

Introduction to
Python for Science

and Engineering

Series in Computational Physics
Parallel Science and Engineering Applications: The Charm++ Approach
Laxmikant V. Kale, Abhinav Bhatele

Introduction to Numerical Programming: A Practical Guide for Scientists and Engi-
neers Using Python and C/C++
Titus A. Beu

Computational Problems for Physics: With Guided Solutions Using Python
Rubin H. Landau, Manual José Páez

Introduction to Python for Science and Engineering
David J. Pine

For more information about this series, please visit: https://www.crcpress.com/
Series-in-Computational-Physics/book-series/CRCSERCOMPHY

https://www.crcpress.com/

Introduction to
Python for Science

and Engineering

David J. Pine

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-58389-4 (Paperback)
International Standard Book Number-13: 978-1-138-58390-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging‑in‑Publication Data

Names: Pine, David J., author.
Title: Introduction to Python for science and engineering / by David J. Pine.
Description: Boca Raton, Florida : CRC Press, [2019] | Series: Series in
computational physics | Includes bibliographical references and index.
Identifiers: LCCN 2018027880 (print) | LCCN 2018051956 (ebook) | ISBN
9780429506413 (eBook General) | ISBN 9780429014253 (eBook Adobe Reader) |
ISBN 9780429014246 (eBook ePub) | ISBN 9780429014239 (eBook Mobipocket) |
ISBN 9781138583894 (paperback : acid-free paper) | ISBN 9781138583900
(hardback : acid-free paper).
Subjects: LCSH: Python (Computer program language) | Computer programming. |
Engineering--Data processing. | Science--Data processing.
Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 P58 2019 (print) |
DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2018027880

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

www.copyright
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
https://lccn.loc.gov/2018027880

To Alex Pine
who introduced me to Python

http://taylorandfrancis.com

Contents

Preface xv

About the Author xix

1 Introduction 1
1.1 Introduction to Python for Science and Engineering . 1

2 Launching Python 3
2.1 Interacting with Python 3
2.2 Installing Python on Your Computer 4
2.3 The Spyder Window 4
2.4 The IPython Pane . 4

2.4.1 Magic commands 6
2.4.2 System shell commands 8
2.4.3 Tab completion 8
2.4.4 Recap of commands 9

2.5 Interactive Python as a Calculator 9
2.5.1 Binary arithmetic operations in Python 10
2.5.2 Types of numbers 10
2.5.3 Important note on integer division in Python . 12

2.6 Variables . 13
2.6.1 Names and the assignment operator 13
2.6.2 Legal and recommended variable names 14
2.6.3 Reserved words in Python 15

2.7 Script Files and Programs 16
2.7.1 First scripting example: The Editor pane 16

2.8 Python Modules . 18
2.8.1 Python modules and functions: A first look . . 20
2.8.2 Some NumPy functions 22
2.8.3 Scripting Example 2 23
2.8.4 Different ways of importing modules 24

2.9 Getting Help: Documentation in IPython 26

vii

viii Contents

2.10 Stand-alone IPython 26
2.10.1 Writing Python scripts in a text editor 27

2.11 Programming Errors 28
2.11.1 Pyflakes . 28
2.11.2 Error checking 29

2.12 Exercises . 29

3 Strings, Lists, Arrays, and Dictionaries 33
3.1 Strings . 34
3.2 Lists . 35

3.2.1 Slicing lists . 37
3.2.2 The range function: Sequences of numbers . . . 38
3.2.3 Tuples . 39
3.2.4 Multidimensional lists and tuples 40

3.3 NumPy Arrays . 41
3.3.1 Creating arrays (1-d) 41
3.3.2 Mathematical operations with arrays 43
3.3.3 Slicing and addressing arrays 46
3.3.4 Fancy indexing: Boolean masks 47
3.3.5 Multi-dimensional arrays and matrices 49
3.3.6 Differences between lists and arrays 52

3.4 Dictionaries . 53
3.5 Objects . 55
3.6 Exercises . 57

4 Input and Output 61
4.1 Keyboard Input . 61
4.2 Screen Output . 64

4.2.1 Formatting output with str.format() 64
4.2.2 Printing arrays 68

4.3 File Input . 69
4.3.1 Reading data from a text file 69
4.3.2 Reading data from an Excel file: CSV files . . . 71

4.4 File Output . 73
4.4.1 Writing data to a text file 73
4.4.2 Writing data to a CSV file 76

4.5 Exercises . 76

Contents ix

5 Conditionals and Loops 81
5.1 Conditionals . 82

5.1.1 if, elif, and else statements 82
5.1.2 Logical operators 86

5.2 Loops . 87
5.2.1 for loops . 87
5.2.2 while loops . 91
5.2.3 Loops and array operations 93

5.3 List Comprehensions 94
5.4 Exercises . 96

6 Plotting 99
6.1 An Interactive Session with PyPlot 100
6.2 Basic Plotting . 102

6.2.1 Specifying line and symbol types and colors . . 106
6.2.2 Error bars . 108
6.2.3 Setting plotting limits and excluding data . . . 110
6.2.4 Subplots . 113

6.3 Logarithmic Plots . 116
6.3.1 Semi-log plots 116
6.3.2 Log-log plots . 118

6.4 More Advanced Graphical Output 118
6.4.1 An alternative syntax for a grid of plots 122

6.5 Plots with multiple axes 125
6.6 Mathematics and Greek symbols 126
6.7 The Structure of matplotlib: OOP and All That 131

6.7.1 The backend layer 132
6.7.2 The artist layer 135
6.7.3 The PyPlot (scripting) layer 137

6.8 Contour and Vector Field Plots 139
6.8.1 Making a 2D grid of points 139
6.8.2 Contour plots 140
6.8.3 Streamline plots 144

6.9 Three-Dimensional Plots 149
6.10 Exercises . 152

7 Functions 155
7.1 User-Defined Functions 156

7.1.1 Looping over arrays in user-defined functions . 158

x Contents

7.1.2 Fast array processing for user-defined functions 160
7.1.3 Functions with more than one input or output 161
7.1.4 Positional and keyword arguments 162
7.1.5 Variable number of arguments 163
7.1.6 Passing function names and parameters as argu-

ments . 164
7.2 Passing data (objects) to and from functions 167

7.2.1 Variables and arrays created entirely within a
function . 167

7.2.2 Passing lists and arrays to functions: Mutable
and immutable objects 169

7.3 Anonymous Functions: lambda Expressions 171
7.4 NumPy Object Attributes: Methods and Instance Vari-

ables . 173
7.5 Example: Linear Least Squares Fitting 175

7.5.1 Linear regression 177
7.5.2 Linear regression with weighting: χ2 179

7.6 Exercises . 182

8 Curve Fitting 187
8.1 Using Linear Regression for Fitting Nonlinear Func-

tions . 187
8.1.1 Linear regression for fitting an exponential

function . 187
8.1.2 Linear regression for fitting a power-law func-

tion . 192
8.2 Nonlinear Fitting . 193
8.3 Exercises . 198

9 Numerical Routines: SciPy and NumPy 205
9.1 Special Functions . 206
9.2 Random Numbers . 209

9.2.1 Uniformly distributed random numbers 210
9.2.2 Normally distributed random numbers 210
9.2.3 Random distribution of integers 211

9.3 Linear Algebra . 212
9.3.1 Basic computations in linear algebra 212
9.3.2 Solving systems of linear equations 213
9.3.3 Eigenvalue problems 214

Contents xi

9.4 Solving Nonlinear Equations 216
9.4.1 Single equations of a single variable 217
9.4.2 Solving systems of nonlinear equations 221

9.5 Numerical Integration 221
9.5.1 Single integrals 222
9.5.2 Double integrals 226

9.6 Solving ODEs . 227
9.7 Discrete (Fast) Fourier Transforms 231

9.7.1 Continuous and discrete Fourier transforms . . 231
9.7.2 The SciPy FFT library 232

9.8 Exercises . 234

10 Data Manipulation and Analysis: Pandas 239
10.1 Reading Data from Files Using Pandas 240

10.1.1 Reading from Excel files saved as csv files . . . 240
10.1.2 Reading from text files 247
10.1.3 Reading from an Excel file 250

10.2 Dates and Times in Pandas 251
10.3 Data Structures: Series and DataFrame 253

10.3.1 Series . 253
10.3.2 DataFrame . 256

10.4 Getting Data from the Web 261
10.5 Extracting Information from a DataFrame 263
10.6 Plotting with Pandas 267
10.7 Grouping and Aggregation 272

10.7.1 The groupby method 273
10.7.2 Iterating over groups 274
10.7.3 Reformatting DataFrames 277
10.7.4 Custom aggregation of DataFrames 280

10.8 Exercises . 281

11 Animation 287
11.1 Animating a Sequence of Images 287

11.1.1 Simple image sequence 288
11.1.2 Annotating and embellishing videos 292

11.2 Animating Functions 294
11.2.1 Animating for a fixed number of frames 295
11.2.2 Animating until a condition is met 300

11.3 Combining Videos with Animated Functions 306

xii Contents

11.3.1 Using a single animation instance 307
11.3.2 Combining multiple animation instances . . . 308

11.4 Exercises . 311

12 Python Classes and GUIs 315
12.1 Defining and Using a Class 316

12.1.1 The __init__() method 319
12.1.2 Defining methods for a class 320
12.1.3 Calling methods from within a class 321
12.1.4 Updating instance variables 322

12.2 Inheritance . 323
12.3 Graphical User Interfaces (GUIs) 326

12.3.1 Event-driven programming 327
12.3.2 PyQt . 328
12.3.3 A basic PyQt dialog 328
12.3.4 Summary of PyQt5 classes used 337
12.3.5 GUI summary 337

A Installing Python 339
A.1 Installing Python . 339

A.1.1 Setting preferences 340
A.1.2 Pyflakes . 340
A.1.3 Updating your Python installation 341

A.2 Testing Your Installation of Python 341
A.3 Installing FFmpeg for Saving Animations 343

B Jupyter Notebooks 345
B.1 Launching a Jupyter Notebook 345
B.2 Running Programs in a Jupyter Notebook 347
B.3 Annotating a Jupyter Notebook 348

B.3.1 Adding headings and text 349
B.3.2 Comments with mathematical expressions . . . 350

B.4 Terminal commands in a Jupyter notebook 351
B.5 Plotting in a Jupyter Notebook 351
B.6 Editing and Rerunning a Notebook 353
B.7 Quitting a Jupyter Notebook 353
B.8 Working with an Existing Jupyter Notebook 353

C Glossary 355

Contents xiii

D Python Resources 359
D.1 Python Programs and Data Files Introduced in This

Text . 359
D.2 Web Resources . 359
D.3 Books . 361

Index 363

http://taylorandfrancis.com

Preface

The aim of this book is to provide science and engineering students
a practical introduction to technical programming in Python. It grew
out of notes I developed for various undergraduate physics courses I
taught at NYU. While it has evolved considerably since I first put pen
to paper, it retains its original purpose: to get students with no previ-
ous programming experience writing and running Python programs
for scientific applications with a minimum of fuss.

The approach is pedagogical and “bottom up,” which means start-
ing with examples and extracting more general principles from that
experience. This is in contrast to presenting the general principles
first and then examples of how those general principles work. In my
experience, the latter approach is satisfying only to the instructor.
Much computer documentation takes a top-down approach, which
is one of the reasons it’s frequently difficult to read and understand.
On the other hand, once examples have been seen, it’s useful to ex-
tract the general ideas in order to develop the conceptual framework
needed for further applications.

In writing this text, I assume that the reader:

• has never programmed before;

• is not familiar with programming environments;

• is familiar with how to get around a Mac or PC at a very basic level;
and

• is competent in basic algebra, and for Chapters 8 and 9, calculus,
linear algebra, ordinary differential equations, and Fourier analy-
sis. The other chapters, including 10–12, require only basic algebra
skills.

This book introduces, in some depth, four Python packages that
are important for scientific applications:

NumPy, short for Numerical Python, provides Python with a multi-
dimensional array object (like a vector or matrix) that is at the cen-
ter of virtually all fast numerical processing in scientific Python.

xv

xvi Introduction to Python for Science & Engineering

It is both versatile and powerful, enabling fast numerical compu-
tation that, in some cases, approaches speeds close to those of a
compiled language like C, C++, or Fortran.

SciPy, short for Scientific Python, provides access through a Python
interface to a very broad spectrum of scientific and numerical soft-
ware written in C, C++, and Fortran. These include routines to
numerically differentiate and integrate functions, solve differen-
tial equations, diagonalize matrices, take discrete Fourier trans-
forms, perform least-squares fitting, as well as many other numer-
ical tasks.

matplotlib is a powerful plotting package written for Python and
capable of producing publication-quality plots. While there are
other Python plotting packages available, matplotlib is the most
widely used and is the de facto standard.

Pandas is a powerful package for manipulating and analyzing data
formatted and labeled in a manner similar to a spreadsheet (think
Excel). Pandas is very useful for handling data produced in exper-
iments, and is particularly adept at manipulating large data sets
in different ways.

In addition, Chapter 12 provides a brief introduction to Python
classes and to PyQt5, which provides Python routines for building
graphical user interfaces (GUIs) that work on Macs, PCs, and Linux
platforms.

Chapters 1–7 provide the basic introduction to scientific Python
and should be read in order. Chapters 8–12 do not depend on each
other and, with a few mild caveats, can be read in any order.

As the book’s title implies, the text is focused on scientific uses of
Python. Many of the topics that are of primary importance to com-
puter scientists, such as object-oriented design, are of secondary im-
portance here. Our focus is on learning how to harness Python’s abil-
ity to perform scientific computations quickly and efficiently.

The text shows the reader how to interact with Python using
IPython, which stands for Interactive Python, through one of three
different interfaces, all freely available on the web: Spyder, an inte-
grated development environment, Jupyter Notebooks, and a simple
IPython terminal. Chapter 2 provides an overview of Spyder and an
introduction to IPython, which is a powerful interactive environment

Preface xvii

tailored to scientific use of Python. Appendix B provides an introduc-
tion to Jupyter notebooks.

Python 3 is used exclusively throughout the text with little refer-
ence to any version of Python 2. It’s been nearly 10 years since Python
3 was introduced and there is little reason to write new code in Python
2; all the major Python packages have been updated to Python 3.
Moreover, once Python 3 has been learned, it’s a simple task to learn
how Python 2 differs, which may be needed to deal with legacy code.
There are many lucid web sites dedicated to this sometimes necessary
but otherwise mind-numbing task.

The scripts, programs, and data files introduced in this book are
available at https://github.com/djpine/python-scieng-public.

Finally, I would like to thank Étienne Ducrot, Wenhai Zheng, and
Stefano Sacanna for providing some of the data and images used in
Chapter 11, and Mingxin He and Wenhai Zheng for their critical read-
ing of early versions of the text.

https://github.com/djpine/python-scieng-public

http://taylorandfrancis.com

About the Author

David Pine has taught physics and chemical engineering for over 30
years at four different institutions: Cornell University (as a graduate
student), Haverford College, UCSB, and, at NYU, where he is a Profes-
sor of Physics, Mathematics, and Chemical & Biomolecular Engineer-
ing. He has taught a broad spectrum of courses, including numerical
methods. He does research in experimental soft-matter physics, which
is concerned with materials such as polymers, emulsions, and col-
loids. These materials constitute most of the material building blocks
of biological organisms.

xix

http://taylorandfrancis.com

chapter 1

Introduction

1.1 Introduction to Python for Science and Engineering

This book is meant to serve as an introduction to the Python program-
ming language and its use for scientific computing. It’s ok if you have
never programmed a computer before. This book will teach you how
to do it from the ground up.

The Python programming language is useful for all kinds of sci-
entific and engineering tasks. You can use it to analyze and plot data.
You can also use it to numerically solve science and engineering prob-
lems that are difficult or even impossible to solve analytically.

While we want to marshal Python’s powers to address scientific
problems, you should know that Python is a general purpose com-
puter language that is widely used to address all kinds of comput-
ing tasks, from web applications to processing financial data on Wall
Street and various scripting tasks for computer system management.
Over the past decade it has been increasingly used by scientists and
engineers for numerical computations, graphics, and as a “wrapper”
for numerical software originally written in other languages, like For-
tran and C.

Python is similar to MATLAB®, another computer language that
is frequently used in science and engineering applications. Like
MATLAB®, Python is an interpreted language, meaning you can run
your code without having to go through an extra step of compiling, as
required for the C and Fortran programming languages. It is also a dy-
namically typed language, meaning you don’t have to declare variables
and set aside memory before using them.1

Don’t worry if you don’t know exactly what these terms mean.
Their primary significance for you is that you can write Python code,
test, and use it quickly with a minimum of fuss.

One advantage of Python compared to MATLAB® is that it is free.
It can be downloaded from the web and is available on all the stan-
dard computer platforms, including Windows, macOS, and Linux.

1Appendix C contains a glossary of terms you may find helpful.

1

2 Introduction to Python for Science & Engineering

This also means that you can use Python without being tethered to
the internet, as required for commercial software that is tied to a re-
mote license server.

Another advantage is Python’s clean and simple syntax, including
its implementation of object-oriented programming. This should not
be discounted; Python’s rich and elegant syntax renders a number of
tasks that are difficult or arcane in other languages either simpler or
more understandable in Python.

An important disadvantage is that Python programs can be slower
than compiled languages like C. For large-scale simulations and other
demanding applications, there can be a considerable speed penalty in
using Python. In these cases, C, C++, or Fortran is recommended, al-
though intelligent use of Python’s array processing tools contained in
the NumPy module can greatly speed up Python code. Another dis-
advantage is that, compared to MATLAB®, Python is less well docu-
mented. This stems from the fact that it is public open source software
and thus is dependent on volunteers from the community of develop-
ers and users for documentation. The documentation is freely avail-
able on the web but is scattered among a number of different sites and
can be terse. This manual will acquaint you with the most commonly
used web sites. Search engines like Google can help you find others.

You are not assumed to have had any previous programming ex-
perience. However, the purpose of this manual isn’t to teach you the
principles of computer programming; it’s to provide a very practical
guide to getting started with Python for scientific computing. Perhaps
once you see some of the powerful tasks that you can accomplish with
Python, you will be inspired to study computational science and en-
gineering, as well as computer programming, in greater depth.

chapter 2

Launching Python

In this chapter you learn about IPython, an interface that allows
you to use Python interactively with tools that have been optimized
for mathematical and computational tasks. You learn how to use
IPython as a calculator and how to add, subtract, multiply, divide,
and perform other common mathematical functions. You also learn
the basic elements of the Python programming language, including
functions, variables, and scripts, which are rudimentary com-
puter programs. We introduce Python modules, which extend the
capabilities of the core Python language and allow you to perform
advanced mathematical tasks. You also learn some new ways to
navigate your computer’s file directories. Finally, you learn how to
get help with Python commands and functions.

2.1 Interacting with Python

There are many different ways to interact with Python. For general
purpose use, people typically use the Python command shell, which is
also called the Python Interpreter or Console. A shell or console is just
a window on your computer that you use to issue written commands.
For scientific Python, which is what we are concerned with here, peo-
ple generally use the IPython shell (or console). It has been specifically
designed for scientific and engineering use.

There are different ways to launch an IPython shell and write
Python code. As a beginner, we recommend using an Integrated De-
velopment Environment or IDE such as Spyder, a popular IDE that we
introduce in the following sections. Spyder uses an IPython shell and
provides other features that make it a convenient platform for you to
learn about Python. Eventually, you will want to learn about other
ways of interacting with Python, such as Jupyter Notebooks, which are
described in Appendix B. Alternatively, you can interact with Python
by writing code using a simple text editor and then running the code

3

4 Introduction to Python for Science & Engineering

from an IPython shell. We describe how to do this in §2.10 towards
the end of this chapter. In the end, you should learn to interact with
Python in all these ways, as each is valuable, depending on the ap-
plication. For now, however, we begin our exploration of Python with
the Spyder IDE.

2.2 Installing Python on Your Computer

If you haven’t already installed Python on your computer, see Ap-
pendix A, which includes instructions for installing Python on Macs
running under macOSX and on PCs running under Windows.

Once you have installed Python, launch Spyder as directed in Ap-
pendix A, and wait for the Spyder window to appear, like the one
shown in Fig. 2.1.

2.3 The Spyder Window

The default Spyder window has three panes: the IPython pane, the
Editor pane, and the Help pane. The IPython pane is the primary way
that you interact with Python. You can use it to run Python computer
programs, test snippets of Python code, navigate through your com-
puter file directories, and perform system tasks like creating, mov-
ing, and deleting files and directories. You will use the Editor Pane
to write and edit Python programs (or scripts), which are simply se-
quences of Python commands (code) stored in a file on your computer.
The Help Pane in Spyder gives help on Python commands.

The individual panes in the Spyder window are reconfigurable
and detachable but we will leave them pretty much as they are. How-
ever, you may want to adjust the overall size of the window to suit
your computer screen. You can find more information about Spyder
using the Help menu.

2.4 The IPython Pane

The default input prompt of the IPython pane looks like this:

In [1]:

This prompt signifies that Spyder is running the IPython shell. The
IPython shell has been specifically designed for scientific and engi-

Launching Python 5

Help Pane

IPython Pane

Editor Pane

Figure 2.1 Spyder IDE window.

neering use. The standard Python interactive shell uses the prompt
>>>. You can pretty much do everything you want to do with either
shell, but we will be using the IPython shell as we want to take ad-
vantage of some of its special features for scientific computing.

By typing commands at the prompt, IPython can be used to per-
form various system tasks, such as running programs and creating
and moving files around on your computer. This is a different kind
of computer interface than the icon-based interface (or graphical user
interface, GUI) that you usually use to communicate with your com-
puter. While it may seem more cumbersome for some tasks, it can
be more powerful for other tasks, particularly those associated with
programming.

Before getting started, we point out that like most modern com-
puter languages, Python is case sensitive. That is, Python distinguishes
between upper- and lower-case letters. Thus, two words spelled the
same but having different letters capitalized are treated as different
names in Python. Keep that in mind as we introduce different com-
mands.

6 Introduction to Python for Science & Engineering

2.4.1 Magic commands

IPython features a number of commands called “magic” commands
that let you perform various useful tasks. There are two types of magic
commands, line magic commands that begin with %—these are ex-
ecuted on a single line—and cell magic commands that begin with
%%—these are executed on several lines. Here, we concern ourselves
only with line magic commands.

The first thing to know about magic commands is that you can
toggle (turn on and off) the need to use the % prefix for line magic
commands by typing %automagic. By default, the Automagic switch
is set to ON in the Spyder IDE so you don’t need the % prefix. To set
Automagic to OFF, simply type %automagic at the IPython prompt. Cell
magic commands always need the %% prefix.

In what follows below, we assume that Automagic is OFF and thus
use the % sign for magic commands.

Navigation commands

IPython recognizes several common navigation commands that are
used under the Unix/Linux operating systems. In the IPython shell,
these few commands work on Macs, PCs, and Linux machines.

At the IPython prompt, type %cd ∼ (i.e., “%cd” – “space” – “tilde”,
where tilde is found near the upper left corner of most keyboards).
This will set your computer to its home (default) directory.

In [1]: %cd ~
/Users/pine

Next type %pwd (print working directory) and press Return. The con-
sole should return the path of the current directory of your computer.
It might look like this on a Mac:

In [2]: %pwd
Out[2]: '/Users/pine'

or this on a PC:

In [3]: %pwd
Out[3]: C:\\Users\\pine

Typing %cd .. (“%cd” – “space” – two periods) moves the IPython shell
up one directory in the directory tree, as illustrated by the set of com-
mands below.

In [4]: %cd ..
/Users

Launching Python 7

In [5]: %pwd
Out[5]: '/Users'

The directory moved up one from /Users/pine to /Users. Now type ls

(list) and press Return. The console should list the names of the files
and subdirectories in the current directory.

In [6]: %ls
Shared/ pine/

In this case, there are only two directories (indicated by the slash) and
no files (although the names of the files may be different for you).
Type %cd ∼ again to return to your home directory and then type pwd

to verify where you are in your directory tree.

Making a directory

Let’s create a directory within your documents directory that you can
use to store your Python programs. We will call it programs. First, re-
turn to your home directory by typing %cd ~. Then type %ls to list the
files and directories in your home directory.

In [7]: %cd ~
/Users/pine

In [8]: %ls
Applications/ Library/ Pictures/
Desktop/ Movies/ Public/
Documents/ Music/
Downloads/ News/

To create a directory called programs, type %mkdir programs (make
directory). Then type %ls to confirm that you have created programs.

In [9]: %mkdir programs

In [10]: %ls
Applications/ Library/ Pictures/
Desktop/ Movies/ Public/
Documents/ Music/ programs/
Downloads/ News/

You should see that a new directory named programs has been added
to the list of directories. Next, type %cd programs to navigate to that
new directory.

In [11]: %cd programs
/Users/pine/programs

8 Introduction to Python for Science & Engineering

Sometimes, the IPython shell becomes cluttered. You can clean up
the shell by typing %clear, which will give you a fresh shell window.

The %run magic command

A very important magic command is %run filename where filename is
the name of a Python program you have created. We haven’t done this
yet but include it here just for reference. We will come back to this
later in the chapter.

There are a lot of other magic commands, most of which we don’t
need, and others that we will introduce as we need them. If you are
curious about them, you can get a list of them by typing %lsmagic.

2.4.2 System shell commands

You can also run system shell commands from the IPython shell by
typing ! followed by a system shell command. For Macs running
OSX and for Linux machines, this means that Unix (or equivalently
Linux) commands can be issued from the IPython prompt. For PCs,
this means that Windows (DOS) commands can be issued from the
IPython prompt. For example, typing !ls (list) and pressing Return

lists all the files in the current directory on a Mac. Typing !dir on a
PC does essentially the same thing (note that system shell commands
in Windows are not case sensitive).

2.4.3 Tab completion

IPython also incorporates a number of shortcuts that make using the
shell more efficient. One of the most useful is tab completion. Let’s
assume you have been following along and that your are in the direc-
tory Documents or My Documents. To switch to the directory programs,
you could type cd programs. Instead of doing that, type cd prog and
then press the TAB key. This will complete the command, provided
there is no ambiguity in how to finish the command. In the present
case, that would mean that there is no other subdirectory beginning
with prog. Tab completion works with any command you type into the
IPython terminal. Try it out! It will make your life more wonderful.

A related shortcut involves the ↑ key. If you type a command,
say cd and then press the ↑ key, IPython will complete the cd com-
mand with the last instance of that command. Thus, when you launch

Launching Python 9

IPython, you can use this shortcut to take you to the directory you
used when you last ran IPython.

You can also simply press the ↑ key, which will recall the most
recent command. Repeated application of the ↑ key scrolls through
the most recent commands in reverse order. The ↓ key can be used to
scroll in the other direction.

2.4.4 Recap of commands

Let’s recap the most useful commands introduced above:

%pwd : (print working directory) Prints the path of the current direc-
tory.

%ls : (list) Lists the names of the files and directories located in the
current directory.

%mkdir filename : (make directory) Makes a new directory filename.

%cd directoryname : (change directory) Changes the current direc-
tory to directoryname. Note: for this to work, directoryname must
be a subdirectory in the current directory. Typing %cd changes
to the home directory of your computer. Typing %cd .. moves the
console one directory up in the directory tree.

%clear : Clears the IPython screen of previous commands.

%run filename : Runs (executes) a Python script. Described later in
§2.7.1.

Tab completion: Provides convenient shortcuts, with or without the
arrow keys, for executing commands in the IPython shell.

2.5 Interactive Python as a Calculator

You can use the IPython shell to perform simple arithmetic calcula-
tions. For example, to find the product 3 × 15, you type 3*15 at the In

prompt and press Return:

In [1]: 3*15
Out[1]: 45

Python returns the correct product, as expected. You can do more
complicated calculations:

10 Introduction to Python for Science & Engineering

In [2]: 6+21/3
Out[2]: 13.0

Let’s try some more arithmetic:

In [3]: (6+21)/3
Out[3]: 9.0

Notice that the effect of the parentheses in In [3]: (6+21)/3 is to
cause the addition to be performed first and then the division. With-
out the parentheses, Python will always perform the multiplication
and division operations before performing the addition and subtrac-
tion operations. The order in which arithmetic operations are per-
formed is the same as for most calculators: exponentiation first, then
multiplication or division, then addition or subtraction, then left to
right.

2.5.1 Binary arithmetic operations in Python

Table 2.1 below lists the binary arithmetic operations in Python. It has
all the standard binary operators for arithmetic, plus a few you may
not have seen before.

Operation Symbol Example Output
addition + 12+7 19

subtraction - 12-7 5

multiplication * 12*7 84

division / 12/7 1.714285

floor division // 12//7 1

remainder % 12%7 5

exponentiation ** 12**7 35831808

Table 2.1 Binary operators.

“Floor division,” designated by //, means divide and keep only
the integer part without rounding. “Remainder,” designated by the
symbol %, gives the remainder after floor division.

2.5.2 Types of numbers

There are three different types of numbers in Python: integers, float-
ing point numbers, and complex numbers.

Integers in Python are simply, as their name implies, integers.

Launching Python 11

They can be positive or negative and can be arbitrarily long. In
Python, a number is automatically treated as an integer if it is writ-
ten without a decimal. This means that 23, written without a decimal
point, is an integer and 23., written with a decimal point, is a floating
point number. Here are some examples of integer arithmetic:

In [4]: 12*3
Out[4]: 36

In [5]: 4+5*6-(21*8)
Out[5]: -134

In [6]: 11/5
Out[6]: 2.2

In [7]: 11//5 # floor divide
Out[7]: 2

In [8]: 9734828*79372
Out[8]: 772672768016

For the binary operators +, -, *, and //, the output is an integer
if the inputs are integers. The output of the division operator / is a
floating point as of version 3 of Python. If an integer output is desired
when two integers are divided, the floor division operator // must be
used.

Floating point numbers are essentially rational numbers and can
have a fractional part; integers, by their very nature, have no frac-
tional part. In most versions of Python running on PCs or Macs,
floating point numbers go between approximately ±2 × 10−308 and
±2× 10308. Here are some examples of floating point arithmetic:

In [9]: 12.*3
Out[9]: 36.0

In [10]: 5**0.5
Out[10]: 2.23606797749979

In [11]: 11./5.
Out[11]: 2.2

In [12]: 11.//5.
Out[12]: 2.0

In [13]: 11.%5.
Out[13]: 1.0

12 Introduction to Python for Science & Engineering

In [14]: 6.022e23*300.
Out[14]: 1.8066e+26

Note that the result of any operation involving only floating point
numbers as inputs is another floating point number, even in the cases
where the floor division // or remainder % operators are used. The
last output also illustrates an alternative way of writing floating point
numbers as a mantissa followed by e or E followed by a power of 10:
so 1.23e-12 is equivalent to 1.23× 10−12.

We also used the exponentiation operator ** to find the square
root of 5 by using a fractional power of 0.5.

Complex numbers are written in Python as a sum of a real and
imaginary part. For example, the complex number 3 − 2i is repre-
sented as 3-2j in Python where j represents

√
−1. Here are some ex-

amples of complex arithmetic:

In [15]: (2+3j)*(-4+9j)
Out[15]: (-35+6j)

In [16]: (2+3j)/(-4+9j)
Out[16]: (0.1958762886597938-0.3092783505154639j)

In [17]: 2.5-3j**2
Out[17]: (11.5+0j)

In [18]: (2.5-3j)**2
Out[18]: (-2.75-15j)

Notice that you need to enclose the real and imaginary parts of a com-
plex number in parentheses if you want operators to operate on the
entire complex number.

If you multiply an integer by a floating point number, the result is
a floating point number. If you multiply a floating point number by
a complex number, the result is a complex number. Python promotes
the result to the most complex of the inputs.

2.5.3 Important note on integer division in Python

One peculiarity of all versions of Python prior to version 3 is
that dividing two integers by each other yields the “floor division”
result—another integer. Therefore 3/2 yields 1 whereas 3./2 or 3/2.

or 3./2. all yield 1.5. Starting with version 3 of Python, all of
the above expressions, including 3/2 yield 1.5. Fortunately, we are
using version 3 of Python so 3/2 yields 1.5. However, you may

Launching Python 13

run into other installations of Python that use version 2, so you
should be aware of this point. You can force versions of Python
prior to version 3 to divide integers like version 3 does by typing
from __future__ import division at the beginning of an IPython ses-
sion. You only need to type it once and it works for the entire session.

2.6 Variables

2.6.1 Names and the assignment operator

A variable is a name that is used to store data. It can be used to store
different kinds of data, but here we consider a simple case where the
data is a single numerical value. Here are a few examples:

In [1]: a = 23

In [2]: p, q = 83.4, 2**0.5

The equal sign “=” is the assignment operator. In the first statement,
it creates an integer a and assigns it a value of 23. In the second state-
ment it creates two floating point numbers p and q and assigns them
the values of 83.4 and 1.4142135623730951, respectively.

To be more precise, when we write a = 5, Python creates an in-
teger object and assigns it a value of 5. When we write p, q = 83.4,

2**0.5, Python creates two floating point objects and assigns each its
own value. Note that Python stores the numerical value, not the ex-
pression used to generate it. Thus, q is assigned the 17-digit number
1.4142135623730951 generated by evaluating the expression 2**0.5,
not with

√
2. (Actually the value of q is stored as a binary, base 2, num-

ber using scientific notation with a mantissa and an exponent.)
In the previous paragraph, we said that the assignment operator

creates an object. We will have much more to say about Python ob-
jects later on, with an explicit discussion of what they are in §3.5.
But for now, it suffices to say that variable objects, like a, p, and
q defined above, contain both data values, such as 23, 83.4, and
1.4142135623730951, as well as information about the data, such as
the data type. For these cases, that data stored in the variable a is a
single integer while the data stored in p is a floating point number, as
is q.

The assignment variable works from right to left; that is, it assigns
the value of the number on the right to the variable name on the left.

14 Introduction to Python for Science & Engineering

Therefore, the statement “5=a” makes no sense in Python. The assign-
ment operator “=” in Python is not equivalent to the equals sign “=”
we are accustomed to in algebra.

The assignment operator can be used to increment or change the
value of a variable.

In [3]: a = a+1

In [4]: a
Out[4]: 24

The statement, a = a+1 makes no sense in algebra, but in Python (and
most computer languages), it makes perfect sense: it means “add 1 to
the current value of a and assign the result to a.” This construction
appears so often in computer programming that there is a special set
of operators to perform such changes to a variable: +=, -=, *=, and /=.
Here are some examples of how they work:

In [5]: c , d = 4, 7.92

In [6]: c += 2

In [7]: c
Out[7]: 6

In [8]: c *= 3

In [9]: c
Out[9]: 18

In [10]: d /= -2

In [11]: d
Out[11]: -3.96

In [12]: d -= 4

In [13]: d
Out[13]: -7.96

By the way, %=, **=, and //=, are also valid operators. Verify that you
understand how the above operations work.

2.6.2 Legal and recommended variable names

Variable names in Python must start with a letter or an underscore
“_” and can be followed by as many alphanumeric characters as you

Launching Python 15

like, including the underscore character “_”. Spaces are not allowed
in variable names. No other character that is not a letter or a number
is permitted.

Although variable names can start with the underscore character,
you should avoid doing so in most cases. Variables beginning with
an underscore are generally reserved for special cases, with which we
need not concern ourselves here.

Recall that Python is case sensitive, so the variable b is distinct from
the variable B.

We recommend giving your variables descriptive names as in the
following calculation:

In [14]: distance = 34.

In [15]: time_traveled = 0.59

In [16]: velocity = distance/time_traveled

In [17]: velocity
Out[17]: 57.6271186440678

The variable names distance, time_traveled, and velocity immedi-
ately remind you of what is being calculated here. This is good prac-
tice. But so is keeping variable names reasonably short, so don’t go
nuts!

2.6.3 Reserved words in Python

There are also some names or words that are reserved by Python
for special purposes. You must avoid using these names as variables,
which are provided in Table 2.2 for your reference.

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Table 2.2 Reserved names in Python.

16 Introduction to Python for Science & Engineering

2.7 Script Files and Programs

Performing calculations in the IPython shell is handy if the calcula-
tions are short. But calculations quickly become tedious when they
are more than a few lines long. If you discover you made a mistake at
some early step, for example, you may have to go back and retype all
the steps subsequent to the error. Having code saved in a file means
you can just correct the error and rerun the code without having to
retype it. Saving code can also be useful if you want to reuse it later,
perhaps with different inputs.

For these and many other reasons, we save code in computer files.
We call the sequence of commands stored in a file a script or a program
or sometimes a routine. Programs can become quite sophisticated and
complex. Here we are only going to introduce the simplest features of
programming by writing a very simple script. Later, we will introduce
some of the more advanced features of programming.

To write a script you need a text editor. In principle, any text edi-
tor will do, but it’s more convenient to use an editor that was designed
for the task. We are going to use the Editor of the Spyder IDE (see Fig.
2.1). The Spyder Editor, like most good programming editors, pro-
vides syntax highlighting, which color codes keywords, comments,
and other features of the Python syntax according to their function,
and thus makes it easier to read the code and easier to spot pro-
gramming mistakes. The Spyder Editor also provides syntax check-
ing, much like a spell-checker in a word processing program, that
identifies many coding errors. This can greatly speed the coding pro-
cess. Tab completion also works in the Editors.

2.7.1 First scripting example: The Editor pane

Let’s work through an example to see how scripting works. Suppose
you are going on a road trip and you would like to estimate how long
the drive will take, how much gas you will need, and the cost of the
gas. It’s a simple calculation. As inputs, you will need the distance
of the trip, your average speed, the cost of gasoline, and the mileage
(average miles per gallon) of your car.

Writing a script to do these calculations is straightforward. First,
launch Spyder. You should see a tab with the word untitled at the top
left of the Editor Pane (see Fig. 2.1). If you don’t, go to the File menu
and select New File. Use the mouse to place your cursor at the top of

Launching Python 17

the Editor pane. Enter the following code and save the code in a file
called myTrip.py. Place the file in the directory programs that you cre-
ated earlier (see §2.4.1). This stores your script (or program) on your
computer’s disk. The exact name of the file is not important but the
extension .py is essential. It tells the computer, and more importantly
Python, that this is a Python program.

Code: chapter2/programs/myTrip.py

1 # Calculates time, gallons of gas used, and cost of
2 # gasoline for a trip
3 distance = 400. # miles
4 mpg = 30. # car mileage
5 speed = 60. # average speed
6 costPerGallon = 2.85 # price of gas
7

8 time = distance/speed
9 gallons = distance/mpg

10 cost = gallons*costPerGallon

The number (or hash) symbol # is the “comment” character in
Python; anything on a line following # is ignored when the code is ex-
ecuted. Judicious use of comments in your code will make your code
much easier to understand days, weeks, or months after the time you
wrote it. Use comments generously. For aesthetic reasons, the com-
ments on different lines have been aligned. This isn’t necessary. The
trailing spaces needed to align the comments have no effect on the
running of the code.

Now you are ready to run the code. Before doing so, you first need
to use the IPython console to move to the programs directory where
the file containing the code resides. That is, from the IPython console,
use the cd command to move to the programs directory. For example,
you might type
In [1]: %cd ~/Documents/programs/

To run or execute a script, simply type %run filename, which in this case
means type %run myTrip.py (if you have IPython’s Automagic switch
turned on, as described in §2.4.1, you can omit the percent sign and
just type run filename). When you run a script, Python simply executes
the sequence of commands in the order they appear.
In [2]: %run myTrip.py

Once you have run the script, you can see the values of the variables
calculated in the script simply by typing the name of the variable.
IPython responds with the value of that variable.

18 Introduction to Python for Science & Engineering

In [3]: time
Out[3]: 6.666666666666667

In [4]: gallons
Out[4]: 13.333333333333334

In [5]: cost
Out[5]: 38.0

You can change the number of digits IPython displays using the magic
command %precision:

In [6]: %precision 2
Out[6]: ' %.2f'

In [7]: time
Out[7]: 6.67

In [8]: gallons
Out[8]: 13.33

In [9]: cost
Out[9]: 38.00

Typing %precision returns IPython to its default state; %precision %e

causes IPython to display numbers in exponential format (scientific
notation).

Note about printing

If you want your script to return the value of a variable (that is, print
the value of the variable to your computer screen), use the print func-
tion. For example, at the end of our script, if we include the code

print(time)
print(gallons)
print(cost)

the script will return the values of the variables time, gallons, and
cost that the script calculated. We will discuss the print function
in much greater detail, as well as other methods for data output, in
Chapter 4.

2.8 Python Modules

The Python computer language consists of a “core” language plus a
vast collection of supplementary software that is contained in mod-

Launching Python 19

ules (or packages, which are collections of modules—we’ll not fuss
about the distinction here). Many of these modules come with the
standard Python distribution and provide added functionality for
performing computer system tasks. Other modules provide more spe-
cialized capabilities that not every user may want. You can think of
these modules as a kind of library from which you can borrow ac-
cording to your needs. You gain access to a module using the import

command, which we introduce in the next section.
We will need four Python modules that are not part of the core

Python distribution, but are nevertheless widely used for scientific
computing. The four modules are:

NumPy is the standard Python package for scientific computing with
Python. It provides the all-important NumPy array data struc-
ture, which is at the very heart of NumPy. It also provides tools
for creating and manipulating arrays, including indexing and sort-
ing, as well as basic logical operations and element-by-element
arithmetic operations like addition, subtraction, multiplication,
division, and exponentiation. It includes the basic mathemati-
cal functions of trigonometry, exponentials, and logarithms, as
well as a vast collection of special functions (Bessel functions,
etc.), statistical functions, and random number generators. It also
includes a large number of linear algebra routines that over-
lap with those in SciPy, although the SciPy routines tend to be
more complete. You can find more information about NumPy at
http://docs.scipy.org/doc/numpy/reference/index.html.

SciPy provides a wide spectrum of mathematical functions and nu-
merical routines for Python. SciPy makes extensive use of NumPy
arrays so when you import SciPy, you should always import
NumPy too. In addition to providing basic mathematical func-
tions, SciPy provides Python “wrappers” for numerical software
written in other languages, like Fortran, C, or C++. A “wrapper”
provides a transparent easy-to-use Python interface to standard
numerical software, such as routines for doing curve fitting and
numerically solving differential equations. SciPy greatly extends
the power of Python and saves you the trouble of writing software
in Python that someone else has already written and optimized in
some other language. You can find more information about SciPy
at http://docs.scipy.org/doc/scipy/reference/.

http://docs.scipy.org/doc/numpy/reference/index.html
http://docs.scipy.org/doc/scipy/reference/

20 Introduction to Python for Science & Engineering

matplotlib is the standard Python package for making two- and
three-dimensional plots. matplotlib makes extensive use of
NumPy arrays. You will make all of your plots in Python using
this package. You can find more information about matplotlib at
http://matplotlib.sourceforge.net/.

Pandas is a Python package providing a powerful set of data analysis
tools. It uses data structures similar to those used in a spreadsheet
program like Excel, and allows you to manipulate data in ways
similar to what is done using spreadsheets. You can find more in-
formation about Pandas at http://pandas.pydata.org/.

We will use these four modules extensively and therefore will pro-
vide introductions to their capabilities as we develop Python. The
links above provide much more extensive information and you will
certainly want to refer to them from time to time.

2.8.1 Python modules and functions: A first look

Because the modules listed above, NumPy, SciPy, matplotlib, and Pan-
das, are not part of core Python, they need to be imported before we
can gain access to their functions and data structures. Here, we show
how to import the NumPy module and use some of its functions. We
defer introducing NumPy arrays, mentioned in the previous section,
until §3.3.

We gain access to the NumPy package using Python’s import state-
ment:

In [1]: import numpy

After running this statement, we have access to all the functions and
data structures of NumPy. For example, we can now access NumPy’s
sine function as follows:

In [2]: numpy.sin(0.5)
Out[2]: 0.479425538604203

In this simple example, the sin function has one argument, here 0.5,
and the function returns the sine of that argument, which is assumed
to be expressed in units of radians.

Note that we had to put the prefix numpy dot before the name of
the actual function name sin. This tells Python that the sin function
is part of the NumPy module that we just imported.

There is another Python module called math that also has a sine

http://matplotlib.sourceforge.net/
http://pandas.pydata.org/

Launching Python 21

function. We can import the math module just like we imported the
NumPy module:

In [3]: import math
In [4]: math.sin(0.5)
Out[4]: 0.479425538604203

These two sine functions are not the same function, even though in
this case they give the same answer. Consider, for example, what hap-
pens if we ask each function to find the sine of a complex number:

In [5]: numpy.sin(3+4j)
Out[5]: (3.853738037919377-27.016813258003932j)

In [6]: math.sin(3+4j)
--
TypeError Traceback (most recent call last)
<ipython-input-24-b48edfeaf02a> in <module>()
----> 1 math.sin(3+4j)

TypeError: can't convert complex to float

The NumPy sine function works just fine and returns a complex re-
sult. By contrast, the math sine function returns a error message be-
cause it does not accept a complex argument. In fact, the math sine
function accepts only a single real number as an argument while the
numpy sine function accepts real and complex NumPy arrays, which
we introduce in §3.3, as arguments. For single real arguments, the
math sine function executes faster than the numpy function, but the
difference in execution speed is not noticeable in most cases.

The important lesson here is to appreciate how Python allows you
to extend its capabilities by importing additional packages, while at
the same time keeping track of where these capabilities come from
using the prefix dot syntax. By using different prefixes, each module
maintains its own namespace, that is, its own separate dictionary of
names, so that functions with the same name in different packages do
not clash.

If you are using a lot of NumPy functions, writing out numpy dot
before each function can be a little verbose. Python allows you to de-
fine an abbreviation for the prefix when you import a library. Here we
show how to do it for NumPy:

In [7]: import numpy as np

In [8]: np.sin(0.5)
Out[8]: 0.47942553860420301

22 Introduction to Python for Science & Engineering

The statement import numpy as np imports and assigns the abbrevia-
tion np for numpy. In principle, you can use any abbreviation you wish.
However, it’s common practice to use np for the NumPy module. You
are strongly encouraged to abide by this practice so that others read-
ing your code will recognize what you are doing.

2.8.2 Some NumPy functions

NumPy includes an extensive library of mathematical functions. In
Table 2.3, we list some of the most useful ones. A complete list is
available at https://docs.scipy.org/doc/numpy/reference/.

Function Description
sqrt(x) square root of x
exp(x) exponential of x, i.e., ex

log(x) natural log of x, i.e., lnx
log10(x) base 10 log of x
degrees(x) converts x from radians to degrees
radians(x) converts x from degrees to radians
sin(x) sine of x (x in radians)
cos(x) cosine x (x in radians)
tan(x) tangent x (x in radians)
arcsin(x) Arc sine (in radians) of x
arccos(x) arc cosine (in radians) of x
arctan(x) arc tangent (in radians) of x
fabs(x) absolute value of x
math.factorial(n) n! of an integer
round(x) rounds a float to nearest integer
floor(x) rounds a float down to nearest integer
ceil(x) rounds a float up to nearest integer
sign(x) −1 if x < 0, +1 if x > 0, 0 if x = 0

Table 2.3 Some NumPy math functions.

The argument of these functions can be a number or any kind of
expression whose output produces a number. All of the following ex-
pressions are legal and produce the expected output:

In [9]: np.log(np.sin(0.5))
Out[9]: -0.73516668638531424

In [10]: np.log(np.sin(0.5)+1.0)

https://docs.scipy.org/doc/numpy/reference/

Launching Python 23

Out[10]: 0.39165386283471759

In [11]: np.log(5.5/1.2)
Out[11]: 1.5224265354444708

Here, we have demonstrated functions with one input and one
output. In general, Python functions have multiple inputs and multi-
ple outputs. We will discuss these and other features of functions later
when we take up functions in the context of user-defined functions.

2.8.3 Scripting Example 2

Let’s try another problem. Suppose you want to find the distance be-
tween two Cartesian coordinates (x1, y1, z1) and (x2, y2, z2). The dis-
tance is given by the formula

∆r =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Now let’s write a script to do this calculation and save it in a file called
twoPointDistance.py.

Code: chapter2/programs/twoPointDistance.py

1 # Calculates the distance between two 3d Cartesian
2 # coordinates
3 import numpy as np
4

5 x1, y1, z1 = 23.7, -9.2, -7.8
6 x2, y2, z2 = -3.5, 4.8, 8.1
7

8 dr = np.sqrt((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2)

We have introduced extra spaces into some of the expressions to
improve readability. They are not necessary; where and whether you
include them is largely a matter of taste.

Because we will need the square root function of NumPy, the
script imports NumPy before doing anything else. If you leave out
the “import numpy as np” line or remove the np dot in front of the
sqrt function, you will get the following error message

Traceback (most recent call last):
...
File ".../twoPointDistance.py", line 8, in <module>

dr = sqrt((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2)

NameError: name "sqrt" is not defined

24 Introduction to Python for Science & Engineering

Now, with the import numpy as np statement, we can run the script.

In [10]: %run twoPointDistance.py

In [11]: dr
Out[11]: 34.48

The script works as expected.

2.8.4 Different ways of importing modules

There are different ways that you can import modules in Python.

Importing an entire module

Usually we import entire modules using the import statement or the
import ... as ... statement that we introduced for the Math and
NumPy libraries:

import math
import numpy as np

Importing part of a module

You can also import a single function or subset of functions from a
module without importing the entire module. For example, suppose
you wanted to import just the log function from NumPy. You could
write

from numpy import log

To use the log function in a script, you would write

a = log(5)

which would assign the value 1.6094379124341003 to the variable a.
If you wanted to import the three functions, log, sin, and cos, you
would write

from numpy import log, sin, cos

Imported in this way, you would use them without any prefix as the
functions are imported into the general namespace of the program.
In general, we do not recommend using from module import functions
way of importing functions. When reading code, it makes it harder to
determine from which modules functions are imported, and can lead
to clashes between similarly named functions from different modules.
Nevertheless, we do use this form sometimes and, more importantly,

Launching Python 25

you will see the form used in programs you encounter on the web and
elsewhere so it is important to understand the syntax.

Blanket importing of a module

There is yet another way of importing an entire module by writing

from numpy import *

This imports the entire module, in this case NumPy, into the general
namespace and allows you to use all the functions in the module with-
out a prefix. If you import two different libraries this way in the same
script, then it’s impossible to tell which functions come from which
library by just looking at the script. You also have the aforementioned
problem of clashes between libraries, so you are strongly advised not
to import this way in a script or program.

There is one possible exception to this advice, however. When
working in the IPython shell, you generally just want to try out a func-
tion or very small snippet of code. You usually are not saving this code
in a script; it’s disposable code, never to be seen or used again. In this
case, it can be convenient to not have to write out the prefixes. If you
like to operate this way, then type pylab at the IPython prompt. This
imports NumPy and matplotlib as follows:

from numpy import *
from matplotlib.pyplot import *

In Appendix A, we suggest that you set up Spyder so that it does
not automatically launch the IPython shell in “pylab” mode. While
you are learning Python, it’s important that you learn which func-
tions belong to which modules. After you become more expert in
Python, you can decide if you want to work in an IPython shell in
pylab mode.1

In this text, we do not operate our IPython shell in “pylab” mode.
That way, it is always clear to you where the functions we use come
from.

Whether you choose to operate your IPython shell in pylab mode
or not, the NumPy and matplotlib libraries (as well as other libraries)
are not available in the scripts and programs you write in the Editor
Pane unless you explicitly import these modules, which you would do
by writing

1Some programmers consider such advice sacrilege. Personally, I sometimes find
pylab mode to be convenient for my workflow. You can decide if it suits you.

26 Introduction to Python for Science & Engineering

import numpy as np
import matplotlib.pyplot as plt

2.9 Getting Help: Documentation in IPython

Help is never far away when you are running the IPython shell. To ob-
tain information on any valid Python or NumPy function, and many
matplotlib functions, simply type help(function), as illustrated here

In [1]: help(range)

Help on class range in module builtins:

class range(object)
class range(object)
| range(stop) -> range object
| range(start, stop[, step]) -> range object
|
| Return an object that produces a sequence of integers
| from start (inclusive) to stop (exclusive) by step.
| range(i, j) produces i, i+1, i+2, ..., j-1. start defaults
| to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
| These are exactly the valid indices for a list of 4
| elements. When step is given, it specifies the increment
| (or decrement).

Often, the information provided can be quite extensive and you might
find it useful to clear the IPython window with the %clear command
so you can easily scroll back to find the beginning of the documen-
tation. You may have also noticed that when you type the name of a
function plus the opening parenthesis, IPython displays a small win-
dow describing the basic operation of that function.

One nice feature of the Spyder IDE is that if you place the cursor
next to or within a function name and press ’cmd-I’ (Mac) or ’ctrl-I’
(PC), the web documentation for the function is displayed in the Help
Pane.

2.10 Stand-alone IPython

You don’t need the Spyder IDE to run IPython. You can run the
IPython shell on its own. To do so, you first need to launch a termi-
nal application. If you are running the macOS, launch the Terminal

Launching Python 27

application, which you can find in the Application/Utilities folder. If
you are running Windows, launch the Anaconda Prompt app under
the Anaconda (or Anaconda3) menu in the Start menu.

Once you launch a terminal application, you should type ipython

at the prompt. This will bring up an IPython terminal window with
the usual IPython prompt.2

From there, you can execute any valid Python or IPython com-
mand or function.

Note, however, that the NumPy module is not automatically
loaded. Therefore, you will need to type import numpy as np and then
use the np dot prefix to access any NumPy functions you may wish to
use.

You can run a Python script by typing %run followed by the script
file name. For example, to run the the script myTrip.py, you would
type:

In [1]: %run myTrip.py

Of course, for this to work, the script myTrip.py must be in the work-
ing director of IPython. If this is not the case, you can use the cd com-
mand to navigate to the directory in which the script myTrip.py is
found.

You can close the IPython shell by typing quit().

2.10.1 Writing Python scripts in a text editor

You can write Python scripts using any plain text editor. No special
editor or IDE is required. Some editors, however, automatically rec-
ognize any file whose names ends in the suffix .py as a Python file.
For example, the text editor programs Notepad++ (for PCs) or BBEdit
(for Macs) recognize Python files. These editors are nice because the
color code the Python syntax and provide other useful features. There
are many others that work too.

One particularly interesting text editor is called Atom. It’s free and
available for for Macs, PCs, and Linux machines. It’s highly config-
urable and can be set up to work as a very effective Python editor.

2You can launch the standard standard Python interactive shell, which is distinct
from the IPython shell, simply by typing python and pressing Return. You will
get the standard Python prompt >>>. Of course, you won’t get the functionality
of the IPython shell with its magic commands, as described in §2.4.1. To close the
Python shell, type quit().

28 Introduction to Python for Science & Engineering

2.11 Programming Errors

Now that you have a little experience with Python and computer pro-
gramming, it’s time for an important reminder: Programming is a
detail-oriented activity. To be good at computer programming, to
avoid frustration when programming, you must pay attention to de-
tails. A misplaced or forgotten comma or colon can keep your code
from working. Note that I did not say it can “keep your code from
working well”; it can keep your code from working at all! Worse still,
little errors can make your code give erroneous answers, where your
code appears to work, but in fact does not do what you intended it to
do! So pay attention to the details!

2.11.1 Pyflakes

One way to avoid making errors is to use a syntax checker. Fortu-
nately, a syntax checker is built into the Spyder IDE This is an enor-
mous asset when writing code and one of the best reasons for using an
IDE.

A syntax-checking program called Pyflakes runs in the background
when you are editing a Python program using Spyder. If there is an
error in your code, Pyflakes flags the error.

In Spyder, a red circle appears to the left of the line where
Pyflakes thinks the error occurs. Sometimes, the error actually occurs
in the previous line, so look around. A yellow triangle appears to
the left of the line where Pyflakes thinks that the coding style doesn’t
conform to the PEP 8 standard;3 it’s not an error, just a coding style
violation, which you can heed or ignore. Passing your mouse pointer
over the red or yellow icon brings up a Code Analysis box with a brief
message describing the error or style violation.

In this text, we have mostly heeded the PEP 8 style guidelines (see
https://www.python.org/dev/peps/pep-0008). We advise you to do
the same. PEP 8 is Python’s style guide and its aim is to enhance code
readability. The simplest way to learn the style guidelines is to heed
the messages associated with the yellow triangle icons. Doing so will
make the yellow icons disappear and will generally render your code
more consistent and readable.

3PEP stands for Python Enhancement Proposal.

https://www.python.org/dev/peps/pep-0008

Launching Python 29

2.11.2 Error checking

This raises a second point: sometimes your code will run but give
the wrong answer because of a programming error or because of a
more subtle error in your algorithm, even though there may be noth-
ing wrong with your Python syntax. The program runs; it just gives
the wrong answer. For this reason, it is important to test your code
to make sure it is behaving properly. Test it to make sure it gives the
correct answers for cases where you already know the correct answer
or where you have some independent means of checking it. Test it in
limiting cases, that is, for cases that are at the extremes of the sets of
parameters you will employ. Always test your code; this is a cardinal
rule of programming.

2.12 Exercises

1. A ball is thrown vertically up in the air from a height h0 above
the ground at an initial velocity v0. Its subsequent height h and
velocity v are given by the equations

h = h0 + v0t −
1
2
gt2

v = v0 − gt

where g = 9.8 is the acceleration due to gravity in m/s2. Write a
script that finds the height h and velocity v at a time t after the
ball is thrown. Start the script by setting h0 = 1.6 (meters) and
v0 = 14.2 (m/s) and have your script print out the values of height
and velocity. Then use the script to find the height and velocity
after 0.5 seconds. Then modify your script to find them after 2.0
seconds.

2. Write a script that defines the variables V0 = 10, a = 2.5, and z = 41
3 ,

and then evaluates the expression

V = V0

(
1− z
√
a2 + z2

)
.

Then find V for z = 82
3 and print it out (see Note about printing on

page 18). Then find V for z = 13 by changing the value of z in your
script.

30 Introduction to Python for Science & Engineering

3. Write a single Python script that calculates the following expres-
sions:

(a) a =
2 + e2.8
√

13− 2

(b) b =
1− (1 + ln2)−3.5

1 +
√

5

(c) c = sin
(

2−
√

2

2 +
√

2

)
After running your script in the IPython shell, typing a, b, or c at
the IPython prompt should yield the value of the expressions in
(a), (b), or (c), respectively.

4. A quadratic equation with the general form

ax2 + bx+ c = 0

has two solutions given by the quadratic formula

x =
−b ±

√
b2 − 4ac
2a

.

(a) Given a, b, and c as inputs, write a script that gives the numer-
ical values of the two solutions. Write the constants a, b, and c
as floats, and show that your script gives the correct solutions
for a few test cases when the solutions are real numbers, that
is, when the discriminant b2−4ac ≥ 0. Use the print function
in your script, discussed at the end of §2.7.1, to print out your
two solutions.

(b) Written this way, however, your script gives an error message
when the solutions are complex. For example, see what hap-
pens when a = 1, b = 2, and c = 3. You can fix this using state-
ments in your script like a = a+0j after setting a to some float
value. Thus, you can make the script work for any set of real
inputs for a, b, and c. Again, use the print function to print
out your two solutions.

5. Write a program to calculate the perimeter p of an n-gon inscribed
inside a sphere of diameter 1. Find p for n = 3, 4, 5, 100, 10,000,
and 1,000,000. Your answers should be

Launching Python 31

n p n p
3 2.59807621135 100 3.14107590781
4 2.82842712475 10,000 3.14159260191
5 2.93892626146 1,000,000 3.14159265358

http://taylorandfrancis.com

chapter 3

Strings, Lists, Arrays, and Dictionaries

In this chapter you learn about data structures, which Python
uses to store and organize numerical, alphabetical, and other types
of information. The variables introduced in the previous chapter
are a very simple kind of data structure. Here we introduce several
more data structures that prove useful in programming, including
strings, lists, tuples, and dictionaries, which are all part of core
Python. We also introduce NumPy arrays, which are very use-
ful for storing and manipulating scientific data. We introduce a
powerful technique called slicing, which allows you to extract and
manipulate sections of data contained in lists, tuples, and NumPy
arrays. Finally, we introduce some basic ideas about objects, which
are central to the underlying structure and functioning of Python.

The most important data structure for scientific computing in
Python is the NumPy array. NumPy arrays are used to store lists of
numerical data and to represent vectors, matrices, and even tensors.
NumPy arrays are designed to handle large data sets efficiently and
with a minimum of fuss. The NumPy library has a large set of routines
for creating, manipulating, and transforming NumPy arrays. NumPy
functions, like sqrt and sin, are designed specifically to work with
NumPy arrays. Core Python has an array data structure, but it’s not
nearly as versatile, efficient, or useful as the NumPy array. We will
not be using Python arrays at all. Therefore, whenever we refer to an
“array,” we mean a “NumPy array.” We discuss NumPy arrays in §3.3.

Lists are another data structure, similar to NumPy arrays, but un-
like NumPy arrays, lists are a part of core Python. Lists have a variety
of uses. They are useful, for example, in various bookkeeping tasks
that arise in computer programming. Like arrays, they are sometimes
used to store data. However, lists do not have the specialized proper-
ties and tools that make arrays so powerful for scientific computing.
Therefore, we usually prefer arrays to lists for working with scientific
data, but there are some circumstances for which using lists is prefer-

33

34 Introduction to Python for Science & Engineering

able, even for scientific computing. And for other tasks, lists work just
fine. We will use them frequently. We discuss them in §3.2.

Strings are lists of keyboard characters as well as other characters
not on your keyboard. They are not particularly interesting in scien-
tific computing, but they are nevertheless necessary and useful. Texts
on programming with Python typically devote a good deal of time
and space to learning about strings and how to manipulate them. Our
uses of them are rather modest, however, so we take a minimalist’s ap-
proach and only introduce a few of their features. We discuss strings
in §3.1.

Dictionaries are like lists, but the elements of dictionaries are ac-
cessed in a different way than for lists. The elements of lists and arrays
are numbered consecutively, and to access an element of a list or an
array, you simply refer to the number corresponding to its position
in the sequence. The elements of dictionaries are accessed by “keys,”
which can be program strings or (arbitrary) integers (in no particular
order). Dictionaries are an important part of core Python. We intro-
duce them in §3.4.

3.1 Strings

Strings are lists of characters. Any character that you can type from
a computer keyboard, plus a variety of other characters, can be ele-
ments in a string. Strings are created by enclosing a sequence of char-
acters within a pair of single or double quotes. Examples of strings
include "Marylyn", 'omg', "good_bad_#5f>", "{0:0.8g}", and 'We hold

these truths ...'. Caution: the defining quotes must both be single
or both be double quotes when defining a given string. But you can
use single quotes to define one string and double quotes to define the
next string; it’s up to you and has no consequence.

Strings can be assigned variable names

In [1]: a = "My dog's name is"
In [2]: b = "Bingo"

Note that we used double quotes to define the string a, so that we
could use the apostrophe (single quote) in dog's. Strings can be con-
catenated using the “+” operator:

In [3]: c = a + " " + b
In [4]: c
Out[4]: "My dog's name is Bingo"

Strings, Lists, Arrays, and Dictionaries 35

In forming the string c, we concatenated three strings, a, b, and a string
literal, in this case a space " ", which is needed to provide a space to
separate string a from b.

You will use strings for different purposes: labeling data in data
files, labeling axes in plots, formatting numerical output, requesting
input for your programs, as arguments in functions, etc.

Because numbers—digits—are also alpha numeric characters,
strings can be made up of numbers:

In [5]: d = "927"
In [6]: e = 927

The variable d is a string while the variable e is an integer. If you try
to add them by writing d+e, you get an error. However, if you type d +

str(e) or int(d) + e, you get sensible, but different, results. Try them
out!

3.2 Lists

Python has two data structures, lists and tuples, that consist of a list of
one or more elements. The elements of lists or tuples can be numbers
or strings, or both. Lists (we discuss tuples later in §3.2.3) are defined
by a pair of square brackets on either end with individual elements
separated by commas. Here are two examples of lists:

In [1]: a = [0, 1, 1, 2, 3, 5, 8, 13]
In [2]: b = [5., "girl", 2+0j, "horse", 21]

We can access individual elements of a list using the variable name
for the list with an integer in square brackets:

In [3]: b[0]
Out[3]: 5.0

In [4]: b[1]
Out[4]: 'girl'

In [5]: b[2]
Out[5]: (2+0j)

The first element of b is b[0], the second is b[1], the third is b[2],
and so on. Some computer languages index lists starting with 0, like
Python and C, while others index lists (or things more-or-less equiv-
alent) starting with 1 (like Fortran and MATLAB®). It’s important to

36 Introduction to Python for Science & Engineering

keep in mind that Python uses the former convention: lists are zero-
indexed.

The last element of this array is b[4], because b has 5 elements.
The last element can also be accessed as b[-1], no matter how many
elements b has, and the next-to-last element of the list is b[-2], etc.
Try it out:

In [6]: b[4]
Out[6]: 21

In [7]: b[-1]
Out[7]: 21

In [8]: b[-2]
Out[8]: 'horse'

Individual elements of lists can be changed. For example:

In [9]: b
Out[9]: [5.0, 'girl', (2+0j), 'horse', 21]

In [10]: b[0] = b[0]+2

In [11]: b[3] = 3.14159

In [12]: b
Out[12]: [7.0, 'girl', (2+0j), 3.14159, 21]

Here we see that 2 was added to the previous value of b[0] and the
string ’horse’ was replaced by the floating point number 3.14159. We
can also manipulate individual elements that are strings:

In [13]: b[1] = b[1] + "s & boys"

In [14]: b
Out[14]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

You can also add lists, but the result might surprise you:

In [15]: a
Out[15]: [0, 1, 1, 2, 3, 5, 8, 13]

In [16]: a+a
Out[16]: [0, 1, 1, 2, 3, 5, 8, 13, 0, 1, 1, 2, 3, 5,

8, 13]

In [17]: a+b
Out[17]: [0, 1, 1, 2, 3, 5, 8, 13, 10.0, 'girls &

boys', (2+0j), 3.14159, 21]

Strings, Lists, Arrays, and Dictionaries 37

Adding lists concatenates them, just as the “+” operator concatenates
strings.

3.2.1 Slicing lists

You can access pieces of lists using the slicing feature of Python:

In [18]: b
Out[18]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

In [19]: b[1:4]
Out[19]: ['girls & boys', (2+0j), 3.14159]

In [20]: b[3:5]
Out[20]: [3.14159, 21]

You access a subset of a list by specifying two indices separated by
a colon “:”. This is a powerful feature of lists that we will use often.
Here are a few other useful slicing shortcuts:

In [21]: b[2:]
Out[21]: [(2+0j), 3.14159, 21]

In [22]: b[:3]
Out[22]: [10.0, 'girls & boys', (2+0j)]

In [23]: b[:]
Out[23]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

Thus, if the left slice index is 0, you can leave it out; similarly, if the
right slice index is the length of the list, you can leave it out also.

What does the following slice of an array give you?

In [24]: b[1:-1]

You can get the length of a list using Python’s len function:

In [25]: len(b)
Out[25]: 5

You can also extract every second, third, or nth element of a list.
Here we extract every second and third element of a list starting at
different points:

In [26]: b
Out[26]: [10.0, 'girls & boys', (2+0j), 3.14159, 21]

In [27]: b[0::2]
Out[27]: [10.0, (2+0j), 21]

38 Introduction to Python for Science & Engineering

In [28]: b[1::2]
Out[28]: ['girls & boys', 3.14159]

In [29]: b[0::3]
Out[29]: [10.0, 3.14159]

In [30]: b[1::3]
Out[30]: ['girls & boys', 21]

In [31]: b[2::3]
Out[31]: [(2+0j)]

3.2.2 The range function: Sequences of numbers

Because it turns out to be so useful, Python has a special function,
range, that can be used to create a uniformly spaced sequence of in-
tegers. Its general form is range([start,] stop[, step]), where the
arguments are all integers; those in square brackets are optional. In
its simplest implementation it has only one argument, the stop argu-
ment:

In [32]: list(range(10)) # makes a list of 10
integers from 0 to 9

Out[32]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [33]: list(range(3, 10)) # makes a list of
integers from 3 to 9

Out[33]: [3, 4, 5, 6, 7, 8, 9]

In [34]: list(range(0, 10, 2)) # makes a list of 10
integers from 0 to 9 with an increment of 2

Out[34]: [0, 2, 4, 6, 8]

When two or three arguments are used, the first argument gives the
first number of the list while the second argument ends the list, but is
not included in the list. If the third argument is not included, it’s taken
to be 1.

In [35]: a = list(range(4, 12))

In [36]: a
Out[36]: [4, 5, 6, 7, 8, 9, 10, 11]

You can use negative numbers with the range function, and increment
the sequence with a number other than 1 using a third entry:

In [37]: a = list(range(-5, 5, 2))

Strings, Lists, Arrays, and Dictionaries 39

In [38]: a
Out[38]: [-5, -3, -1, 1, 3]

In [39]: a = list(range(5, 0, -1))

In [40]: a
Out[40]: [5, 4, 3, 2, 1]

The range function makes an iterable sequence

In the examples above, we use the list function in conjunction with
the range function because by itself the range function does not make
a list. The range function simply generates a sequence of numbers
one at a time. The only information stored in the range function is the
current value of the sequence, the ending value, and the increment.
By contrast, a list stores all the numbers in the list. For example, if we
type range(10), Python does not return a list.

In [41]: range(10)
In [42]: range(0, 10)

Instead, the Python range(0, 10) function returns an iterable se-
quence, which saves a lot of memory when the sequence is very long.
If this seems a bit vague or confusing at this point, don’t fret. It will

become clearer when we introduce for loops in §5.2.

3.2.3 Tuples

Next, a word about tuples: tuples are lists that are immutable. That is,
once defined, the individual elements of a tuple cannot be changed.
Whereas a list is written as a sequence of numbers enclosed in square
brackets, a tuple is written as a sequence of numbers enclosed in round
parentheses. Individual elements of a tuple are addressed in the same
way as individual elements of lists are addressed, but those individual
elements cannot be changed. All of this is illustrated by this simple
example:

In [43]: c = (1, 1, 2, 3, 5, 8, 13)
In [44]: c[4]
Out[44]: 5

In [45]: c[4] = 7
Traceback (most recent call last):

File "<ipython-input-2-7cb42185162c>", line 1,

40 Introduction to Python for Science & Engineering

in <module>
c[4] = 7

TypeError: 'tuple' object does not support item
assignment

When we tried to change c[4], the system returned an error because
we are prohibited from changing an element of a tuple. Tuples offer
some degree of safety when we want to define lists of immutable con-
stants.

3.2.4 Multidimensional lists and tuples

We can also make multidimensional lists, or lists of lists. Consider,
for example, a list of three elements, where each element in the list is
itself a list:

In [40]: a = [[3, 9], [8, 5], [11, 1]]

Here we have a three-element list where each element consists of a
two-element list. Such constructs can be useful in making tables and
other structures. They also become relevant later on in our discussion
of NumPy arrays and matrices, which we introduce in §3.3.

We can access the various elements of a list with a straightforward
extension of the indexing scheme we have been using. The first ele-
ment of the list a above is a[0], which is [3, 9]; the second is a[1],
which is [8, 5]. The first element of a[1] is accessed as a[1][0],
which is 8, as illustrated below:

In [46]: a[0]
Out[46]: [3, 9]

In [47]: a[1]
Out[47]: [8, 5]

In [48]: a[1][0]
Out[48]: 8

In [49]: a[2][1]
Out[49]: 1

Multidimensional tuples work exactly like multidimensional lists, ex-
cept they are immutable.

Strings, Lists, Arrays, and Dictionaries 41

3.3 NumPy Arrays

The NumPy array is the real workhorse of data structures for scien-
tific and engineering applications. The NumPy array, formally called
ndarray in NumPy documentation, is similar to a list but where all the
elements of the list are of the same type. The elements of a NumPy ar-
ray, or simply an array, are usually numbers, but can also be Booleans,
strings, or other objects. When the elements are numbers, they must
all be of the same type. For example, they might be all integers or all
floating point numbers.

3.3.1 Creating arrays (1-d)

NumPy has a number of functions for creating arrays. We focus on
four (or five or six, depending on how you count!). The first of these,
the array function, converts a list to an array:

In [1]: a = [0, 0, 1, 4, 7, 16, 31, 64, 127]

In [2]: import numpy as np

In [3]: b = np.array(a)

In [4]: b
Out[4]: array([0, 0, 1, 4, 7, 16, 31, 64, 127])

In [5]: c = np.array([1, 4., -2, 7])

In [6]: c
Out[6]: array([1., 4., -2., 7.])

Notice that b is an integer array, as it was created from a list of
integers. On the other hand, c is a floating point array even though
only one of the elements of the list from which it was made was a
floating point number. The array function automatically promotes all
of the numbers to the type of the most general entry in the list, which
in this case is a floating point number. In the case that elements of
a list are made up of numbers and strings, all the elements become
strings when an array is formed from a list.

The second way arrays can be created is using the NumPy
linspace or logspace functions. The linspace function creates an ar-
ray of N evenly spaced points between a starting point and an ending
point. The form of the function is linspace(start, stop, N). If the
third argument N is omitted, then N=50.

42 Introduction to Python for Science & Engineering

In [7]: np.linspace(0, 10, 5)
Out[7]: array([0. , 2.5, 5. , 7.5, 10.])

The linspace function produced 5 evenly spaced points between 0
and 10 inclusive. NumPy also has a closely related function logspace

that produces evenly spaced points on a logarithmically spaced scale.
The arguments are the same as those for linspace except that start
and stop refer to a power of 10. That is, the array starts at 10start and
ends at 10stop.

In [8]: %precision 1 # display 1 digit after decimal
Out[8]: '%.1f'

In [9]: np.logspace(1, 3, 5)
Out[9]: array([10. , 31.6, 100. , 316.2, 1000.])

The logspace function created an array with 5 points evenly spaced
on a logarithmic axis starting at 101 and ending at 103. The logspace

function is particularly useful when you want to create a log-log plot.
The third way arrays can be created is using the NumPy arange

function. The form of the function is arange(start, stop, step). If
the third argument is omitted step=1. If the first and third arguments
are omitted, then start=0 and step=1.

In [10]: np.arange(0, 10, 2)
Out[10]: array([0, 2, 4, 6, 8])

In [11]: np.arange(0., 10, 2)
Out[11]: array([0., 2., 4., 6., 8.])

In [12]: np.arange(0, 10, 1.5)
Out[12]: array([0. , 1.5, 3. , 4.5, 6. , 7.5, 9.])

The arange function produces points evenly spaced between 0 and 10
exclusive of the final point. Notice that arange produces an integer
array in the first case but a floating point array in the other two cases.
In general arange produces an integer array if the arguments are all
integers; making any one of the arguments a float causes the array that
is created to be a float.

A fourth way to create an array is with the zeros and ones func-
tions. As their names imply, they create arrays where all the elements
are either zeros or ones. They each take one mandatory argument,
the number of elements in the array, and one optional argument that
specifies the data type of the array. Left unspecified, the data type is a
float. Here are three examples

Strings, Lists, Arrays, and Dictionaries 43

In [13]: np.zeros(6)
Out[13]: array([0., 0., 0., 0., 0., 0.])

In [14]: np.ones(8)
Out[14]: array([1., 1., 1., 1., 1., 1., 1., 1.])

In [15]: ones(8, dtype=int)
Out[15]: np.array([1, 1, 1, 1, 1, 1, 1, 1])

Recap of ways to create a 1-d NumPy array

array(a): Creates an array from the list a.

linspace(start, stop, num): Returns num evenly spaced numbers
over an interval from start to stop inclusive. (num=50 if omitted.)

logspace(start, stop, num): Returns num logarithmically spaced
numbers over an interval from 10start to 10stop inclusive. (num=50
if omitted.)

arange([start,] stop[, step,], dtype=None): Returns data points
from start to end, exclusive, evenly spaced by step. (step=1 if
omitted. start=0 and step=1 if both are omitted.)

zeros(num, dtype=float): Returns an an array of 0s with num ele-
ments. Optional dtype argument can be used to set the data type;
left unspecified, a float array is made.

ones(num, dtype=float): Returns an an array of 1s with num ele-
ments. Optional dtype argument can be used to set the data type;
left unspecified, a float array is made.

3.3.2 Mathematical operations with arrays

The utility and power of arrays in Python comes from the fact that
you can process and transform all the elements of an array in one fell
swoop. The best way to see how this works is to look at an example.

In [16]: a = np.linspace(-1., 5, 7)

In [17]: a
Out[17]: array([-1., 0., 1., 2., 3., 4., 5.])

In [18]: a*6
Out[18]: array([-6., 0., 6., 12., 18., 24., 30.])

44 Introduction to Python for Science & Engineering

Here we can see that each element of the array has been multiplied
by 6. This works not only for multiplication, but for any other mathe-
matical operation you can imagine: division, exponentiation, etc.

In [19]: a/5
Out[18]: array([-0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1.])

In [20]: a**3
Out[20]: array([-1., 0., 1., 8., 27., 64., 125.])

In [21]: a+4
Out[21]: array([3., 4., 5., 6., 7., 8., 9.])

In [22]: a-10
Out[22]: array([-11., -10., -9., -8., -7., -6., -5.])

In [23]: (a+3)*2
Out[23]: array([4., 6., 8., 10., 12., 14., 16.])

In [24]: np.sin(a)
Out[24]: array([-0.8415, 0. , 0.8415, 0.9093, 0.1411,

-0.7568, -0.9589])

Here we have set precision 4 so that only 4 digits are displayed to
the right of the decimal point. We will typically do this in this manual
without mentioning it in order to have neater formatting. Whether or
not you do it is entirely up to you.

In [25]: np.exp(-a)
Out[25]: array([2.7183, 1. , 0.3679, 0.1353, 0.0498,

0.0183, 0.0067])

In [26]: 1. + np.exp(-a)
Out[26]: array([3.7183, 2. , 1.3679, 1.1353, 1.0498,

1.0183, 1.0067])

In [27]: b = 5*np.ones(8)

In [28]: b
Out[28]: array([5., 5., 5., 5., 5., 5., 5., 5.])

In [29]: b += 4

In [30]: b
Out[30]: array([9., 9., 9., 9., 9., 9., 9., 9.])

In each case, you can see that the same mathematical operations
are performed individually on each element of each array. Even fairly
complex algebraic computations can be carried out this way.

Strings, Lists, Arrays, and Dictionaries 45

Let’s say you want to create an x − y data set of y = cos x vs. x over
the interval from −3.14 to 3.14. Here is how you might do it.

In [31]: x = np.linspace(-3.14, 3.14, 21)

In [32]: y = np.cos(x)

In [33]: x
Out[33]: array([-3.14 , -2.826, -2.512, -2.198, -1.884,

-1.57 , -1.256, -0.942, -0.628, -0.314,
0. , 0.314, 0.628, 0.942, 1.256,
1.57 , 1.884, 2.198, 2.512, 2.826,
3.14])

In [34]: y
Out[34]: array([-1.0000e+00, -9.5061e-01, -8.0827e-01,

-5.8688e-01, -3.0811e-01, 7.9633e-04,
3.0962e-01, 5.8817e-01, 8.0920e-01,
9.5111e-01, 1.0000e+00, 9.5111e-01,
8.0920e-01, 5.8817e-01, 3.0962e-01,
7.9633e-04, -3.0811e-01, -5.8688e-01,

-8.0827e-01, -9.5061e-01, -1.0000e+00])

You can use arrays as inputs for any of the functions introduced in
§2.8.1.

You might well wonder what happens if Python encounters an il-
legal operation. Here is one example.

In [35]: a
Out[35]: array([-1., 0., 1., 2., 3., 4., 5.])

In [36]: np.log(a)
Out[36]: array([nan, -inf, 0. , 0.6931, 1.0986,

1.3863, 1.6094])

We see that NumPy calculates the logarithm where it can, and returns
nan (not a number) for an illegal operation, taking the logarithm of a
negative number, and -inf, or −∞ for the logarithm of zero. The other
values in the array are correctly reported. Depending on the settings
of your version of Python, NumPy may also print a warning message
to let you know that something untoward has occurred.

Arrays can also be added, subtracted, multiplied, and divided by
each other on an element-by-element basis, provided the two arrays
have the same size. Consider adding the two arrays a and b defined
below:

In [37]: a = np.array([34., -12, 5.])

46 Introduction to Python for Science & Engineering

In [38]: b = np.array([68., 5.0, 20.])

In [39]: a+b
Out[39]: array([102., -7., 25.])

The result is that each element of the two arrays are added. Similar
results are obtained for subtraction, multiplication, and division:

In [40]: a-b
Out[40]: array([-34., -17., -15.])

In [41]: a*b
Out[41]: array([2312., -60., 100.])

In [42]: a/b
Out[42]: array([0.5 , -2.4 , 0.25])

These kinds of operations with arrays are called vectorized operations
because the entire array, or “vector,” is processed as a unit. Vector-
ized operations are much faster than processing each element of an
array one by one. Writing code that takes advantage of these kinds
of vectorized operations is almost always preferred to other means of
accomplishing the same task, both because it is faster and because it
is usually syntactically simpler. You will see examples of this later on
when we discuss loops in Chapter 5.

3.3.3 Slicing and addressing arrays

Arrays can be sliced in the same ways that strings and lists can be
sliced—any way you slice it! Ditto for accessing individual array el-
ements: 1-d arrays are addressed the same way as strings and lists.
Slicing, combined with the vectorized operations can lead to some
pretty compact and powerful code.

Suppose, for example, that we have two arrays y, and t for position
vs. time of a falling object, say a ball, and we want to use these data to
calculate the velocity as a function of time:

In [43]: y = np.array([0., 1.3, 5. , 10.9, 18.9, 28.7, 40.])

In [44]: t = np.array([0., 0.49, 1. , 1.5 , 2.08, 2.55, 3.2])

We can get find the average velocity for time interval i by the for-
mula

v1 =
yi − yi−1

ti − ti−1

Strings, Lists, Arrays, and Dictionaries 47

We can easily calculate the entire array of velocities using the slicing
and vectorized subtraction properties of NumPy arrays by noting that
we can create two y arrays displaced by one index.

In [45]: y[:-1]
Out[45]: array([0. , 1.3, 5. , 10.9, 18.9, 28.7])

In [46]: y[1:]
Out[46]: array([1.3, 5. , 10.9, 18.9, 28.7, 40.])

The element-by-element difference of these two arrays is

In [47]: y[1:]-y[:-1]
Out[47]: array([1.3, 3.7, 5.9, 8. , 9.8, 11.3])

The element-by-element difference of the two arrays y[1:]-y[:-1] di-
vided by t[1:]-t[:-1] gives the entire array of velocities.

In [48]: v = (y[1:]-y[:-1])/(t[1:]-t[:-1])

In [49]: v
Out[49]: array([2.6531, 7.2549, 11.8 ,

13.7931, 20.8511, 17.3846])

Of course, these are the average velocities over each interval so the
times best associated with each interval are the times halfway in be-
tween the original time array, which we can calculate using a similar
trick of slicing:

In [50]: tv = (t[1:]+t[:-1])/2.

In [51]: tv
Out[51]: array([0.245, 0.745, 1.25 , 1.79 , 2.315, 2.875])

3.3.4 Fancy indexing: Boolean masks

There is another way of accessing various elements of an array that is
both powerful and useful. We will illustrate with a simple example.
Consider the following array

In [52]: b = 1.0/np.arange(0.2, 3, 0.2)

In [53]: b
Out[53]:
array([5. , 2.5 , 1.66666667, 1.25 ,

1. , 0.83333333, 0.71428571, 0.625 ,
0.55555556, 0.5 , 0.45454545, 0.41666667,
0.38461538, 0.35714286])

48 Introduction to Python for Science & Engineering

Suppose we want just those elements of the array that are greater than
one. We can get an array of those values using Boolean indexing. Here’s
how it works:

In [54]: b[b > 1]
Out[54]:
array([5. , 2.5 , 1.66666667, 1.25])

Only those elements whose values meet the Boolean criterion are re-
turned.

Boolean indexing can be really useful for reassigning values of an
array that meet some criterion. For example, we can reassign all the
elements of b that are greater than 1 to have a value of 1 with the
following assignment:

In [55]: b[b > 1] = 1

In [56]: b
Out[56]:
array([1. , 1. , 1. , 1. ,

1. , 0.83333333, 0.71428571, 0.625 ,
0.55555556, 0.5 , 0.45454545, 0.41666667,
0.38461538, 0.35714286])

Suppose we create another array that has the same size as b.

In [57]: b.size
Out[57]: 14

In [58]: c = np.linspace(0, 10, b.size)

In [59]: c
Out[59]:
array([0. , 0.76923077, 1.53846154, 2.30769231,

3.07692308, 3.84615385, 4.61538462, 5.38461538,
6.15384615, 6.92307692, 7.69230769, 8.46153846,
9.23076923, 10.])

Now we would like for this new array c to be equal to 3 everywhere
that b is equal to 1. We do that like this:

In [60]: c[b == 1] = 3

In [61]: c
Out[61]:
array([3. , 3. , 3. , 3. ,

3. , 3.84615385, 4.61538462, 5.38461538,
6.15384615, 6.92307692, 7.69230769, 8.46153846,
9.23076923, 10.])

Strings, Lists, Arrays, and Dictionaries 49

Here we have used the Boolean operator == which returns a value of
True if the two things it’s comparing have the same value and False if
they do not. So a Boolean condition on one array can be used to index
a different array if the two arrays have the same size, as in the above
example.

The elements of the array that are selected using Boolean indexing
need not be consecutive, as illustrated in the next example.

In [62]: y = np.sin(np.linspace(0, 4*np.pi, 9))

In [63]: y
Out[63]:
array([0.00000000e+00, 1.00000000e+00, 1.22464680e-16,

-1.00000000e+00, -2.44929360e-16, 1.00000000e+00,
3.67394040e-16, -1.00000000e+00, -4.89858720e-16])

In [64]: y[np.abs(y) < 1.e-15] = 0

In [65]: y
Out[65]: array([0., 1., 0., -1., 0., 1., 0., -1., 0.])

Boolean indexing provides a nifty way to get rid of those very small
numbers that should be but aren’t quite zero due to roundoff error,
even if the benefit is mostly aesthetic.

3.3.5 Multi-dimensional arrays and matrices

So far we have examined only one-dimensional NumPy arrays, that is,
arrays that consist of a simple sequence of numbers. However, NumPy
arrays can be used to represent multidimensional arrays. For example,
you may be familiar with the concept of a matrix, which consists of a
series of rows and columns of numbers. Matrices can be represented
using two-dimensional NumPy arrays. Higher dimension arrays can
also be created as the application demands.

Creating NumPy arrays

There are a number of ways of creating multidimensional NumPy ar-
rays. The most straightforward way is to convert a list to an array
using NumPy’s array function, which we demonstrate here:

In [66]: b = np.array([[1., 4, 5], [9, 7, 4]])

In [67]: b
Out[67]: array([[1., 4., 5.],

[9., 7., 4.]])

50 Introduction to Python for Science & Engineering

Notice the syntax used above in which two one-dimensional lists [1.,
4, 5] and [9, 7, 4] are enclosed in square brackets to make a two-
dimensional list. The array function converts the two-dimensional
list, a structure we introduced earlier, to a two-dimensional array.
When it makes the conversion from a list to an array, the array func-
tion makes all the elements have the same data type as the most com-
plex entry, in this case a float. This reminds us again of an important
difference between NumPy arrays and lists: all elements of a NumPy
array must be of the same data type: floats, or integers, or complex
numbers, etc.

There are a number of other functions for creating arrays. For ex-
ample, a 3 row by 4 column array or 3× 4 array with all the elements
filled with 1 can be created using the ones function introduced earlier.

In [68]: a = np.ones((3,4), dtype=float)

In [69]: a
Out[69]: array([[1., 1., 1., 1.],

[1., 1., 1., 1.],
[1., 1., 1., 1.]])

Using a tuple to specify the size of the array in the first argument of
the ones function creates a multidimensional array, in this case a two-
dimensional array with the two elements of the tuple specifying the
number of rows and columns, respectively. The zeros function can be
used in the same way to create a matrix or other multidimensional
array of zeros.

The eye(N) function creates an N × N two-dimensional identity
matrix with ones along the diagonal:

In [70]: np.eye(4)
Out[70]: array([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

Multidimensional arrays can also be created from one-dimensional
arrays using the reshape function. For example, a 2 × 3 array can be
created as follows:

In [71]: c = np.arange(6)

In [72]: c
Out[72]: array([0, 1, 2, 3, 4, 5])

In [73]: c = np.reshape(c, (2, 3))

Strings, Lists, Arrays, and Dictionaries 51

In [74]: c
Out[74]: array([[0, 1, 2],

[3, 4, 5]])

Indexing multidimensional arrays

The individual elements of arrays can be accessed in the same way as
for lists:

In [75]: b[0][2]
Out[75]: 5.0

You can also use the syntax

In [76]: b[0, 2]
Out[76]: 5.0

which means the same thing. Caution: both the b[0][2] and the
b[0, 2] syntax work for NumPy arrays and mean the same thing; for
lists, only the b[0][2] syntax works.

Matrix operations

Addition, subtraction, multiplication, division, and exponentiation
all work with multidimensional arrays the same way they work with
one-dimensional arrays, on an element-by-element basis, as illus-
trated below:

In [77]: b
Out[77]: array([[1., 4., 5.],

[9., 7., 4.]])

In [78]: 2*b
Out[78]: array([[2., 8., 10.],

[18., 14., 8.]])
In [79]: b/4.
Out[79]: array([[0.25, 1. , 1.25],

[2.25, 1.75, 1.]])

In [80]: b**2
Out[80]: array([[1., 16., 25.],

[81., 49., 16.]])

In [81]: b-2
Out[81]: array([[-1., 2., 3.],

[7., 5., 2.]])

Functions also act on an element-to-element basis.

52 Introduction to Python for Science & Engineering

In [82]: np.sin(b)
Out[82]: array([[0.8415, -0.7568, -0.9589],

[0.4121, 0.657 , -0.7568]])

Multiplying two arrays together is done on an element-by-element
basis. Using the matrices b and c defined above, multiplying them
together gives
In [83]: b
Out[83]: array([[1., 4., 5.],

[9., 7., 4.]])

In [84]: c
Out[84]: array([[0, 1, 2],

[3, 4, 5]])

In [85]: b*c
Out[85]: array([[0., 4., 10.],

[27., 28., 20.]])

Of course, this requires that both arrays have the same shape. Beware:
array multiplication, done on an element-by-element basis, is not the
same as matrix multiplication as defined in linear algebra. Therefore,
we distinguish between array multiplication and matrix multiplica-
tion in Python.

Normal matrix multiplication is done with NumPy’s dot function.
For example, defining d as:
In [86]: d = np.array([[4, 2], [9, 8], [-3, 6]])

In [87]: d
Out[87]: array([[4, 2],

[9, 8],
[-3, 6]])

In [88]: np.dot(b, d)
Out[88]: array([[25., 64.],

[87., 98.]])

3.3.6 Differences between lists and arrays

While lists and arrays are superficially similar—they are both multi-
element data structures—they behave quite differently in a number of
circumstances. First of all, lists are part of the core Python program-
ming language; arrays are a part of the numerical computing package
NumPy. Therefore, you have access to NumPy arrays only if you load
the NumPy package using the import command.

Strings, Lists, Arrays, and Dictionaries 53

Here we list some of the differences between Python lists and
NumPy arrays, and why you might prefer to use one or the other de-
pending on the circumstance.

• The elements of a NumPy array must all be of the same type,
whereas the elements of a Python list can be of completely differ-
ent types.

• Arrays allow Boolean indexing; lists do not. See §3.3.4.

• NumPy arrays support “vectorized” operations like element-by-
element addition and multiplication. This is made possible, in
part, by the fact that all elements of the array have the same type,
which allows array operations like element-by-element addition
and multiplication to be carried out very efficiently (by C loops).
Such “vectorized” operations on arrays, which includes operations
by NumPy functions such as numpy.sin and numpy.exp, are much
faster than operations performed by loops using the core Python
math package functions, such as math.sin and math.exp, that act
only on individual elements and not on whole lists or arrays.

• Adding one or more additional elements to a NumPy array cre-
ates a new array and destroys the old one. Therefore it can be
very inefficient to build up large arrays by appending elements
one by one, especially if the array is very large, because you re-
peatedly create and destroy large arrays. By contrast, elements can
be added to a list without creating a whole new list. If you need to
build an array element by element, it is usually better to build it as
a list, and then convert it to an array when the list is complete. At
this point, it may be difficult for you to appreciate how and under
what circumstances you might want build up an array element by
element. Examples are provided later on (e.g., see §7.1.1).

3.4 Dictionaries

A Python list is a collection of Python objects indexed by an ordered
sequence of integers starting from zero. A dictionary is also a collec-
tion of Python objects, just like a list, but one that is indexed by strings
or numbers (not necessarily integers and not in any particular order)
or even tuples! Dictionaries are a part of core Python, just like lists.

54 Introduction to Python for Science & Engineering

Suppose we want to make a dictionary of room numbers indexed
by the name of the person who occupies each room. We create our
dictionary using curly brackets {...}.
In [1]: room = {"Emma":309, "Jake":582, "Olivia":764}

The dictionary above has three entries separated by commas, each en-
try consisting of a key, which in this case is a string, and a value,
which in this case is a room number. Each key and its value are sepa-
rated by a colon. The syntax for accessing the various entries is similar
to a that of a list, with the key replacing the index number. For exam-
ple, to find out the room number of Olivia, we type
In [2]: room["Olivia"]
Out[2]: 764

The key need not be a string; it can be any immutable Python object.
So a key can be a string, an integer, or even a tuple, but it can’t be a
list. And the elements accessed by their keys need not be a string, but
can be almost any legitimate Python object, just as for lists. Here is a
weird example.
In [3]: weird = {"tank":52, 846:"horse",

...: 'bones': [23, 'fox', 'grass'], 'phrase': 'I am here'}

In [4]: weird["tank"]
Out[4]: 52

In [5]: weird[846]
Out[5]: 'horse'

In [6]: weird["bones"]
Out[6]: [23, 'fox', 'grass']

In [7]: weird["phrase"]
Out[7]: 'I am here'

Dictionaries can be built up and added to in a straightforward manner
In [8]: d = {}

In [9]: d["last name"] = "Alberts"

In [10]: d["first name"] = "Marie"

In [11]: d["birthday"] = "January 27"

In [12]: d
Out[12]: {'birthday': 'January 27', 'first name':

'Marie', 'last name': 'Alberts'}

Strings, Lists, Arrays, and Dictionaries 55

You can get a list of all the keys or values of a dictionary by typing the
dictionary name followed by .keys() or .values().
In [13]: d.keys()
Out[13]: ['last name', 'first name', 'birthday']

In [14]: d.values()
Out[14]: ['Alberts', 'Marie', 'January 27']

In other languages, data types similar to Python dictionaries may be
called “hashmaps” or “associative arrays,” so you may see such terms
used if you read about dictionaries on the web.

You can also create a dictionary from a list of tuple pairs.
In [15]: g = [("Melissa", "Canada"), ("Jeana", "China"),

("Etienne", "France")]

In [16]: gd = dict(g)

In [17]: gd
Out[17]: {'Melissa': 'Canada', 'Jeana': 'China',

'Etienne': 'France'}

In [18]: gd['Jeana']
Out[18]: 'China'

3.5 Objects

You may have heard it said that Python is an object-oriented program-
ming language. In fact, we mentioned it on page 2. What it means for
a programming language to be object oriented is multi-faceted and
involves software and programming design principles that go beyond
what we need right now. So rather than attempt some definition that
encompasses all of what an object-oriented (OO) approach means, we
introduce various aspects of the OO approach that we need as we go
along. In this section, our purpose is just to introduce you to some
simple (perhaps deceptively so) ideas of the OO approach.

The first of those is the idea of an object. One way to think of an ob-
ject is as a collection of data along with functions that can operate on
that data. Virtually everything you encounter in Python is an object,
including the data structures we’ve discussed in this chapter: strings,
lists, arrays, and dictionaries. In this case, the data are the contents of
these various objects. Associated with each of these kinds of objects
are methods that act on these objects. For example, consider the string

56 Introduction to Python for Science & Engineering

In [1]: c = "My dog's name is Bingo"

One method associated with a string object is split(), which we in-
voke using the dot notation we’ve encountered before:

In [2]: c.split()
Out [2]: ['My', "dog's", 'name', 'is', 'Bingo']

The method split() acts on the object it’s attached to by the dot. It
has a matching set of parentheses to indicate that it’s a function (that
acts on the object a). Without an argument, split() splits the string
a at the spaces into separate strings, five in this case, and returns the
set of split strings as a list. By specifying an argument to split(), we
can split the string elsewhere, say at the “g”:

In [3]: c.split('g')
Out [3]: ['My do', "'s name is Bin", 'o']

There are many more string methods, which we do not explore here,
as our point isn’t to give an exhaustive introduction to string meth-
ods and their uses. Instead, it’s simply to introduce the idea of object
methods, and to start introducing Python objects in a concrete way.

Lists, arrays, and dictionaries are also objects that have methods
associated with them. Consider the following 2-row array:

In [4]: b = np.array([[1., 4., 5.], [9., 7., 4.]])

In [5]: b
Out[5]: array([[1., 4., 5.],

[9., 7., 4.]])
In [6]: b.mean()
Out[6]: 5.0

In [7]: b.shape
Out[7]: (2, 3)

The method mean() calculates the mean value of the elements of the
array. Writing b.shape returns the number of rows and columns in
the array. Note, that there are no parentheses associated with b.shape.
That’s because b.shape contains data associated with the array object
b; it’s not calculated by a method, but is in fact simply stored in the
object. Writing b.shape simply looks up the data within the object and
reports it back to you. Data stored like this with an object is called an
instance variable. We’ll have more to say about instance variables later
on (and why the word “instance” is used) but for now it’s sufficient
just to learn the jargon.

In general, objects have methods, which are functions that act on

Strings, Lists, Arrays, and Dictionaries 57

the object, and instance variables, which are data stored with the ob-
ject, associated with them. Taken together, methods and instance vari-
ables are known as attributes of an object. Each kind of object, for
example, strings, lists, arrays, and dictionaries, has its own set of at-
tributes, which are uniquely associated with that object class. So while
split() is an attribute associated with strings, it is not an attribute of
arrays. Thus, typing b.split() returns an error message, since b is an
array.
In [8]: b.split()
Traceback (most recent call last):

File "<ipython-input-11-0c30fe27ab6f>", line 1, in <module>
b.split()

AttributeError: 'numpy.ndarray' object has no attribute 'split'

We will have many occasions to exploit object attributes in our
Python journey. The table below summarize some of the attributes of
NumPy arrays.

Instance variable Output
.size number of elements in array
.shape number of rows, columns, etc.
.ndim number of array dimensions
.real real part of array
.imag imaginary part of array
method Output
.mean() average value of array elements
.std() standard deviation of array elements
.min() return minimum value of array
.max() return maximum value of array
.sort() low-to-high sorted array (in place)
.reshape(a, b) Returns an a×b array with same elements
.conj() complex-conjugate all elements

Table 3.1 NumPy array attributes.

3.6 Exercises

1. Create an array of 9 evenly spaced numbers going from 0 to 29
(inclusive) and give it the variable name r. Find the square of each

58 Introduction to Python for Science & Engineering

element of the array (as simply as possible). Find twice the value of
each element of the array in two different ways: (i) using addition
and (ii) using multiplication. Print out the array r and each output
requested above.

2. Create the following arrays:

(a) an array of 100 elements all equal to e, the base of the natural
logarithm;

(b) an array in 1-degree increments of all the angles in degrees
from 0 to 360 degrees inclusive;

(c) an array in 1-degree increments of all the angles in radians
from 0 to 360 degrees inclusive. Verify your answers by show-
ing that c-b*np.pi/180 gives an array of zeros (or nearly ze-
ros) where b and c are the arrays you created in parts (b) and
(c);

(d) an array from 12 to 17, not including 17, in 0.2 increments;

(e) an array from 12 to 17, including 17, in 0.2 increments.

3. The position of a ball at time t dropped with zero initial velocity
from a height h0 is given by

y = h0 −
1
2
gt2

where g = 9.8 m/s2. Suppose h0 = 10 m. Find the sequence of times
when the ball passes each half meter assuming the ball is dropped
at t = 0. Hint: Create a NumPy array for y that goes from 10 to 0
in increments of −0.5 using the arange function. Solving the above
equation for t, show that

t =

√
2(h0 − y)

g
.

Using this equation and the array you created, find the sequence
of times when the ball passes each half meter. Save your code as a
Python script. It should yield the following results for the y and t

arrays:

In [1]: y
Out[1]: array([10. , 9.5, 9. , 8.5, 8. ,

7.5, 7. , 6.5, 6. , 5.5, 5. ,

Strings, Lists, Arrays, and Dictionaries 59

4.5, 4. , 3.5, 3. , 2.5, 2. ,
1.5, 1. , 0.5])

In [2]: t
Out[2]: array([0. , 0.31943828, 0.45175395,

0.55328334, 0.63887656, 0.71428571,
0.7824608 , 0.84515425, 0.9035079 ,
0.95831485, 1.01015254, 1.05945693,
1.10656667, 1.15175111, 1.19522861,
1.23717915, 1.27775313, 1.31707778,
1.35526185, 1.39239919])

Once you have created the arrays y and t, type list(zip(t, y)) at
the IPython prompt. Explain the result.

4. Recalling that the average velocity over an interval ∆t is defined
as v̄ = ∆y/∆t, find the average velocity for each time interval in
the previous problem using NumPy arrays. Keep in mind that the
number of time intervals is one less than the number of times.
Hint: What are the arrays y[1:20] and y[0:19]? What does the ar-
ray y[1:20]-y[0:19] represent? (Try printing out the two arrays
from the IPython shell.) Using this last array and a similar one in-
volving time, find the array of average velocities. Bonus: Can you
think of a more elegant way of representing y[1:20]-y[0:19] that
does not make explicit reference to the number of elements in the
y array—one that would work for any length array?

You should get the following answer for the array of velocities:

In [5]: v
Out[5]: array([-1.56524758, -3.77884195,

-4.9246827 , -5.84158351, -6.63049517,
-7.3340579 , -7.97531375, -8.56844457,
-9.12293148, -9.64549022,-10.14108641,

-10.61351563,-11.06575711,-11.50020061,
-11.91879801,-12.32316816,-12.71467146,
-13.09446421,-13.46353913])

Bonus: Calculate the acceleration as a function of time using the
formula ā = ∆v/∆t. Take care, as you will need to define a new
time array that corresponds to the times where the velocities are
calculated, which is midway between the times in the original time
array. You should be able to justify the answer you get for the array
of accelerations.

60 Introduction to Python for Science & Engineering

5. Perform the following tasks with NumPy arrays. All of them can
be done (elegantly) in 1 to 3 lines.

(a) Create an 8 × 8 array with ones on all the edges and zeros
everywhere else.

(b) Create an 8× 8 array of integers with a checkerboard pattern
of ones and zeros.

(c) Given the array c = np.arange(2, 50, 5), make all the num-
bers not divisible by 3 negative.

(d) Find the size, shape, mean, and standard deviation of the ar-
rays you created in parts (a)–(c).

chapter 4

Input and Output

In this chapter, you learn how to input or read data into a Python
program, either from the keyboard or a computer file. You also learn
how to output or write data, either to a computer screen or to a
computer file.

A good relationship depends on good communications. In this
chapter you learn how to communicate with Python. Of course, com-
municating is a two-way street: input and output. Generally, when
you have Python perform some task, you need to feed it information—
input. When it is done with that task, it reports back to you the results
of its calculations—output.

There are two venues for input that concern us: the computer key-
board and the input data file. Similarly, there are two venues for out-
put: the computer screen and the output data file. We start with input
from the keyboard and output to the computer screen. Then we deal
with data file input and output—or “io.”

4.1 Keyboard Input

Many computer programs need input from the user. In §2.7.1, the
program myTrip.py required the distance traveled as an input in order
to determine the duration of the trip and the cost of the gasoline. As
you might like to use this same script to determine the cost of several
different trips, it would be useful if the program requested that input
when it was run from the IPython shell.

Python has a function called input for getting input from the user
and assigning it a variable name. It has the form

strname = input("prompt to user")

When the input function is executed, it prints to the computer screen
the text in the quotes and waits for input from the user. The user types

61

62 Introduction to Python for Science & Engineering

a string of characters and presses the return key. The input function
then assigns that string to the variable name on the right of the as-
signment operator =. Let’s try it out with this snippet of code in the
IPython shell.

In [1]: distance = input("Input trip distance (miles): ")

Input trip distance (miles):

Python prints out the string argument of the input function and waits
for a response from you. Let’s go ahead and type 450 for “450 miles”
and press return. Now type the variable name distance to see its
value.

In [2]: distance
Out[2]: '450'

The value of the distance is 450 as expected, but it is a string, as you
can see, because 450 is enclosed in quotes. Because we want to use 450

as a number and not a distance, we need to convert it from a string to
a number. We can do that with the eval function by writing

In [3]: distance = eval(distance)

In [4]: distance
Out[4]: 450

The eval function has converted distance to an integer. This is fine
and we are ready to move on. However, we might prefer that distance
be a float instead of an integer. There are two ways to do this. We
could assume the user is very smart and will type “450.” instead of
“450”, which will cause distance to be a float when eval does the con-
version. That is, the number 450 is dynamically typed to be a float or
an integer depending on whether or not the user uses a decimal point.
Alternatively, we could use the function float in place of eval, which
would ensure that distance is a floating point variable. Thus, our code
would look like this (including the user response):

In [5]: distance = input("Input distance of trip (miles): ")

Input distance of trip (miles): 450

In [5]: distance
Out[5]: '450'

Input and Output 63

In [7]: distance = float(distance)

In [8]: distance
Out[8]: 450.0

Now let’s incorporate what we have learned into the code we wrote as
our first scripting example in §2.7.1

Code: chapter4/programs/myTripIO.py

1 """Calculates time, gallons of gas used, and cost of gasoline
2 for a trip"""
3

4 distance = input("Input trip distance (miles): ")
5 distance = float(distance)
6

7 mpg = 30. # car mileage
8 speed = 60. # average speed
9 costPerGallon = 2.85 # price of gasoline

10

11 time = distance/speed
12 gallons = distance/mpg
13 cost = gallons*costPerGallon
14 print(time, gallons, cost)

Note that we have put our comment explaining what this script
does between triple quotes distributed over two lines. Comments like
this, between triple quotes (single or double) are called docstrings. Ev-
erything between the triple quotes is part of the docstring, which can
extend over multiple lines, as it does here. It’s a good idea to include
a docstring explaining what your script does at the beginning of your
file.

Lines 4 and 5 can be combined into a single line, which is a little
more efficient:

distance = float(input("Input trip distance (miles): "))

Whether you use float or int or eval depends on whether you want
a float, an integer, or a dynamically typed variable. In this program, it
doesn’t matter, but in general it’s good practice to explicitly cast the
variable in the type you would like it to have. Here distance is used
as a float so it’s best to cast it as such, as we do in the example above.

Now you simply run the program and then type time, gallons,
and cost to view the results of the calculations done by the program.

Before moving on to output, we note that sometimes you may want
string input rather that numerical input. For example, you might

64 Introduction to Python for Science & Engineering

want the user to input their name, in which case you would simply
use the input function without converting its output.

4.2 Screen Output

It would be much more convenient if the program in the previous
section would simply write its output to the computer screen, in-
stead of requiring the user to type time, gallons, and cost to view
the results. Fortunately, this can be accomplished very simply us-
ing Python’s print function. For example, simply including the state-
ment print(time, gallons, cost) after line 13, running the program
would give the following result:

In [1]: run myTripIO.py
What is the distance of your trip (miles)? 450
7.5 15.0 42.75

The program prints out the results as a tuple of time (in hours), gaso-
line used (in gallons), and cost (in dollars). Of course, the program
doesn’t give the user a clue as to which quantity is which. The user
has to know.

4.2.1 Formatting output with str.format()

We can clean up the output of the example above and make it consid-
erably more user friendly. The program below demonstrates how to
do this.

Code: chapter4/programs/myTripNiceIO.py

1 """Calculates time, gallons of gas used, and cost of gasoline
2 for a trip"""
3

4 distance = float(input("Input trip distance (miles): "))
5

6 mpg = 30. # car mileage
7 speed = 60. # average speed
8 costPerGallon = 2.85 # price of gasoline
9

10 time = distance/speed
11 gallons = distance/mpg
12 cost = gallons*costPerGallon
13

Input and Output 65

14 print("\nDuration of trip = {0:0.1f} hours".format(time))
15 print("Gasoline used = {0:0.1f} gallons (@ {1:0.0f} mpg)"
16 .format(gallons, mpg))
17 print("Cost of gasoline = ${0:0.2f} (@ ${1:0.2f}/gallon)"
18 .format(cost, costPerGallon))

Running this program, with the distance provided by the user, gives

In [9]: run myTripNiceIO.py

Input trip distance (miles): 450

Duration of trip = 7.5 hours
Gasoline used = 15.0 gallons (@ 30 mpg)
Cost of gasoline = $42.75 (@ $2.85/gallon)

Now the output is presented in a way that is immediately un-
derstandable to the user. Moreover, the numerical output is format-
ted with an appropriate number of digits to the right of the deci-
mal point. For good measure, we also included the assumed mileage
(30 mpg) and the cost of the gasoline. All of this is controlled by the
str.format() function within the print function.

The argument of the print function is of the form str.format()

where str is a string that contains text that is to be written the screen,
as well as certain format specifiers contained within curly braces { },
which we discuss below. The format method (a method of string ob-
jects) contains the list of variables that are to be printed.

• The \n at the start of the string in the print statement on line 14
is the newline character. It creates the blank line before the output
is printed.

• The positions of the curly braces specify where the variables in the
format function at the end of the statement are printed.

• The format string inside the curly braces specifies how each vari-
able in the format function is printed.

• The number before the colon in the format string specifies which
variable in the list in the format function is printed. Remember,
Python is zero-indexed, so 0 means the first variable is printed, 1
means the second variable, etc.

• The zero after the colon specifies the minimum number of spaces

66 Introduction to Python for Science & Engineering

reserved for printing out the variable in the format function. A
zero means that only as many spaces as needed will be used.

• The number after the period specifies the number of digits to the
right of the decimal point that will be printed: 1 for time and
gallons and 2 for cost.

• The letter f specifies that a number is to be printed with a fixed
number of digits. If the f format specifier is replaced with e, then
the number is printed out in exponential format (scientific nota-
tion).

In addition to f and e format types, there are two more that are
commonly used: d for integers (digits) and s for strings. There are, in
fact, many more formatting possibilities. Python has a whole “Format
Specification Mini-Language” that is documented at:

http://docs.python.org/library/string.html#formatspec.
It’s very flexible but arcane. You might find it simplest to look at the
“Format examples” section further down the same web page.

Finally, note that the code starting on lines 15 and 17 are each
split into two lines. We have done this so that the lines fit on the page
without running off the edge. Python allows you to break lines up
that are inside parentheses to improve readability. More information
about line continuation in Python can be found here: http://www.
python.org/dev/peps/pep-0008/.

The program below illustrates most of the formatting you will
need for writing a few variables, be they strings, integers, or floats,
to screen or to data files (which we discuss in the next section).

Code: chapter4/programs/printFormatExamples.py

1 string1 = "How"
2 string2 = "are you my friend?"
3 int1 = 34
4 int2 = 942885
5 float1 = -3.0
6 float2 = 3.141592653589793e-14
7 print(string1)
8 print(string1 + ' ' + string2)
9 print('A. {} {}'.format(string1, string2))

10 print('B. {0:s} {1:s}'.format(string1, string2))
11 print('C. {0:s} {0:s} {1:s} - {0:s} {1:s}'
12 .format(string1, string2))
13 print('D. {0:10s}{1:5s}' # reserves 10 & 5 spaces,

http://docs.python.org/library/string.html#formatspec
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

Input and Output 67

14 .format(string1, string2)) # respectively for 2 strings
15 print(' **')
16 print(int1, int2)
17 print('E. {0:d} {1:d}'.format(int1, int2))
18 print('F. {0:8d} {1:10d}'.format(int1, int2))
19 print(' ***')
20 print('G. {0:0.3f}'.format(float1)) # 3 decimal places
21 print('H. {0:6.3f}'.format(float1)) # 6 spaces, 3 decimals
22 print('I. {0:8.3f}'.format(float1)) # 8 spaces, 3 decimals
23 print(2*'J. {0:8.3f} '.format(float1))
24 print(' ****')
25 print('K. {0:0.3e}'.format(float2))
26 print('L. {0:12.3e}'.format(float2)) # 12 spaces, 3 decimals
27 print('M. {0:12.3f}'.format(float2)) # 12 spaces, 3 decimals
28 print(' *****')
29 print('N. 12345678901234567890')
30 print('O. {0:s}--{1:8d},{2:10.3e}'
31 .format(string2, int1, float2))

Here is the output:

How
How are you my friend?
A. How are you my friend?
B. How are you my friend?
C. How How are you my friend? - How are you my friend?
D. How are you my friend?

**
34 942885
E. 34 942885
F. 34 942885

G. -3.000
H. -3.000
I. -3.000
J. -3.000 J. -3.000

K. 3.142e-14
L. 3.142e-14
M. 0.000

N. 12345678901234567890
O. are you my friend?-- 34, 3.142e-14

Successive empty brackets {} like those that appear in line 9 will
print out in order the variables appear inside the format() method us-
ing their default format. Starting with line 10, the number to the left
of the colon inside the curly brackets specifies which of the variables,

68 Introduction to Python for Science & Engineering

numbered starting with 0, in the format method is printed. The char-
acters that appear to the right of the colon are the format specifiers
with the following correspondences: s–string, d–integer, f–fixed float-
ing point number, e–exponential floating point number. The format
specifiers 6.3f and 8.3f in lines 21 and 22 tell the print statement
to reserve at least 6 and 8 total spaces, respectively, with 3 decimal
places for the output of a floating point number. Studying the output
of the other lines will help you understand how formatting works.

4.2.2 Printing arrays

Formatting NumPy arrays for printing requires another approach. As
an example, let’s create an array and then format it in various ways.
From the IPython terminal:

In [10]: a = np.linspace(3, 19, 7)
In [11]: print(a)
[3. 5.6667 8.3333 11. 13.6667 16.3333 19.]

Simply using the print function does print out the array, but per-
haps not in the format you desire. To control the output format, you
use the NumPy function set_printoptions. For example, suppose you
want to see no more than two digits to the right of the decimal point.
Then you simply write

In [12]: np.set_printoptions(precision=2)
In [13]: print(a)
[3. 5.67 8.33 11. 13.67 16.33 19.]

If you want to change the number of digits to the right of the dec-
imal point to 4, you set the keyword argument precision to 4.

In [14]: np.set_printoptions(precision=4)
In [15]: print(a)
[3. 5.6667 8.3333 11. 13.6667 16.3333 19.]

Suppose you want to use scientific notation. The method for doing
it is somewhat arcane, using something called a lambda function. For
now, you don’t need to understand how it works to use it. Just follow
the examples shown below, which illustrate several different output
formats using the print function with NumPy arrays.

Input and Output 69

In [16]: np.set_printoptions(
...: formatter={'float': lambda x: format(x, '5.1e')})

In [17]: print(a)
[3.0e+00 5.7e+00 8.3e+00 1.1e+01 1.4e+01 1.6e+01 1.9e+01]

To specify the format of the output, you use the formatter key-
word argument. The first entry to the right of the curly bracket is a
string that can be 'float', as it is above, or 'int', or 'str', or a num-
ber of other data types that you can look up in the online NumPy
documentation. The only other thing you should change is the format
specifier string. In the above example, it is '5.1e', specifying that
Python should allocate at least 5 spaces, with 1 digit to the right of
the decimal point in scientific (exponential) notation. For fixed-width
floats with 3 digits to the right of the decimal point, use the f in place
of the e format specifier, as follows:

In [18]: np.set_printoptions(
...: formatter={'float': lambda x: format(x, '6.3f')})
In [19]: print(a)
[3.000 5.667 8.333 11.000 13.667 16.333 19.000]

To return to the default format, type the following:

In [20]: np.set_printoptions(precision=8)
In [21]: print(a)
[3. 5.66666667 8.33333333 11. 13.66666667 16.33333333 19.]

4.3 File Input

4.3.1 Reading data from a text file

Often you would like to analyze data that you have stored in a text file.
Consider, for example, the data file below for an experiment measur-
ing the free fall of a mass.

Data: chapter4/programs/mydata.txt

Data for falling mass experiment
Date: 16-Aug-2016
Data taken by Lauren and John

data point time (sec) height (mm) uncertainty (mm)
0 0.0 180 3.5
1 0.5 182 4.5

70 Introduction to Python for Science & Engineering

2 1.0 178 4.0
3 1.5 165 5.5
4 2.0 160 2.5
5 2.5 148 3.0
6 3.0 136 2.5
7 3.5 120 3.0
8 4.0 99 4.0
9 4.5 83 2.5
10 5.0 55 3.6
11 5.5 35 1.75
12 6.0 5 0.75

We would like to read these data into a Python program, associat-
ing the data in each column with an appropriately named array. While
there are a multitude of ways to do this in Python, the simplest by far
is to use the NumPy loadtxt function, whose use we illustrate here.
Suppose that the name of the text file is mydata.txt. Then we can read
the data into four different arrays with the following statement:

In [1]: dataPt, time, height, error = np.loadtxt(
"mydata.txt", skiprows=5 , unpack=True)

In this case, the loadtxt function takes three arguments: the first is a
string that is the name of the file to be read, the second tells loadtxt

to skip the first 5 lines at the top of file, sometimes called the header,
and the third tells loadtxt to output the data (unpack the data) so
that it can be directly read into arrays. loadtxt reads however many
columns of data are present in the text file to the array names listed
to the left of the “=” sign. The names labeling the columns in the
text file are not used, but you are free to choose the same or similar
names, of course, as long as they are legal array names. By the way,
for the above loadtxt call to work, the file mydata.txt should be in
the current working directory of the IPython shell. Otherwise, you
need to specify the directory path with the file name.

It is critically important that the data file be a text file. It cannot be
an MS Word file, for example, or an Excel file, or anything other than
a plain text file. Such files can be created by text editor programs like
Notepad++ (for PCs) or BBEdit (for Macs). They can also be created
by MS Word and Excel provided you explicitly save the files as text
files. Beware: You should exit any text file you make and save it with
a program that allows you to save the text file using UNIX-type for-
matting, which uses a line feed (LF) to end a line. Some programs, like
MS Word under Windows, may include a carriage return (CR) char-

Input and Output 71

acter, which can confuse loadtxt. Note that we give the file name a
.txt extension, which indicates to most operating systems that this is
a text file, as opposed to an Excel file, for example, which might have
a .xlsx or .xls extension.

If you don’t want to read in all the columns of data, you can spec-
ify which columns to read in using the usecols keyword. For example,
the call

In [2]: time, height = np.loadtxt('mydata.txt', skiprows=5,
usecols=(1,2), unpack=True)

reads in only columns 1 and 2; columns 0 and 3 are skipped. As a
consequence, only two array names are included to the left of the
“=” sign, corresponding to the two columns that are read. Writing
usecols = (0,2,3) would skip column 1 and read in only the data
in colums 0, 2, and 3. In this case, 3 array names would need to be
provided on the left-hand side of the “=” sign.

One convenient feature of the loadtxt function is that it recog-
nizes any white space as a column separator: spaces, tabs, etc.

Finally you should remember that loadtxt is a NumPy function.
So if you are using it in a Python module, you must be sure to include
an “import numpy as np” statement before calling “np.loadtxt”.

4.3.2 Reading data from an Excel file: CSV files

Sometimes you have data stored in a spreadsheet program like Excel
that you would like to read into a Python program. The Excel data
sheet shown in Fig. 4.1 contains the same data set we saw above in a
text file. While there are a number of different approaches one can use
to read such files, one of the simplest and most robust is to save the
spreadsheet as a CSV (“comma-separated value”) file, a format which
all common spreadsheet programs can create and read. So, if your
Excel spreadsheet was called mydata.xlsx, the CSV file saved using
Excel’s Save As command would by default be mydata.csv. It would
look like this:

Data: chapter4/programs/mydata.csv

Data for falling mass experiment,,,
Date: 16-Aug-2016,,,
Data taken by Lauren and John,,,
,,,
data point,time (sec),height (mm),uncertainty (mm)

72 Introduction to Python for Science & Engineering

Figure 4.1 Excel data sheet.

0,0,180,3.5
1,0.5,182,4.5
2,1,178,4
3,1.5,165,5.5
4,2,160,2.5
5,2.5,148,3
6,3,136,2.5
7,3.5,120,3
8,4,99,4
9,4.5,83,2.5
10,5,55,3.6
11,5.5,35,1.75
12,6,5,0.75

As its name suggests, the CSV file is simply a text file with the data
that was formerly in spreadsheet columns now separated by commas.
We can read the data in this file into a Python program using the
loadtxt NumPy function once again. Here is the code

In [3]: dataPt, time, height, error = np.loadtxt("mydata.csv",
skiprows=5 , unpack=True, delimiter=',')

The form of the function is exactly the same as before except we

Input and Output 73

have added the argument delimiter=',' that tells loadtxt that the
columns are separated by commas instead of white space (spaces or
tabs), which is the default. Once again, we set the skiprows argument
to skip the header at the beginning of the file and to start reading at
the first row of data. The data are output to the arrays to the right of
the assignment operator = exactly as in the previous example.

4.4 File Output

4.4.1 Writing data to a text file

There is a plethora of ways to write data to a data file in Python. We
will stick to one very simple one that’s suitable for writing data files
in text format. It uses the NumPy savetxt routine, which is the coun-
terpart of the loadtxt routine introduced in the previous section. The
general form of the routine is

savetxt(filename, array, fmt="%0.18e",
delimiter=" ", newline=" \n", header="",
footer="", comments="#")

We illustrate savetext below with a script that first creates four
arrays by reading in the data file mydata.txt, as discussed in the
previous section, and then writes that same data set to another file
mydataout.txt.

Code: chapter4/programs/ReadWriteMyData.py

1 import numpy as np
2 dataPt, time, height, error = np.loadtxt("mydata.txt",
3 skiprows=5,
4 unpack=True)
5 np.savetxt("mydatawritten.txt",
6 list(zip(dataPt, time, height, error)),
7 fmt="%12.1f")

The first argument of savetxt is a string, the name of the data file
to be created. Here we have chosen the name mydataout.txt, inserted
with quotes, which designates it as a string literal. Beware, if there is
already a file of that name on your computer, it will be overwritten—
the old file will be destroyed and a new one will be created.

The second argument is the data array that is to be written to the
data file. Because we want to write not one but four data arrays to the

74 Introduction to Python for Science & Engineering

file, we have to package the four data arrays as one, which we do using
the zip function, a Python function that combines the four arrays and
returns a list of tuples, where the ith tuple contains the ith element
from each of the arrays (or lists, or tuples) listed as its arguments.
Since there are four arrays, each row will be a tuple with four entries,
producing a table with four columns. In fact, the zip function is just
a set of instructions to produce each tuple one after another; the list

function is needed to actually construct the entire list of tuples.1 Note
that the first two arguments, the filename and data array, are regular
arguments and thus must appear as the first and second arguments in
the correct order. The remaining arguments are all keyword arguments,
meaning that they are optional and can appear in any order, provided
you use the keyword.

The next argument is a format string that determines how the el-
ements of the array are displayed in the data file. The argument is
optional and, if left out, is the format 0.18e, which displays numbers
as 18 digit floats in exponential (scientific) notation. Here we choose
a different format, 12.1f, which is a float displayed with 1 digit to the
right of the decimal point and a minimum width of 12. By choosing
12, which is more digits than any of the numbers in the various arrays
have, we ensure that all the columns will have the same width. It also
ensures that the decimal points in a column of numbers are aligned.
This is evident in the data file below, mydatawritten.txt, which was
produced by the above script.

Data: chapter4/programs/mydatawritten.txt

0.0 0.0 180.0 3.5
1.0 0.5 182.0 4.5
2.0 1.0 178.0 4.0
3.0 1.5 165.0 5.5
4.0 2.0 160.0 2.5
5.0 2.5 148.0 3.0
6.0 3.0 136.0 2.5
7.0 3.5 120.0 3.0
8.0 4.0 99.0 4.0
9.0 4.5 83.0 2.5

10.0 5.0 55.0 3.6
11.0 5.5 35.0 1.8
12.0 6.0 5.0 0.8

1Technically, the zip function is an iterator, like the range function introduced
in §3.2.2. We discuss iterators more fully when we discuss the range function in
§5.2.

Input and Output 75

We omitted the optional delimiter keyword argument, which
leaves the delimiter as the default space. We also omitted the optional
header keyword argument, which is a string variable that allows you
to write header text above the data. For example, you might want to
label the data columns and also include the information that was in
the header of the original data file. To do so, you just need to create
a string with the information you want to include and then use the
header keyword argument. The code below illustrates how to do this.

Code: chapter4/programs/ReadWriteMyDataHeader.py

1 import numpy as np
2

3 dataPt, time, height, error = np.loadtxt("MyData.txt",
4 skiprows=5,
5 unpack=True)
6

7 info = 'Data for falling mass experiment'
8 info += '\nDate: 16-Aug-2016'
9 info += '\nData taken by Lauren and John'

10 info += '\n\n data point time (sec) height (mm) '
11 info += 'uncertainty (mm)'
12

13 np.savetxt('ReadWriteMyDataHeader.txt',
14 list(zip(dataPt, time, height, error)),
15 header=info, fmt="%12.1f")

Now the data file produced has a header preceding the data. No-
tice that the header rows all start with a # comment character, which
is the default setting for the savetxt function. This can be changed
using the keyword argument comments. You can find more informa-
tion about savetxt using the IPython help function or from the online
NumPy documentation.

Data: chapter4/programs/ReadWriteMyDataHeader.txt

Data for falling mass experiment
Date: 16-Aug-2016
Data taken by Lauren and John
#
data point time (sec) height (mm) uncertainty (mm)

0.0 0.0 180.0 3.5
1.0 0.5 182.0 4.5
2.0 1.0 178.0 4.0
3.0 1.5 165.0 5.5
4.0 2.0 160.0 2.5
5.0 2.5 148.0 3.0
6.0 3.0 136.0 2.5

76 Introduction to Python for Science & Engineering

7.0 3.5 120.0 3.0
8.0 4.0 99.0 4.0
9.0 4.5 83.0 2.5

10.0 5.0 55.0 3.6
11.0 5.5 35.0 1.8
12.0 6.0 5.0 0.8

4.4.2 Writing data to a CSV file

To produce a CSV file, you would specify a comma as the delim-
iter. You might use the 0.1f format specifier, which leaves no extra
spaces between the comma data separators, as the file is to be read by
a spreadsheet program, which will determine how the numbers are
displayed. The code, which could be substituted for the savetxt line
in the above code, reads

np.savetxt('mydataout.csv',
list(zip(dataPt, time, height, error)),
fmt="%0.1f", delimiter=",")

and produces the following data file.

Data: chapter4/programs/mydataout.csv

0.0,0.0,180.0,3.5
1.0,0.5,182.0,4.5
2.0,1.0,178.0,4.0
3.0,1.5,165.0,5.5
4.0,2.0,160.0,2.5
5.0,2.5,148.0,3.0
6.0,3.0,136.0,2.5
7.0,3.5,120.0,3.0
8.0,4.0,99.0,4.0
9.0,4.5,83.0,2.5
10.0,5.0,55.0,3.6
11.0,5.5,35.0,1.8
12.0,6.0,5.0,0.8

This data file, with a csv extension, can be directly read by a spread-
sheet program like Excel.

4.5 Exercises

1. Write a Python program that calculates how much money you can
spend each day for lunch for the rest of the month based on to-

Input and Output 77

day’s date and how much money you currently have in your lunch
account. The program should ask you: (1) how much money you
have in your account, (2) what today’s date is, and (3) how many
days there are in the month. The program should return your daily
allowance. The results of running your program should look like
this:

How much money (in dollars) in your lunch account? 319
What day of the month is today? 21
How many days in this month? 30
You can spend $31.90 each day for the rest of the month.

Extra: Create a dictionary (see §3.4) that stores the number of days
in each month (forget about leap years) and have your program
ask what month it is rather than the number of days in the month.

2. From the IPython terminal, create the following three NumPy ar-
rays:

a = array([1, 3, 5, 7])
b = array([8, 7, 5, 4])
c = array([0, 9,-6,-8])

Now use the zip function to create a list d defined as

d = list(zip(a,b,c))

What kind of object is each of the four elements of the list d? Con-
vert d into a NumPy array and call that array e. Type e at the termi-
nal prompt so that e is printed out on the IPython terminal. One of
the elements of e is -8. Show how to address and print out just that
element of e. Show how to address that same element of d. What
kind of object is e[1]?

3. Create the following data file and then write a Python script to
read it into three NumPy arrays with the variable names f, a, da

for the frequency, amplitude, and amplitude error.

Date: 2013-09-16
Data taken by Liam and Selena
frequency (Hz) amplitude (mm) amp error (mm)

0.7500 13.52 0.32
1.7885 12.11 0.92
2.8269 14.27 0.73
3.8654 16.60 2.06

78 Introduction to Python for Science & Engineering

4.9038 22.91 1.75
5.9423 35.28 0.91
6.9808 60.99 0.99
8.0192 33.38 0.36
9.0577 17.78 2.32

10.0962 10.99 0.21
11.1346 7.47 0.48
12.1731 6.72 0.51
13.2115 4.40 0.58
14.2500 4.07 0.63

Show that you have correctly read in the data by having your script
print out to your computer screen the three arrays. Format the
printing so that it produces output like this:

f =
[0.75 1.7885 2.8269 3.8654 4.9038 5.9423
6.9808 8.0192 9.0577 10.0962 11.1346 12.1731
13.2115 14.25]
a =
[13.52 12.11 14.27 16.6 22.91 35.28 60.99
33.38 17.78 10.99 7.47 6.72 4.4 4.07]
da =
[0.32 0.92 0.73 2.06 1.75 0.91 0.99 0.36 2.32
0.21 0.48 0.51 0.58 0.63]

Note that the array f is displayed with four digits to the right of
the decimal point while the arrays a and da are displayed with only
two. The columns of the displayed arrays need not line up as they
do above.

4. Write a script to read the data from the previous problem into
three NumPy arrays with the variable names f, a, da for the fre-
quency, amplitude, and amplitude error and then, in the same
script, write the data out to a data file, including the header, with
the data displayed in three columns, just as it’s displayed in the
problem above. It’s ok if the header lines begin with the # com-
ment character. Your data file should have the extension .txt.

5. Write a script to read the data from the previous problem into
three NumPy arrays with the variable names f, a, da for the fre-
quency, amplitude, and amplitude error and then, in the same
script, write the data out to a csv data file, without the header,
to a data file with the data displayed in three columns. Use a sin-
gle format specifier and set it to "%0.16e". If you have access the

Input and Output 79

spreadsheet program (like MS Excel), try opening the file you have
created with your Python script and verify that the arrays are dis-
played in three columns. Note that your csv file should have the
extension .csv.

http://taylorandfrancis.com

chapter 5

Conditionals and Loops

In this chapter, you learn how to control the flow of a program.
In particular, you learn how to make a computer make decisions
based on information it receives from you or based on different con-
ditions it encounters as it processes data or information. You also
learn how to make a computer do repetitive tasks.

Computer programs are useful for performing repetitive tasks.
Without complaining, getting bored, or growing tired, they can repet-
itively perform the same calculations with minor, but important, vari-
ations over and over again. Humans share with computers none of
these qualities. And so we humans employ computers to perform the
massive repetitive tasks we would rather avoid. However, we need ef-
ficient ways of telling the computer to do these repetitive tasks; we
don’t want to have stop to tell the computer each time it finishes one
iteration of a task to do the task again, but for a slightly different case.
We want to tell it once, “Do this task 1000 times with slightly dif-
ferent conditions and report back to me when you are done.” This is
what loops were made for.

In the course of doing these repetitive tasks, computers often need
to make decisions. In general, we don’t want the computer to stop and
ask us what it should do if a certain result is obtained from its calcu-
lations. We might prefer to say, “Look, if you get result A during your
calculations, do this, otherwise, do this other thing.” That is, we often
want to tell the computer ahead of time what to do if it encounters
different situations. This is what conditionals were made for.

Conditionals and loops control the flow of a program. They are
essential to performing virtually any significant computational task.
Python, like most computer languages, provides a variety of ways of
implementing loops and conditionals.

81

82 Introduction to Python for Science & Engineering

5.1 Conditionals

Conditional statements allow a computer program to take different
actions based on whether some condition, or set of conditions is true
or false. In this way, the programmer can control the flow of a pro-
gram.

5.1.1 if, elif, and else statements

The if, elif, and else statements are used to define conditionals in
Python. We illustrate their use with a few examples.

if-elif-else example

Suppose we want to know if the solutions to the quadratic equation

ax2 + bx+ c = 0

are real, imaginary, or complex for a given set of coefficients a, b, and
c. Of course, the answer to that question depends on the value of the
discriminant d = b2 − 4ac. The solutions are real if d ≥ 0, imaginary if
b = 0 and d < 0, and complex if b , 0 and d < 0. The program below
implements the above logic in a Python program.

Code: chapter5/programs/if-elif-elseExample.py

1 a = float(input("What is the coefficient a? "))
2 b = float(input("What is the coefficient b? "))
3 c = float(input("What is the coefficient c? "))
4 d = b*b - 4.*a*c
5 if d >= 0.0:
6 print("Solutions are real") # block 1
7 elif b == 0.0:
8 print("Solutions are imaginary") # block 2
9 else:

10 print("Solutions are complex") # block 3
11 print("Finished")

After getting the inputs from the user, the program evaluates the
discriminant d. The expression d >= 0.0 has a Boolean truth value of
either True or False depending on whether or not d ≥ 0. You can check
this out in the interactive IPython shell by typing the following set of
commands

In [2]: d = 5

In [3]: d >= 2

Conditionals and Loops 83

Out[3]: True

In [4]: d >= 7
Out[4]: False

Therefore, the if statement in line 5 is simply testing to see if the
statement d >= 0.0 is True or False. If the statement is True, Python
executes the indented block of statements following the if statement.
In this case, there is only one line in indented block. Once it executes
this statement, Python skips past the elif and else blocks and exe-
cutes the print("Finished!") statement.

If the if statement in line 5 is False, Python skips the indented
block directly below the if statement and executes the elif state-
ment. If the condition b == 0.0 is True, it executes the indented
block immediately below the elif statement and then skips the else

statement and the indented block below it. It then executes the
print("Finished!") statement.

Finally, if the elif statement is False, Python skips to the else

statement and executes the block immediately below the else state-
ment. Once finished with that indented block, it then executes the
print("Finished!") statement.

As you can see, each time a False result is obtained in an if or elif
statement, Python skips the indented code block associated with that

False

False

True

True
d ≥ 0?

b = 0?

block 1

block 2

block 3

if

elif

else

start

finish

Figure 5.1 Flowchart for if-elif-else code.

84 Introduction to Python for Science & Engineering

statement and drops down to the next conditional statement, that is,
the next elif or else. A flowchart of the if-elif-else code is shown in
Fig. 5.1.

At the outset of this problem we stated that the solutions to the
quadratic equation are imaginary only if b = 0 and d < 0. In the
elif b == 0.0 statement on line 7, however, we only check to see if
b = 0. The reason that we don’t have to check if d < 0 is that the elif

statement is executed only if the condition if d >= 0.0 on line 5 is
False. Similarly, we don’t have to check if b = 0 and d < 0 for the final
else statement because this part of the if, elif, and else block will
only be executed if the preceding if and elif statements are False.
This illustrates a key feature of the if, elif, and else statements: these
statements are executed sequentially until one of the if or elif state-
ments is found to be True. Therefore, Python reaches an elif or else

statement only if all the preceding if and elif statements are False.
The if-elif-else logical structure can accommodate as many

elif blocks as desired. This allows you to set up logic with more than
the three possible outcomes illustrated in the example above. When
designing the logical structure you should keep in mind that once
Python finds a true condition, it skips all subsequent elif and else

statements in a given if, elif, and else block, irrespective of their
truth values.

if-else example

You will often run into situations where you simply want the program
to execute one of two possible blocks based on the outcome of an if

statement. In this case, the elif block is omitted and you simply use
an if-else structure. The following program testing whether an inte-
ger is even or odd provides a simple example.

Code: chapter5/programs/if-elseExample.py

1 a = int(input("Please input an integer: "))
2 if a % 2 == 0:
3 print("{0:0d} is an even number.".format(a))
4 else:
5 print("{0:0d} is an odd number.".format(a))

The flowchart in Fig. 5.2 shows the logical structure of an if-else

structure.

Conditionals and Loops 85

False

True
a % 2 == 0?

block 1
(even)

block 2
(odd)

if

else

start

finish

Figure 5.2 Flowchart for if-else code.

if example

The simplest logical structure you can make is a simple if statement,
which executes a block of code if some condition is met but otherwise
does nothing. The program below, which takes the absolute value of a
number, provides a simple example of such a case.

Code: chapter5/programs/ifExample.py

1 a = eval(input("Please input a number: "))
2 if a < 0:
3 a = -a
4 print("The absolute value is {}".format(a))

When the block of code in an if or elif statement is only one line
long, you can write it on the same line as the if or elif statement. For
example, the above code can be written as follows.

Code: chapter5/programs/ifExampleAlt.py

1 a = eval(input("Please input a number: "))
2 if a < 0: a = -a
3 print("The absolute value is {}".format(a))

This works exactly as the preceding code. Note, however, that if
the block of code associated with an if or elif statement is more than
one line long, the entire block of code should be written as indented
text below the if or elif statement.

The flowchart in Fig. 5.3 shows the logical structure of a simple if

structure.

86 Introduction to Python for Science & Engineering

False

True
a < 0? block 1if

start

finish

Figure 5.3 Flowchart for if code.

5.1.2 Logical operators

It is important to understand that “==” in Python is not the same as
“=”. The operator “=” is the assignment operator: d = 5 assigns the
value of 5 to the variable d. On the other hand “==” is the logical
equals operator and d == 5 is a logical truth statement. It tells Python
to check to see if d is equal to 5 or not, and assigns a value of True or
False to the statement d == 5 depending on whether or not d is equal
to 5. Table 5.1 summarizes the various logical operators available in
Python.

Operator Function
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal
! = not equal
and both must be true
or one or both must be true
not reverses the truth value

Table 5.1 Logical operators in Python: comparisons (above double line),
Boolean operations (below).

Table 5.1 lists three Boolean operators that we haven’t encountered
before: and, or, and not. These are useful for combining different log-
ical conditions. For example, suppose you want to check if a > 2 and
b < 10 simultaneously. To do so, you would write a > 2 and b < 10.

Conditionals and Loops 87

The code below illustrates the use of the logical operators and, or, and
not.

In [6]: b = 10

In [7]: a != 5 # a is not equal to 5
Out[7]: False

In [8]: a>2 and b<20
Out[8]: True

In [9]: a>2 and b>10
Out[9]: False

In [10]: a>2 or b>10
Out[10]: True

In [11]: a>2
Out[11]: True

In [12]: not a>2
Out[12]: False

Logical statements like those above can be used in if, elif, and,
as we shall see below, while statements, according to your needs.

5.2 Loops

In computer programming a loop is statement or block of statements
that is executed repeatedly. Python has two kinds of loops, a for loop
and a while loop. We first introduce the for loop and illustrate its use
for a variety of tasks. We then introduce the while loop and, after a
few illustrative examples, compare the two kinds of loops and discuss
when to use one or the other.

5.2.1 for loops

The general form of a for loop in Python is

for <itervar> in <sequence>:
<body>

where <intervar> is a variable, <sequence> is a sequence such as list
or string or array, and <body> is a series of Python commands to be
executed repeatedly for each element in the <sequence>. The <body>

88 Introduction to Python for Science & Engineering

is indented from the rest of the text, which defines the extent of the
loop. Let’s look at a few examples.

Code: chapter5/programs/doggyLoop.py

1 for dogname in ["Molly", "Max", "Buster", "Lucy"]:
2 print(dogname)
3 print(" Arf, arf!")
4 print("All done.")

Running this program, stored in file doggyloop.py, produces the fol-
lowing output.

In [1]: run doggyloop.py
Molly
Arf, arf!

Max
Arf, arf!

Buster
Arf, arf!

Lucy
Arf, arf!

All done.

The for loop works as follows: the iteration variable or loop index
dogname is set equal to the first element in the list, "Max", and then
the two lines in the indented body are executed. Then dogname is set
equal to second element in the list, "Molly", and the two lines in the
indented body are executed. The loop cycles through all the elements
of the list, and then moves on to the code that follows the for loop
and prints All done.

When indenting a block of code in a Python for loop, it is critical
that every line be indented by the same amount. Using the <tab> key
causes the Code Editor to indent 4 spaces. Any amount of indentation
works, as long as it is the same for all lines in a for loop. While code
editors designed to work with Python (including Spyder) translate the
<tab> key to 4 spaces, not all text editors do. In those cases, 4 spaces
are not equivalent to a <tab> character even if they appear the same
on the display. Indenting some lines by 4 spaces and other lines by a
<tab> character will produce an error. So beware!

Figure 5.4 shows the flowchart for a for loop. It starts with an
implicit conditional asking if there are any more elements in the se-
quence. If there are, it sets the iteration variable equal to the next
element in the sequence and then executes the body—the indented
text—using that value of the iteration variable. It then returns to the

Conditionals and Loops 89

Yes

No
more items
in seq?

<intervar> =
next item in seq

<body>

start

finish

Figure 5.4 Flowchart for for-loop.

beginning to see if there are more elements in the sequence and con-
tinues the loop until there is none remaining.

Using an accumulator to calculate a sum

Let’s look at another application of Python’s for loop. Suppose you
want to calculate the sum of all the odd numbers between 1 and 100.
Before writing a computer program to do this, let’s think about how
you would do it by hand. You might start by adding 1+3=4. Then
take the result 4 and add the next odd integer, 5, to get 4+5=9; then
9+7=16, then 16+9=25, and so forth. You are doing repeated addi-
tions, starting with 1+3, while keeping track of the running sum, until
you reach the last number 99.

In developing an algorithm for having the computer sum the series
of numbers, we are going to do the same thing: add the numbers one
at a time while keeping track of the running sum, until we reach the
last number. We will keep track of the running sum with the variable
s, which is called the accumulator. Initially s = 0, since we haven’t
added any numbers yet. Then we add the first number, 1, to s and s

becomes 1. Then we add the next number, 3, in our sequence of odd
numbers to s and s becomes 4. We continue doing this over and over
again using a for loop while the variable s accumulates the running

90 Introduction to Python for Science & Engineering

sum until we reach the final number. The code below illustrates how
to do this.

Code: chapter5/programs/oddSum100.py

1 s = 0
2 for i in range(1, 100, 2):
3 print(i, end=' ')
4 s = s+i
5 print('\n{}'.format(s))

The range function defines the sequence of odd numbers 1, 3, 5,
. . . , 97, 99. The for loop successively adds each number in the list to
the running sum until it reaches the last element in the list and the
sum is complete. Once the for loop finishes, the program exits the
loop and prints final value of s, which is the sum of the odd numbers
from 1 to 99, is printed out. Line 3 is not needed, of course, and is
included only to verify that the odd numbers between 1 and 100 are
being summed. The end=' ' argument causes a space to be printed out
between each value of i instead of the default new line character \n.
Copy the above program and run it. You should get an answer of 2500.

As noted on page 39, the range produces an iterable sequence,
which is a set of instructions that yields the next value in a sequence
of integers each time it is accessed.

Iterating over sequences

Thus far we have seen that for loops can iterate over elements in a
list, such as the names of dogs in our first loop example, or over a
sequence of numbers produced by the range function. In fact, Python
for loops are extremely versatile and can be used with any object that
consists of a sequence of elements. Some of the ways it works might
surprise you. For example, suppose we have the string

In [1]: a = 'There are places I remember all my life'

The string a is a sequence of characters and thus can be looped over,
as illustrated here:

In [2]: for letter in a:
...: print(letter)
...:

T
h
e
r

Conditionals and Loops 91

e

a
r
.
.
.

Suppose I wanted to print out every third letter of this string. One
way to do it would be to set up a counter, as follows:

In [3]: i = 0
...: for letter in a:
...: if i % 3 == 0:
...: print(letter, end=' ')
...: i += 1
...:

T r a a s m b l y i

While this approach works just fine, Python has a function called
enumerate that does it for you. It works like this:

In [4]: for i, letter in enumerate(a):
...: if i % 3 == 0:
...: print(letter, end=' ')
...:

T r a a s m b l y i

The enumerate function takes two inputs, a counter (i in this case) and
a sequence (the string a). In general, any kind of sequence can be used
in place of a, a list or a NumPy array, for example. Pretty slick. We
will find plenty of opportunities to use the enumerate function.

range, enumerate, strings, lines in files, . . .

5.2.2 while loops

The general form of a while loop in Python is

while <condition>:
<body>

where <condition> is a statement that can be either True or False and
<body> is a series of Python commands that is executed repeatedly un-
til <condition> becomes false. This means that somewhere in <body>,
the truth value of <condition> must be changed so that it becomes
false after a finite number of iterations. Consider the following exam-
ple.

92 Introduction to Python for Science & Engineering

Suppose you want to calculate all the Fibonacci numbers smaller
than 1000. The Fibonacci numbers are determined by starting with
the integers 0 and 1. The next number in the sequence is the sum of
the previous two. So, starting with 0 and 1, the next Fibonacci num-
ber is 0 + 1 = 1, giving the sequence 0,1,1. Continuing this process,
we obtain 0,1,1,2,3,5,8, ... where each element in the list is the sum
of the previous two. Using a for loop to calculate the Fibonacci num-
bers is impractical because we do not know ahead of time how many
Fibonacci numbers there are smaller than 1000. By contrast a while

loop is perfect for calculating all the Fibonacci numbers because it
keeps calculating Fibonacci numbers until it reaches the desired goal,
in this case 1000. Here is the code using a while loop.

x, y = 0, 1
while x < 1000:

print(x)
x, y = y, x+y

We have used the multiple assignment feature of Python in this code.
Recall that all the values on the left are assigned using the current
values of x and y on the right.

Figure 5.5 shows the flowchart for the while loop. The loop starts
with the evaluation of a condition. If the condition is False, the code
in the body is skipped, the flow exits the loop, and then continues
with the rest of the program. If the condition is True, the code in the
body—the indented text—is executed. Once the body is finished, the
flow returns to the condition and proceeds along the True or False

branches depending on the truth value of the condition. Implicit in
this loop is the idea that somewhere during the execution of the body
of the while loop, the variable that is evaluated in the condition is
changed in some way. Eventually that change will cause the condition
to return a value of False so that the loop will end.

One danger of a while loop is that it is entirely possible to write a
loop that never terminates—an infinite loop. For example, if we had
written while y > 0:, in place of while x < 1000:, the loop would
never end. If you execute code that has an infinite loop, you can often
terminate the program from the keyboard by typing ctrl-C a couple
of times. If that doesn’t work, you may have to terminate and then
restart Python.

For the kind of work we do in science and engineering, we gener-
ally find that the for loop is more useful than the while loop. Never-

Conditionals and Loops 93

True

False
<condition>

<body>
(change condition)

start

finish

Figure 5.5 Flowchart for while loop.

theless, there are times when using a while loop is better suited to a
task than is a for loop.

5.2.3 Loops and array operations

Loops are often used to sequentially modify the elements of an array.
For example, suppose we want to square each element of the array
a = np.linspace(0, 32, 1e7). This is a hefty array with 10 million
elements. Nevertheless, the following loop does the trick.

Code: chapter5/programs/slowLoops.py

1 import numpy as np
2 import time
3 a = np.linspace(0, 32, 10000000) # 10 million
4 print(a)
5 startTime = time.process_time()
6 for i in range(len(a)):
7 a[i] = a[i]*a[i]
8 endTime = time.process_time()
9 print(a)

10 print('Run time = {} seconds'.format(endTime-startTime))

Running this on my computer returns the result in about 3.4
seconds—not bad for having performed 10 million multiplications.
Notice that we have introduced the time module, which we use to
measure how long (in seconds) it takes the computer to perform the
10 million multiplications.

Of course we could have performed the same calculation using the
array multiplication we learned in Chapter 3. To do so, we replace the

94 Introduction to Python for Science & Engineering

for loop in lines 6–7 above with a simple array multiplication in line
6 below. Here is the code.

Code: chapter5/programs/fastArray.py

1 import numpy as np
2 import time
3 a = np.linspace(0, 32, 10000000) # 10 million
4 print(a)
5 startTime = time.process_time()
6 a = a*a
7 endTime = time.process_time()
8 print(a)
9 print('Run time = {} seconds'.format(endTime-startTime))

Running this on my computer returns the results in about 1/50 of a
second, more than 100 times faster than we obtained using a loop.
This illustrates an important point: for loops are slow. Array oper-
ations run much faster and are therefore to be preferred in any case
where you have a choice. Sometimes finding an array operation that is
equivalent to a loop can be difficult, especially for a novice. Neverthe-
less, doing so pays rich rewards in execution time. Moreover, the array
notation is usually simpler and clearer, providing further reasons to
prefer array operations over loops.

5.3 List Comprehensions

List comprehensions are a special feature of core Python for process-
ing and constructing lists. We introduce them here because they use
a looping process. They are used quite commonly in Python coding
and they often provide elegant compact solutions to some common
computing tasks.

Consider, for example the 3 ×3 matrix
In [1]: A = [[1, 2, 3],

...: [4, 5, 6],

...: [7, 8, 9]]

Suppose we want to construct a vector from the diagonal elements of
this matrix. We could do so with a for loop with an accumulator as
follows:
In [2]: diag = []
In [3]: for i in [0, 1, 2]:

...: diag.append(A[i][i])

...:

Conditionals and Loops 95

In [4]: diag
Out[4]: [1, 5, 9]

Here we have used the append() list method to add elements to the
list diag one at a time.

List comprehensions provide a simpler, cleaner, and faster way to
build a list of the diagonal elements of A:

In [5]: diagLC = [A[i][i] for i in [0, 1, 2]]

In [6]: diagLC
Out[6]: [1, 5, 9]

A one-line list comprehension replaces a three-line accumulator plus
loop code. Suppose we now want the square of this list:

In [7]: [y*y for y in diagLC]
Out[7]: [1, 25, 81]

Notice here how y serves as a dummy variable accessing the various
elements of the list diagLC.

Extracting a row from a 2-dimensional array such as A is quite easy.
For example the second row is obtained quite simply in the following
fashion

In [8]: A[1]
Out[8]: [4, 5, 6]

Obtaining a column is not as simple, but a list comprehension makes
it quite straightforward:

In [9]: c1 = [a[1] for a in A]
In [10]: c1
Out[10]: [2, 5, 8]

Another, slightly less elegant way to accomplish the same thing is

In [11]: [A[i][1] for i in range(3)]
Out[11]: [2, 5, 8]

Suppose you have a list of numbers and you want to extract all the
elements of the list that are divisible by three. A slightly fancier list
comprehension accomplishes the task quite simply and demonstrates
a new feature:

In [12]: y = [-5, -3, 1, 7, 4, 23, 27, -9, 11, 41]
In [13]: [x for x in y if x%3==0]
Out[13]: [-3, 27, -9]

96 Introduction to Python for Science & Engineering

As we see in this example, a conditional statement can be added to a
list comprehension. Here it serves as a filter to select out only those
elements that are divisible by three.

5.4 Exercises

1. Write a program to calculate the factorial of a positive integer
input by the user. Recall that the factorial function is given by
x! = x(x − 1)(x − 2) . . . (2)(1) so that 1! = 1, 2! = 2, 3! = 6, 4! = 24,
5! = 120, . . .

(a) Write the factorial function using a Python while loop.

(b) Write the factorial function using a Python for loop.

Check your programs to make sure they work for 1, 2, 3, 5, and
beyond, but especially for the first 5 integers.

2. The following Python program finds the smallest non-trivial (not
1) prime factor of a positive integer.

n = int(input("Input an integer > 1: "))
i = 2
while (n % i) != 0:

i += 1
print("The smallest factor of {0:d} is {1:d}".format(n, i))

(a) Type this program into your computer and verify that it
works as advertised. Then briefly explain how it works and
why the while loop always terminates.

(b) Modify the program so that it tells you if the integer input is a
prime number or not. If it is not a prime number, write your
program so that it prints out the smallest prime factor. Us-
ing your program verify that the following integers are prime
numbers: 101, 8191, 94811, 947431.

3. Consider the matrix list x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]].
Write a list comprehension to extract the last column of the matrix
[3, 6, 9]. Write another list comprehension to create a vector of
twice the square of the middle column [8, 50, 128].

4. Write a program that calculates the value of an investment after
some number of years specified by the user if

Conditionals and Loops 97

(a) the principal is compounded annually

(b) the principle is compounded monthly

(c) the principle is compounded daily

Your program should ask the user for the initial investment (prin-
cipal), the interest rate in percent, and the number of years the
money will be invested (allow for fractional years). For an ini-
tial investment of $1000 at an interest rate of 6%, after 10 years
I get $1790.85 when compounded annually, $1819.40 when com-
pounded monthly, and $1822.03 when compounded daily, assum-
ing 12 months in a year and 365.24 days in a year, where the
monthly interest rate is the annual rate divided by 12 and the
daily rate is the annual rate divided by 365 (don’t worry about
leap years).

5. Write a program that determines the day of the week for any given
calendar date after January 1, 1900, which was a Monday. Your
program will need to take into account leap years, which occur in
every year that is divisible by 4, except for years that are divisible
by 100 but are not divisible by 400. For example, 1900 was not a
leap year, but 2000 was a leap year. Test that your program gives
the answers tabulated below.

Date Weekday
January 1, 1900 Monday
June 28, 1919 Saturday
January 30, 1928 Tuesday
December 5, 1933 Tuesday
February 29, 1948 Sunday
March 1, 1948 Monday
January 15, 1953 Thursday
November 22, 1963 Friday
June 23, 1993 Wednesday
August 28, 2005 Sunday
May 16, 2111 Saturday

http://taylorandfrancis.com

chapter 6

Plotting

We introduce plotting using the matplotlib package. You will
learn how to make simple 2D x-y plots and fancy plots suitable for
publication, complete with legends, annotations, logarithmic axes,
subplots, and insets. You will learn how to produce Greek letters
and mathematical symbols using a powerful markup language
called LATEX. You will also learn how to make various kinds of con-
tour plots and vector field plots. We provide an introduction to 3D
plotting with matplotlib, although its 3D capabilities are some-
what limited. We begin with a simple but limited interface, known
as PyPlot, but then move to the more powerful object-oriented in-
terface. We also provide an overview of the object-oriented struc-
ture of matplotlib, including the important but sometimes confus-
ing topic of backends, which is helpful in reading online documen-
tation and for understanding interactive plotting, which we do not
cover in this book.

The graphical representation of data—plotting—is one of the most
important tools for evaluating and understanding scientific data and
theoretical predictions. Plotting is not a part of core Python, however,
but is provided through one of several possible library modules. The
most highly developed and widely used plotting package for Python
is matplotlib (http://matplotlib.sourceforge.net/). It is a powerful and
flexible program that has become the de facto standard for 2D plotting
with Python.

Because matplotlib is an external library—in fact it’s a collection
of libraries—it must be imported into any routine that uses it. mat-
plotlib makes extensive use of NumPy so the two should be imported
together. Therefore, for any program that is to produce 2D plots, you
should include the lines

import numpy as np
import matplotlib.pyplot as plt

There are other matplotlib sub-libraries, but the pyplot library pro-

99

http://matplotlib.sourceforge.net/

100 Introduction to Python for Science & Engineering

vides nearly everything that you need for 2D plotting. The standard
prefix for it is plt. On some installations, matplotlib is automati-
cally loaded with the IPython shell so you do not need to use import

matplotlib.pyplot nor do you need to use the plt prefix when work-
ing in the IPython shell.1

One final word before we get started: We only scratch the surface
of what is possible using matplotlib and as you become familiar with
it, you will surely want to do more than this manual describes. In that
case, you need to go the web to get more information. A good place
to start is http://matplotlib.org/index.html. Another interesting web
page is http://matplotlib.org/gallery.html.

6.1 An Interactive Session with PyPlot

We begin with an interactive plotting session that illustrates some
very basic features of matplotlib. After importing NumPy and mat-
plotlib, type in the plot command shown below and press the return
key. Take care to follow the exact syntax.

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: plt.plot([1, 2, 3, 2, 3, 4, 3, 4, 5])
Out[3]: [<matplotlib.lines.Line2D at 0x94e1310>]

In [4]: plt.show()

A window should appear with a plot that looks something like
the interactive plot window shown in Fig. 6.1.2 By default, the plot

function draws a line between the data points that were entered. You
can save this figure to an image file by clicking on the floppy disk
(Save the figure) icon at the top of the plot window. You can also
zoom , pan , scroll through the plot, and return to the original

1This can depend on the settings in your particular installation. You may want
to set the Preferences for the IPython console to automatically load PyLab, which
loads the NumPy and matplotlib modules. See §A.1.1 of Appendix A.
2Here we have assumed that matplotlib’s interactive mode is turned off. If it’s turned
on, then you don’t need the plt.show() function when plotting from the com-
mand line of the IPython shell. Type plt.ion() at the IPython prompt to turn
on interactive mode. Type plt.ioff() to turn it off. Whether or not you work
with interactive mode turned on in IPython is largely a matter of taste.

http://matplotlib.org/index.html
http://matplotlib.org/gallery.html

Plotting 101

Figure 6.1 Interactive plot window.

view using other icons in the plot window. Experimenting with
them reveals their functions. See page 118 for information about the
configure subplots icon . When you are finished, be sure to close
the plot window, which will return control to the IPython console.

Let’s take a closer look at the plot function. It is used to plot x-y
data sets and is written like this

plot(x, y)

where x and y are arrays (or lists) that have the same size. If the x array
is omitted, that is, if there is only a single array, as in our example
above, the plot function uses 0, 1, ..., N-1 for the x array, where
N is the size of the y array. Thus, the plot function provides a quick
graphical way of examining a data set.

More typically, you supply both an x and a y data set to plot. Tak-
ing things a bit further, you may also want to plot several data sets
on the same graph, use symbols as well as lines, label the axes, cre-
ate a title and a legend, and control the color of symbols and lines.

102 Introduction to Python for Science & Engineering

All of this is possible but requires calling a number of plotting func-
tions. For this reason, plotting is usually done using a Python script
or program.

6.2 Basic Plotting

The quickest way to learn how to plot using the matplotlib library
is by example. For our first task, let’s plot the sine function over the
interval from 0 to 4π. The main plotting function plot in matplotlib
does not plot functions per se, it plots (x,y) data sets. As we shall see,
we can instruct the function plot either to just draw points—or dots—
at each data point, or we can instruct it to draw straight lines between
the data points. To create the illusion of the smooth function that the
sine function is, we need to create enough (x,y) data points so that
when plot draws straight lines between the data points, the function
appears to be smooth. The sine function undergoes two full oscilla-
tions with two maxima and two minima between 0 and 4π. So let’s
start by creating an array with 33 data points between 0 and 4π, and
then let matplotlib draw a straight line between them. Our code con-
sists of four parts:

• Import the NumPy and matplotlib modules (lines 1-2 below).

• Create the (x,y) data arrays (lines 3-4 below).

• Have plot draw straight lines between the (x,y) data points (line 5
below).

• Display the plot in a figure window using the show function (line
6 below).

Here is our code, which consists of only 6 lines:

Code: chapter6/programs/sineFunctionPlot33.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 x = np.linspace(0, 4.*np.pi, 33)
4 y = np.sin(x)
5 plt.plot(x, y)
6 plt.show()

Only 6 lines suffice to create the plot, which is shown on the left
side of Fig. 6.2. It consists of the sine function plotted over the interval

Plotting 103

0 2 4 6 8 10 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.2 Sine function: Left, 33 data points; Right, 129 data points.

from 0 to 4π, as advertised, as well as axes annotated with nice whole
numbers over the appropriate interval. It’s a pretty nice plot made
with very little code.

One problem, however, is that while the plot oscillates like a sine
wave, it is not smooth (look at the peaks). This is because we did not
create the (x,y) arrays with enough data points. To correct this, we
need more data points. The plot on the right side of Fig. 6.2 was cre-
ated using the same program shown above but with 129 (x,y) data
points instead of 33. Try it out yourself by copying the above program
and replacing 33 in line 3 with 129 (a few more or less is ok) so that
the function linspace creates an array with 129 data points instead of
33.

The above script illustrates how plots can be made with very little
code using the matplotlib module. In making this plot, matplotlib has
made a number of choices, such as the size of the figure, the color of
the line, even the fact that by default a line is drawn between succes-
sive data points in the (x,y) arrays. All of these choices can be changed
by explicitly instructing matplotlib to do so. This involves including
more arguments in the function calls we have used and using new
functions that control other properties of the plot. The next example
illustrates a few of the simpler embellishments that are possible.

In Fig. 6.3, we plot two (x,y) data sets: a smooth line curve and
some data represented by red circles. In this plot, we label the x and
y axes, create a legend, and draw lines to indicate where x and y are
zero. The code that creates this plot is shown in Fig. 6.3.

104 Introduction to Python for Science & Engineering

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tra
ns

ve
rs

e
di

sp
la

ce
m

en
t

legend
theory
data

Figure 6.3 Wavy pulse.

Code: chapter6/programs/wavyPulse.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # read data from file
5 xdata, ydata = np.loadtxt('wavyPulseData.txt', unpack=True)
6

7 # create x and y arrays for theory
8 x = np.linspace(-10., 10., 200)
9 y = np.sin(x) * np.exp(-(x/5.0)**2)

10

11 # create plot
12 plt.figure(1, figsize=(6, 4))
13 plt.plot(x, y, 'g-', label='theory') # 'g-' green line
14 plt.plot(xdata, ydata, 'bo', label="data") # 'bo' blue circles
15 plt.xlabel('x')
16 plt.ylabel('transverse displacement')
17 plt.legend(loc='upper right', title='legend')
18 plt.axhline(color='gray', zorder=-1)
19 plt.axvline(color='gray', zorder=-1)
20

21 # save plot to file
22 plt.savefig('figures/WavyPulse.pdf')
23

24 # display plot on screen
25 plt.show()

If you have read the first five chapters, the code in lines 1–9 in
the above script should be familiar to you. First, the script loads the
NumPy and matplotlib modules, then reads data from a data file into
two arrays, xdata and ydata, and then creates two more arrays, x and

Plotting 105

y. The first pair or arrays, xdata and ydata, contain the x-y data that
are plotted as blue circles in Fig. 6.3; the arrays created in lines 8 and
9 contain the x-y data that are plotted as a green line.

The functions that create the plot begin on line 12. Let’s go
through them one by one and see what they do. You will notice that
keyword arguments (kwargs) are used in several cases.

figure() creates a blank figure window. If it has no arguments, it cre-
ates a window that is 8 inches wide and 6 inches high by default,
although the size that appears on your computer depends on your
screen’s resolution. For most computers, it will be much smaller.
You can create a window whose size differs from the default using
the optional keyword argument figsize, as we have done here. If
you use figsize, set it equal to a 2-element tuple where the ele-
ments, expressed in inches, are the width and height, respectively,
of the plot. Multiple calls to figure() opens multiple windows:
figure(1) opens up one window for plotting, figure(2) another,
and figure(3) yet another.

plot(x, y, optional arguments) graphs the x-y data in the arrays x

and y. The third argument is a format string that specifies the color
and the type of line or symbol that is used to plot the data. The
string 'bo' specifies a blue (b) circle (o). The string 'g-' specifies
a green (g) solid line (-). The keyword argument label is set equal
to a string that labels the data if the legend function is called sub-
sequently.

xlabel(string) takes a string argument that specifies the label for
the graph’s x-axis.

ylabel(string) takes a string argument that specifies the label for
the graph’s y-axis.

legend() makes a legend for the data plotted. Each x-y data set is
labeled using the string that was supplied by the label keyword
in the plot function that graphed the data set. The loc keyword
argument specifies the location of the legend. The title keyword
can be used to give the legend a title.

axhline() draws a horizontal line across the width of the plot at y=0.
Writing axhline(y=a) draws a horizontal line at y=a, where y=a can
be any numerical value. The optional keyword argument color is a

106 Introduction to Python for Science & Engineering

string that specifies the color of the line. The default color is black.
The optional keyword argument zorder is an integer that specifies
which plotting elements are in front of or behind others. By de-
fault, new plotting elements appear on top of previously plotted
elements and have a value of zorder=0. By specifying zorder=-1,
the horizontal line is plotted behind all existing plot elements that
have not be assigned an explicit zorder less than −1. The keyword
zorder can also be used as an argument for the plot function to
specify the order of lines and symbols. Normally, for example,
symbols are placed on top of lines that pass through them.

axvline() draws a vertical line from the top to the bottom of the plot
at x=0. See axhline() for an explanation of the arguments.

savefig(string) saves the figure to a file with a name specified by
the string argument. The string argument can also contain path
information if you want to save the file someplace other than the
default directory. Here we save the figure to a subdirectory named
figures of the default directory. The extension of the filename de-
termines the format of the figure file. The following formats are
supported: png, pdf, ps, eps, and svg.

show() displays the plot on the computer screen. No screen output is
produced before this function is called.

To plot the solid blue line, the code uses the 'b-' format speci-
fier in the plot function call. It is important to understand that mat-
plotlib draws straight lines between data points. Therefore, the curve
will appear smooth only if the data in the NumPy arrays are suffi-
ciently dense. If the space between data points is too large, the straight
lines the plot function draws between data points will be visible. For
plotting a typical function, something on the order of 100–200 data
points usually produces a smooth curve, depending on just how curvy
the function is. On the other hand, only two points are required to
draw a smooth straight line.

Detailed information about the matplotlib plotting functions are
available online. The main matplotlib site is http://matplotlib.org/.

6.2.1 Specifying line and symbol types and colors

In the above example, we illustrated how to draw one line type (solid),
one symbol type (circle), and two colors (blue and red). There are

http://matplotlib.org/

Plotting 107

many more possibilities: some of which are specified in Table 6.1 and
Fig. 6.4. The way it works is to specify a string consisting of up to
three format specifiers: one for the symbol, one for line type, and an-
other for color. It does not matter in which order the format specifiers
are listed in the string. Examples are given following the two tables.
Try them out to make sure you understand how these plotting format
specifiers work.

Table 6.1 shows the characters used to specify the line or symbol
type that is used. If a line type is chosen, the lines are drawn between
the data points. If a marker type is chosen, the marker is plotted at
each data point.

character description character description
- solid line style 3 tri_left marker
- dashed line style 4 tri_right marker
-. dash-dot line style s square marker
: dotted line style p pentagon marker
. point marker * star marker
, pixel marker h hexagon1 marker
o circle marker H hexagon2 marker
v triangle_down marker + plus marker
^ triangle_up marker x x marker
< triangle_left marker D diamond marker
> triangle_right marker d thin_diamond

marker
1 tri_down marker | vline marker
2 tri_up marker _ hline marker

Table 6.1 Line and symbol type designations for plotting.

Color is specified using the codes in Fig. 6.4: single letters for pri-
mary colors and codes C0, C2, . . . , C9 for a standard matplotlib color
palette of ten colors designed to be pleasing to the eye.

Here are some examples of how these format specifiers can be
used:

plot(x, y, 'ro') # red circles
plot(x, y, 'ks-') # black squares connected by black lines
plot(x, y, 'g^') # green triangles pointing up
plot(x, y, 'k-') # black line
plot(x, y, 'C1s') # orange(ish) squares

These format specifiers give rudimentary control of the plotting

108 Introduction to Python for Science & Engineering

'b' 'blue'

'g' 'green'

'r' 'red'

'c' 'cyan'

'm' 'magenta'

'y' 'yellow'

'k' 'black'

'w' 'white'

primary colors

'C0' '#1f77b4'
'C1' '#ff7f0e'
'C2' '#2ca02c'
'C3' '#d62728'
'C4' '#9467bd'
'C5' '#8c564b'
'C6' '#e377c2'
'C7' '#7f7f7f'
'C8' '#bcbd22'
'C9' '#17becf'

default color pallette

Figure 6.4 Some matplotlib colors. The one- or two-letter strings to the left
of each curve, or the longer strings to the right of each curve, can be used to
specify a designated color. However, the shades of cyan, magenta, and yellow
for the one-letter codes are different from the full-word codes (shown).

symbols and lines. matplotlib provides much more precise control of
the plotting symbol size, line types, and colors using optional key-
word arguments instead of the plotting format strings introduced
above. For example, the following command creates a plot of large
yellow diamond symbols with orange edges connected by a green
dashed line:

plot(x, y, color='green', linestyle='dashed', marker='D',
markerfacecolor='yellow', markersize=7,
markeredgecolor='C1')

Try it out! Another useful keyword is fillstyle, with self-explanatory
keywords full (the default), left, right, bottom, top, none. The online
matplotlib documentation provides all the plotting format keyword
arguments and their possible values.

6.2.2 Error bars

When plotting experimental data it is customary to include error bars
that indicate graphically the degree of uncertainty that exists in the
measurement of each data point. The matplotlib function errorbar

plots data with error bars attached. It can be used in a way that either
replaces or augments the plot function. Both vertical and horizontal
error bars can be displayed. Figure 6.5 illustrates the use of error bars.

Plotting 109

0 10 20 30 40
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

tra
ns

ve
rs

e
di

sp
la

ce
m

en
t

theory
data

Figure 6.5 Data with error bars.

When error bars are desired, you typically replace the plot func-
tion with the errorbar function. The first two arguments of the
errorbar function are the x and y arrays to be plotted, just as for the
plot function. The keyword fmt must be used to specify the format of
the points to be plotted; the format specifiers are the same as for plot.
The keywords xerr and yerr are used to specify the x and y error bars.
Setting one or both of them to a constant specifies one size for all the
error bars. Alternatively, setting one or both of them equal to an ar-
ray that has the same length as the x and y arrays allows you to give
each data point an error bar with a different value. If you only want
y error bars, then you should only specify the yerr keyword and omit
the xerr keyword. The color of the error bars is set with the keyword
ecolor.

The code below illustrates how to make error bars and was used
to make the plot in Fig. 6.5. Lines 15 and 16 contain the call to the
errorbar function. The x error bars are all set to a constant value of
0.75, meaning that the error bars extend 0.75 to the left and 0.75 to
the right of each data point. The y error bars are set equal to an array,
which was read in from the data file containing the data to be plotted,
so each data point has a different y error bar. By the way, leaving out
the xerr keyword argument in the errorbar function call below would
mean that only the y error bars would be plotted.

Code: chapter6/programs/errorBarPlot.py

1 import numpy as np
2 import matplotlib.pyplot as plt

110 Introduction to Python for Science & Engineering

3

4 # read data from file
5 xdata, ydata, yerror = np.loadtxt('expDecayData.txt',
6 unpack=True)
7

8 # create theoretical fitting curve
9 x = np.linspace(0, 45, 128)

10 y = 1.1 + 3.0*x*np.exp(-(x/10.0)**2)
11

12 # create plot
13 plt.figure(1, figsize=(6, 4))
14 plt.plot(x, y, '-C0', label="theory")
15 plt.errorbar(xdata, ydata, fmt='oC1', label="data",
16 xerr=0.75, yerr=yerror, ecolor='black')
17 plt.xlabel('x')
18 plt.ylabel('transverse displacement')
19 plt.legend(loc='upper right')
20

21 # save plot to file
22 plt.savefig('figures/ExpDecay.pdf')
23

24 # display plot on screen
25 plt.show()

We have more to say about the errorbar function in the sections on
logarithmic plots. But the brief introduction given here should suffice
for making most plots not involving logarithmic axes.

6.2.3 Setting plotting limits and excluding data

It turns out that you often want to restrict the range of numerical
values over which you plot data or functions. In these cases you may
need to manually specify the plotting window or, alternatively, you
may wish to exclude data points that are outside some set of limits.
Here we demonstrate methods for doing this.

Setting plotting limits

Suppose you want to plot the tangent function over the interval from
0 to 10. The following script offers an straightforward first attempt.

Code: chapter6/programs/tanPlot0.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 theta = np.arange(0.01, 10., 0.04)

Plotting 111

5 ytan = np.tan(theta)
6

7 plt.figure(figsize=(8.5, 4.2))
8 plt.plot(theta, ytan)
9 plt.savefig('figures/tanPlot0.pdf')

10 plt.show()

0 2 4 6 8 10

0

200

400

600

800

1000

1200

Figure 6.6 Trial tangent plot.

The resulting plot, shown in Fig. 6.6, doesn’t quite look like what
you might have expected for tan θ vs. θ. The problem is that tan θ
diverges at θ = π/2,3π/2,5π/2, ..., which leads to large spikes in the
plots as values in the theta array come near those values. Of course,
we don’t want the plot to extend all the way out to ±∞ in the y direc-
tion, nor can it. Instead, we would like the plot to extend far enough
that we get the idea of what is going on as y → ±∞, but we would
still like to see the behavior of the graph near y = 0. We can restrict
the range of ytan values that are plotted using the matplotlib function
ylim, as we demonstrate in the script below.

Code: chapter6/programs/tanPlot1.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 theta = np.arange(0.01, 10., 0.04)
5 ytan = np.tan(theta)
6

7 plt.figure(figsize=(8.5, 4.2))
8 plt.plot(theta, ytan)
9 plt.ylim(-8, 8) # restricts range of y axis from -8 to +8

10 plt.axhline(color="gray", zorder=-1)

112 Introduction to Python for Science & Engineering

0 2 4 6 8 10
8

6

4

2

0

2

4

6

8

Figure 6.7 Tangent function (with spurious vertical lines).

11 plt.savefig('figures/tanPlot1.pdf')
12 plt.show()

Figure 6.7 shows the plot produced by this script, which now looks
much more like the familiar tanθ function we know. We have also
included a call to the axline function to create an x axis.

Recall that for θ = π/2, tanθ− → +∞ and tanθ+ → −∞; in fact,
tanθ diverges to ±∞ at every odd half integral value of θ. Therefore,
the vertical blue lines at θ = π/2,3π/2,5π/2 should not appear in a
proper plot of tan θ vs. θ. However, they do appear because the plot

function simply draws lines between the data points in the x-y arrays
provided the plot function’s arguments. Thus, plot draws a line be-
tween the very large positive and negative ytan values corresponding
to the theta values on either side of π/2 where tan θ diverges to ±∞.
It would be nice to exclude that line.

Masked arrays

We can exclude the data points near θ = π/2, 3π/2, and 5π/2 in
the above plot, and thus avoid drawing the nearly vertical lines at
those points, using NumPy’s masked array feature. The code below
shows how this is done and produces Fig. 6.9. The masked array fea-
ture is implemented in line 6 with a call to NumPy’s masked_where

function in the sub-module ma (masked array). It is called by writ-
ing np.ma.masked_where. The masked_where function works as follows.
The first argument sets the condition for masking elements of the ar-
ray; the array is specified by the second argument. In this case, the

Plotting 113

0 2 4 6 8 10
8

6

4

2

0

2

4

6

8

Figure 6.8 Tangent function (without spurious vertical lines).

function says to mask all elements of the array ytan (the second argu-
ment) where the absolute value of ytan is greater than 20. The result
is set equal to ytanM. When ytanM is plotted, matplotlib’s plot function
omits all masked points from the plot. You can think of it as the plot

function lifting the pen that is drawing the line in the plot when it
comes to the masked points in the array ytanM.

Code: chapter6/programs/tanPlotMasked.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 theta = np.arange(0.01, 10., 0.04)
5 ytan = np.tan(theta)
6 ytanM = np.ma.masked_where(np.abs(ytan) > 20., ytan)
7

8 plt.figure(figsize=(8.5, 4.2))
9 plt.plot(theta, ytanM)

10 plt.ylim(-8, 8) # restricts y-axis range from -8 to +8
11 plt.axhline(color="gray", zorder=-1)
12 plt.savefig('figures/tanPlotMasked.pdf')
13 plt.show()

6.2.4 Subplots

Often you want to create two or more graphs and place them next to
one another, generally because they are related to each other in some
way. Figure 6.9 shows an example of such a plot. In the top graph,
tan θ and

√
(8/θ)2 − 1 vs. θ are plotted. The two curves cross each

114 Introduction to Python for Science & Engineering

0 1 2 3 4 5 6 7 8
theta

7.5

5.0

2.5

0.0

2.5

5.0

7.5
ta

n(
th

et
a)

0 1 2 3 4 5 6 7 8
theta

7.5

5.0

2.5

0.0

2.5

5.0

7.5

co
t(t

he
ta

)

Figure 6.9 Plotting window with two subplots.

other at the points where tan θ =
√

(8/θ)2 − 1. In the bottom cot θ and
−
√

(8/θ)2 − 1 vs θ are plotted. These two curves cross each other at the
points where cot θ = −

√
(8/θ)2 − 1.

The code that produces this plot is provided below.

Code: chapter6/programs/subplotDemo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 theta = np.arange(0.01, 8., 0.04)
5 y = np.sqrt((8./theta)**2-1.)
6 ytan = np.tan(theta)
7 ytan = np.ma.masked_where(np.abs(ytan) > 20., ytan)
8 ycot = 1./np.tan(theta)
9 ycot = np.ma.masked_where(np.abs(ycot) > 20., ycot)

10

11 plt.figure(figsize=(8.5, 6))
12

13 plt.subplot(2, 1, 1)
14 plt.plot(theta, y, linestyle=':')
15 plt.plot(theta, ytan)
16 plt.xlim(0, 8)
17 plt.ylim(-8, 8)
18 plt.axhline(color="gray", zorder=-1)

Plotting 115

19 plt.axvline(x=np.pi/2., color="gray", linestyle='--',
20 zorder=-1)
21 plt.axvline(x=3.*np.pi/2., color="gray", linestyle='--',
22 zorder=-1)
23 plt.axvline(x=5.*np.pi/2., color="gray", linestyle='--',
24 zorder=-1)
25 plt.xlabel("theta")
26 plt.ylabel("tan(theta)")
27

28 plt.subplot(2, 1, 2)
29 plt.plot(theta, -y, linestyle=':')
30 plt.plot(theta, ycot)
31 plt.xlim(0, 8)
32 plt.ylim(-8, 8)
33 plt.axhline(color="gray", zorder=-1)
34 plt.axvline(x=np.pi, color="gray", linestyle='--',
35 zorder=-1)
36 plt.axvline(x=2.*np.pi, color="gray", linestyle='--',
37 zorder=-1)
38 plt.xlabel("theta")
39 plt.ylabel("cot(theta)")
40

41 plt.savefig('figures/subplotDemo.pdf')
42 plt.show()

The function subplot, called on lines 13 and 28, creates the two
subplots in the above figure. subplot has three arguments. The first
specifies the number of rows into which the figure space is to be di-
vided: in line 13, it’s 2. The second specifies the number of columns
into which the figure space is to be divided; in line 13, it’s 1. The third
argument specifies which rectangle will contain the plot specified by
the following function calls. Line 13 specifies that the plotting com-
mands that follow will act on the first box. Line 28 specifies that the
plotting commands that follow will be act on the second box. As a con-
venience, the commas separating the three arguments in the subplot

routine can be omitted, provided they are all single-digit arguments
(less than or equal to 9). For example, lines 13 and 28 can be written
as

plt.subplot(211)
.
.
plt.subplot(212)

Finally, we have also labeled the axes and included dashed vertical
lines at the values of θ where tan θ and cot θ diverge.

116 Introduction to Python for Science & Engineering

0 25 50 75 100 125 150 175
time (days)

0

2000

4000

6000

8000

co
un

ts
 p

er
 se

co
nd

theory
data

0 25 50 75 100 125 150 175
time (days)

100

101

102

103

104

co
un

ts
 p

er
 se

co
nd

theory
data

Figure 6.10 Semi-log plotting.

6.3 Logarithmic Plots

Data sets can span many orders of magnitude from fractional quan-
tities much smaller than unity to values much larger than unity. In
such cases it is often useful to plot the data on logarithmic axes.

6.3.1 Semi-log plots

For data sets that vary exponentially in the independent variable, it is
often useful to use one or more logarithmic axes. Radioactive decay of
unstable nuclei, for example, exhibits an exponential decrease in the
number of particles emitted from the nuclei as a function of time. In
Fig. 6.10, for example, we show the decay of the radioactive isotope
Phosphorus-32 over a period of 6 months, where the radioactivity is
measured once each week. Starting at a decay rate of nearly 104 elec-
trons (counts) per second, the decay rate diminishes to only about 1
count per second after about 6 months or 180 days. If we plot counts
per second as a function of time on a normal plot, as we have done
in the left panel of Fig. 6.10, then the count rate is indistinguishable
from zero after about 100 days. On the other hand, if we use a loga-
rithmic axis for the count rate, as we have done in the right panel of
Fig. 6.10, then we can follow the count rate well past 100 days and
can readily distinguish it from zero. Moreover, if the data vary expo-
nentially in time, then the data will fall along a straight line, as they
do for the case of radioactive decay.

matplotlib provides two functions for making semi-logarithmic

Plotting 117

plots, semilogx and semilogy, for creating plots with logarithmic x
and y axes, with linear y and x axes, respectively. We illustrate their
use in the program below, which made the above plots.

Code: chapter6/programs/semilogDemo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # read data from file
5 time, counts, unc = np.loadtxt('semilogDemo.txt',
6 unpack=True)
7

8 # create theoretical fitting curve
9 t_half = 14. # P-32 half life = 14 days

10 tau = t_half/np.log(2) # exponential tau
11 N0 = 8200. # Initial count rate (per sec)
12 t = np.linspace(0, 180, 128)
13 N = N0 * np.exp(-t/tau)
14

15 # create plot
16 plt.figure(1, figsize=(9.5, 4))
17

18 plt.subplot(1, 2, 1)
19 plt.plot(t, N, color='C0', label="theory")
20 plt.plot(time, counts, 'oC1', label="data")
21 plt.xlabel('time (days)')
22 plt.ylabel('counts per second')
23 plt.legend(loc='upper right')
24

25 plt.subplot(1, 2, 2)
26 plt.semilogy(t, N, color='C0', label="theory")
27 plt.semilogy(time, counts, 'oC1', label="data")
28 plt.xlabel('time (days)')
29 plt.ylabel('counts per second')
30 plt.legend(loc='upper right')
31

32 plt.tight_layout()
33

34 # save plot to file
35 plt.savefig('figures/semilogDemo.pdf')
36

37 # display plot on screen
38 plt.show()

The semilogx and semilogy functions work the same way as the
plot function. You just use one or the other depending on which axis
you want to be logarithmic.

118 Introduction to Python for Science & Engineering

Adjusting spacing around subplots

You may have noticed the tight_layout() function, called without
arguments on line 32 of the program. This is a convenience function
that adjusts the space around the subplots to make room for the axes
labels. If it is not called in this example, the y-axis label of the right
plot runs into the left plot. The tight_layout() function can also be
useful in graphics windows with only one plot sometimes.

If you want more control over how much space is allocated around
subplots, use the function
plt.subplots_adjust(left=None, bottom=None, right=None,

top=None, wspace=None, hspace=None)

The keyword arguments wspace and hspace control the width and
height of the space between plots, while the other arguments control
the space to the left, bottom, right, and top. You can see and adjust
the parameters of the subplots_adjust() routine by clicking on the
configure subplots icon in the figure window. Once you have ad-
justed the parameters to obtain the desired effect, you can then use
them in your script.

6.3.2 Log-log plots

matplotlib can also make log-log or double-logarithmic plots using
the function loglog. It is useful when both the x and y data span many
orders of magnitude. Data that are described by a power law y = Axb,
where A and b are constants, appear as straight lines when plotted
on a log-log plot. Again, the loglog function works just like the plot

function but with logarithmic axes.
In the next section, we describe a more advanced syntax for cre-

ating plots, and with it an alternative syntax for making logarithmic
axes. For a description, see page 122.

6.4 More Advanced Graphical Output

The plotting methods introduced in the previous sections are ade-
quate for basic plotting but are recommended only for the simplest
graphical output. Here, we introduce a more advanced syntax that
harnesses the full power of matplotlib. It gives the user more options
and greater control.

An efficient way to learn this new syntax is simply to look at an

Plotting 119

example. Figure 6.11, which shows multiple plots laid out in the same
window, is produced by the following code:

Code: chapter6/programs/multiplePlots1window.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 # Define the sinc function, with output for x=0
6 # defined as a special case to avoid division by zero
7 def s(x):
8 a = np.where(x == 0., 1., np.sin(x)/x)
9 return a

10

11

12 x = np.arange(0., 10., 0.1)
13 y = np.exp(x)
14

15 t = np.linspace(-15., 15., 150)
16 z = s(t)
17

18 # create a figure window
19 fig = plt.figure(figsize=(9, 7))
20

21 # subplot: linear plot of exponential
22 ax1 = fig.add_subplot(2, 2, 1)
23 ax1.plot(x, y, 'C0')
24 ax1.set_xlabel('time (ms)')
25 ax1.set_ylabel('distance (mm)')
26 ax1.set_title('exponential')
27

28 # subplot: semi-log plot of exponential
29 ax2 = fig.add_subplot(2, 2, 2)
30 ax2.plot(x, y, 'C2')
31 ax2.set_yscale('log')
32 # ax2.semilogy(x, y, 'C2') # same as 2 previous lines
33 ax2.set_xlabel('time (ms)')
34 ax2.set_ylabel('distance (mm)')
35 ax2.set_title('exponential')
36

37 # subplot: wide subplot of sinc function
38 ax3 = fig.add_subplot(2, 1, 2)
39 ax3.plot(t, z, 'C3')
40 ax3.axhline(color='gray')
41 ax3.axvline(color='gray')
42 ax3.set_xlabel('angle (deg)')
43 ax3.set_ylabel('electric field')
44 ax3.set_title('sinc function')

120 Introduction to Python for Science & Engineering

0 2 4 6 8 10
time (ms)

0

2500

5000

7500

10000

12500

15000

17500

20000

di
st

an
ce

 (m
m

)
exponential

0 2 4 6 8 10
time (ms)

100

101

102

103

104

di
st

an
ce

 (m
m

)

exponential

15 10 5 0 5 10 15
angle (deg)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

el
ec

tri
c

fie
ld

sinc function

Figure 6.11 Mulitple plots in the same window.

45

46 # fig.tight_layout() adjusts white space to
47 # avoid collisions between subplots
48 fig.tight_layout()
49 fig.savefig("figures/multiplePlots1window.pdf")
50 fig.show()

After defining several arrays for plotting, the above program
opens a figure window in line 19 with the statement

fig = plt.figure(figsize=(9, 7))

The matplotlib statement above creates a Figure object, assigns it the
name fig, and opens a blank figure window. Thus, just as we give
lists, arrays, and numbers variable names (e.g., a = [1, 2, 5, 7],

dd = np.array([2.3, 5.1, 3.9]), or st = 4.3), we can give a figure
object and the window it creates a name: here it is fig. In fact we
can use the figure function to open up multiple figure objects with
different figure windows. The statements

fig1 = plt.figure()
fig2 = plt.figure()

Plotting 121

open up two separate windows, one named fig1 and the other fig2.
We can then use the names fig1 and fig2 to plot things in either win-
dow. The figure function need not take any arguments if you are sat-
isfied with the default settings such as the figure size and the back-
ground color. On the other hand, by supplying one or more keyword
arguments, you can customize the figure size, the background color,
and a few other properties. For example, in the program listing (line
25), the keyword argument figsize sets the width and height of the
figure window. The default size is (8, 6); in our program we set it to
(9, 8), which is a bit wider and higher than the default size. In the
example above, we also choose to open only a single window, hence
the single figure call.

The fig.add_subplot(2, 2, 1) in line 22 is a matplotlib function
that divides the figure window into 2 rows (the first argument) and 2
columns (the second argument). The third argument creates a subplot
in the first of the 4 subregions (i.e., of the 2 rows × 2 columns) created
by the fig.add_subplot(2, 2, 1) call. To see how this works, type the
following code into a Python module and run it:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(9, 8))
ax1 = fig.add_subplot(2,2,1)

fig.show()

You should get a figure window with axes drawn in the upper left
quadrant. The fig. prefix used with the add_subplot(2, 2, 1) func-
tion directs Python to draw these axes in the figure window named
fig. If we had opened two figure windows, changing the prefix to
correspond to the name of one or the other of the figure windows
would direct the axes to be drawn in the appropriate window. Writ-
ing ax1 = fig.add_subplot(2, 2, 1) assigns the name ax1 to the axes
in the upper left quadrant of the figure window.

The ax1.plot(x, y, 'C0') in line 23 directs Python to plot the
previously defined x and y arrays onto the axes named ax1. The
statement ax2 = fig.add_subplot(2, 2, 2) draws axes in the sec-
ond, or upper right, quadrant of the figure window. The statement
ax3 = fig.add_subplot(2, 1, 2) divides the figure window into 2
rows (first argument) and 1 column (second argument), creates axes
in the second or these two sections, and assigns those axes (i.e., that

122 Introduction to Python for Science & Engineering

subplot) the name ax3. That is, it divides the figure window into 2
halves, top and bottom, and then draws axes in the half number 2
(the third argument), or lower half of the figure window.

You may have noticed in the above code that some of the function
calls are a bit different from those used before, so:

xlabel('time (ms)')→ set_xlabel('time (ms)')

title('exponential')→ set_title('exponential')

etc.
The call ax2.set_yscale('log') sets the y-axes in the second plot

to be logarithmic, thus creating a semi-log plot. Alternatively, this
can be done with a ax2.semilogy(x, y, 'C2') call.

Using the prefixes ax1, ax2, or ax3, directs graphical instructions
to their respective subplots. By creating and specifying names for the
different figure windows and subplots within them, you access the
different plot windows more efficiently. For example, the following
code makes four identical subplots in a single figure window using a
for loop (see §5.2.1).
In [1]: fig = figure()

In [2]: ax1 = fig.add_subplot(221)

In [3]: ax2 = fig.add_subplot(222)

In [4]: ax3 = fig.add_subplot(223)

In [5]: ax4 = fig.add_subplot(224)

In [6]: for ax in [ax1, ax2, ax3, ax4]:
...: ax.plot([3,5,8],[6,3,1])

In [7]: fig.show()

6.4.1 An alternative syntax for a grid of plots

The syntax introduced above for defining a Figure window and open-
ing a grid of several subplots can be a bit cumbersome, so an alter-
native more compact syntax has been developed. We illustrate its use
with the program below:

Code: chapter6/programs/multiplePlotsGrid.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

Plotting 123

4 x = np.linspace(-2*np.pi, 2*np.pi, 200)
5 sin, cos, tan = np.sin(x), np.cos(x), np.tan(x)
6 csc, sec, cot = 1.0/sin, 1.0/cos, 1.0/tan
7

8 plt.close('all') # Closes all open figure windows
9 fig, ax = plt.subplots(2, 3, figsize=(9.5, 6),

10 sharex=True, sharey=True)
11 ax[0, 0].plot(x, sin, color='red')
12 ax[0, 1].plot(x, cos, color='orange')
13 ax[0, 2].plot(x, np.ma.masked_where(np.abs(tan) > 20., tan),
14 color='yellow')
15 ax[1, 0].plot(x, np.ma.masked_where(np.abs(csc) > 20., csc),
16 color='green')
17 ax[1, 1].plot(x, np.ma.masked_where(np.abs(sec) > 20., sec),
18 color='blue')
19 ax[1, 2].plot(x, np.ma.masked_where(np.abs(cot) > 20., cot),
20 color='violet')
21 ax[0, 0].set_xlim(-2*np.pi, 2*np.pi)
22 ax[0, 0].set_ylim(-5, 5)
23 ax[0, 0].set_xticks(np.pi*np.array([-2, -1, 0, 1, 2]))
24 ax[0, 0].set_xticklabels(['-2π', '-π', '0',
25 'π', '2π'])
26

27 ax[0, 2].patch.set_facecolor('lightgray')
28

29 ylab = [['sin', 'cos', 'tan'], ['csc', 'sec', 'cot']]
30 for i in range(2):
31 for j in range(3):
32 ax[i, j].axhline(color='gray', zorder=-1)
33 ax[i, j].set_ylabel(ylab[i][j])
34

35 fig.savefig('figures/multiplePlotsGrid.pdf')
36 fig.show()
37 fig.canvas.manager.window.raise_() # fig to front

This program generates a 2-row × 3-column grid of plots, as shown
in Fig. 6.12, using the function subplots. The first two arguments of
subplots specify, respectively, the number of rows and columns in the
plot grid. The other arguments are optional; we will return to them
after discussing the output of the function subplots.

The output of subplots is a two-element list, which we name fig

and ax. The first element fig is the name given to the figure object
that contains all of the subplots. The second element ax is the name
given to a 2 × 3 list of axes objects, one entry for each subplot. These
subplots are indexed as you might expect: ax[0, 0], ax[0, 1], ax[0,
2], . . .

Returning to the arguments of subplots, the first keyword argu-

124 Introduction to Python for Science & Engineering

4

2

0

2

4

sin co
s

ta
n

-2 - 0 2

4

2

0

2

4

cs
c

-2 - 0 2

se
c

-2 - 0 2

co
t

Figure 6.12 Grid of plots.

ment figsize sets the overall size of the figure window. The next key-
word argument, sharex=True, instructs matplotlib to create identical
x axes for all six subplots; sharey=True does the same for the y axes.
Thus, in lines 21 and 22, when the limits are set for the x and y axes
only for the first subplot, [0, 0], these instructions are applied to all
six subplots because the keyword arguments instruct matplotlib to
make all the x axes the same and all the y axes the same. This also
applies even to the tick placement and labels, which are set in lines
23–25.

You may have also noticed in lines 24 and 25 that matplotlib can
print Greek letters, in this case the letter π. Indeed, matplotlib can
output the Greek alphabet as well as virtually any kind of mathemati-
cal equations you can imagine using the LATEX typesetting system. The
LATEX string is enclosed by $ symbols, which are inside of quotes (dou-
ble or single) because it’s a string. The LATEX capabilities of matplotlib
are discussed in §6.6.

By contrast, the subplot background is set to 'lightgray' only in
plot [0, 2] in line 27.

The nested for loops in lines 30–33 place a gray line at y = 0 and
labels the y-axis in each subplot.

Plotting 125

In line 37 we have added the function call

fig.canvas.manager.window.raise_()

in order to make the figure display in front of all the other windows
on the computer. This is not necessary on all systems; on some the
figure window always displays in front. If that’s not the case on your
installation, you may wish to add this line.

Finally, we note that writing

fig, ax = plt.subplots()

without any arguments in the subplots function opens a figure win-
dow with a single subplot. It is equivalent to

fig = plt.figure()
ax = fig.add_subplot(111)

It’s a handy way to save a line of code.

6.5 Plots with multiple axes

Plotting two different quantities that share a common independent
variable on the same graph can be a compelling way to compare and
visualize data. Figure 6.13 shows an example of such a plot, where the
blue curve is linked to the left blue y-axis and the red data points are
linked to the right red y-axis. The code below shows how this can be
done using matplotlib using the function twinx().

Code: chapter6/programs/twoAxes.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 fig, ax1 = plt.subplots(figsize=(7.5, 4.5))
5 xa = np.linspace(0.01, 6.0, 150)
6 ya = np.sin(np.pi*xa)/xa
7 ax1.plot(xa, ya, '-C0')
8 ax1.set_xlabel('x (micrometers)')
9 # Make y-axis label, ticks and numbers match line color.

10 ax1.set_ylabel('oscillate', color='C0')
11 ax1.tick_params('y', colors='C0')
12

13 ax2 = ax1.twinx() # use same x-axis for a 2nd (right) y-axis
14 xb = np.arange(0.3, 6.0, 0.3)
15 yb = np.exp(-xb*xb/9.0)
16 ax2.plot(xb, yb, 'oC3')
17 ax2.set_ylabel('decay', color='C3') # axis label

126 Introduction to Python for Science & Engineering

0 1 2 3 4 5 6
x (micrometers)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

os
cil

la
te

0.0

0.2

0.4

0.6

0.8

1.0

de
ca

y

Figure 6.13 Figure with two y axes.

18 ax2.tick_params('y', colors='C3') # ticks & numbers
19

20 fig.tight_layout()
21 plt.savefig('figures/twoAxes.pdf')
22 plt.show()

After plotting the first set of data using the axes ax1, calling
twinx() instructs matplotlib to use the same x-axis for a second x-y set
of data, which we set up with a new set of axes ax2. The set_ylabel

and tick_parameters functions are used to harmonize the colors of
the y-axes with the different data sets.

There is an equivalent function twiny() that allows two sets of
data to share a common y-axis and then have separate (top and bot-
tom) x-axes.

6.6 Mathematics and Greek symbols

matplotlib can display mathematical formulas, Greek letters, and
mathematical symbols using a math rendering module known as
mathtext. The mathtext module parses a subset of Donald Knuth’s TEX
mathematical typesetting language, and provides basic mathematical
typesetting without any software other than matplotlib.

If, in addition, you have TEX (and/or LATEX) as a separate stand-
alone program (such as MacTex [TexShop] or MiKTeX), then you can
do even more. In what follows we will assume that you are using the

Plotting 127

native matplotlib mathtext, but will make a few comments applicable
to those who have a separate installation of LATEX.

matplotlib’s mathtext can display Greek letters and mathematical
symbols using the syntax of TEX. If you are familiar with TEX or LATEX,
you have hardly anything to learn. Even if you are not familiar with
them, the syntax is simple enough that you can employ it in most
cases without too much effort.

You designate text as mathtext by placing dollar signs ($) in a text
string at the beginning and end of any part of the string that you want
to be rendered as math text. You should also use raw strings in most
cases, which means you should precede the quotes of a string with the
letter r. For example, the following commands produces a plot with
the title “π > 3.”

In [1]: plot([1, 2, 3, 2, 3, 4, 3, 4, 5])
Out[1]: [<matplotlib.lines.Line2D at 0x11d5c4780>]

In [2]: title(r'$\pi > 3$')
Out[2]: <matplotlib.text.Text at 0x11d59f390>

Where the matplotlib function normally takes a string as input, you
simply input the mathtext string. Note the r before the string in the
title argument and the dollar signs ($) inside the quotes at the be-
ginning and end of the text you wish to render as math text.

Subscripts and superscripts are designated using the underline
“_” and caret “^” characters, respectively. Multiple characters to be
included together in a subscript or superscript should be enclosed in
a pair of curly braces {...}. All of this and more is illustrated in the
plot shown in Fig. 6.14, which is produced by the Python code below.

Code: chapter6/programs/mplLatexDemo.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 def f0(t, omega, gamma, tau):
6 wt = omega*t
7 f1 = np.sin(wt) + (np.cos(wt)-1.0)/wt
8 f2 = 1.0+(gamma/omega)*f1
9 return np.exp(-t*f2/tau)

10

11

12 omega = 12.0
13 gamma = 8.0
14 tau = 1.0

128 Introduction to Python for Science & Engineering

15 t = np.linspace(0.01, 10.0, 500)
16 f = f0(t, omega, gamma, tau)
17

18 plt.rc('mathtext', fontset='stix') # Use with mathtext
19 # plt.rc('text', usetex=True) # Use with Latex
20 # plt.rc('font', family='serif') # Use with Latex
21

22 fig, ax = plt.subplots(figsize=(7.5, 4.5))
23 ax.plot(t, f, color='C0')
24 ax.set_ylabel(r'$f_0(t)$', fontsize=14)
25 ax.set_xlabel(r'$t/\tau\quad\rm(ms)}$', fontsize=14)
26 ax.text(0.45, 0.95,
27 r'$\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}dx$',
28 fontsize=16, ha='right', va='top',
29 transform=ax.transAxes)
30 ax.text(0.45, 0.75,
31 r'$e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$',
32 fontsize=16, ha='right', va='top',
33 transform=ax.transAxes)
34 ax.text(0.45, 0.55,
35 r'$\zeta(z)=\prod_{k=0}^\infty \frac{1}{1-p_k^{-z}}$',
36 fontsize=16, ha='left', va='top',
37 transform=ax.transAxes)
38 ax.text(0.95, 0.80,
39 r'$\omega={0:0.1f},\;\gamma={1:0.1f},\;\tau={2:0.1f}$'
40 .format(omega, gamma, tau),
41 fontsize=14, ha='right', va='top',
42 transform=ax.transAxes)
43 ax.text(0.85, 0.35,
44 r'$e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$',
45 fontsize=14, ha='right', va='top',
46 transform=ax.transAxes)
47

48 fig.tight_layout()
49 fig.savefig('./figures/mplLatexDemo.pdf')
50 fig.show()

Line 18 sets the font to be used by mathtext, in this case stix. If
you omit such a statement, mathtext uses its default font dejavusans.
Other options include dejavuserif, cm (Computer Modern), stix, and
stixsans. Try them out!

Let’s see what LATEX can do. First, we see that the y-axis label in Fig.
6.14 is f0(t), which has a subscript that was formatted using mathtext
in line 24. The x-axis label is also typeset using mathtext, but the ef-
fects are more subtle in this case. The variable t is italicized, as is
proper for a mathematical variable, but the units, (ms), are not, which
is also standard practice. The math mode italics are turned off with

Plotting 129

the \rm (Roman) switch, which acts on text until the next closing curly
brace (}).

Lines 26–29 provide the code to produce the expression for the
Gamma function Γ (z), lines 30–33 produce the expression for the Tay-
lor series for the exponential function, and lines 34–37 produce the
product that gives the zeta function. Lines 38–42 provide the code
that produces the expressions for ω, γ , and τ . Lines 43–46 provide
the code that produces the limit expression for the natural logarithm
base e. The mathtext (TEX) code that produces the four typeset equa-
tions is contained in strings in lines 27, 31, 35, 39, and 44. The strings
begin and end with $ symbols, which activates and deactivates math-
text’s math mode.

Special commands and symbols begin with a backslash in math-
text, which follows the convention of TEX. However, Python strings
also use backslashes for certain formatting commands, such as \t for
tab or \n for a new line. The r preceding the strings in lines 27, 31, 35,
39, and 44 makes those strings raw strings, which turns off Python’s
special backslash formatting commands so that backslash commands
are interpreted as mathtext.

Table 6.2 provides the LATEX (mathtext) codes for Greek letters;
Table 6.3 gives the code for miscellaneous mathematical expressions.

The mathtext codes are the same as LATEX codes but are sometimes
rendered slightly differently from what you might be used to if you

0 2 4 6 8 10
t/ (ms)

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(t)

(z) = 0 xz 1e xdx

ex =
n = 0

xn

n!

(z) =
k = 0

1
1 p z

k

= 12.0, = 8.0, = 1.0

e = lim
n (1 + 1

n)n

Figure 6.14 Plot using matplotlib’s mathtext for Greek letters and mathe-
matical symbols.

130 Introduction to Python for Science & Engineering

α \alpha β \beta γ \gamma δ \delta

ε \epsilon ε \varepsilon ζ \zeta η \eta

θ \theta ι \iota κ \kappa λ \lambda

µ \mu ν \nu ξ \xi π \pi

ρ \rho % \varrho σ \sigma τ \tau

υ \upsilon φ \phi ϕ \varphi χ \chi

ψ \psi ω \omega Γ \Gamma ∆ \Delta

Θ \Theta Λ \Lambda Ξ \Xi Π \Pi

Σ \Sigma Υ \Upsilon Φ \Phi Ψ \Psi

Ω \Omega

Table 6.2 LATEX (mathtext) codes for Greek letters.

use LATEX. For example, the code $\cos\theta$ produces cosθ in LATEX,
but produces cosθ using matplotlib’s mathtext: there is too little space
between cos and θ in the mathtext expression. For this reason, you
may want to insert an extra bit of space in your mathtext code where
you wouldn’t normally need to do so using LATEX. Spaces of varying
length can be inserted using \, \: \; and \� for shorter spaces (of
increasing length); \quad and \qquad provide longer spaces equal to
one and two character widths, respectively.

While extra spacing in rendered mathtext equations matters, ex-
tra spaces in mathtext code makes no difference in the output. In fact,
spaces in the code are not needed if the meaning of the code is un-
ambiguous. Thus, $\cos \, \theta$ and $\cos\,\theta$ produce ex-
actly the same output, namely cosθ.

matplotlib can produce even more beautiful mathematical expres-
sions if you have a separate stand-alone version of TEX (and/or LATEX)
on your computer. In this case, you have access to a broader selec-
tion of fonts—all the fonts you have installed with your TEX installa-
tion. You also can write LATEX code using the \displaystyle switch,
which produces more nicely proportioned expressions. To do this,
each expression in lines 27, 31, 35, and 44 should have \displaystyle

prepended to each mathtext string. You would also uncomment lines
19–20 and comment out line 18. The result is shown in Fig. 6.15.3

3For LATEX experts, matplotlib’s mathtext does not recognize TEX’s $$...$$ syntax
for displayed equations, but you can get the same result with the \displaystyle
switch.

Plotting 131∑
\sum

∑∞
i=0 \sum_{i=0}^{\infty}∏

\prod
∏∞
i=0 \prod_{i=0}^{\infty}∫

\int
∫ b
a
f (x)dx \int_{a}^{b}f(x)\,dx

√
q \sqrt{q} lim

x→∞
f (x) \lim_{x\to\infty}\ f(x)

∇ \nabla eiπ + 1 = 0 e^{i\pi}+1=0

sinφ \sin\,\phi sinhz \sinh\,z

cosθ \cos\,\theta coshy \cosh\,y

tanx \tan\,x tanhx \tanh\,x

B \mathbf{B} ~W = ~F · ~x \vec{W} = \vec{F}\cdot\vec{x}

23◦C 23°C ~L = ~r × ~p \vec{L} = \vec{r}\times\vec{p}

a ≤ b a \leq b a1/3b
x+y \frac{a^{1/3}b}{x+y}

a ≥ b a \geq b 〈x〉 \langle x \rangle

a ≡ b a \equiv b a†|n〉 a^\dagger|n\rangle

Table 6.3 Mathtext (LATEX) codes for miscellaneous mathematical expres-
sions. Search “latex math symbols” on the internet for more extensive lists.

0 2 4 6 8 10

t/τ (ms)

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(t

)

Γ(z) =

∫ ∞

0

xz−1e−xdx

ex =
∞∑

n=0

xn

n!

ζ(z) =
∞∏

k=0

1

1− p−zk

ω = 12.0, γ = 8.0, τ = 1.0

e = lim
n→∞

(
1 +

1

n

)n

Figure 6.15 Plot using LATEX for Greek letters and mathematical symbols.

6.7 The Structure of matplotlib: OOP and All That

In this section, we provide an overview of the logical structure of mat-
plotlib. On a first pass, you can certainly skip this section, but you
may find it useful for a variety of reasons. First, it will help you bet-
ter understand the matplotlib syntax we introduced in §6.4. Second,

132 Introduction to Python for Science & Engineering

BACKEND

ARTIST

PYPLOT

FigureCanvas Renderer Event

Figure Axes
Line2D
Patch
Text

matplotlib.pyplot

Figure 6.16 matplotlib software layers, from the low-level backend to the
high level PyPlot.

it should improve your ability to read and understand the official on-
line documentation as well as other online resources such as our fa-
vorite, stackoverflow.4 The writing in these and other web resources
is replete with jargon and ideas than can be frustratingly obscure to
a novice. Much of it is the jargon of object-oriented programming.
Other parts pertain to the jargon of graphical user interfaces, or GUIs.
In this section, we introduce the basic structure of matplotlib and ex-
plain its lexicon.

matplotlib is a Python module for generating graphical output to
your computer screen or to a computer file. Fundamentally, its job
is to translate Python scripts into graphical instructions that your
computer can understand. It does this using two different layers of
software, the backend layer and the artist layer. To these two layers
it adds a scripting layer, PyPlot, which we have met already (import
matplotlib.pyplot as plt). PyPlot is a convenience layer, and not re-
ally necessary, but it facilitates rapid scripting, and aids with porta-
bility. As you shall see, for most programming we advocate using a
hybrid of the scripting and artist layers. Figure 6.16 portrays the mat-
plotlib software hierarchy.

6.7.1 The backend layer

For the sake of being concrete, we’ll start by considering the task of
creating a figure on your computer screen. matplotlib must be able

4https://stackoverflow.com/tags/matplotlib/info

https://stackoverflow.com/tags/matplotlib/info

Plotting 133

to generate graphics using different computer platforms: Linux, Mi-
crosoft Windows, and macOS. Of course, we want matplotlib to do
this in a way that is transportable from one platform to another and
transparent to you the user. Ideally, the Python matplotlib code you
write on your PC should work without modification on your friend’s
Mac or Linux computer.

To accomplish this, matplotlib uses open source cross-platform
software toolkits written by third parties. There are a number of dif-
ferent toolkits available. Most of these toolkits can write graphics to
computer screens on different platforms, including Windows, macOS,
and Linux. They are written mostly in C++, and are very efficient and
powerful. To harness their power and versatility, matplotlib provides a
number of Python “wrappers”—Python functions—that call the C++
functions of these toolkits to send graphics instructions to your com-
puter.5 matplotlib calls these wrappers backends.

Several backends have been written for matplotlib. They fall
into two categories: those written for output to files—hardcopy
backends—and those for output to a computer screen—user interface
backends, also known as interactive backends.

For output to a computer screen, the qt5Agg backend is among
the most versatile and widely used, so we will use it as an example
of what an interactive backend does.6 The qt5Agg backend is made
from two C++ toolkits: Qt7 and Agg.8 Qt can define windows on your
computer screen, create buttons, scrollbars, and other widgets, that
is to say, elements of a GUI. It can also process events, actions like
clicking a mouse, pressing a keyboard key, moving a scroll bar, or
pressing a button. This includes processing events generated by the
computer, rather than the user, like an alarm clock going off or a pro-
cess finishing. The Agg toolkit is a rendering program that produces
pixel images in memory from vectorial data. For example, you provide
Agg with the equation for a circle and it determines which pixels to

5A Python “wrapper” provides a Python interface to software written in a different
computer language, such as C++ or Fortran. You call a Python function and it calls
a C++ or Fortran program.
6Your installation may use the qt4Agg backend instead of the qt5Agg backend. In
that case, just substitute qt4Agg for qt5Agg in what follows.
7https://en.wikipedia.org/wiki/Qt_(software)
8https://en.wikipedia.org/wiki/Anti-Grain_Geometry

https://en.wikipedia.org/wiki/Anti-Grain_Geometry
https://en.wikipedia.org/wiki/Qt_(software)

134 Introduction to Python for Science & Engineering

activate on the computer screen. It employs advanced rendering tech-
niques like anti-aliasing9 to produce faithful high-resolution graphics.

The job of a matplotlib backend is to provide a Python interface
to the functionality of the underlying C++ (or other language) tool-
kits, which for qt5Agg are qt5 and Agg. The Python-facing parts of all
matplotlib backends have three basic classes:

FigureCanvas defines the canvas—a figure window or a graphics
file—and transfers the output from the Renderer onto this canvas.
It also translates Qt events into the matplotlib Event framework
(see below).

Renderer does the drawing. Basically, it connects matplotlib to the
Agg library described above.

Event handles user inputs such as keyboard and mouse events for
matplotlib.

Besides the qt5Agg backend, there are several other commonly
used interactive backends: TkAgg, GTK3Agg, GTK3Cairo, WXAgg,
and macOSX to name a few. Why all the different backends? Part of
the reason is historical. Early on in the development of matplotlib,
many toolkits worked on only one platform, meaning that a sepa-
rate backend had to be developed for each one. As time has passed,
most toolkits became cross-platform. As better cross-platform graph-
ical tools, generally written in C++, were developed, programmers in
the Python world wanted access to their functionality. Hence the dif-
ferent backends.

As mentioned earlier, there are also hardcopy backends that only
produce graphical output to files. These include Agg (which we al-
ready met as part of qt5Agg), PDF (to produce the Adobe portable
document format), SVG (scalable vector graphics), and Cairo (png,
ps, pdf, and svg).

In the end, the idea of a matplotlib backend is to provide the soft-
ware machinery for setting up a canvas to draw on and the low-level
tools for creating graphical output: plots and images. The drawing
tools of the backend layer, while sufficient for producing any output
you might want, work at too low of a level to be useful for everyday
programming. For this, matplotlib provides another layer, the artist

9See https://en.wikipedia.org/wiki/Spatial_anti-aliasing.

https://en.wikipedia.org/wiki/Spatial_anti-aliasing

Plotting 135

0 1 2 3 4 5 6 7 8
time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vo
lts

A simple plot

Figure 6.17 Plotting without PyPlot using the pure OO-interface.

layer, which provides the software tools you will use for creating and
managing graphical output.

6.7.2 The artist layer

The artist layer consists of a hierarchy of Python classes that facilitate
creating a figure and embellishing it with any and all of the features
we might desire: axes, data points, curves, axes labels, legends, titles,
annotations, and everything else. The first step is to create a figure and
place it on a canvas (figure window, whether on a computer screen or
a computer file). To the figure, we add axes, data, labels, etc. When we
have everything the way we want it, we send it to the screen to display
and/or save it to a file.

To make this concrete, consider the program below that creates
the plot shown in Fig. 6.17.

Code: chapter6/programs/oopTest.py

1 from matplotlib.backends.backend_qt5agg \
2 import FigureCanvasQTAgg as FigureCanvas
3 from matplotlib.figure import Figure
4

5 fig = Figure(figsize=(6, 4))
6 canvas = FigureCanvas(fig)
7 ax = fig.add_subplot(111)
8 ax.plot([1, 2, 3, 2, 3, 4, 3, 4, 5])
9 ax.set_title('A simple plot')

10 ax.grid(True)
11 ax.set_xlabel('time')

136 Introduction to Python for Science & Engineering

12 ax.set_ylabel('volts')
13 canvas.print_figure('figures/oopTest.pdf')
14 canvas.show()

First, we import the FigureCanvas from the qt5Agg backend.10

Then we import Figure from matplotlib.figure. After finishing our
imports, the first step is to define and name (fig) the Figure object
that will serve as a container for our plot. The next step is to attach
the figure to an instance of FigureCanvas, which we name canvas, from
the qt5Agg backend. This places the canvas on the screen and connects
all the matplotlib routines to the Qt and Agg C++ routines that write
to the screen. Next, in line 7, we create a set of axes on our figure,
making a single subplot that takes up the entire frame of the figure.
In fact, lines 7–12 should be completely familiar to you, as they use
the syntax introduced in §6.4. Finally, we write the plot to a file (line
13) and to the screen (line 14) from the canvas, which makes sense,
because that’s what connects the matplotlib routines to the hardware.

The code in this example is native matplotlib object-oriented (OO)
code. In its purest form, it’s the way matplotlib code is supposed to be
written. The code is entirely transportable from one computer to an-
other irrespective of the operating system, so long as the qt5Agg back-
end has been included in the local machine’s Python installation. In
this case, the output should look the same, whether it’s on the screen
or in a file, on Microsoft Windows, macOS, or any of the different
flavors of Linux. By the way, if another machine does not have the
qt5Agg backend installed, you can simply change lines 1 and 2 to a
different backend that is installed, and the program should work as
expected, with no discernible differences.

Before moving on to the next layer of matplotlib, it’s useful to
introduce some matplotlib terminology—jargon—for describing the
artist layer. All of the routines called in lines 5 and 7–12 are part of
the Artist module and the eponymous Artist class of matplotlib. Col-
lectively and individually, all the routines that get attached to fig and
its descendant ax are known as Artists: add_subplot, plot, title, grid,
xlabel, etc. Artists are those matplotlib objects that draw on the can-
vas, including figure. You will see the term Artist employed liberally
in online documentation and commentary on matplotlib. It’s simply

10Lines 1–2 of can be shortened to read:
from matplotlib.backends.backend_qt5Agg import FigureCanvas

Plotting 137

a part of the matplotlib lexicon, along with backend, PyPlot, and the
yet to be mentioned, PyLab.

6.7.3 The PyPlot (scripting) layer

For newcomers to Python, learning about backends and the OOP syn-
tax can create a barrier to code development, particularly engineers
and scientists who come to Python after having first been exposed to
MATLAB®. This is why the PyPlot module was developed, to provide
a simpler and more familiar interface to those coming from software
packages like MATLAB®, or simply for those who are new to Python
programming.

Consider, for example, our first plotting script of a sine function,
which we reproduce here from page 102:

Code: chapter6/programs/sineFunctionPlot33.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 x = np.linspace(0, 4.*np.pi, 33)
4 y = np.sin(x)
5 plt.plot(x, y)
6 plt.show()

After importing NumPy and PyPlot, we simply define the x-y ar-
rays in two lines, make a plot in the next line, and then display it in
the last line: the epitome of simplicity.

PyPlot and backends

There is no mention of a backend in this syntax. Nevertheless, one
must be used so that matplotlib can communicate with the computer.
So how does a backend get loaded using PyPlot? And which backend?
First, a backend is loaded when PyPlot is imported. Second, which
backend is loaded is determined by how you launch IPython. If you
launch it from a terminal or from a Jupyter notebook, the default
backend is set by a matplotlib configuration file named matplotlibrc

on your computer. The file was put on your computer, perhaps with-
out your knowledge, when matplotlib was installed, for example using
the Anaconda or Enthought installations of Python. You can find out
where this file is from an IPython prompt by typing

In [1]: import matplotlib

In [2]: matplotlib.matplotlib_fname()

138 Introduction to Python for Science & Engineering

Out[2]: '/Users/pine/.matplotlib/matplotlibrc'

Alternatively, if you are using a Python IDE like Spyder, the backend
that is used is set in a Preferences menu and loaded when the IDE is
launched. In any case, you can find out which backend was installed
in your IPython shell using a IPython magic command

In [3]: %matplotlib
Out[3]: Using matplotlib backend: Qt5Agg

Thus, using PyPlot frees you up from thinking about the
backend—how matplotlib is connected to your computer’s hardware—
when writing matplotlib routines. That’s a good thing.

PyPlot’s “state-machine” environment

For very simple plots, you can proceed using the syntax introduced in
§6.2 and §6.3. In this syntax, the only matplotlib prefix used is plt.
You can do most of the things you want to do with matplotlib working
in this way. You can make single plots or plots with multiple subplots,
as demonstrated in §6.4.1.

When working in this mode with PyPlot, we are working in a
“state-machine” environment, meaning that where on a canvas Py-
Plot adds features (i.e., Artists) depends on the state of the program.
For example, in the program starting on page 114 that produces the
plot in Fig. 6.9, you make first subplot by including plt.subplot(2,

1, 1) in the program. Everything that comes after that statement af-
fects that subplot, until the program comes to the line plt.subplot(2,

1, 2), which opens up a second subplot. After that statement, every-
thing affects the second subplot. You’ve changed the “state” of the
“machine” (i.e., the FigureCanvas object). Which subplot is affected
by commands in the program depends on which state the machine is
in.

PyPlot’s hybrid OOP environment

Contrast operating in this state-machine mode with the syntax intro-
duced in §6.4. In those programs, we load PyPlot, but then employ the
OOP syntax for creating figures and making subplots. Each subplot
object is referenced by a different object name, e.g., ax1, ax2, or ax[i,

j], where i and j cycle through different values. These object names
identify the target of a function, not the state of the machine. It’s a
more powerful way of programming and provides more versatility in

Plotting 139

writing code. For example, in making the plots shown in Fig. 6.12,
we could conveniently combine the labeling of the y-axes by cycling
through object names of each subplot towards the end of the program
(see page 123). This would be hard to do with the state-machine ap-
proach.

In general, most programming with matplotlib should be done us-
ing this hybrid (but basically OOP) approach introduced in §6.4. The
state-machine approach we employed in earlier sections should be re-
served for short snippets of code.

6.8 Contour and Vector Field Plots

matplotlib has extensive tools for creating and annotating two-
dimensional contour plots and vector field plots. A contour plot is used
to visualize two-dimensional scalar functions, such as the electric po-
tential V (x,y) or elevations h(x,y) over some physical terrain. Vector
field plots come in different varieties. There are field line plots, which
in some contexts are called streamline plots, that show the direction
of a vector field over some 2D (x,y) range. There are also quiver plots,
which consist essentially of a 2D grid of arrows, that give the direction
and magnitude of a vector field over some 2D (x,y) range.

6.8.1 Making a 2D grid of points

When plotting a function f (x) of a single variable, the first step is usu-
ally to create a one-dimensional x array of points, and then to evaluate
and plot the function f (x) at those points, often drawing lines between
the points to create a continuous curve. Similarly, when making a two-
dimensional plot, we usually need to make a two-dimensional x-y ar-
ray of points, and then to evaluate and plot the function f (x,y), be it
a scaler or vector function, at those points, perhaps with continuous
curves to indicate the value of the function over the 2D surface.

Thus, instead of having a line of evenly spaced x points, we need
a grid of evenly spaced x-y points. Fortunately, NumPy has a function
np.meshgrid for doing just that. The procedure is first to make an x-
array at even intervals over the range of x to be covered, and then
to do the same for y. These two one-dimensional arrays are used as
input to the np.meshgrid function, which makes a two-dimensional
mesh. Here is how it works:

140 Introduction to Python for Science & Engineering

In [1]: x = linspace(-1, 1, 5)

In [2]: x
Out[2]: array([-1. , -0.5, 0. , 0.5, 1.])

In [3]: y = linspace(2, 6, 5)

In [4]: y
Out[4]: array([2., 3., 4., 5., 6.])

In [5]: X, Y = np.meshgrid(x, y)

In [6]: X
Out[6]:
array([[-1. , -0.5, 0. , 0.5, 1.],

[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.],
[-1. , -0.5, 0. , 0.5, 1.]])

In [7]: Y
Out[7]:
array([[2., 2., 2., 2., 2.],

[3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4.],
[5., 5., 5., 5., 5.],
[6., 6., 6., 6., 6.]])

In [7]: plot(X, Y, 'o')

The output of plot(X, Y, 'o') is a 2D grid of points, as shown in
Fig. 6.18. matplotlib’s functions for making contour plots and vector
field plots generally use the output of gridmesh as the 2D input for the
functions to be plotted.

6.8.2 Contour plots

The principal matplotlib routines for creating contour plots are
contour and contourf. Sometimes you would like to make a contour
plot of a function of two variables; other times you may wish to make
a contour plot of some data you have. Of the two, making a contour
plot of a function is simpler, which is all we cover here.

Contour plots of functions

Figure 6.19 shows four different contour plots. All were produced
using contour except the upper left plot which was produced using

Plotting 141

Figure 6.18 Point pattern produced by np.gridmesh(X, Y).

contourf. All plot the same function, which is the sum of a pair of
Gaussians, one positive and the other negative:

f (x,y) = 2e−
1
2 [(x−2)2+(y−1)2] − 3e−2[(x−1)2+(y−2)2] (6.1)

The code that produces Fig. 6.19 is given below.

Code: chapter6/programs/contour4.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.cm as cm # color maps
4 import matplotlib
5

6

7 def pmgauss(x, y):
8 r1 = (x-1)**2 + (y-2)**2
9 r2 = (x-3)**2 + (y-1)**2

10 return 2*np.exp(-0.5*r1) - 3*np.exp(-2*r2)
11

12

13 a, b = 4, 3
14

15 x = np.linspace(0, a, 60)
16 y = np.linspace(0, b, 45)
17

18 X, Y = np.meshgrid(x, y)
19 Z = pmgauss(X, Y)
20

142 Introduction to Python for Science & Engineering

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

-2.4
-1.8

-1
.2

-0.60.0

0.6

1.2

1.2

1.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y -2.1
-1.5

-0.9

-0
.3

-0.
3

0.3

0.9

1.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

-2.5
-2.0-1.5

-1.0

-0.5

0.
0

0.5

1.0

1.0

1.5

3.2

2.4

1.6

0.8

0.0

0.8

1.6

he
ig

ht

2

1

0

1

he
ig

ht

Figure 6.19 Contour plots.

21 fig, ax = plt.subplots(2, 2, figsize=(9.4, 6.5),
22 sharex=True, sharey=True,
23 gridspec_kw={'width_ratios': [4, 5]})
24

25 CS0 = ax[0, 0].contour(X, Y, Z, 8, colors='k')
26 ax[0, 0].clabel(CS0, fontsize=9, fmt='%0.1f')
27 matplotlib.rcParams['contour.negative_linestyle'] = 'dashed'
28 ax[0, 0].plot(X, Y, 'o', ms=1, color='lightgray', zorder=-1)
29

30 CS1 = ax[0, 1].contourf(X, Y, Z, 12, cmap=cm.gray, zorder=0)
31 cbar1 = fig.colorbar(CS1, shrink=0.8, ax=ax[0, 1])
32 cbar1.set_label(label='height', fontsize=10)
33 plt.setp(cbar1.ax.yaxis.get_ticklabels(), fontsize=8)
34

35 lev2 = np.arange(-3, 2, 0.3)
36 CS2 = ax[1, 0].contour(X, Y, Z, levels=lev2, colors='k',
37 linewidths=0.5)
38 ax[1, 0].clabel(CS2, lev2[1::2], fontsize=9, fmt='%0.1f')
39

40 CS3 = ax[1, 1].contour(X, Y, Z, 10, colors='gray')
41 ax[1, 1].clabel(CS3, fontsize=9, fmt='%0.1f')
42 im = ax[1, 1].imshow(Z, interpolation='bilinear',
43 origin='lower', cmap=cm.gray,

Plotting 143

44 extent=(0, a, 0, b))
45 cbar2 = fig.colorbar(im, shrink=0.8, ax=ax[1, 1])
46 cbar2.set_label(label='height', fontsize=10)
47 plt.setp(cbar2.ax.yaxis.get_ticklabels(), fontsize=8)
48

49 for i in range(2):
50 ax[1, i].set_xlabel(r'x', fontsize=14)
51 ax[i, 0].set_ylabel(r'y', fontsize=14)
52 for j in range(2):
53 ax[i, j].set_aspect('equal')
54 ax[i, j].set_xlim(0, a)
55 ax[i, j].set_ylim(0, b)
56 plt.subplots_adjust(left=0.06, bottom=0.07, right=0.99,
57 top=0.99, wspace=0.06, hspace=0.09)

After defining the function to be plotted in lines 7–10, the next
step is to create the x-y array of points at which the function will
be evaluated using np.meshgrid. We use np.linspace rather than
np.arange to define the extent of the x-y mesh because we want the
x range to go precisely from 0 to a=4 and the y range to go precisely
from 0 to b=3. We use np.linspace for two reasons. First, if we use
np.arange, the array of data points does not include the upper bound,
while np.linspace does. This is important for producing the grayscale
(or color) background that extends all the way to the upper limits
of the x-y ranges in the upper-right plot, produced by contourf, of
Fig. 6.19. Second, to produce smooth-looking contours, one gener-
ally needs about 40–200 points in each direction across the plot, ir-
respective of the absolute magnitude of the numbers being plotted.
The number of points is directly specified by np.linspace but must be
calculated for np.arange. We follow the convention that the meshgrid

variables are capitalized, which seems to be a standard followed by
many programmers. It’s certainly not necessary.

The upper-left contour plot takes the X-Y 2D arrays made using
gridspec as its first two arguments and Z as its third argument. The
third argument tells contour to make approximately 5 different levels
in Z. We give the contour object a name, as it is needed by the clabel

call in the next line, which sets the font size and the format of the
numbers that label the contours. The line style of the negative con-
tours is set globally to be “dashed” by a call to matplotlib’s rcparams.
We also plot the location of the X-Y grid created by gridspec just for
the sake of illustrating its function; normally these would not be plot-
ted.

The upper-right contour plot is made using contourf with 12 dif-

144 Introduction to Python for Science & Engineering

ferent Z layers indicated by the different gray levels. The gray color
scheme is set by the keyword argument cmap, which here is set to
the matplotlib.cm color scheme cm.gray. Other color schemes can be
found in the matplotlib documentation by an internet search on “mat-
plotlib choosing colormaps.” The color bar legend on the right is cre-
ated by the colorbar method, which is attached to fig. It is associated
with the upper right plot by the name CS1 of the contourf method
and by the keyword argument ax=ax[0, 1]. Its size relative to the plot
is determined by the shrink keyword. The font size of the color bar
label is set using the generic set property method setp using a some-
what arcane but compact syntax.

For the lower-left contour plot CS2, we manually specify the levels
of the contours with the keyword argument levels=lev2. We spec-
ify that only every other contour will be labeled numerically with
lev2[1::2] as the second argument of the clabel call in line 38;
lev2[0::2] would also label every other contour, but the even ones
instead of the odd ones.

The lower-right contour plot CS3 has 10 contour levels and a con-
tinuously varying grayscale background created using imshow. The
imshow method uses only the Z array to determine the gray levels. The
x-y extent of the grayscale background is determined by the keyword
argment extent. By default, imshow uses the upper-left corner as its
origin. We override the default using the imshow keyword argument
origin='lower' so that the grayscale is consistent with the data. The
keyword argument iterpolation tells imshow how to interpolate the
grayscale between different Z levels.

6.8.3 Streamline plots

matplotlib can also make streamline plots, which are sometimes called
field line plots. The matplotlib function call to make such plots is
streamplot, and its use is illustrated in Fig. 6.20 to plot the stream-
lines of the velocity field of a viscous liquid around a sphere falling
through it at constant velocity u. The left plot is in the reference frame
of the falling sphere and the right plot is in the laboratory frame
where the liquid very far from the sphere is at rest. The program that
produces Fig. 6.20 is given below.

Code: chapter6/programs/stokesFlowStream.py

1 import numpy as np

Plotting 145

2 import matplotlib.pyplot as plt
3 from matplotlib.patches import Circle
4

5

6 def v(u, a, x, z):
7 """Return the velocity vector field v = (vx, vy)
8 around sphere at r=0."""
9 r = np.sqrt(x*x+z*z)

10 R = a/r
11 RR = R*R
12 cs, sn = z/r, x/r
13 vr = u * cs * (1.0 - 0.5 * R * (3.0 - RR))
14 vtheta = -u * sn * (1.0 - 0.25 * R * (3.0 + RR))
15 vx = vr * sn + vtheta * cs
16 vz = vr * cs - vtheta * sn
17 return vx, vz
18

19

20 # Grid of x, y points
21 xlim, zlim = 12, 12
22 nx, nz = 100, 100
23 x = np.linspace(-xlim, xlim, nx)
24 z = np.linspace(-zlim, zlim, nz)
25 X, Z = np.meshgrid(x, z)
26

27 # Set particle radius and velocity
28 a, u = 1.0, 1.0
29

30 # Velocity field vector, V=(Vx, Vz) as separate components
31 Vx, Vz = v(u, a, X, Z)
32

33 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5))
34

35 # Plot the streamlines using colormap and arrow style
36 color = np.log(np.sqrt(Vx*Vx + Vz*Vz))
37 seedx = np.linspace(-xlim, xlim, 18) # Seed streamlines
38 seedz = -zlim * np.ones(len(seedx)) # evenly in far field
39 seed = np.array([seedx, seedz])
40 ax1.streamplot(x, z, Vx, Vz, color=color, linewidth=1,
41 cmap='afmhot', density=5, arrowstyle='-|>',
42 arrowsize=1.0, minlength=0.4,
43 start_points=seed.T)
44 ax2.streamplot(x, z, Vx, Vz-u, color=color, linewidth=1,
45 cmap='afmhot', density=5, arrowstyle='-|>',
46 arrowsize=1.0, minlength=0.4,
47 start_points=seed.T)
48 for ax in (ax1, ax2):
49 # Add filled circle for sphere
50 ax.add_patch(Circle((0, 0), a, color='C0', zorder=2))

146 Introduction to Python for Science & Engineering

7.5 5.0 2.5 0.0 2.5 5.0 7.5
x

8

6

4

2

0

2

4

6

8
z

7.5 5.0 2.5 0.0 2.5 5.0 7.5
x

8

6

4

2

0

2

4

6

8

z

Figure 6.20 Streamlines of flow around a sphere falling in a viscous fluid.

51 ax.set_xlabel('x')
52 ax.set_ylabel('z')
53 ax.set_aspect('equal')
54 ax.set_xlim(-0.7*xlim, 0.7*xlim)
55 ax.set_ylim(-0.7*zlim, 0.7*zlim)
56 fig.tight_layout()
57 fig.savefig('./figures/stokesFlowStream.pdf')
58 fig.show()

The program starts by defining a function that calculates the ve-
locity field as a function of the lateral distance x and the vertical
distance z. The function is a solution to the Stokes equation, which
describes flow in viscous liquids at very low (zero) Reynolds num-
ber. The velocity field serves as the primary input into the matplotlib
streamplot function.

The next step is to use NumPy’s meshgrid program to define the
2D grid of points at which the velocity field will be calculated, just as
we did for the contour plots. After setting up the meshgrid arrays X

and Z, we call the function we defined v(u, a, X, Z) to calculate the
velocity field (line 31).

The streamplot functions are set up in lines 36–39 and called in
lines 40–47. Note that for the streamplot function the input x-z co-
ordinate arrays are 1D arrays but the velocity arrays Vx-Vz are 2D ar-
rays. The arrays seedx and seedx set up the starting points (seeds) for
the streamlines. You can leave them out and streamplot will make its
own choices based on the values you set for the density and minlength

Plotting 147

60 40 20 0 20 40 60
x/a

60

40

20

0

20

40

60
z/

a

Re = 0.3

10 3

10 2

10 1

100

flu
id

 sp
ee

d

Figure 6.21 Streamlines of flow around a sphere falling in a fluid.

keywords. Here we have chosen them, along with the seed settings, so
that all the streamlines are continuous across the plot. The other key-
words set the properties for the arrow size and style, the width of the
streamlines, and the coloring of the streamlines, in this case according
to the speed at a given point.

Let’s look at another streamline plot, which illustrates some other
possibilities for customizing streamline plots. The plot in Fig. 6.21
shows the streamlines for a faster moving sphere, and makes dif-
ferent choices than the plot above. The code to make this plot,
stokesOseenFlow.py, is provided on the next page. The most notice-
able difference is the use of the matplotlib function pcolor in lines
58–60 that adds background coloring to the plot keyed to the local
speed of the liquid. A logarithmic color scale is used with a log-
arithmic color bar, which is set up by setting the pcolor keyword
norm=LogNorm(vmin=speed.min(), vmax=1) in line 59.

148 Introduction to Python for Science & Engineering

Code: chapter6/programs/stokesOseenFlow.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4 from matplotlib.patches import Circle
5 from matplotlib.colors import LogNorm
6

7 matplotlib.rcParams.update({'font.size': 12})
8

9

10 def v(u, a, x, z, Re):
11 """Return the velocity vector field v = (vx, vy)
12 around sphere at r=0."""
13 theta = np.arctan2(-x, -z)
14 cs, sn = np.cos(theta), np.sin(theta)
15 R = a/np.sqrt(x*x+z*z)
16 if Re > 0: # Oseen solution
17 ex = np.exp(-0.5*Re*(1.0+cs)/R)
18 vr = 0.5 * u * R * \
19 (1.5*(1.0-cs)*ex - R*(3.0*(1-ex)/Re - R*cs))
20 vtheta = 0.25 * u * R * sn * (3.0*ex - R*R)
21 else: # Stokes solution
22 RR = R*R
23 vr = 0.5 * u * cs * R * (RR - 3.0)
24 vtheta = 0.25 * u * sn * R * (RR + 3.0)
25 vx = vr * sn + vtheta * cs
26 vz = vr * cs - vtheta * sn
27 return vx, vz
28

29

30 def stokesWake(x, Re):
31 """Return parabola r[1+cos(theta)]=xi of Stokes wake"""
32 z = -0.5 * (1.0/Re - x*x*Re)
33 return np.ma.masked_where(x*x+z*z < 1.0/Re**2, z)
34

35

36 # Set particle radius and velocity
37 a, u = 1.0, 1.0 # normalizes radius & velocity
38 Re = 0.3 # Reynolds number (depends on viscosity)
39

40 # Grid of x, z points
41 xlim, zlim = 60, 60
42 nx, nz = 200, 200
43 x = np.linspace(-xlim, xlim, nx)
44 z = np.linspace(-zlim, zlim, nz)
45 X, Z = np.meshgrid(x, z)
46

47 # Velocity field vector, v=(Vx, Vz) as separate components

Plotting 149

48 Vx, Vz = v(u, a, X, Z, Re)
49 R = np.sqrt(X*X+Z*Z)
50 speed = np.sqrt(Vx*Vx+Vz*Vz)
51 speed[R < a] = u # set particle speed to u
52

53 fig, ax = plt.subplots(figsize=(8, 8))
54

55 # Plot the streamlines with an bwr colormap and arrow style
56 ax.streamplot(x, z, Vx, Vz, linewidth=1, density=[1, 2],
57 arrowstyle='-|>', arrowsize=0.7, color='C0')
58 cntr = ax.pcolor(X, Z, speed,
59 norm=LogNorm(vmin=speed.min(), vmax=1),
60 cmap=plt.cm.bwr)
61 if Re > 0:
62 ax.add_patch(Circle((0, 0), 1/Re, color='black',
63 fill=False, ls='dashed', zorder=2))
64 ax.plot(x, stokesWake(x, Re), color='black', lw=1,
65 ls='dashed', zorder=2)
66 cbar = fig.colorbar(cntr, ax=ax, aspect=50, fraction=0.02,
67 shrink=0.9, pad=0.01)
68 cbar.set_label(label='fluid speed', fontsize=10)
69 plt.setp(cbar.ax.yaxis.get_ticklabels(), fontsize=10)
70 cbar.set_clim(speed.min(), 1)
71 cbar.draw_all()
72

73 # Add filled circle for sphere
74 ax.add_patch(Circle((0, 0), a, color='black', zorder=2))
75 ax.set_xlabel('x/a')
76 ax.set_ylabel('z/a')
77 ax.set_aspect(1)
78 ax.set_xlim(-xlim, xlim)
79 ax.set_ylim(-zlim, zlim)
80 ax.text(0.5, 0.99, r"$Re = {0:g}$".format(Re), ha='center',
81 va='top', transform=ax.transAxes)
82 fig.savefig('./figures/stokesOseenFlow.pdf')
83 fig.show()

6.9 Three-Dimensional Plots

While matplotlib is primarily a 2D plotting package, it does have basic
3D plotting capabilities. To create a 3D plot, we need to import Axes3D
from mpl_toolkits.mplot3d and then set the keyword projection to
'3d' in a subplot call as follows:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()

150 Introduction to Python for Science & Engineering

ax = fig.add_subplot(111, projection='3d')

Different 2D and 3D subplots can be mixed within the same figure
window by setting projection='3d' only in those subplots where 3D
plotting is desired. Alternatively, all the subplots in a figure can be set
to be 3D plots using the subplots function:

fig, ax = plt.subplots(subplot_kw={'projection': '3d'})

As you might expect, the third axis in a 3D plot is called the z-axis,
and the same commands for labeling and setting the limits that work
for the x and y axes also work for the z-axis.

As a demonstration of matplotlib’s 3D plotting capabilities, Fig.
6.22 shows a wireframe and a surface plot of Eq. (6.1), the same equa-
tion we plotted with contour plots in Fig. 6.19. The code used to make
Fig. 6.22 is given below.

Code: chapter6/programs/wireframeSurfacePlots.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
4

5

6 def pmgauss(x, y):
7 r1 = (x-1)**2 + (y-2)**2
8 r2 = (x-3)**2 + (y-1)**2
9 return 2*np.exp(-0.5*r1) - 3*np.exp(-2*r2)

10

11

12 a, b = 4, 3

x

0
1

2
3

4 y
0

1
2

3

f(x
, y

)

3
2

1

0

1

2

x

0
1

2
3

4 y
0

1
2

3

f(x
, y

)

3
2

1

0

1

2

Figure 6.22 Wireframe and surface plots.

Plotting 151

13

14 x = np.linspace(0, a, 60)
15 y = np.linspace(0, b, 45)
16

17 X, Y = np.meshgrid(x, y)
18 Z = pmgauss(X, Y)
19

20 fig, ax = plt.subplots(1, 2, figsize=(9.2, 4),
21 subplot_kw={'projection': '3d'})
22 for i in range(2):
23 ax[i].set_zlim(-3, 2)
24 ax[i].xaxis.set_ticks(range(a+1)) # manually set ticks
25 ax[i].yaxis.set_ticks(range(b+1))
26 ax[i].set_xlabel(r'x')
27 ax[i].set_ylabel(r'y')
28 ax[i].set_zlabel(r'$f(x,y)$')
29 ax[i].view_init(40, -30)
30

31 # Plot wireframe and surface plots.
32 plt.subplots_adjust(left=0.04, bottom=0.04, right=0.96,
33 top=0.96, wspace=0.05)
34 p0 = ax[0].plot_wireframe(X, Y, Z, rcount=40, ccount=40,
35 color='C1')
36 p1 = ax[1].plot_surface(X, Y, Z, rcount=50, ccount=50,
37 color='C1')
38 plt.subplots_adjust(left=0.0)
39 plt.savefig('./figures/wireframeSurfacePlots.pdf')

The 3D wireframe and surface plots use the same meshgrid func-
tion to set up the x-y 2D arrays. The rcount and ccount keywords set
the maximum number of rows and columns used to sample the input
data to generate the graph.

These plotting examples are just a sample of many kinds of plots
that can be made by matplotlib. Our purpose is not to exhaustively
list all the possibilities here but rather to introduce you the matplotlib
package. Online documentation and examples are available for you to
explore the full range of possibilities.

152 Introduction to Python for Science & Engineering

6.10 Exercises

1. Plot the function y = 3x2 for −1 ≤ x ≤ 3 as a continuous line. In-
clude enough points so that the curve you plot appears smooth.
Label the axes x and y.

2. Plot the following function for −15 ≤ x ≤ 15:

y =
cosx

1 + 1
5x

2

Include enough points so that the curve you plot appears smooth.
Draw thin gray lines, one horizontal at y = 0 and the other vertical
at x = 0. Both lines should appear behind the function. Label the
axes x and y.

3. Plot the functions sinx and cosx vs x on the same plot with x going
from −π to π. Make sure the limits of the x-axis do not extend be-
yond the limits of the data. Plot sin x in the color orange and cosx
in the color green and include a legend to label the two curves.
Place the legend within the plot, but such that it does not cover
either of the sine or cosine traces. Draw thin gray lines behind the
curves, one horizontal at y = 0 and the other vertical at x = 0.

4. Create a data file with the data shown below.

(a) Read the data into the Python program and plot t vs. y using
circles for data points with error bars. Use the data in the dy

column as the error estimates for the y data. Label the hori-
zontal and vertical axes “time (s)” and “position (cm).” Create
your plot using the fig, ax = plt.subplots() syntax.

(b) On the same graph, plot the function below as a smooth line.
Make the line pass behind the data points.

y(t) =
(
3 +

1
2

sin
πt
5

)
te−t/10

Data for Exercise 4
Date: 16-Aug-2013
Data taken by Lauren and John

t y dy
1.0 2.94 0.7
4.5 8.29 1.2
8.0 9.36 1.2

Plotting 153

11.5 11.60 1.4
15.0 9.32 1.3
18.5 7.75 1.1
22.0 8.06 1.2
25.5 5.60 1.0
29.0 4.50 0.8
32.5 4.01 0.8
36.0 2.62 0.7
39.5 1.70 0.6
43.0 2.03 0.6

5. Use matplotlib’s function hist along with NumPy’s functions
random.rand and random.randn to create the histogram graphs
shown in Fig. 9.2. See §9.2 for a description of NumPy’s random
number functions.

6. The data file below shows data obtained for the displacement (po-
sition) vs. time of a falling object, together with the estimated un-
certainty in the displacement.

Measurements of fall velocity vs time
Taken by A.P. Crawford and S.M. Torres
19-Sep-13
time (s) position (m) uncertainty (m)
0.0 0.0 0.04
0.5 1.3 0.12
1.0 5.1 0.2
1.5 10.9 0.3
2.0 18.9 0.4
2.5 28.7 0.4
3.0 40.3 0.5
3.5 53.1 0.6
4.0 67.5 0.6
4.5 82.3 0.6
5.0 97.6 0.7
5.5 113.8 0.7
6.0 131.2 0.7
6.5 148.5 0.7
7.0 166.2 0.7
7.5 184.2 0.7
8.0 201.6 0.7
8.5 220.1 0.7
9.0 238.3 0.7
9.5 256.5 0.7

10.0 275.6 0.8

(a) Use these data to calculate the velocity and acceleration (in

154 Introduction to Python for Science & Engineering

a Python program .py file), together with their uncertainties
propagated from the displacement vs. time uncertainties. Be
sure to calculate time arrays corresponding the midpoint in
time between the two displacements or velocities for the ve-
locity and acceleration arrays, respectively.

(b) In a single window frame, make three vertically stacked plots
of the displacement, velocity, and acceleration vs. time. Show
the error bars on the different plots. Make sure that the time
axes of all three plots cover the same range of times (use
sharex). Why do the relative sizes of the error bars grow pro-
gressively greater as one progresses from displacement to ve-
locity to acceleration?

7. Starting from the code that produced Fig. 6.9, write a program us-
ing the mixed-OOP syntax introduced in §6.4.1 to produce the plot
below. To create this plot, you will need to use the sharex feature
introduced in §6.4.1, the subplots_adjust function to adjust the
space between the two subplots, and the LATEX syntax introduced
in §6.6 to produce the math and Greek symbols. To shorten your
program, try to use for loops where there is repetitive code.

7.5

5.0

2.5

0.0

2.5

5.0

7.5

ta
n

0 1 2 3 4 5 6 7 8
7.5

5.0

2.5

0.0

2.5

5.0

7.5

co
t

chapter 7

Functions

In this chapter you learn how to write your own functions, sim-
ilar to the functions provided by Python and NumPy. You learn
how to write functions that process NumPy arrays efficiently. You
learn how to write functions with variable numbers of arguments
and how to pass function names (and the arguments of those func-
tions) as an argument of a function you write. We introduce the
concept of namespace, which isolates the names of variables and
functions created inside a function from those created outside the
function, with particular attention given to the subtle subject of
passing mutable and immutable objects. You learn about anony-
mous functions (lambda functions in Python) and their uses. We
continue our discussion of objects and their associated methods and
instance variables, here in the context of NumPy arrays. Finally, we
illustrate some features of Python functions with their application
to least squares fitting.

As you develop more complex computer code, it becomes increas-
ingly important to organize your code into modular blocks. One im-
portant means for doing so is user-defined Python functions. User-
defined functions are a lot like built-in functions that we have en-
countered in core Python as well as in NumPy and matplotlib. The
main difference is that user-defined functions are written by you. The
idea is to define functions to simplify your code, improve its readabil-
ity, and to allow you to reuse the same code in different contexts.

The number of ways that functions are used in programming is
so varied that we cannot possibly enumerate all the possibilities. As
our use of Python functions in scientific programming is somewhat
specialized, we introduce only a few of the possible uses of Python
functions, ones that are the most common in scientific programming.

155

156 Introduction to Python for Science & Engineering

7.1 User-Defined Functions

The NumPy package contains a vast number of mathematical func-
tions. You can find a listing of them at http://docs.scipy.org/doc
/numpy/reference/routines.math.html. While the list may seem
pretty exhaustive, you may nevertheless find that you need a func-
tion that is not available in the NumPy Python library. In those cases,
you will want to write your own function.

In studies of optics and signal processing, one often runs into the
sinc function, which is defined as

sincx ≡ sinx
x

.

Let’s write a Python function for the sinc function. Here is our first
attempt:

Code: chapter7/programs/sinc0.py

1 import numpy as np
2 def sinc(x):
3 y = np.sin(x)/x
4 return y

Every function definition begins with the word def followed by the
name you want to give to the function, sinc in this case, then a list
of arguments enclosed in parentheses, and finally terminated with a
colon. In this case there is only one argument, x, but in general there
can be as many arguments as you want, including no arguments at all.
For the moment, we will consider the case of just a single argument.

The indented block of code following def sinc(x): defines what
the function does. In this case, the first line calculates sincx = sinx/x
and sets it equal to y. The return statement of the last line tells Python
to return the value of y to the user.

We can try it out in the IPython shell. You can either run the pro-
gram above that you wrote into a python file or you can type it in—it’s
only three lines long—into the IPython shell:

In [1]: def sinc(x):
...: y = np.sin(x)/x
...: return y

We assume you have already imported NumPy. Now the function
sincx is available to be used from the IPython shell.

In [2]: sinc(4)

http://docs.scipy.org/doc/numpy/reference/routines.math.html
http://docs.scipy.org/doc/numpy/reference/routines.math.html

Functions 157

Out[2]: -0.18920062382698205

In [3]: a = sinc(1.2)

In [4]: a
Out[4]: 0.77669923830602194

In [5]: np.sin(1.2)/1.2
Out[5]: 0.77669923830602194

Inputs and outputs 4 and 5 verify that the function does indeed
give the same result as an explicit calculation of sin x/x.

You may have noticed that there is a problem with our definition
of sincx when x = 0. Let’s try it out and see what happens

In [6]: sinc(0.0)
Out[6]: nan

IPython returns nan or “not a number,” which occurs when Python
attempts a division by zero. This is not the desired response as sincx
is, in fact, perfectly well defined for x = 0. You can verify this using
L’Hopital’s rule, which you may have learned in your study of calcu-
lus, or you can ascertain the correct answer by calculating the Taylor
series for sincx. Here is what we get:

sinc x =
sinx
x

=
x − x3

3! + x5

5! + . . .
x

= 1− x
2

3!
+
x4

5!
+

From the Taylor series, it is clear that sincx is well-defined at and near
x = 0 and that, in fact, sinc(0) = 1. Let’s modify our function so that it
gives the correct value for x=0.

In [7]: def sinc(x):
...: if x == 0.0:
...: y = 1.0
...: else:
...: y = np.sin(x)/x
...: return y

In [8]: sinc(0)
Out[8]: 1.0

In [9]: sinc(1.2)
Out[9]: 0.77669923830602194

Now our function gives the correct value for x = 0 as well as for
values different from zero.

158 Introduction to Python for Science & Engineering

7.1.1 Looping over arrays in user-defined functions

The code for sinc xworks just fine when the argument is a single num-
ber or a variable that represents a single number. However, if the ar-
gument is a NumPy array, we run into a problem, as illustrated below.

In [10]: x = np.arange(0, 5., 0.5)

In [11]: x
Out[11]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. ,

3.5, 4. , 4.5])
In [12]: sinc(x)
Traceback (most recent call last):

File "<ipython-input-4-b1a03b10f8ff>", line 1, in <module>
sinc(x)

File "<ipython-input-1-c944de847889>", line 2, in sinc
if x==0.0:

ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

The if statement in Python is set up to evaluate the truth value of
a single variable, not of multi-element arrays. When Python is asked
to evaluate the truth value for a multi-element array, it doesn’t know
what to do and therefore returns an error.

An obvious way to handle this problem is to write the code so that
it processes the array one element at a time, which you could do using
a for loop, as illustrated below.

Code: chapter7/programs/sinc2.py

1 def sinc(x):
2 y = [] # empty list to store results
3 for xx in x: # loops over in x array
4 if xx == 0.0: # appends result of 1.0 to
5 y += [1.0] # y list if xx is zero
6 else: # appends result of sin(xx)/xx to y
7 y += [np.sin(xx)/xx] # list if xx is not zero
8 return np.array(y) # converts y to array and
9

10

11 # returns array
12 import numpy as np
13 import matplotlib.pyplot as plt
14

15 x = np.linspace(-10, 10, 255)
16 y = sinc(x)

Functions 159

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.1 Plot of user-defined sinc(x) function.

17

18 fig, ax = plt.subplots(figsize=(8, 4))
19 ax.plot(x, y)
20 ax.set_xlim(-10, 10)
21 ax.axhline(color="gray", zorder=-1)
22 ax.axvline(color="gray", zorder=-1)
23 fig.savefig("sinc2.pdf")
24 fig.show()

The for loop evaluates the elements of the x array one by one and
appends the results to the list y one by one. When it is finished, it
converts the list to an array and returns the array. The code following
the function definition plots sincx as a function of x.

In the program above, you may have noticed that the NumPy li-
brary is imported after the sinc(x) function definition. As the func-
tion uses the NumPy functions sin and array, you may wonder how
this program can work. Doesn’t the import numpy statement have to
be called before any NumPy functions are used? The answer is an
emphatic “YES.” What you need to understand is that the function
definition is not executed when it is defined, nor can it be, as it has
no input x data to process. That part of the code is just a definition.
The first time the code for the sinc(x) function is actually executed
is when it is called on line 16 of the program, which occurs after the
NumPy library is imported in line 12. Figure 7.1 shows the plot of the
sinc(x) function generated by the above code.

160 Introduction to Python for Science & Engineering

7.1.2 Fast array processing for user-defined functions

While using loops to process arrays works just fine, it is usually not
the best way to accomplish a task in Python. The reason is that loops
in Python are executed rather slowly, as we saw in §5.2.3. To deal
with this problem, the developers of NumPy introduced a number of
functions designed to process arrays quickly and efficiently. For the
present case, what we need is a conditional statement or function that
can process arrays directly. The function we want is called where and
it is a part of the NumPy library. The where function has the form

where(condition, output if True, output if False)

The first argument of the where function is a conditional statement
involving an array. The where function applies the condition to the
array element by element, and returns the second argument for those
array elements for which the condition is True, and returns the third
argument for those array elements that are False. We can apply it to
the sinc(x) function as follows

Code: chapter7/programs/sincTest.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 def sinc(x):
6 z = np.where(x == 0.0, 1.0, np.sin(x)/x)
7 return z
8

9

10 x = np.linspace(-10, 10, 255)
11 y = sinc(x)
12

13 fig, ax = plt.subplots(figsize=(8, 4))
14 ax.plot(x, y)
15 ax.axhline(color="gray", zorder=-1)
16 ax.axvline(color="gray", zorder=-1)
17 fig.show()

The where function creates the array y and sets the elements of y equal
to 1.0 where the corresponding elements of x are zero, and otherwise
sets the corresponding elements to sin(x)/x. This code executes much
faster, 25 to 100 times or more, depending on the size of the array,
than the code using a for loop. Moreover, the new code is much sim-
pler to write and read. An additional benefit of the where function is
that it can handle single variables and arrays equally well. The code

Functions 161

we wrote for the sinc function with the for loop cannot handle single
variables. Of course we could rewrite the code so that it did, but the
code becomes even more clunky. It’s better just to use NumPy’s where
function.

The moral of the story

The moral of the story is that you should avoid using for and
while loops to process arrays in Python programs whenever an array-
processing method is available. As a beginning Python programmer,
you may not always see how to avoid loops, and indeed, avoiding
them is not always possible. But you should look for ways to avoid
them, especially loops that iterate a large number of times. As you
become more experienced, you will find that using array-processing
methods in Python becomes more natural. Using them can greatly
speed up the execution of your code, especially when working with
large arrays.

Vectorized code and ufuncs

Finally, a word about jargon. Programmers sometimes refer to us-
ing array-processing methods as vectorizing code. The jargon comes
from the idea that an array of N elements can be regarded as an N -
dimensional vector. Computer code that processes vectors as the basic
unit rather than individual data elements is said to be vectorized.

NumPy functions are always vectorized and are known as univer-
sal functions or ufuncs for short.

Don’t worry too much about the jargon or even its origin. But it’s
useful to understand when reading from different sources, online or
otherwise, about Python code.

7.1.3 Functions with more than one input or output

Python functions can have any number of input arguments and can
return any number of variables. For example, suppose you want a
function that outputs (x,y)-coordinates of n points evenly distributed
around a circle of radius r centered at the point (x0, y0). The inputs
to the function would be r, x0, y0, and n. The outputs would be the
(x,y)-coordinates. The following code implements this function.

Code: chapter7/programs/circleN.py

1 import numpy as np

162 Introduction to Python for Science & Engineering

2

3

4 def circle(r, x0, y0, n):
5 theta = np.linspace(0., 2*np.pi, n, endpoint=False)
6 x, y = r * np.cos(theta), r * np.sin(theta)
7 return x0+x, y0+y

This function has four inputs and two outputs. In this case, the
four inputs are simple numeric variables and the two outputs are
NumPy arrays. In general, the inputs and outputs can be any com-
bination of data types: arrays, lists, strings, etc. Of course, the body of
the function must be written to be consistent with the prescribed data
types.

7.1.4 Positional and keyword arguments

It is often useful to have function arguments that have some default
setting. This happens when you want an input to a function to have
some standard value or setting most of the time, but you would like
to reserve the possibility of giving it some value other than the default
value.

For example, in the program circle from the previous section,
we might decide that under most circumstances, we want n=12 points
around the circle, like the points on a clock face, and we want the
circle to be centered at the origin. In this case, we would rewrite the
code to read

Code: chapter7/programs/circleKW.py

1 import numpy as np
2

3

4 def circle(r, x0=0.0, y0=0.0, n=12):
5 theta = np.linspace(0., 2*np.pi, n, endpoint=False)
6 x, y = r * np.cos(theta), r * np.sin(theta)
7 return x0+x, y0+y

The default values of the arguments x0, y0, and n are specified
in the argument of the function definition in the def line. Arguments
whose default values are specified in this manner are called keyword
arguments, and they can be omitted from the function call if the user
is content using those values. For example, writing circle(4) is now
a perfectly legal way to call the circle function and it would produce
12 (x,y) coordinates centered about the origin (x,y) = (0,0). On the
other hand, if you want the values of x0, y0, and n to be something

Functions 163

different from the default values, you can specify their values as you
would have before.

If you want to change only some of the keyword arguments, you
can do so by using the keywords in the function call. For example,
suppose you are content with having the circle centered on (x,y) =
(0,0) but you want only 6 points around the circle rather than 12.
Then you would call the circle function as follows:

circle(2, n=6)

The unspecified keyword arguments keep their default values of zero
but the number of points n around the circle is now 6 instead of the
default value of 12.

The normal arguments without keywords are called positional ar-
guments; they have to appear before any keyword arguments and,
when the function is called, must appear in the same order as speci-
fied in the function definition. The keyword arguments, if supplied,
can appear in any order provided they appear with their keywords. If
supplied without their keywords, then they must also appear in the
order they appear in the function definition. The following function
calls to circle both give the same output.

In [13]: circle(3, n=3, y0=4, x0=-2)
Out[13]: (array([1. , -3.5, -3.5]),

array([4. , 6.59807621, 1.40192379]))

In [14]: circle(3, -2, 4, 3) # w/o keywords, arguments
supplied in order

Out[14]: (array([1. , -3.5, -3.5]),
array([4. , 6.59807621, 1.40192379]))

By now you probably have noticed that we used the keyword ar-
gument endpoint in calling linspace in our definition of the circle

function. The default value of endpoint is True, meaning that linspace
includes the endpoint specified in the second argument of linspace.
We set it equal to False so that the last point was not included. Do
you see why?

7.1.5 Variable number of arguments

While it may seem odd, it is sometimes useful to leave the number of
arguments unspecified. A simple example is a function that computes
the product of an arbitrary number of numbers:

def product(*args):

164 Introduction to Python for Science & Engineering

print("args = {}".format(args))
p = 1
for num in args:

p *= num
return p

Placing the “*” before the args argument tells Python that args is an
unnamed argument that can have any number of entries. For example,
here we give it three entries:

In [15]: product(11., -2, 3)
args = (11.0, -2, 3)
Out[15]: -66.0

Here we give it only two arguments:

In [16]: product(2.31, 7)
args = (2.31, 7)
Out[16]: 16.17

The print("args...) statement in the function definition is not nec-
essary, of course, but is put in to show that the argument args is a
tuple inside the function. Here, the *args tuple argument is used be-
cause one does not know ahead of time how many numbers are to be
multiplied together.

7.1.6 Passing function names and parameters as arguments

The *args tuple argument is also quite useful in another context:
when passing the name of a function as an argument in another func-
tion. In many cases, the function name that is passed may have a
number of parameters that must also be passed but aren’t known
ahead of time. If this all sounds a bit confusing—functions calling
other functions with arbitrary parameters—a concrete example will
help you understand.

Suppose we have the following function that numerically com-
putes the value of the derivative of an arbitrary function f (x):

Code: chapter7/programs/derivA.py

1 def deriv(f, x, h=1.e-9, *params):
2 return (f(x + h, *params) - f(x - h, *params))/(2.*h)

The argument *params is an optional positional argument. We begin
by demonstrating the use of the function deriv without using the op-
tional *params argument. Suppose we want to compute the derivative
of the function f0(x) = 4x5. First, we define the function:

Functions 165

In [17]: def f0(x):
...: return 4*x**5

Now let’s find the derivative of f0(x) = 4x5 at x = 3 using the function
deriv:

In [18]: deriv(f0, 3)
Out[18]: 1620.0001482502557

The exact result is 1620, so our function to numerically calculate the
derivative works pretty well (it’s accurate to about 1 part in 107).

Suppose we had defined a more general function f1(x) = axp as
follows:

In [19]: def f1(x, a, p):
...: return a*x**p

Suppose we want to calculate the derivative of this function for a par-
ticular set of numerical values of the parameters a and p. Now we face
a problem, because it might seem that there is no way to pass the val-
ues of the parameters a and p to the deriv function. Moreover, this is
a generic problem for functions such as deriv that use a function as
an input, because different functions you might want to use as inputs
generally come with a different number of parameters. Therefore, we
would like to write our program deriv so that it works, irrespective of
how many parameters are needed to specify a particular function.

This is what the optional positional argument *params defined in
deriv is for: to pass parameters of f1, like a and p, through deriv. To
see how this works, let’s set a and p to be 4 and 5, respectively, the
same values we used in the definition of f0, so that we can compare
the results:

In [20]: deriv(f1, 3, 1.e-9, *(4, 5))
Out[20]: 1620.0001482502557

We get the same answer as before, but this time we have used deriv

with a more general form of the function f1(x) = axp.
The order of the parameters a and p is important. The function

deriv uses x, the first argument of f1, as its principal argument, and
then uses a and p, in the same order that they are defined in the func-
tion f1, to fill in the additional arguments—the parameters—of the
function f1.

Beware, the params argument must be a tuple. If there is only one
parameter, as there is for the function g(x) = (x + a)/(x − a), then the
call to the derivative function would work like this:

166 Introduction to Python for Science & Engineering

In [21]: def g(x, a):
...: return (x+a)/(x-a)

In [22]: a = 1.0

In [23]: x = np.linspace(0, 2, 6)

In [24]: deriv(g, x, 1.e-9, *(a,))
Out[24]:
array([-2.00000011, -5.55555557, -49.99999792, -50.00000414,

-5.55555602, -2.00000017])

The comma following a in the argument *(a,) is needed so that
(a,) is understood by Python to be a tuple.

Optional arguments must appear after the regular positional and
keyword arguments in a function call. The order of the arguments
must adhere to the following convention:

def func(pos1, pos2, ..., keywd1, keywd2,
..., *args, **kwargs):

That is, the order of arguments is: positional arguments first, then
keyword arguments, then optional positional arguments (*args), then
optional keyword arguments (**kwargs). Note that to use the *params

argument, we had to explicitly include the keyword argument h even
though we didn’t need to change it from its default value.

Python also allows for a variable number of keyword arguments—
**kwargs—in a function call, that is, an argument preceded by **.
While args is a tuple, kwargs is a dictionary, so the value of an op-
tional keyword argument is accessed through its dictionary key. To
use the **kwargs format, we rewrite our deriv function using two stars
(**params):

Code: chapter7/programs/derivK.py

1 def deriv(f, x, h=1.e-9, **params):
2 return (f(x + h, **params) - f(x - h, **params))/(2.*h)

Next we define a dictionary:

In [25]: d = {'a': 4, 'p': 5}

And then finally, we input our optional keyword arguments using **d:

In [26]: deriv(f1, 3, **d)
Out[26]:1620.0001482502557

We can also include our optional keyword arguments as a dictionary
literal:

Functions 167

In [27]: deriv(f1, 3, **{'a': 4, 'p': 5})
Out[27]:1620.0001482502557

Note that when using **kwargs, you can omit keyword arguments, in
this case h, if you want to use the default value(s).

7.2 Passing data (objects) to and from functions

Functions are like mini-programs within the larger programs that call
them. Each function has a set of variables with certain names that are
to some degree or other isolated from the calling program. We shall
get more specific about just how isolated those variables are below,
but before we do, we introduce the concept of a namespace. Each func-
tion has its own namespace, which is essentially a mapping of variable
names to objects, like numerics, strings, lists, and so forth. It’s a kind
of dictionary. The calling program has its own namespace, distinct
from that of any functions it calls. The distinctiveness of these name-
spaces plays an important role in how functions work, as we shall see
below.

7.2.1 Variables and arrays created entirely within a function

An important feature of functions is that variables and arrays created
entirely within a function cannot be seen by the program that calls the
function unless the variable or array is explicitly passed to the calling
program in the return statement. This is important because it means
you can create and manipulate variables and arrays, giving them any
name you please, without affecting any variables or arrays outside the
function, even if the variables and arrays inside and outside a function
share the same name.

To see what how this works, let’s rewrite our program to plot the
sinc function using the sinc function definition that uses the where

function.

Code: chapter7/programs/sincTest.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 def sinc(x):
6 z = np.where(x == 0.0, 1.0, np.sin(x)/x)
7 return z

168 Introduction to Python for Science & Engineering

8

9

10 x = np.linspace(-10, 10, 255)
11 y = sinc(x)
12

13 fig, ax = plt.subplots(figsize=(8, 4))
14 ax.plot(x, y)
15 ax.axhline(color="gray", zorder=-1)
16 ax.axvline(color="gray", zorder=-1)
17 fig.show()

We save this program in a file named sincTest.py. Running this
program, by typing run sincTest.py in the IPython terminal, pro-
duces a plot like the plot of sinc shown in Fig. 7.1. Notice that the
array variable z is only defined within the function definition of sinc.
Running the program from the IPython terminal produces the plot, of
course. Then if we ask IPython to print out the arrays, x, y, and z, we
get some interesting and informative results, as shown below.

In [1]: run sincTest.py

In [2]: x
Out[2]: array([-10. , -9.99969482, -9.99938964,

..., 9.9993864, 9.99969482, 10.])

In [3]: y
Out[3]: array([-0.05440211, -0.05437816, -0.0543542 ,

..., -0.0543542 , -0.05437816, -0.05440211])

In [4]: z

NameError Traceback (most recent call last)

NameError: name 'z' is not defined

When we type in x at the In [2]: prompt, IPython prints out the ar-
ray x (some of the output is suppressed because the array x has many
elements); similarly for y. But when we type z at the In [4]: prompt,
IPython returns a NameError because z is not defined. The IPython
terminal is working in the same namespace as the program. But the
namespace of the sinc function is isolated from the namespace of the
program that calls it, and therefore isolated from IPython. This also
means that when the sinc function ends with return z, it doesn’t re-
turn the name z, but instead assigns the values in the array z to the
array y, as directed by the main program in line 11.

Functions 169

7.2.2 Passing lists and arrays to functions: Mutable and im-
mutable objects

What happens to a variable or an array passed to a function when
the variable or array is changed within the function? It turns out that
the answers are different depending on whether the variable passed
is a simple numeric variable, string, or tuple, or whether it is an array
or list. The program below illustrates the different ways that Python
handles single variables vs the way it handles lists and arrays.

Code: chapter7/programs/passingVars.py

1 def test(s, v, t, l, a):
2 s = "I am doing fine"
3 v = np.pi**2
4 t = (1.1, 2.9)
5 l[-1] = 'end'
6 a[0] = 963.2
7 return s, v, t, l, a
8

9

10 import numpy as np
11

12 s = "How do you do?"
13 v = 5.0
14 t = (97.5, 82.9, 66.7)
15 l = [3.9, 5.7, 7.5, 9.3]
16 a = np.array(l)
17

18 print('*************')
19 print("s = {0:s}".format(s))
20 print("v = {0:5.2f}".format(v))
21 print("t = {}".format(t))
22 print("l = {}".format(l))
23 print("a = "), # comma suppresses line feed
24 print(a)
25 print('*************')
26 print('*call "test"*')
27

28 s1, v1, t1, l1, a1 = test(s, v, t, l, a)
29

30 print('*************')
31 print("s1 = {0:s}".format(s1))
32 print("v1 = {0:5.2f}".format(v1))
33 print("t1 = {}".format(t1))
34 print("l1 = {}".format(l1))
35 print("a1 = "), # comma suppresses line feed
36 print(a1)
37 print('*************')

170 Introduction to Python for Science & Engineering

38 print("s = {0:s}".format(s))
39 print("v = {0:5.2f}".format(v))
40 print("t = {}".format(t))
41 print("l = {}".format(l))
42 print("a = "),
43 print(a)
44 print('*************')

The function test has five arguments, a string s, a numerical vari-
able v, a tuple t, a list l, and a NumPy array a. test modifies each of
these arguments and then returns the modified s, v, t, l, a. Run-
ning the program produces the following output.

In [17]: run passingVars.py

s = How do you do?
v = 5.00
t = (97.5, 82.9, 66.7)
l = [3.9, 5.7, 7.5, 9.3]
a =
[3.9 5.7 7.5 9.3]

call "test"

s1 = I am doing fine
v1 = 9.87
t1 = (1.1, 2.9)
l1 = [3.9, 5.7, 7.5, ’end’]
a1 =
[963.2 5.7 7.5 9.3]

s = How do you do?
v = 5.00
t = (97.5, 82.9, 66.7)
l = [3.9, 5.7, 7.5, ’end’]
a =
[963.2 5.7 7.5 9.3]

The program prints out three blocks of variables separated by aster-
isks. The first block merely verifies that the contents of s, v, t, l,

and a are those assigned in lines 12–16. Then the function test is
called. The next block prints the output of the call to the function
test, namely the variables s1, v1, t1, l1, and a1. The results verify that
the function modified the inputs as directed by the test function.

The third block prints out the variables s, v, t, l, and a from

Functions 171

the calling program after the function test was called. These vari-
ables served as the inputs to the function test. Examining the output
from the third printing block, we see that the values of the string s,
the numeric variable v, and the contents of t are unchanged after the
function call. This is probably what you would expect. On the other
hand, we see that the list l and the array a are changed after the func-
tion call. This might surprise you! But these are important points to
remember, so it is important that we summarize them in two bullet
points here:

• Changes to string, variable, and tuple arguments of a function
within the function do not affect their values in the calling pro-
gram.

• Changes to values of elements in list and array arguments of a
function within the function are reflected in the values of the same
list and array elements in the calling function.

The point is that simple numerics, strings and tuples are im-
mutable while lists and arrays are mutable. Because immutable ob-
jects can’t be changed, changing them within a function creates new
objects with the same name inside of the function, but the old im-
mutable objects that were used as arguments in the function call re-
main unchanged in the calling program. On the other hand, if ele-
ments of mutable objects like those in lists or arrays are changed, then
those elements that are changed inside the function are also changed
in the calling program.

7.3 Anonymous Functions: lambda Expressions

Python provides another way to generate functions called lambda ex-
pressions. A lambda expression is a kind of in-line function that can
be generated on the fly to accomplish some small task, often where a
function name is needed as input to another function and thus is used
only once.

You can assign a lambda expression a name, but you don’t need to;
hence, they are sometimes called anonymous functions.

A lambda expression uses the keyword lambda and has the general
form

lambda arg1, arg2, ... : output

172 Introduction to Python for Science & Engineering

The arguments arg1, arg2, ... are inputs to a lambda, just as for a
functions, and the output is an expression using the arguments.

While lambda expressions need not be named, we illustrate their
use by comparing a conventional Python function definition to a
lambda expression to which we give a name. First, we define a con-
ventional Python function:

In [1]: def f(a, b):
...: return 3*a + b**2

In [2]: f(2, 3)
Out[2]: 15

Next, we define a lambda expression that does the same thing:

In [3]: g = lambda a, b: 3*a + b**2

In [4]: g(2, 3)
Out[4]: 15

The lambda expression defined by g does the same thing as the func-
tion f. Such lambda expressions are useful when you need a very short
function definition, usually to be used locally only once or perhaps a
few times.

Lambda expressions can be useful as function arguments, partic-
ularly when extra parameters need to be passed with the function. In
§7.1.6, we saw how Python functions can do this using optional ar-
guments, *args and **kwargs. Lambda expressions provide another
means for accomplishing the same thing. To see how this works, re-
call our definition of the function to take the derivative of another
function:

Code: chapter7/programs/derivA.py

1 def deriv(f, x, h=1.e-9, *params):
2 return (f(x + h, *params) - f(x - h, *params))/(2.*h)

and our definition of the function

In [5]: def f1(x, a, p):
...: return a*x**p

Instead of using the *params optional argument to pass the values of
the parameters a and p, we can define a lambda expression that is a
function of x alone, with a and p set in the lambda expression.

In [6]: g = lambda x: f1(x, 4, 5)

The function g defined by the lambda expression is the same as f1(x,

Functions 173

a, p) but with a and p set to 4 and 5, respectively. Now we can use
deriv to calculate the derivative at x = 3 using the lambda function g

In [7]: deriv(g, 3)
Out[7]: 1620.0001482502557

Of course, we get the same answer as we did using the other methods.
You might wonder why we can’t just insert f1(x, 4, 5) as the ar-

gument to deriv. The reason is that you need to pass the name of the
function, not the function itself. We assign the name g to our lambda
expression, and then pass that name through the argument of deriv.

Alternatively, we can simply insert the whole lambda expression
in the argument of deriv where the function name goes:

In [8]: deriv(lambda x: f1(x, 4, 5), 3)
Out[8]: 1620.0001482502557

This works too. In this case, however, we never defined a function
name for our lambda expression. Our lambda expression is indeed an
anonymous function.

You may recall that we already used lambda expressions in §4.2.2
where we discussed how to print formatted arrays. There are also a
number of nifty programming tricks that can be implemented using
lambda expressions, but we will not go into them here. Look up lamb-
das on the web if you are curious about their more exotic uses.

7.4 NumPy Object Attributes: Methods and Instance
Variables

You have already encountered quite a number of functions that are
part of either NumPy or Python or matplotlib. But there is another
way in which Python implements things that act like functions: these
are the methods associated with an object that we introduced in §3.5.
Recall from §3.5 that strings, arrays, lists, and other such data struc-
tures in Python are not merely the numbers or strings we have defined
them to be. They are objects. In general, an object in Python has associ-
ated with it a number of attributes, which are either instance variables
associated with the object or specialized functions called methods that
act on the object.

Let’s start with the NumPy array. A NumPy array is a Python
object and therefore has associated with it a number of attributes:
instance variables and methods. Suppose, for example, we write a

174 Introduction to Python for Science & Engineering

= random.random(10), which creates an array of 10 uniformly dis-
tributed random numbers between 0 and 1.1 An example of an in-
stance variable associated with an array is the size or number of ele-
ments in the array. An instance variable of an object in Python is ac-
cessed by typing the object name followed by a period followed by the
variable name. The code below illustrates how to access two different
instance variables of an array, its size and its data type.

In [1]: a = random.random(10)

In [2]: a.size
Out[2]: 10

In [3]: a.dtype
Out[3]: dtype('float64')

Any object in Python can, and in general does, have a number of in-
stance variables that are accessed in just the way demonstrated above,
with a period and the instance variable name following the name of
the particular object. In general, instance variables involve properties
of the object that are stored by Python with the object and require no
computation. Python just looks up the attribute and returns its value.

Objects in Python also have associated with them a number of spe-
cialized functions called methods that act on the object. Methods gen-
erally involve Python performing some kind of computation. Meth-
ods are accessed in a fashion similar to instance variables, by append-
ing a period followed the method’s name, which is followed by a pair
of open-close parentheses, consistent with methods being a function
that acts on the object. Often methods are used with no arguments, as
methods by default act on the object whose name they follow. In some
cases. however, methods can take arguments. Examples of methods
for NumPy arrays are sorting, calculating the mean, or standard devi-
ation of the array. The code below illustrates a few array methods.

In [21]: a
Out[21]:
array([0.859057 , 0.27228037, 0.87780026,

0.14341207, 0.05067356, 0.83490135,
0.54844515, 0.33583966, 0.31527767,
0.15868803])

In [22]: a.sum() # sum

1NumPy’s random module has a number of routines for generating arrays of ran-
dom numbers, as discussed in §9.2.

Functions 175

Out[22]: 4.3963751104791005

In [23]: a.mean() # mean or average
Out[23]: 0.43963751104791005

In [24]: a.var() # variance
Out[24]: 0.090819477333711512

In [25]: a.std() # standard deviation
Out[25]: 0.30136270063448711

In [26]: a.sort() # sort small to large

In [27]: a
Out[27]:
array([0.05067356, 0.14341207, 0.15868803,

0.27228037, 0.31527767, 0.33583966,
0.54844515, 0.83490135, 0.859057,
0.87780026])

Notice that the sort() method has permanently changed the order of
the elements of the array.

In [28]: a.clip(0.3, 0.8)
Out[29]:
array([0.3, 0.3, 0.3, 0.3, 0.31527767, 0.33583966,

0.54844515, 0.8, 0.8 , 0.8])

The clip() method provides an example of a method that takes an
argument, in this case the arguments are the lower and upper values
to which array elements are cut off if their values are outside the range
set by these values.

7.5 Example: Linear Least Squares Fitting

In this section we illustrate how to use functions and methods in the
context of modeling experimental data.

In science and engineering we often have some theoretical curve
or fitting function that we would like to fit to some experimental data.
In general, the fitting function is of the form f (x;a, b, c, ...), where x is
the independent variable and a, b, c, ... are parameters to be adjusted
so that the function f (x;a, b, c, ...) best fits the experimental data. For
example, suppose we had some data of the velocity vs time for a falling
mass. If the mass falls only a short distance, such that its velocity re-
mains well below its terminal velocity, we can ignore air resistance. In

176 Introduction to Python for Science & Engineering

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

20

15

10

5

0

5
ve

lo
cit

y
(m

/s
)

Least squares fit w/o uncertainties

v0 = 4.4 m/s

a = -9.8 m/s^2

redchisq = 0.84

Figure 7.2 Velocity vs time for falling mass.

this case, we expect the acceleration to be constant and the velocity to
change linearly in time according to the equation

v(t) = v0 − gt, (7.1)

where g is the local gravitational acceleration. We can fit the data
graphically, say by plotting it as shown in Fig. 7.2, and then draw-
ing a line through the data. When we draw a straight line through the
data, we try to minimize the distance between the points and the line,
globally averaged over the whole data set.

While this can give a reasonable estimate of the best fit to the data,
the procedure is rather ad hoc. We would prefer to have a more well-
defined analytical method for determining what constitutes a “best
fit.” One way to do that is to consider the sum

S =
n∑
i

[yi − f (xi ;a,b,c, ...)]
2, (7.2)

where yi and f (xi ; a, b, c, ...) are the values of the experimental data
and the fitting function, respectively, at xi , and S is the square of their
difference summed over all n data points. The quantity S is a sort of
global measure of how much the fit f (xi ;a, b, c, ...) differs from the
experimental data yi .

Notice that for a given set of data points {xi,yi}, S is a function

Functions 177

only of the fitting parameters a, b, ..., that is, S = S(a, b, c, ...). One
way of defining a best fit, then, is to find the set of values of the fitting
parameters a, b, . . . that minimize the value of S.

In principle, finding the values of the fitting parameters a, b, ...
that minimize the S is a simple matter. Just set the partial derivatives
of S with respect to the fitting parameter equal to zero and solve the
resulting system of equations:

∂S
∂a

= 0 ,
∂S
∂b

= 0 , . . . (7.3)

Because there are as many equations as there are fitting parameters,
we should be able to solve the system of equations and find the values
of the fitting parameters that minimize S. Solving those systems of
equations is straightforward if the fitting function f (x; a, b, ...) is linear
in the fitting parameters. Some examples of fitting functions linear in
the fitting parameters are:

f (x;a,b) = a+ bx

f (x;a,b,c) = a+ bx+ cx2

f (x;a,b,c) = a sin x+ bex + ce−x
2
. (7.4)

For fitting functions such as these, taking the partial derivatives with
respect to the fitting parameters, as proposed in Eq. (7.3), results in
a set of algebraic equations that are linear in the fitting parameters
a, b, ... Because they are linear, these equations can be solved in a
straightforward manner.

For cases in which the fitting function is not linear in the fitting
parameters, one can generally still find the values of the fitting param-
eters that minimize S, but finding them requires more work, which
goes beyond our immediate interests here.

7.5.1 Linear regression

We start by considering the simplest case, fitting a straight line to a set
of {xi,yi} data, such as the data set shown in Fig. 7.2. Here the fitting
function is f (x) = a+bx, which is linear in the fitting parameters a and
b. For a straight line, the sum in Eq. (7.2) becomes

S(a,b) =
∑
i

(yi − a− bxi)2 , (7.5)

178 Introduction to Python for Science & Engineering

where the sum is over all the points in the {xi,yi} data set. Finding
the best fit in this case corresponds to finding the values of the fit-
ting parameters a and b for which S(a,b) is a minimum. To find the
minimum, we set the derivatives of S(a,b) equal to zero:

∂S
∂a

=
∑
i

−2(yi − a− bxi) = 2(na+ b
∑
i xi −

∑
i yi) = 0

∂S
∂b

=
∑
i

−2(yi − a− bxi)xi = 2
(
a
∑
i xi + b

∑
i x

2
i −

∑
i x1yi

)
= 0

(7.6)

Dividing both equations by 2n leads to the equations

a+ bx̄ = ȳ

ax̄+ b
1
n

∑
i

x2
i =

1
n

∑
i

xiyi (7.7)

where

x̄ =
1
n

∑
i

xi , ȳ =
1
n

∑
i

yi . (7.8)

Solving Eq. (7.7) for the fitting parameters gives

b =
∑
i xiyi −nx̄ȳ∑
i x

2
i −nx̄2

, a = ȳ − bx̄ . (7.9)

Noting that nȳ =
∑
i y and nx̄ =

∑
i x, the results can be written as

b =
∑
i(xi − x̄)yi∑
i(xi − x̄)xi

, a = ȳ − bx̄ . (7.10)

While Eqs. (7.9) and (7.10) are equivalent analytically, Eq. (7.10) is
preferred for numerical calculations because Eq. (7.10) is less sensi-
tive to roundoff errors. Here is a Python function implementing this
algorithm:

Code: chapter7/programs/lineFit.py

1 def lineFit(x, y):
2 ''' Returns slope and y-intercept of linear fit to (x,y)
3 data set'''
4 xavg = x.mean()
5 slope = (y * (x-xavg)).sum()/(x * (x-xavg)).sum()
6 yint = y.mean() - slope*xavg
7 return slope, yint

It’s hard to imagine a simpler implementation of the linear regres-
sion algorithm.

Functions 179

7.5.2 Linear regression with weighting: χ2

The linear regression routine of the previous section weights all data
points equally. That is fine if the absolute uncertainty is the same for
all data points. In many cases, however, the uncertainty is different for
different points in a data set. In such cases, we would like to weight
the data that has smaller uncertainty more heavily than those data
that have greater uncertainty. For this case, there is a standard method
of weighting and fitting data that is known as χ2 (or chi-squared) fit-
ting. In this method we suppose that associated with each (xi,yi) data
point is an uncertainty in the value of yi of ±σi . In this case, the “best
fit” is defined as the one with the set of fitting parameters that mini-
mizes the sum

χ2 =
∑
i

(
yi − f (xi)

σi

)2

. (7.11)

Setting the uncertainties σi = 1 for all data points yields the same sum
S that we introduced in the previous section. In this case, all data
points are weighted equally. However, if σi varies from point to point,
it is clear that those points with large σi contribute less to the sum
than those with small σi . Thus, data points with large σi are weighted
less than those with small σi .

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

20

15

10

5

0

5

ve
lo

cit
y

(m
/s

)

a = 4.4 ± 0.7 m/s
b = -9.8 ± 0.4 m/s2

2 = 0.839

Figure 7.3 Fit using χ2 least squares fitting routine with data weighted by
error bars.

180 Introduction to Python for Science & Engineering

To fit data to a straight line, we set f (x) = a+ bx and write

χ2(a,b) =
∑
i

(
yi − a− bxi

σi

)2

. (7.12)

Finding the minimum for χ2(a,b) follows the same procedure used for
finding the minimum of S(a,b) in the previous section. The result is

b =

∑
i(xi − x̂)yi/σ

2
i∑

i(xi − x̂)xi/σ
2
i

, a = ŷ − bx̂. (7.13)

where

x̂ =

∑
i xi/σ

2
i∑

i 1/σ
2
i

, ŷ =

∑
i yi /σ

2
i∑

i 1/σ
2
i

. (7.14)

For a fit to a straight line, the overall quality of the fit can be measured
by the reduced chi-squared parameter

χ2
r =

χ2

n− 2
(7.15)

where χ2 is given by Eq. (7.11) evaluated at the optimal values of a
and b given by Eq. (7.13). A good fit is characterized by χ2

r ≈ 1. This
makes sense because if the uncertainties σi have been properly esti-
mated, then [yi − f (xi)]2 should on average be roughly equal to σ2

i , so
that the sum in Eq. (7.11) should consist of n terms approximately
equal to 1. Of course, if there were only 2 terms (n = 2), then χ2

would be zero as the best straight line fit to two points is a perfect
fit. That is essentially why χ2

r is normalized using n − 2 instead of n.
If χ2

r is significantly greater than 1, this indicates a poor fit to the fit-
ting function (or an underestimation of the uncertainties σi). If χ2 is
significantly less than 1, then it indicates that the uncertainties were
probably overestimated (the fit and fitting function may or may not
be good).

We can also get estimates of the uncertainties in our determination
of the fitting parameters a and b, although deriving the formulas is a
bit more involved than we want to get into here. Therefore, we just
give the results:

σ2
b =

1∑
i(xi − x̂)xi/σ

2
i

, σ2
a = σ2

b

∑
i x

2
i /σ

2
i∑

i 1/σ
2
i

. (7.16)

Functions 181

The estimates of uncertainties in the fitting parameters depend ex-
plicitly on {σi} and will only be meaningful if (i) χ2

r ≈ 1 and (ii) the
estimates of the uncertainties σi are accurate.

You can find more information, including a derivation of Eq.
(7.16), in Data Reduction and Error Analysis for the Physical Sciences,
3rd ed by P. R. Bevington & D. K. Robinson, McGraw-Hill, New York,
2003.

182 Introduction to Python for Science & Engineering

7.6 Exercises

1. Write a function that can return each of the first three spherical
Bessel functions jn(x):

j0(x) =
sin x
x

j1(x) =
sin x
x2 −

cos x
x

j2(x) =
(3
x2 − 1

) sin x
a
− 3 cos x

x2

(7.17)

Your function should take as arguments a NumPy array x and
the order n, and should return an array of the designated order
n spherical Bessel function. Take care to make sure that your func-
tions behave properly at x = 0.

Demonstrate the use of your function by writing a Python rou-
tine that plots the three Bessel functions for 0 ≤ x ≤ 20. Your plot
should look like the one below. Something to think about: You
might note that j1(x) can be written in terms of j0(x), and that j2(x)
can be written in terms of j1(x) and j0(x). Can you take advantage
of this to write a more efficient function for the calculations of j1(x)
and j2(x)?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0 j0(x)
j1(x)
j2(x)

2. (a) Write a function that simulates the rolling of n dice. Use the
NumPy function random.random_integers(6), which gener-
ates a random integer between 1 and 6 with equal probability
(like rolling fair dice). The input of your function should be
the number of dice thrown each roll and the output should be

Functions 183

2 4 6 8 10 12
sum of 2 dice

0

2000

4000

6000

8000

10000

12000

14000

16000

the sum of the n dice. See §9.2 for a description of NumPy’s
module random, which has a number of useful functions for
generating arrays of random numbers.

(b) “Roll” 2 dice 10,000 times keeping track of all the sums
of each set of rolls in a list. Then use your program
to generate a histogram summarizing the rolls of two
dice 10,000 times. The result should look like the his-
togram plotted above. Use the matplotlib function hist

(see http://matplotlib.org/api/pyplot_summary.html) and
set the number of bins in the histogram equal to the num-
ber of different possible outcomes of a roll of your dice. For
example, the sum of two dice can be anything between 2 and
12, which corresponds to 11 possible outcomes. You should
get a histogram that looks like the one above.

(c) Repeat part (b) using 3 dice and plot the resulting histogram.

3. In §7.5, we showed that the best fit of a line y = a + bx to a set
of data {(xi,yi)} is obtained for the values of a and b given by Eq.
(7.10). Those formulas were obtained by finding the values of a
and b that minimized the sum in Eq. (7.5). This approach and these
formulas are valid when the uncertainties in the data are the same
for all data points. The Python function lineFit(x, y) in §7.5.1
implements Eq. (7.10).

(a) Write a new fitting function lineFitWt(x, y) that imple-
ments the formulas given in Eq. (7.14)) that minimize the χ2

function give by Eq. (7.12). This more general approach is
valid when the individual data points have different weight-

http://matplotlib.org/api/pyplot_summary.html

184 Introduction to Python for Science & Engineering

ings or when they all have the same weighting. You should
also write a function to calculate the reduced chi-squared χ2

r
defined by Eq. (7.12).

(b) Write a Python program that reads in the data below, plots it,
and fits it using the two fitting functions lineFit(x, y) and
lineFitWt(x, y). Your program should plot the data with er-
ror bars and with both fits with and without weighting, that is
from lineFit(x, y) and lineFitWt(x, y, dy). It should also
report the results for both fits on the plot, similar to Fig. 7.3,
as well as the values of χ2

r , the reduce chi-squared value, for
both fits. Explain why weighting the data gives a steeper or
less steep slope than the fit without weighting.

Velocity vs time datafor a falling mass
time (s) velocity (m/s) uncertainty (m/s)
2.23 139 16
4.78 123 16
7.21 115 4
9.37 96 9

11.64 62 17
14.23 54 17
16.55 10 12
18.70 -3 15
21.05 -13 18
23.21 -55 10

4. Modify the function lineFitWt(x, y) that you wrote in Exercise
4 above so that in addition to returning the fitting parameters a
and b, it also returns the uncertainties in the fitting parameters
σa and σb using the formulas given by Eq. (7.16). Use your new
fitting function to find the uncertainties in the fitted slope and y-
intercept for the data provided with Exercise 4.

5. Write a function to that numerically estimates the integral

A =
∫ b

a
f (x)dx

using the trapezoid rule. The simplest version of the trapezoid rule,
which generally gives a very crude estimate, is

A0 = 1
2h0[f (a) + f (b)] , h0 = b − a .

Functions 185

a b

0

1

2

3

4

5

n

1

2

4

8

16

2n
1

This estimate for the integral can be refined by dividing the inter-
val from a to b in two and performing the trapezoid rule on each
interval. This process can be repeated as many times as needed
until you get the desired precision, which you can estimate by re-
quiring that the fractional difference between successive estimates
(Ai −Ai−1)/Ai < ε, where ε might be some small number like 10−8.
Repeatedly applying the trapezoid rule gives the following succes-
sion of estimates

A1 = 1
2h1[f (a) + f (a+ h1)] + 1

2h1[f (a+ h1) + f (b)] , h1 = 1
2h0

= 1
2h1[f (a) + 2f (a+ h1) + f (b)]

= 1
2A0 + h1f (a+ h1)

A2 = 1
2A1 + h2[f (a+ h2) + f (b − h2)] , h2 = 1

2h1

A3 = 1
2A2 + h3[f (a+ h3) + f (a+ 3h3) + f (a+ 5h5) + f (b − h3)] ,

h3 = 1
2h2

...

An = 1
2An−1 + hn

2n−1∑
i=1,3,...

f (a+ ihn) , hn = 1
2hn−1 , for n ≥ 1

Write a function that implements the trapezoid rule by first eval-
uating A0, then A1, . . . until ε is less than some preset tolerance.
Note that to calculate Ai , by using the previous result Ai−1, you
need only to evaluate the function to be integrated f (x) at the open

186 Introduction to Python for Science & Engineering

circles in the preceding diagram, saving a great deal of computa-
tion.

Try your trapezoid integration function on the following integrals
and show that you get an answer within the specified tolerance of
the exact value.

(a)
∫ 5

2 x
2dx = 39

(b)
∫ π

0 sinxdx = 2

(c)
∫ 3.5

0 e−x
2
dx =

√
π

2 erf(3.5) ' 0.8862262668989721

chapter 8

Curve Fitting

In this chapter you learn how to use Python to perform linear
and nonlinear least squares fitting of data to a function that
is supposed to model the data. The methods employed allow for the
weighting of the data according to uncertainties supplied by the
user and uses χ2 as the measure of the goodness of the fit.

One of the most important tasks in any experimental science is
modeling data and determining how well some theoretical function
describes experimental data. In the last chapter, we illustrated how
this can be done when the theoretical function is a simple straight
line in the context of learning about Python functions and methods.
Here we show how this can be done for an arbitrary fitting functions,
including linear, exponential, power law, and other nonlinear fitting
functions.

8.1 Using Linear Regression for Fitting Nonlinear
Functions

We can use our results for linear regression with χ2 weighting that
we developed in Chapter 7 to fit functions that are nonlinear in the
fitting parameters, provided we can transform the fitting function into
one that is linear in the fitting parameters and in the independent
variable (x).

8.1.1 Linear regression for fitting an exponential function

To illustrate this approach, let’s consider some experimental data
taken from a radioactive source that was emitting beta particles (elec-
trons). We notice that the number of electrons emitted per unit time
is decreasing with time. Theory suggests that the number of electrons
N emitted per unit time should decay exponentially according to the

187

188 Introduction to Python for Science & Engineering

equation

N (t) =N0e
−t/τ . (8.1)

This equation is nonlinear in t and in the fitting parameter τ and thus
cannot be fit using the method of the previous chapter. Fortunately,
this is a special case for which the fitting function can be transformed
into a linear form. Doing so will allow us to use the fitting routine we
developed for fitting linear functions.

We begin our analysis by transforming our fitting function to a
linear form. To this end we take the logarithm of Eq. (8.1):

lnN = lnN0 −
t
τ
. (8.2)

With this transformation, our fitting function is linear in the inde-
pendent variable t. To make our method work, however, our fitting
function must be linear in the fitting parameters, and our transformed
function is still nonlinear in the fitting parameters τ and N0. There-
fore, we define new fitting parameters as follows:

a = lnN0 (8.3a)

b = −1/τ (8.3b)

Now if we define a new dependent variable y = ln N , then our fitting
function takes the form of a fitting function that is linear in the fitting
parameters a and b

y = a+ bx (8.4)

where the independent variable is x = t and the dependent variable is
y = ln N .

We are almost ready to fit our transformed fitting function, with
transformed fitting parameters a and b, to our transformed indepen-
dent and dependent data, x and y. The last thing we have to do is
to transform the estimates of the uncertainties δN in N to the uncer-
tainties δy in y(= lnN). So how much does a given uncertainty in N
translate into an uncertainty in y? In most cases, the uncertainty in y
is much smaller than y, i.e., δy � y; similarly δN � N . In this limit
we can use differentials to figure out the relationship between these

Curve Fitting 189

uncertainties. Here is how it works for this example:

y = lnN (8.5)

δy =
∣∣∣∣∣ ∂y∂N

∣∣∣∣∣δN (8.6)

δy =
∂N
N
. (8.7)

Equation (8.6) tells us how a small change δN in N produces a small
change δy in y. Here we identify the differentials dy and dN with the
uncertainties δy and δN . Therefore, an uncertainty of δN in N corre-
sponds, or translates, to an uncertainty δy in y.

Let’s summarize what we have done so far. We started with some
data points {ti ,Ni} and some addition data {δNi} where each datum
δNi corresponds to the uncertainty in the experimentally measured
Ni . We wish to fit these data to the fitting function

N (t) =N0e
−t/τ .

We then take the natural logarithm of both sides and obtain the linear
equation

lnN = lnN0 −
t
τ

(8.8a)

y = a+ bx (8.8b)

with the obvious correspondences

x = t (8.9a)

y = lnN (8.9b)

a = lnN0 (8.9c)

b = −1/τ . (8.9d)

Now we can use the linear regression routine with χ2 weighting that
we developed in the previous section to fit Eq. (8.4) to the transformed
data xi(= ti) and yi(= lnNi). The inputs are the transformed data: xi ,
yi , and δyi . The outputs are the fitting parameters a and b, as well
as the estimates of their uncertainties δa and δb along with the value
of χ2. You can obtain the uncertainties δN0 and δτ of the original
fitting parameters N0 and τ by taking the differentials of Eqs. (8.9c)

190 Introduction to Python for Science & Engineering

and (8.9d):

δa =
∣∣∣∣∣ ∂a∂N0

∣∣∣∣∣δN0 =
δN0

N0
(8.10)

δb =
∣∣∣∣∣∂b∂τ

∣∣∣∣∣δτ =
δτ

τ2 (8.11)

The Python routine below shows how to implement all of this for
a set of experimental data that is read in from a data file.

Figure 8.1 shows the output of the fit to simulated beta decay data
obtained using the program below. Note that the error bars are large
when the number of counts N are small. This is consistent with what
is known as shot noise (noise that arises from counting discrete events),
which obeys Poisson statistics. The program also prints out the fitting
parameters of the transformed data as well as the fitting parameters
for the exponential fitting function.

Code: chapter8/programs/betaDecay.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4

5 def LineFitWt(x, y, dy):
6 """
7 Fit to straight line.
8 Inputs: x, y, and dy (y-uncertainty) arrays.
9 Ouputs: slope and y-intercept of best fit to data.

10 """
11 dy2 = dy**2
12 norm = (1./dy2).sum()
13 xhat = (x/dy2).sum() / norm
14 yhat = (y/dy2).sum() / norm
15 slope = ((x-xhat)*y/dy2).sum()/((x-xhat)*x/dy2).sum()
16 yint = yhat - slope*xhat
17 dy2_slope = 1./((x-xhat)*x/dy2).sum()
18 dy2_yint = dy2_slope * (x*x/dy2).sum() / norm
19 return slope, yint, np.sqrt(dy2_slope), np.sqrt(dy2_yint)
20

21

22 def redchisq(x, y, dy, slope, yint):
23 chisq = (((y-yint-slope*x)/dy)**2).sum()
24 return chisq/float(x.size-2)
25

26

27 # Read data from data file
28 t, N, dN = np.loadtxt("betaDecay.txt", skiprows=2, unpack=True)

Curve Fitting 191

29

30 # Transform data and parameters to linear form: Y = A + B*X
31 X = t # transform t data for fitting (trivial)
32 Y = np.log(N) # transform N data for fitting
33 dY = dN/N # transform uncertainties for fitting
34

35 # Fit transformed data X, Y, dY --> fitting parameters A & B
36 # Also returns uncertainties in A and B
37 B, A, dB, dA = LineFitWt(X, Y, dY)
38 # Return reduced chi-squared
39 redchisqr = redchisq(X, Y, dY, B, A)
40

41 # Determine fitting parameters for exponential function
42 # N = N0 exp(-t/tau) ...
43 N0 = np.exp(A)
44 tau = -1.0/B
45 # ... and their uncertainties
46 dN0 = N0 * dA
47 dtau = tau**2 * dB
48

49 # Code to plot transformed data and fit starts here
50 # Create line corresponding to fit using fitting parameters
51 # Only two points are needed to specify a straight line
52 Xext = 0.05*(X.max()-X.min())
53 Xfit = np.array([X.min()-Xext, X.max()+Xext])
54 Yfit = A + B*Xfit
55

56 fig, ax = plt.subplots()
57 ax.errorbar(X, Y, dY, fmt="oC0")
58 ax.plot(Xfit, Yfit, "-C1", zorder=-1)
59 ax.set_xlim(0, 100)
60 ax.set_ylim(1.5, 7)
61 ax.set_title(r"$\mathrm{Fit\ to:}\ \ln N = -t/\tau + \ln N_0$")
62 ax.set_xlabel("t")
63 ax.set_ylabel("ln(N)")
64 ax.text(50, 6.6, "A = ln N0 = {0:0.2f} \pm {1:0.2f}"
65 .format(A, dA))
66 ax.text(50, 6.3, "B = -1/tau = {0:0.4f} \pm {1:0.4f}"
67 .format(-B, dB))
68 ax.text(50, 6.0, "χ_r^2 = {0:0.3f}"
69 .format(redchisqr))
70 ax.text(50, 5.7, "N0 = {0:0.0f} \pm {1:0.0f}"
71 .format(N0, dN0))
72 ax.text(50, 5.4, "tau = {0:0.1f} \pm {1:0.1f} days"
73 .format(tau, dtau))
74 fig.savefig("figures/betaDecay.pdf")
75 fig.show()

192 Introduction to Python for Science & Engineering

0 20 40 60 80 100
t

2

3

4

5

6

7

ln
(N

)

A = ln N0 = 6.79 ± 0.02
B = -1/tau = 0.0481 ± 0.0007

2
r = 0.996

N0 = 892 ± 16
tau = 20.8 ± 0.3 days

Fit to : lnN = t/ + lnN0

Figure 8.1 Semi-log plot of beta decay measurements from Phosphorus-32.

8.1.2 Linear regression for fitting a power-law function

You can use a similar approach to the one outlined above to fit exper-
imental data to a power law fitting function of the form

P (s) = P0s
α. (8.12)

We follow the same approach we used for the exponential fitting func-
tion and first take the logarithm of both sides of Eq. (8.12)

ln P = lnP0 +α lns. (8.13)

We recast this in the form of a linear equation y = a + bx with the
following identifications:

x = lns (8.14a)

y = lnP (8.14b)

a = lnP0 (8.14c)

b = α (8.14d)

Following a procedure similar to that used to fit using an exponential
fitting function, you can use the transformations given by Eq. (8.14)
as the basis for a program to fit a power-law fitting function such as
Eq. (8.13) to experimental data.

Curve Fitting 193

8.2 Nonlinear Fitting

The method introduced in the previous section for fitting nonlinear
fitting functions can be used only if the fitting function can be trans-
formed into a fitting function that is linear in the fitting parame-
ters a,b,c... When we have a nonlinear fitting function that cannot be
transformed into a linear form, we need another approach.

The problem of finding values of the fitting parameters that min-
imize χ2 is a nonlinear optimization problem to which there is quite
generally no analytical solution (in contrast to the linear optimization
problem). We can gain some insight into this nonlinear optimization
problem, namely the fitting of a nonlinear fitting function to a data
set, by considering a fitting function with only two fitting parameters.
That is, we are trying to fit some data set {xi,yi}, with uncertainties in
{yi} of {σi}, to a fitting function f (x;a,b) where a and b are the two
fitting parameters. To do so, we look for the minimum in

χ2(a,b) =
∑
i

(
yi − f (xi)

σi

)
. (8.15)

Note that once the data set, uncertainties, and fitting function are
specified, χ2(a,b) is simply a function of a and b. We can picture the
function χ2(a,b) as a landscape with peaks and valleys: as we vary a
and b, χ2(a,b) rises and falls. The basic idea of all nonlinear fitting
routines is to start with some initial guesses for the fitting parame-
ters, here a and b, and by scanning the χ2(a,b) landscape, find values
of a and b that minimize χ2(a,b).

There are a number of different methods for trying to find the min-
imum in χ2 for nonlinear fitting problems. Nevertheless, the method
that is most widely used goes by the name of the Levenberg-Marquardt
method. Actually, the Levenberg-Marquardt method is a combination
of two other methods, the steepest descent (or gradient) method and
parabolic extrapolation. Roughly speaking, when the values of aand b
are not too near their optimal values, the gradient descent method
determines in which direction in (a,b)-space the function χ2(a,b) de-
creases most quickly—the direction of steepest descent—and then
changes a and b to move in that direction. This method is very ef-
ficient unless a and b are very near their optimal values. Near the
optimal values of a and b, parabolic extrapolation is more efficient.
Therefore, as a and b approach their optimal values, the Levenberg-
Marquardt method gradually changes to the parabolic extrapolation

194 Introduction to Python for Science & Engineering

method, which approximates χ2(a,b) by a Taylor series second-order
in a and b and then computes directly the analytical minimum of the
Taylor series approximation of χ2(a,b). This method is only good if the
second-order Taylor series provides a good approximation of χ2(a,b).
That is why parabolic extrapolation only works well very near the
minimum in χ2(a,b).

Before illustrating the Levenberg-Marquardt method, we make
one important cautionary remark: the Levenberg-Marquardt method
can fail if the initial guesses of the fitting parameters are too far away
from the desired solution. This problem becomes more serious the
greater the number of fitting parameters. Thus it is important to pro-
vide reasonable initial guesses for the fitting parameters. Usually, this
is not a problem, as it is clear from the physical situation of a partic-
ular experiment what reasonable values of the fitting parameters are.
But beware!

The scipy.optimize module provides routines that implement the
Levenberg-Marquardt nonlinear fitting method. One most useful of
these is called scipy.optimize.curve_fit and it is the one we demon-
strate here. The function call is

import scipy.optimize
[... insert code here ...]
scipy.optimize.curve_fit(f, xdata, ydata, p0=None,

sigma=None, **kwargs)

The arguments of curve_fit are as follows:

f(xdata, a, b, ...): is the fitting function where xdata is the data
for the independent variable and a, b, ... are the fitting param-
eters, however many there are, listed as separate arguments. Obvi-
ously, f(xdata, a, b, ...) should return the y value of the fitting
function.

xdata: is the array containing the x data.

ydata: is the array containing the y data.

p0: is a tuple containing the initial guesses for the fitting parameters.
The guesses for the fitting parameters are set equal to 1 if they
are left unspecified. It is almost always a good idea to specify the
initial guesses for the fitting parameters.

sigma: is the array containing the uncertainties in the y data.

Curve Fitting 195

0 5 10 15 20
frequency (THz)

0

20

40

60

80

100

120
ab

so
rp

tio
n

(a
rb

 u
ni

ts
)

Figure 8.2 Data.

**kwargs: are keyword arguments that can be passed to the fitting
routine scipy.optimize.leastsq that curve_fit calls. These are
usually left unspecified.

We demonstrate the use of curve_fit to fit the data plotted in Fig.
8.2. We model the data with the fitting function that consists of a
quadratic polynomial background with a Gaussian peak:

s(f) = a+ bf + cf 2 + P e−
1
2 [(f −fp)/fw]

2

(8.16)

Lines 8 and 9 define the fitting function. Note that the independent
variable f is the first argument, which is followed by the six fitting
parameters a, b, c, P , fp, and fw.

To fit the data with s(f), we need good estimates of the fitting pa-
rameters. Setting f = 0, we see that a ≈ 60. An estimate of the slope
of the baseline gives b ≈ −60/20 = −3. The curvature in the baseline is
small so we take c ≈ 0. The amplitude of the peak above the baseline
is P ≈ 80. The peak is centered at fp ≈ 11, while the width of the peak
is about fw ≈ 2. We use these estimates to set the initial guesses of the
fitting parameters in lines 18 and 19 in the following code.

The function that performs the Levenberg-Marquardt algorithm,
scipy.optimize.curve_fit, is called in lines 22–23 with the output
set equal to the one- and two-dimensional arrays nlfit and nlpcov,
respectively. The array nlfit, which gives the optimal values of the

196 Introduction to Python for Science & Engineering

fitting parameters, is unpacked in line 26. The square root of the di-
agonal of the two-dimensional array nlpcov, which gives the estimates
of the uncertainties in the fitting parameters, is unpacked in lines 29–
30 using a list comprehension.

The rest of the code plots the data, the fitting function
using the optimal values of the fitting parameters found by
scipy.optimize.curve_fit, and the values of the fitting parameters
and their uncertainties.

Code: chapter8/programs/fitSpectrum1.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.gridspec as gridspec # unequal plots
4 import scipy.optimize
5

6

7 # define fitting function
8 def GaussPolyBase(f, a, b, c, P, fp, fw):
9 return a+b*f+c*f*f+P*np.exp(-0.5*((f-fp)/fw)**2)

10

11

12 # read in spectrum from data file
13 # f=frequency, s=signal, ds=s uncertainty
14 f, s, ds = np.loadtxt("Spectrum.txt", skiprows=4,
15 unpack=True)
16

17 # initial guesses for fitting parameters
18 a0, b0, c0 = 60., -3., 0.
19 P0, fp0, fw0 = 80., 11., 2.
20

21 # fit data using SciPy's Levenberg Marquart method
22 nlfit, nlpcov = scipy.optimize.curve_fit(GaussPolyBase,
23 f, s, p0=[a0, b0, c0, P0, fp0, fw0], sigma=ds)
24

25 # unpack fitting parameters
26 a, b, c, P, fp, fw = nlfit
27 # unpack uncertainties in fitting parameters from
28 # diagonal of covariance matrix
29 da, db, dc, dP, dfp, dfw = [np.sqrt(nlpcov[j, j])
30 for j in range(nlfit.size)]
31

32 # create fitting function from fitted parameters
33 f_fit = np.linspace(0.0, 25., 128)
34 s_fit = GaussPolyBase(f_fit, a, b, c, P, fp, fw)
35

36 # Calculate residuals and reduced chi squared
37 resids = s - GaussPolyBase(f, a, b, c, P, fp, fw)

Curve Fitting 197

38 redchisqr = ((resids/ds)**2).sum()/float(f.size-6)
39

40 # Create figure window to plot data
41 fig = plt.figure(1, figsize=(9.5, 6.5))
42 gs = gridspec.GridSpec(2, 1, height_ratios=[6, 2])
43

44 # Top plot: data and fit
45 ax1 = fig.add_subplot(gs[0])
46 ax1.plot(f_fit, s_fit, '-C0')
47 ax1.errorbar(f, s, yerr=ds, fmt='oC3', ecolor='black')
48 ax1.set_xlabel('frequency (THz)')
49 ax1.set_ylabel('absorption (arb units)')
50 ax1.text(0.7, 0.95, 'a = {0:0.1f}\pm{1:0.1f}'
51 .format(a, da), transform=ax1.transAxes)
52 ax1.text(0.7, 0.90, 'b = {0:0.2f}\pm{1:0.2f}'
53 .format(b, db), transform=ax1.transAxes)
54 ax1.text(0.7, 0.85, 'c = {0:0.2f}\pm{1:0.2f}'
55 .format(c, dc), transform=ax1.transAxes)
56 ax1.text(0.7, 0.80, 'P = {0:0.1f}\pm{1:0.1f}'
57 .format(P, dP), transform=ax1.transAxes)
58 ax1.text(0.7, 0.75, 'fp = {0:0.1f}\pm{1:0.1f}'
59 .format(fp, dfp), transform=ax1.transAxes)
60 ax1.text(0.7, 0.70, 'fw = {0:0.1f}\pm{1:0.1f}'
61 .format(fw, dfw), transform=ax1.transAxes)
62 ax1.text(0.7, 0.60, 'χ_r^2 = {0:0.2f}'
63 .format(redchisqr), transform=ax1.transAxes)
64 ax1.set_title('$s(f)=a+bf+cf^2+P\,e^{-(f-f_p)^2/2f_w^2}$')
65

66 # Bottom plot: residuals
67 ax2 = fig.add_subplot(gs[1])
68 ax2.errorbar(f, resids, yerr=ds, ecolor="black",
69 fmt="oC3")
70 ax2.axhline(color="gray", zorder=-1)
71 ax2.set_xlabel('frequency (THz)')
72 ax2.set_ylabel('residuals')
73 ax2.set_ylim(-20, 20)
74 ax2.set_yticks((-20, 0, 20))
75

76 fig.savefig("figures/fitSpectrum.pdf")
77 fig.show()

The above code also plots the difference between the data and fit,
known as the residuals, in the subplot below the plot of the data and
fit. Plotting the residuals in this way gives a graphical representation
of the goodness of the fit. To the extent that the residuals vary ran-
domly about zero and do not show any overall upward or downward
curvature, or any long wavelength oscillations, the fit would seem to
be a good fit.

198 Introduction to Python for Science & Engineering

0 5 10 15 20 25
frequency (THz)

0

20

40

60

80

100

120

ab
so

rp
tio

n
(a

rb
 u

ni
ts

)

a = 55.4±2.1
b = -1.77±0.59
c = -0.01±0.02
P = 73.2±2.6
fp = 11.1±0.1
fw = 1.9±0.1

2
r = 1.07

s(f) = a + bf + cf2 + P e (f fp)2/2f2
w

0 5 10 15 20
frequency (THz)

20

0

20

re
sid

ua
ls

Figure 8.3 Fit to Gaussian with quadratic polynomial background.

Finally, we note that we have used the matplotlib package gridspec
to create the two subplots with different heights. The gridspec are
made in lines 3 (where the package is imported), 42 (where 2 rows and
1 column are specified with relative heights of 6 to 2), 45 (where the
first gs[0] height is specified), and 67 (where the second lstinlinegs[1]
height is specified). More details about the gridspec package can be
found at the matplotlib web site.

8.3 Exercises

1. Fit the data below to a straight line using the function
LineFitWt(x, y, dy) introduced in the program betaDecay.py on
page 190. Plot the data and the fit so that you obtain a figure like
the one below, which includes the best fit (solid line) along with
two fits shown with dashed lines. One has a slope equal to the
fitted slope plus the slope uncertainty obtained from the fit. The
other has a slope equal to the fitted slope minus the slope uncer-

Curve Fitting 199

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
distance (cm)

1

2

3

4

5

6

7

8

fo
rc

e
(N

)

slope = 3.46 ± 0.26 N/cm
intercept = 0.21 ± 0.37 N

tainty obtained from the fit. These are matched with the fitted y-
intercept minus or plus its fitted uncertainty.

d = np.array([0.38, 0.64, 0.91, 1.26, 1.41, 1.66, 1.90,
2.18])

f = np.array([1.4, 1.65, 3.0, 3.95, 4.3, 5.20, 6.85, 7.4])
df = np.array([0.4, 0.5, 0.4, 0.5, 0.6, 0.5, 0.5, 0.4])

2. When a voltage source is connected across a resistor and inductor
in series, the voltage across the inductor Vi(t) is predicted to obey
the equation

V (t) = V0e
−Γ t (8.17)

where t is the time and the decay rate Γ = R/L is the ratio of the
resistance R to the inductance L of the circuit. In this problem,
you are to write a Python routine that fits the above equation to
the data below for the voltage measured across an inductor after it
is connected in series with a resistor to a voltage source. Following
the example in the text, linearize Eq. (8.17) and use a linear fitting
routine, either the one you wrote from the previous chapter or one
from NumPy or SciPy.

(a) Find the best values of Γ and V0 and the uncertainties in their
values σΓ and σV0.

(b) Find the value of χ2
r for your fit. Does it make sense?

(c) Make a semi-log plot of the data using symbols with error

200 Introduction to Python for Science & Engineering

bars (no line) and of the fit (line only). The fit should appear
as a straight line that goes through the data points.

Data for decay of voltage across an inductor
in an RL circuit
Date: 24-Oct-2012
Data taken by D. M. Blantogg and T. P. Chaitor

time (ns) voltage (volts) uncertainty (volts)
0.0 5.08e+00 1.12e-01

32.8 3.29e+00 9.04e-02
65.6 2.23e+00 7.43e-02
98.4 1.48e+00 6.05e-02

131.2 1.11e+00 5.25e-02
164.0 6.44e-01 4.00e-02
196.8 4.76e-01 3.43e-02
229.6 2.73e-01 2.60e-02
262.4 1.88e-01 2.16e-02
295.2 1.41e-01 1.87e-02
328.0 9.42e-02 1.53e-02
360.8 7.68e-02 1.38e-02
393.6 3.22e-02 8.94e-03
426.4 3.22e-02 8.94e-03
459.2 1.98e-02 7.01e-03
492.0 1.98e-02 7.01e-03

3. Fit the data of the previous exercise to fit Eq. (8.17) using the SciPy
function scipy.optimize.curve_fit. Plot the data as symbols and
the fit as a line on linear and on semilogarithmic axes in two sep-
arate plots in the same figure window. Compare your results to
those of the previous exercise.

4. Small nanoparticles of soot suspended in water start to aggregate
when salt is added. The average radius r of the aggregates is pre-
dicted to grow as a power law in time t according to the equation

r = Ktp . (8.18)

In general the power p is not an integer, which means that K has
odd units that depend on the value of p. Taking the logarithm of
this equation gives ln r = p ln t+ lnK . Thus, the data should fall on
a straight line of slope p if lnr is plotted vs. ln t.

(a) Plot the data below on a graph of lnr vs. ln t to see if the data
fall approximately on a straight line.

Curve Fitting 201

Size of growing aggregate
Date: 19-Nov-2013
Data taken by M. D. Gryart and A. D. Waites
time (m) size (nm) unc (nm)

0.12 115 10
0.18 130 12
0.42 202 14
0.90 335 18
2.10 510 20
6.00 890 30

18.00 1700 40
42.00 2600 50

(b) Defining y = lnr and x = ln t, use the linear fitting routine
you wrote for the previous problem to fit the data and find
the optimal values for the slope and y intercept, as well as
their uncertainties. Use these fitted values to find the opti-
mal values of the amplitude K and the power p in the fitting
function r = Ktp. What are the fitted values of K and p and
their uncertainties? What is the value of χ2? Does a power law
provide an adequate model for the data?

5. Fit the data of the previous exercise to fit Eq. (8.18) using the SciPy
function scipy.optimize.curve_fit. Plot the data as symbols and
the fit as a line on linear and on log-log axes in two separate plots
in the same figure window. Compare your results to those of the
previous exercise.

6. In this problem you explore using a nonlinear least square fitting
routine to fit the data shown in the figure on the next page. The
data, including the uncertainties in the y values, are provided in
the table at the end of this problem. Your task is to fit the function

d(t) = A (1 +Bcosωt)e−t
2/2τ2

+C (8.19)

to the data, where the fitting parameters are A,B,C, ω, and τ .

(a) Write a Python program that (i) reads the data in from a data
file, (ii) defines a function oscDecay(t, A, B, C, tau, omega)

for the function d(t) above, and (iii) produces a plot of the
data and the function d(t). Choose the fitting parameters A,

B, C, tau, and omega to produce an approximate fit “by eye”
to the data. You should be able estimate reasonable values
for these parameters just by looking at the data and thinking

202 Introduction to Python for Science & Engineering

0 5 10 15 20 25 30 35 40
time (ms)

20

25

30

35

40

de
ca

y
(a

rb
 u

ni
ts

)

about the behavior of d(t). For example, d(0) = A(1 + B) + C
while d(∞) = C. What parameter in d(t) controls the period
of the peaks observed in the data? Use that information to es-
timate the value of that parameter.

(b) Following the example in §8.2, write a program using the
SciPy function scipy.optimize.curve_fit to fit Eq. (8.19) to
the data and thus find the optimal values of the fitting pa-
rameters A,B,C,ω, and τ . Your program should plot the data
along with the fitting function using the optimal values of the
fitting parameters. Write a function to calculate the reduced
χ2. Print out the value of the reduced χ2 on your plot along
with the optimal values of the fitting parameters. You can use
the results from part (a) to estimate good starting values of
the fitting parameters.

(c) Once you have found the optimal fitting parameters, run your
fitting program again using for starting values the optimal
values of the fitting parameters A,B,C, and τ , but set the
starting value ofω to be 3 times the optimal value. You should
find that the program converges to a different set of fitting
parameters than the ones you found in part (b). Using the
program you wrote for part (b), make a plot of the data and
the fit like the one you did for part (a). The fit should be no-
ticeably worse. What is the value of the reduced χ2 for this
fit? It should be much larger than the one you found for part

Curve Fitting 203

(c). The program has found a local minimum in χ2—one that
obviously is not the best fit!

(d) Setting the fitting parameters A,B,C, and τ to the optimal
values you found in part (b), plot χ2

r as a function of ω for ω
spanning the range from 0.05 to 3.95. You should observe sev-
eral local minima for different values of χ2

r ; the global mini-
mum in χ2

r should occur for the optimal value ofω you found
in part (b).

Data for absorption spectrum
Date: 21-Nov-2012
Data taken by P. Dubson and M. Skraps
time (ms) signal uncertainty
0.2 41.1 0.9
1.4 37.2 0.9
2.7 28.3 0.9
3.9 24.8 1.1
5.1 27.8 0.8
6.4 34.5 0.7
7.6 39.0 0.9
8.8 37.7 0.8

10.1 29.8 0.9
11.3 22.2 0.7
12.5 22.3 0.6
13.8 26.7 1.1
15.0 30.4 0.7
16.2 32.6 0.8
17.5 28.9 0.8
18.7 22.9 1.3
19.9 21.7 0.9
21.1 22.1 1.0
22.4 22.3 1.0
23.6 26.3 1.0
24.8 26.2 0.8
26.1 21.4 0.9
27.3 20.0 1.0
28.5 20.1 1.2
29.8 21.2 0.5
31.0 22.0 0.9
32.2 21.6 0.7
33.5 21.0 0.7
34.7 19.7 0.9
35.9 17.9 0.9
37.2 18.1 0.8
38.4 18.9 1.1

http://taylorandfrancis.com

chapter 9

Numerical Routines: SciPy and NumPy

This chapter describes some of the more useful numerical routines
available in the SciPy and NumPy packages, most of which are
wrappers to well-established numerical routines written in For-
tran, C, and C++. Random number generators are covered. Lin-
ear algebra routines are covered, including ones that solve sys-
tems of linear equations and eigenvalue problems. Routines for
obtaining solutions to nonlinear equations are introduced, as
are routines to perform numerical integration of both single and
multiple integrals. Routines for obtaining solutions to ODEs (and
systems of ODEs) are introduced. Finally, you learn about routines
to perform discrete Fourier transforms (FFT algorithm).

SciPy is a Python library of mathematical routines. Many of the
SciPy routines are Python “wrappers,” that is, Python routines that
provide a Python interface, for numerical libraries and routines orig-
inally written in Fortran, C, or C++. Thus, SciPy lets you take advan-
tage of the decades of work that has gone into creating and optimizing
numerical routines for science and engineering. Because the Fortran,
C, or C++ code that Python accesses is compiled, these routines typ-
ically run very fast. Therefore, there is no real downside—no speed
penalty—for using Python in these cases.

We already encountered SciPy’s routine for fitting nonlinear func-
tions to experimental data, scipy.optimize.leastsq, which was intro-
duced in Chapter 8. Here we will provide a further introduction to a
number of other SciPy packages, in particular those on special func-
tions, linear algebra, finding roots of scalar functions, discrete Fourier
transforms, and numerical integration, including routines for numeri-
cally solving ordinary differential equations (ODEs). Our introduction
to these capabilities does not include extensive background on the nu-
merical methods employed; that is a topic for another text. Here we
simply introduce the SciPy routines for performing some of the more
frequently required numerical tasks.

205

206 Introduction to Python for Science & Engineering

One final note: SciPy makes extensive use of NumPy arrays, so
NumPy should be imported with SciPy.

9.1 Special Functions

SciPy provides a plethora of special functions, including Bessel func-
tions (and routines for finding their zeros, derivatives, and integrals),
error functions, the gamma function, Legendre, Laguerre, and Her-
mite polynomials (and other polynomial functions), Mathieu func-
tions, many statistical functions, and a number of other functions.
Most are contained in the scipi.special library, and each has its own
special arguments and syntax, depending on the vagaries of the par-
ticular function. We demonstrate a number of them in the code below
that produces a plot of the different functions called. For more infor-
mation, you should consult the SciPy web site on the scipy.special

library.

Code: chapter9/programs/specFuncPlotsBW.py

1 import numpy as np
2 import scipy.special
3 import matplotlib.pyplot as plt
4

5 # create a figure window with subplots
6 fig, ax = plt.subplots(3, 2, figsize=(9.3, 6.5))
7

8 # create arrays for a few Bessel functions and plot them
9 x = np.linspace(0, 20, 256)

10 j0 = scipy.special.jn(0, x)
11 j1 = scipy.special.jn(1, x)
12 y0 = scipy.special.yn(0, x)
13 y1 = scipy.special.yn(1, x)
14 ax[0, 0].plot(x, j0, color='black')
15 ax[0, 0].plot(x, j1, color='black', dashes=(5, 2))
16 ax[0, 0].plot(x, y0, color='black', dashes=(3, 2))
17 ax[0, 0].plot(x, y1, color='black', dashes=(1, 2))
18 ax[0, 0].axhline(color="grey", ls="--", zorder=-1)
19 ax[0, 0].set_ylim(-1, 1)
20 ax[0, 0].text(0.5, 0.95, 'Bessel', ha='center',
21 va='top', transform=ax[0, 0].transAxes)
22

23 # gamma function
24 x = np.linspace(-3.5, 6., 3601)
25 g = scipy.special.gamma(x)
26 g = np.ma.masked_outside(g, -100, 400)

Numerical Routines: SciPy and NumPy 207

27 ax[0, 1].plot(x, g, color='black')
28 ax[0, 1].set_xlim(-3.5, 6)
29 ax[0, 1].axhline(color="grey", ls="--", zorder=-1)
30 ax[0, 1].axvline(color="grey", ls="--", zorder=-1)
31 ax[0, 1].set_ylim(-20, 100)
32 ax[0, 1].text(0.5, 0.95, 'Gamma', ha='center',
33 va='top', transform=ax[0, 1].transAxes)
34

35 # error function
36 x = np.linspace(0, 2.5, 256)
37 ef = scipy.special.erf(x)
38 ax[1, 0].plot(x, ef, color='black')
39 ax[1, 0].set_ylim(0, 1.1)
40 ax[1, 0].text(0.5, 0.95, 'Error', ha='center',
41 va='top', transform=ax[1, 0].transAxes)
42

43 # Airy function
44 x = np.linspace(-15, 4, 256)
45 ai, aip, bi, bip = scipy.special.airy(x)
46 ax[1, 1].plot(x, ai, color='black')
47 ax[1, 1].plot(x, bi, color='black', dashes=(5, 2))
48 ax[1, 1].axhline(color="grey", ls="--", zorder=-1)
49 ax[1, 1].axvline(color="grey", ls="--", zorder=-1)
50 ax[1, 1].set_xlim(-15, 4)
51 ax[1, 1].set_ylim(-0.5, 0.6)
52 ax[1, 1].text(0.5, 0.95, 'Airy', ha='center',
53 va='top', transform=ax[1, 1].transAxes)
54

55 # Legendre polynomials
56 x = np.linspace(-1, 1, 256)
57 lp0 = np.polyval(scipy.special.legendre(0), x)
58 lp1 = np.polyval(scipy.special.legendre(1), x)
59 lp2 = scipy.special.eval_legendre(2, x)
60 lp3 = scipy.special.eval_legendre(3, x)
61 ax[2, 0].plot(x, lp0, color='black')
62 ax[2, 0].plot(x, lp1, color='black', dashes=(5, 2))
63 ax[2, 0].plot(x, lp2, color='black', dashes=(3, 2))
64 ax[2, 0].plot(x, lp3, color='black', dashes=(1, 2))
65 ax[2, 0].axhline(color="grey", ls="--", zorder=-1)
66 ax[2, 0].axvline(color="grey", ls="--", zorder=-1)
67 ax[2, 0].set_ylim(-1, 1.1)
68 ax[2, 0].text(0.5, 0.9, 'Legendre', ha='center',
69 va='top', transform=ax[2, 0].transAxes)
70

71 # Laguerre polynomials
72 x = np.linspace(-5, 8, 256)
73 lg0 = np.polyval(scipy.special.laguerre(0), x)
74 lg1 = np.polyval(scipy.special.laguerre(1), x)
75 lg2 = scipy.special.eval_laguerre(2, x)

208 Introduction to Python for Science & Engineering

76 lg3 = scipy.special.eval_laguerre(3, x)
77 ax[2, 1].plot(x, lg0, color='black')
78 ax[2, 1].plot(x, lg1, color='black', dashes=(5, 2))
79 ax[2, 1].plot(x, lg2, color='black', dashes=(3, 2))
80 ax[2, 1].plot(x, lg3, color='black', dashes=(1, 2))
81 ax[2, 1].axhline(color="grey", ls="--", zorder=-1)
82 ax[2, 1].axvline(color="grey", ls="--", zorder=-1)
83 ax[2, 1].set_xlim(-5, 8)
84 ax[2, 1].set_ylim(-5, 10)
85 ax[2, 1].text(0.5, 0.9, 'Laguerre', ha='center',
86 va='top', transform=ax[2, 1].transAxes)
87 fig.tight_layout()
88 fig.savefig("specFuncPlotsBW.pdf")
89 fig.show()

The arguments of the different functions depend, of course, on the
nature of the particular function. For example, the first argument of
the two types of Bessel functions called in lines 10–13 is the so-called
order of the Bessel function, and the second argument is the indepen-
dent variable. The Gamma and Error functions take one argument
each and produce one output. The Airy function takes only one input
argument, but returns four outputs, which correspond the two Airy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
1.0

0.5

0.0

0.5

1.0
Bessel

2 0 2 4 6
20
0

20
40
60
80

100
Gamma

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0 Error

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5

0.4

0.2

0.0

0.2

0.4

0.6
Airy

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0
Legendre

4 2 0 2 4 6 8
5.0
2.5
0.0
2.5
5.0
7.5

10.0
Laguerre

Figure 9.1 Plots of special functions.

Numerical Routines: SciPy and NumPy 209

functions, normally designated Ai(x) and Bi(x), and their derivatives
Ai′(x) and Bi′(x). The plot shows only Ai(x) and Bi(x).

The polynomial functions shown have a special syntax that uses
NumPy’s polyval function for generating polynomials. If p is a list or
array of N numbers and x is an array, then

polyval(p, x) = p[0]*x**(N-1) + p[1]*x**(N-2)
+ ... + p[N-2]*x + p[N-1]

For example, if p = [2.0, 5.0, 1.0], polyval generates the follow-
ing quadratic polynomial:

polyval(p, x) = 2.0*x**2 + 5.0*x + 1.0

SciPy’s special.legendre(n) and special.laguerre(n) functions out-
put the coefficients p needed in polyval to produce the nth-order Leg-
endre and Laguerre polynomials, respectively. The special library of
SciPy has functions that specify many other polynomial functions in
this same way.

Alternatively, the Legendre polynomials can be calculated using
simpler function calls scipy.special.eval_legendre(n, x), where n

is the order of the polynomial and x is the array of points where
the function is evaluated. Similar function calls exist for Leguerre
and other common polynomials. These scipy.special.eval_* func-
tion calls are preferred when the order n is greater than about 20,
where using polyval starts to become unstable.

9.2 Random Numbers

Random numbers are widely used in science and engineering compu-
tations. They can be used to simulate noisy data, or to model phys-
ical phenomena like the distribution of velocities of molecules in a
gas, or to act like the roll of dice in a game. There are even methods
for numerically evaluating multi-dimensional integrals using random
numbers.

The basic idea of a random number generator is that it should
be able to produce a sequence of numbers that are distributed ac-
cording to some predetermined distribution function. NumPy pro-
vides a number of such random number generators in its library
numpy.random. Here we focus on three: rand, randn, and randint.

210 Introduction to Python for Science & Engineering

9.2.1 Uniformly distributed random numbers

The rand(num) function creates an array of num floats uniformly dis-
tributed on the interval from 0 to 1.

In [1]: rand()
Out[1]: 0.5885170150833566

In [2]: rand(5)
Out[2]: array([0.85586399, 0.21183612, 0.80235691,

0.65943861, 0.25519987])

If rand has no argument, a single random number is generated. Oth-
erwise, the argument specifies the number of random numbers (and
size of the array) that is created.

If you want random numbers uniformly distributed over some
other interval, say from a to b, then you can do that simply by stretch-
ing the interval so that it has a width of b−a and displacing the lower
limit from 0 to a. The following statements produce random numbers
uniformly distributed from 10 to 20:

In [3]: a, b = 10, 20

In [4]: (b-a)*rand(20) + a
Out[4]: array([10.99031149, 18.11685555, 11.48302458,

18.25559651, 17.55568817, 11.86290145,
17.84258224, 12.1309852 , 14.30479884,
12.05787676, 19.63135536, 16.58552886,
19.15872073, 17.59104303, 11.48499468,
10.16094915, 13.95534353, 18.21502143,
19.61360422, 19.21058726])

9.2.2 Normally distributed random numbers

The function randn(n) produces a normal or Gaussian distribution of
n random numbers with a mean of 0 and a standard deviation of 1.
That is, they are distributed according to

P (x) =
1
√

2π
e−

1
2x

2
.

Figure 9.2 shows histograms for the distributions of 10,000 random
numbers generated by the np.random.rand and np.random.randn func-
tions. As advertised, the np.random.rand function produces an array
of random numbers that is uniformly distributed between the values
of 0 and 1, while the np.random.randn function produces an array of

Numerical Routines: SciPy and NumPy 211

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200
np.rand(10000)

4 2 0 2 4
0

200

400

600 np.randn(10000)

Figure 9.2 Random number distributions.

random numbers that follows a distribution of mean 0 and standard
deviation 1.

If we want random numbers with a Gaussian distribution of width
σ centered about x0, we stretch the interval by a factor of σ and dis-
place it by x0. The following code produces 20 random numbers nor-
mally distributed around 15 with a width of 10:

In [5]: x0, sigma = 15, 10

In [6]: sigma*randn(20) + x0
Out[6]: array([9.36069244, 13.49260733, 6.12550102,

18.50471781, 9.89499319, 14.09576728,
12.45076637, 17.83073628, 2.95085564,
18.2756275 , 14.781659 , 31.80264078,
20.8457924 , 13.87890601, 25.41433678,
15.44237582, 21.2385386 , -3.91668973,
31.19120157, 26.24254326])

9.2.3 Random distribution of integers

The function randint(low, high, n) produces a uniform random dis-
tribution of n integers between low (inclusive) and high (exclusive).
For example, we can simulate a dozen rolls of a single die with the
following statement:

In [7]: randint(1, 7, 12)
Out[7]: array([6, 2, 1, 5, 4, 6, 3, 6, 5, 4, 6, 2])

212 Introduction to Python for Science & Engineering

Function call Output
rand(n) n random numbers uniformly dis-

tributed from 0 to 1
randn(n) n random numbers normally distributed

with 0 mean and width 1
randint(low, high, n) n random integers from low (inclusive)

to high (exclusive)

Table 9.1 Some random number functions from numpy.random.

9.3 Linear Algebra

Python’s mathematical libraries, NumPy and SciPy, have extensive
tools for numerically solving problems in linear algebra. Here we fo-
cus on two problems that arise commonly in scientific and engineer-
ing settings: (1) solving a system of linear equations and (2) eigen-
value problems. In addition, we show how to perform a number of
other basic computations, such as finding the determinant of a ma-
trix, matrix inversion, and LU decomposition. The SciPy package for
linear algebra is called scipy.linalg.

9.3.1 Basic computations in linear algebra

SciPy has a number of routines for performing basic operations
with matrices. The determinant of a matrix is computed using the
scipy.linalg.det function:

In [1]: import scipy.linalg
In [2]: a = array([[-2, 3], [4, 5]])
In [3]: a
Out[3]: array([[-2, 3],

[4, 5]])

In [4]: scipy.linalg.det(a)
Out[4]: -22.0

The inverse of a matrix is computed using the scipy.linalg.inv func-
tion, while the product of two matrices is calculated using the NumPy
dot function:

In [5]: b = scipy.linalg.inv(a)

In [6]: b
Out[6]: array([[-0.22727273, 0.13636364],

[0.18181818, 0.09090909]])

Numerical Routines: SciPy and NumPy 213

In [7]: dot(a, b)
Out[7]: array([[1., 0.],

[0., 1.]])

9.3.2 Solving systems of linear equations

Solving systems of equations is nearly as simple as constructing a co-
efficient matrix and a column vector. Suppose you have the following
system of linear equations to solve:

2x1 + 4x2 + 6x3 = 4

x1 − 3x2 − 9x3 = −11

8x1 + 5x2 − 7x3 = 1

(9.1)

The first task is to recast this set of equations as a matrix equation of
the form Ax = b. In this case, we have:

A =


2 4 6
1 −3 −9
8 5 −7

 , x =


x1
x2
x3

 , b =


4
−11

1

 . (9.2)

Next we construct the NumPy arrays reprenting the matrix A and the
vector b:

In [8]: A = array([[2, 4, 6], [1, -3, -9], [8, 5, -7]])
In [9]: b = array([4, -11, 2])

Finally we use the SciPy function scipy.linalg.solve to find x1,x2,
and x3:

In [10]: scipy.linalg.solve(A, b)
Out[10]: array([-8.91304348, 10.2173913 , -3.17391304])

which gives the results: x1 = −8.91304348, x2 = 10.2173913, and
x3 = −3.17391304. Of course, you can get the same answer by not-
ing that x = A−1b. Following this approach, we can use scipy.linalg.inv
introduced in the previous section:

In [11]: Ainv = scipy.linalg.inv(A)

In [12]: dot(Ainv, b)
Out[12]: array([-8.91304348, 10.2173913 , -3.17391304])

which is the same answer we obtained using scipy.linalg.solve. Us-
ing scipy.linalg.solve is faster and numerically more stable than

214 Introduction to Python for Science & Engineering

using x= A−1b, so it is the preferred method for solving systems of
equations.

You might wonder what happens if the system of equations are
not all linearly independent. For example, if the matrix A is given by

A =


2 4 6
1 −3 −9
1 2 3

 (9.3)

where the third row is a multiple of the first row. Let’s try it out and
see what happens. First we change the bottom row of the matrix A
and then try to solve the system as we did before.

In [13]: A[2] = array([1, 2, 3])

In [14]: A
Out[14]: array([[2, 4, 6],

[1, -3, -9],
[1, 2, 3]])

In [15]: scipy.linalg.solve(A,b)
LinAlgError: Singular matrix

In [16]: Ainv = scipy.linalg.inv(A)
LinAlgError: Singular matrix

Whether we use scipy.linalg.solve or scipy.linalg.inv, SciPy
raises an error because the matrix is singular.

9.3.3 Eigenvalue problems

One of the most common problems in science and engineering is the
eigenvalue problem, which in matrix form is written as

Ax = λx (9.4)

where A is a square matrix, x is a column vector, and λ is a scalar (num-
ber). Given the matrix A, the problem is to find the set of eigenvectors
x and their corresponding eigenvalues λ that solve this equation.

We can solve eigenvalue equations like this using the SciPy rou-
tine scipy.linalg.eig. The output of this function is an array whose
entries are the eigenvalues and a matrix whose rows are the eigenvec-
tors. Let’s return to the matrix we were using previously and find its
eigenvalues and eigenvectors.

Numerical Routines: SciPy and NumPy 215

In [17]: A
Out[17]: array([[2, 4, 6],

[1, -3, -9],
[8, 5, -7]])

In [18]: lam, evec = scipy.linalg.eig(A)

In [19]: lam
Out[19]: array([2.40995356+0.j, -8.03416016+0.j,

-2.37579340+0.j])

In [20]: evec
Out[20]: array([[-0.77167559, -0.52633654, 0.57513303],

[0.50360249, 0.76565448, -0.80920669],
[-0.38846018, 0.36978786, 0.12002724]])

The first eigenvalue and its corresponding eigenvector are given by

In [21]: lam[0]
Out[21]: (2.4099535647625494+0j)

In [22]: evec[:,0]
Out[22]: array([-0.77167559, 0.50360249, -0.38846018])

We can check that they satisfy the Ax = λx:

In [23]: dot(A,evec[:,0])
Out[23]: array([-1.85970234, 1.21365861,

-0.93617101])

In [24]: lam[0]*evec[:,0]
Out[24]: array([-1.85970234+0.j, 1.21365861+0.j,

-0.93617101+0.j])

Thus we see by direct substitution that the left and right sides of Ax
= λx: are equal. In general, the eigenvalues can be complex, so their
values are reported as complex numbers.

Generalized eigenvalue problem

The scipy.linalg.eig function can also solve the generalized eigen-
value problem

Ax = λBx (9.5)

where B is a square matrix with the same size as A. Suppose, for ex-
ample, that we have

In [25]: A = array([[2, 4, 6], [1, -3, -9], [8, 5, -7]])
Out[25]: B = array([[5, 9, 1], [-3, 1, 6], [4, 2, 8]])

216 Introduction to Python for Science & Engineering

Then we can solve the generalized eigenvalue problem by entering B

as the optional second argument to scipy.linalg.eig

In [26]: lam, evec = scipy.linalg.eig(A, B)

The solutions are returned in the same fashion as before, as an array
lam whose entries are the eigenvalues and a matrix evac whose rows
are the eigenvectors.

In [27]: lam
Out[27]: array([-1.36087907+0.j, 0.83252442+0.j,

-0.10099858+0.j])

In [28]: evec
Out[28]: array([[-0.0419907 , -1. , 0.93037493],

[-0.43028153, 0.17751302, -1.],
[1. , -0.29852465, 0.4226201]])

Hermitian and banded matrices

SciPy has a specialized routine for solving eigenvalue problems for
Hermitian (or real symmetric) matrices. The routine for Hermitian
matrices is scipy.linalg.eigh. It is more efficient (faster and uses less
memory) than scipy.linalg.eig. The basic syntax of the two routines
is the same, although some of the optional arguments are different.
Both routines can solve generalized as well as standard eigenvalue
problems.

SciPy has a specialized routine scipy.linalg.eig_banded for solv-
ing eigenvalue problems for real symmetric or complex Hermitian
banded matrices. When there is a specialized routine for handling a
particular kind of matrix, you should use it; it is almost certain to run
faster, use less memory, and give more accurate results.

9.4 Solving Nonlinear Equations

SciPy has many different routines for numerically solving nonlinear
equations or systems of nonlinear equations. Here we will introduce
only a few of these routines, the ones that are relatively simple and
appropriate for the most common types of nonlinear equations.

Numerical Routines: SciPy and NumPy 217

9.4.1 Single equations of a single variable

Solving a single nonlinear equation is enormously simpler than solv-
ing a system of nonlinear equations, so that is where we start. A word
of caution: solving nonlinear equations can be a tricky business so it is
important that you have a good sense of the behavior of the function
you are trying to solve. The best way to do this is to plot the function
over the domain of interest before trying to find the solutions. This
will greatly assist you in finding the solutions you seek and avoiding
spurious solutions.

We begin with a concrete example. Suppose we want to find the
solutions to the equation

tanx =
√

(8/x)2 − 1 . (9.6)

Plots of tanx and
√

(8/x)2 − 1 vs. x are shown in the top plot of Fig. 6.9,
albeit with x replaced by θ. The solutions to this equation are those
x values where the two curves tan x and

√
(8/x)2 − 1 cross each other.

The first step toward obtaining a numerical solution is to rewrite the
equation to be solved in the form f (x) = 0. Doing so, the above equa-
tion becomes

tanx −
√

(8/x)2 − 1 = 0 . (9.7)

Obviously the two equations above have the same solutions for x. Par-
enthetically we mention that the problem of finding the solutions to
equations of the form f (x) = 0 is often referred to as finding the roots
of f (x).

Next, we plot f (x) over the domain of interest, in this case from x =
0 to 8. For x > 8, the equation has no real solutions as the argument of
the square root becomes negative. The solutions, points where f (x) =
0, are indicated by open green circles; there are three of them. Another
notable feature of the function is that it diverges to ±∞ at x = 0, π/2,
3π/2, and 5π/2.

Brent method

One of the workhorses for finding solutions to a single variable non-
linear equation is the method of Brent, discussed in many texts on nu-
merical methods. SciPy’s implementation of the Brent algorithm is the
function scipy.optimize.brentq(f, a, b), which has three required

218 Introduction to Python for Science & Engineering

1 2 3 4 5 6 7 8
x

8

6

4

2

0

2

4

6

8

ta
nx

(8
/x

)2
1

true roots
false roots

Figure 9.3 Roots of a nonlinear function.

arguments. The first argument f is the name of the user-defined func-
tion to be solved. The next two, a and b, are the x values that bracket
the solution you are looking for. You should choose a and b so that
there is only one solution in the interval between a and b. Brent’s
method also requires that f(a) and f(b) have opposite signs; an error
message is returned if they do not. Thus to find the three solutions to
tanx −

√
(8/x)2 − 1 = 0, we need to run scipy.optimize.brentq(f, a,

b) three times using three different values of a and b that bracket each
of the three solutions. The program below illustrates the how to use
scipy.optimize.brentq.

Code: chapter9/programs/rootbrentq.py

1 import numpy as np
2 import scipy.optimize
3 import matplotlib.pyplot as plt
4

5

6 def tdl(x):
7 y = 8./x
8 return np.tan(x) - np.sqrt(y*y-1.0)
9

10

11 # Find true roots
12 rx1 = scipy.optimize.brentq(tdl, 0.5, 0.49*np.pi)
13 rx2 = scipy.optimize.brentq(tdl, 0.51*np.pi, 1.49*np.pi)
14 rx3 = scipy.optimize.brentq(tdl, 1.51*np.pi, 2.49*np.pi)
15 rx = np.array([rx1, rx2, rx3])
16 ry = np.zeros(3)
17 # print true roots using a list comprehension

Numerical Routines: SciPy and NumPy 219

18 print('\nTrue roots:')
19 print('\n'.join('f({0:0.5f}) = {1:0.2e}'
20 .format(x, tdl(x)) for x in rx))
21

22 # Find false roots
23 rx1f = scipy.optimize.brentq(tdl, 0.49*np.pi, 0.51*np.pi)
24 rx2f = scipy.optimize.brentq(tdl, 1.49*np.pi, 1.51*np.pi)
25 rx3f = scipy.optimize.brentq(tdl, 2.49*np.pi, 2.51*np.pi)
26 rxf = np.array([rx1f, rx2f, rx3f])
27 # print false roots using a list comprehension
28 print('\nFalse roots:')
29 print('\n'.join('f({0:0.5f}) = {1:0.2e}'
30 .format(x, tdl(x)) for x in rxf))
31

32 # Plot function and various roots
33 x = np.linspace(0.7, 8, 128)
34 y = tdl(x)
35 # Create masked array for plotting
36 ymask = np.ma.masked_where(np.abs(y) > 20., y)
37

38 fig, ax = plt.subplots(figsize=(8, 4))
39 ax.plot(x, ymask)
40 ax.axhline(color='black')
41 ax.axvline(x=np.pi/2., color="gray",
42 linestyle='--', zorder=-1)
43 ax.axvline(x=3.*np.pi/2., color="gray",
44 linestyle='--', zorder=-1)
45 ax.axvline(x=5.*np.pi/2., color="gray",
46 linestyle='--', zorder=-1)
47 ax.set_xlabel(r'x')
48 ax.set_ylabel(r'$\tan\,x - \sqrt{(8/x)^2-1}$')
49 ax.set_ylim(-8, 8)
50

51 ax.plot(rx, ry, 'og', ms=5, mfc='white', label='true roots')
52

53 ax.plot(rxf, ry, 'xr', ms=5, label='false roots')
54 ax.legend(numpoints=1, fontsize='small',
55 loc='upper right',
56 bbox_to_anchor=(0.9, 0.97))
57 fig.tight_layout()
58 fig.savefig('figures/rootbrentq.pdf')
59 fig.show()

Running this code generates the following output:

In [1]: run rootbrentq.py

True roots:
f(1.39547) = -6.39e-14
f(4.16483) = -7.95e-14

220 Introduction to Python for Science & Engineering

f(6.83067) = -1.11e-15

False roots:
f(1.57080) = -1.61e+12
f(4.71239) = -1.56e+12
f(7.85398) = 1.17e+12

The Brent method finds the three true roots of the equation
quickly and accurately when you provide values for the brackets a

and b that are valid. However, like many numerical methods for find-
ing roots, the Brent method can produce spurious roots as it does in
the above example when a and b bracket singularities like those at
x = π/2, 3π/2, and 5π/2. Here we evaluated the function at the pur-
ported roots found by brentq to verify that the values of x found were
indeed roots. For the true roots, the values of the function were very
near zero, to within an acceptable roundoff error of less than 10−13.
For the false roots, exceedingly large numbers on the order of 1012

were obtained, indicating a possible problem with these roots. These
results, together with the plots, allow you to unambiguously identify
the true solutions to this nonlinear function.

The brentq function has a number of optional keyword arguments
that you may find useful. One keyword argument causes brentq to
return not only the solution but the value of the function evaluated
at the solution. Other arguments allow you to specify a tolerance to
which the solution is found as well as a few other parameters possibly
of interest. Most of the time, you can leave the keyword arguments at
their default values. See the brentq entry online on the SciPy web site
for more information.

Other methods for solving equations of a single variable

SciPy provides a number of other methods for solving nonlinear equa-
tions of a single variable. It has an implementation of the Newton-
Raphson method called scipy.optimize.newton. It’s the race car of
such methods; it’s super fast but less stable than the Brent method.
To fully realize its speed, you need to specify not only the function
to be solved, but also its first derivative, which is often more trouble
than it’s worth. You can also specify its second derivative, which may
further speed up finding the solution. If you do not specify the first
or second derivatives, the method uses the secant method, which is
usually slower than the Brent method.

Other methods, including the Ridder (scipy.optimize.ridder)

Numerical Routines: SciPy and NumPy 221

and bisection (scipy.optimize.bisect) methods, are also available,
although the Brent method is generally superior. SciPy lets you use
your favorite.

9.4.2 Solving systems of nonlinear equations

Solving systems of nonlinear equations is not for the faint of heart.
These are difficult problems that lack any general-purpose solutions.
Nevertheless, SciPy provides quite an assortment of numerical solvers
for nonlinear systems of equations. However, because of the complex-
ity and subtleties of this class of problems, we do not discuss their use
here.

9.5 Numerical Integration

When a function cannot be integrated analytically, or is very difficult
to integrate analytically, one generally turns to numerical integration
methods. SciPy has a number of routines for performing numerical
integration. Most of them are found in the same scipy.integrate li-
brary where the ODE solvers are located. We list them in Table 9.2 for
reference.

Function Description
quad single integration
dblquad double integration
tplquad triple integration
nquad n-fold multiple integration
fixed_quad Gaussian quadrature, order n
quadrature Gaussian quadrature to tolerance
romberg Romberg integration

trapz trapezoidal rule
cumtrapz trapezoidal rule to cumulatively compute integral
simps Simpson’s rule
romb Romberg integration

polyint Analytical polynomial integration (numpy)
poly1d Helper function for polyint (numpy)

Table 9.2 Some integrating routines from scipy.integrate unless other-
wise noted.

222 Introduction to Python for Science & Engineering

9.5.1 Single integrals

The function quad is the workhorse of SciPy’s integration functions.
Numerical integration is sometimes called quadrature, hence the
name. The function quad is the default choice for performing single
integrals of a function f (x) over a given fixed range from a to b∫ b

a
f (x)dx . (9.8)

The general form of quad is scipy.integrate.quad(f, a, b), where f

is the name of the function to be integrated and a and b are the lower
and upper limits, respectively. The routine uses adaptive quadrature
methods to numerically evaluate integrals, meaning it successively
refines the subintervals (makes them smaller) until a desired level of
numerical precision is achieved. For the quad routine, this is about
10−8, although it usually does even better.

As an example, let’s integrate a Gaussian function over the range
from 0 to 1:∫ 1

0
e−x

2
dx (9.9)

We first need to define the function f (x) = e−x
2
, which we do using a

lambda expression, and then we call the function quad to perform the
integration.

In [1]: f = lambda x : exp(-x**2)

In [2]: from scipy.integrate import quad

In [3]: quad(f, 0, 1)
Out[3]: (0.7468241328124271, 8.291413475940725e-15)

The function call scipy.integrate.quad(f, 0, 1) returns two num-
bers. The first is 0.7468..., which is the value of the integral, and the
second is 8.29...e-15, which is an estimate of the absolute error in the
value of the integral, which we see is quite small compared to 0.7468.

For its first argument, quad requires a function name. In this case,
we used a lambda expression to define the function name, f in this
case. Alternatively, we could have defined the function using the usual
def construction:

def f(x):
return np.exp(-x**2)

Numerical Routines: SciPy and NumPy 223

But here it was simpler to use a lambda expression. Even simpler, we
can just put the lambda expression directly into the first argument of
quad, as illustrated here:

In [4]: quad(lambda x : exp(-x**2), 0, 1)
Out[4]: (0.7468241328124271, 8.291413475940725e-15)

That works too! Thus we see a lambda expression used as an anony-
mous function, a function with no name, as promised in §7.3.

Interestingly, the quad function accepts positive and negative in-
finity as limits.

In [5]: quad(lambda x : exp(-x**2), 0, inf)
Out[5]: (0.8862269254527579, 7.101318390472462e-09)

In [6]: scipy.integrate.quad(lambda x : exp(-x**2), -inf, 1)
Out[6]: (1.6330510582651852, 3.669607414547701e-11)

The quad function handles infinite limits just fine. The absolute errors
are somewhat larger but still well within acceptable bounds for prac-
tical work. Note that inf is a NumPy object and should be written as
np.inf within a Python program.

The quad function can integrate standard predefined NumPy func-
tions of a single variable, like exp, sin, and cos.

In [7]: quad(exp, 0, 1)
Out[7]: (1.7182818284590453, 1.9076760487502457e-14)

In [8]: quad(sin, -0.5, 0.5)
Out[8]: (0.0, 2.707864644566304e-15)

In [9]: quad(cos, -0.5, 0.5)
Out[9]: (0.9588510772084061, 1.0645385431034061e-14)

Suppose we want to integrate a function such as Ae−cx
2

defined as
a normal Python function:

In [10]: def gauss(x, A, c):
....: return A * np.exp(-c*x**2)

Of course we will need to pass the values of A and c to gauss via quad

in order to numerically perform the integral. This can be done using
args, one of the optional keyword arguments of quad. The code below
shows how to do this

In [11]: A, c = 2.0, 0.5

In [12]: intgrl1 = quad(gauss, 0.0, 5.0, args=(A, c))

224 Introduction to Python for Science & Engineering

In [13]: intgrl1
Out[13]: (2.5066268375731307, 2.1728257867977207e-09)

Note that the order of the additional parameters in args=(A, c) must
be in the same order as they appear in the function definition of gauss.

Of course, we could also do this using a lambda expression, as
follows

In [14]: intgrl2 = quad(lambda x: gauss(x, A, c), 0.0, 5.0)

In [15]: intgrl2
Out[15]: (2.5066268375731307, 2.1728257867977207e-09)

Either way, we get the same answer.
Let’s do one last example. Let’s integrate the first-order Bessel

function of the first kind, usually denoted J1(x), over the interval
from 0 to 5. J1(x) is available in the special functions library of
SciPy as scipy.special.jn(v, x) where v is the (real) order of the
Bessel function (see §9.1). Note that x is the second argument of
scipy.special.jn(v, x), which means that we cannot use the args

keyword function because the integration routine quad assumes that
the independent variable is the first argument of the function to be
integrated. Here the first argument is v, which we wish to fix to be 1.
Therefore, we use a lambda expression, to fix the parameters A and c,
assign 1 to the value of v, and to define the function to be integrated.
Here is now it works:

In [10]: import scipy.special

In [11]: quad(lambda x: scipy.special.jn(1,x), 0, 5)
Out[11]: (1.177596771314338, 1.8083362065765924e-14)

Because the SciPy function scipy.special.jn(v, x) is a function of
two variables, v and x, and we want to use the second variable
x as the independent variable, we cannot use the function name
scipy.special.jn together with the args argument of quad. So we use
a lambda expression, which is a function of only one variable, x, and
set the v argument equal to 1.

Integrating polynomials

Working in concert with the NumPy poly1d, the NumPy function
polyint takes the nth antiderivative of a polynomial and can be used
to evaluate definite integrals. The function poly1d essentially does
the same thing as polyval, which we encountered in §9.1, but with

Numerical Routines: SciPy and NumPy 225

a different syntax. Suppose we want to make the polynomial function
p(x) = 2x2 + 5x+ 1. Then we write

In [12]: p = np.poly1d([2, 5, 1])

In [13]: p
Out[13]: poly1d([2, 5, 1])

The polynomial p(x) = 2x2 + 5x+ 1 is evaluated using the syntax p(x).
Below, we evaluate the polynomial at three different values of x. The
polynomial p(x) = 2x2 + 5x + 1 is evaluated using the syntax p(x). Be-
low, we evaluate the polynomial at three different values of x.

In [14]: p(1), p(2), p(3.5)
Out[14]: p(8, 19, 43.0)

Thus polyval allows us to define the function p(x) = 2x2 +5x+1. Now
the antiderivative of p(x) = 2x2 + 5x + 1 is P (x) = 2

3x
3 + 5

2x
2 + x + C

where C is the integration constant. The NumPy function polyint,
which takes the nth antiderivative of a polynomial, works as follows

In [15]: P = polyint(p)

In [16]: P
Out[16]: poly1d([0.66666667, 2.5 , 1. , 0.])

When polyint has a single input, p in this case, polyint returns the
coefficients of the antiderivative with the integration constant set to
zero, as Out[16] illustrates. It is then an easy matter to determine any
definite integral of the polynomial p(x) = 2x2 + 5x+ 1 since

q ≡
∫ b

a
p(x)dx = P (b)− P (a) . (9.10)

For example, if a = 1 and b = 5,

In [17]: q=P(5)-P(1)

In [18]: q
Out[18]: 146.66666666666666

or ∫ 5

1

(
2x2 + 5x+ 1

)
dx = 1462

3 . (9.11)

226 Introduction to Python for Science & Engineering

9.5.2 Double integrals

The scipy.integrate function dblquad can be used to numerically
evaluate double integrals of the form∫ y=b

y=a
dy

∫ x=h(y)

x=g(y)
dxf (x,y) . (9.12)

The general form of dblquad is
In [19]: scipy.integrate.dblquad(func, a, b, gfun, hfun)

where func is the name of the function to be integrated, a and b are
the lower and upper limits of the y variable, respectively, and gfun

and hfun are the names of the functions that define the lower and up-
per limits of the x variable. As an example, let’s perform the double
integral∫ 1/2

0
dy

∫ √1−4y2

0
16xy dx . (9.13)

We define the functions f , g, and h, using lambda expressions. Note
that even if g and h are constants, as they may be in many cases, they
must be defined as functions, as we have done here for the lower limit.
In [20]: f = lambda x, y : 16*x*y

In [21]: g = lambda x : 0

In [22]: h = lambda y : sqrt(1-4*y**2)

In [23]: scipy.integrate.dblquad(f, 0, 0.5, g, h)
Out[23]: (0.5, 5.551115123125783e-15)

Once again, there are two outputs: the first is the value of the integral
and the second is its absolute uncertainty.

Of course, the lower limit can also be a function of y, as we demon-
strate here by performing the integral∫ 1/2

0
dy

∫ √1−4y2

1−2y
16xy dx . (9.14)

The code for this is given by
In [24]: g = lambda y : 1-2*y

In [25]: scipy.integrate.dblquad(f, 0, 0.5, g, h)
Out[25]: (0.33333333333333326, 3.700743415417188e-15)

Numerical Routines: SciPy and NumPy 227

Other integration routines

In addition to the routines described above, scipy.integrate has a
number of other integration routines, including nquad, which per-
forms n-fold multiple integration, as well as other routines that imple-
ment other integration algorithms. You will find, however, that quad
and dblquad meet most of your needs for numerical integration.

9.6 Solving ODEs

The scipy.integrate library has two powerful routines, ode and
odeint, for numerically solving systems of coupled first-order ordi-
nary differential equations (ODEs). While ode is more versatile, odeint
(ODE integrator) has a simpler Python interface that works very well
for most problems. It can handle both stiff and non-stiff problems.
Here we provide an introduction to odeint.

A typical problem is to solve a second- or higher-order ODE for a
given set of initial conditions. Here we illustrate using odeint to solve
the equation for a driven damped pendulum. The equation of motion
for the angle θ that the pendulum makes with the vertical is given by

d2θ

dt2
=

1
Q
dθ
dt

+ sinθ + d cosΩt (9.15)

where t is time, Q is the quality factor, d is the forcing amplitude,
and Ω is the driving frequency of the forcing. Reduced variables have
been used such that the natural (angular) frequency of oscillation is 1.
The ODE is nonlinear owing to the sin θ term. Of course, it’s precisely
because there are no general methods for solving nonlinear ODEs that
one employs numerical techniques, so it seems appropriate that we
illustrate the method with a nonlinear ODE.

The first step is always to transform any nth-order ODE into a sys-
tem of n first-order ODEs of the form:

dy1

dt
= f1(t,y1, ..., yn)

dy2

dt
= f2(t,y1, ..., yn)

... =
...

dyn
dt

= fn(t,y1, ..., yn).

(9.16)

228 Introduction to Python for Science & Engineering

We also need n initial conditions, one for each variable yi . Here we
have a second-order ODE so we will have two coupled ODEs and two
initial conditions.

We start by transforming our second-order ODE into two coupled
first-order ODEs. The transformation is easily accomplished by defin-
ing a new variable ω ≡ dθ/dt. With this definition, we can rewrite our
second-order ODE as two coupled first-order ODEs:

dθ
dt

=ω (9.17)

dω
dt

=
1
Q
ω+ sinθ + cosΩt. (9.18)

In this case the functions on the right-hand side of the equations are

f1(t,θ,ω) = ω (9.19)

f2(t,θ,ω) = − 1
Q
ω+ sinθ + d cosΩt. (9.20)

Note that there are no explicit derivatives on the right-hand side of
the functions fi ; they are all functions of t and the various yi , in this
case θ and ω.

The initial conditions specify the values of θ and ω at t = 0.
SciPy’s ODE solver scipy.integrate.odeint has three required ar-

guments and many optional keyword arguments, of which we only
need one, args, for this example. So in this case, odeint has the form

odeint(func, y0, t, args=())

The first argument func is the name of a Python function that returns
a list of values of the n functions fi(t,y1, ..., yn) at a given time t. The
second argument y0 is an array (or list) of the values of the initial
conditions of (y1, ..., yn). The third argument is the array of times at
which you want odeint to return the values of (y1, ..., yn). The keyword
argument args is a tuple that is used to pass parameters (besides y0

and t) that are needed to evaluate func. Our example should make all
of this clear.

Having written the nth-order ODE as a system of n first-order
ODEs, the next task is to write the function func. The function func

should have three arguments: (1) the list (or array) of current y values,
(2) the current time t, and (3) a list of any other parameters params

needed to evaluate func. The function func returns the values of the

Numerical Routines: SciPy and NumPy 229

0 25 50 75 100 125 150 175 200
time

15

10

5

0

5

10

0 25 50 75 100 125 150 175 200
time

2

1

0

1

2

0 1 2 3 4 5 6

2

1

0

1

2

Figure 9.4 Pendulum trajectory.

derivatives dyi/dt = fi(t,y1, ..., yn) in a list (or array). Lines 6–11 illus-
trate how to write func for our example of a driven damped pendu-
lum. Here we name the function simply f, which is the name that
appears in the call to odeint in line 35.

The only other tasks remaining are to define the parameters
needed in the function, bundle them into a list (line 24), define the
initial conditions, and bundle them into another list (line 27). After
defining the time array in lines 30–32, we call odeint with the appro-
priate arguments and a variable, psoln in this case, to store output.
The output psoln is an n element array where each element is itself
an array corresponding to the values of yi for each time in the time
t array that was an argument of odeint. For this example, the first
element psoln[:,0] is the y0 or theta array, and the second element
psoln[:,1] is the y1 or omega array. The remainder of the code sim-
ply plots out the results in different formats. The resulting plots are
shown in Fig. 9.4.

Code: chapter9/programs/odePend.py

1 import numpy as np
2 import matplotlib.pyplot as plt

230 Introduction to Python for Science & Engineering

3 from scipy.integrate import odeint
4

5

6 def f(y, t, params):
7 theta, omega = y # unpack current values
8 Q, d, Omega = params # unpack parameters
9 derivs = [omega, # list of dy/dt=f functions

10 -omega/Q+np.sin(theta)+d*np.cos(Omega*t)]
11 return derivs
12

13

14 # Parameters
15 Q = 2.0 # quality factor (inverse damping)
16 d = 1.5 # forcing amplitude
17 Omega = 0.65 # drive frequency
18

19 # Initial values
20 theta0 = 0.0 # initial angular displacement
21 omega0 = 0.0 # initial angular velocity
22

23 # Bundle parameters for ODE solver
24 params = [Q, d, Omega]
25

26 # Bundle initial conditions for ODE solver
27 y0 = [theta0, omega0]
28

29 # Make time array for solution
30 tStop = 200.
31 tInc = 0.05
32 t = np.arange(0., tStop, tInc)
33

34 # Call the ODE solver
35 psoln = odeint(f, y0, t, args=(params,))
36

37 # Plot results
38 fig = plt.figure(figsize=(9.5, 6.5))
39

40 # Plot theta as a function of time
41 ax1 = fig.add_subplot(221)
42 ax1.plot(t, psoln[:, 0], color='black')
43 ax1.set_xlabel('time')
44 ax1.set_ylabel(r'θ', fontsize=14)
45

46 # Plot omega as a function of time
47 ax2 = fig.add_subplot(223)
48 ax2.plot(t, psoln[:, 1], color='black')
49 ax2.set_xlabel('time', fontsize=14)
50 ax2.set_ylabel(r'ω', fontsize=14)
51

Numerical Routines: SciPy and NumPy 231

52 # Plot omega vs theta
53 ax3 = fig.add_subplot(122)
54 twopi = 2.0*np.pi
55 ax3.plot(psoln[:, 0] % twopi, psoln[:, 1],
56 dashes=(1, 2), ms=1, color='black')
57 ax3.set_xlabel(r'θ', fontsize=14)
58 ax3.set_ylabel(r'ω', fontsize=14)
59 ax3.set_xlim(0., twopi)
60

61 fig.tight_layout()
62 fig.savefig('figures/odePend.pdf')
63 fig.show()

The plots in Fig. 9.4 reveal that for the particular set of input pa-
rameters chosen, Q = 2.0, d = 1.5, and Omega = 0.65, the pendulum
trajectories are chaotic. Weaker forcing (smaller d) leads to what is
perhaps the more familiar behavior of sinusoidal oscillations with a
fixed frequency which, at long times, is equal to the driving frequency.

9.7 Discrete (Fast) Fourier Transforms

The SciPy library has a number of routines for performing discrete
Fourier transforms. Before delving into them, we provide a brief re-
view of Fourier transforms and discrete Fourier transforms.

9.7.1 Continuous and discrete Fourier transforms

The Fourier transform of a function g(t) is given by

G(f) =
∫ ∞
−∞
g(t)e−i2πf tdt , (9.21)

where f is the Fourier transform variable; if t is time, then f is fre-
quency. The inverse transform is given by

g(t) =
∫ ∞
−∞
G(f)ei2πf tdt . (9.22)

Here we define the Fourier transform in terms of the frequency f
rather than the angular frequency ω = 2πf .

The conventional Fourier transform is defined for continuous
functions, or at least for functions that are dense and thus have an
infinite number of data points. When doing numerical analysis, how-
ever, you work with discrete data sets, that is, data sets defined for a

232 Introduction to Python for Science & Engineering

finite number of points. The discrete Fourier transform (DFT) is de-
fined for a function gn consisting of a set of N discrete data points.
Those N data points must be defined at equally spaced times tn = n∆t
where ∆t is the time between successive data points and n runs from
0 to N − 1. The discrete Fourier transform (DFT) of gn is defined as

Gl =
N−1∑
n=0

gne
−i(2π/N)ln (9.23)

where l runs from 0 to N − 1. The inverse discrete Fourier transform
(iDFT) is defined as

gn =
1
N

N−1∑
l=0

Gle
i(2π/N)ln. (9.24)

The DFT is usually implemented on computers using the well-known
Fast Fourier Transform (FFT) algorithm, generally credited to Cooley
and Tukey who developed it at AT&T Bell Laboratories during the
1960s. But their algorithm is essentially one of many independent re-
discoveries of the basic algorithm dating back to Gauss who described
it as early as 1805.

9.7.2 The SciPy FFT library

The SciPy library scipy.fftpack has routines that implement a
souped-up version of the FFT algorithm along with many ancillary
routines that support working with DFTs. The basic FFT routine in
scipy.fftpack is appropriately named fft. The program below illus-
trates its use, along with the plots that follow.

Code: chapter9/programs/fftExample.py

1 import numpy as np
2 from scipy import fftpack
3 import matplotlib.pyplot as plt
4

5 width = 2.0
6 freq = 0.5
7

8 t = np.linspace(-10, 10, 128)
9 g = np.exp(-np.abs(t)/width) * np.sin(2.0*np.pi*freq*t)

10 dt = t[1]-t[0] # increment between times in time array
11

Numerical Routines: SciPy and NumPy 233

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
t

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

g(
t)

3 2 1 0 1 2 3
f

10

5

0

5

10

G
(f)

real part
imaginary part

Figure 9.5 Function g(t) and its DFT G(f).

12 G = fftpack.fft(g) # FFT of g
13 f = fftpack.fftfreq(g.size, d=dt) # FFT frequenies
14 f = fftpack.fftshift(f) # shift freqs from min to max
15 G = fftpack.fftshift(G) # shift G order to match f
16

17 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 6))
18 ax1.plot(t, g)
19 ax1.set_xlabel(r't')
20 ax1.set_ylabel(r'$g(t)$')
21 ax1.set_ylim(-1, 1)
22 ax2.plot(f, np.real(G), color='dodgerblue',
23 label='real part')
24 ax2.plot(f, np.imag(G), color='coral',
25 label='imaginary part')
26 ax2.legend()
27 ax2.set_xlabel(r'f')
28 ax2.set_ylabel(r'$G(f)$')
29 plt.tight_layout()
30 plt.savefig('figures/fftExample.pdf')
31 plt.show()

The DFT has real and imaginary parts, both of which are plotted
in Fig. 9.5.

The fft function returns the N Fourier components of Gn start-
ing with the zero-frequency component G0 and progressing to the

234 Introduction to Python for Science & Engineering

maximum positive frequency component G(N/2)−1 (or G(N−1)/2 if N
is odd). From there, fft returns the maximum negative component
GN/2 (or G(N−1)/2 if N is odd) and continues upward in frequency
until it reaches the minimum negative frequency component GN−1.
This is the standard way that DFTs are ordered by most numerical
DFT packages. The scipy.fftpack function fftfreq creates the ar-
ray of frequencies in this non-intuitive order such that f[n] in the
above routine is the correct frequency for the Fourier component
G[n]. The arguments of fftfreq are the size of the original array g
and the keyword argument d that is the spacing between the (equally
spaced) elements of the time array (d=1 if left unspecified). The pack-
age scipy.fftpack provides the convenience function fftshift that
reorders the frequency array so that the zero-frequency occurs at the
middle of the array, that is, so the frequencies proceed monotonically
from smallest (most negative) to largest (most positive). Applying
fftshift to both f and G puts the frequencies f in ascending order
and shifts G so that the frequency of G[n] is given by the shifted f[n].

The scipy.fftpack module also contains routines for performing
2-dimensional and n-dimensional DFTs, named fft2 and fftn, re-
spectively, using the FFT algorithm.

As for most FFT routines, the scipy.fftpack FFT routines are most
efficient if N is a power of 2. Nevertheless, the FFT routines are able
to handle data sets where N is not a power of 2.

scipy.fftpack also supplies an inverse DFT function ifft. It is
written to act on the unshifted FFT so take care! Note also that ifft

returns a complex array. Because of machine roundoff error, the imag-
inary part of the function returned by ifft will, in general, be very
near zero but not exactly zero even when the original function is a
purely real function.

9.8 Exercises

1. Numerically solve the following system of equations

x1 − 2x2 + 9x3 + 13x4 = 1

−5x1 + x2 + 6x3 − 7x4 = −3

4x1 + 8x2 − 4x3 − 2x4 = −2

8x1 + 5x2 − 7x3 + x4 = 5

(9.25)

Numerical Routines: SciPy and NumPy 235

2. Numerically integrate the following integrals and compare the re-
sults to the exact value of each one.∫ 1

−1

dx

1 + x2 =
π
2

∫ ∞
−∞

dx

(ex + x+ 1)2 +π2 =
2
3

3. Use scipy.integrate.odeint to solve the following set of nonlin-
ear ODEs.

dx
dt

= a(y − x) ,
dy

dt
= (c − a)x − xz+ cy ,

dz
dt

= xy − bz

For the initial conditions, use x0 = −10, y0 = 0, z0 = 35. Setting the
initial parameters to a = 40, b = 5, c = 35 gives chaotic solutions
like those shown below. Setting b = 10 while keeping a = 40 and
c = 35 yields periodic solutions. Take care to choose a small enough
time step (but not too small!).

0 2 4 6 8 10
time

20

10

0

10

20

x

20 0 20
y

20

10

0

10

20

x

0 2 4 6 8 10
time

20

10

0

10

20

30

y

10 20 30 40
z

20

10

0

10

20

30

y

0 2 4 6 8 10
time

10

20

30

40

z

20 0 20
x

10

20

30

40

z

236 Introduction to Python for Science & Engineering

4. In this exercise, you explore the use of discrete Fourier transforms
to filter noisy signals. As a first step, use the following function to
create a noisy Gaussian waveform:

def gaussNoisy(x, noiseAmp):
noise = noiseAmp*(np.random.randn(len(x)))
return np.exp(-0.5*x*x) * (1.0+noise)

N = 256
x = np.linspace(-4.0, 4.0, N)
y = gaussNoisy(x, 0.1)

(a) Calculate the discrete Fourier transform using NumPy’s fft

and fftshift routines so that you have a properly ordered
Fourier transform.

(b) Plot the noisy Gaussian and its DFT on two separate panes
in the same figure window. Set the limits of the y-axis of the
DFT plot so that you can see the noise at the high frequencies
(limits of ±2 should suffice).

(c) Next, set all the frequencies higher than a certain cutoff equal
to zero (real and imaginary parts) to obtain a filtered DFT
(take care to do this right!). Inverse Fourier transform the fil-
tered DFT. Then, add a third frame to your figure and plot the
inverse transform of the filtered DFT as well as the original.
If it works well, you should observe a smooth Gaussian that
goes through the original noisy one. Experiment with differ-
ent cutoffs, say, all the frequencies above 2, 4, 8, 16, 32. The
figure below shows an example of what the third frame of
your plot might look like.

4 3 2 1 0 1 2 3 4
x

0.0

0.5

1.0

f(
x)

original
retransformed filtered signal

5. Use NumPy’s polyval function together with SciPy or SciPy’s
special.eval_chebyt function to plot the following functions:

Numerical Routines: SciPy and NumPy 237

(a) The first four Chebyshev polynomials of the first kind over
the interval from −1 to +1. Look up scipy.special.chebyt on
the SciPy web site.

(b) The first four Hermite polynomials multiplied by

e−x
2/2(

2nn!
√
π
)1/2

. (9.26)

Plot these on the interval from −5 to +5. They are the first four
wave functions of the quantum mechanical simple harmonic
oscillator.

http://taylorandfrancis.com

chapter 10

Data Manipulation and Analysis:
Pandas

This chapter introduces Pandas, a powerful Python package for
manipulating and analyzing large (and small) data sets. You first
learn how to read data from external files, e.g., Excel or text files,
into Pandas. You learn about different data structures for storing
dates and times, time series, and data organized into rows and
columns in a spreadsheet-like structure called a DataFrame. You
then learn how to manipulate data, how to extract subsets of data,
and how to plot those data using matplotlib, but with some new
syntax introduced by Pandas that facilitates working with the data
structures of Pandas.

In Chapter 4 we introduced a few simple methods for reading
and writing data from and to data files using some routines available
in NumPy. In this chapter, we introduce more versatile and power-
ful methods for reading, writing, and more importantly, manipulating
large (and small) data sets using a Python package called Pandas.

Pandas is a versatile package for handling time series and large
data sets. It has a spreadsheet-like character and was developed pri-
marily for people working in the financial industry, with its own
ecosystem that reflects its origins. Nevertheless, many of its features
are generally useful to scientists and engineers working across a broad
range of applications. We can’t cover all of its capabilities in one short
chapter, but we will attempt to show you a few of the things it can do.
With that introduction, our hope is that you will have learned enough
to adapt Pandas to your own applications.

Pandas comes installed with the standard Python distributions,
like Enthought and Anaconda. In an IPython shell or in a Python pro-
gram, you access the many routines available in Pandas by writing:

import pandas as pd

The abbreviation universally used for Pandas is pd.

239

240 Introduction to Python for Science & Engineering

10.1 Reading Data from Files Using Pandas

Pandas can read data from files written in many different formats,
including the following: text, csv, Excel, JSON (JavaScript Object No-
tation), fixed-width text tables, HTML (web pages), and more that you
can define. Our purpose here, however, is not to exhaust all the possi-
bilities. Instead, we show you some of the more common methods and
also show you a few tricks. The idea is to illustrate, with some well-
chosen examples (we hope!), how you can use Pandas, so that you get
the idea of how Pandas works. When we are finished, you should be
able to use Pandas to read in and manipulate data, and then also be
able to read the appropriate online Pandas documentation to extend
your knowledge and adapt Pandas for your own applications.

10.1.1 Reading from Excel files saved as csv files

Excel files are commonly used to store data. As we learned in Chapter
4, one simple way to read in data from an Excel file is to save it as a csv
file, which is a text file of tabular data with different columns of data
separated by commas (hence the name csv: comma-separated values,
see §4.3.2).

Let’s start with the Excel file shown in Fig. 10.1. The Excel appli-
cation can save the spreadsheet as a csv text file. It looks like this:

Data: chapter10/programs/ScatMieData.csv

Wavelength [vacuum] (nm) = 532,,
Refractive index of solvent = 1.33,,
Refractive index of particles = 1.59,,
Diameter of particles (microns) = 0.5,,
Cos_theta,F1,F2
1.00E+00,7.00E+01,7.00E+01
8.75E-01,2.71E+01,2.35E+01
7.50E-01,8.58E+00,6.80E+00
6.25E-01,1.87E+00,1.72E+00
5.00E-01,2.25E-01,5.21E-01
3.75E-01,3.04E-01,3.11E-01
2.50E-01,6.54E-01,2.36E-01
1.25E-01,7.98E-01,1.49E-01
0.00E+00,7.04E-01,7.63E-02
-1.25E-01,4.85E-01,4.06E-02
-2.50E-01,2.65E-01,3.64E-02
-3.75E-01,1.17E-01,4.59E-02
-5.00E-01,6.23E-02,5.79E-02
-6.25E-01,8.51E-02,7.63E-02
-7.50E-01,1.56E-01,1.20E-01

Data Manipulation and Analysis: Pandas 241

Figure 10.1 Excel spreadsheet.

-8.75E-01,2.59E-01,2.18E-01
-1.00E+00,4.10E-01,4.10E-01

This particular file has a header that provides information about the
data, a header row specifying the a name of each column of data,
Cos_theta,1 F1, and F2, followed by three columns of data.

Let’s use Pandas to read in the data in this file. To start, we skip
the header information contained in the top 4 lines of the file using
the skiprows keyword argument:

In [1]: scat = pd.read_csv('ScatMieData.csv', skiprows=4)

The Pandas function pd.read_csv() reads the data into a special Pan-
das object called a DataFrame, to which we give the name scat in the
code above. We can examine the DataFrame by typing scat at the
IPython prompt:

1In general, it’s preferable to use column names that have no spaces, which is why
we have used an underline here. Pandas can handle headers with spaces, although
in some cases it can be limiting.

242 Introduction to Python for Science & Engineering

In [2]: scat
Out[2]:

Cos_theta F1 F2
0 1.000 70.007687 70.007687
1 0.875 27.111508 23.482798
2 0.750 8.577917 6.797595
3 0.625 1.866338 1.722973
4 0.500 0.224671 0.520981
5 0.375 0.304370 0.310918
6 0.250 0.653748 0.235945
7 0.125 0.798098 0.149235
8 0.000 0.703536 0.076290
9 -0.125 0.485046 0.040556
10 -0.250 0.264527 0.036360
11 -0.375 0.116618 0.045887
12 -0.500 0.062257 0.057888
13 -0.625 0.085123 0.076260
14 -0.750 0.156296 0.119770
15 -0.875 0.259113 0.218251
16 -1.000 0.410416 0.410416

A DataFrame is a tabular data structure similar to a spreadsheet.
It is the central data structure of Pandas. The DataFrame scat con-
sists of an index column and the three data columns from the
ScatMieData.csv data file. The index column is added by Pandas and
runs from 0 to N −1, where N is the number of data points in the file.
The three data columns are labeled with the names given in the fifth
line of the data file, which was the first line read by pd.read_csv(), as
the keyword argument skiprows was set equal to 4. By default, Pandas
assumes that the first line read gives the names of the data columns
that follow.

The data in the DataFrame can be accessed, and sliced and diced,
in different ways. To access the data in the column, you use the column
labels:

In [3]: scat.Cos_theta
Out[3]:
0 1.000
1 0.875
2 0.750
3 0.625
4 0.500
5 0.375
6 0.250
7 0.125
8 0.000
9 -0.125

Data Manipulation and Analysis: Pandas 243

10 -0.250
11 -0.375
12 -0.500
13 -0.625
14 -0.750
15 -0.875
16 -1.000
Name: Cos_theta, dtype: float64

Typing scat['Cos_theta'], a syntax similar to the one used for dictio-
naries, yields the same result. Individual elements and slices can be
accessed by indexing as for NumPy arrays:

In [4]: scat.Cos_theta[2]
Out[4]: 0.75

In [5]: scat.Cos_theta[2:5]
Out[5]:
2 0.750
3 0.625
4 0.500
Name: Cos_theta, dtype: float64

In [6]: scat['Cos_theta'][2]
Out[6]: 0.75

Similarly, scat.F1 and scat.F2 give the data in the columns labeled
F1 and F2. We will return to the subject of DataFrames in §10.3.2.

In the example above, we ignored the header data contained in
the first 4 lines by setting skiprows=4. But suppose we want to read in
the information in those four rows. How would we do it? Let’s try the
Panda routine read_csv() once again.

In [7]: head = pd.read_csv('ScatMieData.csv', nrows=4,
...: header=None)

We use the keyword nrows and set it equal to 4 so that Pandas reads
only the first 4 lines of the file, which comprise the header informa-
tion. We also set head=None as there is no separate header information
for these 4 rows. We examine the result by typing head, the name we
assigned to these data.

In [8]: head
Out[8]:

0 1 2
0 Wavelength [vacuum] (nm) = 532 NaN NaN
1 Refractive index of solvent = 1.33 NaN NaN
2 Refractive index of particles = 1.59 NaN NaN
3 Diameter of particles (microns) = 0.5 NaN NaN

244 Introduction to Python for Science & Engineering

The 4 rows are indexed from 0 to 3, as expected. The 3 columns are
indexed from 0 to 2. Pandas introduced the column indices 0 to 2
because we set header=None in the read_csv() calling function, instead
of inferring names for these columns from the first row read from the
csv file as it did above. Individual elements of the head DataFrame can
be indexed by their column and row, respectively:

In [9]: head[0][1]
Out[9]: 'Refractive index of solvent = 1.33'

The quotes tell us that the output of head[0][1] is a string. In gen-
eral, Pandas infers the data types for the different columns and assigns
them correctly for numeric, string, or Boolean data types. But in this
case, the information in the first column of the spreadsheet contains
both string and numeric data, so read_csv() interprets the column as
a string.

The data in the other two columns, which were empty in the origi-
nal Excel spreadsheet and are commas with nothing between them in
the csv file, become NaN (“not a number”) in the DataFrame. Accessing
the datum in one cell as before gives the expected result:

In [10]: head[1][1]
Out[10]: nan

Pandas fills in missing data with NaN, a feature we discuss in greater
detail in §10.3.2.

The appearance of quotes in the output Out[8]: above indicates
that the data read from the header information are stored as strings.
We might prefer, however, to separate out the numeric data from the
strings that describe them. While Python has routines for stripping
off numeric information from strings, it’s more efficient to perform
this task when reading the file. To do this, we use the Pandas routine
read_table(), which, like read_csv(), reads in data from a text file.
With read_table(), however, the user can specify the symbol that will
be used to separate the columns of data: a symbol other than a comma
can be used. The following call to read_table() does just that.

In [11]: head = pd.read_table('ScatMieData.csv', sep='=',
...: nrows=4, header=None)

The keyword sep, which specifies the symbol that separates columns,
is set equal to the string '=', as the equals sign delimits the string
from the numeric data in this file. Printing out head reveals that there
are now two columns.

Data Manipulation and Analysis: Pandas 245

In [12]: head
Out[12]:

0 1
0 Wavelength [vacuum] (nm) 532,,
1 Refractive index of solvent 1.33,,
2 Refractive index of particles 1.59,,
3 Diameter of particles (microns) 0.5,,

This still isn’t quite what we want, as the second column consists of
numbers followed by two commas, which are unwanted remnants of
the csv file. We get rid of the commas by declaring the comma to be
a “comment” character (the symbol # is the default comment char-
acter in Python). We do this by introducing the keyword comment, as
illustrated here:

In [13]: head = pd.read_table('ScatMieData.csv', sep='=',
nrows=4, comment=',',
header=None)

Now typing head gives numbers without the trailing commas:

In [14]: head
Out[14]:

0 1
0 Wavelength [vacuum] (nm) 532.00
1 Refractive index of solvent 1.33
2 Refractive index of particles 1.59
3 Diameter of particles (microns) 0.50

Printing out individual elements of the two columns shows that the
elements of column 0 are strings while the elements of column 1 are
are floating point numbers, which is the desired result.

In [15]: head[0][0]
Out[15]: 'Wavelength [vacuum] (nm) '

In [16]: head[1][:]
Out[16]:
0 532.00
1 1.33
2 1.59
3 0.50
Name: 1, dtype: float64

Naming columns manually

If you prefer for the columns to be labeled by descriptive names in-
stead of numbers, you can use the keyword names to provide names
for the columns.

246 Introduction to Python for Science & Engineering

In [17]: head = pd.read_table('ScatMieData.csv', sep='=',
...: nrows=4, comment=',',
...: names=['property', 'value'])

Out[17]: head
property value

0 Wavelength [vacuum] (nm) 532.00
1 Refractive index of solvent 1.33
2 Refractive index of particles 1.59
3 Diameter of particles (microns) 0.50

In [18]: head['property'][2]
Out[18]: 'Refractive index of particles '

In [19]: head['value'][2]
Out[19]: 1.5900000000000001

We can use what we have learned here to read data from the data
file and then plot it, as shown in Fig. 10.2. Here is the code that pro-
duces the plot shown in Fig. 10.2.

Code: chapter10/programs/ScatMiePlot.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4

5 # Read in data
6 head = pd.read_table('ScatMieData.csv', sep='=', nrows=4,
7 comment=',', header=None)
8 scat = pd.read_csv('ScatMieData.csv', skiprows=4)
9

10 theta = (180./np.pi)*np.arccos(scat.Cos_theta)
11

12 plt.close('all')
13 fig, ax = plt.subplots(figsize=(6, 4))
14

15 ax.semilogy(theta, scat.F1, 'o', color='black', label="F1")
16 ax.semilogy(theta, scat.F2, 's', mec='black', mfc='white',
17 zorder=-1, label="F2")
18 ax.legend(loc="lower left")
19 ax.set_xlabel("theta (degrees)")
20 ax.set_ylabel("intensity")
21 for i in range(4):
22 ax.text(0.95, 0.9-i/18, "{} = {}"
23 .format(head[0][i], head[1][i]),
24 ha='right', fontsize=10, transform=ax.transAxes)
25 fig.tight_layout()
26 fig.savefig('ScatMiePlot.pdf')

Data Manipulation and Analysis: Pandas 247

0 20 40 60 80 100 120 140 160 180
theta (degrees)

10-2

10-1

100

101

102

in
te

n
si

ty

Wavelength [vacuum] (nm) = 532.0
Refractive index of solvent = 1.33

Refractive index of particles = 1.59
Diameter of particles (microns) = 0.5

F1
F2

Figure 10.2 Plotting data from csv file read by Pandas routines.

10.1.2 Reading from text files

Perhaps the most common form of data file is simply a text file consist-
ing of columns of data separated by spaces, tabs, or some other char-
acter. The workhorse for reading these types of files is read_table(),
which we introduced, albeit briefly, in the previous section. In a nut-
shell, read_table() is exactly the same as read_csv() except it adds
the keyword sep, which allows you to specify how columns of data
are separated. In fact, read_table(sep=',')is completely equivalent
to read_csv().

Let’s consider data about the planets stored in a text file with the
data columns separated by spaces, as shown here.

Data: chapter10/programs/planetData.txt

planet distance mass gravity diameter year
Mercury 0.39 0.055 0.38 0.38 0.24
Venus 0.72 0.82 0.91 0.95 0.62
Earth 1.00 1.00 1.00 1.00 1.00
Mars 1.52 0.11 0.38 0.53 1.88
Jupiter 5.20 318 2.36 11.2 11.9
Saturn 9.58 95 0.92 9.45 29
Uranus 19.2 15 0.89 4.01 84
Neptune 30.0 17 1.12 3.88 164
Pluto 39.5 0.0024 0.071 0.19 248

The quantities in the table are referenced to Earth. Each column is
separated from the previous column by a variable number of spaces.
The way Pandas handles this is by setting sep='Series+'.

248 Introduction to Python for Science & Engineering

In [20]: planets = pd.read_table('planetData.txt', sep='\s+')

In [21]: planets
Out[21]:

planet distance mass gravity diameter year
0 Mercury 0.39 0.0550 0.380 0.38 0.24
1 Venus 0.72 0.8200 0.910 0.95 0.62
2 Earth 1.00 1.0000 1.000 1.00 1.00
3 Mars 1.52 0.1100 0.380 0.53 1.88
4 Jupiter 5.20 318.0000 2.360 11.20 11.90
5 Saturn 9.58 95.0000 0.920 9.45 29.00
6 Uranus 19.20 15.0000 0.890 4.01 84.00
7 Neptune 30.00 17.0000 1.120 3.88 164.00
8 Pluto 39.50 0.0024 0.071 0.19 248.00

Of course, columns are frequently delimited in other ways. In §10.1.1,
we wrote sep='=' to use the equals sign as a column separator. For tab-
delimited columns, use sep='�'. For white-space-delimited columns
(any combination of spaces and tabs), use delim_whitespace=True

(and omit the sep keyword).
Notice that Pandas added a numerical index (the first column) to

designate the rows in Out[21]. However, you might prefer to use the
planet name rather than a number as the index. We can do this with
the following code.

In [22]: planets = pd.read_table('planetData.txt', sep='\s+',
...: index_col='planet')

In [23]: planets
Out[23]:

distance mass gravity diameter year
planet
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00

In [24]: planets['distance']['Saturn']
Out[24]: 9.5800000000000001

As you can see from the output above, the numerical index has been
replaced by a string index, which here is the name of the planet.

By the way, had our original text data file omitted the name planet

Data Manipulation and Analysis: Pandas 249

for the first column so that there were labels for only five of the six
columns, then Pandas would simply have assumed that the first col-
umn was the index column. That is, suppose the original data file had
looked like this (planet heading omitted):

Data: chapter10/programs/planetDataA.txt

distance mass gravity diameter year
Mercury 0.39 0.055 0.38 0.38 0.24
Venus 0.72 0.82 0.91 0.95 0.62
Earth 1.00 1.00 1.00 1.00 1.00
Mars 1.52 0.11 0.38 0.53 1.88
Jupiter 5.20 318 2.36 11.2 11.9
Saturn 9.58 95 0.92 9.45 29
Uranus 19.2 15 0.89 4.01 84
Neptune 30.0 17 1.12 3.88 164
Pluto 39.5 0.0024 0.071 0.19 248

Now we read in this file without any designation of the index column.

In [25]: planets = pd.read_table('planetDataA.txt', sep='\s+')

In [26]: planets
Out[26]:

distance mass gravity diameter year
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00
In [27]: planets['mass']['Neptune']
Out[27]: 17.0

Table 10.1 summarizes some of the keyword arguments we used
in the read functions we discussed above.

Keyword Value Description
sep "\s+" variable space-delimited data

"\t" tab-delimited data
str string-delimited data

delim_whitespace True mixed tab/space-delimited data
comment str set comment symbol (change from #)

Table 10.1 Basic keywords and values for use with Pandas read functions.

250 Introduction to Python for Science & Engineering

Figure 10.3 Excel file containing blood pressure data.

10.1.3 Reading from an Excel file

Pandas can also read directly from Excel files (i.e., with .xls or .xlsx
extensions). We consider an Excel file that contains blood pressure
and pulse data taken twice per day, early in the morning and late in
the evening, over a period of several weeks. The top of the Excel file is
shown in Fig. 10.3 (there are many more rows, which are not shown).
The file contains five columns: the date, time, systolic blood pressure,
diastolic blood pressure, and pulse. The blood pressures are reported
in mm-Hg and the pulse rate in heartbeats/minute. The name of the
Excel file is BloodPressure.xlsx.

Reading in data from an Excel file using Pandas is simple:

In [28]: bp = pd.read_excel('BloodPressure.xlsx',
usecols='A:E')

The keyword argument usecols='A:E' tells Pandas to read in only
columns A through E; data in any other columns are ignored. Had
we wanted to read in only the pulse and not the blood pressure data,
we could have written usecols='A:B, E' for the keyword argument.
But as written, Pandas reads columns A through E into a DataFrame
object named bp, whose structure we can see by typing bp:

In [29: bp
Out[29]:

Data Manipulation and Analysis: Pandas 251

Date Time BP_sys BP_dia Pulse
0 2017-06-01 23:33:00 119 70 71
1 2017-06-02 05:57:00 129 83 59
2 2017-06-02 22:19:00 113 67 59
3 2017-06-03 05:24:00 131 77 55
4 2017-06-03 23:19:00 114 65 60
5 2017-06-04 06:54:00 119 75 55
6 2017-06-04 21:40:00 121 68 56
7 2017-06-05 06:29:00 130 83 56
8 2017-06-05 22:16:00 113 61 67
9 2017-06-06 05:23:00 116 81 60
10 2017-06-09 23:07:00 125 78 64

.

.

.

Of course, we could have used the read_excel function to read
in the Excel file shown in Fig. 10.1 instead of the read_csv function
we employed in §10.1.1. Using read_excel, we can skip the first four
rows using the skiprows keyword, just as we did using the read_csv

function.

Function Description
read_table workhorse: read tabular data from a text file
read_csv read tabular data from a comma separated file
read_excel read tabular data from an Excel file
read_clipboard read data copied from web page to clipboard
read_fwf read data in fixed-width columns w/o delim-

iters

Table 10.2 Summary of Pandas functions to read tabular data files.

10.2 Dates and Times in Pandas

Pandas has special tools for handling dates and times. These tools
make use of the Python library datetime, which defines, among other
things, a useful datetime object. A datetime object stores, as its name
implies, a precise moment in time. To see how this works, let’s import
the datetime library and then get the current value of datetime:
In [1]: import datetime as dt

In [2]: t0 = dt.datetime.now()

252 Introduction to Python for Science & Engineering

In [3]: t0
Out[3]: datetime.datetime(2017, 7, 21, 8, 17, 24, 241916)

The datetime object returns the year, month, day, hour, minute, sec-
ond, and microsecond. You can format a datetime object for printing
using the strftime method of the datetime library in various ways:

In [4]: t0.strftime('%Y-%m-%d')
Out[4]: '2017-07-21'

In [5]: t0.strftime('%d-%m-%Y')
Out[5]: '21-07-2017'

In [6]: t0.strftime('%d-%b-%Y')
Out[6]: '21-Jul-2017'

In [7]: t0.strftime('%H:%M:%S')
Out[7]: '09:00:15'

In [8]: t0.strftime('%Y-%B-%d %H:%M:%S')
Out[8]: '2017-July-21 09:00:15'

You can construct almost any format you want.
In the previous section, we read blood pressure and pulse infor-

mation into a DataFrame with the date and time as separate variables
(i.e., columns). It is usually more convenient within Pandas to have
these combined as a single datetime object. While it is possible to
combine the bp['Date'] and bp['Time'] columns in the bp DataFrame
into a single datetime object after reading the original Excel file, it is
much easier to read the two Excel columns directly into a datetime
object using the keyword argument parse_dates, as illustrated here:

In [9]: bp = pd.read_excel('BloodPressure.xlsx',
...: usecols='A:E',
...: parse_dates=[['Date', 'Time']])

In [10]: bp
Out[10]:

Date_Time BP_sys BP_dia Pulse
0 2017-06-01 23:33:00 119 70 71
1 2017-06-02 05:57:00 129 83 59
2 2017-06-02 22:19:00 113 67 59
3 2017-06-03 05:24:00 131 77 55
4 2017-06-03 23:19:00 114 65 60
5 2017-06-04 06:54:00 119 75 55
6 2017-06-04 21:40:00 121 68 56
7 2017-06-05 06:29:00 130 83 56
8 2017-06-05 22:16:00 113 61 67

Data Manipulation and Analysis: Pandas 253

9 2017-06-06 05:23:00 116 81 60
10 2017-06-09 23:07:00 125 78 64

.

.

.

The parse_dates keyword argument can also be used with the
read_csv and read_table methods.

10.3 Data Structures: Series and DataFrame

Pandas has two principal data structures: Series and DataFrame. They
form the basis for most activities using Pandas. We have already met
the DataFrame in §10.1, and have learned a bit about its most basic
properties and uses.

A Series object is a one-dimensional DataFrame.
Both Series and DataFrames use NumPy arrays extensively, but

allow more versatile ways of indexing, as we have already seen for
DataFrames. These more versatile ways of indexing facilitate conve-
nient ways of combining and manipulating different data sets, and
thus are at the heart of Pandas functionality. This added functionality
can come at a performance price, a topic we briefly address below.

10.3.1 Series

A Pandas Series is a one-dimensional array-like data structure made
up of a NumPy array and an associated array of data labels called the
index. We can create a Series using the Pandas Series function, which
turns a list, dictionary, or NumPy array into a Pandas Series. Here we
use it to turn a list into a Series:

In [1]: ht = pd.Series([160.0-4.9*t*t for t in range(6)])

In [2]: ht
Out[2]:
0 160.0
1 155.1
2 140.4
3 115.9
4 81.6
5 37.5
dtype: float64

The IPython output displayed is in two columns, the index column
on the left and the values of the Series on the right. The argument

254 Introduction to Python for Science & Engineering

of the Series function can be a list, an iterator, or a NumPy array.
In this case, the values of the Series are floating point numbers. The
index goes from 0 to N − 1, where N is the number of data points.
Individual elements and slices are accessed in the same way as for
lists and NumPy arrays.

In [3]: ht[2]
Out[3]: 140.40000000000001

In [4]: ht[1:4]
Out[4]:
1 155.1
2 140.4
3 115.9
dtype: float64

The entire array of values and indices can be accessed using the values
and index attributes.

In [5]: ht.values
Out[5]: array([160. , 155.1, 140.4, 115.9, 81.6, 37.5])

In [6]: ht.index
Out[6]: RangeIndex(start=0, stop=6, step=1)

Here, as can be seen from the outputs, the ht.values is a NumPy array
and ht.index is an iterator.

Indexing Series works exactly as it does for DataFrames. So, unless
otherwise specified, the index default is to go from 0 to N − 1 where
N is the size of the Series. However, other indexing schemes can be
specified:

In [7]: heights = pd.Series([188, 157, 173, 169, 155],
...: index=['Jake', 'Sarah', 'Heather',
...: 'Chris', 'Alex'])

In [8]: heights
Out[8]:
Jake 188
Sarah 157
Heather 173
Chris 169
Alex 155
dtype: int64

The Series heights bears a striking resemblance to a Python dic-
tionary. Indeed, a Pandas Series can be converted to a dictionary using
the to_dict method:

Data Manipulation and Analysis: Pandas 255

In [9]: htd = heights.to_dict()

In [10]: htd
Out[10]: {'Alex': 155, 'Chris': 169, 'Heather': 173,

'Jake': 188, 'Sarah': 157}

A Python dictionary can be converted to a Pandas Series using the
Series function:

In [11]: pd.Series(htd)
Out[11]:
Alex 155
Chris 169
Heather 173
Jake 188
Sarah 157
dtype: int64

Time series

One of the most common uses of Pandas series involves a time series
in which the series is indexed by timestamps. For example, we can
change the index of the series ht to consecutive days. First we create a
time sequence:

In [12]: dtr = pd.date_range('2017-07-22', periods=6)

Then we set the index of ht to the time sequence:

In [13]: ht.index = dtr

In [14]: ht
Out[14]:
2017-07-22 160.0
2017-07-23 155.1
2017-07-24 140.4
2017-07-25 115.9
2017-07-26 81.6
2017-07-27 37.5
Freq: D, dtype: float64

In [15]: ht['2017-07-25']
Out[15]: 115.90000000000001

In [16]: ht['2017-07-23':'2017-07-26']
Out[16]:
2017-07-23 155.1
2017-07-24 140.4
2017-07-25 115.9

256 Introduction to Python for Science & Engineering

2017-07-26 81.6
Freq: D, dtype: float64

Note that you can slice time series indexed by dates, and that the slice
range includes both the starting and ending dates.

Alternatively, the time series can be created in one step using the
Series function of Pandas:

In [17]: htAlt = pd.Series([160.0-4.9*t*t for t in range(6)],
...: index=dtr)

In [18]: htAlt
Out[18]:
2017-07-22 160.0
2017-07-23 155.1
2017-07-24 140.4
2017-07-25 115.9
2017-07-26 81.6
2017-07-27 37.5
Freq: D, dtype: float64

10.3.2 DataFrame

We introduced the DataFrame, a two-dimensional spreadsheet-like
data structure, in §10.1. There we learned that we can access a col-
umn of a DataFrame using column labels, like planets['mass'] to
get the masses of all the planets in the mass column or a single
DataFrame cell, like planets['mass']['Mars'], to get the mass of a
single planet. However, this method of retrieving 2-dimensional data
in a DataFrame is not very efficient and can be excruciatingly slow if
one needs to sift through a large quantity of data. The recommended
scheme is to use the iloc and loc methods, which are faster and more
versatile.

Let’s explore the indexing methods of Pandas by reloading the
blood pressure Excel file:

In [19]: bp = pd.read_excel('BloodPressure.xlsx',
...: usecols='A:E',
...: parse_dates=[['Date', 'Time']])

In [20]: bp.head(4) # print out first 5 lines of bp
Out[18]:

Date_Time BP_sys BP_dia Pulse
0 2017-06-01 23:33:00 119 70 71
1 2017-06-02 05:57:00 129 83 59
2 2017-06-02 22:19:00 113 67 59

Data Manipulation and Analysis: Pandas 257

3 2017-06-03 05:24:00 131 77 55

In [21]: bp.tail(4) # print out last 5 lines of bp
Out[21]:

Date_Time BP_sys BP_dia Pulse
44 2017-07-15 22:57:00 109 63 62
45 2017-07-16 06:45:00 124 78 47
46 2017-07-16 22:15:00 121 74 58
47 2017-07-17 06:22:00 113 79 57

The iloc method

The iloc method indexes the DataFrame by row and column number
(note the order: [row, column]—it’s opposite to what we used before):

In [22]: bp.iloc[0, 2]
Out[22]: 70

The row and column numbers use the usual Python zero-based index-
ing scheme. The usual slicing syntax applies:

In [23]: bp.iloc[45, 0:3]
Out[23]:
Date_Time 2017-07-16 06:45:00
BP_sys 124
BP_dia 78
Name: 45, dtype: object

Suppose we set the Date_Time column to be the index:

In [23]: bp = bp.set_index('Date_Time')

In [24]: bp.head(4)
Out[24]:

BP_sys BP_dia Pulse
Date_Time
2017-06-01 23:33:00 119 70 71
2017-06-02 05:57:00 129 83 59
2017-06-02 22:19:00 113 67 59
2017-06-03 05:24:00 131 77 55

In [25]: bp.iloc[1, 0:2]
Out[25]:
BP_sys 129
BP_dia 83
Name: 2017-06-02 05:57:00, dtype: int64

Notice that column 0 is now the BP_sys column; the index column is
not counted. As with lists and NumPy arrays, an index of −1 signifies
the last element, −2 the next to last element, and so on.

258 Introduction to Python for Science & Engineering

The loc method

The loc method is an extremely versatile tool for indexing
DataFrames. At first look, it seems simply like an alternative syntax
for accomplishing the same thing you might have done with the iloc

method:

In [26]: bp.loc['2017-06-02 05:57:00', 'BP_sys':'BP_dia']
Out[26]:
BP_sys 129
BP_dia 83
Name: 2017-06-02 05:57:00, dtype: int64

But it can do much more. Suppose, for example, we wanted to know if
there were significant differences in the blood pressure readings taken
in the morning from those taken in the evening. The loc method has,
as a part of its functionality, the ability to select data based on condi-
tions. We illustrate this by separating our pulse data into those mea-
surements taken in the morning and those taken in the evening.

In [27]: PulseAM = bp.loc[bp.index.hour<12, 'Pulse']

In [28]: PulsePM = bp.loc[bp.index.hour>=12, 'Pulse']

Here we set the row entry of the loc method to a condition on the
value of the time index, whether it is before or after noon (less than 12
hours or not). This is sometimes referred to as conditional or Boolean
indexing.

You can specify quite complicated conditions if you wish. For ex-
ample, suppose we wanted a list of all the planets that were more
massive than the Earth but nevertheless had a smaller gravitational
force at their surface. Using our DataFrame planets introduced pre-
viously, we could list those planets as follows:

In [29]: planets = pd.read_table('planetData.txt', sep='\s+',
...: index_col='planet')

In [30]: planets.loc[(planets['mass'] > 1.0) &
...: (planets['gravity'] < 1.0)]

Out[30]:
distance mass gravity diameter year

planet
Saturn 9.58 95.0 0.92 9.45 29.0
Uranus 19.20 15.0 0.89 4.01 84.0

The parentheses within the loc method are needed to define the order
in which the logical operations are applied.

Data Manipulation and Analysis: Pandas 259

If we don’t want to see all of the columns, we can specify the
columns as well as the rows:

In [31]: planets.loc[(planets.mass > 1.0) &
...: (planets.gravity < 1.0),
...: 'mass':'gravity']

Out[31]:
mass gravity

planet
Saturn 95.0 0.92
Uranus 15.0 0.89

Note that here we could have used planets.mass instead of
planets['mass'] and planets.gravity instead of planets['gravity'].
Either works.

Creating a DataFrame

Up until now, the DataFrames we worked with were created for us
when we read data in from a text, csv, or Excel file. Alternatively, you
can create a DataFrame using the Pandas DataFrame routine. As input
you can use nearly any list-like object, including a list, a NumPy array,
or a dictionary. Perhaps the simplest way is using a dictionary.

In [32]: optmat = {'mat': ['silica', 'titania', 'PMMA', 'PS'],
...: 'index': [1.46, 2.40, 1.49, 1.59],
...: 'density': [2.03, 4.2, 1.19, 1.05]}

In [34]: omdf = pd.DataFrame(optmat)
Out[34]:

density index mat
0 2.03 1.46 silica
1 4.20 2.40 titania
2 1.19 1.49 PMMA
3 1.05 1.59 PS

You can coerce the columns to appear in some desired order using the
columns keyword argument.

In [35]: omdf = pd.DataFrame(optmat, columns=['mat', 'density',
'index'])

In [36]: omdf
Out[36]:

mat density index
0 silica 2.03 1.46
1 titania 4.20 2.40
2 PMMA 1.19 1.49
3 PS 1.05 1.59

260 Introduction to Python for Science & Engineering

We can also create a DataFrame with empty columns and fill in
the data later.

In [37]: omdf1 = pd.DataFrame(index=['silica', 'titania',
'PMMA', 'PS'],

columns={'density', 'index'})
In [38]: omdf1
Out[38]:

index density
silica NaN NaN
titania NaN NaN
PMMA NaN NaN
PS NaN NaN

The index and column names are indicated but there is no data. The
empty data columns are indicated by NaN (not-a-number). We can fill
in the empty entries as follows:

In [39]: omdf1.loc['PS', ('index', 'density')] = (1.05, 1.59)

In [40]: omdf1
Out[40]:

index density
silica NaN NaN
titania NaN NaN
PMMA NaN NaN
PS 1.05 1.59

Let’s check the data types in our DataFrame.

In [41]: omdf1.dtypes
Out[41]:
index object
density object
dtype: object

The data types for the index and density columns were set to be
object when the DataFrame was created because we gave these
columns no data. Now that we have entered the data, we would prefer
that the index and density columns be the float data type. To do so,
we explicitly set the data type.

In [42]: omdf1[['index', 'density']] = omdf1[
['index', 'density']].apply(pd.to_numeric)

In [43]: omdf1.dtypes
Out[43]:
index float64
density float64
dtype: object

Data Manipulation and Analysis: Pandas 261

Now the columns are properly typed as floating point numbers while
the overall DataFrame is an object.

10.4 Getting Data from the Web

Pandas has extensive tools for scraping data from the web. Here we il-
lustrate one of the simpler cases, reading a csv file from a web site. The
Bank of Canada publishes the daily exchange rates between the Cana-
dian dollar and a couple dozen international currencies. We would
like to download these data and print out the results as a simple ta-
ble. Here we employ Pandas’s usual read_csv function using its url

keyword argument to specify the web address of the csv file we want
to read. To follow the code, download the csv file manually using the
url defined in line 6 of the program below and then open it using a
spreadsheet program like Excel.

To obtain all the data we want, we read the csv file twice. In line
8, we call read_csv to read into a DataFrame rates the exchange rates
for the different currencies over a range of dates that extends from
any start date (after 2017-01-03, the earliest date for which the site
supplies data) up to the most recent business day. The rates are in-
dexed by date (e.g., '2018-04-23') with each column corresponding to
a different currency.

The header for the exchange rates, which consists of codes for each
exchange rate, begins on line 40 so we skip the first 39 rows. In line
11 of the program, we get the number of days and the number of
currencies downloaded from the shape of the DataFrame.

We read the file again on lines 13–14 to get keys for the codes for
the various currencies used in the DataFrame. We use the number of
currencies determined in line 8 to determine the number of lines to
read. Lines 15–16 strip off some extraneous verbiage in the keys.

Code: chapter10/programs/urlRead.py

1 import pandas as pd
2

3 url1 = 'http://www.bankofcanada.ca/'
4 url2 = 'valet/observations/group/FX_RATES_DAILY/csv?start_date='
5 start_date = '2017-01-03' # Earliest start date is 2017-01-03
6 url = url1+url2+start_date # Complete url to download csv file
7 # Read in rates for different currencies for a range of dates
8 rates = pd.read_csv(url, skiprows=39, index_col='date')
9 rates.index = pd.to_datetime(rates.index) # assures data type

262 Introduction to Python for Science & Engineering

10 # Get number of days & number of currences from shape of rates
11 days, currencies = rates.shape
12 # Read in the currency codes & strip off extraneous part
13 codes = pd.read_csv(url, skiprows=10, usecols=[0, 2],
14 nrows=currencies)
15 for i in range(currencies):
16 codes.iloc[i, 1] = codes.iloc[i, 1].split(' to Canadian')[0]
17 # Report exchange rates for the most most recent date available
18 date = rates.index[-1] # most recent date available
19 print('\nCurrency values on {0}'.format(date))
20 for (code, rate) in zip(codes.iloc[:, 1], rates.loc[date]):
21 print("{0:20s} Can$ {1:8.6g}".format(code, rate))

Using the index attribute for Pandas DataFrames, line 18 sets the
date for which the currency exchange data will be displayed, in this
case, the most recent date in the file. Running the program produces
the desired output:

In [1]: run urlRead.py

Currency values on 2018-09-18
Australian dollar Can$ 0.9367
Brazilian real Can$ 0.3143
Chinese renminbi Can$ 0.1893
European euro Can$ 1.5179
Hong Kong dollar Can$ 0.1656
Indian rupee Can$ 0.01782
Indonesian rupiah Can$ 8.7e-05
Japanese yen Can$ 0.01157
Malaysian ringgit Can$ 0.3136
Mexican peso Can$ 0.06918
New Zealand dollar Can$ 0.8555
Norwegian krone Can$ 0.1593
Peruvian new sol Can$ 0.3929
Russian ruble Can$ 0.01928
Saudi riyal Can$ 0.3464
Singapore dollar Can$ 0.9477
South African rand Can$ 0.08743
South Korean won Can$ 0.001156
Swedish krona Can$ 0.1459
Swiss franc Can$ 1.349
Taiwanese dollar Can$ 0.04217
Thai baht Can$ 0.03989
Turkish lira Can$ 0.204
UK pound sterling Can$ 1.708
US dollar Can$ 1.2992
Vietnamese dong Can$ 5.6e-05

What we have done here illustrates only one simple feature of Pan-

Data Manipulation and Analysis: Pandas 263

das for scraping data from the web. Many more web-scraping tools ex-
ist within Pandas. They are extensive and powerful, and can be used
in concert with other packages, such as urllib3, to extract almost any
data that exists on the web.

10.5 Extracting Information from a DataFrame

Once we have our data organized in a DataFrame, we can employ the
tools of Pandas to extract and summarize the data it contains in a
variety of ways. Here we will illustrate a few of Pandas’ tools using
the planets and bp DataFrames we introduced in §10.1.2 and §10.1.3.
We read them in again for good measure:

In [1]: planets = pd.read_table('planetData.txt', sep='\s+',
...: index_col='planet')

In [2]: bp = pd.read_excel('BloodPressure.xlsx',
...: usecols='A:E',
...: parse_dates=[['Date', 'Time']])

In [3]: bp = bp.set_index('Date_Time')

In [4]: planets
Out[4]:

distance mass gravity diameter year
planet
Mercury 0.39 0.0550 0.380 0.38 0.24
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Mars 1.52 0.1100 0.380 0.53 1.88
Jupiter 5.20 318.0000 2.360 11.20 11.90
Saturn 9.58 95.0000 0.920 9.45 29.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Pluto 39.50 0.0024 0.071 0.19 248.00

Note that we have set the planet column to be the index variable in
the planets DataFrame.

Pandas can readily sort data. For example, to list the planets in
order of increasing mass, we write:

In [5]: planets.sort_values(by='mass')
Out[5]:

distance mass gravity diameter year
planet
Pluto 39.50 0.0024 0.071 0.19 248.00

264 Introduction to Python for Science & Engineering

Mercury 0.39 0.0550 0.380 0.38 0.24
Mars 1.52 0.1100 0.380 0.53 1.88
Venus 0.72 0.8200 0.910 0.95 0.62
Earth 1.00 1.0000 1.000 1.00 1.00
Uranus 19.20 15.0000 0.890 4.01 84.00
Neptune 30.00 17.0000 1.120 3.88 164.00
Saturn 9.58 95.0000 0.920 9.45 29.00
Jupiter 5.20 318.0000 2.360 11.20 11.90

To produce the same table but from highest to lowest mass, use the
keyword argument ascending=False.

We can use conditional indexing to get a list of all the planets with
gravitational acceleration larger than Earth’s.

In [6]: planets[planets['gravity']>1]
Out[6]:

distance mass gravity diameter year
planet
Jupiter 5.2 318.0 2.36 11.20 11.9
Neptune 30.0 17.0 1.12 3.88 164.0

It’s worth parsing In [6] to better understand how it works. Suppose
we had typed just what is inside the outermost brackets:

In [7]: planets['gravity']>1
Out[7]:

planet
Mercury False
Venus False
Earth False
Mars False
Jupiter True
Saturn False
Uranus False
Neptune True
Pluto False
Name: gravity, dtype: bool

We get the logical (Boolean) truth values for each entry. Thus, writing
planets[planets['gravity']>1] lists the DataFrame only for those
entries where the Boolean value is True.

Suppose we would like to find the volume V of each of the planets
and add the result to our planets DataFrame. Using the formula V =
1
6πd

2, where d is the diameter, we simply write

In [8]: planets['volume'] = pi * planets['diameter']**3 / 6.0

In [9]: planets

Data Manipulation and Analysis: Pandas 265

Out[9]:
distance mass gravity diameter year volume

planet
Mercury 0.39 0.0550 0.380 0.38 0.24 0.0287
Venus 0.72 0.8200 0.910 0.95 0.62 0.4489
Earth 1.00 1.0000 1.000 1.00 1.00 0.5236
Mars 1.52 0.1100 0.380 0.53 1.88 0.0780
Jupiter 5.20 318.0000 2.360 11.20 11.90 735.6186
Saturn 9.58 95.0000 0.920 9.45 29.00 441.8695
Uranus 19.20 15.0000 0.890 4.01 84.00 33.7623
Neptune 30.00 17.0000 1.120 3.88 164.00 30.5840
Pluto 39.50 0.0024 0.071 0.19 248.00 0.0036

Let’s look at the blood pressure DataFrame, where we have set the
Date_Time column to be the index variable in the bp DataFrame.

In [10]: bp
BP_sys BP_dia Pulse

Date_Time
2017-06-01 23:33:00 119 70 71
2017-06-02 05:57:00 129 83 59
2017-06-02 22:19:00 113 67 59
2017-06-03 05:24:00 131 77 55
2017-06-03 23:19:00 114 65 60

.

.

.

Note that we have set the planet and Date_Time columns to be the
index variables in the planets and bp DataFrames.

Pandas can calculate standard statistical quantities for the data in
a DataFrame.

In [8]: bp['BP_sys'].mean() # average systolic pressure
Out[8]: 119.27083333333333

In [9]: bp['BP_sys'].max() # maximum systolic pressure
Out[9]: 131

In [10]: bp['BP_sys'].min() # minimum systolic pressure
Out[10]: 105

In [11]: bp['BP_sys'].count() # num (non-null) of entries
Out[11]: 48

The statistical methods can even act on dates, if doing so makes sense.

In [12]: bp.index.min() # starting datetime
Out[12]: Timestamp('2017-06-01 23:33:00')

266 Introduction to Python for Science & Engineering

In [13]: bp.index.max() # ending datetime
Out[13]: Timestamp('2017-07-17 06:22:00')

Note that here we used bp.index and not bp.['Date_Time'], as we pre-
viously set 'Date_Time' to be the index of bp. Time differences can also
be calculated quite simply:

In [14]: bp.index.max()-bp.index.min()
Out[14]: Timedelta('45 days 06:49:00')

Function Description Function Description
min minimum cummin cumulative minimum
max maximum cummax cumulative maximum
mean mean skew skewness
median median kurt kurtosis
mode mode quantile quantile
var variance mad mean abs deviation
std standard deviation sem standard error of mean
abs absolute value count num non-null entries
sum sum cumsum cumulative sum
prod product cumprod cumulative product
describe count, mean, std, min, max, & percentiles

Table 10.3 Statistical methods for Pandas DataFrame and Series.

We can combine these methods with the conditional indexing of
the last section to answer some interesting questions. For example, are
there systematic differences in the blood pressure and pulse readings
in the morning and the evening? Let’s use what we’ve learned to find
out. Previously we had:

In [15]: PulseAM = bp.loc[bp.index.hour<12, 'Pulse']

In [16]: PulsePM = bp.loc[bp.index.hour>=12, 'Pulse']

Now let’s look at some averages and fluctuations about the mean:

In [17]: precision 3
Out[17]:: '%.3f'

In [18]: PulseAM.mean(), PulseAM.std(), PulseAM.sem()
Out[18]:: (57.586, 5.791, 1.075)

In [19]: PulsePM.mean(), PulsePM.std(), PulsePM.sem()
Out[19]:: (61.789, 4.939, 1.133)

Data Manipulation and Analysis: Pandas 267

We see that the average morning pulse of 57.6 is lower than the av-
erage evening pulse of 61.8. The difference of 4.2 is greater than the
standard error of the mean of about 1.1, which means the difference is
significant, even though the morning and evening pulse distributions
overlap each other to a significant extent, as indicated by the standard
deviations of around 5.

Finally, we can get histogram data on frequency.

10.6 Plotting with Pandas

In Chapter 6, we introduced the matplotlib plotting package, which
provides an extensive framework for plotting within Python. Pandas
builds on the matplotlib package, adding some functionality peculiar
to Pandas.

One notable change is that when plotting data from a Pandas Se-
ries or DataFrame, matplotlib’s plot function will use the index as the
x data if the x data is not otherwise specified. For example, we can
get a graphical display, shown in Fig. 10.4, of the relative gravity of
each planet from the planets DataFrame with the following simple
commands:

In [1]: planets['gravity'].plot.bar(color='C0')
Out[1]: <matplotlib.axes._subplots.AxesSubplot at 0x11de29400>

In [2]: ylabel('relative gravity')
Out[2]: Text(42.5972,0.5,'relative gravity')

In [3]: tight_layout()

Pandas allows us to write plotting commands in a new way, where
a matplotlib plotting function is now a DataFrame method. Here we
use plot as a method of planets['gravity']. We further specify a bar

(histogram) plot with bar as a method plot. The y-axis is specified by
choosing the desired column(s) of the DataFrame, in this case gravity,
and the x-axis is taken to be the DataFrame index unless otherwise
specified. Notice how each bar is neatly labeled with its corresponding
planet index. We could have made a plot with horizontal instead of
vertical bars using the barh method in place of bar. Try it out!

Let’s look at another example, this time using our bp DataFrame.
First, let’s plot it using the conventional matplotlib syntax,

In [1]: plot(bp)
Out[1]::

268 Introduction to Python for Science & Engineering

[<matplotlib.lines.Line2D at 0x13667b278>,
<matplotlib.lines.Line2D at 0x1366aecf8>,
<matplotlib.lines.Line2D at 0x1366b7080>]

which produces the graph on the left in Fig. 10.5. The three traces cor-
respond to the systolic pressure, the diastolic pressure, and the pulse,
and are plotted as a function of the time (date), which is the index of
the bp DataFrame. Since the x-array is not specified, the index vari-
able, the date, is used. However, the dates are not so nicely formatted
and run into each other.

Alternatively, we can graph this using plot as a DataFrame
method:

In [2]: bp.plot()
Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x1527ddd240>

The result, shown on the right in Fig. 10.5, is a more nicely formatted
plot, where the dates labeling the x-axis are automatically tilted so
that they don’t run into each other, and a legend is produced, which
identifies the different traces.

Figure 10.6 shows these same data in a more compelling and re-
fined graph, putting together much of the analysis we have already
developed using Pandas. Measurements made early in the morning
and late in the evening are distinguished from each other using open
and closed symbols. The morning and evening averages are indicated
by horizontal lines that are annotated with the numerical averages
and indicated using arrows. A more compete legend is supplied.

M
er

cu
ry

Ve
nu

s

Ea
rth

M
ar

s

Ju
pi

te
r

Sa
tu

rn

Ur
an

us

Ne
pt

un
e

Pl
ut

o

planet

0.0

0.5

1.0

1.5

2.0

re
la

tiv
e

gr
av

ity

Figure 10.4 Relative gravity of different planets.

Data Manipulation and Analysis: Pandas 269

The code shows how Pandas and conventional matplotlib syntax
can be used in concert with each other. The blood pressure and pulse
data are plotted on separate graphs sharing a common time axis. The
code that produces Fig. 10.6 is listed below. Note that which plot
is chosen, ax1 or ax2, is indicated using the keyword argument ax

within the plot method belonging to the various data sets, sysPM, . . . ,
PulsePM. Finally, matplotlib’s dates package is used to format the x-
axis.

Much more information is available at the Pandas web site, which
gives details about all of Pandas’ plotting commands.

Code: chapter10/programs/BloodPressure.py

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import matplotlib.dates as mdates
4 from datetime import datetime
5

6 # Read in data
7 bp = pd.read_excel('BloodPressure.xlsx', usecols='A:E',
8 parse_dates=[['Date', 'Time']])
9 bp = bp.set_index('Date_Time')

10 # Divide data into AM and PM sets
11 diaAM = bp.loc[bp.index.hour < 12, 'BP_dia']
12 diaPM = bp.loc[bp.index.hour >= 12, 'BP_dia']
13 sysAM = bp.loc[bp.index.hour < 12, 'BP_sys']
14 sysPM = bp.loc[bp.index.hour >= 12, 'BP_sys']
15 PulseAM = bp.loc[bp.index.hour < 12, 'Pulse']
16 PulsePM = bp.loc[bp.index.hour >= 12, 'Pulse']
17 # Set up figure with 2 subplots and plot BP data
18

Figure 10.5 Crude plots of the bp DataFrame.

270 Introduction to Python for Science & Engineering

60

70

80

90

100

110

120

130

bl
oo

d
pr

es
su

re
 (m

m
-H

g)

AM average = 121

PM average = 116

AM average = 76

PM average = 69

Blood pressure & pulse log

systolic PM
systolic AM
diastolic PM
diastolic AM

2017-06-04

2017-06-11

2017-06-18

2017-06-25

2017-07-02

2017-07-09

2017-07-16

50

60

70

pu
lse

 (/
m

in
)

AM average = 58

PM average = 62
PM
AM

Figure 10.6 Blood pressure data from an Excel file.

19 fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True,
20 gridspec_kw={'height_ratios': [2, 1]},
21 figsize=(10, 6))
22 fig.subplots_adjust(left=0.065, right=0.99, hspace=0.06)
23 sysPM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C1',
24 label='systolic PM')
25 sysAM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C1',
26 mfc='white', label='systolic AM')
27 diaPM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C0',
28 label='diastolic PM')
29 diaAM.plot(ax=ax1, marker='o', ms=3, lw=0, color='C0',
30 mfc='white', label='diastolic AM')
31 # Average values of blood pressures with arrows labeling them
32 dtlab = datetime(2017, 6, 29)
33 bpavgs = (sysAM.mean(), sysPM.mean(), diaAM.mean(),
34 diaPM.mean())
35 ytext = ('bottom', 'top')
36 tavgs = ('AM average = {0:0.0f}'.format(bpavgs[0]),
37 'PM average = {0:0.0f}'.format(bpavgs[1]),
38 'AM average = {0:0.0f}'.format(bpavgs[2]),
39 'PM average = {0:0.0f}'.format(bpavgs[3]))
40 aprops = dict(facecolor='black', width=1, headlength=5,
41 headwidth=5)
42 for i, bpa in enumerate(bpavgs):
43 ax1.annotate(tavgs[i], xy=(dtlab, bpa),
44 xytext=((15, (-1)**(i % 2)*15)),
45 textcoords='offset points',

Data Manipulation and Analysis: Pandas 271

46 arrowprops=aprops, ha='left',
47 va=ytext[i % 2])
48 # Lines indicating average blood pressures
49 ax1.axhline(y=sysPM.mean(), color='C1', lw=0.75, zorder=-1)
50 ax1.axhline(y=sysAM.mean(), color='C1', dashes=(5, 2),
51 lw=0.75, zorder=-1)
52 ax1.axhline(y=diaPM.mean(), color='C0', lw=0.75, zorder=-1)
53 ax1.axhline(y=diaAM.mean(), color='C0', dashes=(5, 2),
54 lw=0.75, zorder=-1)
55 # Formatting top graph
56 ax1.set_title('Blood pressure & pulse log')
57 ax1.set_ylabel('blood pressure (mm-Hg)')
58 ax1.legend(loc=(0.37, 0.43))
59 ax1.grid(dashes=(1, 2))
60 # Plot pulse
61 PulsePM.plot(ax=ax2, marker='o', ms=3, lw=0, color='k',
62 label='PM')
63 PulseAM.plot(ax=ax2, marker='o', ms=3, lw=0, color='k',
64 mfc='white', label='AM')
65 # Average values of pulse with arrows labeling them
66 Pulseavgs = (PulseAM.mean(), PulsePM.mean())
67 tavgs = ('AM average = {0:0.0f}'.format(Pulseavgs[0]),
68 'PM average = {0:0.0f}'.format(Pulseavgs[1]))
69 for i, pulse in enumerate(Pulseavgs):
70 ax2.annotate(tavgs[i], xy=(dtlab, pulse),
71 xytext=((15, -(-1)**(i)*15)),
72 textcoords='offset points',
73 arrowprops=aprops, ha='left',
74 va=ytext[-i-1])
75

76 ax2.axhline(y=PulsePM.mean(), color='k', lw=0.75, zorder=-1)
77 ax2.axhline(y=PulseAM.mean(), color='k', dashes=(5, 2),
78 lw=0.75, zorder=-1)
79 # Formatting bottom graph
80 week = mdates.WeekdayLocator(byweekday=mdates.SU)
81 day = mdates.DayLocator()
82 ax2.xaxis.set_major_locator(week)
83 ax2.xaxis.set_minor_locator(day)
84 ax2.set_xlabel('')
85 ax2.set_ylabel('pulse (/min)')
86 ax2.legend(loc=(0.4, 0.7))
87 ax2.grid(dashes=(1, 2))
88

89 fig.tight_layout()
90 fig.show()
91 fig.savefig('./figures/BloodPressure.pdf')

272 Introduction to Python for Science & Engineering

10.7 Grouping and Aggregation

Pandas allows you to group data and analyze the subgroups in useful
and powerful ways. The best way to understand what you can do is
to work with an example. Here we will work with a data set that lists
all the departures from Newark Liberty International Airport (EWR)
on a particular (stormy) day. The data is stored in a csv file named
ewrFlights20180516.csv, which we read into a DataFrame that we call
ewr.

In [1]: ewr = pd.read_csv('ewrFlights20180516.csv')

In [2]: ewr.head()
Out[2]:

Destination Airline Flight Departure \
0 Baltimore (BWI) Southwest Airlines WN 8512 12:09 AM
1 Baltimore (BWI) Mountain Air Cargo C2 7304 12:10 AM
2 Paris (ORY) Norwegian Air Shuttle DY 7192 12:30 AM
3 Paris (ORY) euroAtlantic Airways YU 7192 12:30 AM
4 Rockford (RFD) UPS 5X 108 12:48 AM

Terminal Status Arrival_time A_day Scheduled S_day
0 NaN Landed NaN NaN NaN NaN
1 NaN Unknown NaN NaN NaN NaN
2 B Landed 1:48 PM NaN 1:35 PM NaN
3 B Landed 1:48 PM NaN 1:35 PM NaN
4 NaN Unknown NaN NaN NaN NaN
In [3]: ewr.shape
Out[3]: (1555, 10)

There are 1555 flights listed and 10 column headings: Destination,
Airline, Flight, Departure, Terminal, Status, Arrival_time, A_day,
Scheduled, and S_day. We will explain the headings as we go.

Let’s get familiar with the ewr DataFrame. You might wonder what
the possibilities are for the status of a flight. You can find out, as
well as get some additional information, using the value_counts()

method.

In [4]: ewr['Status'].value_counts()
Out[4]:
Landed - On-time 757
Landed - Delayed 720
Canceled 41
Landed 18
En Route - Delayed 10
Unknown 4
Scheduled - Delayed 2
En Route - On-time 1

Data Manipulation and Analysis: Pandas 273

En Route 1
Diverted 1
Name: Status, dtype: int64

In [5]: ewr['Status'].value_counts().sum()
Out[5]: 1555

The value_counts() method is quite useful. It finds all the unique
entries in a Series (or DataFrame column) and reports the number of
times each entry appears. We also checked to confirm that the counts
for all the categories summed to the total number of entries.

Newark Airport has three terminals: A, B, and C. Let’s find out
how many departures there were from each terminal.

In [6]: ewr['Terminal'].value_counts()
Out[6]:
C 826
A 471
B 191

10.7.1 The groupby method

Now suppose we would like to know the status of each flight bro-
ken down by terminal. For this, we need a more sophisticated tool:
groupby. Here is how it works:

In [7]: ewr['Status'].groupby(ewr['Terminal']).value_counts()
Out[7]:
Terminal Status
A Landed - On-time 229

Landed - Delayed 218
Canceled 21
Landed 3

B Landed - On-time 104
Landed - Delayed 70
En Route - Delayed 6
Canceled 4
Landed 4
Scheduled - Delayed 2
En Route - On-time 1

C Landed - Delayed 413
Landed - On-time 395
Canceled 14
En Route - Delayed 4

Name: Status, dtype: int64

In this case, we want to know the status of each flight, so
ewr['Status'] comes first in our command above. Next, we want the

274 Introduction to Python for Science & Engineering

status broken down by terminal, so we add the method groupby with
the argument ewr['Terminal']. Finally, we want to know how many
flights fall into each category so we add the method value_counts().

Alternatively, we could have written
In [8]: ewr_statterm = ewr['Status'].groupby(ewr['Terminal'])

which creates a groupby object that we can subsequently process. For
example, we can get the total number of flights from each terminal:
In [9]: ewr_statterm.count()
Out[9]:
Terminal
Terminal
A 471
B 191
C 826
Name: Status, dtype: int64

Or we can write ewr_statterm.value_counts(), which gives the same
output as Out [7]: above.

10.7.2 Iterating over groups

Sometimes it is useful to iterate over groups to perform a calculation.
For example, suppose that for each airline, we want to determine what
fraction of the flights arriving at their destination arrived on time.

The information about on-time arrivals is contained in the Status

column of the ewr DataFrame. It has, amongst other things, entries
Landed - On-time and Landed - Delayed. We will want to use these
entries to perform the calculation.

To do this, we use a for loop with the following construction:
for name, group in grouped:

where grouped is a groupby object, and name and group are the indi-
vidual names and groups within the groupby object that are looped
over.

To perform our calculation, we need to iterate over each airline, so
our groupby object should group by ewr['Airline']. Before actually
doing the calculations, however, we illustrate how the loop works for
our groupby object with a little demonstration program. In this pro-
gram, the loop doesn’t do any calculations; it simply prints out the
name and group for each iteration with the following code:

Code: chapter10/programs/ewrGroupbyElements.py

1 import pandas as pd

Data Manipulation and Analysis: Pandas 275

2

3 ewr = pd.read_csv('ewrFlights20180516.csv')
4

5 for airln, grp in ewr.groupby(ewr['Airline']):
6 print('\nairln = {}: \ngrp:'.format(airln))
7 print(grp)

The output of this program is:

airln = ANA:
grp:

Destination Airline Flight Departure Terminal
134 San Francisco (SFO) ANA NH 7007 7:00 AM C
189 Los Angeles (LAX) ANA NH 7229 7:59 AM C
303 Chicago (ORD) ANA NH 7469 8:59 AM C
438 Tokyo (NRT) ANA NH 6453 11:00 AM C
562 Chicago (ORD) ANA NH 7569 1:20 PM C
1140 Los Angeles (LAX) ANA NH 7235 6:43 PM C
1533 Sao Paulo (GRU) ANA NH 7214 10:05 PM C

Status Arrival_time A_day Scheduled S_day
134 Landed - Delayed 11:13 AM NaN 10:18 AM NaN
189 Landed - On-time 10:57 AM NaN 11:05 AM NaN
303 Landed - On-time 10:39 AM NaN 10:25 AM NaN
438 Landed - On-time 1:20 PM NaN 1:55 PM NaN
562 Landed - Delayed 3:16 PM NaN 2:44 PM NaN
1140 Landed - Delayed 9:54 PM NaN 9:41 PM NaN
1533 Landed - Delayed 10:06 AM 1.0 8:50 AM 1.0

airln = AVIANCA:
grp:

Destination Airline Flight Departure Terminal
81 Dulles (IAD) AVIANCA AV 2135 6:05 AM A
367 Dulles (IAD) AVIANCA AV 2233 10:00 AM A
422 Miami (MIA) AVIANCA AV 2002 10:44 AM C
805 San Salvador (SAL) AVIANCA AV 399 3:55 PM B
890 Bogota (BOG) AVIANCA AV 2245 4:45 PM C

Status Arrival_time A_day Scheduled S_day
81 Landed - On-time 7:17 AM NaN 7:25 AM NaN
367 Landed - On-time 11:10 AM NaN 11:20 AM NaN
422 Landed - On-time 1:30 PM NaN 1:46 PM NaN
805 Scheduled - Delayed NaN NaN 7:05 PM NaN
890 Landed - Delayed 12:42 AM 1.0 9:35 PM NaN
.
.
.

By examining this output, the form of the data structures being
looped over should become clear to you.

276 Introduction to Python for Science & Engineering

Now let’s do our calculation. To keep things manageable, let’s say
that we only care about those airlines that landed 12 or more flights.
Grouping the data by airline, we perform the calculation using a for

loop, accumulating the results about on-time and late flights in a list
of lists, which we convert to a DataFrame at the end of the calcula-
tions.

In [10]: ot = [] # create an empty list to accumulate results

In [11]: for airln, grp in ewr.groupby(ewr['Airline']):
...: ontime = grp.Status[grp.Status ==

'Landed - On-time'].count()
...: delayd = grp.Status[grp.Status ==

'Landed - Delayed'].count()
...: totl = ontime+delayd
...: if totl >= 12:
...: ot.append([airln, totl, ontime/totl])

The output of the code is a list called ot. We convert it to a
DataFrame using the Pandas function DataFrame.from_records.

In [12]: t = pd.DataFrame.from_records(ot, columns=['Airline',
...: 'Flights Landed', 'On-time fraction'])

We choose to print out the results sorted by on-time fraction, from
largest to smallest.

In [13]: t.sort_values(by='On-time fraction', ascending=False)
Out[13]:

Airline Flights Landed On-time fraction
0 Air Canada 129 0.472868
1 Air China 24 0.750000
2 Air New Zealand 34 0.617647
3 Alaska Airlines 20 0.500000
4 American Airlines 27 0.592593
5 Austrian 28 0.428571
6 Brussels Airlines 21 0.523810
7 CommutAir 47 0.531915
8 Copa Airlines 12 0.333333
9 Delta Air Lines 33 0.606061
10 ExpressJet 64 0.531250
11 FedEx 27 0.555556
12 JetBlue Airways 24 0.416667
13 Lufthansa 119 0.403361
14 Republic Airlines 66 0.606061
15 SAS 94 0.414894
16 SWISS 20 0.450000
17 Southwest Airlines 18 0.500000
18 TAP Portugal 38 0.315789

Data Manipulation and Analysis: Pandas 277

19 United Airlines 417 0.529976
20 Virgin Atlantic 26 0.615385

10.7.3 Reformatting DataFrames

We often create DataFrames that need to be reformatted for process-
ing. The range of reformatting issues that one can run across is enor-
mous, so we can’t even hope to cover all the eventualities. But we can
illustrate a few to give you a sense of how this works.

In this example, we would like to perform an analysis of on-
time arrivals. To do so, we will need to work with the Departure,
Arrival_time, and Scheduled columns. Let’s take a look at them.

In [14]: ewr[['Departure', 'Arrival_time', 'Scheduled']].head()
Out[14]:

Departure Arrival_time Scheduled
0 12:09 AM NaN NaN
1 12:10 AM NaN NaN
2 12:30 AM 1:48 PM 1:35 PM
3 12:30 AM 1:48 PM 1:35 PM
4 12:48 AM NaN NaN

Some of the times are missing, represented by NaN in a DataFrame,
but these are generally not much of a concern as Pandas handles them
in an orderly manner. More worrisome are the times, which do not
contain a date. This can be a problem if a flight departs on one day but
arrives the next day. The ewr columns S_day and A_day for a particular
row have entries of 1, respectively, if the flight is scheduled to arrive
or if it actually arrives on the next day.

Before addressing these problems, let’s examine the data types of
the different columns of the ewr DataFrame.

In [15]: ewr.dtypes
Out[15]:
Destination object
Airline object
Flight object
Departure object
Terminal object
Status object
Arrival_time object
A_day float64
Scheduled object
S_day float64
dtype: object

278 Introduction to Python for Science & Engineering

We note that Departure, Arrival_time, and Scheduled are not format-
ted as datetime objects. To convert them to datetime objects, we use
Pandas’ apply method, which applies a function to a column (the de-
fault) or a row (by setting the keyword axis=0) of a DataFrame. Here,
we use the Pandas function pd.to_datetime.

In [16]: ewr[['Departure', 'Arrival_time', 'Scheduled']] = \
...: ewr[['Departure','Arrival_time', 'Scheduled']] \
...: .apply(pd.to_datetime)

In [17]: ewr.dtypes
Out [17]: ewr.dtypes
Destination object
Airline object
Flight object
Departure datetime64[ns]
Terminal object
Status object
Arrival_time datetime64[ns]
A_day float64
Scheduled datetime64[ns]
S_day float64
dtype: object

Next we set the dates. First, we use the datetime replace method
to reset the year, month, and day of all dates to the departure date for
all the flights: 2018-05-16.

In [18]: for s in ['Departure', 'Arrival_time', 'Scheduled']:
...: ewr[s] = ewr[s].apply(lambda dt:
...: dt.replace(year=2018, month=5, day=16))

Finally, we add a day to those dates in the Scheduled and
Arrival_time columns that have a 1 in the corresponding S_day and
A_day columns with this code snippet.

Code: chapter10/programs/addDaySnippet.py

1 from datetime import timedelta
2 i_A = ewr.columns.get_loc("Arrival_time") # i_A = 6
3 i_Ap = ewr.columns.get_loc("A_day") # i_Ap = 7
4 i_S = ewr.columns.get_loc("Scheduled") # i_S = 8
5 i_Sp = ewr.columns.get_loc("S_day") # i_Sp = 9
6 for i in range(ewr.shape[0]):
7 if ewr.iloc[i, i_Ap] >= 1:
8 ewr.iloc[i, i_A] += timedelta(days=ewr.iloc[i, i_Ap])
9 if ewr.iloc[i, i_Sp] >= 1:

10 ewr.iloc[i, i_S] += timedelta(days=ewr.iloc[i, i_Sp])

Data Manipulation and Analysis: Pandas 279

After running this, the datetime stamps are correct for all the date-
time entries, which we check by printing out some times for flights
that departed late in the day.

In [19]: ewr[['Departure', 'Arrival_time', 'Scheduled']][-45:-40]
Out[19]:

Departure Arrival_time Scheduled
1510 2018-05-16 21:55:00 2018-05-17 11:25:00 2018-05-17 11:40:00
1511 2018-05-16 21:57:00 2018-05-17 00:53:00 2018-05-16 23:05:00
1512 2018-05-16 21:57:00 2018-05-17 00:53:00 2018-05-16 23:05:00
1513 2018-05-16 21:59:00 2018-05-16 23:29:00 2018-05-16 23:42:00
1514 2018-05-16 21:59:00 2018-05-16 23:29:00 2018-05-16 23:42:00

Let’s calculate the difference between the actual Arrival_time and
the Scheduled arrival time in minutes.

In [20]: late = (ewr['Arrival_time']
- ewr['Scheduled']).dt.total_seconds()/60

In [21]: late.hist(bins=range(-50, 300, 10))
Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x1245b39b0>

Note that instead of setting the number of bins, as we have done
previously, we specify the widths of the bins and their precise place-
ment using the range function.

Let’s go ahead and add axis labels to our plot, which is displayed
in Fig. 10.7.

In [22]: xlabel('minutes late')

50 0 50 100 150 200 250 300
minutes late

0

50

100

150

200

nu
m

be
r o

f f
lig

ht
s

Figure 10.7 Histogram of late arrival times.

280 Introduction to Python for Science & Engineering

Out[22]: Text(0.5,23.5222,'minutes late')

In [23]: ylabel('number of flights')
Out[23]: Text(38.2222,0.5,'number of flights')

10.7.4 Custom aggregation of DataFrames

Pandas has a number of built-in functions and methods for extract-
ing useful information from Pandas Series and DataFrames, some of
which are listed in Table 10.3. These can be thought of as aggrega-
tion functions because they aggregate a set of data into some scalar
quantity, like the minimum or maximum of a data set.

In addition to these built-in methods, Pandas has a method agg

that allows you to implement your own aggregation functions. Sup-
pose, for example, we would like to characterize the distribution of
late arrival times plotted in Fig. 10.7. We could use the std method
to characterize the width of distribution, but that would miss the fact
that the distribution is obviously wider on the late (positive) side than
it is on the early (negative) side.

To take this asymmetry into account, we devise our own function
siglohi that calculates two one-sided measures of the width of the
distribution.

Code: chapter10/programs/siglohi.py

1 def siglohi(x, x0=0, n=2):
2 xplus = x[x > x0] - x0
3 xminus = x0 - x[x < x0]
4 sigplus = ((xplus**n).mean())**(1/n)
5 sigminus = ((xminus**n).mean())**(1/n)
6 return sigminus, sigplus

By default, the function calculates the square root of the negative
and positive second moments about zero. Using its optional keyword
arguments, it can calculate the nth root of the nth moment and can
center the calculation of the moments around any value, not just zero.

We demonstrate how siglohi works on the Series late of the dis-
tribution of flight arrival times that we developed in the previous sec-
tion. We use the Pandas agg method on the Series late with our func-
tion siglohi as the argument of agg.

In [24]: late.agg(siglohi)
Out[24]: (16.613569037283458, 78.8155571711229)

Data Manipulation and Analysis: Pandas 281

As expected, the width is much smaller on the early (nagative) side
than it is on the late (positive) side.

The optional keyword arguments of siglohi are passed in the
usual way (see §7.1.6). For example, to calculate the cube root of the
third moment, we set the optional argument n equal to 3 as follows:

In [25]: late.agg(siglohi, *(0, 0, 3))
Out[25]: (18.936255193664774, 96.23261210488258)

Note that there are three, not two, optional arguments. The first is
the axis, which is an optional argument (the only one) for the agg

method, and the second and third are x0 and n, the optional argu-
ments of siglohi. Alternatively, we can call agg with the axis argu-
ment of agg set to zero as a positional argument as follows.

In [26]: late.agg(siglohi, 0, *(0, 3))
Out[26]: (18.936255193664774, 96.23261210488258)

Either way, the result is the same.
Finally, we note that siglohi can be used on late as a function in

the usual way with late as an explicit argument of siglohi.

In [27]: siglohi(late, n=3)
Out[27]: (18.936255193664774, 96.23261210488258)

10.8 Exercises

1. Read the planetary data in the text file planetData.txt into a Pan-
das DataFrame and perform the following tasks.

(a) Based on the data read in from the file planetData.txt, find
the average density of each planet relative to that of the Earth
and add the results as a column in your DataFrame.

(b) Print out your DataFrame sorted from the largest- to smallest-
diameter planet.

(c) Make a list of planets that have masses greater than that of
Earth, sorted from least to most massive planet.

2. Starting from the program urlRead.py on page 261, write a pro-
gram that compares the fluctuations of all the currencies relative
to the US dollar (or some other currency of your choosing). Your
code should find the average a, maximum m, and standard devia-
tion s of the value of each currency relative to the US dollar over

282 Introduction to Python for Science & Engineering

the period of time starting from the first business day of 2017, Jan-
uary 3rd. Then create a DataFrame with columns that list mx =m/a
and sd = s/a along with the name of each currency, as shown in the
listing below. The DataFrame should be sorted from the largest mx
to the smallest.

mx sd description
id
FXZARCAD 1.119 0.0529 South African rand
FXTRYCAD 1.090 0.0485 Turkish lira
FXGBPCAD 1.088 0.0435 UK pound sterling
FXMYRCAD 1.084 0.0479 Malaysian ringgit

.

.

.

3. Starting from the program urlRead.py on page 261, extend the
code to make a plot like the one below. The three traces in each
of the two plots give, respectively, the daily exchange rate, the
daily exchange rate as a centered running average over 10 (busi-
ness) days, and over 30 days. Look up the Pandas rolling averages

1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

Ca
na

di
an

 d
ol

la
r

US dollar

2017-02
2017-04

2017-06
2017-08

2017-10
2017-12

2018-02
2018-04

2018-06

1.40

1.45

1.50

1.55

1.60

Ca
na

di
an

 d
ol

la
r

European euro

Data Manipulation and Analysis: Pandas 283

routine pd.Series.rolling, which you should find useful in mak-
ing this plot. Write your program in such a way that you can switch
the currency plotted by changing a single variable.

4. Go to the website https://www.ncdc.noaa.gov/cdo-web/search
and make a request to download weather data for some place that
interests you. I requested weather data as a csv file for Central Park
in New York City (zip code 10023), as it dates back from the 19th

century, although I chose to receive data dating from January 1,
1900.

(a) Read the weather data you download into a DataFrame, tak-

45

50

55

60

65

1-
ye

ar
 ro

llin
g

m
ea

n
te

m
pe

ra
tu

re
s °

F

Weather reported at Central Park, New York, NY 10023

TMAX
TMIN

20

0

20

40

60

80

100

1-
ye

ar
 ro

llin
g

hi
gh

es
t

&
lo

we
st

 te
m

pe
ra

tu
re

s °
F

TMAX
TMIN

1900
1910

1920
1930

1940
1950

1960
1970

1980
1990

2000
2010

2020

30

40

50

60

70

80

1-
ye

ar
 ro

llin
g

to
ta

l
ra

in
fa

ll
(in

ch
es

)

https://www.ncdc.noaa.gov/cdo-web/

284 Introduction to Python for Science & Engineering

ing care to make sure the date is formatted as a datetime ob-
ject and set to be the DataFrame index. Print out a table with
the date as the first column and the daily precipitation, maxi-
mum temperature, and minimum temperature for one month
of your choosing. The headings for those data are PRCP, TMIN,
and TMAX, respectively.

(b) Get a list of the dates when more than 5 inches of rain fell and
the rainfall on those dates. If this does not yield any results
for your data, reduce the number of inches until you get a few
dates.

(c) Make a plot like the one on the previous page from the data
set you downloaded. The top graph plots the 1-year running
averages (centered) of the daily high and low temperatures.
The middle graph plots the running 1-year high and low
temperatures, which are remarkably stable around 0◦F and
100◦F. The bottom graph plots the 1-year running total rain-
fall. Write the program that makes these graphs so that the 1-
year running quantities can be changed to 2, 3, or some other
number of years. Look up the Pandas rolling averages routine
pd.Series.rolling, which you should find useful in making
this plot.

5. In this problem you characterize the 46 pairs of chromosomes (22
pairs of autosomes and one pair of sex chromosomes) of the human
genome working with a csv file downloaded from the Ensembl
genome database at http://useast.ensembl.org/. The data file is
called humanGenes.csv. Read this data file into a Pandas DataFrame
and perform the following analyses.

(a) Compute and print out the number of genes listed for the
human genome (there is one per row).

(b) Compute and print out the minimum, maximum, average,
and median number of known isoforms per gene (consider
the transcript_count column as a Series).

(c) Plot a histogram of the number of known isoforms per gene.
As these numbers vary over a wide range, use a logarithmic
y-axis, as shown in the upper right plot in the figure below.

(d) Compute and print out the number of different gene types.

http://useast.ensembl.org/

Data Manipulation and Analysis: Pandas 285

(e) Compute and print out the total number of genes and the
number of genes for each gene_type. Make a horizontal bar
graph that shows the number of genes for each type associ-
ated with each gene in decreasing order of gene type.

(f) Compute and print out the number of different chromo-
somes.

(g) Compute and print out the number of genes for each chro-
mosome. Make a vertical bar plot of the number of genes for
each chromosome in decreasing order.

(h) Compute and print out the percentage of genes located on the
+ strand for each chromosome.

(i) Compute and print out the average number of transcripts as-
sociated with each gene type.

http://taylorandfrancis.com

chapter 11

Animation

In this chapter you learn how to use matplotlib’s Animation pack-
age. You learn how to animate a sequence of images to make a
video, and then how add text and other features to your videos. You
learn how to animate functions. You also learn how to combine
movies and animated plots side-by-side. You learn how to animate
a fixed number of frames or, alternatively, how to animate until
some condition is met.

It’s often not enough to see our data plotted, we want to
see it move! Simulations, dynamical systems, wave propagation,
explosions—they all involve time evolution. Moreover, the human
brain is particularly well-adapted to extract and understand spatial
information in motion. For all these reasons, we want to animate our
representations of information.

While not strictly necessary, we use the Animation library of mat-
plotlib to make animations as it is particularly well suited for our
needs: animating functions, data, and images.

11.1 Animating a Sequence of Images

One of the most basic animation tasks is to make a movie from a
sequence of images stored in a set of image files. If the size and
number of images are not too large, you can simply read all the im-
ages into your program (i.e., into memory) and then use the function
ArtistAnimation of matplotlib’s Animation class to play a movie. You
can also save the movie you make to an external file using the save

function from the Animation module.

287

288 Introduction to Python for Science & Engineering

Figure 11.1 Partial sequence of images for animation.

11.1.1 Simple image sequence

First, we make a video from a sequence of images. Once this is done,
we will show you how to add text and other animated features to your
movie.

We will make a movie from a sequence of images of micrometer-
size particles suspended in water that are undergoing Brownian mo-
tion. A selection of the sequence of images is shown in Fig. 11.1.

The names of the sequence of image files to be animated should
consist of a base alphanumeric string—any legal filename—followed
by an n-digit integer, including leading zeros, so that every file has
a name with the same number of characters. The images are to be
animated from the smallest to the largest numbers. As an example,
suppose we want to animate a sequence of 100 image files named
s000.png, s001.png, s002.png, . . . , s099.png.

Here is our program. Below we explain how it works.

Code: chapter11/programs/movieFromImages.py

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as anim
3 from PIL import Image
4 from glob import glob
5

6 fig, ax = plt.subplots(figsize=(3.6, 3.5))
7 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
8 ax.axis('off')
9

10 ims = []
11 for fname in sorted(glob('pacb/s0*.png')):
12 # print(fname) # uncomment to follow loading of images
13 im = ax.imshow(Image.open(fname), animated=True)
14 ims.append([im])
15

16 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,

Animation 289

17 repeat=False)
18 # Uncomment to save as mp4 movie file. Need ffmpeg.
19 # ani.save('pacb.mp4', writer='ffmpeg') # ffmpeg
20

21 fig.show()

The animation of the file sequence we read in is done by a function
named ArtistAnimation which is part of the matplotlib.animation li-
brary. It’s called at lines 16–17 and, in this example, has four argu-
ments.

The first argument is the name of the figure window, in this case fig,
where the animation will be rendered.

The second argument, with the keyword artists, must be a list of
lists (or tuples) that contain the images to be animated. We explain
below how such a list is put together.

The third argument, interval, specifies the time in milliseconds be-
tween successive frames in the animation. In this example, it’s
30 ms, which corresponds to 1000/30 = 33.3 frames per second.

The fourth argument, repeat, tells the animation just to play through
one time when it’s set to False, rather than repeating in a loop over
and over again.

It is important that the ArtistAnimation call (line 16) be assigned
a variable name, which here is ani. For one thing, it’s needed in line
18 (if it’s uncommented) where the animation is saved to a movie
file. But even if the movie is not saved, it is important to assign the
anim.ArtistAnimation call to a variable, or it will be quite literally
thrown out with the garbage—that is, the animation will be deleted
before it can display the sequence of images. So don’t forget to give
any ArtistAnimation call a name!

Aside from calling the function ArtistAnimation, the main tasks
for the program are to set up the figure window and then assemble
the list ims that contains the images to be rendered for the animation.

Lines 6–8 set up the figure window. The argument figsize is set
to have the same aspect ratio as the frames of the movie we want to
animate. Then the function subplots_adjust is set so that frames take
up the entire figure window. In line 8, we turn off all the axes labels,
as we do not want them for our animation.

290 Introduction to Python for Science & Engineering

In line 10, we create an empty list, ims, that will contain the images
to be animated.

The for loop starting at line 11 reads in an image frame from a
sequence of image files, formats it for animation, and then adds it to
the list of images to be animated.

To read in the names of our data files, we use the func-
tion glob from the module of the same name. The function
glob returns a list of paths on your computer matching a path-
name pattern. The asterisk symbol * acts as a wildcard for
any symbol. Typing glob('pacb/s*.png') returns the list of all
files on my computer matching this pattern, which turns out
to be a sequence of 100 image files named s000.png, s002.png,
s003.png}, \ldots, \texttt{s099.png that are located in the pacb

subdirectory of the directory where our program is stored. To en-
sure that the list of filenames is read in numerical order, we use the
Python function sorted in line 11 (which may not be necessary if the
timestamps on the files are in the correct order). We can restrict the
wildcard using square brackets with entries that specify which char-
acters must appear at least once in the wildcard string. For exam-
ple glob('pacb/s00*[0-2].png') returns the list ['pacb/s000.png',

'pacb/s001.png', 'pacb/s002.png']. You can experiment on your
own to get a clearer idea about how glob() works with different wild-
cards. Uncommenting line 12 prints out the names of the data files
read and parsed by glob(), which can serve as a check that glob() is
working as expected.

Two functions are used in line 13: PIL.Image.open() from the
Python Image Library (PIL) reads an image from a file into a NumPy
array; imshow() from the matplotlib library displays an image, stored
as a NumPy array, on the figure axes. The image is not displayed right
away, but is stored with the name im. Note that in each iteration of the
for loop, we are reading in one frame from the sequence of frames
that make up the animation clip we are putting together.

In the final line of the for loop, we append [im] to the list ims that
we defined in line 10 just before the for loop. Note that im is entered
with square brackets around it so that [im] is a one-item list. Thus
it is added as a list to the list ims, so that ims is a list of lists. This is
the format that the function ArtistAnimation needs for the artists

argument.

Animation 291

Finally, we save the movie1 as an mp4 movie so that it can be played
independently of the program that produced it (and without running
Python). Alternatively, changing the file name to 'pacb.avi' saves
the movie as an avi file. The mp4 and avi movies and the Python
code above that produced them are available at https://github.com/
djpine/python-scieng-public.

As an alternative to the program provided and discussed above,
we offer one that is self-contained so that you do not need to load a
sequence of images from files. Instead, this program makes the images
on the fly, purely for demonstration purposes. The program is adapted
from an example provided on the matplotlib web site.2

Code: chapter11/programs/movieFromImagesAlt.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4

5

6 def f(x, y):
7 return np.sin(x) + np.cos(y)
8

9

10 x = np.linspace(0, 2 * np.pi, 120)
11 y = np.linspace(0, 2 * np.pi, 120).reshape(-1, 1)
12

13 fig, ax = plt.subplots(figsize=(3.5, 3.5))
14 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
15 ax.axis('off')
16 ims = []
17 for i in range(120):
18 x += np.pi / 20.
19 y += np.pi / 20.
20 im = ax.imshow(f(x, y), cmap=plt.get_cmap('plasma'),
21 animated=True)
22 ims.append([im])
23

24 ani = anim.ArtistAnimation(fig, artists=ims, interval=10,
25 repeat_delay=0)
26 # Uncomment to save as mp4 movie file. Need ffmpeg.
27 # ani.save('sncs2d.mp4', writer='ffmpeg') # need ffmpeg !)

1 To save a movie to your computer, you need to install a third-party MovieWriter
that matplotlib recognizes, such as FFmpeg. See §A.3 for instructions on how to
download and install FFmpeg. Alternatively, you can comment out the ani.save
call (line 26) so that the program runs without saving the movie.
2See https://matplotlib.org/examples/animation/dynamic_image2.html.

https://github.com/djpine/python-scieng-public
https://matplotlib.org/examples/animation/dynamic_image2.html
https://github.com/djpine/python-scieng-public

292 Introduction to Python for Science & Engineering

28

29 fig.show()

The 2D NumPy array is created with f(x, y) in lines 20–21, in
place of reading in image files from disk. The only other notable dif-
ference is that here we let the animation repeat over and over. We set
the delay between repetitions to be 0 ms so that the animation appears
as an endless repeating clip without interruption.

11.1.2 Annotating and embellishing videos

It is often useful to add dynamic text or to highlight various fea-
tures in a video. In the sequence of images animated in the program
movieFromImages.py (see page 289), there are two outer particles that
rotate around a central particle, forming a kind of ball-and-socket
joint. We would like to highlight the angle that the joint forms and
display its value in degrees as the system evolves over time. We can
do this by adding some matplotlib Artists to each frame. Figure 11.2
shows one frame of what our program will eventually display.

To start, we need data that gives the positions of the three particles
as a function of time. These data are provided in an Excel spreadsheet
called trajectories.xlsx. The data are read into the program in line 20.

Next, we construct a list, ims, that will contain a set of lists that

Figure 11.2 Annotated frame highlighting particle positions and display-
ing angle.

Animation 293

the animation routine will display. In a previous example each ele-
ment of the list ims was a one-item list [im] of png images, (see line
14 in movieFromImages.py listed on page 289). Adding dynamic text
and other features, this one-item list becomes a three-item list in the
program below.

Code: chapter11/programs/movieFromImagesAnnotated.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as animation
4 import pandas as pd
5 from glob import glob
6 from PIL import Image
7

8

9 def angle(x, y):
10 a = np.array([x[0]-x[1], y[0]-y[1]])
11 b = np.array([x[2]-x[1], y[2]-y[1]])
12 cs = np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))
13 if cs > 1.0:
14 cs = 1.0
15 elif cs < -1.0:
16 cs = -1.0
17 return np.rad2deg(np.arccos(cs))
18

19

20 r = pd.read_excel('trajectories.xlsx', usecols='A:F')
21

22 fig, ax = plt.subplots(figsize=(3.6, 3.5))
23 fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
24 ax.axis('off')
25

26 ims = []
27 angles = []
28 for i, fname in enumerate(sorted(glob('pacb/s[0-2]*.png'))):
29 # print(fname) # uncomment to follow loading of images
30 im = ax.imshow(Image.open(fname), animated=True)
31 # Make 3 solid points connect by two bars
32 x = np.array([r['x1'][i], r['xc'][i], r['x2'][i]])
33 y = np.array([r['y1'][i], r['yc'][i], r['y2'][i]])
34 ima, = ax.plot(x, y, 'o-', color=[1, 1, 0.7])
35 # Get angle between bars & write on movie frames
36 theta = angle(x, y)
37 angles.append(theta)
38 imb = ax.text(0.05, 0.95, 'frame = {0:d}\nangle = {1:0.0f}\u00B0'
39 .format(i, theta), va='top', ha='left',
40 color=[1, 1, 0.7], transform=ax.transAxes)
41 ims.append([im, ima, imb])

294 Introduction to Python for Science & Engineering

42

43 ani = animation.ArtistAnimation(fig, artists=ims, interval=33,
44 repeat=False)
45 # Uncomment to save as mp4 movie file. Need ffmpeg.
46 # ani.save('movieFromImagesAnnotated.mp4', writer='ffmpeg')
47 fig.show()

The first item of the list is im, a list of the same png images we
used before. This element is created in line 30.

The second item in the list is ima, a line plot connecting the centers
of the three particles, where each center is indicated by a circular data
point. This Artist is created in line 34. Note that a comma is used in
defining ima because the plot function creates a one-element list, and
we want the element itself, not the list.

The third item in the list is imb, a text Artist that displays the frame
number and the angle of the ball-and-socket joint, which is calculated
by the function angle. This Artist is created in lines 38–40.

The three items become the elements of a list [im, ima, imb] that
represents one frame of our video: a png file, a plot, and text. Each
frame, [im, ima, imb], becomes an element in the list ims, which rep-
resents all the frames of the entire video.

The function ArtistAnimation is called with essentially the same
inputs that we used previously. This time we choose not to have the
video loop but instead we have it stop after it plays through one time.

Finally, you may have noticed that in line 28 we changed the argu-
ment of glob. The [0-2] is a wildcard that specifies that only 0, 1, and
2 will be accepted as the first character in the file name. In this way, a
movie from 000 to 299 is made.

11.2 Animating Functions

Suppose you would like to visualize the nonlinear single or dou-
ble pendulums whose solutions we calculated in Chapter 9. While
it might not seem obvious at first, the simplest way to do these
kind of animations is with the function animation routine, called
FuncAnimation, of matplotlib’s mpl’s Animation library. As its name
implies, FuncAnimation can animate functions, but it turns out that
animating functions encompasses a wide spectrum of animation
tasks, more than you might have imagined.

Animation 295

11.2.1 Animating for a fixed number of frames

We start by writing a program to animate a propagating wave packet
with an initial width a0 that spreads with time. The equation for the
wave packet is given by the real part of

u(x, t) =
1√

α + iβt
eik0(x−vpt)e−(x−vgt)2/4(α+iβt) ,

where i ≡
√
−1, α = a2

0, and β = vg/2k0. The phase and group velocities
are vp and vg , respectively, and k0 = 2π/λ0, where λ0 is the initial
wavelength of the wave packet. Figure 11.3 shows the wave packet at
a particular moment in time.

Here is the program for animating the propagation of the wave
packet. Following the listing, we explain how it was designed and
how it works.

Code: chapter11/programs/wavePacketSpreads.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4

5

6 def ww(x, t, k0, a0, vp, vg):
7 tc = a0*a0+1j*(0.5*vg/k0)*t
8 u = np.exp(1.0j*k0*(x-vp*t)-0.25*(x-vg*t)**2/tc)
9 return np.real(u/np.sqrt(tc))

10

11

12 wavelength = 1.0
13 a0 = 1.0
14 k0 = 2*np.pi/wavelength
15 vp, vg = 5.0, 10.0
16 period = wavelength/vp

Figure 11.3 One frame from the propagating wave packet movie.

296 Introduction to Python for Science & Engineering

17 runtime = 40*period # total time to follow wave
18 rundistance = 0.6*vg*runtime # total distance to plot wave
19 dt = period/6.0 # time between frames
20 tsteps = int(runtime/dt) # total number of times wave
21 # form is calculated
22 print('Frame time interval = {0:0.3g} ms'.format(1000*dt))
23 print('Frame rate = {0:0.3g} frames/s'.format(1.0/dt))
24

25 fig, ax = plt.subplots(figsize=(12, 3))
26 fig.subplots_adjust(bottom=0.2) # allow room for axis label
27 x = np.arange(-5*a0, rundistance, wavelength/20.0)
28 line, = ax.plot(x, np.ma.array(x, mask=True), color='C0')
29 ax.set_xlabel(r'x')
30 ax.set_ylabel(r'$y(x,t)$')
31 ax.set_xlim(-5*a0, rundistance)
32 ax.set_ylim(-1.05, 1.05)
33

34

35 def animate(i):
36 t = float(i)*dt
37 line.set_ydata(ww(x, t, k0, a0, vp, vg)) # update y-data
38 return line,
39

40

41 ani = anim.FuncAnimation(fig, func=animate,
42 frames=range(tsteps),
43 interval=1000*dt, blit=True)
44 # Uncomment to save as mp4 movie file. Need ffmpeg.
45 ani.save('wavepacket.mp4', writer='ffmpeg')
46 fig.show()

After importing the relevant libraries, we define the wave packet
in lines 6–9, using complex algebra in the calculation, but then taking
only the real part at the end. The physical parameters defining vari-
ous properties of the wave are initialized in lines 12–15. The range of
times and distances over which the waveform will be calculated are
determined in lines 17–19.

We calculate and print out the frame time interval and the frame
rate in lines 22–23. There is not much point in animating at a frame
rate higher than about 30 frames/s as that is about as fast as the hu-
man brain can perceive movement.

Setting up static elements of an animation

Next, in lines 25–32, we set up the static elements of the figure—
everything about the figure that does not change during the anima-
tion. The x-array is defined in line 27, which indeed, remains fixed

Animation 297

throughout the animation—it does not change with time. The dis-
tance between points along the x-axis is set to be small enough, 1/20th

of a wavelength, to make the waveform appear smooth.
Line 28 merits special attention. Here, the program is setting up a

container for the animated plotting of the waveform. In so doing, we
include the x-data but not the y-data. The reason is that the y-data
will change as the wave propagates; at this point in our program, we
are setting up the plot for only the fixed unchanging elements. Since
we need a placeholder for the y-array, we simply use a fully masked
x-array, which is guaranteed to have the right number of elements,
but will not plot. You could simply put an appropriately initialized
version of the y-array here without consequence, since the plot com-
mand should not be rendered until the show() command is called at
the end of the routine. However, if you are running the program from
IPython and you have interactive plotting turned on (plt.ion()), the
plot command will be rendered immediately, which spoils the anima-
tion. Using a masked array for the y-data in the plot command avoids
this problem so that the animation is rendered correctly irrespective
of whether interactive mode is on or off.

Why is there a comma after an assigned variable name?

Notice that in line 28, there is a comma after the name line. This
is important. To understand why, consider the following command
issued from the IPython shell:

In [1]: plot([1, 2, 3, 2, 3, 4])
Out[1]: [<matplotlib.lines.Line2D at 0x181dca2e48>]

Notice that the plot command returns a one-item list, which is
indicated by the square brackets around the matplotlib line ob-
ject <matplotlib.lines.Line2D at 0x181dca2e48>. Writing [line,] =

plot(...), or equivalently writing line, = plot(...), sets line equal
to the first (and only) element of the list, which is the line object
<matplotlib.lines.Line2D at 0x181dca2e48>, rather than the list. It
is the line object that the FuncAnimation needs, not a list, so writing
line, = plot(...) is the right thing to do. By the way, you could also
write line = plot(...)[0]. That works too!

Lines 31–32 fix the limits of the x and y axes. Setting the plot limits
to fixed values is generally recommended for an animation.

298 Introduction to Python for Science & Engineering

Animating a function

The animation is done in lines 41–43 by FuncAnimation from mat-
plotlib’s Animation package. The first argument is the name of the
figure window, fig in this example, where the animation is to be ren-
dered.

The second argument, func, specifies the name of the function,
here animate, that updates each frame of the animation. We defer ex-
plaining how the function animate works until we’ve discussed the
other arguments of FuncAninmation().

The sole input to the animate() function is the current value of
the iterator provided by the third argument frame, which here is set
equal to range(tsteps). The iterator serves two functions: (1) it pro-
vides data to func (here animate), in this case a single integer that is
incremented by 1 each time a new frame is rendered; (2) it signals
FuncAnimation to keep calling the routine animate until the iterator
has run through all its values. At that point, FuncAnimation will restart
the animation from the beginning unless an additional keyword argu-
ment, repeat, not used here, is set equal to False.

The interval argument sets the time in milliseconds between suc-
cessive frames. Thus, the frame rate is 1000/interval frames/s.

The last argument, blit=True, turns on blitting. Blitting is the
practice of redrawing only those elements in an animation that have
changed from the previous frame, as opposed to redrawing the en-
tire frame each time. This can save a great deal of time and allow an
animation to run faster. In general we like to use blitting, so that an
animation runs as close to the intended rate as possible.

We return now to explaining how the function animate updates
each frame of the animation. In this example, updating means calcu-
lating the y-values of the wave packet for the next time step and pro-
viding those values to the 2D line object—the wave packet—that we
named line in line 28. This is done using the set_ydata() function,
which is attached via the dot syntax to the name line. The argument
of set_ydata() is simply the array of updated y-values, which is cal-
culated by the function ww().

FuncAnimation does the rest of the work, updating the animation
frame by frame at the specified rate until the animation finishes. Once
finished, the animation starts again since we did not set the keyword
argument repeat=False.3

3If you consult the online documentation on FuncAnimation, you will see that

Animation 299

The next statement ani.save('wavepacket.mp4') saves the anima-
tion (one iteration only) in the current directory as an mp4 video that
can be played with third-party applications on any platform (in prin-
ciple).

Adding dynamic text

Our animated function is a function of three variables, x, y, and t, but
we only show the values of x and y. We wish to remedy this problem
by displaying the current value of time as dynamic text within the
movie frame. To do this, we need to create a container for the text
we wish to display, just as we did when we made the line container
for the plot we wanted to display. We do this in the program below
starting at line 28. Lines 1–28 are the same as in the previous program
listing on page 295.

Code: chapter11/programs/wavePacketSpreadsEmb.py

28 line, = ax.plot(x, np.ma.array(x, mask=True), color='C0')
29 timeText = ax.text(0.9, 0.98, '', ha="left", va="top",
30 transform=ax.transAxes)
31 timeString = "time = {0:0.2f}"
32 ax.text(0.9, 0.91, r'$v_p = {0:0.1f}$'.format(vp),
33 ha="left", va="top", transform=ax.transAxes)
34 ax.text(0.9, 0.84, r'$v_g = {0:0.1f}$'.format(vg),
35 ha="left", va="top", transform=ax.transAxes)
36 ax.set_xlabel(r'x')
37 ax.set_ylabel(r'$y(x,t)$')
38 ax.set_xlim(-5*a0, rundistance)
39 ax.set_ylim(-1.05, 1.05)
40

41

42 def animate(i):
43 t = float(i)*dt
44 line.set_ydata(ww(x, t, k0, a0, vp, vg)) # update y-data
45 timeText.set_text(timeString.format(t))
46 return line, timeText
47

48

49 ani = anim.FuncAnimation(fig, func=animate,
50 frames=range(tsteps),
51 interval=1000*dt, blit=True)

there is a keyword argument init_func, which the documentation states is used
to draw a clear frame at the beginning of an animation. This function is super-
fluous as far as I can tell, so I don’t use it, in spite of the fact that many web site
tutorials suggest that it is necessary.

300 Introduction to Python for Science & Engineering

52 # Uncomment to save as mp4 movie file. Need ffmpeg.

With the third argument an empty string, lines 29–30 create a
blank text container that we will use in our animation to display the
up-to-date time for the current frame. Lines 32–35 create two static
texts that display the values of the phase and group velocities4 under-
neath the dynamic time display. In each case, we include the keyword
argument transform=ax.transAxes to specify the text in axis coordi-
nates, where 0, 0 is lower-left and 1, 1 is upper-right; without this
argument, data coordinates are used.

The animate(i) function includes lines for updating the text
and line Artists in the animation. The rest of the program, with
FuncAnimation() and show(), is unchanged from the previous version.

11.2.2 Animating until a condition is met

In the previous section, our animation of the propagating wave packet
ran for a preset number of steps (tsteps). This is a sensible way to
make an animation when you know or can calculate ahead of time
how long you want the animation to run. In other cases, however, you
may want the animation to run until some condition is met, and ex-
actly how long this takes is not known ahead of time. This is generally
the case when the animation involves some random process. A simple
but powerful way to do this is to write a generator function, which is
used as the frames keyword argument in FuncAnimation.

To illustrate this kind of animation, we introduce an algorithm
known as random organization, which first appeared in the context
of a physics problem.5 In its simplest form, we consider a set of N
spheres with a diameter of 1 that are randomly placed along the cir-
cumference of a circle of length L > N , as shown in Fig. 11.5. Nearby
spheres overlap each other if the distance between their centers is less
than 1. To aid visibility, spheres that overlap are colored differently
from spheres that do not. The time evolution of the system proceeds
as follows. Each time step, the subroutine move checks allN spheres to
see which spheres, if any, overlap each other. Any sphere that is found
to overlap with one or more spheres is then given a kick that moves it

4The phase velocity is the speed with which the crests in the wave packet moves;
the group velocity is the overall speed of the wave packet. Don’t worry if you’re
not familiar with these terms.
5Corté et al., Nature Physics 4, 420–424, (2008).

Animation 301

a random distance between −ε and +ε, where ε is typically about 1/4
or less. Spheres that do not overlap with any of their neighbors do not
move. That ends one time step. For any given time step, the number
of spheres that overlap may increase, decrease, or remain the same.
In the next time step, the process repeats. The algorithm continues as
long as there are still spheres that overlap. In practice, it is found that
all spheres eventually find a position at which they do not overlap
with any other sphere if the number of spheres is not too high. For the
conditions L = 100 and ε = 0.25, the system eventually settles into a
state where no spheres move if N ≤ 86.

The random organization algorithm is implemented in the gen-
erator function move below. In this implementation, we use periodic
boundary conditions, which is equivalent to bending the line on
which the spheres move into a circle, so that spheres at the very end
of the line interact with spheres at the beginning of the line.

The generator function move returns two arrays: x, which gives the
updated positions of the N spheres as a floating point number be-

Figure 11.4 Random organization.

302 Introduction to Python for Science & Engineering

tween 0 and L, and changes, an integer array of lengthN where the ith

entry is 1 if the ith sphere has moved in the most recent time step and
0 if it hasn’t.

Code: chapter11/programs/randOrg.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4

5

6 def move(L, N, eps): # generator for updating
7 x = np.sort(L*np.random.rand(N)) # speeds up algorithm
8 moves = 1
9 while moves > 0:

10 changes = np.zeros(N, dtype="int")
11 xc = np.copy(x)
12 for i in range(N-1):
13 j = i + 1
14 while x[j]-x[i] < 1.0:
15 rr = 2.0*(np.random.rand(2)-0.5)
16 xc[i] += eps*rr[0]
17 xc[j] += eps*rr[1]
18 changes[i] = 1
19 changes[j] = 1
20 if j < N-1:
21 j += 1
22 else:
23 break # terminates while loop when j=N-1
24 if x[i] < 1.0: # periodic boundary conditions
25 k = -1
26 while x[i] + L - x[k] < 1.0:
27 rr = 2.0*(np.random.rand(2)-0.5)
28 xc[i] += eps*rr[0]
29 xc[k] += eps*rr[1]
30 changes[i] = 1
31 changes[k] = 1
32 k -= 1
33 x = np.sort(xc % L) # sort data for algorithm to work
34 moves = np.sum(changes)
35 yield x, changes
36

37

38 N, L, eps = 75, 100, 0.25 # inputs for algorithm
39

40 circumference = float(L)
41 radius = circumference/(2.0*np.pi)
42 R = radius*np.ones(N)
43

Animation 303

44 fig, ax = plt.subplots(figsize=(8, 8),
45 subplot_kw=dict(polar=True))
46 pStill, = ax.plot(np.ma.array(R, mask=True), R,
47 'o', ms=12, color='C0')
48 pActiv, = ax.plot(np.ma.array(R, mask=True), R,
49 'o', ms=12, color='C1')
50 ax.set_rmax(1.1*radius)
51 ax.axis('off')
52

53

54 def updatePlot(mv):
55 x, changes = mv
56 angle = 2.0*np.pi*x/L
57 active = np.ma.masked_where(changes != 1, angle)
58 inactive = np.ma.masked_where(changes == 1, angle)
59 pStill.set_xdata(inactive)
60 pActiv.set_xdata(active)
61 return pStill, pActiv
62

63

64 ani = anim.FuncAnimation(fig=fig, func=updatePlot,
65 frames=move(L, N, eps),
66 interval=10, save_count=200,
67 blit=True, repeat=False)
68 # Uncomment to save as mp4 movie file. Need ffmpeg.
69 # ani.save('randOrg.mp4', writer='ffmpeg', dpi=200)
70 fig.show()

The output of move(L, N, eps) provides the input to the function
update(mv), which updates the animation. First, it unpacks mv in line
55, then converts the x array into angles for display purposes, and
then creates two masked arrays, one for active and the other for inac-
tive particles using the array changes that tracks which spheres moved
in the most recent time step. These updated masked arrays, created in
lines 57 and 58, are fed into the plots that were set up in lines 46–49,
where the static data for the y-array—the unchanging radius of the
polar plot—was already entered. The still and active data sets are up-
dated and returned to FuncAnimation which plots the next frame, with
the moving particles shown in orange (color='C1') and the stationary
particles in blue (color='C0').

A key feature of this approach is the use of a generator function,
here move. The function returns two arrays, x and changes, using a
yield statement, which is what makes the function a generator. Note
that move yields these two arrays inside a while loop. A key feature
of a generator function is that it remembers its current state between

304 Introduction to Python for Science & Engineering

calls. In particular, move remembers the value of the positions x of all
the spheres, it remembers that it is in a while loop, and it remembers
the variable move which keeps track of how many spheres were moved
in the most recent time step. When move is zero, the while loop termi-
nates, which signals FuncAnimation that the animation is finished.

In line 50, we use set_rmax to set the maximum radius of the polar
plot. It is important to do this after the plot calls in lines 46 and 48,
as they can reset the plot limits in unanticipated ways.

You can save the plot as an mp4 movie by uncommenting line 69.
However, you need to have installed FFmpeg, as discussed in a foot-
note on page 291. Since, in this case, the length of the movie is not
known a priori, FuncAnimation has a keyword argument save_count

that you can set to limit the number of frames that are recorded in the
movie. Its default value is 100, so if you want to record more frames
than that, you need to include it in the FuncAnimation call and set it to
some other value. If the keyword frames is an iterable that has a defi-
nite length (not the case here), it will override the save_count keyword
argument value.

When running the program, be aware that the animation will not
begin displaying until the movie is recorded for whatever number of
frames you set, so if the number is large you may have to wait awhile
before the animation appears.

Gilding the lily

As nice as this animation is, it would seem helpful to plot the number
of active particles as a function of time to give a better sense of how
the system evolves. Therefore, in the program below we add a plot
inside the circular animation of the spheres. Aside from three addi-
tional lines, which we discuss below, the program below is the same
as the program starting on page 302 up to the line ax.axis('off').

Code: chapter11/programs/randOrgLily.py

54 ax.axis('off')
55

56 gs = gridspec.GridSpec(3, 3, width_ratios=[1, 4, 1],
57 height_ratios=[1, 2, 1])
58 ax2 = fig.add_subplot(gs[4], xlim=(0, 250), ylim=(0, L))
59 ax2.set_xlabel('time')
60 ax2.set_ylabel('active particles')
61 activity, = ax2.plot([], [], '-', color='C1')
62 tm, number_active = [], []

Animation 305

63

64

65 def updatePlot(mv):
66 t, moves, x, changes = mv
67 tm.append(t)
68 number_active.append(moves)
69 tmin, tmax = ax2.get_xlim()
70 if t > tmax:
71 ax2.set_xlim(0, 2*tmax)
72 angle = 2.0*np.pi*x/L
73 active = np.ma.masked_where(changes != 1, angle)
74 inactive = np.ma.masked_where(changes == 1, angle)
75 pStill.set_xdata(inactive)
76 pActiv.set_xdata(active)
77 activity.set_data(tm, number_active)
78 return pStill, pActiv, activity
79

80

81 ani = anim.FuncAnimation(fig=fig, func=updatePlot,
82 frames=move(L, N, eps),
83 interval=10, save_count=200,
84 blit=False, repeat=False)
85 # Uncomment to save as mp4 movie file. Need ffmpeg.
86 # ani.save('randOrgLily.mp4', writer='ffmpeg', dpi=200)
87 fig.show()

Lines 56–57 set up the area for the additional plot using the
gridspec module from the matplotlib library. To add this library, we
include this line with the other import statements at the beginning of
the program (the first of the three additional lines before line 56):

import matplotlib.gridspec as gridspec

Returning to line 56, the first two arguments of GridSpec() set up a
3 × 3 grid in the figure frame. You can set the relative widths of the
columns and rows using the width_ratios and height_ratios key-
word arguments. Then in line 58, we select grid rectangle number
4, which is at the center of a grid, by setting the first argument of
add_subplot to gs[4]. The rectangles are numbered starting at zero
from left to right and top to bottom. The other arguments fix the range
of the x and y axes. The next few lines set up the plot of number or ac-
tive particles—the activity—as well as lists for the time t and number
of active particles move.

The only difference in the generator function move is that it returns
two more variables than it did previously. Now the final line reads:

yield t, moves, x, changes

306 Introduction to Python for Science & Engineering

Figure 11.5 Random organization with a plot of the number of active par-
ticles vs. time.

We’ve inserted the current time t and the number of particles moves

that moved in the most recent cycle. In the function update, the
number t and the number moves are appended to the lists tm and
number_active that keep a record of the number of active particles
as a function of time. These data are then transmitted to the activity

plot using the set_data function in line 77.

11.3 Combining Videos with Animated Functions

When presenting or analyzing scientific data, it’s often useful to dis-
play a video with an animated plot that shows the evolution of some
feature of the video. Consider, for example, the sequence of images
we animated in §11.1.2. We would like to show the movie and next to
it display the evolving distribution of the angles that are swept out by
the ball-and-socket joint. Figure 11.6 shows what we are aiming for.

Animation 307

11.3.1 Using a single animation instance

Starting from the program on page 294, we modify line 22 by expand-
ing the figure size and creating two Axes objects, one for the video
and another for the plot of the distribution of angles. The distribution
of angles is calculated using the NumPy histogram function on lines
38–39. Lines 40–43 set up the plot of the distribution, which is then
appended to the list of Artists that are to be animated in line 44. The
call to ArtistAnimation is the same as before.

Alternatively, we can make a histogram for the distribution of an-
gles by commenting out lines 43–44 and uncommenting lines 46–47.
matplotlib’s bar function returns a special bar container that needs
to be turned into a list for incorporation into the list of lists for the
animation, which is done in line 47.

Code: chapter11/programs/movieFromImagesHistP.py

1 from glob import glob
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib.animation as anim
5 import pandas as pd
6 from PIL import Image
7

8

9 def angle(x, y):
10 a = np.array([x[0]-x[1], y[0]-y[1]])
11 b = np.array([x[2]-x[1], y[2]-y[1]])
12 cs = np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))

Figure 11.6 Movie with animated histogram.

308 Introduction to Python for Science & Engineering

13 if cs > 1.0:
14 cs = 1.0
15 elif cs < -1.0:
16 cs = -1.0
17 return np.rad2deg(np.arccos(cs))
18

19

20 r = pd.read_excel('trajectories.xlsx')
21

22 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3.5))
23 ax1.axis('off')
24

25 ims = []
26 angles = []
27 for i, fname in enumerate(sorted(glob('pacb/s0*.png'))):
28 # print(fname) # uncomment to follow loading of image frames
29 im = ax1.imshow(Image.open(fname), animated=True) # image
30 x = np.array([r['x1'][i], r['xc'][i], r['x2'][i]]) # 3 balls
31 y = np.array([r['y1'][i], r['yc'][i], r['y2'][i]]) # joined by
32 ima, = ax1.plot(x, y, 'o-', color=[1, 1, 0.7]) # 2 lines
33 theta = angle(x, y)
34 angles.append(theta)
35 imb = ax1.text(0.05, 0.95, 'frame = {0:d}\nangle = {1:0.0f}\u00B0'
36 .format(i, theta), va='top', ha='left',
37 color=[1, 1, 0.7], transform=ax1.transAxes)
38 a, b = np.histogram(angles, bins=15, range=(90, 180),
39 normed=True)
40 xx = 0.5*(b[:-1]+b[1:])
41 ax2.set_ylim(0, 0.03)
42 ax2.set_xlabel('angle (degrees)')
43 im2, = ax2.plot(xx, a, '-oC0')
44 ims.append([im, ima, imb, im2])
45 # plot histogram
46 # im2 = ax2.bar(xx, a, width=0.9*(b[1]-b[0]), color='C0')
47 # ims.append([im, ima, imb] + list(im2))
48 plt.tight_layout()
49

50 ani = anim.ArtistAnimation(fig, artists=ims, interval=33,
51 repeat=False, blit=False)
52 # Uncomment to save as mp4 movie file. Need ffmpeg.
53 # ani.save('movieFromImagesHistP.mp4', writer='ffmpeg')
54 fig.show()

11.3.2 Combining multiple animation instances

Let’s look at another example of a movie combined with a dynamic
plot. Our previous example showed how to do this by rendering many

Animation 309

Figure 11.7 Movie with animated plot.

plotting elements using a single instance of ArtistAnimation. While
ArtistAnimation is the natural choice for animating sequences of im-
ages, FuncAnimation is the more natural choice for animating a dy-
namic plot. So in this section, we use two different animation in-
stances, one using ArtistAnimation to animate an image sequence and
the other using FuncAnimation to animate the plot. We then show how
to combine them into a single animation.

One frame of the result is shown in Fig. 11.7. As the movie pro-
gresses, the illumination switches from ultraviolet (uv) to blue, which
is designated on the image in the upper right corner and reflected in
a change in color from violet to blue in the trace on the left.

After reading the sequence of frames to make the movie, the pro-
gram reads in data associated with each frame from a csv file.

The static part of the plot, which is not animated, is rendered first.
Lines 23–28 set up containers for the animated lines and circle, which
change color according to whether uv or blue light is used to illumi-
nate the image sequence.

Before plotting the data, the uv and blue data are masked in lines
31–32 so that only one of the two traces is displayed at any given time.

The for loop starting at line 36 puts together the list ims of the
frames to be animated. Each frame is itself a list of the separate ele-
ments to be rendered in each frame: an image and the UV ON/UV OFF

text. The if-else block increases the brightness of the frames when
uv light is off so that all the frames of the movie have nearly the same
brightness. The loop is completed when the list of plot elements is
appended to the ims.

310 Introduction to Python for Science & Engineering

Next, the routine animate is defined, which is called by the
FuncAnimation routine to animate the line plot.

ArtistAnimation is called to animate the movie frames and
FuncAnimation is called to animate the line plot. The second anima-
tion ani2 is synchronized to the event clock of ani1 using the keyword
argument event_source=ani1.event_source. This assures that the two
animations are updated by a single clock.

Finally, to save both animations to the same file, we set the key-
word argument, which takes a list (or tuple), extra_anim=(ani1,) in
our ani2.save call.

Code: chapter11/programs/movieSyncPlot1.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4 from PIL import Image, ImageEnhance
5 from glob import glob
6

7 framesDir = 'movieSyncFrames' # movie frames directory
8 framesData = 'movieSyncData.csv' # data file with intensities
9 time, uv, blue = np.loadtxt(framesData, skiprows=1,

10 unpack=True, delimiter=',')
11

12 # Static parts of plot come first
13 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
14 fig.subplots_adjust(bottom=0.15, top=0.95, left=0, right=0.98)
15 ax1.axis('off')
16 ax2.set_xlim([0, time.max()])
17 ax2.set_ylim([0.85, 1.05])
18 ax2.plot(time, uv+blue, dashes=(5, 2), color='gray', lw=1)
19 ax2.set_xlabel('time (s)')
20 ax2.set_ylabel('normalized integrated intensity')
21 ax2.set_yticks([0.85, 0.9, 0.95, 1., 1.05])
22 # Set up plot containers for ax2
23 plotdotUV, = ax2.plot(np.nan, np.nan, 'o', color='violet',
24 ms=6, alpha=0.7)
25 plotdotBlue, = ax2.plot(np.nan, np.nan, 'o', color='blue',
26 ms=6, alpha=0.7)
27 plotlineB, = ax2.plot(np.nan, np.nan, '-', color='blue', lw=2)
28 plotlineU, = ax2.plot(np.nan, np.nan, '-', color='violet', lw=2)
29

30 # Mask data you do not want to plot
31 uvM = np.where(uv > 0.9, uv, np.nan)
32 blueM = np.where(blue > 0.9, blue, np.nan)
33

34 # Dynamic parts of plot come next
35 ims = []

Animation 311

36 for i, fname in enumerate(sorted(glob(framesDir+'/sp*.png'))):
37 # print(fname) # uncomment to follow loading of image frames
38 if uv[i] >= blue[i]:
39 im = ax1.imshow(Image.open(fname), animated=True)
40 textUV = ax1.text(320, 20, 'UV ON', color='white',
41 weight='bold')
42 else:
43 img0 = Image.open(fname)
44 # Increase brightness of uv-illuminated images
45 img0 = ImageEnhance.Brightness(img0).enhance(2.5)
46 im = ax1.imshow(img0, animated=True)
47 textUV = ax1.text(320, 20, 'UV OFF', color='yellow',
48 weight='bold')
49 ims.append([im, textUV])
50

51

52 def animate(i):
53 plotdotUV.set_data(time[i], uvM[i])
54 plotdotBlue.set_data(time[i], blueM[i])
55 plotlineB.set_data(time[0:i], blueM[0:i])
56 plotlineU.set_data(time[0:i], uvM[0:i])
57 return plotdotUV, plotdotBlue, plotlineB, plotlineU
58

59

60 ani1 = anim.ArtistAnimation(fig, artists=ims, interval=33,
61 repeat=False)
62 ani2 = anim.FuncAnimation(fig, func=animate,
63 frames=range(time.size), interval=33,
64 repeat=False, blit=False,
65 event_source=ani1.event_source)
66 # Uncomment to save as mp4 movie file. Need ffmpeg.
67 # ani2.save('movieSyncPlot1.mp4', extra_anim=(ani1,),
68 # writer='ffmpeg', dpi=200)
69 fig.show()

11.4 Exercises

1. Write a program to animate a 2-dimensional random walk for a
fixed number of steps. Midway through the animation, your ani-
mation should look something like this.

Start the random walk at x = y = 0. Show the leading edge of the
random walk as a red circle and the rest of the walk as a line.
Make sure the line extends from the starting point (0,0) through
to the red circle at the end. The x and y axes should span the same
distance in an equal-aspect-ratio square plot.

312 Introduction to Python for Science & Engineering

The following code gets you started by creating a 2D random walk
of N = 200 steps.

Code: chapter11/exercises/Exercise01/diffusion.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as anim
4

5 N = 200
6 # Create arrays of random jump lengths in random directions
7 dr = np.random.random_sample(N-1) # random number 0-1
8 angle = 2.0*np.pi*np.random.random_sample(N-1)
9 dx = dr*np.cos(angle)

10 dy = dr*np.sin(angle)
11 # Add up the random jumps to make a random walk
12 x = np.insert(np.cumsum(dx), 0, 0.) # insert 0 as
13 y = np.insert(np.cumsum(dy), 0, 0.) # first point

2. Embellish the animation of Exercise 1 by adding x vs. t and y vs. t
panels along with animated text that gives the number of steps so
far. Take t to be equal to the running number of steps. The result
should look something like this:

3. Rewrite the program that produces the animation associated with
Fig. 11.6 but use separate animation instances for the movie on the
left side and the histogram on the right.

4. Rewrite the program that produces the animation associated with

Animation 313

Fig. 11.7 but use a single animation instance for the movie on the
left side and the animated plot on the right.

http://taylorandfrancis.com

chapter 12

Python Classes and GUIs

In this chapter, you learn how to create and use Python classes,
which are central to what is known as object-oriented program-
ming (OOP). You learn the basics of inheritance, a central con-
cept in OOP, and how it can be employed to reuse code. You also
learn the basics of how to write Python programs that the user can
interact with through a graphical user interface, or GUI.

Object-oriented programming—OOP—is an approach to pro-
gramming centered around objects, which we introduced in §3.5.
While using Python objects is relatively straightforward, object-
oriented programming is a big subject and covering it thoroughly
requires much more space than we can give it here. On the other
hand, the basic machinery of OOP is relatively simple, especially in
Python, and understanding it will give you a greater appreciation of
how Python works.

An object, we learned, is a collection of data along with meth-
ods (functions), that can operate on that data, and instance variables,
that characterize or are otherwise associated with the data. Taken to-
gether, these methods and instance variables are known as an object’s
attributes.

A NumPy array provides an illustrative example of an object. It
contains data, in the form of the elements of the array, and it has a
number of attributes, which can be accessed using the dot syntax. The
size and shape of a NumPy array are examples of instance variables
that are determined for a particular array when it is created, or in-
stantiated, in the jargon of OOP:

In [1]: w = np.array([[2, -5, 6], [-10, 9, 7]])

In [2]: w.size # size is an array instance variable
Out[2]: 6

In [3]: w.shape # shape is another array instance variable
Out[3]: (2, 3)

315

316 Introduction to Python for Science & Engineering

NumPy arrays have methods associated with them, functions that act
on a NumPy array, such as the methods that calculate the mean and
standard deviation:

In [4]: w.mean() # mean() is an array method
Out[4]: 1.5

In [5]: w.std() # std() is another array method
Out[5]: 6.8495741960115053

Object methods always have parentheses, which may or may not take
an argument. By contrast, instance variables do not have parentheses
or take arguments.

In the language of OOP, we created an instance of the NumPy ar-
ray class and named it w when we wrote w = np.array(...) above.
Writing x = np.numpy([8, -4, -6, 3]) creates another instance of
the NumPy array class, with different instance variables, but with the
same set of methods (although using them on x would give different
results than using them on w). w and x are two objects that belong to
the same NumPy array class. Once we have instantiated an array, it is
available for further queries or processing, which might involve inter-
acting with other objects.

12.1 Defining and Using a Class

In Python, we can define new kinds of objects by writing classes to
augment Python’s classes, much like we can define our own functions
to augment Python’s functions.

To illustrate, we start by defining a class to model colloidal sus-
pensions, which are very small microparticles, generally between a
nanometer and a micrometer in diameter, suspended in a liquid. Col-
loidal gold was known to the Romans and used for staining glass. To-
day, colloids are valued for their medical uses and optical properties;
they find application in a wide spectrum of technologies, including
coatings and paints. Suspended in a liquid, colloidal microparticles
are batted about by the liquid molecules, a phenomenon known as
Brownian motion. This Brownian motion is characterized by a dif-
fusion coefficient which can be determined using a formula Einstein
derived in 1905:D = kBT /ζ, where kB is Boltzmann’s constant, T is the
absolute temperature, and ζ is the friction coefficient. The friction co-
efficient is given by ζ = 3πηd, where η is the viscosity of the suspend-

Python Classes and GUIs 317

ing liquid, and d is the particle diameter. Under the influence of grav-
ity, the particles tend to settle at a velocity of vsed = (ρp − ρl)gπd3/6ζ,
where g is the acceleration due to gravity, and ρp and ρl are the mass
density of the particles and suspending liquid, respectively.

We define a Colloid class below, but before we describe the code
for defining the class (on p. 318), let’s see how it works. Our Colloid

class takes five arguments: the particle diameter pdiam in meters, the
particle density pdens in kg/m3, the liquid viscosity lvisc in Pa-s, the
liquid density ldens in kg/m3, and the temperature tempC in degrees
Celsius. All units are SI, meaning kilograms, meters, seconds, etc.1 We
design our Colloid class to have these as arguments to be input by the
user:

Colloid(pdiam, pdens, lvisc, ldens, tempC)

As an example, let’s define a gold (Au) colloid suspended in water
(H2O) at room temperature. Before getting started, however, we need
to import the Colloid class into our IPython environment. The code
for the Colloid class is stored in a file called colloid.py. This should
be located in your IPython working directory. After putting it there,
you can check to see if it’s present by asking for a list of the files in
your directory.

In [1]: ls
colloid.py

This tells us that the file colloid.py is present. Next, we need to im-
port the Colloid class so that it’s available to us to use:

In [2]: from colloid import Colloid

Note that we omit the .py extension on the file colloid.py that con-
tains the class definition for the Colloid class. Now that we have im-
ported the Colloid class, we can instantiate our gold colloid object.

In [3]: au_h2o = Colloid(7.5e-9, 19320., 0.00089, 1000., 25.)

Our Colloid class has six instance variables, which we access using
the usual dot syntax, shown here in pairs to save space:

In [4]: au_h2o.pdiam, au_h2o.pdens # diameter & density
Out[4]: (7.5e-09, 19320.0) # of gold in m and kg/m^3

In [5]: au_h2o.lvisc, au_h2o.ldens # diameter & density

1SI is abbreviated from the French Système International and simply refers to the
modern metric systems of units.

318 Introduction to Python for Science & Engineering

Out[5]: (0.00089, 1000.0) # of water in m and kg/m^3

In [6]: au_h2o.tempC, au_h2o.tempK # water temperature in
Out[6]: (25.0, 298.15) # degrees Celsius & Kelvin

Note that our class has six instance variables but only five inputs. Ob-
viously, the sixth, the temperature in Kelvin, is derived from the fifth,
the temperature in degrees Celsius.

Our Colloid class also has several methods associated with it,
which we illustrate here:

In [7]: au_h2o.pmass() # particle mass in kg
Out[7]: 4.2676572703608835e-21

In [8]: au_h2o.vsed() # particle sedimentation
Out[8]: 5.610499999999999e-10 # velocity in m/s

In [9]: au_h2o.diff_coef() # particle diffusion
Out[9]: 6.303932584269662e-10 # coefficient in m^2/s

Like all classes, we can create many different instances of the
class, each characterized by a different set of instance variables. For
example, a class of polystyrene (plastic) colloids 0.5 µm in diameter
with a density of 1050 kg/m3 suspended in water can be instantiated:

In [10]: ps_h2o = Colloid(0.5e-6, 1050., 0.00089, 1000., 25.)

We can apply the same set of methods to this second Colloid object:

In [11]: ps_h2o.pmass()
Out[11]: 6.872233929727671e-17

In [12]: ps_h2o.vsed()
Out[12]: 7.64669163545568e-09

We have now created two instances—two objects—of the Colloid

class: au_h2o and ps_h2o.
Now, let’s examine the code that was used to define the Colloid

class, which is given here.

Code: chapter12/programs/colloid.py

1 from numpy import pi, inf
2

3

4 class Colloid():
5 """A class to model a microparticle suspended in a liquid.
6 """
7

8 def __init__(self, pdiam, pdens, lvisc=0.00089,

Python Classes and GUIs 319

9 ldens=1000., tempC=25.0):
10 """Initialize suspension properties in SI units."""
11 self.pdiam = pdiam # particle diameter (m)
12 self.pdens = pdens # particle density (kg/m^3)
13 self.lvisc = lvisc # solvent viscosity (Pa-s)
14 self.ldens = ldens # solvent density (kg/m^3)
15 self.tempC = tempC # temperature (degrees C)
16 self.tempK = tempC + 273.15 # temperature (K)
17

18 def pmass(self):
19 """Calculate particle mass"""
20 return self.pdens*pi*self.pdiam**3/6.0
21

22 def friction(self):
23 return 3.0*pi*self.lvisc*self.pdiam
24

25 def vsed(self):
26 """Calculate particle sedimentation velocity"""
27 g = 9.80 # gravitational acceleration
28 grav = (pi/6.0)*(self.pdens-self.ldens)*g*self.pdiam**3
29 return grav/self.friction()
30

31 def diff_coef(self):
32 """Calculate particle diffusion coefficient"""
33 kB = 1.38064852e-23
34 return kB*self.tempK/self.friction()

The Colloid class is defined in line 4 by writing class Colloid()

(the value of π and ∞ are imported from NumPy prior to the class
definition because we need them later). The parentheses are empty
because we are creating a new class, without reference to any pre-
existing class. By convention, class names that we write are capitalized
in Python, although it’s not strictly required. We include a docstring
briefly describing the new class.

12.1.1 The __init__() method

Looking over the Colloid class definition, we see a series of function
definitions. These define the methods associated with the class. The
__init__() method, which appears first, is a special method called
the constructor. It has two leading and two trailing underscores to dis-
tinguish it from any other method you might define. The constructor
is so named because it constructs (and initializes) an instance of the
class. This method is automatically called when you instantiate a class.

The self argument must be specified as the first argument in

320 Introduction to Python for Science & Engineering

the constructor, or __init__ will not automatically be called upon
instantiation. The constructor associates the name you give an in-
stance of a class with the self variable, so you can think of it as the
variable that identifies a particular instance of a class. So when we
write au_h2o = Colloid(...), the instance name au_h2o gets associ-
ated with the self variable, even though it doesn’t appear as an ex-
plicit argument when you call it, as illustrated here:

au_h2o = Colloid(7.5e-9, 19320., 0.00089, 1000., 25.)

The five arguments above correspond to the five variables following
the self argument in the __init__() definition. You undoubtedly no-
ticed that the final three arguments of __init__() are provided with
default values, as we might do for any function definition. Thus, be-
cause the default values correspond to those for water at room tem-
perature, we could have instantiated au_h2o without specifying the
last three arguments:

au_h2o = Colloid(7.5e-9, 19320.)

The body of the constructor initializes the class instance variables,
which are all assigned names that have the self prefix. Any variable
prefixed by self becomes an instance variable and is available to every
other method in the class. The instance variables are passed to the
other methods of the class through the argument self, which is the
first argument of each method. The instance variables of one instance
of a class are available only within that instance, and not to other
instances of the same class. As noted previously, the instance variables
can be accessed from the calling program using the dot syntax.

12.1.2 Defining methods for a class

Class methods are defined pretty much the same way any other func-
tion is defined. Class methods require self as the first argument, just
as the __init__ method does. This makes all instance variables of
the class available to the method. When using the instance variables
within a method, you must also use the self prefix.

Variables defined within a method that do not have the self pre-
fix are local to that method and cannot be seen by other methods in
the class or outside of the class. For example, Boltzmann’s constant
kB, which is defined in the diff_coef method, is not available to the
other methods because is does not have the self prefix. This is a good

Python Classes and GUIs 321

thing because it allows methods to have their own local variables (lo-
cal namespaces).

The methods use the return statement to return values in exactly
the same way conventional Python functions do.

12.1.3 Calling methods from within a class

Sometimes it may be convenient for one method in a class to call an-
other method. Suppose, for example, we want to calculate the gravita-
tional height of a colloidal suspension, which is given by the formula
hg = D/vsed. Both D and vsed are already calculated by the diff_coef

and vsed methods, so we would like to write a method that simply
calls these two methods and returns their quotient. Adding the fol-
lowing code to our class definition does the trick:

Code: chapter12/programs/colloid.py

36 def grav_height(self):
37 """Calculate gravitational height of particles"""
38 D = self.diff_coef()
39 v = self.vsed()
40 try:
41 hg = D/v
42 except ZeroDivisionError:
43 hg = inf # when liquid & particle density equal
44 return hg

The methods diff_coef and vsed are called from within the class
definition using the dot syntax exactly as they would be from with-
out the class definition. The only difference is that the class instance
name—say au_h2o, for example—is self, which makes sense since
self serves as the instance name within the class definition. You may
have also noticed that both the diff_coef and vsed methods called the
friction method, again using the self prefix.

Note also that we created two local variables, D and v, and then
returned their quotient. We define D and v without the self prefix be-
cause we wish to use them as purely local variables within the method
grav_height. Defining D and v is done only for clarity to make it more
evident to the reader what the calculation is doing.

A division by zero error can occur if vsed = (ρp − ρl)gπd3/6ζ = 0,
which occurs when the particle and liquid densities are equal (ρp =
ρl). Lines 40–44 use Python’s exception handling code, a try-except
block, to deal with this possibility. The try block, starting at line 40,
is attempted first. If a legal answer is obtained, the except block is

322 Introduction to Python for Science & Engineering

skipped and the value of the hg calculated in the try block is returned.
If there is a ZeroDivisionError, the except block is executed, hg is
set to inf (infinity) and its result is returned. Other types of errors
can also be handled with a try-except block. You can read about the
various possibilities in Python’s online documentation.

12.1.4 Updating instance variables

Instance variables are set when a class is instantiated. However, they
are not immutable and can be changed after instantiation.

To demonstrate how this can be done, we first create a new in-
stance of our Colloid class, this time for 0.62-µm-diameter particles
made from a plastic-silica hybrid called TPC, which has a density of
1300 kg/m3. The particles are suspended in liquid tetralin (C10H12),
which has a density of 970 kg/m3 and a viscosity of 0.202 Pa-s.

In [11]: tpc_C10H12 = Colloid(0.62e-6, 1300., 0.202, 970., 25.)

Let’s check the particle diameter, then change it, and then check it
again:

In [12]: tpc_C10H12.pdiam # Check the diameter
Out[12]: 6.2e-07 # Instantiated value

In [13]: tpc_C10H12.pdiam = 4.8e-7 # Set a new value

In [14]: tpc_C10H12.pdiam # Recheck diameter
Out[14]: 4.8e-07 # Set to new value

This shows that instance variables can be changed in a very straight-
forward manner.

Now let’s change the temperature:

In [15]: tpc_C10H12.tempC = 35.

In [16]: tpc_C10H12.tempC
Out[16]: 35.0

In [17]: tpc_C10H12.tempK
Out[17]: 298.15

This worked as expected, but changed only the temperature in de-
grees Celsius; the temperature in Kelvin remained unchanged. To
be consistent with the Celsius temperature, the Kelvin temperature
should be 308.15, not 298.15. Obviously, this is a problem. To deal
with it, we create a new method called set_tempC that can be used to
change the temperature.

Python Classes and GUIs 323

Code: chapter12/programs/colloid.py

46 def set_tempC(self, tempC):
47 """Sets temperature to a specfied value"""
48 self.tempC = tempC
49 self.tempK = tempC + 273.15

As an aside, we note that the new method set_tempC takes an argu-
ment, the temperature in degrees Celsius. The methods we previously
wrote did not take any arguments (besides the internal argument
self). Methods, like functions, can indeed take arguments, more than
one in fact, in addition to self. As before, the self argument is not
included in the method call. Now, let’s try out the new method:

In [18]: tpc_C10H12.set_tempC(35.)

In [19]: tpc_C10H12.tempC
Out[19]: 35.0

In [20]: tpc_C10H12.tempK
Out[20]: 308.15

This gives the desired result. Methods like set_tempC that set one or
more instance variables are called setters and can be very useful for
ensuring the proper setting and updating of instance variables.

12.2 Inheritance

The Colloid class we made is pretty basic. The fact that it is basic has
an upside and a downside. On the upside, because it is basic, it applies
to virtually all colloids. On the downside, because it is basic, it misses
properties of important types of colloids. It’s for situations like this
that the idea of class inheritance becomes useful. We can write a new
class, called a child class, to take into account the unique properties of
a certain kind of colloid, by building on the original parent class. We
don’t have to make the child class from scratch.

As an example, we are going to build a new child class called
HairyColloid that’s derived from the parent class Colloid. The col-
loids that the new class is meant to describe are not simply small hard
spheres suspended in a liquid, they have short linear molecules teth-
ered to their surfaces, “hairs” on the particles, that extend out into
the liquid in which they are suspended. These tethered hairs inhibit
aggregation of the particles, which is a good thing if the particles are

324 Introduction to Python for Science & Engineering

to remain suspended. Hairy colloids are thus a specialized kind of
colloid.

Besides keeping particles from aggregating, the main effect of the
hairs tethered to the colloids is to slow how they move through the
liquid in which they are suspended. If the length of the hairs is h, this
change can be accounted for by introducing a hydrodynamic diameter,
dh = d + 2h, which is used in the calculation of the friction coefficient:
ζ = 3πηdh. The diameter used to calculate the particle mass is un-
changed and remains d.

To take this change into account in our new class HairyColloid,
we will need to introduce two new instance variables, hlen and hdiam,
which correspond to h and dh, respectively, and we will need to rede-
fine the friction method. Otherwise, we can reuse all the code from
the original Colloid class definition.

Before coding our new HairyColloid class, we introduce some use-
ful jargon: a parent class is often called the superclass; a child class is
often called the subclass. Here, Colloid is the superclass; HairyColloid
is the subclass.

Here is the code for the new subclass HairyColloid2:

Code: chapter12/programs/colloid.py

52 class HairyColloid(Colloid):
53 """A class to model hairy colloids"""
54

55 def __init__(self, pdiam, pdens, lvisc, ldens, tempC,
56 hlen):
57 """Initialize properties from parent Colloid"""
58 super().__init__(pdiam, pdens, lvisc, ldens, tempC)
59 self.hlen = hlen # length of hairs on particles
60 self.hdiam = pdiam + 2.0*hlen
61

62 def friction(self):
63 return 3.0*pi*self.lvisc*self.hdiam

You probably noticed that Colloid appears inside the parenthe-
ses for the class declaration of HairyColloid on line 52. This makes
HairyColloid a subclass of Colloid and causes all the methods of
Colloid, except __init__(), to become methods of HairyColloid. In
our definition of Colloid, the parentheses in the class declaration were
left empty, meaning that Colloid is not a subclass of any other class;
it’s an original.

2The code for HairyColloid follows the code for Colloid in the file
colloid.py.

Python Classes and GUIs 325

The __init__() declaration for HairyColloid includes all the ar-
guments for the subclass, including those taken from the superclass.
We don’t have to explicitly reset all of the instance variables of the su-
perclass one-by-one, however. We set the instance variables of the su-
perclass using the method super().__init__(), where its arguments
of __init__() are the arguments of the superclass (don’t forget the
two pairs of parentheses, one pair after super and the other after
__init__). Finally, we initialize the new instance variables unique
to HairyColloid: self.hlen, the length of the tethered hairs, and
self.hdiam, the hydrodynamic diameter of a hairy colloid.

Next, we need to redefine the friction method so that it uses
the hydrodynamic diameter. This is done in lines 62–63. This new
friction method definition in HairyColloid replaces, or overrides, its
definition in Colloid.

The other methods of Colloid remain unchanged and are available
to HairyColloid. Below we try out our new subclass HairyColloid and
compare it to its parent (or super) class Colloid by instantiating the
two objects with the same inputs, except for the hlen argument (the
last argument) unique to HairyColloid.

In [1]: au_h2o = Colloid(7.5e-9, 19320., 0.00089, 1000., 25.)

In [2]: au_h2o_hc = HairyColloid(7.5e-9, 19320., 0.00089,
...: 1000., 25., 12.e-9)

In [3]: au_h2o.vsed(), au_h2o.diff_coef()
Out[3]: (6.303932584269662e-10, 6.543280646330727e-11)

In [4]: au_h2o_hc.vsed(), au_h2o_hc.diff_coef()
Out[4]: (1.5009363295880149e-10, 1.557923963412078e-11)

In [5]: au_h2o.grav_height()
Out[5]: 0.10379680554735492

In [6]: au_h2o_hc.grav_height()
Out[6]: 0.10379680554735493

The sedimentation velocities and diffusion coefficients for the two col-
loids are quite different, even though they have the same gravitational
height. Note that Python returns values for the sedimentation veloc-
ity from the Colloid and HairyColloid classes that differ by about 1
part in 1016. This minuscule difference comes from the very small
roundoff error that occurs when the quotient D/v is calculated using
the different values of D and v from the au_h2o and au_h2o_hc objects.

326 Introduction to Python for Science & Engineering

By the way, you can examine an object’s instance variables with
the __dict__ attribute:

In [7]: au_h2o_hc.__dict__
Out[7]:
{'hdiam': 3.15e-08,
'hlen': 1.2e-08,
'ldens': 1000.0,
'lvisc': 0.00089,
'pdens': 19320.0,
'pdiam': 7.5e-09,
'tempC': 25.0,
'tempK': 298.15}

This brings us to the end of our very brief introduction to classes
and OOP. Our next topic is graphical user interfaces or GUIs, which
make extensive use of classes and is reason enough to learn the basics
of OOP.

For a great deal of scientific programming, however, OOP is not
needed and can even be an impediment sometimes, especially in
Python. Making complex data structures with classes can make them
difficult or impossible to vectorize using NumPy arrays, which is per-
haps the most important tool available for scientific programming in
Python, as it enables Python to perform scientific computations at
speeds approaching those of compiled languages. So when speed is
paramount, as it often is in scientific computing, you should use them
judiciously in ways that do not seriously slow down computations.

12.3 Graphical User Interfaces (GUIs)

In this section, you learn how Python can be used create graphical
user interfaces, or GUIs. GUIs can be enormously useful for interact-
ing with software in a transparent and efficient manner. The subject,
like OOP, is vast, so here we provide only the most basic of introduc-
tions to the subject. The hope is that this introduction will get you
over the “hump” and give you the basic tools to launch out on your
own and create GUIs for your own applications.

Our first project will be to make a GUI for colloids that provides
the same information provided by the HairyColloid class we devel-
oped in the previous section, but with a more useful and user-friendly
interface. The end result is shown in Fig. 12.1. There are six numer-
ical inputs, starting with the particle diameter and ending with the

Python Classes and GUIs 327

brush length, and four numerical outputs, starting with the hydrody-
namic diameter and ending with the gravitational height. The great
strength of a GUI like this is that all the inputs and outputs are im-
mediately accessible to the user. Moreover, the outputs immediately
update when the value of input is changed.

The program we will write is meant to be run from the Terminal
application, rather than an IDE like Spyder, or even from a Jupyter
notebook which, of course, is more convenient for the user. We will
show a work-around for running it from an IDE, but that is not how
it is intended to be used.

12.3.1 Event-driven programming

A GUI program runs in a fundamentally different way than the pro-
grams we have encountered so far. Up until now, all of the programs
we’ve encountered define some task, say plotting a figure, processing
some data, or running a simulation, and then proceed through a series
of steps until the task is finished. These programs may ask for some
input from the user, but once it’s obtained, the program simply runs
through a set of calculations or procedures until it completes the task
it was written to perform.

With a GUI program like the one introduced above, the program
spends most of its time waiting for some new input from the user.
Here, this occurs when the user changes a value in one of the input
boxes, which are called spinboxes. The user can change the value in
a spinbox from the keyboard by writing directly to the white area or
by using the computer’s mouse to click on the up or down arrows
on the right side of the spinbox to increase or decrease its numerical

Figure 12.1 Colloid GUI window: inputs in white boxes, outputs on gray.

328 Introduction to Python for Science & Engineering

value. Either way, the program responds by redoing the calculations
that determine the values of the outputs.

Programs like this are said to be event-driven. We have more to say
about this later.

12.3.2 PyQt

Because a GUI interface is intrinsically graphical, we need software
that can write directly to a computer screen. The software should
work equally well, without modification, on Macs, PCs, and Linux
computers. The software we choose to use for this task is called PyQt,3

which is a Python wrapper for Qt, a C++ toolkit for writing graphics
to computer screens on different platforms. We previously encoun-
tered Qt in Chapter 6 in our discussion of backends for matplotlib
(see p. 133).

PyQt is a set of classes for performing all the tasks required for
making a GUI. It makes simple dialog boxes, like the one shown in
Fig. 12.1, as well as much more complicated ones. It provides tools
that wait for events, such as a mouse click or input from a keyboard,
as well as tools for processing (or acting upon) these events.

12.3.3 A basic PyQt dialog

We dive right in by looking at the code that produces the dialog shown
in Fig. 12.1. The name of our program is Colloid.pyw. The full pro-
gram is fairly long so we include just the first part to start our dis-
cussion. We import the sys module, which will be needed to launch
the PyQt application. Next we import several PyQt5 classes which
we will need for our program. Finally, we import some constants and
functions from SciPy and NumPy that are needed for our calculations.
Now let’s look at the first part of the program.

Code: chapter12/programs/ColloidGUI.pyw

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 import sys
4 from PyQt5.QtWidgets import (QDialog, QLabel, QGridLayout,
5 QDoubleSpinBox, QApplication)
6 from scipy.constants import pi, g, Boltzmann

3PyQt usually comes pre-installed with the Anaconda distribution. Check that it
is version 5, as the code we develop only works for PyQt5.

Python Classes and GUIs 329

7 from numpy import abs, inf
8

9

10 class Form(QDialog):
11

12 def __init__(self):
13 super().__init__()
14 # inputs
15 self.pdiamSpinBox = QDoubleSpinBox()
16 self.pdiamSpinBox.setRange(1., 50000.)
17 self.pdiamSpinBox.setValue(500)
18 self.pdiamSpinBox.setSuffix(" nm")
19 self.pdiamSpinBox.setDecimals(1)
20 pdiamLabel = QLabel("Particle Diameter:")
21

22 self.pdensSpinBox = QDoubleSpinBox()
23 self.pdensSpinBox.setRange(1., 50000.)
24 self.pdensSpinBox.setValue(1050.)
25 self.pdensSpinBox.setSuffix(" kg/m\u00B3")
26 self.pdensSpinBox.setDecimals(0)
27 pdensLabel = QLabel("Particle Density:")

Making a dialog box

Making a dialog box starts by defining a class, which we name Form.
Form inherits QDialog from the module QtWidgets of the PyQt5 pack-
age. QDialog contains within it all the software needed to create our
dialog box, which is done rather transparently, as we shall see below.
The constructor for the Form class initializes the methods from the
QDialog class with the super().__init__() call.

Making spinboxes and labeling them

The code for producing each spinbox is pretty much the same so we
show here the code for only the first two spinboxes. The code for the
others is pretty much the same.

The first block of code in lines 15–20 sets up the Particle Diameter
spinbox. QDoubleSpinBox() creates a spinbox that takes floating point
numbers, floats (or doubles in C++ syntax), as inputs. By contrast,
QSpinBox(), not used here, takes integer inputs. The next four lines,
15–19, call various methods of QDoubleSpinBox() that, respectively,
set the range of allowed inputs, sets the initial value, gives the input
a suffix for the units for the input, and sets the number of decimal
places that are displayed. In line 20, we call the QLabel routine, which

330 Introduction to Python for Science & Engineering

defines a label for this spinbox that we will place next to the spinbox.
The placement of the spinboxes and their labels is deferred until later
in the program.

The second block of code in lines 22–27 sets up the second spinbox
using the same set of calls used for the first spinbox. The superscript
“3” in kg/m3 is inserted using the Unicode escape sequence \u00B3.
Tables of Unicode character codes can be found on the internet. You
can also put in a Unicode superscript “3” literal—that works too.

The remainder of the spinboxes are set up in the same way.

Outputs and their labels

The next set of code in lines 57–64 sets up the outputs, including
their labels, that appear on the right side of the dialog. Line 57 defines
the output variable self.hydroDiam, whose numerical value will be
calculated later in the program. For the moment, we leave its value
blank. Line 58 defines the variable hydroDiamLabel which we set to
be the string "Hydrodynamic diameter:". This will serve as the label
for the value of the hydrodynamic diameter. Lines 59–64 define the
outputs and labels for the other three outputs in the same way.

Code: chapter12/programs/ColloidGUI.pyw

57 self.hydroDiam = QLabel()
58 hydroDiamLabel = QLabel("Hydrodynamic diameter:")
59 self.diffCoef = QLabel()
60 diffCoefLabel = QLabel("Diffusion coefficient:")
61 self.vsed = QLabel()
62 vsedLabel = QLabel("Sedimentation velocity:")
63 self.gravHeight = QLabel()
64 gravHeightLabel = QLabel("Gravitational height:")

Laying out the inputs, outputs, and their labels

Lines 66–89 define the physical layout of the various elements of the
window: the inputs, outputs, and their labels. The PyQt5.QtWidgets

module contains a number of routines for laying out a window. Here,
we use QGridLayout, which places the various elements of the window
in a grid. We create an instance of QGridLayout and give it the variable
name grid.

Code: chapter12/programs/ColloidGUI.pyw

66 grid = QGridLayout()
67 # inputs

Python Classes and GUIs 331

68 grid.addWidget(pdiamLabel, 0, 0) # Diameter
69 grid.addWidget(self.pdiamSpinBox, 0, 1)
70 grid.addWidget(pdensLabel, 1, 0) # Density
71 grid.addWidget(self.pdensSpinBox, 1, 1)
72 grid.addWidget(lviscLabel, 2, 0) # Viscosity
73 grid.addWidget(self.lviscSpinBox, 2, 1)
74 grid.addWidget(ldensLabel, 3, 0) # Densiity
75 grid.addWidget(self.ldensSpinBox, 3, 1)
76 grid.addWidget(tempLabel, 4, 0) # Temp (C)
77 grid.addWidget(self.tempCSpinBox, 4, 1)
78 grid.addWidget(brushLabel, 0, 2) # Brush length
79 grid.addWidget(self.brushSpinBox, 0, 3)
80 # outputs
81 grid.addWidget(hydroDiamLabel, 1, 2) # Hydro diam
82 grid.addWidget(self.hydroDiam, 1, 3)
83 grid.addWidget(diffCoefLabel, 2, 2) # Diff coef
84 grid.addWidget(self.diffCoef, 2, 3)
85 grid.addWidget(vsedLabel, 3, 2) # Sed vel
86 grid.addWidget(self.vsed, 3, 3)
87 grid.addWidget(gravHeightLabel, 4, 2) # Grav height
88 grid.addWidget(self.gravHeight, 4, 3)
89 self.setLayout(grid)

We use the addWidget method of QGridLayout to place the vari-
ous elements of the window. The addWidget method takes three argu-
ments: the name of the element to be placed, the row number in the
grid, and the column number. In this case we want to place objects in
a grid of four columns and five rows, which are specified and placed
as follows:

0, 0 0, 1 0, 2 0, 3
1, 0 1, 1 1, 2 1, 3
2, 0 2, 1 2, 2 2, 3
3, 0 3, 1 3, 2 3, 3
4, 0 4, 1 4, 2 4, 3

Note that in the addWidget calls, the input and output variables all
have the self prefix, while their labels do not. That is because the
output variables are set and updated in another method of our Form

class. By contrast, their labels are set once when the class is initialized
and do not change thereafter.

The setLayout(grid) call finishes the job of setting up the layout
defined by QGridLayout and the calls to its addWidget method.

332 Introduction to Python for Science & Engineering

Setting up the event loop: Signals and slots

The code in lines 91–96 of the Form class constructor sets up the event
loop. Line 91 specifies that if the value of the pdiamSpinBox spinbox
is changed, then the updateUi method is called. Similarly, each of the
lines 92–96 specifies that if a value of any of the other spinboxes is
changed, then the updateUi method is called.

Code: chapter12/programs/ColloidGUI.pyw

91 self.pdiamSpinBox.valueChanged.connect(self.updateUi)
92 self.pdensSpinBox.valueChanged.connect(self.updateUi)
93 self.lviscSpinBox.valueChanged.connect(self.updateUi)
94 self.ldensSpinBox.valueChanged.connect(self.updateUi)
95 self.tempCSpinBox.valueChanged.connect(self.updateUi)
96 self.brushSpinBox.valueChanged.connect(self.updateUi)
97 # Window title & initialize values of outputs
98 self.setWindowTitle("Colloidal Suspension")
99 self.updateUi()

The syntax of these statements works like this. The valueChanged

part of each statement specifies that when the value of a spinbox is
changed, a signal is generated. The connect(self.updateUi) method
specifies that when that particular signal is generated, it is processed
by the updateUi method, which in the jargon of PyQt is called a slot.
Each signal is thus connected to a particular slot. In this simple case,
the same slot is used to process each of the signals, but in principle,
different slots, i.e., different methods, could be specified to process
different signals.

Completing the constructor

The penultimate statement of the constructor, line 98, sets the title of
the dialog box. The last statement of the constructor, line 99, calls the
method updateUi, which calculates the initial values of the outputs
based on the initial values of the inputs set in the setValue method
calls in the first part of the constructor.

Processing the signals

In this example, a single routine updateUi processes all the signals.
The routine calculates the four outputs from the six inputs. To calcu-
late the outputs, it first converts all the inputs, passed to updateUi via
the self prefix, to local variables in SI units.

Python Classes and GUIs 333

Code: chapter12/programs/ColloidGUI.pyw

101 def updateUi(self):
102 tempK = self.tempCSpinBox.value()+273.15
103 eta = self.lviscSpinBox.value()*0.001 # SI units
104 pdiam = self.pdiamSpinBox.value()*1e-9 # SI units
105 pdens = self.pdensSpinBox.value() # SI units
106 ldens = self.ldensSpinBox.value() # SI units
107 hdiam = pdiam+2.0e-9*self.brushSpinBox.value() # SI
108 friction = 3.0*pi*eta*hdiam
109 D = Boltzmann*tempK/friction
110 vsed = (pi/6.0)*(pdens-ldens)*g*pdiam**3/friction
111 try:
112 hg = D/vsed # gravitational height in SI units
113 except ZeroDivisionError:
114 hg = inf # when liquid & particle density equal
115 self.diffCoef.setText("{0:0.3g} \u03BCm\u00B2/s"
116 .format(D*1e12))
117 self.vsed.setText("{0:0.3g} nm/s".format(vsed*1e9))
118 self.hydroDiam.setText("{0:0.3g} nm"
119 .format(hdiam*1e9))
120 # Set gravitational height, with exception for vsed=0
121 if abs(hg) < 0.001: # small values in microns
122 self.gravHeight.setText("{0:0.3g} \u03BCm"
123 .format(hg*1e6))
124 elif abs(hg) < inf: # large values in millimeters
125 self.gravHeight.setText("{0:0.3g} mm"
126 .format(hg*1e3))
127 else: # infinity (\u221E)
128 self.gravHeight.setText("\u221E")
129 return

The outputs are then calculated in SI units, but returned to their
respective outputs in more convenient units that avoid large or small
exponents. We include an exception handler, as we did previously in
§12.1.3, to handle the divide-by-zero error that occurs when calculat-
ing the gravitational height for the case that the sedimentation veloc-
ity is zero.

The values of the outputs are set using the setText method of
QLabel. The setText method takes a formatted string as input, so it’s
straightforward to include the appropriate units with each output.
The gravitational height hg is proportional to d−3, where d is the par-
ticle diameter, which means that hg can span a much larger range of
numerical values as d changes than the other outputs, from fractions
of a micron to hundreds of millimeters. To deal with this, we use an
if statement that gives the gravitational height in millimeters if it is
large and in microns if it is small.

334 Introduction to Python for Science & Engineering

With a return statement, the definition of the Form class is com-
plete.

Launching the program and the event loop

The last four lines of code in ColloidGUI.pyw launch the program.

Code: chapter12/programs/ColloidGUI.pyw

132 app = QApplication(sys.argv)
133 form = Form()
134 form.show()
135 sys.exit(app.exec_())

The first of these lines, 132, creates an application object, which
every PyQt5 application must do. The sys.argv argument accepts a
list of arguments from the command line. In this case, we do not pro-
vide the application with any inputs from the command line. Never-
theless, the sys.argv argument is still required, even for zero inputs.

Line 133 creates an instance of the Form class and line 134 creates
the dialog widget in memory ready to be displayed on screen.

The call app.exec_() in line 135 launches the application, which
enters the event loop.4 Embedding it as the arguments of sys.exit()
ensures an orderly exit when the dialog box is closed.

When launched, a ColloidGUI dialog box appears, similar to the
one shown in Fig. 12.1, but with the inputs set to their initial values
and with the outputs calculated from those values. After that, the ap-
plication waits for a change in one of the inputs, that is, in one of
the spinboxes. Superficially, the event loop functions just like a while
loop. Unlike a typical while loop, which occupies the computer pro-
cessor (CPU) by checking the loop variable for a change, the program
doesn’t occupy the CPU at all unless an event occurs. In this case,
when you use the keyboard or mouse to change the value of a spinbox,
the hardware generates an interrupt, causing the CPU to suspend what
it is doing and process the interrupt, which in this case means reading
the new value in the spinbox, generating a signal for our event loop,
which then processes it according to the slot assigned to that signal.
Here, all the signals go to the same slot, updateUi. Once the event is
processed, our application once again quietly waits for another event,
while the CPU returns to its other business.

4The underline is included in exec_() to avoid conflicts with the built-in Python
function exec().

Python Classes and GUIs 335

Running the program from the terminal

The ColloidGUI.pyw program, as written, is meant to run from the
terminal and not from an IDE like Spyder. The next section will in-
troduce a modification that will allow it to run from an IDE.

A second, and better, way to run the program is to make the ap-
plication an executable program.

Making a program executable on a Mac

On Macs and on Linux computers, you can make ColloidGUI.pyw

executable by typing from the terminal

chmod +x ColloidGUI.pyw

The next step is to include as the first line of your program

#!/usr/bin/env python3

This line tells the operating system to run this program with the
python3 directive located in the directory /usr/bin/env. Thus, while
Python ignores this statement because it starts with the comment
character #, the operating system reads it as an instruction of how to
execute the program. The combination #! that alerts the system that
a system directive follows is called a shebang statement.

Including the shebang statement and having made the program
executable, simply typing ./ColloidGUI.pyw from the terminal will
run the program, if the program is in the same directory. The program
can be run from any directory provided ColloidGUI.pyw is located in
a directory that is in the system’s PATH variable. This can be done by
including the following line the file .bash_profile

export PATH="/Users/pine/scripts:$PATH"

which makes any program executable if it is located in the di-
rectory /Users/pine/scripts. In this case, that means that typing
ColloidGUI.pyw from the terminal will run the program, irrespective
of the current directory.

The file .bash_profile is located in your computer’s default di-
rectory, which in the above example is /Users/pine. However, edit-
ing .bash_profile can be tricky as files with names that begin with
a period are invisible in the Mac Finder window and also to many
text editors. To edit the .bash_profile, open the Terminal application
and navigate to the home directory, which is /Users/pine on my Mac;
yours will be different. Then type open .bash_profile. This will open

336 Introduction to Python for Science & Engineering

the file .bash_profile with Mac’s default TextEdit program. Add the
necessary line and save the file. Alternatively, you can use some other
text editor that allows you to edit files that begin with a period.

One note of caution: hidden files like .bash_profile are hidden
for a reason. They contain system configuration information that,
if incorrectly changed, can cause applications not to function prop-
erly. Therefore, be careful and make backups before changing the
.bash_profile file.

Finally, it’s worth noting that you can run multiple instances of
the ColloidGUI.pyw. On a Mac, simply type

ColloidGUI.pyw &

This launches ColloidGUI.pyw and returns the terminal to its usual
$ prompt, ready to accept further system commands. Thus, typing
ColloidGUI.pyw & again launches another instance of the GUI appli-
cation. This is a general feature of the Unix operating system used by
Macs. The same syntax works on computers running Linux as well.

Running the program from an IDE

Common IDEs like Spyder, as well as Jupyter notebooks, run an
IPython shell. The PyQt QApplication will usually run once in an
IPython shell, but if you run it a second time you get an error mes-
sage

QCoreApplication::exec: The event loop is already running

then, most likely, Python crashes. The problem is that an instance of
QApplication remains in the namespace of IPython after the first run.
In the code below, we remedy this by checking to see if a QApplication

instance already exists with the method instance().

if not QApplication.instance():
app = QApplication(sys.argv)

else:
app = QApplication.instance()

form = Form()
form.show()
sys.exit(app.exec_())

Running a GUI application from an IDE is a bit of an odd thing to do,
as the program is meant to be run on its own, so whether or not you
choose to use code like that above is your choice. Running it from a
terminal is the standard protocol.

Python Classes and GUIs 337

12.3.4 Summary of PyQt5 classes used

Here we summarize the PyQt5 classes and methods we have intro-
duced, plus a few more. The ones we mention are but a small fraction
of the classes defined in PyQt5, as we have given only the briefest of
introductions to PyQt5. Nevertheless, to organize your thoughts, it is
useful at this point to list a few of the PyQt5 classes and their meth-
ods.

Method Function
QLineEdit() Single-line textbox for input
QTextBrowser() Multiline textbox for output (plain & HTML)
QVBoxLayout() Lays out widgets vertically in a box
QHBoxLayout() Lays out widgets horizontally in a box

addWidget() method to add widgets to Q..BoxLayout()

Table 12.1 A selection of QtWidgets methods.

12.3.5 GUI summary

We have barely scratched the surface of the kinds of GUIs that can be
made using Python. We have not, for example, said anything about
how matplotlib plots can be incorporated into GUIs, nor have we
shown you how to interact with plots and GUIs using a mouse. All
of this and much more is possible. Our purpose here has been to in-
troduce classes and how they are used to make GUIs. Armed with
ideas, you are now equipped to read online documentation and take
the next steps to create applications that suit your purposes.

http://taylorandfrancis.com

appendix A

Installing Python

For scientific programming with Python, you need to install Python
and four scientific Python libraries: NumPy, SciPy, matplotlib, and
Pandas. There are many other useful libraries you can install, but
these four are probably the most widely used and are the only ones
you will need for this text.

In this text, we work exclusively with Python 3.x and not with
Python 2.7 or earlier versions of Python. When you download Python,
be sure you download Python 3.x (x should be 6 or greater).

A.1 Installing Python

There are a number of ways to install Python and the scientific li-
braries you will need on your computer. Some are easier than others.

For most people, the simplest way to install Python and all the sci-
entific libraries you need is to use the Anaconda distribution, which
includes the Spyder integrated development environment (IDE) for
Python. The Anaconda distribution also includes Jupyter notebooks
for those who prefer to interact with Python using a web-based note-
book format (see Appendix B for an introduction to Jupyter note-
books). Both of these interfaces feature syntax highlighting, which
colors different parts Python syntax according to function, making
code easier to read. More importantly, the Spyder IDE runs a pro-
gram in the background called Pyflakes that checks the validity of the
Python syntax as you write it. It’s like a spelling and grammar checker
all rolled into one, and it is extremely useful, for novice and expert
alike. The Spyder IDE has a number of other useful features, which
we do not go into here, but expect you will learn about as you become
more familiar with Python.

Spyder provides an open source programming environment for
Python. The Spyder IDE is free and is bundled with the Anaconda dis-
tribution of Python in a package maintained by the software company
Continuum Analytics (https://www.anaconda.com/). The Anaconda
package can be found at https://www.anaconda.com/download/. Be

339

https://www.anaconda.com/). The
https://www.anaconda.com/download/

340 Introduction to Python for Science & Engineering

sure to download Python 3.x (x should be 6 or greater) and not
Python 2.7.

In this book, we assume you are using either the Spyder IDE or a
Jupyter notebook. Both are similar enough that we generally do not
specify one or the other after Chapter 2. Once you install the Ana-
conda distribution, you can leave Spyder with its default settings, but
we suggest a few changes to the default settings, which are detailed
below.

A.1.1 Setting preferences

In this manual we assume that your IPython Console is set up with
“pylab mode” turned off. This means that in the IPython Console you
need to use the np or plt prefixes with NumPy and matplotlib func-
tions.

We recommend that you use the Qt5Agg backend, although it’s
not strictly necessary for most of what we do.

Note that you only need to do this setup once. Once it is done, you
should be able to follow everything written in this manual.

Launch Spyder and then go to the Preferences menu (under the
python menu on a Mac, or the Tools on a PC). Under the IPython Con-
sole: Graphics menu, change the Backend to Qt5 (it may already be se-
lected, in which case you need to do nothing). Next, in the IPython
Console: Graphics menu, make sure the box labeled Automatically load
PyLab and NumPy modules is not checked. This sets up Spyder so that
NumPy or matplotlib are not automatically loaded in the IPython con-
sole.

As of this writing, there is a bug in the Mac interface that omits
the × on the tabs for different files in the Code Editor Pane (see Fig.
2.1. Clicking on the × (when it was working) closes the tab. There are
two work-arounds to deal with this bug. (1) Just ignore it and under-
stand that clicking on the left side of the tab will close the tab. (2) Go
to the Preferences menu of Spyder and select the General tab. Then
under Interface: Qt windows style, change “Macintosh” to “Fusion” or
“Windows”.

A.1.2 Pyflakes

A syntax-checking program called Pyflakes runs in the background
when you are editing a Python program using Spyder. If there is an

Installing Python 341

error in your code, Pyflakes flags the error. See §2.11.1 for more infor-
mation about Pyflakes and how to take advantage of its features.

A.1.3 Updating your Python installation

Updating the Anaconda distribution of Python, including Spyder, is
straightforward using a terminal window. On a Mac, go to the Applica-
tion folder and launch the Terminal app located in the Utilities folder.
On a PC, go to the Start menu and launch the Anaconda Prompt
app under the Anaconda (or Anaconda3) menu. From the terminal
prompt, type

conda update conda
conda update anaconda

Respond [y]es to any prompts you receive to download and update
your software. Do this once per month or so to keep Python and all
the Python packages you have loaded up to date.

A.2 Testing Your Installation of Python

Running the program testInsatllation.py below tests your installation
of Python and records information about the installed versions of var-
ious packages that are used in this manual. If you are a student, you
should input your first and last names inside the single quotes on
lines 10 and 11, respectively. Instructors should modify the course
information inside the double quotes in lines 15-17.

Code: Appendix/programs/testIstallation.py

1 """ Checks Python installation and generates a pdf image file
2 that reports the versions of Python and selected installed
3 packages. Students can sent output file to instructor."""
4 import scipy, numpy, matplotlib, pandas, platform, socket, sys
5 import matplotlib.pyplot as plt
6

7 # If you are a student, please fill in your first and last
8 # names inside the single quotes in the two lines below.
9 # You do not need to modify anything else in this file.

10 student_first_name = 'Giselle'
11 student_last_name = 'Sparks'
12 # If you are an instructor, modify the text between the
13 # double quotes on the next 3 lines. You do not need to
14 # modify anything else in this file.
15 classname = "Quantum Mechanics I"

342 Introduction to Python for Science & Engineering

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Giselle Sparks
Quantum Mechanics I

Fall_2018

Python 3.6.5

scipy 1.1.0
numpy 1.14.3

matplotlib 2.2.2
backend Qt5Agg
pandas 0.23.0

Darwin-17.7.0-x86_64-i386-64bit
Installation: Anaconda custom (64-bit)

Davids-MacBook-Pro-3.local

This plot has been saved on your computer as
"Sparks_Giselle_Fall_2018.pdf"

E-mail this file to "instructor@abcu.edu"

16 term = "Fall_2018" # must contain no spaces
17 email = "instructor@abcu.edu"
18 plt.plot([0, 1], "C0", [1, 0], 'C1')
19 plt.text(0.5, 1.0, "{0:s} {1:s}\n{2:s}\n{3:s}"
20 .format(student_first_name, student_last_name,
21 classname, term),
22 ha="center", va="top", size='x-large',
23 bbox=dict(facecolor="C2", alpha=0.4))
24 plt.text(0.5, 0.7,
25 'Python {0:s}'.format(platform.python_version()),
26 ha='center', va='top', size='large')
27 pkgstr = 'scipy {0:s}\nnumpy {1:s}\nmatplotlib {2:s}\n'
28 pkgstr += 'backend {3:s}\npandas {4:s}\n{5:s}\n'
29 pkgstr += 'Installation: {6:s}\n{7:s}'
30 plt.text(0.5, 0.0, pkgstr.format(scipy.__version__,
31 numpy.__version__, matplotlib.__version__,
32 matplotlib.get_backend(), pandas.__version__,
33 platform.platform(), sys.version.split('|')[1],
34 socket.gethostname()), ha='center', va='bottom',
35 color='C5')
36 filename = student_last_name+'_'+student_first_name
37 filename += '_'+term+'.pdf'
38 ttlstr = 'This plot has been saved on your computer as'
39 ttlstr += '\n"{0:s}"\nE-mail this file to "{1:s}"'
40 plt.title(ttlstr.format(filename, email), fontsize=10)

Installing Python 343

41 plt.savefig(filename)
42 plt.show()

A.3 Installing FFmpeg for Saving Animations

To record animations to an independent movie file, you need to in-
stall some external software. We suggest using FFmpeg, which works
nicely with matplotlib.

Installing FFmpeg is a fairly simple matter. Go to your computer’s
terminal application (Terminal on a Mac or Anaconda Prompt on a
PC) and type:

conda install -c anaconda ffmpeg

Respond [y]es when asked to proceed. The Anaconda utility conda

will install a number of new packages and will probably update oth-
ers. When it’s finished, FFmpeg should work with the matplotlib ani-
mation programs discussed in Chapter 11.

http://taylorandfrancis.com

appendix B

Jupyter Notebooks

A Jupyter notebook is a web-browser-based environment for interac-
tive computing. You don’t need to be connected to the web to use it;
Jupyter merely runs on your browser. If you have installed the Ana-
conda distribution and you have a standard web browser, then you
have everything you need to launch a Jupyter notebook.

You can work in a Jupyter notebook interactively, just as you would
using the IPython shell. In addition, you can store and run programs
in a Jupyter notebook just like you would within the Spyder IDE.
Thus, it would seem that a Jupyter notebook and the Spyder IDE do
essentially the same thing. Up to a point, that is true. Spyder is gener-
ally more useful for developing, storing, and running code. A Jupyter
notebook, on the other hand, is excellent for logging your work in
Python. For example, Jupyter notebooks are very useful in a labora-
tory setting for reading, logging, and analyzing data. They are also
useful for logging and turning in homework assignments. You may
find them useful in other contexts for documenting and demonstrat-
ing software.

There is important advantage of using the Spyder IDE compared
to using a Jupyter Notebook, especially for a newcomer to Python.
Spyder runs a syntax checking program called Pyflakes in the back-
ground as you write and flags programming errors. Pyflakes can be
implemented in Jupyter but using it is not automatic and a bit clumsy.
Therefore, you are advised to start learning Python with Spyder be-
fore taking advantage of Jupyter.

B.1 Launching a Jupyter Notebook

To launch a Jupyter notebook, launch the Terminal (Mac) or the Ana-
conda Command Prompt (PC) application. On a Mac, the Terminal
application is found in the Applications/Utilities folder. On a PC, the
Anaconda Command Prompt application is found in the Start/All
Programs/Accessories menu. Here we will refer the Terminal or Ana-
conda Command Prompt applications at the System Console. Once

345

346 Introduction to Python for Science & Engineering

Figure B.1 Jupyter notebook dashboard.

you are in the System Console, type jupyter notebook. This will
launch the Jupyter notebook web application and will display the
Jupyter Notebook Dashboard as a page in your default web browser.
It should look like the web page shown in Fig. B.1.

At the bottom-left of the Notebook Dashboard is a list of fold-
ers (and files) of the default directory. By clicking on the appropriate
folder you can navigate to the folder where you want to store your
work.

If you want to create a new folder, you can do this by clicking
on the New button near the top-right of the Notebook Dashboard
and selecting Folder. This will create a new folder called Untitled
Folder. Let’s rename this folder. To rename it, click on the checkbox
to the left of the Untitled Folder listing. Then click on the box Rename
(which appears only after you check the checkbox) near the top left
of the window. A dialog box will appear where you should enter the
new name of the folder. Let’s call it Notebooks. Next, double click on
the Notebooks listing, which will move the Jupyter interface to that
folder.

To create a new Jupyter notebook, go to the pull-down menu New
on the right side of the page and select Python 3. That opens a new
Jupyter notebook with the provisional title Untitled0 in a new tab like
the one shown in Fig. B.2. To give the notebook a more meaningful

Jupyter Notebooks 347

Figure B.2 Untitled Jupyter notebook with an open cell.

name, click on the File menu in the browser window and select Re-
name. Let’s say you rename your notebook firstNotebook. The name
firstNotebook will replace Untitled0 in your Notebook browser win-
dow and a file named FirstNotebook.ipynb will appear in the direc-
tory from which you launched Jupyter notebook. That file will contain
all the work you do in the Jupyter notebook. Next time you launch
Jupyter notebook from this same directory, all the Jupyter notebooks
in that directory will appear in a list on the Jupyter notebook Dash-
board. Clicking on one of them will launch that notebook.

When you open a new Jupyter notebook, an IPython interactive
cell appears with the prompt In[]: to the left. You can type code
into this cell just as you would in the IPython shell of the Spyder IDE.
For example, typing 2+3 into the cell and pressing Shift-Enter (or Shift-
Return) executes the cell and yields the expected result. Try it out.

If you want to delete a cell, you can do so by clicking on the cell
and then selecting Delete Cells from the Edit menu. Go ahead and
delete the cell you just entered. You can also restart a notebook by
selecting Restart & Clear Output from the Kernel menu. Go ahead
and do this too.

B.2 Running Programs in a Jupyter Notebook

You can run programs in a Jupyter notebook. As an example, we run
the program introduced in §4.2.1. The program is input into a single
notebook cell, as shown in Fig. B.3, and then executed by pressing
Shift-Enter.

348 Introduction to Python for Science & Engineering

Figure B.3 Running a program in a Jupyter notebook.

The program runs up to the point where it needs input from the
user, and then pauses until the user responds by filling in a distance
and then pressing the Enter or Return key. The program then com-
pletes its execution. Thus, the Jupyter notebook provides a complete
log of the session, which is shown in Fig. B.3.

B.3 Annotating a Jupyter Notebook

A Jupyter notebook will be easier to understand if it includes anno-
tations that explain what is going on in the notebook. In addition to

Jupyter Notebooks 349

logging the inputs and outputs of computations, Jupyter notebooks
allow the user to embed headings, explanatory notes, mathematics,
and images.

B.3.1 Adding headings and text

Suppose, for example, that we want to have a title at the top of the
Jupyter notebook we have been working with, and we want to include
the name of the author of the session. To do this, we scroll the Jupyter
notebook back up to the top and place the cursor in the very first input
cell and click the mouse. We then open the Insert menu near the top
center of the window and click on Insert Cell Above, which opens up
a new input cell above the first cell. Next, we click on the box in the
Toolbar that says Code. A list of cell types appears: Code (currently
checked), Markdown, Raw NBConvert, and Heading. Select Markdown;
immediately the In []: prompt disappears, indicating that this box
is no longer meant for inputting and executing Python code. Type
“# Demo of Jupyter notebook” and press Return or Enter. Then type
“## Your Name. Finally, press Shift-Enter (or Shift-Return). A heading
in large print appears before the first IPython code cell, with “Your
Name” printed below it in slightly smaller print because you typed ##

instead of #. Each additional # decreases the font size.

Figure B.4 Jupyter notebook with title and author.

350 Introduction to Python for Science & Engineering

B.3.2 Comments with mathematical expressions

You can also write comments, including mathematical expressions,
in a Jupyter notebook cell. Let’s include a comment after the pro-
gram that calculated the cost of gasoline for a road trip. First
we place the cursor in the open formula cell below the program
we ran and then click on the box in the Toolbar that says Code
and change it to Markdown. Returning to the cell, we enter the
text of our comment. We can enter any text we wish, includ-
ing mathematical expressions using the markup language LATEX.
(If you do not already know LATEX, you can get a brief introduc-
tion at these sites: http://en.wikibooks.org/wiki/LaTeX/Mathematics
or ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf.)
Here we enter the following text:

The total distance x traveled during a trip can be
obtained by integrating the velocity $v(t)$ over the
duration T of the trip:
\begin{align}

Figure B.5 Annotation using a Markdown cell with a mathematical expres-
sion.

http://en.wikibooks.org/wiki/LaTeX/Mathematics
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

Jupyter Notebooks 351

x = \int_0^T v(t)\, dt
\end{align}

After entering the text, pressing Shift-Enter yields the result
shown in Fig. B.5.

The $ symbol brackets inline mathematical expressions in Latex,
while the \begin{align} and \end{align} expressions bracket dis-
played expressions. You only need to use LATEX if you want to have
fancy mathematical expressions in your notes. Otherwise, LATEX is not
necessary.

B.4 Terminal commands in a Jupyter notebook

You can execute system shell commands from an IPython prompt, as
we learned in n §2.4.2. Suppose, for example, you were importing a
data (.txt) file from your hard disk and you wanted to print it out
in one of the notebook cells. If you were in the Terminal (Mac) or
Command Prompt (PC), you could write the contents of any text file
using the command cat filename (Mac) or type filename (PC). You can
execute the same operation from the IPython prompt using the Unix
(Mac) or DOS (PC) command preceded by an exclamation point, as
described in the section on System shell commands.

B.5 Plotting in a Jupyter Notebook

You can also incorporate matplotlib plots into a Jupyter notebook. At
the In []: prompt, type the following three lines:

In [3]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Then press Shift-Enter (or Shift-Return) to execute the code in the
cell. The %matplotlib inline magic command tells the IPython to
render the plots within IPython, that is in the Jupyter notebook, rather
than in a separate window.1

1You can also use the %matplotlib inline magic command in the Spyder
IPython window to get the same effect: displaying plots in the IPython shell in-
stead of in a separate window.

352 Introduction to Python for Science & Engineering

Figure B.6 Plot in a Jupyter notebook.

In the next cell, type plt.plot([5, 4, 3, 4, 3, 2, 3, 2, 1]). A
plot should appear in the browser window beneath the plot com-
mand, like the one in Fig. B.6.

Let’s review what just happened. In the first Jupyter notebook cell,
we imported NumPy and PyPlot in the first two lines and gave them
their standard prefixes np and plt. The third line is an IPython magic
command (see §2.4.1) that instructs matplotlib to render plots “inline"
in the Jupyter notebook instead of in a separate window.

In cell 2, we type a plot function, which is then output below in
the notebook. Within the notebook with inline plotting, the show()

function is not needed.
Be sure to press the Save and Checkpoint item in the File menu in

the Jupyter notebook window from time to time to save your work.

Jupyter Notebooks 353

B.6 Editing and Rerunning a Notebook

In working with a Jupyter notebook, you may find that you want to
move some cells around, or delete some cells, or simply change some
cells. All of these tasks are possible. You can cut and paste cells, as in
a normal document editor, using the Edit menu. You can also freely
edit cells and re-execute them by pressing Shift-Enter. Sometimes
you may find that you would like to re-execute the entire notebook
afresh. You can do this by going to the Kernel menu and selecting
Restart. A warning message will appear asking you if you really want
to restart. Answer in the affirmative. Then open the Cell menu and
select Run All, which will re-execute the notebook starting with the
first cell. You will have to re-enter any screen input requested by the
notebook scripts.

B.7 Quitting a Jupyter Notebook

It goes almost without saying that before quitting a Jupyter notebook,
you should make sure you have saved the notebook by pressing the
Save and Checkpoint item in the File menu or its icon in the Toolbar.

When you are ready to quit working with a notebook, click on the
Close and halt item in the File menu. Your notebook browser tab will
close and you will return to the Jupyter notebook Dashboard. Press
the Quit button at the upper right. Then close the IPython Notebook
Dashboard tab in your browser to end the session.

Finally, return to the Terminal or Anaconda Command Prompt ap-
plication. You should see the normal system prompt. If you don’t, hold
down the control key and press c twice in rapid succession. You can
then close the Terminal (Mac) or Anaconda Command Prompt (PC)
session if you wish.

B.8 Working with an Existing Jupyter Notebook

To work with an existing Jupyter notebook, open the Terminal (Mac)
or Anaconda Command Prompt (PC) application and navigate to the
directory in which the notebook you want to work with resides. Recall
that Jupyter notebooks have the .ipynb extension. Launch the Jupyter
notebook Dashboard as you did previously by issuing the command

jupyter notebook

354 Introduction to Python for Science & Engineering

This will open the Jupyter notebook Dashboard in your web browser,
where you should see a list of all the Jupyter notebooks in that direc-
tory (folder). Click on the name of the notebook you want to open. It
will appear in a new tab on your web browser as before.

Note that while all the input and output from the previous saved
session is present, none of it has been run. That means that none of
the variables or other objects has been defined in this new session. To
initialize all the objects in the file, you must rerun the file. To rerun
the file, press the Cell menu and select Run All, which will re-execute
all the cells. You will have to re-enter any screen input requested by
the notebook scripts. Now you are ready to pick up where you left off
the last time.

appendix C

Glossary

A number of terms that are introduced in the text are defined below
for your convenience. The page number where the term is first used
or defined is given in parentheses.

Artist (135) Artists in matplotlib are the routines that define the ob-
jects that are drawn in a plot: lines, circles, rectangles, axes, data
points, legends, etc. The artist layer consists of the hierarchy of
Python objects (or classes) that facilitate creating a figure and em-
bellishing it with any and all of the features listed above.

Attributes (57) The methods and instance variables of an object.

Backend (132) A matplotlib backend translates plotting code into
useful output. There are two types: hardcopy backends and inter-
active (alternatively called interface) backends. A hardcopy back-
end translates matplotlib code into image files such as PDF, PNG,
PS, or SVG. An interactive backend translates matplotlib code into
instructions your computer screen can understand. It does this us-
ing third-party cross-platform software, usually written in C or
C++, that can produce instructions that are sent to your com-
puter screen. The net result is matplotlib code that is platform-
independent, working equally well under Windows, macOS, and
Linux.

Blitting (298) Blitting most generally refers to the transfer of a block
of pixel data from memory to your computer screen. However, in
the context of animations, it refers to updating only those regions
of the screen that change from one animation frame to the next. In
an animated plot, such as the one displayed in Fig. 11.3 for exam-
ple, blitting means only updating the plot itself since it is the only
thing that is changing. The axes’ labels and tick marks are not re-
drawn since they are not changing. Not redrawing static features
like the axes, axes labels, and ticks can dramatically speed up an
animation.

355

356 Introduction to Python for Science & Engineering

Dynamically typed language (1) In a statically typed language, vari-
able names are declared to be of a certain type—say a floating
point number or an integer—before they are ever used. A variable’s
type is fixed at the beginning of a program and cannot be changed
during the execution of the program. In a dynamically typed lan-
guage, variable names are not generally declared to be of a certain
type. Instead their type is determined on the fly as the program
runs. Moreover, the type can change during the execution of the
program.

Instance variables (57) Data stored with an object that can be ac-
cessed by appending a period (.) followed by the name of the in-
stance variable (without parentheses).

Instantiate (315) Create a new instance (realization) of a class by call-
ing the class and providing the arguments required by the class
constructor (__init__ method).

Method (55) Function associated with an object that acts on the ob-
ject. A method is invoked by appending a period (.) followed by the
name of the method and an open-close set of parentheses, which
can, but need not, have an argument.

Object (2) In object-oriented programming, an object is generally
thought of as a collection of data together with methods that act on
the data and instance variables that characterize various aspects of
the data.

Object-oriented programming (OOP) (2) Object-oriented program-
ming refers to programming based on the concept of objects that
interact with each other in a modular manner. Scientific program-
ming is typically procedural. As the size and complexity of a scien-
tific programming task increases, however, object-oriented design
becomes increasingly useful.

Universal function or ufunc (161) A function that operates on
NumPy arrays (ndarrays) in an element-by-element fashion. Such
a function is said to be “vectorized.” A NumPy ufunc also respects
certain other rules about handling arrays with different sizes and
shapes.

Vectorized code (133) Computer code that processes vectors (ndar-

Glossary 357

rays in NumPy) as the basic unit rather than individual data ele-
ments.

Widget (161) In graphical-user interfaces (GUIs), a widget is a rou-
tine to create and define the function of a GUI element, such as a
button, a spinbox, etc.

Wrapper (19) A Python program that provides a Python interface to
a program written in another language, usually C, C++, or Fortran.

http://taylorandfrancis.com

appendix D

Python Resources

This text provides an introduction to Python for science and engi-
neering applications but is hardly exhaustive. There are many other
resources that you will want to tap. Here I point out several that you
may find useful.

D.1 Python Programs and Data Files Introduced in This
Text

Throughout the text, various Python programs and data files are
introduced. All are freely available at https://github.com/djpine/
python-scieng-public.

D.2 Web Resources

The best web resource for Python is a good search engine like Google.
Nevertheless, I list a few web sites here that you might find useful.

Python home page: https://www.python.org/.
The official Python web site. I almost never look here.

Python 3 language reference: https://docs.python.org/3/reference/.
I look here sometimes for detailed information about Python 3,
which is the version used in this text.

NumPy Reference: https://docs.scipy.org/doc/numpy/reference/.
I usually start here when I need information about NumPy. It has
links to just about all the NumPy documentation I need. By the
way, I say “num-pee,” which rhymes with “bumpy”—a lot of peo-
ple say “num-pie,” which doesn’t sound like English to me.

SciPy Reference: https://docs.scipy.org/doc/scipy/reference/.
I start here when I need information about SciPy, its various pack-
ages and their functions. I say “psy-pi” for SciPy, like everyone
else. Who says I have to be consistent? (See Emerson.)

359

https://github.com/djpine/python-scieng-public
https://www.python.org/
https://docs.python.org/3/reference/
https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/scipy/reference/
https://github.com/djpine/python-scieng-public

360 Introduction to Python for Science & Engineering

Pyplot: https://matplotlib.org/api/pyplot_summary.html.
The Plotting Commands Summary page for matplotlib. It has
a search feature and links to all the matplotlib documenta-
tion, which I use a lot. You can go the main matplotlib page,
http://matplotlib.org/, but frankly, it’s less useful.

Stack Overflow: https://stackoverflow.com/questions/.
stackoverflow is a set of web sites that lets people pose and answer
questions related to computer programming in every computer
language imaginable. Nearly every question or problem you can
think of has already been asked and answered. Pose your question
as specifically as you can, and find the solution to your problem.
Take advantage of this valuable resource.

Pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html.
There is probably some useful information here, but frankly, I rec-
ommend stackoverflow for nearly all your questions about Pan-
das: https://stackoverflow.com/tags/pandas/info.

Jupyter notebooks: http://jupyter.org/.
I go to this page to learn about Jupyter notebooks. The site also has
links to the IPython documentation.

Anaconda/Continuum: https://www.anaconda.com/.
Get the latest version of Spyder, and all the Python packages
you want here, from Continuum Analytics. The Python package
they maintain, which includes the Spyder IDE, is called Ana-
conda. Download the Anaconda distribution here: https://www.
continuum.io/downloads/. Anaconda is completely open source
and has a number of nice features, including Spyder which inte-
grates documentation for the various Python packages with a sim-
ple cmd-I (Mac) or ctrl-I (PC & Linux) when the cursor is on the
Python function under question. Anaconda’s package manager is
easy to use. See §A.1.3 for instructions about how to update Ana-
conda. Anaconda with Spyder is available on all platforms: Macs,
PCs, and Linux machines.

Mailing lists: Some software packages have mailing lists to which
you can subscribe or pose questions about a specific package. They
give you access to a community of developers and users that can of-
ten provide expert help. Just remember to be polite and respectful
of those helping you and also to those posting questions. The URL

https://matplotlib.org/api/pyplot_summary.html
http://matplotlib.org/
https://stackoverflow.com/questions/
http://pandas.pydata.org/pandas-docs/stable/10min.html
https://stackoverflow.com/tags/pandas/info
http://jupyter.org/
https://www.anaconda.com/
https://www.continuum.io/downloads/
https://www.continuum.io/downloads/

Python Resources 361

for the SciPy mailing list is http://www.scipy.org/Mailing_Lists/.
The URL for the matplotlib mailing list is https://lists.sourceforge.
net/lists/listinfo/matplotlib-users/.

D.3 Books

There are a lot of books on Python and there is no way I can provide
reviews for all of them. The book by Mark Lutz, Learning Python, pub-
lished by O’Reilly Media, provides a fairly comprehensive, if verbose,
introduction for non-scientific Python.

For Pandas, the book by its originator, Wes McKinney, called
Python for Data Analysis provides a thorough but terse treatment, and
slanted toward applications in finance. There are a number of well-
written tutorials on the web covering many aspects of Pandas, but it
takes some digging to find ones that are useful.

The only text I have found that provides a good introduction to
PyQt is Rapid GUI Programming with Python and Qt by Mark Sum-
merfield. Unfortunately, it describes PyQt version 4, which was su-
perseded by version 5 in 2013. Version 5 differs significantly from
version 4, particularly in the coding of signals and slots, which makes
version 5 incompatible with version 4. Nevertheless, Summerfield’s
text is useful even for learning PyQt5. A translator from PyQt version
4 to 5 can be found at https://github.com/rferrazz/pyqt4topyqt5.

http://www.scipy.org/Mailing_Lists/
https://lists.sourceforge.net/lists/listinfo/matplotlib-users/
https://github.com/rferrazz/pyqt4topyqt5
https://lists.sourceforge.net/lists/listinfo/matplotlib-users/

http://taylorandfrancis.com

Index

addition (+), 10
adjust space around plots, see

subplots_adjust

animation, 287
annotating animations,

292
blitting, 298
combining multiple

animation instances,
308

combining videos with
animated functions,
306

dynamic text, 293, 299
fixed number of frames,

295
function animation, 294
function call, 298
histogram, 307
indeterminate number of

frames, 300
save to file, see FFmpeg
sequence of images, 287
static elements, 296
until a condition is met,

300
anonymous functions, see

lambda expressions
append, 95, 289, 292, 294
argument, see function
arithmetic, 10

order of operations, 10
array (NumPy), 41

attributes, 173
Boolean masks, 47
conditional (where), 160
creating, 49
differences with lists, 52
instance variables, 57, 173
masked, 112, 122
mathematical operations,

43
matrices, 49

matrix operations, 51
methods, 57, 173
multidimensional, 49

indexing, 51
printing, 68
slicing, 46

assignment operator (=), 13
attribute, see object

backend, 133
binary arithmetic operations,

10
blitting, see also animation
Boolean operators, 86

case sensitive
commands, 5
variable names, 15

class, 316
attributes, 315
defining, 318
instance variables, 315
methods, 315

code indentation, 88

363

364 Introduction to Python for Science & Engineering

comma after assigned variable,
297

comma after variable name,
297

comparisons, 86
complex, see numeric types
conditional statements, 82

where function, if-else
for NumPy arrays, 160

if, 85
if-elif-else, 82
if-else, 84

configure subplots icon, 118
constructor (__init__()

method), 319
curve fitting

exponential using linear
regression, 187

linear, 175
with weighting (χ2), 179

nonlinear, 193
power law using linear

regression, 192

DataFrame, 242
creating, 259
index attribute, 262

dates and times, 251
datetime

replace, 278
dictionaries, 53
differential equations, see

ODEs
discrete (Fast) Fourier

transforms, see FFT
division

floor (//), 10
normal (/), 10

docstring, 63
documentation

books, 361
help, 26
online, 359

enumerate, 91
event loop, 334
event-driven programming,

327
exception handling, 322
exponentiation (**), 10

FFmpeg, 291, 292
installing, 343

FFT, 231
figure

navigation toolbar, 100
figure size

figsize, 121
floating point, see numeric

types
function, 155

anonymous functions, see
lambda expressions

argument
passing function names,

164
variable number (*args,
**kwargs), 163

derivative (deriv), 165
keyword argument

(kwarg), 74, 162
namespace, 167
passing function names

and parameters, 164
passing lists and arrays,

169
passing mutable &

immutable objects,
171

passing mutable and

Index 365

immutable objects,
170

positional argument, 162
universal function (ufunc),

161
unnamed arguments
**kwargs, 166
*args, 164

user defined, 156

generator function, 300, 304
glob, 290
graphical user interface, see

GUI
Greek letters in plots, see LATEX

in plots
GUI, 315, 328

imageopenImage.open(), 290
importing modules, 24

matplotlib, 24
NumPy, 20
Pandas, 239
SciPy, 194
user-defined class, 317

imshow(), 290
__init__() method, see

constructor
input function, 61, 63

type casting, 63
installing Python, 4, 339
instance variable, see object
instantiate, 315
integer division, 12
integers, see numeric types
integrals, see numerical

integration
interactive mode, plt.ion(),

plt.ioff(), 100, 297
IPython, 4

magic commands, 6, 8
navigation commands, 6
system shell commands, 8
tab completion, 8

IPython pane, 4
iterable, 39
iterable sequence, 90

keyboard input, 61, see also
input function

keyword argument, see
function

kwarg, see function

lambda expressions, 171
set_printoptions, 68

LATEX in plots, 126
fonts, 128
Greek letters, 129
math symbols, 130
non-italicized text in math

mode, 129
least squares fitting

linear, 175
with weighting (χ2), 179

linear algebra, 212, 365
eigenvalue problems, 214

banded matrices, 216
Hermitian matrices, 216

matrix determinant, 212
matrix inverse, 212
systems of equations, 213

linear equations
see , 217

list comprehensions, 94
lists, 35

differences with NumPy
arrays, 52

multidimensional, 40
slicing, 37

366 Introduction to Python for Science & Engineering

logarithmic plots, 116
set_xscale, 119
set_yscale, 119, 122
log-log, 118
semi-log, 116, 122

logical operators, 86
loops

array operations, 93
for, 87

slow, 94
while, 91

infinite loop, 92

masked arrays, 112, 122
math text in plots, see LATEX in

plots
matplotlib, 20

artist layer, 135
backend, 132

Qt5Agg, 133
PyPlot scripting layer, 137

backends, 137
state machine, 138

software layers, 132
matrix operations, 51
method, see object
module, 18
multiplication (*), 10

namespace, 21, 167
nonlinear equations, 217

bisection, 220
Brent method, 217
Newton-Raphson, 220
Ridder, 220
systems, 221

numeric types, 10
complex, 12
floating point, 11
integers, 10

numerical integration, 221
single, 222
double, 226
double integrals, 226
methods, 221
polynomials, 224
single integrals, 222

NumPy, 19, 22
functions, 22

object, 173
attributes, 57, 173
instance variables, 56, 173,

174, 317
methods, 55, 173, 174,

316, 318
object-oriented programming,

2, 55, 315
objects, 55
ODEs, 227
OOP, see object-oriented

programming

Pandas, 20, 239
agg method, 280
apply method, 278
axis, 278
Boolean indexing, 258
conditional indexing, 258,

264
data from web, 261
DataFrame, 256

indexing, 257
indexing with iloc, 257
indexing with loc, 258

dates and times, 251
dt.total_seconds, 279
dtypes, 260
groupby method, 273
groupby object, 274

Index 367

head method, 257
iloc method, 257
loc method, 257
pd.to_datetime, 278
plotting, 267
reading data, 240

csv files, 240
Excel files, 250
keywords, 249
text files, 247

selecting data, 264
Series, 253
sorting data, 263
statistical methods, 265

table, 266
tail method, 257
time Series, 255

PEP 8, 28
plotting, 99

3D plots, 149
adjusting space around

subplots, 118
bring figure pane to front,

125
color codes, 107
contour plots, 140
error bars, 108, 197
excluding points, 112
layering (order) of plot

elements: zorder, 106
line and symbol types, 107
log-log, 118, 122
masked arrays, 112
meshgrid, 139
multiple axes, 125
OO interface, 118, 132
PyPlot, 102, 132
semi-log, 116, 122
set axis limits, 111, 123
streamline plots, 144

subplots, 113, 122
grid, 122
unequal grid, 198, 269

subplots, 122
tight_layout, 118
two x axes, 126

polar plot, 304
positional argument, see

function
power (**), 10
print function, 18, 64

formatted, 64
suppress new line, 90
with arrays, 68

program, 16
Pyflakes (syntax checker), 28,

340

random numbers, 209
integers, 211
normally distributed, 210
uniformly distributed, 210

range function, 38
reading data from a file

csv file, 71
Pandas, 240

Excel file (Pandas), 250
text file, 69

Pandas, 247
glob, 290
remainder (%), 10
reserved words, 15
routine, see program

save animation to movie file,
see FFmpeg

SciPy, 19
script, see program
self parameter, 320
sort data

368 Introduction to Python for Science & Engineering

NumPy arrays, 57, 175
using Pandas, 263

special functions (SciPy), 206,
208

Airy, 206
Bessel, 206
error, 206
gamma, 206
Laguerre, 206
Legendre, 206
random numbers, 209

spinbox, 327
Spyder Window, 4
strings, 34

concatenation (+), 34
split(), 56

subplots_adjust, 118, 143
subtraction (-), 10
syntax checker (Pyflakes), 28,

340

tab completion, see IPython
TEX in plots, see LATEX in plots
three-dimensional plots, 149

ticks
color (parameters), 126
manual labels, 124
manual placement, 124,

151, 197
try–except, see exception

handling
tuples, 35, 39

multidimensional, 40

universal function (ufunc), 161
updating your Python

software, 341

variables, 13
legal names, 14

vectorized code, 161

wrapper, 1, 19, 133
writing data to a file

csv file, 76
text file, 73

zip, 59, 74, 77

	Introduction to Python for Science and Engineering
	Contents
	Preface
	About the Author
	1 Introduction
	1.1 Introduction to Python for Science and Engineering

	2 Launching Python
	2.1 Interacting with Python
	2.2 Installing Python on Your Computer
	2.3 The SpyderWindow
	2.4 The IPython Pane
	2.4.1 Magic commands
	2.4.2 System shell commands
	2.4.3 Tab completion
	2.4.4 Recap of commands

	2.5 Interactive Python as a Calculator
	2.5.1 Binary arithmetic operations in Python
	2.5.2 Types of numbers
	2.5.3 Important note on integer division in Python

	2.6 Variables
	2.6.1 Names and the assignment operator
	2.6.2 Legal and recommended variable names
	2.6.3 Reserved words in Python

	2.7 Script Files and Programs
	2.7.1 First scripting example: The Editor pane

	2.8 Python Modules
	2.8.1 Python modules and functions: A first look
	2.8.2 Some NumPy functions
	2.8.3 Scripting Example 2
	2.8.4 Different ways of importing modules

	2.9 Getting Help: Documentation in IPython
	2.10 Stand-alone IPython
	2.10.1 Writing Python scripts in a text editor

	2.11 Programming Errors
	2.11.1 Pyflakes
	2.11.2 Error checking

	2.12 Exercises

	3 Strings, Lists, Arrays, and Dictionaries
	3.1 Strings
	3.2 Lists
	3.2.1 Slicing lists
	3.2.2 The range function: Sequences of numbers
	3.2.3 Tuples
	3.2.4 Multidimensional lists and tuples

	3.3 NumPy Arrays
	3.3.1 Creating arrays (1-d)
	3.3.2 Mathematical operations with arrays
	3.3.3 Slicing and addressing arrays
	3.3.4 Fancy indexing: Boolean masks
	3.3.5 Multi-dimensional arrays and matrices
	3.3.6 Differences between lists and arrays

	3.4 Dictionaries
	3.5 Objects
	3.6 Exercises

	4 Input and Output
	4.1 Keyboard Input
	4.2 Screen Output
	4.2.1 Formatting output with str.format()
	4.2.2 Printing arrays

	4.3 File Input
	4.3.1 Reading data from a text file
	4.3.2 Reading data from an Excel file: CSV files

	4.4 File Output
	4.4.1 Writing data to a text file
	4.4.2 Writing data to a CSV file

	4.5 Exercises

	5 Conditionals and Loops
	5.1 Conditionals
	5.1.1 if, elif, and else statements
	5.1.2 Logical operators

	5.2 Loops
	5.2.1 for loops
	5.2.2 while loops
	5.2.3 Loops and array operations

	5.3 List Comprehensions
	5.4 Exercises

	6 Plotting
	6.1 An Interactive Session with PyPlot
	6.2 Basic Plotting
	6.2.1 Specifying line and symbol types and colors
	6.2.2 Error bars
	6.2.3 Setting plotting limits and excluding data
	6.2.4 Subplots

	6.3 Logarithmic Plots
	6.3.1 Semi-log plots
	6.3.2 Log-log plots

	6.4 More Advanced Graphical Output
	6.4.1 An alternative syntax for a grid of plots

	6.5 Plots with multiple axes
	6.6 Mathematics and Greek symbols
	6.7 The Structure of matplotlib: OOP and All That
	6.7.1 The backend layer
	6.7.2 The artist layer
	6.7.3 The PyPlot (scripting) layer

	6.8 Contour and Vector Field Plots
	6.8.1 Making a 2D grid of points
	6.8.2 Contour plots
	6.8.3 Streamline plots

	6.9 Three-Dimensional Plots

	7 Functions
	7.1 User-Defined Functions
	7.1.1 Looping over arrays in user-defined functions
	7.1.2 Fast array processing for user-defined functions
	7.1.3 Functions with more than one input or output
	7.1.4 Positional and keyword arguments
	7.1.5 Variable number of arguments
	7.1.6 Passing function names and parameters as arguments

	7.2 Passing data (objects) to and from functions
	7.2.1 Variables and arrays created entirely within a function
	7.2.2 Passing lists and arrays to functions: Mutable and immutable objects

	7.3 Anonymous Functions: lambda Expressions
	7.4 NumPy Object Attributes: Methods and Instance Variables
	7.5 Example: Linear Least Squares Fitting
	7.5.1 Linear regression
	7.5.2 Linear regression with weighting: χ²

	7.6 Exercises

	8 Curve Fitting
	8.1 Using Linear Regression for Fitting Nonlinear Functions
	8.1.1 Linear regression for fitting an exponential function
	8.1.2 Linear regression for fitting a power-law function

	8.2 Nonlinear Fitting
	8.3 Exercises

	9 Numerical Routines: SciPy and NumPy
	9.1 Special Functions
	9.2 Random Numbers
	9.2.1 Uniformly distributed random numbers
	9.2.2 Normally distributed random numbers
	9.2.3 Random distribution of integers

	9.3 Linear Algebra
	9.3.1 Basic computations in linear algebra
	9.3.2 Solving systems of linear equations
	9.3.3 Eigenvalue problems

	9.4 Solving Nonlinear Equations
	9.4.1 Single equations of a single variable
	9.4.2 Solving systems of nonlinear equations

	9.5 Numerical Integration
	9.5.1 Single integrals
	9.5.2 Double integrals

	9.6 Solving ODEs
	9.7 Discrete (Fast) Fourier Transforms
	9.7.1 Continuous and discrete Fourier transforms
	9.7.2 The SciPy FFT library

	9.8 Exercises

	10 Data Manipulation and Analysis: Pandas
	10.1 Reading Data from Files Using Pandas
	10.1.1 Reading from Excel files saved as csv files
	10.1.2 Reading from text files
	10.1.3 Reading from an Excel file

	10.2 Dates and Times in Pandas
	10.3 Data Structures: Series and DataFrame
	10.3.1 Series
	10.3.2 DataFrame

	10.4 Getting Data from the Web
	10.5 Extracting Information from a DataFrame
	10.6 Plotting with Pandas
	10.7 Grouping and Aggregation
	10.7.1 The groupby method
	10.7.2 Iterating over groups
	10.7.3 Reformatting DataFrames
	10.7.4 Custom aggregation of DataFrames

	10.8 Exercises

	11 Animation
	11.1 Animating a Sequence of Images
	11.1.1 Simple image sequence
	11.1.2 Annotating and embellishing videos

	11.2 Animating Functions
	11.2.1 Animating for a fixed number of frames
	11.2.2 Animating until a condition is met

	11.3 Combining Videos with Animated Functions
	11.3.1 Using a single animation instance
	11.3.2 Combining multiple animation instances

	11.4 Exercises

	12 Python Classes and GUIs
	12.1 Defining and Using a Class
	12.1.1 The __init__() method
	12.1.2 Defining methods for a class
	12.1.3 Calling methods from within a class
	12.1.4 Updating instance variables

	12.2 Inheritance
	12.3 Graphical User Interfaces (GUIs)
	12.3.1 Event-driven programming
	12.3.2 PyQt
	12.3.3 A basic PyQt dialog
	12.3.4 Summary of PyQt5 classes used
	12.3.5 GUI summary

	Appendix A: Installing Python
	A.1 Installing Python
	A.1.1 Setting preferences
	A.1.2 Pyflakes
	A.1.3 Updating your Python installation

	A.2 Testing Your Installation of Python
	A.3 Installing FFmpeg for Saving Animations

	Appendix B: Jupyter Notebooks
	B.1 Launching a Jupyter Notebook
	B.2 Running Programs in a Jupyter Notebook
	B.3 Annotating a Jupyter Notebook
	B.3.1 Adding headings and text
	B.3.2 Comments with mathematical expressions

	B.4 Terminal commands in a Jupyter notebook
	B.5 Plotting in a Jupyter Notebook
	B.6 Editing and Rerunning a Notebook
	B.7 Quitting a Jupyter Notebook
	B.8 Working with an Existing Jupyter Notebook

	Appendix C: Glossary
	Appendix D: Python Resources
	D.1 Python Programs and Data Files Introduced in This Text
	D.2 Web Resources
	D.3 Books

	Index

