three	columns.	The	values	are	between
0	and	1.	The	maximum,	minimum,	argument	of	the	maximum,	argument	of	the
minimum,	 average,	 median,	 standard	 deviation,	 variance,	 25th	 percentile,	 and
75th	percentile	of	the	elements	have	been	found	using	the	above	functions.

Max=np.max(B)

Max_Index=np.argmax(B)

Min=np.min(B)

Min_Index=np.argmin(B)

Sum=np.sum(B)

Prod=np.prod(B)

Mean=np.mean(B)

SD=np.std(B)

Variance=np.var(B)

Med=np.median(B)

Per25=np.percentile(B,25)

Per75=np.percentile(B,75)

print("Max\t:",Max,"\nIndex\t:",Max_Index,"\nMin\t:",Min,

"\nIndex\t:",Min_Index,"\nAverage\t:",Mean,"\nStad

Deviation\t:",SD,"\nVariance\t:",Variance,"\nMedian\

t:",Med,"\nPercentile	25\t:",Per25,"\nPercentile

75\t:",Per75)

Output

Max	:	0.960839776764

Index	:	3

Min	:	0.0795636675955

Index	:	1

Average	:	0.533217195093

Stad	Deviation	:	0.345312622379

Variance	:	0.119240807174

Median	:	0.653392931307

Percentile	25	:	0.180674642779

Percentile	75	:	0.884705912786

Let	 us	 now	 apply	 the	 above	 functions	 to	 solving	 part	 of	 a	 popular	 problem.
Travelling	 salesman	 problem	 is	 a	 popular	 problem,	 which	 finds	 the	 shortest
circuit	 that	covers	all	 the	vertices	from	a	given	graph.	There	are	many	ways	to
solve	the	problem.	Well,	most	of	them	require	large	amounts	of	time.	However,	a
method	 that	 uses	dynamic	programming	 finds	 the	 reduced	matrix	of	 the	given
matrix.	The	reduced	matrix	can	be	found	as	follows.	First	of	all,	 the	minimum
element	 from	 all	 the	 columns	 is	 found.	 The	 minimum	 of	 a	 column	 is	 then
subtracted	 from	 the	 elements	 of	 that	 particular	 column.	The	 result	 of	 this	 step
will	be	a	matrix	having	at	least	one	zero	in	each	column.	Likewise	the	minimum

18.5

element	of	each	row	is	found.	This	element	is	then	subtracted	from	each	element
of	 the	 row.	The	 result	of	 this	 step	will	 be	 a	matrix	having	at	 least	one	zero	 in
each	 row.	 The	 resultant	 matrix	 will	 be	 henceforth	 referred	 to	 as	 the	 reduced
matrix.	 In	 Python	 this	 task	 can	 be	 accomplished	 easily.	 The	 first	 part	 of	 the
process	 has	 been	 shown	 in	 the	 following	 snippet.	 The	 reader	 is	 expected	 to
repeat	the	task	for	each	row	as	well.

Min_Indeces_Col=np.argmin(B,axis=0)

Min_Col=np.min(B,axis=0)

print(Min_Col)

print(Min_Indeces_Col)

Output:

[0.18067464 0.07956367 0.14794398]

[0	0	2]

print(B-Min_Col)

print(np.sum(Min_Col))

Output

BROADCASTING

If	two	arrays	of	same	dimensions	are	added	together,	an	element	of	the	resultant
array	is	the	sum	of	the	corresponding	elements	of	the	two	arrays.	For	example,	if

Likewise,	if

It	may	be	stated	here	that	the	above	result	is	obvious.	However,	Python	applies
the	operations	element	by	element	not	only	in	addition	or	subtraction,	but	also	in
the	case	of	multiplication	and	division.	The	following	snippet	shows	the	results
when	two	row	arrays	are	added,	subtracted,	multiplied,	or	divided.	(Note	that	in
each	 case	 the	 resultant	 array	 is	 obtained	 by	 applying	 the	 operation	 in	 the
corresponding	elements).

import	numpy	as	np

A=np.array([1,2,3])

B=np.array([7,8,9])

Sum=A+B

Diff=A-B

Prod=A*B

Div=A/B

print("Sum\t:",Sum,"\nDifference\t:",Diff,"\nProduct\

t:",Prod,"Div\t:",Div)

Output

Sum	:	[8	10	12]

Difference	:	[-6	-6	-6]

Product	:	[7	16	27]	Div	:	[0.14285714	0.25	0.33333333]

The	 above	 examples	 give	 expected	 results	 as	 the	 dimensions	 of	 the	 arrays	 on
which	 the	 operations	 were	 applied	 had	 appropriate	 dimensions.	 What	 if	 two
arrays	of	different	dimensions	are	added	together?	Python	has	a	way	to	deal	with
such	 situations.	 This	 is	 called	 broadcasting.	 It	 may	 be	 stated	 here	 that

broadcasting	 does	 not	 always	 work.	 It	 works	 in	 the	 situations	 discussed	 as
follows.	For	example,	if	a	row	array	(say,	[1,	2,	3])	is	added	to	a	column	array
(say	[[7],	[8],	[9]]),	then	the	following	procedure	is	employed:

That	is	the	row	matrix	is	converted	to	a	two	dimensional	matrix	by	copying	the
elements	of	 the	first	 row	to	all	other	 rows.	Here	 the	number	of	 rows	would	be
equal	 to	 the	 number	 of	 elements	 in	 the	 column	 matrix.	 Likewise	 the	 column
matrix	is	also	converted	into	a	two	dimensional	matrix	by	copying	the	elements
of	the	column	to	all	other	columns.	Here,	the	number	of	columns	would	be	equal
to	the	number	of	elements	in	the	row	matrix.	Likewise	the	results	of	subtraction,
multiplication,	and	division	can	be	evaluated.	The	program	follows:

C=B[:,np.newaxis]

C

array([[7],

[8],

[9]])

Sum=A+C

Diff=A-C

Prod=A*C

Div=A/C

print("Sum\t:\n",Sum,"\nDifference\t:\n",Diff,"\nProduct\t:\

n",Prod,"\nDiv\t:\n",Div)

Output

Sum	:

[[8	9	10]

[9	10	11]

[10	11	12]]

Difference	:

[[-6	-5	-4]

[-7	-6	-5]

[-8	-7	-6]]

Product	:

[[7	14	21]

[8	16	24]

[9	18	27]]

Div	:

[[0.14285714	0.28571429	0.42857143]

[0.125	0.25	0.375]

[0.11111111	0.22222222	0.33333333]]

If	a	row	array	is	added	to	a	two	dimensional	array,	the	addition	is	carried	out	by
converting	the	first	array	into	a	two	dimensional	array	by	copying	the	elements
of	 the	row	to	all	other	 rows,	 the	number	of	 rows	being	 the	same	as	 that	 in	 the
second	array.	That	is,

Likewise	 the	 subtraction,	 multiplication,	 and	 division	 can	 be	 carried	 out.	 The
following	snippet	shows	the	results	of	these	operations:

D=[[1,2,3],[4,5,6],[7,8,9]]

Sum=D+A

Diff=D-A

Prod=D*A

Div=D/A

print("Sum\t:\n",Sum,"\nDifference\t:\n",Diff,"\nProduct\t:\

n",Prod,"Div\t:\n",Div)

Output

Sum	:

[[2	4	6]

[5	7	9]

[8	10	12]]

Difference	:

[[0	0	0]

[3	3	3]

[6	6	6]]

Product	:

[[1	4	9]

[4	10	18]

[7	16	27]]

Div	:

[[1.	1.	1.]

[4.	2.5	2.]

[7.	4.	3.]]

If	a	column	array	is	added	to	a	two	dimensional	array,	the	addition	is	carried	out
by	 converting	 the	 first	 array	 into	 a	 two	 dimensional	 array	 by	 copying	 the
elements	of	the	columns	to	all	other	columns,	the	number	of	columns	being	the
same	 as	 that	 in	 the	 second	 array.	 The	 results	 of	 addition,	 subtraction,
multiplication,	and	division	of	B	and	D	are	as	follows	(B	and	D	above).

D=[[1,2,3],[4,5,6],[7,8,9]]

Sum=D+B

Diff=D-B

Prod=D*B

Div=D/B

print("Sum\t:\n",Sum,"\nDifference\t:\n",Diff,"\nProduct\

t:\n",Prod,"Div\t:\n",Div)

Output

Sum	:

[[8	10	12]

[11	13	15]

[14	16	18]]

Difference	:

[[-6	-6	-6]

[-3	-3	-3]

[0	0	0]]

Product	:

[[7	16	27]

[28	40	54]

[49	64	81]]	Div	:

[[0.14285714	0.25	0.33333333]

18.6

[0.57142857	0.625	0.66666667]

[1.	1.	1.]]

The	above	discussion	can	be	summarized	as	follows:

If	two	arrays	have	different	dimensions,	the	one	with	lesser	dimensions	is
padded	with	the	one	on	the	leading	side.
If	one	of	the	arrays	is	either	row	(or	column	matrix)	the	elements	of	the	row
(or	column)	are	copied	to	all	other	rows	(or	columns)	and	then	the	operation
is	applied.
If	the	dimensions	do	not	match,	an	error	is	raised.

STRUCTURED	ARRAYS

The	structured	arrays	help	us	to	create	an	array	having	a	structure	as	its	element.
This	 not	 only	 helps	 in	maintaining	 the	 information	 easily	 but	 also	 helps	 with
easy	access	and	manipulation.	In	order	to	understand	the	concept,	let	us	take	an
example.	Suppose	that	you	have	been	asked	to	store	the	data	of	employees:	their
names,	ages,	and	salaries.	Now,	you	make	three	different	arrays:	name,	age,	and
salary,	having	the	following	data:

name=['Harsh','Naved','Aman','Lovish']

age=[100,70,24,18]

salary=[75500.00,65500.00,55500.00,45500.00]

Since	 it	 is	 difficult	 to	 handle	 individual	 arrays,	 we	 create	 a	 structured	 array
containing	the	above	information.	In	order	to	do	that	we	can	create	an	array	in
which	each	element	is	a	tuple	containing	three	values:	name,	which	is	a	Unicode
string	of	size	10;	age,	which	is	an	integer	of	4	bytes	and	salary,	which	is	float	(8
bytes),	using	the	following	statement:

data=np.zeros(4,dtype={'names':('name','age','salary'),'

formats':('U10','i4','f8')})

This	is	followed	by	associating	the	attributes	with	the

above	arrays.

data['name']=name

data['age']=age

data['salary']=salary

The	following	code	depicts	an	example	of	creating	a

structured	array.

import	numpy	as	np

name=['Harsh','Naved','Aman','Lovish']

age=[100,70,24,18]

salary=[75500.00,65500.00,55500.00,45500.00]

data=np.zeros(4,dtype={'names':('name','age','salary'),

'formats':('U10','i4','f8')})

data['name']=name

data['age']=age

data['salary']=salary

print(data)

Output

[('Harsh',	100,	75500.0)	('Naved',	70,	65500.0)	('Aman',	24,

55500.0)

('Lovish',	18,	45500.0)]

Once	a	structured	array	is	created,	the	data	can	be	accessed	in	the	usual	way.	For
example,	to	display	the	value	of	a	particular	attribute,	we	can	simply	mention	the
name	of	the	attribute	in	single	quotes	inside	the	square	brackets.

data['name']

Output

array(['Harsh',	'Naved',	'Aman',	'Lovish'],	dtype='<U10')

data['age']

array([100,	70,	24,	18])

data['salary']

array([75500.,	65500.,	55500.,	45500.])

data[1]

('Naved',	70,	65500.0)

These	 structured	 arrays	 can	 be	 used	 to	 access	 more	 complicated	 information
from	the	data	as	well.	For	example,	to	see	the	name	of	the	last	employee	of	the
list	we	can	write:

data[-1]['name']

Output

18.7

'Lovish'

CONCLUSION

The	NumPy	package	helps	a	programmer	to	deal	with	the	multidimensional	arrays
in	 the	 most	 sophisticated	 way.	 The	 package	 allows	 us	 to	 create	 arrays	 of	 all
types.	The	package	provides	a	wide	range	of	aggregate	functions	to	deal	with	the
elements	 and	 analyze	 the	 data.	Here	 it	may	 be	 noted	 that	 unlike	 conventional
matrices,	the	elements	of	an	array	can	also	be	operated	upon	in	a	unique	fashion,
discussed	in	the	last	but	one	section	of	this	chapter.	The	chapter	also	sheds	light
onto	the	importance	and	usage	of	multidimensional	arrays.	The	next	chapter	uses
the	matplotlib	package	to	visualize	the	data	and	analyze	the	results.	The	reader
is	expected	to	go	through	the	next	chapter	and	deal	with	the	problems	given	in
the	appendix	of	this	book.

POINTS	TO	REMEMBER

NumPy	is	a	Python	package,	which	stands	for	Numerical	Python.
NumPy	 contains	 multidimensional	 array	 objects	 and	 the	 routines	 which
process	these	arrays.
The	 ndarray	 helps	 in	 creating	 an	 array.	 These	 arrays	 are	 zero	 based
indexed.
The	elements	of	an	array	are	assigned	consecutive	memory	locations.
The	elements	of	an	array	can	be	arranged	in	the	row	major	style	(as	in	the
case	of	“C”)	or	column	major	style	(as	in	the	case	of	Fortran).
A	basic	array	can	be	created	using	the	numpy.array	function.
The	linspace(),	logspace()	and	arange()	functions	help	to	create	arrays
which	have	specific	sequences.
The	 structured	 arrays	 help	 us	 to	 create	 an	 array	 having	 a	 structure	 as	 its
element.
Broadcasting	 helps	 in	 applying	 arithmetic	 operations	 to	 arrays	 that	 have
different	dimensions
Broadcasting	does	not	always	work

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. In	which	of	the	following	cases	is	dynamic	typing	redundant?

(a) When	the	type	of	the	variable	would	not	change

(b) When	an	object	needs	to	hold	more	than	one	type	of	data

(c) Both

(d) None	of	the	above

2. NumPy	is

(a) Numeric	Python

(b) Numeric

(c) Number	Python

(d) None	of	the	above

3. NumPy	primarily	deals	with

(a) Multidimensional	arrays

(b) Graphics

(c) Animations

(d) None	of	the	above

4. Which	of	the	following	was	the	predecessor	of	NumPy?

(a) Numeric

(b) Number

(c) MATLAB

(d) None	of	the	above

5. Which	package	provides	MATLAB-like	capabilities	to	Python?

(a) NumPy

(b) re

(c) math

(d) None	of	the	above

6. Consider	the	following	code
A	=	np.array([4,	2,	1])

B	=	np.array([3,	9,	27])

C	=	B[:np.newaxis]

sum	=	A+C

Which	of	the	following	options	is	sum?

(a) [[7,	5,	4],	[13,	11,	10],	[31,	29,	28]]

(b) The	arrays	cannot	be	added

(c) [7,	11,	28]

(d) [[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]

7. In	the	above	question,	if	diff	=	A–C,	which	of	the	following	options	is	diff?

(a) [[1,	–1,	2],	[–5,	–7,	–8],	[–23,	–25,	–26]]

(b) The	arrays	cannot	be	added

(c) [1,	–7,	–26]

(d) [[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]

8. In	 the	 above	question,	 if	 prod	=	A	*	C,	which	of	 the	 following	options	 is
prod?

(a) [[12,	6,	1],	[36,	18,	9],	[108,	54,	27]]

(b) The	arrays	cannot	be	added

(c) [12,	18,	27]

(d) [[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]

9. If	A	=	[3,	4,	5]	and	B	=	[[0,	1,	2],[3,	4,	5],	[6,	7,8]],	find	A–B

(a) The	arrays	cannot	be	subtracted

(b) [[3,	3,	3,],	[0,0,0],	[-3,	-3,	-3]]

(c) [0,	0,	0]

(d) [[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]

10. In	Python	an	array	can	have	tuple	as	its	element.	Which	of	the	following	is
true	with	respect	to	this	statement?

(a) Such	arrays	are	called	structured	arrays

(b) An	array	must	have	a	single	data	type

(c) This	is	possible	in	the	case	of	lists	not	arrays

(d) None	of	the	above

11. In	Python,	which	of	the	following	is	true	with	respect	to	broadcasting?

(a) It	is	used	when	the	dimensions	of	the	arrays	do	not	match

(b) It	is	not	always	possible

(c) Both

(d) None	of	the	above

12. In	Python,	which	function	can	be	used	to	generate	a	sequence?

(a) arange

(b) linspace

(c) logspace

(d) All	of	the	above

13. The	aggregate	function	in	NumPy	can	be	used	to	find

(a) Mean

(b) Median

(c) Maximum

(d) Minimum

14. Which	of	the	following	is	true	for	NumPy?

(a) It	is	a	package	which	deals	with	multidimensional	arrays

(b) It	is	useful	for	carrying	out	statistical	analysis

(c) It	works	well	with	MatPlotLib

(d) All	of	the	above

15. One	can	create	a	histogram	of	the	given	data	using

(a) re

(b) Matplotlib

(c) Both

(d) None	of	the	above

THEORY

1. Explain	the	importance	of	the	NumPy	module.

2. Explain	 how	 a	 one	 dimensional	 array	 containing	 zeros	 is	 generated	 using
NumPy.	Also	explain	the	creation	of	a	2	dimensional	array.

3. Write	 a	 short	 note	 on	 aggregate	 functions	 in	 NumPy.	 State	 the	 functions
used	to	find	the	following:

Mean
Maximum
Minimum
Standard	deviation
Median
Percentile

4. Explain	how	an	array	can	be	generated	 in	NumPy.	Explain	 the	syntax	and
usage	of	the	following	functions:

Linspace
Logspace
Arange

5. What	is	broadcasting	in	NumPy?	Explain	the	rules	of	broadcasting.

6. What	is	a	structured	array?	How	is	a	structured	array	created	in	Python?

7. Explain	the	concept	of	dynamic	typing	in	Python.

8. Explain	the	need	to	have	the	data	type	of	a	variable.

9. Explain	the	procedure	of	plotting	a	histogram	of	a	given	data.

10. Explain	the	use	of	NumPy	in	generating	arithmetic	progression	and	geometric
progression.

APPLICATIONS/	NUMERICAL

1. Ask	 the	 user	 to	 enter	 the	 value	 of	 n.	 Now	 create	 an	 array,	 a,	 containing
integers	from	0	to	(n-1).

2. Create	 another	 array,	 b,	 from	 the	 above	 array	 containing	 all	 the	 even
numbers	of	the	original	array.

3. Create	 an	 array,	 c,	 from	 an	 array	 containing	 all	 the	 odd	 numbers	 of	 the
original	array.

4. Now	add	b	and	c	and	divide	each	element	of	the	resultant	array	by	2.	Check
if	the	result	is	same	as	a.

5. Create	a	one-dimensional	array	containing	500	random	numbers.

6. Find	the	mean,	standard	deviation,	median,	25th	percentile,	75th	percentile	of
the	numbers.

7. Create	a	histogram	of	the	above	data	with	10	bins.

8. Implement	 linear	 search.	 Also	 use	 the	 requisite	 method	 of	 NumPy	 and
compare	the	running	time	of	both.

9. Sort	the	elements	of	the	array.	Also	use	the	requisite	method	of	NumPy	and
compare	the	running	time	of	both.

10. Create	 an	 array	of	500	 random	numbers.	Find	 the	product	of	 the	numbers
using	loops	and	by	using	the	functions	of	numpy	and	compare	the	running
time	by	the	two	methods.

11. From	the	above	array	find	the	maximum	element	by	the	following	methods:

(a) Using	the	maximum	function	of	NumPy

(b) Using	loops	in	O(n)	time

(c) Using	divide	and	conquer	in	O(log	n)	time

12. Create	a	two-dimensional	array	having	n	rows	and	m	columns	containing:

(a) All	ones

(b) All	zeros

(c) 1’s	at	the	diagonal

(d) 0-(m-1)	at	the	diagonal

(e) Random	numbers

13. Create	a	 two-dimensional	array	having	7	rows	and	7	columns	such	 that	an
element	aij	(element	at	the	ith	row	and	the	jth	column)	is	(i+j)2.

14. Find	the	sum	of	elements	at	the	diagonals.
(Refer	to	Q.	13)

15. Find	the	maximum	element	in	each	row.
(Refer	to	Q.	13)

16. Find	the	maximum	element	in	each	column.
(Refer	to	Q.	13)

17. Sort	the	elements	of	each	row.
(Refer	to	Q.	13)

18. Sort	the	elements	of	each	column.
(Refer	to	Q.	13)

19. From	 this	 array	 create	 an	 array	 having	 elements	 of	 alternate	 rows	 and
alternate	columns.

(Refer	to	Q.	13)

20. Create	another	array,	 from	the	original	array,	having	elements	 from	the	4th
row	onwards.

(Refer	to	Q.	13)

21. Create	 three	arrays	having	the	names,	age,	and	roll	numbers	of	students	of
an	institute.

22. Create	a	structured	array	having	a	tuple	as	its	element,	containing	name,	age
and	roll	number.	Now	carry	out	the	following	tasks	vis-à-vis	the	structured

array:

(a) Display	the	names	of	all	the	students

(b) Display	the	ages	of	all	the	students

(c) Display	the	roll	numbers	of	all	the	students

(d) Display	the	name	of	the	last	student

(e) Display	the	name	of	the	eldest	student

(f) Display	the	name	of	the	youngest	student

(g) Display	the	names	and	roll	numbers	of	all	the	students	having	an	age
entered	by	the	user.

19.1

CHAPTER	19

INTRODUCTION	TO	MATPLOTLIB

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	MATPLOTLIB
• Create	the	plots	for	lines,	curves,	etc.
• Understand	subplotting
• Create	three	dimensional	plots	using	MATPLOTLIB

INTRODUCTION

In	 the	previous	chapter,	 the	methods	and	procedures	used	to	deal	with	 the	data
were	 discussed.	 The	 chapter	 introduced	 numpy	 which	 helps	 to	 accomplish
numerous	 tasks.	 It	 is	 important	 to	 be	 able	 to	 visualize	 the	 data	 as	 well.
Visualization	 gives	 an	 insight	 of	 the	 results	 and	 may	 help	 to	 uncover	 the
underlying	patterns.	Matplotlib	is	a	package	that	helps	to	plot	various	types	of
graphs	 and	 visualize	 the	 data.	 This	 chapter	 primarily	 discusses	 the	 pyplot
package	of	matplotlib.

The	pyplot	collection	of	the	matplotlib	provides	a	set	of	functions	which	help
programmers	to	perform	various	tasks	associated	with	plotting.	These	functions
provide	 MATLAB	 like	 capabilities	 to	 Python	 programmers.	 pyplot	 provides
functions	 to	plot	a	 figure,	create	a	plotting	area,	assign	 labels,	etc.	The	pyplot
keeps	 an	 account	 of	 the	 current	 figure	 and	 the	 area	 and	 hence	 can	 direct	 the
functions	to	the	requisite	axes.	The	following	sections	discuss	some	of	the	most
important	functions	in	pyplot	and	present	some	interesting	examples.

The	 chapter	 has	 been	 organized	 as	 follows.	 Section	 19.2	 introduces	 basic
plotting,	Section	19.3	discusses	sub-plotting	and	Section	19.4	presents	3D	plots.
The	last	section	concludes	the	chapter.

19.2 THE	PLOT	FUNCTION

We	start	by	plotting	the	values	of	a	list.	In	order	to	generate	a	basic	plot,	a	list	L,
having	n	values	 (index:	0	 to	 (n-1)),	 can	be	passed	 to	 the	plot	 function.	 In	 the
generated	plot,	 the	x-axis	will	have	values	 from	0	 to	 (n-1)	 and	 the	Y-axis	will
have	the	values	in	the	given	list.	The	xlabel	function	associates	a	label	with	the
X-axis.	The	 argument	 of	 the	xlabel	 function	 is	 a	 string.	The	ylabel	 function
associates	a	label	with	the	Y-axis.	The	show	function	displays	the	figure.	One	can
also	save	the	figure	using	the	savefig	function.	The	savefig	function	takes	two
arguments:	the	figure	to	be	plotted	and	the	dpi.	In	the	following	example,	the	list
L	=[1,	4,	8,	10]	is	passed	to	the	plot	function.	The	string	"X	Axis"	is	passed	to
the	xlabel	function	and	"Y	Axis"	is	passed	to	the	ylabel	function.	Note	that	in
the	figure,	the	X	axis	has	values	from	0	to	3	(the	indices	of	the	values	of	the	list)
and	the	Y	axis	ranges	from	0	to	10	(from	0	to	 the	maximum	value	of	 the	 list).
This	can	be	changed	using	the	axis	function,	which	takes	a	list	as	an	argument.
The	function	has	the	following	arguments:

xmin
ymin
xmax
ymax

The	figure	is	saved	as	a	png	file	using	the	savefig	function.	The	function	takes
two	arguments:	the	name	of	the	figure	and	the	dpi.	Figure	19.1	shows	the	output
of	the	program.

plt.plot([1,4,8,10])

plt.xlabel("X	Axis")

plt.ylabel("Y	Axis")

plt.show()

plt.savefig("line.png",dpi=80)

FIGURE	19.1 If	a	list	is	passed	to	the	plot	function,	the	values	are	plotted	against	the	indices	of
the	list

In	the	above	example,	the	plot	function	takes	one	argument.	However,	it	can	also
take	 two	 arguments	 indicating	 the	 values	 of	X	 and	Y.	 The	 following	 example
plots	y	=	2x2	–	3	(Figure	19.2).

for	x	in	[-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5].

X=[-5,-4,-3,-2,-1,0,1,2,3,4,5]

Y=	[2*x*x-3	for	x	in	X]

plt.plot(X,Y)

plt.xlabel("X	Axis")

plt.ylabel("Y	Axis")

plt.show()

plt.savefig("line.png",dpi=80)

FIGURE	19.2 The	plot	function	can	also	take	two	arguments;	the	second	argument’s	values	can
be	generated	using	generators	or	comprehensions

One	can	even	pass	a	two	dimensional	array	(or	list	of	lists)	in	plot,	in	which	case
the	first	element	of	each	row	(or	list)	would	be	plotted	as	a	separate	plot	and	the
second	as	a	separate	plot.	Figure	19.3	shows	the	output	of	the	plot.

X=[[2,3,1],[4,6,3],[6,9,7],[8,10,5],[9,11,7],[10,18,12],

[11,23,14]]

X

plt.plot(X)

plt.show()

FIGURE	19.3 The	plot	function	can	take	a	two-dimensional	array	as	arguments	for	plotting
multiple	lines

The	plot	function	can	have	an	additional	argument	stating	the	color	of	the	plot.
The	default	color	is	blue	and	it	can	be	changed	as	follows.	The	color	argument
of	the	plot	function	can	be	set	to	a	particular	value,	say	'red'	(color	=	'red')in
order	to	generate	a	plot	of	the	desired	color.	In	the	following	example,	the	x-axis
would	now	span	from	0	to	6	and	y-axis	would	span	from	0	to	15,	owing	to	the
arguments	of	the	axis	function.	The	output	of	the	following	code	would	be	same
as	that	of	the	first	one,	except	for	the	color	of	the	plot	and	the	axis	(Figure	19.4).

plt.plot([1,4,8,10],	color='red')

plt.xlabel("X	Axis")

plt.ylabel("Y	Axis")

plt.axis([0,6,0,15])

plt.show()

plt.savefig("line.png",dpi=80)

FIGURE	19.4 The	plot	function	can	also	have	an	argument	to	set	the	color	of	the	plot

If	one	wants	to	plot	only	the	points	and	not	the	lines,	an	additional	argument	“o”
can	 be	 passed	 to	 the	 plot	 function,	 shown	 as	 follows.	 Likewise,	 the	 plots
indicated	by	a	square	and	a	 triangle	can	be	plotted	by	giving	“s”	and	“^.”	The
code	follows	and	the	output	of	the	program	has	been	shown	in	Figures	19.5	and
19.6.

plt.plot([1,3,4],[7,8,3],'o')

plt.show()

FIGURE	19.5 The	plot	function	can	also	plot	circles	using	an	additional	“o”	argument

plt.plot([1,3,4],[7,8,3],'o')

plt.plot([1,2,3,4],[2,1,3,5],'s')

plt.plot([1,5,6],[9,10,11],'^')

plt.show()

FIGURE	19.6 The	plot	function	can	also	plot	squares	and	triangles	using	additional	“s”	or	“^”	as
argument

The	 following	 example	 shows	 the	 procedure	 for	 plotting	 the	 sine	 and	 cosine
functions	 using	 Matplotlib.	 The	 plot,	 show,	 and	 savefig	 functions	 have
already	been	explained	in	the	above	examples.	In	the	following	code,	the	X-axis
is	divided	into	256	parts	(from	-22/7	to	22/7).	The	linespace	function	helps	to
accomplish	 this	 task.	The	sine	of	 the	X	values	can	be	calculated	using	 the	sin
function	 of	 numpy.	 Likewise,	 the	 cosine	 can	 be	 calculated	 using	 the	 cosine
function.	Both	the	plots	are	plotted	in	the	same	area.	The	output	has	been	shown
in	Figure	19.7.

from	matplotlib	import	pyplot	as	plt

import	numpy	as	np

X	=	np.linspace(-np.pi,	np.pi,	256,	endpoint=True)

C,	S	=	np.sin(X),	np.cos(X)

plt.plot(X,C)

plt.plot(X,S)

plt.show()

plt.savefig("SinCos.png",	dpi=72)

The	 color	 of	 the	 plots	 can	 be	 changed	 by	 setting	 the	 color	 attribute	 to	 the
requisite	value.	The	linestyle	can	also	be	set.	The	pyplot	also	provides	the	xlim
and	ylim	 functions	for	setting	the	limits	of	 the	X-	and	the	Y-axis.	The	ticks	on
the	 X-	 and	 the	 Y-axis	 can	 be	 set	 by	 using	 the	 xticks	 and	 yticks	 functions.
These	functions	take	a	list	containing	the	values	to	be	displayed	on	the	axes.

plt.figure(figsize=(8,	6),	dpi=80)

plt.subplot(1,	1,	1)

X	=	np.linspace(-np.pi,	np.pi,	256,	endpoint=True)

C,	S	=	np.cos(X),	np.sin(X)

plt.plot(X,	C,	color="blue",	linestyle="-")

plt.plot(X,	S,	color="red",	linestyle="-")

plt.xlim(-4.0,	4.0)

plt.xticks(np.linspace(-4,	4,	9,	endpoint=True))

plt.ylim(-1.0,	1.0)

plt.yticks(np.linspace(-1,	1,	5,	endpoint=True))

plt.savefig("SinCos.png",	dpi=180)

plt.show()

FIGURE	19.7 The	sine	and	cosine	function	in	the	same	plot

The	 following	 code	 prints	 the	 plot	 for	 the	 log	 function	 of	 numpy.	 The	 only
difference	 in	 the	 previous	 and	 the	 following	 example	 is	 the	 use	 of	 the	 log
function	of	numpy	in	place	of	the	sin	of	the	cosine	function.	The	output	of	the
code	has	been	shown	in	Figure	19.8.

plt.figure(figsize=(8,	6),	dpi=80)

plt.subplot(1,	1,	1)

X	=	np.linspace(0.1,2,	100,	endpoint=True)

L	=	np.log(X)

plt.plot(X,	L,	color="blue",	linestyle="-")

plt.xlim(0,	2)

plt.xticks(np.linspace(0,	2,	100,	endpoint=True))

plt.ylim(-1.0,	1.0)

plt.yticks(np.linspace(-1,	1,	21,	endpoint=True))

#	Save	figure	using	80	dots	per	inch

plt.savefig("Log.png",	dpi=180)

#	Show	result	on	screen

plt.show()

FIGURE	19.8 The	log	function

The	 imshow	 function	 of	 the	 matplotlib	 shows	 the	 image.	 The	 following
example	plots	the	magnitude	and	the	phase	of	complex	number	between	–2π	to
2π.	The	output	of	the	code	has	been	shown	in	Figure	19.9.

import	matplotlib.pyplot	as	plt

x	=	np.linspace(-2*np.pi,	2*np.pi,	100)

xx	=	x	+	1j	*	x[:,	np.newaxis]

out	=	np.exp(xx)

plt.subplot(121)

plt.imshow(np.abs(out),extent=[-2*np.pi,	2*np.pi,	-2*np.	pi,

2*np.pi])

plt.title('Magnitude	of	exp(x)')

plt.subplot(122)

plt.imshow(np.angle(out),extent=[-2*np.pi,	2*np.pi,	-2*np.

pi,	2*np.pi])

plt.title('Phase	(angle)	of	exp(x)')

plt.show()

FIGURE	19.9 The	use	of	implot	to	generate	the	magnitude	and	phase	of	a	complex	number

The	plots	described	above	are	an	excellent	way	of	comparing	the	functions	(say
x2,	x3	 and	x4)	 by	 using	 the	power	 function	 of	numpy.	 The	 plot	 function	 has	 a
label	argument	stating	the	type	of	curve.	The	limits	of	the	x-axis	are	set	from	1
to	20	 and	 that	 of	y-axis	 is	 from	0	 to	 800.	The	 output	 of	 the	 code	 is	 shown	 in
Figure	19.10.

x	=	np.linspace	(0,	10,	50)

y1	=	np.power(x,	2)

y2=np.power(x,3)

y3	=	np.power(x,	4)

plt.plot(x,	y1,	label='x^2')

plt.plot(x,	y2,	label='x^3')

plt.plot(x,	y3,	label='x^4')

plt.xlim((1,	20))

plt.ylim((0,	800))

plt.xlabel('X	Axis')

plt.ylabel('Y	:	Powers')

plt.title('First	:x^2	Second:x^3	Third:x^4')

#plt.legend()

plt.savefig("powers.png",dpi=80)

plt.show()

FIGURE	19.10 The	plots	of	x2,	x3,	and	x4

The	pyplot	function	can	also	be	used	to	plot	a	histogram.	The	hist	function	can
be	used	to	accomplish	the	task.	The	hist	function	has	data	as	an	argument.	The
color	 argument	 of	 the	 function	 associates	 the	 color	 to	 the	 histogram.	 The
optional	 commutative	 argument,	 if	 True,	 plots	 a	 commutative	 histogram.	 The
number	 of	 bins	 indicates	 the	 segregations	 on	 the	 x-axis.	 The	 following	 code
exemplifies	the	function.	The	output	has	been	shown	in	Figure	19.11.

data	=	np.random.randn(100)

f,	(ax1,	ax2)	=	plt.subplots(1,2,figsize=(6,3))

ax1.hist(data,bins=10,normed=True,color='blue')

ax2.hist(data,bins=10,normed=True,color='red',cumulative=True)

plt.savefig('histogram.png')

plt.show()

FIGURE	19.11 A	histogram	can	be	plotted	using	the	hist	function	of	pyplot

The	imshow	function	plots	the	data	passed	as	the	argument.	The	matrix	generated

by	the	random	 function	(10	rows	and	10	columns)	is	passed	as	the	argument	in
the	imgshow	function.	The	colorbar	function	of	the	matlpotlib	is	then	invoked
and	is	finally	shown.	The	following	code	exemplifies	the	function	and	the	output
follows	(Figure	19.12).

Img	=	np.random.random((10,	10))

plt.imshow(Img)

plt.colorbar()

plt.savefig('imageplot.png')

plt.show()

FIGURE	19.12 The	colorbar	function	can	be	used	to	plot	the	required	plots

The	matplotlib	can	also	be	used	 to	plot	a	3	dimensional	 function.	 In	order	 to
plot	a	3	dimensional	plot,	the	projection	attribute	of	the	subplot	function	is	set
to	'3d'.	In	the	example	that	follows,	the	X	is	a	set	of	500	random	numbers,	the
Y	axis	has	sin	 of	X	 and	 the	 value	 of	Z	 is	 .	The	plot_wireframe
function	 takes	 four	 arguments:	 X,	 Y,	 Z,	 and	 linewidth.	 The	 following	 code
exemplifies	the	function	and	the	output	follows	(Figure	19.13)

from	mpl_toolkits.mplot3d	import	axes3d

ax	=	plt.subplot(111,	projection='3d')

X=np.random.random(500)

Y=np.sin(X)

19.3

temp=np.absolute(1-(X**2	+	Y**2))

#print(temp)

Z=np.sqrt(temp)

#print(Z)

plt.xlim(-1,1)

plt.ylim(-1,1)

ax.plot_wireframe(X,	Y,	Z,	linewidth=0.1)

plt.savefig('wire.png')

plt.show()

FIGURE	19.13 Plotting	3D	graphs	in	MATPLOTLIB

SUBPLOTS

Suppose	you	want	 to	compare	the	results	of	 two	different	experiments.	Having
two	figures	side	by	side	would	greatly	ease	the	task	of	comparing	the	results.	In
such	 situations	 the	 subplots	 come	 to	 our	 rescue.	 The	 idea	 is	 to	 have	 smaller
axes	in	a	single	figure;	in	fact	any	sort	of	layouts	in	a	given	figure.	This	task	can
be	 accomplished	 in	 a	 number	 of	 ways.	 One	 of	 the	 simplest	 ways	 to	 use	 the
matplotlib.axes	function	in	matplotlib;	-this	is	taking	advantage	of	the
fact	that	standard	axes	can	be	created	using	the	matplotlib.	axes()	function.
This	 function	 can	 also	 take	 a	 list	 of	 four	 numbers	 depicting	 the	 left,	 bottom,
width,	 and	 height	 respectively.	 The	 mechanism	 of	 creating	 a	 subplot	 is	 as

follows.	The	first	two	coordinates	specify	the	origin	of	the	new	axes,	considering
the	 original	 axes	 to	 be	 of	 a	 unit’s	 length.	 For	 example	 in	 the	 following	 figure
(Figure	19.14),	the	origin	of	the	subplot	is	(0.5,	0.5)	and	the	axes	are	40%	of	the
length	of	the	original	axes.	The	arguments	of	the	axes	function	in	this	case	would
be,	therefore,	(0.5,	0.5,	0.4,	0.4).

FIGURE	19.14 The	axis	(original)	range	from	0.0	to	1.0	(for	both	X	and	Y	axes).	The	origin	of	the
subplot	is	(0.5,	0.5).	The	length	of	the	axes	of	the	subplot	are	40%	of	that	of	the	original	axes.

The	subplots	can	be	generated	manually	by	using	the	axes	function	as	shown	in
the	following	code.	The	output	of	the	program	follows	(Figure	19.15).

import	matplotlib.pyplot	as	plt

import	numpy	as	np

axis1=plt.axes()

axis2=plt.axes([0.5,0.5,0.4,0.4])

plt.show()

FIGURE	19.15 Creating	a	new	subplot	manually,	using	the	axes	function

To	divide	the	given	plot	into	two	plots	by	creating	another	horizontal	axis	(that	is
dividing	the	graph,	vertically,	 into	two	subplots),	 the	add_axes	 function	can	be
used.	 The	 function	 takes	 four	 arguments	 in	 a	 list	 as	 shown	 in	 the	 following
example.	The	 two	 subplots	 are	 plotted	on	 two	 axes.	Both	 the	 axes	 are	 created
using	 the	add_axis	 function.	The	sin	 function	 of	numpy	 is	 used	 to	 plot	 a	sin
curve	on	the	first	axis	and	a	cosine	curve	on	the	second	axis.	The	values	of	X
(50	 in	 number,	 from	 0	 to	 10)	 are	 obtained	 using	 the	 linspace	 function.	 The
output	of	the	code	has	been	shown	in	Figure	19.16.

FIGURE	19.16 The	first	subplot	has	a	sine	curve	and	the	second	subplot	shows	a	cosine	curve

fig=plt.figure()

axis1=fig.add_axes([0.0,0.5,0.8,0.4])

axis2=fig.add_axes([0.0,0.1,0.8,0.4])

X=np.linspace(0,10,50)

axis1.plot(np.sin(X))

axis2.plot(np.cos(X))

plt.show()

The	 subplot	 function	 of	 matplotlib.pyplot	 helps	 to	 create	 a	 subplot	 with	 a
grid.	 The	 function	 takes	 three	 arguments:	 the	 number	 of	 rows,	 the	 number	 of
columns	 and	 the	 index.	The	 following	 example	 shows	nine	 subplots	 in	 a	 grid.
Note	that	the	arguments	of	the	nine	functions	are	as	follows:

(3,	3,	1)

(3,	3,	2)

(3,	3,	3)

(3,	3,	4)

(3,	3,	5)

(3,	3,	6)

(3,	3,	7)

(3,	3,	8)

(3,	3,	9)

The	 index	of	 the	 subplot	has	been	displayed	 in	 the	 subplot.	Figures	19.17	and
19.18	show	the	output	of	the	following	codes.

FIGURE	19.17 The	subplots	can	be	shown	individually

X=np.linspace(-np.pi,	np.pi,	100)

for	i	in	range(1,10):

plt.subplot(3,3,i)

Y=np.sin(X+i*(np.pi/2))

plt.plot(X,Y)

plt.show()

#plt.text(0,5,0.5,'Subplot\t:',	fontsize=18,	ha='center'

)

plt.show()

FIGURE	19.18 The	subplots	can	be	shown	as	a	single	plot	also

Note	 that	 the	distances	between	various	axes	of	 the	 subplots	are	not	 too	much
and	 hence	 the	 plot	 is	 not	 that	 clean.	 In	 order	 to	 handle	 such	 saturations,	 the
add_subplot	 function	 can	 be	 used	 in	 the	 pyplot.figure	 to	 create	 axes.	 The
horizontal	 and	 vertical	 spaces	 between	 the	 various	 subplots	 can	 be	 specified
using	the	subplots_adjust	function.	The	following	code	exemplifies	the	above
functions	and	the	output	follows	(Figure	19.19).

fig=plt.figure()

fig.subplots_adjust(hspace=0.4,	wspace=0.4)

for	i	in	range(1,10):

axis=fig.add_subplot(3,3,i)

Y=np.sin(X+i*(np.pi/2))

axis.plot(X,Y)

plt.show()

19.4

FIGURE	19.19 Using	hspace	and	wspace	in	plotting	subplots

As	a	matter	of	fact,	matplotlib	provides	functions	to	plot	the	whole	grid	in	one
go	 too.	 The	 pyplot.GridSpec	 allows	 more	 complicated	 arguments	 for
sophisticated	options.	However,	both	these	are	beyond	the	scope	of	this	book.

3	DIMENSIONAL	PLOTTING

Initially	 MatPlotLib	 supported	 only	 2	 dimensional	 plotting.	 However,	 the
mplot3d	 toolkit	has	helped	matplotlib	 evolve	and	pose	a	 serious	challenge	 to
MATLAB.	The	 toolkit	 allows	 the	creation	of	 a	3D	space	by	 setting	 the	argument
projection	(of	the	axes	function)	to	'3d'.	The	following	codes	show	examples	of
3D	plotting.	Note	 that	most	 of	 the	 functions	used	 in	 the	 following	 codes	have
already	been	explained.	Each	code	follows	the	output	(Figure	19.20).

from	mpl_toolkits	import	mplot3d

fig	=	plt.figure()

axis=plt.axes(projection='3d')

plt.show()

The	 toolkit	 helps	 the	 programmer	 to	 plot	 sophisticated	 figures	 by	 passing	 the
values	 of	 X,	 Y,	 and	 Z	 to	 the	 scatter	 3D	 function	 of	 the	 pyploy.axes.	 The
function	has	two	more	arguments:	a	and	cmap.	The	cmap	argument	can	be	set	to,
say,	 ‘Greens’	 or	 ‘binary’	 or	 any	 other	 value	 (see	 the	 following	 tip).	 In	 the

following	example,	the	Z	has	200	values	from	0	to	20.	The	sine	of	these	values
constitute	X	and	the	square	of	the	values	of	Z	constitute	Y.	The	code	that	follows
exemplifies	the	function	and	the	output	follows	(Figure	19.21).

FIGURE	19.20 A	basic	3-dimensional	plot

Tip

Possible	values	of	cmap

Accent,	Accent_r,	Blues,	Blues_r,	BrBG,	BrBG_r,	BuGn,	BuGn_r,	BuPu,

BuPu_r,	 CMRmap,	 CMRmap_r,	 Dark2,	 Dark2_r,	 GnBu,	 GnBu_r,	 Greens,

Greens_r,	 Greys,	 Greys_r,	 OrRd,	 OrRd_r,	 Oranges,	 Oranges_r,	 PRGn,

PRGn_r,	 Paired,	 Paired_r,	 Pastel1,	 Pastel1_r,	 Pastel2,	 Pastel2_r,

PiYG,	 PiYG_r,	 PuBu,	 PuBuGn,	 PuBuGn_r,	 PuBu_r,	 PuOr,	 PuOr_r,	 PuRd,

PuRd_r,	 Purples,	 Purples_r,	 RdBu,	 RdBu_r,	 RdGy,	 RdGy_r,	 RdPu,

RdPu_r,	 RdYlBu,	 RdYlBu_r,	 RdYlGn,	 RdYlGn_r,	 Reds,	 Reds_r,	 Set1,

Set1_r,	 Set2,	 Set2_r,	 Set3,	 Set3_r,	 Spectral,	 Spectral_r,	 Vega10,

Vega10_r,	Vega20,	Vega20_r,	Vega20b,	Vega20b_r,	Vega20c,	Vega20c_r,

Wistia,	Wistia_r,	YlGn,	YlGnBu,	YlGnBu_r,	YlGn_r,	YlOrBr,	YlOrBr_r,

YlOrRd,	 YlOrRd_r,	 afmhot,	 afmhot_r,	 autumn,	 autumn_r,	 binary,

binary_r,	 bone,	 bone_r,	 brg,	 brg_r,	 bwr,	 bwr_r,	 cool,	 cool_r,

coolwarm,	 coolwarm_r,	 copper,	 copper_r,	 cubehelix,	 cubehelix_r,

flag,	 flag_r,	 gist_earth,	 gist_earth_r,	 gist_gray,	 gist_gray_r,

gist_heat,	 gist_heat_r,	 gist_ncar,	 gist_ncar_r,	 gist_rainbow,

gist_rainbow_r,	 gist_stern,	 gist_stern_r,	 gist_yarg,	 gist_yarg_r,

gnuplot,	gnuplot2,	gnuplot2_r,	gnuplot_r,	gray,	gray_r,	hot,	hot_r,

hsv,	 hsv_r,	 inferno,	 inferno_r,	 jet,	 jet_r,	 magma,	 magma_r,

nipy_spectral,	 nipy_spectral_r,	 ocean,	 ocean_r,	 pink,	 pink_r,

plasma,	 plasma_r,	 prism,	 prism_r,	 rainbow,	 rainbow_r,	 seismic,

seismic_r,	 spectral,	 spectral_r,	 spring,	 spring_r,	 summer,

summer_r,	terrain,	terrain_r,	viridis,	viridis_r,	winter,	winter_r

axis=plt.axes(projection='3d')

Z=np.linspace(0,20,200)

X=np.sin(Z)

Y=[z*z	for	z	in	Z]

axis.scatter3D(X,	Y,	Z,	c=Z,cmap='Greens');

plt.show()

FIGURE	19.21 The	X-axis	is	sine	Z	and	Y-axis	is	Z2

In	the	illustration	that	follows,	the	X	and	the	Y	have	20	values	from	-5	to	5.	That
is,

Y	is	the	same	as	X.	Z	contains	the	square	root	of	the	sum	of	squares	of	X	and	Y,
that	is,

The	label	of	the	X	axis	can	be	set	using	the	set_xlable	function.	Likewise,	the

set_ylabel	and	set_zlabel	 function	 sets	 the	 labels	 for	 the	Y	 and	 the	Z	 axis.
The	output	of	the	plot	has	been	shown	in	Figure	19.22.

X=np.linspace(-5,5,20)

Y=np.linspace(-5,5,20)

X,Y	=	np.meshgrid(X,Y)

Z=np.sqrt(X*X	+	Y*Y)

fig	=plt.figure()

axis=plt.axes(projection='3d')

axis.contour3D(X,Y,Z,50,cmap='Greens')

axis.set_xlabel('X	axis')

axis.set_ylabel('Y	axis')

axis.set_zlabel('Z	axis')

plt.show()

FIGURE	19.22 Plot	of	

Note	that	the	whole	figure	can	be	rotated	by	any	angle	along	the	XY	plane	and
any	 angle	 counter	 clockwise	 about	 the	Z	 axis.	 The	view_init	 function	 of	 the
pyplot.	axes	helps	to	accomplish	this	task.	The	function	takes	two	arguments:
the	angle	about	the	XY	plane	and	that	(counterclockwise)	about	the	Z	axis.	The
following	 code	 is	 same	 as	 the	 above	 except	 for	 the	 last	 but	 one	 line,	 which
rotates	the	figure.	Figure	19.23	shows	the	output.

X=np.linspace(-5,5,20)

Y=np.linspace(-5,5,20)

X,Y	=	np.meshgrid(X,Y)

Z=np.sqrt(X*X	+	Y*Y)

fig	=plt.figure()

axis=plt.axes(projection='3d')

axis.contour3D(X,Y,Z,50,cmap='Greens')

axis.set_xlabel('X	axis')

axis.set_ylabel('Y	axis')

axis.set_zlabel('Z	axis')

axis.view_init(60,30)

plt.show()

FIGURE	19.23 The	rotated	plot	of	Figure	19.22

The	wireframe	function	helps	with	easy	visualization	of	the	plot.	The	following
illustration	 plots	 a	wireframe	 plot	 of	 the	 above	 example.	 Likewise	 the	 surface
plot	of	the	function	can	also	be	plotted	using	the	plot_surface	function.	On	the
basis	of	the	above	discussion,	the	reader	is	expected	to	decode	the	output	of	the
variants	that	follow	(Figures	19.24	and	19.25).

FIGURE	19.24 The	use	of	wireframe	function

FIGURE	19.25 The	axis.contour	3D	(X,Y,Z,50,cmap=‘Greens’)	function	plots	the	above	graph

Code

X=np.linspace(-5,5,20)

Y=np.linspace(-8,8,20)

X,Y	=	np.meshgrid(X,Y)

Z=np.sqrt(X*X	+	Y*Y)

fig	=plt.figure()

axis=plt.axes(projection='3d')

axis.contour3D(X,Y,Z,50,cmap='Greens')

axis.set_xlabel('X	axis')

axis.set_ylabel('Y	axis')

axis.set_zlabel('Z	axis')

axis.plot_wireframe(X,	Y,	Z,	color='red')

19.5

#axis.view_init(60,30)

plt.show()

Code

X=np.linspace(-5,5,20)

Y=np.linspace(-8,8,20)

X,Y	=	np.meshgrid(X,Y)

Z=np.sqrt(X*X	+	Y*Y)

fig	=plt.figure()

axis=plt.axes(projection='3d')

axis.contour3D(X,Y,Z,50,cmap='Greens')

axis.set_xlabel('X	axis')

axis.set_ylabel('Y	axis')

axis.set_zlabel('Z	axis')

axis.plot_surface(X,	Y,	Z,	rstride=1,	cstride=1,

cmap='viridis',	edgecolor='none')

#axis.view_init(60,30)

plt.show()

CONCLUSION

Plotting	 is	 important.	 It	 is	 important	 to	be	able	 to	visualize	 the	data	 to	analyze
the	 results	 and	 discover	 patterns.	 The	 popularity	 of	 MATLAB	 is	 partially
attributed	to	its	ability	to	present	mesmerizing	graphs.	The	same	can	be	achieved
in	Python	using	Matplotlib.	This	chapter	introduces	plotting	using	Matplotlib.
The	 chapter	 begins	with	 the	 explanation	 of	 basic	 plots.	 The	 lines,	 sine	 curve,
cosine	 curves	 and	 so	 on	 can	 be	 plotted	 easily	 using	 the	 Matplotlib	 package.
Matplotlib	 allows	 the	 subplots	 also.	This	 can	be	done	manually	 by	using	 the
Matplotlib.axes	 function.	 The	 subplot	 function	 can	 also	 be	 used	 to	 create
subplots.	As	stated	earlier	Matplotlib	used	to	support	only	2-D	graphics.	The
package	now	supports	3D	graphics	as	well.	This	has	helped	 the	package	share
the	 stage	 with	 MATLAB.	 In	 order	 to	 plot	 a	 3D	 graph,	 an	 additional	 argument
'projection'	is	set	to	'3d'.

GLOSSARY

Pyplot:	 The	 pyplot	 collection	 of	 the	 matplotlib	 provides	 a	 set	 of	 functions

which	help	the	programmers	to	perform	various	tasks	associated	with	plotting.

POINTS	TO	REMEMBER

Visualization	 gives	 an	 insight	 of	 the	 results	 and	may	 help	 to	 uncover	 the
underlying	patterns.
A	plot	 created	 using	 pyplot	 can	 be	 saved	 as	 a	png	 file	 using	 the	savefig
function.
If	 one	wants	 to	 plot	 only	 the	 points	 and	 not	 the	 lines,	 then	 an	 additional
argument	 “o”	 can	 be	 passed	 to	 the	 plot	 function.	 Likewise,	 the	 plots
indicated	by	a	square	and	a	triangle	can	be	plotted	by	giving	“s”	and	“^”.
The	color	of	the	plots	can	be	changed	by	setting	the	color	attribute	to	the
requisite	value.
The	imshow	function	of	the	matplotlib	shows	the	image.
The	hist	function	can	be	used	to	accomplish	the	task.
In	order	to	plot	a	3	dimensional	plot,	the	projection	attribute	of	the	subplot
function	is	set	to	"3D."
To	divide	 the	given	plot	 into	 two	plots	by	creating	another	horizontal	axis
(that	 is	 dividing	 the	 graph,	 vertically,	 into	 two	 subplots),	 the	 add_axes
function	can	be	used.
The	 horizontal	 and	 vertical	 spaces	 between	 the	 various	 subplots	 can	 be
specified	using	the	subplots_adjust	function.
The	label	of	the	x-axis	can	be	set	using	the	set_xlable	function.
The	wireframe	function	helps	with	easy	visualization	of	the	plot.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Visualization	is	important	because

(a) It	gives	an	insight	of	the	results

(b) It	helps	to	uncover	underlying	patters

(c) It	can	be	used	for	reporting

(d) All	of	the	above

2. Which	 collection	 of	 MATPLOTLIB	 provides	 functions	 to	 plot	 functions,
create	a	plotting	area,	etc.?

(a) Pyplot

(b) PyPy

(c) PIL

(d) None	of	the	above

3. Which	of	the	following	can	be	an	argument	of	the	plot	function	of	pyplot?

(a) List

(b) String

(c) File

(d) None	of	the	above

4. X=[-5,-4,-3,-2,-1,0,1,2,3,4,5]

Y=	[2*x*x-3	for	x	in	X]
plt.plot(X,Y)

The	above	code	would	plot	a

(a) Parabola

(b) Ellipse

(c) Hyperbola

(d) None	of	the	above

5. Which	of	the	following	is	used	to	show	a	curve?

(a) show

(b) display

(c) Both

(d) None	of	the	above

6. Which	function	is	used	to	save	the	plot	using	pyplot?

(a) savefig

(b) save

(c) saveimg

(d) None	of	the	above

7. Which	of	the	following	cannot	be	passed	as	an	argument	in	the	plot	function
of	pyplot?

(a) color

(b) List

(c) Both

(d) None	of	the	above

8. The	plot	function	can	plot	circles	using	which	of	the	following	arguments?

(a) o

(b) s

(c) delta

(d) None	of	the	above

9. Which	of	the	following	is	true	with	respect	to	plots	in	Pyplot?

(a) Multiple	curves	can	be	plotted	on	the	same	plot

(b) The	plot	can	be	divided	into	two	subplots	manually

(c) The	subplot	function	can	be	used	to	see	various	plots	in	a	single	plot

(d) All	of	the	above

10. Which	function	is	used	to	plot	a	histogram	in	pyplot?

(a) hist

(b) mist

(c) jist

(d) None	of	the	above

THEORY

1. Discuss	 the	 importance	of	visualization.	How	does	visualization	help	with
analyzing	the	results?

2. Name	a	package	that	helps	to	plot	graphs	in	Python.

3. Explain	how	the	values	of	a	list	can	be	plotted	using	pyplot.

4. Explain	how	multiple	lines	can	be	plotted	in	a	single	plot.

5. How	is	subplotting	carried	out	in	Python?	Explain	the	splitting	of	axes	and
the	subplot	function.

6. Explain	3	Dimensional	plotting	in	MATPLOTLIB.

7. How	 can	 you	 change	 the	 color	 of	 the	 graph	 in	 Pyplot?	 Also	 explain	 the
importance	of	cmap.

8. Which	package,	other	than	pyplot,	can	be	used	to	plot	graphs	in	Python?

PROGRAMMING	EXERCISE

1. Create	a	list	having	numbers	in	arithmetic	progression.	Ask	the	user	to	enter
the	 first	 term,	 the	 common	 difference	 and	 the	 number	 of	 terms	 of	 the
arithmetic	progression.	Plot	the	values	using	the	plot	function.

2. Create	a	list	having	numbers	in	geometric	progression.	Ask	the	user	to	enter
the	first	 term,	the	common	ratio	and	the	number	of	terms	of	the	geometric
progression.	Plot	the	values	using	the	plot	function.

3. Create	a	list	having	numbers	in	harmonic	progression.	Ask	the	user	to	enter
the	values	of	“a,”	“d,”	and	the	number	of	terms	and	plot	the	curve.

4. Plot	the	point	plots	of	the	above	curves.

5. Now,	plot	the	above	curves	in	the	same	plot	and	compare	them.

6. Create	subplots	showing	the	curves	of	questions	1,	2,	and	3.

7. In	 the	 above	 question,	 adjust	 the	 horizontal	 and	 the	 vertical	 distance
between	the	subplots.

8. There	are	four	types	of	parabolas:	upward,	downward,	left	facing,	and	right
facing.	 The	 equations	 of	 the	 parabolas	 having	 vertex	 at	 the	 origin	 are	 as
follows:
Upward:	x2	=	4ay
Downward:	x2	=	–	4ay
Right	facing:	y2	=	4ax
Left	facing:	y2	=	–	4ax
If	the	values	of	x	range	from	[10,	10]	and	the	values	of	y	are	calculated
using	the	appropriate	equation,	(you	can	use	comprehensions	to	calculate
the	values	of	y),	plot	the	above	parabolas	on	a	single	plot.

9. Now	create	a	subplot	to	plot	each	one	of	them.

10. Using	plotting	prove	that	(sin	θ)2	+	(cos	θ)2	=	1.

11. Plot	the	curve	of	tan	θ	and	identify	the	points	of	discontinuity.

12. Plot	an	ellipse	having	the	length	of	major	axis	=	10	and	the	length	of	minor
axis	=	5.

13. Plot	a	circle	having	radius	=	10	and	center	at	(5,5).

14. Now	plot	10	circles	having	radius	10	and	center’s	x	coordinate	varying	from
0	to	10.	The	y	coordinate	of	the	center	should	be	8.

15. Plot	 a	 hyperbola.	 Ask	 the	 user	 to	 enter	 a	 coordinate	 and	 display	 the
coordinate	 on	 the	 plot.	 The	 program	 should	 display	 whether	 the	 point	 is
inside	the	curve	or	outside	it.

20.1

CHAPTER	20

INTRODUCTION	TO	IMAGE
PROCESSING

After	reading	this	chapter,	the	reader	will	be	able	to

• Understand	the	importance	of	image	processing
• Open	an	image,	read	it	into	an	object,	and	write	the	object	in	a	file
• Understand	the	concept	of	clipping
• Extract	statistical	information	from	an	image
• Perform	rotation,	translation,	and	scaling

INTRODUCTION

The	 processing	 of	 an	 image	 and	 its	manipulation	 has	 become	more	 important
with	 time.	 Image	 processing	 is	 important	 in	 not	 just	 identifying	 people	 and
objects	but	is	used	in	numerous	fields	like	medicine,	mining,	networks,	etc.	The
importance	of	 image	processing	 can	be	gauged	 from	 the	 fact	 that	 it	 is	 used	 in
magnetic	 resonance	 imaging	 (MRI),	 X-rays,	 ultrasound,	 CT	 (Computer
Tomography)	 scans,	 etc.	 In	 addition	 to	 the	 above,	 image	processing	 is	 used	 in
industries	 for	 surveillance,	 fingerprint	 recognition,	 face	 recognition,
authentication,	signature	verification,	etc.	 Image	processing	techniques	are	also
used	 in	 areas	 like	 weather	 forecasting,	 remote	 sensing	 and	 in	 astronomical
studies.	Image	processing	is	an	involved	and	intricate	task.	Interestingly,	humans
are	better	at	 recognizing	 faces	and	objects.	The	marvelous	network	of	neurons
helps	 to	recognize	objects	 in	a	fraction	of	a	second.	The	recognition	of	objects
and	 their	 classification	 has	 always	 fascinated	 the	 computing	 fraternity.	 As	 a
matter	 of	 fact	 the	 fraternity	 has	 lately	 been	 mimicking	 the	 human	 beings	 to
develop	such	classifiers	and	recognizers.

The	past	few	decades	witnessed	marked	growth	in	both	hardware	and	software.
This	 was	 coupled	 with	 the	 advances	 in	 machine	 learning	 techniques.	 The

20.2

combination	 played	 a	 pivotal	 role	 in	 the	 evolution	 of	 the	 field.	 The	 image
processing	field	has	since	emerged	as	one	of	the	most	important	and	independent
fields.

In	digital	image	processing	images	are	manipulated.	To	begin	with,	one	needs	to
remove	noise	from	a	given	image.	The	anti-aliasing,	sharpening,	and	removing
blurriness	are	some	of	the	important	tasks	that	are	needed	to	make	a	given	image
better	 from	 our	 perspective	 (assuming	 we	 all	 are	 human	 beings).	 From	 the
machine’s	 point	 of	 view,	 converting	 the	 given	 image	 to	 binary,	 removing
redundant	 information,	 and	 reducing	 the	 sampling	 rate,	 etc.,	 are	 important.	 So
there	are	two	major	goals	of	image	processing:	improving	human	perception	and
improving	machine	perception.

In	addition	to	the	above,	the	machine	learning	techniques	have	been	successfully
applied	 to	 identify	 diseases	 from	 various	 modalities	 like	 MRI	 (magnetic
resonance	 imaging)	 and	 PET	 (positron	 emission	 tomography).	 Scientists	 have
also	been	successful	 in	making	predictive	models	 for	 the	above.	However,	 this
requires	some	serious	image	processing.	The	images	need	to	be	segmented	and
subjected	 to	 various	 feature	 extraction	 techniques,	 etc.,	 to	 carry	 out	 the	 above
tasks.

Before	processing	an	image,	it	needs	to	be	stored.	An	image	can	be	stored	as	a
two	dimensional	array	or	a	3	dimensional	array.	 If	an	 image	 is	stored	as	a	 two
dimensional	 array,	 then	a	512	×	512	 size	of	 image	would	 require	a	512	×	512
matrix	and	therefore	262144	units	of	memory.	Now,	if	each	pixel	requires	an	8
bit	integer	the	total	memory	requirement	will	be	2097152	bits.	In	the	case	of	a	3
dimensional	array	the	value	of	the	color	intensity	(say	the	values	of	R,	G,	B)	will
also	be	stored	for	each	pixel.

This	chapter	discusses	 image	processing	using	standard	functions	 in	SciPy	and
NumPy,	though	image	processing	can	also	be	done	in	other	ways.

The	chapter	has	been	organized	as	follows.	Section	20.2	introduces	the	basics	of
image	manipulation	in	Python.	The	next	section	discusses	the	contour	function.
Section	 20.4	 introduces	 clipping	 and	 Section	 20.5	 discusses	 basic
transformations	like	translation,	rotation,	and	scaling.	The	last	section	concludes
the	chapter.

OPENING,	READING,	AND	WRITING	AN	IMAGE

20.2.1

20.2.2

All	 the	 homeless	 utilities	 have	 been	 included	 in	 SciPy.misc().	 The	 following
discussion	uses	an	8	bit	greyscale,	512	×	512	image,	which	can	be	accessed	by
the	 ascent()	 function.	 The	 reader	 can	 also	 use	 the	 face()	 function	 for
accomplishing	any	of	the	following	tasks.

Opening	an	Image
In	 order	 to	 open	 and	 manipulate	 images,	 the	 misc	 and	 pyplot	 packages	 (the
latter	from	matplotlib)	need	to	be	included.	In	the	code	that	follows,	the	object
‘a’	will	 contain	 the	 image	 generated	 by	 the	 ascent	 image.	 The	 image	 can	 be
saved	using	the	imsave	function.	This	function	takes	two	arguments:	the	name	of
the	file	in	which	the	image	will	be	stored	and	object	(in	this	case	‘a’).	The	image
can	be	shown	by	the	imshow()	function	of	Pyplot,	followed	by	the	invocation	of
the	show()	function	(Figure	20.1).

fromscipy	import	misc

importmatplotlib.pyplot	as	plt

a	=	misc.ascent()

misc.imsave('ascent.png',	a)

plt.imshow(a)

plt.show()

FIGURE	20.1 The	ascent	image

Reading
In	order	to	read	the	above	image,	the	imread	function	can	be	used.	The	imread

20.2.3

20.2.4

function	takes	a	png	file	as	an	argument	and	creates	a	two	dimensional	array.	The
shape	and	 the	dtype	of	 the	array	can	be	displayed.	The	output	 is,	as	expected,
(512,	512)	and	the	data	type	is	unit	8.

fromscipy	import	misc

ascent_array	=	misc.imread('ascent.png')

type(ascent_array)

print(ascent_array.shape)

print(ascent_array.dtype)

Output

(512,	512)

uint8

Writing	an	Image	to	a	File
The	array	obtained	in	the	above	program	can	again	be	converted	into	a	file.	The
tofile()	 function	of	 the	array	 (ascent_array,	 in	 the	 above	 example)	 converts
the	array	into	a	raw	file.	The	function	takes	a	single	argument,	which	is	the	name
of	 the	 file	 to	 be	 created.	 The	 data	 of	 the	 file	 can	 be	 stored	 in	 an	 object
(sayascent_raw).	Note	that	the	shape	of	the	array	obtained	would	be	262,144	in
the	given	example.

Summary

misc.imsave for	saving	an	object	as	image
misc.imread for	reading	an	image	and	putting	it	in	a	two	dimensional	array
tofile for	converting	a	two	dimensional	array	to	a	raw	file
fromfile to	read	data	from	a	.raw	file

Displaying	an	Image
The	 image	 can	 be	 displayed	 using	 the	 imshow	 function.	 The	 optional	 ‘cmap’
argument	is	not	used	when	the	image	has	shape	(m,	n,	3).	The	values	of	the	array
in	such	cases	are	 interpreted	as	RGB.	However	for	a	(m,	n)	array	 this	argument
depicts	the	color	map	of	the	image.	In	the	following	examples	the	value	of	cmap
is	 set	 to	 ‘grey’	 to	 display	 an	 image	 in	 the	 greyscale	 and	 it	 is	 set	 to	 ‘jet’	 to
display	 a	 colored	 image.	 The	 enumeration	 of	 the	 values	 of	 cmap	 has	 been

presented	 in	 the	chapter.	The	imshow	 function	can	also	 take	 the	vmin	 and	vmax
argument.	 Figure	 20.2	 shows	 the	 output	 of	 the	 code.	 The	 image	 can	 also	 be
displayed	in	greyscale	(Figure	20.3).

FIGURE	20.2 The	ascent	image	with	cmap	=	jet

FIGURE	20.3 The	ascent	image	in	greyscale

importnumpy	as	np

ascent_array.tofile('ascent.raw')

ascent_raw	=	np.fromfile('ascent.raw',	dtype=np.uint8)

ascent_raw.shape

(262144,)

plt.imshow(a,	cmap=plt.cm.jet)

plt.show()

20.3

plt.imshow(a,	cmap=plt.cm.grey,	vmin=30,	vmax=200)

plt.show()

The	axis	can	be	removed	by	passing	'off'	to	the	axis	function	of	pyplot.

plt.axis('off')

plt.show()

THE	CONTOUR	FUNCTION

The	edges	of	the	polygon	can	be	seen	using	the	contour	function.	The	contour
function	 draws	 the	 contour	 lines	 and	 the	 fcontour	 function	 draws	 the	 filled
contour	 lines.	 The	 next	 example	 shows	 the	 subplots	 created	 by	 varying	 the
second	 argument	 of	 the	 contour	 function	 from	 [10,	 20]	 to	 [200,	 210].	 Figure
20.4	shows	the	output.

plt.contour(a)

plt.show()

FIGURE	20.4 The	contour	of	ascent

As	 a	 matter	 of	 fact,	 the	 reader	 can	 see	 the	 output	 at	 various	 arguments	 of
contour	and	observe	the	differences.	The	following	code	passes	(10,	20)	in	the
first	 iteration,	20,	30	 in	 the	second	iteration	and	so	on.	The	output	 is	shown	in
Fig.	20.5.

for	i	in	range	(1,21):

plt.subplot(5,4,i)

plt.contour(a,[10*i,10*i+10])

plt.show()

20.4

FIGURE	20.5 The	plots	for	different	values	of	contour

CLIPPING

A	part	of	the	image	can	be	extracted	by	creating	a	mask	and	putting	the	values	in
the	region	as	0.	For	example	if	one	wants	to	extract	a	circular	area	from	a	given
image,	the	following	steps	must	be	followed.	First	of	all	a	two-dimensional	array
corresponding	to	the	image	is	created.	This	is	followed	by	creation	of	the	mask.
Note	that	in	the	two	examples	that	follow,	the	first	excludes	the	area	above	the
circle	 (Figure	20.6)	 and	 the	 second	 excludes	 the	 area	 inside	 the	 circle	 (Figure
20.7).

FIGURE	20.6 The	region	outside	the	circular	region	has	been	excluded

Code	1

ascent1	=	misc.ascent()

ascent1[100:120]	=	255

20.5

lx,	ly	=	ascent1.shape

X,	Y	=	np.ogrid[0:lx,	0:ly]

mask	=	((X	-	lx	/	2)	**	2)	+	((Y	-	ly	/	2)	**	2)	>	lx	*	ly	/

4

ascent1[mask]	=	0

ascent1[range(400),	range(400)]	=	255

plt.imshow(ascent1)

plt.show()

Code	2

ascent1	=	misc.ascent()

ascent1[100:120]	=	255

lx,	ly	=	ascent1.shape

X,	Y	=	np.ogrid[0:lx,	0:ly]

mask	=	((X	-	lx	/	2)	**	2)	+((Y	-	ly	/	2)	**	2)	<	lx	*	ly	/

4

ascent1[mask]	=	0

ascent1[range(400),	range(400)]	=	255

plt.imshow(ascent1)

plt.show()

FIGURE	20.7 The	region	inside	the	circular	region	has	been	excluded

STATISTICAL	INFORMATION	OF	AN	IMAGE

The	 statistical	 information	 corresponding	 to	 a	 given	 image	 can	 be	 easily
extracted	using	Numpy.	The	max()	function	returns	the	maximum	value;	the	min()

20.6

20.6.1

function	 returns	 the	 minimum	 value,	 the	 mean	 function	 returns	 the	 mean	 and
finally	 the	std	 function	 returns	 the	 standard	 deviation.	Consider	 the	 code	 that
follows	and	observe	the	output:

ascent2	=	misc.ascent()

print(ascent2.mean())

print(ascent2.max(),	ascent2.min())

print(ascent2.std())

Output

87.4798736572

255	0

48.7744598771

BASIC	TRANSFORMATION

Consider	any	involved	task	in	image	processing.	The	task	will	require	us	to	do
something	with	the	given	image:	to	translate	it,	rotate	it,	or	scale	it,	at	the	least.
Moreover,	 in	animations	such	 transformations	are	also	 required.	 If	 the	position
or	the	shape	of	a	given	figure	is	to	be	changed,	the	transformation	discussed	in
this	 section	 comes	 to	 one’s	 rescue.	 The	 transformations,	 though,	 defined	 for	 a
point	are	applicable	to	lines	or	curves.	These	are	extensively	used	in	the	field	of
animation,	games,	etc.	We	begin	our	discussion	with	three	basic	transformations:

Translation
Rotation
Scaling

Translation
Translation	 is	 the	 movement	 of	 a	 point	 or	 a	 curve.	 The	 operation	 can	 be
accomplished	by	changing	the	x	and	the	y	co-ordinates	by	a	fixed	amount.	Here,
it	may	be	stated	that	it	is	not	necessary	to	change	the	x	and	the	y	co-ordinate	by
the	same	value.	The	translation	of	a	point	is	easy	to	comprehend.	The	translation
of	a	line	has	been	shown	in	the	following	figure	(Figure	20.8).

FIGURE	20.8 The	line	L	is	translated	along	a	given	direction.	The	translated	line	is	L’

The	movement	of	the	line	is	shown	in	the	above	figure.	Note	that	the	shape	and
size	of	the	line	remains	the	same	and	only	its	x	and	y	co-ordinates	would	change.
That	is,	for	each	(x,	y)

The	above	operation	can	be	described	in	terms	of	matrices	as	follows:

In	the	case	of	more	than	one	translation,	the	corresponding	matrices	are	added	to
get	the	translation	matrix.	That	is,

20.6.2 Rotation
Rotation	 is	 the	movement	of	 a	 line	or	 a	 curve	 from	a	 fixed	point	 in	 a	 circular
direction	 by	 a	 certain	 angle.	 The	 fixed	 point	 is	 known	 as	 the	 pivot	 point	 and
through	this	pivot	point,	a	line	perpendicular	to	X-Y	axis	(in	this	case)	is	known
as	 axis	 about	 which	 the	 line	 rotates.	 Note	 that	 the	 x	 coordinate	 and	 the	 y
coordinate	can	be	perceived	as	the	projection	of	a	given	line	along	the	x	and	the
y	coordinates.	That	is,

x	=	r	cos	a
y	=	r	sin	a

After	 rotation	 by	 the	 angle	 b,	 the	 angle	 becomes	 (a	 +	 b)	 and	 hence	 the
projections	of	the	final	coordinates	become:

y′	=	r	sin	(a	+	b)
=	r	sin	a	cos	b	+	r	cos	a	sin	b	=	x	cos	b	+	y	sin	b

x′	=	r	cos	(a	+	b)
=	r	cos	a	cos	b	–	r	sin	a	sin	b	=	x	cos	b	–	y	sin	b

The	above	operation	can	be	described	in	terms	of	matrices	as	follows:

To	apply	translation	and	rotation	at	the	same	time,	the	following	transformation
is	used:

X′	=	tx	+	(x	–	tx)	cos	b	–	(y	–	ty)	sin	b
Y′	=	ty	+	(x	+	tx)	cos	b	+	(y	–	ty)	sin	b

M′	–	T	=	CIS(b)	*	[M	–	T]

The	rotate	function,	which	takes	the	angle	as	an	argument,	can	be	used	to	rotate
the	 figure.	 The	 following	 figures	 (Figure	 20.9	 and	 Figure	 20.10)	 show	 the

original	image	and	that	after	rotation.

FIGURE	20.9 Figure	before	rotation

FIGURE	20.10 Figure	after	rotation

When	you	have	to	rotate	the	same	figure	twice,	the	task	can	be	accomplished	by
rotating	 the	 figure	 by	 an	 angle	 α	 +	 β	 where	 α	 is	 the	 first	 angle	 and	 β	 is	 the
second.	The	premise	can	be	proved	as	follows:

20.6.3 Scaling
Scaling	is	changing	the	size	of	the	curve	or	a	figure	by	changing	its	X	and	Y	axis
by	some	factor.	It’s	not	necessary	for	the	factor	to	be	the	same	for	both	the	X	and
the	Y	axis.	In	the	formulas	that	follow,	the	scale	along	the	X	axis	is	sx	and	that
along	the	Y	axis	is	sy.

In	the	case	where	translation	is	followed	by	scaling,	the	resultant	matrix	can	be
crafted	using	the	following	mathematical	formulation.

In	 case	 scaling	 is	 to	 be	 applied	 twice	 then	 the	 scaling	 by	 a	 factor,	which	 is	 a
product	of	the	individual	scaling	factors,	can	be	used.	That	is,

Figure	20.11	shows	the	original	 image	and	Figure	20.12	shows	 the	 image	after
scaling.

FIGURE	20.11 The	original	image

20.7

FIGURE	20.12 The	image	after	scaling

CONCLUSION

The	 chapter	 introduces	 image	 processing	 in	 Python.	 To	 start	 with	 image
processing,	it	is	important	to	appreciate	that	an	image	can	be	stored	as	a	multi-
dimensional	array.	It	is	important	to	be	able	to	store	an	image,	to	create	an	image
from	an	array	and	 to	be	able	 to	 save	 the	 image	 in	a	 file.	Also	 the	 reader	must
understand	the	concept	of	 transformations	before	applying	transformations	 to	a
given	 image.	The	underlying	mathematics	helps	 to	untangle	 the	 intricacies	and
helps	the	programmer	to	devise	a	solution	in	the	case	of	challenging	situations.	It
is	equally	important	to	be	able	to	clip	an	image	and	extract	statistical	information
from	it.	The	chapter	discusses	all	the	above	and	paves	the	way	of	the	application
of	Python	in	diverse	areas	requiring	image	processing.	The	reader	is	expected	to
have	 a	 look	 at	 the	 references	 given	 at	 the	 end	 of	 this	 chapter	 for	 a	 clearer
understanding.

GLOSSARY

Translation:	Translation	is	the	movement	of	a	point	or	a	curve.

Rotation:	Rotation	is	the	movement	of	a	line	or	a	curve	from	a	fixed	point	in	a
circular	direction	by	a	certain	angle.

Scaling:	Scaling	is	changing	the	size	of	the	curve	or	a	figure	by	changing	its	X-
and	Y-	axis	by	a	factor.

POINTS	TO	REMEMBER

In	order	to	read	an	image	from	an	object,	the	imread	function	can	be	used.
The	tofile()	function	of	the	array	converts	the	array	into	a	raw	file.
The	edges	of	the	polygon	can	be	seen	using	the	contour	function.
A	 part	 of	 the	 image	 can	 be	 extracted	 by	 creating	 a	mask	 and	 putting	 the
values	in	the	region	as	0.
The	statistical	information	corresponding	to	a	given	image	can	be	extracted
using	 Numpy.	 The	 max()	 function	 returns	 the	 maximum	 value;	 the	 min()
function	returns	the	minimum	value;	the	mean	function	returns	the	mean	and

finally	the	std	function	returns	the	standard	deviation.
The	rotate	function,	which	takes	the	angle	as	an	argument,	can	be	used	to
rotate	the	figure.
When	 you	 have	 to	 rotate	 the	 same	 figure	 twice	 then	 the	 task	 can	 be
accomplished	by	rotating	the	figure	by	an	angle	α	+	β,	where	α	is	the	first
angle	and	is	the	second	angle.

EXERCISES

MULTIPLE	CHOICE	QUESTIONS

1. Which	of	the	following	is	used	in	processing	images	in	Python?

(a) re

(b) Python	Imaging	Library

(c) Pillow

(d) None	of	the	above

2. An	image	can	be	stored	as	a

(a) 2	dimensional	array

(b) 3	dimensional	array

(c) Both

(d) None	of	the	above

3. In	 Python,	 the	 two	 dimensional	 array	 in	which	 an	 image	 is	 stored	 can	 be
manipulated	by

(a) NumPy

(b) re

(c) Both

(d) None	of	the	above

4. Which	 of	 the	 following	 constitute	 basic	 transformations	 in	 image
processing?

(a) Translation

(b) Rotation

(c) Scaling

(d) All	of	the	above

5. Which	of	the	following	functions	can	be	used	to	rotate	an	image?

(a) rotate

(b) rot

(c) rota

(d) None	of	the	above

6. Which	of	the	following	can	be	done	using	Python	Imaging	Library?

(a) Clipping

(b) Rotation

(c) Scaling

(d) All	of	the	above

7. Image	processing	is	used	for

(a) Medical	diagnosis

(b) Weather	forecasting

(c) Animations

(d) All	of	the	above

8. Which	 of	 the	 following	 has	 the	 rotate	 function	 or	 rotating	 an	 image	 in
Python?

(a) ndimage

(b) ndarray

(c) Both

(d) None	of	the	above

9. Which	of	the	following	can	be	obtained	with	the	contour	function?

(a) Edges	of	the	polygons	in	a	given	figure

(b) Statistical	information

(c) Both

(d) None	of	the	above

10. Which	of	the	following	can	be	used	for	plotting	graphs	(both	2D	and	3D)	in
Python?

(a) MATPLOTLIB

(b) NumPy

(c) Scipy

(d) All	of	the	above

THEORY

1. Explain	some	of	the	applications	of	image	processing.

2. How	 is	 an	 image	 stored	 in	 an	 array?	 How	 is	 this	 array	 used	 to	 write	 an
image	to	a	file	and	then	read	it	later?

3. Explain	 three	 basic	 transformations.	 Write	 the	 mathematical	 formulations
involving	matrices	for	carrying	out	the	following	tasks:

(a) Rotation

(b) Translation

(c) Scaling

4. Prove	that	if	two	translation	matrices	are	added,	the	resultant	matrix	would
produce	the	same	effect	as	individual	translations.

5. What	is	pivot	point	rotation?

6. Explain	clipping.	How	is	clipping	carried	out	in	Python?

7. Explain	the	process	of	extracting	the	statistical	information	of	an	image.

8. What	are	contours?	How	are	edges	of	a	polygon	extracted	in	Python?

9. Explain	the	importance	of	Python	Imaging	Library.	Can	the	library	be	used
with	NumPy	and	SciPy?

10. What	is	the	relation	between	PIL	and	MATPLOTLIB?

PROGRAMMING

Write	a	program	to	read	an	image	and	carry	out	the	following	tasks.

1. Store	the	image	in	an	array	and	extract	statistical	information	out	of	it.

2. Find	the	edges	of	the	polygons	in	the	image.

3. Rotate	the	image	by	30	degrees	in	an	counterclockwise	direction.

4. Scale	the	image	by	a	factor	of	2	along	the	x-axis	and	3	along	the	y-axis.

5. Translate	the	image	by	tx	and	ty	(entered	by	the	user).

6. Change	the	image	to	greyscale.

7. Reduce	the	image	to	half	the	size.

8. Clip	the	image	by	making	a	square	of	appropriate	size.

9. Clip	the	image	by	making	an	ellipse	of	appropriate	size.

10. Store	a	text	in	the	image.

USEFUL	LINKS

1. http://www.scipy-lectures.org/advanced/image_processing/

2. This	 chapter	 explains	 image	 processing	 using	 PIL.	 Open	 CV	 is	 also	 an
important	package	dedicated	to	image	processing.	The	introduction	to	Open
CV	can	be	found	at	http://www.scipy-lectures.org/packages/scikit-image/

3. This	 chapter	 explains	 image	 processing	 using	 PIL.	 Scikit-image	 also	 an
important	 package	 dedicated	 to	 image	 processing.	 The	 introduction	 to	 the

http://www.scipy-lectures.org/advanced/image_processing/
http://www.scipy-lectures.org/packages/scikit-image/

package	can	be	found	at:	skimage	0.13.0	docs–skimage	v0.13.0	docs.

4. The	 following	 link	 gives	 a	 brief	 overview	 of	 Pillow:
http://www.bogotobogo.com/python/python_image_processing_with_Pillow_library.php

http://www.bogotobogo.com/python/python_image_processing_with_Pillow_library.php

A1.1

APPENDIX	A

MULTITHREADING	IN	PYTHON

INTRODUCTION

Modern	 systems	 can	 run	 many	 processes	 simultaneously.	 In	 the	 case	 of	 a
multiprocessing	system,	various	processes	are	allocated	different	memory	space.
However,	 these	 processes	 can	 share	 some	 memory	 space	 for	 purposes	 like
communication.	 If	 a	 system	has	 a	 single	CPU	 (central	 processing	 unit),	 it	 can
distribute	the	CPU	time	between	these	processes.	The	CPU	hops	between	these
processes	and	gives	a	slice	of	processing	time	to	each	process.	There	are	many
ways	to	carry	out	this	scheduling	like	First	Come	First	Serve,	Shortest	Job	First,
Round	Robin,	etc.	Multiprocessing	helps	with	achieving	efficiency	and	results	in
better	utilization	of	resources.	At	times	a	single	process	may	have	some	portions
that	can	run	independently,	provided	that	the	problems	like	synchronization	have
been	handled.	This	gives	rise	to	the	idea	of	multithreading.	As	per	the	literature
“Multithreading	 is	 the	 ability	 of	 a	 computer’s	 operating	 system	 to	 run	 several
programs	or	apps	at	what	seems	to	be	the	‘same	time’	by	a	single	processing	unit
or	CPU.”

When	a	process	 is	 expected	 to	process	 two	or	more	parallel	 tasks,	 generally	 a
thread	is	implemented.	In	fact,	every	process	is	a	single	thread	of	execution	and
a	thread	can	give	rise	to	many	threads.	Using	multi-threading,	a	single	program
can	perform	several	of	its	sub-tasks	concurrently.	One	of	the	simplest	examples
can	 be	 the	 spell	 check,	 grammar-check	 and	 word	 count	 utilities	 in	 a	 word
processor.	The	word	processor	here	is	a	main	process	and	the	utilities	can	be	the
various	 threads,	 which	 run	 in	 parallel.	 Figure	 A1.1	 shows	 the	 differences
between	a	process	and	a	thread.

FIGURE	A1.1 Difference	between	a	process	and	a	thread

Python	 supports	 multi-threading.	 In	 a	 multi-threading	 system,	 a	 thread	 is	 the
smallest	unit	of	execution.	Threads	of	a	process	share	the	same	memory	space.
Also,	the	state	of	a	process	is	shared	by	a	thread.	Threads	can	also	share	global
variables.	 If	 one	 of	 the	 threads	 is	 changed	 by	 the	 global	 variable,	 others	 can
access	the	updated	value.	These	threads	are	run	in	parallel	by	scheduling	or	by
dividing	 the	CPU	 time	amongst	 the	 threads.	 In	 the	 first	 instance,	 these	 threads
might	appear	to	be	just	an	extension	of	a	function.	However,	a	detailed	look	will
reveal	the	difference,	primarily	in	the	return	behavior.

Threads	can	be	 segregated	 into	 two	classes.	The	 threads	can	be	created	by	 the
user	or	even	created	by	a	kernel.	The	latter	are	the	part	of	the	operating	system.
In	any	case	different	tasks	are	being	done	by	different	threads,	resulting	in	better
CPU	 utilization.	 That	 is,	 multi-threading	 is	 advantageous	 vis-a-vis	 resource
utilization.	The	computers	with	many	processors	can	use	multi-threading	to	full
advantage.	 Moreover,	 as	 explained	 in	 the	 above	 discussion,	 the	 time	 during
which	 input,	etc.,	 is	processed	can	be	 judiciously	used.	Figure	A1.2	 shows	 the
advantages	of	multi-threading.

FIGURE	A1.2 Advantages	of	multi-threading

A1.2

A1.3

THE	JAVA	THREADING	MODULE

The	Python	threading	model	is	inspired	by	the	Java	threading	model	which	has
been	explained	in	this	section.

In	Java,	a	thread	is	created	using	the	thread	class	or	the	runnable	interface.	A
new	 thread	 is	 born	 when	 it	 begins	 its	 life	 cycle.	 This	 state	 is	 referred	 to	 as
“New.”	When	a	thread	is	born,	it	becomes	“Running.”	That	is,	it	becomes	ready
to	 accomplish	 the	 task	 for	 which	 it	 was	 created.	 During	 the	 execution,	 there
might	be	a	condition	where	 it	waits	 for	some	signals,	perhaps	IO.	This	state	 is
referred	to	as	the	“waiting	state.”	It	may	be	stated	here	that	this	waiting	can	also
be	 timed.	 Finally,	 a	 thread	 is	 “terminated.”	 The	 states	 of	 a	 thread	 have	 been
presented	in	the	following	diagram	(Figure	A1.3).

FIGURE	A1.3 States	of	a	thread

A	 thread	 can	 be	 assigned	 some	 priority,	 based	 on	which	 the	 operating	 system
decides	 which	 thread	 to	 execute.	 In	 Java,	 the	 minimum	 priority	 that	 can	 be
associated	with	 a	 thread	 is	 1	 (MIN_PRIORITY)	 and	 the	maximum	 can	 be	 10
(MAX_PRIORITY).	As	a	matter	of	fact	we	assign	a	higher	priority	to	a	thread
when	it	 is	more	 important.	However,	 the	final	decision	 in	 this	 regards	 is	at	 the
operating	system’s	discretion.

THREADING	IN	PYTHON

Python	 has	 two	 modules	 to	 facilitate	 the	 usage	 of	 threads:	 Threads	 and
Threading,	 though	Threading	 is	 used	 and	 the	 former	 has	 been	 deprecated.	 In
Python	 3,	 the	 former	 is	 called	 thread.	 The	 thread	module	 comes	with	many

functions	to	accomplish	various	tasks.	A	new	thread	can	be	started	by	using	the
start_new_thread	method.

The	 start_new_thread	 method	 starts	 a	 new	 thread.	 The	 arguments	 of	 the
method	are	function,	args,	and	kwargs.	function	 is	the	name	of	the	function,
the	 list	 of	 arguments	 is	 in	 args	 and	 kwargs	 is	 the	 dictionary	 of	 the	 keyword
arguments.

The	 following	 listing	 shows	 the	usage	of	 the	start_new_thread	 function.	The
function,	 first	 of	 all,	 needs	 to	 be	 imported	 from	 the	 _thread	module.	 Then	 a
function,	say	funl	is	defined.	This	is	followed	by	any	number	of	invocations	of
the	 threads,	 as	 shown.	 Note	 that	 the	 exception	 is	 caught	 in	 the	 function	 and
hence	when	a	particular	thread	is	 invoked,	the	requisite	exception	is	caught	(or
the	invocation	leads	to	a	normal	execution).

def	fun(num):

print(‘Hi	there\n	Number\t:’	+  num)

from	_thread	import	start_new_thread	try:

start_new_thread(fun,(1,))

start_new_thread(fun,(2,))

except	Exception:

print(‘Caught	exception’)

The	threads	can	be	monitored	using	counters.	A	global	counter	can	be	created,
which	can	be	 incremented	on	each	call	 to	 the	start_new_thread	 function	 and
decremented	 when	 the	 thread	 exits.	 As	 stated	 earlier,	 the	 thread	 module	 has
been	 deprecated	 so	 the	 threading	 module	 provides	 various	 interfaces	 for
accomplishing	 different	 tasks.	 The	 important	 points	 regarding	 the	 creation	 of
threads	are	as	follows:

The	number	of	thread	objects	that	are	currently	active	are	displayed	by	the
active_count()	function.
The	current	thread	object	is	returned	by	the	current_thread()	function	of
the	caller’s	thread.
The	 thread	 identifier	 can	be	 seen	using	 the	get_ident()	 function.	As	per
Python.org
“This	is	a	nonzero	integer.	Its	value	has	no	direct	meaning;	it	is	intended	as
a	magic	cookie	to	be	used	e.g.	to	index	a	dictionary	of	thread-specific	data.

http://Python.org

A1.4

Thread	identifiers	may	be	recycled	when	a	thread	exits	and	another	thread
is	created.”
The	complete	list	of	all	threads	running	can	be	viewed	by	the	enumerate()
function.	The	list	contains	the	main	thread	and	all	other	threads.
The	main	thread	can	be	seen	using	the	main_thread().	 In	order	 to	set	 the
trace	for	all	threads	settrace()	can	be	used.
The	size	of	the	stack	can	be	set	using	the	stack_size	function.

A	 thread	 can	 have	 its	 local	 data	 as	well.	 The	 data	 specific	 to	 a	 thread	 can	 be
stored	in	an	instance	of	the	local	class.	An	instance	of	the	Threading.local	can
be	created	as	follows:

data	=	threading.local

data.x	=	1

IMPORTANT	METHODS	OF	THE	THREAD	CLASS

This	 section	 briefly	 introduces	 some	 of	 the	 most	 important	 methods	 of	 the
thread	class	and	paves	the	way	for	their	usage	in	the	requisite	code.

init()	and	run()

A	thread	in	Python	can	be	created	by	instantiating	the	Thread	class.	The	activity
that	a	thread	would	initiate	can	be	represented	in	two	ways.	The	first	is	to	pass
the	object	to	the	init(),	that	is	the	constructor	of	the	thread	class,	in	which	case
other	methods	 of	 the	 thread	 class	 should	 not	 be	 overridden.	The	 other	way	 to
initiate	the	activity	is	to	override	the	run()	method.

start()	and	isalive()

After	creating	a	thread	the	requisite	activity	can	be	started	by	calling	the	start
method.	 The	 calling	 of	 the	 start()	 invokes	 the	 separate	 thread	 of	 execution.
The	 thread	 initiated	would	be	 in	 the	 live	 state.	The	 is_alive()	method	 checks
whether	the	thread	is	alive.

join()

If	the	join()	method	of	another	thread	is	invoked	by	a	thread,	the	calling	thread

A1.5

A1.6

is	blacked	until	the	thread	whose	call	has	been	invoked	is	terminated.

name	Attribute

The	name	attribute	of	a	thread	is	used	to	see	or	change	the	name	of	a	thread.

TYPES	OF	THREADS

A	 thread	 can	 be	 a	 daemon	 thread,	 dummy	 thread	 or	 a	 normal	 one.	 A	 brief
description	of	the	types	of	threads	has	been	presented	as	follows.

If	a	 thread	 is	a	“daemon	thread”,	 then	 the	program	exits	 if	 it	 is	 left	with	only
daemon	threads.	The	flag	can	set	through	the	daemon	property.	That	is	they	can
be	abruptly	shunted.	The	main	thread	corresponds	to	the	initial	thread	of	control
in	Python	program.	The	main	thread	cannot	be	a	daemon	thread.

Then	there	are	dummy	threads.	These	threads	are	daemonic	and	are	always	alive.
These	threads	cannot	be	joined	with	any	other	thread.

class	threading.Thread(group=None,	target=None,	name=None,

args=(),	kwargs={},	*,	daemon=None)

The	arguments	of	this	constructor	are	as	follows:

group	 should	 be	 none;	 It	 is	 reserved	 for	 future	 extension	 when	 a
ThreadGroup	class	is	implemented.
target	is	the	callable	object	to	be	invoked	by	the	run()	method.
name	is	the	thread	name.
args	is	the	argument	tuple	for	the	target	invocation.
kwargs	is	a	dictionary	of	keyword	arguments	for	the	target	invocation.

CONCLUSION

This	appendix	 introduces	multi-threading.	The	importance	of	 threading	and	the
difference	between	a	 thread	and	a	process	was	explained	 in	 the	first	section.	 It
has	 been	 argued	 that	 multi-threading	 is	 good,	 both	 in	 terms	 of	 resource
utilization	 and	 efficiency.	The	Python	 threading	model	 is	 largely	 based	 on	 the

Java	threading	model.	The	appendix,	therefore,	gives	a	brief	introduction	of	the
Java	 threading	 model	 as	 well.	 The	 threading	 class	 and	 its	 important	 methods
have	been	discussed	so	as	 to	give	an	 idea	of	how	 threading	 is	 implemented	 in
Python.	The	reader	is	requested	to	visit	the	references	at	the	end	of	the	book	for
a	detailed	insight	into	the	topic.	It	may	also	be	stated	here	that	the	purpose	of	the
appendix	 is	 not	 to	 discuss	 each	 and	 every	 aspect	 of	 threading	 but	 to	 briefly
introduce	it.

EXERCISES

1. What	is	multitasking?

2. State	some	conditions	where	multi-threading	cannot	be	used.

3. Differentiate	between	a	thread	and	a	process.

4. What	are	the	advantages	of	multi-threading?

5. In	case	of	a	uni	processing	system,	what	is	the	use	of	multi-threading?

6. Name	three	languages	which	support	multi-threading.

7. Explain	the	Java	threading	model.

8. Explain	how	threads	are	implemented	in	Python.

9. Name	the	libraries	which	help	to	implement	multi-threading	in	Python.

10. Name	a	technique	via	which	thread	safely	can	be	implemented.

11. Which	exception	must	be	handled	for	a	multi-threading	code?

12. What	is	the	function	of	the	join()	method?

13. All	 the	 threads	 are	waiting	 for	 a	 signal.	Which	method	would	notify	 all	 of
them?

14. How	is	a	thread	stopped	in	Python	(name	the	method)?

15. What	are	the	various	types	of	threads?

B1.1

APPENDIX	B

REGULAR	EXPRESSIONS

The	functions	studied	in	strings	and	the	procedures	studied	in	the	third	section	of
this	book	helped	us	to	search	a	pattern	from	a	given	text	or	extract	it.	However,
searching,	finding	patterns,	and	extracting	a	text	are	common	tasks—so	common
that	a	whole	module	of	Python	is	dedicated	to	these	tasks.	The	re	module	helps
the	user	to	extract	or	search	a	pattern	from	a	given	text.	It	is	a	bit	complex	and
therefore	has	not	been	 included	 in	 the	main	 text.	However,	 it	 is	 important	 and
has	therefore	been	introduced	in	this	appendix.	The	aim	of	this	appendix	is	not	to
cover	the	topic	comprehensively	and	analyze	every	aspect	of	the	topic.	However,
a	 brief	 introduction	 paves	 the	way	 of	 the	 use	 of	 the	module	 for	 simple	 tasks.
Regular	expressions	are	powerful	and	can	be	used	to	search	patterns	like	e-mail
IDs,	 phone	numbers	 etc.,	 from	a	given	 text.	Also,	 their	 use	 in	parsing	 and	 the
development	of	compilers	is	well	known.

INTRODUCTION

Python	 provides	 the	 users	 with	 the	 re	 module	 to	 deal	 with	 the	 regular
expressions	and	search	requisite	 texts.	Writing	a	complex	regular	expression	 is
an	 intricate	 task	which	 requires	 practice.	 However,	 simple	 expressions	 can	 be
written	right	away.	In	fact,	just	by	reading	this	section!

First	of	all,	 let	us	consider	 the	characters	 in	a	 regular	expression.	The	 types	of
characters	in	a	regular	expression	are	as	follows:

Literal	characters
Character	class
Modifiers

The	literals	represent	the	class	that	has	a	single	character:	upper	and	lower	case,
digits	and	special	characters.	The	special	characters	require	a	backslash	(/)	to	be

placed	before	the	character	itself.

Character	 class	 has	 one	or	more	 characters	 in	 square	 brackets.	The	 expression
will	be	matched	by	the	occurrence	of	any	character	from	the	class.	As	a	matter	of
fact,	one	can	even	mention	a	 range	 in	 the	class.	The	 following	symbols	depict
some	of	the	standard	matches:

Alphanumeric	characters	are	represented	by	\w,
The	non-alphanumeric	characters	are	represented	by	\W
The	digits	are	represented	by	\d
The	non-digits	are	represented	by	\D
The	white	spaces	are	represented	by	\s
The	 beginning	 of	 a	 string	 is	 represented	 by	 ^.	 The	 end	 of	 a	 string	 is
represented	by	$
In	a	regular	expression	the	dot	(.)	depicts	a	single	character
The	 asterisks	 (*)	 represent	 zero	 or	 more	 occurrences	 of	 the	 preceding
character
The	+	represents	0	or	more	occurrence	of	a	string	and
?	represents	0	or	1	occurrence	of	the	preceding	character
In	order	to	match	exactly	n	occurrences	of	a	regular	expression,	use	{n}.
To	match	n	or	more	occurrences,	the	{n,}	is	used.
To	match	any	number	of	occurrences	between	n	and	m	{n,	m}	is	used.

A	regular	expression	is	generally	compiled	before	being	used	to	accomplish	the
said	tasks.	The	comparisons	are	done	only	after	the	given	regular	expression	is
compiled.	As	 a	matter	 of	 fact,	 even	 if	 a	 function	 is	 accepting	 an	 un-compiled
regular	expression,	then	also	it	is	better	to	use	a	compiled	regular	expression	as
this	greatly	reduces	the	time	taken	for	searching.

A	regular	expression	is	written	in	single	quotes,	preceded	by	r.	For	example,	the
name	of	a	website	can	be	any	number	of	alphanumeric	characters	followed	by	a
dot	and	then	a	domain.	This	regular	expression	can,	therefore	be	written	as:

sitename=	re.compile(r'[\w.]+@[\w.]+')

The	presence	of	a	regular	expression	can	be	searched	in	a	string	using	functions
like	 search	 and	 match.	 These	 functions	 can	 be	 called	 as	 per	 the	 expression

B1.2

whether	it	is	compiled	or	not:

match:	looks	for	the	expression	at	the	beginning	of	the	string
search:	looks	for	the	expression	everywhere	in	the	string

Each	function	takes	the	pos	and	endpos	arguments	indicating	the	beginning	and
the	end	position	 to	be	searched	 in	 the	expression.	 If	 the	expression	 is	 found	 in
the	given	text,	a	match	object(s)	is	returned.	If	the	match	is	not	found	then	None
is	returned.	Let	us	consider	the	following	example:

import	re

mailid=re.compile(r'[\w.]+@[\w.]+')

Here,	 import	 re	 is	 for	 importing	 the	 re	 module.	 mailid=re.compile

(r'[\w.]+@[\w.]+')	 is	 for	 creating	 a	 regular	 expression	 called	 mailid.	 Note
that	 it	 starts	 with	 r	 and	 the	 expression	 is	 in	 ‘_’.	 The	 email	 ID	 can	 have	 any
number	of	alphanumeric	characters	followed	by	a	.	and	then	@,	which	should	be
followed	by	any	number	of	alphanumeric	characters	and	(any	number	of	times).
After	being	compiled,	it	can	be	used	to	search	the	requisite	string.

text	=	'The	site	of	the	university	if	harsh@jnu.ac.in'

mailid.search(text)

The	output	of	the	above	follows:

<_sre.SRE_Match	object;	span=(29,	44),

match='harsh@jnu.ac.in'>

Having	 seen	 the	 basics,	 let	 us	 now	 dwell	 into	 the	 regular	 expressions	 with	 a
newer	and	easier	perspective.

THE	SEARCH	FUNCTION	AND	POWERFUL	REGULAR
EXPRESSIONS

In	a	program	that	uses	regular	expressions,	the	re	module	must	be	imported.	One
of	the	simplest	tasks	that	can	be	performed	using	the	module	is	to	use	the	search
function	of	the	module	to	find	a	given	pattern.	For	example,	the	following	code
finds	the	occurrences	of	the	string	“Harsh”	in	the	text	from	the	file	“file1.txt”.

The	 power	 of	 re,	 however,	 is	 immense.	 It	 can	 be	 used	 to	 perform	 rather
complicated	 tasks	 like	 that	 of	 finding	 all	 the	 lines	 that	 begin	 with	 the	 string
“har”.	The	following	code	uses	the	^	to	accomplish	this	task:

f=open	('Text1.txt')

i=	1

str=”

for	line	in	f:

The	 above	 tasks	 could	 also	 be	 accomplished	 by	 using	 the	 existing	 string
functions.	Now,	 if	 a	 little	 difficult	 task,	 say,	 that	 of	 finding	 all	 the	words	 that
begin	with	a	“h”	 followed	by	4	 symbols	 followed	by	a	“h”	 are	 to	 be	 searched
using	the	re	module,	first	of	all	the	module	needs	to	be	imported.

In	 a	 regular	 expression?	 matches	 any	 character.	 This	 is	 one	 of	 the	 most
commonly	used	special	characters	used	to	match	an	expression.	For	example,	a
H...h	would	match	any	word	that	starts	with	a	“H”	and	ends	with	a	“h.”	That	is
“H...h”	would	match	\

Harsh
Haaah
H123h
H@12h
and	so	on.

The	following	code	implements	the	above	logic.

Output

I	am	Harsh.

Moreover,	we	can	also	specify	if	the	character	can	repeat.	The	symbols	“*”	and
“+”	in	regular	expressions	indicate	that	in	place	of	matching	a	single	instance	of
the	given	character,	zero	or	more	instances	for	a	“*”	and	one	or	more	instances
for	a	“+.”

Note	that	there	is	a	“+”	after	“.”	indicating	that	any	number	of	symbols	may	be
there	between	a	From	and	a	@

If	 one	 wants	 to	 extract	 all	 the	 strings	 that	 match	 a	 regular	 expression,	 the
findall()	function	can	be	used.

B1.2.1 Extracting	data	using	regular	expressions

If	we	want	to	extract	data	from	a	string	in	Python	we	can	use	the	findall().	For
example	 to	 find	 all	 the	 email	 IDs	 from	 a	 given	 string	 the	 expression
'\S+@\S+.com'	can	be	used.

That	is,	writing

list	=	findall('\S+@\S+.com',str)

list

would	generate	a	list	containing	all	the	email	IDs	that	end	with	a	.com.

Note	that	\S	is	a	non-whitespace	character	and	\S+	indicates	any	number	of	non-

whitespace	characters.	The	@	must	follow.	After	the	@	symbol,	there	can	be	any
number	of	non-whitespace	characters	followed	by	a	.com.

Likewise	one	can	craft	a	regular	expression	for	finding	all	.edu	emails	and	so	on.

Strictly	speaking	an	email	ID	starts	with	a	capital	or	a	small	letter,	followed	by
any	number	of	non-whitespace	symbols	and	then	a	@	sign.	The	@	follows	any
number	 of	 non-whitespace	 characters.	 The	 regular	 expression	 for	 e-mail	 id
would	therefore	be

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

One	 of	 the	most	 common	 examples	 that	 is	 encountered	 in	 literature	 is	 that	 of
substrings	 that	 start	with	 a	 single	 lowercase	 letter,	 uppercase	 letter,	 or	 number
“[a-zA-Z0-9]”,	 followed	 by	 zero	 or	 more	 non-blank	 characters	 (“\S*”),
followed	by	an	at-sign,	followed	by	zero	or	more	non-blank	characters	(“\S*”),
followed	by	an	uppercase	or	lowercase	letter.	The	code	follows:

The	regular	expressions	can	also	be	used	to	find	all	the	expressions	that	follow	a
particular	pattern.	For	example,	if	we	want	to	extract	patterns	that	begin	with	a	H
followed	by	a	_	and	then	a	colon	followed	by	any	number	of	digits,	 then	a	dot
and	then	any	number	of	digits,	the	following	re	would	suffice.

Sample	O/P

H-ABCD-lefthanddrive:	0.1234

H-XYZT-righthanddrive:	0.1111

H-NMOP-lefthand:	0.0101

H-KLMN-righthand:	0.0001

H-AAAA-leftdrive:	0.01010

H-C	DCD-rightdrive:	1010.90990

We	 say	 that	 we	 want	 lines	 that	 start	 with	 “H-,”	 followed	 by	 zero	 or	 more
characters	(“.*”),	followed	by	a	colon	(“:”)	and	then	a	space.	After	the	space	we
are	looking	for	one	or	more	characters	 that	are	either	a	digit	(0-9)	or	a	period
“[0-9.]+”.	Note	 that	 inside	 the	 square	brackets,	 the	period	matches	 an	 actual
period	(i.e.,	it	is	not	a	wildcard	between	the	square	brackets).

Code

import	re

f	=	open('File1.txt')

for	line	in	f:

line	=	line.strip()

if	re.search('ˆH-\S*:	[0-9.]+',	line)	:

print	line

The	 execution	 of	 the	 above	 code	 would	 throw	 up	 the	 string	 we	 are	 exactly
looking	for.	Actually	the	reason	for	splitting	a	given	text	into	lines	was	to	spare
the	 need	 for	 parsing	 and	 searching	 at	 the	 same	 time.	 Parentheses	 are	 special
characters	 in	 regular	 expressions.	 Adding	 parentheses	 to	 a	 regular	 expression
helps	us	to	ignore	while	matching	the	string.

However,	when	we	use	findall()	parentheses	to	indicate	that	we	want	the	whole
expression	 to	 match,	 we	 are	 only	 interested	 in	 extracting	 a	 portion	 of	 the
substring	that	matches	the	regular	expression.

import	re

f	=	open('File.txt')

for	line	in	f:

line	=	line.strip()

pattern	=	re.findall('ˆH-\S*:	([0-9.]+)',	line)

if	len(pattern)	>	0	:

print(pattern)

The	output	from	this	program	is	as	follows:

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

B1.3

['0.0000']

At	times	we	need	to	search	the	characters	which	are	actually	special	symbols	in	a
regular	 expression.	 In	 such	 cases	 it	 must	 be	 indicated	 that	 the	 characters	 are
normal	 and	 not	 that	with	 a	 special	meaning.	We	 can	 indicate	 that	we	want	 to
simply	 match	 a	 character	 by	 prefixing	 that	 character	 with	 a	 backslash.	 The
examples	follow.

As	stated	earlier,	the	purpose	of	the	appendix	was	to	give	an	introduction	of	the
topic.	Actually,	using	the	regular	expressions	we	can	construct	strings	that	are	to
be	searched/matched	with	some	of	the	string	in	the	given	text.

CONCLUSION

At	times,	big	text	needs	to	be	searched	for	a	particular	pattern.	The	strings	to	be
searched	 can	 be	 of	 various	 types.	 For	 searching	 for	 a	 given	 pattern,	 Python
provides	 us	 with	 regular	 expressions	 via	 the	 re	 module.	 For	 example,	 in
searching	the	email	IDs	from	a	given	document	or	in	finding	the	names	that	end
with	“a,”	 regular	 expressions	 can	be	used.	Regular	 expressions,	 as	 a	matter	of
fact,	are	not	just	used	to	find	patterns	but	can	also	be	used	to	define	or	modify	a
pattern.	For	example,	if	you	are	required	to	find	“all	the	TV	series	whose	names
begin	with	a	K	followed	by	a	k”	 the	 task	can	be	accomplished	by	defining	 the
requisite	 re,	 compiling	 it	 and	 then	 using	 it	 to	 find	 the	 pattern.	 This	 appendix
introduces	the	package	and	explains	its	use.

SYMBOLS	TO	REMEMBER

Some	of	those	special	characters	and	character	sequences	are	as	follows:

ˆ: The	beginning	of	the	line.

$: The	end	of	the	line.

.	: Any	character	(a	wildcard).

\s: A	whitespace	character.

\S: A	non-whitespace	character	(opposite	of	\s).

*: Indicates	 to	 match	 zero	 or	 more	 of	 the	 preceding
character(s).

*?: Indicates	 to	 match	 zero	 or	 more	 of	 the	 preceding
character(s)	in	“non-greedy	mode.”

+: Indicates	 to	 match	 one	 or	 more	 of	 the	 preceding
character(s).

+?: Indicates	 to	 match	 one	 or	 more	 of	 the	 preceding
character(s)	in	“non-greedy	mode.”

[abcde]: The	example	would	match	“a”,	“b”,	“c”,	“d”,	or	“e”,	but	no
other	characters.

[a-z0-9]: Single	character	that	must	be	a	lowercase	letter	or	a	digit.

[ˆA-Za-z]: Single	character	that	is	anything	other	than	an	uppercase	or
lowercase	letter.

(): Ignored	 for	 the	 purpose	 of	 matching,	 but	 allows	 you	 to
extract	a	particular	subset	of	the	matched	string	rather	than
the	whole	string	when	using	findall().

\b: Matches	the	empty	string	at	the	start	or	end	of	a	word.

\B: Matches	 the	 empty	 string,	 but	 not	 at	 the	 start	 or	 end	 of	 a
word.

\d: Matches	any	decimal	digit;	equivalent	to	the	set	[0-9]

\D: Matches	any	non-digit	character;	equivalent	to	the	set	[ˆ0-
9]

EXERCISES

THEORY
1. What	are	regular	expressions?	How	are	they	useful?

2. Are	regular	expressions	better	then	string	functions?

3. What	 is	 the	 difference	 between	 a	 compiled	 and	 a	 non-compiled	 regular
expression?

4. Can	we	use	regular	expressions	to	find	patterns	from	a	web	page?

5. Name	three	functions	used	for	finding	a	string	from	a	given	text.

PROGRAMMING

1. Take	a	text	of	around	2000	words	from	a	news	web	site.	From	this	text	find

(i) The	email	IDs	of	all	the	people	who	have	their	mail	at	the	Yahoo	server
(ii) The	phone	number	of	 people	 living	 in	 Jordan	 (the	phone	number	 starts

from	011-)
(iii) The	 code	 that	 begins	 with	 an	 “H,”	 has	 two	 digits	 after	 “H”	 and	 any

number	of	characters	after	the	digits.
(iv) All	the	occurrences	of	the	names	that	begin	with	an	“H”	and	ends	with	an

“h.”
(v) “Ashish”	followed	by	three	digits	from	the	given	text.

APPENDIX	C

EXERCISES	FOR	PRACTICE:
PROGRAMMING	QUESTIONS

SECTION	I:	PROCEDURAL	PROGRAMMING

Conditional	Statements

1. Ask	the	user	to	enter	a	four	digit	number	and	check	whether	the	second	digit
is	one	more	than	the	third	digit.

2. In	 the	 above	question	 if	 the	given	condition	 is	 false,	 swap	 the	digits	 at	 the
third	and	the	second	places	and	increment	the	digit	at	the	units’	place	by	one,
if	it	is	not	9.	If	the	digit	at	the	units	place	is	9,	then	do	not	change	the	digit.

3. Ask	 the	 user	 to	 enter	 a	 three	 digit	 number	 and	 find	 the	 characters
corresponding	 to	 the	digits.	Create	a	string	out	of	 these	characters	and	find
whether	any	letter	of	this	string	is	a	capital	letter.

4. Ask	the	user	 to	enter	his	monthly	salary,	his	house	rent	(or	home	loan),	his
car,	newspaper	subscription,	the	amount	he	spends	on	food	in	a	month.	Now
find	if	the	amount	left	is	sufficient	enough	to	start	a	401K.	Note	that	a	401K
can	be	started	with	even	$500.

5. Ask	the	user	to	enter	his	total	savings.	If	the	savings	are	above	$1,000,000,
then	the	person	need	not	to	pay	any	tax.	Also	this	person	is	entitled	to	get	a
subsidy	from	the	Government.	If	the	savings	are	above	$1,000,000	but	below
the	 above	 specified	 amount,	 he	 is	 liable	 to	 pay	 30%	of	 his	 savings	 as	 tax,
plus	 a	 surcharge	 of	 2%	on	 the	 tax.	Calculate	 the	 total	 amount	 paid	 by	 the
person	as	this	tax.

6. Ask	 the	user	 to	 enter	 a	 three	digit	 number	 and	 find	 the	 largest	 digit	 of	 the
number.	Also	find	the	sum	of	the	digits	and	find	if	the	sum	of	the	digits	is	the
same	as	twice	the	largest	digit.

7. Ask	 the	 user	 to	 enter	 the	marks	 obtained	 by	 a	 student	 in	 5	 subjects.	 If	 the
person	scores	more	than	90%	in	a	subject	he	gets	an	A+.	If	the	score	is	less
than	 90%	 but	 greater	 than	 85%,	 he	 gets	 an	A.	 If	 the	 score	 is	 greater	 than
80%,	he	gets	an	“A-.”	Likewise	if	the	score	is	greater	than	75%,	he	gets	a	B+
and	B	is	awarded	to	a	person	scoring	more	than	70%.	A	person	getting	more
than	65%	but	less	than	70%	gets	a	“B-”	and	the	one	getting	more	than	60%
but	less	than	65%	gets	“C+.”	A	person	getting	more	than	55%	(and	less	than
60%)	gets	a	“C”	and	the	one	getting	more	than	50%	(and	less	than	55%)	gets
a	“C-.”	Furthermore,	for	each	grade	the	corresponding	CGPA	is	as	follows.

Grade cgPA

A+ 9
A 8
A– 7
B+ 6
B 5
B– 4
C+ 3
C 2
C– 1

Find	the	average	CGPA	of	the	student.

8. Find	whether	the	year	entered	by	the	user	is	a	multiple	of	7,	without	using	the
mod	operator.

9. Find	whether	 the	number	entered	by	the	user	 is	a	multiple	of	both	5	and	7,
without	using	the	mod	operator.

10. Ask	the	user	to	enter	a	string	and	find	the	number	of	occurrences	of	vowels
in	the	string.

Looping

11. Ask	the	user	to	enter	a	number	and	find	the	number	obtained	by	reversing	the
order	of	the	digits.

12. Ask	the	user	to	enter	a	decimal	number	and	find	its	binary	equivalent.

13. Ask	the	user	to	enter	a	decimal	number	and	find	its	octal	equivalent.

14. Ask	the	user	to	enter	a	decimal	number	and	find	its	hexadecimal	equivalent.

15. Ask	 the	 user	 to	 enter	 an	 n-digit	 number	 and	 find	 the	 digit	 which	 is	 the
maximum	amongst	them.

16. Ask	the	user	 to	enter	any	number	of	numbers	(he	must	enter	0	 to	quit)	and
find	the	maximum	number.

17. In	the	above	question	find	the	minimum	number.

18. Ask	the	user	to	enter	n	numbers	and	find	their	standard	deviation	and	mean.

19. In	the	above	question,	find	the	mean	deviation.

20. Write	 a	 program	 to	 generate	 the	 following	 pattern.	 (Refer	 to	 the	 link	 of
cellular	automata	at	the	end	of	this	appendix).

Functions

A	piece	of	data	 is	given	to	you.	The	data	has	many	features	(columns)	and	the
last	column	states	the	class	to	which	it	belongs	(0	or	1).	Each	feature’s	data	can
be	segregated	into	X	and	Y,	where	X	is	the	data	that	belongs	to	class	0	and	Y	is
the	 data	 that	 belongs	 to	 class	 1.	 The	 relevance	 of	 a	 particular	 feature	 can	 be
calculated	by	numerous	methods,	one	of	which	is	the	Fisher	Discriminate	Ratio.

The	Fisher	Discriminate	Ratio	of	a	feature	(a	column	vector)	is	calculated
using	the	following	formula

Where	μx	 is	 the	mean	 of	 the	 data	X,	 μy	 is	 the	mean	 of	 the	 data	Y.	 The
standard	deviation	of	X	is	σx	and	that	of	the	Y	data	is	σy.

Ask	the	user	to	enter	the	elements	of	two	lists	-	feature	and	label.

21. Create	a	function,	segregate,	which	 takes	 the	feature	and	label	as	 input	and
find	the	vectors	X	and	Y.

22. The	calculate_mean	function	should	calculate	the	mean	of	the	input	vector.

23. The	 calculate	 standard_deviation	 function	 should	 calculate	 the	 standard
deviation	of	the	input	vector.

24. The	FDR	function	should	calculate	the	FDR	of	a	feature.

25. Finally	write	a	program	that	takes	2D	data	as	input	and	calculate	the	FDR	of

each	feature.

The	 relevance	 of	 a	 particular	 feature	 can	 also	 be	 calculated	 by	 the
coefficient	of	correlation.

The	coefficient	of	correlation	of	a	feature	(a	column	vector)	is	calculated
using	the	following	formula.

26. Create	a	function,	“segregate”	which	takes	the	feature	and	label	as	input	and
find	the	vectors	X	and	Y.

27. The	calculate_mod	function	should	calculate	the	|X|	for	the	input	vector,	X.

28. The	calculate_dot	function	should	calculate	X.Y.

29. The	CORR	function	should	calculate	the	correlation	coefficient	of	a	feature.

30. Finally	 write	 a	 program	 that	 takes	 2D	 data	 as	 input	 and	 calculate	 the
coefficient	of	correlation	of	each	feature.

File	Handling/	Strings

31. Create	 a	 file	 called	data	 and	 insert	 data	 from	a	 text	 file	 containing	5	news
articles	from	a	news	site.

32. Now	open	the	file	and	find	the	words	beginning	with	vowels.	Make	5	lists	of
words	beginning	with	each	vowel.

33. Draw	a	histogram	of	the	above	data.

34. Make	the	first	 letter	of	each	word	capital	and	write	 the	words	in	5	separate
files.

35. Now,	 from	 each	 file	 find	 the	 words	 that	 end	 with	 a	 vowel	 and	 place	 the
words	in	5	separate	files.

36. Check	which	of	these	words	begin	and	end	with	a	vowel.

37. From	the	original	file	find	the	word	which	is	repeated	the	maximum	number
of	times.

38. Do	the	above	task	for	all	the	words	and	plot	the	frequency	of	each	word	in	a
graph.

39. From	the	original	file	find	which	alphabetic	character	is	used	the	maximum
number	of	times.

40. The	reader	is	expected	to	read	about	Huffman	code	from	the	following	link
and	encode	the	file	using	Huffman	code.

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.html

41. From	the	original	file,	find	the	string	that	has	the	maximum	length.

42. From	the	original	file	find	the	string	that	has	“cat”	as	the	substring.

43. From	 the	 original	 file	 find	 the	 strings	 which	 are	 substrings	 of	 some	 other
strings	in	the	file.

44. From	the	original	file	find	the	strings	which	begin	with	a	capital	letter.

45. From	the	original	file,	find	all	the	email	IDs.

46. Find	the	email	IDs	which	are	on	the	Yahoo	server.

47. Create	a	regular	expression	for	the	land	line	number	in	India	and	find	all	the
landline	numbers	from	the	file.

48. From	 the	 above	 list	 find	 the	 phone	 numbers	 which	 belong	 to	 a	 particular
area.

49. Find	the	words	which	are	in	all	five	articles.

50. Find	the	words	which	end	with	a	consonant	and	contain	a	vowel.

SECTION	II:	OBJECT-ORIENTED	PROGRAMMING

Classes	and	Objects

You	 are	 required	 to	 develop	 software	 for	 a	 car	 wash	 company.	 The	 company
wants	software	that	can	store	the	details	of	a	car	and	generate	invoices.	After	due
deliberation,	 it	was	decided	 that	a	class	called	car	with	 the	following	members
would	be	created.

Data	members

(a) Registration	Number

(b) Model

(c) Make

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node210.html

(d) Year

(e) Name	of	the	owner

Methods

(f) getdata() :	Takes	data	from	the	users

(g) putdata() :	Displays	data

(h) ___init() :	Initializes	members

(i) del :	Destructor

(j) capacity :

1. Create	a	class	called	car	to	facilitate	the	development	of	the	said	software.

2. Make	 two	 instances	 of	 the	 class	 and	 display	 the	 data.	 The	 first	 instance
should	display	the	data	entered	using	the	putdata()	function	and	the	second
should	display	the	data	assigned	using	the	init	()	method.

3. Create	an	array	of	cars.	Ask	the	user	to	enter	the	data	of	n	cars	and	display
the	data.

4. Find	the	cars	whose	registration	numbers	contain	“HR51.”

5. Find	the	cars	which	are	manufactured	by	“Maruti.”

6. Find	the	cars	which	were	manufactured	before	2007.

7. Find	the	car	whose	owners	are	named	“Harsh.”

8. Find	 the	 cars	 whose	 owners	 names	 begin	 with	 “A”	 and	 are	 manufactured
after	2014.

9. Find	the	cars	which	have	a	certain	type	of	engine	(entered	by	the	user).

10. Find	the	car	with	the	maximum	engine	capacity.

Operator	Overloading

11. Create	a	class	called	vector,	which	has	three	data	members

(a) x1:	The	x	component	of	the	vector

(b) y1:	The	y	component	of	the	vector

(c) z1:	The	z	component	of	the	vector

The	class	should	have	a	method	called	getdata(),	which	takes	data	from
the	user;	putdata(),	which	displays	the	data;	init,	the	constructor.

12. Create	 a	 class	 called	 vectors	 and	make	 two	 instances	 of	 vector:	 v1	 and	 v2.
Display	the	data	of	the	two	objects.

13. The	mod	 of	 a	 vector	 can	 be	 defined	 as	 follows.	 If	 	 then	
	Create	an	array	of	vectors.	Ask	the	user	to	enter	the	data	of

n	vector	and	find	the	vector	that	has	the	maximum	mod.

14. From	 the	 above	 vectors	 (Question	 13)	 find	 the	 vectors	 which	 have	 the	 y
component	0.

15. Two	 vectors	 v1	 and	 v2	 can	 be	 subtracted	 by	 subtracting	 the	 corresponding
components	 of	 the	 two	 vectors.	 That	 is	 if	 	 and	

	then

Using	the	above	concept,	overload	the	+	operator	for	the	class.

16. Two	 vectors,	 v1	 and	 v2,	 can	 be	 added	 by	 adding	 the	 corresponding
components	 of	 the	 two	 vectors.	 That	 is	 if	 	 and	

	then

Using	the	above	concept,	overload	the	+	operator	for	the	class.

17. The	 dot	 product	 of	 two	 vectors	 can	 be	 obtained	 by	 adding	 the	 products
obtained	by	multiplying	 the	 corresponding	 components	 of	 the	 two	vectors.
That	is,	if	 	and	 	then

Using	the	above	concept,	overload	the	.	operator	for	the	class.

18. A	 hypothetical	 operation	 can	 increment	 can	 be	 defined	 as	 follows.	 If	
	then

Using	the	above	concept,	overload	the	++	operator	for	the	class.

19. A	 hypothetical	 operation	 can	 increment	 can	 be	 defined	 as	 follows.	 If	
	then

Using	the	above	concept,	overload	the	–	–	operator	for	the	class.

20. For	the	vector	class,	overload	the	unary	(–)	operator.

Inheritance

21. Create	a	class	called	Book	that	has	the	following	members.

(a) Name	of	the	book :	String

(b) Author(s) :	List

(c) Year :	Year	of	publication

(d) ISSN :	String

(e) Publisher :	Name	of	the	publisher

The	class	should	have	getdata(),	putdata()	and	init()	as	its	methods.

22. Create	 two	 subclasses:	TextBook	 and	ReferenceBook	having	 requisite	 data
members.	Demonstrate	the	use	of	overriding	in	the	above	hierarchy.

23. Now	 create	 three	 subclasses	 of	 the	 TextBook	 class,	 namely	 SocialScience,
Engineering	 and	 Management.	 Each	 class	 should	 define	 its	 version	 of
getdata()	and	putdata().	Make	 instances	of	 these	subclasses	and	call	 the
method	of	the	derived	classes.

24. Create	 a	 class	 called	 XBook,	 which	 is	 a	 subclass	 of	 both	 TextBook	 and
Reference	Book	and	demonstrate	how	this	can	lead	to	ambiguity.

25. Create	a	class	called	ABC	and	craft	a	class	method	and	an	instance	method
of	the	class.

Exception	Handling

26. Create	 a	 class	 called	 array	 which	 contains	 an	 array	 and	max	which	 is	 the
maximum	number	 of	 elements	 the	 array	 can	 have	 and	methods	getdata()
and	putdata(),	which	perform	the	requisite	tasks.

27. Now	create	a	class	to	raise	customized	exceptions.	The	exception	should	be
raised	if	the	user	enters	more	elopements	than	the	max	allowed.

28. If	the	user	enters	anything	except	for	integer,	an	exception	should	be	raised
and	the	requisite	message	should	be	displayed.

29. Now	 ask	 the	 user	 to	 enter	 two	 indices	 and	 divide	 the	 numbers	 at	 those
positions.	If	 the	number	at	 the	second	position	is	0,	an	exception	should	be
raised.

30. Ask	the	user	to	enter	three	indices.	These	three	indices	contain	the	values	of
“a,”	 “b,”	 and	 “c”	 of	 the	 quadratic	 equation	 ax2	 +	 bx	 +	 c	 =	 0.	 Find	 the
discriminant	and	 the	roots	of	 the	equation.	 If	 the	value	of	b2	–	4ac	<	0,	an
exception	should	be	raised.

SECTION	III:	DATA	STRUCTURES

Sorting	and	Searching

1. Implement	linear	search	and	binary	search.	Compare	the	time	for	searching
an	element	from	a	list	of	500	random	numbers.

2. Repeat	 the	experiment	 for	a	 list	of	5000	 integers	and	compare	 the	 time	 for
searching	 for	 an	 element	 with	 the	 two	 algorithms.	 Does	 increasing	 the
number	of	elements	10	times	increase	the	running	time	10	fold?

3. Implement	counting	sort.	(Reference	at	the	end	of	this	appendix)

4. Implement	bucket	sort.	(Refer	to	the	links	at	the	end	of	this	appendix)

5. Implement	selection	sort	which	takes	O(n	log	n)	time.

6. Now	take	a	list	of	500	integers	and	compare	the	time	for	selection	sort	and
bucket	sort.

7. Which	of	 the	 two	-	bucket	sort	or	counting	sort	-	 takes	 less	 time?	Are	 they
really	comparable?

8. Implement	quick	sort	and	merge	sort	using	lists.

9. Take	an	array	of	5000	random	integers	and	compare	the	time	of	running	of
quick	sort	and	merge	sort.

10. Can	the	average	case	complexity	of	quick	sort	be	bettered?

Stacks	and	Queues

11. Refer	to	the	chapter	on	stacks	and	queues	and	implement	a	dynamic	stack	in
which	a	single	placeholder	is	added	when	overflow	occurs.

12. Refer	to	the	chapter	on	stacks	and	queues	and	implement	a	dynamic	stack	in
which	the	number	of	placeholders	is	doubled	when	overflow	occurs.

13. Implement	a	dynamic	stack	in	which	the	number	of	placeholders	is	randomly
increased	when	overflow	occurs.

14. Using	a	stack	convert	an	infix	expression	into	a	postfix	expression.

15. Using	stacks	convert	an	infix	expression	into	a	prefix	expression.

16. Using	stacks	find	the	nth	Fibonacci	term.

17. Using	stacks	find	the	number	obtained	by	reversing	the	order	of	digits	for	a
given	number.

18. Using	queues	implement	priority	scheduling.

19. Using	queues	implement	First	Come	First	Serve	scheduling.

20. Using	queues	implement	First	Come	First	Serve	with	time	slice.

Linked	List

21. Write	a	program	to	find	whether	a	given	linked	list	has	a	cycle.

22. Write	a	program	to	join	two	linked	lists.

23. Write	a	program	to	merge	two	linked	lists.

24. Write	a	program	to	remove	duplicate	elements	from	a	given	linked	list.

25. Write	a	program	to	 find	 the	second	maximum	element	 from	a	given	 linked
list.

26. Write	a	program	to	find	the	element	greater	than	the	mean	(assume	that	the
linked	list	has	only	integers	in	the	data	part).

27. Write	a	program	to	find	the	common	elements	from	two	given	linked	lists.

28. Write	a	program	to	find	the	union	of	elements	of	two	linked	lists.

29. Write	a	program	to	arrange	the	elements	of	a	linked	list	in	descending	order.

30. Write	a	program	to	partition	a	linked	list	as	per	the	algorithm	in	the	following
reference.

Graphs	and	Trees

A	 graph	 can	 be	 represented	 using	 a	 two-dimensional	 array.	 The	 array	 will
contain	 0’s	 and	 1’s.	 If	 the	 element	 at	 the	 ith	 row	 and	 the	 jth	 column	 has	 1,	 it
indicates	 the	presence	of	 an	 edge	 from	vertex	 i	 to	 j.	Ask	 the	user	 to	 enter	 the
number	of	vertices	of	a	graph	and	create	a	two	dimensional	array	depicting	the

graph.

31. Find	the	number	of	edges	in	the	graph.	(Note	that	the	number	of	1’s	in	the	2-
D	array	is	not	same	as	the	number	of	edges	in	the	graph).

32. Find	the	vertex	connected	to	the	maximum	number	of	edges.

33. Find	if	the	graph	has	a	cycle.

34. Ask	the	user	to	enter	the	initial	vertex	and	the	final	vertex	and	find	if	there	is
a	path	from	the	initial	to	the	final	vertex.

35. In	 the	 above	 question	 find	 whether	 there	 is	 more	 than	 one	 path	 from	 the
initial	to	the	final	vertex,	in	which	case	find	the	shortest	path.

36. Now,	 in	 place	of	 1’s	 ask	 the	user	 to	 enter	 a	 finite	 number	 representing	 the
cost	of	the	edge	from	the	vertex	i	to	the	vertex	j.	Find	the	shortest	path	from
the	source	vertex	to	all	other	vertices.

37. Write	a	program	to	find	the	spanning	tree	of	the	graph.

38. Write	a	program	to	find	whether	the	graph	is	a	tree.

39. A	tree	can	be	represented	using	a	two	dimensional	array	having	n	rows	and
two	columns.	In	each	row	the	first	column	is	 i	and	 the	second	column	is	 j,
which	 means	 that	 there	 is	 an	 edge	 from	 i	 to	 j.	 Ask	 the	 user	 to	 enter	 the
requisite	 data	 and	 display	 the	 tree	 (just	 the	 list	 of	 vertices	 and	 edges
associated	with	them).

40. Create	a	binary	tree	using	a	doubly	linked	list.	For	 this	 tree	accomplish	the
following	tasks.

41. Write	a	program	to	implement	the	post	order	traversal	of	a	binary	tree.

42. Write	a	program	to	implement	the	pre	order	traversal	of	a	binary	tree.

43. Write	a	program	to	implement	the	in	order	traversal	of	the	tree.

44. Check	if	the	given	tree	is	a	binary	search	tree.

45. In	a	given	binary	search	tree,	find	the	leftmost	node	of	the	right	sub	tree	of	a
given	node.

46. In	a	given	binary	search	tree,	find	the	rightmost	node	of	the	left	sub	tree	of	a
given	node.

47. Write	a	program	to	insert	an	element	in	a	binary	search	tree.

48. Write	a	program	to	delete	a	given	node	from	a	given	binary	search	tree.

49. Write	a	program	to	create	a	heap	from	a	given	list.

50. Implement	heap	sort.

APPENDIX	D

PROBLEMS	FOR	PRACTICE:
MULTIPLE	CHOICE	QUESTIONS

SECTION	3:	INTRODUCTION	TO	DATA	STRUCTURES

Introduction

1. In	linear	data	structures,	the	elements	are

(a) Stored	in	a	linear	fashion

(b) Elements	are	accessed	in	sequential	order

(c) Both

(d) None	of	the	above

2. In	non-linear	data	structures

(a) Elements	are	stored	and	accessed	in	a	non-linear	fashion

(b) Elements	are	accessed	in	a	non-linear	fashion

(c) Elements	are	stored	in	a	non-linear	fashion

(d) None	of	the	above

3. An	ADT	consists	of

(a) Declaration	of	data

(b) Declaration	of	operations

(c) Definition	of	data

(d) Definition	of	operations

4. The	time	complexity	of	inserting	an	element	at	a	given	position,	in	an	array,
is

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) None	of	the	above

5. The	 time	 complexity	 of	 deleting	 an	 element	 at	 a	 given	 position,	 from	 an
array,	requires

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) None	of	the	above

6. Which	of	the	following	is	not	a	type	of	algorithmic	analysis?

(a) Worst	Case

(b) Best	Case

(c) Average	Case

(d) Boundary	Case

7. The	time	complexity	of	linear	search	is

(a) O(n)

(b) O(n2)

(c) O(n3)

(d) None	of	the	above

8. The	time	complexity	of	linear	search	is

(a) 	(n)

(b) 	(n2)

(c) 	(n3)

(d) All	of	the	above

9. The	time	complexity	of	linear	search	is

(a) (n)

(b) (n2)

(c) (n3)

(d) All	of	the	above

10. If	f(n)	=	3n2	+	5n	+	2,	Then	f(n)	is

(a) (n2)

(b) (n2)

(c) (n2)

(d) All	of	the	above

11. Which	one	of	the	following	is	the	most	essential	attribute	of	an	algorithm?

(a) Correctness

(b) Finiteness

(c) Definiteness

(d) All	of	the	above

12. Which	of	 the	 following	 is	 recursive,	 but	 a	 non-recursive	 algorithm	can	be
created	using	stacks?

(a) Merge	sort

(b) Quick	sort

(c) Bubble	sort

(d) Insertion	sort

13. Which	of	the	following	is	iterative?

(a) Merge	sort

(b) Quick	sort

(c) Bubble	sort

(d) Insertion	sort

14. Which	of	the	following	data	structures	cannot	have	a	cycle?

(a) Directed	graph

(b) Undirected	graph

(c) Tree

(d) None	of	the	above

15. On	which	of	the	following	data	structures	does	NumPy	rely	on?

(a) Array

(b) Trees

(c) Stacks

(d) Queues

Stacks	and	Queues

16. Given	an	expression:	(a	+	b)	–	(c/d)	×	f.	The	postfix	form	of	the	expression
is	____________.

17. Given	an	expression:	(a	+	b)	–	(c/d)	×	f.	The	prefix	form	of	the	expression	is
____________.

18. Given	an	expression:	(a/(b	+	c))	–	d.	The	corresponding	postfix	expression
is	____________.

19. Given	an	expression:	 (a/(b	+	c))	–	d.	The	prefix	 form	of	 the	 expression	 is
____________.

20. Given	 an	 expression:	 a	 +	 ((b/c)	 ×	 (d	 /	 f)).	Which	 of	 the	 following	 is	 the
postfix	form?

21. Given	an	expression:	a	+	((b/c)	×	(d	/	f)).	The	prefix	form	of	the	expression
is.

22. In	dynamic	stacks	 if	one	of	 the	elements	 is	added	at	 the	 time	of	overflow,

what	would	the	time	complexity	of	copy	operations	be?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) None	of	the	above

23. In	the	dynamic	stacks	if	the	number	of	the	elements	are	doubled	at	the	time
of	overflow,	what	would	the	time	complexity	of	copy	operations	be?

(a) O(n)	time

(b) O(n2)	time

(c) O(log	n)	time

(d) O(n	log	n)	time

24. When	reversing	a	string	which	one	of	 the	following	data	structures	can	be
used?

(a) Array

(b) Trees

(c) Stacks

(d) Queues

25. In	case	of	linear	queue	what	is	the	initial	value	of	FRONT	and	REAR?

(a) FRONT	=	0,	REAR	=	0

(b) FRONT	=	0,	REAR	=	–	1

(c) FRONT	=	–	1,	REAR	=	Not	Defined

(d) FRONT	=	–1,	REAR	=	–1

26. Which	one	of	the	following	is	not	possible	in	linear	queues?

(a) FRONT	=	0,	REAR	=	1

(b) FRONT	=	3,	REAR	=	2

(c) FRONT	=	2,	REAR	=	3

(d) FRONT	=	–	1,	REAR	=	–	1

27. In	which	of	the	following	cases	value	of	FRONT	and	REAR	are	same?

(a) Empty	queue

(b) A	single	element

(c) Both

(d) None	of	the	above

28. In	FIFO	algorithm	for	scheduling	in	operating	system	which	data	structure	is
used?

(a) Array

(b) Trees

(c) Stacks

(d) Queues

29. In	spooling	which	one	of	the	data	structures	is	used?

(a) Array

(b) Trees

(c) Stacks

(d) Queues

30. Recursion	requires	which	of	the	following	data	structures?

(a) Array

(b) Trees

(c) Stacks

(d) Queues

Linked	List

31. In	implementing	stacks	using	linked	lists	which	of	the	following	operations
are	used?

(a) Insertion	at	beginning

(b) Insertion	at	end

(c) Deletion	from	beginning

(d) Deletion	from	end

32. In	implementing	queues	using	linked	lists	which	of	the	following	operations
are	used?

(a) Insertion	at	beginning

(b) Insertion	at	end

(c) Deletion	at	beginning

(d) Deletion	at	end

33. For	a	circular	linked	list	which	of	the	following	is	true?

(a) Pointer	of	last	node	points	to	first	node

(b) There	is	no	NULL	pointer	in	a	non-empty	queue

(c) Pointer	of	the	first	node	may	point	to	the	last	node

(d) All	of	the	above

While	storing	polynomial	 in	a	 linked	list	a	special	node	is	created	which
has	 two	 data	 members	 and	 a	 next	 pointer.	 The	 data	 members	 store	 the
coefficient	and	exponent	of	a	given	term.

34. Using	the	above	representation	what	would	be	the	complexity	of	addition	of
polynomials?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

35. In	 the	 above	 question,	 what	 would	 be	 the	 complexity	 of	 subtraction	 of
polynomials?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

36. What	would	be	the	complexity	of	multiplication	of	polynomials?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

37. Which	of	the	following	strategies	is	the	most	efficient	for	reversing	a	linked
list?

(a) Recursion

(b) Creating	a	new	linked	list	in	the	order	of	the	elements	is	reverse	of	that
of	the	original	linked	list

(c) Creating	two	pointers

(d) Using	a	temporary	array

38. What	 is	 the	 complexity	 (best	 case)	 in	 reversing	 a	 linked	 list	 using	 above
strategy?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

39. What	is	the	strategy	for	finding	a	cycle	in	a	linked	list?

(a) Recursion

(b) A	new	linked	list

(c) Using	two	pointers

(d) Using	a	temporary	array

40. What	would	be	the	complexity	of	the	above?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

Trees

41. What	is	the	height	of	a	complete	binary	tree	which	has	n	nodes?

(a) n

(b) n	log	n

(c) log	n

(d)

42. What	is	the	number	of	nodes	of	a	complete	binary	tree	which	has	n	levels?

(a) 2n

(b) n	log	n

(c) n2

(d) 2n

43. What	is	the	complexity	of	searching	in	a	complete	binary	tree	which	has	n
nodes?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(n	log	n)

44. What	 is	 the	worst	 case	 time	 complexity	 for	 searching	 in	 a	 skewed	 binary
tree?

(a) O(1)

(b) O(n)

(c) O(log	n)

(d) O(n	log	n)

45. What	is	the	best	case	complexity	for	searching	an	element	in	a	skewed	tree?

(a) O(n)

(b) O(n2)

(c) O(log	n)

(d) O(1)

FIGURE	# for	questions	46–50

46. The	maximum	 number	 of	 comparisons	 when	 searching	 an	 element	 in	 the
given	tree	(Figure	#)	is

(a) 4

(b) 3

(c) 5

(d) 1

47. The	maximum	number	of	comparisons	when	deleting	an	element	 from	the
given	tree	(Figure	_)	is

(a) 1

(b) 2

(c) 3

(d) 4

48. Number	of	comparisons	when	inserting	“36”	in	the	given	tree	(Figure	#)	is

(a) 3

(b) 4

(c) 2

(d) None	of	the	above

49. What	is	the	index	of	“23”	in	the	array	representation	of	the	given	tree?

(a) 4

(b) 3

(c) 6

(d) 8

50. What	 is	 the	 maximum	 difference	 in	 the	 height	 of	 the	 left	 and	 the	 right
subtree	in	a	balanced	tree?

(a) 1

(b) 0

(c) 2

(d) None	of	the	above

ANSWERS	TO	THE	MCQ’S

1. (a)
2. (a)
3. (a,	b)
4. (a)
5. (a)
6. (d)
7. (a,	b,	c)
8. (a)
9. (a)
10. (d)
11. (a)
12. (a,	b)
13. (c,	d)
14. (c)
15. (a)
22. (b)
23. (d)

24. (c)
25. (a)
26. (b)
27. (c)
28. (a)
29. (a,	d)
30. (c)
31. (b,	d)
32. (b,	c)
33. (a)
34. (a)
35. (a)
36. (b)
37. (c)
38. (a)
39. (c)
40. (c)
41. (c)
42. (d)
43. (c)
44. (b)
45. (d)
46. (a)
47. (d)
48. (a)
49. (b)
50. (a)

APPENDIX	E

ANSWER	TO	THE	MULTIPLE
CHOICE	QUESTIONS
Chapter	1

1. (c)
2. (b)
3. (b)
4. (c)
5. (c)
6. (d)
7. (a)
8. (c)
9. (b)
10. (a)
11. (d)
12. (d)
13. (d)
14. (d)
15. (a)

Chapter	2

1. (a)
2. (b)
3. (b)
4. (d)
5. (a)
6. (b)
7. (b)
8. (b)
9. (d)
10. (b)

11. (d)
12. (d)
13. (a)
14. (a)
15. (a)

Chapter	3

1. (a)
2. (a)
3. (b)
4. (a)
5. (b)
6. (a)
7. (a)
8. (b)
9. (b)
10. (b)

Chapter	4

1. (b)
2. (d)
3. (c)
4. (a)
5. (d)
6. (d)
7. (d)
8. (a)
9. (a)
10. (b)

Chapter	5

1. (d)
2. (d)
3. (d)
4. (c)
5. (d)
6. (a)
7. (a)

8. (a)
9. (a)
10. (d)

Chapter	6

1. (a)
2. (a)
3. (a)
4. (a)
5. (b)
6. (a)
7. (d)
8. (d)
9. (d)
10. (a)

Chapter	7

1. (c)
2. (a)
3. (d)
4. (a)
5. (b)
6. (b)
7. (b)
8. (a)
9. (a)
10. (b)
11. (c)
12. (a)
13. (b)
14. (a)
15. (b)
16. (a)
17. (a)
18. (b)
19. (c)
20. (a)
21. (b)

22. (c)
23. (b)
24. (d)
25. (d)

Chapter	8

1. (a)
2. (a)
3. (c)
4. (a)
5. (b)
6. (a)
7. (b)
8. (a)
9. (b)
10. (b)
11. (b)
12. (c)
13. (a)
14. (c)
15. (d)
16. (d)
17. (d)
18. (b)
19. (b)
20. (b)
21. (a)
22. (a)
23. (a)
24. (b)
25. (b,	c)

Chapter	9

1. (b,	c,	d)
2. (d)
3. (a)
4. (a)
5. (a)

6. (a)
7. (a)
8. (b)
9. (a)
10. (a)
11. (b)
12. (a)
13. (d)
14. (d)
15. (a)
16. (d)
17. (b)
18. (b)
19. (b)
20. (d)

Chapter	10

1. (a)
2. (d)
3. (a)
4. (c)
5. (a)
6. (c)
7. (b)
8. (a)
9. (a)
10. (a)
11. (a)
12. (a)
13. (a)
14. (c)
15. (b)
16. (a)
17. (a)
18. (a)
19. (a)
20. (b)

Chapter	11

1. (a)
2. (c)
3. (b)
4. (b)
5. (a)
6. (b)
7. (a)
8. (c)
9. (a)
10. (b)
11. (a)
12. (a)
13. (c)
14. (b)
15. (a)

Chapter	12

1. (a)
2. (a)
3. (d)
4. (b)
5. (b)
6. (a)
7. (b)
8. (b)
9. (c)
10. (b)
11. (a)
12. (a)

Chapter	13

1. (c)
2. (b)
3. (c)
4. (d)
5. (d)
6. (d)
7. (c)

8. (c)
9. (a)
10. (a)

Chapter	14

1. (d)
2. (d)
3. (a,	b)
4. (c)
5. (a)
6. (b)
7. (d)
8. (d)
9. (b)
10. (a)
11. (d)
12. (d)

Chapter	15

1. (a)
2. (a)
3. (a)
4. (a)
5. (c)
6. (b)
7. (a)
8. (a)
9. (b)
10. (a)
11. (b)
12. (b)
13. (a)
14. (c)
15. (d)

Chapter	16

1. (b)
2. (c)

3. (a)
4. (c)
5. (d)
6. (b)
7. (a)
8. (a)
9. (b)
10. (b)
11. (a)
12. (b)
13. (b)
14. (a)
15. (a)

Chapter	17

1. (a,	c,	d)
2. (b,	c,	d)
3. (b)
4. (a)
5. (d)
6. (a)
7. (b)
8. (c)
9. (b)
10. (c)

Chapter	18

1. (a)
2. (a)
3. (a)
4. (a)
5. (a)
6. (c)
7. (c)
8. (c)
9. (a)
10. (a)
11. (c)

12. (d)
13. (a,	b,	c,	d)
14. (d)
15. (b)

Chapter	19

1. (d)
2. (a)
3. (a)
4. (a)
5. (a)
6. (a)
7. (c)
8. (b)
9. (d)
10. (a)

Chapter	20

1. (b)
2. (c)
3. (a)
4. (d)
5. (a)
6. (d)
7. (d)
8. (a)
9. (a)
10. (a)

BIBLIOGRAPHY
Python

1. Mark	Lutz,	Learning	Python,	Fifth	Edition,	O’Reilly,	2013.

2. Stef	Maruch	and	Aahz	Maruch,	Python	 for	Dummies,	 John	Wiley	&	Sons,
2006,	ISBN:9780471778646.0020

3. David	Beazley,	Python	Essential	Reference,	Third	Edition,	Sams	Publishing,
USA,	2006.

4. Allen	 Downey,	 Think	 Python,	 How	 to	 Think	 Like	 a	 Computer	 Scientist,
Version	2.0.16,	Green	Tea	Press,	Needham,	Massachusetts.

5. Wes	 McKinney,	 Python	 for	 Data	 Analysis,	 Wes	 McKinney.	 USA,	 2013,
ISBN:	978-1-449-	31979-3.

6. Andrew	Johansen,	Python,	The	Ultimate	Beginner’s	Guide!

7. Wesley	 J.	 Chun,	 Core	 Python	 Programming,	 First	 Edition,	 Prentice	 Hall
PTR,	2000,	ISBN:	0-13-026036-3,	8.

8. Peter	 Harrington,	 Machine	 Learning	 in	 Action,	 Manning	 Publishing
Company,	2012.

9. Richard	L.	Halterman,	Learning	to	Program	with	Python,	Copyright	©	2011
Richard	L.	Halterman.

10. Willi	Richert,	Luis	Pedro	Coelho,	Building	Machine	Learning	Systems	with
Python,	Building	Machine	Learning	Systems	with	Python,	Packt	Publishing,
2013.

Web	resources

11. http://www.python.org

12. http://www.cheeseshop.python.org/

13. http://www.wiki.python.org

Data	Structure	and	Algorithms

14. Cormen,	 Leiserson,	 Rivest,	 Stein,	 “Introduction	 to	 Algorithms,”	 Second

http://www.python.org
http://www.cheeseshop.python.org/
http://www.wiki.python.org

Edition,	Prentice	Hall	of	India,

15. Kleinberg,	Tardos,	“Algorithm	Design,”	Pearson,	2011.

16. Dave	and	Dave,	“Design	and	Analysis	of	Algorithms,”	Pearson,	2008.

17. Neapolitan,	Naimipour,	“Foundations	of	Algorithms,”	Fourth	Edition,	Jones
&	Barlett,	2013.

18. Horowitz	et.	al.,	“Algorithms,”	Second	Edition,	University	Press,	2007.

19. Levitin,	“Introduction	to	Design	and	Analysis	of	Algorithms,”	Perason,	2009.

20. Rajeev	 Motwani	 and	 P.	 Raghavan,	 “Randomized	 Algorithms,”	 Cambridge
University	Press,	New	York	(NY),	1995.

21. Williamson	 and	 Shmoys,	 “The	 Design	 of	 Approximation	 Algorithms,”
Cambridge	University	Press,	2012.

22. Christos	 Papadimitriou,	 “Computational	 Complexity,”	 1st	 ed.,	 Addison
Wesley,	Chapter	11:	Randomized	computation,	pp.	241–278,	1993.

23. Tenenbaum	et.	al.,”	Data	Structures	Using	C,”	Pearson,	2006.

24. Horowitz,	Sahini,	“Fundamentals	of	Data	Structures,”	Galgotia	Booksource,
1999.

25. Weiss,	“Data	Structure	and	Algorithm	Analysis	in	C++,”	Pearson,	2013.

26. Sharma,	“Data	Structures	Using	C,”	Pearson,	2013.

27. Kanitkar,	“Data	Structures	Through	C,”	BPB	Publications,

28. Arora,	 Sanjeev,	 Barak,	 Boaz,	 “Computational	 complexity—A	 Modern
Approach,”	Cambridge	University	Press,	ISBN	978-0-521-42426-4,	2009.

29. Sipser,	 Michael,	 “Introduction	 to	 the	 Theory	 of	 Computation,”	 PWS
Publishing,	 ISBN	 0-534-	 94728-X,	 Section	 8.2–8.3	 (The	 Class	 PSPACE,
PSPACE-completeness),	pp.	281–294,	1997.

30. Papadimitriou,	 Christos,	 “Computational	 Complexity,”1st	 ed.,	 Addison
Wesley,	ISBN	0-201-	53082-1.	Chapter	19:	Polynomial	space,	pp.	455–490,
1993.

31. Sipser,	Michael,	 “Introduction	 to	 the	 Theory	 of	 Computation,”	 2nd	 edition
ed.,	 Thomson	Course	 Technology,	 ISBN	 0-534-95097-3.	 Chapter	 8:	 Space
Complexity,	2006.

32. Jones	 and	 Pevzner,	 “An	 Introduction	 to	 Bioinformatics	 Algorithms,”	 MIT

Press.

33. Attwood,	 Parry	 Smith,	 Phukan,	 “Introduction	 to	 Bioinformatics,”	 Pearson,
2009.

34. Bishop,	 C.M.,	 “Neural	 Networks	 for	 Pattern	 Recognition,”	 Oxford
University	Press,	Oxford,	England,	1995.

35. Bishop,	 C.M.,	 “Pattern	 Recognition	 and	 Machine	 Learning,”	 Springer-
Verlag,	New	York,	2008.

36. Goldberg,	D.E.,	“Genetic	Algorithms	 in	 Search,	Optimization	and	Machine
Learning,”	Addison-	Wesley,	Reading,	MA,	1989.

37. Goldberg,	D.E.,	“The	Design	of	Innovation:	Lessons	from	and	for	Competent
Genetic	Algorithms”,	Addison-Wesley,	Reading,	MA,	2002.

38. Stuart	 J.	 Russell	 and	 Peter	 Norvig,	 “Artificial	 Intelligence:	 A	 Modern
Approach,”	2	ed.	Pearson	Education,	2003.

39. Rich,	E.,	Knight,	K,	“Artificial	Intelligence,”	McGraw-Hill,	1991.

40. Strang,	 Gilbert,	 “Introduction	 to	 Linear	 Algebra,”	 4th	 ed.	Wellesley,	MA:
Wellesley-Cambridge	Press,	February	2009.

41. Vaˇsek	Chv´atal,	“Linear	Programming,”	W.	H.	Freeman	&	Co.,	1983.

42. G.	B.	Dantzig,	“Linear	Programming	and	Extensions,”	Princeton	University
Press,	1963.

43. David	Gale,	“The	Theory	of	Linear	Economic	Models,”	McGraw-Hill,	1960.

44. Samuel	Karlin,	“Mathematical	Methods	and	Theory	in	Games,	Programming
and	Economics,”	Volume	1,	Addison-Wesley,	1959.

45. James	K.	Strayer,	“Linear	Programming	and	Applications,”	Springer-Verlag,
1989.

46. Brigham,	 E.	 Oran,	 “The	 Fast	 Fourier	 transform	 and	 its	 applications,”
Englewood	Cliffs,	N.J.:	Prentice	Hall,	1988.

47. Oppenheim,	Alan	V.;	Schafer,	R.	W.;	and	Buck,	J.	R.,	“Discrete-time	Signal
Processing.	Upper	Saddle	River,	N.J.,”	Prentice	Hall.

48. Smith,	 Steven	 W.,	 “Chapter	 8:	 The	 Discrete	 Fourier	 Transform,”	 The
Scientist	 and	 Engineer’s	 Guide	 to	Digital	 Signal	 Processing,”	 Second	 ed.,
San	Diego,	Calif.:	California	Technical	Publishing.

49. P.	Duhamel,	B.	Piron,	and	J.	M.	Etcheto,	“On	computing	the	inverse	DFT,”
IEEE	Trans.	Acoust.,	Speech	and	Sig.	Processing	36	(2):	285–286,	1988.

50. Knuth,	 Donald,	 “Sorting	 and	 Searching—The	 Art	 of	 Computer
Programming,”	Volume	3	(Second	ed.).	Addison–Wesley,	1998.

51. Bhasin,	Harsh,	Algorithms:	Design	 and	 Analysis,	 Oxford	University	 Press,
2015.

INDEX

A
Abstract	classes,	228–229
Abstract	data	types	(ADT),	284,	285
active_count,	442
add,	242,	243
add_axes,	406
add_subplot,	409
Aggregate	functions,	377–381
Algorithms,	286–287
Anaconda,	7–11
Append	mode,	126
Arange,	375
Arguments,	81
Arithmetic	operators,	20
Arithmetic	progression,	63,	110
Array,	282,	287–292
Assertion	error,	266
Assignment	operator,	20
Attribute	error,	266
Attributes,	164–165

B
Base	class,	200,	211
Behavior,	82,	164–165
Binary	search	tree,	354–364
bool,	250,	252
Bound	methods,	220–221
Branches,	47
Break,	60,	61
Broadcasting,	381–385
Bubble	sort,	293

C
Callable	objects,	223–224
Ceil,	21
Character	class,	448

Chronology,	5–6
Class,	5,	168–169,	180–181
Class	diagram,	164,	165,	208
Clipping,	427–428
close(),	125,	129
cmap,	410,	424
color,	398
colorbar,	403
Command	line	arguments,	131–132
Complete	binary	tree,	350
Complex,	19
Composition,	204–208
Comprehension,	103,	115–118
Constructor,	168,	186–187
Continue,	60
Contour	function,	426
Copy	sign,	21
Cosine,	400,	401
Counters,	442
Cross	product,	117,	118
Curdir,	129
Current_thread,	442

D
Daemon,	444
Data	hiding,	170
Data	structures,	281
Datatype,	373,	375
Decimal,	21
Decision	making,	35,	36
Default	constructor,	168,	186
Degree	of	a	node,	351
Degree	of	a	tree,	351
Deletion	from	the	beginning,	329–330
Deletion	of	a	node	after	a	particular	node,	330–331
Deletion	of	a	node	from	the	end,	331–336
Derived	classes,	171,	200
Destructor,	168,	190–192,	253–254
Dictionary,	103,	104,	106,	107,	115
Digital	image	processing,	422
Django,	2
Dummy,	270
Dynamic	typing,	4,	371,	372

E
Edge,	351
Efficiency,	287

Encapsulation,	169–170
EOFError,	266
Evaluation	of	postfix,	314
Except,	268
Exception,	262
Expect,	263
Explicit	overriding,	202

F
Fabs,	22
Factorial,	22,	61
Fibonacci	series,	91,	92
File	access	modes,	126–127
File.closed,	130
File	handling	mechanism,	124–125
File.mode,	130
File.name,	130
Fileno(),	129
Finally,	273–275
Findall(),	451,	452
First	In	First	Out	(FIFO),	283,	316
Floating	point	error,	266
Floating	point	numbers,	21,	374
Floor,	22
Flush(),	130
For,	144–147
Fractions,	22
Fromfile,	424
Functional,	5
Function	overloading,	172,	188
Functions,	79,	165–168

G
Garbage	collection,	253
Generator,	110–114
Geometric	progression,	64
get	construct,	46–47
get_ident(),	442
Global	data,	170
Graph,	284,	349
Graphical	User	Interface	(GUI),	6
gt,	249

H
Hierarchical	inheritance,	213–216

Hybrid	inheritance,	219

I
idd,	248
Identity,	19
If,	36,	37,	42
if-elif,	41
If-elif-else	ladder,	42–43
if-else,	36
Image	processing,	421–422
Imgshow,	403
Immutability,	26
Implicit,	231
Implicit	inheritance,	231
ImportError,	266
Imread,	423
imshow(),	423
Indentation,	37,	41,	61
IndexError,	266
Indexing,	24
Infix,	313–315
Inheritance,	171,	200–204,	208–220
Inheritance	tree,	226–228
__Init__,	187
In-order,	353,	359
In-order	traversal,	353,	359
Insertion	after	a	particular	no,	328
Insertion	at	beginning,	327
Insertion	at	the	end,	329
Instance	variable,	183
Instantiation,	181
Integer,	19,	21,	163
IntendationError,	266
Interpreted	language,	17
IOERROR,	126
Isalive,	443
Isatty(),	130
__Iter__,	109
Iterable	object,	109–110
Iterative,	292
Iterative	algorithm,	292–296
Iterators,	107–109

J
Join,	153,	443

K
KeyError,	266
Keywords,	20
Kivy,	2

L
Last	in	first	out,	282,	283,	285,	325
Len,	239,	250,	252
Level	of	a	tree,	351
Linear	search,	88
Linesep,	129
Linked	list,	325
Linspace,	376
List,	27
List	of	lists,	71–73
Literal	characters,	447
Log,	401
Logical	operators,	20
Logspace,	377
Looping,	59

M
Manageability,	80
Match,	448–453
Matplotlib,	395,	401,	404,	409
Matplotlib.axes,	405
Matrices,	430
Max,	428
Maximum	element,	362–364
MAX_PRIORITY,	441
Mean,	428
Merge	sort,	297–298
Method	overriding,	179
Methods,	220–226
Min,	428
Minimum	element,	362–364
Min_priority,	441
Misc.imread,	424
Misc.imsave,	424
Mixing,	3–4
Modifiers,	447
Modular	Programming,	80,	162,	172
mul,	242–244
Multilevel	inheritance,	216–219
Multiple	Inheritance,	208,	219

Multiprocessing,	439
Multi-threading,	439–440

N
Ndarray,	373
Nesting,	70,	185
New,	441
Next,	109
No	garbage	collection,	253–254
None,	19
Non	linear	data	structures,	284,	326
Normal	one,	444
NotImplementedError,	267
Numarray,	372
Numbers,	20,	21
Numeric,	372
Numerical	Python,	372
NumPy,	372–374
Numpy.all,	378
Numpy.any,	378
Numpy.argmax,	377
Numpy.argmin,	377
Numpy.array,	377
Numpy.max,	377
Numpy.mean,	377
Numpy.median,	377
Numpy.min,	377
Numpy.percentile,	377
Numpy.prod,	377
Numpy.std,	377
Numpy.sum,	377
Numpy.var,	377

O
Object,	169
Object	oriented,	5
Object	oriented	paradigm,	163,	169
Objects,	30
Open,	283
Operator	overloading,	237–254
Operators,	20
Object	Oriented	programming,	168–172,	200
Overflow,	296,	308
OverflowError,	266
Overloading,	81
Overloading	binary	operators,	242–246
Overriding,	201

P
Parameter,	82
Parameterized	constructor,	168,	187
Pardir,	129
Parent,	351
Pathsep,	129
Patterns,	65–70
PEP	(Python	Enhancement	Project),	6
Plot,	396
Plot_surface,	413
Polymorphism,	171–172
Portable,	4
Postfix,	313–314
Post-order,	354
Post-order	traversal,	354
Power,	62,	94
Prefix,	313
Prefix	to	Postfix,	315
Prefix	to	Prefix,	315
Pre-order,	353
Pre-order	traversal,	353
Primary,	282
Primary	data	structures,	282
Private,	170
Procedural,	4–5
Procedural	language,	4–5,	161
Procedural	programming,	161,	172
Protected,	170
PSF	(Python	Software	Foundation),	6
Public,	170,	180
Pyplot,	395,	400,	403
Pyplot.figure,	409
Pyplot.GridSpec,	409
Python,	1–2

Q
QTConsole,	11
Queue,	283
Queue	using	linked	list,	339

R
Rabbit	problem,	91–94
Raise,	263,	270
Assert,	263
Random,	202
Range	(m,	n),	75

Range	(n),	75
Rational,	21
Readline(),	128
Readlines(),	128
Read	mode,	126,	130,	134
Recursion,	91–95
RecursionError,	266
Recursive	algorithms,	296–298
Relational	operators,	20
Reliability,	210
Re	module,	447
Retstep,	376
Reusability,	172
Reversing	a	String,	312–313
Robustness,	2
Root,	351
Rotation,	430–432
Run,	3
Running,	441
RuntimeError,	266

S
Savefig,	396,	399
Scaling,	432–433
Scions,	2
SciPy,	2
SciPy.misc,	423
Scope,	89–91
Script	mode,	18
Search,	226–228
Secondary	data	structures,	282
Seek(),	128
Selection	sort,	294–295
Self,	187,	224
sep,	129
Sequences,	19
Sets,	19
Set_xlable,	412
Set_ylabel,	412
Set_zlabel,	412
Show,	200–202
Simple	inheritance,	211–213
Sin,	400
Slicing,	25
Sort,	132
Stack,	283
Stack	using	a	linked	list,	336–339

start(),	443
Start_new_thread,	442
Std,	428
StopIteration,	266
Strings,	23–27,	143
Structured	Arrays,	386–387
sub,	242,	243
Subplot,	407
Subplots,	405–409
Subplots_adjust,	409
Super,	224,	225
Swapping,	29
SyntaxError,	266
SystemError,	267

T
TabError,	266
tell(),	128
Ternary	operator,	44–45
Threading,	441–443
Threading.local,	443
Threads,	440,	442
tofile(),	424
Translation,	429–430
Translation	rotation	scaling,	422
Tree,	284,	299,	349–350
Tree	traversal,	353
Truediv_,	244
Try,	264,	268
Tuple,	28–30
Type,	3
Type	and	run,	3
Type	casting,	371
Type	error,	267
Types	of	function,	85–88

U
Unbound	local	error,	267
Unbound	method,	220–223
Underflow,	316
UnicodeError,	267

V
Value,	19
ValueError,	267
Variables,	19

View_init,	413
Virtual,	180

W
Waiting,	441
While,	61–64
Wildcard,	454
Wireframe,	413,	414
Write(),	128
writelines(),	128,	133
Write	mode,	126

X
Xlabel,	396
Xticks,	400

Y
Yield,	110,	113
Ylabel,	396
Yticks,	400

Z
Zero	division	error,	267

	Title Page
	Copyright
	Dedication
	Contents
	Chapter 1: Introduction to Python
	1.1 Introduction
	1.2 Features of Python
	1.2.1 Easy
	1.2.2 Type and Run
	1.2.3 Syntax
	1.2.4 Mixing
	1.2.5 Dynamic Typing
	1.2.6 Built in Object Types
	1.2.7 Numerous Libraries and Tools
	1.2.8 Portable
	1.2.9 Free

	1.3 The Paradigms
	1.3.1 Procedural
	1.3.2 Object-Oriented
	1.3.3 Functional

	1.4 Chronology and Uses
	1.4.1 Chronology
	1.4.2 Uses

	1.5 Installation of Anaconda
	1.6 Conclusion

	Chapter 2: Python Objects
	2.1 Introduction
	2.2 Basic Data Types Revisited
	2.2.1 Fractions

	2.3 Strings
	2.4 Lists and Tuples
	2.4.1 List
	2.4.2 Tuples
	2.4.3 Features of Tuples

	2.5 Conclusion

	Chapter 3: Conditional Statements
	3.1 Introduction
	3.2 if, if-else, and if-elif-else constructs
	3.3 The if-elif-else Ladder
	3.4 Logical Operators
	3.5 The Ternary Operator
	3.6 The get Construct
	3.7 Examples
	3.8 Conclusion

	Chapter 4: Looping
	4.1 Introduction
	4.2 While
	4.3 Patterns
	4.4 Nesting and Applications of Loops in Lists
	4.5 Conclusion

	Chapter 5: Functions
	5.1 Introduction
	5.2 Features of a Function
	5.2.1 Modular Programming
	5.2.2 Reusability of Code
	5.2.3 Manageability

	5.3 Basic Terminology
	5.3.1 Name of a Function
	5.3.2 Arguments
	5.3.3 Return Value

	5.4 Definition and Invocation
	5.4.1 Working

	5.5 Types of Function
	5.5.1 Advantage of Arguments

	5.6 Implementing Search
	5.7 Scope
	5.8 Recursion
	5.8.1 Rabbit Problem
	5.8.2 Disadvantages of Using Recursion

	5.9 Conclusion

	Chapter 6: Iterations, Generators, and Comprehensions
	6.1 Introduction
	6.2 The Power of “For”
	6.3 Iterators
	6.4 Defining an Iterable Object
	6.5 Generators
	6.6 Comprehensions
	6.7 Conclusion

	Chapter 7: File Handling
	7.1 Introduction
	7.2 The File Handling Mechanism
	7.3 The Open Function and File Access Modes
	7.4 Python Functions for File Handling
	7.4.1 The Essential Ones
	7.4.2 The OS Methods
	7.4.3 Miscellaneous Functions and File Attributes

	7.5 Command Line Arguments
	7.6 Implementation and Illustrations
	7.7 Conclusion

	Chapter 8: Strings
	8.1 Introduction
	8.2 The Use of “For” and “While”
	8.3 String Operators
	8.3.1 The Concatenation Operator (+)
	8.3.2 The Replication Operator
	8.3.3 The Membership Operator

	8.4 Functions for String Handling
	8.4.1 len()
	8.4.2 Capitalize()
	8.4.3 find()
	8.4.4 count
	8.4.5 Endswith()
	8.4.6 Encode
	8.4.7 Decode
	8.4.8 Miscellaneous Functions

	8.5 Conclusion

	Chapter 9: Introduction to Object Oriented Paradigm
	9.1 Introduction
	9.2 Creating New Types
	9.3 Attributes and Functions
	9.3.1 Attributes
	9.3.2 Functions

	9.4 Elements of Object-Oriented Programming
	9.4.1 Class
	9.4.2 Object
	9.4.3 Encapsulation
	9.4.4 Data Hiding
	9.4.5 Inheritance
	9.4.6 Polymorphism
	9.4.7 Reusability

	9.5 Conclusion

	Chapter 10: Classes and Objects
	10.1 Introduction to Classes
	10.2 Defining a Class
	10.3 Creating an Object
	10.4 Scope of Data Members
	10.5 Nesting
	10.6 Constructor
	10.7 Constructor Overloading
	10.8 Destructors
	10.9 Conclusion

	Chapter 11: Inheritance
	11.1 Introduction to Inheritance and Composition
	11.1.1 Inheritance and Methods
	11.1.2 Composition

	11.2 Inheritance: Importance and Types
	11.2.1 Need for Inheritance
	11.2.2 Types of Inheritance

	11.3 Methods
	11.3.1 Bound Methods
	11.3.2 Unbound Method
	11.3.3 Methods are Callable Objects
	11.3.4 The Importance and Usage of Super
	11.3.5 Calling the Base Class Function Using Super

	11.4 Search in Inheritance Tree
	11.5 Class Interface and Abstract Classes
	11.6 Conclusion

	Chapter 12: Operator Overloading
	12.1 Introduction
	12.2 _init_ Revisited
	12.2.1 Overloading _init_ (sort of)

	12.3 Methods for Overloading Binary Operators
	12.4 Overloading Binary Operators: The Fraction Example
	12.5 Overloading the += Operator
	12.6 Overloading the > and < Operators
	12.7 Overloading the _boolEan_ Operators: Precedence of _bool_over _len_
	12.8 Destructors
	12.9 Conclusion

	Chapter 13: Exception Handling
	13.1 Introduction
	13.2 Importance and Mechanism
	13.2.1 An Example of Try/Catch
	13.2.2 Manually Raising Exceptions

	13.3 Built-In Exceptions in Python
	13.4 The Process
	13.4.1 Exception Handling: Try/Except
	13.4.2 Raising Exceptions

	13.5 Crafting User Defined Exceptions
	13.6 An Example of Exception Handling
	13.7 Conclusion

	Chapter 14: Introduction to Data Structures
	14.1 Introduction
	14.2 Abstract Data Type
	14.3 Algorithms
	14.4 Arrays
	14.5 Iterative and Recursive Algorithms
	14.5.1 Iterative Algorithms
	14.5.2 Recursive Algorithms

	14.6 Conclusion

	Chapter 15: Stacks and Queues
	15.1 Introduction
	15.2 Stack
	15.3 Dynamic Implementation of Stacks
	15.4 Dynamic Implementation: Another Way
	15.5 Applications of Stacks
	15.5.1 Reversing a String
	15.5.2 Infix, Prefix, and Postfix Expressions

	15.6 Queue
	15.7 Conclusion

	Chapter 16: Linked Lists
	16.1 Introduction
	16.2 Operations
	16.3 Implementing Stack Using a Linked List
	16.4 Queue Using a Linked List
	16.5 Conclusion

	Chapter 17: Binary Search Trees
	17.1 Introduction
	17.2 Definition and Terminology
	17.2.1 Graphs: Definition and Representation
	17.2.2 Trees: Definition, Classification, and Representation
	17.2.3 Representation of a Binary Tree
	17.2.4 Tree Traversal: In-order, Pre-order, and Post-order

	17.3 Binary Search Tree
	17.3.1 Creation and Insertion
	17.3.2 Traversal
	17.3.3 Maximum and Minimum Elements

	17.4 Conclusion

	Chapter 18: Introduction to NUMPY
	18.1 Introduction
	18.2 Introduction to NumPy and Creation of a Basic Array
	18.3 Functions for Generating Sequences
	18.3.1 arange()
	18.3.2 linspace()
	18.3.3 logspace()

	18.4 Aggregate Functions
	18.5 Broadcasting
	18.6 Structured Arrays
	18.7 Conclusion

	Chapter 19: Introduction to MATPLOTLIB
	19.1 Introduction
	19.2 The Plot Function
	19.3 Subplots
	19.4 3 Dimensional Plotting
	19.5 Conclusion

	Chapter 20: Introduction to Image Processing
	20.1 Introduction
	20.2 Opening, Reading, and Writing an Image
	20.2.1 Opening an Image
	20.2.2 Reading
	20.2.3 Writing an Image to a File
	20.2.4 Displaying an Image

	20.3 The Contour Function
	20.4 Clipping
	20.5 Statistical Information of an Image
	20.6 Basic Transformation
	20.6.1 Translation
	20.6.2 Rotation
	20.6.3 Scaling

	20.7 Conclusion

	Appendix A: Multithreading in Python
	Appendix B: Regular Expressions
	Appendix C: Exercises for Practice: Programming Questions
	Appendix D: Problems for Practice: Multiple Choice Questions
	Appendix E: Answer to the Multiple Choice Questions
	Bibliography
	Index

