

Contents
Chapter 1. Pandas Dataframe basics

1.1 Introduction

1.2 Concept map

1.3 Objectives

1.4 Loading your first data set

1.5 Looking at columns, rows, and cells

1.6 Grouped and aggregated calculations

1.7 Basic plot

1.8 Conclusion

Chapter 2. Pandas data structures

2.1 Introduction

2.2 Concept map

2.3 Objectives

2.4 Creating your own data

2.5 The Series

2.6 The DataFrame

2.7 Making changes to Series and DataFrames

2.8 Exporting and importing data

2.9 Conclusion

Chapter 3. Introduction to Plotting

3.4 matplotlib

Chapter 4. Data Assembly

4.1 Introduction

4.2 Concept map

4.3 Objectives

4.4 Concatenation

4.6 Summary

Chapter 5. Missing Data

5.1 Introduction

Concept map

Objectives

5.2 What is a NaN value

5.3 Where do missing values come from?

5.3.3 User input values

5.4 Working with missing data

Summary

Chapter 6. Tidy Data by Reshaping

6.1 Introduction

Concept Map

6.2 Columns contain values, not variables

6.3 Columns contain multiple variables

6.4 Variables in both rows and columns

6.5 Multiple Observational Units in a table (Normalization)

6.6 Observational units across multiple tables

6.7 Summary

Chapter 1. Pandas Dataframe basics

1.1 Introduction

Pandas is an open source Python library for data analysis. It gives Python the
ability to work with spreadsheet-like data for fast data loading, manipulating,
aligning, merging, etc. To give Python these enhanced features, Pandas
introduces two new data types to Python: Series and DataFrame. The
DataFrame will represent your entire spreadsheet or rectangular data, whereas
the Series is a single column of the DataFrame. A Pandas DataFrame can also
be thought of as a dictionary or collection of Series.

Why should you use a programming language like Python and a tool like
Pandas to work with data? It boils down to automation and reproducibility. If
there is a articular set of analysis that needs to be performed on multiple
datasets, a programming language has the ability to automate the analysis on the
datasets. Although many spreadsheet programs have its own macro
programming language, many users do not use them. Furthermore, not all
spreadsheet programs are available on all operating systems. Performing data
takes using a programming language forces the user to have a running record of
all steps performed on the data. I, like many people, have accidentally hit a key
while viewing data in a spreadsheet program, only to find out that my results
do not make any sense anymore due to bad data. This is not to say spreadsheet
programs are bad or do not have their place in the data workflow, they do, but
there are better and more reliable tools out there.

1.2 Concept map

1. Prior knowledge needed (appendix)

(a) relative directories

(b) calling functions

(c) dot notation

(d) primitive python containers

(e) variable assignment

(f) the print statement in various Python environments

2. This chapter

(a) loading data

(b) subset data

(c) slicing

(d) filtering

(e) basic pd data structures (series, dataframe)

(f) resemble other python containers (list, np.ndarray)

(g) basic indexing

1.3 Objectives

This chapter will cover:

1. loading a simple delimited data file

2. count how many rows and columns were loaded

3. what is the type of data that was loaded

4. look at different parts of the data by subsetting rows and columns

5. saving a subset of data

1.4 Loading your first data set

When given a data set, we first load it and begin looking at its structure and
contents. The simplest way of looking at a data set is to look and subset
specific rows and columns. We can see what type of information is stored in
each column, and can start looking for patterns by aggregating descriptive
statistics.

Since Pandas is not part of the Python standard library, we have to first tell
Python to load (import) the library.

import pandas

With the library loaded we can use the read_csv function to load a CSV data
file. In order to access the read_csv function from pandas, we use something
called ‘dot notation’. More on dot notations can be found in (TODO Functions
appendix and modules).

About the Gapminder dataset

The Gapminder dataset originally comes from:. This particular version the
book is using Gapminder data prepared by Jennifer Bryan from the University
of British Columbia. The repository can be found at:
www.github.com/jennybc/gapminder.

by default the read_csv function will read a comma separated file,
our gapminder data set is separated by a tab
we can use the sep parameter and indicate a tab with \t
df = pandas.read_csv(’../data/gapminder.tsv’, sep=’\t’)
we use the head function so Python only shows us the first 5 rows
print(df.head())

 country continent year lifeExp pop gdpPercap
 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 1 Afghanistan Asia 1957 30.332 9240934 820.853030
 2 Afghanistan Asia 1962 31.997 10267083 853.100710
 3 Afghanistan Asia 1967 34.020 11537966 836.197138
 4 Afghanistan Asia 1972 36.088 13079460 739.981106

http://www.github.com/jennybc/gapminder

Since we will be using Pandas functions many times throughout the book as
well as your own programming. It is common to give pandas the alias pd. The
above code will be the same as below:

import pandas as pd
df = pd.read_csv(’../data/gapminder.tsv’, sep=’\t’)
print(df.head())

We can check to see if we are working with a Pandas Dataframe by using the
built-in type function (i.e., it comes directly from Python, not any package
such as Pandas).

print(type(df))

 <class ’pandas.core.frame.DataFrame’>

The type function is handy when you begin working with many different types
of Python objects and need to know what object you are currently working on.

The data set we loaded is currently saved as a Pandas DataFrame object and is
relatively small. Every DataFrame object has a shape attribute that will give
us the number of rows and columns of the DataFrame.

print(df.shape)

 (1704, 6)

The shape attribute returns a tuple (TODO appendix) where the first value is
the number of rows and the second number is the number of columns. From the
results above, we see our gapminder data set has 1704 rows and 6 columns.

Since shape is an attribute of the dataframe, and not a function or method of
the DataFrame, it does not have parenthesis after the period. If you made the
mistake of putting parenthesis after the shape attribute, it would return an
error.

print(df.shape())

 <class ’TypeError’>
 ’tuple’ object is not callable

Typically, when first looking at a dataset, we want to know how many rows
and columns there are (we just did that), and to get a gist of what information it
contains, we look at the columns. The column names, like shape, is given
using the column attribute of the dataframe object.

get column names

print(df.columns)

 Index([’country’, ’continent’, ’year’, ’lifeExp’, ’pop’, ’gdpPercap’], dtype=’object’)

Question

What is the type of the column names?

The Pandas DataFrame object is similar to other languages that have a
DataFrame-like object (e.g., Julia and R) Each column (Series) has to be the
same type, whereas, each row can contain mixed types. In our current example,
we can expect the country column to be all strings and the year to be integers.
However, it’s best to make sure that is the case by using the dtypes attribute or
the info method. Table 1–1 on page 7 shows what the type in Pandas is
relative to native Python.

print(df.dtypes)

 country object
 continent object
 year int64
 lifeExp float64
 pop int64
 gdpPercap float64
 dtype: object

print(df.info())

 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1704 entries, 0 to 1703
 Data columns (total 6 columns):
 country 1704 non-null object
 continent 1704 non-null object
 year 1704 non-null int64

 lifeExp 1704 non-null float64
 pop 1704 non-null int64
 gdpPercap 1704 non-null float64
 dtypes: float64(2), int64(2), object(2)
 memory usage: 80.0+ KB
 None

Pandas
Type

Python
Type Description

object string most common data type

int64 int whole numbers

float64 float numbers with decimals

datetime64 datetime datetime is found in the Python standard library (i.e., it is
not loaded by default and needs to be imported)

Table 1-1: Table of Pandas dtypes and Python types

1.5 Looking at columns, rows, and cells

Now that we’re able to load up a simple data file, we want to be able to
inspect its contents. We could print out the contents of the dataframe, but with
todays data, there are too many cells to make sense of all the printed
information. Instead, the best way to look at our data is to inspect it in parts by
looking at various subsets of the data. We already saw above that we can use
the head method of a dataframe to look at the first 5 rows of our data. This is
useful to see if our data loaded properly, get a sense of the columns, its name
and its contents. However, there are going to be times when we only want
particular rows, columns, or values from our data.

Before continuing, make sure you are familiar with Python containers. (TODO
Add reference to containers in Appendix)

1.5.1 Subsetting columns

If we wanted multiple columns we can specify them a few ways: by names,
positions, or ranges.

1.5.1.1 Subsetting columns by name

If we wanted only a specific column from out data we can access the data
using square brackets.

just get the country column and save it to its own variable
country_df = df[’country’]

show the first 5 observations
print(country_df.head())

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
Name: country, dtype: object

show the last 5 observations
print(country_df.tail())

1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe
Name: country, dtype: object

When subsetting a single column, you can use dot notation and call the column
name attribute directly.

country_df_dot = df.country
print(country_df_dot.head())

0 Afghanistan
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
Name: country, dtype: object

In order to specify multiple columns by the column name, we need to pass in a
python list between the square brackets. This may look a but strange since
there will be 2 sets of square brackets.

Looking at country, continent, and year
subset = df[[’country’, ’continent’, ’year’]]
print(subset.head())

 country continent year
 0 Afghanistan Asia 1952
 1 Afghanistan Asia 1957
 2 Afghanistan Asia 1962
 3 Afghanistan Asia 1967
 4 Afghanistan Asia 1972

print(subset.tail())

 country continent year
 1699 Zimbabwe Africa 1987
 1700 Zimbabwe Africa 1992
 1701 Zimbabwe Africa 1997
 1702 Zimbabwe Africa 2002
 1703 Zimbabwe Africa 2007

Again, you can opt to print the entire subset dataframe. I am not doing this
for the book as it would take up an unnecessary amount of space.

1.5.1.2 Subsetting columns by index position

At times, you may only want to get a particular column by its position, rather
than its name. For example, you want to get the first (country) column and third
column (year), or just the last column (gdpPercap).

try to get the first column by passing the integer 1
subset = df[[1]]
we really end up getting the second column

print(subset.head())

 continent
 0 Asia
 1 Asia
 2 Asia
 3 Asia
 4 Asia

You can see when we put 1 into the list, we actually get the second column, and
not the first. This follows Python’s zero indexed behavior, meaning, the first
item of a container is index 0 (i.e., 0th item of the container). More details
about this kind of behavior can be found in (TODO Appendix containers)

get the first column (index 0) and last column
subset = df[[0, -1]]
print(subset.head())

 country gdpPercap
 0 Afghanistan 779.445314
 1 Afghanistan 820.853030
 2 Afghanistan 853.100710
 3 Afghanistan 836.197138
 4 Afghanistan 739.981106

There’s other ways of subsetting columns, but that builds on the methods used
to subset rows.

1.5.1.3 Subsetting columns by range

You can use the built-in range function to create a range of values in Python.
This way you can specify a beginning and end value, and python will
automatically create a range of values in between. By default, every value
between the beginning and end (inclusive left, exclusive right – TODO SEE
APPENDIX) will be created, unless you specify a step (More on ranges
TODO – SEE APPENDIX). In Python 3 the range function returns a generator
(TODO SEE APENDIX). If you are using Python 2, the range function returns
a list (TODO SEE APENDIX), and the xrange function returns a generator.

If we look at the code above (section ??), we see that we subset columns using
a list of integers. since range returns a generator, we have to convert the

generator to a list first.

create a range of integers from 0 - 4 inclusive
small_range = list(range(5))
subset the dataframe with the range
subset = df[small_range]
print(subset.head())

 country continent year lifeExp pop
 0 Afghanistan Asia 1952 28.801 8425333
 1 Afghanistan Asia 1957 30.332 9240934
 2 Afghanistan Asia 1962 31.997 10267083
 3 Afghanistan Asia 1967 34.020 11537966
 4 Afghanistan Asia 1972 36.088 13079460

Note that when range(5) is called, 5 integers are returned from 0 - 4.

Table 1-2: Different methods of indexing rows (and or columns)

Subset
method Description

loe subset based on index label (a.k.a. row name)

iloc subset based on row index (a.k.a. row number)

ix
subset based on index label or row index, depends on what’s
given

create a range from 3 - 5 inclusive
small_range = list(range(3, 6))
subset = df[small_range]
print(subset.head())

 lifeExp pop gdpPercap
 0 28.801 8425333 779.445314
 1 30.332 9240934 820.853030
 2 31.997 10267083 853.100710

 3 34.020 11537966 836.197138
 4 36.088 13079460 739.981106

Question

What happens when you specify a range that’s beyond the number of columns
you have?

Again, note that the values are specified in a way such that it is inclusive on the
left, and exclusive on the right.

create a range form 0 - 5 inclusive, every other integer
small_range = list(range(0, 6, 2))
subset = df[small_range]
print(subset.head())

 country year pop
 0 Afghanistan 1952 8425333
 1 Afghanistan 1957 9240934
 2 Afghanistan 1962 10267083
 3 Afghanistan 1967 11537966
 4 Afghanistan 1972 13079460

Converting a generator to a list is a bit awkward, but sometimes it’s the only
way. In the next few sections, we’ll show how to subset dataframe with
different syntax and methods. And give us a less awkward way to subset rows
and columns.

1.5.2 Subsetting rows

Just like columns, rows can be subset in multiple ways: row name, row index,
or a combination of both. Table 1–2 gives a quick overview of the various
methods.

1.5.2.1 Subset rows by index label - .loc If we take a look at our gapminder data

print(df.head())

 country continent year lifeExp pop gdpPercap

 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 1 Afghanistan Asia 1957 30.332 9240934 820.853030
 2 Afghanistan Asia 1962 31.997 10267083 853.100710
 3 Afghanistan Asia 1967 34.020 11537966 836.197138
 4 Afghanistan Asia 1972 36.088 13079460 739.981106

We can see on the left side of the printed dataframe, what appears to be row
numbers. This column-less row of values is the index label of the dataframe.
Think of it like column names, but instead for rows. By default, Pandas will
fill in the index labels with the row numbers. A common example where the
row index labels are not the row number is when we work with time series
data. In that case, the index label will be a timestamps of sorts, but for now we
will keep the default row number values.

We can use the . loc method on the dataframe to subset rows based on the index
label.

get the first row
print(df.loc[0])

 country Afghanistan
 continent Asia
 year 1952
 lifeExp 28.801
 pop 8425333
 gdpPercap 779.445
 Name: 0, dtype: object

get the 100th row
recall that values start with 0
print(df.loc[99])

 country Bangladesh
 continent Asia
 year 1967
 lifeExp 43.453
 pop 62821884
 gdpPercap 721.186
 Name: 99, dtype: object

get the last row
print(df.loc[-1])

 <class 'KeyError'>

 'the label [-1] is not in the [index]'

Note that passing -1 as the loc will cause an error, because it is actually
looking for the row index label (row number) -1, which does not exist in our
example. Instead we can use a bit of Python to calculate the number of rows
and pass that value into loc.

get the last row (correctly)
use the first value given from shape to get the total number of rows
number_of_rows = df.shape[0]
subtract 1 from the value since we want the last index value
last_row_index = number_of_rows - 1
finally do the subset using the index of the last row
print(df.loc[last_row_index])

 country Zimbabwe
 continent Africa
 year 2007
 lifeExp 43.487
 pop 12311143
 gdpPercap 469.709
 Name: 1703, dtype: object

Or simply use the tail method to return the last 1 row, instead of the default 5.

there are many ways of doing what you want
print(df.tail(n=1))

 country continent year lifeExp pop gdpPercap
 1703 Zimbabwe Africa 2007 43.487 12311143 469.709298

Notice that using tail () and loc printed out the results differently. Let’s
look at what type is returned when we use these methods.

subset_loc = df.loc[0]
subset_head = df.head(n=1)
print(type(subset_loc))

 <class ’pandas.core.series.Series’>

print(type(subset_head))

 <class ’pandas.core.frame.DataFrame’>

The beginning of the chapter mentioned how Pandas introduces two new data
types into Python. Depending on what method we use and how many rows we
return, pandas will return a different.

Subsetting multiple rows Just like with columns we can select multiple rows.

select the first, 100th, and 1000th row
note the double square brackets similar to the syntax used to
subset multiple columns
print(df.loc[[0, 99, 999]])

 country continent year lifeExp pop gdpPercap
 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 99 Bangladesh Asia 1967 43.453 62821884 721.186086
 999 Mongolia Asia 1967 51.253 1149500 1226.041130

1.5.2.2 Subset rows by row number - .iloc

iloc does the same thing as loc but it is used to subset by the row index
number. In our current example iloc and loc will behave exactly the same
since the index labels are the row numbers. However, keep in mind that the
index labels do not necessarily have to be row numbers.

get the first row
print(df.iloc[0])
 country Afghanistan
 continent Asia
 year 1952
 lifeExp 28.801
 pop 8425333
 gdpPercap 779.445
 Name: 0, dtype: object

get the 100th row
print(df.iloc[99])
 country Bangladesh
 continent Asia
 year 1967
 lifeExp 43.453
 pop 62821884
 gdpPercap 721.186
 Name: 99, dtype: object

get the first, 100th, and 1000th row
print(df.iloc[[0, 99, 999]])

 country continent year lifeExp pop gdpPercap
 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 99 Bangladesh Asia 1967 43.453 62821884 721.186086
 999 Mongolia Asia 1967 51.253 1149500 1226.041130

1.5.2.3 Subsetting rows with .ix (combination of .loc and .iloc)

#TODO show this example but refer to a future example that have different
row index labels

.ix allows us to subset by integers and labels. By default it will search for
labels, and if it cannot find the corresponding label, it will fall back to using
integer indexing. This is the most general form of subsetting. The benefits may
not be obvious with our current dataset. But as our data begins to have
hierarchies and our subsetting methods become more complex, the flexibility
of ix will be obvious.

get the first row
print(df.ix[0])
 country Afghanistan
 continent Asia
 year 1952
 lifeExp 28.801
 pop 8425333
 gdpPercap 779.445
 Name: 0, dtype: object

get the 100th row
print(df.ix[99])
 country Bangladesh
 continent Asia
 year 1967
 lifeExp 43.453
 pop 62821884
 gdpPercap 721.186
 Name: 99, dtype: object

get the first, 100th, and 1000th row
print(df.ix[[0, 99, 999]])

 country continent year lifeExp pop gdpPercap
 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 99 Bangladesh Asia 1967 43.453 62821884 721.186086
 999 Mongolia Asia 1967 51.253 1149500 1226.041130

1.5.3 Mixing it up

1.5.3.1 Subsetting rows and columns

The loc, iloc , and ix methods all have the ability to subset rows and columns
simultaneously. In the previous set of examples, when we wanted to select
multiple columns or multiple rows, there was an additional set of square
brackets. However if we omit the square brackets, we can actually subset rows
and columns simultaneously. Essentially, the syntax goes as follows: separate
the row subset values and the column subset values with a comma. The part to
the left of the comma will be the row values to subset, the part to the right of
the comma will be the column values to subset.

get the 43rd country in our data
print(df.ix[42, ’country’])
 Angola

Note the syntax for ix will work for loc and iloc as well

print(df.loc[42, ’country’])

 Angola

print(df.iloc[42, 0])

 Angola

Just make sure you don’t confuse the differences between loc and iloc

print(df.loc[42, 0])
 <class ’TypeError’>
 cannot do label indexing on <class ’pandas.indexes.base.Index’> with
 these indexers [0] of <class ’int’>

and remember the flexibility of ix.

compare this ix code with the one above.
instead of ’country’ I used the index 0
print(df.ix[42, 0])

 Angola

1.5.3.2 Subsetting multiple rows and columns

We can combine the row and column subsetting syntax with the multiple row
and column subsetting syntax to get various slices of our data.

get the first, 100th, and 1000th rows from the first, 4th, and 5th
column
note the columns we are hoping to get are: country, lifeExp, and
gdpPercap
print(df.ix[[0, 99, 999], [0, 3, 5]])

 country lifeExp gdpPercap
 0 Afghanistan 28.801 779.445314
 99 Bangladesh 43.453 721.186086
 999 Mongolia 51.253 1226.041130

I personally try to pass in the actual column names when subsetting data if
possible. It makes the code more readable since you do not need to look at the
column name vector to know which index is being called. Additionally, using
absolute indexes can lead to problems if the column order gets changed for
whatever reason.

if we use the column names directly, it makes the code a bit easier
to read
print(df.ix[[0, 99, 999], [’country’, ’lifeExp’, ’gdpPercap’]])

 country lifeExp gdpPercap
 0 Afghanistan 28.801 779.445314
 99 Bangladesh 43.453 721.186086
 999 Mongolia 51.253 1226.041130

1.6 Grouped and aggregated calculations

If you’ve worked with other numeric libraries or languages, many basic
statistic calculations either come with the library, or are built into the language.

Looking at our gapminder data again

print(df.head(n=10))

 country continent year lifeExp pop gdpPercap
 0 Afghanistan Asia 1952 28.801 8425333 779.445314
 1 Afghanistan Asia 1957 30.332 9240934 820.853030
 2 Afghanistan Asia 1962 31.997 10267083 853.100710
 3 Afghanistan Asia 1967 34.020 11537966 836.197138
 4 Afghanistan Asia 1972 36.088 13079460 739.981106
 5 Afghanistan Asia 1977 38.438 14880372 786.113360
 6 Afghanistan Asia 1982 39.854 12881816 978.011439
 7 Afghanistan Asia 1987 40.822 13867957 852.395945
 8 Afghanistan Asia 1992 41.674 16317921 649.341395
 9 Afghanistan Asia 1997 41.763 22227415 635.341351

There are several initial questions that we can ask ourselves:

1. For each year in our data, what was the average life expectancy? what about
population and GDP?

2. What if we stratify by continent?

3. How many countries are listed in each continent?

1.6.1 Grouped means

In order to answer the questions posed above, we need to perform a grouped
(aka aggregate) calculation. That is, we need to perform a calculation, be it an
average, or frequency count, but apply it to each subset of a variable. Another
way to think about grouped calculations is split-apply-combine. We first split
our data into various parts, apply a function (or calculation) of our choosing to
each of the split parts, and finally combine all the individual split calculation
into a single dataframe. We accomplish grouped/aggregate computations by
using the groupby method on dataframes.

For each year in our data, what was the average life expectancy?
To answer this question, we need to split our data into parts by
year
then we get the ’lifeExp’ column and calculate the mean
print(df.groupby(’year’)[’lifeExp’].mean())

 year
 1952 49.057620
 1957 51.507401
 1962 53.609249
 1967 55.678290
 1972 57.647386
 1977 59.570157
 1982 61.533197
 1987 63.212613
 1992 64.160338
 1997 65.014676
 2002 65.694923
 2007 67.007423
 Name: lifeExp, dtype: float64

Let’s unpack the statement above. We first create a grouped object. Notice that
if we printed the grouped dataframe, pandas only returns us the memory
location

grouped_year_df = df.groupby(’year’)
print(type(grouped_year_df))
print(grouped_year_df)

 <class ’pandas.core.groupby.DataFrameGroupBy’>
 <pandas.core.groupby.DataFrameGroupBy object at 0x7f33ff57a240>

From the grouped data, we can subset the columns of interest we want to
perform calculations on. In our case our question needs the lifeExp column.
We can use the subsetting methods described in section 1.5.1.1.

grouped_year_df_lifeExp = grouped_year_df[’lifeExp’]
print(type(grouped_year_df_lifeExp))
print(grouped_year_df_lifeExp)
 <class ’pandas.core.groupby.SeriesGroupBy’>
 <pandas.core.groupby.SeriesGroupBy object at 0x7f33ff584f60>

Notice we now are given a series (because we only asked for 1 column) where
the contents of the series are grouped (in our example by year).

Finally, we know the lifeExp column is of type float64. An operation we
can perform on a vector of numbers is to calculate the mean to get our final
desired result.

mean_lifeExp_by_year = grouped_year_df_lifeExp.mean()
print(mean_lifeExp_by_year)
 year
 1952 49.057620
 1957 51.507401
 1962 53.609249
 1967 55.678290
 1972 57.647386
 1977 59.570157
 1982 61.533197
 1987 63.212613
 1992 64.160338
 1997 65.014676
 2002 65.694923
 2007 67.007423
 Name: lifeExp, dtype: float64

We can perform a similar set of calculations for population and GDP since they
are of types int64 and float64, respectively. However, what if we want to
group and stratify by more than one variable? and perform the same calculation
on multiple columns? We can build on the material earlier in this chapter by
using a list!

print(df.groupby([’year’, ’continent’])[[’lifeExp’,
’ gdpPercap’]].mean())
 lifeExp gdpPercap
 year continent
 1952 Africa 39.135500 1252.572466
 Americas 53.279840 4079.062552
 Asia 46.314394 5195.484004
 Europe 64.408500 5661.057435
 Oceania 69.255000 10298.085650
 1957 Africa 41.266346 1385.236062
 Americas 55.960280 4616.043733
 Asia 49.318544 5787.732940
 Europe 66.703067 6963.012816
 Oceania 70.295000 11598.522455
 1962 Africa 43.319442 1598.078825
 Americas 58.398760 4901.541870
 Asia 51.563223 5729.369625
 Europe 68.539233 8365.486814
 Oceania 71.085000 12696.452430
 1967 Africa 45.334538 2050.363801
 Americas 60.410920 5668.253496
 Asia 54.663640 5971.173374
 Europe 69.737600 10143.823757

 Oceania 71.310000 14495.021790
 1972 Africa 47.450942 2339.615674
 Americas 62.394920 6491.334139
 Asia 57.319269 8187.468699
 Europe 70.775033 12479.575246
 Oceania 71.910000 16417.333380
 1977 Africa 49.580423 2585.938508
 Americas 64.391560 7352.007126
 Asia 59.610556 7791.314020
 Europe 71.937767 14283.979110
 Oceania 72.855000 17283.957605
 1982 Africa 51.592865 2481.592960
 Americas 66.228840 7506.737088
 Asia 62.617939 7434.135157
 Europe 72.806400 15617.896551
 Oceania 74.290000 18554.709840
 1987 Africa 53.344788 2282.668991
 Americas 68.090720 7793.400261
 Asia 64.851182 7608.226508
 Europe 73.642167 17214.310727
 Oceania 75.320000 20448.040160
 1992 Africa 53.629577 2281.810333
 Americas 69.568360 8044.934406
 Asia 66.537212 8639.690248
 Europe 74.440100 17061.568084
 Oceania 76.945000 20894.045885
 1997 Africa 53.598269 2378.759555
 Americas 71.150480 8889.300863
 Asia 68.020515 9834.093295
 Europe 75.505167 19076.781802
 Oceania 78.190000 24024.175170
 2002 Africa 53.325231 2599.385159
 Americas 72.422040 9287.677107
 Asia 69.233879 10174.090397
 Europe 76.700600 21711.732422
 Oceania 79.740000 26938.778040
 2007 Africa 54.806038 3089.032605
 Americas 73.608120 11003.031625
 Asia 70.728485 12473.026870
 Europe 77.648600 25054.481636
 Oceania 80.719500 29810.188275

The output data is grouped by year and continent. For each year-continent set,
we calculated the average life expectancy and GDP. The data is also printed
out a little differently. Notice the year and continent ‘column names’ are not on
the same line as the life expectancy and GPD ‘column names’. There is some

hierarchal structure between the year and continent row indices. More about
working with these types of data in (TODO REFERENCE CHAPTER HERE).

Question: does the order of the list we use to group matter?

1.6.2 Grouped frequency counts

Another common data task is to calculate frequencies. We can use the
‘nunique‘ or ‘value counts’ methods to get a count of unique values, or
frequency counts, respectively on a Pandas Series.

use the nunique (number unique) to calculate the number of unique
values in a series
print(df.groupby(’continent’)[’country’].nunique())
 continent
 Africa 52
 Americas 25
 Asia 33
 Europe 30
 Oceania 2
 Name: country, dtype: int64

Question

What do you get if you use ‘value counts’ instead of ‘nunique’?

1.7 Basic plot

Visualizations are extremely important in almost every step of the data process.
They help identify trends in data when we are trying to understand and clean it,
and they help convey our final findings.

Let’s look at the yearly life expectancies of the world again.

global_yearly_life_expectancy = df.groupby(’year’)[’lifeExp’].mean()
print(global_yearly_life_expectancy)

 year
 1952 49.057620

 1957 51.507401
 1962 53.609249
 1967 55.678290
 1972 57.647386
 1977 59.570157
 1982 61.533197
 1987 63.212613
 1992 64.160338
 1997 65.014676
 2002 65.694923
 2007 67.007423
 Name: lifeExp, dtype: float64

We can use pandas to do some basic plots.

global_yearly_life_expectancy.plot()

1.8 Conclusion

In this chapter I showed you how to load up a simple dataset and start looking
at specific observations. It may seem tedious at first to look at observations
this way especially if you have been coming from a spreadsheet program.
Keep in mind, when doing data analytics, the goal is to be reproducible, and
not repeat repetitive tasks. Scripting languages give you that ability and
flexibility.

Along the way you learned some of the fundamental programming abilities and
data structures Python has to offer. As well as a quick way to go aggregated
statistics and plots. In the next chapter I will be going into more detail about
the Pandas DataFrame and Series object, as well as more ways you can subset
and visualize your data.

As you work your way though the book, if there is a concept or data structure
that is foreign to you, check the Appendix. I’ve put many of the fundamental
programming features of Python there.

Chapter 2. Pandas data structures

2.1 Introduction

Chapter 1, mentions the Pandas DataFrame and codeSeries data structures.
These data structures will resemble the primitive Python data containers (lists
and dictionaries) for indexing and labeling, but have additional features to
make working with data easier.

2.2 Concept map

1. Prior knowledge

(a) Containers

(b) Using functions

(c) Subsetting and indexing

2. load in manual data

3. Series

(a) creating a series

i. dict

ii. ndarray

iii. scalar iv. lists

(b) slicing

2.3 Objectives

This chapter will cover:

1. load in manual data

2. learn about the Series object

3. basic operations on Series objects

4. learn about the DataFrame object

5. conditional subsetting and fancy slicing and indexing

6. save out data

2.4 Creating your own data

Whether you are manually inputting data, or creating a small test example,
knowing how to create dataframes without loading data from a file is a useful
skill.

2.4.1 Creating a Series

The Pandas Series is a one-dimensional container, similar to the built in python
list. It is the datatype that represents each column of the DataFrame. Table 1–
1 lists the possible dtypes for Pandas DataFrame columns. Each column in a
dataframe must be of the same dtype. Since a dataframe can be thought of a
dictionary of Series objects, where each key is the column name, and the
value is the Series, we can conclude that a series is very similar to a python
list , except each element must be the same dtype. Those who have used the
numpy library will realize this is the same behavior as the ndarray.

The easiest way to create a series is to pass in a Python list . If we pass in
a list of mixed types, the most common representation of both will be used.
Typically the dtype will be object.

import pandas as pd
s = pd.Series([’banana’, 42])
print(s)

 0 banana
 1 42
 dtype: object

You’ll notice on the left the ‘row number’ is shown. This is actually the index
for the series. It is similar to the row name and row index we saw in section
1.5.2 for dataframes. This implies that we can actually assign a ‘name’ to
values in our series.

manually assign index values to a series
by passing a Python list
s = pd.Series([’Wes McKinney’, ’Creator of Pandas’],
 index=[’Person’, ’Who’])
print(s)

 Person Wes McKinney
 Who Creator of Pandas
 dtype: object

Questions

1. What happens if you use other Python containers like list , tuple, dict, or
even the ndarray from the numpy library?

2. What happens if you pass an index along with the containers?

3. Does passing in an index when you use a dict overwrite the index? Or
does it sort the values?

2.4.2 Creating a DataFrame

As mentioned in section 1.1, a DataFrame can be thought of as a dictionary of
Series objects. This is why dictionaries are the the most common way of
creating a DataFrame. The key will represent the column name, and the
values will be the contents of the column.

scientists = pd.DataFrame({
 ’ Name’: [’Rosaline Franklin’, ’William Gosset’],

 ’ Occupation’: [’Chemist’, ’Statistician’],
 ’ Born’: [’1920-07-25’, ’1876-06-13’],
 ’ Died’: [’1958-04-16’, ’1937-10-16’],
 ’ Age’: [37, 61]})
print(scientists)

 Age Born Died Name Occupation
 0 37 1920-07-25 1958-04-16 Rosaline Franklin Chemist
 1 61 1876-06-13 1937-10-16 William Gosset Statistician

Notice that order is not guaranteed.

If we look at the documentation for DataFrame1, we can use the columns
parameter or specify the column order. If we wanted to use the name column
for the row index, we can use the index parameter.

scientists = pd.DataFrame(
 data={’Occupation’: [’Chemist’, ’Statistician’],
 ’Born’: [’1920-07-25’, ’1876-06-13’],
 ’Died’: [’1958-04-16’, ’1937-10-16’],
 ’Age’: [37, 61]},
 index=[’Rosaline Franklin’, ’William Gosset’],
 columns=[’Occupation’, ’Born’, ’Died’, ’Age’])
print(scientists)

 Occupation Born Died Age
 Rosaline Franklin Chemist 1920-07-25 1958-04-16 37
 William Gosset Statistician 1876-06-13 1937-10-16 61

1 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.html

2.5 The Series

In section 1.5.2.1, we saw how the slicing method effects the type of the
result. If we use the loc method to subset the first row of our scientists
dataframe, we will get a series object back.

first_row = scientists.loc[’William Gosset’]
print(type(first_row))
print(first_row)
 <class 'pandas.core.series.Series'>

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

 Occupation Statistician
 Born 1876-06-13
 Died 1937-10-16
 Age 61
 Name: William Gosset, dtype: object

When a series is printed (i.e., the string representation), the index is printed
down as the first ‘column’, and the values are printed as the second ‘column’.
There are many attributes and methods associated with a series object2. Two
examples of attributes are index and values.

print(first_row.index)

 Index([’Occupation’, ’Born’, ’Died’, ’Age’], dtype=’object’)

print(first_row.values)

 [’Statistician’ ’1876-06-13’ ’1937-10-16’ 61]

An example of a series method is keys, which is an alias for the index
attribute.

print(first_row.keys())

 Index([’Occupation’, ’Born’, ’Died’, ’Age’], dtype=’object’)

By now, you may have questions about the syntax between index, values, and
keys. More about attributes and methods are described in TODO APPENDIX
ON CLASSES. Attributes can be thought of as properties of an object (in this
example our object is a series). Methods can be thought of as some
calculation or operation that is performed. The subsetting syntax for loc, iloc
, and ix (from section 1.5.2) are all attributes. This is why the syntax does not
have a set of round parenthesis, (), but rather, a set of square brackets, [], for
subsetting. Since keys is a method, if we wanted to get the first key (which is
also the first index) we would use the square brackets after the method call.

2 http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

Series attributes Description

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

loc Subset using index value

iloc Subset using index position

ix Subset using index value and/or position

dtype or dtypes The type of the Series contents

T Transpose of the series

shape Dimensions of the data

size Number of elements in the Series

values ndarray or ndarray-like of the Series

get the first index using an attribute
print(first_row.index[0])

 Occupation

get the first index using a method
print(first_row.keys()[0])

 Occupation

2.5.1 The Series is ndarray-like

The Pandas.Series is very similar to the numpy.ndarray (TODO SEE
APPENDIX). This means, that many methods and functions that operate on a
ndarray will also operate on a series. People will also refer to a series as

a ‘vector’.

2.5.1.1 series methods

Let’s first get a series of ’Age’ column from our scientists dataframe.

get the ’Age’ column
ages = scientists[’Age’]
print(ages)

 Rosaline Franklin 37
 William Gosset 61
 Name: Age, dtype: int64

Numpy is a scientific computing library that typically deals with numeric
vectors. Since a series can be thought of as an extension to the
numpy.ndarray, there is an overlap of attributes and methods. When we have
a vector of numbers, there are common calculations we can perform3.

3 http://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-
statistics

print(ages.mean())
 49.0
print(ages.min())
 37
print(ages.max())
 61
print(ages.std())
 16.97056274847714

The mean, min, max, and std are also methods in the numpy.ndarray

Series methods Description

append Concatenates 2 or more Series

http://pandas.pydata.org/pandas-docs/stable/basics.html#descriptive-statistics

corr Calculate a correlation with another Series*

cov Calculate a covariance with another Series*

describe Calculate summary statistics*

drop duplicates Returns a Series without duplicates

equals Sees if a Series has the same elements

get values Get values of the Series, same as the values attribute

hist Draw a histogram

min Return the minimum value

max Returns the maximum value

mean Returns the arithmetic mean

median Returns the median

mode Returns the mode(s)

quantile Returns the value at a given quantile

replace Replaces values in the Series with a specified value

sample Returns a random sample of values from the Series

sort values Sort values

to frame Converts Series to DataFrame

transpose Return the transpose

unique Returns a numpy.ndarray of unique values

indicates missing values will be automatically dropped

2.5.2 Boolean subsetting Series

Chapter 1 showed how we can use specific indicies to subset our data.
However, it is rare that we know the exact row or column index to subset the
data. Typically you are looking for values that meet (or don’t meet) a particular
calculation or observation.

First, let’s use a larger dataset

scientists pd.read_csv(’../data/scientists.csv’)

We just saw how we can calculate basic descriptive metrics of vectors

4 http://does.scipy.org/doc/numpy/reference/arrays.ndarray.html

ages = scientists[’Age’]
print(ages)
 0 37
 1 61

http://does.scipy.org/doc/numpy/reference/arrays.ndarray.html

 2 90
 3 66
 4 56
 5 45
 6 41
 7 77
 Name: Age, dtype: int64

print(ages.mean())

 59.125

print(ages.describe())

 count 8.000000
 mean 59.125000
 std 18.325918
 min 37.000000
 25% 44.000000
 50% 58.500000
 75% 68.750000
 max 90.000000
 Name: Age, dtype: float64

What if we wanted to subset our ages by those above the mean?

print(ages[ages > ages.mean()])
 1 61
 2 90
 3 66
 7 77
 Name: Age, dtype: int64

If we tease out this statement and look at what ages > ages.mean() returns

print(ages > ages.mean())
print(type(ages > ages.mean()))
 0 False
 1 True
 2 True
 3 True
 4 False
 5 False
 6 False
 7 True
 Name: Age, dtype: bool

 <class ’pandas.core.series.Series’>

The statement returns a Series with a dtype of bool.

This means we can not only subset values using labels and indicies, we can
also supply a vector of boolean values. Python has many functions and
methods. Depending on how it is implemented, it may return labels, indicies,
or booleans. Keep this in mind as you learn new methods and have to piece
together various parts for your work.

If we wanted to, we could manually supply a vector of bools to subset our
data.

get index 0, 1, 4, and 5
manual_bool_values = [True, True, False, False, True, True, False
print(ages[manual_bool_values])
 0 37
 1 61
 4 56
 5 45
 Name: Age, dtype: int64

2.5.3 Operations are vectorized

If you’re familiar with programming, you would find it strange ages >
ages.mean() returns a vector without any for loops (TODO SEE
APPENDIX). Many of the methods that work on series (and also dataframes)
are vectorized, meaning, they work on the entire vector simultaneously. It
makes the code easier to read, and typically there are optimizations to make
calculations faster.

2.5.3.1 Vectors of same length

If you preform an operation between 2 vectors of the same length, the resulting
vector will be an element-by-element calculation of the vectors.

print(ages + ages)
 0 74
 1 122
 2 180

 3 132
 4 112
 5 90
 6 82
 7 154
 Name: Age, dtype: int64

print(ages * ages)
 0 1369
 1 3721
 2 8100
 3 4356
 4 3136
 5 2025
 6 1681
 7 5929
 Name: Age, dtype: int64

2.5.3.2 Vectors with integers (scalars)

When you preform an operation on a vector using a scalar, the scalar will be
recycled across all the elements in the vector.

print(ages + 100)
 0 137
 1 161
 2 190
 3 166
 4 156
 5 145
 6 141
 7 177
 Name: Age, dtype: int64

print(ages * 2)
 0 74
 1 122
 2 180
 3 132
 4 112
 5 90
 6 82
 7 154
 Name: Age, dtype: int64

2.5.3.3 Vectors with different lengths

When you are working with vectors of different lengths, the behavior will
depend on the type of the vectors.

With a Series, the vectors will preform an operation matched by the index.
The rest of the resulting vector will be filled with a ‘missing’ value, this is
denoted with a NaN, for ’not a number’.

This type of behavior is called ‘broadcasting’ and it differs between languages.
Broadcasting in Pandas refers to how operations are calculated between arrays
with different shapes.

print(ages + pd.Series([1, 100]))
 0 38.0
 1 161.0
 2 NaN
 3 NaN
 4 NaN
 5 NaN
 6 NaN
 7 NaN
 dtype: float64

With other types, the shapes must match.

import numpy as np
print(ages + np.array([1, 100]))

 <class ’ValueError’>
 operands could not be broadcast together with shapes (8,) (2,)

2.5.3.4 Vectors with common index labels

What’s cool about Pandas is how data alignment is almost always automatic. If
possible, things will always align themselves with the index label when
actions are performed.

ages as they appear in the data
print(ages)

 0 37
 1 61
 2 90
 3 66
 4 56
 5 45
 6 41
 7 77
 Name: Age, dtype: int64

rev_ages = ages.sort_index(ascending=False)
print(rev_ages)
 7 77
 6 41
 5 45
 4 56
 3 66
 2 90
 1 61
 0 37
 Name: Age, dtype: int64

If we perform an operation using the ages and reverse_ages, it will sill be
conducted element-by-element, however, the vectors will be aligned first
before the operation is carried out.

reference output
to show index label alignment
print(ages * 2)
 0 74
 1 122
 2 180
 3 132
 4 112
 5 90
 6 82
 7 154
 Name: Age, dtype: int64

note how we get the same values
even though the vector is reversed
print(ages + reverse_ages)

 <class ’NameError’>
 name ’reverse_ages’ is not defined

2.6 The DataFrame

The DataFrame is the most common Pandas object. It can be thought of as
Python’s way of storing spreadsheet-like data.

Many of the common features with the Series carry over into the DataFrame.

2.6.1 Boolean subsetting DataFrame

Just like how we were able to subset a Series with a boolean vector, we can
subset a DataFrame with a bool.

Boolean vectors will subset rows
print(scientists[scientists[’Age’] > scientists[’Age’].mean()])
 Name Born Died Age Occupation
 1 William Gosset 1876-06-13 1937-10-16 61 Statistician
 2 Florence Nightingale 1820-05-12 1910-08-13 90 Nurse
 3 Marie Curie 1867-11-07 1934-07-04 66 Chemist
 7 Johann Gauss 1777-04-30 1855-02-23 77 Mathematician

Table 2-1: Table of dataframe subsetting methods

Syntax Selection Result

df[column name] Single column

df [[column1, column2, ...]] Multiple columns

df. loc [row label] Row by row index label (row name)

df. loc [[label1 , label2 ,
...]] Multiple rows by index label

df. iloc [row number] Row by row number

df. iloc [[row1, row2, ...]] Multiple rows by row number

df. ix [label or number] Row by index label or number

df. ix [[lab num1, lab num2,
...]]

Multiple rows by index label or
number

df[bool] Row based on bool

df [[bool1, bool2, ...]] Multiple rows based on bool

df[start :stop: step] Rows based on slicing notation

Because of how broadcasting works, if we supply a bool vector that is not the
same as the number of rows in the dataframe, the maximum possible rows
returned would be the length of the bool vector.

4 values passed as a bool vector
3 rows returned
print(scientists.ix[[True, True, False, True]])

 Name Born Died Age Occupation
 0 Rosaline Franklin 1920-07-25 1958-04-16 37 Chemist
 1 William Gosset 1876-06-13 1937-10-16 61 Statistician
 3 Marie Curie 1867-11-07 1934-07-04 66 Chemist

To fully summarize all the various subsetting methods:

2.6.2 Operations are automatically aligned and vectorized

NOT SURE IF I NEED THIS SECTION. OTHERWISE NEED TO FIND
ANOTHER DATASET

first_half = second_half
scientists[: 4] = scientists[4 :]
print(first_half)

 Name Born Died Age Occupation
 0 Rosaline Franklin 1920-07-25 1958-04-16 37 Chemist
 1 William Gosset 1876-06-13 1937-10-16 61 Statistician
 2 Florence Nightingale 1820-05-12 1910-08-13 90 Nurse
 3 Marie Curie 1867-11-07 1934-07-04 66 Chemist

print(second_half)

 Name Born Died Age Occupation
 4 Rachel Carson 1907-05-27 1964-04-14 56 Biologist
 5 John Snow 1813-03-15 1858-06-16 45 Physician
 6 Alan Turing 1912-06-23 1954-06-07 41 Computer Scientist
 7 Johann Gauss 1777-04-30 1855-02-23 77 Mathematician

print(first_half + second_half)

 Name Born Died Age Occupation
 0 NaN NaN NaN NaN NaN
 1 NaN NaN NaN NaN NaN
 2 NaN NaN NaN NaN NaN
 3 NaN NaN NaN NaN NaN
 4 NaN NaN NaN NaN NaN
 5 NaN NaN NaN NaN NaN
 6 NaN NaN NaN NaN NaN
 7 NaN NaN NaN NaN NaN

print(scientists * 2)

 Name Born \
 0 Rosaline FranklinRosaline Franklin 1920-07-251920-07-25
 1 William GossetWilliam Gosset 1876-06-131876-06-13
 2 Florence NightingaleFlorence Nightingale 1820-05-121820-05-12
 3 Marie CurieMarie Curie 1867-11-071867-11-07
 4 Rachel CarsonRachel Carson 1907-05-271907-05-27
 5 John SnowJohn Snow 1813-03-151813-03-15
 6 Alan TuringAlan Turing 1912-06-231912-06-23
 7 Johann GaussJohann Gauss 1777-04-301777-04-30

 Died Age Occupation
 0 1958-04-161958-04-16 74 ChemistChemist

 1 1937-10-161937-10-16 122 StatisticianStatistician
 2 1910-08-131910-08-13 180 NurseNurse
 3 1934-07-041934-07-04 132 ChemistChemist
 4 1964-04-141964-04-14 112 BiologistBiologist
 5 1858-06-161858-06-16 90 PhysicianPhysician
 6 1954-06-071954-06-07 82 Computer ScientistComputer Scientist
 7 1855-02-231855-02-23 154 MathematicianMathematician

2.7 Making changes to Series and DataFrames

2.7.1 Add additional columns

Now that we know various ways of subsetting and slicing our data (See table
2–1), we should now be able to find values of interest to assign new values to
them.

The type of the Born and Died columns are objects, meaning they are strings.

print(scientists[’Born’].dtype)

 object

print(scientists[’Died’].dtype)

 object

We can convert the strings to a proper datetime type so we can perform
common datetime operations (e.g., take differences between dates or calculate
the age). You can provide your own format if you have a date that has a
specific format. A list of format variables can be found in the Python
datetime module documentation5. The format of our date looks like “YYYY-
MM-DD”, so we can use the ‘%Y-%m-%d’ format.

format the ’Born’ column as a datetime
born_datetime = pd.to_datetime(scientists[’Born’], format=’%Y-%m-
print(born_datetime)
 0 1920-07-25
 1 1876-06-13
 2 1820-05-12
 3 1867-11-07
 4 1907-05-27

 5 1813-03-15
 6 1912-06-23
 7 1777-04-30
 Name: Born, dtype: datetime64[ns]

format the ’Died’ column as a datetime
died_datetime = pd.to_datetime(scientists[’Died’], format=’%Y-%m-

If we wanted, we can create a new set of columns that contain the datetime
representations of the object (string) dates.

scientists[’born_dt’], scientists[’died_dt’] = (born_datetime,
 died_datetime)
print(scientists.head())

 Name Born Died Age Occupation born_dt \
 0 Rosaline Franklin 1920-07-25 1958-04-16 37 Chemist 1920-07-25
 1 William Gosset 1876-06-13 1937-10-16 61 Statistician 1876-06-13
 2 Florence Nightingale 1820-05-12 1910-08-13 90 Nurse 1820-05-12
 3 Marie Curie 1867-11-07 1934-07-04 66 Chemist 1867-11-07
 4 Rachel Carson 1907-05-27 1964-04-14 56 Biologist 1907-05-27

 died_dt
 0 1958-04-16
 1 1937-10-16
 2 1910-08-13
 3 1934-07-04
 4 1964-04-14
print(scientists.shape)
 (8, 7)

5 https://docs.python.org/3.5/library/datetime.html#strftime-and-strptime-
behavior

2.7.2 Directly change a column

One way to look at variable importance is to see what happens when you
randomly scramble a column. (TODO RANDOM FOREST VIPS)

import random
random.seed(42)
random.shuffle(scientists[’Age’])

https://docs.python.org/3.5/library/datetime.html#strftime-and-strptime-behavior

You’ll notice that the random.shuffle method seems to work directly on the
column. If you look at the documentation for random.shuffle6 it will mention
that the sequence will be shuffled ‘in place’. Meaning it will work directly on
the sequence. Contrast this with the previous method where we assigned the
newly calculated values to a separate variable before we can assign it to the
column.

We can recalculate the ‘real’ age using datetime arithmetic.

6 https://docs.python.org/3.5/library/random.html#random.shuffle

subtracting dates will give us number of days
scientists[’age_days_dt’] = (scientists[’died_dt’] - scientists[
print(scientists)

 Name Born Died Age Occupation \
 0 Rosaline Franklin 1920-07-25 1958-04-16 66 Chemist
 1 William Gosset 1876-06-13 1937-10-16 56 Statistician
 2 Florence Nightingale 1820-05-12 1910-08-13 41 Nurse
 3 Marie Curie 1867-11-07 1934-07-04 77 Chemist
 4 Rachel Carson 1907-05-27 1964-04-14 90 Biologist
 5 John Snow 1813-03-15 1858-06-16 45 Physician
 6 Alan Turing 1912-06-23 1954-06-07 37 Computer Scientist
 7 Johann Gauss 1777-04-30 1855-02-23 61 Mathematician

 born_dt died_dt age_days_dt
 0 1920-07-25 1958-04-16 13779 days
 1 1876-06-13 1937-10-16 22404 days
 2 1820-05-12 1910-08-13 32964 days
 3 1867-11-07 1934-07-04 24345 days
 4 1907-05-27 1964-04-14 20777 days
 5 1813-03-15 1858-06-16 16529 days
 6 1912-06-23 1954-06-07 15324 days
 7 1777-04-30 1855-02-23 28422 days

we can convert the value to just the year
using the astype method
scientists[’age_years_dt’] = scientists[’age_days_dt’].astype(’
print(scientists)

 Name Born Died Age Occupation \
 0 Rosaline Franklin 1920-07-25 1958-04-16 66 Chemist
 1 William Gosset 1876-06-13 1937-10-16 56 Statistician
 2 Florence Nightingale 1820-05-12 1910-08-13 41 Nurse

https://docs.python.org/3.5/library/random.html#random.shuffle

 3 Marie Curie 1867-11-07 1934-07-04 77 Chemist
 4 Rachel Carson 1907-05-27 1964-04-14 90 Biologist
 5 John Snow 1813-03-15 1858-06-16 45 Physician
 6 Alan Turing 1912-06-23 1954-06-07 37 Computer Scientist
 7 Johann Gauss 1777-04-30 1855-02-23 61 Mathematician

 born_dt died_dt age_days_dt age_years_dt
 0 1920-07-25 1958-04-16 13779 days 37.0
 1 1876-06-13 1937-10-16 22404 days 61.0
 2 1820-05-12 1910-08-13 32964 days 90.0
 3 1867-11-07 1934-07-04 24345 days 66.0
 4 1907-05-27 1964-04-14 20777 days 56.0
 5 1813-03-15 1858-06-16 16529 days 45.0
 6 1912-06-23 1954-06-07 15324 days 41.0
 7 1777-04-30 1855-02-23 28422 days 77.0

Note

We could’ve directly assigned the column to the datetime converted, but the
point is an assignment still needed to be preformed. The random.shuffle
example preforms its method ‘in place’, so there is nothing that is explicitly
returned from the function. The value passed into the function is directly
manipulated.

2.8 Exporting and importing data

2.8.1 pickle

2.8.1.1 Series

Many of the export methods for a Series are also available for a DataFrame.
Those who have experience with numpy will know there is a save method on
ndarrays. This method has been deprecated, and the replacement is to use the
to_pickle method in its place.

names = scientists[’Name’]
print(names)
 0 Rosaline Franklin
 1 William Gosset

 2 Florence Nightingale
 3 Marie Curie
 4 Rachel Carson
 5 John Snow
 6 Alan Turing
 7 Johann Gauss
 Name: Name, dtype: object

pass in a string to the path you want to save
names.to_pickle(’../output/scientists_names_series.pickle’)

The pickle output is in a binary format, meaning if you try to open it in a text
editor, you will see a bunch of garbled characters.

If the object you are saving is an intermediate step in a set of calculations that
you want to save, or if you know your data will stay in the Python world,
saving objects to a pickle, will be optimized for Python as well as disk
storage space. However, this means that people who do not use Python, will
not be able to read the data.

2.8.1.2 DataFrame

The same method can be used on DataFrame objects.

scientists.to_pickle(’../output/scientists_df.pickle’)

2.8.1.3 Reading pickel data

To read in pickel data we can use the pd. read_pickle function.

for a Series
scientist_names_from_pickle = pd.read_pickle(’../output/scientists_names_series.pick

 0 Rosaline Franklin
 1 William Gosset
 2 Florence Nightingale
 3 Marie Curie
 4 Rachel Carson
 5 John Snow
 6 Alan Turing
 7 Johann Gauss
 Name: Name, dtype: object

for a DataFrame
scientists_from_pickle = pd.read_pickle(’../output/scientists_df.pickle
print(scientists_from_pickle)

 Name Born Died Age Occupation \
 0 Rosaline Franklin 1920-07-25 1958-04-16 66 Chemist
 1 William Gosset 1876-06-13 1937-10-16 56 Statistician
 2 Florence Nightingale 1820-05-12 1910-08-13 41 Nurse
 3 Marie Curie 1867-11-07 1934-07-04 77 Chemist
 4 Rachel Carson 1907-05-27 1964-04-14 90 Biologist
 5 John Snow 1813-03-15 1858-06-16 45 Physician
 6 Alan Turing 1912-06-23 1954-06-07 37 Computer Scientist
 7 Johann Gauss 1777-04-30 1855-02-23 61 Mathematician

 born_dt died_dt age_days_dt age_years_dt
 0 1920-07-25 1958-04-16 13779 days 37.0
 1 1876-06-13 1937-10-16 22404 days 61.0
 2 1820-05-12 1910-08-13 32964 days 90.0
 3 1867-11-07 1934-07-04 24345 days 66.0
 4 1907-05-27 1964-04-14 20777 days 56.0
 5 1813-03-15 1858-06-16 16529 days 45.0
 6 1912-06-23 1954-06-07 15324 days 41.0
 7 1777-04-30 1855-02-23 28422 days 77.0

You will see pickle files saved as .p, . pkl, or . pickle.

2.8.2 CSV

Comma-separated values (CSV) are the most flexible data storage type. For
each row, the column information will be separated with a comma. The comma
is not the only type of delimiter. Some files will be delimited by a tab (tsv), or
even a semi-colon. The main reason why CSVs are a preferred data format
when collaborating and sharing data is because any program can open it. It can
even be opened in a text editor.

The Series and DataFrame have a to_csv method to write a CSV file.

The documentation for Series7 and DataFrame8 have many different ways you
can modify the resulting CSV file. For example, if you wanted to save a TSV
file because there are commas in your data, you can set the sep parameter to
‘t’ (TODO USING FUNCTIONS).

save a series into a CSV
names.to_csv(’../output/scientist_names_series.csv’)

save a dataframe into a TSV,
a tab-separated value
scientists.to_csv(’../output/scientists_df.tsv’, sep=’\t’)

Removing row number from output If you open the CSV or TSV file created,
you will notice that the first ‘column’ will look like the row number of the
dataframe. Many times this is not needed, especially when collaborating with
other people. However, keep in mind, it is really saving the ‘row label’, which
may be important.

The documentation9 will show that there is a index parameter that to write
row names (index).

scientists.to_csv(’../output/scientists_df_no_index.csv’, index

Importing CSV data Importing CSV files was shown in Chapter 1.4. It uses
the pd.read_csv function. From the documentation10, you can see there are
various ways you can read in a CSV. You can see TODO USING FUNCTIONS
of you need more information on using function parameters

7 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.Series.to_csv.html

8 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.to_csv.html

9 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.to_csv.html

10 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.read_csv.html

2.8.3 Excel

Excel, probably the most common data type (or second most common, next to

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.to_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

CSVs). Excel has a bad reputation within the data science community. I
discuessed some of the reasons why in Chapter 1.1. The goal of this book isn’t
to bash Excel, but to teach you a resonable alternative tool for data analytics.
In short, the more you can do your work in a scripting language, the easier it
will be to scale up to larger projects, catch and fix mistakes, and collaborate.
Excel has its own scripting language if you absolutely have to work in it.

2.8.3.1 Series

The Series does not have an explicit to_excel method. If you have a Series
that needs to be exported to an Excel file. One way is to convert the Series
into a 1 column DataFrame.

convert the Series into a DataFrame
before saving it to an excel file
names_df = names.to_frame()

xls file
names_df.to_excel(’../output/scientists_names_series_df.xls’)

newer xlsx file
names_df.to_excel(’../output/scientists_names_series_df.xlsx’)

2.8.3.2 DataFrame

From above, you can see how to export a DataFrame to an Excel file. The
documentation11 does show ways on how to further fine tune the output. For
example, you can output to a specific ‘sheet’ using the sheet_name parameter

saving a DataFrame into Excel format
scientists.to_excel(’../output/scientists_df.xlsx’,
 sheet_name=’scientists’,
 index=False)

2.8.4 Many data output types

There are many ways Pandas can export and import data, to_pickle, to_csv,
and to_excel, are only a fraction of the dataformats that can make its way into
Pandas DataFrames.

11 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.to_excel.html

Export method Description

to_clipboard save data into the system clipboard for pasting

to_dense convert data into a regular 'dense' DataFrame

to_dict convert data into a Python dict

to_gbq convert data into a Google BigQuery table

toJidf save data into a hierarchal data format (HDF)

to_msgpack save data into a portable JSON-like binary

toJitml convert data to a HTML table

tojson convert data into a JSON string

toJatex convert data as a LTEXtabular environment

to_records convert data into a record array

to_string show DataFrame as a string for stdout

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_excel.html

to_sparse convert data into a SparceDataFrame

to_sql save data into a SQL database

to_stata convert data into a Stata dta file

For more complicated and general data conversions (not necessarily just
exporting), the odo library12 has a consistent way to convert between data
formats. TODO CHAPTER ON DATA AND ODO.

2.9 Conclusion

This chapter went in a little more detail about how the Pandas Series and
DataFrame objects work in Python. There were some simpler examples of
data cleaning shown, and a few common ways to export data to share with
others. Chapters 1 and 2 should give you a good basis on how Pandas as a
library works.

The next chapter will cover the basics of plotting in Pytho and Pandas. Data
visualization is not only used in the end of an analysis to plot results, it is
heavily utilized throughout the entire data pipeline.

12 http://ocLo.readthedocs.org/en/latest/

http://ocLo.readthedocs.org/en/latest/

Chapter 3. Introduction to Plotting

3.1 Introduction

Data visualization is as much a part of the data processing step as the data
presentation step. It is much easier to compare values when they are plotted
than numeric values. By visualizing data we are able to get a better intuitive
sense of our data, than by looking at tables of values alone. Additionally,
visualizations can also bring to light, hidden patterns in data, that you, the
analyst, can exploit for model selection.

3.2 Concept map

1. Prior knowledge

(a) Containers

(b) Using functions

(c) Subsetting and indexing

(d) Classes

2. matplotlib

3. seaborn

3.3 Objectives

This chapter will cover:

1. matplotlib

2. seaborn

3. plotting in pandas

The quintessential example for making visualizations of data is Anscombe's
quartet. This was a dataset created by English statistician Frank Anscombe to
show the importance of statistical graphs.

The Anscombe dataset contains 4 sets of data, where each set contains 2
continuous variables. Each set has the same mean, variance, correlation, and
regression line. However, only when the data are visualized is it obvious that
each set does not follow the same pattern. This goes to show the benefits of
visualizations and the pitfalls of only looking at summary statistics.

the anscombe dataset can be found in the seaborn library
import seaborn as sns
anscombe = sns.load_dataset("anscombe")
print(anscombe)
 dataset x y
 0 I 10.0 8.04
 1 I 8.0 6.95
 2 I 13.0 7.58
 3 I 9.0 8.81
 4 I 11.0 8.33
 5 I 14.0 9.96
 6 I 6.0 7.24
 7 I 4.0 4.26
 8 I 12.0 10.84
 9 I 7.0 4.82
 10 I 5.0 5.68
 11 II 10.0 9.14
 12 II 8.0 8.14
 13 II 13.0 8.74
 14 II 9.0 8.77
 15 II 11.0 9.26
 16 II 14.0 8.10
 17 II 6.0 6.13
 18 II 4.0 3.10
 19 II 12.0 9.13
 20 II 7.0 7.26
 21 II 5.0 4.74
 22 III 10.0 7.46
 23 III 8.0 6.77
 24 III 13.0 12.74
 25 III 9.0 7.11
 26 III 11.0 7.81
 27 III 14.0 8.84

 28 III 6.0 6.08
 29 III 4.0 5.39
 30 III 12.0 8.15
 31 III 7.0 6.42
 32 III 5.0 5.73
 33 IV 8.0 6.58
 34 IV 8.0 5.76
 35 IV 8.0 7.71
 36 IV 8.0 8.84
 37 IV 8.0 8.47
 38 IV 8.0 7.04
 39 IV 8.0 5.25
 40 IV 19.0 12.50
 41 IV 8.0 5.56
 42 IV 8.0 7.91
 43 IV 8.0 6.89

3.4 matplotlib

matplotlib is Python's fundamental plotting library. It is extremely flexible
and gives the user full control of all elements of the plot.

Importing matplotlib's plotting features is a little different from our previous
package imports. You can think of it as the package matplotlib and all the
plotting utilities are under a subfolder (or sub package) called pyplot. Just
like how we imported a package and gave it an abbreviated name, we can do
the same with matplotlib . pyplot.

import matplotlib.pyplot as pit

Most of the basic plots will start with plt. plot. In our example it takes a
vector for the x-values, and a corresponding vector for the y-values.

create a subset of the data
contains only dataset 1 from anscombe
dataset_1 = anscombe[anscombe['dataset'] == 'I']

plt.plot(dataset_1['x'], dataset_1['y'])

By default, plt. plot will draw lines. If we want it to draw circles (points)
instead we can pass an 'o' parameter to tell plt. plot to use points.

plt.plot(dataset_1['x'], dataset_1['y'], 'o')

We can repeat this process for the rest of the datasets in our anscombe data.

create subsets of the anscombe data
dataset_2 = anscombe[anscombe['dataset'] == 'II']
dataset_3 = anscombe[anscombe['dataset'] == 'III']
dataset_4 = anscombe[anscombe['dataset'] == 'IV']

Now, we could make these plots individually, one at a time, but matplotlib
has a way to create subplots. That is, you can specify the dimensions of your
final figure, and put in smaller plots to fit the specified dimensions. This way
you can present your results in a single figure, instead of completely separate
ones.

The subplot syntax takes 3 parameters.

1. number of rows in figure for subplots

2. number of columns in figure for subplots

3. subplot location

The subplot location is sequentially numbered and plots are placed left-to-right
then top-to-bottom.

create the entire figure where our subplots will go
fig = pit.figure()

tell the figure how the subplots should be laid out
in the example below we will have
2 row of plots, each row will have 2 plots

subplot has 2 rows and 2 columns, plot location 1
axesl = fig.add_subplot(2 , 2, 1)

subplot has 2 rows and 2 columns, plot location 2
axes2 = fig.add_subplot(2 , 2, 2)

subplot has 2 rows and 2 columns, plot location 3
axes3 = fig.add_subplot(2 , 2, 3)

subplot has 2 rows and 2 columns, plot location 4
axes4 = fig.add_subplot(2 , 2, 4)

If we try to plot this now we will get an empty figure. All we have done so far
is create a figure, and split the figure into a 2x2 grid where plots can be
placed. Since no plots were created and inserted, nothing will show up.

add a plot to each of the axes created above
axesl.plot(dataset_l['x'], dataset_l['y'], 'o')
axes2.plot(dataset_2['x'], dataset_2['y'], 'o')
axes3.plot(dataset_3['x'], dataset_3['y'], 'o')
axes4.plot(dataset_4['x'], dataset_4['y'], 'o')

Finally, we can add a label to our subplots.

add a small title to each subplot
axesl.set_title("dataset_l")
axes2.set_title("dataset_2")
axes3.set_title("dataset_3")
axes4.set_title("dataset_4")

add a title for the entire figure
fig.suptitle("Anscombe Data")

The anscombe data visualizations should depict why just looking at summary
statistic values can be misleading. The moment the points were visualized, it
becomes clear that even though each dataset has the same summary statistic
values, the relationship between points vastly differ across datasets.

To finish off the anscombe example, we can add setjdabel () and

set_ylabel () to each of the subplots to add x and y labels, just like how we
added a title to the figure, f

Figure 3-1: Anscombe data visualization

Before moving on and showing how to create more statistical plots, be familiar
with the matplotlib documentation on "Parts of a Figure" 1. I have
reproduced their figure in Figure 3-2.

One of the most confusing parts of plotting in Python is the use of 'axis' and
'axes'. Especially when trying to verbally describe the different parts (since
they are pronounced the same). In the anscombe example, each individual
subplot plot was an axes. An axes has both an x and y axis. All 4 subplots
make the figure.

The remainder of the chapter will show you how to create statistical plots, first
with matplotlib and later using a higher-level plotting library based on
matplotlib specifically made for statistical graphics, seaborn.

1 http://matplotlib.org/faq/usage_faq.html#parts-of-a-figure

Figure 3-2: One of the most confusing parts of plotting in Python is the use of
'axis' and 'axes' since they are pronounced the same but refer to different parts
of a figure

3.5 Statistical Graphics using matplotlib

The tips data we will be using for the next series of visualizations come from
the seaborn library. This dataset contains the amount of tip people leave for
various variables. For example, the total cost of the bill, the size of the party,
the day of the week, the time of day, etc.

http://matplotlib.org/faq/usage_faq.html#parts-of-a-figure

We can load this data just like the anscombe data above.

tips = sns.load_dataset("tips")
print(tips.head())

 total_bill tip sex smoker day time size
 0 16.99 1.01 Female No Sun Dinner 2
 1 10.34 1.66 Male No Sun Dinner 3
 2 21.01 3.50 Male No Sun Dinner 3
 3 23.68 3.31 Male No Sun Dinner 2
 4 24.59 3.61 Female No Sun Dinner 4

3.5.1 univariate

In statistics jargon, 'univariate' refers to a single variable. 3.5.1.1
Histograms

Histograms are the most common means of looking at a single variable. The
values are 'binned', meaning they are grouped together and plotted to show the
distribution of the variable.

fig = pit.figure()
axesl = fig.add_subplot(1, 1, 1)
axesl.hist(tips['total_bill'], bins=10)
axesl.set_title('Histogram of Total Bill')
axesl.set_xlabel('Frequency')
axesl.set_ylabel('Total Bill')
fig.show ()

3.5.2 bivariate

In statistics jargon, 'bivariate' refers to a two variables.

3.5.2.1 Scatter plot

Scatter plots are used when a continuous variable is plotted against another
continuous variable.

scatter_plot = plt.figure()
axesl = scatter_plot.add_subplot(1, 1, 1)
axesl.scatter(tips['total_bill'], tips['tip'])
axesl.set_title('Scatterplot of Total Bill vs Tip')
axesl.set_xlabel('Total Bill')
axesl.set_ylabel('Tip') scatter_plot.show()

3.5.2.2 Box plot

Boxplots are used when a discrete variable is plotted against a continuous
variable.

boxplot = pit.figure()
axesl = boxplot.add_subplot(1, 1, 1)
axesl.boxplot(
 # first argument of boxplot is the data
 # since we are plotting multiple pieces of data
 # we have to put each piece of data into a list
 [tips[tips['sex'] == 'Female']['tip'],
 tips [tips ['sex'] == 'Male']['tip']],
We can then pass in an optional labels parameter
to label the data we passed labels=['Female', 'Male'])
axesl.set_xlabel('Sex')
axesl.set_ylabel('Tip')

axesl.set_title('Boxplot of Tips by Sex')

3.5.3 multivariate

Plotting multivariate data is tricky. There isn't a panacea or template that can
be used for every case. Let's build on the scatter plot above. If we wanted to
add another variable, say sex, one option would be to color the points by the
third variable.

If we wanted to add a fourth variable, we could add size to the dots. The only
caveat with using size as a variable is humans are not very good at
differentiating areas. Sure, if there's an enormous dot next to a tiny one, your
point will be conveyed, but smaller differences are hard to distinguish, and
may add clutter to your visualization. One way to reduce clutter is to add some

value of transparency to the individual points, this way many overlapping
points will show a darker region of a plot than less crowded areas.

The general rule of thumb is different colors are much easier to distinguish than
changes in size. If you have to use areas, be sure that you are actually plotting
relative areas. A common pitfall is to use map a value to the radius of a circle
for plots, but since the formula for a circle is 2, your areas are actually on a
squared scale, which is not only misleading, but wrong.

Colors are also difficult to pick. Humans do not perceive hues on a linear
scale, so though also needs to go into picking color pallets. Luckily matplotlib
2 and seaborn 3 come with their own set of color pallets, and tools like
colorbrewer 4 help with picking good color pallets.

create a color variable based on the sex
def recode_sex(sex):
 if sex == 'Female':
 return 0
 else:
 return 1
tips['sex_color'] = tips['sex'].apply(recode_sex)

scatter_plot = plt.figure()
axesl = scatter_plot.add_subplot(1, 1, 1)
axesl.scatter(x=tips['total_bill'],
 y=tips['tip'],
 # set the size of the dots based on party size
 # we multiply the values by 10 to make the points bigger
 # and also to emphasize the difference
 s=tips['size'] * 10,
 # set the color for the sex
 c=tips['sex_color'],
 # set the alpha so points are more transparent
 # this helps with overlapping points
 alpha=0.5)
axesl.set_title('Total Bill vs Tip colored by Sex and sized by Size'
axesl.set_xlabel('Total Bill')
axesl.set_ylabel('Tip')
scatter_plot.show()

2 http://matplotlib.org/users/colormaps.html

http://matplotlib.org/users/colormaps.html

3 http://stanford.edu/˜mwaskom/software/seaborn-
dev/tutorial/color_palettes.html

4 http://colorbrewer2.org/

3.6 seaborn

matplotlib can be thought of as the core foundational plotting tool in Python,
seaborn builds on matplotlib by providing a higher level interface for
statistical graphics. It provides an interface to produce prettier and more
complex visualizations with fewer lines of code.

seaborn is also tightly integrated with pandas and the rest of the PyData stack
(numpy pandas, scipy, statsmodels), making visualizations from any part of the

http://stanford.edu/%CB%9Cmwaskom/software/seaborn-dev/tutorial/color_palettes.html
http://colorbrewer2.org/

data analysis process a breeze. Since seaborn is built on top of matplotlib,
the user still has the ability to fine tune the visualizations.

We've already loaded the seaborn library for its datasets.

load seaborn if you have not done so already
import seaborn as sns

tips = sns.load_dataset("tips")

3.6.1 univariate

3.6.1.1 Histograms

Histograms are created using sns. distplot 5

hist = sns.distplot(tips['total_bill'])
hist.set_title('Total Bill Histogram with Density Plot')

The default distplot will plot both a histogram and a density plot (using
kernel density estimation).

If we just wanted the histogram we can set the kde parameter to False.

hist = sns distplot(tips['total_bill'], kde=False)
hist.set_title('Total Bill Histogram')
hist.set_xlabel('Total Bill')
hist.set_ylabel('Frequency')

5 https://stanford.edu/
˜mwaskom/software/seaborn/generated/seaborn.distplot.html#seaborn.distplot

https://stanford.edu/%CB%9Cmwaskom/software/seaborn/generated/seaborn.distplot.html#seaborn.distplot

3.6.1.2 Density Plot (kernel Density Estimation)

Density plots are another way to visualize a univariate distribution. It
essentially works by drawing a normal distribution centered at each data point,
and smooths out the overlapping plots such that the under the curve is 1.

den = sns.distplot(tips['total_bill'] , hist=False)
den.set_title('Total Bill Density')
den.set_xlabel('Total Bill')
den set_ylabel('Unit Probability')

3.6.1.3 Rug plot

Rug plots are a 1-dimensional representation of a variable's distribution. They
are typically used with other plots to enhance a visualization. This plot shows
a histogram overlaid with a density plot and a rug plot on the bottom.

hist_den_rug = sns.distplot(tips['total_bill'], rug=True)
hist_den_rug.set_title('Total Bill Histogram with Density and Rug
Plot')
hist_den_rug.set_xlabel('Total Bill')

3.6.1.4 Count plot (Bar plot)

Bar plots are very similar to histograms, but instead of binning vales to
produce a distribution, bar plots can be used to count discrete variables. A
countplot is used for this purpose.

count = sns.countplot('day', data=tips)
count.set_title('Count of days')
count.set_xlabel('Day of the Week')
count.set_ylabel('Frequency')

3.6.2 bivariate

3.6.2.1 Scatter plot

There are a few ways to create a scatter plot in seaborn. There is no explicit
function named scatter. Instead, we use regplot.

regplot will plot a scatter plot and also fit a regression line. We can set
fit_reg =False so it only shows the scatter plot.

scatter = sns.regplot(x='total_bill', y='tip', data=tips)
scatter.set_title('Scatterplot of Total Bill and Tip')
scatter.set_xlabel('Total Bill')
scatter.set_ylabel('Tip')

There is a similar function, Implot, that can also plot scatter plots. Internally,
Implot calls regplot, so regplot is a more general plot function. The main
difference is that regplot creates an axes (See figure 3-2) and Implot creates
a figure.

sns Implot(x='total_bill', y='tip', data=tips)

We can also plot our scatter plot with a univariate plot on each axis using
jointplot.

scatter = sns.jointplot(x='total_bill', y='tip', data=tips)
scatter.set_axis_labels(xlabel='Total Bill', ylabel='Tip')
add a title, set font size, and move the text above the total bill
axes
scatter.fig.suptitle('Joint plot of Total Bill and Tip',
 fontsize=20, y=1.03)

3.6.2.2 Hexbin plot

Scatter plots are great for comparing two variables. However, sometimes there
are too many points for a scatter plot to be meaningful. One way to get around
this is to bin points on the plot together. Just like how histograms can bin a
variable to create a bar, hexbin can bin two variables. A hexagon is used
because it is the most efficient shape to cover an arbitrary 2D surface.

This is an example of seaborn building on top of matplotlib as hexbin is a
matplotlib function.

hex = sns.jointplot(x="total_bill", y="tip", data=tips, kind
hex.set_axis_labels(xlabel='Total Bill', ylabel='Tip')
hex.fig.suptitle('Hexbin Joint plot of Total Bill and Tip',
 fontsize=20, y=1.03)

3.6.2.3 2D Density plot

You can also have a 2D kernel density plot. It is similar to how sns.kdeplot
works, except it can plot a density plot across 2 variables.

kde = sns.kdeplot(data tips['total_bill'],
 data2=tips['tip'],
 shade=True) # shade will fill in the contours
kde.set_title('Kernel Density Plot of Total Bill and Tip')
kde.set_xlabel('Total Bill')
kde.set_ylabel('Tip')

kde_joint = sns.jointplot(x='total_bill', y='tip',
 data=tips,
 kind='kde')

3.6.2.4 Bar plot

Bar plots can also be used to show multiple variables. By default, barplot
will calculate a mean, but you can pass any function into the estimator
parameter, for example, the numpy.std function to calculate the standard
deviation.

bar = sns.barplot(x='time', y=' total_bill' , data=tips)
bar.set_title('Barplot of average total bill for time of day')
bar.set_xlabel('Time of day')
bar.set_ylabel('Average total bill')

3.6.2.5 Box plot

Unlike previous plots, a box plot shows multiple statistics: the minimum, first
quartile, median, third quartile, maximum, and if applicable, outliers based on
the interquartile range.

The y parameter is optional, meaning, if it is left out, it will create a single box
in the plot.

box = sns.boxplot(x='time', y='total_bill', data=tips)
box.set_title('Box plot of total bill by time of day')
box set_xlabel('Time of day')
box.set_ylabel('Total Bill')

3.6.2.6 Violin plot

Box plots are a classical statistical visualization. However, they can obscure
the underlying distribution of the data. Violin plots are able to show the same
values as the box plot, but plots the "boxes" as a kernel density estimation.
This can help retain more visual information about your data since only
plotting summary statistics can be misleading, as seen by the Anscombe's
quartets.

violin = sns.violinplot(x='time', y='total_bill', data=tips)
violin.set_title('Violin plot of total bill by time of day')
violin.set_xlabel('Time of day')
violin.set_ylabel('Total Bill')

3.6.2.7 Pairwise relationships

When you have mostly numeric data, visualizing all the pairwise relationships
can be easily performed using pairplot. This will plot a scatter plot between
each pair of variables, and a histogram for the univariate.

One thing about pairplot is that there is redundant information. The top half
of the the visualization is the same as the bottom half. We can use pairgrid to
manually assign the plots for the top half and bottom half.

pair_grid = sns.PairGrid(tips)
can also use pit.scatter instead of sns.regplot
pair_grid = pair_grid.map_upper(sns.regplot)
pair_grid = pair_grid.map_lower(sns.kdeplot)
pair_grid = pair_grid.map_diag(sns.distplot, rug=True)

3.6.3 multivariate

I mentioned in Section 3.5.3, that there is no de facto template for plotting
multivariate data.

Possible ways to include more information is to use color, size, and shape to
add more information to a plot

3.6.3.1 Colors

In a violinplot , we can pass the hue parameter to color the plot by sex. We
can reduce the redundant information by having each half of the violins
represent the different sex. Try the following code with and without the split
parameter.

violin = sns.violinplot(x='time', y='total_bill',
 hue='sex', data=tips,
 split=True)

The hue parameter can be passed into various other plotting functions as well.

note I'm using Implot instead of regplot here
scatter = sns.lmplot(x='total_bill', y='tip', data=tips, hue='sex'
fit_reg=False)

We can make our pairwise plots a little more meaningful by passing one of the
categorical variables as a hue parameter.

sns.pairplot(tips, hue='sex')

3.6.3.2 Size and Shape

Working with point sizes can also be another means to add more information to
a plot. However, this should be used sparingly, since the human eye is not very
good at comparing areas.

Here, is an example of how seaborn works with matplotlib function calls. If
you look in the documentation for Implot 6, you'll see that Implot takes a
parameter called catter,line scatter , line_kws. This is actually them
saying there is a parameter in Implot called scatter_kws and line_kws.
Both of these parameters take a key-value pair, a Python diet (dictionary) to
be more exact (TODO APPENDIX PYTHON DICTONARY). Key-value pairs
passed into scatter_kws is then passed on to the matplotlib function pit.
scatter. This is how we would access the s parameter to change the size of
the points like we did in section 3.5.3.

scatter = sns.lmplot(x='total_bill', y='tip', data=tips,
 fit_reg=False,
 hue='sex',
 scatter_kws={'s': tips['size']*10})

6 https://web.stanford.edu/
˜mwaskom/software/seaborn/generated/seaborn.lmplot.html

Also, when working with multiple variables, sometimes having 2 plot elements
showing the same information is helpful. Here I am using color and shape to
distinguish sex.

scatter = sns.lmplot(x='total_bill', y='tip', data=tips,
 fit_reg=False, hue='sex', markers=['o',
 scatter_kws={'s': tips['size'

https://web.stanford.edu/%CB%9Cmwaskom/software/seaborn/generated/seaborn.lmplot.html

3.6.3.3 facets

What if we want to show more variables? Or if we know what plot we want
for our visualization, but we want to make multiple plots over a categorical
variable? This is what facets are for. Instead of individually subsetting data
and laying out the axes in a figure (we did this in Figure 3-1), facets in
seaborn handle this for you.

In order to use facets your data needs to be what Hadley Wickham7 calls "Tidy
Data"8, where each row represents an observation in your data, and each
column is a variable (it is also known as "long data").

To recreate our Anscombe's quartet figure from Figure 3-1 in seaborn:

anscombe = sns.lmplot(x='x', y='y', data anscombe, fit_reg
 col='dataset', col_wrap=2)

7 http://hadley.nz/

8 http://vita.had.co.nz/papers/tidy-data.pdf

All we needed to do is pass 2 more parameters into the scatter plot function in
seaborn. The col parameter is the variable the plot will facet by, and the
coLwrap creates a figure that has 2 columns. If we do not use the coLwrap
parameter, all 4 plots will be plotted in the same row.

Section 3.6.2.1 discussed the differences between Implot and regplot.
Implot is a figure level function. Many of the plots we created in seaborn are
axes level functions. What this means is not every plotting function will have a
col and coLwrap parameter for faceting. Instead we have to create a
FacetGrid that knows what variable to facet on, and then supply the
individual plot code for each facet.

http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf

create the FacetGrid
facet = sns.FacetGrid(tips, col='time')
for each value in time, plot a histogram of total bill
facet.map(sns.distplot, 'total_bill', rug=True)

The individual facets need no be univariate plots.

facet = sns.FacetGrid(tips, col = 'day', hue='sex')
facet = facet.map(pit.scatter, 'total_bill', 'tip')
facet = facet.add_legend()

If you wanted to stay in seaborn you can do the same plot using Implot

sns.lmplot(x='total_bill', y='tip', data=tips, fit_reg=False
 hue='sex', col='day')

The last thing you can do with facets is to have one variable be faceted on the x
axis, and another variable faceted on the y axis. We accomplish this by passing
a row parameter.

facet = sns.FacetGrid(tips, col='time', row='smoker', hue='sex'
facet.map(pit.scatter, 'total_bill', 'tip')

If you do not want all the hue elements overlapping eather other (i.e., you want
this behaviour in scatter plots, but not violin plots), you can use the sns.
factorplot function.

sns.factorplot(x='day', y='total_bill', hue='sex', data=tips,
 row='smoker', col='time', kind='violin')

3.7 pandas

pandas objects also come equipped with their own plotting functions. Just like
seaborn, the plotting functions built into pandas are just wrappers around
matplotlib with presets.

In general, plotting using pandas follows the DataFrame.plot.PLOT_TYPE or
Series . plot. PLOT_TYPE functions.

3.7.1 Histograms

Histograms can be created using the DataFrame. plot, hist or Series .
plot, hist function.

on a series

tips['total_bill'].plot.hist()

on a data frame
set an alpha channel transparency
so we can see though the overlapping bars
tips[['total_bill', 'tip']].plot.hist(alpha=0.5, bins=20)

3.7.2 Density Plot

The kernel density estimation (density) plot can be created with the Data
Frame, plot, kde function.

tips['tip'] .plot.kde ()

3.7.3 Scatter Plot

Scatter plots are created by using the Data Frame.plot, scatter function.

tips.plot.scatter(x='total_bill', y='tip')

3.7.4 Hexbin Plot

Hexbin plots are created using the Dataframe.pit.hexbin function.

tips.plot.hexbin(x='total_bill', y='tip')

Gridsize can be adjusted with the gridsize parameter

tips.plot.hexbin(x='total_bill', y='tip', gridsize=10)

3.7.5 Box Plot

Box plots are created with the DataFrame.plot.box function.

tips.plot.box()

3.8 Themes and Styles

The seaborn plots shown in this chapter have all used the default plot styles.
We can change the plot style with the sns. set_style function. Typically this
function is run just once at the top of your code; all subsequent plots will use
the style set.

The styles that come with seaborn are darkgrid, whitegrid, dark,
white, and ticks.

initial plot for comparison
violin = sns.violinplot(x='time', y='total_bill',
 hue='sex', data=tips,
 split=True)

set style and plot
sns set_style('whitegrid')
violin = sns.violinplot(x='time', y='total_bill',
 hue='sex', data=tips,
 split=True)

The following code shows what all the styles look like.

fig = pit.figure ()
seaborn_styles = ['darkgrid', 'whitegrid', 'dark', 'white'
for idx, style in enumerate(seaborn_styles):
 plot_position = idx + 1
 with sns.axes_style(style):
 ax = fig.add_subplot(2, 3, plot_position)
 violin = sns.violinplot(x='time' , y='total_bill',
 data=tips, ax=ax)
 violin.set_title(style)
fig.tight_layout()

3.9 Conclusion

Data visualization is an integral part of exploratory data analysis and data
presentation. This chapter gives an introduction to start exploring and
presenting your data. As we continue through the book, we will learn about
more complex visualizations.

There are a myriad of plotting and visualization resources on the internet. The
seaborn documentation9, pandas visualization documentation10, and
matplotlib documentation11 will all provide ways to further tweak your plots
(e.g., colors, line thickness, legend placement, figure annotations, etc.). Other
resources include colorbrewer12 to help pick good color schemes. The plotting
libraries mentioned in this chapter also have various color schemes that can be
used.

9 https://stanford.edu/~mwaskom/software/seaborn/api.html

https://stanford.edu/~mwaskom/software/seaborn/api.html

10 http://paridas.pydata.org/paridas-docs/stable/visualizatiori.html

11 http://matplotlib.org/api/index.html

12 http://colorbrewer2.org/

http://paridas.pydata.org/paridas-docs/stable/visualizatiori.html
http://matplotlib.org/api/index.html
http://colorbrewer2.org/

Chapter 4. Data Assembly

4.1 Introduction

Hopefully by now, you are able to load in data into pandas and do some basic
visualizations. This part of the book will focus on various data cleaning tasks.
We begin with assembling a dataset for analysis.

When given a data problem, all of the information that we need may be
recorded in separate files and data frames. For example, there may be a
separate table on company information and another table on stock prices. If we
wanted to look at all the stock prices within the tech industry we may first have
to find all the tech companies from the company information table, and then
combine it with the stock price data to get the data we need for our question.
The data was split up into separate tables to reduce the amount of redundant
information (we don't need to store the company information with each stock
price entry), but it means we as data analysts must combine the relevant data
ourselves for our question.

Other times a single dataset will be split into multiple parts. This may be
timeseries data where each date is in a separate file, or a file may have been
split into parts to make the individual files smaller. You may also need to
combine data from multiple sources to answer a question (e.g., combining
latitudes and longitudes with zip codes). In both cases, you will need to
combine data into a single dataframe for analysis.

4.2 Concept map

1. Prior knowledge

(a) Loading data

(b) Subsetting data

(c) functions and class methods

4.3 Objectives

This chapter will cover:

1. Tidy data

2. Concatenating data

3. Merging datasets

4.4 Concatenation

One of the (conceptually) easier forms of combining data is concatenation.
Concatenation can be thought of appending a row or column to your data. This
is can happen if your data was split into parts or if you made a calculation that
you want to append.

Concatenation is all accomplished by using the concat function from pandas.

4.4.1 Adding rows

Let's begin with some example data sets so you can see what is actually
happening.

import pandas as pd

dfl = pd.read_csv('../data/concat_1.csv')
df2 = pd.read_csv('../data/concat_2.csv')
df3 = pd.read_csv('../data/concat_3.csv')

 print(df1) print(df2) print(df3)

 A B C D A B C D A B C D
 0 a0 b0 c0 d0 0 a4 b4 c4 d4 0 a8 b8 c8 d8
 1 a1 b1 c1 d1 1 a5 b5 c5 d5 1 a9 b9 c9 d9
 2 a2 b2 c2 d2 2 a6 b6 c6 d6 2 a10 b10 c10 d10
 3 a3 b3 c3 d3 3 a7 b7 c7 d7 3 a11 b11 c11 d11

Stacking the datarames on top of each other uses the concat function in

pandas where all the dataframes to be concatenated are passed in a list .

row_concat = pd.concat([df1, df2, df3])
print(row_concat)

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 0 a4 b4 c4 d4
 1 a5 b5 c5 d5
 2 a6 b6 c6 d6
 3 a7 b7 c7 d7
 0 a8 b8 c8 d8
 1 a9 b9 c9 d9
 2 a10 b10 c10 d10
 3 a11 b11 c11 d11

You can see concat blindly stacks the datarames together. If you look at the
row names (a.k.a row index), they are also simply a stacked version of the
original row indices.

If we tried the various subsetting methods from Table 2-1, the table will subset
as expected.

subset the 4th row of the concatenated dataframe
print(row_concat.iloc[3,])

 A a3
 B b3
 C c3
 D d3
 Name: 3, dtype: object

Question

What happens when you use loc or ix to subset the new dataframe?

In Chapter 2.4.1, I showed how you can create a series . However, if we
create a new series to append to a dataframe, you'd quickly see, that it does not

append correctly.

create a new row of data
new_row_series = pd.Series(['n1', 'n2', 'n3', 'n4'])
print(new_row_series)

 0 n1
 1 n2
 2 n3
 3 n4
 dtype: object
attempt to add the new row to a dataframe
print(pd.concat([df1, new_row_series]))

 A B C D 0
 0 a0 b0 c0 d0 NaN
 1 a1 b1 c1 d1 NaN
 2 a2 b2 c2 d2 NaN
 3 a3 b3 c3 d3 NaN
 0 NaN NaN NaN NaN n1
 1 NaN NaN NaN NaN n2
 2 NaN NaN NaN NaN n3
 3 NaN NaN NaN NaN n4

The first things we will notice are NaN values. This is simply Python's way of
representing a 'missing value' (Chapter 5). Next, we were hoping to append
our new values as a row. Not only did our code not append the values as a
row, it created a new column completely misaligned with everything else.

If we pause to think about what actually is happening, we can see the results
actually make sense. First, if we look at the new indices that were added, It is
very similar to how we concatenated dataframes earlier. The indices of the
newrow series object are analogs to the row numbers of the dataframe. Next,
since our series did not have a matching column, our newrow was added to a
new column.

To fix this, we can turn our series into a dataframe. This data frame would
have 1 row of data, and the column names would be the ones the data would
bind to.

 # note the double brackets
new_row_df = pd.DataFrame([['n1', 'n2', 'n3', 'n4']],
 columns=['A', 'B', 'C', 'D'])

print(new_row_df)

 A B C D
 0 n1 n2 n3 n4
print(pd.concat([df1, new_row_df]))

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 0 n1 n2 n3 n4

concat is a general function that can concatenate multiple things at once. If you
just needed to append a single object to an existing dataframe, there's the
append function for that.

Using a DataFrame Using a single-row DataFrame

print(df1.append(df2))

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 0 a4 b4 c4 d4
 1 a5 b5 c5 d5
 2 a6 b6 c6 d6
 3 a7 b7 c7 d7

print(df1.append(new_row_df))

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 0 n1 n2 n3 n4

Using a Python Dictionary

data_dict = {'A': 'n1',
 'B': 'n2',
 'C': 'n3',

 'D': 'n4'}

print(df1.append(data_dict, ignore_index=True))

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 4 n1 n2 n3 n4

Ignoring the index We saw in the last example when we tried to add a
dict to a dataframe, we had to use the ignore_index parameter. If we look
closer, you can see the row index also incremented by 1, and did not repeat a
previous index value.

If we simply wanted to concatenate or append data together, we can use the
ignore_index to reset the row index after the concatenation.

row_concat_i = pd.concat([df1, df2, df3], ignore_index True
print(row_concat_i)

 A B C D
 0 a0 b0 c0 d0
 1 a1 b1 c1 d1
 2 a2 b2 c2 d2
 3 a3 b3 c3 d3
 4 a4 b4 c4 d4
 5 a5 b5 c5 d5
 6 a6 b6 c6 d6
 7 a7 b7 c7 d7
 8 a8 b8 c8 d8
 9 a9 b9 c9 d9
 10 a10 b10 c10 d10
 11 a11 b11 c11 d11

4.4.2 Adding columns

Concatenating columns is very similar to concatenating rows. The main
difference is the axis parameter in the concat function. The default value of
axis has a value of 0, so it will concatenate row-wise. However, if we pass
axis=1 to the function, it will concatenate column-wise.

col_concat = pd.concat([df1, df2, df3], axis=1)
print(col_concat)

 A B C D A B C D A B C D
 0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8 d8
 1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9 d9
 2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10 d10
 3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11 d11

If we try to subset based on column names, we will get a similar result when
we concatenated row-wise and subset by row index.

print(col_concat['A'])

 A A A
 0 a0 a4 a8
 1 a1 a5 a9
 2 a2 a6 a10
 3 a3 a7 a11

Adding a single column to a dataframe can be done directly without using any
specific pandas function. Simply pass a new column name the vector you want
assigned to the new column.

col_concat['new_col_list'] = ['n1', 'n2', 'n3', 'n4']
print(col_concat)

 A B C D A B C D A B C D new_col_list
 0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8 d8 n1
 1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9 d9 n2
 2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10 d10 n3
 3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11 d11 n4

col_concat['new_col_series'] = pd.Series(['n1', 'n2', 'n3'
print(col_concat)

 A B C D A B C D A B C D new_col_series
 0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8 d8 n1
 1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9 d9 n2
 2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10 d10 n3
 3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11 d11 n4

Using the concat function still works, as long as you pass it a dataframe. This
does require a bit more unnecessary code.

Finally, we can choose to reset the column indices so we do not have
duplicated column names.

print(pd.concat([df1, df2, df3], axis=1, ignore_index=True

 0 1 2 3 4 5 6 7 8 9 10 11
 0 a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8 d8
 1 a1 b1 c1 d1 a5 b5 c5 d5 a9 b9 c9 d9
 2 a2 b2 c2 d2 a6 b6 c6 d6 a10 b10 c10 d10
 3 a3 b3 c3 d3 a7 b7 c7 d7 a11 b11 c11 d11

4.4.3 Concatenation with different indices

The examples shown so far assume a simple row or column concatenation. It
also assumes that the new row(s) had the same column names or the column(s)
had the same row indices.

Here I will show you what happens when the row and column indices are not
aligned.

4.4.3.1 Concatenate rows with different columns

Let's modify our dataframes for the next few examples.

df1.columns = ['A', 'B', 'C', 'D']
df2.columns = ['E', 'F', 'G', 'H']
df3.columns = ['A', 'C', 'F', 'H']

print(df1) print(df2) print

 A B C D E F G H A C F H
0 a0 b0 c0 d0 0 a4 b4 c4 d4 0 a8 b8 c8 d8
1 a1 b1 c1 d1 1 a5 b5 c5 d5 1 a9 b9 c9 d9
2 a2 b2 c2 d2 2 a6 b6 c6 d6 2 a10 b10 c10 d10
3 a3 b3 c3 d3 3 a7 b7 c7 d7 3 a11 b11 c11 d11

If we try to concatenate the dataframes like we did in section 4.4.1, you will
now see the dataframes do much more than simply stack one on top of the
other. The columns will align themselves, and a NaN value will fill any of the
missing areas.

row_concat = pd.concat([df1, df2, df3])
print(row_concat)

 A B C D E F G H
 0 a0 b0 c0 d0 NaN NaN NaN NaN
 1 a1 b1 c1 d1 NaN NaN NaN NaN
 2 a2 b2 c2 d2 NaN NaN NaN NaN
 3 a3 b3 c3 d3 NaN NaN NaN NaN
 0 NaN NaN NaN NaN a4 b4 c4 d4
 1 NaN NaN NaN NaN a5 b5 c5 d5
 2 NaN NaN NaN NaN a6 b6 c6 d6
 3 NaN NaN NaN NaN a7 b7 c7 d7
 0 a8 NaN b8 NaN NaN c8 NaN d8
 1 a9 NaN b9 NaN NaN c9 NaN d9
 2 a10 NaN b10 NaN NaN c10 NaN d10
 3 a11 NaN b11 NaN NaN c11 NaN d11

One way to not have any NaN missing values is to only keep the columns that
are in common from the list of objects to be concatenated. There is a parameter
named join that accomplishes this. By default it has a value of 'outer',
meaning it will keep all the columns. However, we can set join='inner' to
keep only the columns that

If we try to keep only the columns from all 3 dataframes, we will get an empty
dataframe since there are no columns in common.

print(pd.concat([df1, df2, df3], join='inner'))
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

If we use the dataframes that have columns in common, only the columns that
all of them share will be returned.

print(pd.concat([df1,df3], ignore_index=False, join='inner'

 A C
 0 a0 c0
 1 a1 c1
 2 a2 c2
 3 a3 c3
 0 a8 b8
 1 a9 b9
 2 a10 b10

 3 a11 b11

4.4.3.2 Concatenate columns with different rows

Let's take our dataframes and modify them again with different row indices. I
am building on the same dataframe modifications from Section 4.4.3.1.

df1.index = [0, 1, 2, 3]
df2.index = [4, 5, 6, 7]
df3.index = [0, 2, 5, 7]

print(df1) print(df2)

 A B C D E F G H A C F H
0 a0 b0 c0 d0 4 a4 b4 c4 d4 0 a8 b8 c8 d8
1 a1 b1 c1 d1 5 a5 b5 c5 d5 2 a9 b9 c9 d9
2 a2 b2 c2 d2 6 a6 b6 c6 d6 5 a10 b10 c10 d10
3 a3 b3 c3 d3 7 a7 b7 c7 d7 7 a11 b11 c11 d11

When we concatenate along axis=1, we get the same results from
concatenating along axis=0. The new dataframes will be added column wise
and matched against their respective row indices. Missing values will fill in
the areas where the indices did not align.

col_concat = pd.concat([df1, df2, df3], axis=1)
print(col_concat)

 A B C D E F G H A C F H
 0 a0 b0 c0 d0 NaN NaN NaN NaN a8 b8 c8 d8
 1 a1 b1 c1 d1 NaN NaN NaN NaN NaN NaN NaN NaN
 2 a2 b2 c2 d2 NaN NaN NaN NaN a9 b9 c9 d9
 3 a3 b3 c3 d3 NaN NaN NaN NaN NaN NaN NaN NaN
 4 NaN NaN NaN NaN a4 b4 c4 d4 NaN NaN NaN NaN
 5 NaN NaN NaN NaN a5 b5 c5 d5 a10 b10 c10 d10
 6 NaN NaN NaN NaN a6 b6 c6 d6 NaN NaN NaN NaN
 7 NaN NaN NaN NaN a7 b7 c7 d7 a11 b11 c11 d11

Lastly, just like we did when we concatenated row-wise, we can choose to
only keep the results when there are matching indices by using join ='inner'
.

print(pd.concat([df1, df3], axis=1, join='inner'))

 A B C D A C F H
 0 a0 b0 c0 d0 a8 b8 c8 d8
 2 a2 b2 c2 d2 a9 b9 c9 d9

4.5 Merging multiple datsets

The end of the previous section alluded to a few database concepts. The join
='inner' and the default join ='outer' parameters come from working
with databases when we want to merge tables.

Instead of simply having a row or column index that we want to concatenate
values to, there will be times when you have 2 or more dataframes that you
want to combine based on common data values. This is known in the database
world as performing a "join".

Pandas has a pd.join command that uses pd.merge under the hood. join will
merge dataframe objects by an index, but the merge command is much more
explicit and flexible. If you are only planning to merge dataframes by the row
index, you can look into the join function1.

We will be using the survey data in this series of examples.

person = pd.read_csv('../data/survey_person.csv')
site = pd.read_csv('../data/survey_site.csv')
survey = pd.read_csv('../data/survey_survey.csv')
visited = pd.read_csv('../data/survey_visited.csv')

1 http://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.join.html

print(person) print(survey)

 ident personal family taken person quant reading
0 dyer William Dyer 0 619 dyer rad 9.82
1 pb Frank Pabodie 1 619 dyer sal 0.13
2 lake Anderson Lake 2 622 dyer rad 7.80
3 roe Valentina Roerich 3 622 dyer sal 0.09
4 danforth Frank Danforth 4 734 pb rad 8.41
 5 734 lake sal 0.05
print(site) 6 734 pb temp -21.50
 7 735 pb rad 7.22

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.join.html

 name lat long 8 735 NaN sal 0.06
0 DR-1 -49.85 -128.57 9 735 NaN temp -26.00
1 DR-3 -47.15 -126.72 10 751 pb rad 4.35
2 MSK-4 -48.87 -123.40 11 751 pb temp -18.50
 12 751 lake sal 0.10
print(visited) 13 752 lake rad 2.19
 14 752 lake sal 0.09
 ident site dated 15 752 lake temp -16.00
0 619 DR-1 1927-02-08 16 752 roe sal 41.60
1 622 DR-1 1927-02-10 17 837 lake rad 1.46
2 734 DR-3 1939-01-07 18 837 lake sal 0.21
3 735 DR-3 1930-01-12 19 837 roe sal 22.50
4 751 DR-3 1930-02-26 20 844 roe rad 11.25
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

Currently, our data is split into multiple parts, where each part is an
observational unit. If we wanted to look at the dates at each site with the lat
long of the site. We would have to combine (and merge) multiple dataframes.
We do this with the merge function in pandas. merge is actually a DataFrame
method.

When we call this method, the dataframe that is called will be referred to the
one on the ' left '. Within the merge function, the first parameter is the '
right' dataframe. The next parameter is how the final merged result looks.
See Table 4-1 for more details. The next, we set the on parameter. This
specifies which columns to match on. If the left and right columns are not the
same name, we can use the left_on and right_on parameters instead.

Table 4-1: My caption

Pandas SQL Description

left left outer Keep all the keys from the left

right right outer Keep all the keys from the right

outer full outer Keep all the keys from both left and right

inner inner keep only the keys that exist in the left and right

4.5.1 one-to-one

The simplest type of merge we can do is when we have 2 dataframes where
we want to join one column to another column, and when the columns we want
to join on are

For this example I am going to modify the visited dataframe so there are no
duplicated site values.

visited_subset = visited.ix[[0, 2, 6],]

We can perform our one-to-one merge as follows:

the default value for 'how' is 'inner'
so it doesn't need to be specified
o2o_merge = site.merge(visited_subset,
 left_on='name', right_on='site')
print(o2o_merge)
 name lat long ident site dated
 0 DR-1 -49.85 -128.57 619 DR-1 1927-02-08
 1 DR-3 -47.15 -126.72 734 DR-3 1939-01-07
 2 MSK-4 -48.87 -123.40 837 MSK-4 1932-01-14

You can see here that we now have a new dataframe from 2 separate
dataframes where the rows were matched based on a particular set of columns.
In SQL speak, the columns used to match are called 'key(s)'.

4.5.2 many-to-one

If we choose to do the same merge, but this time without using the subsetted
visited dataframe, we would perform a many-to-one merge. This happens
when performing a merge and one of the dataframe has key values that repeat.

When this happens, the dataframe that contains the single observations will be
duplicated in the merge.

m2o_merge = site.merge(visited, left_on='name', right_on='site'
print(m2o_merge)
 name lat long ident site dated
 0 DR-1 -49.85 -128.57 619 DR-1 1927-02-08
 1 DR-1 -49.85 -128.57 622 DR-1 1927-02-10
 2 DR-1 -49.85 -128.57 844 DR-1 1932-03-22
 3 DR-3 -47.15 -126.72 734 DR-3 1939-01-07
 4 DR-3 -47.15 -126.72 735 DR-3 1930-01-12
 5 DR-3 -47.15 -126.72 751 DR-3 1930-02-26
 6 DR-3 -47.15 -126.72 752 DR-3 NaN
 7 MSK-4 -48.87 -123.40 837 MSK-4 1932-01-14

As you can see, the site information (name, lat, and long) were
duplicated and matched to the visited data.

4.5.3 many-to-many

Lastly, there will be times when we want to perform a match based on multiple
columns. This can also be performed.

Let's say we have 2 dataframes that come from the person merged with survey,
and another dataframe that comes from visited merged with survey.

ps = person.merge(survey, left_on='ident', right_on='person')
vs = visited.merge(survey, left_on='ident', right_on='taken'
print(ps)

 ident personal family taken person quant reading
 0 dyer William Dyer 619 dyer rad 9.82
 1 dyer William Dyer 619 dyer sal 0.13
 2 dyer William Dyer 622 dyer rad 7.80
 3 dyer William Dyer 622 dyer sal 0.09
 4 pb Frank Pabodie 734 pb rad 8.41
 5 pb Frank Pabodie 734 pb temp -21.50
 6 pb Frank Pabodie 735 pb rad 7.22
 7 pb Frank Pabodie 751 pb rad 4.35
 8 pb Frank Pabodie 751 pb temp -18.50
 9 lake Anderson Lake 734 lake sal 0.05
 10 lake Anderson Lake 751 lake sal 0.10
 11 lake Anderson Lake 752 lake rad 2.19

 12 lake Anderson Lake 752 lake sal 0.09
 13 lake Anderson Lake 752 lake temp -16.00
 14 lake Anderson Lake 837 lake rad 1.46
 15 lake Anderson Lake 837 lake sal 0.21
 16 roe Valentina Roerich 752 roe sal 41.60
 17 roe Valentina Roerich 837 roe sal 22.50
 18 roe Valentina Roerich 844 roe rad 11.25

print(vs)

 ident site dated taken person quant reading
 0 619 DR-1 1927-02-08 619 dyer rad 9.82
 1 619 DR-1 1927-02-08 619 dyer sal 0.13
 2 622 DR-1 1927-02-10 622 dyer rad 7.80
 3 622 DR-1 1927-02-10 622 dyer sal 0.09
 4 734 DR-3 1939-01-07 734 pb rad 8.41
 5 734 DR-3 1939-01-07 734 lake sal 0.05
 6 734 DR-3 1939-01-07 734 pb temp -21.50
 7 735 DR-3 1930-01-12 735 pb rad 7.22
 8 735 DR-3 1930-01-12 735 NaN sal 0.06
 9 735 DR-3 1930-01-12 735 NaN temp -26.00
 10 751 DR-3 1930-02-26 751 pb rad 4.35
 11 751 DR-3 1930-02-26 751 pb temp -18.50
 12 751 DR-3 1930-02-26 751 lake sal 0.10
 13 752 DR-3 NaN 752 lake rad 2.19
 14 752 DR-3 NaN 752 lake sal 0.09
 15 752 DR-3 NaN 752 lake temp -16.00
 16 752 DR-3 NaN 752 roe sal 41.60
 17 837 MSK-4 1932-01-14 837 lake rad 1.46
 18 837 MSK-4 1932-01-14 837 lake sal 0.21
 19 837 MSK-4 1932-01-14 837 roe sal 22.50
 20 844 DR-1 1932-03-22 844 roe rad 11.25

We can perform a many-to-many merge by passing the multiple columns to
match on in a python list.

ps_vs = ps.merge(vs,
 left_on=['ident', 'taken', 'quant', 'reading'
 right_on=['person', 'ident', 'quant', 'reading'

If we just take a look at the first row of data:

print(ps_vs.ix[0,])

 ident_x dyer
 personal William

 family Dyer
 taken_x 619
 person_x dyer
 quant rad
 reading 9.82
 ident_y 619
 site DR-1
 dated 1927-02-08
 taken_y 619
 person_y dyer
 Name: 0, dtype: object

Pandas will automatically add a suffix to a column name if there are collisions
in the name. the jx refers to values from the left dataframe, and the _y suffix
comes from values in the right dataframe.

4.6 Summary

There will be times when you need to combine various parts or data or
multiple datasets depending on the question you are trying to answer. One thing
to keep in mind, the data you need for analysis, does not necessarily mean the
best shape of data for storage.

The survey data used in the last example came in 4 separate parts that needed
to be merged together. After we merged the tables together, you will notice a
lot of redundant information across rows. From a data storage and entry point
of view, each of these duplications can lead to errors and data inconsistency.
This is what Hadley meant by "each type of observational unit forms a table".

Chapter 5. Missing Data

5.1 Introduction

Rarely will you be given a dataset without any missing values. There are many
representations of missing data. In databases they are NULL values, Certain
programming languages will use NA, and depending on where you get your
data, missing values can be an empty string, ’’ or even numeric values such as
88 or 99.

Pandas has displays missing values as NaN.

Concept map

1. Prior knowledge

(a) importing libraries

(b) slicing and indexing data

(c) using functions and methods

(d) using function parameters

Objectives

This chapter will cover:

1. What is a missing value

2. How are missing values created

3. How to recode and make calculations with missing values

5.2 What is a NaN value

We can get the NaN value from numpy. You may see missing values in python
used or displayed in a few ways: NaN, NAN, or nan. They are all equivalent.

Just import the numpy missing values ## TODO SEE APPENDIX
from numpy import NaN, NAN, nan

Missing values are different than other types of data, in that they don’t really
equal anything. The data is missing, so there is no concept of equality. NaN is
not be equivalent to 0 or an empty string, ’’.

We can illustrate this in python by testing it’s equality.

print(NaN == True) print(NaN == False)print(NaN == 0) print(NaN

 |False |False |False |False

To illustrate the lack of equality, missing values are also not equal to misisng
values.

print(NaN == NaN) print(NaN == nan) print(NaN == NAN) print(nan

 |False |False |False |False

Pandas has built-in methods to test for a missing value.

import pandas as pd

print(pd.isnull(NaN)) print(pd.isnull(nan)) print(pd.isnull(NAN))

 True True True

Pandas also has methods for testing non-missing values

print(pd.notnull(NaN)) print(pd.notnull(42)) print(pd.notnull(

 False True True

5.3 Where do missing values come from?

We can get missing values from loading in data with missing values, or from
the data munging process.

5.3.1 Load data

The survey data we used in Chapter 4 had a dataset, visited, which contained
missing data. When we loaded the data, pandas automatically found the
missing data cell, and gave us a dataframe with the NaN value in the
appropriate cell. In the read_csv function, there are three parameters that
relate to reading in missing values: na_values, keep default_na, and
na_filter .

na_values allow you to specify additional missing or NaN values. You can
either pass in a python str or list-like object for to be automatically coded as
missing values when the file is read. There are already default missing values,
such as NA, NaN, or nan, which is why this parameter is not always used.
Some health data will code 99 as a missing value; an example of a value you
would set in this field is na_values=[99].

keep_default_na is a bool that allows you to specify whether any additional
values need to be considered as missing. This parameter is True by default,
meaning, any additional missing values specified with the na_values
parameter will be appended to the list of missing values. However,
keep_default_na can also be set to keep default na=False to only use the
missing values specified in na_values

Lastly, na_filter is a bool that will specify whether or not any values will be
read as missing. The default value of na_filter =True means that missing
values will be coded as a NaN. If we assign na_filter =False, then nothing
will be recoded as missing. This can by though of as a means to tun off all the
parameters set for na values and keep_default_na, but it really is used when
you want a performance boost loading in data without missing values.

set the location for data
visited_file = ’../data/survey_visited.csv’

load data with default values
print(pd.read_csv(visited_file))

 ident site datedxs
 0 619 DR-1 1927-02-08
 1 622 DR-1 1927-02-10
 2 734 DR-3 1939-01-07
 3 735 DR-3 1930-01-12
 4 751 DR-3 1930-02-26
 5 752 DR-3 NaN
 6 837 MSK-4 1932-01-14
 7 844 DR-1 1932-03-22

load data without default missing values
print(pd.read_csv(visited_file,
 keep_default_na=False))

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

manually specify missing valu
print(pd.read_csv(visited_file,
 na_values=[’’
 keep_default_na=False))

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

5.3.2 Merged data

Chapter 4 showed how to combine datasets. Some of the examples in the
chapter showed missing values in the output. If we recreate the merged table
from Section 4.5.3, we will see missing values in the merged output.

visited = pd.read_csv(’../data/survey_visited.csv’)
survey = pd.read_csv(’../data/survey_survey.csv’)

print(visited)

 ident site dated
0 619 DR-1 1927-02-08
1 622 DR-1 1927-02-10
2 734 DR-3 1939-01-07
3 735 DR-3 1930-01-12
4 751 DR-3 1930-02-26
5 752 DR-3 NaN
6 837 MSK-4 1932-01-14
7 844 DR-1 1932-03-22

print(survey)

 taken person quant reading
0 619 dyer rad 9.82
1 619 dyer sal 0.13
2 622 dyer rad 7.80
3 622 dyer sal 0.09
4 734 pb rad 8.41
5 734 lake sal 0.05
6 734 pb temp -21.50
7 735 pb rad 7.22
8 735 NaN sal 0.06
9 735 NaN temp -26.00
10 751 pb rad 4.35
11 751 pb temp -18.50
12 751 lake sal 0.10
13 752 lake rad 2.19
14 752 lake sal 0.09
15 752 lake temp -16.00
16 752 roe sal 41.60
17 837 lake rad 1.46
18 837 lake sal 0.21
19 837 roe sal 22.50
20 844 roe rad 11.25

vs = visited.merge(survey, left_on=’ident’, right_on=’taken’)
print(vs)

 ident site dated taken person quant reading
0 619 DR-1 1927-02-08 619 dyer rad 9.82
1 619 DR-1 1927-02-08 619 dyer sal 0.13
2 622 DR-1 1927-02-10 622 dyer rad 7.80
3 622 DR-1 1927-02-10 622 dyer sal 0.09

4 734 DR-3 1939-01-07 734 pb rad 8.41
5 734 DR-3 1939-01-07 734 lake sal 0.05
6 734 DR-3 1939-01-07 734 pb temp -21.50
7 735 DR-3 1930-01-12 735 pb rad 7.22
8 735 DR-3 1930-01-12 735 NaN sal 0.06
9 735 DR-3 1930-01-12 735 NaN temp -26.00
10 751 DR-3 1930-02-26 751 pb rad 4.35
11 751 DR-3 1930-02-26 751 pb temp -18.50
12 751 DR-3 1930-02-26 751 lake sal 0.10
13 752 DR-3 NaN 752 lake rad 2.19
14 752 DR-3 NaN 752 lake sal 0.09
15 752 DR-3 NaN 752 lake temp -16.00
16 752 DR-3 NaN 752 roe sal 41.60
17 837 MSK-4 1932-01-14 837 lake rad 1.46
18 837 MSK-4 1932-01-14 837 lake sal 0.21
19 837 MSK-4 1932-01-14 837 roe sal 22.50
20 844 DR-1 1932-03-22 844 roe rad 11.25

5.3.3 User input values

Missing values could also be created by the user. This can come from creating
a vector of values from a calculation or a manually curated vector. To build on
the examples from Section 2.4, we can create our own data with missing
values. NaNs are valid values for Series and DataFrames.

missing value in a series
num_legs = pd.Series({’goat’: 4, ’amoeba’: nan})
print(num_legs)

amoeba NaN
goat 4.0
dtype: float64

missing value in a dataframe
scientists = pd.DataFrame({

’Name’: [’Rosaline Franklin’, ’William Gosset’],
’Occupation’: [’Chemist’, ’Statistician’],
’Born’: [’1920-07-25’, ’1876-06-13’],
’Died’: [’1958-04-16’, ’1937-10-16’],
’missing’: [NaN, nan]})

print(scientists)

 Born Died Name Occupation missing

0 1920-07-25 1958-04-16 Rosaline Franklin Chemist NaN
1 1876-06-13 1937-10-16 William Gosset Statistician NaN

You can also assign a column of missing values to a dataframe directly.

create a new dataframe
scientists = pd.DataFrame({

’Name’: [’Rosaline Franklin’, ’William Gosset’],
’Occupation’: [’Chemist’, ’Statistician’],
’Born’: [’1920-07-25’, ’1876-06-13’],
’Died’: [’1958-04-16’, ’1937-10-16’]})

assign a columns of missing values
scientists[’missing’] = nan

print(scientists)

 Born Died Name Occupation missing
0 1920-07-25 1958-04-16 Rosaline Franklin Chemist NaN
1 1876-06-13 1937-10-16 William Gosset Statistician NaN

5.3.4 Re-indexing

Lastly, another way to introduce missing values into your data is to reindex
your dataframe. This is useful when you want to add new indicies to your
dataframe, but still want to retain its original values. A common useage is
when your index represents some time interval, and you want to add more
dates.

If we wanted to only look at the years from 2000 to 2010 from the gapminder
plot in Section 1.7, we can perform the same grouped operations, subset the
data and then re-index it.

gapminder = pd.read_csv(’../data/gapminder.tsv’, sep=’\t’)
life_exp = gapminder.\
 groupby([’year’])[’lifeExp’].\
 mean()

print(life_exp)

year
1952 49.057620
1957 51.507401

1962 53.609249
1967 55.678290
1972 57.647386
1977 59.570157
1982 61.533197
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, dtype: float64

We can re-index by slicing the data (See Section 1.5)

note you can continue to chain the ‘ix’ from the code above
print(life_exp.ix[range(2000, 2010),])

year
2000 NaN
2001 NaN
2002 65.694923
2003 NaN
2004 NaN
2005 NaN
2006 NaN
2007 67.007423
2008 NaN
2009 NaN
Name: lifeExp, dtype: float64

Or subset the data separately, and use the reindex method.

subset
y2000 = life_exp[life_exp.index > 2000]
print(y2000)

year
2002 65.694923
2007 67.007423
Name: lifeExp, dtype: float64

reindex
print(y2000.reindex(range(2000, 2010)))

year
2000 NaN
2001 NaN

2002 65.694923
2003 NaN
2004 NaN
2005 NaN
2006 NaN
2007 67.007423
2008 NaN
2009 NaN
Name: lifeExp, dtype: float64

5.4 Working with missing data

Now that we know how missing values can be created, let’s see how they
behave when working with data.

5.4.1 Find and Count missing data

ebola = pd.read_csv(’../data/country_timeseries.csv’)

One way to look at the number of missing values is to count them.

count the number of non-missing values
print(ebola.count())

Date 122
Day 122
Cases_Guinea 93
Cases_Liberia 83
Cases_SierraLeone 87
Cases_Nigeria 38
Cases_Senegal 25
Cases_UnitedStates 18
Cases_Spain 16
Cases_Mali 12
Deaths_Guinea 92
Deaths_Liberia 81
Deaths_SierraLeone 87
Deaths_Nigeria 38
Deaths_Senegal 22
Deaths_UnitedStates 18
Deaths_Spain 16
Deaths_Mali 12
dtype: int64

If we wanted, we can subtract the number of non-missing from the total number
of rows.

num_rows = ebola.shape[0]
num_missing = num_rows - ebola.count()
print(num_missing)

Date 0
Day 0
Cases_Guinea 29
Cases_Liberia 39
Cases_SierraLeone 35
Cases_Nigeria 84
Cases_Senegal 97
Cases_UnitedStates 104
Cases_Spain 106
Cases_Mali 110
Deaths_Guinea 30
Deaths_Liberia 41
Deaths_SierraLeone 35
Deaths_Nigeria 84
Deaths_Senegal 100
Deaths_UnitedStates 104
Deaths_Spain 106
Deaths_Mali 110
dtype: int64

If you wanted to count the total number of missing values in your data, or count
the number of missing values for a particular columns, you can use the
count_nonzero function from numpy in conjunction with the isnull method.

import numpy as np
print(np.count_nonzero(ebola.isnull()))
1214
print(np.count_nonzero(ebola[’Cases_Guinea’].isnull()))
29

Another way to get missing data counts is to use the value_counts method on
a series. This will print a frequency table of values, if you use the dropna
parameter, you can also get a missing value count.

get the first 5 value counts from the Cases_Guinea column
print(ebola.Cases_Guinea.value_counts(dropna=False).head())

NaN 29

 86.0 3
 495.0 2
 390.0 2
 112.0 2
Name: Cases_Guinea, dtype: int64

5.4.2 Cleaning missing data

5.4.2.1 Recode/Replace

We Can use the fillna method to recode the missing values to another value.
For example, if we wanted the missing values to be recoded as a 0.

print(ebola.fillna(0).ix[0:10, 0:5])

 Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
 0 1/5/2015 289 2776.0 0.0 10030.0
 1 1/4/2015 288 2775.0 0.0 9780.0
 2 1/3/2015 287 2769.0 8166.0 9722.0
 3 1/2/2015 286 0.0 8157.0 0.0
 4 12/31/2014 284 2730.0 8115.0 9633.0
 5 12/28/2014 281 2706.0 8018.0 9446.0
 6 12/27/2014 280 2695.0 0.0 9409.0
 7 12/24/2014 277 2630.0 7977.0 9203.0
 8 12/21/2014 273 2597.0 0.0 9004.0
 9 12/20/2014 272 2571.0 7862.0 8939.0
 10 12/18/2014 271 0.0 7830.0 0.0

You can see if we use fillna , we can recode the values to a specific value. If
you look into the documentation, fillna , like many other pandas functions,
have a parameter for inplace. This simply means, the underlying data will be
automatically changed without creating a new copy with the changes. This is a
parameter you will want to use when your data gets larger and you want to be
more memory efficient.

5.4.2.2 Fill Forwards

We can use built-in methods to fill forwards or backwards. When we fill data
forwards, it means take the last known value, and use that value for the next
missing value. This way, missing values are replaced with the last
known/recorded value.

print(ebola.fillna(method=’ffill’).ix[0:10, 0:5])

 Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
0 1/5/2015 289 2776.0 NaN 10030.0
1 1/4/2015 288 2775.0 NaN 9780.0
2 1/3/2015 287 2769.0 8166.0 9722.0
3 1/2/2015 286 2769.0 8157.0 9722.0
4 12/31/2014 284 2730.0 8115.0 9633.0
5 12/28/2014 281 2706.0 8018.0 9446.0
6 12/27/2014 280 2695.0 8018.0 9409.0
7 12/24/2014 277 2630.0 7977.0 9203.0
8 12/21/2014 273 2597.0 7977.0 9004.0
9 12/20/2014 272 2571.0 7862.0 8939.0
10 12/18/2014 271 2571.0 7830.0 8939.0

If a column begins with a missing value, then it will remain missing because
there is no previous value to fill in.

5.4.2.3 Fill Backwards

We can also have pandas fill data backwards. When we fill data backwards,
the newest value is used to replace missing. This way, missing values are
replaced with the newest value.

print(ebola.fillna(method=’bfill’).ix[:, 0:5].tail())

 Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
117 3/27/2014 5 103.0 8.0 6.0
118 3/26/2014 4 86.0 NaN NaN
119 3/25/2014 3 86.0 NaN NaN
120 3/24/2014 2 86.0 NaN NaN
121 3/22/2014 0 49.0 NaN NaN

If a column ends with a missing value, then it will remain missing because
there is no new value to fill in.

5.4.2.4 interpolate

Interpolation is a small mini chapter on its own (TODO CHAPTER?). The
general gist is, you can have pandas use existing values to fill in missing
values.

print(ebola.interpolate().ix[0:10, 0:5])

 Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone
 0 1/5/2015 289 2776.0 NaN 10030.0
 1 1/4/2015 288 2775.0 NaN 9780.0
 2 1/3/2015 287 2769.0 8166.0 9722.0
 3 1/2/2015 286 2749.5 8157.0 9677.5
 4 12/31/2014 284 2730.0 8115.0 9633.0
 5 12/28/2014 281 2706.0 8018.0 9446.0
 6 12/27/2014 280 2695.0 7997.5 9409.0
 7 12/24/2014 277 2630.0 7977.0 9203.0
 8 12/21/2014 273 2597.0 7919.5 9004.0
 9 12/20/2014 272 2571.0 7862.0 8939.0
 10 12/18/2014 271 2493.5 7830.0 8647.5

The interpolate method has a method parameter that can change the
interpolation method.

5.4.2.5 Drop Missing values

The last way to work with missing data is to drop observations or variables
with missing data. Depending on how much data is missing, only keeping
complete case data can leave you with a useless dataset. Either the missing
data is not random, and dropping missing values will leave you with a biased
dataset, or keeping only complete data will leave you with not enough data to
run your analysis.

We can use the dropna method to drop missing data. There are a few ways we
can control how data can be dropped. The dropna method has a how parameter
that lets you specify whether a row (or column) is dropped when ’ any ’ or ’
all ’ the data is missing.

The thresh parameter lets you specify how many non-NA values you have
before dropping the row or column.

print(ebola.shape)
(122, 18)

If we only keep complete cases in our ebola dataset, we are only left with 1
row of data.

ebola_dropna = ebola.dropna()
print(ebola_dropna.shape)
(1, 18)
print(ebola_dropna)

 Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone \
19 11/18/2014 241 2047.0 7082.0 6190.0

 Cases_Nigeria Cases_Senegal Cases_UnitedStates Cases_Spain Cases_Mali \
19 20.0 1.0 4.0 1.0 6.0

 Deaths_Guinea Deaths_Liberia Deaths_SierraLeone Deaths_Nigeria \
19 1214.0 2963.0 1267.0 8.0

 Deaths_Senegal Deaths_UnitedStates aths_Spain Deaths_Mali
19 0.0 1.0 0.0 6.0

5.4.3 Calculations with missing data

Let’s say we wanted to look at the case counts for multiple regions. We can
add multiple regions together to get a new columns of case counts.

ebola[’Cases_multiple’] = ebola[’Cases_Guinea’] + \
 ebola[’Cases_Liberia’] + \
 ebola[’Cases_SierraLeone’]

We can look at the results by looking at the first 10 lines of the calculation.

ebola_subset = ebola.ix[:, [’Cases_Guinea’, ’Cases_Liberia’,
 ’Cases_SierraLeone’, ’Cases_multiple

print(ebola_subset.head(n=10))

 Cases_Guinea Cases_Liberia Cases_SierraLeone Cases_multiple
 0 2776.0 NaN 10030.0 NaN
 1 2775.0 NaN 9780.0 NaN
 2 2769.0 8166.0 9722.0 20657.0
 3 NaN 8157.0 NaN NaN
 4 2730.0 8115.0 9633.0 20478.0
 5 2706.0 8018.0 9446.0 20170.0
 6 2695.0 NaN 9409.0 NaN
 7 2630.0 7977.0 9203.0 19810.0
 8 2597.0 NaN 9004.0 NaN
 9 2571.0 7862.0 8939.0 19372.0

You can see that the only times a value for Cases_multiple was calculated,
was when there was no missing value for Cases_Guinea, Cases_Liberia ,
and Cases_SierraLeone. Calculations with missing values will typically
return a missing value, unless the function or method called has a means to
ignore missing values in its calculations.

An example of a built-in method that can ignore missing values is mean or sum.
These functions will typically have a skipna parameter that will still calculate
a value by skipping over the missing values.

skipping missing values is True by default
print(ebola.Cases_Guinea.sum(skipna = True))

 84729.0

print(ebola.Cases_Guinea.sum(skipna = False))

 nan

Summary

It is rare to have a dataset without any missing values. It is important to know
how to work with missing values because even when you are working with
data that is complete, missing values can still arise from your own data
munging. Here I began some of the basic methods of the data analysis process
that pertains to data validity. By looking at your data, and tabulating missing
values, you can start the process of assessing if the data you are given is of
enough quality for making decisions and inferences from your data.

Chapter 6. Tidy Data by Reshaping

6.1 Introduction

Hadley Wickham 1, one of the more prominent members in the R community,
talks about tidy data in a paper2 in the Journal of Statistical Software. Tidy
data is a framework to structure datasets so they can be easily analyzed and
visualized. It can be thought of as a goal one should aim for when cleaning
data. Once you understand what tidy data is, it will make your data analysis,
visualization, and collection much easier.

What is tidy data? Hadley Wickham’s paper defines it as such:

• each row is an observation

• each column is a variable

• each type of observational unit forms a table

This chapter will go through the various ways to tidy data from the Tidy Data
paper.

Concept Map

Prior knowledge:

1. function and method calls

2. subsetting data

3. loops

4. list comprehension

This Chapter:

• reshaping data

1. unpivot/melt/gather

2. pivot/cast/spread

3. subsetting

4. combining

(a) globbing

(b) concatenation

1 http://hadley.nz/

2 http://vita.had.co.nz/papers/tidy-data.pdf

Objectives

This chapter will cover:

1. unpivot/melt/gather columns into rows

2. pivot/cast/spread rows into columns

3. normalize data by separating a dataframe into multiple tables

4. assembling data from multiple parts

6.2 Columns contain values, not variables

Data can have columns that contain values instead of variables. This is usually
a convenient format for data collection and presentation.

6.2.1 Keep 1 column fixed

http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.pdf

We can use the data on income and religion in the United States from the Pew
Research Center to illustrate this example.

import pandas as pd
pew = pd.read_csv(’../data/tidy-data/data/pew_raw.csv’)

If we look at the data, we can see that not every column is a variable. The
values that relate to income are spread across multiple columns. The format
shown is great when presenting data in a table, but for data analytics, the table
needs to be reshaped such that we have a religion, income, and count
variables.

only show the first few columns
print(pew.ix[:, 0:6])
 religion <$10k $10-20k $20-30k $30-40k $40-50k
 0 Agnostic 27 34 60 81 76
 1 Atheist 12 27 37 52 35
 2 Buddhist 27 21 30 34 33
 3 Catholic 418 617 732 670 638
 4 Dont know/refused 15 14 15 11 10
 5 Evangelical Prot 575 869 1064 982 881
 6 Hindu 1 9 7 9 11
 7 Historically Black Prot 228 244 236 238 197
 8 Jehovah's Witness 20 27 24 24 21
 9 Jewish 19 19 25 25 30
 10 Mainline Prot 289 495 619 655 651
 11 Mormon 29 40 48 51 56
 12 Muslim 6 7 9 10 9
 13 Orthodox 13 17 23 32 32
 14 Other Christian 9 7 11 13 13
 15 Other Faiths 20 33 40 46 49
 16 Other World Religions 5 2 3 4 2
 17 Unaffiliated 217 299 374 365 341

This view of the data is also known as ‘wide’ data. In order to turn it into the
’long’ tidy data format, we will have to unpivot/melt/gather (depending on
which statistical programming language you use) our dataframe.

Pandas has a function called melt that will reshape the dataframe into a tidy
format. melt takes a few parameters:

• id_vars is a container (list, tuple, ndarray) that represents the variables that
will remain as-is

• value_vars are the columns you want to melt down (or unpivot) By default
it will melt all the columns not specified in the id_vars parameter

• var_name is a string for the new column name when the value_vars is
melted down. By defualt it will be called variable

• value_name is a string for the new column name that represents the values
for the var_name. By default it will be called value

we do not need to specify a value_vars since we want to pivot
all the columns except for the ’religion’ column
pew_long = pd.melt(pew, id_vars=’religion’)

print(pew_long.head())

 religion variable value
 0 Agnostic <$10k 27
 1 Atheist <$10k 12
 2 Buddhist <$10k 27
 3 Catholic <$10k 418
 4 Dont know/refused <$10k 15

print(pew_long.tail())

 religion variable value
 175 Orthodox Don't know/refused 73
 176 Other Christian Don't know/refused 18
 177 Other Faiths Don't know/refused 71
 178 Other World Religions Don't know/refused 8
 179 Unaffiliated Don't know/refused 597

We can change the defaults so that the melted/unpivoted columns are named.

pew_long = pd.melt(pew,
 id_vars=’religion’,
 var_name=’income’,
 value_name=’count’)

print(pew_long.head())

 religion income count
 0 Agnostic <$10k 27
 1 Atheist <$10k 12
 2 Buddhist <$10k 27
 3 Catholic <$10k 418

 4 Dont know/refused <$10k 15

print(pew_long.tail())
 religion income count
 175 Orthodox Don't know/refused 73
 176 Other Christian Don't know/refused 18
 177 Other Faiths Don't know/refused 71
 178 Other World Religions Don't know/refused 8
 179 Unaffiliated Don't know/refused 597

6.2.2 Keep multiple columns fixed

Not every dataset will have one column to hold still while you unpivot the rest.
If you look at the Billboard dataset:

billboard = pd.read_csv(’../data/tidy-data/data/billboard-raw.csv

look at the first few rows and columns
print(billboard.ix[0:5, 0:7])

 year artist track time date.entered wk1 wk2
 0 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87.0
 1 2000 2 Pac Baby Don't Cry 4:22 2000-02-26 87 82.0
 2 2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70.0
 3 2000 3 Doors Down Loser 4:24 2000-10-21 76 76.0
 4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15 57 34.0
 5 2000 98? Give Me Just One Nig... 3:24 2000-08-19 51 39.0

You can see here that each week is it’s own column. Again, there is nothing
nothing wrong with this form of data. It maybe easy to enter the data in this
form, and it is much quicker to understand when presented in a table. However,
there may be a time when you will need to melt the data. An example would be
when plotting weekly ratings in a faceted plot, since the facet variable needs to
be a columns in the dataframe.

billboard_long = pd.melt(
 billboard,
 id_vars=[’year’, ’artist’, ’track’, ’time’, ’date.entered’],
 var_name=’week’,
 value_name=’rating’)

print(billboard_long.head())
 year artist track time date.entered week rating

 0 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk1 91.0
 1 2000 2 Pac Baby Don't Cry 4:22 2000-02-26 wk1 87.0
 2 2000 3 Doors Down Kryptonite 3:53 2000-04-08 wk1 81.0
 3 2000 3 Doors Down Loser 4:24 2000-10-21 wk1 76.0
 4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15 wk1 57.0

print(billboard_long.tail())
 year artist track time date.entered week rating
24087 2000 Wright, Chely It Was 3:51 2000-03-04 wk76 NaN
24088 2000 Yankee Grey Another Nine Minutes 3:10 2000-04-29 wk76 NaN
24089 2000 Yearwood, Trisha Real Live Woman 3:55 2000-04-01 wk76 NaN
24090 2000 Ying Yang Twins Whistle While You Tw... 4:19 2000-03-18 wk76 NaN
24091 2000 Zombie Nation Kernkraft 400 3:30 2000-09-02 wk76 NaN

6.3 Columns contain multiple variables

There will be times when the columns represent multiple variables. This is
something that is common when working with health data. To illustrate this,
let’s look at the Ebola dataset.

ebola = pd.read_csv(’../data/ebola_country_timeseries.csv’)

print(ebola.columns)
 Index(['Date', 'Day', 'Cases_Guinea', 'Cases_Liberia',
 'Cases_SierraLeone',
 'Cases_Nigeria', 'Cases_Senegal', 'Cases_UnitedStates',
 'Cases_Spain',
 'Cases_Mali', 'Deaths_Guinea', 'Deaths_Liberia',
 'Deaths_SierraLeone',
 'Deaths_Nigeria', 'Deaths_Senegal', 'Deaths_UnitedStates',
 'Deaths_Spain', 'Deaths_Mali'],
 dtype='object')

print select rows
print(ebola.ix[:5, [0, 1, 2, 3, 10, 11]])
 Date Day Cases_Guinea Cases_Liberia Deaths_Guinea Deaths_Liberia
0 1/5/2015 289 2776.0 NaN 1786.0 NaN
1 1/4/2015 288 2775.0 NaN 1781.0 NaN
2 1/3/2015 287 2769.0 8166.0 1767.0 3496.0
3 1/2/2015 286 NaN 8157.0 NaN 3496.0
4 12/31/2014 284 2730.0 8115.0 1739.0 3471.0
5 12/28/2014 281 2706.0 8018.0 1708.0 3423.0

The column names Cases_Guinea and Deaths_Guinea actually contain 2

variables. The individual status, cases and deaths, and the county, Guinea. The
data is also in wide format that needs to be unpivoted.

ebola_long = pd.melt(ebola, id_vars=[’Date’, ’Day’])

print(ebola_long.head())

 Date Day variable value
 0 1/5/2015 289 Cases_Guinea 2776.0
 1 1/4/2015 288 Cases_Guinea 2775.0
 2 1/3/2015 287 Cases_Guinea 2769.0
 3 1/2/2015 286 Cases_Guinea NaN
 4 12/31/2014 284 Cases_Guinea 2730.0

print(ebola_long.tail())

 Date Day variable value
 1947 3/27/2014 5 Deaths_Mali NaN
 1948 3/26/2014 4 Deaths_Mali NaN
 1949 3/25/2014 3 Deaths_Mali NaN
 1950 3/24/2014 2 Deaths_Mali NaN
 1951 3/22/2014 0 Deaths_Mali NaN

6.3.1 Split and add columns individually (simple method)

Conceptually, the column of interest can be split by the underscore (_)). The
first part will be the new status column, and the second part will be the new
country column. This will require some string parsing and splitting in Python.
In Python, a string is an object, similar to how Pandas has a Series and
DataFrame object. Chapter ?? showed how Series can have various methods,
such as mean, and DataFrames have methods such as to_csv. Strings have
methods as well, in this case we will use the split method that takes a string
and will split the string up by a given delimiter. By default split will split the
string by a space, but we can pass in the underscore, , in our example. In order
to get access to the string methods, we need to use the str attribute.

get the variable column
access the string methods
and split the column by a delimiter
variable_split = ebola_long.variable.str.split(’_’)

print(variable_split[:5]) print(variable_split[:

 0 [Cases, Guinea] 1947 [Deaths, Mali]
 1 [Cases, Guinea] 1948 [Deaths, Mali]
 2 [Cases, Guinea] 1949 [Deaths, Mali]
 3 [Cases, Guinea] 1950 [Deaths, Mali]
 4 [Cases, Guinea] 1951 [Deaths, Mali]
 Name: variable, dtype: object Name: variable, dtype: object

We can see that after we split on the underscore, the values are returned in a
list. We know it’s a list because that’s how the split method works3, but the
visual cue is that the results are surrounded by square brackets.

3 https://docs.python.org/2/library/stdtypes.html#str.split

the entire container
print(type(variable_split))

class ’pandas.core.series.Series’>

the first element in the container
print(type(variable_split[0]))

class ’list’>

Now that we have column split into the various pieces, the next step is to
assign them to a new column. But first, we need to extract all the 0 index
elements for the status column and the 1 index elements for the country
column. To do so, we need to access the string methods again, and then use the
get method to get the index we want for each row.

status_values = variable_split.str.get(0)
country_values = variable_split.str.get(1)

 print(status_values[:5]) print(status_values[

 0 Cases 1947 Deaths
 1 Cases 1948 Deaths
 2 Cases 1949 Deaths
 3 Cases 1950 Deaths
 4 Cases 1951 Deaths
 Name: variable, dtype: object Name: variable, dtype: object

 print(status_values[:5]) print(status_values[

https://docs.python.org/2/library/stdtypes.html#str.split

 0 Guinea 1947 Mali
 1 Guinea 1948 Mali
 2 Guinea 1949 Mali
 3 Guinea 1950 Mali
 4 Guinea 1951 Mali
 Name: variable, dtype: object Name: variable, dtype: object

Now that we have the vectors we want, we can add them to our dataframe

ebola_long[’status’] = status_values
ebola_long[’country’] = country_values

print(ebola_long.head())
 Date Day variable value status country
 0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
 1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
 2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
 3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
 4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea

6.3.2 Split and combine in a single step (simple method)

We can do the same thing as before, and exploit the fact that the vector returned
is in the same order as our data. We can concatenate (Chapter 4) the new
vector or our original data.

variable_split = ebola_long.variable.str.split('_', expand=True
variable_split.columns = ['status', 'country']
ebola_parsed = pd.concat([ebola_long, variable_split], axis=1

print(ebola_parsed.head())

 Date Day variable value status country
 0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
 1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
 2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
 3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
 4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea

print(ebola_parsed.tail())

 Date Day variable value status country
 1947 3/27/2014 5 Deaths_Mali NaN Deaths Mali
 1948 3/26/2014 4 Deaths_Mali NaN Deaths Mali
 1949 3/25/2014 3 Deaths_Mali NaN Deaths Mali

 1950 3/24/2014 2 Deaths_Mali NaN Deaths Mali
 1951 3/22/2014 0 Deaths_Mali NaN Deaths Mali

6.3.3 Split and combine in a single step (more complicated method)

We can accomplish the same result in a single step by taking advantage of the
fact that the split results return a list of 2 elements, where each element will be
a new column. We can combine the list of split items with the built-in zip
function (TODO APPENDIX).

zip takes a set of iterators (lists, tuples, etc.) and creates a new container that
is made of the input iterators, but each new container created is the same index
from the input containers.

For example, if we have 2 lists of values:

constants = ['pi', 'e']
values = ['3.14', '2.718']

we can zip the values together as such:

we have to call list on the zip function
to show the contents of the zip object
this is because in Python 3 zip returns an iterator.
print(list(zip(constants, values)))

 [('pi', '3.14'), ('e', '2.718')]

Each element now has the constant matched with its corresponding value.
Conceptually, each container is like a side of a zipper. When we zip the
containers, the indices are matched up and returned.

Another way to visualize what zip is doing is taking each container passed
into zip and stacking them on top of each other (think row wise concatenation
in Section 4.4.1) creating a dataframe of sorts. zip then returns the values
column-by-column in a tuple.

We can use the same ebolaJong . variable . str. split (' _') to
split the values in the column. However, since the result is already a container
(a Series object), we need to unpack it such that it is the contents of the

container (each status-country list) not the container itself (the series)

The asterisk, *, in python is used to unpack containers4. When we zip the
unpacked containers, it is the same as creating the status_values and
country .values above. We can then assign the vectors to the columns
simultaneously using multiple assignment (TODO APPENDIX MULTIPLE
ASSIGNMENT).

note we can also use:
ebola_long['status'], ebola_long['country'] =
zip(*ebola_long['variable']str.split('_'))
ebola_long['status'], ebola_long['country'] =
zip(*ebola_long.variable.str.split('_'))

print(ebola_long head())

 Date Day variable value status country
 0 1/5/2015 289 Cases_Guinea 2776.0 Cases Guinea
 1 1/4/2015 288 Cases_Guinea 2775.0 Cases Guinea
 2 1/3/2015 287 Cases_Guinea 2769.0 Cases Guinea
 3 1/2/2015 286 Cases_Guinea NaN Cases Guinea
 4 12/31/2014 284 Cases_Guinea 2730.0 Cases Guinea

6.4 Variables in both rows and columns

At times data will be in a shape where variables are in both rows and
columns. That is, some combination of the previous sections of this chapter.
Most of the methods to tidy up the data have already been presented. What is
left to show is what happens if a column of data actually holds 2 variables
instead of 1. In this case, we will have to pivot or cast the variable into
separate columns.

4 https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists

weather = pd.read_csv('../data/tidy-data/data/weather-raw.csv')
print(weather.ix[:5, :12])
 id year month element d1 d2 d3 d4 d5 d6 d7 d8
 0 MX17004 2010 1 tmax NaN NaN NaN NaN NaN NaN NaN NaN
 1 MX17004 2010 1 tmin NaN NaN NaN NaN NaN NaN NaN NaN
 2 MX17004 2010 2 tmax NaN 27.3 24.1 NaN NaN NaN NaN NaN
 3 MX17004 2010 2 tmin NaN 14.4 14.4 NaN NaN NaN NaN NaN

https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists

 4 MX17004 2010 3 tmax NaN NaN NaN NaN 32.1 NaN NaN NaN
 5 MX17004 2010 3 tmin NaN NaN NaN NaN 14.2 NaN NaN NaN

In the weather data, there are minimum and maximum (tmin and tmax values
in the element column, respectively) temperatures recorded for each day (d1,
d2, d31) of the month (month). The element column contains variables that
need to be casted/pivoted to become new columns, and the day variables, need
to be melted into row vales. Again, there is nothing wrong with the data in the
current format. It is simply not in a shape for analysis, but can be helpful when
presenting data in reports.

Let's first melt/unpivot the day values

weather_melt = pd.melt(weather,
 id_vars=['id', 'year', 'month', 'element'
 var_name = 'day' ,
 value_name='temp')

print(weather_melt.head())

 id year month element day temp
 0 MX17004 2010 1 tmax d1 NaN
 1 MX17004 2010 1 tmin d1 NaN
 2 MX17004 2010 2 tmax d1 NaN
 3 MX17004 2010 2 tmin d1 NaN
 4 MX17004 2010 3 tmax d1 NaN

print(weather_melt.tail())

 id year month element day temp
 677 MX17004 2010 10 tmin d31 NaN
 678 MX17004 2010 11 tmax d31 NaN
 679 MX17004 2010 11 tmin d31 NaN
 680 MX17004 2010 12 tmax d31 NaN
 681 MX17004 2010 12 tmin d31 NaN

The next, we need to pivot up the variables stored in the element column. This
is also refereed to as casting or spreading in other statistical languages.

One of the main differences from pivot_table and melt, is that melt is a
function within pands and pivot_table is a method we call on a DataFrame
object.

weather_tidy = weather_melt.pivot_table(
 index=['id', 'year', 'month', 'day'],
 columns = 'element' ,
 values='temp'

If we look at the pivoted table, we will notice that each value in the element
column is now a separate column. We can leave it in its current state, but we
can also flatten the hierarchical columns

weather_tidy_flat = weather_tidy.reset_index()

print(weather_tidy_flat head())

 element id year month day tmax tmin
 0 MX17004 2010 1 d1 NaN NaN
 1 MX17004 2010 1 d10 NaN NaN
 2 MX17004 2010 1 d11 NaN NaN
 3 MX17004 2010 1 d12 NaN NaN
 4 MX17004 2010 1 d13 NaN NaN

likewise, we can perform those methods without the intermediate dataframe as
such:

weather_tidy = weather_melt \
 pivot_table(
 index=['id', 'year', 'month', 'day'],
 columns='element',
 values='temp').\
reset_index()

print(weather_tidy head())

 element id year month day tmax tmin
 0 MX17004 2010 1 d1 NaN NaN
 1 MX17004 2010 1 d10 NaN NaN
 2 MX17004 2010 1 d11 NaN NaN
 3 MX17004 2010 1 d12 NaN NaN
 4 MX17004 2010 1 d13 NaN NaN

6.5 Multiple Observational Units in a table
(Normalization)

One of the simplest ways of knowing if multiple observational units are

represented in a table is by looking at each of the rows, and taking note of any
cells or values that are being repeated from row to row. This is very common
in government education administration data where student demographics are
reported for each student for each year the student is enrolled.

If we look at the billboard data we cleaned in Section 6.2.2:

print(billboard_long head())
 year artist track time date.entered week rating
 0 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk1 91.0
 1 2000 2 Pac Baby Don't Cry 4:22 2000-02-26 wk1 87.0
 2 2000 3 Doors Down Kryptonite 3:53 2000-04-08 wk1 81.0
 3 2000 3 Doors Down Loser 4:24 2000-10-21 wk1 76.0
 4 2000 504 Boyz Wobble Wobble 3:35 2000-04-15 wk1 57.0

and if we subset (Section 2.6.1) on a particular track:

print(billboard_long[billboard_long.track == 'Loser'].head())

 year artist track time date.entered week rating
 3 2000 3 Doors Down Loser 4:24 2000-10-21 wk1 76.0
 320 2000 3 Doors Down Loser 4:24 2000-10-21 wk2 76.0
 637 2000 3 Doors Down Loser 4:24 2000-10-21 wk3 72.0
 954 2000 3 Doors Down Loser 4:24 2000-10-21 wk4 69.0
 1271 2000 3 Doors Down Loser 4:24 2000-10-21 wk5 67.0

We can see that this table actually holds 2 types of data: the track information
and weekly ranking. It would be better to store the track information in a
separate table. This way, the information stored in the year, artist , track,
and time columns are not repeated in the dataset. This is particularly important
if the data is manually entered. By repeating the same values over and over
during data entry, one risks having inconsistent data.

What we should do in this case is to have the year, artist, track, time,
and date.entered in a new dataframe and each unique set of values be
assigned a unique ID. We can then use this unique ID in a second dataframe that
represents a song, date, week number, and ranking. This entire process can be
thought of as reversing the steps in concatenating and merging data in Chapter
4.

billboard_songs = billboard_long[['year', 'artist', 'track'
print(billboard_songs.shape)

 (24092, 4)

We know there are duplicate entries in this dataframe, so we need to drop the
duplicate rows.

billboard_songs = billboard_songs.drop_duplicates() print(billboard_songs.shape)
 (317, 4)

We can then assign a unique value to each row of data.

billboard_songs['id'] = range(len(billboard_songs))
print(billboard_songs.head(n=10))

 year artist track time id
 0 2000 2Ge+her The Hardest Part Of ... 3:15 0
 1 2000 2 Pac Baby Don't Cry 4:22 1
 2 2000 3 Doors Down Kryptonite 3:53 2
 3 2000 3 Doors Down Loser 4:24 3
 4 2000 504 Boyz Wobble Wobble 3:35 4
 5 2000 98? Give Me Just One Nig... 3:24 5
 6 2000 Aaliyah I Don't Wanna 4:15 6
 7 2000 Aaliyah Try Again 4:03 7
 8 2000 Adams, Yolanda Open My Heart 5:30 8
 9 2000 Adkins, Trace More 3:05 9

Now that we have a separate dataframe about songs, we can use the newly
created id column to match a song to its weekly ranking.

Merge the song dataframe to the original dataset
billboard_ratings = billboard_long.merge(billboard_songs, on=
'artist', 'track', 'time'])
print(billboard_ratings shape)

 (24092, 8)

print(billboard_ratings head())

 year artist track time date.entered week rating id
 0 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk1 91.0 0
 1 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk2 87.0 0
 2 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk3 92.0 0
 3 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk4 NaN 0
 4 2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 wk5 NaN 0

Finally, we subset the columns to the ones we want in our ratings dataframe.

billboard_ratings = billboard_ratings[['id', 'date.entered', 'week'
print(billboard_ratings head())

 id date.entered week rating
 0 0 2000-09-02 wk1 91.0
 1 0 2000-09-02 wk2 87.0
 2 0 2000-09-02 wk3 92.0
 3 0 2000-09-02 wk4 NaN
 4 0 2000-09-02 wk5 NaN

6.6 Observational units across multiple tables

The last bit of data tidying involves having the same type of data being spread
across multiple datasets. This has already been covered in Chapter 4 when we
discussed data concatenation and merging. A reason why data would be split
across multiple files would be size. By splitting up data into various parts,
each part would be smaller. This may be good to share data on the Internet or
email since many services limit the size of a file that can be opened or shared.
Another reason why a dataset would be split into multiple parts would be from
the data collection process. For example, a separate data containing stock
information could be created for each day.

I've already covered how to merge and concatenate data, but here I will show
you ways we can quickly load multiple data sources and assemble them
together.

The Unified New York City Taxi and Uber Data is a good example to show
this. The entire dataset has over 1.3 billion taxi and Uber trips from New York
City, and has over 140 files.

Here for illustration purposes, we only work with 5 of these data files. When
the same data is broken into multiple parts, they typically have a structured
naming pattern associated with it.

In the NYC Taxi example, all of the raw taxi trips have the pattern
fhv_tripdata_YYYY_XX.csv, where YYYY represents the year (e.g., 2015),
and XX represents the part number. We can use the a simple pattern matching
function from the glob library in Python to get a list of all the filenames that
match a particular pattern.

import glob

get a list of the csv files from the nyc-taxi data folder
nyc_taxi_data = glob.glob('../data/nyc-taxi/*.csv')
print(nyc_taxi_data)

 ['../data/nyc-taxi/fhv_tripdata_2015-03.csv', '../data/nyc-
 taxi/fhv_tripdata_2015-02.csv', '../data/nyc-
 taxi/fhv_tripdata_2015-04.csv', '../data/nyc-
 taxi/fhv_tripdata_2015-05.csv', '../data/nyc-
 taxi/fhv_tripdata_2015-01.csv']

Now that we have a list of filenames we want to load, we can load each file
into a dataframe.

We can choose to load each file individually like we have been doing so far.

taxi1 = pd.read_csv(nyc_taxi_data[0])
taxi2 = pd.read_csv(nyc_taxi_data[1])
taxi3 = pd.read_csv(nyc_taxi_data[2])
taxi4 = pd.read_csv(nyc_taxi_data[3])
taxi5 = pd.read_csv(nyc_taxi_data[4])

We can look at our data and see how they can be nicely stacked (concatenated)
on top of each other.

print(taxi1.head(n=2))
print(taxi2.head(n=2))
print(taxi3.head(n=2))
print(taxi4.head(n=2))
print(taxi5.head(n=2))
 Dispatching_base_num Pickup_date locationID
 0 B00029 2015-03-01 00:02:00 213.0
 1 B00029 2015-03-01 00:03:00 51.0
 Dispatching_base_num Pickup_date locationID
 0 B00013 2015-02-01 00:00:00 NaN
 1 B00013 2015-02-01 00:01:00 NaN
 Dispatching_base_num Pickup_date locationID
 0 B00001 2015-04-01 04:30:00 NaN
 1 B00001 2015-04-01 06:00:00 NaN
 Dispatching_base_num Pickup_date locationID
 0 B00001 2015-05-01 04:30:00 NaN
 1 B00001 2015-05-01 05:00:00 NaN
 Dispatching_base_num Pickup_date locationID
 0 B00013 2015-01-01 00:30:00 NaN

 1 B00013 2015-01-01 01:22:00 NaN

We can concatenate them just like in Chapter 4.

shape of each dataframe
print(taxi1 shape)
print(taxi2 shape)
print(taxi3 shape)
print(taxi4 shape)
print(taxi5 shape)

(3281427, 3)
(3126401, 3)
(3917789, 3)
(4296067, 3)
(2746033, 3)

concatenate the dataframes together
taxi = pd.concat([taxi1, taxi2, taxi3, taxi4, taxi5])

shape of final concatenated taxi data
print(taxi shape)

(17367717, 3)

However, manually saving each dataframe will get tedious when there are
many parts the data is split into. Instead we can automate the process using
loops and list comprehensions

6.6.1 Load multiple files using a loop

The easier way is to first create an empty list, use a loop to iterate though each
of the csv files, load the csv file into a pandas dataframe, and finally append
the dataframe to the list.

The final type of data we want is a list of dataframes because the concat
function takes a list of dataframes to concatenate.

create an empty list to append to list_taxi_df = []
loop though each csv filename
for csv_filename in nyc_taxi_data:
 # you can choose to print the filename for debugging

 # print(csv_filename)

 # load the csv file into a dataframe
 df = pd.read_csv(csv_filename)

 # append the dataframe to the list that will hold the dataframes
 list_taxi_df append(df)

print the length of the dataframe
print(len(list_taxi_df))
type of the first element
print(type(list_taxi_df[0]))
<class 'pandas.core.frame.DataFrame'>
look at the head of the first dataframe
print(list_taxi_df[0].head())
 Dispatching_base_num Pickup_date locationID
 0 B00029 2015-03-01 00:02:00 213.0
 1 B00029 2015-03-01 00:03:00 51.0
 2 B00029 2015-03-01 00:11:00 3.0
 3 B00029 2015-03-01 00:11:00 259.0
 4 B00029 2015-03-01 00:13:00 174.0

Now that we have a list of dataframes, we can concatentate them.

taxi_loop_concat = pd.concat(list_taxi_df)
print(taxi_loop_concat shape)
 (17367717, 3)
Did we get the same results as the manual laod and concatenation?
print(taxi.equals(taxi_loop_concat))
 True

6.6.2 Load multiple files using a list comprehension

Python has an idiom for looping though something and adding it to a list. It is
called a list comprehension.

The loop above which, I will show again without the comments, can be written
in a list comprehension (TODO APPENDIX).

the loop code without comments

list_taxi_df = []
for csv_filename in nyc_taxi_data:
 df = pd.read_csv(csv_filename)

 list_taxi_df append(df)

same code in a list comprehension
list_taxi_df_comp = [pd.read_csv(csv_filename) for csv_filename

The result from our list comprehension is a list, just like the loop example
above.

print(type(list_taxi_df_comp))
 <class 'list'>

Finally, we can concatenate the results just like before.

taxi_loop_concat_comp = pd.concat(list_taxi_df_comp)

are the concatenated dataframes the same?
print(taxi_loop_concat_comp equals(taxi_loop_concat))
 True

6.7 Summary

Here I showed you how we can reshape data to a format that is conducive for
data analysis, visualization, and collection. We followed Hadley Wickham's
Tidy Data paper to show the various functions and methods to reshape our
data. This is an important skill since various functions will need data in a
certain shape, tidy or not, in order to work. Knowing how to reshape your data
will be an important still as a data scientist and analyst.

	Chapter 1. Pandas Dataframe basics
	Chapter 2. Pandas data structures
	Chapter 3. Introduction to Plotting
	Chapter 4. Data Assembly
	Chapter 5. Missing Data
	Chapter 6. Tidy Data by Reshaping

