
Python
Graphics

A Reference for Creating 2D and 3D Images
—
B.J. Korites

Python Graphics
A Reference for Creating 2D and

3D Images

B.J. Korites

Python Graphics

ISBN-13 (pbk): 978-1-4842-3377-1 ISBN-13 (electronic): 978-1-4842-3378-8
https://doi.org/10.1007/978-1-4842-3378-8

Library of Congress Control Number: 2018946635

Copyright © 2018 by B.J. Korites

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233771. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

B.J. Korites
Duxbury, Massachusetts, USA

https://doi.org/10.1007/978-1-4842-3378-8

For Pam

v

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Table of Contents

Chapter 1: Essential Python Commands and Functions ��� 1
1.1 Programming Style ... 2

1.2 The Plotting Area ... 3

1.3 Establishing the Size of the Plotting Area ... 4

1.4 Importing Plotting Commands .. 6

1.5 Displaying the Plotting Area .. 8

1.6 The Plotting Grid .. 8

1.7 Saving a Plot ... 8

1.8 Grid Color .. 9

1.9 Tick Marks ... 9

1.10 Custom Grid Lines ... 11

1.11 Labelling the Axes ... 13

1.12 The Plot Title ... 14

1.13 Colors .. 15

1.13.1 Color Mixing .. 16

1.13.2 Color Intensity... 19

1.14 Overplotting .. 20

1.15 Background Color ... 23

1.16 The Plotting Area Shape .. 23

1.17 How to Correct Shape Distortions ... 26

1.17.1 Applying a Scale Factor When Plotting ... 27

1.17.2 The Best Way: Scaling the Axes in plt.axis() ... 27

vi

1.18 Coordinate Axes .. 29

1.19 Commonly Used Plotting Commands and Functions .. 30

1.19.1 Points and Dots Using scatter() .. 31

1.19.2 Lines Using plot() ... 32

1.19.3 Arrows .. 33

1.19.4 Text ... 34

1.19.5 Lists, Tuples, and Arrays ... 36

1.19.6 Arrays ... 41

1.19.7 arange() ... 42

1.19.8 range() ... 43

1.20 Summary... 43

 Chapter 2: Graphics in Two Dimensions �� 45
2.1 Lines from Dots ... 45

2.2 Dot Art ... 50

2.3 Circular Arcs from Dots ... 52

2.4 Circular Arcs from Line Segments .. 59

2.5 Circles ... 60

2.6 Dot Discs ... 64

2.7 Ellipses .. 68

2.8 2D Translation ... 75

2.9 2D Rotation ... 78

2.10 Summary... 100

Chapter 3: Graphics in Three Dimensions �� 101
3.1 The Three-Dimensional Coordinate System .. 101

3.2 Projections onto the Coordinate Planes .. 104

3.3 Rotation Around the y Direction .. 106

3.4 Rotation Around the x Direction .. 109

3.5 Rotation Around the z Direction .. 111

3.6 Separate Rotations Around the Coordinate Directions .. 113

3.7 Sequential Rotations Around the Coordinate Directions ... 121

Table of ConTenTs

vii

3.8 Matrix Concatenation .. 129

3.9 Keyboard Data Entry with Functional Program Structure ... 133

3.10 Summary... 141

Chapter 4: Perspective ��� 143
4.1 Summary... 152

Chapter 5: Intersections ��� 153
5.1 Line Intersecting a Rectangular Plane .. 153

5.2 Line Intersecting a Triangular Plane .. 166

5.3 Line Intersecting a Circle .. 181

5.4 Line Intersecting a Circular Sector .. 181

5.5 Line Intersecting a Sphere .. 187

5.6 Plane Intersecting a Sphere .. 196

5.7 Summary... 201

Chapter 6: Hidden Line Removal ��� 203
6.1 Box .. 203

6.2 Pyramid ... 212

6.3 Planes ... 218

6.4 Sphere ... 225

6.5 Summary... 233

Chapter 7: Shading ��� 235
7.1 Shading a Box ... 236

7.2 Shading a Sphere .. 246

7.3 Summary... 253

Chapter 8: 2D Data Plotting �� 255
8.1 Linear Regression ... 265

8.2 Function Fitting ... 269

8.3 Splines .. 275

8.4 Summary... 283

Table of ConTenTs

viii

Chapter 9: 3D Data Plotting �� 285
9.1 3D Surfaces... 297

9.2 3D Surface Shading .. 305

9.3 Summary... 319

Chapter 10: Demonstrations ��� 321
10.1 Saturn ... 321

10.2 Solar Radiation .. 331

10.2.1 Photons and the Sun .. 331

10.2.2 Max Planck’s Black Body Radiation .. 333

10.2.3 The Sun’s Total Power Output ... 334

10.3 Earth’s Irradiance .. 344

10.3.1 The Earth Sun Model .. 346

10.4 Summary... 351

Appendix A: Where to Get Python ��� 353

Appendix B: Planck’s Radiation Law and the Stefan-Boltzmann Equation ����������� 355

 Index ��� 359

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-3378-8_10#Sec555

ix

About the Author

B.J. Korites has been involved in engineering and scientific

applications of computers for his entire career. He has

been an educator, consultant, and author of more than

ten books on geometric modelling, computer graphics,

artificial intelligence, simulation of physical processes,

structural analysis, and the application of computers

in science and engineering. He has been employed by

Northrop Corporation, the Woods Hole Oceanographic

Institute, Arthur D. Little, Itek, and Worcester Polytech.

He has consulted for Stone and Webster Engineering, Gould Inc, Wyman Gordon, CTI

Cryogenics, the US Navy, Aberdeen Proving Grounds, and others. Early in his career he

developed mathematics and software that would find physical interferences between

three-dimensional solid objects. This found wide application in the design of nuclear

power plants, submarines, and other systems with densely packed spaces. He enjoys

sailing and painting maritime landscapes in oils. He holds degrees from Tufts and Yale.

xi

About the Technical Reviewer

Andrea Gavana has been programming in Python for

almost 15 years and dabbling with other languages since the

late nineties. He graduated from university with a Master’s

degree in Chemical Engineering, and he is now a Senior

Reservoir Engineer working for Maersk Oil in Copenhagen,

Denmark.

Andrea enjoys programming at work and for fun, and

he has been involved in multiple open source projects, all

Python-based. One of his favorite hobbies is Python coding,

but he is also fond of cycling, swimming, and cozy dinners

with family and friends.

xiii

Acknowledgments

I would like to thank my wife, Pam, for her patience during the many long days and

nights that I spent writing this book and for her understanding of the distant stare I

sometimes had while off in another world thinking of math and Python, two of life’s great

joys. I would also like to thank everyone at Apress, especially editors Todd Green and Jill

Balzano, who made the production of this book a fast and seamless process.

1
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_1

CHAPTER 1

Essential Python
Commands and Functions
In this chapter, you will learn the essential Python commands and functions you

will need to produce the illustrations shown in this book. You will learn how to use

Python’s basic plotting functions, set up a plotting area, create a set of two-dimensional

coordinate axes, and use basic plotting primitives (the dot, the line, and the arrow),

which are the building blocks you will use to construct images throughout this book. In

Chapter 2, you will learn how to use these primitives to build two-dimensional images

and then translate and rotate them. In Chapter 3, you will extend these concepts to three

dimensions. Also in this chapter you will learn about colors, how to apply text to your

plots, including the use of Latex commands, and the use of lists and arrays. By the last

chapter, you will be able to create images such as Figure 1-1.

Figure 1-1. Saturn

2

1.1 Programming Style
First a note on the programming style used in this book. We all have preferences when

it comes to style. I favor a clear, top-down, open style. Many programmers try to reduce

their code to as few lines as possible. That may be fine in practice but in an instructional

text, such as we have here, I believe it is better to proceed slowly in small, simple steps.

The intention is to keep everything clear and understandable. Since I do not know the

skill level of the readers, and since I want to make this book accessible to as wide an

audience as possible, I generally start each topic from an elementary level, although I do

assume some familiarity with the Python language. If you are just learning Python, you

will benefit from the material in this first chapter. If you are an accomplished Pythoner,

you could probably skip it and move on to Chapter 2.

Some Python developers advocate using long descriptive names for variables such

as “temperature” rather than “T.” I find excessively long variable names make the code

difficult to read. It’s a matter of preference. With relatively short programs such as we

have in this book, there’s no need for complex programming. Try to adopt a style that is

robust rather than elegant but fragile.

My programs usually have the same structure. The first few statements are generally

import numpy as np, import matplotlib.pyplot as plt, and so on. Sometime I will

import from the math library with from math import sin, cos, radians, sqrt. These are

commonly used functions in graphics programming. Importing them separately in

this way eliminates the need to use prefixes as in np.sin(); you can just use sin().

Then I most often define the plotting area with plt.axis([0,150,100,0]). As explained in

Section 1.2, these values, where the x axis is 50% wider than the y axis, produce a round

circle and a square square without reducing the size of the plotting area. At this point,

axes can be labelled and the plot titled if desired. Next, I usually define parameters

(such as diameters, time constants, and so on) and lists. Then I define functions.

Finally, in lengthy programs, at the bottom I put a control section that invokes the

functions in the proper order.

Including plt.axis('on') plots the axes; plt.grid(True) plots a grid. They are very

convenient options when developing graphics. However, if I do not want the axes or grid

to show in the final output, I replace these commands with plt.axis('off') and

plt.grid(False). The syntax must be as shown here. See Section 1.10 to learn how to

create your own grid lines if you are not satisfied with Python’s defaults.

Chapter 1 essential python Commands and FunCtions

3

I often begin development of graphics by using the scatter() function which

produces what I call scatter dots. They are fast and easy to use and are very useful in the

development stage. If kept small enough and spaced closely together, dots can produce

acceptable lines and curves. However, they can sometimes appear a bit fuzzy so, after I

have everything working right, I will often go back and replace the dots with short line

segments using either arrows via plt.arrow() or lines via plt.plot(). There is another

aspect to the choice of dots or lines: which overplots which. You don’t want to create

something with dots and then find lines covering it up. This is discussed in Section 1.14.

Some variants of Python require the plt.show() statement at the end to plot graphics.

My setup, Anaconda with Spyder and Python 3.5 (see Appendix A for installation

instructions), does not require this but I include it anyway since it serves as a marker for

the end of the program. Finally, press the F5 key or click on the Run button at the top to

see what you have created. After you are satisfied, you can save the plot by right-clicking

it and specifying a location.

Regarding the use of lists, tuples and arrays, they can be a great help, particularly

when doing graphics programming that involves a lot of data points. They are explained

in Section 1.19.5. An understanding of them, together with a few basic graphics

commands and techniques covered in this chapter, are all you need to create the

illustrations and images you see in this book.

1.2 The Plotting Area
A computer display with a two-dimensional coordinate system is shown in Figure 1-2.

In this example, the origin of the x,y coordinate axes, (x=0, y=0), is located in the center

of the screen. The positive x axis runs from the origin to the right; the y axis runs from

the origin vertically downward. As you will see shortly, the location of the origin can be

changed as can the directions of the x and y axes. Also shown is a point p at coordinates

(x,y), which are in relation to the x and y axes.

The direction of the y axis pointing down in Figure 1-2 may seem a bit unusual.

When plotting data or functions such as y=cos(x) or y=exp(x), we usually think of y as

pointing up. But when doing technical graphics, especially in three dimensions, as you

will see later, it is more intuitive to have the y axis point down. This is also consistent

with older variants of BASIC where the x axis ran along the top of the screen from left to

right and the y axis ran down the left side. As you will see, you can define y to point up or

down, whichever best suits what you are plotting.

Chapter 1 essential python Commands and FunCtions

4

1.3 Establishing the Size of the Plotting Area
The plotting area contains the graphic image. It always appears the same physical size

when displayed in the Spyder output pane. Spyder is the programming environment

(see Appendix A). However, the numerical size of the plotting area, and of the values

of the point, line, and arrow definitions within the plotting area, can be specified to be

anything. Before doing any plotting, you must first establish the area’s numerical size.

You must also specify the location of the coordinate system’s origin and the directions

of the coordinate axes. As an illustration, Listing 1-1 uses the plt.axis([x1,x2,y1,y2])

function in line 8 to set up an area running from x=-10 to +10; y=−10 to +10. The rest of

the script will be explained shortly.

Figure 1-2. A two-dimensional x,y coordinate system with its origin (0,0) centered
in the screen. A point p is shown at coordinates (x,y) relative to x,y.

Listing 1-1. Program PLOTTING_AREA

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-10

5 x2=10

6 y1=-10

7 y2=10

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

Chapter 1 essential python Commands and FunCtions

5

11 plt.grid(True)

12

13 plt.show()

Listing 1-1 produces the plotting area shown in Figure 1-3. It has a horizontal width

of 20 and a vertical height of 20. I could have made these numbers 200 and 200, and

the area would appear in an output pane as the same physical size but with different

numerical values on the axes. Line 13 contains the command plt.show(). The purpose

of this is to display the program’s results in the output pane. With modern versions of

Python it isn’t required since the plots are automatically displayed when the program is

run. With older versions it may or may not be displayed. plt.show() can also be placed

within a program in order to show plots created during execution. Even though it may

not be necessary, it’s a good idea to include this command at the end of your script since

it can serve as a convenient marker for the end of your program. Lines 1, 2, 10, and 11 in

Listing 1-1 will be explained in the following sections. These commands, or variations of

them, will appear in all of our programs.

Figure 1-3. Plotting area produced by Listing 1-1 with (0,0) located in the center
of the area

Chapter 1 essential python Commands and FunCtions

6

1.4 Importing Plotting Commands
While Python has many built-in commands and functions available, some math and

graphics commands must be imported. Lines 1 and 2 in Listing 1-1 do this. The import
numpy as np statement in line 1 imports math functions such as sin(ϕ), eα, and so on.

The np in this statement is an abbreviation that may be used when referring to a numpy

function. When used in a program, these functions must be identified as coming from

numpy. For example, if you were to code v=eα, the program statement would be v=np.
exp(α) where α would have been previously defined. You don’t have to write out the full

length numpy.exp(α) since you defined the shorthand np for numpy in line 1. Graphics

commands are handled similarly. The statement import matplotlib.pyplot as plt

imports the library pyplot, which contains graphics commands. plt is an abbreviation

for pyplot. For example, if you want to plot a dot at x,y you would write plt.scatter(x,y).

I will talk more about plt.scatter() shortly.

Functions may also be imported directly from numpy. The statement from numpy
import sin, cos, radians imports the sin(), cos(), and radians() functions. When

imported in this manner they may be used without the np prefix. There is also a math

library that operates in a similar way. For example, from math import sin, cos, radians

is equivalent to importing from numpy. You will be using all these variations in the

coming programs.

There is also a graphics library called glib that contains graphics commands. glib

uses a different syntax than pyplot. Since pyplot is used more widely, you will use it in

your work here.

Line 8 in Listing 1-1, plt.axis([x1,x2,y1,y2]), is the standard form of the command

that sets up the plotting area. This is from the pyplot library and is preceded by the

plt. prefix. There are attributes to this command and there are other ways of defining

a plotting area, notably the linspace() command, but the form in line 8 is sufficient

for most purposes and is the one you will use. x1 and x2 define the values of the left

and right sides, respectively, of the plotting area; y1 and y2 define the bottom and top,

respectively. With the numeric values in lines 8-11 you get the plotting area shown in

Figure 1-3. x1,x2,y1, and y2 always have the locations shown in Figure 1-3. That is, x1 and

y1 always refer to the lower left corner, y2 to other end of the y axis, and x2 to the other

end of the x axis. Their values can change, but they always refer to these locations. They

may be negative, as shown in Figure 1-4.

Chapter 1 essential python Commands and FunCtions

7

Because the x and y values specified in lines 4-7 are symmetric in both the x and y

directions (i.e. −10, +10), this plotting area has the (x=0, y=0) point halfway between.

In this case, the center of the area will be the origin used as reference for plotting

coordinates. Since x1 < x2, the positive direction of the x axis will run horizontally from

left to right. Similarly, since y1 < y2, the positive direction of the y axis will go vertically

up. But earlier I said we want the positive y direction to go vertically down. You can do

that by reversing the y values to y1=10, y2=−10. In this case, you get the area shown in

Figure 1-4 where the positive x axis still goes from left to right but the positive y axis now

points down. The center is still in the middle of the plotting area.

You could move the origin of the coordinate system off center by manipulating x1,

x2,y1, and y2. For example, to move the x=0 point all the way to the left side, you could

specify x1=0, x2=20. To move the (x=0, y=0) point to the lower left corner, you could

specify x1=0, x2=20, y1=0, y2=20. But that would make the positive y direction point up;

you want it to point down, which you can do by making y2=0, y1=20. This will make the

origin appear in the upper left corner. You are free to position the (0,0) point anywhere,

change the direction of positive x and y, and scale the numerical values of the coordinate

axes to suit the image you will be trying to create. The numerical values you are using

here could be anything. The physical size of the plot produced by Python will be the

same; only the values of the image coordinates will change.

Figure 1-4. Plotting area with (0,0) located in the center, positive y direction
pointing down

Chapter 1 essential python Commands and FunCtions

8

1.5 Displaying the Plotting Area
In line 10 of Listing 1-1 the statement plt.axis('on') displays the plotting area with its

frame and numerical values. If you omit this command, the frame will still be displayed

with numerical values. So why include this command? Because, when creating a plot it

is sometimes desirable to turn the frame off. To do that, replace plt.axis('on') with plt.
axis('off '). Having the command there ahead of time makes it easy to type 'off ' over

'on' and vice versa to switch between the frame showing and not showing. Also, after

you have finished with a plot, you may wish to use it in a document, in which case you

may not want the frame. Note that 'on' and 'off ' must appear in quotes, either single or

double.

1.6 The Plotting Grid
Line 11 of Listing 1-1, plt.grid(True), turns on the dotted grid lines, which can be an aid

when constructing a plot, especially when it comes time to position textual information.

If you do not include this command, the grid lines will not be shown. To turn off the

grid lines, change the True to False. Note the first letter in True and False is capitalized.

True and False do not appear in quotations marks. As with plt.axis(), having the plt.
grid(True) and plt.grid(False) commands there makes it easy to switch back and forth.

Again, note that both True and False must have the first letter capitalized and do not

appear in quotes.

1.7 Saving a Plot
The easiest way to save a plot that appears in the output pane is to put your cursor over it

and right-click. A window will appear allowing you to give it a name and specify where it

is to be saved. It will be saved the .png format. If you are planning to use it in a program

such as Photoshop, the .png format works. Some word processing and document

programs may require the .eps (encapsulated Postscript) format. If so, save it in the .png

format, open it in Photoshop, and resave it in the .eps format. It’s a bit cumbersome but

it works.

Chapter 1 essential python Commands and FunCtions

9

1.8 Grid Color
There are some options to the plt.grid() command. You can change the color of the grid

lines with the color='color' attribute. For example, plt.grid(True, color='b') plots a

blue grid. More color options will be defined shortly.

1.9 Tick Marks
The plt.grid(True) command will create a grid with Python’s own choice of spacing,

which may not be convenient. You can alter the spacings with the plt.xticks(xmin,
xmax, dx) and plt.yticks(ymin, ymax, dy) commands. min and max are the range of

the ticks; dx and dy are the spacing. While normally you want the tick marks to appear

over the full range of x and y, you can have them appear over a smaller range if you wish.

These commands appear in lines 23 and 24 of Listing 1-2.

Listing 1-2. Program TICK_MARKS

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #————————————————plotting area

5 x1=-10

6 x2=140

7 y1=90

8 y2=-10

9 plt.axis([x1,x2,y1,y2])

10 plt.axis('on')

11

12 #——————————————————grid

13 plt.grid(True,color='b')

14 plt.title('Tick Mark Sample')

15

16 #————————————————tick marks

Chapter 1 essential python Commands and FunCtions

10

17 xmin=x1

18 xmax=x2

19 dx=10

20 ymin=y1

21 ymax=y2

22 dy=-5

23 plt.xticks(np.arange(xmin, xmax, dx))

24 plt.yticks(np.arange(ymin, ymax, dy))

25

26 plt.show()

The output is shown in Figure 1-5. In line 23, xmin and xmax are the beginning and

end of the range of ticks along the x axis, similarly for line 24, which controls the y axis

ticks. dx in line 19 spaces the marks 10 units apart from x1=-10 (line 5) to x2=140 (line 6).

dy in line 22 is -5. It is negative because y2=−10 (line 8) while y1=+90 (line 7). Thus, as

the program proceeds from y1 to y2, y decreases in value; hence dy must be negative.

Figure 1-5. User-defined tick mark

Chapter 1 essential python Commands and FunCtions

11

1.10 Custom Grid Lines
The automatically generated grid that is produced by the plt.grid(True) command is

not always satisfactory especially if you want to include text in your plot. It is often not

fine enough to accurately place text elements. But if the xtick() and ytick() commands

are used to reduce the spacing, the numbers along the axes can become cluttered.

The numbers can be eliminated but then you do not have the benefit of using them to

position textual information such as when labelling items on a plot. The grid shown in

Figure 1-3 would be more helpful if the increments were smaller. You can produce your

own grid lines and control them any way you want. The code in Listing 1-3 produces

Figure 1-6, a plotting area with finer spacing between grid lines.

Listing 1-3. Program CUSTOM_GRID

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-5

5 x2=15

6 y1=-15

7 y2=5

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

11

12 dx=.5 #x spacing

13 dy=.5 #y spacing

14 for x in np.arange(x1,x2,dx): #x locations

15 for y in np.arange(y1,y2,dy): #y locations

16 plt.scatter(x,y,s=1,color='grey') #plot a grey point at x,y

17

18 plt.show()

Chapter 1 essential python Commands and FunCtions

12

The scatter() function in line 16 of Listing 1-3 plots a grey dot at every x,y location.

I will discuss scatter() in more depth later. Note that plt.grid(True) is not used in this

program. Lines 1-10 produce the plotting area with axes as before. This time, instead of

using the plt.grid(True) command, you produce your own custom grid in lines 12-16.

Lines 12 and 13 specify the spacing. The loop beginning at line 14 advances horizontally

from left to right in steps dx. The loop beginning at line 15 does the same in the vertical

direction. The size of the dot is specified as 1 by the s=1 attribute in line 16. This could

be changed: s=.5 will give a smaller dot; s=5 will give a larger one. The color='grey'

attribute sets the dot color to grey. You can experiment with different size dots, colors,

and spacings. Sometimes it can be beneficial to use the grid produced by Grid(True)

along with a custom grid.

Figure 1-6. Plotting area with custom grid

Chapter 1 essential python Commands and FunCtions

13

1.11 Labelling the Axes
Axes can be labelled with the plt.xlabel('label') and plt.ylabel('label') functions. As

an example, the lines

plt.xlabel('this is the x axis')

plt.ylabel('this is the y axis')

when added to Listing 1-3 after line 10 produce Figure 1-7 where the custom grid dots

have been changed to a lighter grey by using the attribute color='lightgrey' in the plt.
scatter() function.

Figure 1-7. Plotting area with axis labels and custom grid

Chapter 1 essential python Commands and FunCtions

14

In Figure 1-8 you can see the matplotlib grid. This combination of Python’s grid plus

a custom grid makes a convenient working surface for locating elements.

Figure 1-8. Plotting area with axis labels, the Python grid, and a custom grid

1.12 The Plot Title
Your plot can be titled easily with the plt.title('title') statement. Inserting the following

line produces Figure 1-9:

plt.title('this is my plot')

Chapter 1 essential python Commands and FunCtions

15

1.13 Colors
As you move along in this book, you will make good use of Python’s ability to plot in

color. Some of the colors available are

'k' for black

'b' for blue

'c' for cyan

'g' for green

'm' for magenta

'r' for red

'y' for yellow

'gray' or 'grey'

'lightgray' or 'lightgrey'

Figure 1-9. Plotting area with axis labels, Python grid, custom grid, and title

Chapter 1 essential python Commands and FunCtions

16

For example, the following statement will plot a green dot at coordinates x,y:

plt.scatter(x,y,color='g')

A swatch of many more colors can be found at

https://matplotlib.org/examples/color/named_colors.html.

The color attribute may be used in the scatter(), plot(), and arrow() functions along

with other attributes.

1.13.1 Color Mixing
You can mix your own hues from the primary colors of red (r), green (g), and blue (b)

with the specification color=(r,g,b) where r,g,b are the values of red, green, and blue

in the mix, with values of each ranging from 0 to 1. For example color=(1,0,0) gives

pure red; color=(1,0,1) gives magenta, a purplish mix of red and blue; color=(0,1,0)

gives green; color(.5,0.1) gives more red and less blue in the magenta; color(0,0,0)

gives black; and color(1,1,1) gives white. Keeping the r,g,b values the same gives a grey

progressing from black to white as the values increase. That is, color=(.1,.1,.1) produces

a dark grey, color(.7,.7,.7) gives a lighter grey, and color(.5,.9,.5) gives a greenish grey.

Note that when specifying 'grey' it can also be spelled 'gray'.
Listing 1-4 shows how to mix colors in a program. Lines 7-9 establish the fraction of

each color ranging from 0-1. The red component in line 7 depends on x, which ranges

from 1-100. The green and blue components each have a value of 0 in this mix. Line

10 draws a vertical line at x from top to bottom having the color mix specified by the

attribute color=(r,g,b). The results are shown in Figure 1-10. The hue on the left side

is almost black. This is because the amount of each color in the mix is 0 or close to it

(r=.01,g=0,b=0). The hue on the right is pure red since on that side r=1,g=0,b=0; that is,

the red is full strength and is not contaminated by green or blue.

Listing 1-4. Program COLORS

1 import numpy as np

2 import matplotlib.pyplot as plt

3

Chapter 1 essential python Commands and FunCtions

https://matplotlib.org/examples/color/named_colors.html

17

4 plt.axis([0,100,0,10])

5

6 for x in np.arange(1,100,1):

7 r=x/100

8 g=0

9 b=0

10 plt.plot([x,x],[0,10],linewidth=5,color=(r,g,b))

11

12 plt.show()

Figure 1-10. Red color band produced by Listing 1-4 with r=x/100, g=0, b=0

Figure 1-11 shows the result of adding blue to the mix. Figure 1-12 shows the

result of adding green to the red. Mixing all three primary colors equally gives shades

of grey ranging from black to white, as shown in Figure 1-13.

Chapter 1 essential python Commands and FunCtions

18

Figure 1-12. Yellow color band with r=x/100, g=x/100, b=0

Figure 1-11. Purple color band with r=x/100, g=0, b=x/100

Chapter 1 essential python Commands and FunCtions

19

There are 256 values of each primary color available. Mixing them, as I did here,

gives 2563, which is almost 17 million different hues.

1.13.2 Color Intensity
The intensity of a color can be controlled with the alpha attribute, as shown in lines

6-8 in Listing 1-5, which produced Figure 1-14. alpha can vary from 0 to 1, with 1

producing the strongest hue and 0 the weakest.

Listing 1-5. Program COLOR_INTENSITY

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.axis([0,100,0,10])

5

6 plt.scatter(60,50,s=1000,color='b',alpha=1)

7 plt.scatter(80,50,s=1000,color='b',alpha=.5)

8 plt.scatter(100,50,s=1000,color='b',alpha=.1)

9

10 plt.show()

Figure 1-13. Grey color band with r=x/100, g=x/100, b=x/100

Chapter 1 essential python Commands and FunCtions

20

1.14 Overplotting
You will normally create your graphics using the functions plt.scatter() for dots, plt.
plot() for lines, and plt.arrow() for arrows and lines (arrows without heads). It is

important to know which will overplot which. You don’t want to create an elaborate

image just to find it gets overplotted by something else. Figure 1-15 shows some

examples. In (A), a red line (1) goes first, then a green one (2). Notice that the second line

overplots the first. In (B), a blue dot (1) is plotted first and then a red line (2). The line

overplots the dot. Then another blue dot (3) is plotted. It does not overplot the line. In

(C), a red dot (1) is first plotted, then a blue one (2), then a yellow one (3). They overplot

one another. In summary,

• New lines overplot old ones.

• Lines overplot dots.

• New dots overplot old ones.

Figure 1-14. Color intensity controlled by the attribute alpha shown in
Listing 1-5

Figure 1-15. Overplotting with lines and dots

Chapter 1 essential python Commands and FunCtions

21

These examples were created by the following code:

#————————————————————(A)

plt.text(45,10,'(A)')

plt.plot([20,60],[20,20],linewidth=5,color='r')

plt.text(13,21,'1')

plt.plot([30,30],[10,30],linewidth=5,color='g')

plt.text(28,6,'2')

#————————————————————(B)

plt.text(45,75,'(B)')

plt.scatter(40,60,s=800,color='midnightblue')

plt.text(38,50,'1')

plt.plot([20,60],[60,60],linewidth=5,color='r')

plt.text(13,61,'2')

plt.scatter(60,60,s=800,color='b')

plt.text(58,50,'3')

#————————————————————(C)

plt.text(108,56,'(C)')

plt.scatter(100,40,s=800,color='r')

plt.text(98,30,'1')

plt.scatter(110,40,s=800,color='b')

plt.text(108,30,'2')

plt.scatter(120,40,s=800,color='y')

plt.text(118,30,'3')

Figure 1-16 shows arrows. In (A) a red line is put down first and then a green arrow.

The arrow does not overplot the line. Then a blue arrow is drawn. The red line still takes

precedence and covers the blue arrow. In (B) a dark blue dot is plotted first and then a

red arrow. The arrow covers the dark blue dot. Then a blue dot is drawn. The arrow still

takes precedence and covers the blue dot. In (C) a red arrow is drawn first and then a

blue one. The new blue arrow covers the old red one. As a result, we can conclude that

• Lines cover arrows.

• Arrows cover dots.

• New arrows cover old ones.

Chapter 1 essential python Commands and FunCtions

22

In general, we can say that lines overplot everything, even older lines; dots don’t

overplot anything except older dots; and arrows overplot dots and older arrows but

not lines.

Figure 1-16. Overplotting with lines, arrows, and dots

The code that produced Figure 1-16 is

#——————————————————————(A)

plt.plot([20,60],[20,20],linewidth=5,color='r')

plt.text(13,21,'1')

plt.arrow(30,30,0,-20,linewidth=5,head_length=4,head_width=2,color='g')

plt.text(22,10,'2')

plt.arrow(50,30,0,-20,linewidth=5,head_length=4,head_width=2,color='b')

plt.text(54,10,'3')

#——————————————————————(B)

plt.scatter(40,60,s=800,color='midnightblue')

plt.text(39,51,'1')

plt.arrow(20,60,60,0,linewidth=5,head_length=4,head_width=2,color='r')

plt.text(12,61,'2')

plt.scatter(60,60,s=800,color='b') plt.text(58,51,'3')

#——————————————————————(C)

plt.arrow(90,40,40,0,linewidth=5,head_length=4,head_width=2,color='r')

plt.text(82,41,'1')

plt.arrow(100,50,0,-20,linewidth=5,head_length=4,head_width=2,color='b')

plt.text(92,29,'2')

Chapter 1 essential python Commands and FunCtions

23

1.15 Background Color
The preceding section offers implications for painting a background. Normally,

images are drawn on the computer screen in a color against a white background. It can

sometimes be useful to plot against a dark background, such as black or midnight blue.

Figure 1-17 shows an example taken from Chapter 6. The black background is obtained

by first covering the plotting area with black lines. The sphere is then drawn with green

lines, which overplot the black ones. You could also have painted the background with

scatter() dots but lines take less computer processing time. If you had chosen to draw

the sphere with dots, the background lines would have covered them up. If you did draw

the sphere with dots, you could have painted the background with dots first and the

newer sphere dots would have overplotted them.

Figure 1-17. Sphere plotted against a black background

1.16 The Plotting Area Shape
When using the plt.axis() command to set up a plotting area, it will normally appear

in the output pane as rectangular rather than square, even though the x and y axes

dimensions indicate it should be square. This is shown in Figure 1-18, which was

created by Listing 1-6 where the values in Line 7 indicate the area should be square.

This distortion may be problematic at times since it can distort objects. For example, a

mathematically correct circle may appear as an oval or a mathematically correct square

may appear as a rectangle, as shown in Figure 1-18.

Chapter 1 essential python Commands and FunCtions

24

Listing 1-6. Program SQUARE

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.grid(True)

5 plt.axis('on')

6

7 plt.axis([-10,10,10,-10])

8

9 #————————————————custom grid

10 x1=-10

11 x2=10

12 y1=10

13 y2=-10

14

15 dx=.5

16 dy=-.5

17 for x in np.arange(x1,x2,dx):

18 for y in np.arange(y1,y2,dy):

19 plt.scatter(x,y,s=1,color='lightgray')

20

Figure 1-18. Distortion of a mathematically correct square

Chapter 1 essential python Commands and FunCtions

25

21 #————————————————square box

22 plt.plot([-5,5],[-5,-5],linewidth=2,color='k')

23 plt.plot([5,5],[-5,5],linewidth=2,color='k')

24 plt.plot([5,-5],[5,5],linewidth=2,color='k')

25 plt.plot([-5,-5],[5,-5],linewidth=2,color='k')

26

27 plt.show()

As shown in Figure 1-19, you can correct this distortion by including the command

plt.axes().set_aspect('equal')

in Listing 1-6 after line 7. This squares the box by squaring the plotting area.

Unfortunately, it also shrinks the plotting area’s width. This may not be convenient

for certain images where you may want the full width of the plotting area without the

accompanying distortions.

Figure 1-19. Distortion corrected by equalizing axes

Chapter 1 essential python Commands and FunCtions

26

1.17 How to Correct Shape Distortions
Figure 1-20 again illustrates the problem, this time when you try to plot a circle. You have

a plotting area with numerically equal x and y dimensions, each of which is 100 units in

extent. When you plot a mathematically correct circle, you get Figure 1-20, an ellipse.

Listing 1-7 produced Figure 1-20.

Figure 1-20. Distortions of a mathematically correct circle

Listing 1-7. Program DISTORTED_CIRCLE

1 plt.axis([0,100,100,0])

2

3 r=40

4 alpha1=radians(0)

5 alpha2=radians(360)

6 dalpha=radians(2)

7 xc=50

8 yc=50

9 plt.scatter(xc,yc,s=10,color='k')

10 for alpha in np.arange(alpha1,alpha2,dalpha):

11 x=xc+r*cos(alpha)

12 y=yc+r*sin(alpha)

13 plt.scatter(x,y,s=5,color='k')

Obviously, this is not going to work. You must find a way to get a true circle, not an

ellipse.

Chapter 1 essential python Commands and FunCtions

27

1.17.1 Applying a Scale Factor When Plotting
The circle in Figure 1-20 is constructed with scatter() dots. You could try to apply a

correction factor, a scale factor of sfx, to the x coordinate of each dot as it is plotted.

How do you get sfx? Using a ruler, measure on the screen of your monitor ∆x and ∆y,

which are the x and y displayed spans of the elliptical circle. You use a ruler for this since

monitors differ in horizontal and vertical pixel spacing. Suppose these come out to be

∆x=7.5cm, ∆y = 5cm. The scale factor to be applied to the x coordinate of each point

would be sfx=∆y/∆x=5/7.5 ≊ .67. Replacing line 11 in Listing 1-6 with

x=xc+sfx*r*cos(alpha)

where sfx=.67, you get Figure 1-21. The problem with this method is every x coordinate

that is to be plotted must be multiplied by sfx.

1.17.2 The Best Way: Scaling the Axes in plt.axis()
The best way to correct the distortion is to apply a scale factor to the x axis through the

plt.axis() function. Using the circle above as an example, the scale factor to be applied to

the x-axis is ∆x/∆y=7.5/5=1.5. Using this in the plt.axis() function it becomes

plt.axis([0,150,100,0])

Figure 1-21. Distortion corrected by applying a scale factor to each point as it is
plotted

Chapter 1 essential python Commands and FunCtions

28

The circle code, which produced Figure 1-22, now becomes Listing 1-8.

Figure 1-22. Distortion corrected by applying a scale factor to the x axis

Listing 1-8. THE_BEST_WAY_TO_CORRECT_DISTORTIONS

1 plt.axis([0,150,100,0])

2

3 r=40

4 alpha1=radians(0)

5 alpha2=radians(360)

6 dalpha=radians(2)

7 xc=75

8 yc=50

9 plt.scatter(xc,yc,s=10,color='k')

10 for alpha in np.arange(alpha1,alpha2,dalpha):

11 x=xc+r*cos(alpha)

12 y=yc+r*sin(alpha)

13 plt.scatter(x,y,s=5,color='k')

14

15 plt.show()

This gives you Figure 1-22, a true circle. Line 1 in Listing 1-8 makes sure the x axis is

1.5 times the y axis in numerical length. The y axis could have any numerical length. You

will still get a true circle or a square square as long as the x axis is 1.5 times the y axis as

defined by the plt.axis() function. For example, plt.axis([0,1800,1200,0]) will work.

Chapter 1 essential python Commands and FunCtions

29

In most of the sample programs in the book, you will use a standard plotting area

defined by plt.axis([0,150,100,0]). The 1.5 scaling factor may have to be fine tuned for

your display.

1.18 Coordinate Axes
As you have seen, to construct graphic images, points, lines and arrows are placed on the

plotting area at coordinates that have numerical values relative to an origin at x=0,y=0.

While it is not necessary to show either the coordinate axes or their origin, they are often

an aid when creating images since they indicate the location of the (0,0) point and the

directions of positive x and y values. Figure 1-23 shows axes which are drawn using the

plt.arrow() function in Listing 1-9 lines 23 and 24.

Figure 1-23. A convenient working surface: 100x150 plotting area, Python grid,
custom grid, frame out of the way

Listing 1-9. Program COORDINATE_AXES

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-10 #——Δx=150
5 x2=140

Chapter 1 essential python Commands and FunCtions

30

6 y1=90 #—-Δy=100
7 y2=-10

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.title('Sample Axes')

14

15 #—————————————————grid

16 dx=5

17 dy=-5

18 for x in np.arange(x1,x2,dx):

19 for y in np.arange(y1,y2,dy):

20 plt.scatter(x,y,s=1,color='lightgray')

21

22 #—————————————-coordinate axes

23 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

24 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

25

26 plt.show()

1.19 Commonly Used Plotting Commands
and Functions
You saw the use of several plotting commands and functions in the previous sections.

In the following sections, you will look at those commands, and others, in more depth.

You will also learn some optional attributes for those functions. Note that I won’t list all

attributes available since most of them are often not used; I only include here the most

important attributes that are required to create the illustrations in this book.

Chapter 1 essential python Commands and FunCtions

31

1.19.1 Points and Dots Using scatter()
plt.scatter(x,y,s=size,color='color ')

scatter() plots a solid dot at coordinates x,y. size is the size of the dot: s=.5 makes a

small dot; s=10 makes a bigger one. We use the term point to describe a small dot. The

dot’s physical size in relation to your plot will depend on the plotting area’s scale. The

best way to determine the most appropriate size of a dot is to experiment by making it

larger or smaller until you get what you want. color is the dot’s color. There are other

attributes available for scatter() but we won’t use them in this book.

I discussed colors earlier in the section on colors; for most normal applications,

those colors should be satisfactory. For example, color='r' gives a red dot, color='k'

gives a black one. You can also mix rgb colors, as explained earlier, with the statement

color=(r,g,b) where r=red, g=green, and b=blue.

Figure 1-24. Green scatter() dot at x=40,y=20

The values of each of these three parameters can range from 0 to 1. While colors can

sometimes be useful, much can be done with 'k' (black), 'grey', and 'lightgrey'. As a

general rule, the addition of color to a plot can be a great aid in conveying information.

However, too much color can create confusion. For an example of scatter(),

plt.scatter(40,20,s=2,color='g')

plots a green dot of size 2 at x=40,y=20, as shown in Figure 1-24. Note that these x,y

coordinates are relative to the origin of the coordinate axes.

Chapter 1 essential python Commands and FunCtions

32

1.19.2 Lines Using plot()
plt.plot([x1,x2],[y1,y2],linewidth=linewidth,

 color='color ',linestyle='linestyle')

This command draws a line from x1,y1 to x2,y2. It has a width specified by linewidth,

a color by color, and a style by linestyle. Regarding linewidth, the appearance of a

line’s width will depend on the plot’s scale so it can best be determined by experiment.

Regarding linestyle, the ones shown in Figure 1-25 are usually sufficient.

Figure 1-25. Line styles

The lines in Figure 1-25 were created by the following code:

plt.plot([40,100],[20,20],linewidth=2,color='r')

plt.plot([40,100],[30,30],linewidth=4,color='g',linestyle=':')

plt.plot([40,100],[40,40],linewidth=6,color='b',linestyle='–')

plt.plot([40,100],[50,50],linewidth=2,color='k',linestyle='-.')

There are other line styles available, which can be found with an Internet search.

Chapter 1 essential python Commands and FunCtions

33

1.19.3 Arrows
plt.arrow(x,y,∆x,∆y,line_width='linewidth',
 head_length='headlength',

 head_width='headwidth',

 color='color ')

The arrows shown in Figure 1-26 were drawn with the following commands:

plt.arrow(40,20,60,0,linewidth=1,color='r',head_length=5,

 head_width=3)

plt.arrow(40,30,60,0,linewidth=1,color='g',linestyle=':',

 head_length=10,head_width=5)

plt.arrow(40,40,60,0,linewidth=1,color='b',linestyle='–',

 head_length=8,head_width=4)

plt.arrow(40,50,60,0,linewidth=4,color='k',linestyle='-',

 head_length=8,head_width=3)

∆x and ∆y are the changes in x and y from beginning to end of the arrow’s shaft; the

linewidth establishes the thickness of the arrow’s shaft. The head_width specifies the

width of the head; the head_length specifies its length. The arrow’s head length adds to

Figure 1-26. Arrows

Chapter 1 essential python Commands and FunCtions

34

the overall length of the arrow. Adding the shaft length to the head length to get the total

arrow length is not much of a problem with vertical and horizontal arrows. For example,

to draw a horizontal arrow with an overall length of 13, you specify a ∆x of 7,

head_length=3. But it can be tricky when constructing oblique arrows that must fit

within a specific length. The best thing to do in that case is to use a trial and error

approach adjusting ∆x, ∆y, and head_length until it comes out right. Usually you

will want head_length and head_width to remain fixed so it is ∆x, ∆y that usually get

changed.

Arrows can also be used to draw lines. The form of data entry is sometimes more

convenient than the plt.plot([x1,x2],[y1,y2]) function. To get a line without the arrow

head, just omit the head_length and head_width attributes. That is, write the following:

plt.arrow(x,y,∆x,∆y,line_width='linewidth',color='color')

1.19.4 Text
Python considers text to be a graphic element. The way to place text on a Python plot is

to use the plt.text() function. The text samples displayed in Figure 1-27 were produced

by the code in Listing 1-10. Lines 30 and 31 show how to rotate text:

plt.text(x,y,'text',color='color ',size='size',fontweight='fontweight ',

 fontstyle='fontstyle',rotation=degrees)

Figure 1-27. Text samples

Chapter 1 essential python Commands and FunCtions

35

Listing 1-10. Program TEXT_SAMPLES

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-10

5 x2=140

6 y1=90

7 y2=-10

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

11 plt.grid(False)

12

13 plt.title('Text Samples')

14

15

16 #—————————————————text samples

17 plt.text(20,10,'small text',size='small')

18 plt.text(20,15,'normal text')

19 plt.text(20,20,'large text',size='large')

20

21 plt.text(20,30,'large bold text',size='large',fontweight='bold')

22 plt.text(20,35,'large bold,italic

23 text',size='large',fontweight='bold',fontstyle='italic')

24 plt.text(20,40,'large, pure, bold italic

25 text',size='large',fontweight='bold',fontstyle='italic',color=(.5,0,.5))

26 plt.text(20,45,'large, light purple, bold italic

27 text',size='large',fontweight='bold',fontstyle='italic',color=(.8,0,.8))

28 plt.text(20,50,'light purple text',color=(.8,0,.8))

29

30 plt.text(100,50,'text at 45 degrees',rotation=45,color='k')

31 plt.text(90,-3,'text at -60 degrees',rotation=-60,color='g')

32

Chapter 1 essential python Commands and FunCtions

36

33 plt.text(20,65,r'$P(\lambda)=2 \pi c^{2} h

 \int_{\lambda1}^{\lambda2}\frac{\lambda^{-5}\epsilon}

 {e^{\frac{hc}{\lambda k t}}-1}d\lambda$',size='large')

34

35 plt.show()

The equation at the bottom of Figure 1-27 is Max Planck’s black body radiation

equation which gives the power radiated by a black body for wavelengths from λ1 → λ2.

The text for this equation is plotted by line 33 in Listing 1-9. The ability of Python to display

this equation illustrates some of Python’s graphical power. Python can plot as text much

of what can be accomplished with Latex. Notice in line 33 that the Latex text between the

single quotes is preceded by the lower case r. The r in front tells Python to treat the string

as a raw string, thus keeping the backward slashes needed by Latex. It is matplotlib that

knows it is Latex because of the dollar sign. The Latex code is put between dollar signs.

Obviously there is more Latex text that could be displayed. In fact, this entire book was

written and formatted in Latex. All the illustrations in it have been created with Python.

1.19.5 Lists, Tuples, and Arrays
To draw an object such as a box with individual lines can often require a lot of typing. For

example, to draw a square box you could define each edge with

plt.plot([-20,20],[-20,-20],linewidth=2,linestyle='–',color='r')

plt.plot([20,20],[-20,20],linewidth=2,linestyle='–',color='r')

plt.plot([20,-20],[20,20],linewidth=2,linestyle='–',color='r')

plt.plot([-20,-20],[20,-20],linewidth=2,linestyle='–',color='r')

A more efficient way is to use lists:

x=[-20,20,20,-20,-20]

y=[-20,-20,20,20,-20]

plt.plot(x,y,linewidth=2,linestyle='–',color='g')

Each x[i],y[i] pair in these lists represents the coordinates of a point. The

plt.plot(x,y…) function automatically connects point x[i],y[i] with x[i+1], y[i+1]. The 5th

element in these lists has the same coordinates as element 0. This closes the box.

Chapter 1 essential python Commands and FunCtions

37

Finite sequences of numbers enclosed in square brackets such as x=[x1,x2,x3,x4,x5]

and y=[y1,y2,y3,y4,y5] are called lists. Lists are very useful, especially in computer

graphics. The x,y pairs (x1,y1),(x2,y2),(x3,y3).... in these lists substitute for the syntax

([x1,x2],[y1,y2]) in individual plt.plot functions. You can draw virtually any shape with

them; the lines will be connected in sequence.

List elements can be defined individually as above, or they can be specified as in the

following structure:

1 x=[]

2 for i in range(10):

3 x.append(i*i)

4

5 print(x)

6

7 [0,1,4,9,16,25,36,49,64,81]

Line 1 defines an empty list x which contains no elements. The length of the list is not

specified. The loop starting at line 2 increments i from 0 to 9 (10 elements). Line 3 adds

i*i to the list as an additional element every cycle through the loop starting with element

0. Line 7 shows the results.

Another way to do this is to predefine the list elements, as in line 1 below. The

numbers in the list could be anything; they just serve to define the length of the list. Line

4 changes the value of each element to i*i in the loop starting at line 3.

1 x=[0,1,2,3,4,5,6,7,8,9]

2

3 for i in range(10):

4 x[i]=(i*i)

5

6 print(x)

7

8 [0,1,4,9,16,25,36,49,64,81]

Chapter 1 essential python Commands and FunCtions

38

A list’s length can also be defined by

g=[0]*10

where the list g is defined as having 10 elements each having a value 0. To get the length

of a list, use the function

len(x)

which returns the length of list x, the length being the number of elements in the list. For

example, in the following script, the loop will process all elements of list x from element

0 to the last element of x, adding 3 to each element:

x=[4,0,7,1]

for i in range(len(x)):

 x[i]=x[i]+3

print(x)

[7,3,10,4]

You will use all these methods in the programs that follow.

A tuple, which is a sequence of numbers such as x=(x0,x1,x2,x3,x4), is similar to

a list. The difference is, aside from the style of brackets, the elements inside a tuple are

immutable, meaning they cannot be changed (mutated). The elements in a list, on the

other hand, can be changed. Tuples can be used without the parentheses. For example,

v=7,12 is equivalent to v=(7,12), which defines a tuple having two elements; the first

having a value of 7, the second 12.

The use of lists and tuples is certainly a more efficient method of coding, as opposed

to doing it the long way; that is, by using separate np.plot() lines for each leg of a figure.

On the other hand, they can sometimes be problematic. For example, if you have long x

and y lists or tuples, and your plot is not coming out right, it can be a tedious process to

find the offending element. The long way can be speeded up by using copy and paste.

Copy the first line and paste it into the code as the second, and then change the x and

y coordinate values to produce the second line segment and so on for the remaining

lines. Obviously, if you have a lot of points to deal with, you won’t want to copy and paste

the plt.plot() function over and over again, in which case a list or tuples may become a

more viable option. Whether to use lists and tuples, or do it the long way, is a personal

preference.

Chapter 1 essential python Commands and FunCtions

39

If you want to draw just one line segment you can use the syntax

x=[x1,x2]

y=[y1,y2]

plt.plot(x,y)

or

plt.plot([x1,x2],[y1,y2])

To draw two line segments, you can use

x=[x1,x2,x3]

y=[y1,y2,y3]

plt.plot(x,y)

or

plt.plot([x1,x2],[y1,y2])

plt.plot([x2,x3],[y2,y3])

and so on. Each method has its advantages. You will use both in this text.

In fact, Listing 1-11 uses both methods. It first plots a red square using individual

np.plot commands for each side and then a green one using lists. The output is shown in

Figure 1-28.

Figure 1-28. Green box plotted using lists; red box plotted without lists

Chapter 1 essential python Commands and FunCtions

40

Listing 1-11. Program LISTS

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.axis([-75,75,50,-50])

5

6 plt.axis('on')

7 plt.grid(True)

8

9 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

10 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

11

12 plt.text(22,-3,'x')

13 plt.text(-5,25,'y')

14

15 #—————————————————red box

16 plt.plot([-20,20],[-20,-20],linewidth=2,color='r')

17 plt.plot([20,20],[-20,20],linewidth=2,color='r')

18 plt.plot([20,-20],[20,20],linewidth=2,color='r')

19 plt.plot([-20,-20],[-20,20],linewidth=2,color='r')

20

21 #——————————————green list box

22 x=[-30,30,30,-30,-30]

23 y=[-30,-30,30,30,-30]

24 plt.plot(x,y,linewidth=2,color='g')

25

26 plt.show()

Doing it the long way (lines 16-19) obviously requires a lot more typing than using

lists (lines 22-24). While lists and tuples have some time-saving features, they can be

tricky to use. A common trap is to forget that in both the first element is not element 1, it

is element 0. For example, with a list of

 x = [1, 2, 3, 4, 5] (1.1)

Chapter 1 essential python Commands and FunCtions

41

if you were to include it in a program with the statement print('x[4])=',x[4]), you

would get 5 for an answer. If you asked for x[1], you would get 2. Tuples have the same

idiosyncrasy. This peculiar feature is highly error-prone and must always be kept in mind

when using lists and tuples. Incidentally, when asking for the value of an element in

either a list or tuple you must use square brackets, not round ones. For example, to get

the third element in x above you would ask for x[2].

1.19.6 Arrays
The following is a typical array:

A=np.array([[x0,y0,z0],[x1,y1,z1],[x2,y2,z2],............[xn,yn,zn]])

array is a numpy function and must be preceded by the np prefix. As you see, the array

A above has n+1 elements, each of which is a list containing three items. Each elements

could represent the x,y,z coordinates of a point in three-dimensional space. Suppose you

have an array holding three points as in

A=np.array([[7,3,9],[34,21,65],[19,21,3]])

where each element of A represents a point. To print the x,y,z coordinates of the second

point (point 1) for example,

print(A[1])

34,21,65

The result isn’t 7,3,9, of course, since that is point 0. To print the z coordinate of point 1,

print(A[1,2])

65

The 1 is point 1 (0,1,2); the 2 is the z coordinate (x,y,z). Other operations on arrays

are similar to those used with lists. Arrays are very convenient to use when doing three-

dimensional graphics. You will be using them in later chapters.

Chapter 1 essential python Commands and FunCtions

42

1.19.7 arange()
arange() is a numpy function. It is useful for incrementing a floating point variable

between limits. It must be used with the np. prefix unless it is imported explicitly with

from Numpy import arange. The syntax is

for x in np.arange(start,stop,step):

This will produce values of x from start to stop in increments of step. All values are

floats. The colon must be included at the end. As an example,

for x in np.arange(1,5,2):

 print(x)

1

3

What happened to the 5? Shouldn’t you be getting 1, 1+2=3, 3+2=5? The 5 is lost to

small roundoff errors within the computer. That is, when your computer adds 3+2, it may

get something very slightly larger or smaller than 5, which means you may or may not get

the 5. This illustrates one of the faults with arange(). The cure is to make the stop value

slightly larger than what you want (or slightly smaller if going in the negative direction).

for x in np.arange(1,5.1,2):

 print(x)

1

3

5

If you are plotting a circle by incrementing an angle from 0 to 360 degrees and you

find the circle isn’t closing but is leaving a small gap, the round-off error in the

np.arange function could be the problem.

start, stop, and step may have negative as well as positive values. If stop is less than

start, step should be negative.

Chapter 1 essential python Commands and FunCtions

43

1.19.8 range()
range() is useful, especially in loops, for incrementing an integer variable through a

range. It is a standard Python function and does not need a prefix. The syntax is

for x in range(start,stop,step):

where all values are integers. As an example,

for x in range(1,5,1):

 print(x)

1

2

3

4

Again, what happened to the 5? Perversely, Python chooses to have range() return

values only up to one step less than stop. To get the 5, you have to extend stop by one step.

for x in range(1,6,1):

 print(x)

1

2

3

4

5

As with arange(), start, stop, and step may have negative values. If stop is less than

start, step should be negative.

1.20 Summary
In this chapter, you reviewed basic Python commands, those fundamental to Python as

well as those specialized to graphics programming. You now have all the programming

tools you will need to understand the following chapters and produce the illustrations

shown in this book. All the graphics were create by the proper use of three fundamental

building blocks: the dot, the line, and the arrow. Once you understand how to use them

in a Python program, the main difficulties become the use of two and three-dimensional

vector math and geometry, which will be ubiquitous in the work that follows.

Chapter 1 essential python Commands and FunCtions

45
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_2

CHAPTER 2

Graphics in Two
Dimensions
In this chapter, you will learn how to construct two-dimensional images using points and

lines. You learned the basic tools for creating images with Python in Chapter 1. In this

chapter, you will expand on that and learn methods to create, translate and rotate shapes

in two dimensions. You will also learn about the concept of relative coordinates, which

will be used extensively throughout the remainder of this book. As usual, you will explore

these concepts through sample programs.

2.1 Lines from Dots
You saw how to create a line with the command

plt.plot([x1,x2],[y1,y2],attributes)

This draws a line from (x1,y1) to (x2,y2) with attributes specifying the line’s width,

color, and style. At times it may be desirable to construct a line using dots. Figures 2-1

and 2-2 show the geometry: an inclined line beginning at point 1 and ending at point 2.

Its length is Q. Shown on the line in Figure 2-2 is point p at coordinates x,y. To draw the

line, you start at 1 and advance toward 2 in steps, calculating coordinates of p at each

step and plotting a dot at each step as you go. This analysis utilizes vectors, which will be

used extensively later.

Note that you do not have coordinate axes in these models. This analysis is generic; it

is applicable to any two-dimensional orthogonal coordinate directions.

46

To advance from point 1 toward point 2, you must first determine the direction from

1 to 2. This will be expressed as a unit vector û (unit vectors will be shown in bold with a

hat; full vectors in bold):

ˆ ˆˆ ux uy= +u i j (2-1)

where î and ĵ are unit vectors in the x and y directions; ux and uy are the scalar

components of û in the x and y directions.

Figure 2-1. Geometry for creating a line from dots (a)

Figure 2-2. Geometry for creating a line from dots (b)

Chapter 2 GraphiCs in two Dimensions

47

ux is the cosine of the angle between û and the x axis; uy is the cosine of the angle

between û and the y axis. ux and uy are often referred to as direction cosines. It is easy to

show they are cosines: the cosine of the angle between û and the x axis is ux/|û| , where

|û| is the scalar magnitude of û. Since û is a unit vector, |û|=1;. The cosine of the angle is

then ux/(1)=ux. Similarly for uy.

It is important to remember that

ˆ 1=u (2-2)

since this feature enables you to multiply û by a magnitude to get a position vector. For

example, you can get a vector from point 1 to p, v1p, by multiplying û by L where L is the

distance from 1 to p. L gives the vector its magnitude, û gives its direction. A vector from

point 1 to p is then

()ˆ ˆux uy= +vlp i jL (2-3)

You can calculate ux and uy from coordinate values as

 ux A Q x x Q= = -()/ /2 1 (2-4)

 uy B Q y y Q= = -()/ /2 1 (2-5)

where (x1,y1) and (x2,y2) are the coordinates of points 1 and 2, and

Q x x y y= -() + -()2 1 2 1

2 2
 (2-6)

Listing 2-1 gives two examples of lines drawn with dots. The results are shown in

Figure 2-3. Smaller dots and closer spacing will produce a finer line (green), which is

almost as good the line obtained by using the plt.plot([x1,x2],[y1,y2]) function.

Chapter 2 GraphiCs in two Dimensions

48

Listing 2-1. Program DOTLINE

1 """

2 DOTLINE

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([-20,130,80,-20])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

14 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

15 plt.text(15,-3,'x')

16 plt.text(-5,15,'y')

17

Figure 2-3. Dot lines created by Listing 2-1

Chapter 2 GraphiCs in two Dimensions

49

18 #———————————————————green line

19 x1=20

20 x2=120

21 y1=40

22 y2=20

23

24 q=np.sqrt((x2-x1)**2+(y2-y1)**2)

25 ux=(x2-x1)/q

26 uy=(y2-y1)/q

27

28 for l in np.arange(0,q,.5):

29 px=x1+l*ux

30 py=y1+l*uy

31 plt.scatter(px,py,s=1,color='g')

32

33 #———blue line

34 x1=20

35 x2=120

36 y1=45

37 y2=25

38

39 q=np.sqrt((x2-x1)**2+(y2-y1)**2)

40 ux=(x2-x1)/q

41 uy=(y2-y1)/q

42

43 for l in np.arange(0,q,2):

44 px=x1+l*ux

45 py=y1+l*uy

46 plt.scatter(px,py,s=1,color='b')

47

48 plt.show()

This program should be self-explanatory since the definitions are consistent with the

prior analysis.

Chapter 2 GraphiCs in two Dimensions

50

2.2 Dot Art
Interesting patterns can be created by arranging dots in a geometric pattern. Figure 2-4 shows

some examples. In all three cases, the dots are arranged in a two-dimensional x,y matrix. You

can vary the size of the dots, colors, and the x and y limits of the matrix. Each matrix is created

with nested for loops, as shown in Listing 2-2, lines 20-22, 25- 35, and 40-45. These nested

loops sweep in the x direction then, at each x, in the y direction, thus filling out a rectangular

area. Mondrian is composed of three separate dot rectangles plus a large red dot.

In line 7, you import random. This is a library of random functions that you use in

lines 42, 43, and 44 to produce random primary r,g,b color components. They are mixed

in line 45. You will use random’s random.randrange(a,b,c) function to obtain the

random values. You could also use the random functions that are included in numpy,

although the syntax is a bit different. The random library is being used here to illustrate

that there are other math libraries besides numpy.

random.randrange(a,b,c) returns a random number between a and b in increments

c. a, b, and c must be integers. To obtain a wide selection of random numbers, let a=1,

b=100, and c=1 in lines 42-44. But rr in line 42 must be between 0 and 1.0 so you divide

by 100 in line 42. This provides a random value for rr, the red component of the color

mix, between 0 and 1.0. Similarly for rg and rb, the green and blue components, in lines

43 and 44. As you can see, the results in Klee are quite interesting.

Figure 2-4. Dot art created created by Listing 2-2

Chapter 2 GraphiCs in two Dimensions

51

Listing 2-2. Program DOTART

1 """

2 DOTART

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 import random

8

9 plt.axis([10,140,90,-10])

10

11 plt.axis('off')

12 plt.grid(False)

13

14 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

15 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

16 plt.text(15,-3,'x')

17 plt.text(-5,15,'y')

18

19 #——-plot Seurat

20 for x in np.arange(20,40,4):

21 for y in np.arange(10,60,4):

22 plt.scatter(x,y,s=8,color='b')

23

24 #——–plot Mondrian

25 for x in np.arange(60,80,1):

26 for y in np.arange(10,40,1):

27 plt.scatter(x,y,s=8,color='y')

28

29 for x in np.arange(60,80,1):

30 for y in np.arange(40,60):

31 plt.scatter(x,y,s=8,color='g')

32

33 for x in np.arange(65,80,1):

34 for y in np.arange(25,30,1):

35 plt.scatter(x,y,s=8,color='b')

Chapter 2 GraphiCs in two Dimensions

52

36

37 plt.scatter(70,30,s=50,color='r')

38

39 #——plot Klee

40 for x in np.arange(100,120,2):

41 for y in np.arange(10,60,2):

42 rr=random.randrange(0,100,1)/100 #–random red 0<=rr<=1

43 rg=random.randrange(0,100,1)/100 #–random green 0<=rg<=1

44 rb=random.randrange(0,100,1)/100 #–random blue 0<=rb<=1

45 plt.scatter(x,y,s=25,color=(rr,rg,rb))

46

47 #——labels

48 plt.text(105,67,'Klee')

49 plt.text(60,67,'Mondrian')

50 plt.text(21,67,'Seurat')

51

52 plt.show()

2.3 Circular Arcs from Dots
Listing 2-3 draws a circular arc using points. This is your first program dealing with

circular coordinates, angles, and trig functions. The geometry used by Listing 2-3 is

shown in Figure 2-5. The output is shown in Figure 2-6.

Lines 25-31 in Listing 2-3 plot the arc. The center of curvature is at (xc,yc) as defined

in lines 20 and 21. The radius of curvature is r in line 22. The arc starts at point 1,

which is at an angle p1 relative to the x axis. It ends at point 2, which is at an angle p2.

These angles, 20 and 70 degrees respectively, are set in lines 25 and 26 where they are

converted to radians, the units required by np.sin() and np.cos(). In later programs, you

will use the radians() function, which converts an argument from degrees to radians.

The points on the arc are spaced an angular increment dp apart, as shown in line 27.

dp is set to the total angle spanned by the arc, p2-p1, divided by 100. A wider spacing,

say (p2-p1)/20, especially when combined with a smaller dot size, will give a more

coarse arc. The loop running from line 28 to 31 advances the angle of each point by the

increment dp using the arange() function. Lines 29 and 30 calculate the coordinates

of each point relative to the global x,y system, which has its origin at (0,0). The global

coordinates are those used for plotting. xp=r*np.cos(p) and yp=r*np.(sin(p) are the

Chapter 2 GraphiCs in two Dimensions

53

coordinates of p along the arc relative to the arc’s center of curvature at (xc,yc). These are

local coordinates. The coordinates of the center of curvature (xc,yc) must be added to the

local coordinates to obtain the global coordinates relative to x=0,y=0. This is done in lines

29 and 30. Line 31 plots a green dot of size 1 at each location using the global coordinates.

The results are shown in Figure 2-5 and the code is shown in Listing 2-4.

Figure 2-5. Geometric model used for creating a circular arc with scatter() dots,
created by Listing 2-4

Figure 2-6. Circular arc created with np.scatter() dots

Chapter 2 GraphiCs in two Dimensions

54

Listing 2-3. Program PARC

1 """

2 PARC

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 plt.axis([-10,140,90,-10])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 #———axes

14 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

15 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

16

17 plt.text(16,-3,'x')

18 plt.text(-5,17,'y')

19

20 xc=20

21 yc=20

22 r=40

23

24 #——plot arc

25 p1=20*np.pi/180

26 p2=70*np.pi/180

27 dp=(p2-p1)/100

28 for p in np.arange(p1,p2,dp):

29 x=xc+r*np.cos(p)

30 y=yc+r*np.sin(p)

31 plt.scatter(x,y,s=1,color='g')

32

33 #———labels

34 plt.text(61,34,'(x1,y1)')

Chapter 2 GraphiCs in two Dimensions

55

35 plt.text(16,60,'(x2,y2)')

36 plt.scatter(xc,yc,s=10,color='k')

37 plt.text(xc+4,yc-4,'(xc,yc)',color='k')

38

39 plt.show()

(The following is the program that created Figure 2-5)

Listing 2-4. Program PARCGEOMETRY

1 """

2 PARCGEOMETRY

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 plt.axis([-10,140,90,-10])

9

10 plt.axis('off')

11 plt.grid(False)

12

13 #—————————————————————————————————————coordinate axes

14 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

15 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

16

17 #———labels

18 plt.text(16,-3,'x')

19 plt.text(-5,17,'y')

20

21 #———————————————————————————————————————main arc

22 xc=20

23 yc=20

24 r=40

25 plt.scatter(xc,yc,color='b',s=5)

26

27 phi1=20*np.pi/180.

Chapter 2 GraphiCs in two Dimensions

56

28 phi2=70*np.pi/180.

29 dphi=(phi2-phi1)/20.

30 for phi in np.arange(phi1,phi2,dphi):

31 x=xc+r*np.cos(phi)

32 y=yc+r*np.sin(phi)

33 plt.scatter(x,y,s=2,color='g')

34

35 plt.plot([xc,xc+r*np.cos(phi1)],[yc,yc+r*np.sin(phi1)],color='k')

36

37 x1=xc+(r+3)*np.cos(phi1)

38 x2=xc+(r+10)*np.cos(phi1)

39 y1=yc+(r+3)*np.sin(phi1)

40 y2=yc+(r+10)*np.sin(phi1)

41 plt.plot([x1,x2],[y1,y2],color='k')

42

43 x1=xc+(r+3)*np.cos(phi2)

44 x2=xc+(r+30)*np.cos(phi2)

45 y1=yc+(r+3)*np.sin(phi2)

46 y2=yc+(r+30)*np.sin(phi2)

47 plt.plot([x1,x2],[y1,y2],color='k')

48

49 plt.plot([xc,xc+r*np.cos(phi2)],[yc,yc+r*np.sin(phi2)],color='k')

50

51 phihalf=(phi1+phi2)*.5

52 phi3=phihalf-dphi/2

53 phi4=phihalf+dphi/2

54

55 plt.plot([xc,xc+r*np.cos(phi3)],[yc,yc+r*np.sin(phi3)],color='k')

56 plt.plot([xc,xc+r*np.cos(phi4)],[yc,yc+r*np.sin(phi4)],color='k')

57

58 x1=xc+(r+3)*np.cos(phi3)

59 x2=xc+(r+15)*np.cos(phi3)

60 y1=yc+(r+3)*np.sin(phi3)

61 y2=yc+(r+15)*np.sin(phi3)

62 plt.plot([x1,x2],[y1,y2],color='k')

63

Chapter 2 GraphiCs in two Dimensions

57

64 x1=xc+(r+3)*np.cos(phi4)

65 x2=xc+(r+15)*np.cos(phi4)

66 y1=yc+(r+3)*np.sin(phi4)

67 y2=yc+(r+15)*np.sin(phi4)

68 plt.plot([x1,x2],[y1,y2],color='k')

69

70 #———P1 arc

71 dphi=(phi3)/100.

72 for phi in np.arange(0,phi1/2-3.2*np.pi/180,dphi):

73 x=xc+(r+5)*np.cos(phi)

74 y=yc+(r+5)*np.sin(phi)

75 plt.scatter(x,y,s=.1,color='k')

76

77 for phi in np.arange(phi1/2+3.3*np.pi/180,phi1,dphi):

78 x=xc+(r+5)*np.cos(phi)

79 y=yc+(r+5)*np.sin(phi)

80 plt.scatter(x,y,s=.1,color='k')

81

82 #——P2 arc

83 dphi=(phi3)/100.

84 for phi in np.arange(0,phi2/2-3.2*np.pi/180,dphi):

85 x=xc+(r+25)*np.cos(phi)

86 y=yc+(r+25)*np.sin(phi)

87 plt.scatter(x,y,s=.1,color='k')

88

89 dphi=(phi3)/100.

90 for phi in np.arange(phi2/2+3.2*np.pi/180,phi2,dphi):

91 x=xc+(r+25)*np.cos(phi)

92 y=yc+(r+25)*np.sin(phi)

93 plt.scatter(x,y,s=.1,color='k')

94

95 #——P arc

96 dphi=(phi3)/100.

97 for phi in np.arange(0,phi3/2-.5*np.pi/180,dphi):

98 x=xc+(r+13)*np.cos(phi)

99 y=yc+(r+13)*np.sin(phi)

Chapter 2 GraphiCs in two Dimensions

58

100 plt.scatter(x,y,s=.1,color='k')

101

102 dphi=(phi3)/100.

103 for phi in np.arange(phi3/2+9.*np.pi/180,phi3,dphi):

104 x=xc+(r+13)*np.cos(phi)

105 y=yc+(r+13)*np.sin(phi)

106 plt.scatter(x,y,s=.1,color='k')

107

108 #——dp arc

109 dphi=(phi3)/100.

110 for phi in np.arange(phi3+5*dphi,phi3+25*dphi,dphi):

111 x=xc+(r+13)*np.cos(phi)

112 y=yc+(r+13)*np.sin(phi)

113 plt.scatter(x,y,s=.1,color='k')

114

115 plt.plot([xc,100],[yc,yc],'k')

116 plt.plot([xc,xc],[yc,80],'k')

117

118 #——labels

119 plt.text(71,58,'p2',size='small')

120 plt.text(66,44,'p',size='small')

121 plt.text(63,29,'p1',size='small')

122 plt.text(45,66,'dp',size='small')

123 plt.text(41,26,'r')

124 plt.text(3,17,'(xc,yc)',size='small')

125 plt.plot([xc+r*np.cos(phi3),xc+r*np.cos(phi3)],[yc-8,yc+r*np.

sin(phi3)],'k:')

126 plt.plot([xc,xc],[yc-2,yc-8],'k:')

127 plt.text(25,17,'R*cos(p)',size='small')

128

129 plt.plot([xc-8,xc+r*np.cos(phi3)],[yc+r*np.sin(phi3),yc+r*np.

sin(phi3)],'k:')

130 plt.plot([xc-2,xc-8],[yc,yc],'k:')

131 plt.text(13,27,'R*sin(p)',size='small',rotation=90)

132

133 plt.text(49,30,'(x1,y1)',size='small')

Chapter 2 GraphiCs in two Dimensions

59

134 plt.text(20,62,'(x2,y2)',size='small')

135 plt.text(51,49,'(xp,yp)',size='small')

136

137 #——arrow heads

138 plt.arrow(47,79,-2,1,head_length=3,head_width=2,color='k')

139 plt.arrow(62,53,-2,2,head_length=2.9,head_width=2,color='k')

140 plt.arrow(64,31,-.9,3,head_length=2,head_width=2,color='k')

141 plt.arrow(52,63,3,-3,head_length=2,head_width=2,color='k')

142

143 plt.show()

2.4 Circular Arcs from Line Segments
Instead of plotting dots with np.scatter() at points along the arc, you can create a finer

arc using straight-line segments between points. If you replace the “plot arc” routine in

Listing 2-3, beginning at line 24, with

24 #—————————————————————————————————plot arc

25 p1=20*np.pi/180

26 p2=70*np.pi/180

27 dp=(p2-p1)/100

28 xlast=xc+r*np.cos(p1)

29 ylast=yc+r*np.sin(p1)

30 for p in np.arange(p1+dp,p2,dp):

31 x=xc+r*np.cos(p)

32 y=yc+r*np.sin(p)

33 plt.plot([xlast,x],[ylast,y],color='g')

34 xlast=x

35 ylast=y

you get the arc shown in Figure 2-7. In lines 28 and 29 of the code above you define xlast

and ylast. These are the last x and y coordinate values plotted at the end of the previous

line segment. Since you are just starting to plot the arc before the loop begins, these are

initially set equal to the arc’s starting point where p=p1. You will need them to plot the

first arc segment in line 33. Parameters p, p1, p2, and dp are the same as before. Imagine

the loop 30-35 is just starting to run. Lines 31 and 32 calculate the global coordinates of

Chapter 2 GraphiCs in two Dimensions

60

the end of the first line segment, which is dp into the arc. Using the previously set values

xlast and ylast, which are the coordinates of the beginning of that line segment in 28

and 29, line 33 plots the first line segment. Lines 34 and 35 update the end coordinates

of the first segment as xlast, ylast. These will be used as the beginning coordinates of

the second line segment. The loop continues to the end of the arc using the end of the

preceding segment as the beginning of the next one. Notice in line 30 the loop begins

at p1+dp, the end angle of the first line segment. This isn’t actually necessary and the

beginning of the loop could be set to p1 as before, in which case the first line segment

would have zero length. The loop would continue to the end of the arc as before.

In future work, you will sometimes use curves constructed of dots instead of line

segments. Even though dots do not produce as fine results, they avoid complicating the

plotting algorithm, which can sometimes obscure the logic of the script. However, line

segments do produce superior results so you will use them as well.

2.5 Circles
A full circle is just a 360° arc. You can make a full circle by changing the beginning and

end angles of the arc in the previous section to p1=0 and p2=360 degrees. This is done in

lines 24 and 25 of Listing 2-5. The output is shown in Figure 2-8. Three circles and a solid

Figure 2-7. Circular arc created with plt.plot() line segments

Chapter 2 GraphiCs in two Dimensions

61

disc are plotted at different locations. They have different colors and widths. Half the

green circle is plotted with solid-line segments, the other half with dashed lines 29-37.

The decision to plot a solid or dashed line is made by the if logic between lines 32 and

35. This changes the linestyle attribute in line 33. The blue solid disc is made by plotting

concentric circles with radii from r1=0 to the disc’s outer radius r2. You could, of course,

also make a solid disk with the np.scatter() function. You should be able to follow the

logic used here to create the various circles by examining the script in Listing 2-5.

This program could have been shortened by the use of functions. It has been left open

for the sake of clarity by using cut and paste to reproduce sections of redundant code.

Listing 2-5. Program CIRCLES

1 """

2 CIRCLES

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 plt.axis([-75,75,50,-50])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

14 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

15

16 plt.text(16,-3,'x')

17 plt.text(-5,17,'y')

18

19 #——————————————————————————————————–green circle

20 xc=0

21 yc=0

22 r=40

23

24 p1=0*np.pi/180

Chapter 2 GraphiCs in two Dimensions

62

25 p2=360*np.pi/180

26 dp=(p2-p1)/100

27 xlast=xc+r*np.cos(p1)

28 ylast=yc+r*np.sin(p1)

29 for p in np.arange(p1,p2+dp,dp):

30 x=xc+r*np.cos(p)

31 y=yc+r*np.sin(p)

32 if p > 90*np.pi/180 and p < 270*np.pi/180:

33 plt.plot([xlast,x],[ylast,y],color='g',linestyle=':')

34 else:

35 plt.plot([xlast,x],[ylast,y],color='g')

36 xlast=x

37 ylast=y

38

39 plt.scatter(xc,yc,s=15,color='g')

40

41 #——red circle

42 xc=-20

43 yc=-20

44 r=10

45

46 p1=0*np.pi/180

47 p2=360*np.pi/180

48 dp=(p2-p1)/100

49 xlast=xc+r*np.cos(p1)

50 ylast=yc+r*np.sin(p1)

51 for p in np.arange(p1,p2+dp,dp):

52 x=xc+r*np.cos(p)

53 y=yc+r*np.sin(p)

54 plt.plot([xlast,x],[ylast,y],linewidth=4,color='r')

55 xlast=x

56 ylast=y

57

58 plt.scatter(xc,yc,s=15,color='r')

59

Chapter 2 GraphiCs in two Dimensions

63

60 #———purple circle

61 xc=20

62 yc=20

63 r=50

64

65 p1=0*np.pi/180

66 p2=360*np.pi/180

67 dp=(p2-p1)/100

68 xlast=xc+r*np.cos(p1)

69 ylast=yc+r*np.sin(p1)

70 for p in np.arange(p1,p2+dp,dp):

71 x=xc+r*np.cos(p)

72 y=yc+r*np.sin(p)

73 plt.plot([xlast,x],[ylast,y],linewidth=2,color=(.8,0,.8))

74 xlast=x

75 ylast=y

76

77 plt.scatter(xc,yc,color=(.5,0,.5))

78

79 #———blue disc

80 xc=-53

81 yc=-30

82 r1=0

83 r2=10

84 dr=1

85

86 p1=0*np.pi/180

87 p2=360*np.pi/180

88 dp=(p2-p1)/100

89 xlast=xc+r1*np.cos(p1)

90 ylast=yc+r1*np.sin(p1)

91 for r in np.arange(r1,r2,dr):

92 for p in np.arange(p1,p2+dp,dp):

93 x=xc+r*np.cos(p)

94 y=yc+r*np.sin(p)

95 plt.plot([xlast,x],[ylast,y],linewidth=2,color=(0,0,.8))

Chapter 2 GraphiCs in two Dimensions

64

96 xlast=x

97 ylast=y

98

99 plt.show()

2.6 Dot Discs
Two discs created with different dot patterns are shown in Figure 2-9. The disc labelled

“r,p” is drawn by placing dots in a traditional polar r,p array where r is the radius from

the center and p is the angle. The algorithm starts at line 21 in Listing 2-6. The script

in Listing 2-6 should be self-explanatory. The only issue with this plot is that the dots

are not uniformly spaced but are further apart as the radius increases. This may be

undesirable in some situations.

Figure 2-8. Circles created by Listing 2-5

Chapter 2 GraphiCs in two Dimensions

65

The “equal arc” disc, beginning in line 38, appears better visually. As with the “r,p”

disc, the dots are equally spaced in the radial direction. However, in the “equal arc” disc,

the number of dots in the circumferential direction at each radial location becomes

larger as the radius increases, thus keeping the circumferential arc spacing between

dots constant. The model used is shown in Figure 2-10. dc is the circumferential spacing

between dots a and b at rmax, the outer edge of the disk. dp is the angular spacing

between radii to a and b. To achieve more uniform spacing across the disc, you hold dc

constant at all radii. A typical radial location is shown at r=rmax/2. dc at this radius is

the same as at rmax and is equal to dc. To accommodate this spacing, the angle between

adjacent dots must increase to drp.

In line 44 of Listing 2-6, the disc’s outer radius is set to 20. The radial spacing is set to

2 in line 45. Keeping in mind that the circumferential spacing between two points on a

circular arc is r×dp where r is the radius and dp is the angle between the points, line 46

calculates dc where you have arbitrarily set the number of dots at rmax to 40 per

π radians (80 around the complete circumference). The loop beginning at line 48 starts at

r=dr and advances in the radial direction to rmax in steps dr. At each value or r, the angle

between dots dpr required to keep the circumferential spacing equal to dc is calculated

in line 49. The loop beginning at line 50 then places the dots circumferentially.

Figure 2-9. Discs created by different dot patterns in Listing 2-6 where “r,p”
contains simple polar coordinates and “equal arc” has modified polar coordinates

Chapter 2 GraphiCs in two Dimensions

66

Listing 2-6. Program DOTDISCS

1 """

2 DOTDISCS

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 import random as rnd

8

9 plt.axis([0,150,100,0])

10

11 plt.axis('off')

12 plt.grid(False)

13

14 plt.arrow(0,0,20,0,head_length=4,head_width=3,color='k')

15 plt.arrow(0,0,0,20,head_length=4,head_width=3,color='k')

16

17 plt.text(16,-3,'x')

Figure 2-10. Model for “equal arc” disc used by Listing 2-6

Chapter 2 GraphiCs in two Dimensions

67

18 plt.text(-5,17,'y')

19

20 #———simple r,p dot pattern

21 xc=40

22 yc=25

23

24 p1=0

25 p2=2*np.pi

26 dp=np.pi/20

27

28 rmax=20

29 dr=2

30

31 for r in np.arange(dr,rmax,dr):

32 for p in np.arange(p1,p2,dp):

33 x=xc+r*np.cos(p)

34 y=yc+r*np.sin(p)

35 plt.scatter(x,y,s=2,color='k')

36

37 #———equal arc length dot pattern

38 xc=40

39 yc=70

40

41 p1=0

42 p2=2*np.pi

43

44 rmax=20

45 dr=2

46 dc=np.pi*rmax/40

47

48 for r in np.arange(dr,rmax,dr):

49 dpr=dc/r

50 for p in np.arange(p1,p2,dpr):

51 x=xc+r*np.cos(p)

52 y=yc+r*np.sin(p)

53 plt.scatter(x,y,s=2,color='k')

Chapter 2 GraphiCs in two Dimensions

68

54

55 #——labels

56 plt.text(38,66,'r,p')

57 plt.text(95,66,'equal arc')

58

59 plt.show()

2.7 Ellipses
Ellipses are shown in Figure 2-12. They were drawn by Listing 2-7. The model used by

Listing 2-7 is shown in Figure 2-11. This was drawn by Listing 2-8. The dimension a is

called the semi-major since it refers to half the greater width; b is the semi-minor. 2a and

2b are the major and minor dimensions.

The equation of an ellipse, which we are all familiar with, is,

x

a

y

b

2

2

2

2
1+ = (2-7)

In the special case where a=b=r, this degenerates to a circle, as in

 x y r2 2 2+ = (2-8)

where r is the radius.

A possible strategy to use when plotting an ellipse is to start at x=-a and advance in

the +x direction using Equation 2-7 to calculate y at each x, and then plot either a dot or

a line segment from the last step, as you have done in the past. The y coordinate is easily

derived from Equation 2-7 as

y b

x

a
= -1

2

2
(2-9)

This seems easy enough. The green ellipse in Figure 2-12 was drawn this way.

However, there is a problem. Look at Listing 2-7, lines 48, 49, and 50; the square root in

Equation 2-9 and in line 48 gives uncertain results as x approaches +a and line 48 tries

to take the square root of a number very close to zero. This is caused by roundoff errors

in Python’s calculations. The manifestation of this shows up as a gap at the +a side of the

Chapter 2 GraphiCs in two Dimensions

69

ellipse. In the algorithm for the green ellipse, this gap is closed by lines 54 and 55. You

can get a decent ellipse this way but you have to be careful.

Another way is to use polar coordinates, as shown in Figure 2-11. You want to

determine the coordinates (xp,yp) for a point on the ellipse as a function of the angle p.

By varying p, you will have the information you need to plot the ellipse. To determine

(xp,yp) vs. p, you note that it lies on the intersection of the ellipse and the radial line.

This point is indicated by the red dot. Incidentally, the dot does not appear to lie exactly

at the intersection, as can be seen. This is because the scale factor used to adjust the x

axis values in line 8 of Listing 2-8 is a bit off. You used a rough measurement with a ruler

and then you rounded off the results of the calculation to determine the scale factor. The

resulting slight errors are showing up here. The equation of the line can be determined

from the following:

 xp r p= ()cos (2-10)

 yp r p= ()sin (2-11)

Combining the above,

yp

xp

r p

r p
p=

()
()

= ()
sin

cos
tan

(2-12)

 yp xp p= ()tan (2-13)

You know that (xp,yp) lies at the intersection of the line and the ellipse. This is

where the equations for both the line and the ellipse are satisfied by xp and yp. You can

determine the coordinates of this point by substituting Equation 2-13 into Equation 2-7,

xp

a

xp tan p

b

2

2

2 2

2
1+ = (2-14)

which works out to

xp ab b a tan p= + ()éë ùû

-2 2 2
1

2 (2-15)

yp ab a b
tan p

= +
()

é

ë
ê

ù

û
ú

-

2 2
2

1

21

(2-16)

Chapter 2 GraphiCs in two Dimensions

70

Equations 2-15 and 2-16 are implemented in Listing 2-7 to draw the red ellipse

between lines 20 and 36, the green ellipse between lines 39 and 55, and the blue

ellipse in lines 58 and 69. The output is shown in Figure 2-12. When drawing the green

ellipse, the program loops from -a to +a and uses Equation 2-9 to calculate y values. As

mentioned, this can lead to roundoff errors near the extremity of the ellipse at x=+a,

which leaves a gap in the ellipse. This is corrected in lines 54 and 55, which draw short

lines to close the gap. Note that the blue ellipse is filled in. This is accomplished by line

69, which plots vertical lines from the top to the bottom of the ellipse.

Figure 2-11. Model created by Listing 2-8 and used by Listing 2-7

Chapter 2 GraphiCs in two Dimensions

71

Listing 2-7. Program ELLIPSES

1 """

2 ELLIPSES

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 plt.axis([-75,75,50,-50])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.arrow(0,0,60,0,head_length=4,head_width=3,color='k')

14 plt.arrow(0,0,0,45,head_length=4,head_width=3,color='k')

15

16 plt.text(58,-3,'x')

17 plt.text(-5,44,'y')

18

Figure 2-12. Ellipses created by Listing 2-7

Chapter 2 GraphiCs in two Dimensions

72

19 #——red ellipse

20 a=40

21 b=20.

22 p1=0

23 p2=180*np.pi/180

24 dp=.2*np.pi/180

25

26 xplast=a

27 yplast=0

28 for p in np.arange(p1,p2,dp):

29 xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)

30 yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)

31 if p > np.pi/2:

32 xp=-xp

33 plt.plot([xplast,xp],[yplast,yp],color='r')

34 plt.plot([xplast,xp],[-yplast,-yp],color='r')

35 xplast=xp

36 yplast=yp

37

38 #——green ellipse

39 a=20.

40 b=40.

41 xp1=-a

42 xp2=a

43 dx=.1

44

45 xplast=-a

46 yplast=0

47 for xp in np.arange(xp1,xp2,dx):

48 yp=b*(1-xp**2./a**2.)**.5

49 plt.plot([xplast,xp],[yplast,yp],linewidth=1,color='g')

50 plt.plot([xplast,xp],[-yplast,-yp],linewidth=1,color='g')

51 xplast=xp

52 yplast=yp

53

Chapter 2 GraphiCs in two Dimensions

73

54 plt.plot([xplast,a],[yplast,0],linewidth=1,color='g'

55 plt.plot([xplast,a],[-yplast,0],linewidth=1,color='g'

56

57 #—————————————————————————————————————blue ellipse

58 a=5.

59 b=15.

60 p1=0

61 p2=180*np.pi/180

62 dp=.2*np.pi/180

63

64 for p in np.arange(p1,p2,dp):

65 xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)

66 yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)

67 if p > np.pi/2:

68 xp=-xp

69 plt.plot([xp,xp],[yp,-yp],linewidth=1,color='b')

70

71 plt.show()

(The following program was used to create Figure 2-11.)

Listing 2-8. Program ELLIPSEMODEL

1 """

2 ELLIPSEMODEL

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 plt.axis([-75,75,50,-50])

9

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.arrow(0,0,60,0,head_length=4,head_width=3,color='k')

14 plt.arrow(0,0,0,40,head_length=4,head_width=3,color='k')

Chapter 2 GraphiCs in two Dimensions

74

15

16 plt.text(58,-3,'x')

17 plt.text(-5,40,'y')

18

19 #——————————————————————————————————————ellipse

20 a=50.

21 b=30.

22 p1=0.

23 p2=180.*np.pi/180.

24 dp=(p2-p1)/180.

25

26 xplast=a

27 yplast=0

28 for p in np.arange(p1,p2+dp,dp):

29 xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)

30 yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)

31 if p > np.pi/2:

32 xp=-xp

33 plt.plot([xplast,xp],[yplast,yp],color='k')

34 plt.plot([xplast,xp],[-yplast,-yp],color='k')

35 xplast=xp

36 yplast=yp

37

38 #———line

39 plt.plot([0,40],[0,40],color='k')

40

41 #———point

42 p=45.*np.pi/180.

43 xp=np.abs(a*b*(b*b+a*a*(np.tan(p))**2.)**-.5)

44 yp=np.abs(a*b*(a*a+b*b/(np.tan(p)**2.))**-.5)

45 plt.scatter(xp,yp,s=20,color='r')

46

47 #———labels

48 plt.text(23,-3,'a',color='k')

49 plt.text(-5,15,'b',color='k')

50 plt.text(32,28,'(xp,yp)')

Chapter 2 GraphiCs in two Dimensions

75

51 plt.text(30,12,'p')

52 plt.text(10,18,'r')

53

54 #——p arc

55 p1=0

56 p2=45*np.pi/180

57 dp=(p2-p1)/180

58 r=30

59 for p in np.arange(p1,p2,dp):

60 x=r*np.cos(p)

61 y=r*np.sin(p)

62 plt.scatter(x,y,s=.1,color='r')

63

64 plt.arrow(25,17.5,-1,1,head_length=3,head_width=2,color='r')

65

66 plt.show()

2.8 2D Translation
In two dimensions, an object has three independent degrees of freedom: it can rotate

around one axis direction which is perpendicular to the plane and it can translate in

two directions (x and y) within the plane. Pure translation implies the object is moved

without rotation; pure rotation implies the object is rotated without translation.

The objects in Figure 2-13 are examples of pure translation. The triangle (black) has

been translated (moved) to the right (green) without rotation and then down (red).

This is a simple thing to accomplish with Python, especially when using lists as in

Listing 2-9. For example, to move an object to the right in an amount of dx, just add

dx to the x coordinates and replot it. Similarly for the y direction, just add dy to the y

coordinates and replot. The small blue boxes were translated across the plotting area by

incrementing the x coordinates by 10 units in the loop beginning in line 45.

Chapter 2 GraphiCs in two Dimensions

76

Listing 2-9. Program 2DTRANSLATION

1 """

2 2DTRANSLATION

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 x1=-10

9 x2=140

10 y1=90

11 y2=-10

12 plt.axis([x1,x2,y1,y2])

13

14 plt.axis('on')

15 plt.grid(True)

Figure 2-13. Examples of translation created by Listing 2-9

Chapter 2 GraphiCs in two Dimensions

77

16

17 plt.title('Translation')

18

19 #———triangle

20 x=[20,30,40,20]

21 y=[40,20,40,40]

22 plt.plot(x,y,color='k')

23 plt.plot(x,y,color='k')

24 plt.plot(x,y,color='k')

25

26 #——————————————————————————————————————translate triangle dx=60

27 x=[60,70,80,60]

28 plt.plot(x,y,color='g')

29 plt.plot(x,y,color='g')

30 plt.plot(x,y,color='g')

31

32 #——————————————————————————————————————translate triangle dy=40

33 y=[80,60,80,80]

34 plt.plot(x,y,color='r')

35 plt.plot(x,y,color='r')

36 plt.plot(x,y,color='r')

37

38 #——box

39 x=[0,0,5,5,0]

40 y=[55,50,50,55,55]

41 plt.plot(x,y,'b')

42

43 #——translate box

44 y=[55,50,50,55,55]

45 for x in np.arange(0,130,10):

46 x=[x,x,x+5,x+5,x]

47 plt.plot(x,y,'b')

48

49 plt.show()

Chapter 2 GraphiCs in two Dimensions

78

2.9 2D Rotation
So far in this chapter, you have seen how to construct images on a two-dimensional

plane using points and lines. In this section, you’ll learn how to rotate a two-dimensional

planar object within its own plane. A 2D object that you might want to rotate, a rectangle

for example, or something more complicated which will normally consist of any number

of points and lines. Lines, of course, are defined by their end points or a series of points

if constructed from dots. As you have seen, curves can also be constructed from line

segments or dots. If you can determine how to rotate a point, you will then be able to

rotate any planar object defined by points. In Chapter 3, you will extend these concepts

to the rotation of three-dimensional objects around three coordinate directions.

Figure 2-14 shows three coordinate systems: the blue xg,yg system is the global

coordinate system. Its numerical size and the location of the global origin (xg=0, yg=0)

are defined by the values in the plt.axis([x1,x2,y1,y2]) statement. This is the system you

use when plotting. All plotting coordinates should relate to this system. For example,

if writing plt.scatter(xg,yg), xg and yg should be relative to the blue xg,yg system as

shown.

Figure 2-14. 2D rotation model

Chapter 2 GraphiCs in two Dimensions

79

The black x,y system is the local system. A position (xp,yp) in the local system is

equivalent to (xc+xp, yc+yp) in the global system. You use the local system to construct

shapes by specifying the coordinates of the points that comprise them. For example, if

you want to plot a circle somewhere in the plotting area, you could place (xc,yc) at the

circle’s center, calculate the points defining the circle around it in reference to the local

(black) system, and then relate them back to the xg,yg (blue) system for plotting by

translating each point by xc and yc.

Figure 2-14 shows a point P that is rotated through a clockwise angle Rz to a new

position at P′. The red coordinate system rotates through the angle Rz. P rotates along

with it. The coordinates of P′ in the rotated system, (xp,yp), are the same as they were

in the local system. However, in the global system, they are obviously different. Your

goal now is to determine the coordinates of P′ in the local system and then in the global

system, so you can plot it.

I am using the terminology Rz for the angle because a clockwise rotation in the

x,y plane is actually a rotation about the z direction, which points into the plane of the

paper. This was illustrated in Chapter 1. It will be explained in more detail in Chapter 3.

Figure 2-14 shows point P in its unrotated position. Its coordinates in relation to the

local x,y system (black) are (xp,yp). Its location is defined by the vector P,

ˆ ˆ= + jP ixp yp (2-17)

where î and ĵ are unit vectors in the x and y directions.

After P is rotated through the angle Rz, it reaches a new position P′ (red) at coordinates

(x′,y′) in relation to the x,y (black) system. P′ is defined by the vector P′ (red) as,

ˆ ˆ¢ ¢ ¢= + jP ixp yp (2-18)

The coordinates of P′ in relation to the rotated x′,y′ system are (xp,yp). The position

of P′ is thus also defined by the vector

ˆ ˆ¢ ¢ ¢= + jP ixp yp (2-19)

where î′ and ĵ′ are unit vectors in the x′ and y′ directions.

Your task now is to determine relations for î′ and ĵ′ in relation to î and ĵ and then

substitute them into Equation 2-19. This will give you the coordinates of P′ in relation to

the local x,y system. By simply adding xc and yc you will then get the coordinates of P′ in

the global system, which you need for plotting.

Chapter 2 GraphiCs in two Dimensions

80

Four unit vectors are shown at (xc,yc). î and ĵ point in the x and y directions; î′ and ĵ′
point in the x′ and y′ directions. By examining Figure 2-14, you can see that

() ()ˆ ˆ ˆ¢ + j
����� �����

i = i
X component Y component

cos Rz sin Rz

(2-20)

() ()ˆ ˆ ˆ-¢ = +
����� �����

j i j
X component Y component

sin Rz cos Rz

(2-21)

Plugging these into Equation 2-19, you get

() () () ()ˆ ˆˆ ˆé ù é ù= + + - +ë û¢ ë ûj jP i ixp cos Rz sin Rz yp sin Rz cos Rz (2-22)

This can be separated into x and y components,

ˆ ˆ¢ ¢ ¢= + jP ixp yp (2-23)

where

xp xp Rz yp Rz¢ = ()éë ùû + - ()éë ùûcos sin (2-24)

yp xp Rz yp Rz¢ = ()éë ùû + ()éë ùûsin cos (2-25)

These last two equations are all you need to rotate a point from (xp,yp) through the

angle Rz to new coordinates (xp′,yp′). Note that both sets of coordinates, (xp,yp) and

(xp′,yp′), are in reference to the local x,y axes. They can then be easily translated by xc

and yc to get them in the global system for plotting.

In the special case where yp=0, that is when P, before rotation, lies on the x axis at

x=xp, Equations 2-24 and 2-25 degenerate to

 xp xp Rz¢ = ()cos (2-26)

 yp xp Rz¢ = ()sin (2-27)

Chapter 2 GraphiCs in two Dimensions

81

which can be easily verified from Figure 2-14. You are, of course, concerned with rotating

a generic point that initially is anywhere in the x,y plane so you need the full formulation

contained in Equations 2-24 and 2-25. These can be expressed in matrix form as

xp

yp

Rz Rz

Rz Rz

xp

yp

¢
¢

é

ë
ê

ù

û
ú =

() - ()
() ()

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

cos sin

sin cos
(2-28)

which can be abbreviated as

¢[] = [][]P Rz P (2-29)

The [P′] and [P] matrices are often termed column vectors since they contain the

components of vectors P and P′. [Rz] is a transformation matrix; it transforms the P

vector into the P′ vector, in this case by rotation through the angle Rz. These vectors are

shown in Figure 2-15 where P defines the location of the unrotated point P1 (black) and

the rotated point P′ (red) at P3. You can rewrite [Rz] as

Rz

C C

C C
[] = () ()

() ()
é

ë
ê

ù

û
ú

11 1 2

2 1 2 2

, ,

, ,
(2-30)

 C Rz11,() = ()cos (2-31)

 C Rz1 2,() = - ()sin (2-32)

 C Rz2 1,() = ()sin (2-33)

 C Rz2 2,() = ()cos (2-34)

The definitions in Equations 2-31 through 2-34 will be used in the Python programs

that follow. They represent a rotation in the x,y plane in the clockwise direction; use a

negative value of Rz to rotate in the counterclockwise direction. Note that [Rz] is purely a

function of the angle of rotation, Rz.

To convert xp′ and yp′ to xg and yg, you simply add xc to xp′ and yc to yp′, as in

 xg xc xp= + ¢ (2-35)

 yg yc yp= + ¢ (2-36)

Chapter 2 GraphiCs in two Dimensions

82

In matrix form,

xg

yg

xc

yc

Rz Rz

Rz Rz

xé

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú +

() - ()
() ()

é

ë
ê

ù

û
ú

cos sin

sin cos

pp

yp

é

ë
ê

ù

û
ú

(2-37)

which can be abbreviated as

Pg C Rz P
global center local

[] = [] +[][]� � �

(2-38)

or in vector form, as shown in Figure 2-15,

 P Pg = + ¢C (2-39)

As an illustration of the above concepts, Listing 2-10 rotates a point P1 about (xc,yc)

from its original unrotated location at (xp,yp)=(60,0) in 30 degree increments. Results are

shown in Figure 2-15. The coordinates of the center of rotation, (xc,yc), are set in lines 16

and 17.

Figure 2-15. Rotation of a point P1 from Rz=0° (black) to Rz=30° (green), 60° (red),
and 90° (grey). Vectors drawn from xg=0, yg=0 to Point 3 at Rz=60° illustrating
Equation 2-38. Plotted by Listing 2-10.

Chapter 2 GraphiCs in two Dimensions

83

Lines 28-37 of Listing 2-10 define a function rotz(xp1,yp1,Rz), which uses the

elements of the transformation matrix [Rz] in Equations 2-31 through 2-34 and the

angle of rotation Rz to calculate and return the transformed (rotated and translated)

coordinates (xg,yg). Lines 35 and 36 in function rotz relate the local coordinates to the

xg,yg system for plotting. Note that rotz rotates each point and simultaneously translates

it by xc and yc in lines 35 and 36. This puts the coordinates in the global system ready

for plotting. You are rotating the point four times: Rz=0,30,60,90. The use of the function

rotz(xp,yp,Rz) enables you to avoid coding the transformation for every point.

Lines 39 and 40 set the original coordinates of P to (60,0). It is important to note

that these coordinates are relative to the center of rotation (xc,yc). Line 43 starts the

calculation of the first point. This is at Rz=0. Line 44 converts Rz from degrees to radians.

Later, I will show how to use the radians() function to do this. Line 45 invokes the

function rotz(xp,yp,Rz). xp and yp were set in lines 39 and 40; Rz was set in line 43. The

function returns the coordinates of the rotated point (xg,yg) in line 37. Since Rz was zero

in this first transformation, they are the same as the coordinates of the unrotated point P1.

The plotting of point P2 begins in line 50. You set the angle of rotation to 30 degrees

in line 50. The routine is the same as before and P2 is plotted as a grey point. Sections P3

and P4 increase Rz to 60 and 90 degrees, plotting the red and final grey point.

Lines 74, 77, 80, and 83 illustrate the use of Latex in printing text on a plot. Looking at

line 74, for example,

plt.text(28,6,r'\mathbf{C}',color='k')

the text starts at coordinates xg=28, yg=6. As discussed in Chapter 1, the r tells Python

to treat the string as raw. This keeps the backward slashes needed by the Latex code

between the dollar signs; in this case, \mathbf{C}. \mathbf{} makes whatever is

between the braces {} bold. In line 80, ^{\prime} places a superscript prime next to

P. This won’t work if the prefix r is not included.

Listing 2-10. Program 2DROT1

1

2 """

3 2DROT1

4 """

5 import matplotlib.pyplot as plt

6 import numpy as np

Chapter 2 GraphiCs in two Dimensions

84

7

8 plt.axis([-10,140,90,-10])

9 plt.axis('on')

10 plt.grid(True)

11

12 #————————————————————————–axes

13 plt.arrow(0,0,40,0,head_length=4,head_width=2,color='b')

14 plt.arrow(0,0,0,40,head_length=4,head_width=2,color='b')

15

16 xc=40

17 yc=10

18

19 plt.plot([xc-30,xc+90],[yc,yc],linewidth=1,color='k') #—-X

20 plt.plot([xc,xc],[yc-5,yc+75],linewidth=1,color='k') #—-Y

21

22 plt.text(30,-2,'Xg',color='b')

23 plt.text(-7,33,'Yg',color='b')

24 plt.scatter(xc,yc,s=20,color='k')

25 plt.text(xc+3,yc-2,'(xc,yc)')

26

27 #—————————————————–define rotation matrix rz

28 def rotz(xp,yp,rz): #——–xp,yp=un-rotated coordinates relative to xc,yc

29 c11=np.cos(rz)

30 c12=-np.sin(rz)

31 c21=np.sin(rz)

32 c22=np.cos(rz)

33 xpp=xp*c11+yp*c12 #—-xpp,ypp=rotated coordinates relative to xc,yc

34 ypp=xp*c21+yp*c22

35 xg=xc+xpp #—-xg,yg=rotated coordinates relative to xg,yg

36 yg=yc+ypp

37 return [xg,yg]

38

39 xp=60 #————————————-coordinates of first point P1 relative to xc,yc

40 yp=0

41

42 #——————————————————————————————P1

Chapter 2 GraphiCs in two Dimensions

85

43 rz=0

44 rz=rz*np.pi/180

45 [xg,yg]=rotz(xp,yp,rz)

46 plt.scatter(xg,yg,s=30,color='k')

47 plt.text(xg+1,yg+6,'P1',color='k')

48

49 #——————————————————————————————————P2

50 rz=30

51 rz=rz*np.pi/180

52 [xg,yg]=rotz(xp,yp,rz)

53 plt.scatter(xg,yg,s=30,color='grey')

54 plt.text(xg+1,yg+6,'P2',color='grey')

55

56 #——————————————————————————————————P3

57 rz=60

58 rz=rz*np.pi/180

59 [xg,yg]=rotz(xp,yp,rz)

60 plt.scatter(xg,yg,s=30,color='r')

61 plt.text(xg+1,yg+6,'P3',color='r')

62 xpp3=xg #——save for later in line 76

63 ypp3=yg

64

65 #——————————————————————————————————P4

66 rz=90

67 rz=rz*np.pi/180

68 [xg,yg]=rotz(xp1,yp1,rz)

69 plt.scatter(xg,yg,s=30,color='grey')

70 plt.text(xp2+1,yp2+6,'P4',color='grey')

71

72 #——plot vectors

73 plt.arrow(0,0,xc-4,yc-1,head_length=4,head_width=2,color='k')

74 plt.text(28,6,r'\mathbf{C}',color='k')

75

76 plt.arrow(0,0,xpp3-3,ypp3-3,head_length=4,head_width=2,color='b')

77 plt.text(45,50,r'\mathbf{Pg}',color='b')

78

Chapter 2 GraphiCs in two Dimensions

86

79 plt.arrow(xc,yc,xpp3-2-xc,ypp3-5-yc,head_length=4,head_

width=2,color='r')

80 plt.text(61,40,r'$\mathbf{P^{\prime}}$',color='r')

81

82 plt.arrow(xc,yc,xp-4,yp,head_length=4,head_width=2,color='k')

83 plt.text(80,yc-2,r'\mathbf{P}',color='k')

84

85 plt.show()

Next, you rotate a rectangle around its center, as shown in Figure 2-16. The center

of rotation is point c at (xc,yc). The black rectangle shows the rectangle in its unrotated

orientation. Its corners are numbered 1-4, as shown. The program plots the unrotated

rectangle and then rotates it around point c to the rotated position and displays it in red.

Since the rectangle is defined by its corner points, you can rotate it by rotating

the corners around c. The methodology is detailed in Listing 2-11. First, you plot the

unrotated rectangle (black). The local coordinates of its four corner points are specified

relative to the center of rotation c in lines 42-49. The points are labelled and plotted as

dots in lines 51-58 where the local coordinates are converted to global by adding xc and

yc in lines 55-58.

Figure 2-16. Rotation of a rectangle around its center from Listing 2-11

Chapter 2 GraphiCs in two Dimensions

87

Next, you connect the corners by lines. Lines 61-68 translate the local corner

coordinates by xc and yc. These points are labelled xg and yg to indicate that they are

relative to the global plotting axes. They are set up as lists in lines 70 and 71, and then

plotted in line 73, which draws lines between sequential xg,yg pairs.

Note the sequence of coordinate pairs in lines 70 and 71. When line 73 is invoked, it

connects (xg1,yg1) to (xg2,yg2), then (xg2,yg2) to (xg3,yg3), and so on. But when it gets to

corner 4, it has to connect corner 4 back to corner 1 in order to close the rectangle; hence

you have (xg4,yg4) connected to (xg1,yg1) at the end of 70 and 71.

The plotting of the rotated rectangle begins at line 76. Rz is the angle of rotation. It is

set to 45 degrees here and then converted from degrees to radians in line 77 (you could

have used the radians() function to do this).

The function rotz(xp,yp,Rz) is defined in lines 29-38. The elements of the rotation

transformation matrix shown in Equations 2-31 through 2-34 are evaluated in lines

30-33. xp and yp are the coordinates of an unrotated point. xpp and ypp (xp′ and yp′),

coordinates in the rotated system, are evaluated in lines 34 and 35 using Equations 2-24

and 2-25. xg and yg, the coordinates in the global system after rotation and translation,

are evaluated in lines 36-37 in accordance with Equations 2-35 and 2-36. Note that

these lines rotate the points and simultaneously translate them relative to point c. The

transformed coordinates are returned as a list in line 38.

Lines 80-101 transform each of the corner coordinates one by one by invoking

function rotz(xp,yp,Rz). For example, lines 80-83 transform corner 1 from local,

unrotated coordinates xp1,yp1 to global coordinates xg and yg. The remaining three

points are transformed in the same way. The lines connecting the corners are plotted in

red in lines 104-107 using lists.

Listing 2-11. Program 2DROTRECTANGLE

1 """

2 2DROTRECTANGLE

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([-10,150,100,-10])

9 plt.axis('on')

Chapter 2 GraphiCs in two Dimensions

88

10 plt.grid(True)

11

12 #——–axes

13 plt.arrow(0,0,40,0,head_length=4,head_width=2,color='b')

14 plt.arrow(0,0,0,40,head_length=4,head_width=2,color='b')

15 plt.text(30,-3,'Xg',color='b')

16 plt.text(-8,34,'Yg',color='b')

17

18 xc=75 #————————————————–center of rotation

19 yc=50

20 plt.plot([xc-40,xc+60],[yc,yc],linewidth=1,color='grey') #—-X

21 plt.plot([xc,xc],[yc-40,yc+45],linewidth=1,color='grey') #—-Y

22 plt.text(127,48,'X')

23 plt.text(70,90,'Y')

24

25 plt.scatter(xc,yc,s=20,color='k') #—plot center of rotation

26 plt.text(70,49,'c')

27

28 #———-define function rotz

29 def rotz(xp,yp,rz):

30 c11=np.cos(rz)

31 c12=-np.sin(rz)

32 c21=np.sin(rz)

33 c22=np.cos(rz)

34 xpp=xp*c11+yp*c12 #————-relative to xc,yc

35 ypp=xp*c21+yp*c22

36 xg=xc+xpp #—-relative to xg,yg

37 yg=yc+ypp

38 return [xg,yg]

39

40 #——–plot unrotated rectangle

41 #—————————————————–rectangle corner coordinates in X,Y system

42 xp1=-20

43 xp2=+20

44 xp3=+20

45 xp4=-20

Chapter 2 GraphiCs in two Dimensions

89

46 yp1=-5

47 yp2=-5

48 yp3=+5

49 yp4=+5

50

51 plt.text(50,45,'1') #——————-label

52 plt.text(97,45,'2')

53 plt.text(97,57,'3')

54 plt.text(50,57,'4')

55 plt.scatter(xp1+xc,yp1+yc,s=10,color='k')

56 plt.scatter(xp2+xc,yp2+yc,s=10,color='k')

57 plt.scatter(xp3+xc,yp3+yc,s=10,color='k')

58 plt.scatter(xp4+xc,yp4+yc,s=10,color='k')

59

60 #——————————————————————————–plot unrotated rectangle

61 xg1=xc+xp1 #——————–corner coordinates in Xg,Yg system

62 yg1=yc+yp1

63 xg2=xc+xp2

64 yg2=yc+yp2

65 xg3=xc+xp3

66 yg3=yc+yp3

67 xg4=xc+xp4

68 yg4=yc+yp4

69

70 xg=[xg1,xg2,xg3,xg4,xg1]

71 yg=[yg1,yg2,yg3,yg4,yg1]

72

73 plt.plot((xg),(yg),color='k')

74

75 #———————————————————————–rotate rectangle corner coordinates

76 rz=45

77 rz=rz*np.pi/180

78

79 #———————————————————————————————————–point 1

80 xp=xp1

81 yp=yp1

Chapter 2 GraphiCs in two Dimensions

90

82 [xg,yg]=rotz(xp,yp,rz)

83 [xg1,yg1]=[xg,yg]

84

85 #———————————————————————————————————–point 2

86 xp=xp2

87 yp=yp2

88 [xg,yg]=rotz(xp,yp,rz)

89 [xg2,yg2]=[xg,yg]

90

91 #———————————————————————————————————–point 3

92 xp=xp3

93 yp=yp3

94 [xg,yg]=rotz(xp,yp,rz)

95 [xg3,yg3]=[xg,yg]

96

97 #———————————————————————————————————–point 4

98 xp=xp4

99 yp=yp4

100 [xg,yg]=rotz(xp,yp,rz)

101 [xg4,yg4]=[xg,yg]

102

103 #———————————————————————————————————–plot rotated rectangle

104 xg=[xg1,xg2,xg3,xg4,xg1]

105 yg=[yg1,yg2,yg3,yg4,yg1]

106

107 plt.plot(xg,yg,color='r')

108

109 plt.show()

Chapter 2 GraphiCs in two Dimensions

91

To summarize the procedure, you first construct the object, in this case a simple

rectangle, using points located at coordinates xp,yp in the local x,y system. This is done

by specifying the coordinates relative to the center of rotation at c. Next, you specify Rz,

evaluate the elements of the transformation matrix, transform each coordinate by Rz,

translate the rotated points by xc,yc to get everything into the global xg,yg system, and

then plot. The transformations are carried out by the function rotz(xp,yp,rz), which

simultaneously rotates and translates the coordinates into the xg,yg system for plotting.

In this case, you transformed all the coordinates first and then plotted at the end using

lists. In some programs, you will plot points or lines immediately after transforming.

Next, you rotate a rectangle about its lower left corner. This is shown in Figure 2-17.

The program that does this (not listed) is similar to Listing 2-11 except the center of

rotation is changed to

 xc = 55 (2-40)

 yc = 55 (2-41)

and the corner coordinates are changed to

 xp1 0= (2-42)

 xp2 50= + (2-43)

 xp3 50= + (2-44)

 xp4 0= (2-45)

 yp1 10= - (2-46)

 yp2 10= - (2-47)

 yp3 0= + (2-48)

 yp4 0= + (2-49)

These dimensions are relative to the center of rotation, (xc,yc).

Chapter 2 GraphiCs in two Dimensions

92

The center of rotation c does not have to be contiguous with the object; you could

put it anywhere as long as the corner coordinates relative to the center of rotation are

updated.

Figure 2-18 shows an example of constructing and rotating a circular object.

Obviously, without some distinctive feature, you wouldn’t be able to see if a circle had

been rotated so you make the top half of the starting circle green and the bottom half

red. You also add a bar across the diameter with dots at each end. Figure 2-19 shows the

model used by Listing 2-12 to generate Figure 2-18.

As shown in Figures 2-19 and 2-18, and referring to Listing 2-12, you construct the

starting circle with a center at xcc,ycc in program lines 41 and 42. It has a radius r=10,

which is set in line 43. The angle p starts at p1=0 and goes to p2=2π in steps dp in lines

45-47. Note that you are not using the angle definition Rz since p is a local angle about

point xcc,ycc (the center of the circle), not xc,yc, the center of rotation. Points along the

circle’s perimeter are calculated in lines 55 and 56 in local coordinates. When alpha=0,

this produces the starting circle.

The use of alpha in the function call in line 57 illustrates that you can use any name for

the angle, even though Rz was used in the function definition in line 29. You are passing

a number from a function call to a function. It doesn’t matter what name it has on either

end; the value received by the function will be the same as in the call to that function.

Figure 2-17. Rotation of a rectangle about a corner

Chapter 2 GraphiCs in two Dimensions

93

Figure 2-18. Circles rotated about point c from Listing 2-12

Figure 2-19. Model used by Listing 2-12

Chapter 2 GraphiCs in two Dimensions

94

When alpha>0, the other four circles are drawn. The alpha loop starting at line 53

moves the circle’s center (xcc,ycc) clockwise around the center of rotation in steps dalpha,

which is set in line 51. The local coordinates are transformed in line 57 by invoking rotz.

Alpha’s inclusion in the rotz function call has the effect of rotating the circle about its own

center (xcc,ycc). Lines 58-61 determine if each circumferential point lies between p=0 and

p=π. If so, the point is plotted as red, otherwise as green. Thus, the circle’s top half is red,

its bottom half is green. Lines 62-70 plot the diametrical bars and points.

An important feature of this approach is that not only is the circle’s center rotated

around point c in steps dalpha, but each circle itself is rotated about its own center, as

can be seen from the reorientation of the red and green sectors and the diametrical bars

in the rotated circles. In the next program, you will rotate each circle’s center around

point c while keeping each circle unrotated about its own center.

Why am I using circles in this demonstration? Primarily because it illustrates how to

construct circular shapes at any location relative to a center of rotation and rotate them.

It illustrates the importance of being aware of the location of the center of rotation; it

isn’t necessarily the same as the center of the circle.

In this case, you are rotating in the plane of the circle, which admittedly isn’t very

illuminating. But later, these concepts will become useful when I show how to rotate

objects, such as a circle, in three dimensions. In the case of a circle, when rotated out

of its plane, it produces an oval, which is essential in portraying circular and spherical

objects such as cylinders and spheres in three dimensions. Simply rotate a circle out of

plane about a coordinate direction and you get an oval.

Listing 2-12. Program 2DROTCIRCLE1

1 """

2 2DROTCIRCLE1

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([-10,150,100,-10])

9 plt.axis('on')

10 plt.grid(True)

11

Chapter 2 GraphiCs in two Dimensions

95

12 #——–axes

13 plt.arrow(0,0,40,0,head_length=4,head_width=2,color='b')

14 plt.arrow(0,0,0,40,head_length=4,head_width=2,color='b')

15 plt.text(30,-3,'Xg',color='b')

16 plt.text(-8,34,'Yg',color='b')

17

18 xc=80 #————————————————–center of rotation

19 yc=30

20 plt.plot([xc-50,xc+60],[yc,yc],linewidth=1,color='grey') #—-X

21 plt.plot([xc,xc],[yc-35,yc+60],linewidth=1,color='grey') #—-Y

22 plt.text(xc+50,yc-2,'X')

23 plt.text(xc-5,yc+55,'Y')

24

25 plt.scatter(xc,yc,s=20,color='k') #—plot center of rotation

26 plt.text(xc-5,yc-3,'c')

27

28 #———————————————————————————————————————–define rotation matrix Rz

29 def rotz(xp,yp,rz):

30 c11=np.cos(rz)

31 c12=-np.sin(rz)

32 c21=np.sin(rz)

33 c22=np.cos(rz)

34 xpp=xp*c11+yp*c12 #—-rotated coordinates relative to xc,yc

35 ypp=xp*c21+yp*c22

36 xg=xc+xpp #—-rotated coordinates relative to xg,yg

37 yg=yc+ypp

38 return [xg,yg]

39

40 #——plot circles

41 xcc=25 #–xcc,ycc=center of starting circle in local X,Y system

42 ycc=0

43 r=10 #—radius

44

45 p1=0 #——–p1,p2=angles around circle center

46 p2=2*np.pi

47 dp=(p2-p1)/100

Chapter 2 GraphiCs in two Dimensions

96

48

49 alpha1=0 #—–angles around xc,yc

50 alpha2=2*np.pi

51 dalpha=(alpha2-alpha1)/5

52

53 for alpha in np.arange(alpha1,alpha2,dalpha):

54 for p in np.arange(p1,p2,dp):

55 xp=xcc+r*np.cos(p) #——xp,yp=coordinates relative to local

X,Y system

56 yp=ycc+r*np.sin(p)

57 [xg,yg]=rotz(xp,yp,alpha)

58 if p < np.pi:

59 plt.scatter(xg,yg,s=1,color='r') #——plot lower half red

60 else:

61 plt.scatter(xg,yg,s=1,color='g') #——plot upper half green

62 xp1=xcc+r #——plot diameter bars and bar end points

63 yp1=0

64 [xg1,yg1]=rotz(xp1,yp1,alpha)

65 xp2=xcc-r

66 yp2=0

67 [xg2,yg2]=rotz(xp2,yp2,alpha)

68 plt.plot([xg1,xg2],[yg1,yg2],color='b')

69 plt.scatter(xg1,yg1,s=10,color='b')

70 plt.scatter(xg2,yg2,s=10,color='b')

71

72 plt.text(xc+31,yc-13,'starting circle')

73 plt.arrow(xc+31,yc-13,-3,2,head_length=2,head_width=1)

74

75 plt.show()

As shown in Figure 2-20, Listing 2-13 rotates the starting circle through increments

of angle dalpha while keeping the orientation of each circle unchanged. The program is

similar to the preceding one, with the exception that only the local center of each circle

is rotated about point c while the circumferential points, as defined by the starting circle,

remain unrotated. The program should be self-explanatory.

Chapter 2 GraphiCs in two Dimensions

97

Note the difference between Listings 2-12 and 2-13. In Listing 2-12, the rotation takes

place in lines 53-70. At each angle alpha, the coordinates of each point around the circle’s

circumference are determined in lines 55 and 56. These are then transformed in line 57

using the function rotz(xp,yp,alpha). That is, each point around the circumference is

rotated by the angle alpha. This has the effect of rotating the entire circle, as shown in

Figure 2-18. In Listing 2-13, however, the plotting is done in lines 41-68. Here only the

circle’s center is rotated in lines 50 and 51. In line 55, rotz(xp,yp,0) uses the angle p=0 in

its argument. This has the effect of not rotating the circle itself, only its center, as shown in

Figure 2-20.

Which method of rotation should you use: that shown in Figure 2-18 or 2-20? It

depends on your application. In one you may want the entire object, including the points

that comprise it, to rotate about a center whereas in another you may want only the

center of the object to rotate while the object retains its original orientation.

See Figure 2-21.

Figure 2-20. Circles with centers rotated about point c from Listing 2-13

Chapter 2 GraphiCs in two Dimensions

98

Figure 2-21. Model used by Listing 2-13

Listing 2-13. Program 2DROTCIRCLE2

1 """

2 2DROTCIRCLE2

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([-10,150,100,-10])

9 plt.axis('on')

10 plt.grid(True)

11

12 #——–axes

13 plt.arrow(0,0,40,0,head_length=4,head_width=2,color='b')

14 plt.arrow(0,0,0,40,head_length=4,head_width=2,color='b')

15 plt.text(30,-3,'Xg',color='b')

16 plt.text(-8,34,'Yg',color='b')

17

18 xc=80 #—————————————————center of rotation

Chapter 2 GraphiCs in two Dimensions

99

19 yc=30

20 plt.plot([xc-50,xc+60],[yc,yc],linewidth=1,color='grey') #—-X

21 plt.plot([xc,xc],[yc-35,yc+60],linewidth=1,color='grey') #—-Y

22 plt.text(xc+50,yc-2,'X')

23 plt.text(xc-5,yc+55,'Y')

24

25 plt.scatter(xc,yc,s=20,color='k') #—plot center of rotation

26 plt.text(xc-5,yc-3,'c')

27

28 #——define rotation matrix Rz

29 def rotz(xp,yp,rz):

30 c11=np.cos(rz)

31 c12=-np.sin(rz)

32 c21=np.sin(rz)

33 c22=np.cos(rz)

34 xpp=xp*c11+yp*c12 #—-relative to xc,yc

35 ypp=xp*c21+yp*c22

36 xg=xc+xpp #—-relative to xg,yg

37 yg=yc+ypp

38 return [xg,yg]

39

40 #——plot circles

41 p1=0

42 p2=2*np.pi

43 dp=(p2-p1)/100

44

45 alpha1=0

46 alpha2=2*np.pi

47 dalpha=(alpha2-alpha1)/5

48

49 for alpha in np.arange(alpha1,alpha2,dalpha):

50 xcc=25*np.cos(alpha)

51 ycc=25*np.sin(alpha)

52 for p in np.arange(p1,p2,dp):

53 xp=xcc+r*np.cos(p)

54 yp=ycc+r*np.sin(p)

Chapter 2 GraphiCs in two Dimensions

100

55 [xg,yg]=rotz(xp,yp,0)

56 if p < np.pi:

57 plt.scatter(xg,yg,s=1,color='r')

58 else:

59 plt.scatter(xg,yg,s=1,color='g')

60 xp1=xcc+r

61 yp1=ycc+0

62 [xg1,yg1]=rotz(xp1,yp1,0)

63 xp2=xcc-r

64 yp2=ycc+0

65 [xg2,yg2]=rotz(xp2,yp2,0)

66 plt.plot([xg1,xg2],[yg1,yg2],color='b')

67 plt.scatter(xg1,yg1,s=10,color='b')

68 plt.scatter(xg2,yg2,s=10,color='b')

69

70 plt.text(xc+34,yc-10,'starting circle')

71 plt.arrow(xc+34,yc-10,-2,2,head_length=1,head_ width=1)

72

73 plt.show()

2.10 Summary
In this chapter, you saw how to use dots and lines to construct shapes in two dimensions.

You learned the concept of relative coordinates, specifically the local system, which is

used to construct an image with coordinate values relative to a center, which in the case

of rotation may be used as the center of rotation, and the global system which is used for

plotting. You saw how local coordinates must be transformed into the global system for

plotting, the origin of the global system being defined through the plt.axes() function.

You saw how to construct lines from dots; arrange colored dots in artistic patterns; and

draw arcs, discs, circles, and ellipses using dots and line segments. Then you learned

about the concepts of translation (easy) and rotation (not so easy). You applied all this

to points, rectangles, and circles. In the next chapter, you will extend these ideas to three

dimensions.

Chapter 2 GraphiCs in two Dimensions

101
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_3

CHAPTER 3

Graphics in Three
Dimensions
In this chapter, you will learn how to create, translate, and rotate three-dimensional

objects in a three-dimensional space. You will also learn how to project and display

them on the two-dimensional surface of your computer screen. General movement of

an object implies both translation and rotation. I discussed this in two dimensions in

the previous chapter. You saw that translation in two dimensions is trivial. Just add or

subtract a quantity from the x coordinates to translate in the x direction, similarly for the

y direction. In three dimensions, it is still trivial, although you are able now to translate

in the third dimension, the z direction, simply by adding or subtracting an amount to

an object’s z coordinates. Rotation is another matter, however. The analysis follows the

method you used in two dimensions but is complicated by the fact that you now are able

to rotate an object around three coordinate directions. In this chapter, I will not discuss

3D translation any further but will concentrate instead on 3D rotation.

3.1 The Three-Dimensional Coordinate System
In the previous discussion of two-dimensional rotation, you rotated two-dimensional

objects in the two-dimensional x,y plane. You now extend those concepts to three

dimensions by introducing a third axis, the z axis, as shown in Figure 3-1. Notice that the

z axis points into the screen, not out. This is not an arbitrary choice. We are following

the right-hand rule convention where the direction of positive z is found by rotating

the x axis toward the y axis through the smaller angle between them. The positive z

axis will then point in the direction that would be followed by a right-handed screw

when turned in this fashion. In this case, the screw would progress into the screen; that

is then the direction of the positive z axis. We could construct an entire mathematical

102

theory based on a left-handed screw but the convention used most everywhere is that

of a right-handed system. Some books and papers label the coordinate axes as x1,x2,x3.

Following the right-hand rule, the direction of x3 would be found by rotating x1 into x2,

as described above. In this work, we will stay with the x,y,z notation for the directions.

Figure 3-1. Three-dimensional coordinate axes with point P at coordinates
(x,y,z)

It should be apparent now why I used the nomenclature Rz in the previous

discussion of two-dimensional rotation; it refers to rotation about the z axis. This appears

as a clockwise rotation in the x-y plane when x goes to the right and y goes down. If x

went to the right and y were to go up, z would point out of the screen and a positive

rotation about the z axis would appear to go counterclockwise.

Following the methods used in this analysis of two-dimensional rotation, in the

remainder of this chapter I will discuss separate rotations around the x,y, and z axes and

then combined rotations around all three axes. Incidentally, when I say “rotation around

the x axis”, for example, I am implying that this is equivalent to “rotation around the x

direction” and vice versa. While rotation around an imaginary axis that is parallel to the x

axis is not precisely the same as rotation around the x axis, the difference is only a matter

of translation. I will use both terms interchangeably except when confusion may result.

Figure 3-2 shows the right-hand x,y,z system. Imagine you’re standing at the origin,

looking out in the direction of the x axis. If you were to turn a right-handed screw

clockwise, it would progress in the direction of the positive x axis. The double-headed

arrow is the conventional way of indicating the direction of a right-hand rotation, Rx;

similarly for Ry and Rz.

Chapter 3 GraphiCs in three Dimensions

103

Why have I chosen to orient the coordinate system as shown in Figure 3-2? Standard

matplotlib uses a different orientation as shown, for example, in https://matplotlin.

org/mpl_toolkits/mplot3d/tutorial.html#scatter-plots.

Figure 3-2. Three-dimensional coordinate axes showing right-hand rotation
around each coordinate direction

As explained earlier, the orientation in Figure 3-2 is somewhat more intuitive. The

object being constructed is inside a space defined by the x,y,z axes. In this situation, the

observer is outside the space looking in. The object may be translated and rotated at will to

give any view desired. You can look straight in at an object or view it from above or below,

as shown in the images of Saturn in Chapter 10. The matplotlib orientation, on the other

hand, is the one commonly used for data plotting and is the one you’ll use for that purpose

in Chapter 9; look at Figures 9-1 through 9-5. If you prefer the standard matplotlib system,

it is easy to change to that orientation; just rotate the axes to any orientation you want, as

is done in Chapter 9 where, to get z pointing up, you rotate around the global x direction

by -100 degrees (tilts z slightly forward), the global y axis by -135 degrees, and the global z

direction by +8 degrees (see lines 191-193 in Listing 9- 1). You can fine-tune the orientation

by small rotations about the global axes. After you complete this chapter, you should find it

easy to shade the background planes, as shown in matplotlib, if you want. You can orient

the axes any way you want as long as they follow the right-hand rule.

Chapter 3 GraphiCs in three Dimensions

https://matplotlin.org/mpl_toolkits/mplot3d/tutorial.html#scatter-plots
https://matplotlin.org/mpl_toolkits/mplot3d/tutorial.html#scatter-plots

104

3.2 Projections onto the Coordinate Planes
How do we display a three-dimensional object on a two-dimensional computer

monitor? We do so by projecting the object onto either of the three two-dimensional

coordinate planes (x,y; x,z; and y,z) and then plotting either of those images on the

monitor. Figure 3-3 show a three-dimensional line (black) running from A to B. Looking

down from above the plotting space onto the x,z plane, you see it as the red line, which

is the black line’s projection onto the x,z plane. Similarly, the green line shows its

projection onto the y,z plane; the blue line is its projection onto the x,y plane. I will use

only one of these projections for visualization, normally the x,y projection.

Figure 3-3. Projection of a three-dimensional line (black) onto the three
coordinate planes: red=x,z projection, green=y,z projection, and blue=x,y
projection

The x,y projection is obtained by plotting a point’s x and y coordinates in the x,y

plane; for a line, you plot a line between the x and y coordinates of the line’s endpoints.

In the case of the black line, which runs from spatial coordinates (xA,yA,zA) to (xB,yB,zB),

you plot a line between xA,yA and xB,yB:

plt.plot([xA,xB],[yA,yB],color='b')

This gives you the blue line, which is the projection onto the x,y plane as shown in

Figure 3-4. If you want to obtain the top view, you plot the black line’s z,x coordinates. If

plotting with your normal coordinate axes with x running from left to right and y running

down on the left, the y axis replaces the z axis. This is equivalent to a -90 degree rotation

about the x axis. You then plot between the line’s z and x coordinates of

plt.plot([zA,zB],[xA,xB],color='r')

Chapter 3 GraphiCs in three Dimensions

105

to get the red line. To get the green y, z projection, you plot the z and y coordinates using

the command

plt.plot([zA,zB],[yA,yB],color='g')

Figure 3-4. Projection of a three-dimensional line onto the x, y plane

In this case, you must reorient the screen coordinate axes such that +z runs from left

to right across the top of the screen with the y axis running down the right side. This will

give a z, y view from outside of the x,y,z coordinate system.

Note that in the case of a projection onto the x,y plane, you do not use the object’s

z coordinates. But you still need them in order to carry out rotations. Similarly for the

other projections, one coordinate is not needed for the projection but is needed for

rotations so it must be included in the analysis.

To simplify everything, you will use the x,y projection in most of the work that

follows. As you will see, rotating an object around the three coordinate directions

and projecting the object’s (x,y) coordinates onto the x,y plane will produce a three-

dimensional view.

The projections of three-dimensional objects onto two-dimensional coordinate

planes are called isometric projections. They are commonly used in engineering and

drafting. These images do not appear as they would to the human eye or as they would in

a photograph because of the absence of what artists call foreshortening, more commonly

known as perspective. As an example of foreshortening, if you look down a line of

telephone poles that are running off into the distance alongside railroad tracks, the pole

closest to you would look taller than those further away and the rails would appear to

merge as they near the horizon. What causes foreshortening? It happens simply because

there is more area for the eye to cover in the far distance than close up. In the case of

Chapter 3 GraphiCs in three Dimensions

106

telephone poles, it’s because there is more vertical space in the distance so the poles,

which are of fixed height, occupy a smaller percentage of it; for the railroad tracks, it’s

the expanding horizontal space. Isometric projections do not take foreshortening into

account, but I will in Chapter 4 when I discuss perspective transformations.

Figure 3-5. Isometric vs. perspective views

While you have seen how to project a simple three-dimensional line and its

end points onto the three coordinate planes, you could have worked with a more

complicated object consisting of many points and lines. As you have seen, even a circle

can be constructed from just points (dots) or lines with any degree of refinement desired.

While a simple example, the three-dimensional line illustrates the method you will

use in the following work: define a shape within the three-dimensional x,y,z space in

terms of points and lines having coordinates (x,y,z); operate on them by rotating and

translating; project them onto the x,y plane; and then plot them using their x and y

coordinates. Thus you are able to project a 3D object onto your computer monitor’s

screen.

To rotate a point in three dimensions implies rotating it around the x,y, and z

directions. You saw how to carry out two-dimensional rotation around the z direction,

Rz, in the previous chapter. Here, you will derive transformations in three dimensions for

rotation around the y,x, and z directions.

3.3 Rotation Around the y Direction
Figure 3-6 shows the unit vector geometry for rotation around the y direction, Ry. This is

the view that would be seen by looking down onto the top of the x,y,z system. The y axis

runs into the plane of the paper.

Chapter 3 GraphiCs in three Dimensions

107

Following the method used in Chapter 2, a point whose position is initially defined

by the vector P is rotated to P′. Vectors defining the location of P and P’ in the x,y,z

(unrotated) and x’,y’,z’ (rotated) systems are

 P i j k= + +xp yp zpˆ ˆ ˆ (3-1)

 ¢ = ¢ + ¢ + ¢P i j kxp yp zpˆ ˆ ˆ (3-2)

 ¢ = ¢ + ¢+ ¢P ixp yp zpˆ ˆ ˆj k (3-3)

where î, ĵ, and k̂ are unit vector in the x,y, and z directions and î′, ĵ′, and k̂′ are unit

vectors in the x′,y′, and z′ directions. From Figure 3-6, you can see that

ˆ ˆ ˆ ˆ¢ = () + () - ()i i j kcos sinRy Ry0 (3-4)

ˆ ˆ ˆ ˆ¢ = () + () - ()j i j k0 1 0 (3-5)

ˆ ˆ ˆ ˆ¢ = () + () - ()k i j ksin cosRy Ry0 (3-6)

Plugging them into Equation 3-3 yields

¢ = () - ()é

ë
ù
û + + () + ()é

ë
ùP i k j i kxp Ry Ry yp zp Ry Rycos sin sin cosˆ ˆ ˆ ˆ ˆ
ûû (3-7)

Figure 3-6. Unit vectors for rotation about the y direction. This is a view looking
down on the plotting space. The y axis runs into the plane of the paper.

Chapter 3 GraphiCs in three Dimensions

108

Separating into ˆi, ˆj, and kˆ components, you get

¢ () + () +[] + -= éë ùû
¢ ¢

P i jxpcos Ry zp Ry yp xp

xp yp

sin s
� ����� ����� �

ˆ ˆ iin cosRy zp Ry

zp

() + ()éë ùû
¢

� ������ ������
k̂

(3-8))

With Equation 3-2,

 xp xp Ry zp Ry¢ = () + ()cos sin (3-9)

 yp yp¢ = (3-10)

 zp xp Ry zp Ry¢ = - () + ()sin cos (3-11)

Equations 3-9 through 3-11 give the coordinates of the rotated point in the local x,y,z

system. Of course, yp′=yp in Equation 3-10 since the y coordinate doesn’t change with

rotation about the y axis.

Equations 3-9, 3-10, and 3-11 can be expressed in matrix form, as shown in

Equation 3-12:

xp

yp

zp

Ry Ry

Ry Ry

¢
¢
¢

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

() ()

- () ()

é

ë

ê
ê

cos sin

sin cos

0

0 1 0

0êê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

xp

yp

zp

(3-12)

It can be abbreviated as

 P Ry P’[] = [][] (3-13)

[Ry], the transformation matrix for y axis rotation, is

Ry

Cy Cy Cy

Cy Cy Cy

Cy Cy

[] =
() () ()
() () ()
()

11 1 2 1 3

2 1 2 2 2 3

3 1 3

, , ,

, , ,

, ,22 3 3() ()

é

ë

ê
ê
ê

ù

û

ú
ú
úCy ,

(3-14)

 Cy Ry11,() = ()cos (3-15)

 Cy 1 2 0,() = (3-16)

 Cy Ry1 3,() = ()sin (3-17)

Chapter 3 GraphiCs in three Dimensions

109

 Cy 2 1 0,() = (3-18)

 Cy 2 2 0,() = (3-19)

 Cy 2 3 0,() = (3-20)

 Cy Ry3 1,() = - ()sin (3-21)

 Cy 3 2 0,() = (3-22)

 Cy Ry3 3,() = ()cos (3-23)

These elements will be used in the programs that follow.

3.4 Rotation Around the x Direction
Figure 3-7 shows the unit vector geometry for rotation around the x direction.

Figure 3-7. Unit vectors for rotation around the x direction. The x axis runs into
the plane of the paper.

You see that

ˆ ˆ ˆ ˆ¢ = () + () + ()i i j k1 0 0 (3-24)

ˆ ˆ ˆ ˆ¢ = () + () + ()j i j k0 cos sinRx Rx (3-25)

ˆ ˆ ˆ ˆ¢ = () - () + ()k i j k0 sin cosRx Rx (3-26)

Chapter 3 GraphiCs in three Dimensions

110

Following the methods in the previous section,

 P i j k= + +xp yp zpˆ ˆ ˆ (3-27)

¢ = + () + ()é

ë
ù
û + - () + ()é

ëP i j k j kxp yp Rx Rx zp Rx Rxˆ ˆ ˆ ˆ ˆcos sin sin cos ùù
û (3-28)

= + ()- ()éë ùû + (
¢ ¢

xp yp Rx zp Rx yp Rx
xp yp

� � ����� �����
ˆ ˆi jcos sin sin)) + ()éë ùû

¢

zp Rx

zp

cos
� ����� �����

k̂

(3-29)

In matrix form, it’s

xp

yp

zp

Rx Rx

Rx Rx

¢
¢
¢

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= () - ()

() ()

é

ë

ê
ê

1 0 0

0

0

cos sin

sin cosêê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

xp

yp

zp

(3-30)

which can be abbreviated as

 P Rx P’[] = [][] (3-31)

This leads to the transformation matrix for x direction rotation of

Rx Rx Rx

Rx Rx

[] = () - ()
() ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0

0

cos sin

sin cos

(3-32)

Rx

Cx Cx Cx

Cx Cx Cx

Cx Cx

[] =
() () ()
() () ()
()

11 1 2 1 3

2 1 2 2 2 3

3 1 3

, , ,

, , ,

, ,22 3 3() ()

é

ë

ê
ê
ê

ù

û

ú
ú
úCx ,

(3-33)

 Cx 11 1,() = (3-34)

 Cx 1 2 0,() = (3-35)

 Cx 1 3 0,() = (3-36)

 Cx 2 1 0,() = (3-37)

 Cx Rx2 2,() = ()cos (3-38)

Chapter 3 GraphiCs in three Dimensions

111

 Cx Rx2 3,() = - ()sin (3-39)

 Cx 3 1 0,() = (3-40)

 Cx Rx3 2,() = ()sin (3-41)

 Cx Rx3 3,() = ()cos (3-42)

3.5 Rotation Around the z Direction
In Chapter 2, you derived the transformation matrix for two-dimensional rotation

around the z direction. You will now do it in three dimensions. Repeating the two-

dimensional Rz matrix (Equation 3-43) from Chapter 2:

xp

yp

Rz Rz

Rz Rz

xp

yp

¢
¢

é

ë
ê

ù

û
ú =

() - ()
() ()

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

cos sin

sin cos
(3-43)

In three dimensions, you have the following:

xp

yp

zp

Rz Rz

Rz Rz

¢
¢
¢

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

() - ()
() ()

é

ë

ê
ê

cos sin

sin cos

0

0

0 0 1êê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

xp

yp

zp

(3-44)

Rz

Cz Cz Cz

Cz Cz Cz

Cz Cz

[] =
() () ()
() () ()
()

11 1 2 1 3

2 1 2 2 2 3

3 1 3

, , ,

, , ,

, ,22 3 3() ()

é

ë

ê
ê
ê

ù

û

ú
ú
úCz ,

(3-45)

 Cz Rz11,() = ()cos (3-46)

 Cz Rz1 2,() = - ()sin (3-47)

 Cz 1 3 0,() = (3-48)

 Cz Rz2 1,() = ()sin (3-49)

 Cz Rz2 2,() = ()cos (3-50)

Chapter 3 GraphiCs in three Dimensions

112

 Cz 2 3 0,() = (3-51)

 Cz 3 1 0,() = (3-52)

 Cz 3 2 0,() = (3-53)

 Cz 3 3 1,() = (3-54)

You can extend the two-dimensional matrix equation to three- dimensions in

Equation 3-44 by simply observing that in the first row xp′ does not depend on zp, hence

C(1,3)=0; in the second row, yp′ also does not depend on zp, hence c(2,3)=0; in the third

row, zp′ does not depend on either xp′ or yp′, hence C(3,1) and C(3,2) both equal 0.

C(3,3)=1 since the z coordinate remains unchanged after rotation about the z axis.

The three transformations are summarized as follows:

Rx Rx Rx

Rx Rx

[] = () - ()
() ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0

0

cos sin

sin cos

(3-55)

Ry

Ry Ry

Ry Ry

[] =
() ()

- () ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cos sin

sin cos

0

0 1 0

0

(3-56)

Rz

Rz Rz

Rz Rz[] =
() - ()
() ()

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cos sin

sin cos

0

0

0 0 1

(3-57)

Chapter 3 GraphiCs in three Dimensions

113

3.6 Separate Rotations Around the Coordinate
Directions
Figure 3-8 shows separate rotations of a box (a) about the x,y, and z directions. The figure

was created using Listing 3-1. The rotations are separate, not sequential. That is, box (b)

is box (a) rotated by Rx; box (c) is (a) rotated by Ry; and box (d) is (a) rotated by Rz. The

rotations are not additive, which means Ry is not added to the results of Rx and Rz is not

added to the results of Rx and Ry; they are each separate rotations of the original box (a).

The rotations take place around the center of the box.

Figure 3-8. Output from Listing 3-1. Projection (a) of an unrotated box on the x,y
plane, (b) rotated around the x direction by Rx=45°, (c) around the y direction by
Ry=30°, and (d) around the z direction by Rz=30°. Double-headed red arrows show
the direction of rotation using the right-hand rule convention. Heavy lines indicate
the top and bottom. The boxes are rotated about their center, which is indicated by
a black dot.

Listing 3-1 makes use of functions and lists. Without them, the program would more

than double in size. Using them reduces the program size considerably. It could be

shortened even further by the use of arrays but the savings would be minimal and tends

to obscure the methodology.

Chapter 3 GraphiCs in three Dimensions

114

Figure 3-9 shows the corner numbering scheme used by Listing 3-1. The corner

numbers are in blue. They are Python list numberings and start at 0. Normally we number

the corners from 1 to 8. However, in Python, the first element in a list is always 0. In the

case of an eight-cornered box, the last, the eighth, is element 7 in the list. For example, the

x coordinate of the first point is x[0], the second is x[1], and so on. It’s like numbering the

first rung of a ladder as the zeroth rung. Confusing? Yes. Blame it on the C programming

language, from which this trap is a carryover. Perhaps the best way to avoid problems

is to get in the habit of numbering things from 0 instead of 1, which is what I have done

in Figure 3-9. I could have used a different arrangement of numbering in Figure 3-9 but

starting with the top left corner and proceeding clockwise seems logical (e.g. I could

have started the numbering at the top right-front corner instead of the top upper-left). It

doesn’t matter as long as the chosen scheme is consistent with the program.

Figure 3-9. Numbering scheme for the box’s corners in Lsiting 3-1. Lists at the
upper right contain the coordinate values. They are the same as the lists in Listing
3-1, lines 14, 15, and 16. The center coordinates xc,yc,zc are not the same as used in
Listing 3-1. The z axis is not shown.

The lists shown in the figure define the corner coordinates. There are eight elements

in each list because there are eight corners in the box. Corner 2, which is the third

element in the list, has coordinates x[3]=10,y[3]=-10,z[3]=3. These are local coordinates;

in other words, they are relative to the box’s center, which is the center of rotation.

Chapter 3 GraphiCs in three Dimensions

115

Listing 3-1 starts off by defining lists for [x],[y], and [z] in lines 14-16. These lines hold

the coordinates of the box’s corners relative to its center. [xg],[yg], and [zg] in lines 18-20

will hold the global plotting coordinates after transformations have been done. Space is

reserved for eight in each list since there are eight corners in the box.

Next are the definitions of the rotation functions rotx, roty, and rotz. They rotate a

point’s coordinates xp,yp,zp around the x,y, and z directions, respectively. Each function

returns a new set of coordinates: xg,yg, and zg, which are the global coordinates of the

rotated point. These coordinates will be used for plotting.

Looking at the definition of rotx, which begins in line 23, when invoked to do a

transformation about the x direction rotx receives the box’s center coordinates xc,yc,zc,

which, in this case is the center of rotation, plus the point’s unrotated coordinates

xp,yp,zp and the angle of rotation about the x direction, Rx. The list a=[xp,yp,zp] in line

24 contains the coordinates of the unrotated point. This is, in effect, a vector to point

xp,yp,zp. In line 25, b=[1,0,0] is a list of the first row of the Rx transformation matrix

shown in Equation 3-55. Line 26, xpp=np.inner(a,b), forms the dot or scalar product of

these lists. There is also an np.dot(a,b) function that could be used. For simple non-

complex vectors, np.inner(a,b) and np.dot(a,b) give the same results. But for higher

dimensional arrays the results may differ.

To illustrate the calculation of ypp for rotation around the x direction, you have seen

that vector p′ is related to p by

xpp

ypp

zpp

Rx Rx

Rx Rx

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= () - ()

() ()

é

ë

ê
ê

1 0 0

0

0

cos sin

sin cosêê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

xp

yp

zp

(3-58)

where ypp (i.e. yp′) is the y coordinate of the rotated point. Line 27 in the program is

the second row of Equation 3-57. The scalar product of a and b is formed in line 28

producing ypp (yp′). That is,

 a xp yp zp=[], , (3-59)

b Rx Rx= () - ()éë ùû0, ,cos sin (3-60)

Chapter 3 GraphiCs in three Dimensions

116

 ypp = ()np inner a b. , (3-61)

= ()+ ()() + - ()()xp yp Rx zp Rx0 cos sin (3-62)

 = ()- ()ypcos Rx zpsin Rx (3-63)

which is line 28. Lines 29 and 30 repeat the process using the third row of Equation 3-

57, producing zpp (zp′). Line 31 adds xc,yc,zc, the coordinates of the box’s center,

to xpp,ypp,zpp, thus translating the rotated points relative to the origin of the global

coordinate system producing [xg,yg,zg] which are the global plotting coordinates. roty

and rotz follow the same structure using the rows of [Ry] and [Rz] in their b lists.

Next is the function plotbox in line 56. This plots the box using its global corner

coordinates xg,yg, and zg. The loop starting in line 57 plots the top by connecting the

first three corners with lines. Line 60 closes the top by plotting a line between corners 3

and 0. This has not been included in the loop, which was set up to plot one corner with

the next. The problem comes when you try to connect corner 3 with 0; the algorithm in

the loop doesn’t work. It could be modified to handle it, but it’s easier to just add line

60 rather than complicate the loop. The rest of plotbox up to line 68 completes the box.

Line 70 plots a dot at its center.

Line 72 starts function plotboxx. This transforms the corner coordinates to get them

ready for plotting by plotbox. The loop from line 73 to 74 rotates all eight corners around

the x direction by invoking rotx. Line 76 invokes function plotbox, which does the

plotting. plotboxy and plotboxz do the same for rotations about the y and z directions.

Up to this point, you have been defining functions. You use functions in this program

since many of the operations are repetitive. If you tried to write this program using single

statements, it would be at least twice as long.

Control of the program lies between lines 91 and 116. Lines 91-95 plot the first box

(a). Since this first box (a) is unrotated, you specify Rx=0 in line 91. You use function

plotboxx with the Rx=0 parameter to do the plotting. You could use Ry=0 with plotboxy

or Rz=0 with plotboxz. It doesn’t matter since the angle of rotation is 0. Lines 92-94

specify the box’s center coordinates. Line 95 invokes plotboxx. The result is shown in

Figure 3-8 as (a). Lines 98-116 produce the rotated boxes (b), (c), and (d).

To summarize the procedure using box (b) as an example, the angle of rotation is

set in line 98; the box’s center coordinates in lines 99-101. Then, in line 102, function

plotboxx is invoked. The center coordinates and the angle Rx are passed as arguments.

plotboxx, which begins in line 72, rotates the eight corners by invoking rotx. plotboxx

Chapter 3 GraphiCs in three Dimensions

117

doesn’t use xc,yc, and zc, but it passes them onto rotx, which needs them. rotx rotates

and translates the coordinates producing xg,yg,zg. Line 76 invokes function plotbox,

which does the plotting.

In lines 91, 98, 105, and 112 you use the function radians(), which was imported

from the math library in line 7. (Note that you could have used numpy for this). It

converts an argument in degrees to one in radians, which are required by sin() and

cos(). In earlier programs, you did the conversion with np.pi/180.

Listing 3-1. Program 4BOXES

 1 """

 2 4BOXES

 3 """

 4

 5 import numpy as np

 6 import matplotlib.pyplot as plt

 7 from math import sin, cos, radians #–or use numpy

 8

 9 plt.axis([0,150,100,0])

 10 plt.axis('on')

 11 plt.grid(True)

 12

 13 #————————————————————————-lists

 14 x=[-10,-10,10,10,-10,-10,10,10] #–un-rotated corner coordinates

 15 y=[-10,-10,-10,-10,10,10,10,10] #–relative to box's center

 16 z=[-3, 3, 3, -3,-3, 3, 3,-3]

 17

 18 xg=[0,1,2,3,4,5,6,7] #–define global coordinates

 19 yg=[0,1,2,3,4,5,6,7]

 20 zg=[0,1,2,3,4,5,6,7]

 21

 22 #———————————————————–function definitions

 23 def rotx(xc,yc,zc,xp,yp,zp,Rx):

 24 a=[xp,yp,zp]

 25 b=[1,0,0] #———————————-[cx11,cx12,cx13]

Chapter 3 GraphiCs in three Dimensions

118

 26 xpp=np.inner(a,b) #—–scalar product of a,b=xp*cx11+yp*cx12+ zp*cx13

 27 b=[0,cos(Rx),-sin(Rx)] #—————[cx21,cx22,cx23]

 28 ypp=np.inner(a,b)

 29 b=[0,sin(Rx),cos(Rx)] #—————[cx31,cx32,cx33]

 30 zpp=np.inner(a,b)

 31 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 32 return[xg,yg,zg]

 33

 34 def roty(xc,yc,zc,xp,yp,zp,Ry):

 35 a=[xp,yp,zp]

 36 b=[cos(Ry),0,sin(Ry)] #——————–[cx11,cx12,cx13]

 37 xpp=np.inner(a, b)

 38 b=[0,1,0] #—————[cx21,cx22,cx23]

 39 ypp=np.inner(a,b) #——————–scalar product of a,b

 40 b=[-sin(Ry),0,cos(Ry)] #—————[cx31,cx32,cx33]

 41 zpp=np.inner(a,b)

 42 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 43 return[xg,yg,zg]

 44

 45 def rotz(xc,yc,zc,xp,yp,zp,Rz):

 46 a=[xp,yp,zp]

 47 b=[cos(Rz),-sin(Rz),0] #——————-[cx11,cx12,cx13]

 48 xpp=np.inner(a, b)

 49 b=[sin(Rz),cos(Rz),0] #—————[cx21,cx22,cx23]

 50 ypp=np.inner(a,b)

 51 b=[0,0,1] #—————[cx31,cx32,cx33]

 52 zpp=np.inner(a,b) #———————scalar product of a,b

 53 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 54 return[xg,yg,zg]

 55

 56 def plotbox(xg,yg,zg): # – plots the box using its rotated

coordinates xg,yg,zg

 57 for i in (0,1,2): #———————————————-plot top

 58 plt.plot([xg[i],xg[i+1]],[yg[i],yg[i+1]],linewidth=3,

color='k')

Chapter 3 GraphiCs in three Dimensions

119

 59

 60 plt.plot([xg[3],xg[0]],[yg[3],yg[0]],linewidth=3,color='k')

#-close top

 61

 62 for i in (4,5,6): #——————————————-plot bottom

 63 plt.plot([xg[i],xg[i+1]],[yg[i],yg[i+1]],linewidth=3,

color='k')

 64

 65 plt.plot([xg[7],xg[4]],[yg[7],yg[4]],linewidth=3,color='k')

#–close bottom

 66

 67 for i in (0,1,2,3): #——————————————plot sides

 68 plt.plot([xg[i],xg[i-4]],[yg[i],yg[i-4]],linewidth=1,

color='k')

 69

 70 plt.scatter(xc,yc,s=5) #–plot a dot at the center

 71

 72 def plotboxx(xc,yc,zc,Rx):

 73 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

 74 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

 75

 76 plotbox(xg,yg,zg)

 77

 78 def plotboxy(xc,yc,zc,Ry):

 79 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

 80 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

 81

 82 plotbox(xg,yg,zg)

 83

 84 def plotboxz(xc,yc,zc,Rz):

 85 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

 86 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

 87

 88 plotbox(xg,yg,zg)

 89

Chapter 3 GraphiCs in three Dimensions

120

 90 #——————————————————————–R=0 box(a)

 91 Rx=radians(0)

 92 xc=25 #—————box (a) center coordinates

 93 yc=40

 94 zc=20

 95 plotboxx(xc,yc,zc,Rx) #–since Rx=0 we could use plotboxy or plotboxz

 96

 97 #———————————————————————Rx box(b)

 98 Rx=radians(45)

 99 xc=55

100 yc=40

101 zc=20

102 plotboxx(xc,yc,zc,Rx)

103

104 #——————————————————————–Ry box (c)

105 Ry=radians(30)

106 xc=85

107 yc=40

108 zc=20

109 plotboxy(xc,yc,zc,Ry)

110

111 #——————————————————————–Rz box (d)

112 Rz=radians(30)

113 xc=115

114 yc=40

115 zc=20

116 plotboxz(xc,yc,zc,Rz)

117

118 #————————————————————————-notes

119 plt.text(23,63,'(a)')

120 plt.text(53,63,'(b)')

121 plt.text(83,63,'(c)')

122 plt.text(112,63,'(d)')

123 plt.text(21,73,'R=0')

124 plt.text(47,73,'Rx=45°')

Chapter 3 GraphiCs in three Dimensions

121

125 plt.text(77,73,'Ry=30°')

126 plt.text(107,73,'Rz=30°')

127 plt.arrow(42,40,25,0,head_width=2,head_length=3,color='r')

#–red arrows

128 plt.arrow(42,40,28,0,head_width=2,head_length=3,color='r')

129 plt.arrow(85,25,0,27,head_width=2,head_length=2,color='r')

130 plt.arrow(85,25,0,29,head_width=2,head_length=2,color='r')

131 plt.plot([8,130],[8,8],color='k') #–axes

132 plt.plot([8,8],[8,85],color='k')

133 plt.text(120,6,'X')

134 plt.text(3,80,'Y')

135 plt.scatter(115,40,s=30,color='r') #———–red dot center of box (d)

136

137 plt.show()

3.7 Sequential Rotations Around the Coordinate
Directions
In Listing 3-1, you operated on a box’s initial corner coordinates defined by the lists in

lines 14, 15, and 16. The program produced separate rotations around the x,y, and z

coordinate directions. In this section, you begin with the same set of corner coordinates

but you rotate sequentially. That is, after a rotation Rx about the x direction (b), rotation

Ry is added to the results of Rx (c). Rz is then added to the results of Ry (d). The rotations

are thus not independent as before but are additive. You do this by replacing the x,y, and

z definitions in lines 14, 15, and 16 with a new set of coordinates following each rotation.

That is, the box’s corner coordinates are updated after each rotation so that the next

rotation starts with the updates coordinates. This is accomplished by simply modifying

functions plotboxx, plotboxy, and plotboxz between lines 72-88 in Listing 3-1. In Listing

3-2, lines 74b, 80b, and 86b are added. They do the updating by replacing the initial

corner coordinates x,y,z with the transformed ones xg,yg,zg after each rotation. The code

replaces lines 72-88 in Listing 3-1.

Chapter 3 GraphiCs in three Dimensions

122

Listing 3-2. Program 4BOXESUPDATE

71

72 def plotboxx(xc,yc,zc,Rx):

73 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

74 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

74b [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

75

76 plotbox(xg,yg,zg)

77

78 def plotboxy(xc,yc,zc,Ry):

79 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

80 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

80b [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

81

82 plotbox(xg,yg,zg)

Figure 3-10. Sequential rotations of a box. Box (a) is rotated by Rx=30° to (b),
then by an additional rotation of Ry=30° to (c), and then by an additional rotation
of Rz=15° to (d). x and y axes show direction only. Coordinate values are indicated
by the grid.

Chapter 3 GraphiCs in three Dimensions

123

83

84 def plotboxz(xc,yc,zc,Rz):

85 for i in (0,1,2,3,4,5,6,7): #————————–rotate eight corners

86 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

86b [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

87

88 plotbox(xg,yg,zg)

89

The transformation parameters are set in lines 91-116 by the values of rotations Rx,

Ry, and Rz and the box center coordinates xc, yc, zc.

The sequence of rotations in this program is hard-wired to produce Figure 3-10 with

(a) first, followed by (b), (c), and (d). In a general program, the sequence and values of

rotations and center coordinates could be set to anything suitable by moving sections

of code around or by entering the sequences through the keyboard. You will do both

shortly. But first, you will do sequential rotations of a circle.

Figure 3-11. Sequential rotations of a circle created by Listing 3-3. Circle (a) is
rotated by Rx=45° to (b), then by an additional rotation of Ry=70° to (c), and then
by an additional rotation of Rz=90° to (d). Red indicates the upper half of circle.
x and y axes show direction only, not coordinate values, which are indicated by the
grid.

Chapter 3 GraphiCs in three Dimensions

124

Listing 3-3 is similar to the preceding modified version of Listings 3-1 and 3-2 where

you did sequential rotations of a box. In that program, the box had eight corners, which

had to be transformed and updated with every rotation. Here you have a circle, which

has many more points, to transform and update.

In lines 23-38, you fill lists between lines 33 and 38 with starting values of local and

global coordinates of points around the circumference of the circle. They are spaced

dphi=5° apart as shown in line 25. The circle’s radius is 10 as shown in line 27. The empty

lists were previously defined in lines 14-20. As the loop starting at line 29 advances

around the circle with angle phi, lines 30 to 32 calculate the local coordinates of each

point. Lines 33-38 add the coordinates to the list using the append() function, which

adds elements to a list. For example, with each cycle through the loop line 33 appends

(adds) the local value of xp at the current angle phi to the x list. Since you are just filling

the list at this point, you can use xp,yp,zp to also fill the xg, yg, and zg lists in lines 36- 38.

Note that zp=0 (program line 32) in this initial definition of the circle. That is, the circle

starts off flat in the x,y plane. Subsequent rotations will be around that initial orientation.

Lines 41-72 define the transformation functions as before. The circle plotting

function extends from line 75-86. Lines are used to plot the circle. The plotting loop runs

from 78-82. Line 86 plots a dot at the center.

Rather than counting the number of points around the circle, you use the

range(len(x)) function to give the number of elements in the lists. You can use the

length of x as a measure since all lists have the same length. Lines 79-82 plot the top half

red and the bottom half green. Lines 83-84 update the last xg any yg global coordinates

to use when plotting the lines as before. You don’t need to include zg here since you

use only xg and yg when plotting. Lines 89-108 transform coordinates as was done in

Listings 3-1 and 3-2. The difference is here you have to deal with lists len(x) long whereas

previously you had only eight corners.

Listing 3-3. Program SEQUENTIALCIRCLES

 1 """

 2 SEQUENTIALCIRCLES

 3 """

 4

 5 import numpy as np

 6 import matplotlib.pyplot as plt

Chapter 3 GraphiCs in three Dimensions

125

 7 from math import sin, cos, radians

 8

 9 plt.axis([0,150,100,0])

 10 plt.axis('on')

 11 plt.grid(True)

 12

 13 #——————————————————————define lists

 14 x=[]

 15 y=[]

 16 z=[]

 17

 18 xg=[]

 19 yg=[]

 20 zg=[]

 21

 22 #——————————————fill lists with starting coordinates

 23 phi1=radians(0)

 24 phi2=radians(360)

 25 dphi=radians(5) #–circumferential points spaced 5 degrees

 26

 27 r=10 #–circle's radius

 28

 29 for phi in np.arange(phi1,phi2+dphi,dphi): # –establish coordinates of

circumferential points

 30 xp=r*cos(phi)

 31 yp=r*sin(phi)

 32 zp=0

 33 x.append(xp) #–fill lists

 34 y.append(yp)

 35 z.append(zp)

 36 xg.append(xp)

 37 yg.append(yp)

 38 zg.append(zp)

 39

Chapter 3 GraphiCs in three Dimensions

126

 40 #—————————————————–define rotation functions

 41 def rotx(xc,yc,zc,xp,yp,zp,Rx):

 42 a=[xp,yp,zp]

 43 b=[1,0,0] #———————————-[cx11,cx12,cx13]

 44 xpp=np.inner(a,b) #—–scalar product of a,b=xp*cx11+yp*cx12+ zp*cx13

 45 b=[0,cos(Rx),-sin(Rx)] #—————[cx21,cx22,cx23]

 46 ypp=np.inner(a,b)

 47 b=[0,sin(Rx),cos(Rx)] #—————[cx31,cx32,cx33]

 48 zpp=np.inner(a,b)

 49 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 50 return[xg,yg,zg]

 51

 52 def roty(xc,yc,zc,xp,yp,zp,Ry):

 53 a=[xp,yp,zp]

 54 b=[cos(Ry),0,sin(Ry)] #——————–[cx11,cx12,cx13]

 55 xpp=np.inner(a, b)

 56 b=[0,1,0] #—————[cx21,cx22,cx23]

 57 ypp=np.inner(a,b) #——————–scalar product of a,b

 58 b=[-sin(Ry),0,cos(Ry)] #—————[cx31,cx32,cx33]

 59 zpp=np.inner(a,b)

 60 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 61 return[xg,yg,zg]

 62

 63 def rotz(xc,yc,zc,xp,yp,zp,Rz):

 64 a=[xp,yp,zp]

 65 b=[cos(Rz),-sin(Rz),0] #——————-[cx11,cx12,cx13]

 66 xpp=np.inner(a, b)

 67 b=[sin(Rz),cos(Rz),0] #—————[cx21,cx22,cx23]

 68 ypp=np.inner(a,b)

 69 b=[0,0,1] #—————[cx31,cx32,cx33]

 70 zpp=np.inner(a,b) #———————scalar product of a,b

 71 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 72 return[xg,yg,zg]

 73

Chapter 3 GraphiCs in three Dimensions

127

 74 #——————————————————define circle plotting function

 75 def plotcircle(xg,yg,zg):

 76 lastxg=xg[0]

 77 lastyg=yg[0]

 78 for i in range(len(x)): #—–len(x)=length of all lists

 79 if i < len(x)/2: #—–half green

 80 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],

linewidth=1,color='g')

 81 else:

 82 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],

linewidth=1,color='r')

 83 lastxg=xg[i]

 84 lastyg=yg[i]

 85

 86 plt.scatter(xc,yc,s=5) #–plot a dot at the center

 87

 88 #———————————————–transform coordinates and plot

 89 def plotcirclex(xc,yc,zc,Rx): #—————-transform & plot Rx circle

 90 for i in range(len(x)): #–for i in range(len(x)): ok too

 91 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

 92 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

 93

 94 plotcircle(xg,yg,zg) #—————plot

 95

 96 def plotcircley(xc,yc,zc,Ry):

 97 for i in range(len(x)): #—————–transform & plot Ry circle

 98 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

 99 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

100

101 plotcircle(xg,yg,zg)

102

Chapter 3 GraphiCs in three Dimensions

128

103 def plotcirclez(xc,yc,zc,Rz):

104 for i in range(len(x)): #—————–transform & plot Rz circle

105 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

106 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

107

108 plotcircle(xg,yg,zg)

109

110 #——————————————————————plot circles

111 Rx=radians(0)

112 xc=25 #—————circle (a) center coordinates

113 yc=40

114 zc=20

115 plotcirclex(xc,yc,zc,Rx) #–since R=0 we could use plotcircley or

plotcirclez

116

117 #—————————————————————–Rx circle (b)

118 Rx=radians(45)

119 xc=55

120 yc=40

121 zc=20

122 plotcirclex(xc,yc,zc,Rx)

123

124 #—————————————————————–Ry circle (c)

125 Ry=radians(70)

126 xc=85

127 yc=40

128 zc=20

129 plotcircley(xc,yc,zc,Ry)

130

131 #—————————————————————–Rz circle (d)

132 Rz=radians(90)

133 xc=115

134 yc=40

135 zc=20

136 plotcirclez(xc,yc,zc,Rz)

Chapter 3 GraphiCs in three Dimensions

129

137

138 #——————————————————————-notes

139 plt.text(23,63,'(a)')

140 plt.text(53,63,'(b)')

141 plt.text(83,63,'(c)')

142 plt.text(112,63,'(d)')

143 plt.text(21,73,'R=0')

144 plt.text(47,73,'Rx=45°')

145 plt.text(77,73,'Ry=70°')

146 plt.text(107,73,'Rz=90°')

147 plt.arrow(42,40,25,0,head_width=2,head_length=3,color='r') #–red

arrows

148 plt.arrow(42,40,28,0,head_width=2,head_length=3,color='r')

149 plt.arrow(85,25,0,27,head_width=2,head_length=2,color='r')

150 plt.arrow(85,25,0,29,head_width=2,head_length=2,color='r')

151 plt.plot([8,130],[8,8],color='k') #–axes

152 plt.plot([8,8],[8,85],color='k')

153 plt.text(120,6,'X')

154 plt.text(3,80,'Y')

155 plt.scatter(115,40,s=30,color='r') #———–red dot center of box (d)

156

157 plt.show()

3.8 Matrix Concatenation
Comparing Figure 3-12 with 3-11, you can see that, although Rx,Ry, and Rz have the

same values in both figures, the resulting orientations of the circle in (c) and (d) are

different. This is because the order of the rotation in Figure 3-11 is Rx,Ry,Rz while in

Figure 3-12 it is Rx,Rz,Ry. Clearly the order of rotations is important.

Chapter 3 GraphiCs in three Dimensions

130

You can demonstrate this yourself. Take a book and place it on the edge of your desk

front side up, top facing to the right. Imagine the desk’s edge is the x direction going

from left to right. Next, rotate it 90 degrees around the x direction, followed by 90 degrees

around the z direction. This is RxRz. The book will be upside down with the front facing

you. Then reverse the order by rotating around the z direction first followed by the x

direction. This is RzRx. As you can see, you get a different final orientation of the book in

the two cases.

While you have carried out sequential rotations by ordering them and updating

rotated coordinates in the program’s code, mathematically it amounts to a multiplication

of matrices. For example, the following equation produces a rotation Rx of vector [P]

followed by a rotation Rz. The two rotations produce the vector [P′].

¢[] = [][][]P Rz Rx P (3-64)

Figure 3-12. Circle (a) is rotated sequentially by Rx=45° to (b), then by an
additional rotation of Rz=90° to (c), followed by an additional rotation of Ry=70
to (d). Red indicates the lower half of circle. x and y axes show direction only, not
coordinate values, which are indicated by the grid.

Chapter 3 GraphiCs in three Dimensions

131

[Rx] operates on the vector [P], [Rz] then operates on the result of [Rx][P]. To rotate

by Rz followed by Rx,

¢[] = [][][]P Rx Rz P (3-65)

In general,

 Rx Rz Rz Rx[][] ¹ [][] (3-66)

You can show this by a simple example using two-dimensional matrices. Consider

two matrices, A and B, where

A

a b

c d
[] = é

ë
ê

ù

û
ú

(3-67)

 B
e f

g h
[] = é

ë
ê

ù

û
ú (3-68)

AB

a b

c d

e f

g h

ae bg af bh

ce dg cf dh
=
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú =

+ +
+ +

é

ë
ê

ù

û
ú

(3-69)

BA

e f

g h

a b

c d

ae cf be df

ag ch bg dh
=
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú =

+ +
+ +

é

ë
ê

ù

û
ú

(3-70)

 \ ¹AB BA (3-71)

For only three rotations around three different coordinate directions, there are six

combinations of possible transformation sequences:

 RxRyRz (3-72)

 RxRzRy (3-73)

 RyRxRz (3-74)

 RyRzRx (3-75)

 RzRxRy (3-76)

 RzRyRx (3-77)

Chapter 3 GraphiCs in three Dimensions

132

Each of these combinations involves three separate rotations. You could multiply the

three transformation matrices shown in Equations 3-55, 3-56, and 3-57 to get a single

transformation matrix for each of these combinations. You could then write a program

that would execute each of these combinations: select one combination, input the three

angles, and then get the final rotation. But what if you wanted more than three rotations,

such as RyRzRxRyRz? That would require a lot of matrix multiplying! Clearly it’s much

easier to incorporate the sequencing by coding it into the Python program and updating

coordinates after each transformation, as you have learned how to do here.

To produce Figure 3-12, lines 110-136 of Listing 3-3 were replaced with the code in

Listing 3-4.

Listing 3-4. Program SEQUENTIALCIRCLESUPDATE

109

110 #——————————————————————plot circles

111 Rx=radians(0)

112 xc=25 #—————circle (a) center coordinates

113 yc=40

114 zc=20

115 plotcirclex(xc,yc,zc,Rx) #– since R=0 we could use plotcircley or

plotcirclez

116

117 #—————————————————————–Rx circle (b)

118 Rx=radians(45)

119 xc=55

120 yc=40

121 zc=20

122 plotcirclex(xc,yc,zc,Rx)

123

124 #—————————————————————–Rz circle (d)

125 Rz=radians(90)

126 xc=85

127 yc=40

128 zc=20

129 plotcirclez(xc,yc,zc,Rz)

130

Chapter 3 GraphiCs in three Dimensions

133

131 #—————————————————————–Ry circle (c)

132 Ry=radians(70)

133 xc=115

134 yc=40

135 zc=20

136 plotcircley(xc,yc,zc,Ry)

137

Here you have performed the operation RxRzRy, reversing the order of the last two

transformations. Circle (a) is plotted as before with Rx=0 in line 111. Also as before, circle

(b) is plotted next with Rx=45 degrees in line 118. The difference is in lines 124- 136 where

the rotations Ry and Rz are reversed and Rz is plotted before Ry. The angles have the same

values as before. Rearranging the order of plotting is easy; just cut and paste sections of

the code. But be sure to update the center coordinates xc, yc, and zc. You could make the

program a lot more user-friendly by introducing the input() function, which will give you

the ability to input the order of transformations through the keyboard. You could then

enter the rotations Rx,Ry, or Rz and the amount and the center coordinates in any order.

You will do that next.

3.9 Keyboard Data Entry with Functional Program
Structure
As you saw in the discussion of matrix concatenation, rearranging the order of

rotations in a program can be a useful option. However, as you will see in this section,

entering data via the keyboard is much more satisfactory. You will also use a functional

programming structure where a few lines of code control various predefined functions

that carry out the various operations. This will give you great flexibility in controlling the

program.

Listing 3-5 produced the results shown in Figures 3-13 through 3-16. The first figure

shows a circle rotated around the x direction by 0°; the second around the y direction by

60°; the third around the x direction by 45°; and the fourth around the z direction by 90°.

All rotations are added to the previous orientation of the circle. The axis of rotation and

the amount were entered through the keyboard. The sequence of rotation directions did

not matter, nor did the number of rotations.

Chapter 3 GraphiCs in three Dimensions

134

Referring to Listing 3-5, lines 111-113 specify the circle’s center coordinates. All

circles have the same center coordinates. The while True: statement in line 115 keeps

the data entry loop running so you can do an unlimited number of sequential rotations.

Line 116 asks you to specify the axis of rotation in the Spyder output pane. Enter x,y,

or z in lower case letters. To exit the loop, press the Enter key. (Important: If you are

using the Spyder console, be sure to click the mouse with the cursor in the output pane

before entering anything. If you forget and leave it in the program pane, you are liable

to get an unwanted x,y, or z imbedded somewhere in the program. If this happens, go

to the top of the screen and open a new console. This essentially starts the program

over.). If you enter x (lower case), line 118 asks for the angle of rotation Rx. Enter it as a

positive or negative angle in degrees. The input() function returns a string. The float

command converts it to a float. Line 119 then invokes function plotcirclex(), which

plots the rotated circle. Ry and Rz rotations are carried out in a similar way. Note there is

no restriction on the sequence or the number of rotations. Line 126 checks to see if you

entered a blank for axis, in which case line 127 exits the program. All circles are rotated

around the same center, xc,yc,zc. If you want to be able to move the centers of each

circle, just add input() lines for the center coordinates between lines 115 and 116.

Lines 89-108 rotate and update the coordinates of the circle’s circumferential points

as was done in Listing 3-3. In function plotcircle(), lines 71-86 do the plotting. Each time

this function is invoked, the axes and grid are replotted. Line 86 shows the latest plot.

This program is an important illustration of program control. Just the few lines

between 115 and 127 control the entire operation of the program and give great flexibility

in controlling the sequence of operations and the data used. In other programming

languages, such as Basic and Fortran, this is referred to as top-down programming.

In those languages subroutines, which are the equivalents of Python functions, are

generally placed at the bottom, while the controlling code is put at the top. In Python,

you normally put the functions at the top with the control at the bottom, a style called

bottom-up programming. Whether control is at the top or the bottom, this program

structure is called functional programming since the controlling code uses functions to

carry out the various operations. Since controlling data is input through the keyboard, it

offers considerable flexibility.

Chapter 3 GraphiCs in three Dimensions

135

Figure 3-13. The circle is rotated around the x axis by 0°

Figure 3-14. The previous circle is rotated around the y axis by 60°

Chapter 3 GraphiCs in three Dimensions

136

Figure 3-15. The previous circle is rotated around the y axis by 45°

Figure 3-16. The previous circle is rotated around the z axis by 90°

Chapter 3 GraphiCs in three Dimensions

137

Listing 3-5. Program KEYBOARDDATAENTRY

 1 """

 2 KEYBOARDDATAENTRY

 3 """

 4

 5 import numpy as np

 6 import matplotlib.pyplot as plt

 7 from math import sin, cos, radians

 8

 9 #——————————————————————-define lists

 10 x=[]

 11 y=[]

 12 z=[]

 13

 14 xg=[]

 15 yg=[]

 16 zg=[]

 17

 18 #——————————————fill lists with starting coordinates

 19 phi1=radians(0)

 20 phi2=radians(360)

 21 dphi=radians(5) #–circumferential points spaced 5 degrees

 22

 23 radius=15 #–circle's radius

 24

 25 for phi in np.arange(phi1,phi2+dphi,dphi): #– establish coordinates of

circumferential points

 26 xp=radius*cos(phi)

 27 yp=radius*sin(phi)

 28 zp=0

 29 x.append(xp) #–fill lists

 30 y.append(yp)

 31 z.append(zp)

 32 xg.append(xp)

Chapter 3 GraphiCs in three Dimensions

138

 33 yg.append(yp)

 34 zg.append(zp)

 35

 36 #—————————————————–define rotation functions

 37 def rotx(xc,yc,zc,xp,yp,zp,Rx):

 38 a=[xp,yp,zp]

 39 b=[1,0,0] #———————————-[cx11,cx12,cx13]

 40 xpp=np.inner(a,b) #—–scalar product of a,b=xp*cx11+yp*cx12+ zp*cx13

 41 b=[0,cos(Rx),-sin(Rx)] #—————[cx21,cx22,cx23]

 42 ypp=np.inner(a,b)

 43 b=[0,sin(Rx),cos(Rx)] #—————[cx31,cx32,cx33]

 44 zpp=np.inner(a,b)

 45 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 46 return[xg,yg,zg]

 47

 48 def roty(xc,yc,zc,xp,yp,zp,Ry):

 49 a=[xp,yp,zp]

 50 b=[cos(Ry),0,sin(Ry)] #——————–[cx11,cx12,cx13]

 51 xpp=np.inner(a, b)

 52 b=[0,1,0] #—————[cx21,cx22,cx23]

 53 ypp=np.inner(a,b) #——————–scalar product of a,b

 54 b=[-sin(Ry),0,cos(Ry)] #—————[cx31,cx32,cx33]

 55 zpp=np.inner(a,b)

 56 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 57 return[xg,yg,zg]

 58

 59 def rotz(xc,yc,zc,xp,yp,zp,Rz):

 60 a=[xp,yp,zp]

 61 b=[cos(Rz),-sin(Rz),0] #——————-[cx11,cx12,cx13]

 62 xpp=np.inner(a, b)

 63 b=[sin(Rz),cos(Rz),0] #—————[cx21,cx22,cx23]

 64 ypp=np.inner(a,b)

 65 b=[0,0,1] #—————[cx31,cx32,cx33]

 66 zpp=np.inner(a,b) #———————scalar product of a,b

Chapter 3 GraphiCs in three Dimensions

139

 67 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

 68 return[xg,yg,zg]

 69

 70 #———————————————–define circle plotting function

 71 def plotcircle(xg,yg,zg):

 72 lastxg=xg[0]

 73 lastyg=yg[0]

 74 for i in range(len(x)): #–for i in range(len(x)): ok too

 75 if i < len(x)/2: #—–half green

 76 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],

linewidth=1 ,color='g')

 77 else:

 78 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],

linewidth=1 ,color='r')

 79 lastxg=xg[i]

 80 lastyg=yg[i]

 81

 82 plt.scatter(xc,yc,s=5,color='k') #–plot a dot at the center

 83 plt.axis([0,150,100,0]) #–replot axes and grid

 84 plt.axis('on')

 85 plt.grid(True)

 86 plt.show() #–plot latest rotation

 87

 88 #————————————————transform coordinates and plot

 89 def plotcirclex(xc,yc,zc,Rx): #————-transform and plot Rx circle

 90 for i in range(len(x)):

 91 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

 92 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

 93

 94 plotcircle(xg,yg,zg) #—————plot

 95

Chapter 3 GraphiCs in three Dimensions

140

 96 def plotcircley(xc,yc,zc,Ry):

 97 for i in range(len(x)): #—————–transform and plot Ry circle

 98 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

 99 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

100

101 plotcircle(xg,yg,zg)

102

103 def plotcirclez(xc,yc,zc,Rz):

104 for i in range(len(x)): #—————–transform and plot Rz circle

105 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

106 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

107

108 plotcircle(xg,yg,zg)

109

110 #——————————————————————plot circles

111 xc=75 #–center coordinates

112 yc=50

113 zc=50

114

115 while True:

116 axis=input('x, y or z?: ') #–input axis of rotation (lower case)

117 if axis == 'x': #–if x axis

118 Rx=radians(float(input('Rx degrees?: ')))

119 plotcirclex(xc,yc,zc,Rx) #–call function plotcirclex

120 if axis == 'y':

121 Ry=radians(float(input('Ry degrees?: ')))

122 plotcircley(xc,yc,zc,Ry)

123 if axis == 'z':

124 Rz=radians(float(input('Rz degrees?: ')))

125 plotcirclez(xc,yc,zc,Rz)

126 if axis == ":

127 break

Chapter 3 GraphiCs in three Dimensions

141

3.10 Summary
In this chapter, you learned how to construct three-dimensional coordinate axes and

three-dimensional shapes and rotate them around the three coordinate directions. This

involved derivation of rotation transformations around the three coordinate directions.

You saw the difference between rotating an object once from its original orientation

and rotating it in sequential steps where each subsequent rotation uses the object’s

coordinates from the prior rotation as the starting point. You explored the idea that

the sequence of rotations is important; Rx,Ry,Rz does not produce the same results as

Rx,Rz,Ry. This was shown by matrix concatenation. Finally, you developed a program

where sequential rotations could be entered through the keyboard as opposed to

specifying them in the program. All of this work involved the use of lists.

Chapter 3 GraphiCs in three Dimensions

143
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_4

CHAPTER 4

Perspective
I discussed isometric vs. perspective views in the previous chapter. Now you will develop

a transformation that will automatically produce a perspective view. It operates much

like a camera where rays are traced from the various points that comprise an object onto

a plane that you might think of as a film plane. Figure 4-1 shows the geometry. It’s a

three-dimensional box in the x,y,z space. The x,y plane represents the film plane. There’s

also a focal point that is outside the x,y,z space in front of the x,y plane. Rays are traced

from the box’s corners to the focal point. By connecting the points where the rays hit the

x,y plane, you can construct a perspective view of the box.

As shown in Figure 4-2, a primitive camera can be constructed by putting a small

hole in an opaque sheet. Rays from an object passing through this hole will produce a

photographic-like perspective image on a “film plane.” The perspective transformation

you will be producing in this chapter will operate in a somewhat similar manner, except

you will be tracing the image on your computer screen. The geometry is geometrically

similar, except that the pinhole geometry produces a reversed image. If the focal point is

moved far back in the -z direction, the rays from the object become almost parallel and

the perspective effect is lost; the image becomes flattened. This phenomenon is well

known to photographers when shooting with a long focal length lens.

Figure 4-1. Geometry used to project a perspective image of an object on the x,y plane

144

Figures 4-3 and 4-4 show the geometry you will use to construct your transformation.

Figure 4-3 shows a three-dimensional object inside the x,y,z space. The focal point is

outside the space at global coordinates (xfp,yfp,zfp). It can be anywhere in front of (-z

direction) the x,y plane. Different locations will produce different views of the object,

much as a camera will produce different images when photographing an object from

different locations.

Imaginary rays emanating from the corners of the box pass through the x,y plane,

which you can imagine is your computer screen. Each ray hits the x,y plane at a hit point

(xh,yh,zh=0) on its way to the focal point of zh=0 since the x,y plane is at z=0. Connecting

the hit points produced by the rays coming from the points comprising the object will

produce a perspective image.

A typical point on the object is located at (x,y,z). The distance between the point and

the focal point is Q. Qh is the distance from the focal point to the hit point. |zfp|+z is the

horizontal distance from the focal point to the object point. |z| is the horizontal distance

from the focal point to the hit point. û is a unit vector pointing from the focal point

toward the object point. Using this geometry, you can derive the following relations:

 a x xfp= - (4-1)

 b y yfp= - (4-2)

 c z zfp= + (4-3)

Figure 4-2. Pinhole camera vs. computer projection geometry

Chapter 4 perspeCtive

145

Since, in Equation 4-3 zfp is negative (it lies in front of the x,y plane), you use its

absolute value of |zfp| because it adds to z to give the total z-direction distance between the

focal point and the object point. You could, of course, write Equation 4-3 as c=z-zfp, which

is equivalent, but the use of the absolute value |zfp| makes the following analysis more

understandable. Also, it won’t matter if you forget and enter a positive z value for zfp.

 Q a b c= + +2 2 2 (4-4)

 ux a Q= / (4-5)

 uy Q= b / (4-6)

 uz c Q= / (4-7)

 ˆ ˆ ˆ ˆu = + +ux uzi j kuy (4-8)

Qh

Q zfp

z zfp
=

+
(4-9)

 xh uxQh xfp= + (4-10)

 yh uyQh yfp= + (4-11)

 zh = 0 (4-12)

Chapter 4 perspeCtive

146

You can show zh=0 (i.e. the hit point lies on the x,y plane, as it should), by the

following:

zh uzQh zfp= - (4-13)

= -
c

Q
Qh zfp

(4-14)

= +() -z zfp

Qh

Q
zfp

(4-15)

=
+()

+()
-

z zfp

Q

Q zfp

z zfp
zfp

(4-16)

 = -zfp zfp (4-17)

 = 0 (4-18)

The negative sign in Equation 4-13 is because |zfp| is always positive while you know

that the focal point is always in the -z position.

Figure 4-3. Perspective image projection geometry

Chapter 4 perspeCtive

147

Listing 4-1 illustrates the use of the above model. It enables you to construct an

object, rotate it, and then view it in perspective. The object, in this case a house, is

defined in lines 14-29. Lines 14-16 establish corner coordinates x,y,z in local coordinates;

that is, in relation to a point xc,yc,zc, which is set in lines 18-20. This is at the center of the

house and it will be the center of rotation. Lines 22-29 convert x,y,z to global coordinates

xg,yg,zg by adding elements to the empty lists set in lines 22-24. Lines 31-47 plot the

house by connecting the corner points with lines.

Lines 50-63 define a function that rotates the local coordinates about xc,yc,zc, saving

the results as xg,yg,zg. It uses function roty, which is defined in lines 54-63. This function

was used in prior programs. It is the only rotation function in this program, which

means you can only rotate around the y direction. Next is the perspective transformation

perspective(xfp,yfp,zfp); it implements Equations 4-1 through 4-12, developed above.

The loop beginning in line 67 calculates the coordinates of the hit point for rays that

go to the focal point from each of the object’s corner points. The hit points, in terms of

global coordinates, are saved in lines 79-81.

Control of the program takes place in lines 83-95. Lines 83-85 define the location of the

focal point; lines 87-89 the house’s center point. Ry in line 91 specifies the angle of rotation

about the y direction. Line 93 then invokes function plothouse(xc,yc,zc,Ry), which rotates

the house. Line 94 invokes perspective(xfp,yfp,zfp), which performs the perspective

transformation. Line 95 plots the house. This could have been incorporated in the function

perspective but it has been placed here to illustrate the sequence of operations.

Figure 4-4. Perspective image projection geometry side view

Chapter 4 perspeCtive

148

Listing 4-1. Program PERSPECTIVE

1 """

2 PERSPECTIVE

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sin, cos, radians

8

9 plt.axis([0,150,100,0])

10

11 plt.axis('on')

12 plt.grid(True)

13

14 x=[-20,-20,20,20,-20,-20,20,20,-20,20] #——–object local corner coordinates

15 y=[-10,-10,-10,-10,10,10,10,10,-20,-20]

16 z=[5,-5,-5,5,5,-5,-5,5,0,0]

17

18 xc=30 #———————————————object center coordinates

19 yc=50

20 zc=10

21

22 xg=[] #———————————————object global coordinates

23 yg=[]

24 zg=[]

25

26 for i in np.arange(len(x)):

27 xg.append(x[i]+xc)

28 yg.append(y[i]+yc)

29 zg.append(z[i]+zc)

30

31 #————————————–plot object

32 def plothouse(xg,yg,zg):

33 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k')

34 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k')

Chapter 4 perspeCtive

149

35 plt.plot([xg[4],xg[7]],[yg[4],yg[7]],color='k')

36 plt.plot([xg[5],xg[6]],[yg[5],yg[6]],color='k')

37 plt.plot([xg[8],xg[9]],[yg[8],yg[9]],color='k')

38 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color='k')

39 plt.plot([xg[5],xg[1]],[yg[5],yg[1]],color='k')

40 plt.plot([xg[6],xg[2]],[yg[6],yg[2]],color='r')

41 plt.plot([xg[7],xg[3]],[yg[7],yg[3]],color='r')

42 plt.plot([xg[0],xg[8]],[yg[0],yg[8]],color='k')

43 plt.plot([xg[1],xg[8]],[yg[1],yg[8]],color='k')

44 plt.plot([xg[2],xg[9]],[yg[2],yg[9]],color='r')

45 plt.plot([xg[3],xg[9]],[yg[3],yg[9]],color='r')

46 plt.plot([xg[4],xg[5]],[yg[4],yg[5]],color='k')

47 plt.plot([xg[6],xg[7]],[yg[6],yg[7]],color='r')

48

49 #——————————————rotate object about the Y direction

40 def plothousey(xc,yc,zc,Ry):

51 for i in range(len(x)): #—————rotate 10 corners

52 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

53

54 def roty(xc,yc,zc,x,y,z,Ry):

55 a=[x,y,z]

56 b=[cos(Ry),0,sin(Ry)]

57 xpp=np.inner(a,b)

58 b=[0,1,0]

59 ypp=np.inner(a,b)

60 b=[-sin(Ry),0,cos(Ry)]

61 zpp=np.inner(a,b)

62 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

63 return [xg,yg,zg]

64

65 #—————————————————————————————————————perspective transformation

66 def perspective(xfp,yfp,zfp):

67 for i in range(len(x)):

68 a=xg[i]-xfp

69 b=yg[i]-yfp

Chapter 4 perspeCtive

150

70 c=zg[i]+abs(zfp)

71 q=np.sqrt(a*a+b*b+c*c)

72 ux=a/q

73 uy=b/q

74 uz=c/q

75 qh=q*abs(zfp)/(zg[i]+abs(zfp))

76 xh=ux*qh+xfp

77 yh=uy*qh+yfp

78 zh=0

79 xg[i]=xh

80 yg[i]=yh

81 zg[i]=zh

82

83 xfp=80 #—————————————————————————focal point coordinates

84 yfp=50

85 zfp=-100

86

87 xc=80 #——————————————redefine center coordinates

88 yc=50

89 zc=50

90

91 Ry=radians(45) #—————————————————————angle of rotation

92

93 plothousey(xc,yc,zc,Ry) #—-rotate

94 perspective(xfp,yfp,zfp) #—-transform

95 plothouse(xg,yg,zg) #—-rotate

96

97 plt.show()

Figures 4-5 through 4-8 show output from Listing 4-1. Figure 4-5 shows the

house in its unrotated (Ry=0) orientation. The right side is red. The focal point is at

xc=80,yc=50,-100. This is in line with the house’s center but 100 in front of the x,y plane.

Figure 4-6 shows the house rotated 45 degrees around the y direction. The perspective

effect is apparent. Figure 4-7 shows the house with the same settings but with the focal

point moved back from zfp=-100 to zfp=-600. You can see how the image is flattened

and the perspective effect is mostly lost. Figure 4-8 shows the house with some random

Chapter 4 perspeCtive

151

settings. By following the procedure in Listing 4-1, you should be able to create a more

elaborate scene quite easily.

Figure 4-5. Perspective image with Ry=0, zfp=-100

Figure 4-7. Perspective image with Ry=45, zfp=-600

Figure 4-6. Perspective image with Ry=45, zfp=-100

Figure 4-8. Perspective image with Ry=-60, zfp=-100, xc=40, yc=70, xfp=100,
zfp=-80

The question is, where to place the focal point. If you’re projecting the image onto

the x,y plane, clearly it should be in front of that plane (i.e. i the -z direction). But what

about the x,y coordinates of the focal point? The best results, most like what would be

seen by the human eye, would be to place it at the same x,y coordinates as the house’s

center. Of course, if there are many objects in the model, such as more houses and trees,

it is not obvious where to place the focal point. The best results will be obtained by

situating it in front of the x,y plane at the coordinates that correspond to the approximate

center of the model. This is akin to aiming a camera at the center of a scene to be

photographed. The painter Vermeer chose this structure in many of his paintings. In

fact, in some of his canvases art historians have found a nail hole at the vanishing point

Chapter 4 perspeCtive

152

where all parallel lines such as room corners and floor tiles converge. The nail hole is in

the approximate center of the scene. It is believed he tied a string to a nail and used it to

trace the converging lines, much as you have used lines in your algorithm. You can see

this structure in many of Vermeer’s interior paintings.

4.1 Summary
In this chapter, you learned how to construct a perspective view. The geometry is based

on the simple box camera. You had the perspective image projected onto the x,y plane.

You could have used any of the other coordinate planes, for example the x,z plane; the

geometry would be similar. You explored the question of where to place the focal point,

which corresponds to the observation point of a viewer or a camera. The answer is,

unless you are looking for an unusual image, at the approximate center of the model.

This was the structure used by Vermeer in many of his paintings.

Chapter 4 perspeCtive

153
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_5

CHAPTER 5

Intersections
In this chapter, you will develop algorithms that will tell you where lines and planes

intersect a variety of objects. The techniques you develop will be useful later when you

remove hidden lines and trace shadows cast by objects. You will also learn how to show

the intersection of lines and planes with a sphere. As you will see, there is no one magic

algorithm that will satisfy all situations; each requires its own methodology. While you

may never need some of these algorithms, such as a line intersecting a circular sector,

the procedures, which rely on vector-based geometry, are interesting and should give

you the tools you will need when you encounter different situations.

Instead of using vectors, many of these solutions could be derived analytically. For

example, the solution for a line intersecting a sphere can be obtained by combining the

equation of a line with that of a sphere. The result is a quadratic equation that, when

solved, yields the entrance and exit points. Such an approach can be fast and simple

provided you are dealing with objects that can be represented by simple equations.

However, the vector-based procedures, while they may seem more complex, are actually

quite simple and intuitive. They can also be much more versatile and adaptable to

unusual situations. They are the ones you will use here.

5.1 Line Intersecting a Rectangular Plane
Figure 5-1 shows a line intersecting a rectangular plane. You will develop the algorithm

and a program to find the point of intersection, called the hit point. Here you are

stipulating that the plane is finite, but it doesn’t have to be. After going through the

analysis, you will see there is nothing here that requires the plane be finite. You also start

off by assuming the plane is rectangular. It doesn’t have to be rectangular but, for now, it

is easier to keep it finite and rectangular.

154

The plane has corners at 0, 1, 2, and 3. These have local coordinates of (x0,y0,z0) -

(x3,y3,z3) relative to the center of rotation at (xc,yc,zc). The line starts at x[4],y[4],z[4] and

ends at x[5],y[5],z[5]. It intersects the plane at the hit point.

There are three unit vectors at corner 0; û, v̂ , and n̂ . Unit vector v̂ points from corner

0 to 1; û from 0 to 3. n̂ is normal to the plane. l̂ is a unit vector pointing along the line

from 4 to 5. Q45 is the distance from 4 to 5. Qh is the distance from 4 to the hit point. Qn is

the perpendicular distance from 4 to the plane. Your quest is to determine the location of

the hit point (xh,yh,zh). Using vector geometry, you can write the following relations:

Distance 4 → 5:

 a x x= []- []5 4 (5-1)

 b y y= []- []5 4 (5-2)

 c z z= []- []5 4 (5-3)

 Q a b c45
2 2 2= + + (5-4)

Unit vector 4 → 5:

lx

a

Q
=

45
(5-5)

ly

b

Q
=

45
(5-6)

Figure 5-1. Geometry of a line intersecting a rectangular plane

Chapter 5 InterseCtIons

155

lz

c

Q
=

45
(5-7)

ˆ ˆ ˆ ˆI i j k= + +lx ly lz (5-8)

Distance 0 → 3:

 a x x= []- []3 0 (5-9)

 b y y= []- []3 0 (5-10)

 c z z= []- []3 0 (5-11)

 Q a b c03
2 2 2= + + (5-12)

Unit vector 0 → 3:

ux

a

Q
=

03
(5-13)

uy

b

Q
=

03
(5-14)

uz

c

Q
=

03
(5-15)

 ˆ ˆ ˆ ˆu i j k= + +ux uy uz (5-16)

Distance 0 → 1:

 a x x= []- []1 0 (5-17)

 b y y= []- []1 0 (5-18)

 c z z= []- []1 0 (5-19)

 Q a b c01
2 2 2= + + (5-20)

Chapter 5 InterseCtIons

156

Unit vector 0 → 1:

vx

a

Q
=

01
(5-21)

vy

b

Q
=

01
(5-22)

vz

c

Q
=

01
(5-23)

 ˆ ˆ ˆ ˆv i j k= + +vx vy vz (5-24)

Unit vector n̂ :

 ˆ ˆ ˆn u v= ´ (5-25)

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ˆ ˆ ˆi j k

ux uy uz

vx vy vz

(5-26)

ˆ ˆ ˆ ˆ· · · · ·n = -()+ -()+i j kuy vz uz vy uz vx ux vz ux
nx ny

� ��� ��� � ��� ���
vvy uy vx

nz

-()·
� ��� ���

(5-27)

ˆ ˆ ˆ ˆn i j k= + +nx ny nz (5-28)

 nx uy vz uz vy= -· · (5-29)

 ny uz vx ux vz= -· · (5-30)

 nz ux vy uy vx= -· · (5-31)

Vector 0 → 4:

 V i j k04 04 04 04= + +vx vy vzˆ ˆ ˆ (5-32)

 vx x x04 4 0= []- [] (5-33)

 vy y y04 4 0= []- [] (5-34)

 vz z z04 4 0= []- [] (5-35)

Chapter 5 InterseCtIons

157

Perpendicular distance 4 to plane:

Qn = V n04 · ˆ (5-36)

Hit point:

 Q Q pn h= ()cos (5-37)

Q

Q

ph
n=
()cos

(5-38)

 cos p()= ˆ·ˆl n (5-39)

 = + +lx nx ly ny lz nz· · · (5-40)

 xh x Q lxh= []+4 (5-41)

 yh y Q lyh= []+4 (5-42)

 zh z Q lzh= []+4 (5-43)

You can test to see if the hit point lies within the boundaries of the plane. Figure 5-2

shows the geometry. Vector V0h runs from corner 0 to the hit point h. up and vp are the

projections of V0h on the 03 and 01 directions, respectively. To test for an in-bound or

out-of-bound hit,

if up < 0 or up > Q03 hit is out of bounds

if vp < 0 or vp > Q01 hit is out of bounds

With xh,yh, and zh being the coordinates of the hit point h, you can calculate up and

vp as follows:

 a xh x= - []0 (5-44)

 b yh y= - []0 (5-45)

 c zh z= - []0 (5-46)

 V0h i j k= + +a b cˆ ˆ ˆ (5-47)

Chapter 5 InterseCtIons

158

Figure 5-2. Out-of-bounds geometry

To find up, you project V0h onto the 03 direction. To do that, you take the dot

product of V0h with û:

 up a ux b uy c uz= + +· · · (5-48)

To find vp, you take the dot product of V0h with v̂ :

 vp a vx b vy c vz= + +· · · (5-49)

If you regard the line from 4 to 5 as being finite, you can test to see if it is long enough

to reach the plane. From Figure 5-1,

 a xh x= - []4 (5-50)

 b yh y= - []4 (5-51)

 c zh z= - []4 (5-52)

 Q h a b c4 2 2 2= + + (5-53)

if Q45 < Qh LINE TOO SHORT, NO HIT

All of this has been incorporated in Listing 5-1, which has the same structure as

Listing 3-5 in Chapter 3, although some of the functions and operations have been

altered. As in that program, rotation directions and amounts are entered through the

keyboard. Rotations are additive; for example, if the system is rotated first by Rx=40

degrees, followed by Rx=10, the total angle will be 50 degrees. Ry and Rz operate

similarly.

Chapter 5 InterseCtIons

159

Some data is hard-wired in Listing 5-1, such as definitions of the rectangular plane

and the line intersecting it. They are shown in the lists in lines 18–20. There are six

elements in each list numbered [0]-[5]: [0]-[3] are the four corners of the plane while [4]

and [5] are the beginning and end of the line. They are coordinated with the diagrams

in Figures 5-1 and 5-2. To modify the plane and line, just put new numbers in the lists.

For example, item [5] is the end of the line. To drop it down in the +y direction, increase

y[5]. The numbers in the lists are in local coordinates relative to the center of rotation

(xc,yc,zc), which is at the center of the plane. The values are shown in Lines 14-16.

It takes only three points to define a plane. Here you have a four-corner rectangular

plane. If you alter the plane’s corner coordinates, be sure they lie in the same plane.

The easiest way to do so is to start off with a plane that lies in or is parallel to one of the

coordinate planes. It can be rotated out of that coordinate plane later. In line 19, the first

four elements of the y list are all zero. That describes a flat plane parallel to the x,z plane

at y=0. Also, if altering the [x] or [z] lists, be sure the plane remains rectangular since the

calculations of the hit point in this analysis assume that is the case.

Rotation functions rotx, roty, and rotz, which rotate coordinates around the

coordinate directions, are included in lines 28-35. They are the same as used in prior

programs so they have not been listed.

Line 45 plots a dot at the hit point (xhg,yhg) where the line intersects the plane. If

the hit point lies within the plane’s boundaries, the color of the dot is red; if it’s outside,

it is blue. If the line from [4] to [5] is too short and never reaches the plane, the color

is changed to green and a dot is placed at [5], the end of the line. This is illustrated in

Figure 5-5. The calculation of the hit point is carried out by function hitpoint(x,y,z),

which begins in line 53. The program follows the analysis above in Equations 5-1

through 5-49 and should be self-explanatory.

Data input takes place in lines 154-166. This is similar to Listing 3-5. Samples of the

output are shown in Figures 5-3, 5-4, and 5-5. Parameters are included in the captions.

Chapter 5 InterseCtIons

160

Figure 5-4. Line intersecting the plane defined by a rectangle. The hit point lies
outside the rectangle’s boundaries: y[5]=-5, Rx=45°, Ry=45°, Rz°=20.

Figure 5-3. Line intersecting the plane defined by a rectangle. The hit point lies
within the plane’s boundaries: y[5]=+5, Rx=45°, Ry=45°, Rz°=20

Figure 5-5. Example of a line too short, in which case a green dot appears at
coordinate [5]: x[4]=-40, y[4]=-20, z[4]=15, x[5]=-20, y[5]=-10, z[5]=0, Rx=30°,
Ry=45°, Rz°=20

Chapter 5 InterseCtIons

161

Listing 5-1. Program LRP

1 """

2 LRP

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians,sqrt

8

9 #——————————————fill lists with starting coordinates

10 xg=[]

11 yg=[]

12 zg=[]

13

14 xc=80 #————————center coordinates

15 yc=40

16 zc=40

17

18 x=[-40,-40,40,40,-40,50] #—system (plane and line geometry)

19 y=[0,0,0,0,-20,3]

20 z=[-10,10,10,-10,15,-10]

21

22 for i in range(len(x)):

23 xg.append(x[i]+xc)

24 yg.append(y[i]+yc)

25 zg.append(z[i]+zc)

26

27 #——————————————————define rotation functions

28 def rotx(xc,yc,zc,xp,yp,zp,Rx):

29 (same as in prior programs)

30

31 def roty(xc,yc,zc,xp,yp,zp,Ry):

32 (same as in prior programs)

33

Chapter 5 InterseCtIons

162

34 def rotz(xc,yc,zc,xp,yp,zp,Rz):

35 (same as in prior programs)

36

37 #———————————————-plot plane, line and hit point

38 def plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor):

39 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k') #—————plot plane

40 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k')

41 plt.plot([xg[2],xg[3]],[yg[2],yg[3]],color='k')

42 plt.plot([xg[3],xg[0]],[yg[3],yg[0]],color='k')

43 plt.plot([xg[4],xg[5]],[yg[4],yg[5]],color='b') #———plot line

44

45 if hitcolor='g': #——————plot hit point at [5]

46 plot.scatter(xg[5],yg[5],s=20,color=hitcolor)

47 else: #——————plot hit point at h

48 plt.scatter(xhg,yhg,s=20,color=hitcolor)

49

50 plt.axis([0,150,100,0]) #———replot axes and grid

51 plt.axis('on')

52 plt.grid(False)

53 plt.show() #———plot latest rotation

54

55 #—————————————find hit point coordinates and color

56 def hitpoint(x,y,z):

57 a=x[5]-x[4]

58 b=y[5]-y[4]

59 c=z[5]-z[4]

60 Q45=sqrt(a*a+b*b+c*c) #———distance point 4 to 5

61

62 lx=a/Q45 #———unit vector components point 4 to 5

63 ly=b/Q45

64 lz=c/Q45

65

66 a=x[3]-x[0]

67 b=y[3]-y[0]

68 c=z[3]-z[0]

69 Q03=sqrt(a*a+b*b+c*c) #———distance 0 to 3

Chapter 5 InterseCtIons

163

70

71 ux=a/Q03 #———unit vector 0 to 3

72 uy=b/Q03

73 uz=c/Q03

74

75 a=x[1]-x[0]

76 b=y[1]-y[0]

77 c=z[1]-z[0]

78 Q01=sqrt(a*a+b*b+c*c) #———distance 0 to 1

79

80 vx=a/Q01 #———unit vector 0 to 1

81 vy=b/Q01

82 vz=c/Q01

83

84 nx=uy*vz-uz*vy #———normal unit vector

85 ny=uz*vx-ux*vz

86 nz=ux*vy-uy*vx

87

88 vx1b=x[4]-x[0] #———vector components 0 to 4

89 vy1b=y[4]-y[0]

90 vz1b=z[4]-z[0]

91

92 Qn=(vx1b*nx+vy1b*ny+vz1b*nz) #———perpendicular distance 4 to plane

93

94 cosp=lx*nx+ly*ny+lz*nz #——cos of angle p

95 Qh=abs(Qn/cosp) #———distance 4 to hit point

96

97 xh=x[4]+Qh*lx #———hit point coordinates

98 yh=y[4]+Qh*ly

99 zh=z[4]+Qh*lz

100

101 xhg=xh+xc #———global hit point coordinates

102 yhg=yh+yc

103 zhg=zh+zc

104

Chapter 5 InterseCtIons

164

105 #————————————————————out of bounds check

106 a=xh-x[0] #——components of vector V0h

107 b=yh-y[0]

108 c=zh-z[0]

109

110 up=a*ux+b*uy+c*uz #———dot products

111 vp=a*vx+b*vy+c*vz

112

113 hitcolor='r' #———if inbounds plot red hit point

114 if up<0: #———change color to blue if hit point out of bounds

115 hitcolor='b'

116

117 if up>Q03:

118 hitcolor='b'

119

120 if vp<0:

121 hitcolor='b'

122

123 if vp>Q01:

124 hitcolor='b'

125

126 a=x[5]-x[4]

127 b=y[5]-y[4]

128 c=z[5]-z[4]

129 Q45=sqrt(a*a+b*b+c*c)

130

131 if Q45 < Qh:

132 hitcolor='g'

133

134 return xh,yh,xhg,yhg,hitcolor

135

136 #————————————————transform coordinates and plot

137 def plotx(xc,yc,zc,Rx): #———transform & plot Rx system

138 for i in range(len(x)):

Chapter 5 InterseCtIons

165

139 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

140 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

141

142 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z) #———returns xh,yh,xhg,yhg

143

144 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor) #———plot

145

146 def ploty(xc,yc,zc,Ry): #———transform & plot Ry system

147 for i in range(len(x)):

148 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

149 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

150

151 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

152

153 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

154

155 def plotz(xc,yc,zc,Rz): #———transform & plot Rz system

156 for i in range(len(x)):

157 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

158 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

159

160 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

161

162 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

163

164 #—————————————————-input data and plot system

165 while True:

166 axis=input('x, y or z?: ') #———input axis of rotation (lower case)

167 if axis == 'x': #—if x axis

168 Rx=radians(float(input('Rx Degrees?: '))) #———input degrees

169 plotx(xc,yc,zc,Rx) #–call function plotx

Chapter 5 InterseCtIons

166

170 if axis == 'y':

171 Ry=radians(float(input('Ry Degrees?: '))) #———input degrees

172 ploty(xc,yc,zc,Ry)

173 if axis == 'z':

174 Rz=radians(float(input('Rz Degrees?: '))) #———input degrees

175 plotz(xc,yc,zc,Rz)

176 if axis == ":

177 break #—quit the program

5.2 Line Intersecting a Triangular Plane
Almost any flat surface can be formed by an array of triangular planes and a curved

surface can be approximated by triangles, hence our interest in triangular planes.

Figure 5-6 shows the geometry for a line intersecting a triangular plane. The algorithms

used in Listing 5-3 are mostly the same as in Listing 5-1. One difference is that the lengths

of the list are, of course, shorter since the triangle has one less corner. Another is that the

check on whether the hit point lies within the triangle or is out of bounds is different.

Figure 5-6. Geometry of a line intersecting a triangular plane

Before going on to Listing 5-3, you will develop a simple way to determine if a hit

point lies within a triangle or outside of it. Figure 5-7 shows the geometry used for

the out-of-bounds calculation. Listing 5-2 produces the output shown in Figure 5-8

and, with modification to the lists defining the coordinates of point 3, in Figure 5-9. In

Figure 5-8, the hit is out of bounds; in Figure 5-9, it is within the triangle.

Chapter 5 InterseCtIons

167

Figure 5-7 shows three triangles: the black one, defined by points 0, 1, and 2, is the

base triangle, the one you are concerned with. It has area A. The triangle defined by

points 0, 1, and 3 (the hit point) has area A1. The third triangle between point 0, 3, and 2

has area A2. It is easy to see that if A1+A2>A, the hit point is out of bounds; if A1+A2<A,

it is in bounds. If you can calculate the areas of the three triangles, you will have an easy

way to determine if the hit point is within or outside of the base triangle. To do so, you

rely on a simple expression for determining the area of a triangle:

 s a b c= + +()/2 (5-54)

A s s a s b s c= -() -() -() (5-55)

where a, b, and c are the lengths of the three sides of the triangle and A is its area. This

is known as Heron’s formula, named after Hero of Alexandria, a Greek engineer and

mathematician circa 10 AD - 70 AD.

This relation is put to use in Listing 5-2 and later in Listing 5-3. In Listing 5-2, most of

the program is concerned with evaluating the lengths of the lines shown in Figure 5- 7.

Heron’s formula is then used to calculate the three areas: A, A1, and A2. The decision

whether the hit point is inside or outside of the base triangle is made in lines 114-117

of Listing 5-2. It produces Figure 5-8. Program THT2 (not shown) is the same as THT1

(Listing 5-2) but has the lists adjusted to put the hit point within the triangle. It produces

Figure 5-9. The adjusted lists are

x=[40,30,80,55]

y=[60,10,60,45]

z=[0,0,0,0]

Chapter 5 InterseCtIons

168

Figure 5-8. Out of bounds, no hit produced by Listing 5-2

Figure 5-7. Model for out-of-bounds test

Chapter 5 InterseCtIons

169

As you can see from these lists, the hit point has been moved to (55,45,0).

Listing 5-2. Program THT1

1 """

2 THT1

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sin, cos, radians, sqrt

8

9 plt.axis([0,150,100,0])

10

11 plt.axis('on')

12 plt.grid(True)

13

14 x=[40,30,80,75] #———plane

15 y=[60,10,60,40]

Figure 5-9. In bounds, hit produced by modified Listing 5-2

Chapter 5 InterseCtIons

170

16 z=[0,0,0,0]

17

18 plt.plot([x[0],x[1]],[y[0],y[1]],color='k') #——plot plane A

19 plt.plot([x[1],x[2]],[y[1],y[2]],color='k')

20 plt.plot([x[2],x[0]],[y[2],y[0]],color='k')

21 plt.scatter(x[3],y[3],s=20,color='r')

22

23 plt.plot([x[0],x[3]],[y[0],y[3]],linestyle=':',color='r') #plot planes

24 plt.plot([x[1],x[3]],[y[1],y[3]],linestyle=':',color='r')

25 plt.plot([x[2],x[3]],[y[2],y[3]],linestyle=':',color='r')

26

27 plt.text(35,63,'0') #——label corners

28 plt.text(25,10,'1')

29 plt.text(83,63,'2')

30 plt.text(x[3]+2,y[3],'3')

31

32 a=x[1]-x[0] #——calculate dimensions

33 b=y[1]-y[0]

34 c=z[1]-z[0]

35 Q01=sqrt(a*a+b*b+c*c)

36

37 a=x[2]-x[1]

38 b=y[2]-y[1]

39 c=z[2]-z[1]

40 Q12=sqrt(a*a+b*b+c*c)

41

42 a=x[2]-x[0]

43 b=y[2]-y[0]

44 c=z[2]-z[0]

45 Q02=sqrt(a*a+b*b+c*c)

46

47 a=x[1]-x[3]

48 b=y[1]-y[3]

49 c=z[1]=z[3]

Chapter 5 InterseCtIons

171

50 Q13=sqrt(a*a+b*b+c*c)

51

52 a=x[2]-x[3]

53 b=y[2]-y[3]

54 c=z[2]-z[3]

55 Q23=sqrt(a*a+b*b+c*c)

56

57 a=x[0]-x[3]

58 b=y[0]-y[3]

59 c=z[0]-z[3]

60 Q03=sqrt(a*a+b*b+c*c)

61

62 s=(Q01+Q12+Q02)/2 #——calculate areas A, A1 and A2

63 A=sqrt(s*(s-Q01)*(s-Q12)*(s-Q02))

64

65 s1=(Q01+Q03+Q13)/2

66 A1=sqrt(s1*(s1-Q01)*(s1-Q03)*(s1-Q13))

67

68 s2=(Q02+Q23+Q03)/2

69 A2=sqrt(s2*(s2-Q02)*(s2-Q23)*(s2-Q03))

70

71 plt.arrow(70,55,10,15,linewidth=.5,color='grey') #——label area A

72 plt.text(82,73,'A',color='k')

73

74 plt.text(100,40,'A=') #——plot output

75 dle='%7.0f'% (A)

76 dls=str(dle)

77 plt.text(105,40,dls)

78

79 plt.text(100,45,'A1=',color='r')

80 dle='%7.0f'% (A1)

81 dls=str(dle)

82 plt.text(105,45,dls)

83

84 plt.text(100,50,'A2=',color='r')

Chapter 5 InterseCtIons

172

85 dle='%7.0f'% (A2)

86 dls=str(dle)

87 plt.text(105,50,dls)

88

89 plt.text(91,55,'A1+A2=',color='r')

90 dle='%7.0f'% (A1+A2)

91 dls=str(dle)

92 plt.text(106,55,dls)

93

94 plt.text(100,40,'A=')

95 dle='%7.0f'% (A)

96 dls=str(dle)

97 plt.text(105,40,dls)

98

99 plt.text(100,45,'A1=',color='r')

100 dle='%7.0f'% (A1)

101 dls=str(dle)

102 plt.text(105,45,dls)

103

104 plt.text(100,50,'A2=',color='r')

105 dle='%7.0f'% (A2)

106 dls=str(dle)

107 plt.text(105,50,dls)

108

109 plt.text(91,55,'A1+A2=',color='r')

110 dle="%7.0f'% (A1+A2)

111 dls=str(dle)

112 plt.text(106,55,dls)

113

114 if A1+A2 > A:

115 plt.text(100,63,'OUT, NO HIT')

116 else:

117 plt.text(100,63,'IN, HIT')

118

119 plt.show()

Chapter 5 InterseCtIons

173

Listing 5-3 plots the hit point between a line and a triangle. It is similar to Listing 5-1

except it uses the inside or outside test developed above. Examples of output are shown

in Figures 5-10, 5-11, and 5-12. One difference worth noting is in the calculation of the

unit vector n̂ , which is perpendicular to the plane of the triangle. In Listing 5-1, this was

found by taking the cross product of û with v̂. Since the angle between û and v̂ was 90°,

this produced a unit vector that was normal to both of them, which implies normal to

the plane, and of magnitude 1. This is because ˆ ˆ ˆ ˆ sinu v u v´ = ()a where α is the angle

between û and v̂ . When α equals 90°, ˆ ˆu v´ = ()()() =1 1 1 1 .

Figure 5-10. In-bounds hit. x[3]=-60, x[4]=70, y[3]=-20, y[4]=20, z[3]=15, z[4]=0,
Rx=-90, Ry=45, Rz=20 (produced by Listing 5-3)

Chapter 5 InterseCtIons

174

Figure 5-11. Out-of-bounds hit. x[3]=-60, x[4]=40, y[3]=-20, y[4]=5, z[3]=15,
z[4]=0, Rx=-90, Ry=45, Rz=20 (produced by Listing 5-3)

Figure 5-12. Line too short, no hit. x[3]=-40, x[4]=-10, y[3]=-20, y[4]=-5, z[3]=15,
z[4]=0, Rx=0, Ry=0, Rz=0 (produced by Listing 5-3)

Chapter 5 InterseCtIons

175

However, with a general non-right triangle, the angle is not 90° so the vector resulting

from the cross product, while normal to the plane, does not have a value of 1; in other

words, it is not a unit vector. The algorithm between lines 88 and 91 makes the correction

by normalizing n̂ ’s components. It does this by dividing each of them by the magnitude

of n̂ . In line 88, magn is the magnitude of n̂ before normalization of the vector’s

components. Depending on the angle α, its value will be somewhere between 0 and 1.

Dividing each component of n̂ by magn makes n̂ a unit vector.

Listing 5-3. Program LTP

1 """

2 LTP

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians,sqrt

8

9 #——————————————fill lists with starting coordinates

10 xg=[]

11 yg=[]

12 zg=[]

13

14 xc=80 #————————center coordinates

15 yc=40

16 zc=40

17

18 x=[-10,-30,20,-40,-10]

19 y=[0,0,0,-20,-5]

20 z=[0,30,0,15,0]

21

22 for i in range(len(x)):

23 xg.append(x[i]+xc)

24 yg.append(y[i]+yc)

25 zg.append(z[i]+zc)

26

Chapter 5 InterseCtIons

176

27 #—————————————————–define rotation functions

28 def rotx(xc,yc,zc,xp,yp,zp,Rx):

29 (same as in prior programs)

30

31 def roty(xc,yc,zc,xp,yp,zp,Ry):

32 (same as in prior programs)

33

34 def rotz(xc,yc,zc,xp,yp,zp,Rz):

35 (same as in prior programs)

36

37 #———————————————-define system plotting functions

38 def plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor):

39 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k') #—————plot plane

40 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k')

41 plt.plot([xg[2],xg[0]],[yg[2],yg[0]],color='k')

42 plt.plot([xg[3],xg[4]],[yg[3],yg[4]],color='g') #———plot line

43 plt.scatter(xc,yc,s=10,color='k') #———plot center of rotation

44

45 if hitcolor=='g':

46 plt.scatter(xg[4],yg[4],s=20,color=hitcolor)

47 else:

48 plt.scatter(xhg,yhg,s=20,color=hitcolor) #——————plot hit point

49

50 plt.axis([0,150,100,0]) #———replot axes and grid

51 plt.axis('on')

52 plt.grid(True)

53 plt.show() #———plot latest rotation

54

55 #————————————-calculate hit point coordinates and color

56 def hitpoint(x,y,z):

57 a=x[4]-x[3]

58 b=y[4]-y[3]

59 c=z[4]-z[3]

60 Q34=sqrt(a*a+b*b+c*c) #———distance point 3 to 4

61

62 lx=a/Q34 #———unit vector components point 3 to 4

Chapter 5 InterseCtIons

177

63 ly=b/Q34

64 lz=c/Q34

65

66 a=x[2]-x[0]

67 b=y[2]-y[0]

68 c=z[2]-z[0]

69 Q02=sqrt(a*a+b*b+c*c) #———distance 0 to 3

70

71 ux=a/Q02 #———unit vector 0 to 3

72 uy=b/Q02

73 uz=c/Q02

74

75 a=x[1]-x[0]

76 b=y[1]-y[0]

77 c=z[1]-z[0]

78 Q01=sqrt(a*a+b*b+c*c) #———distance 0 to 1

79

80 vx=a/Q01 #———unit vector 0 to 1

81 vy=b/Q01

82 vz=c/Q01

83

84 nx=uy*vz-uz*vy #———normal unit vector

85 ny=uz*vx-ux*vz

86 nz=ux*vy-uy*vx

87 #——————————–correct magnitude of unit vector ^n

88 magn=sqrt(nx*nx+ny*ny+nz*nz)

89 nx=nx/magn

90 ny=ny/magn

91 nz=nz/magn

92 #——————————————————————

93 a=x[3]-x[0] #———vector components 0 to 3

94 b=y[3]-y[0]

95 c=z[3]-z[0]

96

97 Qn=(a*nx+b*ny+c*nz) #———perpendicular distance 3 to plane

98

Chapter 5 InterseCtIons

178

99 cosp=lx*nx+ly*ny+lz*nz #———cos of angle p

100 Qh=abs(Qn/cosp) #———distance 4 to hit point

101

102 xh=x[3]+Qh*lx #———hit point coordinates

103 yh=y[3]+Qh*ly

104 zh=z[3]+Qh*lz

105

106 xhg=xh+xc #———global hit point coordinates

107 yhg=yh+yc

108 zhg=zh+zc

109

110 #————————————————————out of bounds check

111 a=x[1]-x[2]

112 b=y[1]-y[2]

113 c=z[1]-z[2]

114 Q12=sqrt(a*a+b*b+c*c)

115

116 a=x[1]-xh

117 b=y[1]-yh

118 c=z[1]-zh

119 Q1h=sqrt(a*a+b*b+c*c)

120

121 a=x[2]-xh

122 b=y[2]-yh

123 c=z[2]-zh

124 Q2h=sqrt(a*a+b*b+c*c)

125

126 a=x[0]-xh

127 b=y[0]-yh

128 c=z[0]-zh

129 Q0h=sqrt(a*a+b*b+c*c)

130

131 s=(Q01+Q12+Q02)/2 #—area A

132 A=sqrt(s*(s-Q01)*(s-Q12)*(s-Q02))

133

Chapter 5 InterseCtIons

179

134 s1=(Q01+Q0h+Q1h)/2 #———area A1

135 A1=sqrt(s1*(s1-Q01)*(s1-Q0h)*(s1-Q1h))

136

137 s2=(Q02+Q2h+Q0h)/2 #—area A2

138 A2=sqrt(s2*(s2-Q02)*(s2-Q2h)*(s2-Q0h))

139

140 hitcolor='r' #———if within bounds plot red hit point

141

142 if A1+A2 > A: #———if out of bounds plot blue hit point

143 hitcolor='b'

144

145 a=x[4]-x[3]

146 b=y[4]-y[3]

147 c=z[4]-z[3]

148 Q34=sqrt(a*a+b*b+c*c)

149

150 if Q34 < Qh: #———if line too short plot green at end of line

151 hitcolor='g'

152

153 return xh,yh,xhg,yhg,hitcolor

154

155 #————————————————transform coordinates and plot

156 def plotx(xc,yc,zc,Rx): #———transform & plot Rx system

157 for i in range(len(x)):

158 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

159 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

160

161 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z) #———returns xh,yh,xhg,yhg

162

163 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor) #———plot plane, line,

hit point

164

165 def ploty(xc,yc,zc,Ry): #———transform & plot Ry system

166 for i in range(len(x)):

Chapter 5 InterseCtIons

180

167 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

168 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

169

170 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

171

172 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

173

174 def plotz(xc,yc,zc,Rz): #———transform & plot Rz system

175 for i in range(len(x)):

176 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

177 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

178

179 xh,yh,xhg,yhg,hitcolor=hitpoint(x,y,z)

180

181 plotsystem(xg,yg,zg,xh,yh,xhg,yhg,hitcolor)

182

183 #——————————————————input data and plot system

184 while True:

185 axis=input('x, y or z?: ') #———input axis of rotation (lower

case)

186 if axis == 'x': #—if x axis

187 Rx=radians(float(input('Rx Degrees?: '))) #———input

degrees of rotation

188 plotx(xc,yc,zc,Rx) #–call function plotx

189 if axis == 'y':

190 Ry=radians(float(input('Ry Degrees?: '))) #———input

degrees of rotation

191 ploty(xc,yc,zc,Ry)

192 if axis == 'z':

193 Rz=radians(float(input('Rz Degrees?: '))) #———input

degrees of rotation

194 plotz(xc,yc,zc,Rz)

195 if axis == ":

196 break #———quit the program

Chapter 5 InterseCtIons

181

5.3 Line Intersecting a Circle
The determination of whether the hit point of a line intersecting the plane of a circle is

within the circle is trivial. As shown in Figure 5-13, if the distance from the circle’s center

to the hit point is greater than the circle’s radius, it lies outside the circle:

if rh > r NO HIT

Figure 5-13. Model for out-of-bounds test for a circle

We won’t bother writing a separate program to demonstrate this. You should be able

to do that yourself by modifying Listing 5-1 or Listing 5-3. Simply fill the x[],y[], and z[]

lists with the points defining the circle’s perimeter and the line coordinates and modify

the functions plotsystem and hitpoint.

5.4 Line Intersecting a Circular Sector
In this section, you develop a procedure to determine if the hit point of a line intersecting

the plane of a sector of a circle is inside or outside the sector. Figure 5-14 shows the

sector. It has a center at point 0 and a radius r. The hit point is at 3. rh is the distance

from 0 to the hit point. Your goal is to determine if the hit point lies inside or outside the

Chapter 5 InterseCtIons

182

sector. (We will not be developing a full three-dimensional program here; you’ll just see

how the inside or outside algorithm works.) It could be easily incorporated into any of

the preceding programs, such as Listing 5-3.

Figure 5-14. Model for determining whether a line intersecting a circular sector is
in or out of bounds. 3=hit point.

There are five unit vectors at point 0: û points from 0 to 2; v̂ points from 0 to 1; and

ĥ from 0 to the hit point at 3. n̂ is a unit vector normal to the plane of the sector. It is not

shown since it points up and out of the plane. ˆ ˆu n´ is the result of the cross product of û

with n̂ ; ˆ ˆn v´ is from the cross product of n̂ with v̂ .

Your strategy is to first determine if Rh>r, in which case the hit point is outside the

sector in the radial direction. Then you take the dot product of ĥ with ˆ ˆu n´ . If the result

is positive, the hit point is outside the sector on the 0-2 side. Then you take the dot

product of ĥ with ˆ ˆn v´ . If it is positive, the hit point is out of bounds on the 0-1 side.

In Listing 5-4, the local coordinates (relative to point 0) are defined in the lists in

lines 14-16. The last element in the lists defines the coordinates of the hit point, point 3.

xc,yc, and zc in lines 18-20 are the global coordinates of point 0. The hit test algorithm

begins in line 23. Most of it should be self-explanatory based on the previous discussion.

Chapter 5 InterseCtIons

183

Attention is called to lines 52-58. This is where the normal vector n̂ is evaluated by

taking the cross product of û with v̂ . As explained earlier, this produces a unit vector

(magnitude 1) only if û and v̂ are perpendicular to one another. Since the angle

between them in a general sector will not necessarily be 90 degrees, the vector must be

normalized. That takes place in lines 55-58. The dot product of ˆ ˆu n´ with ĥ takes place

in line 64, ˆ ˆn v´ with ĥ in line 70. Line 72 assumes the hit color is red, which means the

hit is within the sector. If A is positive, it lies outside the sector, in which case the hit

color is changed to blue in line 74. Lines 76 and 77 perform the same test for the other

side of the sector. Lines 79 and 80 check for the hit point lying outside the sector in the

radial direction. Figures 5-15 and 5-16 show two sample runs. You can move the hit point

around yourself by changing the coordinates of point 3 in the lists in lines 14-15. You

change only the x and y coordinates of the hit point since it is assumed to lie in the z=0

plane, as does the sector.

Figure 5-15. In-bounds or out-of-bounds test produced by Listing 5-4: red=in,
blue=out

Chapter 5 InterseCtIons

184

Listing 5-4. Program LCSTEST

1 """

2 LCSTEST

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sin, cos, radians, degrees, sqrt, acos

8

9 plt.axis([0,150,100,0])

10

11 plt.axis('on')

12 plt.grid(True)

13

14 x=[0,20,40,5]

15 y=[0,-35,0,-25]

16 z=[0,0,0,0]

Figure 5-16. In-bounds or out-of-bounds test produced by Listing 5-4: red=in,
blue=out

Chapter 5 InterseCtIons

185

17

18 xc=40

19 yc=60

20 zc=0

21

22 #——————————————hit test

23 a=x[3]-x[0]

24 b=y[3]-y[0]

25 c=z[3]-z[0]

26 rh=sqrt(a*a+b*b+c*c)

27

28 a=x[3]-x[0]

29 b=y[3]-y[0]

30 c=z[3]-z[0]

31 Q0h=sqrt(a*a+b*b+c*c)

32 hx=a/Q0h #———unit vector 0 to hit point

33 hy=b/Q0h

34 hz=c/Q0h

35

36 a=x[2]-x[0]

37 b=y[2]-y[0]

38 c=z[2]-z[0]

39 Q02=sqrt(a*a+b*b+c*c)

40 ux=a/Q02 #———unit vector 0 to 3

41 uy=b/Q02

42 uz=c/Q02

43

44 a=x[1]-x[0]

45 b=y[1]-y[0]

46 c=z[1]-z[0]

47 Q01=sqrt(a*a+b*b+c*c)

48 vx=a/Q01 #———unit vector 0 to 1

49 vy=b/Q01

50 vz=c/Q01

51

Chapter 5 InterseCtIons

186

52 a=uy*vz-uz*vy #———vector ûxv̂ normal to plane

53 b=uz*vx-ux*vz

54 c=ux*vy-uy*vx

55 Quxv=sqrt(a*a*b*b+c*c) #———normalize ûxv̂

56 nx=a/Quxv

57 ny=b/Quxv

58 nz=c/Quxv

59

60 uxnx=uy*nz-uz*ny #———unit vector ûxv̂

61 uxny=uz*nx-ux*nz

62 uxnz=ux*ny-uy*nx

63

64 A=uxnx*hx+uxny*hy+uxnz*hz #———dot product ûxv̂ with h
ˆ

65

66 nxvx=ny*vz-nz*vy #———unit vector ûxv̂

67 nxvy=nz*vx-nx*vz

68 nxvz=nx*vy-ny*vx

69

70 B=nxvx*hx+nxvy*hy+nxvz*hz #———dot product ûxv̂ with h
ˆ

71

72 hitcolor='r'

73 if A>0: #—out

74 hitcolor='b'

75

76 if B>0: #—out

77 hitcolor='b'

78

79 if rh>r: #—out

80 hitcolor='b'

81

82 plt.scatter(x[3]+xc,y[3]+yc,s=20,color=hitcolor)

83

Chapter 5 InterseCtIons

187

84 #————————————-plot arc

85 r=40

86 phi1=0

87 phi2=-radians(60)

88 dphi=(phi2-phi1)/180

89 xlast=xc+r

90 ylast=yc+0

91 for phi in np.arange(phi1,phi2,dphi):

92 x=xc+r*cos(phi)

93 y=yc+r*sin(phi)

94 plt.plot([xlast,x],[ylast,y],color='k')

95 xlast=x

96 ylast=y

97

98

99 #————————————-labels

100 print('rh=',rh)

101 print('r=',r)

102 plt.arrow(xc,yc,40,0)

103 plt.arrow(xc,yc,20,-35,linewidth=.5,color='k')

103 plt.text(33,61,'0')

104 plt.text(52,27,'1')

105 plt.text(82,65,'2')

106

107 plt.show()

5.5 Line Intersecting a Sphere
Figure 5-17, output from Listing 5-5, shows a line intersecting a sphere. The entrance and

exit points are shown in red. Figure 5-18 shows the model used by Listing 5-5. The line

begins at B and ends at E.

Chapter 5 InterseCtIons

188

To find the entrance hit point, you start at B and move a point p incrementally along

the line toward E. At each step, you calculate Qpc, the distance between p and c. If it is

less than or equal to the sphere’s radius rs, you have made contact with the sphere and

a red dot is plotted. You continue moving p along the line inside the sphere without

plotting anything (you could plot a dotted line), calculating Qpc as you go, until Qpc

becomes equal to or greater than rs. At that point, p leaves the sphere and another red

Figure 5-18. Model for a line intersecting a sphere

Figure 5-17. Line intersecting a sphere, produced by Listing 5-5

Chapter 5 InterseCtIons

189

dot is plotted. p continues moving along the line to E, plotting black dots along the way.

Instead of plotting the line with dots, you could have used short line segments as was

done in prior programs.

To move p along the line, you use parameter t, which is the distance from B to p. To

get the coordinates of p, you construct unit vector û, which points along the line

 a xe xb= - (5-56)

 b ye yb= - (5-57)

 c ze zb= - (5-58)

 Qbe a b c= + +2 2 2 (5-59)

 ux a Qbe= / (5-60)

 uy b Qbe= / (5-61)

 uz c Qbe= / (5-62)

where Qbe is the distance along the line from B to E and ux,uy, and uz are the

components of û. The coordinates of p are thus

 xp xb uxt= + (5-63)

 yp yb uyt= + (5-64)

 zp zb uzt= + (5-65)

Qpc is easy to determine:

 a xc xp= - (5-66)

 b yc yp= - (5-67)

 c zc zp= - (5-68)

 Qpc a b c= + +2 2 2 (5-69)

Chapter 5 InterseCtIons

190

In Listing 5-5, the sphere’s center coordinates are set in lines 18-20. The sphere is

composed of longitude (vertical) lines and latitude (horizontal) lines. The lists in lines

10-16 contain the local and global coordinates of the longitudes. The initial filling of

these lists takes place in lines 25-38, which create a half circle in the z=0 plane. As shown

in Figure 5-19, point p lies on the circumference at coordinates xp,yp,zp where

 xp rs= ()cos f (5-70)

 yp rs= ()sin f (5-71)

 zp = 0 (5-72)

They are set in lines 30-32. ϕ is the angle around the z direction. It runs from -90°

to +90°. You don’t need the back half of the longitudes so they are not plotted. This half

circle will be rotated around the y direction to create the oval longitudes. They are 10°

apart as set in line 74. Since they are rotated around the y direction only, the program

contains just the rotation function roty: rotx and rotz are not needed in this model.

Plotting of the longitudes takes place in lines 72-77.

The latitudes are plotted in lines 80-97. Figure 5-21 shows a front view of the sphere

looking into the x,y plane. Each latitude is essentially a circle having radius rl where

 xl rs= ()cos f (5-73)

This is calculated in line 89 of the program. When viewed from the front, the latitude

appears as a straight line since you are not rotating the sphere in this program.

The ϕ loop beginning at line 88 ranges ϕ from -90° to + 90° in 10° increments. At each

increment a new latitude is plotted. It will have a radius given by Equation 5-73 above.

The α loop beginning at line 92 sweeps across the front of the circular latitude from α=0°

to 180° in 10° increments. This is illustrated in Figure 5-22, which shows the top view

looking down on the x,z plane.

Chapter 5 InterseCtIons

191

Figure 5-21. Sphere latitude - x,y view

Figure 5-19. x,y view of sphere longitude shown at starting position Ry=0.
Rotation around the y direction in 10° increments will produce longitudes.

Figure 5-20. x,y view of sphere longitude rotated by Ry=60°

Chapter 5 InterseCtIons

192

Figure 5-22. Sphere latitude - x,z view

Listing 5-5. Program LS

1 """

2 LS

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians, sqrt

8

9 #—————————————————————————lists

10 x=[]

11 y=[]

12 z=[]

13

14 xg=[]

15 yg=[]

16 zg=[]

17

18 xc=80 #——sphere center

19 yc=50

20 zc=0

21

Chapter 5 InterseCtIons

193

22 rs=40 #———sphere radius

23

24 #————————————————————fill longitude lists

25 phi1=radians(-90)

26 phi2=radians(90)

27 dphi=radians(10)

28

29 for phi in np.arange(phi1,phi2,dphi):

30 xp=rs*cos(phi)

31 yp=rs*sin(phi)

32 zp=0

33 x.append(xp)

34 y.append(yp)

35 z.append(zp)

36 xg.append(xp)

37 yg.append(yp)

38 zg.append(zp)

39

40 #==define rotation function

41 def roty(xc,yc,zc,xp,yp,zp,Ry):

42 a=[xp,yp,zp]

43 b=[cos(Ry),0,sin(Ry)] #———————[cx11,cx12,cx13]

44 xpp=np.inner(a, b)

45 b=[0,1,0] #—————[cx21,cx22,cx23]

46 ypp=np.inner(a,b) #——————–scalar product of a,b

47 b=[-sin(Ry),0,cos(Ry)] #—————[cx31,cx32,cx33]

48 zpp=np.inner(a,b)

49 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

50 return[xg,yg,zg]

51

52 #===

53 def plotsphere(xg,yg,zg):

54 lastxg=xg[0]

55 lastyg=yg[0]

56 for i in range(len(x)):

Chapter 5 InterseCtIons

194

57 if i < len(x)/2:

58 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],linewidth=1,

color='k')

59 else:

60 plt.plot([lastxg,xg[i]],[lastyg,yg[i]],linewidth=1,

color='k')

61 lastxg=xg[i]

62 lastyg=yg[i]

63

64 #==transform coordinates

65 def plotspherey(xc,yc,zc,Ry):

66 for i in range(len(x)): #—————transform and plot Ry sphere

67 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

68

69 plotsphere(xg,yg,zg) #———plot rotated coordinates

70

71 #—————————————————plot longitudes

72 Ry1=radians(0)

73 Ry2=radians(180)

74 dRy=radians(10)

75

76 for Ry in np.arange(Ry1,Ry2,dRy):

77 plotspherey(xc,yc,zc,Ry)

78

79 #————————————————–plot latitudes

80 alpha1=radians(0)

81 alpha2=radians(180)

82 dalpha=radians(10)

83

84 phi1=radians(-90)

85 phi2=radians(90)

86 dphi=radians(10)

87

Chapter 5 InterseCtIons

195

88 for phi in np.arange(phi1,phi2,dphi):

89 r=rs*cos(phi) #————————latitude radius

90 xplast=xc+r

91 yplast=yc+rs*sin(phi)

92 for alpha in np.arange(alpha1,alpha2,dalpha):

93 xp=xc+r*cos(alpha)

94 yp=yplast

95 plt.plot([xplast,xp],[yplast,yp],color='k')

96 xplast=xp

97 yplast=yp

98

99 #—————————————————line and hit points

100 xb=-60 #—line beginning

101 yb=-30

102 zb=-20

103

104 xe=60 #——line end

105 ye=30

106 ze=-40

107

108 a=xe-xb

109 b=ye-yb

110 c=ze-zb

111 Qbe=sqrt(a*a+b*b+c*c) #———line length

112 ux=a/Qbe #—unit vector û

113 uy=b/Qbe

114 uz=c/Qbe

115

116 dt=1

117 for t in np.arange(0,Qbe,dt):

118 xp=xb+ux*t

119 yp=yb+uy*t

120 zp=zb+uz*t

121 Qpc=sqrt(xp*xp+yp*yp+zp*zp)

122 if Qpc > rs:

Chapter 5 InterseCtIons

196

123 plt.scatter(xp+xc,yp+yc,s=5,color='k')

124 if Qpc <= rs:

125 plt.scatter(xp+xc,yp+yc,s=80,color='r')

126 tlast=t

127 break

128

129 for t in np.arange(tlast,Qbe,dt):

130 xp=xb+ux*t

131 yp=yb+uy*t

132 zp=zb+uz*t

133 Qpc=sqrt(xp*xp+yp*yp+zp*zp)

134 if Qpc >= rs:

135 plt.scatter(xp+xc,yp+yc,s=80,color='r')

136 tlast=t

137 break

138

139 for t in np.arange(tlast,Qbe,dt):

140 xp=xb+ux*t

141 yp=yb+uy*t

142 zp=zb+uz*t

143 Qpc=sqrt(xp*xp+yp*yp+zp*zp)

144 if Qpc >= rs:

145 plt.scatter(xp+xc,yp+yc,s=5,color='k')

146

147 plt.axis([0,150,100,0]) #–plot axes and grid

148 plt.axis('off')

149 plt.grid(False)

150

151 plt.show()

5.6 Plane Intersecting a Sphere
In this section, you will work out a technique for plotting a flat rectangular plane

intersecting a sphere. Figure 5-23 shows the output of Listing 5-6; Figure 5-24 shows the

model used by that listing.

Chapter 5 InterseCtIons

197

The strategy here is to use the algorithms developed in the previous section for a

line intersecting a sphere as your basic element. By representing the plane as a series of

parallel lines, you can easily find the intersection of a plane with a sphere. Figure 5-23

shows unit vector û at corner 1. As before, this points from the beginning to end of the

first line. There is also unit vector v̂ at corner 1. This points to corner 3. By advancing

along the line from 1 to 3 in small steps, you can construct lines running parallel to the

first one from 1 to 2. Advancing down each of these lines in small increments of t, you

can find the coordinates of points across the plane. To advance in the v̂ direction, you

introduce parameter s, which is the distance from corner 1 to the beginning of the new

line. To get the coordinates of the end of that line, you perform the same operation

starting at point 2 using v̂ and s, as in

 xe x vx s= +2 · (5-74)

 ye yr vy s= + · (5-75)

 ze z vz s= +2 · (5-76)

where xe, ye, and ze are the coordinates of the end of the line; x2,y2, and z2 are the

coordinates of point 2; and vx,vy, and vz are the components of unit vector v̂ .

Incrementing down and across the plane with parameters t and s allows you to

sweep across the surface of the plane. At each point p you calculate the distance from p

to the center of the sphere. If it is equal to or less than the sphere’s radius, you have a hit.

I won’t list the entire program that produced Figure 5-23 since it is mostly similar to

Listing 5-5, except for the addition of an s loop that sweeps in the v̂ direction. Control

of the program begins at line 27. Lines 27-37 define the coordinates of plane corners

1, 2, and 3. The unit vectors û and v̂ are established in lines 39-53. Lines 55 and 56 set

the scan increments in dt and ds. The loop 57-64 scans in the v̂ direction, establishing

the beginning and end coordinates of each line. Function plane, which begins at line 1,

determines if there is a hit with each line and the sphere. For each s, the loop beginning

at line 3 advances down the line in the û direction, calculating the coordinates xp,yp,zp

of each point p along the line. Line 10 calculates the distance of p from the sphere’s

center. Line 11 says, if the distance is greater than the sphere’s radius, plot a black dot. If

it is less than or equal to the radius, line 18 plots a colorless dot. The rest of the logic up

to line 24 determines if the line has emerged from the sphere, in which case plotting of

black dots resumes. Results are shown in Figure 5-23.

Chapter 5 InterseCtIons

198

Figure 5-24. Model for Listing 5-6

Figure 5-23. Plane intersecting a sphere produced by Listing 5-6

Listing 5-6. Program PS

"""

PS

"""

import numpy as np

import matplotlib.pyplot as plt

from math import sin, cos, radians, sqrt

.

(similar to Program LS)

.

Chapter 5 InterseCtIons

199

 #===plane

1 def plane(xb,yb,zb,xe,ye,ze,Q12,dt):

2 hit='off'

3 for t in np.arange(0,Q12,dt): #———B to hit

4 xp=xb+ux*t

5 yp=yb+uy*t

6 zp=zb+uz*t

7 xpg=xc+xp

8 ypg=yc+yp

9 zpg=zc+zp

10 Qpc=sqrt(xp*xp+yp*yp+zp*zp)

11 if Qpc>=rs:

12 plt.scatter(xpg,ypg,s=.5,color='k')

13 if Qpc<=rs:

14 if hit=='off':

15 hit='on'

16 if Qpc<rs:

17 if hit=='on':

18 plt.scatter(xpg,ypg,s=10,color=")

19 if Qpc>=rs:

20 if hit=='on':

21 hit='off'

22 if Qpc>rs:

23 if hit=='off':

24 plt.scatter(xpg,ypg,s=.5,color='k')

25

26 #———————————————————scan across plane

27 x1=-40

28 y1=-30

29 z1=-20

30

31 x2=60

32 y2=25

33 z2=-35

34

Chapter 5 InterseCtIons

200

35 x3=-65

36 y3=-20

37 z3=-50

38

39 a=x2-x1

40 b=y2-y1

41 c=z2-z1

42 Q12=sqrt(a*a+b*b+c*c)

43 ux=a/Q12

44 uy=b/Q12

45 uz=c/Q12

46

47 a=x3-x1

48 b=y3-y1

49 c=z3-z1

50 Q13=sqrt(a*a+b*b+c*c)

51 vx=a/Q13

52 vy=b/Q13

53 vz=c/Q13

54

55 dt=.7 #————————————scan increment

56 ds=.7

57 for s in np.arange(0,Q13,ds):

58 sbx=x1+s*vx

59 sby=y1+s*vy

60 sbz=z1+s*vz

61 sex=x2+s*vx

62 sey=y2+s*vy

63 sez=z2+s*vz

64 plane(sbx,sby,sbz,sex,sey,sez,Q12,dt)

65

66 plt.axis([0,150,100,0]) #–replot axes and grid

67 plt.axis('off')

68 plt.grid(False)

69

70 plt.show() #–plot latest rotation

Chapter 5 InterseCtIons

201

5.7 Summary
In this chapter, you learned how to predict whether a three-dimensional line or plane

will intersect a three-dimensional surface or solid object. Why bother with this? Because

it is fundamental to removing hidden lines, you will see in Chapter 6. When plotting

surface A, which may be behind another surface or object B, you do so in small steps,

plotting a scatter dot (or a short line segment) at each step. If the point on A is hidden

by B, you do not plot it. To determine if it is hidden from view by an observer, you draw

an imaginary line from the point on A to the observer (i.e. in the -z direction). If you

can determine if that line from A intersects a surface or object B in front of it, then you

will know whether or not it is hidden. While you cannot develop hidden line algorithms

for every conceivable situation (you did rectangular planes, triangular planes, circular

sectors, circles, and spheres here), by understanding how it is done for these objects

you should, with a bit of creativity, be able to develop your own hidden line algorithms

for other surfaces and objects. Perhaps the line-triangular plane is most useful since

complex surfaces and objects can often by approximated by an assembly of triangles.

You will see more about this in Chapter 6.

Chapter 5 InterseCtIons

203
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_6

CHAPTER 6

Hidden Line Removal
Most of the models used in the previous chapters were essentially stick figures constructed

of dots and lines. When such objects are viewed in three dimensions, it is possible to see

the lines on the back side, as if the objects were transparent. This chapter is concerned with

removing the lines, which would normally be hidden, from objects so they appear solid.

This chapter will cover two types of situations. The first is called intra-object hidden

line removal. This refers to removing hidden lines from a single object. We assume that

most objects are constructed of flat planes; the examples are a box, a pyramid, and a

spherical surface that is approximated by planes. The technique you will use relies on

determining whether a particular plane faces toward the viewer, in which case it is visible

and is plotted, or away from the viewer, in which case it is not visible and is not plotted.

Inter-object hidden line removal, on the other hand, refers to a system of more than

one object, such as two planes, one behind the other. Here the general approach is to

use some of the ray tracing techniques that were developed in the previous chapter to

find intersections between lines and surfaces. You start by drawing the back object using

dots or short line segments. At each point you construct a line (ray) going toward the

observer, who is in the -z direction, and see if it intersects with the front object. If it does,

that point on the back object is hidden and is not plotted.

6.1 Box
As an example of intra-object hidden line removal, let’s start off with a simple box, as

shown in Figures 6-1 and 6-2. They were drawn by Listing 6-1. Figures 6-3, 6-4, and 6-5

show the model used by the program.

In Figure 6-3, you see that the box has eight corners, numbered 0 to 7. At corner 0,

there are two vectors: V01, which goes from corner 0 to 1, and V03, which goes from 0 to

3. Looking at the 0,1,2,3 face first, as the box is rotated, the strategy is to determine if it is

tilted toward or away from an observer who is in the -z direction. If it is facing toward the

204

observer, the edges of the face are plotted. If it is facing away from the observer, they are

not plotted. How do you determine if the face is facing the observer? The cross (vector)

product V03×V01 gives a vector N, which is normal to the 0,1,2,3 face, so

 V03 i j k= + +V x V y V z03 03 03ˆ ˆ ˆ (6-1)

 V01 i j k= + +V x V y V z01 01 01ˆ ˆ ˆ (6-2)

 V x x x03 3 0= []- [] (6-3)

 V y y y03 3 0= []- [] (6-4)

 V z z z03 3 0= []- [] (6-5)

 V x x x01 1 0= []- [] (6-6)

 V y y y01 1 0= []- [] (6-7)

 V z z z01 1 0= []- [] (6-8)

N V03 V01

i j k

= ´ =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ˆ ˆ ˆ

V x V y V z

V x V y V z

03 03 03

01 01 01

(6-9)

 N i j k= + +Nx Ny Nzˆ ˆ ˆ (6-10)

N = -[]+ -[]
+

ˆ ˆ

ˆ

· · · ·

·

i j

k

V y V z V z V y V z V x V x V z

V x V

03 01 03 01 03 01 03 01

03 001 03 01y V y V x
Nz

-[]·
� ������ ������ (6-11)

You can determine if the plane is facing toward or away from the observer by the value

of Nz, N’s z component. Figures 6-4 and 6-5 show a plane (blue) relative to an observer.

This is the side view of one of the faces of the box shown in Figure 6-3. The observer is on

the right side of the coordinate system looking in the +z direction. Referring to

Figure 6- 4, if the z component of N, Nz in Equation 6-11, is < 0 (i.e. pointing in the

-z direction), the plane is facing the observer, it is visible to the observer, and it is plotted.

Chapter 6 hidden Line removaL

205

If Nz is positive (i.e. pointing in the +z direction), as shown in Figure 6-5, the face is tilted

away from the observer, in which case it is not seen by the observer and is not plotted.

Note that you can use the full vector V rather than a unit vector since you are only

concerned with the sign of V.

What about the other faces? The 4,5,6,7 face is parallel to 0,1,2,3 so its outward

pointing normal vector is opposite to that of face 0,1,2,3. You do a similar check on

whether its normal vector is pointing in the +z (don’t plot) or =z (plot) direction.

The remaining faces are handled in a similar fashion. The normal to 1,2,6,5 is

opposite to that of 0,3,7,4; the normal to 3,2,6,7 is opposite to that of 0,1,5,4.

Figure 6-1. Box with hidden lines removed: Rx=45°, Ry=45°, Rz=30° (produced by
Listing 6-1)

Listing 6-1 produced Figures 6-1 and 6-2. The lists in lines 9, 10, and 11 define the

coordinates of the unrotated box relative to its center, which is set in lines 124-126. Lines

13-15 fill the global coordinate lists with zeroes. These lists have the same length as list x

(also lists y and z) and are set by the len(x) function.

Lines 124-140 accept keyboard input as in previous programs. As an example of

the sequence of operations, suppose you enter x in line 129 followed by an angle in

degrees. Line 132 calls the function plotboxx, which begins at line 102. Lines 103- 105

Chapter 6 hidden Line removaL

206

rotate the corner points and update the local and global coordinate lists. Line 107

calls function plotbox, which begins in line 40. This function plots the box in its new

rotated orientation using the lists xg,yg, and zg. Starting with the 0,1,2,3 face, lines 41-47

calculate Nz, the z component of the normal vector N in line 47 using the above analysis.

If Nz<=0, the 0,1,2,3 face is plotted in lines 49-52. If it is not visible (i.e. Nz>0), then you

know the opposing face 4,5,6,7 must be visible and it is plotted in lines 54-57. The other

faces are processed in a similar manner.

Figure 6-3. Model for hidden line removal of a box used by Listing 6-1. N not to
scale.

Figure 6-2. Box with hidden lines removed: Rx=30°, Ry=-60°, Rz=30° (produced by
Listing 6-1)

Chapter 6 hidden Line removaL

207

Figure 6-4. Model for hidden line removal of a box used by Listing 6-1

Figure 6-5. Model for hidden line removal of a box used by Listing 6-1

Chapter 6 hidden Line removaL

208

Listing 6-1. Program HLBOX

1 """

2 HLBOX

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians

8 #————————————————————define lists

9 x=[-20,20,20,-20,-20,20,20,-20]

10 y=[-10,-10,-10,-10,10,10,10,10]

11 z=[5,5,-5,-5,5,5,-5,-5]

12

13 xg=[0]*len(x) #—fill xg,yg,zg lists with len(x) zeros

14 yg=[0]*len(x)

15 zg=[0]*len(x)

16

17 #===rotation functions

18 def rotx(xc,yc,zc,xp,yp,zp,Rx):

19 xpp=xp

20 ypp=yp*cos(Rx)-zp*sin(Rx)

21 zpp=yp*sin(Rx)+zp*cos(Rx)

22 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

23 return[xg,yg,zg]

24

25 def roty(xc,yc,zc,xp,yp,zp,Ry):

26 xpp=xp*cos(Ry)+zp*sin(Ry)

27 ypp=yp

28 zpp=-xp*sin(Ry)+zp*cos(Ry)

29 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

30 return[xg,yg,zg]

31

32 def rotz(xc,yc,zc,xp,yp,zp,Rz):

33 xpp=xp*cos(Rz)-yp*sin(Rz)

34 ypp=xp*sin(Rz)+yp*cos(Rz)

Chapter 6 hidden Line removaL

209

35 zpp=zp

36 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

37 return[xg,yg,zg]

38

39 #==box plotting function

40 def plotbox(xg,yg,zg):

41 v01x=x[1]-x[0] #———0,1,2,3 face

42 v01y=y[1]-y[0]

43 v01z=z[1]-z[0]

44 v03x=x[3]-x[0]

45 v03y=y[3]-y[0]

46 v03z=z[3]-z[0]

47 nz=v03x*v01y-v03y*v01x

48 if nz<=0 :

49 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linewidth=2)

50 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k',linewidth=2)

51 plt.plot([xg[2],xg[3]],[yg[2],yg[3]],color='k',linewidth=2)

52 plt.plot([xg[3],xg[0]],[yg[3],yg[0]],color='k',linewidth=2)

53 else: #—-plot the other side

54 plt.plot([xg[4],xg[5]],[yg[4],yg[5]],color='k',linewidth=2)

55 plt.plot([xg[5],xg[6]],[yg[5],yg[6]],color='k',linewidth=2)

56 plt.plot([xg[6],xg[7]],[yg[6],yg[7]],color='k',linewidth=2)

57 plt.plot([xg[7],xg[4]],[yg[7],yg[4]],color='k',linewidth=2)

58

59 v04x=x[4]-x[0] #———0,3,7,4 face

60 v04y=y[4]-y[0]

61 v04z=z[4]-z[0]

62 v03x=x[3]-x[0]

63 v03y=y[3]-y[0]

64 v03z=z[3]-z[0]

65 nz=v04x*v03y-v04y*v03x

66 if nz<=0 :

67 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k',linewidth=2)

68 plt.plot([xg[3],xg[7]],[yg[3],yg[7]],color='k',linewidth=2)

69 plt.plot([xg[7],xg[4]],[yg[7],yg[4]],color='k',linewidth=2)

70 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color='k',linewidth=2)

Chapter 6 hidden Line removaL

210

71 else: #———plot the other side

72 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k',linewidth=2)

73 plt.plot([xg[2],xg[6]],[yg[2],yg[6]],color='k',linewidth=2)

74 plt.plot([xg[6],xg[5]],[yg[6],yg[5]],color='k',linewidth=2)

75 plt.plot([xg[5],xg[1]],[yg[5],yg[1]],color='k',linewidth=2)

76

77 v01x=x[1]-x[0] #—0,1,5,4 face

78 v01y=y[1]-y[0]

79 v01z=z[1]-z[0]

80 v04x=x[4]-x[0]

81 v04y=y[4]-y[0]

82 v04z=z[4]-z[0]

83 nz=v01x*v04y-v01y*v04x

84 if nz<=0 :

85 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linewidth=2)

86 plt.plot([xg[1],xg[5]],[yg[1],yg[5]],color='k',linewidth=2)

87 plt.plot([xg[5],xg[4]],[yg[5],yg[4]],color='k',linewidth=2)

88 plt.plot([xg[4],xg[0]],[yg[4],yg[0]],color='k',linewidth=2)

89 else: #———plot the other side

90 plt.plot([xg[3],xg[2]],[yg[3],yg[2]],color='k',linewidth=2)

91 plt.plot([xg[2],xg[6]],[yg[2],yg[6]],color='k',linewidth=2)

92 plt.plot([xg[6],xg[7]],[yg[6],yg[7]],color='k',linewidth=2)

93 plt.plot([xg[7],xg[3]],[yg[7],yg[3]],color='k',linewidth=2)

94

95 plt.scatter(xc,yc,s=5,color='k') #–plot a dot at the center

96 plt.axis([0,150,100,0]) #–replot axes and grid

97 plt.axis('on')

98 plt.grid(True)

99 plt.show() #–plot latest rotation

100

101 #==============================transform coordinates and plot functions

102 def plotboxx(xc,yc,zc,Rx): #——————transform & plot Rx box

103 for i in range(len(x)):

104 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

Chapter 6 hidden Line removaL

211

105 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

106

107 plotbox(xg,yg,zg) #—————plot

108

109 def plotboxy(xc,yc,zc,Ry):

110 for i in range(len(x)): #——————transform & plot Ry box

111 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

112 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

113

114 plotbox(xg,yg,zg)

115

116 def plotboxz(xc,yc,zc,Rz):

117 for i in range(len(x)): #——————transform & plot Rz box

118 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

119 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

120

121 plotbox(xg,yg,zg)

122

123 #——————————————————————plot box

124 xc=75 #–center coordinates

125 yc=50

126 zc=50

127

128 while True:

129 axis=input('x, y or z?: ') #———input axis of rotation (lower case)

130 if axis == 'x': #–if x axis

131 Rx=radians(float(input('Rx Degrees?: '))) #———input degrees

of rotation

132 plotboxx(xc,yc,zc,Rx) #———call function plotboxx

133 if axis == 'y':

134 Ry=radians(float(input('Ry Degrees?: '))) #———input degrees

of rotation

135 plotboxy(xc,yc,zc,Ry)

Chapter 6 hidden Line removaL

212

136 if axis == 'z':

137 Rz=radians(float(input('Rz Degrees?: '))) #———input degrees

138 plotboxz(xc,yc,zc,Rz)

139 if axis == ":

104 break

6.2 Pyramid
Listing 6-2 was used to plot Figures 6-6 and 6-7. The model used is shown in Figure 6-8.

The analysis is similar to that used for the box in the previous section. The difference is

there are four faces to contend with and none of them are parallel, as they were with the

box, so you must process each face independently to see if it is facing toward or away

from an observer. The hidden lines are plotted as dots in program lines 54-56, 67-69,

and 77-79. To remove the dots, replace “:” with “ ” in these lines. The code in Listing 6-2

should be self-explanatory.

Figure 6-6. Pyramid with hidden lines removed: Rx=30°, Ry=45°, Rz=0° (produced
by Listing 6-2)

Chapter 6 hidden Line removaL

213

Listing 6-2. Program HLPYRAMID

1 """

2 HLPYRAMID

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians

Figure 6-7. Pyramid with hidden lines removed: Rx=30°, Ry=45°, Rz=-90°
(produced by Listing 6-2)

Figure 6-8. Model for Listing 6-2. N not to scale.

Chapter 6 hidden Line removaL

214

8 #————————————————————define lists

9 x=[0,-10,0,10]

10 y=[-20,0,0,0]

11 z=[0,10,-15,10]

12

13 xg=[0]*len(x)

14 yg=[0]*len(x)

15 zg=[0]*len(x)

16

17 #==define rotation function

18 def rotx(xc,yc,zc,xp,yp,zp,Rx):

19 xpp=xp

20 ypp=yp*cos(Rx)-zp*sin(Rx)

21 zpp=yp*sin(Rx)+zp*cos(Rx)

22 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

23 return[xg,yg,zg]

24

25 def roty(xc,yc,zc,xp,yp,zp,Ry):

26 xpp=xp*cos(Ry)+zp*sin(Ry)

27 ypp=yp

28 zpp=-xp*sin(Ry)+zp*cos(Ry)

29 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

30 return[xg,yg,zg]

31

32 def rotz(xc,yc,zc,xp,yp,zp,Rz):

33 xpp=xp*cos(Rz)-yp*sin(Rz)

34 ypp=xp*sin(Rz)+yp*cos(Rz)

35 zpp=zp

36 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

37 return[xg,yg,zg]

38

39 #======================================define pyramid plotting function

40

41 def plotpyramid(xg,yg,zg):

42 v01x=x[1]-x[0] #———0,1,2 face

43 v01y=y[1]-y[0]

Chapter 6 hidden Line removaL

215

44 v01z=z[1]-z[0]

45 v02x=x[2]-x[0]

46 v02y=y[2]-y[0]

47 v02z=z[2]-z[0]

48 nz=v01x*v02y-v01y*v02x

49 if nz<=0 :

50 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linewidth=2)

51 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k',linewidth=2)

52 plt.plot([xg[2],xg[0]],[yg[2],yg[0]],color='k',linewidth=2)

53 else:

54 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linestyle=':')

55 plt.plot([xg[1],xg[2]],[yg[1],yg[2]],color='k',linestyle=':')

56 plt.plot([xg[2],xg[0]],[yg[2],yg[0]],color='k',linestyle=':')

57

58 v03x=x[3]-x[0] #—0,2,3 face

59 v03y=y[3]-y[0]

60 v03z=z[3]-z[0]

61 nz=v02x*v03y-v02y*v03x

62 if nz<=0 :

63 plt.plot([xg[0],xg[2]],[yg[0],yg[2]],color='k',linewidth=2)

64 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k',linewidth=2)

65 plt.plot([xg[2],xg[3]],[yg[2],yg[3]],color='k',linewidth=2)

66 else:

67 plt.plot([xg[0],xg[2]],[yg[0],yg[2]],color='k',linestyle=':')

68 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k',linestyle=':')

69 plt.plot([xg[2],xg[3]],[yg[2],yg[3]],color='k',linestyle=':')

70

71 nz=v03x*v01y-v03y*v01x #—0,2,3 face

72 if nz<=0 :

73 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linewidth=2)

74 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k',linewidth=2)

75 plt.plot([xg[1],xg[3]],[yg[1],yg[3]],color='k',linewidth=2)

76 else:

77 plt.plot([xg[0],xg[1]],[yg[0],yg[1]],color='k',linestyle=':')

78 plt.plot([xg[0],xg[3]],[yg[0],yg[3]],color='k',linestyle=':')

Chapter 6 hidden Line removaL

216

79 plt.plot([xg[1],xg[3]],[yg[1],yg[3]],color='k',linestyle=':')

80

81 v21x=x[1]-x[2] #———1,2,3 face

82 v21y=y[1]-y[2]

83 v21z=z[1]-z[2]

84 v23x=x[3]-x[2]

85 v23y=y[3]-y[2]

86 v23z=z[3]-z[2]

87 nz=v21x*v23y-v21y*v23x

88 if nz¡0:

89 plt.plot([x[2],x[1]],[y[2],y[1]])

90 plt.plot([x[1],x[3]],[y[1],y[3]])

91 plt.plot([x[3],x[2]],[y[3],y[2]])

92

93 plt.scatter(xc,yc,s=5,color='k') #———plot a dot at the center

94 plt.axis([0,150,100,0]) #———replot axes and grid

95 plt.axis('on')

96 plt.grid(True)

97 plt.show() #–plot latest rotation

98

99 #========================transform coordinates and plotting fucntions

100 def plotpyramidx(xc,yc,zc,Rx): #——————transform & plot Rx pyramid

101 for i in range(len(x)):

102 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

103 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

104

105 plotpyramid(xg,yg,zg) #—————plot

106

107 def plotpyramidy(xc,yc,zc,Ry):

108 for i in range(len(x)): #——————transform & plot Ry pyramid

109 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

110 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

111

112 plotpyramid(xg,yg,zg)

Chapter 6 hidden Line removaL

217

113

114 def plotpyramidz(xc,yc,zc,Rz):

115 for i in range(len(x)): #——————transform & plot Rz pyramid

116 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

117 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

118

119 plotpyramid(xg,yg,zg)

120

121 #———————————————————plot pyramids

122 xc=75 #——center coordinates

123 yc=50

124 zc=50

125

126 while True:

127 axis=input('x, y or z?: ') #———input axis of rotation (lower case)

128 if axis == 'x': #———if x axis

129 Rx=radians(float(input('Rx Degrees?: '))) #———input degrees

of rotation

130 plotpyramidx(xc,yc,zc,Rx) #———call function plotpyramidx

131 if axis == 'y':

132 Ry=radians(float(input('Ry Degrees?: '))) #———input degrees

of rotation

133 plotpyramidy(xc,yc,zc,Ry)

134 if axis == 'z':

135 Rz=radians(float(input('Rz Degrees?: '))) #———input degrees

of rotation

136 plotpyramidz(xc,yc,zc,Rz)

137 if axis == ":

138 break

Chapter 6 hidden Line removaL

218

6.3 Planes
Next is an example of inter-object hidden line removal. Figure 6-9 shows two planes, (a)

and (b); Figure 6-10 shows the same two planes partially overlapping. As you will see

shortly, plane (b) is actually beneath the plane (a) and should be partially obscured.

Figures 6-11 shows the planes with the hidden lines of plane (b) removed. Figure 6-12

shows another example. Figure 6-13 shows an example with plane (a) rotated.

In this simple model, the two planes are parallel to the x,y plane with plane (b) taken

to be located behind plane (a) (i.e. further in the +z direction). You do not need to be

concerned with the z component of the planes’ coordinates since you won’t be rotating

them out of plane, (i.e. around the x or y directions), although you will be rotating plane

(a) in its plane around the z direction, but for this you do not need z coordinates.

Figure 6-14 shows the model used by Listing 6-3. Plane (a) is drawn in black, plane

(b) in blue. Unit vectors î and ĵ are shown at corner 0 of plane (a). You use a ray tracing

technique to remove the hidden lines when plane (b) or part of it is behind (a) and not

visible. You do so line by line beginning with edge 0-1 of plane (b). Starting at corner 0

of plane (b), you imagine a ray emitting from that point travelling to an observer who

is located in the -z direction and looking in onto the x,y plane. If plane (a) does not

interfere with that ray (i.e. does not cover up that point), the dot is plotted. If plane

(a) does interfere, it is not plotted. The problem thus become one of intersections:

determining if a ray from a point on an edge of plane (b) intersects plane (a).

The edges of plane (b) are processed one at a time. Starting with corner 0, you

proceed along edge 0-1 to corner 1 in small steps. Vector H shows the location of a point

h on edge 0-1. Listing 6-3 determines the location of this point and whether or not it lies

beneath plane (a) (i.e. if a ray emanating from h strikes plane (a)). If it does not, point p is

plotted; if it does, p is not plotted.

In Listing 6-3, lines 14-18 establish the coordinates of the two planes in global

coordinates, ready for plotting. Lines 21-32 define a function, dlinea, that plots the edge

lines of plane (a). It does so one edge line at a time. dlinea does not do a hidden line

check on the edges of plane (a) since you are stipulating that plane (a) lies over plane

(b). The calling arguments x1,x2,y1,y2 are the beginning and end coordinates of the edge

line. q in line 22 is the length of that line; uxa and uya are the x and y components of a

unit vector that points along the edge line from x1,y1 to x2,y2. The loop in lines 27-32

advances the point along the line from x1,y1 to x2,y2 in steps of .2 as set in line 27. hx

Chapter 6 hidden Line removaL

219

and hy in lines 28 and 29 are the coordinates of point h along the line. hxstart and hystart

permit connecting the points by short line segments, giving a finer appearance than if

the points were plotted as dots.

Lines 35-38 plot the edges of plane (a) by calling function dlinea with the beginning

and end coordinates of each of the four edges. Lines 40-42 establish the distance qa03

from corner 0 of plane (a) to corner 3. uxa and uya in lines 43 and 44 are the x and y

components of a unit vector û, which points from corner 0 to corner 3. Similarly, lines

46-50 give the components of v̂ , a unit vector pointing from corner 0 to 1. They will be

required to do the intersection check, as was done in the preceding chapter with line/

plane intersections.

Function dlineb is similar to dlinea except the calling arguments now include

agx[0] and agy[0], the coordinates of corner 0 of plane (a). Also, this function includes

the interference check, which is between lines 64 and 71. This is labelled the inside/

outside check. In line 64, a is the distance between the x coordinate of point h and the

x coordinate of corner 0 of plane (a); b in line 65 is the y distance. These are essentially

the x and y components of vector H. In line 66, the dot (scalar) product of H with unit

vector û gives up. This is the projection of H on the 0-3 side of plane (a). Similarly, the

dot product of H with unit vector v̂ in line 67 gives vp, the projection of H on the 0-1 side

of plane (a). The interference check is then straightforward and is summarized in line 68.

If all questions in line 68 are true, the point is plotted in line 69 in white, which means it

is invisible. If any the questions in line 68 are false, which means the point is not blocked

by plane (a), line 71 plots it in black.

You may ask, why use this elaborate vector analysis? Why not just check each

point’s x and y coordinates as shown in Figure 6-14 against the horizontal and vertical

boundaries of plane (a)? You could do that if both planes remain aligned with the x and

y axes as shown. But by using the vector approach, you enable either one of the planes to

be rotated about the z direction as shown in Figure 6-13.

I have simplified this model a bit by specifying that plane (b) lie under (a). In general,

you may not know which plane is closer to the observer and which should be (a) and

which (b). This can be accomplished by a simple check on z coordinates. In principle,

the hidden line removal process would be similar to what you have done here, although

the programming can get complicated trying to keep track of a large assemblage of

objects.

Chapter 6 hidden Line removaL

220

Figure 6-9. Two planes

Figure 6-10. Two planes, one partially overlapping the other, hidden lines not
removed. Plane (b) is beneath (a).

Chapter 6 hidden Line removaL

221

Figure 6-11. Two planes overlapping, hidden lines removed by Listing 6-3

Figure 6-12. Two planes, one overlapping the other, hidden lines removed by
Listing 6-3

Chapter 6 hidden Line removaL

222

Figure 6-13. Two planes, one at an angle and overlapping the other, hidden lines
removed by Listing 6-3

Figure 6-14. Model for Listing 6-3

Chapter 6 hidden Line removaL

223

Listing 6-3. Program HLPLANES

1 """

2 HLPLANES

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sqrt, sin, cos, radians

8

9 plt.axis([0,150,100,0])

10 plt.axis('off')

11 plt.grid(False)

12

13 #———————————————————-define lists

14 axg=[40,80,80,40]

15 ayg=[20,20,60,60]

16

17 bxg=[20,120,120,20]

18 byg=[30,30,55,55]

19

20 #==define function dlinea

21 def dlinea(x1,x2,y1,y2):

22 q=sqrt((x2-x1)**2+(y2-y1)**2)

23 uxa=(x2-x1)/q

24 uya=(y2-y1)/q

25 hxstart=x1

26 hystart=y1

27 for l in np.arange(0,q,.2):

28 hx=x1+l*uxa #———global hit coordinates along the line

29 hy=y1+l*uya

30 plt.plot([hxstart,hx],[hystart,hy],color='k')

31 hxstart=hx

32 hystart=hy

33

Chapter 6 hidden Line removaL

224

34 #—————————————————————plane (a)

35 dlinea(axg[0],axg[1],ayg[0],ayg[1]) #———plot plane (a)

36 dlinea(axg[1],axg[2],ayg[1],ayg[2])

37 dlinea(axg[2],axg[3],ayg[2],ayg[3])

38 dlinea(axg[3],axg[0],ayg[3],ayg[0])

39

40 a=axg[3]-axg[0] #———unit vector u plane (a)

41 b=ayg[3]-ayg[0]

42 qa03=sqrt(a*a+b*b)

43 uxa=a/qa03

44 uya=b/qa03

45

46 a=axg[1]-axg[0] #———unit vector v plane (a)

47 b=ayg[1]-ayg[0]

48 qa01=sqrt(a*a+b*b)

49 vxa=a/qa01

50 vya=b/qa01

51

52 #===lineb()

53 def dlineb(x1,x2,y1,y2,ax0,ay0):

54 a=x2-x1 #———unit vector line

55 b=y2-y1

56 ql=sqrt(a*a+b*b)

57 uxl=a/ql

58 uyl=b/ql

59 hxglast=x1

60 hyglast=y1

61 for l in np.arange(0,ql,.5):

62 hxg=x1+l*uxl

63 hyg=y1+l*uyl

64 a=hxg-ax0 #———inside/outside check

65 b=hyg-ay0

66 up=a*uxa+b*uya

67 vp=a*vxa+b*vya

Chapter 6 hidden Line removaL

225

68 if 0<up<qa03 and 0<vp<qa01: #———is it inside (a)?

79 plt.plot([hxglast,hxg],[hyglast,hyg],color=’white’)

70 else:

71 plt.plot([hxglast,hxg],[hyglast,hyg],color=’k’)

72 hxglast=hxg

73 hyglast=hyg

74

75 #———————————————————plot plane (b)

76 dlineb(bxg[0],bxg[1],byg[0],byg[1],axg[0],ayg[0])

77 dlineb(bxg[1],bxg[2],byg[1],byg[2],axg[0],ayg[0])

78 dlineb(bxg[2],bxg[3],byg[2],byg[3],axg[0],ayg[0])

79 dlineb(bxg[3],bxg[0],byg[3],byg[0],axg[0],ayg[0])

80

81 plt.show()

6.4 Sphere
In Chapter 5, you drew a sphere but did not rotate it. The lines on the back side were

overlapped by those on the front and thus weren’t visible, so removing hidden lines was

not an issue. In this chapter, you will draw a sphere and rotate it while removing hidden

lines on the back side.

Figures 6-15 and 6-18 show examples of the output from Listing 6-4, which plots

a sphere with hidden lines removed. The vertical lines in Figures 6-15 and 6-16, the

longitudes, are drawn in green; the horizontal latitudes are drawn in blue. The program

uses a hidden line removal scheme much like the one you used before with boxes

and pyramids. If the z component of a vector perpendicular to a point is positive (i.e.

pointing away from an observer who is located in the -z direction), the point is not

drawn; otherwise it is drawn.

In Listing 6-4, line 14 sets the length of the list g[] to 3. This will be used to return

global coordinates xg,yg, and zg from the rotation functions rotx, roty, and rotz, which

are defined in lines 24-40 (they are the same as the functions used in previous programs).

The longitudes are plotted in lines 55-79. The model is the same as used in Listing 5-5 in

Chapter 5. The algorithm between lines 55 and 79 calculates the location of each point

on a longitude, one at a time, and rotates it. That is, each point is established and rotated

separately; lists are not used other than the g[] list. The alpha loop starting in line 55

Chapter 6 hidden Line removaL

226

sweeps the longitudes from α = 0 to α = 360 in six-degree steps as set in lines 47-49. At each

α step a longitude is drawn by the ϕ loop, which starts at -90 degrees and goes to +90 in

six-degree steps. The geometry in lines 57-59 is taken from Listing 5-5. The coordinates of

a point before rotation (Rx=0, Ry=0, Rz=0) are xp,yp,zp as shown in lines 57-59. This point

is located on the sphere’s surface at spherical coordinates α, ϕ. Line 60 rotates the point

about the x direction by an angle Rx. This produces new coordinates xp,yp,zp in lines

61-63. Line 64 rotates the point at these new coordinates around the y direction. Line 68

rotates it around the z direction. This produces the final location of the point.

Next, you must determine whether or not the point is on the back side of the sphere

and hidden from view. If true, it is not plotted. Lines 73-79 perform this function. First,

in lines 73-75, you establish the starting coordinates of the line that will connect the first

point to the second. You use lines to connect the points rather than dots since lines give

a finer appearance. Line 73 asks if phi equals phi1, the starting angle in the phi loop. If

it does, the starting coordinates xpglast and ypglast are set equal to the first coordinates

calculated by the loop. Next, in line 76, you ask if nz, the z component of a vector from

the sphere’s center to the point, is less than 0. nz is calculated in line 72. If true, you know

the point is visible to an observer situated in the -z direction; the point is then connected

to the previous one by line 77.

The plt.plot() function in line 77 needs two sets of coordinates: xpglast,ypglast and

xpg,ypg. During the first cycle through the loop, the starting coordinates xpglast,ypglast

are set equal to xpg,ypg, meaning the first point is connected to itself so the first line

plotted will have zero length. After that, the coordinates of the previous point are set in

lines 78-79. Line 73 determines if it is the first point. If nz is greater than zero in line 76,

the point is on the back side of the rotated sphere and is not visible so it is not plotted.

The coordinates xpglast and ypglast must still be updated and this is done in lines 78-79.

The latitudes are processed in much the same way, although the geometry is different,

as described in Listing 5-5. The colors of the longitudes and latitudes can be changed by

changing the color='color' values in lines 77 and 104.

When running this program, remember that the rotations are not additive as in some

of the previous programs. The angles of rotation specified in lines 51-53 are the angles

the sphere will end up at; they are not added to any previous rotations. To rotate the

sphere to another orientation, change the values in lines 51-53.

As mentioned in the discussion on concatenation, the sequence of rotations is

important. Rx followed by Ry does not give the same results as Ry followed by Rx. This

program has the sequence of function calls, Rx,Ry,Rz, as specified in lines 60, 64, and 68

Chapter 6 hidden Line removaL

227

for longitudes and 87, 91, and 95 for latitudes. To change the order of rotation, change

the order of these function calls.

The spheres shown in Figures 6-17 and 6-18 have a black background. To achieve

this, insert the following lines in Listing 6-4 before any other plotting commands, for

example after line 12:

#———————————————————paint the background

for y in np.arange(1,100,1):

 plt.plot([0,150],[y,y],linewidth=4,color='k')

This plots black lines across the plotting window from x=0 to x=150 and down from

y=1 to y=100. This fills the area with a black background. The color can be changed

to anything desired. The linewidth has been set to 4 in order to prevent gaps from

appearing between the horizontal lines. The background must be painted before

constructing the sphere since you are using line segments to do that. New lines overplot

old ones, so with this order the sphere line segments will overplot the background lines;

otherwise the background lines would overplot the sphere.

In Figures 6-15 and 6-16, the sphere’s line widths in program lines 77 and 104 is set

to .5. This gives good results on a clear background but the lines are too subdued when

the background is changed to black. So, along with inserting the two lines of code above,

the line widths in Listing 6-4 should be changed to something greater such as 1.0. The

color shown in Figures 6-17 and 6-18 is 'lightgreen'. Some colors don’t plot well against

a black background but color='lightgreen' seems to work; you just have to experiment.

Listing 6-4. Program HLSPHERE

1 """

2 HLSPHERE

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians, sqrt

8

9 plt.axis([0,150,100,0])

10 plt.axis('off')

Chapter 6 hidden Line removaL

228

11 plt.grid(False)

12

13 #———————————————————————lists

14 g=[0]*3

15

16 #—————————————————————parameters

17 xc=80 #———sphere center

18 yc=50

19 zc=0

20

21 rs=40 #———sphere radius

22

23 #===

24 def rotx(xc,yc,zc,xp,yp,zp,Rx):

25 g[0]=xp+xc

26 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc

27 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc

28 return[g]

29

30 def roty(xc,yc,zc,xp,yp,zp,Ry):

31 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc

32 g[1]=yp+yc

33 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc

34 return[g]

35

36 def rotz(xc,yc,zc,xp,yp,zp,Rz):

37 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc

38 g[1]=xp*sin(Rz)+yp*cos(Rz)+yc

39 g[2]=zp+zc

40 return[g]

41

42 #————————————————-longitudes and latitudes

43 phi1=radians(-90)

44 phi2=radians(90)

45 dphi=radians(6)

Chapter 6 hidden Line removaL

229

46

47 alpha1=radians(0)

48 alpha2=radians(360)

49 dalpha=radians(6)

50

51 Rx=radians(45)

52 Ry=radians(-20)

53 Rz=radians(40)

54

55 for alpha in np.arange(alpha1,alpha2,dalpha): #———longitudes

56 for phi in np.arange(phi1,phi2,dphi):

57 xp=rs*cos(phi)*cos(alpha)

58 yp=rs*sin(phi)

59 zp=-rs*cos(phi)*sin(alpha)

60 rotx(xc,yc,zc,xp,yp,zp,Rx)

61 xp=g[0]-xc

62 yp=g[1]-yc

63 zp=g[2]-zc

64 roty(xc,yc,zc,xp,yp,zp,Ry)

65 xp=g[0]-xc

66 yp=g[1]-yc

67 zp=g[2]-zc

68 rotz(xc,yc,zc,xp,yp,zp,Rz)

69 xpg=g[0]

70 ypg=g[1]

71 zpg=g[2]

72 nz=zpg-zc

73 if phi == phi1:

74 xpglast=xpg

75 ypglast=ypg

76 if nz < 0:

77 plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=.5,

color='g')

78 xpglast=xpg

79 ypglast=ypg

Chapter 6 hidden Line removaL

230

80

81 for phi in np.arange(phi1,phi2,dphi): #—————latitudes

82 r=rs*cos(phi)

83 for alpha in np.arange(alpha1,alpha2+dalpha,dalpha):

84 xp=r*cos(alpha)

85 yp=rs*sin(phi)

86 zp=-rs*cos(phi)*sin(alpha)

87 rotx(xc,yc,zc,xp,yp,zp,Rx)

88 xp=g[0]-xc

89 yp=g[1]-yc

90 zp=g[2]-zc

91 roty(xc,yc,zc,xp,yp,zp,Ry)

92 xp=g[0]-xc

93 yp=g[1]-yc

94 zp=g[2]-zc

95 rotz(xc,yc,zc,xp,yp,zp,Rz)

96 xpg=g[0]

97 ypg=g[1]

98 zpg=g[2]

99 nz=zpg-zc

100 if alpha == alpha1:

101 xpglast=xpg

102 ypglast=ypg

103 if nz < 0:

104 plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=.5,

color='b')

105 xpglast=xpg

106 ypglast=ypg

107

108 plt.show()

Chapter 6 hidden Line removaL

231

Figure 6-16. Rotated sphere with hidden lines removed: Rx=40°, Ry=-20°, Rz=40°
(produced by Listing 6-4)

Figure 6-15. Rotated sphere with hidden lines removed: Rx=55°, Ry=-20°, Rz=-40°
(produced by Listing 6-4)

Chapter 6 hidden Line removaL

232

Figure 6-17. Rotated sphere with hidden lines removed: Rx=40°, Ry=-20°, Rz=40°,
black background (produced by Listing 6-4)

Figure 6-18. Rotated sphere with hidden lines removed: Rx=60°, Ry=20°, Rz=10°,
black background (produced by Listing 6-4)

Chapter 6 hidden Line removaL

233

6.5 Summary
You learned how to remove hidden lines from single objects and between objects. In

the case of single objects, such as the box, the pyramid, and the sphere, you were able to

construct algorithms without much trouble. When removing hidden lines from separate

objects, such as two planes, you relied on the technique of constructing one of the

objects from dots or short line segments that go from one dot to another. In either case,

you were still dealing with dots. From a dot on one plane, you drew an imaginary line,

a ray, to an observer in the -z direction. Then you checked to see if the ray intersected

the other plane. You used the line-plane intersection algorithm developed in Chapter 5.

If it did intersect, the dot was hidden and it, or a line segment connected to it, was not

drawn. You used two planes to explore this technique. You could have used any of the

other shapes you worked with in Chapter 5. For example, you could have easily removed

hidden lines from a plane beneath a circular segment by constructing the plane from

dots and using the intersection algorithm from Chapter 5. However, you might not know

ahead of time which object covers which. You could do a rough check to answer this

question. For example, in the case of two planes, if the z coordinates of all four corners of

one plane are less than the other, it is closer to the observer, in which case it may cover

part of the other plane. In this case, the other plane should be checked for hidden lines.

Chapter 6 hidden Line removaL

235
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_7

CHAPTER 7

Shading
In this chapter, you’ll learn how to shade three-dimensional objects. Shading produces

a much more realistic look and enhances the perception of three-dimensionality. The

general idea is to first establish the direction of light rays impacting the object being

illuminated and then determine the shading effect the light has on the object’s surface.

In the case of a box, which I will discuss next, six flat planes comprise the box’s surface.

The orientation of these planes relative to the direction of the light will determine the

degree of shading on each plane. To simulate shading, the planes can be filled with dots

or lines. Different intensities of shading can be obtained by changing the intensity of the

color of the dots or lines and by color mixing.

Normally an object being plotted will appear on a white background. If a background

color is used, such as in Figure 7-13, dots or lines may be used to paint the background.

Recall from Chapter 1 that new dots overplot old dots and lines always overplot dots

and old lines. This means that whether the object being shaded is constructed of dots or

lines, they will overplot the background color if it is painted with dots. The disadvantage

of using dots is it takes a lot of time to fill the background with dots. Lines are a better

alternative in this regard and are preferred if the object can be constructed of lines. If you

must use dots in your object, then you must use dots for your background color.

The heart of a shading program is the intensity function, which relates the shading

intensity to the orientation of a plane relative to the incoming light direction. You do not

specify the position of a light source; you define the direction of the light rays impacting

the object from that source. For example, suppose the program calculates that the

angle between a plane and the incoming light rays is 50 degrees. The intensity function

converts this angle into a shading intensity, which is used to alter the color intensity of

the lines or dots.

A considerable amount of research has been carried out on theories of shading in

an effort to produce more lifelike computer-drawn images. These images often have a

separate shading function for each primary color and take into account the reflectivity

and physical characteristics of the surface material. Smooth surfaces will be highly

236

 reflective while rough, textured surfaces will scatter the incoming light, producing

a higher degree of diffusivity. In your work here, you will keep it simple and use just

one shading function and ignore the differences in surface features that can affect the

surface’s reflectivity and diffusivity, although they could easily be introduced into the

program. Also, you assume the shading of a surface is dependent on only the orientation

of that surface relative to the light source and not on its orientation relative to the

observer who, as usual, you take to be located in the -z direction.

7.1 Shading a Box
Figures 7-1 through 7-7 show samples of output from Listing 7-1. They show a box

rotated to different orientations with shading on its surfaces. They are shaded in

monochrome black at different intensities ranging from black to white.

Figure 7-1. Shaded box produced by Listing 7-1, Io=.8

Figure 7-2. Shaded box produced by Listing 7-1, Io=1.0

Figure 7-3. Shaded box produced by Listing 7-1, Io=1.0

Chapter 7 Shading

237

Figure 7-9 shows the model used by Listing 7-1. The light source is shown at the

upper left. You do not explicitly state its location, only the direction of the light rays

emanating from it. You do that by specifying lx,ly, and lz, the components of a unit

vector l̂ , which is aligned with the light rays. Keep in mind that l̂ is a unit vector so the

following relation between its components must be observed:

 lx ly lz2 2 2 1+ + = (7-1)

Figure 7-7. Shaded box produced by Listing 7-1, Io=.4

Figure 7-4. Shaded box produced by Listing 7-1, Io=1.0

Figure 7-5. Shaded box produced by Listing 7-1, Io=.8

Figure 7-6. Shaded box produced by Listing 7-1, Io=.6

Chapter 7 Shading

238

Looking at the top plane of the box defined by corners 0,1,2,3, you can see a unit

normal vector n̂ at corner 0. This points outward from the plane. You shade the box by

drawing lines, shown in blue, which extend across the width of the plane from B to E.

These lines are drawn from edge 0,1 to 3,2 and then down the plane, thus shading it. The

lines on each face will have an intensity that depends on the orientation of n̂ with l̂ .

You get this orientation by taking the dot product of n̂ with l̂ . If n̂ is facing l̂ , the dot

product will be negative and the intensity of the lines will be less, which means the tone

will be lighter; if n̂ is facing away from l̂ , the dot product will be positive, the intensity

will be greater, and the tone will be darker.

This is illustrated by Figure 7-10, which shows the shading intensity, I, vs. n̂ l× . This

is a linear relation. As you will see in the next section, better results can be obtained with

a non-linear relation and by mixing (r,g,b) colors. You can get an equation for this linear

intensity function by inspection:

I

Io Io
= + ×
2 2

ˆ ˆn l (7-2)

I

Io
= = ×()
2

1 n lˆ ˆ

(7-3)

Note the parameter Io. It gives control over the degree of darkness in the shaded

areas by increasing or decreasing the intensity of the color. The lines from B to E are

plotted with the plt.plot() function, which includes the attribute alpha. By letting

alpha=I you can control the intensity of the color. Higher values of alpha increase the

intensity, making shaded areas appear darker; lower values of alpha decrease it, thus

creating areas that appear lighter. Note that alpha may take on values from 0 to 1, hence

I is limited to the same range of values. From Equation 7-3, this means that Io can

have a maximum value of 1. Io=1 will give the darkest, most intense hues. To soften the

image with more subtle hues, lower Io to something less than 1. To modify the function

even more, the left side could be raised, which would darken the lights. If the function

were horizontal, all shading would be uniform. To see the effect of Io on the shading,

Figures 7-2 through 7-4 have Io=1.0. Figures 7-1, 7-5, 7-6, and 7-7 have Io=.8, .8, .6, and .4,

respectively. Colors do not have to be black or primaries; they can be mixed. Figure 7-8

shows the result of using color=(r,g,b) with r=.5, g=0, b=.5,

 color = ().5,,0,,.5 (7-4)

Chapter 7 Shading

239

which is a purple mix of equal amount of red and blue. Recall that red, green, and blue in

an (r,g,b) mix must each have values between 0 and 1.

You have been applying your shading intensity, I, to monochrome colors. Even if

you use r,g,b color mixing, it is still a monochrome shade, although not a primary color.

An extension of this method would be to apply separate intensities to each of the three

primary colors. For example, when an artist paints a portrait, he/she might render the

light side of the face a light pink. To darken the shaded side, he/she would normally

add green, the compliment of red, to the mix. If you look closely at the portraits of an

accomplished artist, you will see this is usually how it is done. Rarely would one add

black to the mix to darken it. In fact, many painters do not even keep a black pigment

on their pallet; they achieve darker colors by mixing the hues with their compliment.

The compliment of red is green; of yellow it is violet. Color mixing in painting isn’t quite

that simple, of course, but that is the fundamental idea. To accomplish this in your

programming, suppose you are shading a red box using an (r,g,b) color mix. Rather

than applying an intensity factor to the red to increase its intensity, thus simulating

a darkening, you apply the intensity factor to the green, increasing its contribution

in the r,g,b mix, thus darkening the red. For the present, in Listing 7-1 you will keep

thing simple and simulate shading by increasing the intensity of the color in the dark

areas rather than using color mixing. This works well with a monochrome black image,

although it has limitations with colored objects.

The definition of the box in Listing 7-1 is contained in the lists in lines 10, 11, and

12. Lines 14, 15, and 16 open lists for the global coordinates, which are returned by the

rotation functions rotx, roty, and rotz. They have the same lengths as the x,y,z lists as

specified by len(x).

A new function called shade() is defined in Listing 7-1, lines 54-84. The arguments

received by shade() in line 54 are shown in Figure 7-11. When shade() is invoked for

a specific plane, the box’s corners must follow the order shown in Figure 7-11. As an

example, the ordering for plane 1,5,6,2 is shown in Figure 7-12. Some visual gymnastics

can be required to orient the six planes of the box such that they conform to the ordering

in Figure 7-11. Each of the six planes are drawn and shaded separately by six calls to

function shade(). They are listed in lines 88-93. The arguments of the calls are the x,y,z

coordinates of points a,b,c,d, respectively. Function shade() calculates the components

of unit vector û in lines 55-61 and vˆ in lines 62-68. Components of unit vector n̂ are

calculated in lines 69-71. The dot product on n̂ with the incoming light ray unit vector

l̂ , the components of which were specified in lines 23-25, is calculated in line 72 as

Chapter 7 Shading

240

ndotl; the shading intensity in line 73. If nz<=0 (i.e. n̂ is pointing toward the observer

who is in the -z direction), the edges of the face are plotted in lines 75-78 and the face is

shaded in loop 79-84. Line 79 ranges h, shown in Figure 7-11, from 0 to qad, the distance

from corner a to d, which was calculated in line 58, in steps of 1. Lines 80-81 calculate

the x and y coordinates of the beginning of the line; lines 82 and 83 get the coordinates

of the end of the line. Line 84 plots the line. In line 84, alpha is equal to the intensity of

the shading that was determined in line 73. The box’s color is equal to clr, which was

specified in line 27; for example, color='k' will give a black box. An alternative would

be to mix primary colors as shown in line 28. This produces the purple box shown in

Figure 7-8. To get this color, just remove the # in line 28; otherwise, the shading will

be done in black. I will discuss color mixing in more detail in the next section. The

maximum intensity Io is specified in line 29. This can be anything between 0 and 1. If

nz>0 (i.e. n̂ is pointing away from the observer), the face is not plotted. The remainder

of Listing 7-1 should be familiar.

Figure 7-9. Shading model used by Listing 7-1

Figure 7-8. Shaded box produced by Listing 7-1, (r,g,b)=(.5,0.,5) color mixing,
Io=1.0

Chapter 7 Shading

241

Figure 7-10. Shading function

Figure 7-12. Plane 1,5,6,2

Figure 7-11. Model of a generic plane used in Listing 7-1

Chapter 7 Shading

242

Listing 7-1. Program SHADEBOX

1 """

2 SHADEBOX

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians, sqrt

8

9 #—————————————————————————lists

10 x=[-20,20,20,-20,-20,20,20,-20]

11 y=[-10,-10,-10,-10,10,10,10,10]

12 z=[5,5,-5,-5,5,5,-5,-5]

13

14 xg=[0]*len(x)

15 yg=[0]*len(x)

16 zg=[0]*len(x)

17

18 #———————————————————————parameters

19 xc=75 #———center coordinates

20 yc=50

21 zc=50

22

23 lx=.707 #———light ray unit vector components

24 ly=.707

25 lz=0

26

27 clr='k' #———use this for black monochrome images, or use another color

28 #clr=(.5,0,.5) #———use this to mix colors, this mix produces purple

29 Io=.8 #———max intensity, must be 0 < 1

30

31 #===define rotation

functions

32 def rotx(xc,yc,zc,xp,yp,zp,Rx):

33 xpp=xp

Chapter 7 Shading

243

34 ypp=yp*cos(Rx)-zp*sin(Rx)

35 zpp=yp*sin(Rx)+zp*cos(Rx)

36 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

37 return[xg,yg,zg]

38

39 def roty(xc,yc,zc,xp,yp,zp,Ry):

40 xpp=xp*cos(Ry)+zp*sin(Ry)

41 ypp=yp

42 zpp=-xp*sin(Ry)+zp*cos(Ry)

43 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

44 return[xg,yg,zg]

45

46 def rotz(xc,yc,zc,xp,yp,zp,Rz):

47 xpp=xp*cos(Rz)-yp*sin(Rz)

48 ypp=xp*sin(Rz)+yp*cos(Rz)

49 zpp=zp

50 [xg,yg,zg]=[xpp+xc,ypp+yc,zpp+zc]

51 return[xg,yg,zg]

52

53 #==shading

54 def shade(ax,ay,az,bx,by,bz,cx,cy,cz,dx,dy,dz):

55 a=dx-ax

56 b=dy-ay

57 c=dz-az

58 qad=sqrt(a*a+b*b+c*c)

59 ux=a/qad

60 uy=b/qad

61 uz=c/qad

62 a=bx-ax

63 b=by-ay

64 c=bz-az

65 qab=sqrt(a*a+b*b+c*c)

66 vx=a/qab

67 vy=b/qab

68 vz=c/qab

69 nx=uy*vz-uz*vy

Chapter 7 Shading

244

70 ny=uz*vx-ux*vz

71 nz=ux*vy-uy*vx

72 ndotl=nx*lx+ny*ly+nz*lz

73 I=.5*Io*(1+ndotl)

74 if nz<=0:

75 plt.plot([ax,bx],[ay,by],color='k',linewidth=1)

76 plt.plot([bx,cx],[by,cy],color='k',linewidth=1)

77 plt.plot([cx,dx],[cy,dy],color='k',linewidth=1)

78 plt.plot([dx,ax],[dy,ay],color='k',linewidth=1)

79 for h in np.arange(0,qad,1):

80 xls=ax+h*ux

81 yls=ay+h*uy

82 xle=bx+h*ux

83 yle=by+h*uy

84 plt.plot([xls,xle],[yls,yle],linewidth=2,alpha=I,

color=clr)

85

86 #===

87 def plotbox(xg,yg,zg):

88 shade(xg[0],yg[0],zg[0],xg[1],yg[1],zg[1],xg[2],yg[2],zg[2],xg[3],

yg[3],zg[3])

89 shade(xg[7],yg[7],zg[7],xg[6],yg[6],zg[6],xg[5],yg[5],zg[5],xg[4],

yg[4],zg[4])

90 shade(xg[0],yg[0],zg[0],xg[3],yg[3],zg[3],xg[7],yg[7],zg[7],xg[4],

yg[4],zg[4])

91 shade(xg[1],yg[1],zg[1],xg[5],yg[5],zg[5],xg[6],yg[6],zg[6],xg[2],

yg[2],zg[2])

92 shade(xg[3],yg[3],zg[3],xg[2],yg[2],zg[2],xg[6],yg[6],zg[6],xg[7],

yg[7],zg[7])

93 shade(xg[4],yg[4],zg[4],xg[5],yg[5],zg[5],xg[1],yg[1],zg[1],xg[0],

yg[0],zg[0])

94

95 plt.axis([0,150,100,0]) #———plot axes and grid

96 plt.axis('off')

97 plt.grid(False)

98 plt.show() #———plot latest rotation

Chapter 7 Shading

245

99

100 #==

101 def plotboxx(xc,yc,zc,Rx): #——————transform and plot Rx

102 for i in range(len(x)):

103 [xg[i],yg[i],zg[i]]=rotx(xc,yc,zc,x[i],y[i],z[i],Rx)

104 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

105

106 plotbox(xg,yg,zg) #—————plot

107

108 def plotboxy(xc,yc,zc,Ry):

109 for i in range(len(x)): #——————transform and plot Ry

110 [xg[i],yg[i],zg[i]]=roty(xc,yc,zc,x[i],y[i],z[i],Ry)

111 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

112

113 plotbox(xg,yg,zg)

114

115 def plotboxz(xc,yc,zc,Rz):

116 for i in range(len(x)): #——————transform and plot Rz

117 [xg[i],yg[i],zg[i]]=rotz(xc,yc,zc,x[i],y[i],z[i],Rz)

118 [x[i],y[i],z[i]]=[xg[i]-xc,yg[i]-yc,zg[i]-zc]

119

120 plotbox(xg,yg,zg)

121

122 #————————————————————————-input

123 while True:

124 axis=input('x, y or z?: ') #———input axis of rotation (lower case)

125 if axis == 'x': #–if x axis

126 Rx=radians(float(input('Rx Degrees?: '))) #———input degrees

127 plotboxx(xc,yc,zc,Rx) #———call function plotboxx

128 if axis == 'y':

129 Ry=radians(float(input('Ry Degrees?: '))) #———input degrees

130 plotboxy(xc,yc,zc,Ry)

131 if axis == 'z':

Chapter 7 Shading

246

132 Rz=radians(float(input('Rz Degrees?: '))) #———input degrees

133 plotboxz(xc,yc,zc,Rz)

134 if axis == ":

135 break

7.2 Shading a Sphere
In the previous section, you shaded a box using a simple linear relation for the shading

function where the intensity of the shading, I, was linearly related to the dot product ˆ ˆn l× .

 In this section, you will be mixing the three primary colors and controlling the intensity

of each with a non-linear shading function. Results are shown in Figure 7-13, which was

produced by Listing 7-2.

Nonlinear shading functions are shown as the red, green, and blue curves in

Figure 7-14; the linear one is in black. The non-linear functions give more control

over the shading and can produce more realistic effects. They allow you to control

the shading by amplifying and extending the lighter shaded areas while more rapidly

increasing the transition of intensity into the darker areas. The linear shading function

is similar to the one used in Listing 7-1, except that it now starts at I=IA where IA may be

Figure 7-13. Shading a sphere by color mixing with a non-linear intensity
function (produced by Listing 7-2)

Chapter 7 Shading

247

greater than zero. The curves begin at I=IA and terminate at I=IB where ˆ ˆn l× =+1. IA and

IB are parameters that can be adjusted in Listing 7-2. IA>0 will darken the lights. This is

sometimes necessary since the tones, when I=0 or close to it, may not transition well to

higher regions of I; discontinuities can sometimes be observed. To correct this, start the

intensity function at some small value of IA greater than 0. Increasing IA can also be a

technique for reducing the brightness of light areas.

Note the difference between ˆ ˆn l× p and ˆ ˆn l× in Figure 7-14. To get a relation for I vs.
ˆ ˆn l× , you let the function be of the form

I C C p

n

= + ×()1 2 n lˆ ˆ
 (7-5)

where C1 and C2 are constants and n is a parameter. n can be changed in the program.

Noting that I=IA at ˆ ˆn l× =p 0 ,

 IA C C
n= + ()1 2 0 (7-6)

 C Ia1 = (7-7)

At ˆ ˆn l× p = +2, (ˆ ˆn l× = +1), I=IB,

 IB = + ()IA C
n

2 2 (7-8)

C

IB IA
n2 2

=
-

 (7-9)

With ˆ ˆ ˆ ˆ ,n l n l 1× = × +p

I IA IB IA

n

= + -() × +æ

è
çç

ö

ø
÷÷

ˆ ˆn l 1

2

(7-10)

Equation 7-10 is your intensity function, I ˆ ˆn l×() . You thus have three parameters

with which to adjust I: IA, which regulates the intensity of the lightest areas; IB, which

adjusts the darkest areas; and n, which adjusts the transition from light to dark. Higher

values of n will produce a more rapid transition. Figure 7-14 shows curves for n=1, 2, 3,

and 4. When n=1, the curve becomes linear. There are no definite values for n, IA, and

IB; they should be adjusted by trial and error to give visually appealing results.

Chapter 7 Shading

248

Regarding colors, the background shown in Figure 7-13 is 'midnightblue'. A good

source for color samples is #https://matplotlib.org/examples/color/named_colors.

html.

Listing 7-2 creates a sphere by plotting longitudes and latitudes as you did in Listing

6-4. In Listing 6-4, these were spaced six degrees apart. To carry out the shading in

Listing 7-2, you will space the longitudes and latitudes closer together, two degrees

apart, and adjust their plotting intensity depending on the angle between a local unit

vector normal to the surface n̂ and the light source unit vector l̂ at each point on the

surface. This will then be used to control the relative r,g,b contributions to the color mix.

As before, you establish this relation by taking the dot product ˆ ˆn l× . n̂ at each point

is determined quite simply by obtaining a vector from the sphere’s center to the point

in question on the sphere’s surface and then dividing by the sphere’s radius, rs. For

example, suppose you are at a point p on the sphere’s surface with coordinates xp,yp,zp.

A vector Vp from the sphere’s center at xc,yc,zc to p is

 Vp i j k= -() + -() + -()xp xc yp yc zp zcˆ ˆ ˆ (7-11)

Vp is normal to the surface at p. A unit normal vector, n̂ , is then

ˆ ˆ ˆ ˆn i j k=

-æ
è
ç

ö
ø
÷ +

-æ
è
ç

ö
ø
÷ +

-æ
è
ç

ö
ø
÷

xp xc

rs

yp yc

rs

zp zc

rs
(7-12)

where rs is the sphere’s radius. Taking the dot product of n̂ in Equation 7-12 with the

incoming light unit vector l̂ gives ˆ ˆn l× , which you need to determine I from Equation 7-10.

In Listing 7-2, lines 22-24 set the components of the incoming light’s unit vector.

Lines 26-28 set the intensity function parameters. These values produce Figure 7-13.

Lines 37-39 paint the background with dots. Lines 61-101 plot the longitudes. Note

in lines 69 and 70 that dalpha and dphi have been added to alpha2 and phi2 since

roundoff errors in the np.arange() function can sometimes fail to close the sphere; this

assures it closes. Lines 86-92 determine the components of the n̂ at the current values of

alpha and phi. Line 93 calculates the dot product ˆ ˆn l× ; line 94 calculates the intensity.

In line 99, the attribute linewidth has been increased to 4. When combined with

the angular spacing of two degrees in lines 63 and 67, this insures there are no gaps

in the surface. Also in line 99 the color statement shows red at 100 percent, green at

80 percent, and blue at 40. The (I-1) factor reflects the impact of the shading function.

Recall that when the color mix is (0,0,0), black is produced; conversely, when the mix is

Chapter 7 Shading

249

(1,1,1), white is produced. Since you want darks where I is close to or equal to 1 (facing

away from the light source), the (I-1) factor accomplishes this since it equals 0 when I=1

producing black. If you did not include the (I-1) factor, the mix (1,.8,.45) would simply

produce an unshaded round rusty orange disc.

Listing 7-2. Program SHADESPHERE

1 """

2 SHADESPHERE

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians, sqrt

8

9 plt.axis([0,150,100,0])

10 plt.axis('off')

11 plt.grid(False)

12

Figure 7-14. Nonlinear shading function

Chapter 7 Shading

250

13 #—————————————————————————lists

14 g=[0]*3

15

16 #———————————————————————parameters

17 xc=80 #———sphere center

18 yc=50

19 zc=0

20 rs=35 #———sphere radius

21

22 lx=.707 #———light ray unit vector components

23 ly=.707

24 lz=0

25

26 IA=.01 #———define curve

27 IB=1

28 n=2.0

29

30 clrbg='midnightblue' #———background color

31

32 Rx=radians(-15) #———sphere angles of rotation

33 Ry=radians(0)

34 Rz=radians(30)

35

36 #———————————————————paint background color

37 for x in np.arange(0,150,1):

38 for y in np.arange(0,100,1):

39 plt.scatter(x,y,s=10,color='clrbg')

40

41 #==rotation

functions

42 def rotx(xc,yc,zc,xp,yp,zp,Rx):

43 g[0]=xp+xc

44 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc

45 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc

46 return[g]

47

Chapter 7 Shading

251

48 def roty(xc,yc,zc,xp,yp,zp,Ry):

49 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc

50 g[1]=yp+yc

51 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc

52 return[g]

53

53 def rotz(xc,yc,zc,xp,yp,zp,Rz):

55 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc

56 g[1]=xp*sin(Rz)+yp*cos(Rz)+yc

57 g[2]=zp+zc

58 return[g]

59

60 #————————————————————longitudes

61 phi1=radians(-90)

62 phi2=radians(90)

63 dphi=radians(2)

64

65 alpha1=radians(0)

66 alpha2=radians(360)

67 dalpha=radians(2)

68

69 for alpha in np.arange(alpha1,alpha2+dalpha,dalpha):

70 for phi in np.arange(phi1,phi2+dphi,dphi):

71 xp=rs*cos(phi)*cos(alpha)

72 yp=rs*sin(phi)

73 zp=-rs*cos(phi)*sin(alpha)

74 rotx(xc,yc,zc,xp,yp,zp,Rx)

75 xp=g[0]-xc

76 yp=g[1]-yc

77 zp=g[2]-zc

78 roty(xc,yc,zc,xp,yp,zp,Ry)

79 xp=g[0]-xc

80 yp=g[1]-yc

81 zp=g[2]-zc

82 rotz(xc,yc,zc,xp,yp,zp,Rz)

83 xpg=g[0]

Chapter 7 Shading

252

84 ypg=g[1]

85 zpg=g[2]

86 a=xpg-xc

87 b=ypg-yc

88 c=zpg-zc

89 qp=sqrt(a*a+b*b+c*c)

90 nx=a/qp

91 ny=b/qp

92 nz=c/qp

93 ndotl=nx*lx+ny*ly+nz*lz

94 I=IA+(IB-IA)*((1+ndotl)/2)**n

95 if phi == phi1:

96 xpglast=xpg

97 ypglast=ypg

98 if nz < 0:

99 plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=4,

color=((1-I),.8*(1-I),.45*(1-I))

100 xpglast=xpg

101 ypglast=ypg

102

103 #————————————————————latitudes

104 for phi in np.arange(phi1,phi2+dphi,dphi):

105 r=rs*cos(phi)

106 for alpha in np.arange(alpha1,alpha2+dalpha,dalpha):

107 xp=r*cos(alpha)

108 yp=rs*sin(phi)

109 zp=-rs*cos(phi)*sin(alpha)

110 rotx(xc,yc,zc,xp,yp,zp,Rx)

111 xp=g[0]-xc

112 yp=g[1]-yc

113 zp=g[2]-zc

114 roty(xc,yc,zc,xp,yp,zp,Ry)

115 xp=g[0]-xc

116 yp=g[1]-yc

117 zp=g[2]-zc

118 rotz(xc,yc,zc,xp,yp,zp,Rz)

Chapter 7 Shading

253

119 xpg=g[0]

120 ypg=g[1]

121 zpg=g[2]

122 a=xpg-xc

123 b=ypg-yc

124 c=zpg-zc

125 qp=sqrt(a*a+b*b+c*c)

126 nx=a/qp

127 ny=b/qp

128 nz=c/qp

129 ndotl=nx*lx+ny*ly+nz*lz

130 textbfI=IA+(IB-IA)*((1+ndotl)/2)**n

131 if alpha == alpha1:

132 xpglast=xpg

133 ypglast=ypg

134 if nz < 0:

135 plt.plot([xpglast,xpg],[ypglast,ypg],linewidth=4,

color=((1-I),.8*(1-I),.45*(1-I)))

136 xpglast=xpg

137 ypglast=ypg

138

139 plt.show()

7.3 Summary
While adding a background color can greatly enhance the visual appearance of an

object, shading can also be quite effective. In this chapter, you learned techniques for

shading an object. Shading implies the presence of an illuminating light source. In your

model, you used the direction of the light rays coming from a source but you did not

specify the position of the source. In Listing 7-1, you explored the concept of a shading

function as shown in Figure 7-10 and how it determines the intensity of shading on a

plane. This depends on the orientation of the plane relative to the direction of the

incoming light rays, which is determined by taking the dot product of a unit vector

Chapter 7 Shading

254

normal to the surface, ˆ ,n with a unit vector pointing in the direction of the light rays, l̂ .

In Listing 7-2, you performed the same shading operations on a sphere. However,

you improved on the shading function. Whereas in Listing 7-1 you used a simple linear

relation between the shading intensity and the dot product ˆ ˆ,n l× in Listing 7-2 you used a

nonlinear relation, as shown in Figure 7-14. This greatly improves the appearance of the

shading.

Chapter 7 Shading

255
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_8

CHAPTER 8

2D Data Plotting
In this chapter, you will look at styles and techniques for plotting two-dimensional data.

You will start with some simple plots and then progress to those that include multiple

sets of data on the same plot. While Python contains specialized built-in functions that

can be quite efficient at this, usually requiring only a few lines of code, you will find that

you can embellish your plots by taking a more hands-on approach and being creative

by supplementing the specialized Python functions with simple Python commands.

For example, the plot in Figure 8-1 requires only three lines of specialized code after the

setup and data has been entered. Figure 8-5, on the other hand, can be a challenge to

create using just specialized Python commands. The use of simple commands, plus a

little creativity, can make the job much easier. Following simple data plots, you will move

on to linear regression where you fit a straight line to a data set. You will then see how to

fit non-linear mathematical functions to the data. You conclude with splines. A spline is

a smooth curve that passes through each data point.

Figure 8-1 shows a plot of a mathematical function. This plot was created by Listing

8-1. In it, line 13 sets the numerical range of the x axis, which in this case goes from 0

to 150 in steps of 1. This means the function will be plotted over that range. The axis

definition in line 8 has the same limits, but they could be different. For example, if line 8

was plt.axis([0,200,0,100]), the width of the plotting area would be 200 but the function

would still be plotted from 0 to 150. This combination would position the function plot

toward the left side of the plotting area.

The function being plotted is defined in line 14. This is a simple exponential function

of y1 vs. x. Line 17 plots it in blue and attaches the label 'y1', which will be used by the

legend() function in line 20. In line 20, loc equals the location of the legend, which can

be any combination of upper, middle, lower combined with left, center, right. Here you

are using 'upper left'. If you specify 'best', Python will determine the best location for

it. As you can see, lines 13, 14, and 17 comprise essentially the entire plotting operation.

256

Listing 8-1. Program DATAPLOT1

1 """

2 DATAPLOT1

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([0,150,0,100])

9 plt.axis('on')

10 plt.grid(True)

11

12 #——————————define function y1 vs x

13 x=np.arange(0,150,1)

14 y1=10+np.exp(.035*x)

15

16 #——————————plot y1 vs x

17 plt.plot(x, y1,'b',label='y1')

Figure 8-1. Data plot produced by Listing 8-1

Chapter 8 2D Data plotting

257

18

19 #——————————–plot the legend

20 plt.legend(loc='upper left')

21

22 plt.show()

In Listing 8-2, you plot two functions, y1 and y2, on the same plot. Lines 18 and 19

do the plotting. You add the labels Temperature and Pressure, which will be used by the

legend() function. In line 25, you add marker='s', which plots a square at each data

point of the temperature curve; marker='*' in line 26 plots a star at each point of the

pressure curve. There are other marker styles available at https://matplotlib.org/

api/markers_api.html.

In Figure 8-2, note that the horizontal range of the data plots (20-140) is smaller

than the plotting width (0-150). Having the data not bump into the edges of the plot can

sometimes make it more readable. To have the data plots span the entire width of the

plot, simply change line 8 to plt.axis([20,140,0,100]). Similarly, the range of the y values

can be changed.

Figure 8-2. Data plot produced by Listing 8-2

Chapter 8 2D Data plotting

https://matplotlib.org/api/markers_api.html
https://matplotlib.org/api/markers_api.html

258

Listing 8-2. Program DATAPLOT2

1 """

2 DATAPLOT2

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([0,150,0,100])

9 plt.axis('on')

10 plt.grid(True)

11

12 #—————————————define data points

13 x=[20,40,60,80,100,120,140]

14 y1=[30,50,30,45,70,43,80]

15 y2=[45,35,40,60,60,55,70]

16

17 #—————————————plot lines with labels

18 plt.plot(x,y1,'b',label='Temperature')

19 plt.plot(x,y2,'r',label='Pressure')

20

21 #—————————————legend

22 plt.legend(loc='upper left')

23

24 #—————————————add markers

25 plt.scatter(x,y1,color='b',marker='s')

26 plt.scatter(x,y2,color='r',marker='*',s=50)

27

28 plt.show()

In Listing 8-2, you display two functions, temperature and pressure, against one y

axis. This assumes, of course, the values on the y axis are appropriate for both T and

p. But what if the values of pressure were either much larger or much smaller than

temperature? The plot of pressure might go off the chart or be too small to be discernible.

What you need are two vertical scales, one for temperature and another for pressure.

Chapter 8 2D Data plotting

259

In Listing 8-3, you lower the pressure values as shown in line 14. If plotted against

the same vertical scale used for temperature, they would appear too low on the plot. You

can remedy this by introducing a second vertical axis. Lines 17-20 plot the temperature

data. Line 20 allows you to change the color of the vertical tick marks to any color, red

in this case. Line 21 plots a legend in the upper left corner. Lines 24-27 plot a second

scale on the right side of the plot. Line 24 establishes a “twin” plotting axis. This twin

includes the already established horizontal x axis plus a new vertical y axis on the right

side. The rest of the commands in this group refer to this second y axis. Line 26 labels

this axis as Pressure. Line 27 changes the tick marks and numbers to blue. Line 28 plots

a second legend at the upper right. If you try to plot a single legend for both temperature

and pressure, you find the results depend on where in the code you place the legend()

function. If you use two separate legends(), as you are doing here, and locate them at

the same position, say upper left, one will overwrite the other. If you try using just one

legend() at the end of the code, it displays a legend with only the pressure shown. See

Figure 8-3. In the next program you will see a way around this problem.

Figure 8-3. Data plot produced by Listing 8-3

Chapter 8 2D Data plotting

260

Listing 8-3. Program DATAPLOT3

1 """

2 DATAPLOT3

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([0,140,0,100])

9 plt.axis('on')

10 plt.grid(True)

11

12 t=[20,40,60,80,100,120,140] #———Time

13 T=[30,33,37.5,44,55,70,86] #———Temperature

14 p=[1.8,2.3,3,4,5.4,7.3,9.6] #———Pressure

15

16 #———————Plot T vs t in red on the left vertical axis.

17 plt.plot(t,T,color='r',label='Temperature')

18 plt.xlabel('Time')

19 plt.ylabel('Temperature',color='r')

20 plt.tick}_params(axis='y',labelcolor='r')

21 plt.legend(loc='upper left')

22

23 #———————Plot P vs t in blue on the right vertical axis.

24 plt.twinx()

25 plt.plot(t,p,color='b',label='Pressure')

26 plt.ylabel('Pressure', color='b')

27 plt.tick_params(axis='y', labelcolor='b')

28 plt.legend(loc='upper right')

29

30 #———————title the plot

31 plt.title('Test Results')

32

33 plt.show()

Chapter 8 2D Data plotting

261

In Listing 8-4, you try to resolve the legend() issue you encountered in the previous

program. Line 12 sets up a plot called ax1 that will include a subplot. Line 14 plots a grid.

Lines 8-10 set up the data lists. Line 16 labels the x axis. Line 18 plots the Temperature

curve in red and names it l1. Line 20 sets the scale limits on the left vertical axis, which

will range from 0 to 100. Line 21 labels it in red. Line 23 sets up a twin() second vertical

axis (which includes the x axis) as ax2. Line 25 plots it in blue as the curve l2. Line 27 sets

the scale limits to 0-10. Line 28 labels it. Lines 30 and 31 specify the curves that are to

appear in the legend. Line 32 plots the legend. The syntax looks a bit cryptic but it works,

as you can see in Figure 8-4.

Figure 8-4. Data plot produced by Listing 8-4

Listing 8-4. Program DATAPLOT4

1 """

2 DATAPLOT4

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

Chapter 8 2D Data plotting

262

8 t=[0,20,40,60,80,100,120]

9 T=[28,30,35,43,55,70,85]

10 p=[1.8,2.3,3,4,5.4,7.3,9.6]

11

12 fig, ax1 = plt.subplots() #———set up a plot ax1 with subplots

13

14 plt.grid(True) #———draw grid

15

16 ax1.set_xlabel('Time (hrs)') #———label X axis of ax1

17

18 l1=plt.plot(t,T,'r',label='Temperature') #———plot temperature in red as

curve l1

19

20 ax1.set_ylim([0,100]) #———set Y axis limits of ax1

21 ax1.set_ylabel(r'Temperature (° K)', color='r') #———label Y axis of ax1

22

23 ax2 = ax1.twinx() #———set up ax2 as twin of ax1

24

25 l2=plt.plot(t, p, 'b',label='Pressure') #———plot pressure in blue as curve l2

26

27 ax2.set_ylim([0,10]) #———set Y axis limits of ax2

28 ax2.set_ylabel('Pressure (psi)', color='b') #———label Y axis of ax2

29

30 line1,=plt.plot([1],label='Temperature',color='r') #———line 1 of legend

31 line2,=plt.plot([2],label='Pressure',color='b') # ———line 2 of legend

32 plt.legend(handles=[line1,line2],loc='upper left') #———plot legend

33

34 plt.title('Test Data')

In Listing 8-5, you plot multiple curves while giving each its own vertical scale. Lines

12-14 define lists for time, temperature, and pressure data. In line 15, you introduce a

third dependent variable, volume v. Line 17 opens a new list called pp=[], which will be

used to vertically scale the pressure data. You could simply scale and replace the items in

p=[] but then you would destroy the original values. That would not be a problem in this

Chapter 8 2D Data plotting

263

program but it’s good practice to leave them unchanged. Lines 18-19 scale the original

Pressure values contained in p by a factor of 10 and append them to pp. The same is

done for v in lines 21-23 where volume data is scaled by a factor of 100. Lines 25-28 plot

the curves and plot a legend. Lines 30-33 plot the pressure scale on the right y axis in

blue. Lines 35-37 label the three axes. Lines 39-43 plot the volume scale values in green.

Lines 45-46 plot the vertical green axis. This is accomplished by plotting the character “|”

as text up the right side. Normally you would want to plot a single line from the vertical

volume axis from top to bottom but Python does not permit plotting lines or scatter dots

outside the main plotting area. It does, however, allow text. So you construct a vertical

line from a series of “|” marks. You could add more vertical axes in this manner if you

wished. See Figure 8-5.

The approach used in this program is more hands-on than before. Previous

programs relied mostly on specialized Python syntax. The advantage to this approach

is that it works, it’s quite flexible, and it doesn’t require many more lines of code. This

blend of Python syntax along with a creative use of hands-on techniques is actually quite

powerful. Sometimes it pays to think outside the box.

Figure 8-5. Data plot produced by Listing 8-5

Chapter 8 2D Data plotting

264

Listing 8-5. DATAPLOT5

1 """

2 DATAPLOT5

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7

8 plt.axis([0,140,0,100])

9 plt.axis('on')

10 plt.grid(True)

11

12 t=[20,40,60,80,100,120] #———time

13 T=[30,35,43,55,70,85] #———temperature

14 p=[2,3,4,5.3,7.3,9.6] #———pressure

15 v=[.6,.58,.54,.46,.35,.2] #———volume

16

17 pp=[] #———list for scaled pressure for plotting

18 for i in np.arange(0,len(p),1):

19 pp.append(p[i]*10) #———scale p by 10

20

21 vv=[] #———list for scaled volume for plotting

22 for i in np.arange(0,len(v),1):

23 vv.append(v[i]*100) #———scale volume by 100

24

25 plt.plot(t,T,color='r',label='Temperature',marker='o') #———plot

temperature

26 plt.plot(t,pp,color='b',label='Pressure',marker='s') #———plot scaled

pressure

27 plt.plot(t,vv,color='g',label='Volume',marker='d') #———plot scaled volume

28 plt.legend(loc='upper left')

29

30 for y in np.arange(0,100+1,20): #———plot pressure scale values

31 a=y/10

32 a=str(a) #———convert to string for plotting as text

Chapter 8 2D Data plotting

265

33 plt.text(142,y,a,color='b')

34

35 plt.xlabel('Time (hrs)') #———label axes

36 plt.ylabel('Temperature °K',color='r')

37 plt.text(151,65,'Pressure (psi)',rotation=90,color='b')

38

39 for y in np.arange(100,-1,-20): #———plot volume scale values

40 a=y/100

41 a=str(a)

42 plt.text(162,y,a,color='g')

43 plt.text(159,y+2,'_',color='g')

44

45 for y in np.arange(1,99,3):

46 plt.text(157,y,'—',color='g')

47

48 plt.text(170,65,r'Volume (cm3)',rotation=90,color='g') #———label volume

scale

49

50 plt.title('Compression Test Results') #—title

51

52 plt.show()

8.1 Linear Regression
Linear regression is the process of fitting a straight line to a set of data points. Referring to

Figures 8-6 and 8-7, the objective is to determine the parameters A and B of a straight line,

 y Ax B= + (8-1)

that result in a best fit to the data points. B is the y axis intercept of the line and A is its

slope. Each data point i has coordinates xi, yi. Each has an error ei with respect to the line.

The best fit of the line to the data points will be the one where A and B result in

 i

n

ie minimum
=
å =

1

2

(8-2)

Chapter 8 2D Data plotting

266

where n is the number of data points. This is equivalent to bringing the RMS error to a

minimum. ei is squared in Equation 8-2 to account for negative values of ei. It can be

shown that Equation 8-2 is satisfied when

A

C nC C

C nC C
=

-
-

3 1 2

4 1 1
(8-3)

 B C AC= -2 1 (8-4)

C

n
t

n

n

i1
1

1
=

=
å

(8-5)

C

n
v

n

n

i2
1

1
=

=
å

(8-6)

C v t

n

n

i i3
1

=
=
å

(8-7)

C t t

n

n

i i4
1

=
=
å

(8-8)

In Listing 8-6, the regression routine has been added to Listing 8-5 beginning at

line 52. It fits a regression line to the green Volume curve. Lines 55-60 calculate the

coefficients C1-C4 defined above. np.sum() in line 55 sums the elements in list t.

np.multiply() in line 57 multiplies the elements in lists v and t element by element,

producing the list a. Line 58 then adds the elements in a. Lines 62 and 63 calculate A and

B in accordance with Equations 8-3 and 8-4. Lines 65-68 plot the regression line using

scatter dots; line 66 calculates values of v vs. t as vp, the plotting value of v; line 67 scales

vp by 100 for plotting; line 68 does the plotting.

Equation 8-2 state that minimizing Σe(i)2, where e(i) is the deviation of data point i

from the regression line, is equivalent to minimizing the RMS value. The RMS value is

RMS
e i

n

n

=
()é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
å
1 1

2

1

2

(8-9)

Chapter 8 2D Data plotting

267

This is calculated in lines 71-76. e(i) is calculated in line 73. It is squared in line 74 as

ee and then summed in line 75 as sumee, producing the numerator in Equation 8- 9. RMS

is calculated in line 76 in accordance with Equation 8-9. It’s obvious that minimizing

Σe(i)2 is equivalent to minimizing the RMS value.

The remainder of the program places labels and values on the plot. Line 83 reduces

the number of digits of vp1, the beginning value of the regression line; line 84 plots it.

Lines 86-88 plot the end value. A and B (Ap and Bp) are similarly plotted in lines 90-96.

There are other ways in Python to reduce the number of digits besides the syntax

used in line 83. However, if the number being shortened is negative, the minus sign may

not appear on the output. This could be a problem with some versions of Python.

Figure 8-6. Straight line fit to the volume curve produced by Listing 8-6

Figure 8-7. Model used by Listing 8-6 showing data points 1,2,3,4…i with straight
line fit. ei=error from straight line for data point i.

Chapter 8 2D Data plotting

268

Listing 8-6. REGRESSION1

1 """

2 REGRESSION1

3 """

 .

 .

 #——————————same as DATAPLOT5——————————

 .

 .

52 #—————————————straight line fit to Volume v vs t

53 n=len(v)

54

55 c1=np.sum(t)/n #———sum values of list t and divide by n, =average of t

56 c2=np.sum(v)/n #———sum values of list v and divide by n, =average of v

57 a=np.multiply(v,t) #———multiply list v by t element by element = list a

58 c3=np.sum(a) #———sum elements of a

59 a=np.multiply(t,t) #———multiply list t by t element by element = list a

60 c4=np.sum(a) #———sum elements of a

61

62 A=(c3-n*c1*c2)/(c4-n*c1*c1) #———line parameters A and B

63 B=c2-A*c1

64

65 for tp in np.arange(t[0],t[5],2): #———plot line with scatter dots

66 vp=A*tp+B

67 vp=vp*100 #———scale vp for plotting

68 plt.scatter(tp,vp,color='g',s=1)

69

70 #—————————————————————calculate RMS error

71 sumee=0

72 for i in range(len(t)):

73 e=(v[i]-(A*t[i]+B))

74 ee=e*e

75 sumee=sumee+ee

76 rms=np.sqrt(sumee/n)

77

Chapter 8 2D Data plotting

269

78 #—————————————————labels

79 plt.text(60,28,'v=At+B',color='g')

80 plt.arrow(78,30,6,6,head_length=3,head_width=1.5,color='g',linewidth=.5)

81

82 vp1=A*t[0]+B #——————beginning v value of line

83 vp1='%7.4f'%(vp1) #——————reduce the number of decimal places

84 plt.text(2,64,vp1,color='g') #———plot

85

86 vp2=A*t[5]+B #——————end v value of line

87 vp2='%7.4f'%(vp2)

88 plt.text(122,25,vp2,color='g')

89

90 Ap='%7.5f'%(A)

91 plt.text(65,18,'A=',color='g')

92 plt.text(72,18,Ap,color='g') #———print value of A

93

94 Bp='%7.5f'%(B)

95 plt.text(65,12,'B=',color='g')

96 plt.text(73,12,Bp,color='g') #———print value of B

97

98 rms='%7.3f'%(rms)

99 plt.text(95,3,'RMS error=',color='g')

100 plt.text(123,3,rms,color='g') #———print RMS error

101

102 plt.show()

8.2 Function Fitting
In Listing 8-6, you plotted a straight line to fit data points that represented measurements

of volume vs. time. You were fortunate that there was an analytic solution to this problem

represented by Equations 8-2, 8-3, and 8-5. In this section, you will fit an arbitrary function

to the same data set. The function is user-defined; that is, you can specify any function you

want, whatever you think will give a good fit. In Listing 8-7 you will try the relation

 v Ax B= +2 (8-10)

Chapter 8 2D Data plotting

270

As in the previous section, your task is to find the values of A and B that produce the

best fit of this function to the data points. Since you want to be able to use any arbitrary

function, it would obviously not be time-effective to derive a closed form solution to

the problem for every function you wish to try. Here you will use a brute force approach

that involves calculating the values of the parameters A and B in Equation 8-10 for many

values of A and B within the expected range of both that results in minimum RMS error.

This is a hands-on approach; some insight into the problem is required. For example,

inspection of the v(t) curve in Figure 8-8 and Equation 8-10 indicates that parameter B

in Equation 8-10, which is the V axis (green) intercept at t=t[0], should lie somewhere

between .5 and .7. Similarly, you can assume that A will be very small since Equation 8-

10 involves squares of t, which have values as large as t[5]=120. You can also see by

inspection that A should be negative. So you can try a range for A of -.001 to 0. Calculate

the error for many combinations of values of B between .5 and .7 and A between -.001

and 0. This will give you the A and B corresponding to the almost lowest error between

those ranges. I say the “almost” lowest error because, when cycling between the

expected ranges of A and B, you do so in small steps. The finer those steps are, the more

accurate will be your final solution. While there are automatic iteration techniques that

you could use, the process described here is simpler to code but involves user iteration.

It works as follows: after guessing initial ranges for A and B, when you get the results,

you can make another run with refined values by either closing, opening, or shifting the

ranges. You can also change the search increments dB (line 61) and dA (line 64). With

just a few of these manual iterations you should be able to get a solution to whatever

accuracy you need.

Referring to Listing 8-7, most of it is the same as Listing 8-6. Lines 59-64 define the

limits of the search routine B1 and B2, which are the start and end of the B range; A1

and A2 of the A range. dB and dA are the increments. Smaller increments will give more

accurate results but will require more processing time. The two nested loops beginning

in lines 70 and 71 search first through the B range and then, for each value of B, through

the A range. At each combination of A and B the loop starting at line 73 cycles through

all the data points, len(t) (=len(v)). Line 74 calculates the error between each data point

and the assumed function Equation 8-10; line 75 squares it and line 76 sums the square

of the errors in accordance with Equation 8-2. The sum was initially set to zero in line 72.

Line 77 says, if the sum of the squares produced by the current combination of A and B

Chapter 8 2D Data plotting

271

is less that the previously calculated sum, then you replace that value with the present

one and set the current values of A and B to Amin and Bmin, the values that correspond

to the current lowest error. When the A and B loops are first cycled, eemin in line 76 is

unknown. It is set to a very high value in line 56. This insures that the first eemin will be

less. After the first cycle, it will take on the value corresponding to the latest combination

of A and B that produces a lowest value of sumee. The end result of all this is the values

of A and B that produce the lowest error between the data points and the assumed

function. They are Amin and Bmin. Lines 86-89 plot the function using Amin and Bmin

in line 87. Lines 92-97 calculate the corresponding RMS error.

Figure 8-6 shows a straight-line approximation to v(t) and the RMS error of .042, as

can be seen printed on that plot. With the non-linear function Ax2+B, the RMS error is

.0132, which is considerably lower.

The remainder of the program places labels on the plot. As you can see from

Figure 8-8, the limits of A and B that were set in lines 59-64 are printed in black on the

plot as A1, A2, B1, and B2. The values found by the program that result in the lowest error

are printed in green as Amin and Bmin. With the assumed values of A1, A2, B1, and B2 in

this example, Amin and Bmin fall within the assumed range so you can be confident that

you have found the near best values. But let’s suppose one of the parameters, say B1, was

chosen incorrectly. That is, suppose you had chosen B1=.65 with B2=.7. The result for

Bmin calculated by the program would be B1=.65; that is, it would bump up against the

lower B limit. That would tell you that B1 is too high and you should lower it for the next

run. Similarly, if you had chosen B1=.5 with B2=.6, Bmin would bump up against the

upper limit for B, indicating that you should raise B2.

There are other curve fitting functions available similar to the one you are developing

here; go to https://docs.scipy.org/doc/scipy/reference/generated/scipy.

optimize.curve_fit.html. Others can be found with an Internet search. The one you

are developing here has the advantage of being open, simple, and easy to use, plus you

have control over it.

Chapter 8 2D Data plotting

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

272

Listing 8-7. Program REGRESSION2

 """

 REGRESSION2

 """

52 #——————————same as REGRESSION1————————————

53

54 #———————————————————parabolic fit to v vs t

55 n=len(v)

56 eemin=10**10 #———starting value of eemin, deliberately set very large

57

58 #—————————————loop parameters

59 B1=.5

60 B2=.7

61 dB=.001

62 A1=-.001

63 A2=0.

64 dA=.0000001

65

66 #—————————————loop through all combinations of A and B

67 #—————————————within ranges defined by loop parameters

Figure 8-8. Function fit to volume curve produced by Listing 8-7

Chapter 8 2D Data plotting

273

68 #—————————————searching for Amin, Bmin that produce

69 #—————————————best fit of function to data points

70 for B in np.arange(B1,B2,dB):

71 for A in np.arange(A1,A2,dA):

72 sumee=0

73 for i in range(len(t)):

74 e=(v[i]-(A*t[i]*t[i]+B)) #———error of data point i at A, B

75 ee=e*e #———error squared

76 sumee=sumee+ee #———sum of error squared

77 if sumee < eemin: #———if sum < present minimum eemin then

78 eemin=sumee #———set new minimum = sumee

79 Amin=A #———set new Amin = A

80 Bmin=B #———set new Bmin = B

81

82 #—————————————Amin, Bmin above will produce best fit

83

84 #————————————-plot best fit function with scatter dots

85 #————————————-from t[0] to t[5] in steps=2

86 for tp in np.arange(t[0],t[5],2):

87 vp=Amin*tp*tp+Bmin

88 vp=vp*100 #—scale to plot

89 plt.scatter(tp,vp,color='g',s=1)

90

91 #—————————————————calculate RMS Error

92 sumee=0

93 for i in range(len(v)):

94 e=(v[i]-(Amin*t[i]*t[i]+Bmin)) #———error at each data point

95 ee=e*e #———error squared

96 sumee=sumee+ee #———sum of squared errors

97 rms=np.sqrt(sumee/n) #———RMS error

98

99 #————————————————————————labels

100 plt.text(100,50,'v=At+B',color='g')

101 plt.arrow(99,50,-6.5,-6.5,head_length=3,head_width=1.5,color='g',

linewidth=.5)

Chapter 8 2D Data plotting

274

102

103 A=Amin

104 B=Bmin

105

106 vp1=A*t[0]*t[0]+B

107 vp1='%7.3f'%(vp1)

108 plt.text(2,63,vp1,color='g')

109

110 vp2=A*t[5]*t[5]+B

111 vp2='%7.3f'%(vp2)

112 plt.text(119,22,vp2,color='g')

113

114 Ap='%8.6f'%(A)

115 plt.text(59,18,'Amin=',color='g')

116 plt.text(74,18,Ap,color='g')

117

118 Bp='%8.6f'%(B)

119 plt.text(59,12,'Bmin=',color='g')

120 plt.text(75.2,12,Bp,color='g')

121

122 rms='%7.4f'%(rms)

123 plt.text(95,3,'RMS error=',color='g')

124 plt.text(120,3,rms,color='g')

125

126 A1='%8.6f'%(A1)

127 plt.text(60,90,'A1=')

128 plt.text(69,90,A1)

129

130 A2='%8.6f'%(A2)

131 plt.text(60,85,'A2=')

132 plt.text(70.2,85,A2)

133

134 B1='%8.6f'%(B1)

135 plt.text(60,75,'B1=')

136 plt.text(70.2,75,B1)

Chapter 8 2D Data plotting

275

137

138 B2='%8.6f'%(B2)

139 plt.text(60,70,'B2=')

140 plt.text(70.2,70,B2)

141

142 plt.show()

8.3 Splines
The curves shown in Figure 8-9 are called splines. They are characterized by the fact that

they pass through their respective data points, which are shown as dots. Each is also a

“natural” spline since there is no twisting at the ends. In the parlance of calculus, the

second derivative is zero at the end points.

Figure 8-9. Spline curves produced by Listing 8-8

Chapter 8 2D Data plotting

276

Splines constructed of thin slats of wood were at one time commonly used in ship

building where it was necessary to produce hull shapes that were smooth. In the lofting

room, workers would drive nails into the floor and then bend thin strips of wood around

them. The shape of the bent strip was then traced onto paper or plywood beneath. This

shape was used to cut full scale molds that were used in the construction process. The

word “spline” is thought to derive from the Danish splind or North Frisian splinj, both

ancient boat-building regions. After World War II, the usage of mechanical splines was

replaced by mathematically derived curves in both ship building and aircraft design and

construction.

The mathematical relation for a spline that you will use here is called a cubic spline.

It has the form of

 x Axq Bxq Cxq Dx= + + +3 2 (8-11)

Since each point on a spline curve is defined by two coordinates x and y, you need

two versions of Equation 8-11:

 x Axq Bxq Cxq Dx= + + +3 2 (8-12)

 y Ayq Byq Cyq Dy= + + +3 2 (8-13)

Your task is to determine the coefficients Ax → Cx and Ay → Cy. Once you have

them, you will be able to plot the spline curve. To do this, you fit a separate equation

for x and y between the segment between adjacent data points. For example, the region

between point 2 and 3 is a segment; between 3 and 4 is another segment. You also use

information about the data points to the right and left of each segment.

Figure 8-10 shows a set of data points and the numbering scheme. nop= is the

number of data points. There are six data points so nop=6. There are five inter-point

segments. You will use lists to keep track of everything. Remember, Python wants to

begin lists with a [o]th element. At point [3], which is the fourth data point, i=3. You see

the length q[2] to the left and q[3] to the right. Each of these is a chord length, the straight

line distance from one point to the next.

Chapter 8 2D Data plotting

277

Referring now to just the x equation in Equation 8-12, you can define a “slope” at

point [3], mx[3] as

mx
x x

q

x x

q
3

3 2

2

4 3

3
5[] = []- []

[]
+

[]- []
[]

æ

è
çç

ö

ø
÷÷ * .

(8-14)

This is an average at point [3] of the left “slope” and the right. I put “slope” in quotes

to emphasize it is not a slope in the traditional sense such as ∆y/∆x but is instead each

∆x is divided by a chord length q[]. For any point [i],

mx i
x i x i

q i

x i x i

q i
[] = []- -[]

-[]
+

+[]- []
[]

æ

è
çç

ö

ø
÷÷

1

1

1
5*.

(8-15)

Figure 8-10. Model used by Listing 8-8

Chapter 8 2D Data plotting

278

The equation for my[i] is similar. Because mx[i] and my[i] rely on coordinate values

preceding and following i, separate equations are required for the first and last points,

mx[0] and mx[nop-1]:

mx x x q0 1 0 0[] = []- []() []/ (8-16)

my y y q0 1 0 0[] = []- []() []/ (8-17)

mx nop x nop x nop q nop-[] = -[]- -[]() -[]1 1 2 2/ (8-18)

my nop y nop y nop q nop-[] = -[]- -[]() -[]1 1 2 2/ (8-19)

With these definitions, it can be shown that

 dx i x i[] = [] (8-20)

 dy i y i[] = [] (8-21)

 cx i mx i[] = [] (8-22)

 cy i my i[] = [] (8-23)

bx i x i cx i q i dx i mx i q i q i q i[] = +[]- [] []- []- +[] []() [] []3 1 2 3 1 / (8-24)

by i y i cy i q i dy i my i q i q i q i[] = +[]- [] []- []- +[] []() [] []3 1 2 3 1 / (8-25)

 ax i mx i bx i q i cx i q i q i[] = +[]- [] []- [] [] [](/1 2 3 (8-26)

 ay i my i by i q i cy i q i q i[] = +[]- [] []- [] [] [](/1 2 3 (8-27)

These coefficients are based on the requirement that, at the intersection of spline

segments at a data point, the locations of the splines and their slopes must match from

one section to the next. Also, the rate of change of the slopes (second derivative) must

match; otherwise there would be angular discontinuities in the shape of the spline. At

the beginning point of the spline where i=0, there is no adjacent segment so you require

that the rate of change of slope (second derivative of deflection) at that point be zero.

This means that if the spline were to continue off to the left side of the first point, it would

be a straight line having the same slope as the spline segment at that point. In mechanics

Chapter 8 2D Data plotting

279

of beams, a bending moment called M produces a rate of change of slope y; that is, d2y/

dx 2 ≈ M. Since there is nothing at either end of the spline to produce a bending moment,

d2y/dx 2 = 0 and the slope will not be changed. This is intuitive; if a boat builder is fitting

a wooden spline to a set of nails hammered into the floor, and he uses a strip of wooden

spline that is too long, the extra length would trail off the end straight at the same angle

as the end of the spline at the last nail. This same argument holds for the end of the

spline at i=nop-1; there is no constraint on its slope so the second derivative is 0. This

provides a “natural” spline. You could specify other end conditions, such as clamped or

twisted, but the coefficients above would be different.

The following equations locate a point xp,yp along the spline between points [i] and

[i+1]:

 xp ax i qq bx i qq cx i qq dx i= [] + [] + [] + []3 2 (8-28)

 yp ay i qq by i qq cy i qq dy i= [] + [] + [] + []3 2 (8-29)

where qq is the length of chord i.

When Listing 8-8 plots the spline, it does so segment by segment starting with point [0]

and proceeding to point [nop-1]. Referring again to Figure 8-10, if i=3, the above equations

would plot the spline segment from point [3] to point [4]. To plot the entire spline from

point [0] to [5], the program plots segments starting at [0] and going to [nop- 1]. That is, the

program automatically plots segments from [0] → [1], [1] → [2],.....[5] → [6].

Referring to Listing 8-8, the calculations and plotting are carried out by function

spline beginning in line 17. In the function’s arguments, x and y, are in a list that is

defined in line 73 and 74. Each x,y pair are the coordinates of a data point. clr is the color

of the spline and ls is the line style. The data points are plotted in line 19. nop in line 21

is the number of data points. Lines 23-33 are zero lists of length nop. You fill these lists

by calculating values item by item. You could have defined empty lists to begin with and

appended elements later. By defining the list lengths now, you avoid appending. Either

way will work; it’s just a matter of preference.

Lines 35-38 calculate the chord lengths q[i]. Line 40 and 41 calculate the slopes at

the beginning of the spline. Lines 43-45 calculate the average slopes at 0<i<nop-1. Line

47-48 calculate the slope at the end of the spline. Lines 51-59 evaluate the coefficients in

Equations 8-28. Lines 62-70 plot the spline as line segments.

Chapter 8 2D Data plotting

280

Control of the program takes place in lines 73-83. Here you are plotting two splines.

The set of data points for the first spline are contained in the lists in lines 73 and 74. The

color and line style desired are set in lines 75 and 76. Line 77 invokes function spline.

The second spline is created in a similar manner in lines 79-83. More splines could be

added by adding more of these routines.

It’s an easy matter to print out the x,y values within the range of a spline segment. For

example, suppose you want the coordinates of points within the segment between points

[2] and [3]. Insert the following lines at line 71:

if i==2:

 print(xp,yp)

This will print the coordinate’s values up to point [3] where i will then become equal to 3.

Listing 8-8. Program SPLINE2D

1 """

2 SPLINE2D

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sqrt

8

9 plt.axis([0,140,0,100])

10 plt.axis('on')

11 plt.grid(True)

12

13 plt.xlabel('x')

14 plt.ylabel('y')

15 plt.title('2D Splines')

16

17 def spline(x,y,clr,ls):

18

19 plt.scatter(x,y,s=30,color=clr)

20

Chapter 8 2D Data plotting

281

21 nop=len(x)

22

23 q=[0]*nop

24 mx=[0]*nop

25 my=[0]*nop

26 cx=[0]*nop

27 cy=[0]*nop

28 dx=[0]*nop

29 dy=[0]*nop

30 bx=[0]*nop

31 by=[0]*nop

32 ax=[0]*nop

33 ay=[0]*nop

34

35 for i in range(1,nop): #———chords q(i)

36 a=x[i]-x[i-1]

37 b=y[i]-y[i-1]

38 q[i-1]=sqrt(a*a+b*b)

39

40 mx[0]=(x[1]-x[0])/q[0]

41 my[0]=(y[1]-y[0])/q[0]

42

43 for i in range(1,nop-1): #———average m[i]

44 mx[i]=((x[i]-x[i-1])/q[i-1]+(x[i+1]-x[i])/q[i])*.5

45 my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5

46

47 mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2]

48 my[nop-1]=(y[nop-1]-y[nop-2])/q[nop-2]

49

50 #———————————-calculate coefficients

51 for i in range(0,nop-1):

52 dx[i]=x[i]

53 dy[i]=y[i]

54 cx[i]=mx[i]

55 cy[i]=my[i]

Chapter 8 2D Data plotting

282

56 bx[i]=(3*x[i+1]-2*cx[i]*q[i]-3*dx[i]-mx[i+1]*q[i])/(q[i]*q[i])

57 by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+1]*q[i])/(q[i]*q[i])

58 ax[i]=(mx[i+1]-2*bx[i]*q[i]-cx[i])/(3*q[i]*q[i])

59 ay[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*q[i]*q[i])

60

61 #————————————plot the spline

62 xplast=x[0]

63 yplast=y[0]

64 for i in range(0,nop-1):

65 for qq in np.arange(0,q[i],4):

66 xp=ax[i]*qq*qq*qq+bx[i]*qq*qq+cx[i]*qq+dx[i]

67 yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qq+dy[i]

68 plt.plot([xplast,xp],[yplast,yp],linewidth=1,color=clr,

linestyle=ls)

69 xplast=xp

70 yplast=yp

71

72 #—————————————————control

73 x=[20,40,60,80,100,120]

74 y=[80,35,70,30,60,40]

75 clr='b'

76 ls='–'

77 spline(x,y,clr,ls)

78

79 x=[20,40,60,80,100,120]

80 y=[30,45,18,65,50,80]

81 clr='g'

82 ls='-'

83 spline(x,y,clr,ls)

84

85 plt.show()

Chapter 8 2D Data plotting

283

8.4 Summary
This chapter covered a range of data plotting techniques: plotting simple points and

functions, multiple functions on the same plot, labelling axes with multiple functions,

linear regression where you fit a straight line to a data set, function fitting where you fit

a user-defined function to a data set, and splines where you fit a smooth curve through

each data point. While there are many data plotting routines available within the Python

community, which you can find with an Internet search, the approach here has been

more hands-on. By understanding how to do it yourself, with a little creativity you can

produce plots customized to your own needs. In Chapter 9, you will extend what you

have done here to three dimensions.

Chapter 8 2D Data plotting

285
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_9

CHAPTER 9

3D Data Plotting
Extrapolating the techniques developed in Chapter 8, which were used to produce two

dimensional splines, to three dimensions is easy: all you need to do is add a few lines to

the program. These lines are the bold highlighted lines in Listing 9-1, particularly those

in function plotspline() from lines 89 to 161. They introduce the z coordinate in a syntax

that is essentially the same as used for the x and y coordinates.

Control of Listing 9-1 begins at line 175. The first set of data points are defined by

lists x,y, and z in lines 175-177. These have been nullified with the # symbol but are left

in place should you want to use them. They produce Figure 9-1. The active lists in lines

179-181 produce Figures 9-2 through 9-4. nop in line 183 is the number of data points.

This equals len(x) which, of course, equals len(y) and len(z). The list g in line 85 holds

the values returned by the rotation functions rotx(), roty(), and rotz(). The coordinates

of the center of rotation xc,yc, and zc are defined in lines 187-189.

The angles of rotation Rxd,Ryd, and Rzd in lines 191-193 could use some

explanation. Referring to Figure 9-5, the coordinate system on the right defines the

data points and the spline in their rotated (Rxd,Ryd,Rzd) and translated (xc,yc,zc)

orientations. The system on the left shows the global coordinate system, which is the

one that should be used when specifying rotations. The x and y directions are defined

by the plt.axis() function in line 9. Since this is a right-handed coordinate system, the

+z direction points out of the screen. As an example, a positive rotation around the z

direction, Rzd, would rotate the figure on the right in the counter-clockwise direction.

Grid line are shown on the plot primarily as an aid in location for xc,yc,zc. When

axes such as the x and z axes in Figure 9-4 lie in the plotting plane, they can be used as a

measure of data point and spline coordinate values. However when the plot is rotated,

as in Figure 9-3, they do not give true measures but may be used as an aid when locating

the center, xc,yc,zc.

286

Lines 200-210 plot the axes that define the data points and the spline by invoking

function plotaxis() that goes from line 33 to 43. Each is 30 units long. The list g in line 43

holds the coordinates of the end of each axis. Line 202 plots the x axis; similarly for the y

and z axes.

Without rotation (i.e. Rxd=Ryd=Rzd=0) the axes will appear as on the left side of

Figure 9-5. When plotting data, we normally think of z as being a function of x and y (i.e.

z=z(x,y)) and we prefer the z axis to point up. To accomplish this, we must rotate the

coordinate system such that z points up. As an example, in Figure 9-4, Rx=-90,Ry=0,Rz=0.

These values are shown in the upper right corner of the plot. This takes the +z axis,

which pointed out of the screen in the unrotated position, and turns it counter-clockwise

around the x axis so that it now points upward. +y now points into the screen. This is a

good starting orientation. Subsequent rotations around this orientation can give a three

dimensional view. Keep in mind, however, that this program has been hard-wired to give

rotations in the sequence Rx,Ry,Rz. For example, in function plotdata(), which begins at

line 46, line 51 does the Rx rotation, next Ry in line 55, and then Rz in line 59.

The data points are plotted in line 213, which invokes function plotdata(). This

function is straightforward. Each data point is rotated amount Rx, then Ry, followed by Rz

in lines 51, 55, and 59. Each point is plotted as a green scatter dot in line 66. Line 64 plots

the first point in red. Lines 68-86 plot grey lines from each point down to the x,y plane.

The top of each line has the same global plotting coordinates as the data point g[0],g[1].

The z coordinate g[3] is not needed for plotting. The local coordinate of each line’s bottom

has the same local x,y coordinates as the data point, but now the local z coordinate is zero

as specified in line 72. You need these local coordinates to rotate the bottom point of each

line. Lines 73, 77, and 81 do the rotations. Line 83 plots the first point in red; line 86 plots

the remainder of the points in black with the lines plotted in grey.

Next, the spline is plotted in line 217, which invokes function plotspline(). The color

is set in line 216. This function is identical to the spline plotting algorithm used in the

previous chapter with the exception of the addition of the z axis lines set in bold in the

program listing.

The bottoms of the vertical lines are next connected by a spline by invoking function

plotbottomspline() in line 221. The color is set in line 220. plotbottomspline() opens

lists for the x,y, and z coordinates of each point: xbottom[], ybottom[], and zbottom[].

The items in each are initially set to zero. They are equated to the x and y data point

coordinates in lines 168-171. Since the z coordinate lies in the x,y plane, it is set equal to

zero in line 171. These are all local coordinates. Line 172 invokes function plotspline(),

which was used to plot the main spline, with the arguments being the local coordinates

Chapter 9 3D Data plotting

287

of the bottom points. As before, plotspline() will perform the rotations and will plot the

spline. The remainder of the program prints data and labels on the plot.

Listing 9-1. Program SPLINE3D

1 """

2 SPLINE3D

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sqrt, radians, sin, cos

8

9 plt.axis([0,150,0,100])

10 plt.axis('on')

11 plt.grid(True)

12

13 #===rotation

transformations

14 def rotx(xp,yp,zp,Rx):

15 g[0]=xp+xc

16 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc

17 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc

18 return[g]

19

20 def roty(xp,yp,zp,Ry):

21 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc

22 g[1]=yp+yc

23 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc

24 return[g]

25

26 def rotz(xp,yp,zp,Rz):

27 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc

28 g[1]=xp*sin(Rz)+yp*cos(Rz)+yc

29 g[2]=zp+zc

30 return[g]

31

32 #==plot axis

Chapter 9 3D Data plotting

288

33 def plotaxis(xp,yp,zp,Rx,Ry,Rz):

34 rotx(xp,yp,zp,Rx) #—Rx rotation

35 xp=g[0]-xc

36 yp=g[1]-yc

37 zp=g[2]-zc

38 roty(xp,yp,zp,Ry) #—Ry rotation

39 xp=g[0]-xc

40 yp=g[1]-yc

41 zp=g[2]-zc

42 rotz(xp,yp,zp,Rz) #—Rz rotation

43 return[g]

44

45 #===plot data points

46 def plotdata(x,y,z,Rx,Ry,Rz):

47 for i in range(0,nop):

48 xp=x[i]

49 yp=y[i]

50 zp=z[i]

51 rotx(xp,yp,zp,Rx)

52 xp=g[0]-xc

53 yp=g[1]-yc

54 zp=g[2]-zc

55 roty(xp,yp,zp,Ry)

56 xp=g[0]-xc

57 yp=g[1]-yc

58 zp=g[2]-zc

59 rotz(xp,yp,zp,Rz)

60 xp=g[0]-xc

61 yp=g[1]-yc

62 zp=g[2]-zc

63 if i==0: #———plot first point red

64 plt.scatter(g[0],g[1],s=25,color='r')

65 else:

66 plt.scatter(g[0],g[1],s=25,color='g')

67 #———————plot vertical lines from data points to the x,y plane

68 xt=g[0] #-global line top coords=rotated data point coords

Chapter 9 3D Data plotting

289

69 yt=g[1]

70 xp=x[i] #—coords of line bottom (zp=0) before rotation)

71 yp=y[i]

72 zp=0

73 rotx(xp,yp,zp,Rx) #———rotate bottom coords

74 xp=g[0]-xc

75 yp=g[1]-yc

76 zp=g[2]-zc

77 roty(xp,yp,zp,Ry)

78 xp=g[0]-xc

79 yp=g[1]-yc

80 zp=g[2]-zc

81 rotz(xp,yp,zp,Rz)

82 if i==0: #———————plot first bottom point red

83 plt.scatter(g[0],g[1],s=25,color='r')

84 else:

85 plt.scatter(g[0],g[1],s=25,color='k')

86 plt.plot([xt,g[0]],[yt,g[1]],color='grey') #———plot line

87

88 #==plot spline

89 def plotspline(x,y,z,Rx,Ry,Rz,clr):

90 q=[0]*nop

91 mx=[0]*nop

92 my=[0]*nop

93 mz=[0]*nop

94 cx=[0]*nop

95 cy=[0]*nop

96 cz=[0]*nop

97 dx=[0]*nop

98 dy=[0]*nop

99 dz=[0]*nop

100 bx=[0]*nop

101 by=[0]*nop

102 bz=[0]*nop

103 ax=[0]*nop

104 ay=[0]*nop

Chapter 9 3D Data plotting

290

105 az=[0]*nop

106

107 for i in range(1,nop): #———chords q(i)

108 a=x[i]-x[i-1]

109 b=y[i]-y[i-1]

110 c=z[i]-z[i-1]

111 q[i-1]=sqrt(a*a+b*b+c*c) #———nop=6 gives q[5]

112

113 mx[0]=(x[1]-x[0])/q[0] #———mx[0]

114 my[0]=(y[1]-y[0])/q[0] #———my[0]

115 mz[0]=(z[1]-z[0])/q[0] #———mx[0]

116

117 for i in range(1,nop-1): #———average m[i]

118 mx[i]=((x[i]-x[i-1])/q[i-1]+(x[i+1]-x[i])/q[i])*.5

119 my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5

120 mz[i]=((z[i]-z[i-1])/q[i-1]+(z[i+1]-z[i])/q[i])*.5

121

122 mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2] #—mx[nop-1]

123 my[nop-1]=(y[nop-1]-y[nop-2])/q[nop-2] #—my[nop-1]

124 mz[nop-1]=(z[nop-1]-z[nop-2])/q[nop-2] #—mz[nop-1]

125

126 #————————————calculate coefficients

127 for i in range(0,nop-1):

128 dx[i]=x[i]

129 dy[i]=y[i]

130 dz[i]=z[i]

131 cx[i]=mx[i]

132 cy[i]=my[i]

133 cz[i]=mz[i]

134 bx[i]=(3*x[i+1]-2*cx[i]*q[i]-3*dx[i]-mx[i+1]*q[i])/(q[i]*q[i])

135 by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+1]*q[i])/(q[i]*q[i])

136 bz[i]=(3*z[i+1]-2*cz[i]*q[i]-3*dz[i]-mz[i+1]*q[i])/(q[i]*q[i])

137 ax[i]=(mx[i+1]-2*bx[i]*q[i]-cx[i])/(3*q[i]*q[i])

138 ay[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*q[i]*q[i])

139 az[i]=(mz[i+1]-2*bz[i]*q[i]-cz[i])/(3*q[i]*q[i])

140

Chapter 9 3D Data plotting

291

141 #————————————plot spline between data points

142 for i in range(0,nop-1):

143 for qq in np.arange(0,q[i],2):

144 xp=ax[i]*qq*qq*qq+bx[i]*qq*qq+cx[i]*qq+dx[i]

145 yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qq+dy[i]

146 zp=az[i]*qq*qq*qq+bz[i]*qq*qq+cz[i]*qq+dz[i]

147 rotx(xp,yp,zp,Rx) #———Rx rotation

148 xp=g[0]-xc

149 yp=g[1]-yc

150 zp=g[2]-zc

151 roty(xp,yp,zp,Ry) #———Ry rotation

152 xp=g[0]-xc

153 yp=g[1]-yc

154 zp=g[2]-zc

155 rotz(xp,yp,zp,Rz) #———Rz rotation

156 if qq==0: #—plot first point red

157 xplast=g[0]

158 yplast=g[1]

159 plt.plot([xplast,g[0]],[yplast,g[1]],linewidth=.7,color=clr)

160 xplast=g[0]

161 yplast=g[1]

162

163 #===plot bottom spline

164 def plotbottomspline(x,y,z,Rx,Ry,Rz,clr):

165 xbottom=[0]*nop

166 ybottom=[0]*nop

167 zbottom=[0]*nop

168 for i in range(0,nop):

169 xbottom[i]=x[i]

170 ybottom[i]=y[i]

171 zbottom[i]=0

172 plotspline(xbottom,ybottom,zbottom,Rx,Ry,Rz, clr)

173

174 #===control

175 #x=[20,40,60,80] #—LOCAL coords-Fig(3D Spline 1)

Chapter 9 3D Data plotting

292

176 #y=[30,30,30,30]

177 #z=[15,33,28,17]

178

179 x=[10,30,65,60,80,95,130,140 #–LOCAL coordinates-Figs(3D Splines 2,3

and 4)

180 y=[20,35,50,32,60,50,65,60]

181 z=[42,30,22,28,45,55,55,55]

182

183 nop=len(x) #—number of data points

184

185 g=[0]*3 #—global plotting coords returned by rotx, roty and rotz

186

187 xc=80 #—origin of X,Y,Z coordinate system

188 yc=20

189 zc=10

190

191 Rxd=-100 #—rotations of X,Y,Z system degrees

192 Ryd=-135

193 Rzd=8

194

195 Rx=radians(Rxd) #———rotations of X,Y,Z system radians

196 Ry=radians(Ryd)

197 Rz=radians(Rzd)

198

199 #———————————————————plot X,Y,Z axes

200 plotaxis(30,0,0,Rx,Ry,Rz) #—plot X axis

201 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

202 plt.text(g[0]-5,g[1]-1,'X')

203

204 plotaxis(0,30,0,Rx,Ry,Rz) #—plot Y axis

205 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

206 plt.text(g[0],g[1]-5,'Y')

207

208 plotaxis(0,0,30,Rx,Ry,Rz) #—plot Z axis

209 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

210 plt.text(g[0]-2,g[1]+3,'Z')

Chapter 9 3D Data plotting

293

211

212 #———————————————————plot data

213 plotdata(x,y,z,Rx,Ry,Rz)

214

215 #———————————————————plot spline

216 clr='g' #—————————–spline color

217 plotspline(x,y,z,Rx,Ry,Rz,clr)

218

219 #———————————————————plot bottom spline

220 clr='b' #——————————bottom spline color

221 plotbottomspline(x,y,z,Rx,Ry,Rz,clr)

222

223 #————————————————————labels

224 plt.text(120,90,'Rx=')

225 Rxd='%7.1f'%(Rxd)

226 plt.text(132,90,Rxd)

227

228 plt.text(120,85,'Ry=')

229 Ryd='%7.1f'%(Ryd)

230 plt.text(132,85,Ryd)

231

232 plt.text(120,80,'Rz=')

233 Rzd='%7.1f'%(Rzd)

234 plt.text(132,80,Rzd)

235

236 plt.text(90,90,'xc=')

237 xc='%7.1f'%(xc)

238 plt.text(100,90,xc)

239

240 plt.text(90,85,'yc=')

241 yc='%7.1f'%(yc)

242 plt.text(100,85,yc)

243

244 plt.text(90,80,'zc=')

245 zc='%7.1f'%(zc)

246 plt.text(100,80,zc)

Chapter 9 3D Data plotting

294

247

248 plt.text(4,90,'x')

249 plt.text(7,90,x)

250 plt.text(4,85,'y')

251 plt.text(7,85,y)

252 plt.text(4,80,'z')

253 plt.text(7,80,z)

254

255 plt.title('3D Spline 4')

256

257 plt.show()

Figure 9-1. Spline produced by Listing 9-1

Chapter 9 3D Data plotting

295

Figure 9-2. Spline produced by Listing 9-1

Figure 9-3. Spline produced by Listing 9-1

Chapter 9 3D Data plotting

296

Figure 9-5. Rotation model used by Listing 9-1

Figure 9-4. Spline produced by Listing 9-1

Chapter 9 3D Data plotting

297

9.1 3D Surfaces
In the previous section, you saw how to connect data points with splines in three

dimensions. In this section, you will use those techniques to create a three-dimensional

surface. Figure 9-6 shows a surface z=z(x,y). It is defined by 16 data points in the x,y,z

space. To give the appearance of a surface, these points are connected to one another

by splines. The green splines connect the points in the y direction, the blue ones in

the x direction. Since you already know how to create splines in three dimensions, the

problem becomes one of arranging the data points in the proper order.

Listing 9-2 is similar to Listing 9-1 although some of the features of that program

have been deleted for simplicity; you do not draw vertical lines from the data points to

the x,y plane and you do not plot the projection of the splines on the x,y plane.

The essence of Listing 9-2 is contained in the “control” section beginning in line

140. The 16 data points shown in Figure 9-6 are defined by the lists in lines 168-182. The

first group of points in the lists in lines 168-170 define the data points shown in the first

y-direction spline (green). This spline lies in the y,z plane where x=0. The points x1[],

y1[],z1[] refer to the four points within this spline; x2[],y2[],z2[] refer to the points

within the second spline and so on. The first point in the first spline lies at 0,0,0. These

coordinates are specified as x1[0],y1[0],z1[0] in lines 168-170. The second point in this

first spline lies at 0,10,43. These coordinates are specified as x1[1],y1[1],z1[1]. Similarly,

x1[2],y1[2],z1[2] and x1[3],y1[3],z1[3] refer to the third and fourth points in the first

y-direction spline. Lines 187-190 plot the data points with these lists as arguments by

invoking function plotdata(). Lines 194-197 invoke the function plotspline(), again with

these lists as arguments, which plots the first y-direction spline. Lines 172-174 along with

lines 188 and 195 plot the data points and the second green spline at x=20 and so on for

the remaining two splines at x=40 and x=60. To plot the x-direction splines, you do the

same thing, only you must first redefine the coordinate lists. This takes place in lines

200- 214. The blue splines are plotted in lines 218-221.

Of course the coordinate lists could each contain more than four items. The data

points defined in the lists in lines 170-184 all lie in a grid. They don’t have to.

While it works, the methodology used here to arrange the data for plotting is very

cumbersome. It also requires a lot of coding. It is being done this way here to illustrate

the procedure used. It could be shortened quite a bit by the use of arrays, which you will

use in the next section.

Chapter 9 3D Data plotting

298

Listing 9-2. Program SURFACE3D

1 """

2 SURFACE3D

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sqrt, radians, sin, cos

8

9 plt.axis([0,150,0,100])

10 plt.axis('on')

11 plt.grid(True)

12

13 #===rotation

transformations

14 def rotx(xp,yp,zp,Rx):

15 g[0]=xp+xc

Figure 9-6. Surface produced by Listing 9-2

Chapter 9 3D Data plotting

299

16 g[1]=yp*cos(Rx)-zp*sin(Rx)+yc

17 g[2]=yp*sin(Rx)+zp*cos(Rx)+zc

18 return[g]

19

20 def roty(xp,yp,zp,Ry):

21 g[0]=xp*cos(Ry)+zp*sin(Ry)+xc

22 g[1]=yp+yc

23 g[2]=-xp*sin(Ry)+zp*cos(Ry)+zc

24 return[g]

25

26 def rotz(xp,yp,zp,Rz):

27 g[0]=xp*cos(Rz)-yp*sin(Rz)+xc

28 g[1]=xp*sin(Rz)+yp*cos(Rz)+yc

29 g[2]=zp+zc

30 return[g]

31

32 #==plot axis

33 def plotaxis(xp,yp,zp,Rx,Ry,Rz):

34 rotx(xp,yp,zp,Rx) #———Rx rotation

35 xp=g[0]-xc

36 yp=g[1]-yc

37 zp=g[2]-zc

38 roty(xp,yp,zp,Ry) #———Ry rotation

39 xp=g[0]-xc

40 yp=g[1]-yc

41 zp=g[2]-zc

42 rotz(xp,yp,zp,Rz) #———Rz rotation

43 return[g]

44

45 #==plot data

46 def plotdata(x,y,z,Rx,Ry,Rz):

47 for i in range(0,nop):

48 xp=x[i]

49 yp=y[i]

50 zp=z[i]

Chapter 9 3D Data plotting

300

51 rotx(xp,yp,zp,Rx)

52 xp=g[0]-xc

53 yp=g[1]-yc

54 zp=g[2]-zc

55 roty(xp,yp,zp,Ry)

56 xp=g[0]-xc

57 yp=g[1]-yc

58 zp=g[2]-zc

59 rotz(xp,yp,zp,Rz)

60 xp=g[0]-xc

61 yp=g[1]-yc

62 zp=g[2]-zc

63 plt.scatter(g[0],g[1],s=25,color='g')

64

65 #==plotspline()

66 def plotspline(x,y,z,Rx,Ry,Rz,clr):

67 q=[0]*nop

68 mx=[0]*nop

69 my=[0]*nop

70 mz=[0]*nop

71 cx=[0]*nop

72 cy=[0]*nop

73 cz=[0]*nop

74 dx=[0]*nop

75 dy=[0]*nop

76 dz=[0]*nop

77 bx=[0]*nop

78 by=[0]*nop

79 bz=[0]*nop

80 ax=[0]*nop

81 ay=[0]*nop

82 az=[0]*nop

83

84 for i in range(1,nop): #—chords q(i)

85 a=x[i]-x[i-1]

Chapter 9 3D Data plotting

301

86 b=y[i]-y[i-1]

87 c=z[i]-z[i-1]

88 q[i-1]=sqrt(a*a+b*b+c*c) #—nop=6 gives q[5]

89

90 mx[0]=(x[1]-x[0])/q[0] #—mx[0]

91 my[0]=(y[1]-y[0])/q[0] #—my[0]

92 mz[0]=(z[1]-z[0])/q[0] #—mx[0]

93

94 for i in range(1,nop-1): #—average m[i]

95 mx[i]=((x[i]-x[i-1])/q[i-1]+(x[i+1]-x[i])/q[i])*.5

96 my[i]=((y[i]-y[i-1])/q[i-1]+(y[i+1]-y[i])/q[i])*.5

97 mz[i]=((z[i]-z[i-1])/q[i-1]+(z[i+1]-z[i])/q[i])*.5

98

99 mx[nop-1]=(x[nop-1]-x[nop-2])/q[nop-2] #—mx[nop-1]

100 my[nop-1]=(y[nop-1]-y[nop-2])/q[nop-2] #—my[nop-1]

101 mz[nop-1]=(z[nop-1]-z[nop-2])/q[nop-2] #—mz[nop-1]

102

103 #————————————calculate coefficients

104 for i in range(0,nop-1):

105 dx[i]=x[i]

106 dy[i]=y[i]

107 dz[i]=z[i]

108 cx[i]=mx[i]

109 cy[i]=my[i]

110 cz[i]=mz[i]

111 bx[i]=(3*x[i+1]-2*cx[i]*q[i]-3*dx[i]-mx[i+1]*q[i])/(q[i]*q[i])

112 by[i]=(3*y[i+1]-2*cy[i]*q[i]-3*dy[i]-my[i+1]*q[i])/(q[i]*q[i])

113 bz[i]=(3*z[i+1]-2*cz[i]*q[i]-3*dz[i]-mz[i+1]*q[i])/(q[i]*q[i])

114 ax[i]=(mx[i+1]-2*bx[i]*q[i]-cx[i])/(3*q[i]*q[i])

115 ay[i]=(my[i+1]-2*by[i]*q[i]-cy[i])/(3*q[i]*q[i])

116 az[i]=(mz[i+1]-2*bz[i]*q[i]-cz[i])/(3*q[i]*q[i])

117

118 #——————————————plot splines between data points

119 for i in range(0,nop-1):

120 for qq in np.arange(0,q[i],2):

Chapter 9 3D Data plotting

302

121 xp=ax[i]*qq*qq*qq+bx[i]*qq*qq+cx[i]*qq+dx[i]

122 yp=ay[i]*qq*qq*qq+by[i]*qq*qq+cy[i]*qq+dy[i]

123 zp=az[i]*qq*qq*qq+bz[i]*qq*qq+cz[i]*qq+dz[i]

124 xp=g[0]-xc

125 yp=g[1]-yc

126 zp=g[2]-zc

127 roty(xp,yp,zp,Ry) #—Ry rotation

128 xp=g[0]-xc

129 yp=g[1]-yc

130 zp=g[2]-zc

131 rotz(xp,yp,zp,Rz) #—Rz rotation

132 if qq==0:

133 xplast=g[0]

134 yplast=g[1]

135 plt.plot([xplast,g[0]],[yplast,g[1]],linewidth=.7,color=clr)

136 xplast=g[0]

137 yplast=g[1]

138

139 #==control

140 g=[0]*3 #—global plotting coords returned by rotx, roty and rotz

141

142 xc=80 #—origin of X,Y,Z coordinate system

143 yc=20

144 zc=10

145

146 Rxd=-100 #–rotations of X,Y,Z system degrees

147 Ryd=-135

148 Rzd=8

149

150 Rx=radians(Rxd) #—rotations of X,Y,Z system radians

151 Ry=radians(Ryd)

152 Rz=radians(Rzd)

153

Chapter 9 3D Data plotting

303

154 #—————————————————————plot X,Y,Z axes

155 plotaxis(60,0,0,Rx,Ry,Rz) #—plot X axis

156 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

157 plt.text(g[0]-5,g[1]-1,'X')

158

159 plotaxis(0,60,0,Rx,Ry,Rz) #—plot Y axis

160 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

161 plt.text(g[0],g[1]-5,'Y')

162

163 plotaxis(0,0,60,Rx,Ry,Rz) #—plot Z axis

164 plt.plot([xc,g[0]],[yc,g[1]],linewidth=2,color='k')

165 plt.text(g[0]-2,g[1]+3,'Z')

166

167 #————————-define 4 sets of data points at different values of X

168 x1=[0,0,0,0] #———LOCAL coords

169 y1=[0,10,20,30]

170 z1=[50,43,30,14]

171

172 x2=[20,20,20,20]

173 y2=y1

174 z2=[25,23,19,12]

175

176 x3=[40,40,40,40]

177 y3=y1

178 z3=[14,15,13,9]

179

180 x4=[60,60,60,60]

181 y4=y1

182 z4=[7,10,10,9]

183

184 nop=len(x1) #———number of data points

185

186 #—————————————————————plot data points

187 plotdata(x1,y1,z1,Rx,Ry,Rz)

188 plotdata(x2,y2,z2,Rx,Ry,Rz)

Chapter 9 3D Data plotting

304

189 plotdata(x3,y3,z3,Rx,Ry,Rz)

190 plotdata(x4,y4,z4,Rx,Ry,Rz)

191

192 #——————————————————plot Y direction splines

193 clr='g' #——————————spline color

194 plotspline(x1,y1,z1,Rx,Ry,Rz,clr)

195 plotspline(x2,y2,z2,Rx,Ry,Rz,clr)

196 plotspline(x3,y3,z3,Rx,Ry,Rz,clr)

197 plotspline(x4,y4,z4,Rx,Ry,Rz,clr)

198

199 #——————————redefine the data points at different values of y

200 xx1=[0,20,40,60]

201 yy1=[y1[3],y2[3],y3[3],y4[3]]

202 zz1=[z1[3],z2[3],z3[3],z4[3]]

203

204 xx2=xx1

205 yy2=[y1[2],y2[2],y3[2],y4[2]]

206 zz2=[z1[2],z2[2],z3[2],z4[2]]

207

208 xx3=xx1

209 yy3=[y1[1],y2[1],y3[1],y4[1]]

210 zz3=[z1[1],z2[1],z3[1],z4[1]]

211

212 xx4=xx1

213 yy4=[y1[0],y2[0],y3[0],y4[0]]

214 zz4=[z1[0],z2[0],z3[0],z4[0]]

215

216 #——————————————————plot X direction splines

217 clr='b' #——————————spline color

218 plotspline(xx1,yy1,zz1,Rx,Ry,Rz,clr)

219 plotspline(xx2,yy2,zz2,Rx,Ry,Rz,clr)

220 plotspline(xx3,yy3,zz3,Rx,Ry,Rz,clr)

221 plotspline(xx4,yy4,zz4,Rx,Ry,Rz,clr)

222

223 #————————————————————————labels

Chapter 9 3D Data plotting

305

224 plt.text(120,90,'Rx=')

225 Rxd='%7.1f'%(Rxd)

226 plt.text(130,90,Rxd)

227

228 plt.text(120,85,'Ry=')

229 Ryd='%7.1f'%(Ryd)

230 plt.text(130,85,Ryd)

231

232 plt.text(120,80,'Rz=')

233 Rzd='%7.1f'%(Rzd)

234 plt.text(130,80,Rzd)

235

236 plt.title('3D Surface')

237

238 plt.show()

9.2 3D Surface Shading
In the previous section, you constructed a surface by connecting data points with

splines. You did not use arrays but relied on a cumbersome system of numbering.

While this kept the procedure open and easy to understand, it led to too many lines of

code. In this section, you will use the same data set but with two differences: first, you

will connect the data points by straight lines; second, you will use arrays to organize

your plotting. When you see how simple and elegant the use of arrays can be, you may

question which method is the easiest to code and to follow.

Using the same three-dimensional data set as you used in the previous section, the

array which defines the data is

Chapter 9 3D Data plotting

306

This array is used by Listing 9-3 to produce Figure 9-7. The numbering scheme used

to relate A to the surface points is shown in Figure 9-8.

Figure 9-7. Shaded 3D surface produced by Listing 9-3

Figure 9-8. Data point numbering scheme used in Listing 9-3

Chapter 9 3D Data plotting

307

Each element in A is a list. There are 16 lists: A[0] through A[15]. List i is referenced as

A[i] where i=0→15. For example, A[3]=[0,30,14]. Each list i defines the x,y,z coordinates of

data point i. That is

 A i x i,1[] = () (9-2)

 A i y i,2[] = () (9-3)

 A i z i,3[] = () (9-4)

For example, the first point, point 0, has coordinates

 A x0 1 0 0,[] = () = (9-5)

 A y0 2 0 0,[] = () = (9-6)

 A z0 3 0 50,[] = () = (9-7)

This method replaces the list numbering system used in the previous section.

Referring to Figure 9-8, to get the z coordinate of the fourth data point, which is

numbered 3, you access the third element of the fourth list of array A by letting i=3, j=2.

As with lists, the numbering of elements within arrays begins at 0 so the coordinates of

the fourth data point are contained in list i=3. The z component is the third element in

that list, j=2. Thus the z coordinate of the fourth data point is A[3,2], so

print(A[3,2])

14

The numbering scheme in Figure 9-8 starts at point 0, which is at the upper corner of

the surface at x=0, y=0, z=50, and proceeds in the y direction for a total of 4 data points.

It then advances to a new value of x for another grouping of 4 y-direction points. This

gives a total of 16 data points. Other numbering schemes could be used. You could, for

example, have started at the same point but proceeded in the x direction first rather than

the y direction. Or you could have started at a different corner of the surface. As you

will see, whatever numbering scheme is chosen, it will have an impact on subsequent

operations on that data.

Chapter 9 3D Data plotting

308

The surface is composed of quadrangles, which are called patches. You will be

shading these patches. Each patch is defined by four data points. Since these are located

in three-dimensional space, the patches will, in general, not be flat. Also, since the sides

can have arbitrary lengths, the patches will not necessarily be rectangular. The basic

shading techniques used in previous chapters (i.e. coloring the patches by drawing lines

across them) will be used but the technique must be modified.

Figure 9-9 shows the model. This is a generic oblique patch defined by four corners

numbered 0 → 3. q03 and q12 are the lengths of the sides from 0 → 3 and 1 → 2. As

mentioned, these sides are three-dimensional and are not necessarily parallel. As was

done in previous chapters on shading, you fill in the patch with color by drawing lines

across the quadrangle. The blue lines shown are examples. As shown in Figures 9-10 and

9-11, the algorithm you will be developing here will work with any quadrilateral.

To plot the lines, all you have to do is determine the starting position S of each line

along side 0,3 and the end position E alongside 1,2. Since these sides have different

lengths, the distance q of S from point 0 alongside 0,3 is not the same as the distance of E

from point 1 down along side 1,2. The starting point of the lines S begin at the top of the

patch (corner 0) at q=0 and proceed to the bottom at q=q03. To get the corresponding

position of E down side 1,2, you ratio the distance q by q12/q03. A line is then drawn

between S and E. The blue lines shown in Figure 9-9 are 70%, 80%, and 90% of the way

down both sides of the patch.

The unit vector n̂ shown in Figure 9-9 is not required for the line drawing but will be

needed when you determine the intensity of coloring. This is done as before by taking

the dot product of n̂ with a light source unit vector ˆl.
In Listing 9-3, the numbers of the generic patch corners, 0→3 in Figure 9-9, are

replaced by the appropriate numbers for each patch on the surface from array A. The

array is defined in the control section in lines 164-167. Line 169 gives the number of

data points in A, which is equal to the number of lists, each list defining the location of

a point. In this case, nop=16. The data points are plotted in lines 172-194. This simple

routine, which illustrates a benefit of using arrays, replaces the data plotting function

used in prior programs. Lines 178-185 connect the four y direction points by lines of

color clr specified in line 177. Function plotline() does the line plotting. Lines 188-194

do the same in the x direction.

Chapter 9 3D Data plotting

309

The patches are shaded in lines 197-205 by invoking function shade(), which begins

in line 65. The arguments are arranged to conform to the generic patch corners shown in

Figure 9-9. Lines 197-199 shade the first row of patches in the y direction. The first patch

has its upper left corner at A[0,0], the second patch at A[1,0], and so on. In the first cycle

through the loop, with i=0, lines 198 and 199 give the following patch corner coordinates,

which are used as parameters in the call to function shade:

A[0, 0] = x[0] = x0 = 0 corner 0

A[0, 1] = y[0] = y0 = 0

A[0, 2] = z[0] = z0 = 50

A[1, 0] = x[1] = x1 = 0 corner 1

A[1, 2] = y[1] = y1 = 10

A[1, 3] = z[1] = z1 = 43

A[5, 0] = x[5] = x2 = 0 corner 2

A[5, 1] = y[5] = y2 = 20

A[5, 2] = z[5] = z2 = 30

A[4, 0] = x[4] = x3 = 0 corner 3

A[4, 1] = y[4] = y3 = 30

A[4, 2] = z[4] = z3 = 14

Figure 9-9. Patch model used in Listing 9-3

Chapter 9 3D Data plotting

310

In function shade(), the arguments in line 65 coincide with the above patch corners

0,1,2 and 3,

x y z x y z

A

corner

A

corner

0 0 0 1 1 1

0

0

1

1

, , , , , ,

[] []� �� ��

� �� ��

� �� ��

� �� ���

� �� ��

� �� ��

� �� ��
x y z x y z

A

corner

A

corner

2 2 2 3 3 3

5

2

4

3

, , , , , ,

[] []

�� ��� ���

æ

è

ç
ç

ö

ø

÷
÷

When i=1, these same program lines give the corner coordinates for the next patch

in the y direction, which has corners 1, 2, 6 and 5. These correspond to the generic patch

corners 0, 1, 2, and 3. The remaining cycles of the loop shade the remaining two patches

in the y direction. Lines 200-202 and 203-205 advance in the x direction and perform the

same operation, thus shading all nine patches.

You may be wondering why the for loop in line 197, for i in range(0,3):, uses the

index 3 instead of 2. After all, there are only three y direction patches to shade; 0 → 3

would seem to give four. It has to do with the workings of the range() function. In general,

the syntax is range(start, stop, step). If no step is specified, it is assumed to be 1. Range

will start at start, go to stop in steps of step, but it will not return the value at stop. In line

197, 0 is the start value, 3 is the stop value. This will return i=0, 1 and 2, but not 3. This was

explained in Chapter 1. You can try this for yourself:

for i in range(0,3):

 print(i)

0

1

2

It is tempting to think of stop as the number of values to be returned, but it isn’t. For

example,

for i in range(1,3):

 print(i)

1

2

Chapter 9 3D Data plotting

311

If the start value is not specified, it is automatically set to 0:

for i in range(3):

 print(i)

0

1

2

In this text, I usually included the start value for clarity but I do not usually specify

the step value unless it is different from 1.

In function shade(), lines 66-92 evaluate the unit vectors û, v̂, ŵ, and n̂.

Lines 94-96 specify the components of ˆl, the incoming light direction unit vector,

as was done in prior shading programs. Line 98 takes the dot product of n̂ with ˆl. Line

100-103 defines the shading function and establishes the light intensity, I, impacting the

patch. Line 105 mixes the r, g, b colors. Lines 107-115 plot the lines across the patch. Line

117 plots the lines. Note that the lines have the color established in line 105.

Figure 9-11. Shaded oblique patch

Chapter 9 3D Data plotting

312

Listing 9-3. Program SHADEDSURFACE3D

1 """

2 SHADEDSURFACE3D

3 """

4

5 import matplotlib.pyplot as plt

6 import numpy as np

7 from math import sqrt, radians, sin, cos

8

9 plt.axis([0,150,0,100])

10 plt.axis('on')

11 plt.grid(True)

12

13 #===rotation transformations

14

15 #————————same as Listing 9-2, Program SURFACE3D———————

16

Figure 9-10. Shaded oblique patch

Chapter 9 3D Data plotting

313

17 #==plot axes

18

19 #————————same as Listing 9-2, Program SURFACE3D———————

20

21 #===plot point

22 def plotpoint(xp,yp,zp,Rx,Ry,Rz,clr):

23 rotx(xp,yp,zp,Rx)

24 xp=g[0]-xc

25 yp=g[1]-yc

26 zp=g[2]-zc

27 roty(xp,yp,zp,Ry)

28 xp=g[0]-xc

29 yp=g[1]-yc

30 zp=g[2]-zc

31 rotz(xp,yp,zp,Rz)

32 plt.scatter(g[0],g[1],s=10,color=clr)

33

34 #===plotline

35 def plotline(xb,yb,zb,xe,ye,ze,Rx,Ry,Rz,clr):

36 rotx(xb,yb,zb,Rx) #———rotate line beginning coordinates

37 xb=g[0]-xc

38 yb=g[1]-yc

39 zb=g[2]-zc

40 roty(xb,yb,zb,Ry)

41 xb=g[0]-xc

42 yb=g[1]-yc

43 zb=g[2]-zc

44 rotz(xb,yb,zb,Rz)

45 xb=g[0]

46 yb=g[1]

47 zb=g[2]

48

49 rotx(xe,ye,ze,Rx) #———rotate line end coordinates

50 xe=g[0]-xc

51 ye=g[1]-yc

Chapter 9 3D Data plotting

314

52 ze=g[2]-zc

53 roty(xe,ye,ze,Ry)

54 xe=g[0]-xc

55 ye=g[1]-yc

56 ze=g[2]-zc

57 rotz(xe,ye,ze,Rz)

58 xe=g[0]

59 ye=g[1]

60 ze=g[2]

61

62 plt.plot([xb,xe],[yb,ye],linewidth=.7,color=clr)

63

64 #==shade

65 def shade(x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,Rx,Ry,Rz,clr):

66 a=x3-x0

67 b=y3-y0

68 c=z3-z0

69 q03=np.sqrt(a*a+b*b+c*c)

70 ux=a/q03

71 uy=b/q03

72 uz=c/q03

73

74 a=x1-x0

75 b=y1-y0

76 c=z1-z0

77 q02=sqrt(a*a+b*b+c*c)

78 vx=a/q02

79 vy=b/q02

80 vz=c/q02

81

82 a=x2-x1

83 b=y2-y1

84 c=z2-z1

85 q12=np.sqrt(a*a+b*b+c*c)

86 wx=a/q12

Chapter 9 3D Data plotting

315

87 wy=b/q12

88 wz=c/q12

89

90 nx=uy*vz-uz*vy

91 ny=uz*vx-ux*vz

92 nz=ux*vy-uy*vx

93

94 lx=0

95 ly=-.7

96 lz=0

97

98 ndotl=nx*lx+ny*ly+nz*lz

99

100 IA=.01

101 IB=1

102 n=2.8

103 I=IA+(IB-IA)*((1-ndotl)/2)**n

104

105 clr=(1-I,.4*(1-I),.6*(1-I))

106

107 r=q12/q03

108 dq=q03/50

109 for q in np.arange(0,q03+1,dq):

110 xb=x0+ux*q

111 yb=y0+uy*q

112 zb=z0+uz*q

113 xe=x1+wx*q*r

114 ye=y1+wy*q*r

115 ze=z1+wz*q*r

116

117 plotline(xb,yb,zb,xe,ye,ze,Rx,Ry,Rz,clr)

118

119 plt.text(121,70,'lx=')

120 lx='%7.3f'%(lx)

121 plt.text(130,70,lx)

Chapter 9 3D Data plotting

316

122

123 plt.text(121,65,'ly=')

124 ly='%7.3f'%(ly)

125 plt.text(130,65,ly)

126

127 plt.text(121,60,'lz=')

128 lz='%7.3f'%(lz)

129 plt.text(130,60,lz)

130

131 plt.text(121,50,'IA=')

132 IA='%7.3f'%(IA)

133 plt.text(130,50,IA)

134

135 plt.text(121,45,'IB=')

136 IB='%7.3f'%(IB)

137 plt.text(130,45,IB)

138

139 plt.text(121,40,'n=')

140 n='%7.3f'%(n)

141 plt.text(130,40,n)

142

143 #==control

144 g=[0]*3 #———global plotting coords returned by rotx, roty and rotz

145

146 xc=80 #———origin of X,Y,Z coordinate system

147 yc=20

148 zc=10

149

150 Rxd=-100 #——–rotations of X,Y,Z system degrees

151 Ryd=-135

152 Rzd=8

153

154 Rx=radians(Rxd) #———rotations of X,Y,Z system radians

155 Ry=radians(Ryd)

156 Rz=radians(Rzd)

Chapter 9 3D Data plotting

317

157

158 #—————————————————————plot X,Y,Z axes

159

160 #————————same as Listing 9-2, Program SURFACE3D———————

161

162 #———————————————define data point array A

163

164 A=np.array([[0,0,50], [0,10,43], [0,20,30], [0,30,14],

165 [20,0,25], [20,10,23], [20,20,19], [20,30,12],

166 [40,0,14], [40,10,15], [40,20,13], [40,30,9],

167 [60,0,7], [60,10,10], [60,20,10], [60,30,9]])

168

169 nop=len(A) #———number of data points

170

171 #—————————————————————plot data points

172 clr='k'

173 for i in range(0,16):

174 plotpoint(A[i,0],A[i,1],A[i,2],Rx,Ry,Rz,clr)

175

176 #——————————————–connect data points in Y direction

177 clr='k' #——————————line color

178 for i in range(0,3):

179 plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],Rx,Ry,Rz,

clr)

180 for i in range(4,7):

181 plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],Rx,Ry,Rz,

clr)

182 for i in range(8,11):

183 plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],Rx,Ry,Rz,

clr)

184 for i in range(12,15):

185 plotline(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],Rx,Ry,Rz,

clr)

186

187 #———————————————connect data points in X direction

Chapter 9 3D Data plotting

318

188 clr='k' #——————————line color

189 for i in range(0,4):

190 plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

191 for i in range(4,8):

192 plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

193 for i in range(8,12):

194 plotline(A[i,0],A[i,1],A[i,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

195

196 #——————————————————————shade patches

197 for i in range(0,3):

198 shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],

199 A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

200 for i in range(4,7):

201 shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],

202 A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

203 for i in range(8,11):

204 shade(A[i,0],A[i,1],A[i,2],A[i+1,0],A[i+1,1],A[i+1,2],A[i+5,0],

205 A[i+5,1],A[i+5,2],A[i+4,0],A[i+4,1],A[i+4,2],Rx,Ry,Rz,clr)

206

207 #————————————————————————labels

208 plt.text(121,90,'Rx=')

209 Rxd='%7.1f'%(Rxd)

210 plt.text(130,90,Rxd)

211

212 plt.text(121,85,'Ry=')

213 Ryd='%7.1f'%(Ryd)

214 plt.text(130,85,Ryd)

215

216 plt.text(121,80,'Rz=')

217 Rzd='%7.1f'%(Rzd)

218 plt.text(130,80,Rzd)

219

220 plt.title('Shaded 3D Surface')

221

222 plt.show()

Chapter 9 3D Data plotting

319

9.3 Summary
In this chapter, you saw how to plot data in three dimensions. To do so, you changed the

usual orientation of your axes with z pointing into the screen to z pointing up; x and y are

in the horizontal plane. This is the common way of displaying data where Pz=f(Px,Py);

Px,Py, and Pz being the coordinates of a data point. In Listing 9-1, you connected the data

points by splines. As an aid to visualization, you projected the spline down onto the x,y

plane. It could be projected onto the other coordinate planes without much difficulty. The

3D spline algorithm you used is an extrapolation of the 2D spline presented in Chapter

8. In Listing 9-2, you constructed a surface by connecting points by splines in the x and y

directions. Then you shaded the three-dimensional surface. This required connecting the

data points by straight lines rather than splines. The result was an assemblage of oblique

patches, which are not necessarily planar; each of them may be twisted out of plane. You

learned how to shade the surface by shading each patch. This required development

of an algorithm capable of shading a non-planar oblique quadrilateral. The shading

was carried out by plotting lines across the surface of each patch; the intensity of the

color was determined by the orientation of the patch with respect to the direction of the

illuminating light rays.

Chapter 9 3D Data plotting

321
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_10

CHAPTER 10

Demonstrations
In this chapter, you will apply some of the techniques developed in previous chapters to

produce some interesting images. These images should give you some idea of the things

that can be accomplished with Python graphics.

10.1 Saturn
Saturn is famous for its rings. While Jupiter, Saturn, Uranus, and Neptune also have rings,

Saturn’s are the largest, brightest, and most well known in our solar system. They consist

of particles as small as dust up to boulder-sized objects. These objects are composed

mostly of ice and are thought to have originated when a comet or large asteroid collided

with one of Saturn’s moons, shattering both into small pieces. Saturn has been known

from ancient times but in 1610 Galileo was the first to observe it with a telescope. The

planet is named after Saturn, the Roman god of agriculture, as is our sixth day, Saturday.

Listing 10-1 builds on an earlier program, Listing 7-2 from Chapter 7. That program

is left mostly intact here except for the introduction of algorithms that construct Saturn’s

rings and the shadow of the planet on the rings.

Figures 10-1 through 10-5 show images produced by Listing 10-1. They are at

different angles of orientation, which are listed in the captions. Also listed are the unit

vector components of the incoming light rays. For example, lx=+.707, ly=+.707, lz=0

indicates a source in the upper left quadrant; lx=-1, ly=0, lz=0 indicates a light source

coming from the right. In the images, please notice the shadow cast by the planet on the

rings, especially in Figure 10-5, which shows the curvature of the planet.

For comparison, a photographic image of Saturn can be found at

www.jpl.nasa.gov/spaceimages/?search=saturn&category=#submit.

http://www.jpl.nasa.gov/spaceimages/?search=saturn&category=#submit

322

Figure 10-1. Saturn with rings and shadow 1: Rx=-20, Ry=0, Rz=-10, lx=1, ly=0,
lz=0 (produced by Listing 10-1)

Figure 10-2. Saturn with rings and shadow 2: Rx=-8, Ry=0, Rz=30, lx=.707,
ly=.707, lz=0 (produced by Listing 10-1)

Chapter 10 Demonstrations

323

Figure 10-3. Saturn with rings and shadow 3, Rx=-20, Ry=0, Rz=25, lx=.707,
ly=.707, lz=0 (produced by Listing 10-1)

Figure 10-4. Saturn with rings and shadow 4: Rx=-10, ry=0, Rz=25, lx=-.707,
ly=-.707, lz=0 (produced by Listing 10-1)

Chapter 10 Demonstrations

324

Figure 10-6 shows the model used to construct the rings. In Chapter 7, you

developed the shaded sphere algorithm by first creating an upright sphere. That is, the

longitudes were vertical and the latitudes were horizontal (i.e. parallel to the x,z plane).

From this starting orientation you rotated the sphere around the x,y, and z axes. You do

a similar thing here for the rings. You create horizontal rings, which are parallel to the

x,z plane, and then rotate them through the same angles along with the spherical planet

body. The rings lie in a plane that passes through the sphere’s center so both the sphere

and the rings have the same center of rotation.

Figure 10-5. Saturn with rings and shadow 5: Rx=20, Ry=0, Rz=30, lx=-1, ly=0,
lz=0 (produced by Listing 10-1)

Chapter 10 Demonstrations

325

Figure 10-6. Rings model: top view of planet and rings looking down on the x,z
plane with Rx=0, Ry=0, Rz=0

The band is drawn as a series of adjacent concentric circles, each of which is

composed of short line segments. Referring to Figure 10-6 and Listing 10-1, program

lines 42 and 43 set the inner and outer radii of the rings. Line 44 sets the distance

between circles. The rings are divided into seven annular bands (not shown in

Figure 10- 6) to accommodate different colors; their width is deltar in line 45.

Each line segment is rotated and plotted separately. Line 48 starts a radial direction

loop from r1 to r2 plotting the circle segments. Line 49 starts a loop plotting in the

circumferential direction. Lines 50-61 do the rotating producing global plotting

coordinates xpg and ypg in lines 62 and 63. The rotation functions are the same as in

previous programs.

Next, you set the colors of the segments. The rings are arranged in bands of different

colors, which are a result of their physical composition as seen in the NASA image.

This is done in lines 66-75. The first band, which goes from r=r1 to r1+deltar, has color

clr=(.63,.54,.18) and so on for the remaining bands. You omit the fifth band, which is

empty; the background color shows through. The sixth band is twice as wide as the

others. This provides the colors for the seven bands.

For a given light direction, in most orientations the planet’s body will cast a shadow

on the rings. Referring to Figure 10-7, your objective is to determine if point p lies inside

or outside the planet’s shadow zone. The spherical planet casts a circular shadow. The

shadow’s diameter will equal the size of the planet, or more precisely, the sphere’s “great

circle.” This is the largest circle that can be obtained by cutting a sphere with a plane

through its center. It’s like cutting an orange in half; what you see is the orange’s great

circle. In Figure 10-7, the shadow could as well be caused by a circular disk of this size as

Chapter 10 Demonstrations

326

by the spherical planet; the shadow will have the same size in either case. The side view

of Saturn’s great circle is shown as the heavy line that passes through the plane’s center.

From the geometry in Figure 10-7, you can see that if p lies in a position such that |B| > rs,

where rs is Saturn’s radius, it is outside the shadow zone; if |B| < rs, p is inside the shadow

zone. Once you determine where p is, if it is inside the shadow zone, when you plot the

rings you will color that point grey. If it is outside, you will give it one of the band colors

set in lines 66-75.

Figure 10-7. Shadow model

Your job now is to get |B| for a given position of p. You see from Figure 10-7 that

 B V= ()sin f (10-1)

You know that

V u V u´ = ()ˆ ˆ sin f (10-2)

where û=-ˆl. Combining the above equations with |û|=1,

 B V u= ´ ˆ (10-3)

B V u= ´ ˆ (10-4)

In Listing 10-1, line 78 establishes the length of the incident light vector, ˆl. This

should equal 1, but it may not if the components entered in lines 23-25 do not compute

to 1 (i.e. lx ly ly2 2 2 1+ + ¹). Lines 79-81 then reestablish the components if necessary.

Chapter 10 Demonstrations

327

Lines 82-84 establish the components of vector V. Lines 85-87 compute components of

B. Line 88 gives its magnitude magB=|B|. Line 89 determines if p lies within the shadow

zone. If it does, line 90 is executed. This is the dot product of V with ˆl. It determines

whether p lies on the side of the planet that is toward the light source, in which case it is

opposite the dark side of the planet and not in the shadow zone. This is necessary since

the shadow algorithm in lines 78-89 does not make this distinction. If p does lie on the

dark side within the shadow zone, the color is set to a medium grey in line 91.

You will notice in the images above that there is a dark band within the rings. This

is because Saturn’s rings have a void in that band: there are no particles there to reflect

light; what you see is the background color, 'midnightblue', showing through. This

creates a problem since the shadow color will overplot the background color in that void.

Lines 93 and 94 reestablish it as 'midnightblue'.
Now that the band colors have been established, you can plot the rings. This is done

by plotting short line segments. Lines 97-100 compute the starting location of the first

segment. Referring to Figure 10-6, lines 100-101 determine if the segment is in front of

the planet, in which case it is plotted. Lines 103-108 determine if it is behind the planet,

in which case it is not plotted. This is done by calculating the distance c of the point’s

global coordinates from the planet’s center. Line 107 says, if c is greater than the sphere’s

radius times 1.075, then plot the segment. The factor of 1.075 is included to prevent the

line segments from nibbling into the sphere’s edges. It is necessary to go through this

logic; otherwise the front visible segments, which are within the radius of the sphere,

won’t be plotted.

Two things can be noted regarding the above images produced by Listing 10-1.

First is the color. The NASA photographic image shows a greyish hue, almost devoid of

color. But many observers of Saturn have described it as having a golden hue, hence

my choice of colors. As any photographer knows, capturing an object’s true colors in a

photographic image is difficult; so much depends on the color of the incident light and

the image-capturing medium. Perhaps it is best to rely on the observations of stargazers.

If you do not agree with the colors in the images produced by Listing 10-1, you can tinker

with them by altering the clr definitions in the program. The second thing to notice is the

curvature of the shadow that follows the planet’s curvature in Figure 10-5. It shows that

the shading algorithm works as expected.

Regarding use of the program, you can change the direction of the incident light in

lines 24-26 and the angles of rotation in lines 32-34. Listing 10-1 takes a while to run so

be patient.

Chapter 10 Demonstrations

328

Listing 10-1. Program SATURN

1 """

2 SATURN

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from math import sin, cos, radians, sqrt

8

9 plt.axis([0,150,100,0])

10 plt.axis('off')

11 plt.grid(False)

12

13 print('running')

14 #—————————————————parameters

15 g=[0]*3

16

17 xc=80 #———sphere center

18 yc=50

19 zc=0

20

21 rs=25 #———sphere radius

22

23 lx=-1 #———light ray unit vector components

24 ly=0

25 lz=0

26

27 IA=0

28 IB=.8

29 +n=2

30

31 Rx=radians(-20)

32 Ry=radians(0)

33 Rz=radians(30)

34

Chapter 10 Demonstrations

329

35 #————————same as SHADESPHERE—————–

36

37 #———————————————————rings

38 alpha1=radians(-10)

39 alpha2=radians(370)

40 dalpha=radians(.5)

41

42 r1=rs*1.5

43 r2=rs*2.2

44 dr=rs*.02

45 deltar=(r2-r1)/7 #———ring band width

46

47 #—————————————rotate ring point p which is at r, alpha

48 for r in np.arange(r1,r2,dr):

49 for alpha in np.arange(alpha1,alpha2,dalpha):

50 xp=r*cos(alpha)

51 yp=0

52 zp=-r*sin(alpha)

53 rotx(xc,yc,zc,xp,yp,zp,Rx)

54 xp=g[0]-xc

55 yp=g[1]-yc

56 zp=g[2]-zc

57 roty(xc,yc,zc,xp,yp,zp,Ry)

58 xp=g[0]-xc

59 yp=g[1]-yc

60 zp=g[2]-zc

61 rotz(xc,yc,zc,xp,yp,zp,Rz)

62 xpg=g[0]

63 ypg=g[1]

64

65 #—————————————————select ring band color

66 if r1 <= r < r1+1*deltar:

67 clr=(.63,.54,.18)

68 if r1+1*deltar <= r <= r1+2*deltar:

69 clr=(.78,.7,.1)

Chapter 10 Demonstrations

330

70 if r1+2*deltar <= r <= r1+3*deltar:

71 clr=(.95,.85,.1)

72 if r1+3*deltar <= r <= r1+4*deltar:

73 clr=(.87,.8,.1)

74 if r1+5*deltar <= r <= r1+7*deltar:

75 clr=(.7,.6,.2)

76

77 #———————————————————————shadow

78 magu=sqrt(lx*lx+ly*ly+lz*lz)

79 ux=-lx/magu

80 uy=-ly/magu

81 uz=-lz/magu

82 vx=xc-xpg

83 vy=yc-ypg

84 vz=zc-zpg

85 Bx=uy*vz-uz*vy

86 By=uz*vx-ux*vz

87 Bz=ux*vy-uy*vx

88 magB=sqrt(Bx*Bx+By*By+Bz*Bz)

89 if magB < rs: #—————————if in the shadow region

90 if vx*lx+vy*ly+vz*lz <= 0: #———if v points toward light source

91 clr=(.5,.5,.2) #———shadow color

92

93 if r1+4*deltar <= r <= r1+5*deltar: #———overplot empty band

94 clr='midnightblue' #———with background color

95

96 #——————————————————–plot line segment

97 if alpha == alpha1:

98 xstart=xpg

99 ystart=ypg

100 if zpg <= zc: #–front (z axis points into the screen)

101 plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)

102

Chapter 10 Demonstrations

331

103 if zpg >= zc: #–back

104 a=xpg-xc

105 b=ypg-yc

106 c=sqrt(a*a+b*b)

107 if c > rs*1.075: #——plot only the visible portion of rings

108 plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr)

109 xstart=xpg

110 ystart=ypg

111

112 plt.show()

10.2 Solar Radiation
This section illustrates a typical scenario: using Python to plot and label curves that

represent mathematical functions. Here you plot Max Planck’s spectrum of radiation.

You use it to represents the energy spectrum emitted by the Sun, calculate the Sun’s total

power output, and the amount that reaches Earth, which is called the solar constant.

The scientific aspects of this section are quite interesting, as is the history of their

development. The major benefit from a Python programming aspect is seeing how the

programs perform numerical integration, set up the plots, and display numerical data.

10.2.1 Photons and the Sun
The Sun, like all radiating bodies, emits electromagnetic energy in the form of photons.

We know that photons are emitted at different frequencies or wavelengths, a wavelength

being inversely proportional to frequency, as in

l =

s

v
m

 (10-5)

where λ is the wavelength, sm is the speed of light within the medium, and ν is the

frequency of a wave travelling in that medium. Since we are concerned primarily with

light travelling through empty space, (i.e. from the Sun to Earth), sm=c where c is the

speed of light in empty space, Equation 10-5 thus becomes

l =

c

v (10-6)

Chapter 10 Demonstrations

332

A function such as solar power, when represented over a range of frequencies or

wavelengths, is called a spectrum. In the case of electromagnetic radiation, we are mostly

concerned with the power of light at different frequencies or equivalently, wavelengths.

This is called a power spectrum. An example is the curve shown in Figure 10-8 where

the power spectral density, often called simply the power spectrum, S(λ), is plotted vs.

wavelength λ. This curve originated from Equation 10-7.

Figure 10-8. Max Planck’s Solar Spectrum

Most of the frequencies emitted by the Sun, which range from high frequency, short

wavelength ultraviolet to low frequency, long wavelength infrared, are invisible to our

human eyes. We are able to see only a small range of the spectrum which, fortunately for

us, lies near the peak of the Sun’s emitted power spectrum. This must have pleased our

hunter-gatherer ancestors since it enabled them to hunt and gather earlier and later in

the day. While we can thank the shape of the Sun’s power spectrum for this, it is also a

characteristic of our eyes’ biology which, if we believe Charles Darwin, probably evolved

to be optimized at the frequencies near the Sun’s maximum power output.

Chapter 10 Demonstrations

333

10.2.2 Max Planck’s Black Body Radiation
As mentioned, light is photons. But what is a photon? We know photons are quantized

forms of electromagnetic energy. But in the late 19th century, that was still a mystery.

There were many attempts to explain the light spectrum that was emitted from heated

materials. For example, when we heat up an iron poker, at first we don’t see any change

in color but then, after a certain temperature is reached, we visually observe it glowing

through a progression of colors: dull red, brighter red, orange, yellow, white, blue, and

then violet. These colors correspond to different frequencies of the electromagnetic

radiation emitted by the object. Early attempts to explain this phenomenon were based

on the classical theory at that time called Maxwell’s Equations. These equations describe

an electromagnetic field where the electromagnetic energy is assumed to be a smooth

continuum. Despite many attempts, this approach failed to explain what was being

observed.

Many scientists at the time struggled with this problem. Then in 1900, Max Planck,

a German physicist, sent a postcard to a colleague. On the back he had written an

equation that accurately described the spectrum. Plank’s breakthrough was to assume,

contrary to the prevailing theories at the time, that the electromagnetic field was not a

continuum of energy. Rather, he guessed that electromagnetic energy exists in discrete

packets and not as a continuous field, as was assumed by Maxwell’s equations. This led

to his breakthrough formulation, shown in Equation 10-7. He presented his idea to the

German Physical Society on December 14, 1900, a date that has become known as the

birth of quantum mechanics. His equation is known as the blackbody radiation formula.

You will see more of it later.

In 1901, Planck published his results in an article in Annalen der Physik in which he

hypothesized that electromagnetic energy could only be released by a source, such as

the Sun, in the form of discrete packets of energy rather than as continuous waves.

Since it was known that light exhibits wave characteristics, in 1905 Albert Einstein

extended this idea by suggesting Planck’s discrete “packets” could only exist as discrete

“wave- packets.” He called such a packet a Lichtquant or “light quantum.” Later, in 1928,

Arthur Compton used the term “photon” which derives from Phos, the Greek word for light.

Planck also assumed that the source of the wave packets are thermally excited

charges, each emitting a packet of electromagnetic energy, a photon, at a particular

frequency. The more charges emitting photons at the same frequency, the greater the

power of the emitted light at that frequency. He further theorized that the energy of a

wave packet could only occur at specific fixed energy levels or states.

Chapter 10 Demonstrations

334

Returning to 1900, the equation Planck wrote on the back of a postcard, which

predicts the power spectrum of light S(λ) emitted by a black body is

S
c h

e

J s m W mhc

kT

l
p
l l

() =
-

=
2

1

2

5
3 3e

/ / /

(10-7)

where c is the speed of light (m/s), h is Planck’s Constant (J·s), λ is the wavelength (m), k

is Boltzman’s Constant (J/K), T is temperature (K), and ε is the emissivity of the radiating

body’s surface. ϵ is essentially a measure of the effectiveness of a surface’s radiating

ability. It can range from 0 to 1. As you might imagine, there was a lot of thought behind

the development of this equation, which I won’t go into here.

Over the past 100+ years this relation has withstood the test of time and gives very

accurate results. Displayed in Figure 10-8, it is often referred to as Planck’s black body

radiation formula. It applies equally well to all radiating bodies as well as the Sun.

Even though the Sun certainly doesn’t look like a black body, as far as its radiation

characteristics are concerned it behaves like one—a very hot one. As an analogy, you

might think of the Sun as being a very hot (about 5800°K) black stove glowing very

brightly.

Figure 10-8 shows the solar output spectrum (red curve) of the Sun as predicted by

Equation 10-7. This is called a power spectral density, or simply a power spectrum. Each

point on the curve gives the power density S(λ) at a corresponding wavelength λ. The

green band shown in the figure will be explained later.

10.2.3 The Sun’s Total Power Output
The quantity S(λ) displayed in Figure 10-8 is a power density. What is a power density

and how does it differ from a simple power? Notice in Equation 10-7 that the units of

S(λ) are power per cubic volume. These are the units of a density. You might think of this

“density” as analogous to mass density that has units of mass per cubic volume. In the

case of S(λ) you are dealing with a power density.

The feature of Equation 10-7 that makes the power spectrum resemble the Sun’s

output, and not that of any other black body, is the temperature T. For the Sun, T is

approximately 5800°K. To get the power emitted by the Sun, P(λ), over a bandwidth λ1

to λ2, it is necessary to sum S(λ) across that band. In calculus, this amounts to taking the

Chapter 10 Demonstrations

335

integral of S vs. λ, which is equivalent to finding the area under the S(λ) curve between

these limits.

P S d J s m W ml l l

l
l l

1 2
1

2 2 2
® = () =ò / / / (10-8)

With Equation 10-7 this becomes

P c h

e

d J s m W mhc

kT

l l l

l

l

p
l e

l
1 2

1

2

2

1

2
5

2 2
®

-

=
-

=ò / / /

(10-9)

Equation 10-9 gives the power emitted by the Sun over the bandwidth λ1 to λ2. It

equals the integral of S(λ) times the infinitesimally small bandwidth dλ. In other words, if

you pick a point along the S(λ) curve, as shown in Figure 10-9, and multiply it by dλ and

then sum all those values from λ1 to λ2, you would get the total electromagnetic power

emitted by the wavelengths in the waveband λ1 to λ2. This is the area under the S(λ) curve

from λ1 to λ2.

To get the power generated by the entire solar spectrum, you integrate

Equation 10- 9 from wavelengths beginning at λ=0 and extending to λ=∞. For those who

prefer to integrate Equation 10-9 mathematically, I show how to do so in Appendix B.

Integration is simply finding the area under the S(λ) curve. You can avoid the math by

doing it numerically. To do so, replace the infinitesimally small wave band dλ with a

small band of finite width ∆λ and replace the integral with a summation, as in

P c h

e

J s m W m
i

i N

i
hc

kTi

l p
l

e
l

l

() =
-

=
=

=

å2
1

1

2

1
5

2 2D / / /

(10-10)

where i refers to the ith band centered at λi and N is the number of bands of width ∆λ

between λi and λN . A typical band of width ∆λ is illustrated in Figure 10-9. The width of

the band shown is exaggerated for illustrative purposes. In reality, it should appear much

narrower.

Chapter 10 Demonstrations

336

Equation 10-10 is an approximation to Equation 10-9 because it assumes the value

of S(λ) is constant across the width of each band ∆λ. However, if ∆λ is chosen small

enough, the curve S(λi − ∆λ/2) → S(λi + ∆λ/2) can be approximated by the constant value

S(λi) across the bandwidth ∆λ, in which case the results can be quite accurate. With

this simple integration scheme, the power in the band equals the band’s rectangular

area. While there are more sophisticated integration schemes you could use, this one is

simple, easy to program, and adequate for your purposes.

Let’s calculate the power P(λ) emitted by the wavelengths across the small band ∆λ.

Figure 10-9 shows an enlargement of the band shown in Figure 10-8 centered at λ=1.5

um. This might be considered a typical bandi in Equation 10-10. Listing 10-2 evaluates

the power generated by the wavelengths across this bandwidth. The curve S(λ) has been

generated according to Equation 10-7. According to this simplified integration scheme,

the power generated by this band, which is just its rectangular area, is given by

 P S J s m W ml l l() = () =D / / /2 2 (10-11)

Figure 10-9. Numerical integration of power S(λ)dλ emitted by spectrum bandi
across a .01 μm bandwidth at λi=1.5 (produced by Listing 10-2)

Chapter 10 Demonstrations

337

In Listing 10-2, which plots Figure 10-9, the area of the band is calculated according

to Equation 10-11. The magnitude of ∆λ is arbitrary. In the program, it is the parameter

dla, which is set to .01x10−6 meters or .01 μm. Whether ∆λ is large or small, the power

it emits will be the power radiated by the wavelengths across that bandwidth. Wider

bandwidths will generate proportionally more power, narrower ones less. Later, when

you do a numerical integration of the area under the entire S(λ) curve to get the total

power radiated by the Sun across its entire spectrum, choosing a small value of ∆λ will

lead to more accurate results.

In Figure 10-9, the band is shown at λ=1.5 um. The corresponding value of S, as

calculated by the program, is 1.164x107 MW/m3. With a bandwidth of .01 μm, which

equals 1.0x10−8 meters, the power generated by this band is (1.164x107)x(1x10−8)=.1164

MW/m2, about what a small power plant produces.

Note that the units of S(λ) will be consistent with those of the input parameters:

speed of light, Planck’s Constant, Boltzman’s Constant, and wavelength λ. The units

of these parameters should be consistent with one another. To avoid confusion, in

this work you will keep all of these quantities in the spatial dimension of meters when

evaluating Equation 10-7. S(λ) will then have the units (J/s)/m3, which is the same as W/

m3. If output is needed in another power dimension, such as kW or MW, the conversion

can be done after S(λ) has been evaluated by multiplying S(λ) in watts by 10−3 to get

kilowatts or 10−6 to get megawatts. When calculating power emitted across a waveband,

the width of that band ∆λ should also be in meters. For example, 1.5μm should be

specified as 1.5x10−6m. Conversion from meters back to micrometers μm for display or

other purposes later can be done by multiplying λ meters by 10+6. This is shown in Listing

10-2 in the section plot s curve in line lag=la*10**6.

In the figure, Si is shown with a value of 1.164x107 MW/m3. The S(λ) axis indicates a

value of 11.64 MW/m3x10−6, which indicates that the value of 11.64 has been multiplied

by 10−6 for display purposes. This would make its actual value 11.64x10+6, which equals

the value calculated by the program. This is displayed on the plot as 1.164x10+7 MW/m3.

In Listing 10-2, which created Figure 10-9, the section plot S curve solves

Equation 10-7 for values of wavelength la, which go from la=lamin to lamax in

increments dla. The comments within the code trace the evolution of the units of S. As

given by Equation 10-7, when the parameters are as indicated in section establish
parameters, the units of s start off as Joules/second per cubic meter (remember s(λ) is a

density). Since one Joule per second defines the watt, the units are watts per cubic meter.

These are converted to megawatts per cubic meter and then scaled to be plotted against

Chapter 10 Demonstrations

338

the vertical axis in the units (MW/m3)x10−6 as the variable sg. The 10−6 factor indicates

the actual values have been multiplied by that amount. Next, the green band is plotted

and the values of temperature and emissivity are displayed.

The value of S(λ) at λ=1.5 is calculated using Equation 10-7, converted to MW/m3,

and then multiplied by the bandwidth dl=.01x10−6 to get pl MW/m2, the power within

that bandwidth. The remainder of the program displays the data and cleans up the plot.

Listing 10-2. Program BANDINTEGRAL

"""

BANDINTEGRAL

"""

import numpy as np

import matplotlib.pyplot as plt

#-- set up axes

ymax=20

plt.axis([1.,2.,0,ymax])

plt.xlabel('Wavelength λ (μm)')

plt.ylabel('S(λ) (MW/m3) x 10$^{-6}$')

plt.grid(True)

plt.title('Max Planck's Solar Spectrum - Band Integral')

#-- establish parameters

c=2.9979*(10.**8) # speed of light in a vacuum m/s

h=6.63*(10.**-34) # Planck's Constant J.s

kb=1.38*(10**-23) # Boltzmann's Constant J/K

t=5800. # temperature K

e=1.0 # emissivity

lamin=.01*10**-6 # starting wavelength m

lamax=2.*10**-6 # ending wavelength m

dla=.01*10**-6 # incremental wavelength m

#—— plot s curve

for la in np.arange(lamin,lamax,dla):

 a1=2.*np.pi*c*c*h/(la**5.)

Chapter 10 Demonstrations

339

 a2=h*c/(la*kb*t)

 sl=e*a1/(np.exp(a2)-1.) # J/s/m^3 = W/m^3

 sl=sl*10**-6 # MW/m^3

 slg=sl*10**-6 # scale plot at 10^-6 scale

 lag=la*10**6 # scale to plot at 10^6 scale

 plt.scatter(lag,slg,s=1,color='r')

#——— plot band

plt.plot([1.495,1.495],[0.,11.64],color='g')

plt.plot([1.4975,1.4975],[0.,11.64],color='g')

plt.plot([1.5,1.5],[0,11.64],color='g')

plt.plot([1.5025,1.5025],[0.,11.64],color='g')

plt.plot([1.5005,1.505],[0.,11.64],color='g')

#——————————————————————————————— plot temperature and emissivity

d=str(t)

plt.text(1.6,15,'T=')

plt.text(1.65,15,d)

plt.text(1.6,14,'e=')

d=str(e)

plt.text(1.65,14,d)

#———————————————————— calculate s and band power pl at lambda=1.5

la=1.5*10**-6

a1=2.*np.pi*c*c*h/(la**5.)

a2=h*c/(la*kb*t)

sl=e*a1/(np.exp(a2)-1.) # J/s/m^3 = W/m^3

sl=sl*10**-6 # MW/m^3

dl=.01*10**-6 # bandwidth m

pl=sl*dl

#———————————————————————————————— plot results and labels

plt.plot([1.53,1.59],[11.6,11.6],'k')

plt.text(1.6,11.5,'si=')

d='%7.3e'%(sl)

plt.text(1.65,11.5,d)

plt.text(1.83,11.5,'MW/m^3')

Chapter 10 Demonstrations

340

plt.arrow(1.4,5,.085,0,head_width=.5,head_length=.01,linewidth=.2)

plt.arrow(1.6,5,-.085,0,head_width=.5,head_length=.01,linewidth=.2)

plt.text(1.15,5,'$\Delta \lambda$=')

dle='%7.3e'% (dl)

dls=str(dle)

plt.text(1.18,5,dls)

plt.text(1.35,5,'m')')

plt.text(1.145,4,'=')

dl=dl*10**6

dle='%7.3e'%(dl)

dls=str(dle)

plt.text(1.18,4,dls)

plt.text(1.35,4,'um')

plt.text(1.35,16.5,'s(λ)')

plt.text(1.52,2.5,'power$_{i}$=')

pl='%7.3e'%(pl)

pl=str(pl)

plt.text(1.65,2.5,pl)

plt.text(1.823,2.5,'MW/m^2')

plt.text(1.45,-1.1,'λ_{i}=1.5')

plt.show()

Next, let’s look at Max Planck’s entire black body spectrum as shown in Figure 10-8.

It’s titled as “Max Planck’s Solar Spectrum” since the temperature used is that of the Sun,

approximately 5800° K.

The program that produced this plot, Listing 10-3, follows the logic in the preceding

program, Listing 10-2, but here you sum the individual band powers from λ=.01x10−6 to

10.x10−6 meters (.01μm to 10.μm) to get the area under the entire (almost) S(λ) curve. The

band you looked at in Listing 10-2 is shown at λ=1.5 um.

The process used here is to simply advance along wavelengths, calculate the value

of S(λ) at each wavelength, multiply it by ∆λ to get the power within that band, and then

sum the power generated by each band in accordance with Equation 10-10. This will

give you the total power emitted by all wavelengths.

Chapter 10 Demonstrations

341

You extend the range of integration to 10x10−6 meters in order to get a more accurate

measure of the total power under the S(λ) curve. This will be the total spectral power

emitted by each square meter of the Sun’s surface. Then you multiply that by the Sun’s

spherical surface area to get the total power emitted by the Sun, which is known as the

solar luminosity. In Figure 10-8, it is called the “total solar output.” As shown on the plot,

its value as calculated by the program is 3.816x1026 watts. This is in close agreement with

published values.

Many researchers use e=1.0 for emissivity, which is an idealization that assumes

the Sun is a perfect radiator (you can assume it isn’t). Here you use an emissivity of

e=.984. When you use Planck’s spectrum to calculate the solar constant, which has been

measured by satellite (next section), you must either reduce the temperature of the Sun

in your calculations or lower its emissivity to less than 1.0 in order to get the results to

agree with measured values. If you choose to stay with a Sun temperature of 5800°K, then

you must lower the emissivity to .984 in order to obtain agreement. Another option, as

you will see, is to keep e=1.0 and lower the Sun’s temperature to 5777° K.

Listing 10-3. Program PLANCKSSOLARSPECTRUM

"""

PLANCKSSOLARSPECTRUM

"""

import numpy as np

import matplotlib.pyplot as plt

#—— set up axes

ymax=100

plt.axis([0,3,0,ymax])

plt.xlabel('Wavelength _ (_m)')

plt.ylabel('S(λ) (MW/m^{3}) x 10^-6')
plt.grid(True)

plt.title('Max Planck's Solar Spectrum')

#—— establish parameters

c=2.9979*(10.**8) # speed of light in a vacuum m/s

h=6.63*(10.**-34) # Planck's Constant J.s

kb=1.38*(10**-23) # Boltzmann's Constant J/K

e=.984 # emissivity

Chapter 10 Demonstrations

342

t=5800. # K

lamin=.01*10**-6 # m

lamax=10.*10**-6 # m

dla=.01*10**-6 # m

st=0. # set area under s curve to zero

#—————————————————————————————— plot s curve and calculate area

for la in np.arange(lamin,lamax,dla):

 a1=2.*np.pi*c*c*h/(la**5.)

 a2=h*c/(la*kb*t)

 sl=e*a1/(np.exp(a2)-1.) # W/m^3

 sl=sl*10**-6 # MW/m^3

 bandarea=sl*dls # band area MW/m^2

 st=st+bandarea # sum band areas MW/m^2

 slg=sl*10**-6 # scale to plot

 lag=la*10**6 # scale to plot

 plt.scatter(lag,slg,s=1,color='r')

#—————————————————————————————————— multiply the Sun's surface area

ds=1.39*10**9 # Sun's diameter m

spas=np.pi*ds**2. # Sun's spherical area m^2

to=spas*st # Sun's total output MW

to=to*10**6 # Sun's total output W

#—— plot results

plt.text(.8,58.,'5800')

plt.text(1.05,58, '°K')

plt.plot([.39,.39],[-0.,100.],'b–')

plt.plot([.7,.7],[-0.,100.],'b–')

plt.text(.3,-10,'.390')

plt.text(.6,-10,'.700')

plt.text(.15,90.,'UV')

plt.text(.8,90.,'long wave infrared')

plt.arrow(1.75,91.,.8,0.,head_width=1.,head_length=.1,color='r')

plt.text(1.2,40.,'total solar output =')

so='dd=str(so)

plt.text(2.1,40,dd)

plt.text(2.7,40,'W')

Chapter 10 Demonstrations

343

plt.text(1.2,34,'emissivity =')

e=str(e)

plt.text(1.8,34,e)

plt.text(.5,75.,'v')

plt.text(.53,70.,'i')

plt.text(.5,65.,'s')

plt.text(.53,60.,'i')

plt.text(.5,55.,'b')

plt.text(.53,50.,'l')

plt.text(.5,45.,'e')

plt.plot([1.49,1.49],[0.,11.61],color='g')

plt.plot([1.5,1.5],[0.,11.61],color='g')

plt.plot([1.51,1.51],[0.,11.61],color='g')

#—————————————————— calculate s at la=1.5x10^-6 m and band power pband

laband=1.5*10**-6

a1=2.*np.pi*c*c*h/(laband**5.)

a2=h*c/(laband*kb*t)

sband=a1/(np.exp(a2)-1.)

sband=sband*10**-12

pband=sband*dla # MW/sq meter

pband=pband*10**6 # W/sq meter

#—— plot band

plt.plot([1.55,1.7],[12.5,15.],color='k')

plt.text(1.72,14.,' p=')

pband='pband=str(pband)

plt.text(1.9,14,pband)

plt.text(2.4,14,'MW/m^2')

plt.arrow(1.35,5,.1,0,head_width=1, head_length=.05, ec='k', fc='k')

plt.arrow(1.65,5,-.1,0,head_width=1, head_length=.05, ec='k', fc='k')

plt.text(.82,4.9,'Δλ = :01μm')

plt.show()

Chapter 10 Demonstrations

344

10.3 Earth’s Irradiance
Figure 10-10 shows the spectrum of solar radiation that reaches Earth. Figure 10-11

shows the Earth orbiting the Sun. This is the model used to calculate the amount of the

Sun’s total power output that is intercepted by Earth, the solar constant. The distance

between the two orbs is an average of 1 AU, about 93,000,000 miles. It varies during an

orbit. The circular disk labelled Ap has an area equal to the Earth’s cross-section. The

solar power intercepted by Ap is responsible for heating the Earth.

Figure 10-10. Svpectrum of solar power reaching Earth, the Earth’s solar
irradiance, produced by Listing 10-3, which has been modified by inclusion of the
inverse square law

Chapter 10 Demonstrations

345

Notice how much lower the values are than in Figure 10-8. This is because the power

intensity of the Sun’s output that reaches Earth and is intercepted by Ap diminishes over

the distance from Sun to Earth according to the inverse square law of

p p

r

rp s
s

es

=
æ

è
ç

ö

ø
÷

2

(10-12)

where ps is the intensity of power at the Sun’s surface, pp is the intensity intercepted by

Ap, rs is the radius of the Sun, and res is the distance from the Sun to the Earth. The total

power intercepted by Ap is thus

P A pp p p= (10-13)

P A p

r

rp p s
s

es

=
æ

è
ç

ö

ø
÷

2

(10-14)

When Equation 10-13 is included in Listing 10-3, the spectrum reduces to

Figure 10- 10. Again, notice how much lower the values are than in Figure 10-8 as a result

of the inverse square law.

Pp, which is the solar power reaching the top of the Earth’s atmosphere, is called the

solar constant. Its value as measured by satellite is about 1361 W/m2. About 30% of this

is reflected off the Earth’s surface and atmosphere by albedo effects such as snow, ice,

clouds, water, etc. The remainder is absorbed by the Earth. Much of that is reradiated

back into space, allowing the planet to reach a thermal equilibrium. The Earth is also a

hot (warm) body and it exhibits its own thermal radiation out into space. But some of

what should be reradiated is blocked by greenhouse gasses including CO2, contributing

to global warming. All this is, as we know, being actively investigated by climate

researchers.

Chapter 10 Demonstrations

346

10.3.1 The Earth Sun Model
Figure 10-11 shows the Earth orbiting the Sun and Listing 10-4 contains the code.

Listing 10-4. Program EARTHSUN

"""

EARTHSUN

"""

import matplotlib.pyplot as plt

import numpy as np

from math import radians, sin, cos, sqrt

plt.axis([-100,150,-100,150])

plt.grid(False)

plt.axis('off')

sfx=2.5/3.8

Figure 10-11. The Earth-Sun Model produced by Listing 10-4

Chapter 10 Demonstrations

347

#———————————————————————background

for x in range(-100,150,2):

 for y in range(-100,150,2):

 plt.scatter(x,y,s=40,color='midnightblue')

phimin=0.

phimax=2.*np.pi

dphi=phimax/100.

rs=40.

re=20.

ys=15.

ye=2.

xos=50.

yos=0.

zos=0.

#———————————————————Sun's core

plt.scatter(xos,yos,s=4300,color='yellow')

#———————————————————Sun horizontals

rx=radians(20)

for ys in np.arange(-rs,rs,5):

 for phi in np.arange(phimin,phimax,dphi):

 rp=np.sqrt(rs*rs-ys*ys)

 xp=rp*np.sin(phi)

 yp=ys

 zp=rp*np.cos(phi)

 px=xos +sfx*xp*1. +yp*0. +zp*0.

 py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

 pz=zos +xp*0. +yp*np.sin(rx) +zp*np.cos(rx)

 if pz > 0 :

 plt.scatter(px,py,s=1,color='red')

Chapter 10 Demonstrations

348

#————————————————————Sun verticals

alphamin=0.

alphamax=2.*np.pi

dalpha=alphamax/30.

for alpha in np.arange(alphamin,alphamax,dalpha):

 for phi in np.arange(phimin,phimax,dphi):

 xp=rs*np.sin(phi)*np.sin(alpha)

 yp=rs*np.cos(phi)

 zp=rs*np.sin(phi)*np.cos(alpha)

 px=xos +sfx*(xp*1. +yp*0. +zp*0.)

 py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

 pz=zos +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)

 if pz > 0 :

 plt.scatter(px,py,s=1,color='red')

#——————————————————————Earth's clouds

xoe=-50.

yoe=20.

zoe=-10.

plt.scatter(xoe,yoe,s=800,color='white')

#———————————————————— Earth horizontals

rx=20.*np.pi/180.

dphi=phimax/100.

for ys in np.arange(-re,re,2):

 for phi in np.arange(phimin,phimax,dphi):

 rp=np.sqrt(re*re-ys*ys)

 xp=rp*np.sin(phi)

 yp=ys

 zp=rp*np.cos(phi)

 px=xoe +sfx*(+xp*1. +yp*0. +zp*0.)

 py=yoe +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

Chapter 10 Demonstrations

349

 pz=zoe +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)

 if pz > 0 :

 plt.scatter(px,py,s=.1,color='#add8e6')

#—————————————————————Earth verticals

alphamin=0.

alphamax=2.*np.pi

dalpha=alphamax/30.

for alpha in np.arange(alphamin,alphamax,dalpha):

 for phi in np.arange(phimin,phimax,dphi):

 xp=re*np.sin(phi)*np.sin(alpha)

 yp=re*np.cos(phi)

 zp=re*np.sin(phi)*np.cos(alpha)

 px=xoe +sfx*(xp*1. +yp*0. +zp*0.)

 py=yoe +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

 pz=zoe +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)

 if pz > 0 :

 plt.scatter(px,py,s=.1,color='#add8e6')

plt.arrow(xos-rs*sfx-3,yos+2,xoe-(xos-rs*sfx)+re+3,yoe-yos-6.2,color='r',

 head_length=4.,head_width=3.)

plt.text(-14,16,'1 AU',color='white')

plt.text(80,-29,'Sun',color='white')

plt.text(-84,10,'Earth',color='white')

#———————————————————————front orbit

deltamin=0.*np.pi/180.

deltamax=195.*np.pi/180.

ddelta=deltamax/60.

for delta in np.arange(deltamin,deltamax,ddelta):

 r=108./sfx

 xp=r*np.cos(delta)

 yp=0.

 zp=r*np.sin(delta)

 px=xos +sfx*(xp*1. +yp*0. +zp*0.)

 py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

Chapter 10 Demonstrations

350

 pz=zos +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)

 plt.scatter(px,py,s=1,color='white')

#———————————————————————back orbit

deltamin=220.*np.pi/180.

deltamax=360.*np.pi/180.

for delta in np.arange(deltamin,deltamax,ddelta):

 r=108./sfx

 xp=r*np.cos(delta)

 yp=0.

 zp=r*np.sin(delta)

 px=xos +sfx*xp*1. +yp*0. +zp*0.

 py=yos +xp*0. +yp*np.cos(rx) -zp*np.sin(rx)

 pz=zos +xp*0. +yp*(np.sin(rx)) +zp*np.cos(rx)

 plt.scatter(px,py,s=1,color='white')

#———————————————————Ap disc

xoc=xoe+re*sfx

yoc=yoe-2.5

zoc=zoe

rc=.83*re

phi1=0

phi2=2*np.pi

dphi=(phi2-phi1)/200

ry=-25*np.pi/180

for phi in np.arange(phi1,phi2,dphi):

 xc=xoc

 yc=rc*np.sin(phi)

 zc=rc*np.cos(phi)

 px=xoc+zc*np.sin(ry)

 py=yoc+yc

 pz=zoc+zc*np.cos(ry)

 plt.scatter(px,py,s=.03 ,color='white')

Chapter 10 Demonstrations

351

plt.scatter(xoe+re*sfx,yoe-2,s=6,color='white')

plt.arrow(-20,60,(xoe+re*sfx)+24,(yoe+re/2)-60-2,color='white',

 linewidth=.5,head_width=2.,head_length=3)

plt.text(-18,60,'Ap',color='white')

plt.show()

10.4 Summary
In this chapter you have seen some typical applications of Python graphics

programming. In the first section you saw how relatively easy it is the create the image

of Saturn. The planet’s body utilized the sphere and shading algorithms developed

in earlier chapters; the bands were developed by constructing concentric rings flat in

the x,z plane. The shadow algorithm required a bit of original geometry. The whole

thing was then rotated in space about the x,y,z axes. In the section on solar radiation

you learned about the physics of solar radiation, especially Max Planck’s black body

radiation formula, and Python’s ability to construct technical illustrations. Of special

note are the techniques used to scale variables for plotting. Then you learned how to

build images such as Figure 10-8 which displays the model used to understand Earth’s

solar irradiance.

Chapter 10 Demonstrations

353
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_11

APPENDIX A

Where to Get Python
There are several places on the Internet where you can download various versions of

Python. I use Anaconda with Spyder2 and Python 3.5. This is available for download from

Continuum Analytics at https://docs.continuum.io/anaconda/install.

It’s free and easy; just follow the instructions. While I use Python 3.5, I recommend

using the latest version.

An icon should appear on your desktop. If it doesn’t, look in your list of installed

programs and drag it to the desktop. Double-click it to get the environment to run. You

will be entering Python script in the left pane. After entering code for a program, click

the Run button at the top or press the F5 key on your keyboard. You may be told to open

a new console. Click the Consoles button at the top then select the “Open an IPython

console” option to do so. Try to run it again. Results should appear in the pane at the

lower right.

There is a pane at the upper right that shows the state of variables. I never use it; in

fact, I close it to allow more room for output. If I want to see what a particular variable is

doing, I usually put a print statement in the program. The variable’s history will appear

in the output pane.

If you find your program is doing unexpected things, it can sometimes help to open a

new console and rerun the program.

https://docs.continuum.io/anaconda/install

355
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_12

APPENDIX B

Planck’s Radiation Law
and the Stefan-Boltzmann
Equation
In Chapter 10, you were introduced to Max Planck’s famous equation of black body

radiation:

S
c h

e

J s m W mhc

kT

l
l

() =
-

=
2

1

2

5
3 3p e

l

/ / /

(B-1)

The power emitted by a surface over a bandwidth λ1 → λ2 is

P S d J s m W ml l
l

l

l l
1 2

1

2

2 2
® = () =ò / / /

(B-2)

With Equation B-1, this becomes

P c h

e

d J s m W mhc

kT

l l
l

l

l l
l

1 2
1

2

2

1

2
5

2 2
®

-

=
-

=òp
e

/ / /

(B-3)

356

In Chapter 10, you numerically integrated Equation B-3. Here you will

mathematically integrate it and show that it can be used to derive the Stefan-Boltzmann

Law of black-body radiation

p

k

h c
TB=

e p2
15

5 4

3 2
4

 (B-4)

where T is the surface’s absolute temperature, p is power radiated per unit area, kB is

Boltzmann’s Constant, h is Planck’s Constant, c is the speed of light, and ϵ is the surface’s

emissivity. The power radiated from a surface of area A is then

 P pA= = e sA T4 (B-5)

where

s

p
= = -2

15
5 6696 10

5 4

3 2
8 2 4k

h c
x W m KB . / / (B-6)

σ is known as the Stefan-Boltzmann Constant. Equation B-4 relates power intensity

radiated by a surface to the fourth power of its temperature, T. This equation is

commonly used in science and engineering.

To carry out the integration that results in Equation B-4, you start with Planck’s

radiation equation (also shown in 12-1 above):

S
hc

e
hc

TB

l
l l

() =
-

2

1

2

5

p e

k
(B-7)

You want to integrate this from λ=0 to λ=∞ to get the total power per unit

area p radiated by all wavelengths. Letting C1=ϵ2πhc2 and C
k T

h
B

2 = , you get

p C
d

eC

=

-

¥ -

ò1
0

5

1

2 1

l l

l
(B-8)

Appendix B plAnck’s RAdiAtion lAw And the stefAn-BoltzmAnn equAtion

357

If you make the following substitutions

 x C dx C d= =2 2l l, (B-9)

after a little fussing around you have

p C C
dx

x e x

=
-

æ

è
ç

ö

ø
÷

¥

ò1 2
4

0 5
1

1

(B-10)

Using the well-known :) relation

0 5
1

4

1
15

¥

ò
-

æ

è
ç

ö

ø
÷

=
dx

x e x

p

(B-11)

and substituting C1 and C2 into Equation B-10, you get

p

k

h c
TB=

e p2
15

5 4

3 2
4

 (B-12)

which is the same as Equation B-4 above.

Appendix B plAnck’s RAdiAtion lAw And the stefAn-BoltzmAnn equAtion

359
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8

Index

A
arange() function, 52

B
Black body radiation

Boltzmann’s Constant, 356
Stefan-Boltzmann Law, 356

Bottom-up programming, 134
Box, 203

shading objects, 236

C
Circular arcs

dots, 52
line segments, 59

Corner numbering
scheme, 114

D
2D data plotting

function fitting, 269–271
legend() function, 255
linear regression, 265–269,

272–273, 275
program, 256–258, 260–262,

264–265
splines, 275–282
twin plotting axis, 259

3D data plotting
plotdata() function, 286
plotspline() function, 285–293, 295
plt.axis() function, 285–286
rotation model, 296

x direction, 109–110
y direction, 106–109
z direction, 111

surfaces, 297–305
surface shading, 305–318

Dot art, 50
Dot discs, 64
2D rotation model

circles, 93, 97
column vectors, 81
components, 80
corner coordinates, 91
definitions, 81
2DROTCIRCLE1 program, 94–96
2DROTCIRCLE2 program, 98–100
2DROT1 program, 83
2DROTRECTANGLE program, 87–90
equation, 80
global coordinate system, 78
local system, 79
matrices, 81
model creation, 78, 93
radians() function, 83
unit vectors, 79
vectors, 82

2D translation, 75

https://doi.org/10.1007/978-1-4842-3378-8

360

E
Ellipses

ELLIPSEMODEL program, 73–75
line equation, 69
major and minor

dimensions, 68
model creation, 70
polar coordinates, 69
program, 71

F, G
Functional programming, 134

H
Hidden lines

box, 203
inter-object, 203
intra-object, 203
planes, 218
pyramid, 212
sphere, 225

I, J
Inter-object hidden line, 203
Intersections

line
circle, 180
circular sector, 181
rectangular plane, 153
sphere, 187
triangular plane, 166

overview, 153
plane sphere, 196

Isometric projections, 105–106
vs. perspective views, 143

K
Keyboard data entry

bottom-up programming, 134
coding, 136
functional programming, 134
input() function, 134
plotcircle() function, 134
top-down programming, 134

L, M
len(x) function, 205
Line intersection

circle, 180
circular sector

in-bounds/out-of-bounds
test, 183–184

LCSTEST program, 184–187
line intersection, 181
local coordinates, 182

rectangular plane, 153
coordinate, 160
data input, 159
definitions, 159
dot product, 158
geometry plane, 154
hit point lies, 157
LRP program, 161–166
out-of-bounds geometry, 158
parameters, 159
plane’s boundaries, 160
rectangle’s boundaries, 160
relations, 154
rotation functions, 159
unit vector, 154, 156

sphere, 187
components, 189
coordinates, 190

Index

361

latitudes, 190, 192
longitude, 191
LS program, 192–196
model for, 188
unit vector, 189

triangular planes
expression, 167
geometry, 166
Heron’s formula, 167
hit produce, 169
LTP program, 175–180
out of bounds test, 168
THT1 program, 169–172
vector result, 173

N, O
np.scatter() function, 59, 61
np.sin() and np.cos() function, 52

P, Q
Perspective view

function, 147
imaginary rays, 144
vs. isometric view, 143
pinhole camera vs. computer

projection, 144
primitive camera, 143
program, 148–150
projection geometry, 146
relations, 144
side view of projection

geometry, 147
Vermeer’s interior, 151
z position, 146

Pinhole camera vs. computer
projection, 144

Planes
hidden lines, 218
intersections, 196

Plotting area
axis labels, 13–14
background color, 23
colors, 15

intensity, 19–20
mixing, 16–19

coordinate axes, 29–30
custom grid lines, 11–12
displaying, 8
grid, 8, 9
importing commands, 6–7
overplotting, 20–22
saving, 8
shape distortions

circle, 26
plt.axis(), 27–28
scale factor, 27
square, 23–25

size of, 4–5
technical graphics, 3
tick marks, 9–10
title, 14–15
two-dimensional coordinate

system, 3
Plotting commands and functions

arange() function, 42
arrays, 41
arrows, 33–34
line styles, 32
lists, 36–40
points and dots,

scatter(), 31–32
range(), 43
text, 34–36
tuples, 38, 41

Index

362

plt.plot() function, 226
Power density, 334
Programming style, 2–3
Pyramid, 212

R
radians() function, 52, 83, 87
Rectangular plane, 153
Right-hand rule, 101–102
RMS value, 266

S
Saturn, 1, 321

center of rotation, 324
components, 327
midnightblue, 327
program, 328–331
rings model, 325
rotation functions, 325
shading algorithm, 327
shadow cast, 321–323, 326
side view, 326

Shading objects
box, 236
dots/lines, 235
generic plane, 241
overview, 235
shade() function, 239
sphere, 246
theories, 235

Solar radiation, 331
Earth’s irradiance

power intensity, 345
solar constant, 344–345
Sun model, 346–350

Max Planck’s black body radiation
birth of quantum mechanics, 333
blackbody radiation

formula, 333–334
Maxwell’s equations, 333
wave packets, 333

photons and the Sun, 331–332
solar constant, 331
Sun’s total power output

BANDINTEGRAL program, 338–340
dla parameter, 337
integration, 335–336
mass density, 334
Planck’s spectrum program, 341–343
power density, 334
solar luminosity, 341

Sphere
hidden lines, 225
line intersection, 187
plane intersections, 196
shading objects

equation, 247
non-linear intensity function, 246
nonlinear shading function, 249
np.arange() function, 248
plotting longitudes and latitudes, 248
SHADESPHERE program, 249–253
unit vector, 248

Stefan-Boltzmann Constant, 356

T, U, V, W, X, Y, Z
Three-dimensions

4BOXES program
coding, 117
corner numbering scheme, 114
plotbox function, 116–117

Index

363

rotx function, 115
roty function, 116

4BOXESUPDATE program
coding, 122–123
corner coordinates, 121
sequence rotations, 123

coordinate system, 103
3D rotation model (see 3D data

plotting)
foreshortening, 105
isometric projections, 105–106
keyboard data entry (see Keyboard

data entry)
matplotlib system, 103
matrix concatenation

order of rotation, 130–132
SEQUENTIALCIRCLESUPDATE

program, 132–133
perspective view, 105–106
projection of, 104
right-hand rule, 101–102
SEQUENTIALCIRCLES program, 124

Top-down programming, 134
Triangular planes, 166
Two-dimensional images

circles, 60
circular arcs

dots, 52
line segments, 59

dot art, 50
dot discs, 64
ellipses, 68
lines from dots

attributes, 45
coordinate values, 47
DOTLINE program, 48–49
line creation, 45
scalar components, 46
unit vector, 46

numpy, 50
plt.plot() line segments, 60
random library, 50
rotation (see 2D rotation model)
translation, 75

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Essential Python Commands and Functions
	1.1 Programming Style
	1.2 The Plotting Area
	1.3 Establishing the Size of the Plotting Area
	1.4 Importing Plotting Commands
	1.5 Displaying the Plotting Area
	1.6 The Plotting Grid
	1.7 Saving a Plot
	1.8 Grid Color
	1.9 Tick Marks
	1.10 Custom Grid Lines
	1.11 Labelling the Axes
	1.12 The Plot Title
	1.13 Colors
	1.13.1 Color Mixing
	1.13.2 Color Intensity

	1.14 Overplotting
	1.15 Background Color
	1.16 The Plotting Area Shape
	1.17 How to Correct Shape Distortions
	1.17.1 Applying a Scale Factor When Plotting
	1.17.2 The Best Way: Scaling the Axes in plt.axis()

	1.18 Coordinate Axes
	1.19 Commonly Used Plotting Commands and Functions
	1.19.1 Points and Dots Using scatter()
	1.19.2 Lines Using plot()
	1.19.3 Arrows
	1.19.4 Text
	1.19.5 Lists, Tuples, and Arrays
	1.19.6 Arrays
	1.19.7 arange()
	1.19.8 range()

	1.20 Summary

	Chapter 2: Graphics in Two Dimensions
	2.1	 Lines from Dots
	2.2	 Dot Art
	2.3	 Circular Arcs from Dots
	2.4	 Circular Arcs from Line Segments
	2.5	 Circles
	2.6	 Dot Discs
	2.7	 Ellipses
	2.8	 2D Translation
	2.9	 2D Rotation
	2.10	 Summary

	Chapter 3: Graphics in Three Dimensions
	3.1 The Three-Dimensional Coordinate System
	3.2 Projections onto the Coordinate Planes
	3.3 Rotation Around the y Direction
	3.4 Rotation Around the x Direction
	3.5 Rotation Around the z Direction
	3.6 Separate Rotations Around the Coordinate Directions
	3.7 Sequential Rotations Around the Coordinate Directions
	3.8 Matrix Concatenation
	3.9 Keyboard Data Entry with Functional Program Structure
	3.10 Summary

	Chapter 4: Perspective
	4.1	 Summary

	Chapter 5: Intersections
	5.1 Line Intersecting a Rectangular Plane
	5.2 Line Intersecting a Triangular Plane
	5.3 Line Intersecting a Circle
	5.4 Line Intersecting a Circular Sector
	5.5 Line Intersecting a Sphere
	5.6 Plane Intersecting a Sphere
	5.7 Summary

	Chapter 6: Hidden Line Removal
	6.1 Box
	6.2 Pyramid
	6.3 Planes
	6.4 Sphere
	6.5 Summary

	Chapter 7: Shading
	7.1 Shading a Box
	7.2 Shading a Sphere
	7.3 Summary

	Chapter 8: 2D Data Plotting
	8.1 Linear Regression
	8.2 Function Fitting
	8.3 Splines
	8.4 Summary

	Chapter 9: 3D Data Plotting
	9.1 3D Surfaces
	9.2 3D Surface Shading
	9.3 Summary

	Chapter 10: Demonstrations
	10.1	 Saturn
	10.2	 Solar Radiation
	10.2.1 Photons and the Sun
	10.2.2 Max Planck’s Black Body Radiation
	10.2.3 The Sun’s Total Power Output

	10.3	 Earth’s Irradiance
	10.3.1 The Earth Sun Model

	10.4	 Summary

	Appendix A: Where to Get Python
	Appendix B: Planck’s Radiation Law and the Stefan-Boltzmann Equation
	Index

