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Preface

The design and analysis of efficient data structures has long been recognized as a
vital subject in computing and is part of the core curriculum of computer science
and computer engineering undergraduate degrees. Data Structures and Algorithms
in Python provides an introduction to data structures and algorithms, including their
design, analysis, and implementation. This book is designed for use in a beginning-
level data structures course, or in an intermediate-level introduction to algorithms
course. We discuss its use for such courses in more detail later in this preface.

To promote the development of robust and reusable software, we have tried to
take a consistent object-oriented viewpoint throughout this text. One of the main
ideas of the object-oriented approach is that data should be presented as being en-
capsulated with the methods that access and modify them. That is, rather than
simply viewing data as a collection of bytes and addresses, we think of data ob-
jects as instances of an abstract data type (ADT), which includes a repertoire of
methods for performing operations on data objects of this type. We then empha-
size that there may be several different implementation strategies for a particular
ADT, and explore the relative pros and cons of these choices. We provide complete
Python implementations for almost all data structures and algorithms discussed,
and we introduce important object-oriented design patterns as means to organize
those implementations into reusable components.

Desired outcomes for readers of our book include that:
• They have knowledge of the most common abstractions for data collections

(e.g., stacks, queues, lists, trees, maps).
• They understand algorithmic strategies for producing efficient realizations of

common data structures.
• They can analyze algorithmic performance, both theoretically and experi-

mentally, and recognize common trade-offs between competing strategies.
• They can wisely use existing data structures and algorithms found in modern

programming language libraries.
• They have experience working with concrete implementations for most foun-

dational data structures and algorithms.
• They can apply data structures and algorithms to solve complex problems.

In support of the last goal, we present many example applications of data structures
throughout the book, including the processing of file systems, matching of tags
in structured formats such as HTML, simple cryptography, text frequency analy-
sis, automated geometric layout, Huffman coding, DNA sequence alignment, and
search engine indexing.

v
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vi Preface

Book Features

This book is based upon the book Data Structures and Algorithms in Java by
Goodrich and Tamassia, and the related Data Structures and Algorithms in C++
by Goodrich, Tamassia, and Mount. However, this book is not simply a translation
of those other books to Python. In adapting the material for this book, we have
significantly redesigned the organization and content of the book as follows:

• The code base has been entirely redesigned to take advantage of the features
of Python, such as use of generators for iterating elements of a collection.

• Many algorithms that were presented as pseudo-code in the Java and C++
versions are directly presented as complete Python code.

• In general, ADTs are defined to have consistent interface with Python’s built-
in data types and those in Python’s collections module.

• Chapter 5 provides an in-depth exploration of the dynamic array-based un-
derpinnings of Python’s built-in list, tuple, and str classes. New Appendix A
serves as an additional reference regarding the functionality of the str class.

• Over 450 illustrations have been created or revised.
• New and revised exercises bring the overall total number to 750.

Online Resources

This book is accompanied by an extensive set of online resources, which can be
found at the following Web site:

www.wiley.com/college/goodrich
Students are encouraged to use this site along with the book, to help with exer-

cises and increase understanding of the subject. Instructors are likewise welcome
to use the site to help plan, organize, and present their course materials. Included
on this Web site is a collection of educational aids that augment the topics of this
book, for both students and instructors. Because of their added value, some of these
online resources are password protected.

For all readers, and especially for students, we include the following resources:
• All the Python source code presented in this book.
• PDF handouts of Powerpoint slides (four-per-page) provided to instructors.
• A database of hints to all exercises, indexed by problem number.

For instructors using this book, we include the following additional teaching aids:
• Solutions to hundreds of the book’s exercises.
• Color versions of all figures and illustrations from the book.
• Slides in Powerpoint and PDF (one-per-page) format.

The slides are fully editable, so as to allow an instructor using this book full free-
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.
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Preface vii

Contents and Organization

The chapters for this book are organized to provide a pedagogical path that starts
with the basics of Python programming and object-oriented design. We then add
foundational techniques like algorithm analysis and recursion. In the main portion
of the book, we present fundamental data structures and algorithms, concluding
with a discussion of memory management (that is, the architectural underpinnings
of data structures). Specifically, the chapters for this book are organized as follows:

1. Python Primer
2. Object-Oriented Programming
3. Algorithm Analysis
4. Recursion
5. Array-Based Sequences
6. Stacks, Queues, and Deques
7. Linked Lists
8. Trees
9. Priority Queues

10. Maps, Hash Tables, and Skip Lists
11. Search Trees
12. Sorting and Selection
13. Text Processing
14. Graph Algorithms
15. Memory Management and B-Trees
A. Character Strings in Python
B. Useful Mathematical Facts

A more detailed table of contents follows this preface, beginning on page xi.

Prerequisites

We assume that the reader is at least vaguely familiar with a high-level program-
ming language, such as C, C++, Python, or Java, and that he or she understands the
main constructs from such a high-level language, including:

• Variables and expressions.
• Decision structures (such as if-statements and switch-statements).
• Iteration structures (for loops and while loops).
• Functions (whether stand-alone or object-oriented methods).

For readers who are familiar with these concepts, but not with how they are ex-
pressed in Python, we provide a primer on the Python language in Chapter 1. Still,
this book is primarily a data structures book, not a Python book; hence, it does not
give a comprehensive treatment of Python.
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viii Preface

We delay treatment of object-oriented programming in Python until Chapter 2.
This chapter is useful for those new to Python, and for those who may be familiar
with Python, yet not with object-oriented programming.

In terms of mathematical background, we assume the reader is somewhat famil-
iar with topics from high-school mathematics. Even so, in Chapter 3, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (�). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix B.

Relation to Computer Science Curriculum

To assist instructors in designing a course in the context of the IEEE/ACM 2013
Computing Curriculum, the following table describes curricular knowledge units
that are covered within this book.

Knowledge Unit Relevant Material
AL/Basic Analysis Chapter 3 and Sections 4.2 & 12.2.4
AL/Algorithmic Strategies Sections 12.2.1, 13.2.1, 13.3, & 13.4.2
AL/Fundamental Data Structures
and Algorithms

Sections 4.1.3, 5.5.2, 9.4.1, 9.3, 10.2, 11.1, 13.2,
Chapter 12 & much of Chapter 14

AL/Advanced Data Structures
Sections 5.3, 10.4, 11.2 through 11.6, 12.3.1,
13.5, 14.5.1, & 15.3

AR/Memory System Organization
and Architecture

Chapter 15

DS/Sets, Relations and Functions Sections 10.5.1, 10.5.2, & 9.4
DS/Proof Techniques Sections 3.4, 4.2, 5.3.2, 9.3.6, & 12.4.1
DS/Basics of Counting Sections 2.4.2, 6.2.2, 12.2.4, 8.2.2 & Appendix B
DS/Graphs and Trees Much of Chapters 8 and 14
DS/Discrete Probability Sections 1.11.1, 10.2, 10.4.2, & 12.3.1

PL/Object-Oriented Programming
Much of the book, yet especially Chapter 2 and
Sections 7.4, 9.5.1, 10.1.3, & 11.2.1

PL/Functional Programming Section 1.10
SDF/Algorithms and Design Sections 2.1, 3.3, & 12.2.1
SDF/Fundamental Programming
Concepts

Chapters 1 & 4

SDF/Fundamental Data Structures
Chapters 6 & 7, Appendix A, and Sections 1.2.1,
5.2, 5.4, 9.1, & 10.1

SDF/Developmental Methods Sections 1.7 & 2.2
SE/Software Design Sections 2.1 & 2.1.3

Mapping IEEE/ACM 2013 Computing Curriculum knowledge units to coverage in
this book.
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14.7.1 Prim-Jarńık Algorithm . . . . . . . . . . . . . . . . . . 672
14.7.2 Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . 676
14.7.3 Disjoint Partitions and Union-Find Structures . . . . . . 681

14.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

15 Memory Management and B-Trees 697

15.1 Memory Management . . . . . . . . . . . . . . . . . . . . . . 698
15.1.1 Memory Allocation . . . . . . . . . . . . . . . . . . . . 699
15.1.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . 700
15.1.3 Additional Memory Used by the Python Interpreter . . . 703

15.2 Memory Hierarchies and Caching . . . . . . . . . . . . . . . 705
15.2.1 Memory Systems . . . . . . . . . . . . . . . . . . . . . 705
15.2.2 Caching Strategies . . . . . . . . . . . . . . . . . . . . 706

15.3 External Searching and B-Trees . . . . . . . . . . . . . . . . 711
15.3.1 (a,b) Trees . . . . . . . . . . . . . . . . . . . . . . . . . 712
15.3.2 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 714

15.4 External-Memory Sorting . . . . . . . . . . . . . . . . . . . . 715
15.4.1 Multiway Merging . . . . . . . . . . . . . . . . . . . . . 716

15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

www.it-ebooks.info

http://www.it-ebooks.info/


Contents xix

A Character Strings in Python 721

B Useful Mathematical Facts 725

Bibliography 732

Index 737

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter

1 Python Primer

Contents

1.1 Python Overview . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Python Interpreter . . . . . . . . . . . . . . . . . . . 2

1.1.2 Preview of a Python Program . . . . . . . . . . . . . . . 3

1.2 Objects in Python . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Identifiers, Objects, and the Assignment Statement . . . . 4

1.2.2 Creating and Using Objects . . . . . . . . . . . . . . . . . 6

1.2.3 Python’s Built-In Classes . . . . . . . . . . . . . . . . . . 7

1.3 Expressions, Operators, and Precedence . . . . . . . . . . . 12

1.3.1 Compound Expressions and Operator Precedence . . . . . 17

1.4 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 Information Passing . . . . . . . . . . . . . . . . . . . . . 24

1.5.2 Python’s Built-In Functions . . . . . . . . . . . . . . . . . 28

1.6 Simple Input and Output . . . . . . . . . . . . . . . . . . . 30

1.6.1 Console Input and Output . . . . . . . . . . . . . . . . . 30

1.6.2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Exception Handling . . . . . . . . . . . . . . . . . . . . . . 33

1.7.1 Raising an Exception . . . . . . . . . . . . . . . . . . . . 34

1.7.2 Catching an Exception . . . . . . . . . . . . . . . . . . . 36

1.8 Iterators and Generators . . . . . . . . . . . . . . . . . . . 39

1.9 Additional Python Conveniences . . . . . . . . . . . . . . . 42

1.9.1 Conditional Expressions . . . . . . . . . . . . . . . . . . . 42

1.9.2 Comprehension Syntax . . . . . . . . . . . . . . . . . . . 43

1.9.3 Packing and Unpacking of Sequences . . . . . . . . . . . 44

1.10 Scopes and Namespaces . . . . . . . . . . . . . . . . . . . 46

1.11 Modules and the Import Statement . . . . . . . . . . . . . 48

1.11.1 Existing Modules . . . . . . . . . . . . . . . . . . . . . . 49

1.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

www.it-ebooks.info

http://www.it-ebooks.info/


2 Chapter 1. Python Primer

1.1 Python Overview

Building data structures and algorithms requires that we communicate detailed in-
structions to a computer. An excellent way to perform such communications is
using a high-level computer language, such as Python. The Python programming
language was originally developed by Guido van Rossum in the early 1990s, and
has since become a prominently used language in industry and education. The sec-
ond major version of the language, Python 2, was released in 2000, and the third
major version, Python 3, released in 2008. We note that there are significant in-
compatibilities between Python 2 and Python 3. This book is based on Python 3
(more specifically, Python 3.1 or later). The latest version of the language is freely
available at www.python.org, along with documentation and tutorials.

In this chapter, we provide an overview of the Python programming language,
and we continue this discussion in the next chapter, focusing on object-oriented
principles. We assume that readers of this book have prior programming experi-
ence, although not necessarily using Python. This book does not provide a com-
plete description of the Python language (there are numerous language references
for that purpose), but it does introduce all aspects of the language that are used in
code fragments later in this book.

1.1.1 The Python Interpreter

Python is formally an interpreted language. Commands are executed through a
piece of software known as the Python interpreter. The interpreter receives a com-
mand, evaluates that command, and reports the result of the command. While the
interpreter can be used interactively (especially when debugging), a programmer
typically defines a series of commands in advance and saves those commands in a
plain text file known as source code or a script. For Python, source code is conven-
tionally stored in a file named with the .py suffix (e.g., demo.py).

On most operating systems, the Python interpreter can be started by typing
python from the command line. By default, the interpreter starts in interactive
mode with a clean workspace. Commands from a predefined script saved in a
file (e.g., demo.py) are executed by invoking the interpreter with the filename as
an argument (e.g., python demo.py), or using an additional -i flag in order to
execute a script and then enter interactive mode (e.g., python -i demo.py).

Many integrated development environments (IDEs) provide richer software
development platforms for Python, including one named IDLE that is included
with the standard Python distribution. IDLE provides an embedded text-editor with
support for displaying and editing Python code, and a basic debugger, allowing
step-by-step execution of a program while examining key variable values.
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1.1. Python Overview 3

1.1.2 Preview of a Python Program

As a simple introduction, Code Fragment 1.1 presents a Python program that com-
putes the grade-point average (GPA) for a student based on letter grades that are
entered by a user. Many of the techniques demonstrated in this example will be
discussed in the remainder of this chapter. At this point, we draw attention to a few
high-level issues, for readers who are new to Python as a programming language.

Python’s syntax relies heavily on the use of whitespace. Individual statements
are typically concluded with a newline character, although a command can extend
to another line, either with a concluding backslash character (\), or if an opening
delimiter has not yet been closed, such as the { character in defining value map.

Whitespace is also key in delimiting the bodies of control structures in Python.
Specifically, a block of code is indented to designate it as the body of a control
structure, and nested control structures use increasing amounts of indentation. In
Code Fragment 1.1, the body of the while loop consists of the subsequent 8 lines,
including a nested conditional structure.

Comments are annotations provided for human readers, yet ignored by the
Python interpreter. The primary syntax for comments in Python is based on use
of the # character, which designates the remainder of the line as a comment.

print( Welcome to the GPA calculator. )
print( Please enter all your letter grades, one per line. )
print( Enter a blank line to designate the end. )
# map from letter grade to point value
points = { A+ :4.0, A :4.0, A- :3.67, B+ :3.33, B :3.0, B- :2.67,

C+ :2.33, C :2.0, C :1.67, D+ :1.33, D :1.0, F :0.0}
num courses = 0
total points = 0
done = False
while not done:

grade = input( ) # read line from user
if grade == : # empty line was entered

done = True
elif grade not in points: # unrecognized grade entered

print("Unknown grade {0} being ignored".format(grade))
else:

num courses += 1
total points += points[grade]

if num courses > 0: # avoid division by zero
print( Your GPA is {0:.3} .format(total points / num courses))

Code Fragment 1.1: A Python program that computes a grade-point average (GPA).
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4 Chapter 1. Python Primer

1.2 Objects in Python

Python is an object-oriented language and classes form the basis for all data types.
In this section, we describe key aspects of Python’s object model, and we intro-
duce Python’s built-in classes, such as the int class for integers, the float class
for floating-point values, and the str class for character strings. A more thorough
presentation of object-orientation is the focus of Chapter 2.

1.2.1 Identifiers, Objects, and the Assignment Statement

The most important of all Python commands is an assignment statement, such as

temperature = 98.6

This command establishes temperature as an identifier (also known as a name),
and then associates it with the object expressed on the right-hand side of the equal
sign, in this case a floating-point object with value 98.6. We portray the outcome
of this assignment in Figure 1.1.

float

98.6
temperature

Figure 1.1: The identifier temperature references an instance of the float class
having value 98.6.

Identifiers

Identifiers in Python are case-sensitive, so temperature and Temperature are dis-
tinct names. Identifiers can be composed of almost any combination of letters,
numerals, and underscore characters (or more general Unicode characters). The
primary restrictions are that an identifier cannot begin with a numeral (thus 9lives
is an illegal name), and that there are 33 specially reserved words that cannot be
used as identifiers, as shown in Table 1.1.

Reserved Words
False as continue else from in not return yield
None assert def except global is or try
True break del finally if lambda pass while
and class elif for import nonlocal raise with

Table 1.1: A listing of the reserved words in Python. These names cannot be used
as identifiers.
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For readers familiar with other programming languages, the semantics of a
Python identifier is most similar to a reference variable in Java or a pointer variable
in C++. Each identifier is implicitly associated with the memory address of the
object to which it refers. A Python identifier may be assigned to a special object
named None, serving a similar purpose to a null reference in Java or C++.

Unlike Java and C++, Python is a dynamically typed language, as there is no
advance declaration associating an identifier with a particular data type. An iden-
tifier can be associated with any type of object, and it can later be reassigned to
another object of the same (or different) type. Although an identifier has no de-
clared type, the object to which it refers has a definite type. In our first example,
the characters 98.6 are recognized as a floating-point literal, and thus the identifier
temperature is associated with an instance of the float class having that value.

A programmer can establish an alias by assigning a second identifier to an
existing object. Continuing with our earlier example, Figure 1.2 portrays the result
of a subsequent assignment, original = temperature.

float

98.6
originaltemperature

Figure 1.2: Identifiers temperature and original are aliases for the same object.

Once an alias has been established, either name can be used to access the under-
lying object. If that object supports behaviors that affect its state, changes enacted
through one alias will be apparent when using the other alias (because they refer to
the same object). However, if one of the names is reassigned to a new value using
a subsequent assignment statement, that does not affect the aliased object, rather it
breaks the alias. Continuing with our concrete example, we consider the command:

temperature = temperature + 5.0

The execution of this command begins with the evaluation of the expression on the
right-hand side of the = operator. That expression, temperature + 5.0, is eval-
uated based on the existing binding of the name temperature, and so the result
has value 103.6, that is, 98.6 + 5.0. That result is stored as a new floating-point
instance, and only then is the name on the left-hand side of the assignment state-
ment, temperature, (re)assigned to the result. The subsequent configuration is dia-
grammed in Figure 1.3. Of particular note, this last command had no effect on the
value of the existing float instance that identifier original continues to reference.

98.6

float

103.6
temperature original

float

Figure 1.3: The temperature identifier has been assigned to a new value, while
original continues to refer to the previously existing value.
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1.2.2 Creating and Using Objects

Instantiation

The process of creating a new instance of a class is known as instantiation. In
general, the syntax for instantiating an object is to invoke the constructor of a class.
For example, if there were a class named Widget, we could create an instance of
that class using a syntax such as w = Widget(), assuming that the constructor does
not require any parameters. If the constructor does require parameters, we might
use a syntax such as Widget(a, b, c) to construct a new instance.

Many of Python’s built-in classes (discussed in Section 1.2.3) support what is
known as a literal form for designating new instances. For example, the command
temperature = 98.6 results in the creation of a new instance of the float class; the
term 98.6 in that expression is a literal form. We discuss further cases of Python
literals in the coming section.

From a programmer’s perspective, yet another way to indirectly create a new
instance of a class is to call a function that creates and returns such an instance. For
example, Python has a built-in function named sorted (see Section 1.5.2) that takes
a sequence of comparable elements as a parameter and returns a new instance of
the list class containing those elements in sorted order.

Calling Methods

Python supports traditional functions (see Section 1.5) that are invoked with a syn-
tax such as sorted(data), in which case data is a parameter sent to the function.
Python’s classes may also define one or more methods (also known as member
functions), which are invoked on a specific instance of a class using the dot (“.”)
operator. For example, Python’s list class has a method named sort that can be
invoked with a syntax such as data.sort(). This particular method rearranges the
contents of the list so that they are sorted.

The expression to the left of the dot identifies the object upon which the method
is invoked. Often, this will be an identifier (e.g., data), but we can use the dot op-
erator to invoke a method upon the immediate result of some other operation. For
example, if response identifies a string instance (we will discuss strings later in this
section), the syntax response.lower().startswith( y ) first evaluates the method
call, response.lower(), which itself returns a new string instance, and then the
startswith( y ) method is called on that intermediate string.

When using a method of a class, it is important to understand its behavior.
Some methods return information about the state of an object, but do not change
that state. These are known as accessors. Other methods, such as the sort method
of the list class, do change the state of an object. These methods are known as
mutators or update methods.
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1.2.3 Python’s Built-In Classes

Table 1.2 provides a summary of commonly used, built-in classes in Python; we
take particular note of which classes are mutable and which are immutable. A class
is immutable if each object of that class has a fixed value upon instantiation that
cannot subsequently be changed. For example, the float class is immutable. Once
an instance has been created, its value cannot be changed (although an identifier
referencing that object can be reassigned to a different value).

Class Description Immutable?
bool Boolean value �

int integer (arbitrary magnitude) �

float floating-point number �

list mutable sequence of objects
tuple immutable sequence of objects �

str character string �

set unordered set of distinct objects
frozenset immutable form of set class �

dict associative mapping (aka dictionary)

Table 1.2: Commonly used built-in classes for Python

In this section, we provide an introduction to these classes, discussing their
purpose and presenting several means for creating instances of the classes. Literal
forms (such as 98.6) exist for most of the built-in classes, and all of the classes
support a traditional constructor form that creates instances that are based upon
one or more existing values. Operators supported by these classes are described in
Section 1.3. More detailed information about these classes can be found in later
chapters as follows: lists and tuples (Chapter 5); strings (Chapters 5 and 13, and
Appendix A); sets and dictionaries (Chapter 10).

The bool Class

The bool class is used to manipulate logical (Boolean) values, and the only two
instances of that class are expressed as the literals True and False. The default
constructor, bool(), returns False, but there is no reason to use that syntax rather
than the more direct literal form. Python allows the creation of a Boolean value
from a nonboolean type using the syntax bool(foo) for value foo. The interpretation
depends upon the type of the parameter. Numbers evaluate to False if zero, and
True if nonzero. Sequences and other container types, such as strings and lists,
evaluate to False if empty and True if nonempty. An important application of this
interpretation is the use of a nonboolean value as a condition in a control structure.
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The int Class

The int and float classes are the primary numeric types in Python. The int class is
designed to represent integer values with arbitrary magnitude. Unlike Java and
C++, which support different integral types with different precisions (e.g., int,
short, long), Python automatically chooses the internal representation for an in-
teger based upon the magnitude of its value. Typical literals for integers include 0,
137, and −23. In some contexts, it is convenient to express an integral value using
binary, octal, or hexadecimal. That can be done by using a prefix of the number 0
and then a character to describe the base. Example of such literals are respectively
0b1011, 0o52, and 0x7f.

The integer constructor, int(), returns value 0 by default. But this constructor
can be used to construct an integer value based upon an existing value of another
type. For example, if f represents a floating-point value, the syntax int(f) produces
the truncated value of f. For example, both int(3.14) and int(3.99) produce the
value 3, while int(−3.9) produces the value −3. The constructor can also be used
to parse a string that is presumed to represent an integral value (such as one en-
tered by a user). If s represents a string, then int(s) produces the integral value
that string represents. For example, the expression int( 137 ) produces the inte-
ger value 137. If an invalid string is given as a parameter, as in int( hello ), a
ValueError is raised (see Section 1.7 for discussion of Python’s exceptions). By de-
fault, the string must use base 10. If conversion from a different base is desired, that
base can be indicated as a second, optional, parameter. For example, the expression
int( 7f , 16) evaluates to the integer 127.

The float Class

The float class is the sole floating-point type in Python, using a fixed-precision
representation. Its precision is more akin to a double in Java or C++, rather than
those languages’ float type. We have already discussed a typical literal form, 98.6.
We note that the floating-point equivalent of an integral number can be expressed
directly as 2.0. Technically, the trailing zero is optional, so some programmers
might use the expression 2. to designate this floating-point literal. One other form
of literal for floating-point values uses scientific notation. For example, the literal
6.022e23 represents the mathematical value 6.022×1023.

The constructor form of float() returns 0.0. When given a parameter, the con-
structor attempts to return the equivalent floating-point value. For example, the call
float(2) returns the floating-point value 2.0. If the parameter to the constructor is
a string, as with float( 3.14 ), it attempts to parse that string as a floating-point
value, raising a ValueError as an exception.
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Sequence Types: The list, tuple, and str Classes

The list, tuple, and str classes are sequence types in Python, representing a col-
lection of values in which the order is significant. The list class is the most general,
representing a sequence of arbitrary objects (akin to an “array” in other languages).
The tuple class is an immutable version of the list class, benefiting from a stream-
lined internal representation. The str class is specially designed for representing
an immutable sequence of text characters. We note that Python does not have a
separate class for characters; they are just strings with length one.

The list Class

A list instance stores a sequence of objects. A list is a referential structure, as it
technically stores a sequence of references to its elements (see Figure 1.4). El-
ements of a list may be arbitrary objects (including the None object). Lists are
array-based sequences and are zero-indexed, thus a list of length n has elements
indexed from 0 to n−1 inclusive. Lists are perhaps the most used container type in
Python and they will be extremely central to our study of data structures and algo-
rithms. They have many valuable behaviors, including the ability to dynamically
expand and contract their capacities as needed. In this chapter, we will discuss only
the most basic properties of lists. We revisit the inner working of all of Python’s
sequence types as the focus of Chapter 5.

Python uses the characters [ ] as delimiters for a list literal, with [ ] itself being
an empty list. As another example, [ red , green , blue ] is a list containing
three string instances. The contents of a list literal need not be expressed as literals;
if identifiers a and b have been established, then syntax [a, b] is legitimate.

The list() constructor produces an empty list by default. However, the construc-
tor will accept any parameter that is of an iterable type. We will discuss iteration
further in Section 1.8, but examples of iterable types include all of the standard con-
tainer types (e.g., strings, list, tuples, sets, dictionaries). For example, the syntax
list( hello ) produces a list of individual characters, [ h , e , l , l , o ].
Because an existing list is itself iterable, the syntax backup = list(data) can be
used to construct a new list instance referencing the same contents as the original.

3 4 5 6 70 1 2 1098

primes:

13 19 23 29 317532 11 17

Figure 1.4: Python’s internal representation of a list of integers, instantiated as
prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]. The implicit indices of the ele-
ments are shown below each entry.
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The tuple Class

The tuple class provides an immutable version of a sequence, and therefore its
instances have an internal representation that may be more streamlined than that of
a list. While Python uses the [ ] characters to delimit a list, parentheses delimit a
tuple, with () being an empty tuple. There is one important subtlety. To express
a tuple of length one as a literal, a comma must be placed after the element, but
within the parentheses. For example, (17,) is a one-element tuple. The reason for
this requirement is that, without the trailing comma, the expression (17) is viewed
as a simple parenthesized numeric expression.

The str Class

Python’s str class is specifically designed to efficiently represent an immutable
sequence of characters, based upon the Unicode international character set. Strings
have a more compact internal representation than the referential lists and tuples, as
portrayed in Figure 1.5.

0

AS M P L E

3 4 51 2

Figure 1.5: A Python string, which is an indexed sequence of characters.

String literals can be enclosed in single quotes, as in hello , or double
quotes, as in "hello". This choice is convenient, especially when using an-
other of the quotation characters as an actual character in the sequence, as in
"Don t worry". Alternatively, the quote delimiter can be designated using a
backslash as a so-called escape character, as in Don\ t worry . Because the
backslash has this purpose, the backslash must itself be escaped to occur as a natu-
ral character of the string literal, as in C:\\Python\\ , for a string that would be
displayed as C:\Python\. Other commonly escaped characters are \n for newline
and \t for tab. Unicode characters can be included, such as 20\u20AC for the
string 20 .

Python also supports using the delimiter or """ to begin and end a string
literal. The advantage of such triple-quoted strings is that newline characters can
be embedded naturally (rather than escaped as \n). This can greatly improve the
readability of long, multiline strings in source code. For example, at the beginning
of Code Fragment 1.1, rather than use separate print statements for each line of
introductory output, we can use a single print statement, as follows:

print(”””Welcome to the GPA calculator.
Please enter all your letter grades, one per line.
Enter a blank line to designate the end.”””)
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The set and frozenset Classes

Python’s set class represents the mathematical notion of a set, namely a collection
of elements, without duplicates, and without an inherent order to those elements.
The major advantage of using a set, as opposed to a list, is that it has a highly
optimized method for checking whether a specific element is contained in the set.
This is based on a data structure known as a hash table (which will be the primary
topic of Chapter 10). However, there are two important restrictions due to the
algorithmic underpinnings. The first is that the set does not maintain the elements
in any particular order. The second is that only instances of immutable types can be
added to a Python set. Therefore, objects such as integers, floating-point numbers,
and character strings are eligible to be elements of a set. It is possible to maintain a
set of tuples, but not a set of lists or a set of sets, as lists and sets are mutable. The
frozenset class is an immutable form of the set type, so it is legal to have a set of
frozensets.

Python uses curly braces { and } as delimiters for a set, for example, as {17}
or { red , green , blue }. The exception to this rule is that { } does not
represent an empty set; for historical reasons, it represents an empty dictionary
(see next paragraph). Instead, the constructor syntax set() produces an empty set.
If an iterable parameter is sent to the constructor, then the set of distinct elements
is produced. For example, set( hello ) produces { h , e , l , o }.

The dict Class

Python’s dict class represents a dictionary, or mapping, from a set of distinct keys
to associated values. For example, a dictionary might map from unique student ID
numbers, to larger student records (such as the student’s name, address, and course
grades). Python implements a dict using an almost identical approach to that of a
set, but with storage of the associated values.

A dictionary literal also uses curly braces, and because dictionaries were intro-
duced in Python prior to sets, the literal form { } produces an empty dictionary.
A nonempty dictionary is expressed using a comma-separated series of key:value
pairs. For example, the dictionary { ga : Irish , de : German } maps
ga to Irish and de to German .

The constructor for the dict class accepts an existing mapping as a parameter,
in which case it creates a new dictionary with identical associations as the existing
one. Alternatively, the constructor accepts a sequence of key-value pairs as a pa-
rameter, as in dict(pairs) with pairs = [( ga , Irish ), ( de , German )].
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1.3 Expressions, Operators, and Precedence

In the previous section, we demonstrated how names can be used to identify ex-
isting objects, and how literals and constructors can be used to create instances of
built-in classes. Existing values can be combined into larger syntactic expressions
using a variety of special symbols and keywords known as operators. The seman-
tics of an operator depends upon the type of its operands. For example, when a
and b are numbers, the syntax a + b indicates addition, while if a and b are strings,
the operator indicates concatenation. In this section, we describe Python’s opera-
tors in various contexts of the built-in types.

We continue, in Section 1.3.1, by discussing compound expressions, such as
a + b c, which rely on the evaluation of two or more operations. The order
in which the operations of a compound expression are evaluated can affect the
overall value of the expression. For this reason, Python defines a specific order of
precedence for evaluating operators, and it allows a programmer to override this
order by using explicit parentheses to group subexpressions.

Logical Operators

Python supports the following keyword operators for Boolean values:
not unary negation
and conditional and
or conditional or

The and and or operators short-circuit, in that they do not evaluate the second
operand if the result can be determined based on the value of the first operand.
This feature is useful when constructing Boolean expressions in which we first test
that a certain condition holds (such as a reference not being None), and then test a
condition that could have otherwise generated an error condition had the prior test
not succeeded.

Equality Operators

Python supports the following operators to test two notions of equality:
is same identity

is not different identity
== equivalent
!= not equivalent

The expression a is b evaluates to True, precisely when identifiers a and b are
aliases for the same object. The expression a == b tests a more general notion of
equivalence. If identifiers a and b refer to the same object, then a == b should also
evaluate to True. Yet a == b also evaluates to True when the identifiers refer to
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different objects that happen to have values that are deemed equivalent. The precise
notion of equivalence depends on the data type. For example, two strings are con-
sidered equivalent if they match character for character. Two sets are equivalent if
they have the same contents, irrespective of order. In most programming situations,
the equivalence tests == and != are the appropriate operators; use of is and is not
should be reserved for situations in which it is necessary to detect true aliasing.

Comparison Operators

Data types may define a natural order via the following operators:

< less than
<= less than or equal to
> greater than

>= greater than or equal to
These operators have expected behavior for numeric types, and are defined lexi-
cographically, and case-sensitively, for strings. An exception is raised if operands
have incomparable types, as with 5 < hello .

Arithmetic Operators

Python supports the following arithmetic operators:

+ addition
− subtraction

multiplication
/ true division
// integer division
% the modulo operator

The use of addition, subtraction, and multiplication is straightforward, noting that if
both operands have type int, then the result is an int as well; if one or both operands
have type float, the result will be a float.

Python takes more care in its treatment of division. We first consider the case
in which both operands have type int, for example, the quantity 27 divided by
4. In mathematical notation, 27÷ 4 = 63

4 = 6.75. In Python, the / operator
designates true division, returning the floating-point result of the computation.
Thus, 27 / 4 results in the float value 6.75. Python supports the pair of opera-
tors // and % to perform the integral calculations, with expression 27 // 4 evalu-
ating to int value 6 (the mathematical floor of the quotient), and expression 27 % 4
evaluating to int value 3, the remainder of the integer division. We note that lan-
guages such as C, C++, and Java do not support the // operator; instead, the / op-
erator returns the truncated quotient when both operands have integral type, and the
result of true division when at least one operand has a floating-point type.
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Python carefully extends the semantics of // and % to cases where one or both
operands are negative. For the sake of notation, let us assume that variables n
and m represent respectively the dividend and divisor of a quotient n

m , and that
q = n // m and r = n % m. Python guarantees that q m + r will equal n. We
already saw an example of this identity with positive operands, as 6∗4 + 3 = 27.
When the divisor m is positive, Python further guarantees that 0 ≤ r < m. As
a consequence, we find that −27 // 4 evaluates to −7 and −27 % 4 evaluates
to 1, as (−7)∗4 + 1 = −27. When the divisor is negative, Python guarantees that
m < r ≤ 0. As an example, 27 // −4 is −7 and 27 % −4 is −1, satisfying the
identity 27 = (−7)∗ (−4)+ (−1).

The conventions for the // and % operators are even extended to floating-
point operands, with the expression q = n // m being the integral floor of the
quotient, and r = n % m being the “remainder” to ensure that q m + r equals
n. For example, 8.2 // 3.14 evaluates to 2.0 and 8.2 % 3.14 evaluates to 1.92, as
2.0∗3.14+ 1.92 = 8.2.

Bitwise Operators

Python provides the following bitwise operators for integers:
∼ bitwise complement (prefix unary operator)
& bitwise and
| bitwise or
ˆ bitwise exclusive-or

<< shift bits left, filling in with zeros
>> shift bits right, filling in with sign bit

Sequence Operators

Each of Python’s built-in sequence types (str, tuple, and list) support the following
operator syntaxes:

s[j] element at index j
s[start:stop] slice including indices [start,stop)

s[start:stop:step] slice including indices start, start + step,
start + 2 step, . . . , up to but not equalling or stop

s + t concatenation of sequences
k s shorthand for s + s + s + ... (k times)

val in s containment check
val not in s non-containment check

Python relies on zero-indexing of sequences, thus a sequence of length n has ele-
ments indexed from 0 to n− 1 inclusive. Python also supports the use of negative
indices, which denote a distance from the end of the sequence; index −1 denotes
the last element, index −2 the second to last, and so on. Python uses a slicing
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notation to describe subsequences of a sequence. Slices are described as half-open
intervals, with a start index that is included, and a stop index that is excluded. For
example, the syntax data[3:8] denotes a subsequence including the five indices:
3,4,5,6,7. An optional “step” value, possibly negative, can be indicated as a third
parameter of the slice. If a start index or stop index is omitted in the slicing nota-
tion, it is presumed to designate the respective extreme of the original sequence.

Because lists are mutable, the syntax s[j] = val can be used to replace an ele-
ment at a given index. Lists also support a syntax, del s[j], that removes the desig-
nated element from the list. Slice notation can also be used to replace or delete a
sublist.

The notation val in s can be used for any of the sequences to see if there is an
element equivalent to val in the sequence. For strings, this syntax can be used to
check for a single character or for a larger substring, as with amp in example .

All sequences define comparison operations based on lexicographic order, per-
forming an element by element comparison until the first difference is found. For
example, [5, 6, 9] < [5, 7] because of the entries at index 1. Therefore, the follow-
ing operations are supported by sequence types:

s == t equivalent (element by element)
s != t not equivalent
s < t lexicographically less than

s <= t lexicographically less than or equal to
s > t lexicographically greater than

s >= t lexicographically greater than or equal to

Operators for Sets and Dictionaries

Sets and frozensets support the following operators:
key in s containment check

key not in s non-containment check
s1 == s2 s1 is equivalent to s2
s1 != s2 s1 is not equivalent to s2
s1 <= s2 s1 is subset of s2
s1 < s2 s1 is proper subset of s2

s1 >= s2 s1 is superset of s2
s1 > s2 s1 is proper superset of s2
s1 | s2 the union of s1 and s2
s1 & s2 the intersection of s1 and s2
s1 − s2 the set of elements in s1 but not s2
s1 ˆ s2 the set of elements in precisely one of s1 or s2

Note well that sets do not guarantee a particular order of their elements, so the
comparison operators, such as <, are not lexicographic; rather, they are based on
the mathematical notion of a subset. As a result, the comparison operators define
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a partial order, but not a total order, as disjoint sets are neither “less than,” “equal
to,” or “greater than” each other. Sets also support many fundamental behaviors
through named methods (e.g., add, remove); we will explore their functionality
more fully in Chapter 10.

Dictionaries, like sets, do not maintain a well-defined order on their elements.
Furthermore, the concept of a subset is not typically meaningful for dictionaries, so
the dict class does not support operators such as <. Dictionaries support the notion
of equivalence, with d1 == d2 if the two dictionaries contain the same set of key-
value pairs. The most widely used behavior of dictionaries is accessing a value
associated with a particular key k with the indexing syntax, d[k]. The supported
operators are as follows:

d[key] value associated with given key
d[key] = value set (or reset) the value associated with given key

del d[key] remove key and its associated value from dictionary
key in d containment check

key not in d non-containment check
d1 == d2 d1 is equivalent to d2
d1 != d2 d1 is not equivalent to d2

Dictionaries also support many useful behaviors through named methods, which
we explore more fully in Chapter 10.

Extended Assignment Operators

Python supports an extended assignment operator for most binary operators, for
example, allowing a syntax such as count += 5. By default, this is a shorthand for
the more verbose count = count + 5. For an immutable type, such as a number or
a string, one should not presume that this syntax changes the value of the existing
object, but instead that it will reassign the identifier to a newly constructed value.
(See discussion of Figure 1.3.) However, it is possible for a type to redefine such
semantics to mutate the object, as the list class does for the += operator.

alpha = [1, 2, 3]
beta = alpha # an alias for alpha
beta += [4, 5] # extends the original list with two more elements
beta = beta + [6, 7] # reassigns beta to a new list [1, 2, 3, 4, 5, 6, 7]
print(alpha) # will be [1, 2, 3, 4, 5]

This example demonstrates the subtle difference between the list semantics for the
syntax beta += foo versus beta = beta + foo.
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1.3.1 Compound Expressions and Operator Precedence

Programming languages must have clear rules for the order in which compound
expressions, such as 5 + 2 3, are evaluated. The formal order of precedence
for operators in Python is given in Table 1.3. Operators in a category with higher
precedence will be evaluated before those with lower precedence, unless the expres-
sion is otherwise parenthesized. Therefore, we see that Python gives precedence to
multiplication over addition, and therefore evaluates the expression 5 + 2 3 as
5 + (2 3), with value 11, but the parenthesized expression (5 + 2) 3 evalu-
ates to value 21. Operators within a category are typically evaluated from left to
right, thus 5 − 2 + 3 has value 6. Exceptions to this rule include that unary oper-
ators and exponentiation are evaluated from right to left.

Python allows a chained assignment, such as x = y = 0, to assign multiple
identifiers to the rightmost value. Python also allows the chaining of comparison
operators. For example, the expression 1 <= x + y <= 10 is evaluated as the
compound (1 <= x + y) and (x + y <= 10), but without computing the inter-
mediate value x + y twice.

Operator Precedence
Type Symbols

1 member access expr.member

2
function/method calls expr(...)
container subscripts/slices expr[...]

3 exponentiation
4 unary operators +expr, −expr, ˜expr
5 multiplication, division , /, //, %
6 addition, subtraction +, −
7 bitwise shifting <<, >>
8 bitwise-and &
9 bitwise-xor ˆ

10 bitwise-or |
11

comparisons is, is not, ==, !=, <, <=, >, >=
containment in, not in

12 logical-not not expr
13 logical-and and
14 logical-or or
15 conditional val1 if cond else val2
16 assignments =, +=, −=, =, etc.

Table 1.3: Operator precedence in Python, with categories ordered from highest
precedence to lowest precedence. When stated, we use expr to denote a literal,
identifier, or result of a previously evaluated expression. All operators without
explicit mention of expr are binary operators, with syntax expr1 operator expr2.
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1.4 Control Flow

In this section, we review Python’s most fundamental control structures: condi-
tional statements and loops. Common to all control structures is the syntax used
in Python for defining blocks of code. The colon character is used to delimit the
beginning of a block of code that acts as a body for a control structure. If the body
can be stated as a single executable statement, it can technically placed on the same
line, to the right of the colon. However, a body is more typically typeset as an
indented block starting on the line following the colon. Python relies on the inden-
tation level to designate the extent of that block of code, or any nested blocks of
code within. The same principles will be applied when designating the body of a
function (see Section 1.5), and the body of a class (see Section 2.3).

1.4.1 Conditionals

Conditional constructs (also known as if statements) provide a way to execute a
chosen block of code based on the run-time evaluation of one or more Boolean
expressions. In Python, the most general form of a conditional is written as follows:

if first condition:
first body

elif second condition:
second body

elif third condition:
third body

else:
fourth body

Each condition is a Boolean expression, and each body contains one or more com-
mands that are to be executed conditionally. If the first condition succeeds, the first
body will be executed; no other conditions or bodies are evaluated in that case.
If the first condition fails, then the process continues in similar manner with the
evaluation of the second condition. The execution of this overall construct will
cause precisely one of the bodies to be executed. There may be any number of
elif clauses (including zero), and the final else clause is optional. As described on
page 7, nonboolean types may be evaluated as Booleans with intuitive meanings.
For example, if response is a string that was entered by a user, and we want to
condition a behavior on this being a nonempty string, we may write

if response:

as a shorthand for the equivalent,

if response != :
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As a simple example, a robot controller might have the following logic:

if door is closed:
open door()

advance()

Notice that the final command, advance(), is not indented and therefore not part of
the conditional body. It will be executed unconditionally (although after opening a
closed door).

We may nest one control structure within another, relying on indentation to
make clear the extent of the various bodies. Revisiting our robot example, here is a
more complex control that accounts for unlocking a closed door.

if door is closed:
if door is locked:

unlock door()
open door()

advance()

The logic expressed by this example can be diagrammed as a traditional flowchart,
as portrayed in Figure 1.6.

open door()

False
door is closed

advance()

door is locked

unlock door()

TrueFalse

True

Figure 1.6: A flowchart describing the logic of nested conditional statements.
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1.4.2 Loops

Python offers two distinct looping constructs. A while loop allows general repeti-
tion based upon the repeated testing of a Boolean condition. A for loop provides
convenient iteration of values from a defined series (such as characters of a string,
elements of a list, or numbers within a given range). We discuss both forms in this
section.

While Loops

The syntax for a while loop in Python is as follows:

while condition:
body

As with an if statement, condition can be an arbitrary Boolean expression, and
body can be an arbitrary block of code (including nested control structures). The
execution of a while loop begins with a test of the Boolean condition. If that condi-
tion evaluates to True, the body of the loop is performed. After each execution of
the body, the loop condition is retested, and if it evaluates to True, another iteration
of the body is performed. When the conditional test evaluates to False (assuming
it ever does), the loop is exited and the flow of control continues just beyond the
body of the loop.

As an example, here is a loop that advances an index through a sequence of
characters until finding an entry with value X or reaching the end of the sequence.

j = 0
while j < len(data) and data[j] != X :

j += 1

The len function, which we will introduce in Section 1.5.2, returns the length of a
sequence such as a list or string. The correctness of this loop relies on the short-
circuiting behavior of the and operator, as described on page 12. We intention-
ally test j < len(data) to ensure that j is a valid index, prior to accessing element
data[j]. Had we written that compound condition with the opposite order, the eval-
uation of data[j] would eventually raise an IndexError when X is not found. (See
Section 1.7 for discussion of exceptions.)

As written, when this loop terminates, variable j’s value will be the index of
the leftmost occurrence of X , if found, or otherwise the length of the sequence
(which is recognizable as an invalid index to indicate failure of the search). It is
worth noting that this code behaves correctly, even in the special case when the list
is empty, as the condition j < len(data) will initially fail and the body of the loop
will never be executed.
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For Loops

Python’s for-loop syntax is a more convenient alternative to a while loop when
iterating through a series of elements. The for-loop syntax can be used on any
type of iterable structure, such as a list, tuple str, set, dict, or file (we will discuss
iterators more formally in Section 1.8). Its general syntax appears as follows.

for element in iterable:
body # body may refer to element as an identifier

For readers familiar with Java, the semantics of Python’s for loop is similar to the
“for each” loop style introduced in Java 1.5.

As an instructive example of such a loop, we consider the task of computing
the sum of a list of numbers. (Admittedly, Python has a built-in function, sum, for
this purpose.) We perform the calculation with a for loop as follows, assuming that
data identifies the list:

total = 0
for val in data:

total += val # note use of the loop variable, val

The loop body executes once for each element of the data sequence, with the iden-
tifier, val, from the for-loop syntax assigned at the beginning of each pass to a
respective element. It is worth noting that val is treated as a standard identifier. If
the element of the original data happens to be mutable, the val identifier can be
used to invoke its methods. But a reassignment of identifier val to a new value has
no affect on the original data, nor on the next iteration of the loop.

As a second classic example, we consider the task of finding the maximum
value in a list of elements (again, admitting that Python’s built-in max function
already provides this support). If we can assume that the list, data, has at least one
element, we could implement this task as follows:

biggest = data[0] # as we assume nonempty list
for val in data:

if val > biggest:
biggest = val

Although we could accomplish both of the above tasks with a while loop, the
for-loop syntax had an advantage of simplicity, as there is no need to manage an
explicit index into the list nor to author a Boolean loop condition. Furthermore, we
can use a for loop in cases for which a while loop does not apply, such as when
iterating through a collection, such as a set, that does not support any direct form
of indexing.
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Index-Based For Loops

The simplicity of a standard for loop over the elements of a list is wonderful; how-
ever, one limitation of that form is that we do not know where an element resides
within the sequence. In some applications, we need knowledge of the index of an
element within the sequence. For example, suppose that we want to know where
the maximum element in a list resides.

Rather than directly looping over the elements of the list in that case, we prefer
to loop over all possible indices of the list. For this purpose, Python provides
a built-in class named range that generates integer sequences. (We will discuss
generators in Section 1.8.) In simplest form, the syntax range(n) generates the
series of n values from 0 to n− 1. Conveniently, these are precisely the series of
valid indices into a sequence of length n. Therefore, a standard Python idiom for
looping through the series of indices of a data sequence uses a syntax,

for j in range(len(data)):

In this case, identifier j is not an element of the data—it is an integer. But the
expression data[j] can be used to retrieve the respective element. For example, we
can find the index of the maximum element of a list as follows:

big index = 0
for j in range(len(data)):

if data[j] > data[big index]:
big index = j

Break and Continue Statements

Python supports a break statement that immediately terminate a while or for loop
when executed within its body. More formally, if applied within nested control
structures, it causes the termination of the most immediately enclosing loop. As
a typical example, here is code that determines whether a target value occurs in a
data set:

found = False
for item in data:

if item == target:
found = True
break

Python also supports a continue statement that causes the current iteration of a
loop body to stop, but with subsequent passes of the loop proceeding as expected.

We recommend that the break and continue statements be used sparingly. Yet,
there are situations in which these commands can be effectively used to avoid in-
troducing overly complex logical conditions.
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1.5 Functions

In this section, we explore the creation of and use of functions in Python. As we
did in Section 1.2.2, we draw a distinction between functions and methods. We
use the general term function to describe a traditional, stateless function that is in-
voked without the context of a particular class or an instance of that class, such as
sorted(data). We use the more specific term method to describe a member function
that is invoked upon a specific object using an object-oriented message passing syn-
tax, such as data.sort(). In this section, we only consider pure functions; methods
will be explored with more general object-oriented principles in Chapter 2.

We begin with an example to demonstrate the syntax for defining functions in
Python. The following function counts the number of occurrences of a given target
value within any form of iterable data set.

def count(data, target):
n = 0
for item in data:

if item == target: # found a match
n += 1

return n

The first line, beginning with the keyword def, serves as the function’s signature.
This establishes a new identifier as the name of the function (count, in this exam-
ple), and it establishes the number of parameters that it expects, as well as names
identifying those parameters (data and target, in this example). Unlike Java and
C++, Python is a dynamically typed language, and therefore a Python signature
does not designate the types of those parameters, nor the type (if any) of a return
value. Those expectations should be stated in the function’s documentation (see
Section 2.2.3) and can be enforced within the body of the function, but misuse of a
function will only be detected at run-time.

The remainder of the function definition is known as the body of the func-
tion. As is the case with control structures in Python, the body of a function is
typically expressed as an indented block of code. Each time a function is called,
Python creates a dedicated activation record that stores information relevant to the
current call. This activation record includes what is known as a namespace (see
Section 1.10) to manage all identifiers that have local scope within the current call.
The namespace includes the function’s parameters and any other identifiers that are
defined locally within the body of the function. An identifier in the local scope
of the function caller has no relation to any identifier with the same name in the
caller’s scope (although identifiers in different scopes may be aliases to the same
object). In our first example, the identifier n has scope that is local to the function
call, as does the identifier item, which is established as the loop variable.
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Return Statement

A return statement is used within the body of a function to indicate that the func-
tion should immediately cease execution, and that an expressed value should be
returned to the caller. If a return statement is executed without an explicit argu-
ment, the None value is automatically returned. Likewise, None will be returned if
the flow of control ever reaches the end of a function body without having executed
a return statement. Often, a return statement will be the final command within the
body of the function, as was the case in our earlier example of a count function.
However, there can be multiple return statements in the same function, with con-
ditional logic controlling which such command is executed, if any. As a further
example, consider the following function that tests if a value exists in a sequence.

def contains(data, target):
for item in target:

if item == target: # found a match
return True

return False

If the conditional within the loop body is ever satisfied, the return True statement is
executed and the function immediately ends, with True designating that the target
value was found. Conversely, if the for loop reaches its conclusion without ever
finding the match, the final return False statement will be executed.

1.5.1 Information Passing

To be a successful programmer, one must have clear understanding of the mech-
anism in which a programming language passes information to and from a func-
tion. In the context of a function signature, the identifiers used to describe the
expected parameters are known as formal parameters, and the objects sent by the
caller when invoking the function are the actual parameters. Parameter passing
in Python follows the semantics of the standard assignment statement. When a
function is invoked, each identifier that serves as a formal parameter is assigned, in
the function’s local scope, to the respective actual parameter that is provided by the
caller of the function.

For example, consider the following call to our count function from page 23:

prizes = count(grades, A )

Just before the function body is executed, the actual parameters, grades and A ,
are implicitly assigned to the formal parameters, data and target, as follows:

data = grades
target = A
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These assignment statements establish identifier data as an alias for grades and
target as a name for the string literal A . (See Figure 1.7.)

...

str

A

data targetgrades

list

Figure 1.7: A portrayal of parameter passing in Python, for the function call
count(grades, A ). Identifiers data and target are formal parameters defined
within the local scope of the count function.

The communication of a return value from the function back to the caller is
similarly implemented as an assignment. Therefore, with our sample invocation of
prizes = count(grades, A ), the identifier prizes in the caller’s scope is assigned
to the object that is identified as n in the return statement within our function body.

An advantage to Python’s mechanism for passing information to and from a
function is that objects are not copied. This ensures that the invocation of a function
is efficient, even in a case where a parameter or return value is a complex object.

Mutable Parameters

Python’s parameter passing model has additional implications when a parameter is
a mutable object. Because the formal parameter is an alias for the actual parameter,
the body of the function may interact with the object in ways that change its state.
Considering again our sample invocation of the count function, if the body of the
function executes the command data.append( F ), the new entry is added to the
end of the list identified as data within the function, which is one and the same as
the list known to the caller as grades. As an aside, we note that reassigning a new
value to a formal parameter with a function body, such as by setting data = [ ],
does not alter the actual parameter; such a reassignment simply breaks the alias.

Our hypothetical example of a count method that appends a new element to a
list lacks common sense. There is no reason to expect such a behavior, and it would
be quite a poor design to have such an unexpected effect on the parameter. There
are, however, many legitimate cases in which a function may be designed (and
clearly documented) to modify the state of a parameter. As a concrete example,
we present the following implementation of a method named scale that’s primary
purpose is to multiply all entries of a numeric data set by a given factor.

def scale(data, factor):
for j in range(len(data)):

data[j] = factor
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Default Parameter Values

Python provides means for functions to support more than one possible calling
signature. Such a function is said to be polymorphic (which is Greek for “many
forms”). Most notably, functions can declare one or more default values for pa-
rameters, thereby allowing the caller to invoke a function with varying numbers of
actual parameters. As an artificial example, if a function is declared with signature

def foo(a, b=15, c=27):

there are three parameters, the last two of which offer default values. A caller is
welcome to send three actual parameters, as in foo(4, 12, 8), in which case the de-
fault values are not used. If, on the other hand, the caller only sends one parameter,
foo(4), the function will execute with parameters values a=4, b=15, c=27. If a
caller sends two parameters, they are assumed to be the first two, with the third be-
ing the default. Thus, foo(8, 20) executes with a=8, b=20, c=27. However, it is
illegal to define a function with a signature such as bar(a, b=15, c) with b having
a default value, yet not the subsequent c; if a default parameter value is present for
one parameter, it must be present for all further parameters.

As a more motivating example for the use of a default parameter, we revisit
the task of computing a student’s GPA (see Code Fragment 1.1). Rather than as-
sume direct input and output with the console, we prefer to design a function that
computes and returns a GPA. Our original implementation uses a fixed mapping
from each letter grade (such as a B−) to a corresponding point value (such as
2.67). While that point system is somewhat common, it may not agree with the
system used by all schools. (For example, some may assign an A+ grade a value
higher than 4.0.) Therefore, we design a compute gpa function, given in Code
Fragment 1.2, which allows the caller to specify a custom mapping from grades to
values, while offering the standard point system as a default.

def compute gpa(grades, points={ A+ :4.0, A :4.0, A- :3.67, B+ :3.33,
B :3.0, B- :2.67, C+ :2.33, C :2.0,
C :1.67, D+ :1.33, D :1.0, F :0.0}):

num courses = 0
total points = 0
for g in grades:

if g in points: # a recognizable grade
num courses += 1
total points += points[g]

return total points / num courses

Code Fragment 1.2: A function that computes a student’s GPA with a point value
system that can be customized as an optional parameter.
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As an additional example of an interesting polymorphic function, we consider
Python’s support for range. (Technically, this is a constructor for the range class,
but for the sake of this discussion, we can treat it as a pure function.) Three calling
syntaxes are supported. The one-parameter form, range(n), generates a sequence of
integers from 0 up to but not including n. A two-parameter form, range(start,stop)
generates integers from start up to, but not including, stop. A three-parameter
form, range(start, stop, step), generates a similar range as range(start, stop), but
with increments of size step rather than 1.

This combination of forms seems to violate the rules for default parameters.
In particular, when a single parameter is sent, as in range(n), it serves as the stop
value (which is the second parameter); the value of start is effectively 0 in that
case. However, this effect can be achieved with some sleight of hand, as follows:

def range(start, stop=None, step=1):
if stop is None:

stop = start
start = 0

...

From a technical perspective, when range(n) is invoked, the actual parameter n will
be assigned to formal parameter start. Within the body, if only one parameter is
received, the start and stop values are reassigned to provide the desired semantics.

Keyword Parameters

The traditional mechanism for matching the actual parameters sent by a caller, to
the formal parameters declared by the function signature is based on the concept
of positional arguments. For example, with signature foo(a=10, b=20, c=30),
parameters sent by the caller are matched, in the given order, to the formal param-
eters. An invocation of foo(5) indicates that a=5, while b and c are assigned their
default values.

Python supports an alternate mechanism for sending a parameter to a function
known as a keyword argument. A keyword argument is specified by explicitly
assigning an actual parameter to a formal parameter by name. For example, with
the above definition of function foo, a call foo(c=5) will invoke the function with
parameters a=10, b=20, c=5.

A function’s author can require that certain parameters be sent only through the
keyword-argument syntax. We never place such a restriction in our own function
definitions, but we will see several important uses of keyword-only parameters in
Python’s standard libraries. As an example, the built-in max function accepts a
keyword parameter, coincidentally named key, that can be used to vary the notion
of “maximum” that is used.
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By default, max operates based upon the natural order of elements according
to the < operator for that type. But the maximum can be computed by comparing
some other aspect of the elements. This is done by providing an auxiliary function
that converts a natural element to some other value for the sake of comparison.
For example, if we are interested in finding a numeric value with magnitude that is
maximal (i.e., considering −35 to be larger than +20), we can use the calling syn-
tax max(a, b, key=abs). In this case, the built-in abs function is itself sent as the
value associated with the keyword parameter key. (Functions are first-class objects
in Python; see Section 1.10.) When max is called in this way, it will compare abs(a)
to abs(b), rather than a to b. The motivation for the keyword syntax as an alternate
to positional arguments is important in the case of max. This function is polymor-
phic in the number of arguments, allowing a call such as max(a,b,c,d); therefore,
it is not possible to designate a key function as a traditional positional element.
Sorting functions in Python also support a similar key parameter for indicating a
nonstandard order. (We explore this further in Section 9.4 and in Section 12.6.1,
when discussing sorting algorithms).

1.5.2 Python’s Built-In Functions

Table 1.4 provides an overview of common functions that are automatically avail-
able in Python, including the previously discussed abs, max, and range. When
choosing names for the parameters, we use identifiers x, y, z for arbitrary numeric
types, k for an integer, and a, b, and c for arbitrary comparable types. We use
the identifier, iterable, to represent an instance of any iterable type (e.g., str, list,
tuple, set, dict); we will discuss iterators and iterable data types in Section 1.8.
A sequence represents a more narrow category of indexable classes, including str,
list, and tuple, but neither set nor dict. Most of the entries in Table 1.4 can be
categorized according to their functionality as follows:

Input/Output: print, input, and open will be more fully explained in Section 1.6.

Character Encoding: ord and chr relate characters and their integer code points.
For example, ord( A ) is 65 and chr(65) is A .

Mathematics: abs, divmod, pow, round, and sum provide common mathematical
functionality; an additional math module will be introduced in Section 1.11.

Ordering: max and min apply to any data type that supports a notion of compar-
ison, or to any collection of such values. Likewise, sorted can be used to produce
an ordered list of elements drawn from any existing collection.

Collections/Iterations: range generates a new sequence of numbers; len reports
the length of any existing collection; functions reversed, all, any, and map oper-
ate on arbitrary iterations as well; iter and next provide a general framework for
iteration through elements of a collection, and are discussed in Section 1.8.
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Common Built-In Functions
Calling Syntax Description
abs(x) Return the absolute value of a number.
all(iterable) Return True if bool(e) is True for each element e.
any(iterable) Return True if bool(e) is True for at least one element e.
chr(integer) Return a one-character string with the given Unicode code point.
divmod(x, y) Return (x // y, x % y) as tuple, if x and y are integers.
hash(obj) Return an integer hash value for the object (see Chapter 10).
id(obj) Return the unique integer serving as an “identity” for the object.
input(prompt) Return a string from standard input; the prompt is optional.
isinstance(obj, cls) Determine if obj is an instance of the class (or a subclass).
iter(iterable) Return a new iterator object for the parameter (see Section 1.8).
len(iterable) Return the number of elements in the given iteration.

map(f, iter1, iter2, ...)
Return an iterator yielding the result of function calls f(e1, e2, ...)
for respective elements e1 ∈ iter1,e2 ∈ iter2, ...

max(iterable) Return the largest element of the given iteration.
max(a, b, c, ...) Return the largest of the arguments.
min(iterable) Return the smallest element of the given iteration.
min(a, b, c, ...) Return the smallest of the arguments.
next(iterator) Return the next element reported by the iterator (see Section 1.8).
open(filename, mode) Open a file with the given name and access mode.
ord(char) Return the Unicode code point of the given character.

pow(x, y)
Return the value xy (as an integer if x and y are integers);
equivalent to x y.

pow(x, y, z) Return the value (xy mod z) as an integer.
print(obj1, obj2, ...) Print the arguments, with separating spaces and trailing newline.
range(stop) Construct an iteration of values 0, 1, . . . , stop−1.
range(start, stop) Construct an iteration of values start, start+ 1, . . . , stop−1.
range(start, stop, step) Construct an iteration of values start, start+ step, start+2 step, . . .
reversed(sequence) Return an iteration of the sequence in reverse.
round(x) Return the nearest int value (a tie is broken toward the even value).
round(x, k) Return the value rounded to the nearest 10−k (return-type matches x).
sorted(iterable) Return a list containing elements of the iterable in sorted order.
sum(iterable) Return the sum of the elements in the iterable (must be numeric).
type(obj) Return the class to which the instance obj belongs.

Table 1.4: Commonly used built-in function in Python.
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1.6 Simple Input and Output

In this section, we address the basics of input and output in Python, describing stan-
dard input and output through the user console, and Python’s support for reading
and writing text files.

1.6.1 Console Input and Output

The print Function

The built-in function, print, is used to generate standard output to the console.
In its simplest form, it prints an arbitrary sequence of arguments, separated by
spaces, and followed by a trailing newline character. For example, the command
print( maroon , 5) outputs the string maroon 5\n . Note that arguments need
not be string instances. A nonstring argument x will be displayed as str(x). Without
any arguments, the command print() outputs a single newline character.

The print function can be customized through the use of the following keyword
parameters (see Section 1.5 for a discussion of keyword parameters):

• By default, the print function inserts a separating space into the output be-
tween each pair of arguments. The separator can be customized by providing
a desired separating string as a keyword parameter, sep. For example, colon-
separated output can be produced as print(a, b, c, sep= : ). The separating
string need not be a single character; it can be a longer string, and it can be
the empty string, sep= , causing successive arguments to be directly con-
catenated.

• By default, a trailing newline is output after the final argument. An alterna-
tive trailing string can be designated using a keyword parameter, end. Des-
ignating the empty string end= suppresses all trailing characters.

• By default, the print function sends its output to the standard console. How-
ever, output can be directed to a file by indicating an output file stream (see
Section 1.6.2) using file as a keyword parameter.

The input Function

The primary means for acquiring information from the user console is a built-in
function named input. This function displays a prompt, if given as an optional pa-
rameter, and then waits until the user enters some sequence of characters followed
by the return key. The formal return value of the function is the string of characters
that were entered strictly before the return key (i.e., no newline character exists in
the returned string).
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When reading a numeric value from the user, a programmer must use the input
function to get the string of characters, and then use the int or float syntax to
construct the numeric value that character string represents. That is, if a call to
response = input() reports that the user entered the characters, 2013 , the syntax
int(response) could be used to produce the integer value 2013. It is quite common
to combine these operations with a syntax such as

year = int(input( In what year were you born? ))

if we assume that the user will enter an appropriate response. (In Section 1.7 we
discuss error handling in such a situation.)

Because input returns a string as its result, use of that function can be combined
with the existing functionality of the string class, as described in Appendix A. For
example, if the user enters multiple pieces of information on the same line, it is
common to call the split method on the result, as in

reply = input( Enter x and y, separated by spaces: )
pieces = reply.split( ) # returns a list of strings, as separated by spaces
x = float(pieces[0])
y = float(pieces[1])

A Sample Program

Here is a simple, but complete, program that demonstrates the use of the input
and print functions. The tools for formatting the final output is discussed in Ap-
pendix A.

age = int(input( Enter your age in years: ))
max heart rate = 206.9 − (0.67 age) # as per Med Sci Sports Exerc.
target = 0.65 max heart rate
print( Your target fat-burning heart rate is , target)

1.6.2 Files

Files are typically accessed in Python beginning with a call to a built-in function,
named open, that returns a proxy for interactions with the underlying file. For
example, the command, fp = open( sample.txt ), attempts to open a file named
sample.txt, returning a proxy that allows read-only access to the text file.

The open function accepts an optional second parameter that determines the
access mode. The default mode is r for reading. Other common modes are w

for writing to the file (causing any existing file with that name to be overwritten),
or a for appending to the end of an existing file. Although we focus on use of
text files, it is possible to work with binary files, using access modes such as rb

or wb .
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When processing a file, the proxy maintains a current position within the file as
an offset from the beginning, measured in number of bytes. When opening a file
with mode r or w , the position is initially 0; if opened in append mode, a ,
the position is initially at the end of the file. The syntax fp.close() closes the file
associated with proxy fp, ensuring that any written contents are saved. A summary
of methods for reading and writing a file is given in Table 1.5

Calling Syntax Description
fp.read() Return the (remaining) contents of a readable file as a string.
fp.read(k) Return the next k bytes of a readable file as a string.
fp.readline() Return (remainder of ) the current line of a readable file as a string.
fp.readlines() Return all (remaining) lines of a readable file as a list of strings.
for line in fp: Iterate all (remaining) lines of a readable file.
fp.seek(k) Change the current position to be at the kth byte of the file.
fp.tell() Return the current position, measured as byte-offset from the start.
fp.write(string) Write given string at current position of the writable file.

fp.writelines(seq)
Write each of the strings of the given sequence at the current
position of the writable file. This command does not insert
any newlines, beyond those that are embedded in the strings.

print(..., file=fp) Redirect output of print function to the file.

Table 1.5: Behaviors for interacting with a text file via a file proxy (named fp).

Reading from a File

The most basic command for reading via a proxy is the read method. When invoked
on file proxy fp, as fp.read(k), the command returns a string representing the next k
bytes of the file, starting at the current position. Without a parameter, the syntax
fp.read() returns the remaining contents of the file in entirety. For convenience,
files can be read a line at a time, using the readline method to read one line, or
the readlines method to return a list of all remaining lines. Files also support the
for-loop syntax, with iteration being line by line (e.g., for line in fp:).

Writing to a File

When a file proxy is writable, for example, if created with access mode w or
a , text can be written using methods write or writelines. For example, if we de-

fine fp = open( results.txt , w ), the syntax fp.write( Hello World.\n )
writes a single line to the file with the given string. Note well that write does not
explicitly add a trailing newline, so desired newline characters must be embedded
directly in the string parameter. Recall that the output of the print method can be
redirected to a file using a keyword parameter, as described in Section 1.6.
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1.7 Exception Handling

Exceptions are unexpected events that occur during the execution of a program.
An exception might result from a logical error or an unanticipated situation. In
Python, exceptions (also known as errors) are objects that are raised (or thrown) by
code that encounters an unexpected circumstance. The Python interpreter can also
raise an exception should it encounter an unexpected condition, like running out of
memory. A raised error may be caught by a surrounding context that “handles” the
exception in an appropriate fashion. If uncaught, an exception causes the interpreter
to stop executing the program and to report an appropriate message to the console.
In this section, we examine the most common error types in Python, the mechanism
for catching and handling errors that have been raised, and the syntax for raising
errors from within user-defined blocks of code.

Common Exception Types

Python includes a rich hierarchy of exception classes that designate various cate-
gories of errors; Table 1.6 shows many of those classes. The Exception class serves
as a base class for most other error types. An instance of the various subclasses
encodes details about a problem that has occurred. Several of these errors may be
raised in exceptional cases by behaviors introduced in this chapter. For example,
use of an undefined identifier in an expression causes a NameError, and errant use
of the dot notation, as in foo.bar(), will generate an AttributeError if object foo
does not support a member named bar.

Class Description
Exception A base class for most error types
AttributeError Raised by syntax obj.foo, if obj has no member named foo

EOFError Raised if “end of file” reached for console or file input
IOError Raised upon failure of I/O operation (e.g., opening file)
IndexError Raised if index to sequence is out of bounds
KeyError Raised if nonexistent key requested for set or dictionary
KeyboardInterrupt Raised if user types ctrl-C while program is executing
NameError Raised if nonexistent identifier used
StopIteration Raised by next(iterator) if no element; see Section 1.8
TypeError Raised when wrong type of parameter is sent to a function
ValueError Raised when parameter has invalid value (e.g., sqrt(−5))
ZeroDivisionError Raised when any division operator used with 0 as divisor

Table 1.6: Common exception classes in Python
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Sending the wrong number, type, or value of parameters to a function is another
common cause for an exception. For example, a call to abs( hello ) will raise a
TypeError because the parameter is not numeric, and a call to abs(3, 5) will raise
a TypeError because one parameter is expected. A ValueError is typically raised
when the correct number and type of parameters are sent, but a value is illegitimate
for the context of the function. For example, the int constructor accepts a string,
as with int( 137 ), but a ValueError is raised if that string does not represent an
integer, as with int( 3.14 ) or int( hello ).

Python’s sequence types (e.g., list, tuple, and str) raise an IndexError when
syntax such as data[k] is used with an integer k that is not a valid index for the given
sequence (as described in Section 1.2.3). Sets and dictionaries raise a KeyError
when an attempt is made to access a nonexistent element.

1.7.1 Raising an Exception

An exception is thrown by executing the raise statement, with an appropriate in-
stance of an exception class as an argument that designates the problem. For exam-
ple, if a function for computing a square root is sent a negative value as a parameter,
it can raise an exception with the command:

raise ValueError( x cannot be negative )

This syntax raises a newly created instance of the ValueError class, with the error
message serving as a parameter to the constructor. If this exception is not caught
within the body of the function, the execution of the function immediately ceases
and the exception is propagated to the calling context (and possibly beyond).

When checking the validity of parameters sent to a function, it is customary
to first verify that a parameter is of an appropriate type, and then to verify that it
has an appropriate value. For example, the sqrt function in Python’s math library
performs error-checking that might be implemented as follows:

def sqrt(x):
if not isinstance(x, (int, float)):

raise TypeError( x must be numeric )
elif x < 0:

raise ValueError( x cannot be negative )
# do the real work here...

Checking the type of an object can be performed at run-time using the built-in
function, isinstance. In simplest form, isinstance(obj, cls) returns True if object,
obj, is an instance of class, cls, or any subclass of that type. In the above example, a
more general form is used with a tuple of allowable types indicated with the second
parameter. After confirming that the parameter is numeric, the function enforces
an expectation that the number be nonnegative, raising a ValueError otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/


1.7. Exception Handling 35

How much error-checking to perform within a function is a matter of debate.
Checking the type and value of each parameter demands additional execution time
and, if taken to an extreme, seems counter to the nature of Python. Consider the
built-in sum function, which computes a sum of a collection of numbers. An im-
plementation with rigorous error-checking might be written as follows:

def sum(values):
if not isinstance(values, collections.Iterable):

raise TypeError( parameter must be an iterable type )
total = 0
for v in values:

if not isinstance(v, (int, float)):
raise TypeError( elements must be numeric )

total = total+ v
return total

The abstract base class, collections.Iterable, includes all of Python’s iterable con-
tainers types that guarantee support for the for-loop syntax (e.g., list, tuple, set);
we discuss iterables in Section 1.8, and the use of modules, such as collections, in
Section 1.11. Within the body of the for loop, each element is verified as numeric
before being added to the total. A far more direct and clear implementation of this
function can be written as follows:

def sum(values):
total = 0
for v in values:

total = total + v
return total

Interestingly, this simple implementation performs exactly like Python’s built-in
version of the function. Even without the explicit checks, appropriate exceptions
are raised naturally by the code. In particular, if values is not an iterable type, the
attempt to use the for-loop syntax raises a TypeError reporting that the object is not
iterable. In the case when a user sends an iterable type that includes a nonnumer-
ical element, such as sum([3.14, oops ]), a TypeError is naturally raised by the
evaluation of expression total + v. The error message

unsupported operand type(s) for +: ’float’ and ’str’

should be sufficiently informative to the caller. Perhaps slightly less obvious is the
error that results from sum([ alpha , beta ]). It will technically report a failed
attempt to add an int and str, due to the initial evaluation of total + alpha ,
when total has been initialized to 0.

In the remainder of this book, we tend to favor the simpler implementations
in the interest of clean presentation, performing minimal error-checking in most
situations.
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1.7.2 Catching an Exception

There are several philosophies regarding how to cope with possible exceptional
cases when writing code. For example, if a division x/y is to be computed, there
is clear risk that a ZeroDivisionError will be raised when variable y has value 0. In
an ideal situation, the logic of the program may dictate that y has a nonzero value,
thereby removing the concern for error. However, for more complex code, or in
a case where the value of y depends on some external input to the program, there
remains some possibility of an error.

One philosophy for managing exceptional cases is to “look before you leap.”
The goal is to entirely avoid the possibility of an exception being raised through
the use of a proactive conditional test. Revisiting our division example, we might
avoid the offending situation by writing:

if y != 0:
ratio = x / y

else:
... do something else ...

A second philosophy, often embraced by Python programmers, is that “it is
easier to ask for forgiveness than it is to get permission.” This quote is attributed
to Grace Hopper, an early pioneer in computer science. The sentiment is that we
need not spend extra execution time safeguarding against every possible excep-
tional case, as long as there is a mechanism for coping with a problem after it
arises. In Python, this philosophy is implemented using a try-except control struc-
ture. Revising our first example, the division operation can be guarded as follows:

try:
ratio = x / y

except ZeroDivisionError:
... do something else ...

In this structure, the “try” block is the primary code to be executed. Although it
is a single command in this example, it can more generally be a larger block of
indented code. Following the try-block are one or more “except” cases, each with
an identified error type and an indented block of code that should be executed if the
designated error is raised within the try-block.

The relative advantage of using a try-except structure is that the non-exceptional
case runs efficiently, without extraneous checks for the exceptional condition. How-
ever, handling the exceptional case requires slightly more time when using a try-
except structure than with a standard conditional statement. For this reason, the
try-except clause is best used when there is reason to believe that the exceptional
case is relatively unlikely, or when it is prohibitively expensive to proactively eval-
uate a condition to avoid the exception.
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Exception handling is particularly useful when working with user input, or
when reading from or writing to files, because such interactions are inherently less
predictable. In Section 1.6.2, we suggest the syntax, fp = open( sample.txt ),
for opening a file with read access. That command may raise an IOError for a vari-
ety of reasons, such as a non-existent file, or lack of sufficient privilege for opening
a file. It is significantly easier to attempt the command and catch the resulting error
than it is to accurately predict whether the command will succeed.

We continue by demonstrating a few other forms of the try-except syntax. Ex-
ceptions are objects that can be examined when caught. To do so, an identifier must
be established with a syntax as follows:

try:
fp = open( sample.txt )

except IOError as e:
print( Unable to open the file: , e)

In this case, the name, e, denotes the instance of the exception that was thrown, and
printing it causes a detailed error message to be displayed (e.g., “file not found”).

A try-statement may handle more than one type of exception. For example,
consider the following command from Section 1.6.1:

age = int(input( Enter your age in years: ))

This command could fail for a variety of reasons. The call to input will raise an
EOFError if the console input fails. If the call to input completes successfully, the
int constructor raises a ValueError if the user has not entered characters represent-
ing a valid integer. If we want to handle two or more types of errors in the same
way, we can use a single except-statement, as in the following example:

age = −1 # an initially invalid choice
while age <= 0:

try:
age = int(input( Enter your age in years: ))
if age <= 0:

print( Your age must be positive )
except (ValueError, EOFError):

print( Invalid response )

We use the tuple, (ValueError, EOFError), to designate the types of errors that we
wish to catch with the except-clause. In this implementation, we catch either error,
print a response, and continue with another pass of the enclosing while loop. We
note that when an error is raised within the try-block, the remainder of that body
is immediately skipped. In this example, if the exception arises within the call to
input, or the subsequent call to the int constructor, the assignment to age never
occurs, nor the message about needing a positive value. Because the value of age
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will be unchanged, the while loop will continue. If we preferred to have the while
loop continue without printing the Invalid response message, we could have
written the exception-clause as

except (ValueError, EOFError):
pass

The keyword, pass, is a statement that does nothing, yet it can serve syntactically
as a body of a control structure. In this way, we quietly catch the exception, thereby
allowing the surrounding while loop to continue.

In order to provide different responses to different types of errors, we may use
two or more except-clauses as part of a try-structure. In our previous example, an
EOFError suggests a more insurmountable error than simply an errant value being
entered. In that case, we might wish to provide a more specific error message, or
perhaps to allow the exception to interrupt the loop and be propagated to a higher
context. We could implement such behavior as follows:

age = −1 # an initially invalid choice
while age <= 0:

try:
age = int(input( Enter your age in years: ))
if age <= 0:

print( Your age must be positive )
except ValueError:

print( That is an invalid age specification )
except EOFError:

print( There was an unexpected error reading input. )
raise # let s re-raise this exception

In this implementation, we have separate except-clauses for the ValueError and
EOFError cases. The body of the clause for handling an EOFError relies on another
technique in Python. It uses the raise statement without any subsequent argument,
to re-raise the same exception that is currently being handled. This allows us to
provide our own response to the exception, and then to interrupt the while loop and
propagate the exception upward.

In closing, we note two additional features of try-except structures in Python.
It is permissible to have a final except-clause without any identified error types,
using syntax except:, to catch any other exceptions that occurred. However, this
technique should be used sparingly, as it is difficult to suggest how to handle an
error of an unknown type. A try-statement can have a finally clause, with a body of
code that will always be executed in the standard or exceptional cases, even when
an uncaught or re-raised exception occurs. That block is typically used for critical
cleanup work, such as closing an open file.
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1.8 Iterators and Generators

In Section 1.4.2, we introduced the for-loop syntax beginning as:

for element in iterable:

and we noted that there are many types of objects in Python that qualify as being
iterable. Basic container types, such as list, tuple, and set, qualify as iterable types.
Furthermore, a string can produce an iteration of its characters, a dictionary can
produce an iteration of its keys, and a file can produce an iteration of its lines. User-
defined types may also support iteration. In Python, the mechanism for iteration is
based upon the following conventions:

• An iterator is an object that manages an iteration through a series of values. If
variable, i, identifies an iterator object, then each call to the built-in function,
next(i), produces a subsequent element from the underlying series, with a
StopIteration exception raised to indicate that there are no further elements.

• An iterable is an object, obj, that produces an iterator via the syntax iter(obj).

By these definitions, an instance of a list is an iterable, but not itself an iterator.
With data = [1, 2, 4, 8], it is not legal to call next(data). However, an iterator
object can be produced with syntax, i = iter(data), and then each subsequent call
to next(i) will return an element of that list. The for-loop syntax in Python simply
automates this process, creating an iterator for the give iterable, and then repeatedly
calling for the next element until catching the StopIteration exception.

More generally, it is possible to create multiple iterators based upon the same
iterable object, with each iterator maintaining its own state of progress. However,
iterators typically maintain their state with indirect reference back to the original
collection of elements. For example, calling iter(data) on a list instance produces
an instance of the list iterator class. That iterator does not store its own copy of the
list of elements. Instead, it maintains a current index into the original list, represent-
ing the next element to be reported. Therefore, if the contents of the original list
are modified after the iterator is constructed, but before the iteration is complete,
the iterator will be reporting the updated contents of the list.

Python also supports functions and classes that produce an implicit iterable se-
ries of values, that is, without constructing a data structure to store all of its values
at once. For example, the call range(1000000) does not return a list of numbers; it
returns a range object that is iterable. This object generates the million values one
at a time, and only as needed. Such a lazy evaluation technique has great advan-
tage. In the case of range, it allows a loop of the form, for j in range(1000000):,
to execute without setting aside memory for storing one million values. Also, if
such a loop were to be interrupted in some fashion, no time will have been spent
computing unused values of the range.
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We see lazy evaluation used in many of Python’s libraries. For example, the
dictionary class supports methods keys(), values(), and items(), which respec-
tively produce a “view” of all keys, values, or (key,value) pairs within a dictionary.
None of these methods produces an explicit list of results. Instead, the views that
are produced are iterable objects based upon the actual contents of the dictionary.
An explicit list of values from such an iteration can be immediately constructed by
calling the list class constructor with the iteration as a parameter. For example, the
syntax list(range(1000)) produces a list instance with values from 0 to 999, while
the syntax list(d.values()) produces a list that has elements based upon the current
values of dictionary d. We can similarly construct a tuple or set instance based
upon a given iterable.

Generators

In Section 2.3.4, we will explain how to define a class whose instances serve as
iterators. However, the most convenient technique for creating iterators in Python
is through the use of generators. A generator is implemented with a syntax that
is very similar to a function, but instead of returning values, a yield statement is
executed to indicate each element of the series. As an example, consider the goal
of determining all factors of a positive integer. For example, the number 100 has
factors 1, 2, 4, 5, 10, 20, 25, 50, 100. A traditional function might produce and
return a list containing all factors, implemented as:

def factors(n): # traditional function that computes factors
results = [ ] # store factors in a new list
for k in range(1,n+1):

if n % k == 0: # divides evenly, thus k is a factor
results.append(k) # add k to the list of factors

return results # return the entire list

In contrast, an implementation of a generator for computing those factors could be
implemented as follows:

def factors(n): # generator that computes factors
for k in range(1,n+1):

if n % k == 0: # divides evenly, thus k is a factor
yield k # yield this factor as next result

Notice use of the keyword yield rather than return to indicate a result. This indi-
cates to Python that we are defining a generator, rather than a traditional function. It
is illegal to combine yield and return statements in the same implementation, other
than a zero-argument return statement to cause a generator to end its execution. If
a programmer writes a loop such as for factor in factors(100):, an instance of our
generator is created. For each iteration of the loop, Python executes our procedure
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until a yield statement indicates the next value. At that point, the procedure is tem-
porarily interrupted, only to be resumed when another value is requested. When
the flow of control naturally reaches the end of our procedure (or a zero-argument
return statement), a StopIteration exception is automatically raised. Although this
particular example uses a single yield statement in the source code, a generator can
rely on multiple yield statements in different constructs, with the generated series
determined by the natural flow of control. For example, we can greatly improve
the efficiency of our generator for computing factors of a number, n, by only test-
ing values up to the square root of that number, while reporting the factor n//k
that is associated with each k (unless n//k equals k). We might implement such a
generator as follows:

def factors(n): # generator that computes factors
k = 1
while k k < n: # while k < sqrt(n)

if n % k == 0:
yield k
yield n // k

k += 1
if k k == n: # special case if n is perfect square

yield k

We should note that this generator differs from our first version in that the factors
are not generated in strictly increasing order. For example, factors(100) generates
the series 1,100,2,50,4,25,5,20,10.

In closing, we wish to emphasize the benefits of lazy evaluation when using a
generator rather than a traditional function. The results are only computed if re-
quested, and the entire series need not reside in memory at one time. In fact, a
generator can effectively produce an infinite series of values. As an example, the
Fibonacci numbers form a classic mathematical sequence, starting with value 0,
then value 1, and then each subsequent value being the sum of the two preceding
values. Hence, the Fibonacci series begins as: 0,1,1,2,3,5,8,13, . . .. The follow-
ing generator produces this infinite series.

def fibonacci():
a = 0
b = 1
while True: # keep going...

yield a # report value, a, during this pass
future = a + b
a = b # this will be next value reported
b = future # and subsequently this
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1.9 Additional Python Conveniences

In this section, we introduce several features of Python that are particularly conve-
nient for writing clean, concise code. Each of these syntaxes provide functionality
that could otherwise be accomplished using functionality that we have introduced
earlier in this chapter. However, at times, the new syntax is a more clear and direct
expression of the logic.

1.9.1 Conditional Expressions

Python supports a conditional expression syntax that can replace a simple control
structure. The general syntax is an expression of the form:

expr1 if condition else expr2

This compound expression evaluates to expr1 if the condition is true, and otherwise
evaluates to expr2. For those familiar with Java or C++, this is equivalent to the
syntax, condition ? expr1 : expr2, in those languages.

As an example, consider the goal of sending the absolute value of a variable, n,
to a function (and without relying on the built-in abs function, for the sake of ex-
ample). Using a traditional control structure, we might accomplish this as follows:

if n >= 0:
param = n

else:
param = −n

result = foo(param) # call the function

With the conditional expression syntax, we can directly assign a value to variable,
param, as follows:

param = n if n >= 0 else −n # pick the appropriate value
result = foo(param) # call the function

In fact, there is no need to assign the compound expression to a variable. A condi-
tional expression can itself serve as a parameter to the function, written as follows:

result = foo(n if n >= 0 else −n)

Sometimes, the mere shortening of source code is advantageous because it
avoids the distraction of a more cumbersome control structure. However, we rec-
ommend that a conditional expression be used only when it improves the readability
of the source code, and when the first of the two options is the more “natural” case,
given its prominence in the syntax. (We prefer to view the alternative value as more
exceptional.)
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1.9.2 Comprehension Syntax

A very common programming task is to produce one series of values based upon
the processing of another series. Often, this task can be accomplished quite simply
in Python using what is known as a comprehension syntax. We begin by demon-
strating list comprehension, as this was the first form to be supported by Python.
Its general form is as follows:

[ expression for value in iterable if condition ]

We note that both expression and condition may depend on value, and that the
if-clause is optional. The evaluation of the comprehension is logically equivalent
to the following traditional control structure for computing a resulting list:

result = [ ]
for value in iterable:

if condition:
result.append(expression)

As a concrete example, a list of the squares of the numbers from 1 to n, that is
[1,4,9,16,25, . . . ,n2], can be created by traditional means as follows:

squares = [ ]
for k in range(1, n+1):

squares.append(k k)

With list comprehension, this logic is expressed as follows:

squares = [k k for k in range(1, n+1)]

As a second example, Section 1.8 introduced the goal of producing a list of factors
for an integer n. That task is accomplished with the following list comprehension:

factors = [k for k in range(1,n+1) if n % k == 0]

Python supports similar comprehension syntaxes that respectively produce a
set, generator, or dictionary. We compare those syntaxes using our example for
producing the squares of numbers.

[ k k for k in range(1, n+1) ] list comprehension
{ k k for k in range(1, n+1) } set comprehension
( k k for k in range(1, n+1) ) generator comprehension
{ k : k k for k in range(1, n+1) } dictionary comprehension

The generator syntax is particularly attractive when results do not need to be stored
in memory. For example, to compute the sum of the first n squares, the genera-
tor syntax, total = sum(k k for k in range(1, n+1)), is preferred to the use of an
explicitly instantiated list comprehension as the parameter.
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1.9.3 Packing and Unpacking of Sequences

Python provides two additional conveniences involving the treatment of tuples and
other sequence types. The first is rather cosmetic. If a series of comma-separated
expressions are given in a larger context, they will be treated as a single tuple, even
if no enclosing parentheses are provided. For example, the assignment

data = 2, 4, 6, 8

results in identifier, data, being assigned to the tuple (2, 4, 6, 8). This behavior
is called automatic packing of a tuple. One common use of packing in Python is
when returning multiple values from a function. If the body of a function executes
the command,

return x, y

it will be formally returning a single object that is the tuple (x, y).

As a dual to the packing behavior, Python can automatically unpack a se-
quence, allowing one to assign a series of individual identifiers to the elements
of sequence. As an example, we can write

a, b, c, d = range(7, 11)

which has the effect of assigning a=7, b=8, c=9, and d=10, as those are the four
values in the sequence returned by the call to range. For this syntax, the right-hand
side expression can be any iterable type, as long as the number of variables on the
left-hand side is the same as the number of elements in the iteration.

This technique can be used to unpack tuples returned by a function. For exam-
ple, the built-in function, divmod(a, b), returns the pair of values (a // b, a % b)
associated with an integer division. Although the caller can consider the return
value to be a single tuple, it is possible to write

quotient, remainder = divmod(a, b)

to separately identify the two entries of the returned tuple. This syntax can also be
used in the context of a for loop, when iterating over a sequence of iterables, as in

for x, y in [ (7, 2), (5, 8), (6, 4) ]:

In this example, there will be three iterations of the loop. During the first pass, x=7
and y=2, and so on. This style of loop is quite commonly used to iterate through
key-value pairs that are returned by the items() method of the dict class, as in:

for k, v in mapping.items():
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Simultaneous Assignments

The combination of automatic packing and unpacking forms a technique known
as simultaneous assignment, whereby we explicitly assign a series of values to a
series of identifiers, using a syntax:

x, y, z = 6, 2, 5

In effect, the right-hand side of this assignment is automatically packed into a tuple,
and then automatically unpacked with its elements assigned to the three identifiers
on the left-hand side.

When using a simultaneous assignment, all of the expressions are evaluated
on the right-hand side before any of the assignments are made to the left-hand
variables. This is significant, as it provides a convenient means for swapping the
values associated with two variables:

j, k = k, j

With this command, j will be assigned to the old value of k, and k will be assigned
to the old value of j. Without simultaneous assignment, a swap typically requires
more delicate use of a temporary variable, such as

temp = j
j = k
k = temp

With the simultaneous assignment, the unnamed tuple representing the packed val-
ues on the right-hand side implicitly serves as the temporary variable when per-
forming such a swap.

The use of simultaneous assignments can greatly simplify the presentation of
code. As an example, we reconsider the generator on page 41 that produces the
Fibonacci series. The original code requires separate initialization of variables a
and b to begin the series. Within each pass of the loop, the goal was to reassign a
and b, respectively, to the values of b and a+b. At the time, we accomplished this
with brief use of a third variable. With simultaneous assignments, that generator
can be implemented more directly as follows:

def fibonacci():
a, b = 0, 1
while True:

yield a
a, b = b, a+b
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1.10 Scopes and Namespaces

When computing a sum with the syntax x + y in Python, the names x and y must
have been previously associated with objects that serve as values; a NameError
will be raised if no such definitions are found. The process of determining the
value associated with an identifier is known as name resolution.

Whenever an identifier is assigned to a value, that definition is made with a
specific scope. Top-level assignments are typically made in what is known as global
scope. Assignments made within the body of a function typically have scope that is
local to that function call. Therefore, an assignment, x = 5, within a function has
no effect on the identifier, x, in the broader scope.

Each distinct scope in Python is represented using an abstraction known as a
namespace. A namespace manages all identifiers that are currently defined in a
given scope. Figure 1.8 portrays two namespaces, one being that of a caller to our
count function from Section 1.5, and the other being the local namespace during
the execution of that function.
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Figure 1.8: A portrayal of the two namespaces associated with a user’s call
count(grades, A ), as defined in Section 1.5. The left namespace is the caller’s
and the right namespace represents the local scope of the function.

Python implements a namespace with its own dictionary that maps each iden-
tifying string (e.g., n ) to its associated value. Python provides several ways to
examine a given namespace. The function, dir, reports the names of the identifiers
in a given namespace (i.e., the keys of the dictionary), while the function, vars,
returns the full dictionary. By default, calls to dir() and vars() report on the most
locally enclosing namespace in which they are executed.
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When an identifier is indicated in a command, Python searches a series of
namespaces in the process of name resolution. First, the most locally enclosing
scope is searched for a given name. If not found there, the next outer scope is
searched, and so on. We will continue our examination of namespaces, in Sec-
tion 2.5, when discussing Python’s treatment of object-orientation. We will see
that each object has its own namespace to store its attributes, and that classes each
have a namespace as well.

First-Class Objects

In the terminology of programming languages, first-class objects are instances of
a type that can be assigned to an identifier, passed as a parameter, or returned by
a function. All of the data types we introduced in Section 1.2.3, such as int and
list, are clearly first-class types in Python. In Python, functions and classes are also
treated as first-class objects. For example, we could write the following:

scream = print # assign name ’scream’ to the function denoted as ’print’
scream( Hello ) # call that function

In this case, we have not created a new function, we have simply defined scream
as an alias for the existing print function. While there is little motivation for pre-
cisely this example, it demonstrates the mechanism that is used by Python to al-
low one function to be passed as a parameter to another. On page 28, we noted
that the built-in function, max, accepts an optional keyword parameter to specify
a non-default order when computing a maximum. For example, a caller can use
the syntax, max(a, b, key=abs), to determine which value has the larger absolute
value. Within the body of that function, the formal parameter, key, is an identifier
that will be assigned to the actual parameter, abs.

In terms of namespaces, an assignment such as scream = print, introduces the
identifier, scream, into the current namespace, with its value being the object that
represents the built-in function, print. The same mechanism is applied when a user-
defined function is declared. For example, our count function from Section 1.5
beings with the following syntax:

def count(data, target):
...

Such a declaration introduces the identifier, count, into the current namespace,
with the value being a function instance representing its implementation. In similar
fashion, the name of a newly defined class is associated with a representation of
that class as its value. (Class definitions will be introduced in the next chapter.)
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1.11 Modules and the Import Statement

We have already introduced many functions (e.g., max) and classes (e.g., list)
that are defined within Python’s built-in namespace. Depending on the version of
Python, there are approximately 130–150 definitions that were deemed significant
enough to be included in that built-in namespace.

Beyond the built-in definitions, the standard Python distribution includes per-
haps tens of thousands of other values, functions, and classes that are organized in
additional libraries, known as modules, that can be imported from within a pro-
gram. As an example, we consider the math module. While the built-in namespace
includes a few mathematical functions (e.g., abs, min, max, round), many more
are relegated to the math module (e.g., sin, cos, sqrt). That module also defines
approximate values for the mathematical constants, pi and e.

Python’s import statement loads definitions from a module into the current
namespace. One form of an import statement uses a syntax such as the following:

from math import pi, sqrt

This command adds both pi and sqrt, as defined in the math module, into the cur-
rent namespace, allowing direct use of the identifier, pi, or a call of the function,
sqrt(2). If there are many definitions from the same module to be imported, an
asterisk may be used as a wild card, as in, from math import , but this form
should be used sparingly. The danger is that some of the names defined in the mod-
ule may conflict with names already in the current namespace (or being imported
from another module), and the import causes the new definitions to replace existing
ones.

Another approach that can be used to access many definitions from the same
module is to import the module itself, using a syntax such as:

import math

Formally, this adds the identifier, math, to the current namespace, with the module
as its value. (Modules are also first-class objects in Python.) Once imported, in-
dividual definitions from the module can be accessed using a fully-qualified name,
such as math.pi or math.sqrt(2).

Creating a New Module

To create a new module, one simply has to put the relevant definitions in a file
named with a .py suffix. Those definitions can be imported from any other .py
file within the same project directory. For example, if we were to put the definition
of our count function (see Section 1.5) into a file named utility.py, we could
import that function using the syntax, from utility import count.

www.it-ebooks.info

http://www.it-ebooks.info/


1.11. Modules and the Import Statement 49

It is worth noting that top-level commands with the module source code are
executed when the module is first imported, almost as if the module were its own
script. There is a special construct for embedding commands within the module
that will be executed if the module is directly invoked as a script, but not when
the module is imported from another script. Such commands should be placed in a
body of a conditional statement of the following form,

if name == __main__ :

Using our hypothetical utility.py module as an example, such commands will
be executed if the interpreter is started with a command python utility.py, but
not when the utility module is imported into another context. This approach is often
used to embed what are known as unit tests within the module; we will discuss unit
testing further in Section 2.2.4.

1.11.1 Existing Modules

Table 1.7 provides a summary of a few available modules that are relevant to a
study of data structures. We have already discussed the math module briefly. In the
remainder of this section, we highlight another module that is particularly important
for some of the data structures and algorithms that we will study later in this book.

Existing Modules
Module Name Description
array Provides compact array storage for primitive types.

collections
Defines additional data structures and abstract base classes
involving collections of objects.

copy Defines general functions for making copies of objects.
heapq Provides heap-based priority queue functions (see Section 9.3.7).
math Defines common mathematical constants and functions.
os Provides support for interactions with the operating system.
random Provides random number generation.
re Provides support for processing regular expressions.
sys Provides additional level of interaction with the Python interpreter.
time Provides support for measuring time, or delaying a program.

Table 1.7: Some existing Python modules relevant to data structures and algorithms.

Pseudo-Random Number Generation

Python’s random module provides the ability to generate pseudo-random numbers,
that is, numbers that are statistically random (but not necessarily truly random).
A pseudo-random number generator uses a deterministic formula to generate the
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next number in a sequence based upon one or more past numbers that it has gen-
erated. Indeed, a simple yet popular pseudo-random number generator chooses its
next number based solely on the most recently chosen number and some additional
parameters using the following formula.

next = (a*current + b) % n;

where a, b, and n are appropriately chosen integers. Python uses a more advanced
technique known as a Mersenne twister. It turns out that the sequences generated
by these techniques can be proven to be statistically uniform, which is usually
good enough for most applications requiring random numbers, such as games. For
applications, such as computer security settings, where one needs unpredictable
random sequences, this kind of formula should not be used. Instead, one should
ideally sample from a source that is actually random, such as radio static coming
from outer space.

Since the next number in a pseudo-random generator is determined by the pre-
vious number(s), such a generator always needs a place to start, which is called its
seed. The sequence of numbers generated for a given seed will always be the same.
One common trick to get a different sequence each time a program is run is to use
a seed that will be different for each run. For example, we could use some timed
input from a user or the current system time in milliseconds.

Python’s random module provides support for pseudo-random number gener-
ation by defining a Random class; instances of that class serve as generators with
independent state. This allows different aspects of a program to rely on their own
pseudo-random number generator, so that calls to one generator do not affect the
sequence of numbers produced by another. For convenience, all of the methods
supported by the Random class are also supported as stand-alone functions of the
random module (essentially using a single generator instance for all top-level calls).

Syntax Description

seed(hashable)
Initializes the pseudo-random number generator
based upon the hash value of the parameter

random()
Returns a pseudo-random floating-point
value in the interval [0.0,1.0).

randint(a,b)
Returns a pseudo-random integer
in the closed interval [a,b].

randrange(start, stop, step)
Returns a pseudo-random integer in the standard
Python range indicated by the parameters.

choice(seq)
Returns an element of the given sequence
chosen pseudo-randomly.

shuffle(seq)
Reorders the elements of the given
sequence pseudo-randomly.

Table 1.8: Methods supported by instances of the Random class, and as top-level
functions of the random module.
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1.12 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-1.1 Write a short Python function, is multiple(n, m), that takes two integer
values and returns True if n is a multiple of m, that is, n = mi for some
integer i, and False otherwise.

R-1.2 Write a short Python function, is even(k), that takes an integer value and
returns True if k is even, and False otherwise. However, your function
cannot use the multiplication, modulo, or division operators.

R-1.3 Write a short Python function, minmax(data), that takes a sequence of
one or more numbers, and returns the smallest and largest numbers, in the
form of a tuple of length two. Do not use the built-in functions min or
max in implementing your solution.

R-1.4 Write a short Python function that takes a positive integer n and returns
the sum of the squares of all the positive integers smaller than n.

R-1.5 Give a single command that computes the sum from Exercise R-1.4, rely-
ing on Python’s comprehension syntax and the built-in sum function.

R-1.6 Write a short Python function that takes a positive integer n and returns
the sum of the squares of all the odd positive integers smaller than n.

R-1.7 Give a single command that computes the sum from Exercise R-1.6, rely-
ing on Python’s comprehension syntax and the built-in sum function.

R-1.8 Python allows negative integers to be used as indices into a sequence,
such as a string. If string s has length n, and expression s[k] is used for in-
dex −n≤ k < 0, what is the equivalent index j ≥ 0 such that s[j] references
the same element?

R-1.9 What parameters should be sent to the range constructor, to produce a
range with values 50, 60, 70, 80?

R-1.10 What parameters should be sent to the range constructor, to produce a
range with values 8, 6, 4, 2, 0, −2, −4, −6, −8?

R-1.11 Demonstrate how to use Python’s list comprehension syntax to produce
the list [1, 2, 4, 8, 16, 32, 64, 128, 256].

R-1.12 Python’s random module includes a function choice(data) that returns a
random element from a non-empty sequence. The random module in-
cludes a more basic function randrange, with parameterization similar to
the built-in range function, that return a random choice from the given
range. Using only the randrange function, implement your own version
of the choice function.
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Creativity

C-1.13 Write a pseudo-code description of a function that reverses a list of n
integers, so that the numbers are listed in the opposite order than they
were before, and compare this method to an equivalent Python function
for doing the same thing.

C-1.14 Write a short Python function that takes a sequence of integer values and
determines if there is a distinct pair of numbers in the sequence whose
product is odd.

C-1.15 Write a Python function that takes a sequence of numbers and determines
if all the numbers are different from each other (that is, they are distinct).

C-1.16 In our implementation of the scale function (page 25), the body of the loop
executes the command data[j] = factor. We have discussed that numeric
types are immutable, and that use of the = operator in this context causes
the creation of a new instance (not the mutation of an existing instance).
How is it still possible, then, that our implementation of scale changes the
actual parameter sent by the caller?

C-1.17 Had we implemented the scale function (page 25) as follows, does it work
properly?

def scale(data, factor):
for val in data:

val = factor

Explain why or why not.

C-1.18 Demonstrate how to use Python’s list comprehension syntax to produce
the list [0, 2, 6, 12, 20, 30, 42, 56, 72, 90].

C-1.19 Demonstrate how to use Python’s list comprehension syntax to produce
the list [ a , b , c , ..., z ], but without having to type all 26 such
characters literally.

C-1.20 Python’s random module includes a function shuffle(data) that accepts a
list of elements and randomly reorders the elements so that each possi-
ble order occurs with equal probability. The random module includes a
more basic function randint(a, b) that returns a uniformly random integer
from a to b (including both endpoints). Using only the randint function,
implement your own version of the shuffle function.

C-1.21 Write a Python program that repeatedly reads lines from standard input
until an EOFError is raised, and then outputs those lines in reverse order
(a user can indicate end of input by typing ctrl-D).
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C-1.22 Write a short Python program that takes two arrays a and b of length n
storing int values, and returns the dot product of a and b. That is, it returns
an array c of length n such that c[i] = a[i] ·b[i], for i = 0, . . . ,n−1.

C-1.23 Give an example of a Python code fragment that attempts to write an ele-
ment to a list based on an index that may be out of bounds. If that index
is out of bounds, the program should catch the exception that results, and
print the following error message:
“Don’t try buffer overflow attacks in Python!”

C-1.24 Write a short Python function that counts the number of vowels in a given
character string.

C-1.25 Write a short Python function that takes a string s, representing a sentence,
and returns a copy of the string with all punctuation removed. For exam-
ple, if given the string "Let s try, Mike.", this function would return
"Lets try Mike".

C-1.26 Write a short program that takes as input three integers, a, b, and c, from
the console and determines if they can be used in a correct arithmetic
formula (in the given order), like “a+ b = c,” “a = b− c,” or “a∗b = c.”

C-1.27 In Section 1.8, we provided three different implementations of a generator
that computes factors of a given integer. The third of those implementa-
tions, from page 41, was the most efficient, but we noted that it did not
yield the factors in increasing order. Modify the generator so that it reports
factors in increasing order, while maintaining its general performance ad-
vantages.

C-1.28 The p-norm of a vector v = (v1,v2, . . . ,vn) in n-dimensional space is de-
fined as

‖v‖ =
p√

vp
1 + vp

2 + · · ·+ vp
n .

For the special case of p = 2, this results in the traditional Euclidean
norm, which represents the length of the vector. For example, the Eu-
clidean norm of a two-dimensional vector with coordinates (4,3) has a
Euclidean norm of

√
42 + 32 =

√
16+ 9 =

√
25 = 5. Give an implemen-

tation of a function named norm such that norm(v, p) returns the p-norm
value of v and norm(v) returns the Euclidean norm of v. You may assume
that v is a list of numbers.
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Projects

P-1.29 Write a Python program that outputs all possible strings formed by using
the characters c , a , t , d , o , and g exactly once.

P-1.30 Write a Python program that can take a positive integer greater than 2 as
input and write out the number of times one must repeatedly divide this
number by 2 before getting a value less than 2.

P-1.31 Write a Python program that can “make change.” Your program should
take two numbers as input, one that is a monetary amount charged and the
other that is a monetary amount given. It should then return the number
of each kind of bill and coin to give back as change for the difference
between the amount given and the amount charged. The values assigned
to the bills and coins can be based on the monetary system of any current
or former government. Try to design your program so that it returns as
few bills and coins as possible.

P-1.32 Write a Python program that can simulate a simple calculator, using the
console as the exclusive input and output device. That is, each input to the
calculator, be it a number, like 12.34 or 1034, or an operator, like + or =,
can be done on a separate line. After each such input, you should output
to the Python console what would be displayed on your calculator.

P-1.33 Write a Python program that simulates a handheld calculator. Your pro-
gram should process input from the Python console representing buttons
that are “pushed,” and then output the contents of the screen after each op-
eration is performed. Minimally, your calculator should be able to process
the basic arithmetic operations and a reset/clear operation.

P-1.34 A common punishment for school children is to write out a sentence mul-
tiple times. Write a Python stand-alone program that will write out the
following sentence one hundred times: “I will never spam my friends
again.” Your program should number each of the sentences and it should
make eight different random-looking typos.

P-1.35 The birthday paradox says that the probability that two people in a room
will have the same birthday is more than half, provided n, the number of
people in the room, is more than 23. This property is not really a paradox,
but many people find it surprising. Design a Python program that can test
this paradox by a series of experiments on randomly generated birthdays,
which test this paradox for n = 5,10,15,20, . . . ,100.

P-1.36 Write a Python program that inputs a list of words, separated by white-
space, and outputs how many times each word appears in the list. You
need not worry about efficiency at this point, however, as this topic is
something that will be addressed later in this book.
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Chapter Notes

The official Python Web site (http://www.python.org) has a wealth of information, in-
cluding a tutorial and full documentation of the built-in functions, classes, and standard
modules. The Python interpreter is itself a useful reference, as the interactive command
help(foo) provides documentation for any function, class, or module that foo identifies.

Books providing an introduction to programming in Python include titles authored by
Campbell et al. [22], Cedar [25], Dawson [32], Goldwasser and Letscher [43], Lutz [72],
Perkovic [82], and Zelle [105]. More complete reference books on Python include titles by
Beazley [12], and Summerfield [91].
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2.1 Goals, Principles, and Patterns

As the name implies, the main “actors” in the object-oriented paradigm are called
objects. Each object is an instance of a class. Each class presents to the outside
world a concise and consistent view of the objects that are instances of this class,
without going into too much unnecessary detail or giving others access to the inner
workings of the objects. The class definition typically specifies instance variables,
also known as data members, that the object contains, as well as the methods, also
known as member functions, that the object can execute. This view of computing
is intended to fulfill several goals and incorporate several design principles, which
we discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusabil-
ity. (See Figure 2.1.)

Robustness Adaptability Reusability

Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means that
a program produces the right output for all the anticipated inputs in the program’s
application. In addition, we want software to be robust, that is, capable of handling
unexpected inputs that are not explicitly defined for its application. For example,
if a program is expecting a positive integer (perhaps representing the price of an
item) and instead is given a negative integer, then the program should be able to
recover gracefully from this error. More importantly, in life-critical applications,
where a software error can lead to injury or loss of life, software that is not robust
could be deadly. This point was driven home in the late 1980s in accidents involv-
ing Therac-25, a radiation-therapy machine, which severely overdosed six patients
between 1985 and 1987, some of whom died from complications resulting from
their radiation overdose. All six accidents were traced to software errors.
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Adaptability

Modern software applications, such as Web browsers and Internet search engines,
typically involve large programs that are used for many years. Software, there-
fore, needs to be able to evolve over time in response to changing conditions in its
environment. Thus, another important goal of quality software is that it achieves
adaptability (also called evolvability). Related to this concept is portability, which
is the ability of software to run with minimal change on different hardware and
operating system platforms. An advantage of writing software in Python is the
portability provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that
is, the same code should be usable as a component of different systems in various
applications. Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that makes it easily
reusable in future applications. Such reuse should be done with care, however, for
one of the major sources of software errors in the Therac-25 came from inappropri-
ate reuse of Therac-20 software (which was not object-oriented and not designed
for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to
facilitate the goals outlined above, are the following (see Figure 2.2):

• Modularity
• Abstraction
• Encapsulation

Modularity Abstraction Encapsulation

Figure 2.2: Principles of object-oriented design.
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Modularity

Modern software systems typically consist of several different components that
must interact correctly in order for the entire system to work properly. Keeping
these interactions straight requires that these different components be well orga-
nized. Modularity refers to an organizing principle in which different components
of a software system are divided into separate functional units.

As a real-world analogy, a house or apartment can be viewed as consisting of
several interacting units: electrical, heating and cooling, plumbing, and structural.
Rather than viewing these systems as one giant jumble of wires, vents, pipes, and
boards, the organized architect designing a house or apartment will view them as
separate modules that interact in well-defined ways. In so doing, he or she is using
modularity to bring a clarity of thought that provides a natural way of organizing
functions into distinct manageable units.

In like manner, using modularity in a software system can also provide a pow-
erful organizing framework that brings clarity to an implementation. In Python,
we have already seen that a module is a collection of closely related functions and
classes that are defined together in a single file of source code. Python’s standard
libraries include, for example, the math module, which provides definitions for key
mathematical constants and functions, and the os module, which provides support
for interacting with the operating system.

The use of modularity helps support the goals listed in Section 2.1.1. Robust-
ness is greatly increased because it is easier to test and debug separate components
before they are integrated into a larger software system. Furthermore, bugs that per-
sist in a complete system might be traced to a particular component, which can be
fixed in relative isolation. The structure imposed by modularity also helps enable
software reusability. If software modules are written in a general way, the modules
can be reused when related need arises in other contexts. This is particularly rel-
evant in a study of data structures, which can typically be designed with sufficient
abstraction and generality to be reused in many applications.

Abstraction

The notion of abstraction is to distill a complicated system down to its most funda-
mental parts. Typically, describing the parts of a system involves naming them and
explaining their functionality. Applying the abstraction paradigm to the design of
data structures gives rise to abstract data types (ADTs). An ADT is a mathematical
model of a data structure that specifies the type of data stored, the operations sup-
ported on them, and the types of parameters of the operations. An ADT specifies
what each operation does, but not how it does it. We will typically refer to the
collective set of behaviors supported by an ADT as its public interface.
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As a programming language, Python provides a great deal of latitude in regard
to the specification of an interface. Python has a tradition of treating abstractions
implicitly using a mechanism known as duck typing. As an interpreted and dy-
namically typed language, there is no “compile time” checking of data types in
Python, and no formal requirement for declarations of abstract base classes. In-
stead programmers assume that an object supports a set of known behaviors, with
the interpreter raising a run-time error if those assumptions fail. The description
of this as “duck typing” comes from an adage attributed to poet James Whitcomb
Riley, stating that “when I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.”

More formally, Python supports abstract data types using a mechanism known
as an abstract base class (ABC). An abstract base class cannot be instantiated
(i.e., you cannot directly create an instance of that class), but it defines one or more
common methods that all implementations of the abstraction must have. An ABC
is realized by one or more concrete classes that inherit from the abstract base class
while providing implementations for those method declared by the ABC. Python’s
abc module provides formal support for ABCs, although we omit such declarations
for simplicity. We will make use of several existing abstract base classes coming
from Python’s collections module, which includes definitions for several common
data structure ADTs, and concrete implementations of some of those abstractions.

Encapsulation

Another important principle of object-oriented design is encapsulation. Different
components of a software system should not reveal the internal details of their
respective implementations. One of the main advantages of encapsulation is that it
gives one programmer freedom to implement the details of a component, without
concern that other programmers will be writing code that intricately depends on
those internal decisions. The only constraint on the programmer of a component
is to maintain the public interface for the component, as other programmers will
be writing code that depends on that interface. Encapsulation yields robustness
and adaptability, for it allows the implementation details of parts of a program to
change without adversely affecting other parts, thereby making it easier to fix bugs
or add new functionality with relatively local changes to a component.

Throughout this book, we will adhere to the principle of encapsulation, making
clear which aspects of a data structure are assumed to be public and which are
assumed to be internal details. With that said, Python provides only loose support
for encapsulation. By convention, names of members of a class (both data members
and member functions) that start with a single underscore character (e.g., secret)
are assumed to be nonpublic and should not be relied upon. Those conventions
are reinforced by the intentional omission of those members from automatically
generated documentation.
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2.1.3 Design Patterns

Object-oriented design facilitates reusable, robust, and adaptable software. De-
signing good code takes more than simply understanding object-oriented method-
ologies, however. It requires the effective use of object-oriented design techniques.

Computing researchers and practitioners have developed a variety of organiza-
tional concepts and methodologies for designing quality object-oriented software
that is concise, correct, and reusable. Of special relevance to this book is the con-
cept of a design pattern, which describes a solution to a “typical” software design
problem. A pattern provides a general template for a solution that can be applied in
many different situations. It describes the main elements of a solution in an abstract
way that can be specialized for a specific problem at hand. It consists of a name,
which identifies the pattern; a context, which describes the scenarios for which this
pattern can be applied; a template, which describes how the pattern is applied; and
a result, which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be
consistently applied to implementations of data structures and algorithms. These
design patterns fall into two groups—patterns for solving algorithm design prob-
lems and patterns for solving software engineering problems. The algorithm design
patterns we discuss include the following:

• Recursion (Chapter 4)
• Amortization (Sections 5.3 and 11.4)
• Divide-and-conquer (Section 12.2.1)
• Prune-and-search, also known as decrease-and-conquer (Section 12.7.1)
• Brute force (Section 13.2.1)
• Dynamic programming (Section 13.3).
• The greedy method (Sections 13.4.2, 14.6.2, and 14.7)

Likewise, the software engineering design patterns we discuss include:

• Iterator (Sections 1.8 and 2.3.4)
• Adapter (Section 6.1.2)
• Position (Sections 7.4 and 8.1.2)
• Composition (Sections 7.6.1, 9.2.1, and 10.1.4)
• Template method (Sections 2.4.3, 8.4.6, 10.1.3, 10.5.2, and 11.2.1)
• Locator (Section 9.5.1)
• Factory method (Section 11.2.1)

Rather than explain each of these concepts here, however, we introduce them
throughout the text as noted above. For each pattern, be it for algorithm engineering
or software engineering, we explain its general use and we illustrate it with at least
one concrete example.
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2.2 Software Development

Traditional software development involves several phases. Three major steps are:

1. Design
2. Implementation
3. Testing and Debugging

In this section, we briefly discuss the role of these phases, and we introduce sev-
eral good practices for programming in Python, including coding style, naming
conventions, formal documentation, and unit testing.

2.2.1 Design

For object-oriented programming, the design step is perhaps the most important
phase in the process of developing software. For it is in the design step that we
decide how to divide the workings of our program into classes, we decide how
these classes will interact, what data each will store, and what actions each will
perform. Indeed, one of the main challenges that beginning programmers face is
deciding what classes to define to do the work of their program. While general
prescriptions are hard to come by, there are some rules of thumb that we can apply
when determining how to design our classes:

• Responsibilities: Divide the work into different actors, each with a different
responsibility. Try to describe responsibilities using action verbs. These
actors will form the classes for the program.

• Independence: Define the work for each class to be as independent from
other classes as possible. Subdivide responsibilities between classes so that
each class has autonomy over some aspect of the program. Give data (as in-
stance variables) to the class that has jurisdiction over the actions that require
access to this data.

• Behaviors: Define the behaviors for each class carefully and precisely, so
that the consequences of each action performed by a class will be well un-
derstood by other classes that interact with it. These behaviors will define
the methods that this class performs, and the set of behaviors for a class are
the interface to the class, as these form the means for other pieces of code to
interact with objects from the class.

Defining the classes, together with their instance variables and methods, are key
to the design of an object-oriented program. A good programmer will naturally
develop greater skill in performing these tasks over time, as experience teaches
him or her to notice patterns in the requirements of a program that match patterns
that he or she has seen before.
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A common tool for developing an initial high-level design for a project is the
use of CRC cards. Class-Responsibility-Collaborator (CRC) cards are simple in-
dex cards that subdivide the work required of a program. The main idea behind this
tool is to have each card represent a component, which will ultimately become a
class in the program. We write the name of each component on the top of an index
card. On the left-hand side of the card, we begin writing the responsibilities for
this component. On the right-hand side, we list the collaborators for this compo-
nent, that is, the other components that this component will have to interact with to
perform its duties.

The design process iterates through an action/actor cycle, where we first iden-
tify an action (that is, a responsibility), and we then determine an actor (that is, a
component) that is best suited to perform that action. The design is complete when
we have assigned all actions to actors. In using index cards for this process (rather
than larger pieces of paper), we are relying on the fact that each component should
have a small set of responsibilities and collaborators. Enforcing this rule helps keep
the individual classes manageable.

As the design takes form, a standard approach to explain and document the
design is the use of UML (Unified Modeling Language) diagrams to express the
organization of a program. UML diagrams are a standard visual notation to express
object-oriented software designs. Several computer-aided tools are available to
build UML diagrams. One type of UML figure is known as a class diagram. An
example of such a diagram is given in Figure 2.3, for a class that represents a
consumer credit card. The diagram has three portions, with the first designating
the name of the class, the second designating the recommended instance variables,
and the third designating the recommended methods of the class. In Section 2.2.3,
we discuss our naming conventions, and in Section 2.3.1, we provide a complete
implementation of a Python CreditCard class based on this design.

Class:

Fields:

Behaviors:

make payment(amount)

customer

account

get customer()
get bank()

bank

get account()

balance
limit

get balance()
get limit()

CreditCard

charge(price)

Figure 2.3: Class diagram for a proposed CreditCard class.
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2.2.2 Pseudo-Code

As an intermediate step before the implementation of a design, programmers are
often asked to describe algorithms in a way that is intended for human eyes only.
Such descriptions are called pseudo-code. Pseudo-code is not a computer program,
but is more structured than usual prose. It is a mixture of natural language and
high-level programming constructs that describe the main ideas behind a generic
implementation of a data structure or algorithm. Because pseudo-code is designed
for a human reader, not a computer, we can communicate high-level ideas, without
being burdened with low-level implementation details. At the same time, we should
not gloss over important steps. Like many forms of human communication, finding
the right balance is an important skill that is refined through practice.

In this book, we rely on a pseudo-code style that we hope will be evident to
Python programmers, yet with a mix of mathematical notations and English prose.
For example, we might use the phrase “indicate an error” rather than a formal raise
statement. Following conventions of Python, we rely on indentation to indicate
the extent of control structures and on an indexing notation in which entries of a
sequence A with length n are indexed from A[0] to A[n− 1]. However, we choose
to enclose comments within curly braces { like these } in our pseudo-code, rather
than using Python’s # character.

2.2.3 Coding Style and Documentation

Programs should be made easy to read and understand. Good programmers should
therefore be mindful of their coding style, and develop a style that communicates
the important aspects of a program’s design for both humans and computers. Con-
ventions for coding style tend to vary between different programming communities.
The official Style Guide for Python Code is available online at

http://www.python.org/dev/peps/pep-0008/

The main principles that we adopt are as follows:

• Python code blocks are typically indented by 4 spaces. However, to avoid
having our code fragments overrun the book’s margins, we use 2 spaces for
each level of indentation. It is strongly recommended that tabs be avoided, as
tabs are displayed with differing widths across systems, and tabs and spaces
are not viewed as identical by the Python interpreter. Many Python-aware
editors will automatically replace tabs with an appropriate number of spaces.
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• Use meaningful names for identifiers. Try to choose names that can be read
aloud, and choose names that reflect the action, responsibility, or data each
identifier is naming.

◦ Classes (other than Python’s built-in classes) should have a name that
serves as a singular noun, and should be capitalized (e.g., Date rather
than date or Dates). When multiple words are concatenated to form a
class name, they should follow the so-called “CamelCase” convention
in which the first letter of each word is capitalized (e.g., CreditCard).

◦ Functions, including member functions of a class, should be lowercase.
If multiple words are combined, they should be separated by under-
scores (e.g., make payment). The name of a function should typically
be a verb that describes its affect. However, if the only purpose of the
function is to return a value, the function name may be a noun that
describes the value (e.g., sqrt rather than calculate sqrt).

◦ Names that identify an individual object (e.g., a parameter, instance
variable, or local variable) should be a lowercase noun (e.g., price).
Occasionally, we stray from this rule when using a single uppercase
letter to designate the name of a data structures (such as tree T).

◦ Identifiers that represent a value considered to be a constant are tradi-
tionally identified using all capital letters and with underscores to sep-
arate words (e.g., MAX SIZE).

Recall from our discussion of encapsulation that identifiers in any context
that begin with a single leading underscore (e.g., secret) are intended to
suggest that they are only for “internal” use to a class or module, and not part
of a public interface.

• Use comments that add meaning to a program and explain ambiguous or
confusing constructs. In-line comments are good for quick explanations;
they are indicated in Python following the # character, as in

if n % 2 == 1: # n is odd

Multiline block comments are good for explaining more complex code sec-
tions. In Python, these are technically multiline string literals, typically de-
limited with triple quotes (”””), which have no effect when executed. In the
next section, we discuss the use of block comments for documentation.
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Documentation

Python provides integrated support for embedding formal documentation directly
in source code using a mechanism known as a docstring. Formally, any string literal
that appears as the first statement within the body of a module, class, or function
(including a member function of a class) will be considered to be a docstring. By
convention, those string literals should be delimited within triple quotes (”””). As
an example, our version of the scale function from page 25 could be documented
as follows:

def scale(data, factor):
”””Multiply all entries of numeric data list by the given factor.”””
for j in range(len(data)):

data[j] = factor

It is common to use the triple-quoted string delimiter for a docstring, even when
the string fits on a single line, as in the above example. More detailed docstrings
should begin with a single line that summarizes the purpose, followed by a blank
line, and then further details. For example, we might more clearly document the
scale function as follows:

def scale(data, factor):
”””Multiply all entries of numeric data list by the given factor.

data an instance of any mutable sequence type (such as a list)
containing numeric elements

factor a number that serves as the multiplicative factor for scaling
”””
for j in range(len(data)):

data[j] = factor

A docstring is stored as a field of the module, function, or class in which it
is declared. It serves as documentation and can be retrieved in a variety of ways.
For example, the command help(x), within the Python interpreter, produces the
documentation associated with the identified object x. An external tool named
pydoc is distributed with Python and can be used to generate formal documentation
as text or as a Web page. Guidelines for authoring useful docstrings are available
at:

http://www.python.org/dev/peps/pep-0257/

In this book, we will try to present docstrings when space allows. Omitted
docstrings can be found in the online version of our source code.
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2.2.4 Testing and Debugging

Testing is the process of experimentally checking the correctness of a program,
while debugging is the process of tracking the execution of a program and discov-
ering the errors in it. Testing and debugging are often the most time-consuming
activity in the development of a program.

Testing

A careful testing plan is an essential part of writing a program. While verifying the
correctness of a program over all possible inputs is usually infeasible, we should
aim at executing the program on a representative subset of inputs. At the very
minimum, we should make sure that every method of a class is tested at least once
(method coverage). Even better, each code statement in the program should be
executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to be
carefully identified and tested. For example, when testing a method that sorts (that
is, puts in order) a sequence of integers, we should consider the following inputs:

• The sequence has zero length (no elements).
• The sequence has one element.
• All the elements of the sequence are the same.
• The sequence is already sorted.
• The sequence is reverse sorted.
In addition to special inputs to the program, we should also consider special

conditions for the structures used by the program. For example, if we use a Python
list to store data, we should make sure that boundary cases, such as inserting or
removing at the beginning or end of the list, are properly handled.

While it is essential to use handcrafted test suites, it is also advantageous to
run the program on a large collection of randomly generated inputs. The random
module in Python provides several means for generating random numbers, or for
randomizing the order of collections.

The dependencies among the classes and functions of a program induce a hi-
erarchy. Namely, a component A is above a component B in the hierarchy if A
depends upon B, such as when function A calls function B, or function A relies on
a parameter that is an instance of class B. There are two main testing strategies,
top-down and bottom-up, which differ in the order in which components are tested.

Top-down testing proceeds from the top to the bottom of the program hierarchy.
It is typically used in conjunction with stubbing, a boot-strapping technique that
replaces a lower-level component with a stub, a replacement for the component
that simulates the functionality of the original. For example, if function A calls
function B to get the first line of a file, when testing A we can replace B with a stub
that returns a fixed string.
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Bottom-up testing proceeds from lower-level components to higher-level com-
ponents. For example, bottom-level functions, which do not invoke other functions,
are tested first, followed by functions that call only bottom-level functions, and so
on. Similarly a class that does not depend upon any other classes can be tested
before another class that depends on the former. This form of testing is usually
described as unit testing, as the functionality of a specific component is tested in
isolation of the larger software project. If used properly, this strategy better isolates
the cause of errors to the component being tested, as lower-level components upon
which it relies should have already been thoroughly tested.

Python provides several forms of support for automated testing. When func-
tions or classes are defined in a module, testing for that module can be embedded
in the same file. The mechanism for doing so was described in Section 1.11. Code
that is shielded in a conditional construct of the form

if name == __main__ :
# perform tests...

will be executed when Python is invoked directly on that module, but not when the
module is imported for use in a larger software project. It is common to put tests
in such a construct to test the functionality of the functions and classes specifically
defined in that module.

More robust support for automation of unit testing is provided by Python’s
unittest module. This framework allows the grouping of individual test cases into
larger test suites, and provides support for executing those suites, and reporting or
analyzing the results of those tests. As software is maintained, the act of regression
testing is used, whereby all previous tests are re-executed to ensure that changes to
the software do not introduce new bugs in previously tested components.

Debugging

The simplest debugging technique consists of using print statements to track the
values of variables during the execution of the program. A problem with this ap-
proach is that eventually the print statements need to be removed or commented
out, so they are not executed when the software is finally released.

A better approach is to run the program within a debugger, which is a special-
ized environment for controlling and monitoring the execution of a program. The
basic functionality provided by a debugger is the insertion of breakpoints within
the code. When the program is executed within the debugger, it stops at each
breakpoint. While the program is stopped, the current value of variables can be
inspected.

The standard Python distribution includes a module named pdb, which provides
debugging support directly within the interpreter. Most IDEs for Python, such as
IDLE, provide debugging environments with graphical user interfaces.
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2.3 Class Definitions

A class serves as the primary means for abstraction in object-oriented program-
ming. In Python, every piece of data is represented as an instance of some class.
A class provides a set of behaviors in the form of member functions (also known
as methods), with implementations that are common to all instances of that class.
A class also serves as a blueprint for its instances, effectively determining the way
that state information for each instance is represented in the form of attributes (also
known as fields, instance variables, or data members).

2.3.1 Example: CreditCard Class

As a first example, we provide an implementation of a CreditCard class based on
the design we introduced in Figure 2.3 of Section 2.2.1. The instances defined by
the CreditCard class provide a simple model for traditional credit cards. They have
identifying information about the customer, bank, account number, credit limit, and
current balance. The class restricts charges that would cause a card’s balance to go
over its spending limit, but it does not charge interest or late payments (we revisit
such themes in Section 2.4.1).

Our code begins in Code Fragment 2.1 and continues in Code Fragment 2.2.
The construct begins with the keyword, class, followed by the name of the class, a
colon, and then an indented block of code that serves as the body of the class. The
body includes definitions for all methods of the class. These methods are defined as
functions, using techniques introduced in Section 1.5, yet with a special parameter,
named self, that serves to identify the particular instance upon which a member is
invoked.

The self Identifier

In Python, the self identifier plays a key role. In the context of the CreditCard
class, there can presumably be many different CreditCard instances, and each must
maintain its own balance, its own credit limit, and so on. Therefore, each instance
stores its own instance variables to reflect its current state.

Syntactically, self identifies the instance upon which a method is invoked. For
example, assume that a user of our class has a variable, my card, that identifies
an instance of the CreditCard class. When the user calls my card.get balance(),
identifier self, within the definition of the get balance method, refers to the card
known as my card by the caller. The expression, self. balance refers to an instance
variable, named balance, stored as part of that particular credit card’s state.
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1 class CreditCard:
2 ”””A consumer credit card.”””
3
4 def init (self, customer, bank, acnt, limit):
5 ”””Create a new credit card instance.
6
7 The initial balance is zero.
8
9 customer the name of the customer (e.g., John Bowman )

10 bank the name of the bank (e.g., California Savings )
11 acnt the acount identifier (e.g., 5391 0375 9387 5309 )
12 limit credit limit (measured in dollars)
13 ”””
14 self. customer = customer
15 self. bank = bank
16 self. account = acnt
17 self. limit = limit
18 self. balance = 0
19
20 def get customer(self):
21 ”””Return name of the customer.”””
22 return self. customer
23
24 def get bank(self):
25 ”””Return the bank s name.”””
26 return self. bank
27
28 def get account(self):
29 ”””Return the card identifying number (typically stored as a string).”””
30 return self. account
31
32 def get limit(self):
33 ”””Return current credit limit.”””
34 return self. limit
35
36 def get balance(self):
37 ”””Return current balance.”””
38 return self. balance

Code Fragment 2.1: The beginning of the CreditCard class definition (continued in
Code Fragment 2.2).
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39 def charge(self, price):
40 ”””Charge given price to the card, assuming sufficient credit limit.
41
42 Return True if charge was processed; False if charge was denied.
43 ”””
44 if price + self. balance > self. limit: # if charge would exceed limit,
45 return False # cannot accept charge
46 else:
47 self. balance += price
48 return True
49
50 def make payment(self, amount):
51 ”””Process customer payment that reduces balance.”””
52 self. balance −= amount

Code Fragment 2.2: The conclusion of the CreditCard class definition (continued
from Code Fragment 2.1). These methods are indented within the class definition.

We draw attention to the difference between the method signature as declared
within the class versus that used by a caller. For example, from a user’s perspec-
tive we have seen that the get balance method takes zero parameters, yet within
the class definition, self is an explicit parameter. Likewise, the charge method is
declared within the class having two parameters (self and price), even though this
method is called with one parameter, for example, as my card.charge(200). The
interpretter automatically binds the instance upon which the method is invoked to
the self parameter.

The Constructor

A user can create an instance of the CreditCard class using a syntax as:

cc = CreditCard( John Doe, 1st Bank , 5391 0375 9387 5309 , 1000)

Internally, this results in a call to the specially named init method that serves
as the constructor of the class. Its primary responsibility is to establish the state of
a newly created credit card object with appropriate instance variables. In the case
of the CreditCard class, each object maintains five instance variables, which we
name: customer, bank, account, limit, and balance. The initial values for the
first four of those five are provided as explicit parameters that are sent by the user
when instantiating the credit card, and assigned within the body of the construc-
tor. For example, the command, self. customer = customer, assigns the instance
variable self. customer to the parameter customer; note that because customer is
unqualified on the right-hand side, it refers to the parameter in the local namespace.
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Encapsulation

By the conventions described in Section 2.2.3, a single leading underscore in the
name of a data member, such as balance, implies that it is intended as nonpublic.
Users of a class should not directly access such members.

As a general rule, we will treat all data members as nonpublic. This allows
us to better enforce a consistent state for all instances. We can provide accessors,
such as get balance, to provide a user of our class read-only access to a trait. If
we wish to allow the user to change the state, we can provide appropriate update
methods. In the context of data structures, encapsulating the internal representation
allows us greater flexibility to redesign the way a class works, perhaps to improve
the efficiency of the structure.

Additional Methods

The most interesting behaviors in our class are charge and make payment. The
charge function typically adds the given price to the credit card balance, to reflect
a purchase of said price by the customer. However, before accepting the charge,
our implementation verifies that the new purchase would not cause the balance to
exceed the credit limit. The make payment charge reflects the customer sending
payment to the bank for the given amount, thereby reducing the balance on the
card. We note that in the command, self. balance −= amount, the expression
self. balance is qualified with the self identifier because it represents an instance
variable of the card, while the unqualified amount represents the local parameter.

Error Checking

Our implementation of the CreditCard class is not particularly robust. First, we
note that we did not explicitly check the types of the parameters to charge and
make payment, nor any of the parameters to the constructor. If a user were to make
a call such as visa.charge( candy ), our code would presumably crash when at-
tempting to add that parameter to the current balance. If this class were to be widely
used in a library, we might use more rigorous techniques to raise a TypeError when
facing such misuse (see Section 1.7).

Beyond the obvious type errors, our implementation may be susceptible to log-
ical errors. For example, if a user were allowed to charge a negative price, such
as visa.charge(−300), that would serve to lower the customer’s balance. This pro-
vides a loophole for lowering a balance without making a payment. Of course,
this might be considered valid usage if modeling the credit received when a cus-
tomer returns merchandise to a store. We will explore some such issues with the
CreditCard class in the end-of-chapter exercises.
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Testing the Class

In Code Fragment 2.3, we demonstrate some basic usage of the CreditCard class,
inserting three cards into a list named wallet. We use loops to make some charges
and payments, and use various accessors to print results to the console.

These tests are enclosed within a conditional, if name == __main__ :,
so that they can be embedded in the source code with the class definition. Using
the terminology of Section 2.2.4, these tests provide method coverage, as each of
the methods is called at least once, but it does not provide statement coverage, as
there is never a case in which a charge is rejected due to the credit limit. This
is not a particular advanced from of testing as the output of the given tests must
be manually audited in order to determine whether the class behaved as expected.
Python has tools for more formal testing (see discussion of the unittest module
in Section 2.2.4), so that resulting values can be automatically compared to the
predicted outcomes, with output generated only when an error is detected.

53 if name == __main__ :
54 wallet = [ ]
55 wallet.append(CreditCard( John Bowman , California Savings ,
56 5391 0375 9387 5309 , 2500) )
57 wallet.append(CreditCard( John Bowman , California Federal ,
58 3485 0399 3395 1954 , 3500) )
59 wallet.append(CreditCard( John Bowman , California Finance ,
60 5391 0375 9387 5309 , 5000) )
61
62 for val in range(1, 17):
63 wallet[0].charge(val)
64 wallet[1].charge(2 val)
65 wallet[2].charge(3 val)
66
67 for c in range(3):
68 print( Customer = , wallet[c].get customer())
69 print( Bank = , wallet[c].get bank())
70 print( Account = , wallet[c].get account())
71 print( Limit = , wallet[c].get limit())
72 print( Balance = , wallet[c].get balance())
73 while wallet[c].get balance( ) > 100:
74 wallet[c].make payment(100)
75 print( New balance = , wallet[c].get balance())
76 print()

Code Fragment 2.3: Testing the CreditCard class.
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2.3.2 Operator Overloading and Python’s Special Methods

Python’s built-in classes provide natural semantics for many operators. For ex-
ample, the syntax a + b invokes addition for numeric types, yet concatenation for
sequence types. When defining a new class, we must consider whether a syntax
like a + b should be defined when a or b is an instance of that class.

By default, the + operator is undefined for a new class. However, the author
of a class may provide a definition using a technique known as operator overload-
ing. This is done by implementing a specially named method. In particular, the
+ operator is overloaded by implementing a method named add , which takes
the right-hand operand as a parameter and which returns the result of the expres-
sion. That is, the syntax, a + b, is converted to a method call on object a of the
form, a. add (b). Similar specially named methods exist for other operators.
Table 2.1 provides a comprehensive list of such methods.

When a binary operator is applied to two instances of different types, as in
3 love me , Python gives deference to the class of the left operand. In this
example, it would effectively check if the int class provides a sufficient definition
for how to multiply an instance by a string, via the mul method. However,
if that class does not implement such a behavior, Python checks the class defini-
tion for the right-hand operand, in the form of a special method named rmul
(i.e., “right multiply”). This provides a way for a new user-defined class to support
mixed operations that involve an instance of an existing class (given that the exist-
ing class would presumably not have defined a behavior involving this new class).
The distinction between mul and rmul also allows a class to define dif-
ferent semantics in cases, such as matrix multiplication, in which an operation is
noncommutative (that is, A x may differ from x A).

Non-Operator Overloads

In addition to traditional operator overloading, Python relies on specially named
methods to control the behavior of various other functionality, when applied to
user-defined classes. For example, the syntax, str(foo), is formally a call to the
constructor for the string class. Of course, if the parameter is an instance of a user-
defined class, the original authors of the string class could not have known how
that instance should be portrayed. So the string constructor calls a specially named
method, foo. str (), that must return an appropriate string representation.

Similar special methods are used to determine how to construct an int, float, or
bool based on a parameter from a user-defined class. The conversion to a Boolean
value is particularly important, because the syntax, if foo:, can be used even when
foo is not formally a Boolean value (see Section 1.4.1). For a user-defined class,
that condition is evaluated by the special method foo. bool ().
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Common Syntax Special Method Form
a + b a. add (b); alternatively b. radd (a)
a − b a. sub (b); alternatively b. rsub (a)
a b a. mul (b); alternatively b. rmul (a)
a / b a. truediv (b); alternatively b. rtruediv (a)
a // b a. floordiv (b); alternatively b. rfloordiv (a)
a % b a. mod (b); alternatively b. rmod (a)
a b a. pow (b); alternatively b. rpow (a)
a << b a. lshift (b); alternatively b. rlshift (a)
a >> b a. rshift (b); alternatively b. rrshift (a)
a & b a. and (b); alternatively b. rand (a)
a ˆ b a. xor (b); alternatively b. rxor (a)
a | b a. or (b); alternatively b. ror (a)
a += b a. iadd (b)
a −= b a. isub (b)
a = b a. imul (b)
. . . . . .
+a a. pos ()
−a a. neg ()
˜a a. invert ()
abs(a) a. abs ()
a < b a. lt (b)
a <= b a. le (b)
a > b a. gt (b)
a >= b a. ge (b)
a == b a. eq (b)
a != b a. ne (b)
v in a a. contains (v)
a[k] a. getitem (k)
a[k] = v a. setitem (k,v)
del a[k] a. delitem (k)
a(arg1, arg2, ...) a. call (arg1, arg2, ...)
len(a) a. len ()
hash(a) a. hash ()
iter(a) a. iter ()
next(a) a. next ()
bool(a) a. bool ()
float(a) a. float ()
int(a) a. int ()
repr(a) a. repr ()
reversed(a) a. reversed ()
str(a) a. str ()

Table 2.1: Overloaded operations, implemented with Python’s special methods.
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Several other top-level functions rely on calling specially named methods. For
example, the standard way to determine the size of a container type is by calling
the top-level len function. Note well that the calling syntax, len(foo), is not the
traditional method-calling syntax with the dot operator. However, in the case of a
user-defined class, the top-level len function relies on a call to a specially named

len method of that class. That is, the call len(foo) is evaluated through a
method call, foo. len (). When developing data structures, we will routinely
define the len method to return a measure of the size of the structure.

Implied Methods

As a general rule, if a particular special method is not implemented in a user-defined
class, the standard syntax that relies upon that method will raise an exception. For
example, evaluating the expression, a + b, for instances of a user-defined class
without add or radd will raise an error.

However, there are some operators that have default definitions provided by
Python, in the absence of special methods, and there are some operators whose
definitions are derived from others. For example, the bool method, which
supports the syntax if foo:, has default semantics so that every object other than
None is evaluated as True. However, for container types, the len method is
typically defined to return the size of the container. If such a method exists, then
the evaluation of bool(foo) is interpreted by default to be True for instances with
nonzero length, and False for instances with zero length, allowing a syntax such as
if waitlist: to be used to test whether there are one or more entries in the waitlist.

In Section 2.3.4, we will discuss Python’s mechanism for providing iterators
for collections via the special method, iter . With that said, if a container class
provides implementations for both len and getitem , a default iteration is
provided automatically (using means we describe in Section 2.3.4). Furthermore,
once an iterator is defined, default functionality of contains is provided.

In Section 1.3 we drew attention to the distinction between expression a is b
and expression a == b, with the former evaluating whether identifiers a and b are
aliases for the same object, and the latter testing a notion of whether the two iden-
tifiers reference equivalent values. The notion of “equivalence” depends upon the
context of the class, and semantics is defined with the eq method. However, if
no implementation is given for eq , the syntax a == b is legal with semantics
of a is b, that is, an instance is equivalent to itself and no others.

We should caution that some natural implications are not automatically pro-
vided by Python. For example, the eq method supports syntax a == b, but
providing that method does not affect the evaluation of syntax a != b. (The ne
method should be provided, typically returning not (a == b) as a result.) Simi-
larly, providing a lt method supports syntax a < b, and indirectly b > a, but
providing both lt and eq does not imply semantics for a <= b.

www.it-ebooks.info

http://www.it-ebooks.info/


2.3. Class Definitions 77

2.3.3 Example: Multidimensional Vector Class

To demonstrate the use of operator overloading via special methods, we provide
an implementation of a Vector class, representing the coordinates of a vector in a
multidimensional space. For example, in a three-dimensional space, we might wish
to represent a vector with coordinates 〈5,−2, 3〉. Although it might be tempting to
directly use a Python list to represent those coordinates, a list does not provide an
appropriate abstraction for a geometric vector. In particular, if using lists, the ex-
pression [5, −2, 3] + [1, 4, 2] results in the list [5, −2, 3, 1, 4, 2]. When working
with vectors, if u = 〈5,−2, 3〉 and v = 〈1, 4, 2〉, one would expect the expression,
u + v, to return a three-dimensional vector with coordinates 〈6, 2, 5〉.

We therefore define a Vector class, in Code Fragment 2.4, that provides a better
abstraction for the notion of a geometric vector. Internally, our vector relies upon
an instance of a list, named coords, as its storage mechanism. By keeping the
internal list encapsulated, we can enforce the desired public interface for instances
of our class. A demonstration of supported behaviors includes the following:

v = Vector(5) # construct five-dimensional <0, 0, 0, 0, 0>
v[1] = 23 # <0, 23, 0, 0, 0> (based on use of setitem )
v[−1] = 45 # <0, 23, 0, 0, 45> (also via setitem )
print(v[4]) # print 45 (via getitem )
u = v + v # <0, 46, 0, 0, 90> (via add )
print(u) # print <0, 46, 0, 0, 90>
total = 0
for entry in v: # implicit iteration via len and getitem

total += entry

We implement many of the behaviors by trivially invoking a similar behavior
on the underlying list of coordinates. However, our implementation of add
is customized. Assuming the two operands are vectors with the same length, this
method creates a new vector and sets the coordinates of the new vector to be equal
to the respective sum of the operands’ elements.

It is interesting to note that the class definition, as given in Code Fragment 2.4,
automatically supports the syntax u = v + [5, 3, 10, −2, 1], resulting in a new
vector that is the element-by-element “sum” of the first vector and the list in-
stance. This is a result of Python’s polymorphism. Literally, “polymorphism”
means “many forms.” Although it is tempting to think of the other parameter of
our add method as another Vector instance, we never declared it as such.
Within the body, the only behaviors we rely on for parameter other is that it sup-
ports len(other) and access to other[j]. Therefore, our code executes when the
right-hand operand is a list of numbers (with matching length).
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1 class Vector:
2 ”””Represent a vector in a multidimensional space.”””
3
4 def init (self, d):
5 ”””Create d-dimensional vector of zeros.”””
6 self. coords = [0] d
7
8 def len (self):
9 ”””Return the dimension of the vector.”””

10 return len(self. coords)
11
12 def getitem (self, j):
13 ”””Return jth coordinate of vector.”””
14 return self. coords[j]
15
16 def setitem (self, j, val):
17 ”””Set jth coordinate of vector to given value.”””
18 self. coords[j] = val
19
20 def add (self, other):
21 ”””Return sum of two vectors.”””
22 if len(self) != len(other): # relies on len method
23 raise ValueError( dimensions must agree )
24 result = Vector(len(self)) # start with vector of zeros
25 for j in range(len(self)):
26 result[j] = self[j] + other[j]
27 return result
28
29 def eq (self, other):
30 ”””Return True if vector has same coordinates as other.”””
31 return self. coords == other. coords
32
33 def ne (self, other):
34 ”””Return True if vector differs from other.”””
35 return not self == other # rely on existing eq definition
36
37 def str (self):
38 ”””Produce string representation of vector.”””
39 return < + str(self. coords)[1:−1] + > # adapt list representation

Code Fragment 2.4: Definition of a simple Vector class.
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2.3.4 Iterators

Iteration is an important concept in the design of data structures. We introduced
Python’s mechanism for iteration in Section 1.8. In short, an iterator for a collec-
tion provides one key behavior: It supports a special method named next that
returns the next element of the collection, if any, or raises a StopIteration exception
to indicate that there are no further elements.

Fortunately, it is rare to have to directly implement an iterator class. Our pre-
ferred approach is the use of the generator syntax (also described in Section 1.8),
which automatically produces an iterator of yielded values.

Python also helps by providing an automatic iterator implementation for any
class that defines both len and getitem . To provide an instructive exam-
ple of a low-level iterator, Code Fragment 2.5 demonstrates just such an iterator
class that works on any collection that supports both len and getitem .
This class can be instantiated as SequenceIterator(data). It operates by keeping an
internal reference to the data sequence, as well as a current index into the sequence.
Each time next is called, the index is incremented, until reaching the end of
the sequence.

1 class SequenceIterator:
2 ”””An iterator for any of Python s sequence types.”””
3
4 def init (self, sequence):
5 ”””Create an iterator for the given sequence.”””
6 self. seq = sequence # keep a reference to the underlying data
7 self. k = −1 # will increment to 0 on first call to next
8
9 def next (self):

10 ”””Return the next element, or else raise StopIteration error.”””
11 self. k += 1 # advance to next index
12 if self. k < len(self. seq):
13 return(self. seq[self. k]) # return the data element
14 else:
15 raise StopIteration( ) # there are no more elements
16
17 def iter (self):
18 ”””By convention, an iterator must return itself as an iterator.”””
19 return self

Code Fragment 2.5: An iterator class for any sequence type.
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2.3.5 Example: Range Class

As the final example for this section, we develop our own implementation of a
class that mimics Python’s built-in range class. Before introducing our class, we
discuss the history of the built-in version. Prior to Python 3 being released, range
was implemented as a function, and it returned a list instance with elements in
the specified range. For example, range(2, 10, 2) returned the list [2, 4, 6, 8].
However, a typical use of the function was to support a for-loop syntax, such as
for k in range(10000000). Unfortunately, this caused the instantiation and initial-
ization of a list with the range of numbers. That was an unnecessarily expensive
step, in terms of both time and memory usage.

The mechanism used to support ranges in Python 3 is entirely different (to be
fair, the “new” behavior existed in Python 2 under the name xrange). It uses a
strategy known as lazy evaluation. Rather than creating a new list instance, range
is a class that can effectively represent the desired range of elements without ever
storing them explicitly in memory. To better explore the built-in range class, we
recommend that you create an instance as r = range(8, 140, 5). The result is a
relatively lightweight object, an instance of the range class, that has only a few
behaviors. The syntax len(r) will report the number of elements that are in the
given range (27, in our example). A range also supports the getitem method,
so that syntax r[15] reports the sixteenth element in the range (as r[0] is the first
element). Because the class supports both len and getitem , it inherits
automatic support for iteration (see Section 2.3.4), which is why it is possible to
execute a for loop over a range.

At this point, we are ready to demonstrate our own version of such a class. Code
Fragment 2.6 provides a class we name Range (so as to clearly differentiate it from
built-in range). The biggest challenge in the implementation is properly computing
the number of elements that belong in the range, given the parameters sent by the
caller when constructing a range. By computing that value in the constructor, and
storing it as self. length, it becomes trivial to return it from the len method. To
properly implement a call to getitem (k), we simply take the starting value of
the range plus k times the step size (i.e., for k=0, we return the start value). There
are a few subtleties worth examining in the code:

• To properly support optional parameters, we rely on the technique described
on page 27, when discussing a functional version of range.

• We compute the number of elements in the range as
max(0, (stop − start + step − 1) // step)
It is worth testing this formula for both positive and negative step sizes.

• The getitem method properly supports negative indices by converting
an index −k to len(self)−k before computing the result.
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1 class Range:
2 ”””A class that mimic s the built-in range class.”””
3
4 def init (self, start, stop=None, step=1):
5 ”””Initialize a Range instance.
6
7 Semantics is similar to built-in range class.
8 ”””
9 if step == 0:

10 raise ValueError( step cannot be 0 )
11
12 if stop is None: # special case of range(n)
13 start, stop = 0, start # should be treated as if range(0,n)
14
15 # calculate the effective length once
16 self. length = max(0, (stop − start + step − 1) // step)
17
18 # need knowledge of start and step (but not stop) to support getitem
19 self. start = start
20 self. step = step
21
22 def len (self):
23 ”””Return number of entries in the range.”””
24 return self. length
25
26 def getitem (self, k):
27 ”””Return entry at index k (using standard interpretation if negative).”””
28 if k < 0:
29 k += len(self) # attempt to convert negative index
30
31 if not 0 <= k < self. length:
32 raise IndexError( index out of range )
33
34 return self. start + k self. step

Code Fragment 2.6: Our own implementation of a Range class.
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2.4 Inheritance

A natural way to organize various structural components of a software package
is in a hierarchical fashion, with similar abstract definitions grouped together in
a level-by-level manner that goes from specific to more general as one traverses
up the hierarchy. An example of such a hierarchy is shown in Figure 2.4. Using
mathematical notations, the set of houses is a subset of the set of buildings, but a
superset of the set of ranches. The correspondence between levels is often referred
to as an “is a” relationship, as a house is a building, and a ranch is a house.

Building

Low-rise
Apartment

High-rise
Apartment

Two-story
House

Ranch Skyscraper

Commercial
Building

HouseApartment

Figure 2.4: An example of an “is a” hierarchy involving architectural buildings.

A hierarchical design is useful in software development, as common function-
ality can be grouped at the most general level, thereby promoting reuse of code,
while differentiated behaviors can be viewed as extensions of the general case, In
object-oriented programming, the mechanism for a modular and hierarchical orga-
nization is a technique known as inheritance. This allows a new class to be defined
based upon an existing class as the starting point. In object-oriented terminology,
the existing class is typically described as the base class, parent class, or super-
class, while the newly defined class is known as the subclass or child class.

There are two ways in which a subclass can differentiate itself from its su-
perclass. A subclass may specialize an existing behavior by providing a new im-
plementation that overrides an existing method. A subclass may also extend its
superclass by providing brand new methods.
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Python’s Exception Hierarchy

Another example of a rich inheritance hierarchy is the organization of various ex-
ception types in Python. We introduced many of those classes in Section 1.7, but
did not discuss their relationship with each other. Figure 2.5 illustrates a (small)
portion of that hierarchy. The BaseException class is the root of the entire hierar-
chy, while the more specific Exception class includes most of the error types that
we have discussed. Programmers are welcome to define their own special exception
classes to denote errors that may occur in the context of their application. Those
user-defined exception types should be declared as subclasses of Exception.

ValueError

Exception KeyboardInterruptSystemExit

BaseException

IndexError KeyError ZeroDivisionError

LookupError ArithmeticError

Figure 2.5: A portion of Python’s hierarchy of exception types.

2.4.1 Extending the CreditCard Class

To demonstrate the mechanisms for inheritance in Python, we revisit the CreditCard
class of Section 2.3, implementing a subclass that, for lack of a better name, we
name PredatoryCreditCard. The new class will differ from the original in two
ways: (1) if an attempted charge is rejected because it would have exceeded the
credit limit, a $5 fee will be charged, and (2) there will be a mechanism for assess-
ing a monthly interest charge on the outstanding balance, based upon an Annual
Percentage Rate (APR) specified as a constructor parameter.

In accomplishing this goal, we demonstrate the techniques of specialization
and extension. To charge a fee for an invalid charge attempt, we override the
existing charge method, thereby specializing it to provide the new functionality
(although the new version takes advantage of a call to the overridden version). To
provide support for charging interest, we extend the class with a new method named
process month.
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Class:

Fields:

Behaviors:

Class:

Fields:

Behaviors:

process month()

apr

customer

account

get customer()
get bank()

bank

get account()

balance
limit

get balance()
get limit()
charge(price)

make payment(amount)

PredatoryCreditCard

CreditCard

charge(price)

Figure 2.6: Diagram of an inheritance relationship.

Figure 2.6 provides an overview of our use of inheritance in designing the new
PredatoryCreditCard class, and Code Fragment 2.7 gives a complete Python im-
plementation of that class.

To indicate that the new class inherits from the existing CreditCard class, our
definition begins with the syntax, class PredatoryCreditCard(CreditCard). The
body of the new class provides three member functions: init , charge, and
process month. The init constructor serves a very similar role to the original
CreditCard constructor, except that for our new class, there is an extra parameter
to specify the annual percentage rate. The body of our new constructor relies upon
making a call to the inherited constructor to perform most of the initialization (in
fact, everything other than the recording of the percentage rate). The mechanism
for calling the inherited constructor relies on the syntax, super(). Specifically, at
line 15 the command

super(). init (customer, bank, acnt, limit)

calls the init method that was inherited from the CreditCard superclass. Note
well that this method only accepts four parameters. We record the APR value in a
new field named apr.

In similar fashion, our PredatoryCreditCard class provides a new implemen-
tation of the charge method that overrides the inherited method. Yet, our imple-
mentation of the new method relies on a call to the inherited method, with syntax
super().charge(price) at line 24. The return value of that call designates whether
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1 class PredatoryCreditCard(CreditCard):
2 ”””An extension to CreditCard that compounds interest and fees.”””
3
4 def init (self, customer, bank, acnt, limit, apr):
5 ”””Create a new predatory credit card instance.
6
7 The initial balance is zero.
8
9 customer the name of the customer (e.g., John Bowman )

10 bank the name of the bank (e.g., California Savings )
11 acnt the acount identifier (e.g., 5391 0375 9387 5309 )
12 limit credit limit (measured in dollars)
13 apr annual percentage rate (e.g., 0.0825 for 8.25% APR)
14 ”””
15 super(). init (customer, bank, acnt, limit) # call super constructor
16 self. apr = apr
17
18 def charge(self, price):
19 ”””Charge given price to the card, assuming sufficient credit limit.
20
21 Return True if charge was processed.
22 Return False and assess 5 fee if charge is denied.
23 ”””
24 success = super().charge(price) # call inherited method
25 if not success:
26 self. balance += 5 # assess penalty
27 return success # caller expects return value
28
29 def process month(self):
30 ”””Assess monthly interest on outstanding balance.”””
31 if self. balance > 0:
32 # if positive balance, convert APR to monthly multiplicative factor
33 monthly factor = pow(1 + self. apr, 1/12)
34 self. balance = monthly factor

Code Fragment 2.7: A subclass of CreditCard that assesses interest and fees.
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the charge was successful. We examine that return value to decide whether to as-
sess a fee, and in turn we return that value to the caller of method, so that the new
version of charge has a similar outward interface as the original.

The process month method is a new behavior, so there is no inherited version
upon which to rely. In our model, this method should be invoked by the bank,
once each month, to add new interest charges to the customer’s balance. The most
challenging aspect in implementing this method is making sure we have working
knowledge of how an annual percentage rate translates to a monthly rate. We do
not simply divide the annual rate by twelve to get a monthly rate (that would be too
predatory, as it would result in a higher APR than advertised). The correct com-
putation is to take the twelfth-root of 1 + self. apr, and use that as a multiplica-
tive factor. For example, if the APR is 0.0825 (representing 8.25%), we compute

12
√

1.0825 ≈ 1.006628, and therefore charge 0.6628% interest per month. In this
way, each $100 of debt will amass $8.25 of compounded interest in a year.

Protected Members

Our PredatoryCreditCard subclass directly accesses the data member self. balance,
which was established by the parent CreditCard class. The underscored name, by
convention, suggests that this is a nonpublic member, so we might ask if it is okay
that we access it in this fashion. While general users of the class should not be
doing so, our subclass has a somewhat privileged relationship with the superclass.
Several object-oriented languages (e.g., Java, C++) draw a distinction for nonpub-
lic members, allowing declarations of protected or private access modes. Members
that are declared as protected are accessible to subclasses, but not to the general
public, while members that are declared as private are not accessible to either. In
this respect, we are using balance as if it were protected (but not private).

Python does not support formal access control, but names beginning with a sin-
gle underscore are conventionally akin to protected, while names beginning with a
double underscore (other than special methods) are akin to private. In choosing to
use protected data, we have created a dependency in that our PredatoryCreditCard
class might be compromised if the author of the CreditCard class were to change
the internal design. Note that we could have relied upon the public get balance()
method to retrieve the current balance within the process month method. But the
current design of the CreditCard class does not afford an effective way for a sub-
class to change the balance, other than by direct manipulation of the data member.
It may be tempting to use charge to add fees or interest to the balance. However,
that method does not allow the balance to go above the customer’s credit limit,
even though a bank would presumably let interest compound beyond the credit
limit, if warranted. If we were to redesign the original CreditCard class, we might
add a nonpublic method, set balance, that could be used by subclasses to affect a
change without directly accessing the data member balance.
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2.4.2 Hierarchy of Numeric Progressions

As a second example of the use of inheritance, we develop a hierarchy of classes for
iterating numeric progressions. A numeric progression is a sequence of numbers,
where each number depends on one or more of the previous numbers. For example,
an arithmetic progression determines the next number by adding a fixed constant
to the previous value, and a geometric progression determines the next number
by multiplying the previous value by a fixed constant. In general, a progression
requires a first value, and a way of identifying a new value based on one or more
previous values.

To maximize reusability of code, we develop a hierarchy of classes stemming
from a general base class that we name Progression (see Figure 2.7). Technically,
the Progression class produces the progression of whole numbers: 0, 1, 2, . . . .
However, this class is designed to serve as the base class for other progression types,
providing as much common functionality as possible, and thereby minimizing the
burden on the subclasses.

FibonacciProgression

Progression

ArithmeticProgression GeometricProgression

Figure 2.7: Our hierarchy of progression classes.

Our implementation of the basic Progression class is provided in Code Frag-
ment 2.8. The constructor for this class accepts a starting value for the progression
(0 by default), and initializes a data member, self. current, to that value.

The Progression class implements the conventions of a Python iterator (see
Section 2.3.4), namely the special next and iter methods. If a user of
the class creates a progression as seq = Progression(), each call to next(seq) will
return a subsequent element of the progression sequence. It would also be possi-
ble to use a for-loop syntax, for value in seq:, although we note that our default
progression is defined as an infinite sequence.

To better separate the mechanics of the iterator convention from the core logic
of advancing the progression, our framework relies on a nonpublic method named
advance to update the value of the self. current field. In the default implementa-

tion, advance adds one to the current value, but our intent is that subclasses will
override advance to provide a different rule for computing the next entry.

For convenience, the Progression class also provides a utility method, named
print progression, that displays the next n values of the progression.
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1 class Progression:
2 ”””Iterator producing a generic progression.
3
4 Default iterator produces the whole numbers 0, 1, 2, ...
5 ”””
6
7 def init (self, start=0):
8 ”””Initialize current to the first value of the progression.”””
9 self. current = start

10
11 def advance(self):
12 ”””Update self. current to a new value.
13
14 This should be overridden by a subclass to customize progression.
15
16 By convention, if current is set to None, this designates the
17 end of a finite progression.
18 ”””
19 self. current += 1
20
21 def next (self):
22 ”””Return the next element, or else raise StopIteration error.”””
23 if self. current is None: # our convention to end a progression
24 raise StopIteration()
25 else:
26 answer = self. current # record current value to return
27 self. advance( ) # advance to prepare for next time
28 return answer # return the answer
29
30 def iter (self):
31 ”””By convention, an iterator must return itself as an iterator.”””
32 return self
33
34 def print progression(self, n):
35 ”””Print next n values of the progression.”””
36 print( .join(str(next(self)) for j in range(n)))

Code Fragment 2.8: A general numeric progression class.
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An Arithmetic Progression Class

Our first example of a specialized progression is an arithmetic progression. While
the default progression increases its value by one in each step, an arithmetic pro-
gression adds a fixed constant to one term of the progression to produce the next.
For example, using an increment of 4 for an arithmetic progression that starts at 0
results in the sequence 0,4,8,12, . . . .

Code Fragment 2.9 presents our implementation of an ArithmeticProgression
class, which relies on Progression as its base class. The constructor for this new
class accepts both an increment value and a starting value as parameters, although
default values for each are provided. By our convention, ArithmeticProgression(4)
produces the sequence 0,4,8,12, . . . , and ArithmeticProgression(4, 1) produces
the sequence 1,5,9,13, . . . .

The body of the ArithmeticProgression constructor calls the super constructor
to initialize the current data member to the desired start value. Then it directly
establishes the new increment data member for the arithmetic progression. The
only remaining detail in our implementation is to override the advance method so
as to add the increment to the current value.

1 class ArithmeticProgression(Progression): # inherit from Progression
2 ”””Iterator producing an arithmetic progression.”””
3
4 def init (self, increment=1, start=0):
5 ”””Create a new arithmetic progression.
6
7 increment the fixed constant to add to each term (default 1)
8 start the first term of the progression (default 0)
9 ”””

10 super(). init (start) # initialize base class
11 self. increment = increment
12
13 def advance(self): # override inherited version
14 ”””Update current value by adding the fixed increment.”””
15 self. current += self. increment

Code Fragment 2.9: A class that produces an arithmetic progression.
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A Geometric Progression Class

Our second example of a specialized progression is a geometric progression, in
which each value is produced by multiplying the preceding value by a fixed con-
stant, known as the base of the geometric progression. The starting point of a ge-
ometric progression is traditionally 1, rather than 0, because multiplying 0 by any
factor results in 0. As an example, a geometric progression with base 2 proceeds as
1,2,4,8,16, . . . .

Code Fragment 2.10 presents our implementation of a GeometricProgression
class. The constructor uses 2 as a default base and 1 as a default starting value, but
either of those can be varied using optional parameters.

1 class GeometricProgression(Progression): # inherit from Progression
2 ”””Iterator producing a geometric progression.”””
3
4 def init (self, base=2, start=1):
5 ”””Create a new geometric progression.
6
7 base the fixed constant multiplied to each term (default 2)
8 start the first term of the progression (default 1)
9 ”””

10 super(). init (start)
11 self. base = base
12
13 def advance(self): # override inherited version
14 ”””Update current value by multiplying it by the base value.”””
15 self. current = self. base

Code Fragment 2.10: A class that produces a geometric progression.

A Fibonacci Progression Class

As our final example, we demonstrate how to use our progression framework to
produce a Fibonacci progression. We originally discussed the Fibonacci series
on page 41 in the context of generators. Each value of a Fibonacci series is the
sum of the two most recent values. To begin the series, the first two values are
conventionally 0 and 1, leading to the Fibonacci series 0,1,1,2,3,5,8, . . . . More
generally, such a series can be generated from any two starting values. For example,
if we start with values 4 and 6, the series proceeds as 4,6,10,16,26,42, . . . .
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1 class FibonacciProgression(Progression):
2 ”””Iterator producing a generalized Fibonacci progression.”””
3
4 def init (self, first=0, second=1):
5 ”””Create a new fibonacci progression.
6
7 first the first term of the progression (default 0)
8 second the second term of the progression (default 1)
9 ”””

10 super(). init (first) # start progression at first
11 self. prev = second − first # fictitious value preceding the first
12
13 def advance(self):
14 ”””Update current value by taking sum of previous two.”””
15 self. prev, self. current = self. current, self. prev + self. current

Code Fragment 2.11: A class that produces a Fibonacci progression.

We use our progression framework to define a new FibonacciProgression class,
as shown in Code Fragment 2.11. This class is markedly different from those for the
arithmetic and geometric progressions because we cannot determine the next value
of a Fibonacci series solely from the current one. We must maintain knowledge of
the two most recent values. The base Progression class already provides storage
of the most recent value as the current data member. Our FibonacciProgression
class introduces a new member, named prev, to store the value that proceeded the
current one.

With both previous values stored, the implementation of advance is relatively
straightforward. (We use a simultaneous assignment similar to that on page 45.)
However, the question arises as to how to initialize the previous value in the con-
structor. The desired first and second values are provided as parameters to the
constructor. The first should be stored as current so that it becomes the first
one that is reported. Looking ahead, once the first value is reported, we will do
an assignment to set the new current value (which will be the second value re-
ported), equal to the first value plus the “previous.” By initializing the previous
value to (second − first), the initial advancement will set the new current value to
first + (second − first) = second, as desired.

Testing Our Progressions

To complete our presentation, Code Fragment 2.12 provides a unit test for all of
our progression classes, and Code Fragment 2.13 shows the output of that test.
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if name == __main__ :
print( Default progression: )
Progression().print progression(10)

print( Arithmetic progression with increment 5: )
ArithmeticProgression(5).print progression(10)

print( Arithmetic progression with increment 5 and start 2: )
ArithmeticProgression(5, 2).print progression(10)

print( Geometric progression with default base: )
GeometricProgression().print progression(10)

print( Geometric progression with base 3: )
GeometricProgression(3).print progression(10)

print( Fibonacci progression with default start values: )
FibonacciProgression().print progression(10)

print( Fibonacci progression with start values 4 and 6: )
FibonacciProgression(4, 6).print progression(10)

Code Fragment 2.12: Unit tests for our progression classes.

Default progression:
0 1 2 3 4 5 6 7 8 9
Arithmetic progression with increment 5:
0 5 10 15 20 25 30 35 40 45
Arithmetic progression with increment 5 and start 2:
2 7 12 17 22 27 32 37 42 47
Geometric progression with default base:
1 2 4 8 16 32 64 128 256 512
Geometric progression with base 3:
1 3 9 27 81 243 729 2187 6561 19683
Fibonacci progression with default start values:
0 1 1 2 3 5 8 13 21 34
Fibonacci progression with start values 4 and 6:
4 6 10 16 26 42 68 110 178 288

Code Fragment 2.13: Output of the unit tests from Code Fragment 2.12.
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2.4.3 Abstract Base Classes

When defining a group of classes as part of an inheritance hierarchy, one technique
for avoiding repetition of code is to design a base class with common function-
ality that can be inherited by other classes that need it. As an example, the hi-
erarchy from Section 2.4.2 includes a Progression class, which serves as a base
class for three distinct subclasses: ArithmeticProgression, GeometricProgression,
and FibonacciProgression. Although it is possible to create an instance of the
Progression base class, there is little value in doing so because its behavior is sim-
ply a special case of an ArithmeticProgression with increment 1. The real purpose
of the Progression class was to centralize the implementations of behaviors that
other progressions needed, thereby streamlining the code that is relegated to those
subclasses.

In classic object-oriented terminology, we say a class is an abstract base class
if its only purpose is to serve as a base class through inheritance. More formally,
an abstract base class is one that cannot be directly instantiated, while a concrete
class is one that can be instantiated. By this definition, our Progression class is
technically concrete, although we essentially designed it as an abstract base class.

In statically typed languages such as Java and C++, an abstract base class serves
as a formal type that may guarantee one or more abstract methods. This provides
support for polymorphism, as a variable may have an abstract base class as its de-
clared type, even though it refers to an instance of a concrete subclass. Because
there are no declared types in Python, this kind of polymorphism can be accom-
plished without the need for a unifying abstract base class. For this reason, there
is not as strong a tradition of defining abstract base classes in Python, although
Python’s abc module provides support for defining a formal abstract base class.

Our reason for focusing on abstract base classes in our study of data structures
is that Python’s collections module provides several abstract base classes that assist
when defining custom data structures that share a common interface with some of
Python’s built-in data structures. These rely on an object-oriented software design
pattern known as the template method pattern. The template method pattern is
when an abstract base class provides concrete behaviors that rely upon calls to
other abstract behaviors. In that way, as soon as a subclass provides definitions for
the missing abstract behaviors, the inherited concrete behaviors are well defined.

As a tangible example, the collections.Sequence abstract base class defines be-
haviors common to Python’s list, str, and tuple classes, as sequences that sup-
port element access via an integer index. More so, the collections.Sequence class
provides concrete implementations of methods, count, index, and contains
that can be inherited by any class that provides concrete implementations of both

len and getitem . For the purpose of illustration, we provide a sample
implementation of such a Sequence abstract base class in Code Fragment 2.14.
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1 from abc import ABCMeta, abstractmethod # need these definitions
2
3 class Sequence(metaclass=ABCMeta):
4 ”””Our own version of collections.Sequence abstract base class.”””
5
6 @abstractmethod
7 def len (self):
8 ”””Return the length of the sequence.”””
9

10 @abstractmethod
11 def getitem (self, j):
12 ”””Return the element at index j of the sequence.”””
13
14 def contains (self, val):
15 ”””Return True if val found in the sequence; False otherwise.”””
16 for j in range(len(self)):
17 if self[j] == val: # found match
18 return True
19 return False
20
21 def index(self, val):
22 ”””Return leftmost index at which val is found (or raise ValueError).”””
23 for j in range(len(self)):
24 if self[j] == val: # leftmost match
25 return j
26 raise ValueError( value not in sequence ) # never found a match
27
28 def count(self, val):
29 ”””Return the number of elements equal to given value.”””
30 k = 0
31 for j in range(len(self)):
32 if self[j] == val: # found a match
33 k += 1
34 return k

Code Fragment 2.14: An abstract base class akin to collections.Sequence.

This implementation relies on two advanced Python techniques. The first is that
we declare the ABCMeta class of the abc module as a metaclass of our Sequence
class. A metaclass is different from a superclass, in that it provides a template for
the class definition itself. Specifically, the ABCMeta declaration assures that the
constructor for the class raises an error.
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The second advanced technique is the use of the @abstractmethod decorator
immediately before the len and getitem methods are declared. That de-
clares these two particular methods to be abstract, meaning that we do not provide
an implementation within our Sequence base class, but that we expect any concrete
subclasses to support those two methods. Python enforces this expectation, by dis-
allowing instantiation for any subclass that does not override the abstract methods
with concrete implementations.

The rest of the Sequence class definition provides tangible implementations for
other behaviors, under the assumption that the abstract len and getitem
methods will exist in a concrete subclass. If you carefully examine the source code,
the implementations of methods contains , index, and count do not rely on any
assumption about the self instances, other than that syntax len(self) and self[j] are
supported (by special methods len and getitem , respectively). Support
for iteration is automatic as well, as described in Section 2.3.4.

In the remainder of this book, we omit the formality of using the abc module.
If we need an “abstract” base class, we simply document the expectation that sub-
classes provide assumed functionality, without technical declaration of the methods
as abstract. But we will make use of the wonderful abstract base classes that are
defined within the collections module (such as Sequence). To use such a class, we
need only rely on standard inheritance techniques.

For example, our Range class, from Code Fragment 2.6 of Section 2.3.5, is an
example of a class that supports the len and getitem methods. But that
class does not support methods count or index. Had we originally declared it with
Sequence as a superclass, then it would also inherit the count and index methods.
The syntax for such a declaration would begin as:

class Range(collections.Sequence):

Finally, we emphasize that if a subclass provides its own implementation of
an inherited behaviors from a base class, the new definition overrides the inherited
one. This technique can be used when we have the ability to provide a more effi-
cient implementation for a behavior than is achieved by the generic approach. As
an example, the general implementation of contains for a sequence is based
on a loop used to search for the desired value. For our Range class, there is an
opportunity for a more efficient determination of containment. For example, it
is evident that the expression, 100000 in Range(0, 2000000, 100), should evalu-
ate to True, even without examining the individual elements of the range, because
the range starts with zero, has an increment of 100, and goes until 2 million; it
must include 100000, as that is a multiple of 100 that is between the start and
stop values. Exercise C-2.27 explores the goal of providing an implementation of
Range. contains that avoids the use of a (time-consuming) loop.
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2.5 Namespaces and Object-Orientation

A namespace is an abstraction that manages all of the identifiers that are defined in
a particular scope, mapping each name to its associated value. In Python, functions,
classes, and modules are all first-class objects, and so the “value” associated with
an identifier in a namespace may in fact be a function, class, or module.

In Section 1.10 we explored Python’s use of namespaces to manage identifiers
that are defined with global scope, versus those defined within the local scope of
a function call. In this section, we discuss the important role of namespaces in
Python’s management of object-orientation.

2.5.1 Instance and Class Namespaces

We begin by exploring what is known as the instance namespace, which man-
ages attributes specific to an individual object. For example, each instance of our
CreditCard class maintains a distinct balance, a distinct account number, a distinct
credit limit, and so on (even though some instances may coincidentally have equiv-
alent balances, or equivalent credit limits). Each credit card will have a dedicated
instance namespace to manage such values.

There is a separate class namespace for each class that has been defined. This
namespace is used to manage members that are to be shared by all instances of
a class, or used without reference to any particular instance. For example, the
make payment method of the CreditCard class from Section 2.3 is not stored
independently by each instance of that class. That member function is stored
within the namespace of the CreditCard class. Based on our definition from Code
Fragments 2.1 and 2.2, the CreditCard class namespace includes the functions:

init , get customer, get bank, get account, get balance, get limit, charge,
and make payment. Our PredatoryCreditCard class has its own namespace, con-
taining the three methods we defined for that subclass: init , charge, and
process month.

Figure 2.8 provides a portrayal of three such namespaces: a class namespace
containing methods of the CreditCard class, another class namespace with meth-
ods of the PredatoryCreditCard class, and finally a single instance namespace for
a sample instance of the PredatoryCreditCard class. We note that there are two
different definitions of a function named charge, one in the CreditCard class, and
then the overriding method in the PredatoryCreditCard class. In similar fashion,
there are two distinct init implementations. However, process month is a
name that is only defined within the scope of the PredatoryCreditCard class. The
instance namespace includes all data members for the instance (including the apr
member that is established by the PredatoryCreditCard constructor).
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Figure 2.8: Conceptual view of three namespaces: (a) the class namespace for
CreditCard; (b) the class namespace for PredatoryCreditCard; (c) the instance
namespace for a PredatoryCreditCard object.

How Entries Are Established in a Namespace

It is important to understand why a member such as balance resides in a credit
card’s instance namespace, while a member such as make payment resides in the
class namespace. The balance is established within the init method when a
new credit card instance is constructed. The original assignment uses the syntax,
self. balance = 0, where self is an identifier for the newly constructed instance.
The use of self as a qualifier for self. balance in such an assignment causes the
balance identifier to be added directly to the instance namespace.

When inheritance is used, there is still a single instance namespace per object.
For example, when an instance of the PredatoryCreditCard class is constructed,
the apr attribute as well as attributes such as balance and limit all reside in that
instance’s namespace, because all are assigned using a qualified syntax, such as
self. apr.

A class namespace includes all declarations that are made directly within the
body of the class definition. For example, our CreditCard class definition included
the following structure:

class CreditCard:
def make payment(self, amount):

...

Because the make payment function is declared within the scope of the CreditCard
class, that function becomes associated with the name make payment within the
CreditCard class namespace. Although member functions are the most typical
types of entries that are declared in a class namespace, we next discuss how other
types of data values, or even other classes can be declared within a class namespace.
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Class Data Members

A class-level data member is often used when there is some value, such as a con-
stant, that is to be shared by all instances of a class. In such a case, it would
be unnecessarily wasteful to have each instance store that value in its instance
namespace. As an example, we revisit the PredatoryCreditCard introduced in Sec-
tion 2.4.1. That class assesses a $5 fee if an attempted charge is denied because
of the credit limit. Our choice of $5 for the fee was somewhat arbitrary, and our
coding style would be better if we used a named variable rather than embedding
the literal value in our code. Often, the amount of such a fee is determined by the
bank’s policy and does not vary for each customer. In that case, we could define
and use a class data member as follows:

class PredatoryCreditCard(CreditCard):
OVERLIMIT FEE = 5 # this is a class-level member

def charge(self, price):
success = super().charge(price)
if not success:

self. balance += PredatoryCreditCard.OVERLIMIT FEE
return success

The data member, OVERLIMIT FEE, is entered into the PredatoryCreditCard
class namespace because that assignment takes place within the immediate scope
of the class definition, and without any qualifying identifier.

Nested Classes

It is also possible to nest one class definition within the scope of another class.
This is a useful construct, which we will exploit several times in this book in the
implementation of data structures. This can be done by using a syntax such as

class A: # the outer class
class B: # the nested class

...

In this case, class B is the nested class. The identifier B is entered into the name-
space of class A associated with the newly defined class. We note that this technique
is unrelated to the concept of inheritance, as class B does not inherit from class A.

Nesting one class in the scope of another makes clear that the nested class
exists for support of the outer class. Furthermore, it can help reduce potential name
conflicts, because it allows for a similarly named class to exist in another context.
For example, we will later introduce a data structure known as a linked list and will
define a nested node class to store the individual components of the list. We will
also introduce a data structure known as a tree that depends upon its own nested
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node class. These two structures rely on different node definitions, and by nesting
those within the respective container classes, we avoid ambiguity.

Another advantage of one class being nested as a member of another is that it
allows for a more advanced form of inheritance in which a subclass of the outer
class overrides the definition of its nested class. We will make use of that technique
in Section 11.2.1 when specializing the nodes of a tree structure.

Dictionaries and the slots Declaration

By default, Python represents each namespace with an instance of the built-in dict
class (see Section 1.2.3) that maps identifying names in that scope to the associated
objects. While a dictionary structure supports relatively efficient name lookups,
it requires additional memory usage beyond the raw data that it stores (we will
explore the data structure used to implement dictionaries in Chapter 10).

Python provides a more direct mechanism for representing instance namespaces
that avoids the use of an auxiliary dictionary. To use the streamlined representation
for all instances of a class, that class definition must provide a class-level member
named slots that is assigned to a fixed sequence of strings that serve as names
for instance variables. For example, with our CreditCard class, we would declare
the following:

class CreditCard:
slots = _customer , _bank , _account , _balance , _limit

In this example, the right-hand side of the assignment is technically a tuple (see
discussion of automatic packing of tuples in Section 1.9.3).

When inheritance is used, if the base class declares slots , a subclass must
also declare slots to avoid creation of instance dictionaries. The declaration
in the subclass should only include names of supplemental methods that are newly
introduced. For example, our PredatoryCreditCard declaration would include the
following declaration:

class PredatoryCreditCard(CreditCard):
slots = _apr # in addition to the inherited members

We could choose to use the slots declaration to streamline every class in
this book. However, we do not do so because such rigor would be atypical for
Python programs. With that said, there are a few classes in this book for which
we expect to have a large number of instances, each representing a lightweight
construct. For example, when discussing nested classes, we suggest linked lists
and trees as data structures that are often comprised of a large number of individual
nodes. To promote greater efficiency in memory usage, we will use an explicit

slots declaration in any nested classes for which we expect many instances.
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2.5.2 Name Resolution and Dynamic Dispatch

In the previous section, we discussed various namespaces, and the mechanism for
establishing entries in those namespaces. In this section, we examine the process
that is used when retrieving a name in Python’s object-oriented framework. When
the dot operator syntax is used to access an existing member, such as obj.foo, the
Python interpreter begins a name resolution process, described as follows:

1. The instance namespace is searched; if the desired name is found, its associ-
ated value is used.

2. Otherwise the class namespace, for the class to which the instance belongs,
is searched; if the name is found, its associated value is used.

3. If the name was not found in the immediate class namespace, the search con-
tinues upward through the inheritance hierarchy, checking the class name-
space for each ancestor (commonly by checking the superclass class, then its
superclass class, and so on). The first time the name is found, its associate
value is used.

4. If the name has still not been found, an AttributeError is raised.
As a tangible example, let us assume that mycard identifies an instance of the

PredatoryCreditCard class. Consider the following possible usage patterns.

• mycard. balance (or equivalently, self. balance from within a method body):
the balance method is found within the instance namespace for mycard.

• mycard.process month(): the search begins in the instance namespace, but
the name process month is not found in that namespace. As a result, the
PredatoryCreditCard class namespace is searched; in this case, the name is
found and that method is called.

• mycard.make payment(200): the search for the name, make payment, fails
in the instance namespace and in the PredatoryCreditCard namespace. The
name is resolved in the namespace for superclass CreditCard and thus the
inherited method is called.

• mycard.charge(50): the search for name charge fails in the instance name-
space. The next namespace checked is for the PredatoryCreditCard class,
because that is the true type of the instance. There is a definition for a charge
function in that class, and so that is the one that is called.

In the last case shown, notice that the existence of a charge function in the
PredatoryCreditCard class has the effect of overriding the version of that function
that exists in the CreditCard namespace. In traditional object-oriented terminol-
ogy, Python uses what is known as dynamic dispatch (or dynamic binding) to
determine, at run-time, which implementation of a function to call based upon the
type of the object upon which it is invoked. This is in contrast to some languages
that use static dispatching, making a compile-time decision as to which version of
a function to call, based upon the declared type of a variable.
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2.6 Shallow and Deep Copying

In Chapter 1, we emphasized that an assignment statement foo = bar makes the
name foo an alias for the object identified as bar. In this section, we consider
the task of making a copy of an object, rather than an alias. This is necessary in
applications when we want to subsequently modify either the original or the copy
in an independent manner.

Consider a scenario in which we manage various lists of colors, with each color
represented by an instance of a presumed color class. We let identifier warmtones
denote an existing list of such colors (e.g., oranges, browns). In this application,
we wish to create a new list named palette, which is a copy of the warmtones list.
However, we want to subsequently be able to add additional colors to palette, or
to modify or remove some of the existing colors, without affecting the contents of
warmtones. If we were to execute the command

palette = warmtones

this creates an alias, as shown in Figure 2.9. No new list is created; instead, the
new identifier palette references the original list.

red

green

blue

color

52

163

169

list
warmtones

red

green

blue

color

43

124

249

palette

Figure 2.9: Two aliases for the same list of colors.

Unfortunately, this does not meet our desired criteria, because if we subsequently
add or remove colors from “palette,” we modify the list identified as warmtones.

We can instead create a new instance of the list class by using the syntax:

palette = list(warmtones)

In this case, we explicitly call the list constructor, sending the first list as a param-
eter. This causes a new list to be created, as shown in Figure 2.10; however, it is
what is known as a shallow copy. The new list is initialized so that its contents are
precisely the same as the original sequence. However, Python’s lists are referential
(see page 9 of Section 1.2.3), and so the new list represents a sequence of references
to the same elements as in the first.
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Figure 2.10: A shallow copy of a list of colors.

This is a better situation than our first attempt, as we can legitimately add
or remove elements from palette without affecting warmtones. However, if we
edit a color instance from the palette list, we effectively change the contents of
warmtones. Although palette and warmtones are distinct lists, there remains indi-
rect aliasing, for example, with palette[0] and warmtones[0] as aliases for the same
color instance.

We prefer that palette be what is known as a deep copy of warmtones. In a
deep copy, the new copy references its own copies of those objects referenced by
the original version. (See Figure 2.11.)
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warmtones palette

red

green

Figure 2.11: A deep copy of a list of colors.

Python’s copy Module

To create a deep copy, we could populate our list by explicitly making copies of
the original color instances, but this requires that we know how to make copies of
colors (rather than aliasing). Python provides a very convenient module, named
copy, that can produce both shallow copies and deep copies of arbitrary objects.

This module supports two functions: the copy function creates a shallow copy
of its argument, and the deepcopy function creates a deep copy of its argument.
After importing the module, we may create a deep copy for our example, as shown
in Figure 2.11, using the command:

palette = copy.deepcopy(warmtones)
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2.7 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-2.1 Give three examples of life-critical software applications.

R-2.2 Give an example of a software application in which adaptability can mean
the difference between a prolonged lifetime of sales and bankruptcy.

R-2.3 Describe a component from a text-editor GUI and the methods that it en-
capsulates.

R-2.4 Write a Python class, Flower, that has three instance variables of type str,
int, and float, that respectively represent the name of the flower, its num-
ber of petals, and its price. Your class must include a constructor method
that initializes each variable to an appropriate value, and your class should
include methods for setting the value of each type, and retrieving the value
of each type.

R-2.5 Use the techniques of Section 1.7 to revise the charge and make payment
methods of the CreditCard class to ensure that the caller sends a number
as a parameter.

R-2.6 If the parameter to the make payment method of the CreditCard class
were a negative number, that would have the effect of raising the balance
on the account. Revise the implementation so that it raises a ValueError if
a negative value is sent.

R-2.7 The CreditCard class of Section 2.3 initializes the balance of a new ac-
count to zero. Modify that class so that a new account can be given a
nonzero balance using an optional fifth parameter to the constructor. The
four-parameter constructor syntax should continue to produce an account
with zero balance.

R-2.8 Modify the declaration of the first for loop in the CreditCard tests, from
Code Fragment 2.3, so that it will eventually cause exactly one of the three
credit cards to go over its credit limit. Which credit card is it?

R-2.9 Implement the sub method for the Vector class of Section 2.3.3, so
that the expression u−v returns a new vector instance representing the
difference between two vectors.

R-2.10 Implement the neg method for the Vector class of Section 2.3.3, so
that the expression −v returns a new vector instance whose coordinates
are all the negated values of the respective coordinates of v.
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R-2.11 In Section 2.3.3, we note that our Vector class supports a syntax such as
v = u + [5, 3, 10, −2, 1], in which the sum of a vector and list returns
a new vector. However, the syntax v = [5, 3, 10, −2, 1] + u is illegal.
Explain how the Vector class definition can be revised so that this syntax
generates a new vector.

R-2.12 Implement the mul method for the Vector class of Section 2.3.3, so
that the expression v 3 returns a new vector with coordinates that are 3
times the respective coordinates of v.

R-2.13 Exercise R-2.12 asks for an implementation of mul , for the Vector
class of Section 2.3.3, to provide support for the syntax v 3. Implement
the rmul method, to provide additional support for syntax 3 v.

R-2.14 Implement the mul method for the Vector class of Section 2.3.3, so
that the expression u v returns a scalar that represents the dot product of
the vectors, that is, ∑

d
i=1 ui · vi.

R-2.15 The Vector class of Section 2.3.3 provides a constructor that takes an in-
teger d, and produces a d-dimensional vector with all coordinates equal to
0. Another convenient form for creating a new vector would be to send the
constructor a parameter that is some iterable type representing a sequence
of numbers, and to create a vector with dimension equal to the length of
that sequence and coordinates equal to the sequence values. For example,
Vector([4, 7, 5]) would produce a three-dimensional vector with coordi-
nates <4, 7, 5>. Modify the constructor so that either of these forms is
acceptable; that is, if a single integer is sent, it produces a vector of that
dimension with all zeros, but if a sequence of numbers is provided, it pro-
duces a vector with coordinates based on that sequence.

R-2.16 Our Range class, from Section 2.3.5, relies on the formula
max(0, (stop − start + step − 1) // step)

to compute the number of elements in the range. It is not immediately ev-
ident why this formula provides the correct calculation, even if assuming
a positive step size. Justify this formula, in your own words.

R-2.17 Draw a class inheritance diagram for the following set of classes:
• Class Goat extends object and adds an instance variable tail and

methods milk() and jump().

• Class Pig extends object and adds an instance variable nose and
methods eat(food) and wallow().

• Class Horse extends object and adds instance variables height and
color, and methods run() and jump().

• Class Racer extends Horse and adds a method race().

• Class Equestrian extends Horse, adding an instance variable weight
and methods trot() and is trained().
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R-2.18 Give a short fragment of Python code that uses the progression classes
from Section 2.4.2 to find the 8th value of a Fibonacci progression that
starts with 2 and 2 as its first two values.

R-2.19 When using the ArithmeticProgression class of Section 2.4.2 with an in-
crement of 128 and a start of 0, how many calls to next can we make
before we reach an integer of 263 or larger?

R-2.20 What are some potential efficiency disadvantages of having very deep in-
heritance trees, that is, a large set of classes, A, B, C, and so on, such that
B extends A, C extends B, D extends C, etc.?

R-2.21 What are some potential efficiency disadvantages of having very shallow
inheritance trees, that is, a large set of classes, A, B, C, and so on, such
that all of these classes extend a single class, Z?

R-2.22 The collections.Sequence abstract base class does not provide support for
comparing two sequences to each other. Modify our Sequence class from
Code Fragment 2.14 to include a definition for the eq method, so
that expression seq1 == seq2 will return True precisely when the two
sequences are element by element equivalent.

R-2.23 In similar spirit to the previous problem, augment the Sequence class with
method lt , to support lexicographic comparison seq1 < seq2.

Creativity

C-2.24 Suppose you are on the design team for a new e-book reader. What are the
primary classes and methods that the Python software for your reader will
need? You should include an inheritance diagram for this code, but you
do not need to write any actual code. Your software architecture should
at least include ways for customers to buy new books, view their list of
purchased books, and read their purchased books.

C-2.25 Exercise R-2.12 uses the mul method to support multiplying a Vector
by a number, while Exercise R-2.14 uses the mul method to support
computing a dot product of two vectors. Give a single implementation of
Vector. mul that uses run-time type checking to support both syntaxes
u v and u k, where u and v designate vector instances and k represents
a number.

C-2.26 The SequenceIterator class of Section 2.3.4 provides what is known as a
forward iterator. Implement a class named ReversedSequenceIterator that
serves as a reverse iterator for any Python sequence type. The first call to
next should return the last element of the sequence, the second call to next
should return the second-to-last element, and so forth.
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C-2.27 In Section 2.3.5, we note that our version of the Range class has im-
plicit support for iteration, due to its explicit support of both len
and getitem . The class also receives implicit support of the Boolean
test, “k in r” for Range r. This test is evaluated based on a forward itera-
tion through the range, as evidenced by the relative quickness of the test
2 in Range(10000000) versus 9999999 in Range(10000000). Provide a
more efficient implementation of the contains method to determine
whether a particular value lies within a given range. The running time of
your method should be independent of the length of the range.

C-2.28 The PredatoryCreditCard class of Section 2.4.1 provides a process month
method that models the completion of a monthly cycle. Modify the class
so that once a customer has made ten calls to charge in the current month,
each additional call to that function results in an additional $1 surcharge.

C-2.29 Modify the PredatoryCreditCard class from Section 2.4.1 so that a cus-
tomer is assigned a minimum monthly payment, as a percentage of the
balance, and so that a late fee is assessed if the customer does not subse-
quently pay that minimum amount before the next monthly cycle.

C-2.30 At the close of Section 2.4.1, we suggest a model in which the CreditCard
class supports a nonpublic method, set balance(b), that could be used
by subclasses to affect a change to the balance, without directly accessing
the balance data member. Implement such a model, revising both the
CreditCard and PredatoryCreditCard classes accordingly.

C-2.31 Write a Python class that extends the Progression class so that each value
in the progression is the absolute value of the difference between the pre-
vious two values. You should include a constructor that accepts a pair of
numbers as the first two values, using 2 and 200 as the defaults.

C-2.32 Write a Python class that extends the Progression class so that each value
in the progression is the square root of the previous value. (Note that
you can no longer represent each value with an integer.) Your construc-
tor should accept an optional parameter specifying the start value, using
65,536 as a default.

Projects

P-2.33 Write a Python program that inputs a polynomial in standard algebraic
notation and outputs the first derivative of that polynomial.

P-2.34 Write a Python program that inputs a document and then outputs a bar-
chart plot of the frequencies of each alphabet character that appears in
that document.
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P-2.35 Write a set of Python classes that can simulate an Internet application in
which one party, Alice, is periodically creating a set of packets that she
wants to send to Bob. An Internet process is continually checking if Alice
has any packets to send, and if so, it delivers them to Bob’s computer, and
Bob is periodically checking if his computer has a packet from Alice, and,
if so, he reads and deletes it.

P-2.36 Write a Python program to simulate an ecosystem containing two types
of creatures, bears and fish. The ecosystem consists of a river, which is
modeled as a relatively large list. Each element of the list should be a
Bear object, a Fish object, or None. In each time step, based on a random
process, each animal either attempts to move into an adjacent list location
or stay where it is. If two animals of the same type are about to collide in
the same cell, then they stay where they are, but they create a new instance
of that type of animal, which is placed in a random empty (i.e., previously
None) location in the list. If a bear and a fish collide, however, then the
fish dies (i.e., it disappears).

P-2.37 Write a simulator, as in the previous project, but add a Boolean gender
field and a floating-point strength field to each animal, using an Animal
class as a base class. If two animals of the same type try to collide, then
they only create a new instance of that type of animal if they are of differ-
ent genders. Otherwise, if two animals of the same type and gender try to
collide, then only the one of larger strength survives.

P-2.38 Write a Python program that simulates a system that supports the func-
tions of an e-book reader. You should include methods for users of your
system to “buy” new books, view their list of purchased books, and read
their purchased books. Your system should use actual books, which have
expired copyrights and are available on the Internet, to populate your set
of available books for users of your system to “purchase” and read.

P-2.39 Develop an inheritance hierarchy based upon a Polygon class that has
abstract methods area() and perimeter(). Implement classes Triangle,
Quadrilateral, Pentagon, Hexagon, and Octagon that extend this base
class, with the obvious meanings for the area() and perimeter() methods.
Also implement classes, IsoscelesTriangle, EquilateralTriangle, Rectan-
gle, and Square, that have the appropriate inheritance relationships. Fi-
nally, write a simple program that allows users to create polygons of the
various types and input their geometric dimensions, and the program then
outputs their area and perimeter. For extra effort, allow users to input
polygons by specifying their vertex coordinates and be able to test if two
such polygons are similar.
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Chapter Notes

For a broad overview of developments in computer science and engineering, we refer the
reader to The Computer Science and Engineering Handbook [96]. For more information
about the Therac-25 incident, please see the paper by Leveson and Turner [69].

The reader interested in studying object-oriented programming further, is referred to
the books by Booch [17], Budd [20], and Liskov and Guttag [71]. Liskov and Guttag
also provide a nice discussion of abstract data types, as does the survey paper by Cardelli
and Wegner [23] and the book chapter by Demurjian [33] in the The Computer Science
and Engineering Handbook [96]. Design patterns are described in the book by Gamma et
al. [41].

Books with specific focus on object-oriented programming in Python include those
by Goldwasser and Letscher [43] at the introductory level, and by Phillips [83] at a more
advanced level,
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In a classic story, the famous mathematician Archimedes was asked to deter-
mine if a golden crown commissioned by the king was indeed pure gold, and not
part silver, as an informant had claimed. Archimedes discovered a way to perform
this analysis while stepping into a bath. He noted that water spilled out of the bath
in proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. That is, Archimedes could dip the crown and an equal-weight amount
of gold into a bowl of water to see if they both displaced the same amount. This
discovery was unfortunate for the goldsmith, however, for when Archimedes did
his analysis, the crown displaced more water than an equal-weight lump of pure
gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” data structures and algo-
rithms. Simply put, a data structure is a systematic way of organizing and access-
ing data, and an algorithm is a step-by-step procedure for performing some task in
a finite amount of time. These concepts are central to computing, but to be able to
classify some data structures and algorithms as “good,” we must have precise ways
of analyzing them.

The primary analysis tool we will use in this book involves characterizing the
running times of algorithms and data structure operations, with space usage also
being of interest. Running time is a natural measure of “goodness,” since time is a
precious resource—computer solutions should run as fast as possible. In general,
the running time of an algorithm or data structure operation increases with the input
size, although it may also vary for different inputs of the same size. Also, the run-
ning time is affected by the hardware environment (e.g., the processor, clock rate,
memory, disk) and software environment (e.g., the operating system, programming
language) in which the algorithm is implemented and executed. All other factors
being equal, the running time of the same algorithm on the same input data will be
smaller if the computer has, say, a much faster processor or if the implementation
is done in a program compiled into native machine code instead of an interpreted
implementation. We begin this chapter by discussing tools for performing exper-
imental studies, yet also limitations to the use of experiments as a primary means
for evaluating algorithm efficiency.

Focusing on running time as a primary measure of goodness requires that we be
able to use a few mathematical tools. In spite of the possible variations that come
from different environmental factors, we would like to focus on the relationship
between the running time of an algorithm and the size of its input. We are interested
in characterizing an algorithm’s running time as a function of the input size. But
what is the proper way of measuring it? In this chapter, we “roll up our sleeves”
and develop a mathematical way of analyzing algorithms.
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3.1 Experimental Studies

If an algorithm has been implemented, we can study its running time by executing
it on various test inputs and recording the time spent during each execution. A
simple approach for doing this in Python is by using the time function of the time
module. This function reports the number of seconds, or fractions thereof, that have
elapsed since a benchmark time known as the epoch. The choice of the epoch is
not significant to our goal, as we can determine the elapsed time by recording the
time just before the algorithm and the time just after the algorithm, and computing
their difference, as follows:

from time import time
start time = time( ) # record the starting time
run algorithm
end time = time( ) # record the ending time
elapsed = end time − start time # compute the elapsed time

We will demonstrate use of this approach, in Chapter 5, to gather experimental data
on the efficiency of Python’s list class. An elapsed time measured in this fashion
is a decent reflection of the algorithm efficiency, but it is by no means perfect. The
time function measures relative to what is known as the “wall clock.” Because
many processes share use of a computer’s central processing unit (or CPU), the
elapsed time will depend on what other processes are running on the computer
when the test is performed. A fairer metric is the number of CPU cycles that are
used by the algorithm. This can be determined using the clock function of the time
module, but even this measure might not be consistent if repeating the identical
algorithm on the identical input, and its granularity will depend upon the computer
system. Python includes a more advanced module, named timeit, to help automate
such evaluations with repetition to account for such variance among trials.

Because we are interested in the general dependence of running time on the size
and structure of the input, we should perform independent experiments on many
different test inputs of various sizes. We can then visualize the results by plotting
the performance of each run of the algorithm as a point with x-coordinate equal to
the input size, n, and y-coordinate equal to the running time, t. Figure 3.1 displays
such hypothetical data. This visualization may provide some intuition regarding
the relationship between problem size and execution time for the algorithm. This
may lead to a statistical analysis that seeks to fit the best function of the input size
to the experimental data. To be meaningful, this analysis requires that we choose
good sample inputs and test enough of them to be able to make sound statistical
claims about the algorithm’s running time.
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Figure 3.1: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (n, t) indicates that on an input of size n, the running time
of the algorithm was measured as t milliseconds (ms).

Challenges of Experimental Analysis

While experimental studies of running times are valuable, especially when fine-
tuning production-quality code, there are three major limitations to their use for
algorithm analysis:

• Experimental running times of two algorithms are difficult to directly com-
pare unless the experiments are performed in the same hardware and software
environments.

• Experiments can be done only on a limited set of test inputs; hence, they
leave out the running times of inputs not included in the experiment (and
these inputs may be important).

• An algorithm must be fully implemented in order to execute it to study its
running time experimentally.

This last requirement is the most serious drawback to the use of experimental stud-
ies. At early stages of design, when considering a choice of data structures or
algorithms, it would be foolish to spend a significant amount of time implementing
an approach that could easily be deemed inferior by a higher-level analysis.
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3.1.1 Moving Beyond Experimental Analysis

Our goal is to develop an approach to analyzing the efficiency of algorithms that:
1. Allows us to evaluate the relative efficiency of any two algorithms in a way

that is independent of the hardware and software environment.
2. Is performed by studying a high-level description of the algorithm without

need for implementation.
3. Takes into account all possible inputs.

Counting Primitive Operations

To analyze the running time of an algorithm without performing experiments, we
perform an analysis directly on a high-level description of the algorithm (either in
the form of an actual code fragment, or language-independent pseudo-code). We
define a set of primitive operations such as the following:

• Assigning an identifier to an object
• Determining the object associated with an identifier
• Performing an arithmetic operation (for example, adding two numbers)
• Comparing two numbers
• Accessing a single element of a Python list by index
• Calling a function (excluding operations executed within the function)
• Returning from a function.

Formally, a primitive operation corresponds to a low-level instruction with an exe-
cution time that is constant. Ideally, this might be the type of basic operation that is
executed by the hardware, although many of our primitive operations may be trans-
lated to a small number of instructions. Instead of trying to determine the specific
execution time of each primitive operation, we will simply count how many prim-
itive operations are executed, and use this number t as a measure of the running
time of the algorithm.

This operation count will correlate to an actual running time in a specific com-
puter, for each primitive operation corresponds to a constant number of instructions,
and there are only a fixed number of primitive operations. The implicit assumption
in this approach is that the running times of different primitive operations will be
fairly similar. Thus, the number, t, of primitive operations an algorithm performs
will be proportional to the actual running time of that algorithm.

Measuring Operations as a Function of Input Size

To capture the order of growth of an algorithm’s running time, we will associate,
with each algorithm, a function f (n) that characterizes the number of primitive
operations that are performed as a function of the input size n. Section 3.2 will in-
troduce the seven most common functions that arise, and Section 3.3 will introduce
a mathematical framework for comparing functions to each other.
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Focusing on the Worst-Case Input

An algorithm may run faster on some inputs than it does on others of the same size.
Thus, we may wish to express the running time of an algorithm as the function of
the input size obtained by taking the average over all possible inputs of the same
size. Unfortunately, such an average-case analysis is typically quite challenging.
It requires us to define a probability distribution on the set of inputs, which is often
a difficult task. Figure 3.2 schematically shows how, depending on the input distri-
bution, the running time of an algorithm can be anywhere between the worst-case
time and the best-case time. For example, what if inputs are really only of types
“A” or “D”?

An average-case analysis usually requires that we calculate expected running
times based on a given input distribution, which usually involves sophisticated
probability theory. Therefore, for the remainder of this book, unless we specify
otherwise, we will characterize running times in terms of the worst case, as a func-
tion of the input size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires
only the ability to identify the worst-case input, which is often simple. Also, this
approach typically leads to better algorithms. Making the standard of success for an
algorithm to perform well in the worst case necessarily requires that it will do well
on every input. That is, designing for the worst case leads to stronger algorithmic
“muscles,” much like a track star who always practices by running up an incline.
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Figure 3.2: The difference between best-case and worst-case time. Each bar repre-
sents the running time of some algorithm on a different possible input.
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3.2 The Seven Functions Used in This Book

In this section, we briefly discuss the seven most important functions used in the
analysis of algorithms. We will use only these seven simple functions for almost
all the analysis we do in this book. In fact, a section that uses a function other
than one of these seven will be marked with a star (�) to indicate that it is optional.
In addition to these seven fundamental functions, Appendix B contains a list of
other useful mathematical facts that apply in the analysis of data structures and
algorithms.

The Constant Function

The simplest function we can think of is the constant function. This is the function,

f (n) = c,

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any
argument n, the constant function f (n) assigns the value c. In other words, it does
not matter what the value of n is; f (n) will always be equal to the constant value c.

Because we are most interested in integer functions, the most fundamental con-
stant function is g(n) = 1, and this is the typical constant function we use in this
book. Note that any other constant function, f (n) = c, can be written as a constant
c times g(n). That is, f (n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis, because
it characterizes the number of steps needed to do a basic operation on a computer,
like adding two numbers, assigning a value to some variable, or comparing two
numbers.

The Logarithm Function

One of the interesting and sometimes even surprising aspects of the analysis of
data structures and algorithms is the ubiquitous presence of the logarithm function,
f (n) = logb n, for some constant b > 1. This function is defined as follows:

x = logb n if and only if bx = n.

By definition, logb 1 = 0. The value b is known as the base of the logarithm.
The most common base for the logarithm function in computer science is 2,

as computers store integers in binary, and because a common operation in many
algorithms is to repeatedly divide an input in half. In fact, this base is so common
that we will typically omit it from the notation when it is 2. That is, for us,

logn = log2 n.
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We note that most handheld calculators have a button marked LOG, but this is
typically for calculating the logarithm base-10, not base-two.

Computing the logarithm function exactly for any integer n involves the use
of calculus, but we can use an approximation that is good enough for our pur-
poses without calculus. In particular, we can easily compute the smallest integer
greater than or equal to logb n (its so-called ceiling, 
logb n�). For positive integer,
n, this value is equal to the number of times we can divide n by b before we get
a number less than or equal to 1. For example, the evaluation of 
log3 27� is 3,
because ((27/3)/3)/3 = 1. Likewise, 
log4 64� is 3, because ((64/4)/4)/4 = 1,
and 
log2 12� is 4, because (((12/2)/2)/2)/2 = 0.75 ≤ 1.

The following proposition describes several important identities that involve
logarithms for any base greater than 1.

Proposition 3.1 (Logarithm Rules): Given real numbers a > 0, b > 1, c > 0
and d > 1, we have:

1. logb(ac) = logb a+ logb c
2. logb(a/c) = logb a− logb c
3. logb(a

c) = c logb a
4. logb a = logd a/ logd b
5. blogd a = alogd b

By convention, the unparenthesized notation lognc denotes the value log(nc).
We use a notational shorthand, logc n, to denote the quantity, (logn)c, in which the
result of the logarithm is raised to a power.

The above identities can be derived from converse rules for exponentiation that
we will present on page 121. We illustrate these identities with a few examples.

Example 3.2: We demonstrate below some interesting applications of the loga-
rithm rules from Proposition 3.1 (using the usual convention that the base of a
logarithm is 2 if it is omitted).

• log(2n) = log2+ logn = 1+ logn, by rule 1
• log(n/2) = logn− log2 = logn−1, by rule 2
• logn3 = 3logn, by rule 3
• log 2n = n log 2 = n ·1 = n, by rule 3
• log4 n = (logn)/ log 4 = (logn)/2, by rule 4
• 2log n = nlog 2 = n1 = n, by rule 5.

As a practical matter, we note that rule 4 gives us a way to compute the base-two
logarithm on a calculator that has a base-10 logarithm button, LOG, for

log2 n = LOG n/LOG 2.
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The Linear Function

Another simple yet important function is the linear function,

f (n) = n.

That is, given an input value n, the linear function f assigns the value n itself.
This function arises in algorithm analysis any time we have to do a single basic

operation for each of n elements. For example, comparing a number x to each
element of a sequence of size n will require n comparisons. The linear function
also represents the best running time we can hope to achieve for any algorithm that
processes each of n objects that are not already in the computer’s memory, because
reading in the n objects already requires n operations.

The N-Log-N Function

The next function we discuss in this section is the n-log-n function,

f (n) = n logn,

that is, the function that assigns to an input n the value of n times the logarithm
base-two of n. This function grows a little more rapidly than the linear function and
a lot less rapidly than the quadratic function; therefore, we would greatly prefer an
algorithm with a running time that is proportional to n logn, than one with quadratic
running time. We will see several important algorithms that exhibit a running time
proportional to the n-log-n function. For example, the fastest possible algorithms
for sorting n arbitrary values require time proportional to n logn.

The Quadratic Function

Another function that appears often in algorithm analysis is the quadratic function,

f (n) = n2.

That is, given an input value n, the function f assigns the product of n with itself
(in other words, “n squared”).

The main reason why the quadratic function appears in the analysis of algo-
rithms is that there are many algorithms that have nested loops, where the inner
loop performs a linear number of operations and the outer loop is performed a
linear number of times. Thus, in such cases, the algorithm performs n · n = n2

operations.
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Nested Loops and the Quadratic Function

The quadratic function can also arise in the context of nested loops where the first
iteration of a loop uses one operation, the second uses two operations, the third uses
three operations, and so on. That is, the number of operations is

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n.

In other words, this is the total number of operations that will be performed by the
nested loop if the number of operations performed inside the loop increases by one
with each iteration of the outer loop. This quantity also has an interesting history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils
occupied by adding up the integers from 1 to 100. But almost immediately one
of the children claimed to have the answer! The teacher was suspicious, for the
student had only the answer on his slate. But the answer, 5050, was correct and the
student, Carl Gauss, grew up to be one of the greatest mathematicians of his time.
We presume that young Gauss used the following identity.

Proposition 3.3: For any integer n ≥ 1, we have:

1+ 2+ 3+ · · ·+(n−2)+ (n−1)+ n =
n(n+ 1)

2
.

We give two “visual” justifications of Proposition 3.3 in Figure 3.3.

1 2 n0

1

2

n

3

3

...

1 n/2
0

1

2

n

3

2

n+1

...

(a) (b)
Figure 3.3: Visual justifications of Proposition 3.3. Both illustrations visualize the
identity in terms of the total area covered by n unit-width rectangles with heights
1,2, . . . ,n. In (a), the rectangles are shown to cover a big triangle of area n2/2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In
(b), which applies only when n is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n+ 1.
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The lesson to be learned from Proposition 3.3 is that if we perform an algorithm
with nested loops such that the operations in the inner loop increase by one each
time, then the total number of operations is quadratic in the number of times, n,
we perform the outer loop. To be fair, the number of operations is n2/2 + n/2,
and so this is just over half the number of operations than an algorithm that uses n
operations each time the inner loop is performed. But the order of growth is still
quadratic in n.

The Cubic Function and Other Polynomials

Continuing our discussion of functions that are powers of the input, we consider
the cubic function,

f (n) = n3,

which assigns to an input value n the product of n with itself three times. This func-
tion appears less frequently in the context of algorithm analysis than the constant,
linear, and quadratic functions previously mentioned, but it does appear from time
to time.

Polynomials

Most of the functions we have listed so far can each be viewed as being part of a
larger class of functions, the polynomials. A polynomial function has the form,

f (n) = a0 + a1n+ a2n2 + a3n3 + · · ·+ adnd ,

where a0,a1, . . . ,ad are constants, called the coefficients of the polynomial, and
ad �= 0. Integer d, which indicates the highest power in the polynomial, is called
the degree of the polynomial.

For example, the following functions are all polynomials:

• f (n) = 2+ 5n+ n2

• f (n) = 1+ n3

• f (n) = 1
• f (n) = n
• f (n) = n2

Therefore, we could argue that this book presents just four important functions used
in algorithm analysis, but we will stick to saying that there are seven, since the con-
stant, linear, and quadratic functions are too important to be lumped in with other
polynomials. Running times that are polynomials with small degree are generally
better than polynomial running times with larger degree.
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Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the summation, which is defined as follows:

b

∑
i=a

f (i) = f (a)+ f (a+ 1)+ f (a+ 2)+ · · ·+ f (b),

where a and b are integers and a ≤ b. Summations arise in data structure and algo-
rithm analysis because the running times of loops naturally give rise to summations.

Using a summation, we can rewrite the formula of Proposition 3.3 as

n

∑
i=1

i =
n(n+ 1)

2
.

Likewise, we can write a polynomial f (n) of degree d with coefficients a0, . . . ,ad as

f (n) =
d

∑
i=0

ain
i.

Thus, the summation notation gives us a shorthand way of expressing sums of in-
creasing terms that have a regular structure.

The Exponential Function

Another function used in the analysis of algorithms is the exponential function,

f (n) = bn,

where b is a positive constant, called the base, and the argument n is the exponent.
That is, function f (n) assigns to the input argument n the value obtained by mul-
tiplying the base b by itself n times. As was the case with the logarithm function,
the most common base for the exponential function in algorithm analysis is b = 2.
For example, an integer word containing n bits can represent all the nonnegative
integers less than 2n. If we have a loop that starts by performing one operation
and then doubles the number of operations performed with each iteration, then the
number of operations performed in the nth iteration is 2n.

We sometimes have other exponents besides n, however; hence, it is useful
for us to know a few handy rules for working with exponents. In particular, the
following exponent rules are quite helpful.
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Proposition 3.4 (Exponent Rules): Given positive integers a, b, and c, we have
1. (ba)c = bac

2. babc = ba+c

3. ba/bc = ba−c

For example, we have the following:
• 256 = 162 = (24)2 = 24·2 = 28 = 256 (Exponent Rule 1)
• 243 = 35 = 32+3 = 3233 = 9 ·27 = 243 (Exponent Rule 2)
• 16 = 1024/64 = 210/26 = 210−6 = 24 = 16 (Exponent Rule 3)
We can extend the exponential function to exponents that are fractions or real

numbers and to negative exponents, as follows. Given a positive integer k, we de-
fine b1/k to be kth root of b, that is, the number r such that rk = b. For example,
251/2 = 5, since 52 = 25. Likewise, 271/3 = 3 and 161/4 = 2. This approach al-
lows us to define any power whose exponent can be expressed as a fraction, for
ba/c = (ba)1/c, by Exponent Rule 1. For example, 93/2 = (93)1/2 = 7291/2 = 27.
Thus, ba/c is really just the cth root of the integral exponent ba.

We can further extend the exponential function to define bx for any real number
x, by computing a series of numbers of the form ba/c for fractions a/c that get pro-
gressively closer and closer to x. Any real number x can be approximated arbitrarily
closely by a fraction a/c; hence, we can use the fraction a/c as the exponent of b
to get arbitrarily close to bx. For example, the number 2π is well defined. Finally,
given a negative exponent d, we define bd = 1/b−d , which corresponds to applying
Exponent Rule 3 with a = 0 and c = −d. For example, 2−3 = 1/23 = 1/8.

Geometric Sums

Suppose we have a loop for which each iteration takes a multiplicative factor longer
than the previous one. This loop can be analyzed using the following proposition.

Proposition 3.5: For any integer n ≥ 0 and any real number a such that a > 0 and
a �= 1, consider the summation

n

∑
i=0

ai = 1+ a+ a2 + · · ·+ an

(remembering that a0 = 1 if a > 0). This summation is equal to

an+1 −1
a−1

.

Summations as shown in Proposition 3.5 are called geometric summations, be-
cause each term is geometrically larger than the previous one if a > 1. For example,
everyone working in computing should know that

1+ 2+ 4+ 8+ · · ·+ 2n−1 = 2n −1,

for this is the largest integer that can be represented in binary notation using n bits.
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3.2.1 Comparing Growth Rates

To sum up, Table 3.1 shows, in order, each of the seven common functions used in
algorithm analysis.

constant logarithm linear n-log-n quadratic cubic exponential
1 logn n n logn n2 n3 an

Table 3.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, and algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 3.4.
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Figure 3.4: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
on a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. When dis-
cussing logarithms, we noted that the value is generally not an integer, yet the
running time of an algorithm is usually expressed by means of an integer quantity,
such as the number of operations performed. Thus, the analysis of an algorithm
may sometimes involve the use of the floor function and ceiling function, which
are defined respectively as follows:

• �x� = the largest integer less than or equal to x.
• 
x� = the smallest integer greater than or equal to x.
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3.3 Asymptotic Analysis

In algorithm analysis, we focus on the growth rate of the running time as a function
of the input size n, taking a “big-picture” approach. For example, it is often enough
just to know that the running time of an algorithm grows proportionally to n.

We analyze algorithms using a mathematical notation for functions that disre-
gards constant factors. Namely, we characterize the running times of algorithms
by using functions that map the size of the input, n, to values that correspond to
the main factor that determines the growth rate in terms of n. This approach re-
flects that each basic step in a pseudo-code description or a high-level language
implementation may correspond to a small number of primitive operations. Thus,
we can perform an analysis of an algorithm by estimating the number of primitive
operations executed up to a constant factor, rather than getting bogged down in
language-specific or hardware-specific analysis of the exact number of operations
that execute on the computer.

As a tangible example, we revisit the goal of finding the largest element of a
Python list; we first used this example when introducing for loops on page 21 of
Section 1.4.2. Code Fragment 3.1 presents a function named find max for this task.

1 def find max(data):
2 ”””Return the maximum element from a nonempty Python list.”””
3 biggest = data[0] # The initial value to beat
4 for val in data: # For each value:
5 if val > biggest # if it is greater than the best so far,
6 biggest = val # we have found a new best (so far)
7 return biggest # When loop ends, biggest is the max

Code Fragment 3.1: A function that returns the maximum value of a Python list.

This is a classic example of an algorithm with a running time that grows pro-
portional to n, as the loop executes once for each data element, with some fixed
number of primitive operations executing for each pass. In the remainder of this
section, we provide a framework to formalize this claim.

3.3.1 The “Big-Oh” Notation

Let f (n) and g(n) be functions mapping positive integers to positive real numbers.
We say that f (n) is O(g(n)) if there is a real constant c > 0 and an integer constant
n0 ≥ 1 such that

f (n) ≤ cg(n), for n ≥ n0.

This definition is often referred to as the “big-Oh” notation, for it is sometimes pro-
nounced as “ f (n) is big-Oh of g(n).” Figure 3.5 illustrates the general definition.
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Figure 3.5: Illustrating the “big-Oh” notation. The function f (n) is O(g(n)), since
f (n) ≤ c ·g(n) when n ≥ n0.

Example 3.6: The function 8n+ 5 is O(n).

Justification: By the big-Oh definition, we need to find a real constant c > 0 and
an integer constant n0 ≥ 1 such that 8n+5 ≤ cn for every integer n ≥ n0. It is easy
to see that a possible choice is c = 9 and n0 = 5. Indeed, this is one of infinitely
many choices available because there is a trade-off between c and n0. For example,
we could rely on constants c = 13 and n0 = 1.

The big-Oh notation allows us to say that a function f (n) is “less than or equal
to” another function g(n) up to a constant factor and in the asymptotic sense as n
grows toward infinity. This ability comes from the fact that the definition uses “≤”
to compare f (n) to a g(n) times a constant, c, for the asymptotic cases when n ≥ n0.
However, it is considered poor taste to say “ f (n) ≤ O(g(n)),” since the big-Oh
already denotes the “less-than-or-equal-to” concept. Likewise, although common,
it is not fully correct to say “ f (n) = O(g(n)),” with the usual understanding of the
“=” relation, because there is no way to make sense of the symmetric statement,
“O(g(n)) = f (n).” It is best to say,

“ f (n) is O(g(n)).”

Alternatively, we can say “ f (n) is order of g(n).” For the more mathematically
inclined, it is also correct to say, “ f (n) ∈ O(g(n)),” for the big-Oh notation, techni-
cally speaking, denotes a whole collection of functions. In this book, we will stick
to presenting big-Oh statements as “ f (n) is O(g(n)).” Even with this interpretation,
there is considerable freedom in how we can use arithmetic operations with the big-
Oh notation, and with this freedom comes a certain amount of responsibility.
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Characterizing Running Times Using the Big-Oh Notation

The big-Oh notation is used widely to characterize running times and space bounds
in terms of some parameter n, which varies from problem to problem, but is always
defined as a chosen measure of the “size” of the problem. For example, if we
are interested in finding the largest element in a sequence, as with the find max
algorithm, we should let n denote the number of elements in that collection. Using
the big-Oh notation, we can write the following mathematically precise statement
on the running time of algorithm find max (Code Fragment 3.1) for any computer.

Proposition 3.7: The algorithm, find max, for computing the maximum element
of a list of n numbers, runs in O(n) time.

Justification: The initialization before the loop begins requires only a constant
number of primitive operations. Each iteration of the loop also requires only a con-
stant number of primitive operations, and the loop executes n times. Therefore,
we account for the number of primitive operations being c′ + c′′ ·n for appropriate
constants c′ and c′′ that reflect, respectively, the work performed during initializa-
tion and the loop body. Because each primitive operation runs in constant time, we
have that the running time of algorithm find max on an input of size n is at most a
constant times n; that is, we conclude that the running time of algorithm find max
is O(n).

Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower-order terms and
focus on the main components of a function that affect its growth.

Example 3.8: 5n4 + 3n3 + 2n2 + 4n+ 1 is O(n4).

Justification: Note that 5n4 +3n3 +2n2 +4n+1 ≤ (5+3+2+4+1)n4 = cn4,
for c = 15, when n ≥ n0 = 1.

In fact, we can characterize the growth rate of any polynomial function.

Proposition 3.9: If f (n) is a polynomial of degree d, that is,

f (n) = a0 + a1n+ · · ·+ adnd ,

and ad > 0, then f (n) is O(nd).

Justification: Note that, for n ≥ 1, we have 1 ≤ n ≤ n2 ≤ ·· · ≤ nd ; hence,

a0 + a1n+ a2n2 + · · ·+ adnd ≤ (|a0|+ |a1|+ |a2|+ · · ·+ |ad |)nd .

We show that f (n) is O(nd) by defining c = |a0|+ |a1|+ · · ·+ |ad | and n0 = 1.
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Thus, the highest-degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial. We consider some additional properties
of the big-Oh notation in the exercises. Let us consider some further examples here,
focusing on combinations of the seven fundamental functions used in algorithm
design. We rely on the mathematical fact that logn ≤ n for n ≥ 1.

Example 3.10: 5n2 + 3n logn+ 2n+ 5 is O(n2).

Justification: 5n2 +3n logn+2n+5 ≤ (5+3+2+5)n2 = cn2, for c = 15, when
n ≥ n0 = 1.

Example 3.11: 20n3 + 10n logn+ 5 is O(n3).

Justification: 20n3 + 10n logn+ 5 ≤ 35n3, for n ≥ 1.

Example 3.12: 3logn+ 2 is O(logn).

Justification: 3logn + 2 ≤ 5logn, for n ≥ 2. Note that logn is zero for n = 1.
That is why we use n ≥ n0 = 2 in this case.

Example 3.13: 2n+2 is O(2n).

Justification: 2n+2 = 2n ·22 = 4 ·2n; hence, we can take c = 4 and n0 = 1 in this
case.

Example 3.14: 2n+ 100log n is O(n).

Justification: 2n+100log n ≤ 102n, for n ≥ n0 = 1; hence, we can take c = 102
in this case.

Characterizing Functions in Simplest Terms

In general, we should use the big-Oh notation to characterize a function as closely
as possible. While it is true that the function f (n) = 4n3 + 3n2 is O(n5) or even
O(n4), it is more accurate to say that f (n) is O(n3). Consider, by way of analogy,
a scenario where a hungry traveler driving along a long country road happens upon
a local farmer walking home from a market. If the traveler asks the farmer how
much longer he must drive before he can find some food, it may be truthful for the
farmer to say, “certainly no longer than 12 hours,” but it is much more accurate
(and helpful) for him to say, “you can find a market just a few minutes drive up this
road.” Thus, even with the big-Oh notation, we should strive as much as possible
to tell the whole truth.

It is also considered poor taste to include constant factors and lower-order terms
in the big-Oh notation. For example, it is not fashionable to say that the function
2n2 is O(4n2 + 6n logn), although this is completely correct. We should strive
instead to describe the function in the big-Oh in simplest terms.
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The seven functions listed in Section 3.2 are the most common functions used
in conjunction with the big-Oh notation to characterize the running times and space
usage of algorithms. Indeed, we typically use the names of these functions to refer
to the running times of the algorithms they characterize. So, for example, we would
say that an algorithm that runs in worst-case time 4n2 + n logn is a quadratic-time
algorithm, since it runs in O(n2) time. Likewise, an algorithm running in time at
most 5n+ 20log n+ 4 would be called a linear-time algorithm.

Big-Omega

Just as the big-Oh notation provides an asymptotic way of saying that a function is
“less than or equal to” another function, the following notations provide an asymp-
totic way of saying that a function grows at a rate that is “greater than or equal to”
that of another.

Let f (n) and g(n) be functions mapping positive integers to positive real num-
bers. We say that f (n) is Ω(g(n)), pronounced “ f (n) is big-Omega of g(n),” if g(n)
is O( f (n)), that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such
that

f (n) ≥ cg(n), for n ≥ n0.

This definition allows us to say asymptotically that one function is greater than or
equal to another, up to a constant factor.

Example 3.15: 3n log n−2n is Ω(n logn).

Justification: 3n logn− 2n = n logn + 2n(logn− 1) ≥ n logn for n ≥ 2; hence,
we can take c = 1 and n0 = 2 in this case.

Big-Theta

In addition, there is a notation that allows us to say that two functions grow at the
same rate, up to constant factors. We say that f (n) is Θ(g(n)), pronounced “ f (n)
is big-Theta of g(n),” if f (n) is O(g(n)) and f (n) is Ω(g(n)) , that is, there are real
constants c′ > 0 and c′′ > 0, and an integer constant n0 ≥ 1 such that

c′g(n) ≤ f (n) ≤ c′′g(n), for n ≥ n0.

Example 3.16: 3n log n+ 4n+ 5logn is Θ(n log n).

Justification: 3n logn ≤ 3n logn+ 4n+ 5logn ≤ (3+ 4+ 5)n logn for n ≥ 2.
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3.3.2 Comparative Analysis

Suppose two algorithms solving the same problem are available: an algorithm A,
which has a running time of O(n), and an algorithm B, which has a running time
of O(n2). Which algorithm is better? We know that n is O(n2), which implies that
algorithm A is asymptotically better than algorithm B, although for a small value
of n, B may have a lower running time than A.

We can use the big-Oh notation to order classes of functions by asymptotic
growth rate. Our seven functions are ordered by increasing growth rate in the fol-
lowing sequence, that is, if a function f (n) precedes a function g(n) in the sequence,
then f (n) is O(g(n)):

1, logn, n, n logn, n2, n3, 2n.

We illustrate the growth rates of the seven functions in Table 3.2. (See also
Figure 3.4 from Section 3.2.1.)

n logn n n logn n2 n3 2n

8 3 8 24 64 512 256
16 4 16 64 256 4,096 65,536
32 5 32 160 1,024 32,768 4,294,967,296
64 6 64 384 4,096 262,144 1.84× 1019

128 7 128 896 16,384 2,097,152 3.40× 1038

256 8 256 2,048 65,536 16,777,216 1.15× 1077

512 9 512 4,608 262,144 134,217,728 1.34× 10154

Table 3.2: Selected values of fundamental functions in algorithm analysis.

We further illustrate the importance of the asymptotic viewpoint in Table 3.3.
This table explores the maximum size allowed for an input instance that is pro-
cessed by an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance
of good algorithm design, because an asymptotically slow algorithm is beaten in
the long run by an asymptotically faster algorithm, even if the constant factor for
the asymptotically faster algorithm is worse.

Running Maximum Problem Size (n)
Time (μs) 1 second 1 minute 1 hour

400n 2,500 150,000 9,000,000
2n2 707 5,477 42,426
2n 19 25 31

Table 3.3: Maximum size of a problem that can be solved in 1 second, 1 minute,
and 1 hour, for various running times measured in microseconds.
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The importance of good algorithm design goes beyond just what can be solved
effectively on a given computer, however. As shown in Table 3.4, even if we
achieve a dramatic speedup in hardware, we still cannot overcome the handicap
of an asymptotically slow algorithm. This table shows the new maximum problem
size achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

Running Time New Maximum Problem Size
400n 256m
2n2 16m
2n m + 8

Table 3.4: Increase in the maximum size of a problem that can be solved in a fixed
amount of time, by using a computer that is 256 times faster than the previous one.
Each entry is a function of m, the previous maximum problem size.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations can be somewhat misleading
should the constant factors they “hide” be very large. For example, while it is true
that the function 10100n is O(n), if this is the running time of an algorithm being
compared to one whose running time is 10n log n, we should prefer the O(n logn)-
time algorithm, even though the linear-time algorithm is asymptotically faster. This
preference is because the constant factor, 10100, which is called “one googol,” is
believed by many astronomers to be an upper bound on the number of atoms in
the observable universe. So we are unlikely to ever have a real-world problem that
has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower-order terms
we are “hiding.”

The observation above raises the issue of what constitutes a “fast” algorithm.
Generally speaking, any algorithm running in O(n logn) time (with a reasonable
constant factor) should be considered efficient. Even an O(n2)-time function may
be fast enough in some contexts, that is, when n is small. But an algorithm running
in O(2n) time should almost never be considered efficient.

Exponential Running Times

There is a famous story about the inventor of the game of chess. He asked only that
his king pay him 1 grain of rice for the first square on the board, 2 grains for the
second, 4 grains for the third, 8 for the fourth, and so on. It is an interesting test of
programming skills to write a program to compute exactly the number of grains of
rice the king would have to pay.
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If we must draw a line between efficient and inefficient algorithms, therefore,
it is natural to make this distinction be that between those algorithms running in
polynomial time and those running in exponential time. That is, make the distinc-
tion between algorithms with a running time that is O(nc), for some constant c > 1,
and those with a running time that is O(bn), for some constant b > 1. Like so many
notions we have discussed in this section, this too should be taken with a “grain of
salt,” for an algorithm running in O(n100) time should probably not be considered
“efficient.” Even so, the distinction between polynomial-time and exponential-time
algorithms is considered a robust measure of tractability.

3.3.3 Examples of Algorithm Analysis

Now that we have the big-Oh notation for doing algorithm analysis, let us give some
examples by characterizing the running time of some simple algorithms using this
notation. Moreover, in keeping with our earlier promise, we illustrate below how
each of the seven functions given earlier in this chapter can be used to characterize
the running time of an example algorithm.

Rather than use pseudo-code in this section, we give complete Python imple-
mentations for our examples. We use Python’s list class as the natural representa-
tion for an “array” of values. In Chapter 5, we will fully explore the underpinnings
of Python’s list class, and the efficiency of the various behaviors that it supports. In
this section, we rely on just a few of its behaviors, discussing their efficiencies as
introduced.

Constant-Time Operations

Given an instance, named data, of the Python list class, a call to the function,
len(data), is evaluated in constant time. This is a very simple algorithm because
the list class maintains, for each list, an instance variable that records the current
length of the list. This allows it to immediately report that length, rather than take
time to iteratively count each of the elements in the list. Using asymptotic notation,
we say that this function runs in O(1) time; that is, the running time of this function
is independent of the length, n, of the list.

Another central behavior of Python’s list class is that it allows access to an arbi-
trary element of the list using syntax, data[j], for integer index j. Because Python’s
lists are implemented as array-based sequences, references to a list’s elements are
stored in a consecutive block of memory. The jth element of the list can be found,
not by iterating through the list one element at a time, but by validating the index,
and using it as an offset into the underlying array. In turn, computer hardware sup-
ports constant-time access to an element based on its memory address. Therefore,
we say that the expression data[j] is evaluated in O(1) time for a Python list.
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Revisiting the Problem of Finding the Maximum of a Sequence

For our next example, we revisit the find max algorithm, given in Code Frag-
ment 3.1 on page 123, for finding the largest value in a sequence. Proposition 3.7
on page 125 claimed an O(n) run-time for the find max algorithm. Consistent with
our earlier analysis of syntax data[0], the initialization uses O(1) time. The loop
executes n times, and within each iteration, it performs one comparison and possi-
bly one assignment statement (as well as maintenance of the loop variable). Finally,
we note that the mechanism for enacting a return statement in Python uses O(1)
time. Combining these steps, we have that the find max function runs in O(n) time.

Further Analysis of the Maximum-Finding Algorithm

A more interesting question about find max is how many times we might update
the current “biggest” value. In the worst case, if the data is given to us in increasing
order, the biggest value is reassigned n− 1 times. But what if the input is given
to us in random order, with all orders equally likely; what would be the expected
number of times we update the biggest value in this case? To answer this question,
note that we update the current biggest in an iteration of the loop only if the current
element is bigger than all the elements that precede it. If the sequence is given to
us in random order, the probability that the jth element is the largest of the first j
elements is 1/ j (assuming uniqueness). Hence, the expected number of times we
update the biggest (including initialization) is Hn = ∑

n
j=1 1/ j, which is known as

the nth Harmonic number. It turns out (see Proposition B.16) that Hn is O(logn).
Therefore, the expected number of times the biggest value is updated by find max
on a randomly ordered sequence is O(logn).

Prefix Averages

The next problem we consider is computing what are known as prefix averages
of a sequence of numbers. Namely, given a sequence S consisting of n num-
bers, we want to compute a sequence A such that A[ j] is the average of elements
S[0], . . . ,S[ j], for j = 0, . . . ,n−1, that is,

A[ j] =
∑

j
i=0 S[i]

j + 1
.

Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, ordered from recent to
past, an investor will typically want to see the fund’s average annual returns for the
most recent year, the most recent three years, the most recent five years, and so on.
Likewise, given a stream of daily Web usage logs, a Web site manager may wish
to track average usage trends over various time periods. We analyze three different
implementations that solve this problem but with rather different running times.
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A Quadratic-Time Algorithm

Our first algorithm for computing prefix averages, named prefix average1, is shown
in Code Fragment 3.2. It computes every element of A separately, using an inner
loop to compute the partial sum.

1 def prefix average1(S):
2 ”””Return list such that, for all j, A[j] equals average of S[0], ..., S[j].”””
3 n = len(S)
4 A = [0] n # create new list of n zeros
5 for j in range(n):
6 total = 0 # begin computing S[0] + ... + S[j]
7 for i in range(j + 1):
8 total += S[i]
9 A[j] = total / (j+1) # record the average

10 return A

Code Fragment 3.2: Algorithm prefix average1.

In order to analyze the prefix average1 algorithm, we consider the various steps
that are executed.

• The statement, n = len(S), executes in constant time, as described at the
beginning of Section 3.3.3.

• The statement, A = [0] n, causes the creation and initialization of a Python
list with length n, and with all entries equal to zero. This uses a constant
number of primitive operations per element, and thus runs in O(n) time.

• There are two nested for loops, which are controlled, respectively, by coun-
ters j and i. The body of the outer loop, controlled by counter j, is ex-
ecuted n times, for j = 0, . . . ,n − 1. Therefore, statements total = 0 and
A[j] = total / (j+1) are executed n times each. This implies that these two
statements, plus the management of counter j in the range, contribute a num-
ber of primitive operations proportional to n, that is, O(n) time.

• The body of the inner loop, which is controlled by counter i, is executed j+1
times, depending on the current value of the outer loop counter j. Thus, state-
ment total += S[i], in the inner loop, is executed 1+ 2 + 3 + · · ·+ n times.
By recalling Proposition 3.3, we know that 1+ 2+ 3+ · · ·+ n = n(n+ 1)/2,
which implies that the statement in the inner loop contributes O(n2) time.
A similar argument can be done for the primitive operations associated with
maintaining counter i, which also take O(n2) time.

The running time of implementation prefix average1 is given by the sum of three
terms. The first and the second terms are O(n), and the third term is O(n2). By a
simple application of Proposition 3.9, the running time of prefix average1 is O(n2).
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Our second implementation for computing prefix averages, prefix average2, is
presented in Code Fragment 3.3.

1 def prefix average2(S):
2 ”””Return list such that, for all j, A[j] equals average of S[0], ..., S[j].”””
3 n = len(S)
4 A = [0] n # create new list of n zeros
5 for j in range(n):
6 A[j] = sum(S[0:j+1]) / (j+1) # record the average
7 return A

Code Fragment 3.3: Algorithm prefix average2.

This approach is essentially the same high-level algorithm as in prefix average1,
but we have replaced the inner loop by using the single expression sum(S[0:j+1])
to compute the partial sum, S[0]+ · · ·+ S[ j]. While the use of that function greatly
simplifies the presentation of the algorithm, it is worth asking how it affects the
efficiency. Asymptotically, this implementation is no better. Even though the ex-
pression, sum(S[0:j+1]), seems like a single command, it is a function call and
an evaluation of that function takes O( j + 1) time in this context. Technically, the
computation of the slice, S[0:j+1], also uses O( j + 1) time, as it constructs a new
list instance for storage. So the running time of prefix average2 is still dominated
by a series of steps that take time proportional to 1+2+3+ · · ·+n, and thus O(n2).

A Linear-Time Algorithm

Our final algorithm, prefix averages3, is given in Code Fragment 3.4. Just as with
our first two algorithms, we are interested in computing, for each j, the prefix sum
S[0]+ S[1]+ · · ·+ S[ j], denoted as total in our code, so that we can then compute
the prefix average A[j] =total / (j + 1). However, there is a key difference that
results in much greater efficiency.

1 def prefix average3(S):
2 ”””Return list such that, for all j, A[j] equals average of S[0], ..., S[j].”””
3 n = len(S)
4 A = [0] n # create new list of n zeros
5 total = 0 # compute prefix sum as S[0] + S[1] + ...
6 for j in range(n):
7 total += S[j] # update prefix sum to include S[j]
8 A[j] = total / (j+1) # compute average based on current sum
9 return A

Code Fragment 3.4: Algorithm prefix average3.
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In our first two algorithms, the prefix sum is computed anew for each value of j.
That contributed O( j) time for each j, leading to the quadratic behavior. In algo-
rithm prefix average3, we maintain the current prefix sum dynamically, effectively
computing S[0]+ S[1]+ · · ·+ S[ j] as total + S[j], where value total is equal to the
sum S[0]+ S[1]+ · · ·+ S[ j− 1] computed by the previous pass of the loop over j.
The analysis of the running time of algorithm prefix average3 follows:

• Initializing variables n and total uses O(1) time.
• Initializing the list A uses O(n) time.
• There is a single for loop, which is controlled by counter j. The maintenance

of that counter by the range iterator contributes a total of O(n) time.
• The body of the loop is executed n times, for j = 0, . . . ,n− 1. Thus, state-

ments total += S[j] and A[j] = total / (j+1) are executed n times each.
Since each of these statements uses O(1) time per iteration, their overall
contribution is O(n) time.

The running time of algorithm prefix average3 is given by the sum of the four
terms. The first is O(1) and the remaining three are O(n). By a simple application
of Proposition 3.9, the running time of prefix average3 is O(n), which is much
better than the quadratic time of algorithms prefix average1 and prefix average2.

Three-Way Set Disjointness

Suppose we are given three sequences of numbers, A, B, and C. We will assume
that no individual sequence contains duplicate values, but that there may be some
numbers that are in two or three of the sequences. The three-way set disjointness
problem is to determine if the intersection of the three sequences is empty, namely,
that there is no element x such that x ∈ A, x ∈ B, and x ∈ C. A simple Python
function to determine this property is given in Code Fragment 3.5.

1 def disjoint1(A, B, C):
2 ”””Return True if there is no element common to all three lists.”””
3 for a in A:
4 for b in B:
5 for c in C:
6 if a == b == c:
7 return False # we found a common value
8 return True # if we reach this, sets are disjoint

Code Fragment 3.5: Algorithm disjoint1 for testing three-way set disjointness.

This simple algorithm loops through each possible triple of values from the
three sets to see if those values are equivalent. If each of the original sets has size
n, then the worst-case running time of this function is O(n3).
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We can improve upon the asymptotic performance with a simple observation.
Once inside the body of the loop over B, if selected elements a and b do not match
each other, it is a waste of time to iterate through all values of C looking for a
matching triple. An improved solution to this problem, taking advantage of this
observation, is presented in Code Fragment 3.6.

1 def disjoint2(A, B, C):
2 ”””Return True if there is no element common to all three lists.”””
3 for a in A:
4 for b in B:
5 if a == b: # only check C if we found match from A and B
6 for c in C:
7 if a == c # (and thus a == b == c)
8 return False # we found a common value
9 return True # if we reach this, sets are disjoint

Code Fragment 3.6: Algorithm disjoint2 for testing three-way set disjointness.

In the improved version, it is not simply that we save time if we get lucky. We
claim that the worst-case running time for disjoint2 is O(n2). There are quadrat-
ically many pairs (a,b) to consider. However, if A and B are each sets of distinct
elements, there can be at most O(n) such pairs with a equal to b. Therefore, the
innermost loop, over C, executes at most n times.

To account for the overall running time, we examine the time spent executing
each line of code. The management of the for loop over A requires O(n) time.
The management of the for loop over B accounts for a total of O(n2) time, since
that loop is executed n different times. The test a == b is evaluated O(n2) times.
The rest of the time spent depends upon how many matching (a,b) pairs exist. As
we have noted, there are at most n such pairs, and so the management of the loop
over C, and the commands within the body of that loop, use at most O(n2) time.
By our standard application of Proposition 3.9, the total time spent is O(n2).

Element Uniqueness

A problem that is closely related to the three-way set disjointness problem is the
element uniqueness problem. In the former, we are given three collections and we
presumed that there were no duplicates within a single collection. In the element
uniqueness problem, we are given a single sequence S with n elements and asked
whether all elements of that collection are distinct from each other.

Our first solution to this problem uses a straightforward iterative algorithm.
The unique1 function, given in Code Fragment 3.7, solves the element uniqueness
problem by looping through all distinct pairs of indices j < k, checking if any of
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1 def unique1(S):
2 ”””Return True if there are no duplicate elements in sequence S.”””
3 for j in range(len(S)):
4 for k in range(j+1, len(S)):
5 if S[j] == S[k]:
6 return False # found duplicate pair
7 return True # if we reach this, elements were unique

Code Fragment 3.7: Algorithm unique1 for testing element uniqueness.

those pairs refer to elements that are equivalent to each other. It does this using two
nested for loops, such that the first iteration of the outer loop causes n−1 iterations
of the inner loop, the second iteration of the outer loop causes n− 2 iterations of
the inner loop, and so on. Thus, the worst-case running time of this function is
proportional to

(n−1)+ (n−2)+ · · ·+ 2+ 1,

which we recognize as the familiar O(n2) summation from Proposition 3.3.

Using Sorting as a Problem-Solving Tool

An even better algorithm for the element uniqueness problem is based on using
sorting as a problem-solving tool. In this case, by sorting the sequence of elements,
we are guaranteed that any duplicate elements will be placed next to each other.
Thus, to determine if there are any duplicates, all we need to do is perform a sin-
gle pass over the sorted sequence, looking for consecutive duplicates. A Python
implementation of this algorithm is as follows:

1 def unique2(S):
2 ”””Return True if there are no duplicate elements in sequence S.”””
3 temp = sorted(S) # create a sorted copy of S
4 for j in range(1, len(temp)):
5 if S[j−1] == S[j]:
6 return False # found duplicate pair
7 return True # if we reach this, elements were unique

Code Fragment 3.8: Algorithm unique2 for testing element uniqueness.

The built-in function, sorted, as described in Section 1.5.2, produces a copy of
the original list with elements in sorted order. It guarantees a worst-case running
time of O(n logn); see Chapter 12 for a discussion of common sorting algorithms.
Once the data is sorted, the subsequent loop runs in O(n) time, and so the entire
unique2 algorithm runs in O(n logn) time.
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3.4 Simple Justification Techniques

Sometimes, we will want to make claims about an algorithm, such as showing that
it is correct or that it runs fast. In order to rigorously make such claims, we must
use mathematical language, and in order to back up such claims, we must justify or
prove our statements. Fortunately, there are several simple ways to do this.

3.4.1 By Example

Some claims are of the generic form, “There is an element x in a set S that has
property P.” To justify such a claim, we only need to produce a particular x in S
that has property P. Likewise, some hard-to-believe claims are of the generic form,
“Every element x in a set S has property P.” To justify that such a claim is false, we
only need to produce a particular x from S that does not have property P. Such an
instance is called a counterexample.

Example 3.17: Professor Amongus claims that every number of the form 2i − 1
is a prime, when i is an integer greater than 1. Professor Amongus is wrong.

Justification: To prove Professor Amongus is wrong, we find a counterexample.
Fortunately, we need not look too far, for 24 −1 = 15 = 3 ·5.

3.4.2 The “Contra” Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirror. To
justify the statement “if p is true, then q is true,” we establish that “if q is not true,
then p is not true” instead. Logically, these two statements are the same, but the
latter, which is called the contrapositive of the first, may be easier to think about.

Example 3.18: Let a and b be integers. If ab is even, then a is even or b is even.

Justification: To justify this claim, consider the contrapositive, “If a is odd and
b is odd, then ab is odd.” So, suppose a = 2 j +1 and b = 2k +1, for some integers
j and k. Then ab = 4 jk + 2 j + 2k + 1 = 2(2 jk + j + k)+ 1; hence, ab is odd.

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan’s Law. This law helps us deal
with negations, for it states that the negation of a statement of the form “p or q” is
“not p and not q.” Likewise, it states that the negation of a statement of the form
“p and q” is “not p or not q.”
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Contradiction

Another negative justification technique is justification by contradiction, which
also often involves using DeMorgan’s Law. In applying the justification by con-
tradiction technique, we establish that a statement q is true by first supposing that
q is false and then showing that this assumption leads to a contradiction (such as
2 �= 2 or 1 > 3). By reaching such a contradiction, we show that no consistent sit-
uation exists with q being false, so q must be true. Of course, in order to reach this
conclusion, we must be sure our situation is consistent before we assume q is false.

Example 3.19: Let a and b be integers. If ab is odd, then a is odd and b is odd.

Justification: Let ab be odd. We wish to show that a is odd and b is odd. So,
with the hope of leading to a contradiction, let us assume the opposite, namely,
suppose a is even or b is even. In fact, without loss of generality, we can assume
that a is even (since the case for b is symmetric). Then a = 2 j for some integer
j. Hence, ab = (2 j)b = 2( jb), that is, ab is even. But this is a contradiction: ab
cannot simultaneously be odd and even. Therefore, a is odd and b is odd.

3.4.3 Induction and Loop Invariants

Most of the claims we make about a running time or a space bound involve an inte-
ger parameter n (usually denoting an intuitive notion of the “size” of the problem).
Moreover, most of these claims are equivalent to saying some statement q(n) is true
“for all n ≥ 1.” Since this is making a claim about an infinite set of numbers, we
cannot justify this exhaustively in a direct fashion.

Induction

We can often justify claims such as those above as true, however, by using the
technique of induction. This technique amounts to showing that, for any particular
n ≥ 1, there is a finite sequence of implications that starts with something known
to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a
justification by induction by showing that q(n) is true for n = 1 (and possibly some
other values n = 2,3, . . . ,k, for some constant k). Then we justify that the inductive
“step” is true for n > k, namely, we show “if q( j) is true for all j < n, then q(n) is
true.” The combination of these two pieces completes the justification by induction.
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Proposition 3.20: Consider the Fibonacci function F(n), which is defined such
that F(1) = 1, F(2) = 2, and F(n) = F(n− 2) + F(n− 1) for n > 2. (See Sec-
tion 1.8.) We claim that F(n) < 2n.

Justification: We will show our claim is correct by induction.
Base cases: (n ≤ 2). F(1) = 1 < 2 = 21 and F(2) = 2 < 4 = 22.
Induction step: (n > 2). Suppose our claim is true for all n′ < n. Consider F(n).
Since n > 2, F(n) = F(n−2)+F(n−1). Moreover, since both n−2 and n−1 are
less than n, we can apply the inductive assumption (sometimes called the “inductive
hypothesis”) to imply that F(n) < 2n−2 + 2n−1, since

2n−2 + 2n−1 < 2n−1 + 2n−1 = 2 ·2n−1 = 2n.

Let us do another inductive argument, this time for a fact we have seen before.

Proposition 3.21: (which is the same as Proposition 3.3)

n

∑
i=1

i =
n(n+ 1)

2
.

Justification: We will justify this equality by induction.
Base case: n = 1. Trivial, for 1 = n(n+ 1)/2, if n = 1.
Induction step: n ≥ 2. Assume the claim is true for n′ < n. Consider n.

n

∑
i=1

i = n+
n−1

∑
i=1

i.

By the induction hypothesis, then

n

∑
i=1

i = n+
(n−1)n

2
,

which we can simplify as

n+
(n−1)n

2
=

2n+ n2 −n
2

=
n2 + n

2
=

n(n+ 1)

2
.

We may sometimes feel overwhelmed by the task of justifying something true
for all n≥ 1. We should remember, however, the concreteness of the inductive tech-
nique. It shows that, for any particular n, there is a finite step-by-step sequence of
implications that starts with something true and leads to the truth about n. In short,
the inductive argument is a template for building a sequence of direct justifications.
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Loop Invariants

The final justification technique we discuss in this section is the loop invariant. To
prove some statement L about a loop is correct, define L in terms of a series of
smaller statements L0,L1, . . . ,Lk, where:

1. The initial claim, L0, is true before the loop begins.
2. If L j−1 is true before iteration j, then L j will be true after iteration j.
3. The final statement, Lk, implies the desired statement L to be true.

Let us give a simple example of using a loop-invariant argument to justify the
correctness of an algorithm. In particular, we use a loop invariant to justify that
the function, find (see Code Fragment 3.9), finds the smallest index at which ele-
ment val occurs in sequence S.

1 def find(S, val):
2 ”””Return index j such that S[j] == val, or -1 if no such element.”””
3 n = len(S)
4 j = 0
5 while j < n:
6 if S[j] == val:
7 return j # a match was found at index j
8 j += 1
9 return −1

Code Fragment 3.9: Algorithm for finding the first index at which a given element
occurs in a Python list.

To show that find is correct, we inductively define a series of statements, L j,
that lead to the correctness of our algorithm. Specifically, we claim the following
is true at the beginning of iteration j of the while loop:

L j: val is not equal to any of the first j elements of S.

This claim is true at the beginning of the first iteration of the loop, because j is 0
and there are no elements among the first 0 in S (this kind of a trivially true claim
is said to hold vacuously). In iteration j, we compare element val to element S[ j]
and return the index j if these two elements are equivalent, which is clearly correct
and completes the algorithm in this case. If the two elements val and S[ j] are not
equal, then we have found one more element not equal to val and we increment
the index j. Thus, the claim L j will be true for this new value of j; hence, it is
true at the beginning of the next iteration. If the while loop terminates without
ever returning an index in S, then we have j = n. That is, Ln is true—there are no
elements of S equal to val. Therefore, the algorithm correctly returns −1 to indicate
that val is not in S.
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3.5 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-3.1 Graph the functions 8n, 4n logn, 2n2, n3, and 2n using a logarithmic scale
for the x- and y-axes; that is, if the function value f (n) is y, plot this as a
point with x-coordinate at logn and y-coordinate at logy.

R-3.2 The number of operations executed by algorithms A and B is 8n logn and
2n2, respectively. Determine n0 such that A is better than B for n ≥ n0.

R-3.3 The number of operations executed by algorithms A and B is 40n2 and
2n3, respectively. Determine n0 such that A is better than B for n ≥ n0.

R-3.4 Give an example of a function that is plotted the same on a log-log scale
as it is on a standard scale.

R-3.5 Explain why the plot of the function nc is a straight line with slope c on a
log-log scale.

R-3.6 What is the sum of all the even numbers from 0 to 2n, for any positive
integer n?

R-3.7 Show that the following two statements are equivalent:
(a) The running time of algorithm A is always O( f (n)).
(b) In the worst case, the running time of algorithm A is O( f (n)).

R-3.8 Order the following functions by asymptotic growth rate.

4n logn+ 2n 210 2log n

3n+ 100log n 4n 2n

n2 + 10n n3 n logn

R-3.9 Show that if d(n) is O( f (n)), then ad(n) is O( f (n)), for any constant
a > 0.

R-3.10 Show that if d(n) is O( f (n)) and e(n) is O(g(n)), then the product d(n)e(n)
is O( f (n)g(n)).

R-3.11 Show that if d(n) is O( f (n)) and e(n) is O(g(n)), then d(n) + e(n) is
O( f (n)+ g(n)).

R-3.12 Show that if d(n) is O( f (n)) and e(n) is O(g(n)), then d(n)− e(n) is not
necessarily O( f (n)−g(n)).

R-3.13 Show that if d(n) is O( f (n)) and f (n) is O(g(n)), then d(n) is O(g(n)).

R-3.14 Show that O(max{ f (n),g(n)}) = O( f (n)+ g(n)).
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R-3.15 Show that f (n) is O(g(n)) if and only if g(n) is Ω( f (n)).

R-3.16 Show that if p(n) is a polynomial in n, then log p(n) is O(logn).

R-3.17 Show that (n+ 1)5 is O(n5).

R-3.18 Show that 2n+1 is O(2n).

R-3.19 Show that n is O(n logn).

R-3.20 Show that n2 is Ω(n logn).

R-3.21 Show that n logn is Ω(n).

R-3.22 Show that 
 f (n)� is O( f (n)), if f (n) is a positive nondecreasing function
that is always greater than 1.

R-3.23 Give a big-Oh characterization, in terms of n, of the running time of the
example1 function shown in Code Fragment 3.10.

R-3.24 Give a big-Oh characterization, in terms of n, of the running time of the
example2 function shown in Code Fragment 3.10.

R-3.25 Give a big-Oh characterization, in terms of n, of the running time of the
example3 function shown in Code Fragment 3.10.

R-3.26 Give a big-Oh characterization, in terms of n, of the running time of the
example4 function shown in Code Fragment 3.10.

R-3.27 Give a big-Oh characterization, in terms of n, of the running time of the
example5 function shown in Code Fragment 3.10.

R-3.28 For each function f (n) and time t in the following table, determine the
largest size n of a problem P that can be solved in time t if the algorithm
for solving P takes f (n) microseconds (one entry is already completed).

1 Second 1 Hour 1 Month 1 Century

logn ≈ 10300000

n

n logn

n2

2n

R-3.29 Algorithm A executes an O(logn)-time computation for each entry of an
n-element sequence. What is its worst-case running time?

R-3.30 Given an n-element sequence S, Algorithm B chooses logn elements in
S at random and executes an O(n)-time calculation for each. What is the
worst-case running time of Algorithm B?

R-3.31 Given an n-element sequence S of integers, Algorithm C executes an
O(n)-time computation for each even number in S, and an O(logn)-time
computation for each odd number in S. What are the best-case and worst-
case running times of Algorithm C?
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1 def example1(S):
2 ”””Return the sum of the elements in sequence S.”””
3 n = len(S)
4 total = 0
5 for j in range(n): # loop from 0 to n-1
6 total += S[j]
7 return total
8
9 def example2(S):

10 ”””Return the sum of the elements with even index in sequence S.”””
11 n = len(S)
12 total = 0
13 for j in range(0, n, 2): # note the increment of 2
14 total += S[j]
15 return total
16
17 def example3(S):
18 ”””Return the sum of the prefix sums of sequence S.”””
19 n = len(S)
20 total = 0
21 for j in range(n): # loop from 0 to n-1
22 for k in range(1+j): # loop from 0 to j
23 total += S[k]
24 return total
25
26 def example4(S):
27 ”””Return the sum of the prefix sums of sequence S.”””
28 n = len(S)
29 prefix = 0
30 total = 0
31 for j in range(n):
32 prefix += S[j]
33 total += prefix
34 return total
35
36 def example5(A, B): # assume that A and B have equal length
37 ”””Return the number of elements in B equal to the sum of prefix sums in A.”””
38 n = len(A)
39 count = 0
40 for i in range(n): # loop from 0 to n-1
41 total = 0
42 for j in range(n): # loop from 0 to n-1
43 for k in range(1+j): # loop from 0 to j
44 total += A[k]
45 if B[i] == total:
46 count += 1
47 return count

Code Fragment 3.10: Some sample algorithms for analysis.
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R-3.32 Given an n-element sequence S, Algorithm D calls Algorithm E on each
element S[i]. Algorithm E runs in O(i) time when it is called on element
S[i]. What is the worst-case running time of Algorithm D?

R-3.33 Al and Bob are arguing about their algorithms. Al claims his O(n logn)-
time method is always faster than Bob’s O(n2)-time method. To settle the
issue, they perform a set of experiments. To Al’s dismay, they find that if
n < 100, the O(n2)-time algorithm runs faster, and only when n ≥ 100 is
the O(n logn)-time one better. Explain how this is possible.

R-3.34 There is a well-known city (which will go nameless here) whose inhabi-
tants have the reputation of enjoying a meal only if that meal is the best
they have ever experienced in their life. Otherwise, they hate it. Assum-
ing meal quality is distributed uniformly across a person’s life, describe
the expected number of times inhabitants of this city are happy with their
meals?

Creativity

C-3.35 Assuming it is possible to sort n numbers in O(n logn) time, show that it
is possible to solve the three-way set disjointness problem in O(n logn)
time.

C-3.36 Describe an efficient algorithm for finding the ten largest elements in a
sequence of size n. What is the running time of your algorithm?

C-3.37 Give an example of a positive function f (n) such that f (n) is neither O(n)
nor Ω(n).

C-3.38 Show that ∑
n
i=1 i2 is O(n3).

C-3.39 Show that ∑
n
i=1 i/2i < 2. (Hint: Try to bound this sum term by term with

a geometric progression.)

C-3.40 Show that logb f (n) is Θ(log f (n)) if b > 1 is a constant.

C-3.41 Describe an algorithm for finding both the minimum and maximum of n
numbers using fewer than 3n/2 comparisons. (Hint: First, construct a
group of candidate minimums and a group of candidate maximums.)

C-3.42 Bob built a Web site and gave the URL only to his n friends, which he
numbered from 1 to n. He told friend number i that he/she can visit the
Web site at most i times. Now Bob has a counter, C, keeping track of the
total number of visits to the site (but not the identities of who visits). What
is the minimum value for C such that Bob can know that one of his friends
has visited his/her maximum allowed number of times?

C-3.43 Draw a visual justification of Proposition 3.3 analogous to that of Fig-
ure 3.3(b) for the case when n is odd.
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C-3.44 Communication security is extremely important in computer networks,
and one way many network protocols achieve security is to encrypt mes-
sages. Typical cryptographic schemes for the secure transmission of mes-
sages over such networks are based on the fact that no efficient algorithms
are known for factoring large integers. Hence, if we can represent a secret
message by a large prime number p, we can transmit, over the network,
the number r = p ·q, where q > p is another large prime number that acts
as the encryption key. An eavesdropper who obtains the transmitted num-
ber r on the network would have to factor r in order to figure out the secret
message p.

Using factoring to figure out a message is very difficult without knowing
the encryption key q. To understand why, consider the following naive
factoring algorithm:

for p in range(2,r):
if r % p == 0: # if p divides r

return The secret message is p!

a. Suppose that the eavesdropper uses the above algorithm and has a
computer that can carry out in 1 microsecond (1 millionth of a sec-
ond) a division between two integers of up to 100 bits each. Give an
estimate of the time that it will take in the worst case to decipher the
secret message p if the transmitted message r has 100 bits.

b. What is the worst-case time complexity of the above algorithm?
Since the input to the algorithm is just one large number r, assume
that the input size n is the number of bytes needed to store r, that is,
n = �(log2 r)/8�+ 1, and that each division takes time O(n).

C-3.45 A sequence S contains n− 1 unique integers in the range [0,n− 1], that
is, there is one number from this range that is not in S. Design an O(n)-
time algorithm for finding that number. You are only allowed to use O(1)
additional space besides the sequence S itself.

C-3.46 Al says he can prove that all sheep in a flock are the same color:

Base case: One sheep. It is clearly the same color as itself.

Induction step: A flock of n sheep. Take a sheep, a, out. The remaining
n− 1 are all the same color by induction. Now put sheep a back in and
take out a different sheep, b. By induction, the n− 1 sheep (now with a)
are all the same color. Therefore, all the sheep in the flock are the same
color. What is wrong with Al’s “justification”?

C-3.47 Let S be a set of n lines in the plane such that no two are parallel and
no three meet in the same point. Show, by induction, that the lines in S
determine Θ(n2) intersection points.
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C-3.48 Consider the following “justification” that the Fibonacci function, F(n)
(see Proposition 3.20) is O(n):
Base case (n ≤ 2): F(1) = 1 and F(2) = 2.
Induction step (n > 2): Assume claim true for n′ < n. Consider n. F(n) =
F(n−2)+ F(n−1). By induction, F(n−2) is O(n−2) and F(n−1) is
O(n−1). Then, F(n) is O((n−2)+(n−1)), by the identity presented in
Exercise R-3.11. Therefore, F(n) is O(n).
What is wrong with this “justification”?

C-3.49 Consider the Fibonacci function, F(n) (see Proposition 3.20). Show by
induction that F(n) is Ω((3/2)n).

C-3.50 Let p(x) be a polynomial of degree n, that is, p(x) = ∑
n
i=0 aixi.

(a) Describe a simple O(n2)-time algorithm for computing p(x).
(b) Describe an O(n logn)-time algorithm for computing p(x), based upon
a more efficient calculation of xi.
(c) Now consider a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−1 + xan) · · · ))),

which is known as Horner’s method. Using the big-Oh notation, charac-
terize the number of arithmetic operations this method executes.

C-3.51 Show that the summation ∑
n
i=1 log i is O(n logn).

C-3.52 Show that the summation ∑
n
i=1 log i is Ω(n logn).

C-3.53 An evil king has n bottles of wine, and a spy has just poisoned one of
them. Unfortunately, they do not know which one it is. The poison is very
deadly; just one drop diluted even a billion to one will still kill. Even so,
it takes a full month for the poison to take effect. Design a scheme for
determining exactly which one of the wine bottles was poisoned in just
one month’s time while expending O(logn) taste testers.

C-3.54 A sequence S contains n integers taken from the interval [0,4n], with repe-
titions allowed. Describe an efficient algorithm for determining an integer
value k that occurs the most often in S. What is the running time of your
algorithm?

Projects

P-3.55 Perform an experimental analysis of the three algorithms prefix average1,
prefix average2, and prefix average3, from Section 3.3.3. Visualize their
running times as a function of the input size with a log-log chart.

P-3.56 Perform an experimental analysis that compares the relative running times
of the functions shown in Code Fragment 3.10.
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P-3.57 Perform experimental analysis to test the hypothesis that Python’s sorted
method runs in O(n logn) time on average.

P-3.58 For each of the three algorithms, unique1, unique2, and unique3, which
solve the element uniqueness problem, perform an experimental analysis
to determine the largest value of n such that the given algorithm runs in
one minute or less.

Chapter Notes

The big-Oh notation has prompted several comments about its proper use [19, 49, 63].
Knuth [64, 63] defines it using the notation f (n) = O(g(n)), but says this “equality” is only
“one way.” We have chosen to take a more standard view of equality and view the big-Oh
notation as a set, following Brassard [19]. The reader interested in studying average-case
analysis is referred to the book chapter by Vitter and Flajolet [101]. For some additional
mathematical tools, please refer to Appendix B.
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One way to describe repetition within a computer program is the use of loops,
such as Python’s while-loop and for-loop constructs described in Section 1.4.2. An
entirely different way to achieve repetition is through a process known as recursion.

Recursion is a technique by which a function makes one or more calls to itself
during execution, or by which a data structure relies upon smaller instances of
the very same type of structure in its representation. There are many examples of
recursion in art and nature. For example, fractal patterns are naturally recursive. A
physical example of recursion used in art is in the Russian Matryoshka dolls. Each
doll is either made of solid wood, or is hollow and contains another Matryoshka
doll inside it.

In computing, recursion provides an elegant and powerful alternative for per-
forming repetitive tasks. In fact, a few programming languages (e.g., Scheme,
Smalltalk) do not explicitly support looping constructs and instead rely directly
on recursion to express repetition. Most modern programming languages support
functional recursion using the identical mechanism that is used to support tradi-
tional forms of function calls. When one invocation of the function make a recur-
sive call, that invocation is suspended until the recursive call completes.

Recursion is an important technique in the study of data structures and algo-
rithms. We will use it prominently in several later chapters of this book (most
notably, Chapters 8 and 12). In this chapter, we begin with the following four il-
lustrative examples of the use of recursion, providing a Python implementation for
each.

• The factorial function (commonly denoted as n!) is a classic mathematical
function that has a natural recursive definition.

• An English ruler has a recursive pattern that is a simple example of a fractal
structure.

• Binary search is among the most important computer algorithms. It allows
us to efficiently locate a desired value in a data set with upwards of billions
of entries.

• The file system for a computer has a recursive structure in which directories
can be nested arbitrarily deeply within other directories. Recursive algo-
rithms are widely used to explore and manage these file systems.

We then describe how to perform a formal analysis of the running time of a
recursive algorithm and we discuss some potential pitfalls when defining recur-
sions. In the balance of the chapter, we provide many more examples of recursive
algorithms, organized to highlight some common forms of design.
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4.1 Illustrative Examples

4.1.1 The Factorial Function

To demonstrate the mechanics of recursion, we begin with a simple mathematical
example of computing the value of the factorial function. The factorial of a posi-
tive integer n, denoted n!, is defined as the product of the integers from 1 to n. If
n = 0, then n! is defined as 1 by convention. More formally, for any integer n ≥ 0,

n! =

{
1 if n = 0
n · (n−1) · (n−2) · · ·3 ·2 ·1 if n ≥ 1.

For example, 5! = 5 ·4 ·3 ·2 ·1 = 120. The factorial function is important because
it is known to equal the number of ways in which n distinct items can be arranged
into a sequence, that is, the number of permutations of n items. For example, the
three characters a, b, and c can be arranged in 3! = 3 · 2 · 1 = 6 ways: abc, acb,
bac, bca, cab, and cba.

There is a natural recursive definition for the factorial function. To see this,
observe that 5! = 5 · (4 · 3 · 2 · 1) = 5 · 4!. More generally, for a positive integer n,
we can define n! to be n · (n−1)!. This recursive definition can be formalized as

n! =

{
1 if n = 0
n · (n−1)! if n ≥ 1.

This definition is typical of many recursive definitions. First, it contains one
or more base cases, which are defined nonrecursively in terms of fixed quantities.
In this case, n = 0 is the base case. It also contains one or more recursive cases,
which are defined by appealing to the definition of the function being defined.

A Recursive Implementation of the Factorial Function

Recursion is not just a mathematical notation; we can use recursion to design a
Python implementation of a factorial function, as shown in Code Fragment 4.1.

1 def factorial(n):
2 if n == 0:
3 return 1
4 else:
5 return n factorial(n−1)

Code Fragment 4.1: A recursive implementation of the factorial function.
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This function does not use any explicit loops. Repetition is provided by the
repeated recursive invocations of the function. There is no circularity in this defini-
tion, because each time the function is invoked, its argument is smaller by one, and
when a base case is reached, no further recursive calls are made.

We illustrate the execution of a recursive function using a recursion trace. Each
entry of the trace corresponds to a recursive call. Each new recursive function
call is indicated by a downward arrow to a new invocation. When the function
returns, an arrow showing this return is drawn and the return value may be indicated
alongside this arrow. An example of such a trace for the factorial function is shown
in Figure 4.1.

return 4 6 = 24

factorial(4)

factorial(1)

factorial(0)

factorial(3)

factorial(2)

return 1

return 1 1 = 1

return 2 1 = 2

return 3 2 = 6

Figure 4.1: A recursion trace for the call factorial(5).

A recursion trace closely mirrors the programming language’s execution of the
recursion. In Python, each time a function (recursive or otherwise) is called, a struc-
ture known as an activation record or frame is created to store information about
the progress of that invocation of the function. This activation record includes a
namespace for storing the function call’s parameters and local variables (see Sec-
tion 1.10 for a discussion of namespaces), and information about which command
in the body of the function is currently executing.

When the execution of a function leads to a nested function call, the execu-
tion of the former call is suspended and its activation record stores the place in the
source code at which the flow of control should continue upon return of the nested
call. This process is used both in the standard case of one function calling a dif-
ferent function, or in the recursive case in which a function invokes itself. The key
point is that there is a different activation record for each active call.
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4.1.2 Drawing an English Ruler

In the case of computing a factorial, there is no compelling reason for preferring
recursion over a direct iteration with a loop. As a more complex example of the
use of recursion, consider how to draw the markings of a typical English ruler. For
each inch, we place a tick with a numeric label. We denote the length of the tick
designating a whole inch as the major tick length. Between the marks for whole
inches, the ruler contains a series of minor ticks, placed at intervals of 1/2 inch,
1/4 inch, and so on. As the size of the interval decreases by half, the tick length
decreases by one. Figure 4.2 demonstrates several such rulers with varying major
tick lengths (although not drawn to scale).

---- 0 ----- 0 --- 0

- - -

-- -- --

- - -

--- --- --- 1

- - -

-- -- --

- - -

---- 1 ---- --- 2

- - -

-- -- --

- - -

--- --- --- 3

- -

-- --

- -

---- 2 ----- 1

(a) (b) (c)

Figure 4.2: Three sample outputs of an English ruler drawing: (a) a 2-inch ruler
with major tick length 4; (b) a 1-inch ruler with major tick length 5; (c) a 3-inch
ruler with major tick length 3.

A Recursive Approach to Ruler Drawing

The English ruler pattern is a simple example of a fractal, that is, a shape that has
a self-recursive structure at various levels of magnification. Consider the rule with
major tick length 5 shown in Figure 4.2(b). Ignoring the lines containing 0 and 1,
let us consider how to draw the sequence of ticks lying between these lines. The
central tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above
and below this central tick are identical, and each has a central tick of length 3.
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In general, an interval with a central tick length L ≥ 1 is composed of:

• An interval with a central tick length L−1

• A single tick of length L

• An interval with a central tick length L−1

Although it is possible to draw such a ruler using an iterative process (see Ex-
ercise P-4.25), the task is considerably easier to accomplish with recursion. Our
implementation consists of three functions, as shown in Code Fragment 4.2. The
main function, draw ruler, manages the construction of the entire ruler. Its argu-
ments specify the total number of inches in the ruler and the major tick length. The
utility function, draw line, draws a single tick with a specified number of dashes
(and an optional string label, that is printed after the tick).

The interesting work is done by the recursive draw interval function. This
function draws the sequence of minor ticks within some interval, based upon the
length of the interval’s central tick. We rely on the intuition shown at the top of this
page, and with a base case when L = 0 that draws nothing. For L ≥ 1, the first and
last steps are performed by recursively calling draw interval(L− 1). The middle
step is performed by calling the function draw line(L).

1 def draw line(tick length, tick label= ):
2 ”””Draw one line with given tick length (followed by optional label).”””
3 line = - tick length
4 if tick label:
5 line += + tick label
6 print(line)
7
8 def draw interval(center length):
9 ”””Draw tick interval based upon a central tick length.”””

10 if center length > 0: # stop when length drops to 0
11 draw interval(center length − 1) # recursively draw top ticks
12 draw line(center length) # draw center tick
13 draw interval(center length − 1) # recursively draw bottom ticks
14
15 def draw ruler(num inches, major length):
16 ”””Draw English ruler with given number of inches, major tick length.”””
17 draw line(major length, 0 ) # draw inch 0 line
18 for j in range(1, 1 + num inches):
19 draw interval(major length − 1) # draw interior ticks for inch
20 draw line(major length, str(j)) # draw inch j line and label

Code Fragment 4.2: A recursive implementation of a function that draws a ruler.
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Illustrating Ruler Drawing Using a Recursion Trace

The execution of the recursive draw interval function can be visualized using a re-
cursion trace. The trace for draw interval is more complicated than in the factorial
example, however, because each instance makes two recursive calls. To illustrate
this, we will show the recursion trace in a form that is reminiscent of an outline for
a document. See Figure 4.3.

(previous pattern repeats)

draw interval(3)

draw interval(2)

draw interval(1)

draw interval(1)

draw interval(0)

draw line(1)

draw interval(0)

draw interval(0)

draw line(1)

draw interval(0)

draw line(3)

draw interval(2)

draw line(2)

Output

Figure 4.3: A partial recursion trace for the call draw interval(3). The second
pattern of calls for draw interval(2) is not shown, but it is identical to the first.
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4.1.3 Binary Search

In this section, we describe a classic recursive algorithm, binary search, that is used
to efficiently locate a target value within a sorted sequence of n elements. This is
among the most important of computer algorithms, and it is the reason that we so
often store data in sorted order (as in Figure 4.4).

37

50 1 2 3 4 6 7 8 9 10 11 12 13 14 15

92 4 5 7 8 12 14 17 19 22 25 27 28 33

Figure 4.4: Values stored in sorted order within an indexable sequence, such as a
Python list. The numbers at top are the indices.

When the sequence is unsorted, the standard approach to search for a target
value is to use a loop to examine every element, until either finding the target or
exhausting the data set. This is known as the sequential search algorithm. This
algorithm runs in O(n) time (i.e., linear time) since every element is inspected in
the worst case.

When the sequence is sorted and indexable, there is a much more efficient
algorithm. (For intuition, think about how you would accomplish this task by
hand!) For any index j, we know that all the values stored at indices 0, . . . , j− 1
are less than or equal to the value at index j, and all the values stored at indices
j + 1, . . . ,n−1 are greater than or equal to that at index j. This observation allows
us to quickly “home in” on a search target using a variant of the children’s game
“high-low.” We call an element of the sequence a candidate if, at the current stage
of the search, we cannot rule out that this item matches the target. The algorithm
maintains two parameters, low and high, such that all the candidate entries have
index at least low and at most high. Initially, low = 0 and high = n− 1. We then
compare the target value to the median candidate, that is, the item data[mid] with
index

mid = �(low+high)/2� .

We consider three cases:

• If the target equals data[mid], then we have found the item we are looking
for, and the search terminates successfully.

• If target < data[mid], then we recur on the first half of the sequence, that is,
on the interval of indices from low to mid−1.

• If target > data[mid], then we recur on the second half of the sequence, that
is, on the interval of indices from mid+ 1 to high.

An unsuccessful search occurs if low > high, as the interval [low,high] is empty.
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This algorithm is known as binary search. We give a Python implementation
in Code Fragment 4.3, and an illustration of the execution of the algorithm in Fig-
ure 4.5. Whereas sequential search runs in O(n) time, the more efficient binary
search runs in O(logn) time. This is a significant improvement, given that if n
is one billion, logn is only 30. (We defer our formal analysis of binary search’s
running time to Proposition 4.2 in Section 4.2.)

1 def binary search(data, target, low, high):
2 ”””Return True if target is found in indicated portion of a Python list.
3
4 The search only considers the portion from data[low] to data[high] inclusive.
5 ”””
6 if low > high:
7 return False # interval is empty; no match
8 else:
9 mid = (low + high) // 2

10 if target == data[mid]: # found a match
11 return True
12 elif target < data[mid]:
13 # recur on the portion left of the middle
14 return binary search(data, target, low, mid − 1)
15 else:
16 # recur on the portion right of the middle
17 return binary search(data, target, mid + 1, high)

Code Fragment 4.3: An implementation of the binary search algorithm.

mid

high

highlow

low mid

low mid

low=mid=high

high

14 19 22 25 27 28 33 37

6 7 8 9 10 11 12 13 14 15

7542 98

92 4 5 7 8 12 14 17

37332827252219

92 4 5 7 8 12 14 17 19 22 25 27 28 33 37

19 22 25 27 28 33 37

50 1 2 3 4

171412

92 4 5 7 8 12 17

Figure 4.5: Example of a binary search for target value 22.
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4.1.4 File Systems

Modern operating systems define file-system directories (which are also sometimes
called “folders”) in a recursive way. Namely, a file system consists of a top-level
directory, and the contents of this directory consists of files and other directories,
which in turn can contain files and other directories, and so on. The operating
system allows directories to be nested arbitrarily deep (as long as there is enough
space in memory), although there must necessarily be some base directories that
contain only files, not further subdirectories. A representation of a portion of such
a file system is given in Figure 4.6.

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 4.6: A portion of a file system demonstrating a nested organization.

Given the recursive nature of the file-system representation, it should not come
as a surprise that many common behaviors of an operating system, such as copying
a directory or deleting a directory, are implemented with recursive algorithms. In
this section, we consider one such algorithm: computing the total disk usage for all
files and directories nested within a particular directory.

For illustration, Figure 4.7 portrays the disk space being used by all entries in
our sample file system. We differentiate between the immediate disk space used by
each entry and the cumulative disk space used by that entry and all nested features.
For example, the cs016 directory uses only 2K of immediate space, but a total of
249K of cumulative space.
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/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/hw1

3K

hw2

2K

hw3

4K

pr1

57K

pr2

97K

pr3

74K

grades

8K

market

4786K

buylow

26K

sellhigh

55K

grades

3K

2K 1K

1K

1K1K1K

1K 1K

10K 229K 4870K

82K 4787K

5124K

249K 4874K

Figure 4.7: The same portion of a file system given in Figure 4.6, but with additional
annotations to describe the amount of disk space that is used. Within the icon for
each file or directory is the amount of space directly used by that artifact. Above
the icon for each directory is an indication of the cumulative disk space used by
that directory and all its (recursive) contents.

The cumulative disk space for an entry can be computed with a simple recursive
algorithm. It is equal to the immediate disk space used by the entry plus the sum
of the cumulative disk space usage of any entries that are stored directly within
the entry. For example, the cumulative disk space for cs016 is 249K because it
uses 2K itself, 8K cumulatively in grades, 10K cumulatively in homeworks, and
229K cumulatively in programs. Pseudo-code for this algorithm is given in Code
Fragment 4.4.

Algorithm DiskUsage(path):
Input: A string designating a path to a file-system entry
Output: The cumulative disk space used by that entry and any nested entries

total = size(path) {immediate disk space used by the entry}
if path represents a directory then

for each child entry stored within directory path do
total = total + DiskUsage(child) {recursive call}

return total

Code Fragment 4.4: An algorithm for computing the cumulative disk space usage
nested at a file-system entry. Function size returns the immediate disk space of an
entry.
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Python’s os Module

To provide a Python implementation of a recursive algorithm for computing disk
usage, we rely on Python’s os module, which provides robust tools for interacting
with the operating system during the execution of a program. This is an extensive
library, but we will only need the following four functions:

• os.path.getsize(path)
Return the immediate disk usage (measured in bytes) for the file or directory
that is identified by the string path (e.g., /user/rt/courses).

• os.path.isdir(path)
Return True if entry designated by string path is a directory; False otherwise.

• os.listdir(path)
Return a list of strings that are the names of all entries within a directory
designated by string path. In our sample file system, if the parameter is
/user/rt/courses, this returns the list [ cs016 , cs252 ].

• os.path.join(path, filename)
Compose the path string and filename string using an appropriate operating
system separator between the two (e.g., the / character for a Unix/Linux
system, and the \ character for Windows). Return the string that represents
the full path to the file.

Python Implementation

With use of the os module, we now convert the algorithm from Code Fragment 4.4
into the Python implementation of Code Fragment 4.5.

1 import os
2
3 def disk usage(path):
4 ”””Return the number of bytes used by a file/folder and any descendents.”””
5 total = os.path.getsize(path) # account for direct usage
6 if os.path.isdir(path): # if this is a directory,
7 for filename in os.listdir(path): # then for each child:
8 childpath = os.path.join(path, filename) # compose full path to child
9 total += disk usage(childpath) # add child’s usage to total

10
11 print ( {0:<7} .format(total), path) # descriptive output (optional)
12 return total # return the grand total

Code Fragment 4.5: A recursive function for reporting disk usage of a file system.
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Recursion Trace

To produce a different form of a recursion trace, we have included an extraneous
print statement within our Python implementation (line 11 of Code Fragment 4.5).
The precise format of that output intentionally mirrors output that is produced by
a classic Unix/Linux utility named du (for “disk usage”). It reports the amount of
disk space used by a directory and all contents nested within, and can produce a
verbose report, as given in Figure 4.8.

Our implementation of the disk usage function produces an identical result,
when executed on the sample file system portrayed in Figure 4.7. During the ex-
ecution of the algorithm, exactly one recursive call is made for each entry in the
portion of the file system that is considered. Because the print statement is made
just before returning from a recursive call, the output shown in Figure 4.8 reflects
the order in which the recursive calls are completed. In particular, we begin and
end a recursive call for each entry that is nested below another entry, computing
the nested cumulative disk space before we can compute and report the cumulative
disk space for the containing entry. For example, we do not know the cumulative
total for entry /user/rt/courses/cs016 until after the recursive calls regarding
contained entries grades, homeworks, and programs complete.

8 /user/rt/courses/cs016/grades

3 /user/rt/courses/cs016/homeworks/hw1

2 /user/rt/courses/cs016/homeworks/hw2

4 /user/rt/courses/cs016/homeworks/hw3

10 /user/rt/courses/cs016/homeworks

57 /user/rt/courses/cs016/programs/pr1

97 /user/rt/courses/cs016/programs/pr2

74 /user/rt/courses/cs016/programs/pr3

229 /user/rt/courses/cs016/programs

249 /user/rt/courses/cs016

26 /user/rt/courses/cs252/projects/papers/buylow

55 /user/rt/courses/cs252/projects/papers/sellhigh

82 /user/rt/courses/cs252/projects/papers

4786 /user/rt/courses/cs252/projects/demos/market

4787 /user/rt/courses/cs252/projects/demos

4870 /user/rt/courses/cs252/projects

3 /user/rt/courses/cs252/grades

4874 /user/rt/courses/cs252

5124 /user/rt/courses/

Figure 4.8: A report of the disk usage for the file system shown in Figure 4.7,
as generated by the Unix/Linux utility du (with command-line options -ak), or
equivalently by our disk usage function from Code Fragment 4.5.
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4.2 Analyzing Recursive Algorithms

In Chapter 3, we introduced mathematical techniques for analyzing the efficiency
of an algorithm, based upon an estimate of the number of primitive operations that
are executed by the algorithm. We use notations such as big-Oh to summarize the
relationship between the number of operations and the input size for a problem. In
this section, we demonstrate how to perform this type of running-time analysis to
recursive algorithms.

With a recursive algorithm, we will account for each operation that is performed
based upon the particular activation of the function that manages the flow of control
at the time it is executed. Stated another way, for each invocation of the function,
we only account for the number of operations that are performed within the body of
that activation. We can then account for the overall number of operations that are
executed as part of the recursive algorithm by taking the sum, over all activations,
of the number of operations that take place during each individual activation. (As
an aside, this is also the way we analyze a nonrecursive function that calls other
functions from within its body.)

To demonstrate this style of analysis, we revisit the four recursive algorithms
presented in Sections 4.1.1 through 4.1.4: factorial computation, drawing an En-
glish ruler, binary search, and computation of the cumulative size of a file system.
In general, we may rely on the intuition afforded by a recursion trace in recogniz-
ing how many recursive activations occur, and how the parameterization of each
activation can be used to estimate the number of primitive operations that occur
within the body of that activation. However, each of these recursive algorithms has
a unique structure and form.

Computing Factorials

It is relatively easy to analyze the efficiency of our function for computing fac-
torials, as described in Section 4.1.1. A sample recursion trace for our factorial
function was given in Figure 4.1. To compute factorial(n), we see that there are a
total of n+1 activations, as the parameter decreases from n in the first call, to n−1
in the second call, and so on, until reaching the base case with parameter 0.

It is also clear, given an examination of the function body in Code Fragment 4.1,
that each individual activation of factorial executes a constant number of opera-
tions. Therefore, we conclude that the overall number of operations for computing
factorial(n) is O(n), as there are n+1 activations, each of which accounts for O(1)
operations.
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Drawing an English Ruler

In analyzing the English ruler application from Section 4.1.2, we consider the fun-
damental question of how many total lines of output are generated by an initial call
to draw interval(c), where c denotes the center length. This is a reasonable bench-
mark for the overall efficiency of the algorithm as each line of output is based upon
a call to the draw line utility, and each recursive call to draw interval with nonzero
parameter makes exactly one direct call to draw line.

Some intuition may be gained by examining the source code and the recur-
sion trace. We know that a call to draw interval(c) for c > 0 spawns two calls to
draw interval(c−1) and a single call to draw line. We will rely on this intuition to
prove the following claim.

Proposition 4.1: For c ≥ 0, a call to draw interval(c) results in precisely 2c − 1
lines of output.

Justification: We provide a formal proof of this claim by induction (see Sec-
tion 3.4.3). In fact, induction is a natural mathematical technique for proving the
correctness and efficiency of a recursive process. In the case of the ruler, we
note that an application of draw interval(0) generates no output, and that 20 −1 =
1−1 = 0. This serves as a base case for our claim.

More generally, the number of lines printed by draw interval(c) is one more
than twice the number generated by a call to draw interval(c−1), as one center
line is printed between two such recursive calls. By induction, we have that the
number of lines is thus 1+ 2 · (2c−1 −1) = 1+ 2c −2 = 2c −1.

This proof is indicative of a more mathematically rigorous tool, known as a
recurrence equation that can be used to analyze the running time of a recursive
algorithm. That technique is discussed in Section 12.2.4, in the context of recursive
sorting algorithms.

Performing a Binary Search

Considering the running time of the binary search algorithm, as presented in Sec-
tion 4.1.3, we observe that a constant number of primitive operations are executed
at each recursive call of method of a binary search. Hence, the running time is
proportional to the number of recursive calls performed. We will show that at most
�logn�+ 1 recursive calls are made during a binary search of a sequence having n
elements, leading to the following claim.

Proposition 4.2: The binary search algorithm runs in O(logn) time for a sorted
sequence with n elements.
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Justification: To prove this claim, a crucial fact is that with each recursive call
the number of candidate entries still to be searched is given by the value

high− low+ 1.

Moreover, the number of remaining candidates is reduced by at least one half with
each recursive call. Specifically, from the definition of mid, the number of remain-
ing candidates is either

(mid−1)− low+ 1 =

⌊
low+high

2

⌋
− low ≤ high− low+ 1

2

or
high− (mid+ 1)+ 1 = high−

⌊
low+high

2

⌋
≤ high− low+ 1

2
.

Initially, the number of candidates is n; after the first call in a binary search, it is at
most n/2; after the second call, it is at most n/4; and so on. In general, after the jth

call in a binary search, the number of candidate entries remaining is at most n/2 j.
In the worst case (an unsuccessful search), the recursive calls stop when there are no
more candidate entries. Hence, the maximum number of recursive calls performed,
is the smallest integer r such that

n
2r < 1.

In other words (recalling that we omit a logarithm’s base when it is 2), r > logn.
Thus, we have r = �logn�+ 1,

which implies that binary search runs in O(logn) time.

Computing Disk Space Usage

Our final recursive algorithm from Section 4.1 was that for computing the overall
disk space usage in a specified portion of a file system. To characterize the “prob-
lem size” for our analysis, we let n denote the number of file-system entries in the
portion of the file system that is considered. (For example, the file system portrayed
in Figure 4.6 has n = 19 entries.)

To characterize the cumulative time spent for an initial call to the disk usage
function, we must analyze the total number of recursive invocations that are made,
as well as the number of operations that are executed within those invocations.

We begin by showing that there are precisely n recursive invocations of the
function, in particular, one for each entry in the relevant portion of the file system.
Intuitively, this is because a call to disk usage for a particular entry e of the file
system is only made from within the for loop of Code Fragment 4.5 when process-
ing the entry for the unique directory that contains e, and that entry will only be
explored once.
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To formalize this argument, we can define the nesting level of each entry such
that the entry on which we begin has nesting level 0, entries stored directly within
it have nesting level 1, entries stored within those entries have nesting level 2, and
so on. We can prove by induction that there is exactly one recursive invocation of
disk usage upon each entry at nesting level k. As a base case, when k = 0, the only
recursive invocation made is the initial one. As the inductive step, once we know
there is exactly one recursive invocation for each entry at nesting level k, we can
claim that there is exactly one invocation for each entry e at nesting level k, made
within the for loop for the entry at level k that contains e.

Having established that there is one recursive call for each entry of the file
system, we return to the question of the overall computation time for the algorithm.
It would be great if we could argue that we spend O(1) time in any single invocation
of the function, but that is not the case. While there are a constant number of
steps reflect in the call to os.path.getsize to compute the disk usage directly at that
entry, when the entry is a directory, the body of the disk usage function includes a
for loop that iterates over all entries that are contained within that directory. In the
worst case, it is possible that one entry includes n−1 others.

Based on this reasoning, we could conclude that there are O(n) recursive calls,
each of which runs in O(n) time, leading to an overall running time that is O(n2).
While this upper bound is technically true, it is not a tight upper bound. Remark-
ably, we can prove the stronger bound that the recursive algorithm for disk usage
completes in O(n) time! The weaker bound was pessimistic because it assumed
a worst-case number of entries for each directory. While it is possible that some
directories contain a number of entries proportional to n, they cannot all contain
that many. To prove the stronger claim, we choose to consider the overall number
of iterations of the for loop across all recursive calls. We claim there are precisely
n− 1 such iteration of that loop overall. We base this claim on the fact that each
iteration of that loop makes a recursive call to disk usage, and yet we have already
concluded that there are a total of n calls to disk usage (including the original call).
We therefore conclude that there are O(n) recursive calls, each of which uses O(1)
time outside the loop, and that the overall number of operations due to the loop
is O(n). Summing all of these bounds, the overall number of operations is O(n).

The argument we have made is more advanced than with the earlier examples
of recursion. The idea that we can sometimes get a tighter bound on a series of
operations by considering the cumulative effect, rather than assuming that each
achieves a worst case is a technique called amortization; we will see a further
example of such analysis in Section 5.3. Furthermore, a file system is an implicit
example of a data structure known as a tree, and our disk usage algorithm is really
a manifestation of a more general algorithm known as a tree traversal. Trees will
be the focus of Chapter 8, and our argument about the O(n) running time of the
disk usage algorithm will be generalized for tree traversals in Section 8.4.
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4.3 Recursion Run Amok

Although recursion is a very powerful tool, it can easily be misused in various ways.
In this section, we examine several problems in which a poorly implemented recur-
sion causes drastic inefficiency, and we discuss some strategies for recognizing and
avoid such pitfalls.

We begin by revisiting the element uniqueness problem, defined on page 135
of Section 3.3.3. We can use the following recursive formulation to determine if
all n elements of a sequence are unique. As a base case, when n = 1, the elements
are trivially unique. For n ≥ 2, the elements are unique if and only if the first n−1
elements are unique, the last n−1 items are unique, and the first and last elements
are different (as that is the only pair that was not already checked as a subcase). A
recursive implementation based on this idea is given in Code Fragment 4.6, named
unique3 (to differentiate it from unique1 and unique2 from Chapter 3).

1 def unique3(S, start, stop):
2 ”””Return True if there are no duplicate elements in slice S[start:stop].”””
3 if stop − start <= 1: return True # at most one item
4 elif not unique(S, start, stop−1): return False # first part has duplicate
5 elif not unique(S, start+1, stop): return False # second part has duplicate
6 else: return S[start] != S[stop−1] # do first and last differ?

Code Fragment 4.6: Recursive unique3 for testing element uniqueness.

Unfortunately, this is a terribly inefficient use of recursion. The nonrecursive
part of each call uses O(1) time, so the overall running time will be proportional to
the total number of recursive invocations. To analyze the problem, we let n denote
the number of entries under consideration, that is, let n= stop − start.

If n = 1, then the running time of unique3 is O(1), since there are no recursive
calls for this case. In the general case, the important observation is that a single call
to unique3 for a problem of size n may result in two recursive calls on problems of
size n− 1. Those two calls with size n− 1 could in turn result in four calls (two
each) with a range of size n− 2, and thus eight calls with size n− 3 and so on.
Thus, in the worst case, the total number of function calls is given by the geometric
summation

1+ 2+ 4+ · · ·+ 2n−1,

which is equal to 2n − 1 by Proposition 3.5. Thus, the running time of function
unique3 is O(2n). This is an incredibly inefficient function for solving the ele-
ment uniqueness problem. Its inefficiency comes not from the fact that it uses
recursion—it comes from the fact that it uses recursion poorly, which is something
we address in Exercise C-4.11.

www.it-ebooks.info

http://www.it-ebooks.info/


166 Chapter 4. Recursion

An Inefficient Recursion for Computing Fibonacci Numbers

In Section 1.8, we introduced a process for generating the Fibonacci numbers,
which can be defined recursively as follows:

F0 = 0
F1 = 1
Fn = Fn−2 + Fn−1 for n > 1.

Ironically, a direct implementation based on this definition results in the function
bad fibonacci shown in Code Fragment 4.7, which computes the sequence of Fi-
bonacci numbers by making two recursive calls in each non-base case.

1 def bad fibonacci(n):
2 ”””Return the nth Fibonacci number.”””
3 if n <= 1:
4 return n
5 else:
6 return bad fibonacci(n−2) + bad fibonacci(n−1)

Code Fragment 4.7: Computing the nth Fibonacci number using binary recursion.

Unfortunately, such a direct implementation of the Fibonacci formula results
in a terribly inefficient function. Computing the nth Fibonacci number in this way
requires an exponential number of calls to the function. Specifically, let cn denote
the number of calls performed in the execution of bad fibonacci(n). Then, we have
the following values for the cn’s:

c0 = 1

c1 = 1

c2 = 1+ c0 + c1 = 1+ 1+ 1 = 3

c3 = 1+ c1 + c2 = 1+ 1+ 3 = 5

c4 = 1+ c2 + c3 = 1+ 3+ 5 = 9

c5 = 1+ c3 + c4 = 1+ 5+ 9 = 15

c6 = 1+ c4 + c5 = 1+ 9+ 15 = 25

c7 = 1+ c5 + c6 = 1+ 15+ 25 = 41

c8 = 1+ c6 + c7 = 1+ 25+ 41 = 67

If we follow the pattern forward, we see that the number of calls more than doubles
for each two consecutive indices. That is, c4 is more than twice c2, c5 is more than
twice c3, c6 is more than twice c4, and so on. Thus, cn > 2n/2, which means that
bad fibonacci(n) makes a number of calls that is exponential in n.
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An Efficient Recursion for Computing Fibonacci Numbers

We were tempted into using the bad recursion formulation because of the way the
nth Fibonacci number, Fn, depends on the two previous values, Fn−2 and Fn−1. But
notice that after computing Fn−2, the call to compute Fn−1 requires its own recursive
call to compute Fn−2, as it does not have knowledge of the value of Fn−2 that was
computed at the earlier level of recursion. That is duplicative work. Worse yet, both
of those calls will need to (re)compute the value of Fn−3, as will the computation
of Fn−1. This snowballing effect is what leads to the exponential running time of
bad recursion.

We can compute Fn much more efficiently using a recursion in which each invo-
cation makes only one recursive call. To do so, we need to redefine the expectations
of the function. Rather than having the function return a single value, which is the
nth Fibonacci number, we define a recursive function that returns a pair of con-
secutive Fibonacci numbers (Fn,Fn−1), using the convention F−1 = 0. Although
it seems to be a greater burden to report two consecutive Fibonacci numbers in-
stead of one, passing this extra information from one level of the recursion to the
next makes it much easier to continue the process. (It allows us to avoid having
to recompute the second value that was already known within the recursion.) An
implementation based on this strategy is given in Code Fragment 4.8.

1 def good fibonacci(n):
2 ”””Return pair of Fibonacci numbers, F(n) and F(n-1).”””
3 if n <= 1:
4 return (n,0)
5 else:
6 (a, b) = good fibonacci(n−1)
7 return (a+b, a)

Code Fragment 4.8: Computing the nth Fibonacci number using linear recursion.

In terms of efficiency, the difference between the bad recursion and the good
recursion for this problem is like night and day. The bad fibonacci function uses
exponential time. We claim that the execution of function good fibonacci(n) takes
O(n) time. Each recursive call to good fibonacci decreases the argument n by 1;
therefore, a recursion trace includes a series of n function calls. Because the nonre-
cursive work for each call uses constant time, the overall computation executes in
O(n) time.
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4.3.1 Maximum Recursive Depth in Python

Another danger in the misuse of recursion is known as infinite recursion. If each
recursive call makes another recursive call, without ever reaching a base case, then
we have an infinite series of such calls. This is a fatal error. An infinite recursion
can quickly swamp computing resources, not only due to rapid use of the CPU,
but because each successive call creates an activation record requiring additional
memory. A blatant example of an ill-formed recursion is the following:

def fib(n):
return fib(n) # fib(n) equals fib(n)

However, there are far more subtle errors that can lead to an infinite recursion.
Revisiting our implementation of binary search in Code Fragment 4.3, in the final
case (line 17) we make a recursive call on the right portion of the sequence, in
particular going from index mid+1 to high. Had that line instead been written as

return binary search(data, target, mid, high) # note the use of mid

this could result in an infinite recursion. In particular, when searching a range of
two elements, it becomes possible to make a recursive call on the identical range.

A programmer should ensure that each recursive call is in some way progress-
ing toward a base case (for example, by having a parameter value that decreases
with each call). However, to combat against infinite recursions, the designers of
Python made an intentional decision to limit the overall number of function acti-
vations that can be simultaneously active. The precise value of this limit depends
upon the Python distribution, but a typical default value is 1000. If this limit is
reached, the Python interpreter raises a RuntimeError with a message, maximum
recursion depth exceeded.

For many legitimate applications of recursion, a limit of 1000 nested function
calls suffices. For example, our binary search function (Section 4.1.3) has O(logn)
recursive depth, and so for the default recursive limit to be reached, there would
need to be 21000 elements (far, far more than the estimated number of atoms in the
universe). However, in the next section we discuss several algorithms that have
recursive depth proportional to n. Python’s artificial limit on the recursive depth
could disrupt such otherwise legitimate computations.

Fortunately, the Python interpreter can be dynamically reconfigured to change
the default recursive limit. This is done through use of a module named sys, which
supports a getrecursionlimit function and a setrecursionlimit. Sample usage of
those functions is demonstrated as follows:

import sys
old = sys.getrecursionlimit( ) # perhaps 1000 is typical
sys.setrecursionlimit(1000000) # change to allow 1 million nested calls
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4.4 Further Examples of Recursion

In the remainder of this chapter, we provide additional examples of the use of re-
cursion. We organize our presentation by considering the maximum number of
recursive calls that may be started from within the body of a single activation.

• If a recursive call starts at most one other, we call this a linear recursion.
• If a recursive call may start two others, we call this a binary recursion.
• If a recursive call may start three or more others, this is multiple recursion.

4.4.1 Linear Recursion

If a recursive function is designed so that each invocation of the body makes at
most one new recursive call, this is know as linear recursion. Of the recursions we
have seen so far, the implementation of the factorial function (Section 4.1.1) and
the good fibonacci function (Section 4.3) are clear examples of linear recursion.
More interestingly, the binary search algorithm (Section 4.1.3) is also an example
of linear recursion, despite the “binary” terminology in the name. The code for
binary search (Code Fragment 4.3) includes a case analysis with two branches that
lead to recursive calls, but only one of those calls can be reached during a particular
execution of the body.

A consequence of the definition of linear recursion is that any recursion trace
will appear as a single sequence of calls, as we originally portrayed for the factorial
function in Figure 4.1 of Section 4.1.1. Note that the linear recursion terminol-
ogy reflects the structure of the recursion trace, not the asymptotic analysis of the
running time; for example, we have seen that binary search runs in O(logn) time.

Summing the Elements of a Sequence Recursively

Linear recursion can be a useful tool for processing a data sequence, such as a
Python list. Suppose, for example, that we want to compute the sum of a sequence,
S, of n integers. We can solve this summation problem using linear recursion by
observing that the sum of all n integers in S is trivially 0, if n = 0, and otherwise
that it is the sum of the first n− 1 integers in S plus the last element in S. (See
Figure 4.9.)

4 3 6 2 8 9 3 2 8 5 1 7 2 8 3

5

7

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

Figure 4.9: Computing the sum of a sequence recursively, by adding the last number
to the sum of the first n−1.
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A recursive algorithm for computing the sum of a sequence of numbers based
on this intuition is implemented in Code Fragment 4.9.

1 def linear sum(S, n):
2 ”””Return the sum of the first n numbers of sequence S.”””
3 if n == 0:
4 return 0
5 else:
6 return linear sum(S, n−1) + S[n−1]

Code Fragment 4.9: Summing the elements of a sequence using linear recursion.

A recursion trace of the linear sum function for a small example is given in
Figure 4.10. For an input of size n, the linear sum algorithm makes n+ 1 function
calls. Hence, it will take O(n) time, because it spends a constant amount of time
performing the nonrecursive part of each call. Moreover, we can also see that the
memory space used by the algorithm (in addition to the sequence S) is also O(n), as
we use a constant amount of memory space for each of the n+1 activation records
in the trace at the time we make the final recursive call (with n = 0).

return 15 + S[4] = 15 + 8 = 23

linear sum(S, 5)

linear sum(S, 4)

linear sum(S, 3)

linear sum(S, 2)

linear sum(S, 1)

linear sum(S, 0)

return 0

return 0 + S[0] = 0 + 4 = 4

return 4 + S[1] = 4 + 3 = 7

return 7 + S[2] = 7 + 6 = 13

return 13 + S[3] = 13 + 2 = 15

Figure 4.10: Recursion trace for an execution of linear sum(S, 5) with input pa-
rameter S = [4, 3, 6, 2, 8].
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Reversing a Sequence with Recursion

Next, let us consider the problem of reversing the n elements of a sequence, S, so
that the first element becomes the last, the second element becomes second to the
last, and so on. We can solve this problem using linear recursion, by observing that
the reversal of a sequence can be achieved by swapping the first and last elements
and then recursively reversing the remaining elements. We present an implemen-
tation of this algorithm in Code Fragment 4.10, using the convention that the first
time we call this algorithm we do so as reverse(S, 0, len(S)).

1 def reverse(S, start, stop):
2 ”””Reverse elements in implicit slice S[start:stop].”””
3 if start < stop − 1: # if at least 2 elements:
4 S[start], S[stop−1] = S[stop−1], S[start] # swap first and last
5 reverse(S, start+1, stop−1) # recur on rest

Code Fragment 4.10: Reversing the elements of a sequence using linear recursion.

Note that there are two implicit base case scenarios: When start == stop, the
implicit range is empty, and when start == stop−1, the implicit range has only
one element. In either of these cases, there is no need for action, as a sequence
with zero elements or one element is trivially equal to its reversal. When otherwise
invoking recursion, we are guaranteed to make progress towards a base case, as
the difference, stop−start, decreases by two with each call (see Figure 4.11). If n
is even, we will eventually reach the start == stop case, and if n is odd, we will
eventually reach the start == stop − 1 case.

The above argument implies that the recursive algorithm of Code Fragment 4.10
is guaranteed to terminate after a total of 1+

⌊
n
2

⌋
recursive calls. Since each call

involves a constant amount of work, the entire process runs in O(n) time.

6

3 6 2 8 9 5

5 9 8 2 6 3 4

5 3 6 2 8 9 4

5 9 8 2 6 3 4

5 9 6 2 8 3 4

50 1 2 3 4

4

Figure 4.11: A trace of the recursion for reversing a sequence. The shaded portion
has yet to be reversed.
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Recursive Algorithms for Computing Powers

As another interesting example of the use of linear recursion, we consider the prob-
lem of raising a number x to an arbitrary nonnegative integer, n. That is, we wish
to compute the power function, defined as power(x,n) = xn. (We use the name
“power” for this discussion, to differentiate from the built-in function pow that pro-
vides such functionality.) We will consider two different recursive formulations for
the problem that lead to algorithms with very different performance.

A trivial recursive definition follows from the fact that xn = x · xn−1 for n > 0.

power(x,n) =

{
1 if n = 0
x · power(x,n−1) otherwise.

This definition leads to a recursive algorithm shown in Code Fragment 4.11.

1 def power(x, n):
2 ”””Compute the value x n for integer n.”””
3 if n == 0:
4 return 1
5 else:
6 return x power(x, n−1)

Code Fragment 4.11: Computing the power function using trivial recursion.

A recursive call to this version of power(x,n) runs in O(n) time. Its recursion
trace has structure very similar to that of the factorial function from Figure 4.1,
with the parameter decreasing by one with each call, and constant work performed
at each of n+ 1 levels.

However, there is a much faster way to compute the power function using an
alternative definition that employs a squaring technique. Let k =

⌊
n
2

⌋
denote the

floor of the division (expressed as n // 2 in Python). We consider the expression(
xk

)2
. When n is even,

⌊
n
2

⌋
= n

2 and therefore
(
xk

)2
=

(
x

n
2

)2
= xn. When n is odd,⌊

n
2

⌋
= n−1

2 and
(
xk

)2
= xn−1, and therefore xn = x · (xk

)2
, just as 213 = 2 · 26 · 26.

This analysis leads to the following recursive definition:

power(x,n) =

⎧⎪⎨⎪⎩
1 if n = 0

x · (power
(
x,

⌊
n
2

⌋))2
if n > 0 is odd(

power
(
x,

⌊
n
2

⌋))2
if n > 0 is even

If we were to implement this recursion making two recursive calls to compute
power(x,

⌊
n
2

⌋
) · power(x,

⌊
n
2

⌋
), a trace of the recursion would demonstrate O(n)

calls. We can perform significantly fewer operations by computing power(x,
⌊

n
2

⌋
)

as a partial result, and then multiplying it by itself. An implementation based on
this recursive definition is given in Code Fragment 4.12.
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1 def power(x, n):
2 ”””Compute the value x n for integer n.”””
3 if n == 0:
4 return 1
5 else:
6 partial = power(x, n // 2) # rely on truncated division
7 result = partial partial
8 if n % 2 == 1: # if n odd, include extra factor of x
9 result = x

10 return result

Code Fragment 4.12: Computing the power function using repeated squaring.

To illustrate the execution of our improved algorithm, Figure 4.12 provides a
recursion trace of the computation power(2, 13).

return 64 64 2 = 8192

power(2, 13)

power(2, 6)

power(2, 3)

power(2, 1)

power(2, 0)

return 1

return 1 1 2 = 2

return 2 2 2 = 8

return 8 8 = 64

Figure 4.12: Recursion trace for an execution of power(2, 13).

To analyze the running time of the revised algorithm, we observe that the expo-
nent in each recursive call of function power(x,n) is at most half of the preceding
exponent. As we saw with the analysis of binary search, the number of times that
we can divide n in half before getting to one or less is O(logn). Therefore, our new
formulation of the power function results in O(logn) recursive calls. Each individ-
ual activation of the function uses O(1) operations (excluding the recursive calls),
and so the total number of operations for computing power(x,n) is O(logn). This
is a significant improvement over the original O(n)-time algorithm.

The improved version also provides significant saving in reducing the memory
usage. The first version has a recursive depth of O(n), and therefore O(n) activation
records are simultaneous stored in memory. Because the recursive depth of the
improved version is O(logn), its memory usages is O(logn) as well.
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4.4.2 Binary Recursion

When a function makes two recursive calls, we say that it uses binary recursion.
We have already seen several examples of binary recursion, most notably when
drawing the English ruler (Section 4.1.2), or in the bad fibonacci function of Sec-
tion 4.3. As another application of binary recursion, let us revisit the problem of
summing the n elements of a sequence, S, of numbers. Computing the sum of one
or zero elements is trivial. With two or more elements, we can recursively com-
pute the sum of the first half, and the sum of the second half, and add these sums
together. Our implementation of such an algorithm, in Code Fragment 4.13, is
initially invoked as binary sum(A, 0, len(A)).

1 def binary sum(S, start, stop):
2 ”””Return the sum of the numbers in implicit slice S[start:stop].”””
3 if start >= stop: # zero elements in slice
4 return 0
5 elif start == stop−1: # one element in slice
6 return S[start]
7 else: # two or more elements in slice
8 mid = (start + stop) // 2
9 return binary sum(S, start, mid) + binary sum(S, mid, stop)

Code Fragment 4.13: Summing the elements of a sequence using binary recursion.

To analyze algorithm binary sum, we consider, for simplicity, the case where
n is a power of two. Figure 4.13 shows the recursion trace of an execution of
binary sum(0, 8). We label each box with the values of parameters start:stop
for that call. The size of the range is divided in half at each recursive call, and
so the depth of the recursion is 1 + log2 n. Therefore, binary sum uses O(logn)
amount of additional space, which is a big improvement over the O(n) space used
by the linear sum function of Code Fragment 4.9. However, the running time of
binary sum is O(n), as there are 2n−1 function calls, each requiring constant time.

0:1 1:2 2:3 4:5 6:7 7:83:4 5:6

0:2 4:6 6:82:4

0:4 4:8

0:8

Figure 4.13: Recursion trace for the execution of binary sum(0, 8).
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4.4.3 Multiple Recursion

Generalizing from binary recursion, we define multiple recursion as a process in
which a function may make more than two recursive calls. Our recursion for an-
alyzing the disk space usage of a file system (see Section 4.1.4) is an example of
multiple recursion, because the number of recursive calls made during one invoca-
tion was equal to the number of entries within a given directory of the file system.

Another common application of multiple recursion is when we want to enumer-
ate various configurations in order to solve a combinatorial puzzle. For example,
the following are all instances of what are known as summation puzzles:

pot + pan = bib

dog + cat = pig

boy+ girl = baby

To solve such a puzzle, we need to assign a unique digit (that is, 0,1, . . . ,9) to each
letter in the equation, in order to make the equation true. Typically, we solve such
a puzzle by using our human observations of the particular puzzle we are trying
to solve to eliminate configurations (that is, possible partial assignments of digits
to letters) until we can work though the feasible configurations left, testing for the
correctness of each one.

If the number of possible configurations is not too large, however, we can use
a computer to simply enumerate all the possibilities and test each one, without
employing any human observations. In addition, such an algorithm can use multiple
recursion to work through the configurations in a systematic way. We show pseudo-
code for such an algorithm in Code Fragment 4.14. To keep the description general
enough to be used with other puzzles, the algorithm enumerates and tests all k-
length sequences without repetitions of the elements of a given universe U . We
build the sequences of k elements by the following steps:

1. Recursively generating the sequences of k−1 elements

2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use a set U to keep track of the
elements not contained in the current sequence, so that an element e has not been
used yet if and only if e is in U .

Another way to look at the algorithm of Code Fragment 4.14 is that it enumer-
ates every possible size-k ordered subset of U , and tests each subset for being a
possible solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the
sequence corresponds to a given letter. For example, the first position could stand
for b, the second for o, the third for y, and so on.
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Algorithm PuzzleSolve(k,S,U):
Input: An integer k, sequence S, and set U
Output: An enumeration of all k-length extensions to S using elements in U

without repetitions

for each e in U do
Add e to the end of S
Remove e from U {e is now being used}
if k == 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k−1,S,U) {a recursive call}
Remove e from the end of S
Add e back to U {e is now considered as unused}

Code Fragment 4.14: Solving a combinatorial puzzle by enumerating and testing
all possible configurations.

In Figure 4.14, we show a recursion trace of a call to PuzzleSolve(3,S,U),
where S is empty and U = {a,b,c}. During the execution, all the permutations
of the three characters are generated and tested. Note that the initial call makes
three recursive calls, each of which in turn makes two more. If we had executed
PuzzleSolve(3,S,U) on a set U consisting of four elements, the initial call would
have made four recursive calls, each of which would have a trace looking like the
one in Figure 4.14.

initial call

PuzzleSolve(3, (), {a,b,c})

PuzzleSolve(2, b, {a,c}) PuzzleSolve(2, c, {a,b})

PuzzleSolve(1, ca, {b})

PuzzleSolve(2, a, {b,c})

PuzzleSolve(1, ab, {c}) PuzzleSolve(1, ba, {c})

PuzzleSolve(1, bc, {a})PuzzleSolve(1, ac, {b}) PuzzleSolve(1, cb, {a})

acb

abc bac cab

bca cba

Figure 4.14: Recursion trace for an execution of PuzzleSolve(3,S,U), where S is
empty and U = {a,b,c}. This execution generates and tests all permutations of a, b,
and c. We show the permutations generated directly below their respective boxes.
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4.5 Designing Recursive Algorithms

In general, an algorithm that uses recursion typically has the following form:

• Test for base cases. We begin by testing for a set of base cases (there should
be at least one). These base cases should be defined so that every possible
chain of recursive calls will eventually reach a base case, and the handling of
each base case should not use recursion.

• Recur. If not a base case, we perform one or more recursive calls. This recur-
sive step may involve a test that decides which of several possible recursive
calls to make. We should define each possible recursive call so that it makes
progress towards a base case.

Parameterizing a Recursion

To design a recursive algorithm for a given problem, it is useful to think of the
different ways we might define subproblems that have the same general structure
as the original problem. If one has difficulty finding the repetitive structure needed
to design a recursive algorithm, it is sometimes useful to work out the problem on
a few concrete examples to see how the subproblems should be defined.

A successful recursive design sometimes requires that we redefine the original
problem to facilitate similar-looking subproblems. Often, this involved reparam-
eterizing the signature of the function. For example, when performing a binary
search in a sequence, a natural function signature for a caller would appear as
binary search(data, target). However, in Section 4.1.3, we defined our function
with calling signature binary search(data, target, low, high), using the additional
parameters to demarcate sublists as the recursion proceeds. This change in param-
eterization is critical for binary search. If we had insisted on the cleaner signature,
binary search(data, target), the only way to invoke a search on half the list would
have been to make a new list instance with only those elements to send as the first
parameter. However, making a copy of half the list would already take O(n) time,
negating the whole benefit of the binary search algorithm.

If we wished to provide a cleaner public interface to an algorithm like bi-
nary search, without bothering a user with the extra parameters, a standard tech-
nique is to make one function for public use with the cleaner interface, such as
binary search(data, target), and then having its body invoke a nonpublic utility
function having the desired recursive parameters.

You will see that we similarly reparameterized the recursion in several other ex-
amples of this chapter (e.g., reverse, linear sum, binary sum). We saw a different
approach to redefining a recursion in our good fibonacci implementation, by in-
tentionally strengthening the expectation of what is returned (in that case, returning
a pair of numbers rather than a single number).
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4.6 Eliminating Tail Recursion

The main benefit of a recursive approach to algorithm design is that it allows us to
succinctly take advantage of a repetitive structure present in many problems. By
making our algorithm description exploit the repetitive structure in a recursive way,
we can often avoid complex case analyses and nested loops. This approach can
lead to more readable algorithm descriptions, while still being quite efficient.

However, the usefulness of recursion comes at a modest cost. In particular, the
Python interpreter must maintain activation records that keep track of the state of
each nested call. When computer memory is at a premium, it is useful in some
cases to be able to derive nonrecursive algorithms from recursive ones.

In general, we can use the stack data structure, which we will introduce in
Section 6.1, to convert a recursive algorithm into a nonrecursive algorithm by man-
aging the nesting of the recursive structure ourselves, rather than relying on the
interpreter to do so. Although this only shifts the memory usage from the inter-
preter to our stack, we may be able to reduce the memory usage by storing only the
minimal information necessary.

Even better, some forms of recursion can be eliminated without any use of
axillary memory. A notable such form is known as tail recursion. A recursion
is a tail recursion if any recursive call that is made from one context is the very
last operation in that context, with the return value of the recursive call (if any)
immediately returned by the enclosing recursion. By necessity, a tail recursion
must be a linear recursion (since there is no way to make a second recursive call if
you must immediately return the result of the first).

Of the recursive functions demonstrated in this chapter, the binary search func-
tion of Code Fragment 4.3 and the reverse function of Code Fragment 4.10 are
examples of tail recursion. Several others of our linear recursions are almost like
tail recursion, but not technically so. For example, our factorial function of Code
Fragment 4.1 is not a tail recursion. It concludes with the command:

return n factorial(n−1)

This is not a tail recursion because an additional multiplication is performed after
the recursive call is completed. For similar reasons, the linear sum function of
Code Fragment 4.9 and the good fibonacci function of Code Fragment 4.7 fail to
be tail recursions.

Any tail recursion can be reimplemented nonrecursively by enclosing the body
in a loop for repetition, and replacing a recursive call with new parameters by a
reassignment of the existing parameters to those values. As a tangible example, our
binary search function can be reimplemented as shown in Code Fragment 4.15.
We initialize variables low and high, just prior to our while loop, to represent the
full extent of the sequence. Then, during each pass of the loop, we either find
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1 def binary search iterative(data, target):
2 ”””Return True if target is found in the given Python list.”””
3 low = 0
4 high = len(data)−1
5 while low <= high:
6 mid = (low + high) // 2
7 if target == data[mid]: # found a match
8 return True
9 elif target < data[mid]:

10 high = mid − 1 # only consider values left of mid
11 else:
12 low = mid + 1 # only consider values right of mid
13 return False # loop ended without success

Code Fragment 4.15: A nonrecursive implementation of binary search.

the target, or we narrow the range of the candidate subsequence. Where we made
the recursive call binary search(data, target, low, mid −1) in the original version,
we simply replace high = mid − 1 in our new version and then continue to the
next iteration of the loop. Our original base case condition of low > high has
simply been replaced by the opposite loop condition while low <= high. In our
new implementation, we return False to designate a failed search if the while loop
ends (that is, without having ever returned True from within).

We can similarly develop a nonrecursive implementation (Code Fragment 4.16)
of the original recursive reverse method of Code Fragment 4.10.

1 def reverse iterative(S):
2 ”””Reverse elements in sequence S.”””
3 start, stop = 0, len(S)
4 while start < stop − 1:
5 S[start], S[stop−1] = S[stop−1], S[start] # swap first and last
6 start, stop = start + 1, stop − 1 # narrow the range

Code Fragment 4.16: Reversing the elements of a sequence using iteration.

In this new version, we update the values start and stop during each pass of the
loop, exiting once we reach the case of having one or less elements in that range.

Many other linear recursions can be expressed quite efficiently with iteration,
even if they were not formally tail recursions. For example, there are trivial non-
recursive implementations for computing factorials, summing elements of a se-
quence, or computing Fibonacci numbers efficiently. In fact, our implementation
of a Fibonacci generator, from Section 1.8, produces each subsequent value in O(1)
time, and thus takes O(n) time to generate the nth entry in the series.
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4.7 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-4.1 Describe a recursive algorithm for finding the maximum element in a se-
quence, S, of n elements. What is your running time and space usage?

R-4.2 Draw the recursion trace for the computation of power(2,5), using the
traditional function implemented in Code Fragment 4.11.

R-4.3 Draw the recursion trace for the computation of power(2,18), using the
repeated squaring algorithm, as implemented in Code Fragment 4.12.

R-4.4 Draw the recursion trace for the execution of function reverse(S, 0, 5)
(Code Fragment 4.10) on S = [4, 3, 6, 2, 6].

R-4.5 Draw the recursion trace for the execution of function PuzzleSolve(3,S,U)
(Code Fragment 4.14), where S is empty and U = {a,b,c,d}.

R-4.6 Describe a recursive function for computing the nth Harmonic number,
Hn = ∑

n
i=1 1/i.

R-4.7 Describe a recursive function for converting a string of digits into the in-
teger it represents. For example, 13531 represents the integer 13,531.

R-4.8 Isabel has an interesting way of summing up the values in a sequence A of
n integers, where n is a power of two. She creates a new sequence B of half
the size of A and sets B[i] = A[2i]+A[2i+1], for i = 0,1, . . . ,(n/2)−1. If
B has size 1, then she outputs B[0]. Otherwise, she replaces A with B, and
repeats the process. What is the running time of her algorithm?

Creativity

C-4.9 Write a short recursive Python function that finds the minimum and max-
imum values in a sequence without using any loops.

C-4.10 Describe a recursive algorithm to compute the integer part of the base-two
logarithm of n using only addition and integer division.

C-4.11 Describe an efficient recursive function for solving the element unique-
ness problem, which runs in time that is at most O(n2) in the worst case
without using sorting.

C-4.12 Give a recursive algorithm to compute the product of two positive integers,
m and n, using only addition and subtraction.
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C-4.13 In Section 4.2 we prove by induction that the number of lines printed by
a call to draw interval(c) is 2c − 1. Another interesting question is how
many dashes are printed during that process. Prove by induction that the
number of dashes printed by draw interval(c) is 2c+1 − c−2.

C-4.14 In the Towers of Hanoi puzzle, we are given a platform with three pegs, a,
b, and c, sticking out of it. On peg a is a stack of n disks, each larger than
the next, so that the smallest is on the top and the largest is on the bottom.
The puzzle is to move all the disks from peg a to peg c, moving one disk
at a time, so that we never place a larger disk on top of a smaller one.
See Figure 4.15 for an example of the case n = 4. Describe a recursive
algorithm for solving the Towers of Hanoi puzzle for arbitrary n. (Hint:
Consider first the subproblem of moving all but the nth disk from peg a to
another peg using the third as “temporary storage.”)

Figure 4.15: An illustration of the Towers of Hanoi puzzle.

C-4.15 Write a recursive function that will output all the subsets of a set of n
elements (without repeating any subsets).

C-4.16 Write a short recursive Python function that takes a character string s and
outputs its reverse. For example, the reverse of pots&pans would be
snap&stop .

C-4.17 Write a short recursive Python function that determines if a string s is a
palindrome, that is, it is equal to its reverse. For example, racecar and
gohangasalamiimalasagnahog are palindromes.

C-4.18 Use recursion to write a Python function for determining if a string s has
more vowels than consonants.

C-4.19 Write a short recursive Python function that rearranges a sequence of in-
teger values so that all the even values appear before all the odd values.

C-4.20 Given an unsorted sequence, S, of integers and an integer k, describe a
recursive algorithm for rearranging the elements in S so that all elements
less than or equal to k come before any elements larger than k. What is
the running time of your algorithm on a sequence of n values?
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C-4.21 Suppose you are given an n-element sequence, S, containing distinct in-
tegers that are listed in increasing order. Given a number k, describe a
recursive algorithm to find two integers in S that sum to k, if such a pair
exists. What is the running time of your algorithm?

C-4.22 Develop a nonrecursive implementation of the version of power from
Code Fragment 4.12 that uses repeated squaring.

Projects

P-4.23 Implement a recursive function with signature find(path, filename) that
reports all entries of the file system rooted at the given path having the
given file name.

P-4.24 Write a program for solving summation puzzles by enumerating and test-
ing all possible configurations. Using your program, solve the three puz-
zles given in Section 4.4.3.

P-4.25 Provide a nonrecursive implementation of the draw interval function for
the English ruler project of Section 4.1.2. There should be precisely 2c−1
lines of output if c represents the length of the center tick. If incrementing
a counter from 0 to 2c −2, the number of dashes for each tick line should
be exactly one more than the number of consecutive 1’s at the end of the
binary representation of the counter.

P-4.26 Write a program that can solve instances of the Tower of Hanoi problem
(from Exercise C-4.14).

P-4.27 Python’s os module provides a function with signature walk(path) that
is a generator yielding the tuple (dirpath, dirnames, filenames) for each
subdirectory of the directory identified by string path, such that string
dirpath is the full path to the subdirectory, dirnames is a list of the names
of the subdirectories within dirpath, and filenames is a list of the names
of non-directory entries of dirpath. For example, when visiting the cs016
subdirectory of the file system shown in Figure 4.6, the walk would yield
( /user/rt/courses/cs016 , [ homeworks , programs ], [ grades ]).
Give your own implementation of such a walk function.

Chapter Notes

The use of recursion in programs belongs to the folkore of computer science (for example,
see the article of Dijkstra [36]). It is also at the heart of functional programming languages
(for example, see the classic book by Abelson, Sussman, and Sussman [1]). Interestingly,
binary search was first published in 1946, but was not published in a fully correct form
until 1962. For further discussions on lessons learned, please see papers by Bentley [14]
and Lesuisse [68].
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5.1 Python’s Sequence Types

In this chapter, we explore Python’s various “sequence” classes, namely the built-
in list, tuple, and str classes. There is significant commonality between these
classes, most notably: each supports indexing to access an individual element of a
sequence, using a syntax such as seq[k], and each uses a low-level concept known
as an array to represent the sequence. However, there are significant differences in
the abstractions that these classes represent, and in the way that instances of these
classes are represented internally by Python. Because these classes are used so
widely in Python programs, and because they will become building blocks upon
which we will develop more complex data structures, it is imperative that we estab-
lish a clear understanding of both the public behavior and inner workings of these
classes.

Public Behaviors

A proper understanding of the outward semantics for a class is a necessity for a
good programmer. While the basic usage of lists, strings, and tuples may seem
straightforward, there are several important subtleties regarding the behaviors as-
sociated with these classes (such as what it means to make a copy of a sequence, or
to take a slice of a sequence). Having a misunderstanding of a behavior can easily
lead to inadvertent bugs in a program. Therefore, we establish an accurate men-
tal model for each of these classes. These images will help when exploring more
advanced usage, such as representing a multidimensional data set as a list of lists.

Implementation Details

A focus on the internal implementations of these classes seems to go against our
stated principles of object-oriented programming. In Section 2.1.2, we emphasized
the principle of encapsulation, noting that the user of a class need not know about
the internal details of the implementation. While it is true that one only needs to
understand the syntax and semantics of a class’s public interface in order to be able
to write legal and correct code that uses instances of the class, the efficiency of a
program depends greatly on the efficiency of the components upon which it relies.

Asymptotic and Experimental Analyses

In describing the efficiency of various operations for Python’s sequence classes,
we will rely on the formal asymptotic analysis notations established in Chapter 3.
We will also perform experimental analyses of the primary operations to provide
empirical evidence that is consistent with the more theoretical asymptotic analyses.
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5.2 Low-Level Arrays

To accurately describe the way in which Python represents the sequence types,
we must first discuss aspects of the low-level computer architecture. The primary
memory of a computer is composed of bits of information, and those bits are typ-
ically grouped into larger units that depend upon the precise system architecture.
Such a typical unit is a byte, which is equivalent to 8 bits.

A computer system will have a huge number of bytes of memory, and to keep
track of what information is stored in what byte, the computer uses an abstraction
known as a memory address. In effect, each byte of memory is associated with a
unique number that serves as its address (more formally, the binary representation
of the number serves as the address). In this way, the computer system can refer
to the data in “byte #2150” versus the data in “byte #2157,” for example. Memory
addresses are typically coordinated with the physical layout of the memory system,
and so we often portray the numbers in sequential fashion. Figure 5.1 provides
such a diagram, with the designated memory address for each byte.
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Figure 5.1: A representation of a portion of a computer’s memory, with individual
bytes labeled with consecutive memory addresses.

Despite the sequential nature of the numbering system, computer hardware is
designed, in theory, so that any byte of the main memory can be efficiently accessed
based upon its memory address. In this sense, we say that a computer’s main mem-
ory performs as random access memory (RAM). That is, it is just as easy to retrieve
byte #8675309 as it is to retrieve byte #309. (In practice, there are complicating
factors including the use of caches and external memory; we address some of those
issues in Chapter 15.) Using the notation for asymptotic analysis, we say that any
individual byte of memory can be stored or retrieved in O(1) time.

In general, a programming language keeps track of the association between
an identifier and the memory address in which the associated value is stored. For
example, identifier x might be associated with one value stored in memory, while y
is associated with another value stored in memory. A common programming task
is to keep track of a sequence of related objects. For example, we may want a video
game to keep track of the top ten scores for that game. Rather than use ten different
variables for this task, we would prefer to use a single name for the group and use
index numbers to refer to the high scores in that group.
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A group of related variables can be stored one after another in a contiguous
portion of the computer’s memory. We will denote such a representation as an
array. As a tangible example, a text string is stored as an ordered sequence of
individual characters. In Python, each character is represented using the Unicode
character set, and on most computing systems, Python internally represents each
Unicode character with 16 bits (i.e., 2 bytes). Therefore, a six-character string, such
as SAMPLE , would be stored in 12 consecutive bytes of memory, as diagrammed
in Figure 5.2.
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Figure 5.2: A Python string embedded as an array of characters in the computer’s
memory. We assume that each Unicode character of the string requires two bytes
of memory. The numbers below the entries are indices into the string.

We describe this as an array of six characters, even though it requires 12 bytes
of memory. We will refer to each location within an array as a cell, and will use an
integer index to describe its location within the array, with cells numbered starting
with 0, 1, 2, and so on. For example, in Figure 5.2, the cell of the array with index 4
has contents L and is stored in bytes 2154 and 2155 of memory.

Each cell of an array must use the same number of bytes. This requirement is
what allows an arbitrary cell of the array to be accessed in constant time based on
its index. In particular, if one knows the memory address at which an array starts
(e.g., 2146 in Figure 5.2), the number of bytes per element (e.g., 2 for a Unicode
character), and a desired index within the array, the appropriate memory address
can be computed using the calculation, start + cellsize index. By this formula,
the cell at index 0 begins precisely at the start of the array, the cell at index 1 begins
precisely cellsize bytes beyond the start of the array, and so on. As an example,
cell 4 of Figure 5.2 begins at memory location 2146+ 2 ·4 = 2146+ 8 = 2154.

Of course, the arithmetic for calculating memory addresses within an array can
be handled automatically. Therefore, a programmer can envision a more typical
high-level abstraction of an array of characters as diagrammed in Figure 5.3.
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Figure 5.3: A higher-level abstraction for the string portrayed in Figure 5.2.
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5.2.1 Referential Arrays

As another motivating example, assume that we want a medical information system
to keep track of the patients currently assigned to beds in a certain hospital. If we
assume that the hospital has 200 beds, and conveniently that those beds are num-
bered from 0 to 199, we might consider using an array-based structure to maintain
the names of the patients currently assigned to those beds. For example, in Python
we might use a list of names, such as:

[ Rene , Joseph , Janet , Jonas , Helen , Virginia , ... ]

To represent such a list with an array, Python must adhere to the requirement that
each cell of the array use the same number of bytes. Yet the elements are strings,
and strings naturally have different lengths. Python could attempt to reserve enough
space for each cell to hold the maximum length string (not just of currently stored
strings, but of any string we might ever want to store), but that would be wasteful.

Instead, Python represents a list or tuple instance using an internal storage
mechanism of an array of object references. At the lowest level, what is stored
is a consecutive sequence of memory addresses at which the elements of the se-
quence reside. A high-level diagram of such a list is shown in Figure 5.4.

0 31 2 54

Rene Virginia

Joseph Helen

JonasJanet

Figure 5.4: An array storing references to strings.

Although the relative size of the individual elements may vary, the number of
bits used to store the memory address of each element is fixed (e.g., 64-bits per
address). In this way, Python can support constant-time access to a list or tuple
element based on its index.

In Figure 5.4, we characterize a list of strings that are the names of the patients
in a hospital. It is more likely that a medical information system would manage
more comprehensive information on each patient, perhaps represented as an in-
stance of a Patient class. From the perspective of the list implementation, the same
principle applies: The list will simply keep a sequence of references to those ob-
jects. Note as well that a reference to the None object can be used as an element
of the list to represent an empty bed in the hospital.
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The fact that lists and tuples are referential structures is significant to the se-
mantics of these classes. A single list instance may include multiple references
to the same object as elements of the list, and it is possible for a single object to
be an element of two or more lists, as those lists simply store references back to
that object. As an example, when you compute a slice of a list, the result is a new
list instance, but that new list has references to the same elements that are in the
original list, as portrayed in Figure 5.5.

3 4 5 6 70 1 2

0 1 2

primes:

temp:

3 1152 1917137

Figure 5.5: The result of the command temp = primes[3:6].

When the elements of the list are immutable objects, as with the integer in-
stances in Figure 5.5, the fact that the two lists share elements is not that signifi-
cant, as neither of the lists can cause a change to the shared object. If, for example,
the command temp[2] = 15 were executed from this configuration, that does not
change the existing integer object; it changes the reference in cell 2 of the temp list
to reference a different object. The resulting configuration is shown in Figure 5.6.

3 4 5 6 70 1 2

0 1 2

primes:

temp:

131152

15

3 19177

Figure 5.6: The result of the command temp[2] = 15 upon the configuration por-
trayed in Figure 5.5.

The same semantics is demonstrated when making a new list as a copy of an
existing one, with a syntax such as backup = list(primes). This produces a new
list that is a shallow copy (see Section 2.6), in that it references the same elements
as in the first list. With immutable elements, this point is moot. If the contents of
the list were of a mutable type, a deep copy, meaning a new list with new elements,
can be produced by using the deepcopy function from the copy module.

www.it-ebooks.info

http://www.it-ebooks.info/


5.2. Low-Level Arrays 189

As a more striking example, it is a common practice in Python to initialize an
array of integers using a syntax such as counters = [0] 8. This syntax produces
a list of length eight, with all eight elements being the value zero. Technically, all
eight cells of the list reference the same object, as portrayed in Figure 5.7.

4 5 6 70 1 2 3

counters:

0

Figure 5.7: The result of the command data = [0] 8.

At first glance, the extreme level of aliasing in this configuration may seem
alarming. However, we rely on the fact that the referenced integer is immutable.
Even a command such as counters[2] += 1 does not technically change the value
of the existing integer instance. This computes a new integer, with value 0+1, and
sets cell 2 to reference the newly computed value. The resulting configuration is
shown in Figure 5.8.

4 5 6 70 1 2 3

counters:

0

1

Figure 5.8: The result of command data[2] += 1 upon the list from Figure 5.7.

As a final manifestation of the referential nature of lists, we note that the extend
command is used to add all elements from one list to the end of another list. The
extended list does not receive copies of those elements, it receives references to
those elements. Figure 5.9 portrays the effect of a call to extend.

3 4 5 6 7 8 109210

0 1 2

primes:

extras:

29 317 193 1713112 5 23

Figure 5.9: The effect of command primes.extend(extras), shown in light gray.
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5.2.2 Compact Arrays in Python

In the introduction to this section, we emphasized that strings are represented using
an array of characters (not an array of references). We will refer to this more direct
representation as a compact array because the array is storing the bits that represent
the primary data (characters, in the case of strings).
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Compact arrays have several advantages over referential structures in terms
of computing performance. Most significantly, the overall memory usage will be
much lower for a compact structure because there is no overhead devoted to the
explicit storage of the sequence of memory references (in addition to the primary
data). That is, a referential structure will typically use 64-bits for the memory
address stored in the array, on top of whatever number of bits are used to represent
the object that is considered the element. Also, each Unicode character stored in
a compact array within a string typically requires 2 bytes. If each character were
stored independently as a one-character string, there would be significantly more
bytes used.

As another case study, suppose we wish to store a sequence of one million,
64-bit integers. In theory, we might hope to use only 64 million bits. However, we
estimate that a Python list will use four to five times as much memory. Each element
of the list will result in a 64-bit memory address being stored in the primary array,
and an int instance being stored elsewhere in memory. Python allows you to query
the actual number of bytes being used for the primary storage of any object. This
is done using the getsizeof function of the sys module. On our system, the size of
a typical int object requires 14 bytes of memory (well beyond the 4 bytes needed
for representing the actual 64-bit number). In all, the list will be using 18 bytes per
entry, rather than the 4 bytes that a compact list of integers would require.

Another important advantage to a compact structure for high-performance com-
puting is that the primary data are stored consecutively in memory. Note well that
this is not the case for a referential structure. That is, even though a list maintains
careful ordering of the sequence of memory addresses, where those elements reside
in memory is not determined by the list. Because of the workings of the cache and
memory hierarchies of computers, it is often advantageous to have data stored in
memory near other data that might be used in the same computations.

Despite the apparent inefficiencies of referential structures, we will generally
be content with the convenience of Python’s lists and tuples in this book. The only
place in which we consider alternatives will be in Chapter 15, which focuses on
the impact of memory usage on data structures and algorithms. Python provides
several means for creating compact arrays of various types.
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Primary support for compact arrays is in a module named array. That module
defines a class, also named array, providing compact storage for arrays of primitive
data types. A portrayal of such an array of integers is shown in Figure 5.10.

3 4 5 6 70 1 2

1752 3 7 11 13 19

Figure 5.10: Integers stored compactly as elements of a Python array.

The public interface for the array class conforms mostly to that of a Python list.
However, the constructor for the array class requires a type code as a first parameter,
which is a character that designates the type of data that will be stored in the array.
As a tangible example, the type code, i , designates an array of (signed) integers,
typically represented using at least 16-bits each. We can declare the array shown in
Figure 5.10 as,

primes = array( i , [2, 3, 5, 7, 11, 13, 17, 19])

The type code allows the interpreter to determine precisely how many bits are
needed per element of the array. The type codes supported by the array module,
as shown in Table 5.1, are formally based upon the native data types used by the
C programming language (the language in which the the most widely used distri-
bution of Python is implemented). The precise number of bits for the C data types
is system-dependent, but typical ranges are shown in the table.

Code C Data Type Typical Number of Bytes
b signed char 1
B unsigned char 1
u Unicode char 2 or 4
h signed short int 2
H unsigned short int 2
i signed int 2 or 4
I unsigned int 2 or 4
l signed long int 4
L unsigned long int 4
f float 4
d float 8

Table 5.1: Type codes supported by the array module.

The array module does not provide support for making compact arrays of user-
defined data types. Compact arrays of such structures can be created with the lower-
level support of a module named ctypes. (See Section 5.3.1 for more discussion of
the ctypes module.)
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5.3 Dynamic Arrays and Amortization

When creating a low-level array in a computer system, the precise size of that array
must be explicitly declared in order for the system to properly allocate a consecutive
piece of memory for its storage. For example, Figure 5.11 displays an array of 12
bytes that might be stored in memory locations 2146 through 2157.
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Figure 5.11: An array of 12 bytes allocated in memory locations 2146 through 2157.

Because the system might dedicate neighboring memory locations to store other
data, the capacity of an array cannot trivially be increased by expanding into sub-
sequent cells. In the context of representing a Python tuple or str instance, this
constraint is no problem. Instances of those classes are immutable, so the correct
size for an underlying array can be fixed when the object is instantiated.

Python’s list class presents a more interesting abstraction. Although a list has a
particular length when constructed, the class allows us to add elements to the list,
with no apparent limit on the overall capacity of the list. To provide this abstraction,
Python relies on an algorithmic sleight of hand known as a dynamic array.

The first key to providing the semantics of a dynamic array is that a list instance
maintains an underlying array that often has greater capacity than the current length
of the list. For example, while a user may have created a list with five elements,
the system may have reserved an underlying array capable of storing eight object
references (rather than only five). This extra capacity makes it easy to append a
new element to the list by using the next available cell of the array.

If a user continues to append elements to a list, any reserved capacity will
eventually be exhausted. In that case, the class requests a new, larger array from the
system, and initializes the new array so that its prefix matches that of the existing
smaller array. At that point in time, the old array is no longer needed, so it is
reclaimed by the system. Intuitively, this strategy is much like that of the hermit
crab, which moves into a larger shell when it outgrows its previous one.

We give empirical evidence that Python’s list class is based upon such a strat-
egy. The source code for our experiment is displayed in Code Fragment 5.1, and a
sample output of that program is given in Code Fragment 5.2. We rely on a func-
tion named getsizeof that is available from the sys module. This function reports
the number of bytes that are being used to store an object in Python. For a list, it
reports the number of bytes devoted to the array and other instance variables of the
list, but not any space devoted to elements referenced by the list.
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1 import sys # provides getsizeof function
2 data = [ ]
3 for k in range(n): # NOTE: must fix choice of n
4 a = len(data) # number of elements
5 b = sys.getsizeof(data) # actual size in bytes
6 print( Length: {0:3d}; Size in bytes: {1:4d} .format(a, b))
7 data.append(None) # increase length by one

Code Fragment 5.1: An experiment to explore the relationship between a list’s
length and its underlying size in Python.

Length: 0; Size in bytes : 72
Length: 1; Size in bytes : 104
Length: 2; Size in bytes : 104
Length: 3; Size in bytes : 104
Length: 4; Size in bytes : 104
Length: 5; Size in bytes : 136
Length: 6; Size in bytes : 136
Length: 7; Size in bytes : 136
Length: 8; Size in bytes : 136
Length: 9; Size in bytes : 200
Length: 10; Size in bytes : 200
Length: 11; Size in bytes : 200
Length: 12; Size in bytes : 200
Length: 13; Size in bytes : 200
Length: 14; Size in bytes : 200
Length: 15; Size in bytes : 200
Length: 16; Size in bytes : 200
Length: 17; Size in bytes : 272
Length: 18; Size in bytes : 272
Length: 19; Size in bytes : 272
Length: 20; Size in bytes : 272
Length: 21; Size in bytes : 272
Length: 22; Size in bytes : 272
Length: 23; Size in bytes : 272
Length: 24; Size in bytes : 272
Length: 25; Size in bytes : 272
Length: 26; Size in bytes : 352

Code Fragment 5.2: Sample output from the experiment of Code Fragment 5.1.
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In evaluating the results of the experiment, we draw attention to the first line of
output from Code Fragment 5.2. We see that an empty list instance already requires
a certain number of bytes of memory (72 on our system). In fact, each object in
Python maintains some state, for example, a reference to denote the class to which
it belongs. Although we cannot directly access private instance variables for a list,
we can speculate that in some form it maintains state information akin to:

n The number of actual elements currently stored in the list.
capacity The maximum number of elements that could be stored in the

currently allocated array.
A The reference to the currently allocated array (initially None).

As soon as the first element is inserted into the list, we detect a change in the
underlying size of the structure. In particular, we see the number of bytes jump
from 72 to 104, an increase of exactly 32 bytes. Our experiment was run on a
64-bit machine architecture, meaning that each memory address is a 64-bit number
(i.e., 8 bytes). We speculate that the increase of 32 bytes reflects the allocation of
an underlying array capable of storing four object references. This hypothesis is
consistent with the fact that we do not see any underlying change in the memory
usage after inserting the second, third, or fourth element into the list.

After the fifth element has been added to the list, we see the memory usage jump
from 104 bytes to 136 bytes. If we assume the original base usage of 72 bytes for
the list, the total of 136 suggests an additional 64= 8×8 bytes that provide capacity
for up to eight object references. Again, this is consistent with the experiment, as
the memory usage does not increase again until the ninth insertion. At that point,
the 200 bytes can be viewed as the original 72 plus an additional 128-byte array to
store 16 object references. The 17th insertion pushes the overall memory usage to
272 = 72+ 200 = 72+ 25×8, hence enough to store up to 25 element references.

Because a list is a referential structure, the result of getsizeof for a list instance
only includes the size for representing its primary structure; it does not account for
memory used by the objects that are elements of the list. In our experiment, we
repeatedly append None to the list, because we do not care about the contents, but
we could append any type of object without affecting the number of bytes reported
by getsizeof(data).

If we were to continue such an experiment for further iterations, we might try
to discern the pattern for how large of an array Python creates each time the ca-
pacity of the previous array is exhausted (see Exercises R-5.2 and C-5.13). Before
exploring the precise sequence of capacities used by Python, we continue in this
section by describing a general approach for implementing dynamic arrays and for
performing an asymptotic analysis of their performance.
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5.3.1 Implementing a Dynamic Array

Although the Python list class provides a highly optimized implementation of dy-
namic arrays, upon which we rely for the remainder of this book, it is instructive to
see how such a class might be implemented.

The key is to provide means to grow the array A that stores the elements of a
list. Of course, we cannot actually grow that array, as its capacity is fixed. If an
element is appended to a list at a time when the underlying array is full, we perform
the following steps:

1. Allocate a new array B with larger capacity.
2. Set B[i] = A[i], for i = 0, . . . ,n−1, where n denotes current number of items.

3. Set A = B, that is, we henceforth use B as the array supporting the list.
4. Insert the new element in the new array.

An illustration of this process is shown in Figure 5.12.

B

A A

B A

(a) (b) (c)

Figure 5.12: An illustration of the three steps for “growing” a dynamic array: (a)
create new array B; (b) store elements of A in B; (c) reassign reference A to the new
array. Not shown is the future garbage collection of the old array, or the insertion
of the new element.

The remaining issue to consider is how large of a new array to create. A com-
monly used rule is for the new array to have twice the capacity of the existing array
that has been filled. In Section 5.3.2, we will provide a mathematical analysis to
justify such a choice.

In Code Fragment 5.3, we offer a concrete implementation of dynamic arrays
in Python. Our DynamicArray class is designed using ideas described in this sec-
tion. While consistent with the interface of a Python list class, we provide only
limited functionality in the form of an append method, and accessors len and

getitem . Support for creating low-level arrays is provided by a module named
ctypes. Because we will not typically use such a low-level structure in the remain-
der of this book, we omit a detailed explanation of the ctypes module. Instead,
we wrap the necessary command for declaring the raw array within a private util-
ity method make array. The hallmark expansion procedure is performed in our
nonpublic resize method.
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1 import ctypes # provides low-level arrays
2
3 class DynamicArray:
4 ”””A dynamic array class akin to a simplified Python list.”””
5
6 def init (self):
7 ”””Create an empty array.”””
8 self. n = 0 # count actual elements
9 self. capacity = 1 # default array capacity

10 self. A = self. make array(self. capacity) # low-level array
11
12 def len (self):
13 ”””Return number of elements stored in the array.”””
14 return self. n
15
16 def getitem (self, k):
17 ”””Return element at index k.”””
18 if not 0 <= k < self. n:
19 raise IndexError( invalid index )
20 return self. A[k] # retrieve from array
21
22 def append(self, obj):
23 ”””Add object to end of the array.”””
24 if self. n == self. capacity: # not enough room
25 self. resize(2 self. capacity) # so double capacity
26 self. A[self. n] = obj
27 self. n += 1
28
29 def resize(self, c): # nonpublic utitity
30 ”””Resize internal array to capacity c.”””
31 B = self. make array(c) # new (bigger) array
32 for k in range(self. n): # for each existing value
33 B[k] = self. A[k]
34 self. A = B # use the bigger array
35 self. capacity = c
36
37 def make array(self, c): # nonpublic utitity
38 ”””Return new array with capacity c.”””
39 return (c ctypes.py object)( ) # see ctypes documentation

Code Fragment 5.3: An implementation of a DynamicArray class, using a raw array
from the ctypes module as storage.
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5.3.2 Amortized Analysis of Dynamic Arrays

In this section, we perform a detailed analysis of the running time of operations on
dynamic arrays. We use the big-Omega notation introduced in Section 3.3.1 to give
an asymptotic lower bound on the running time of an algorithm or step within it.

The strategy of replacing an array with a new, larger array might at first seem
slow, because a single append operation may require Ω(n) time to perform, where
n is the current number of elements in the array. However, notice that by doubling
the capacity during an array replacement, our new array allows us to add n new
elements before the array must be replaced again. In this way, there are many
simple append operations for each expensive one (see Figure 5.13). This fact allows
us to show that performing a series of operations on an initially empty dynamic
array is efficient in terms of its total running time.

Using an algorithmic design pattern called amortization, we can show that per-
forming a sequence of such append operations on a dynamic array is actually quite
efficient. To perform an amortized analysis, we use an accounting technique where
we view the computer as a coin-operated appliance that requires the payment of
one cyber-dollar for a constant amount of computing time. When an operation
is executed, we should have enough cyber-dollars available in our current “bank
account” to pay for that operation’s running time. Thus, the total amount of cyber-
dollars spent for any computation will be proportional to the total time spent on that
computation. The beauty of using this analysis method is that we can overcharge
some operations in order to save up cyber-dollars to pay for others.
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Figure 5.13: Running times of a series of append operations on a dynamic array.
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Proposition 5.1: Let S be a sequence implemented by means of a dynamic array
with initial capacity one, using the strategy of doubling the array size when full.
The total time to perform a series of n append operations in S, starting from S being
empty, is O(n).

Justification: Let us assume that one cyber-dollar is enough to pay for the execu-
tion of each append operation in S, excluding the time spent for growing the array.
Also, let us assume that growing the array from size k to size 2k requires k cyber-
dollars for the time spent initializing the new array. We shall charge each append
operation three cyber-dollars. Thus, we overcharge each append operation that does
not cause an overflow by two cyber-dollars. Think of the two cyber-dollars profited
in an insertion that does not grow the array as being “stored” with the cell in which
the element was inserted. An overflow occurs when the array S has 2i elements, for
some integer i ≥ 0, and the size of the array used by the array representing S is 2i.
Thus, doubling the size of the array will require 2i cyber-dollars. Fortunately, these
cyber-dollars can be found stored in cells 2i−1 through 2i − 1. (See Figure 5.14.)
Note that the previous overflow occurred when the number of elements became
larger than 2i−1 for the first time, and thus the cyber-dollars stored in cells 2i−1

through 2i − 1 have not yet been spent. Therefore, we have a valid amortization
scheme in which each operation is charged three cyber-dollars and all the comput-
ing time is paid for. That is, we can pay for the execution of n append operations
using 3n cyber-dollars. In other words, the amortized running time of each append
operation is O(1); hence, the total running time of n append operations is O(n).

(a)

0 2 4 5 6 731

$ $ $ $

$ $ $ $

(b)

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

Figure 5.14: Illustration of a series of append operations on a dynamic array: (a) an
8-cell array is full, with two cyber-dollars “stored” at cells 4 through 7; (b) an
append operation causes an overflow and a doubling of capacity. Copying the eight
old elements to the new array is paid for by the cyber-dollars already stored in the
table. Inserting the new element is paid for by one of the cyber-dollars charged to
the current append operation, and the two cyber-dollars profited are stored at cell 8.
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Geometric Increase in Capacity

Although the proof of Proposition 5.1 relies on the array being doubled each time
we expand, the O(1) amortized bound per operation can be proven for any geo-
metrically increasing progression of array sizes (see Section 2.4.2 for discussion of
geometric progressions). When choosing the geometric base, there exists a trade-
off between run-time efficiency and memory usage. With a base of 2 (i.e., doubling
the array), if the last insertion causes a resize event, the array essentially ends up
twice as large as it needs to be. If we instead increase the array by only 25% of
its current size (i.e., a geometric base of 1.25), we do not risk wasting as much
memory in the end, but there will be more intermediate resize events along the
way. Still it is possible to prove an O(1) amortized bound, using a constant factor
greater than the 3 cyber-dollars per operation used in the proof of Proposition 5.1
(see Exercise C-5.15). The key to the performance is that the amount of additional
space is proportional to the current size of the array.

Beware of Arithmetic Progression

To avoid reserving too much space at once, it might be tempting to implement a
dynamic array with a strategy in which a constant number of additional cells are
reserved each time an array is resized. Unfortunately, the overall performance of
such a strategy is significantly worse. At an extreme, an increase of only one cell
causes each append operation to resize the array, leading to a familiar 1+ 2 + 3 +
· · ·+ n summation and Ω(n2) overall cost. Using increases of 2 or 3 at a time is
slightly better, as portrayed in Figure 5.13, but the overall cost remains quadratic.
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(a) (b)
Figure 5.15: Running times of a series of append operations on a dynamic array
using arithmetic progression of sizes. (a) Assumes increase of 2 in size of the
array, while (b) assumes increase of 3.
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Using a fixed increment for each resize, and thus an arithmetic progression of
intermediate array sizes, results in an overall time that is quadratic in the number
of operations, as shown in the following proposition. Intuitively, even an increase
in 1000 cells per resize will become insignificant for large data sets.

Proposition 5.2: Performing a series of n append operations on an initially empty
dynamic array using a fixed increment with each resize takes Ω(n2) time.

Justification: Let c > 0 represent the fixed increment in capacity that is used for
each resize event. During the series of n append operations, time will have been
spent initializing arrays of size c,2c,3c, . . . ,mc for m = 
n/c�, and therefore, the
overall time would be proportional to c + 2c + 3c + · · ·+ mc. By Proposition 3.3,
this sum is

m

∑
i=1

ci = c ·
m

∑
i=1

i = c
m(m + 1)

2
≥ c

n
c (n

c + 1)

2
≥ n2

2c
.

Therefore, performing the n append operations takes Ω(n2) time.

A lesson to be learned from Propositions 5.1 and 5.2 is that a subtle difference in
an algorithm design can produce drastic differences in the asymptotic performance,
and that a careful analysis can provide important insights into the design of a data
structure.

Memory Usage and Shrinking an Array

Another consequence of the rule of a geometric increase in capacity when append-
ing to a dynamic array is that the final array size is guaranteed to be proportional to
the overall number of elements. That is, the data structure uses O(n) memory. This
is a very desirable property for a data structure.

If a container, such as a Python list, provides operations that cause the removal
of one or more elements, greater care must be taken to ensure that a dynamic array
guarantees O(n) memory usage. The risk is that repeated insertions may cause the
underlying array to grow arbitrarily large, and that there will no longer be a propor-
tional relationship between the actual number of elements and the array capacity
after many elements are removed.

A robust implementation of such a data structure will shrink the underlying
array, on occasion, while maintaining the O(1) amortized bound on individual op-
erations. However, care must be taken to ensure that the structure cannot rapidly
oscillate between growing and shrinking the underlying array, in which case the
amortized bound would not be achieved. In Exercise C-5.16, we explore a strategy
in which the array capacity is halved whenever the number of actual element falls
below one fourth of that capacity, thereby guaranteeing that the array capacity is at
most four times the number of elements; we explore the amortized analysis of such
a strategy in Exercises C-5.17 and C-5.18.
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5.3.3 Python’s List Class

The experiments of Code Fragment 5.1 and 5.2, at the beginning of Section 5.3,
provide empirical evidence that Python’s list class is using a form of dynamic arrays
for its storage. Yet, a careful examination of the intermediate array capacities (see
Exercises R-5.2 and C-5.13) suggests that Python is not using a pure geometric
progression, nor is it using an arithmetic progression.

With that said, it is clear that Python’s implementation of the append method
exhibits amortized constant-time behavior. We can demonstrate this fact experi-
mentally. A single append operation typically executes so quickly that it would be
difficult for us to accurately measure the time elapsed at that granularity, although
we should notice some of the more expensive operations in which a resize is per-
formed. We can get a more accurate measure of the amortized cost per operation
by performing a series of n append operations on an initially empty list and deter-
mining the average cost of each. A function to perform that experiment is given in
Code Fragment 5.4.

1 from time import time # import time function from time module
2 def compute average(n):
3 ”””Perform n appends to an empty list and return average time elapsed.”””
4 data = [ ]
5 start = time( ) # record the start time (in seconds)
6 for k in range(n):
7 data.append(None)
8 end = time( ) # record the end time (in seconds)
9 return (end − start) / n # compute average per operation

Code Fragment 5.4: Measuring the amortized cost of append for Python’s list class.

Technically, the time elapsed between the start and end includes the time to
manage the iteration of the for loop, in addition to the append calls. The empirical
results of the experiment, for increasingly large values of n, are shown in Table 5.2.
We see higher average cost for the smaller data sets, perhaps in part due to the over-
head of the loop range. There is also natural variance in measuring the amortized
cost in this way, because of the impact of the final resize event relative to n. Taken
as a whole, there seems clear evidence that the amortized time for each append is
independent of n.

n 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000
μs 0.219 0.158 0.164 0.151 0.147 0.147 0.149

Table 5.2: Average running time of append, measured in microseconds, as observed
over a sequence of n calls, starting with an empty list.
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5.4 Efficiency of Python’s Sequence Types

In the previous section, we began to explore the underpinnings of Python’s list
class, in terms of implementation strategies and efficiency. We continue in this
section by examining the performance of all of Python’s sequence types.

5.4.1 Python’s List and Tuple Classes

The nonmutating behaviors of the list class are precisely those that are supported
by the tuple class. We note that tuples are typically more memory efficient than
lists because they are immutable; therefore, there is no need for an underlying
dynamic array with surplus capacity. We summarize the asymptotic efficiency of
the nonmutating behaviors of the list and tuple classes in Table 5.3. An explanation
of this analysis follows.

Operation Running Time
len(data) O(1)

data[j] O(1)

data.count(value) O(n)

data.index(value) O(k + 1)

value in data O(k + 1)

data1 == data2
O(k + 1)

(similarly !=, <, <=, >, >=)
data[j:k] O(k− j + 1)

data1 + data2 O(n1 + n2)

c data O(cn)

Table 5.3: Asymptotic performance of the nonmutating behaviors of the list and
tuple classes. Identifiers data, data1, and data2 designate instances of the list or
tuple class, and n, n1, and n2 their respective lengths. For the containment check
and index method, k represents the index of the leftmost occurrence (with k = n if
there is no occurrence). For comparisons between two sequences, we let k denote
the leftmost index at which they disagree or else k = min(n1,n2).

Constant-Time Operations

The length of an instance is returned in constant time because an instance explicitly
maintains such state information. The constant-time efficiency of syntax data[j] is
assured by the underlying access into an array.
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Searching for Occurrences of a Value

Each of the count, index, and contains methods proceed through iteration
of the sequence from left to right. In fact, Code Fragment 2.14 of Section 2.4.3
demonstrates how those behaviors might be implemented. Notably, the loop for
computing the count must proceed through the entire sequence, while the loops
for checking containment of an element or determining the index of an element
immediately exit once they find the leftmost occurrence of the desired value, if
one exists. So while count always examines the n elements of the sequence,
index and contains examine n elements in the worst case, but may be faster.
Empirical evidence can be found by setting data = list(range(10000000)) and
then comparing the relative efficiency of the test, 5 in data, relative to the test,
9999995 in data, or even the failed test, −5 in data.

Lexicographic Comparisons

Comparisons between two sequences are defined lexicographically. In the worst
case, evaluating such a condition requires an iteration taking time proportional
to the length of the shorter of the two sequences (because when one sequence
ends, the lexicographic result can be determined). However, in some cases the
result of the test can be evaluated more efficiently. For example, if evaluating
[7, 3, ...] < [7, 5, ...], it is clear that the result is True without examining the re-
mainders of those lists, because the second element of the left operand is strictly
less than the second element of the right operand.

Creating New Instances

The final three behaviors in Table 5.3 are those that construct a new instance based
on one or more existing instances. In all cases, the running time depends on the
construction and initialization of the new result, and therefore the asymptotic be-
havior is proportional to the length of the result. Therefore, we find that slice
data[6000000:6000008] can be constructed almost immediately because it has only
eight elements, while slice data[6000000:7000000] has one million elements, and
thus is more time-consuming to create.

Mutating Behaviors

The efficiency of the mutating behaviors of the list class are described in Table 5.3.
The simplest of those behaviors has syntax data[j] = val, and is supported by the
special setitem method. This operation has worst-case O(1) running time be-
cause it simply replaces one element of a list with a new value. No other elements
are affected and the size of the underlying array does not change. The more inter-
esting behaviors to analyze are those that add or remove elements from the list.
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Operation Running Time
data[j] = val O(1)

data.append(value) O(1)∗

data.insert(k, value) O(n− k + 1)∗

data.pop() O(1)∗

data.pop(k)
O(n− k)∗

del data[k]

data.remove(value) O(n)∗

data1.extend(data2)
O(n2)

∗

data1 += data2

data.reverse() O(n)

data.sort() O(n logn)
∗amortized

Table 5.4: Asymptotic performance of the mutating behaviors of the list class. Iden-
tifiers data, data1, and data2 designate instances of the list class, and n, n1, and n2

their respective lengths.

Adding Elements to a List

In Section 5.3 we fully explored the append method. In the worst case, it requires
Ω(n) time because the underlying array is resized, but it uses O(1) time in the amor-
tized sense. Lists also support a method, with signature insert(k, value), that inserts
a given value into the list at index 0 ≤ k ≤ n while shifting all subsequent elements
back one slot to make room. For the purpose of illustration, Code Fragment 5.5 pro-
vides an implementation of that method, in the context of our DynamicArray class
introduced in Code Fragment 5.3. There are two complicating factors in analyzing
the efficiency of such an operation. First, we note that the addition of one element
may require a resizing of the dynamic array. That portion of the work requires Ω(n)
worst-case time but only O(1) amortized time, as per append. The other expense
for insert is the shifting of elements to make room for the new item. The time for

1 def insert(self, k, value):
2 ”””Insert value at index k, shifting subsequent values rightward.”””
3 # (for simplicity, we assume 0 <= k <= n in this verion)
4 if self. n == self. capacity: # not enough room
5 self. resize(2 self. capacity) # so double capacity
6 for j in range(self. n, k, −1): # shift rightmost first
7 self. A[j] = self. A[j−1]
8 self. A[k] = value # store newest element
9 self. n += 1

Code Fragment 5.5: Implementation of insert for our DynamicArray class.
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k210 n−1

Figure 5.16: Creating room to insert a new element at index k of a dynamic array.

that process depends upon the index of the new element, and thus the number of
other elements that must be shifted. That loop copies the reference that had been
at index n− 1 to index n, then the reference that had been at index n− 2 to n− 1,
continuing until copying the reference that had been at index k to k + 1, as illus-
trated in Figure 5.16. Overall this leads to an amortized O(n− k + 1) performance
for inserting at index k.

When exploring the efficiency of Python’s append method in Section 5.3.3,
we performed an experiment that measured the average cost of repeated calls on
varying sizes of lists (see Code Fragment 5.4 and Table 5.2). We have repeated that
experiment with the insert method, trying three different access patterns:

• In the first case, we repeatedly insert at the beginning of a list,
for n in range(N):

data.insert(0, None)

• In a second case, we repeatedly insert near the middle of a list,
for n in range(N):

data.insert(n // 2, None)

• In a third case, we repeatedly insert at the end of the list,
for n in range(N):

data.insert(n, None)

The results of our experiment are given in Table 5.5, reporting the average time per
operation (not the total time for the entire loop). As expected, we see that inserting
at the beginning of a list is most expensive, requiring linear time per operation.
Inserting at the middle requires about half the time as inserting at the beginning,
yet is still Ω(n) time. Inserting at the end displays O(1) behavior, akin to append.

N
100 1,000 10,000 100,000 1,000,000

k = 0 0.482 0.765 4.014 36.643 351.590
k = n // 2 0.451 0.577 2.191 17.873 175.383
k = n 0.420 0.422 0.395 0.389 0.397

Table 5.5: Average running time of insert(k, val), measured in microseconds, as
observed over a sequence of N calls, starting with an empty list. We let n denote
the size of the current list (as opposed to the final list).
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Removing Elements from a List

Python’s list class offers several ways to remove an element from a list. A call to
pop() removes the last element from a list. This is most efficient, because all other
elements remain in their original location. This is effectively an O(1) operation,
but the bound is amortized because Python will occasionally shrink the underlying
dynamic array to conserve memory.

The parameterized version, pop(k), removes the element that is at index k < n
of a list, shifting all subsequent elements leftward to fill the gap that results from
the removal. The efficiency of this operation is O(n− k), as the amount of shifting
depends upon the choice of index k, as illustrated in Figure 5.17. Note well that this
implies that pop(0) is the most expensive call, using Ω(n) time. (see experiments
in Exercise R-5.8.)

k210 n−1

Figure 5.17: Removing an element at index k of a dynamic array.

The list class offers another method, named remove, that allows the caller to
specify the value that should be removed (not the index at which it resides). For-
mally, it removes only the first occurrence of such a value from a list, or raises a
ValueError if no such value is found. An implementation of such behavior is given
in Code Fragment 5.6, again using our DynamicArray class for illustration.

Interestingly, there is no “efficient” case for remove; every call requires Ω(n)
time. One part of the process searches from the beginning until finding the value at
index k, while the rest iterates from k to the end in order to shift elements leftward.
This linear behavior can be observed experimentally (see Exercise C-5.24).

1 def remove(self, value):
2 ”””Remove first occurrence of value (or raise ValueError).”””
3 # note: we do not consider shrinking the dynamic array in this version
4 for k in range(self. n):
5 if self. A[k] == value: # found a match!
6 for j in range(k, self. n − 1): # shift others to fill gap
7 self. A[j] = self. A[j+1]
8 self. A[self. n − 1] = None # help garbage collection
9 self. n −= 1 # we have one less item

10 return # exit immediately
11 raise ValueError( value not found ) # only reached if no match

Code Fragment 5.6: Implementation of remove for our DynamicArray class.
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Extending a List

Python provides a method named extend that is used to add all elements of one list
to the end of a second list. In effect, a call to data.extend(other) produces the same
outcome as the code,

for element in other:
data.append(element)

In either case, the running time is proportional to the length of the other list, and
amortized because the underlying array for the first list may be resized to accom-
modate the additional elements.

In practice, the extend method is preferable to repeated calls to append because
the constant factors hidden in the asymptotic analysis are significantly smaller. The
greater efficiency of extend is threefold. First, there is always some advantage to
using an appropriate Python method, because those methods are often implemented
natively in a compiled language (rather than as interpreted Python code). Second,
there is less overhead to a single function call that accomplishes all the work, versus
many individual function calls. Finally, increased efficiency of extend comes from
the fact that the resulting size of the updated list can be calculated in advance. If the
second data set is quite large, there is some risk that the underlying dynamic array
might be resized multiple times when using repeated calls to append. With a single
call to extend, at most one resize operation will be performed. Exercise C-5.22
explores the relative efficiency of these two approaches experimentally.

Constructing New Lists

There are several syntaxes for constructing new lists. In almost all cases, the asymp-
totic efficiency of the behavior is linear in the length of the list that is created. How-
ever, as with the case in the preceding discussion of extend, there are significant
differences in the practical efficiency.

Section 1.9.2 introduces the topic of list comprehension, using an example
such as squares = [ k k for k in range(1, n+1) ] as a shorthand for

squares = [ ]
for k in range(1, n+1):

squares.append(k k)

Experiments should show that the list comprehension syntax is significantly faster
than building the list by repeatedly appending (see Exercise C-5.23).

Similarly, it is a common Python idiom to initialize a list of constant values
using the multiplication operator, as in [0] n to produce a list of length n with
all values equal to zero. Not only is this succinct for the programmer; it is more
efficient than building such a list incrementally.
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5.4.2 Python’s String Class

Strings are very important in Python. We introduced their use in Chapter 1, with
a discussion of various operator syntaxes in Section 1.3. A comprehensive sum-
mary of the named methods of the class is given in Tables A.1 through A.4 of
Appendix A. We will not formally analyze the efficiency of each of those behav-
iors in this section, but we do wish to comment on some notable issues. In general,
we let n denote the length of a string. For operations that rely on a second string as
a pattern, we let m denote the length of that pattern string.

The analysis for many behaviors is quite intuitive. For example, methods that
produce a new string (e.g., capitalize, center, strip) require time that is linear in
the length of the string that is produced. Many of the behaviors that test Boolean
conditions of a string (e.g., islower) take O(n) time, examining all n characters in the
worst case, but short circuiting as soon as the answer becomes evident (e.g., islower
can immediately return False if the first character is uppercased). The comparison
operators (e.g., ==, <) fall into this category as well.

Pattern Matching

Some of the most interesting behaviors, from an algorithmic point of view, are those
that in some way depend upon finding a string pattern within a larger string; this
goal is at the heart of methods such as contains , find, index, count, replace,
and split. String algorithms will be the topic of Chapter 13, and this particular
problem known as pattern matching will be the focus of Section 13.2. A naive im-
plementation runs in O(mn) time case, because we consider the n−m + 1 possible
starting indices for the pattern, and we spend O(m) time at each starting position,
checking if the pattern matches. However, in Section 13.2, we will develop an al-
gorithm for finding a pattern of length m within a longer string of length n in O(n)
time.

Composing Strings

Finally, we wish to comment on several approaches for composing large strings. As
an academic exercise, assume that we have a large string named document, and our
goal is to produce a new string, letters, that contains only the alphabetic characters
of the original string (e.g., with spaces, numbers, and punctuation removed). It may
be tempting to compose a result through repeated concatenation, as follows.

# WARNING: do not do this
letters = # start with empty string
for c in document:

if c.isalpha():
letters += c # concatenate alphabetic character
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While the preceding code fragment accomplishes the goal, it may be terribly
inefficient. Because strings are immutable, the command, letters += c, would
presumably compute the concatenation, letters + c, as a new string instance and
then reassign the identifier, letters, to that result. Constructing that new string
would require time proportional to its length. If the final result has n characters, the
series of concatenations would take time proportional to the familiar sum 1+ 2 +
3+ · · ·+ n, and therefore O(n2) time.

Inefficient code of this type is widespread in Python, perhaps because of the
somewhat natural appearance of the code, and mistaken presumptions about how
the += operator is evaluated with strings. Some later implementations of the
Python interpreter have developed an optimization to allow such code to complete
in linear time, but this is not guaranteed for all Python implementations. The op-
timization is as follows. The reason that a command, letters += c, causes a new
string instance to be created is that the original string must be left unchanged if
another variable in a program refers to that string. On the other hand, if Python
knew that there were no other references to the string in question, it could imple-
ment += more efficiently by directly mutating the string (as a dynamic array). As
it happens, the Python interpreter already maintains what are known as reference
counts for each object; this count is used in part to determine if an object can be
garbage collected. (See Section 15.1.2.) But in this context, it provides a means to
detect when no other references exist to a string, thereby allowing the optimization.

A more standard Python idiom to guarantee linear time composition of a string
is to use a temporary list to store individual pieces, and then to rely on the join
method of the str class to compose the final result. Using this technique with our
previous example would appear as follows:

temp = [ ] # start with empty list
for c in document:

if c.isalpha():
temp.append(c) # append alphabetic character

letters = .join(temp) # compose overall result

This approach is guaranteed to run in O(n) time. First, we note that the series of
up to n append calls will require a total of O(n) time, as per the definition of the
amortized cost of that operation. The final call to join also guarantees that it takes
time that is linear in the final length of the composed string.

As we discussed at the end of the previous section, we can further improve
the practical execution time by using a list comprehension syntax to build up the
temporary list, rather than by repeated calls to append. That solution appears as,

letters = .join([c for c in document if c.isalpha()])

Better yet, we can entirely avoid the temporary list with a generator comprehension:

letters = .join(c for c in document if c.isalpha())
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5.5 Using Array-Based Sequences

5.5.1 Storing High Scores for a Game

The first application we study is storing a sequence of high score entries for a video
game. This is representative of many applications in which a sequence of objects
must be stored. We could just as easily have chosen to store records for patients in
a hospital or the names of players on a football team. Nevertheless, let us focus on
storing high score entries, which is a simple application that is already rich enough
to present some important data-structuring concepts.

To begin, we consider what information to include in an object representing a
high score entry. Obviously, one component to include is an integer representing
the score itself, which we identify as score. Another useful thing to include is
the name of the person earning this score, which we identify as name. We could
go on from here, adding fields representing the date the score was earned or game
statistics that led to that score. However, we omit such details to keep our example
simple. A Python class, GameEntry, representing a game entry, is given in Code
Fragment 5.7.

1 class GameEntry:
2 ”””Represents one entry of a list of high scores.”””
3
4 def init (self, name, score):
5 self. name = name
6 self. score = score
7
8 def get name(self):
9 return self. name

10
11 def get score(self):
12 return self. score
13
14 def str (self):
15 return ({0}, {1}) .format(self. name, self. score) # e.g., (Bob, 98)

Code Fragment 5.7: Python code for a simple GameEntry class. We include meth-
ods for returning the name and score for a game entry object, as well as a method
for returning a string representation of this entry.
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A Class for High Scores

To maintain a sequence of high scores, we develop a class named Scoreboard. A
scoreboard is limited to a certain number of high scores that can be saved; once that
limit is reached, a new score only qualifies for the scoreboard if it is strictly higher
than the lowest “high score” on the board. The length of the desired scoreboard may
depend on the game, perhaps 10, 50, or 500. Since that limit may vary depending on
the game, we allow it to be specified as a parameter to our Scoreboard constructor.

Internally, we will use a Python list named board in order to manage the
GameEntry instances that represent the high scores. Since we expect the score-
board to eventually reach full capacity, we initialize the list to be large enough to
hold the maximum number of scores, but we initially set all entries to None. By
allocating the list with maximum capacity initially, it never needs to be resized. As
entries are added, we will maintain them from highest to lowest score, starting at
index 0 of the list. We illustrate a typical state of the data structure in Figure 5.18.

320 1 97 8654

660

Mike 1105 Paul 720 Rose 590

Rob 750 Anna Jack 510

Figure 5.18: An illustration of an ordered list of length ten, storing references to six
GameEntry objects in the cells from index 0 to 5, with the rest being None.

A complete Python implementation of the Scoreboard class is given in Code
Fragment 5.8. The constructor is rather simple. The command

self. board = [None] capacity

creates a list with the desired length, yet all entries equal to None. We maintain
an additional instance variable, n, that represents the number of actual entries
currently in our table. For convenience, our class supports the getitem method
to retrieve an entry at a given index with a syntax board[i] (or None if no such entry
exists), and we support a simple str method that returns a string representation
of the entire scoreboard, with one entry per line.
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1 class Scoreboard:
2 ”””Fixed-length sequence of high scores in nondecreasing order.”””
3
4 def init (self, capacity=10):
5 ”””Initialize scoreboard with given maximum capacity.
6
7 All entries are initially None.
8 ”””
9 self. board = [None] capacity # reserve space for future scores

10 self. n = 0 # number of actual entries
11
12 def getitem (self, k):
13 ”””Return entry at index k.”””
14 return self. board[k]
15
16 def str (self):
17 ”””Return string representation of the high score list.”””
18 return \n .join(str(self. board[j]) for j in range(self. n))
19
20 def add(self, entry):
21 ”””Consider adding entry to high scores.”””
22 score = entry.get score()
23
24 # Does new entry qualify as a high score?
25 # answer is yes if board not full or score is higher than last entry
26 good = self. n < len(self. board) or score > self. board[−1].get score()
27
28 if good:
29 if self. n < len(self. board): # no score drops from list
30 self. n += 1 # so overall number increases
31
32 # shift lower scores rightward to make room for new entry
33 j = self. n − 1
34 while j > 0 and self. board[j−1].get score( ) < score:
35 self. board[j] = self. board[j−1] # shift entry from j-1 to j
36 j −= 1 # and decrement j
37 self. board[j] = entry # when done, add new entry

Code Fragment 5.8: Python code for a Scoreboard class that maintains an ordered
series of scores as GameEntry objects.
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Adding an Entry

The most interesting method of the Scoreboard class is add, which is responsible
for considering the addition of a new entry to the scoreboard. Keep in mind that
every entry will not necessarily qualify as a high score. If the board is not yet full,
any new entry will be retained. Once the board is full, a new entry is only retained
if it is strictly better than one of the other scores, in particular, the last entry of the
scoreboard, which is the lowest of the high scores.

When a new score is considered, we begin by determining whether it qualifies
as a high score. If so, we increase the count of active scores, n, unless the board
is already at full capacity. In that case, adding a new high score causes some other
entry to be dropped from the scoreboard, so the overall number of entries remains
the same.

To correctly place a new entry within the list, the final task is to shift any in-
ferior scores one spot lower (with the least score being dropped entirely when the
scoreboard is full). This process is quite similar to the implementation of the insert
method of the list class, as described on pages 204–205. In the context of our score-
board, there is no need to shift any None references that remain near the end of the
array, so the process can proceed as diagrammed in Figure 5.19.

0 1 98765432

Mike 1105

Rob 750

Paul 720 Rose 590

Anna 660 Jack 510

740Jill

Figure 5.19: Adding a new GameEntry for Jill to the scoreboard. In order to make
room for the new reference, we have to shift the references for game entries with
smaller scores than the new one to the right by one cell. Then we can insert the new
entry with index 2.

To implement the final stage, we begin by considering index j = self. n − 1,
which is the index at which the last GameEntry instance will reside, after complet-
ing the operation. Either j is the correct index for the newest entry, or one or more
immediately before it will have lesser scores. The while loop at line 34 checks the
compound condition, shifting references rightward and decrementing j, as long as
there is another entry at index j−1 with a score less than the new score.
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5.5.2 Sorting a Sequence

In the previous subsection, we considered an application for which we added an ob-
ject to a sequence at a given position while shifting other elements so as to keep the
previous order intact. In this section, we use a similar technique to solve the sorting
problem, that is, starting with an unordered sequence of elements and rearranging
them into nondecreasing order.

The Insertion-Sort Algorithm

We study several sorting algorithms in this book, most of which are described in
Chapter 12. As a warm-up, in this section we describe a nice, simple sorting al-
gorithm known as insertion-sort. The algorithm proceeds as follows for an array-
based sequence. We start with the first element in the array. One element by itself
is already sorted. Then we consider the next element in the array. If it is smaller
than the first, we swap them. Next we consider the third element in the array. We
swap it leftward until it is in its proper order with the first two elements. We then
consider the fourth element, and swap it leftward until it is in the proper order with
the first three. We continue in this manner with the fifth element, the sixth, and so
on, until the whole array is sorted. We can express the insertion-sort algorithm in
pseudo-code, as shown in Code Fragment 5.9.

Algorithm InsertionSort(A):
Input: An array A of n comparable elements
Output: The array A with elements rearranged in nondecreasing order

for k from 1 to n − 1 do
Insert A[k] at its proper location within A[0], A[1], . . ., A[k].

Code Fragment 5.9: High-level description of the insertion-sort algorithm.

This is a simple, high-level description of insertion-sort. If we look back to
Code Fragment 5.8 of Section 5.5.1, we see that the task of inserting a new en-
try into the list of high scores is almost identical to the task of inserting a newly
considered element in insertion-sort (except that game scores were ordered from
high to low). We provide a Python implementation of insertion-sort in Code Frag-
ment 5.10, using an outer loop to consider each element in turn, and an inner
loop that moves a newly considered element to its proper location relative to the
(sorted) subarray of elements that are to its left. We illustrate an example run of the
insertion-sort algorithm in Figure 5.20.

The nested loops of insertion-sort lead to an O(n2) running time in the worst
case. The most work is done if the array is initially in reverse order. On the other
hand, if the initial array is nearly sorted or perfectly sorted, insertion-sort runs in
O(n) time because there are few or no iterations of the inner loop.
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1 def insertion sort(A):
2 ”””Sort list of comparable elements into nondecreasing order.”””
3 for k in range(1, len(A)): # from 1 to n-1
4 cur = A[k] # current element to be inserted
5 j = k # find correct index j for current
6 while j > 0 and A[j−1] > cur: # element A[j-1] must be after current
7 A[j] = A[j−1]
8 j −= 1
9 A[j] = cur # cur is now in the right place

Code Fragment 5.10: Python code for performing insertion-sort on a list.
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0

00
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Figure 5.20: Execution of the insertion-sort algorithm on an array of eight charac-
ters. Each row corresponds to an iteration of the outer loop, and each copy of the
sequence in a row corresponds to an iteration of the inner loop. The current element
that is being inserted is highlighted in the array, and shown as the cur value.
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5.5.3 Simple Cryptography

An interesting application of strings and lists is cryptography, the science of secret
messages and their applications. This field studies ways of performing encryp-
tion, which takes a message, called the plaintext, and converts it into a scrambled
message, called the ciphertext. Likewise, cryptography also studies corresponding
ways of performing decryption, which takes a ciphertext and turns it back into its
original plaintext.

Arguably the earliest encryption scheme is the Caesar cipher, which is named
after Julius Caesar, who used this scheme to protect important military messages.
(All of Caesar’s messages were written in Latin, of course, which already makes
them unreadable for most of us!) The Caesar cipher is a simple way to obscure a
message written in a language that forms words with an alphabet.

The Caesar cipher involves replacing each letter in a message with the letter that
is a certain number of letters after it in the alphabet. So, in an English message, we
might replace each A with D, each B with E, each C with F, and so on, if shifting by
three characters. We continue this approach all the way up to W, which is replaced
with Z. Then, we let the substitution pattern wrap around, so that we replace X
with A, Y with B, and Z with C.

Converting Between Strings and Character Lists

Given that strings are immutable, we cannot directly edit an instance to encrypt it.
Instead, our goal will be to generate a new string. A convenient technique for per-
forming string transformations is to create an equivalent list of characters, edit the
list, and then reassemble a (new) string based on the list. The first step can be per-
formed by sending the string as a parameter to the constructor of the list class. For
example, the expression list( bird ) produces the result [ b , i , r , d ].
Conversely, we can use a list of characters to build a string by invoking the join
method on an empty string, with the list of characters as the parameter. For exam-
ple, the call .join([ b , i , r , d ]) returns the string bird .

Using Characters as Array Indices

If we were to number our letters like array indices, so that A is 0, B is 1, C is 2,
and so on, then we can write the Caesar cipher with a rotation of r as a simple
formula: Replace each letter i with the letter (i + r) mod 26, where mod is the
modulo operator, which returns the remainder after performing an integer division.
This operator is denoted with % in Python, and it is exactly the operator we need
to easily perform the wrap around at the end of the alphabet. For 26 mod 26 is
0, 27 mod 26 is 1, and 28 mod 26 is 2. The decryption algorithm for the Caesar
cipher is just the opposite—we replace each letter with the one r places before it,
with wrap around (that is, letter i is replaced by letter (i− r) mod 26).
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We can represent a replacement rule using another string to describe the trans-
lation. As a concrete example, suppose we are using a Caesar cipher with a three-
character rotation. We can precompute a string that represents the replacements
that should be used for each character from A to Z. For example, A should be re-
placed by D, B replaced by E, and so on. The 26 replacement characters in order
are DEFGHIJKLMNOPQRSTUVWXYZABC . We can subsequently use this translation
string as a guide to encrypt a message. The remaining challenge is how to quickly
locate the replacement for each character of the original message.

Fortunately, we can rely on the fact that characters are represented in Unicode
by integer code points, and the code points for the uppercase letters of the Latin
alphabet are consecutive (for simplicity, we restrict our encryption to uppercase
letters). Python supports functions that convert between integer code points and
one-character strings. Specifically, the function ord(c) takes a one-character string
as a parameter and returns the integer code point for that character. Conversely, the
function chr(j) takes an integer and returns its associated one-character string.

In order to find a replacement for a character in our Caesar cipher, we need to
map the characters A to Z to the respective numbers 0 to 25. The formula for
doing that conversion is j = ord(c) − ord( A ). As a sanity check, if character c
is A , we have that j = 0. When c is B , we will find that its ordinal value is pre-
cisely one more than that for A , so their difference is 1. In general, the integer j
that results from such a calculation can be used as an index into our precomputed
translation string, as illustrated in Figure 5.21.

10 2423222120191817161514131211 259876543210

M O P Q R S T U V W X Y Z A B CD E F G H I J K L N

Here is the
replacement for T

ord( T ) − ord( A )

84 − 65

19=

=
In Unicode

Using T as an index

encoder array

Figure 5.21: Illustrating the use of uppercase characters as indices, in this case to
perform the replacement rule for Caesar cipher encryption.

In Code Fragment 5.11, we develop a Python class for performing the Caesar
cipher with an arbitrary rotational shift, and demonstrate its use. When we run this
program (to perform a simple test), we get the following output.

Secret: WKH HDJOH LV LQ SODB; PHHW DW MRH’V.

Message: THE EAGLE IS IN PLAY; MEET AT JOE’S.

The constructor for the class builds the forward and backward translation strings for
the given rotation. With those in hand, the encryption and decryption algorithms
are essentially the same, and so we perform both by means of a nonpublic utility
method named transform.

www.it-ebooks.info

http://www.it-ebooks.info/


218 Chapter 5. Array-Based Sequences

1 class CaesarCipher:
2 ”””Class for doing encryption and decryption using a Caesar cipher.”””
3
4 def init (self, shift):
5 ”””Construct Caesar cipher using given integer shift for rotation.”””
6 encoder = [None] 26 # temp array for encryption
7 decoder = [None] 26 # temp array for decryption
8 for k in range(26):
9 encoder[k] = chr((k + shift) % 26 + ord( A ))

10 decoder[k] = chr((k − shift) % 26 + ord( A ))
11 self. forward = .join(encoder) # will store as string
12 self. backward = .join(decoder) # since fixed
13
14 def encrypt(self, message):
15 ”””Return string representing encripted message.”””
16 return self. transform(message, self. forward)
17
18 def decrypt(self, secret):
19 ”””Return decrypted message given encrypted secret.”””
20 return self. transform(secret, self. backward)
21
22 def transform(self, original, code):
23 ”””Utility to perform transformation based on given code string.”””
24 msg = list(original)
25 for k in range(len(msg)):
26 if msg[k].isupper():
27 j = ord(msg[k]) − ord( A ) # index from 0 to 25
28 msg[k] = code[j] # replace this character
29 return .join(msg)
30
31 if name == __main__ :
32 cipher = CaesarCipher(3)
33 message = "THE EAGLE IS IN PLAY; MEET AT JOE S."

34 coded = cipher.encrypt(message)
35 print( Secret: , coded)
36 answer = cipher.decrypt(coded)
37 print( Message: , answer)

Code Fragment 5.11: A complete Python class for the Caesar cipher.
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5.6 Multidimensional Data Sets

Lists, tuples, and strings in Python are one-dimensional. We use a single index to
access each element of the sequence. Many computer applications involve mul-
tidimensional data sets. For example, computer graphics are often modeled in
either two or three dimensions. Geographic information may be naturally repre-
sented in two dimensions, medical imaging may provide three-dimensional scans
of a patient, and a company’s valuation is often based upon a high number of in-
dependent financial measures that can be modeled as multidimensional data. A
two-dimensional array is sometimes also called a matrix. We may use two indices,
say i and j, to refer to the cells in the matrix. The first index usually refers to a
row number and the second to a column number, and these are traditionally zero-
indexed in computer science. Figure 5.22 illustrates a two-dimensional data set
with integer values. This data might, for example, represent the number of stores
in various regions of Manhattan.

22 18 709 5 33 10 4 56 82 440

45 32 830 120 750 660 13 77 20 105

4 880 45 66 61 28 650 7 510 67

940 12 36 3 20 100 306 590 0 500

50 65 42 49 88 25 70 126 83 288

398 233 5 83 59 232 49 8 365 90

33 58 632 87 94 5 59 204 120 829

62 394 3 4 102 140 183 390 16 26

8

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 9

Figure 5.22: Illustration of a two-dimensional integer data set, which has 8 rows
and 10 columns. The rows and columns are zero-indexed. If this data set were
named stores, the value of stores[3][5] is 100 and the value of stores[6][2] is 632.

A common representation for a two-dimensional data set in Python is as a list
of lists. In particular, we can represent a two-dimensional array as a list of rows,
with each row itself being a list of values. For example, the two-dimensional data

22 18 709 5 33
45 32 830 120 750
4 880 45 66 61

might be stored in Python as follows.

data = [ [22, 18, 709, 5, 33], [45, 32, 830, 120, 750], [4, 880, 45, 66, 61] ]

An advantage of this representation is that we can naturally use a syntax such
as data[1][3] to represent the value that has row index 1 and column index 3, as
data[1], the second entry in the outer list, is itself a list, and thus indexable.
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Constructing a Multidimensional List

To quickly initialize a one-dimensional list, we generally rely on a syntax such as
data = [0] n to create a list of n zeros. On page 189, we emphasized that from
a technical perspective, this creates a list of length n with all entries referencing
the same integer instance, but that there was no meaningful consequence of such
aliasing because of the immutability of the int class in Python.

We have to be considerably more careful when creating a list of lists. If our
goal were to create the equivalent of a two-dimensional list of integers, with r rows
and c columns, and to initialize all values to zero, a flawed approach might be to
try the command

data = ([0] c) r # Warning: this is a mistake

While([0] c) is indeed a list of c zeros, multiplying that list by r unfortunately cre-
ates a single list with length r · c, just as [2,4,6] 2 results in list [2, 4, 6, 2, 4, 6].

A better, yet still flawed attempt is to make a list that contains the list of c zeros
as its only element, and then to multiply that list by r. That is, we could try the
command

data = [ [0] c ] r # Warning: still a mistake

This is much closer, as we actually do have a structure that is formally a list of lists.
The problem is that all r entries of the list known as data are references to the same
instance of a list of c zeros. Figure 5.23 provides a portrayal of such aliasing.

0

0

00 0 0 0 0

1 2 3 4 5

1 2

data:

Figure 5.23: A flawed representation of a 3×6 data set as a list of lists, created with
the command data = [ [0] 6 ] 3. (For simplicity, we overlook the fact that the
values in the secondary list are referential.)

This is truly a problem. Setting an entry such as data[2][0] = 100 would change
the first entry of the secondary list to reference a new value, 100. Yet that cell of
the secondary list also represents the value data[0][0], because “row” data[0] and
“row” data[2] refer to the same secondary list.

www.it-ebooks.info

http://www.it-ebooks.info/


5.6. Multidimensional Data Sets 221

0 0 0

0

00 0 0 0 0 000 0 00 00 00 0 0

31 2 2 3 4 5 1 2 4 5

1 2

data:

3 4 5 1

Figure 5.24: A valid representation of a 3×6 data set as a list of lists. (For simplic-
ity, we overlook the fact that the values in the secondary lists are referential.)

To properly initialize a two-dimensional list, we must ensure that each cell of
the primary list refers to an independent instance of a secondary list. This can be
accomplished through the use of Python’s list comprehension syntax.

data = [ [0] c for j in range(r) ]

This command produces a valid configuration, similar to the one shown in Fig-
ure 5.24. By using list comprehension, the expression [0] c is reevaluated for
each pass of the embedded for loop. Therefore, we get r distinct secondary lists, as
desired. (We note that the variable j in that command is irrelevant; we simply need
a for loop that iterates r times.)

Two-Dimensional Arrays and Positional Games

Many computer games, be they strategy games, simulation games, or first-person
conflict games, involve objects that reside in a two-dimensional space. Software for
such positional games need a way of representing such a two-dimensional “board,”
and in Python the list of lists is a natural choice.

Tic-Tac-Toe

As most school children know, Tic-Tac-Toe is a game played in a three-by-three
board. Two players—X and O—alternate in placing their respective marks in the
cells of this board, starting with player X. If either player succeeds in getting three
of his or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it’s not even that
much fun to play, since a good player O can always force a tie. Tic-Tac-Toe’s saving
grace is that it is a nice, simple example showing how two-dimensional arrays can
be used for positional games. Software for more sophisticated positional games,
such as checkers, chess, or the popular simulation games, are all based on the same
approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe.
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Our representation of a 3× 3 board will be a list of lists of characters, with
X or O designating a player’s move, or designating an empty space. For

example, the board configuration

XO O

O X

X

will be stored internally as

[ [ O , X , O ], [ , X , ], [ , O , X ] ]

We develop a complete Python class for maintaining a Tic-Tac-Toe board for
two players. That class will keep track of the moves and report a winner, but it
does not perform any strategy or allow someone to play Tic-Tac-Toe against the
computer. The details of such a program are beyond the scope of this chapter, but
it might nonetheless make a good course project (see Exercise P-8.68).

Before presenting the implementation of the class, we demonstrate its public
interface with a simple test in Code Fragment 5.12.

1 game = TicTacToe()
2 # X moves: # O moves:
3 game.mark(1, 1); game.mark(0, 2)
4 game.mark(2, 2); game.mark(0, 0)
5 game.mark(0, 1); game.mark(2, 1)
6 game.mark(1, 2); game.mark(1, 0)
7 game.mark(2, 0)
8
9 print(game)

10 winner = game.winner()
11 if winner is None:
12 print( Tie )
13 else:
14 print(winner, wins )

Code Fragment 5.12: A simple test for our Tic-Tac-Toe class.

The basic operations are that a new game instance represents an empty board,
that the mark(i,j) method adds a mark at the given position for the current player
(with the software managing the alternating of turns), and that the game board can
be printed and the winner determined. The complete source code for the TicTacToe
class is given in Code Fragment 5.13. Our mark method performs error checking
to make sure that valid indices are sent, that the position is not already occupied,
and that no further moves are made after someone wins the game.
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1 class TicTacToe:
2 ”””Management of a Tic-Tac-Toe game (does not do strategy).”””
3
4 def init (self):
5 ”””Start a new game.”””
6 self. board = [ [ ] 3 for j in range(3) ]
7 self. player = X

8
9 def mark(self, i, j):

10 ”””Put an X or O mark at position (i,j) for next player s turn.”””
11 if not (0 <= i <= 2 and 0 <= j <= 2):
12 raise ValueError( Invalid board position )
13 if self. board[i][j] != :
14 raise ValueError( Board position occupied )
15 if self.winner( ) is not None:
16 raise ValueError( Game is already complete )
17 self. board[i][j] = self. player
18 if self. player == X :
19 self. player = O

20 else:
21 self. player = X

22
23 def is win(self, mark):
24 ”””Check whether the board configuration is a win for the given player.”””
25 board = self. board # local variable for shorthand
26 return (mark == board[0][0] == board[0][1] == board[0][2] or # row 0
27 mark == board[1][0] == board[1][1] == board[1][2] or # row 1
28 mark == board[2][0] == board[2][1] == board[2][2] or # row 2
29 mark == board[0][0] == board[1][0] == board[2][0] or # column 0
30 mark == board[0][1] == board[1][1] == board[2][1] or # column 1
31 mark == board[0][2] == board[1][2] == board[2][2] or # column 2
32 mark == board[0][0] == board[1][1] == board[2][2] or # diagonal
33 mark == board[0][2] == board[1][1] == board[2][0]) # rev diag
34
35 def winner(self):
36 ”””Return mark of winning player, or None to indicate a tie.”””
37 for mark in XO :
38 if self. is win(mark):
39 return mark
40 return None
41
42 def str (self):
43 ”””Return string representation of current game board.”””
44 rows = [ | .join(self. board[r]) for r in range(3)]
45 return \n-----\n .join(rows)

Code Fragment 5.13: A complete Python class for managing a Tic-Tac-Toe game.

www.it-ebooks.info

http://www.it-ebooks.info/


224 Chapter 5. Array-Based Sequences

5.7 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-5.1 Execute the experiment from Code Fragment 5.1 and compare the results
on your system to those we report in Code Fragment 5.2.

R-5.2 In Code Fragment 5.1, we perform an experiment to compare the length of
a Python list to its underlying memory usage. Determining the sequence
of array sizes requires a manual inspection of the output of that program.
Redesign the experiment so that the program outputs only those values of
k at which the existing capacity is exhausted. For example, on a system
consistent with the results of Code Fragment 5.2, your program should
output that the sequence of array capacities are 0, 4, 8, 16, 25, . . . .

R-5.3 Modify the experiment from Code Fragment 5.1 in order to demonstrate
that Python’s list class occasionally shrinks the size of its underlying array
when elements are popped from a list.

R-5.4 Our DynamicArray class, as given in Code Fragment 5.3, does not support
use of negative indices with getitem . Update that method to better
match the semantics of a Python list.

R-5.5 Redo the justification of Proposition 5.1 assuming that the the cost of
growing the array from size k to size 2k is 3k cyber-dollars. How much
should each append operation be charged to make the amortization work?

R-5.6 Our implementation of insert for the DynamicArray class, as given in
Code Fragment 5.5, has the following inefficiency. In the case when a re-
size occurs, the resize operation takes time to copy all the elements from
an old array to a new array, and then the subsequent loop in the body of
insert shifts many of those elements. Give an improved implementation
of the insert method, so that, in the case of a resize, the elements are
shifted into their final position during that operation, thereby avoiding the
subsequent shifting.

R-5.7 Let A be an array of size n ≥ 2 containing integers from 1 to n−1, inclu-
sive, with exactly one repeated. Describe a fast algorithm for finding the
integer in A that is repeated.

R-5.8 Experimentally evaluate the efficiency of the pop method of Python’s list
class when using varying indices as a parameter, as we did for insert on
page 205. Report your results akin to Table 5.5.
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R-5.9 Explain the changes that would have to be made to the program of Code
Fragment 5.11 so that it could perform the Caesar cipher for messages
that are written in an alphabet-based language other than English, such as
Greek, Russian, or Hebrew.

R-5.10 The constructor for the CaesarCipher class in Code Fragment 5.11 can
be implemented with a two-line body by building the forward and back-
ward strings using a combination of the join method and an appropriate
comprehension syntax. Give such an implementation.

R-5.11 Use standard control structures to compute the sum of all numbers in an
n×n data set, represented as a list of lists.

R-5.12 Describe how the built-in sum function can be combined with Python’s
comprehension syntax to compute the sum of all numbers in an n×n data
set, represented as a list of lists.

Creativity

C-5.13 In the experiment of Code Fragment 5.1, we begin with an empty list. If
data were initially constructed with nonempty length, does this affect the
sequence of values at which the underlying array is expanded? Perform
your own experiments, and comment on any relationship you see between
the initial length and the expansion sequence.

C-5.14 The shuffle method, supported by the random module, takes a Python
list and rearranges it so that every possible ordering is equally likely.
Implement your own version of such a function. You may rely on the
randrange(n) function of the random module, which returns a random
number between 0 and n−1 inclusive.

C-5.15 Consider an implementation of a dynamic array, but instead of copying
the elements into an array of double the size (that is, from N to 2N) when
its capacity is reached, we copy the elements into an array with 
N/4�
additional cells, going from capacity N to capacity N + 
N/4�. Prove that
performing a sequence of n append operations still runs in O(n) time in
this case.

C-5.16 Implement a pop method for the DynamicArray class, given in Code Frag-
ment 5.3, that removes the last element of the array, and that shrinks the
capacity, N, of the array by half any time the number of elements in the
array goes below N/4.

C-5.17 Prove that when using a dynamic array that grows and shrinks as in the
previous exercise, the following series of 2n operations takes O(n) time:
n append operations on an initially empty array, followed by n pop oper-
ations.
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C-5.18 Give a formal proof that any sequence of n append or pop operations on
an initially empty dynamic array takes O(n) time, if using the strategy
described in Exercise C-5.16.

C-5.19 Consider a variant of Exercise C-5.16, in which an array of capacity N is
resized to capacity precisely that of the number of elements, any time the
number of elements in the array goes strictly below N/4. Give a formal
proof that any sequence of n append or pop operations on an initially
empty dynamic array takes O(n) time.

C-5.20 Consider a variant of Exercise C-5.16, in which an array of capacity N, is
resized to capacity precisely that of the number of elements, any time the
number of elements in the array goes strictly below N/2. Show that there
exists a sequence of n operations that requires Ω(n2) time to execute.

C-5.21 In Section 5.4.2, we described four different ways to compose a long
string: (1) repeated concatenation, (2) appending to a temporary list and
then joining, (3) using list comprehension with join, and (4) using genera-
tor comprehension with join. Develop an experiment to test the efficiency
of all four of these approaches and report your findings.

C-5.22 Develop an experiment to compare the relative efficiency of the extend
method of Python’s list class versus using repeated calls to append to
accomplish the equivalent task.

C-5.23 Based on the discussion of page 207, develop an experiment to compare
the efficiency of Python’s list comprehension syntax versus the construc-
tion of a list by means of repeated calls to append.

C-5.24 Perform experiments to evaluate the efficiency of the remove method of
Python’s list class, as we did for insert on page 205. Use known values so
that all removals occur either at the beginning, middle, or end of the list.
Report your results akin to Table 5.5.

C-5.25 The syntax data.remove(value) for Python list data removes only the first
occurrence of element value from the list. Give an implementation of a
function, with signature remove all(data, value), that removes all occur-
rences of value from the given list, such that the worst-case running time
of the function is O(n) on a list with n elements. Not that it is not efficient
enough in general to rely on repeated calls to remove.

C-5.26 Let B be an array of size n ≥ 6 containing integers from 1 to n−5, inclu-
sive, with exactly five repeated. Describe a good algorithm for finding the
five integers in B that are repeated.

C-5.27 Given a Python list L of n positive integers, each represented with k =

logn�+ 1 bits, describe an O(n)-time method for finding a k-bit integer
not in L.

C-5.28 Argue why any solution to the previous problem must run in Ω(n) time.
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C-5.29 A useful operation in databases is the natural join. If we view a database
as a list of ordered pairs of objects, then the natural join of databases A
and B is the list of all ordered triples (x,y,z) such that the pair (x,y) is in
A and the pair (y,z) is in B. Describe and analyze an efficient algorithm
for computing the natural join of a list A of n pairs and a list B of m pairs.

C-5.30 When Bob wants to send Alice a message M on the Internet, he breaks M
into n data packets, numbers the packets consecutively, and injects them
into the network. When the packets arrive at Alice’s computer, they may
be out of order, so Alice must assemble the sequence of n packets in order
before she can be sure she has the entire message. Describe an efficient
scheme for Alice to do this, assuming that she knows the value of n. What
is the running time of this algorithm?

C-5.31 Describe a way to use recursion to add all the numbers in an n× n data
set, represented as a list of lists.

Projects

P-5.32 Write a Python function that takes two three-dimensional numeric data
sets and adds them componentwise.

P-5.33 Write a Python program for a matrix class that can add and multiply two-
dimensional arrays of numbers, assuming the dimensions agree appropri-
ately for the operation.

P-5.34 Write a program that can perform the Caesar cipher for English messages
that include both upper- and lowercase characters.

P-5.35 Implement a class, SubstitutionCipher, with a constructor that takes a
string with the 26 uppercase letters in an arbitrary order and uses that for
the forward mapping for encryption (akin to the self. forward string in
our CaesarCipher class of Code Fragment 5.11). You should derive the
backward mapping from the forward version.

P-5.36 Redesign the CaesarCipher class as a subclass of the SubstitutionCipher
from the previous problem.

P-5.37 Design a RandomCipher class as a subclass of the SubstitutionCipher
from Exercise P-5.35, so that each instance of the class relies on a random
permutation of letters for its mapping.

Chapter Notes

The fundamental data structures of arrays belong to the folklore of computer science. They
were first chronicled in the computer science literature by Knuth in his seminal book on
Fundamental Algorithms [64].
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6.1 Stacks

A stack is a collection of objects that are inserted and removed according to the
last-in, first-out (LIFO) principle. A user may insert objects into a stack at any
time, but may only access or remove the most recently inserted object that remains
(at the so-called “top” of the stack). The name “stack” is derived from the metaphor
of a stack of plates in a spring-loaded, cafeteria plate dispenser. In this case, the
fundamental operations involve the “pushing” and “popping” of plates on the stack.
When we need a new plate from the dispenser, we “pop” the top plate off the stack,
and when we add a plate, we “push” it down on the stack to become the new top
plate. Perhaps an even more amusing example is a PEZ® candy dispenser, which
stores mint candies in a spring-loaded container that “pops” out the topmost candy
in the stack when the top of the dispenser is lifted (see Figure 6.1). Stacks are
a fundamental data structure. They are used in many applications, including the
following.

Example 6.1: Internet Web browsers store the addresses of recently visited sites
in a stack. Each time a user visits a new site, that site’s address is “pushed” onto the
stack of addresses. The browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Example 6.2: Text editors usually provide an “undo” mechanism that cancels re-
cent editing operations and reverts to former states of a document. This undo oper-
ation can be accomplished by keeping text changes in a stack.

Figure 6.1: A schematic drawing of a PEZ® dispenser; a physical implementation
of the stack ADT. (PEZ® is a registered trademark of PEZ Candy, Inc.)

www.it-ebooks.info

http://www.it-ebooks.info/


230 Chapter 6. Stacks, Queues, and Deques

6.1.1 The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most
important. They are used in a host of different applications, and as a tool for many
more sophisticated data structures and algorithms. Formally, a stack is an abstract
data type (ADT) such that an instance S supports the following two methods:

S.push(e): Add element e to the top of stack S.

S.pop(): Remove and return the top element from the stack S;
an error occurs if the stack is empty.

Additionally, let us define the following accessor methods for convenience:

S.top(): Return a reference to the top element of stack S, without
removing it; an error occurs if the stack is empty.

S.is empty(): Return True if stack S does not contain any elements.

len(S): Return the number of elements in stack S; in Python, we
implement this with the special method len .

By convention, we assume that a newly created stack is empty, and that there is no
a priori bound on the capacity of the stack. Elements added to the stack can have
arbitrary type.

Example 6.3: The following table shows a series of stack operations and their
effects on an initially empty stack S of integers.

Operation Return Value Stack Contents
S.push(5) – [5]
S.push(3) – [5, 3]

len(S) 2 [5, 3]
S.pop() 3 [5]

S.is empty() False [5]
S.pop() 5 [ ]

S.is empty() True [ ]
S.pop() “error” [ ]

S.push(7) – [7]
S.push(9) – [7, 9]
S.top() 9 [7, 9]

S.push(4) – [7, 9, 4]
len(S) 3 [7, 9, 4]

S.pop() 4 [7, 9]
S.push(6) – [7, 9, 6]
S.push(8) – [7, 9, 6, 8]
S.pop() 8 [7, 9, 6]
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6.1.2 Simple Array-Based Stack Implementation

We can implement a stack quite easily by storing its elements in a Python list. The
list class already supports adding an element to the end with the append method,
and removing the last element with the pop method, so it is natural to align the top
of the stack at the end of the list, as shown in Figure 6.2.

0

MB C D E F G K LA

1 2 top

Figure 6.2: Implementing a stack with a Python list, storing the top element in the
rightmost cell.

Although a programmer could directly use the list class in place of a formal
stack class, lists also include behaviors (e.g., adding or removing elements from
arbitrary positions) that would break the abstraction that the stack ADT represents.
Also, the terminology used by the list class does not precisely align with traditional
nomenclature for a stack ADT, in particular the distinction between append and
push. Instead, we demonstrate how to use a list for internal storage while providing
a public interface consistent with a stack.

The Adapter Pattern

The adapter design pattern applies to any context where we effectively want to
modify an existing class so that its methods match those of a related, but different,
class or interface. One general way to apply the adapter pattern is to define a new
class in such a way that it contains an instance of the existing class as a hidden
field, and then to implement each method of the new class using methods of this
hidden instance variable. By applying the adapter pattern in this way, we have
created a new class that performs some of the same functions as an existing class,
but repackaged in a more convenient way. In the context of the stack ADT, we can
adapt Python’s list class using the correspondences shown in Table 6.1.

Stack Method Realization with Python list
S.push(e) L.append(e)
S.pop() L.pop()
S.top() L[−1]
S.is empty() len(L) == 0
len(S) len(L)

Table 6.1: Realization of a stack S as an adaptation of a Python list L.
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Implementing a Stack Using a Python List

We use the adapter design pattern to define an ArrayStack class that uses an un-
derlying Python list for storage. (We choose the name ArrayStack to emphasize
that the underlying storage is inherently array based.) One question that remains is
what our code should do if a user calls pop or top when the stack is empty. Our
ADT suggests that an error occurs, but we must decide what type of error. When
pop is called on an empty Python list, it formally raises an IndexError, as lists are
index-based sequences. That choice does not seem appropriate for a stack, since
there is no assumption of indices. Instead, we can define a new exception class that
is more appropriate. Code Fragment 6.1 defines such an Empty class as a trivial
subclass of the Python Exception class.

class Empty(Exception):
”””Error attempting to access an element from an empty container.”””
pass

Code Fragment 6.1: Definition for an Empty exception class.

The formal definition for our ArrayStack class is given in Code Fragment 6.2.
The constructor establishes the member self. data as an initially empty Python list,
for internal storage. The rest of the public stack behaviors are implemented, using
the corresponding adaptation that was outlined in Table 6.1.

Example Usage

Below, we present an example of the use of our ArrayStack class, mirroring the
operations at the beginning of Example 6.3 on page 230.

S = ArrayStack( ) # contents: [ ]
S.push(5) # contents: [5]
S.push(3) # contents: [5, 3]
print(len(S)) # contents: [5, 3]; outputs 2
print(S.pop()) # contents: [5]; outputs 3
print(S.is empty()) # contents: [5]; outputs False
print(S.pop()) # contents: [ ]; outputs 5
print(S.is empty()) # contents: [ ]; outputs True
S.push(7) # contents: [7]
S.push(9) # contents: [7, 9]
print(S.top()) # contents: [7, 9]; outputs 9
S.push(4) # contents: [7, 9, 4]
print(len(S)) # contents: [7, 9, 4]; outputs 3
print(S.pop()) # contents: [7, 9]; outputs 4
S.push(6) # contents: [7, 9, 6]
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1 class ArrayStack:
2 ”””LIFO Stack implementation using a Python list as underlying storage.”””
3
4 def init (self):
5 ”””Create an empty stack.”””
6 self. data = [ ] # nonpublic list instance
7
8 def len (self):
9 ”””Return the number of elements in the stack.”””

10 return len(self. data)
11
12 def is empty(self):
13 ”””Return True if the stack is empty.”””
14 return len(self. data) == 0
15
16 def push(self, e):
17 ”””Add element e to the top of the stack.”””
18 self. data.append(e) # new item stored at end of list
19
20 def top(self):
21 ”””Return (but do not remove) the element at the top of the stack.
22
23 Raise Empty exception if the stack is empty.
24 ”””
25 if self.is empty():
26 raise Empty( Stack is empty )
27 return self. data[−1] # the last item in the list
28
29 def pop(self):
30 ”””Remove and return the element from the top of the stack (i.e., LIFO).
31
32 Raise Empty exception if the stack is empty.
33 ”””
34 if self.is empty():
35 raise Empty( Stack is empty )
36 return self. data.pop( ) # remove last item from list

Code Fragment 6.2: Implementing a stack using a Python list as storage.
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Analyzing the Array-Based Stack Implementation

Table 6.2 shows the running times for our ArrayStack methods. The analysis di-
rectly mirrors the analysis of the list class given in Section 5.3. The implementa-
tions for top, is empty, and len use constant time in the worst case. The O(1) time
for push and pop are amortized bounds (see Section 5.3.2); a typical call to either
of these methods uses constant time, but there is occasionally an O(n)-time worst
case, where n is the current number of elements in the stack, when an operation
causes the list to resize its internal array. The space usage for a stack is O(n).

Operation Running Time
S.push(e) O(1)∗

S.pop() O(1)∗

S.top() O(1)

S.is empty() O(1)

len(S) O(1)
∗amortized

Table 6.2: Performance of our array-based stack implementation. The bounds for
push and pop are amortized due to similar bounds for the list class. The space
usage is O(n), where n is the current number of elements in the stack.

Avoiding Amortization by Reserving Capacity

In some contexts, there may be additional knowledge that suggests a maximum size
that a stack will reach. Our implementation of ArrayStack from Code Fragment 6.2
begins with an empty list and expands as needed. In the analysis of lists from
Section 5.4.1, we emphasized that it is more efficient in practice to construct a list
with initial length n than it is to start with an empty list and append n items (even
though both approaches run in O(n) time).

As an alternate model for a stack, we might wish for the constructor to accept
a parameter specifying the maximum capacity of a stack and to initialize the data
member to a list of that length. Implementing such a model requires significant
changes relative to Code Fragment 6.2. The size of the stack would no longer be
synonymous with the length of the list, and pushes and pops of the stack would not
require changing the length of the list. Instead, we suggest maintaining a separate
integer as an instance variable that denotes the current number of elements in the
stack. Details of such an implementation are left as Exercise C-6.17.
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6.1.3 Reversing Data Using a Stack

As a consequence of the LIFO protocol, a stack can be used as a general tool to
reverse a data sequence. For example, if the values 1, 2, and 3 are pushed onto a
stack in that order, they will be popped from the stack in the order 3, 2, and then 1.

This idea can be applied in a variety of settings. For example, we might wish
to print lines of a file in reverse order in order to display a data set in decreasing
order rather than increasing order. This can be accomplished by reading each line
and pushing it onto a stack, and then writing the lines in the order they are popped.
An implementation of such a process is given in Code Fragment 6.3.

1 def reverse file(filename):
2 ”””Overwrite given file with its contents line-by-line reversed.”””
3 S = ArrayStack()
4 original = open(filename)
5 for line in original:
6 S.push(line.rstrip( \n )) # we will re-insert newlines when writing
7 original.close()
8
9 # now we overwrite with contents in LIFO order

10 output = open(filename, w ) # reopening file overwrites original
11 while not S.is empty():
12 output.write(S.pop( ) + \n ) # re-insert newline characters
13 output.close()

Code Fragment 6.3: A function that reverses the order of lines in a file.

One technical detail worth noting is that we intentionally strip trailing newlines
from lines as they are read, and then re-insert newlines after each line when writing
the resulting file. Our reason for doing this is to handle a special case in which the
original file does not have a trailing newline for the final line. If we exactly echoed
the lines read from the file in reverse order, then the original last line would be fol-
lowed (without newline) by the original second-to-last line. In our implementation,
we ensure that there will be a separating newline in the result.

The idea of using a stack to reverse a data set can be applied to other types of
sequences. For example, Exercise R-6.5 explores the use of a stack to provide yet
another solution for reversing the contents of a Python list (a recursive solution for
this goal was discussed in Section 4.4.1). A more challenging task is to reverse
the order in which elements are stored within a stack. If we were to move them
from one stack to another, they would be reversed, but if we were to then replace
them into the original stack, they would be reversed again, thereby reverting to their
original order. Exercise C-6.18 explores a solution for this task.
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6.1.4 Matching Parentheses and HTML Tags

In this subsection, we explore two related applications of stacks, both of which
involve testing for pairs of matching delimiters. In our first application, we consider
arithmetic expressions that may contain various pairs of grouping symbols, such as

• Parentheses: “(” and “)”
• Braces: “{” and “}”
• Brackets: “[” and “]”

Each opening symbol must match its corresponding closing symbol. For example, a
left bracket, “[,” must match a corresponding right bracket, “],” as in the expression
[(5+x)-(y+z)]. The following examples further illustrate this concept:

• Correct: ()(()){([()])}
• Correct: ((()(()){([()])}))
• Incorrect: )(()){([()])}
• Incorrect: ({[ ])}
• Incorrect: (

We leave the precise definition of a matching group of symbols to Exercise R-6.6.

An Algorithm for Matching Delimiters

An important task when processing arithmetic expressions is to make sure their
delimiting symbols match up correctly. Code Fragment 6.4 presents a Python im-
plementation of such an algorithm. A discussion of the code follows.

1 def is matched(expr):
2 ”””Return True if all delimiters are properly match; False otherwise.”””
3 lefty = ({[ # opening delimiters
4 righty = )}] # respective closing delims
5 S = ArrayStack()
6 for c in expr:
7 if c in lefty:
8 S.push(c) # push left delimiter on stack
9 elif c in righty:

10 if S.is empty():
11 return False # nothing to match with
12 if righty.index(c) != lefty.index(S.pop()):
13 return False # mismatched
14 return S.is empty( ) # were all symbols matched?

Code Fragment 6.4: Function for matching delimiters in an arithmetic expression.
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We assume the input is a sequence of characters, such as [(5+x)-(y+z)] .
We perform a left-to-right scan of the original sequence, using a stack S to facilitate
the matching of grouping symbols. Each time we encounter an opening symbol,
we push that symbol onto S, and each time we encounter a closing symbol, we pop
a symbol from the stack S (assuming S is not empty), and check that these two
symbols form a valid pair. If we reach the end of the expression and the stack is
empty, then the original expression was properly matched. Otherwise, there must
be an opening delimiter on the stack without a matching symbol.

If the length of the original expression is n, the algorithm will make at most
n calls to push and n calls to pop. Those calls run in a total of O(n) time, even con-
sidering the amortized nature of the O(1) time bound for those methods. Given that
our selection of possible delimiters, ({[, has constant size, auxiliary tests such as
c in lefty and righty.index(c) each run in O(1) time. Combining these operations,
the matching algorithm on a sequence of length n runs in O(n) time.

Matching Tags in a Markup Language

Another application of matching delimiters is in the validation of markup languages
such as HTML or XML. HTML is the standard format for hyperlinked documents
on the Internet and XML is an extensible markup language used for a variety of
structured data sets. We show a sample HTML document and a possible rendering
in Figure 6.3.

<body>

<center>

<h1> The Little Boat </h1>

</center>

<p> The storm tossed the little

boat like a cheap sneaker in an

old washing machine. The three

drunken fishermen were used to

such treatment, of course, but

not the tree salesman, who even as

a stowaway now felt that he

had overpaid for the voyage. </p>

<ol>

<li> Will the salesman die? </li>

<li> What color is the boat? </li>

<li> And what about Naomi? </li>

</ol>

</body>

The Little Boat
The storm tossed the little boat
like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

(a) (b)

Figure 6.3: Illustrating HTML tags. (a) An HTML document; (b) its rendering.
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In an HTML document, portions of text are delimited by HTML tags. A simple
opening HTML tag has the form “<name>” and the corresponding closing tag has
the form “</name>”. For example, we see the <body> tag on the first line of
Figure 6.3(a), and the matching </body> tag at the close of that document. Other
commonly used HTML tags that are used in this example include:

• body: document body
• h1: section header
• center: center justify
• p: paragraph
• ol: numbered (ordered) list
• li: list item

Ideally, an HTML document should have matching tags, although most browsers
tolerate a certain number of mismatching tags. In Code Fragment 6.5, we give a
Python function that matches tags in a string representing an HTML document. We
make a left-to-right pass through the raw string, using index j to track our progress
and the find method of the str class to locate the < and > characters that define
the tags. Opening tags are pushed onto the stack, and matched against closing tags
as they are popped from the stack, just as we did when matching delimiters in Code
Fragment 6.4. By similar analysis, this algorithm runs in O(n) time, where n is the
number of characters in the raw HTML source.

1 def is matched html(raw):
2 ”””Return True if all HTML tags are properly match; False otherwise.”””
3 S = ArrayStack()
4 j = raw.find( < ) # find first ’<’ character (if any)
5 while j != −1:
6 k = raw.find( > , j+1) # find next ’>’ character
7 if k == −1:
8 return False # invalid tag
9 tag = raw[j+1:k] # strip away < >

10 if not tag.startswith( / ): # this is opening tag
11 S.push(tag)
12 else: # this is closing tag
13 if S.is empty():
14 return False # nothing to match with
15 if tag[1:] != S.pop():
16 return False # mismatched delimiter
17 j = raw.find( < , k+1) # find next ’<’ character (if any)
18 return S.is empty( ) # were all opening tags matched?

Code Fragment 6.5: Function for testing if an HTML document has matching tags.

www.it-ebooks.info

http://www.it-ebooks.info/


6.2. Queues 239

6.2 Queues

Another fundamental data structure is the queue. It is a close “cousin” of the stack,
as a queue is a collection of objects that are inserted and removed according to the
first-in, first-out (FIFO) principle. That is, elements can be inserted at any time,
but only the element that has been in the queue the longest can be next removed.

We usually say that elements enter a queue at the back and are removed from
the front. A metaphor for this terminology is a line of people waiting to get on an
amusement park ride. People waiting for such a ride enter at the back of the line
and get on the ride from the front of the line. There are many other applications
of queues (see Figure 6.4). Stores, theaters, reservation centers, and other similar
services typically process customer requests according to the FIFO principle. A
queue would therefore be a logical choice for a data structure to handle calls to a
customer service center, or a wait-list at a restaurant. FIFO queues are also used by
many computing devices, such as a networked printer, or a Web server responding
to requests.

Tickets

(a)

Call C
enter

Call Queue

(b)

Figure 6.4: Real-world examples of a first-in, first-out queue. (a) People waiting in
line to purchase tickets; (b) phone calls being routed to a customer service center.
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6.2.1 The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps objects in a
sequence, where element access and deletion are restricted to the first element in
the queue, and element insertion is restricted to the back of the sequence. This
restriction enforces the rule that items are inserted and deleted in a queue accord-
ing to the first-in, first-out (FIFO) principle. The queue abstract data type (ADT)
supports the following two fundamental methods for a queue Q:

Q.enqueue(e): Add element e to the back of queue Q.

Q.dequeue(): Remove and return the first element from queue Q;
an error occurs if the queue is empty.

The queue ADT also includes the following supporting methods (with first being
analogous to the stack’s top method):

Q.first(): Return a reference to the element at the front of queue Q,
without removing it; an error occurs if the queue is empty.

Q.is empty(): Return True if queue Q does not contain any elements.

len(Q): Return the number of elements in queue Q; in Python,
we implement this with the special method len .

By convention, we assume that a newly created queue is empty, and that there
is no a priori bound on the capacity of the queue. Elements added to the queue can
have arbitrary type.

Example 6.4: The following table shows a series of queue operations and their
effects on an initially empty queue Q of integers.

Operation Return Value first ← Q ← last

Q.enqueue(5) – [5]
Q.enqueue(3) – [5, 3]

len(Q) 2 [5, 3]
Q.dequeue() 5 [3]
Q.is empty() False [3]
Q.dequeue() 3 [ ]
Q.is empty() True [ ]
Q.dequeue() “error” [ ]
Q.enqueue(7) – [7]
Q.enqueue(9) – [7, 9]

Q.first() 7 [7, 9]
Q.enqueue(4) – [7, 9, 4]

len(Q) 3 [7, 9, 4]
Q.dequeue() 7 [9, 4]
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6.2.2 Array-Based Queue Implementation

For the stack ADT, we created a very simple adapter class that used a Python list
as the underlying storage. It may be very tempting to use a similar approach for
supporting the queue ADT. We could enqueue element e by calling append(e) to
add it to the end of the list. We could use the syntax pop(0), as opposed to pop(),
to intentionally remove the first element from the list when dequeuing.

As easy as this would be to implement, it is tragically inefficient. As we dis-
cussed in Section 5.4.1, when pop is called on a list with a non-default index, a
loop is executed to shift all elements beyond the specified index to the left, so as to
fill the hole in the sequence caused by the pop. Therefore, a call to pop(0) always
causes the worst-case behavior of Θ(n) time.

We can improve on the above strategy by avoiding the call to pop(0) entirely.
We can replace the dequeued entry in the array with a reference to None, and main-
tain an explicit variable f to store the index of the element that is currently at the
front of the queue. Such an algorithm for dequeue would run in O(1) time. After
several dequeue operations, this approach might lead to the configuration portrayed
in Figure 6.5.

0

E F G K L M

1 2 f

Figure 6.5: Allowing the front of the queue to drift away from index 0.

Unfortunately, there remains a drawback to the revised approach. In the case
of a stack, the length of the list was precisely equal to the size of the stack (even if
the underlying array for the list was slightly larger). With the queue design that we
are considering, the situation is worse. We can build a queue that has relatively few
elements, yet which are stored in an arbitrarily large list. This occurs, for example,
if we repeatedly enqueue a new element and then dequeue another (allowing the
front to drift rightward). Over time, the size of the underlying list would grow to
O(m) where m is the total number of enqueue operations since the creation of the
queue, rather than the current number of elements in the queue.

This design would have detrimental consequences in applications in which
queues have relatively modest size, but which are used for long periods of time.
For example, the wait-list for a restaurant might never have more than 30 entries
at one time, but over the course of a day (or a week), the overall number of entries
would be significantly larger.

www.it-ebooks.info

http://www.it-ebooks.info/


242 Chapter 6. Stacks, Queues, and Deques

Using an Array Circularly

In developing a more robust queue implementation, we allow the front of the queue
to drift rightward, and we allow the contents of the queue to “wrap around” the end
of an underlying array. We assume that our underlying array has fixed length N
that is greater that the actual number of elements in the queue. New elements
are enqueued toward the “end” of the current queue, progressing from the front to
index N − 1 and continuing at index 0, then 1. Figure 6.6 illustrates such a queue
with first element E and last element M.

0

M F G HI J K L E

1 2 f N −1

Figure 6.6: Modeling a queue with a circular array that wraps around the end.

Implementing this circular view is not difficult. When we dequeue an element
and want to “advance” the front index, we use the arithmetic f = (f + 1) % N. Re-
call that the % operator in Python denotes the modulo operator, which is computed
by taking the remainder after an integral division. For example, 14 divided by 3 has
a quotient of 4 with remainder 2, that is, 14

3 = 42
3 . So in Python, 14 // 3 evaluates

to the quotient 4, while 14 % 3 evaluates to the remainder 2. The modulo operator
is ideal for treating an array circularly. As a concrete example, if we have a list
of length 10, and a front index 7, we can advance the front by formally computing
(7+1) % 10, which is simply 8, as 8 divided by 10 is 0 with a remainder of 8.
Similarly, advancing index 8 results in index 9. But when we advance from index 9
(the last one in the array), we compute (9+1) % 10, which evaluates to index 0 (as
10 divided by 10 has a remainder of zero).

A Python Queue Implementation

A complete implementation of a queue ADT using a Python list in circular fashion
is presented in Code Fragments 6.6 and 6.7. Internally, the queue class maintains
the following three instance variables:

data: is a reference to a list instance with a fixed capacity.

size: is an integer representing the current number of elements stored
in the queue (as opposed to the length of the data list).

front: is an integer that represents the index within data of the first
element of the queue (assuming the queue is not empty).

We initially reserve a list of moderate size for storing data, although the queue
formally has size zero. As a technicality, we initialize the front index to zero.

When front or dequeue are called with no elements in the queue, we raise an
instance of the Empty exception, defined in Code Fragment 6.1 for our stack.
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1 class ArrayQueue:
2 ”””FIFO queue implementation using a Python list as underlying storage.”””
3 DEFAULT CAPACITY = 10 # moderate capacity for all new queues
4
5 def init (self):
6 ”””Create an empty queue.”””
7 self. data = [None] ArrayQueue.DEFAULT CAPACITY
8 self. size = 0
9 self. front = 0

10
11 def len (self):
12 ”””Return the number of elements in the queue.”””
13 return self. size
14
15 def is empty(self):
16 ”””Return True if the queue is empty.”””
17 return self. size == 0
18
19 def first(self):
20 ”””Return (but do not remove) the element at the front of the queue.
21
22 Raise Empty exception if the queue is empty.
23 ”””
24 if self.is empty():
25 raise Empty( Queue is empty )
26 return self. data[self. front]
27
28 def dequeue(self):
29 ”””Remove and return the first element of the queue (i.e., FIFO).
30
31 Raise Empty exception if the queue is empty.
32 ”””
33 if self.is empty():
34 raise Empty( Queue is empty )
35 answer = self. data[self. front]
36 self. data[self. front] = None # help garbage collection
37 self. front = (self. front + 1) % len(self. data)
38 self. size −= 1
39 return answer

Code Fragment 6.6: Array-based implementation of a queue (continued in Code
Fragment 6.7).
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40 def enqueue(self, e):
41 ”””Add an element to the back of queue.”””
42 if self. size == len(self. data):
43 self. resize(2 len(self.data)) # double the array size
44 avail = (self. front + self. size) % len(self. data)
45 self. data[avail] = e
46 self. size += 1
47
48 def resize(self, cap): # we assume cap >= len(self)
49 ”””Resize to a new list of capacity >= len(self).”””
50 old = self. data # keep track of existing list
51 self. data = [None] cap # allocate list with new capacity
52 walk = self. front
53 for k in range(self. size): # only consider existing elements
54 self. data[k] = old[walk] # intentionally shift indices
55 walk = (1 + walk) % len(old) # use old size as modulus
56 self. front = 0 # front has been realigned

Code Fragment 6.7: Array-based implementation of a queue (continued from Code
Fragment 6.6).

The implementation of len and is empty are trivial, given knowledge of
the size. The implementation of the front method is also simple, as the front
index tells us precisely where the desired element is located within the data list,
assuming that list is not empty.

Adding and Removing Elements

The goal of the enqueue method is to add a new element to the back of the queue.
We need to determine the proper index at which to place the new element. Although
we do not explicitly maintain an instance variable for the back of the queue, we
compute the location of the next opening based on the formula:

avail = (self. front + self. size) % len(self. data)

Note that we are using the size of the queue as it exists prior to the addition of the
new element. For example, consider a queue with capacity 10, current size 3, and
first element at index 5. The three elements of such a queue are stored at indices 5,
6, and 7. The new element should be placed at index (front + size) = 8. In a case
with wrap-around, the use of the modular arithmetic achieves the desired circular
semantics. For example, if our hypothetical queue had 3 elements with the first at
index 8, our computation of (8+3) % 10 evaluates to 1, which is perfect since the
three existing elements occupy indices 8, 9, and 0.
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When the dequeue method is called, the current value of self. front designates
the index of the value that is to be removed and returned. We keep a local refer-
ence to the element that will be returned, setting answer = self. data[self. front]
just prior to removing the reference to that object from the list, with the assignment
self. data[self. front] = None. Our reason for the assignment to None relates to
Python’s mechanism for reclaiming unused space. Internally, Python maintains a
count of the number of references that exist to each object. If that count reaches
zero, the object is effectively inaccessible, thus the system may reclaim that mem-
ory for future use. (For more details, see Section 15.1.2.) Since we are no longer
responsible for storing a dequeued element, we remove the reference to it from our
list so as to reduce that element’s reference count.

The second significant responsibility of the dequeue method is to update the
value of front to reflect the removal of the element, and the presumed promotion
of the second element to become the new first. In most cases, we simply want
to increment the index by one, but because of the possibility of a wrap-around
configuration, we rely on modular arithmetic as originally described on page 242.

Resizing the Queue

When enqueue is called at a time when the size of the queue equals the size of the
underlying list, we rely on a standard technique of doubling the storage capacity of
the underlying list. In this way, our approach is similar to the one used when we
implemented a DynamicArray in Section 5.3.1.

However, more care is needed in the queue’s resize utility than was needed in
the corresponding method of the DynamicArray class. After creating a temporary
reference to the old list of values, we allocate a new list that is twice the size and
copy references from the old list to the new list. While transferring the contents, we
intentionally realign the front of the queue with index 0 in the new array, as shown
in Figure 6.7. This realignment is not purely cosmetic. Since the modular arith-
metic depends on the size of the array, our state would be flawed had we transferred
each element to its same index in the new array.

E G HI J K

E F G H I J K

F

f

1 2f = 0

Figure 6.7: Resizing the queue, while realigning the front element with index 0.

www.it-ebooks.info

http://www.it-ebooks.info/


246 Chapter 6. Stacks, Queues, and Deques

Shrinking the Underlying Array

A desirable property of a queue implementation is to have its space usage be Θ(n)
where n is the current number of elements in the queue. Our ArrayQueue imple-
mentation, as given in Code Fragments 6.6 and 6.7, does not have this property.
It expands the underlying array when enqueue is called with the queue at full ca-
pacity, but the dequeue implementation never shrinks the underlying array. As a
consequence, the capacity of the underlying array is proportional to the maximum
number of elements that have ever been stored in the queue, not the current number
of elements.

We discussed this very issue on page 200, in the context of dynamic arrays, and
in subsequent Exercises C-5.16 through C-5.20 of that chapter. A robust approach
is to reduce the array to half of its current size, whenever the number of elements
stored in it falls below one fourth of its capacity. We can implement this strategy by
adding the following two lines of code in our dequeue method, just after reducing
self. size at line 38 of Code Fragment 6.6, to reflect the loss of an element.

if 0 < self. size < len(self. data) // 4:
self. resize(len(self. data) // 2)

Analyzing the Array-Based Queue Implementation

Table 6.3 describes the performance of our array-based implementation of the queue
ADT, assuming the improvement described above for occasionally shrinking the
size of the array. With the exception of the resize utility, all of the methods rely
on a constant number of statements involving arithmetic operations, comparisons,
and assignments. Therefore, each method runs in worst-case O(1) time, except
for enqueue and dequeue, which have amortized bounds of O(1) time, for reasons
similar to those given in Section 5.3.

Operation Running Time
Q.enqueue(e) O(1)∗

Q.dequeue() O(1)∗

Q.first() O(1)

Q.is empty() O(1)

len(Q) O(1)
∗amortized

Table 6.3: Performance of an array-based implementation of a queue. The bounds
for enqueue and dequeue are amortized due to the resizing of the array. The space
usage is O(n), where n is the current number of elements in the queue.
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6.3 Double-Ended Queues

We next consider a queue-like data structure that supports insertion and deletion
at both the front and the back of the queue. Such a structure is called a double-
ended queue, or deque, which is usually pronounced “deck” to avoid confusion
with the dequeue method of the regular queue ADT, which is pronounced like the
abbreviation “D.Q.”

The deque abstract data type is more general than both the stack and the queue
ADTs. The extra generality can be useful in some applications. For example, we
described a restaurant using a queue to maintain a waitlist. Occassionally, the first
person might be removed from the queue only to find that a table was not available;
typically, the restaurant will re-insert the person at the first position in the queue. It
may also be that a customer at the end of the queue may grow impatient and leave
the restaurant. (We will need an even more general data structure if we want to
model customers leaving the queue from other positions.)

6.3.1 The Deque Abstract Data Type

To provide a symmetrical abstraction, the deque ADT is defined so that deque D
supports the following methods:

D.add first(e): Add element e to the front of deque D.

D.add last(e): Add element e to the back of deque D.

D.delete first(): Remove and return the first element from deque D;
an error occurs if the deque is empty.

D.delete last(): Remove and return the last element from deque D;
an error occurs if the deque is empty.

Additionally, the deque ADT will include the following accessors:

D.first(): Return (but do not remove) the first element of deque D;
an error occurs if the deque is empty.

D.last(): Return (but do not remove) the last element of deque D;
an error occurs if the deque is empty.

D.is empty(): Return True if deque D does not contain any elements.

len(D): Return the number of elements in deque D; in Python,
we implement this with the special method len .
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Example 6.5: The following table shows a series of operations and their effects
on an initially empty deque D of integers.

Operation Return Value Deque
D.add last(5) – [5]
D.add first(3) – [3, 5]
D.add first(7) – [7, 3, 5]

D.first() 7 [7, 3, 5]
D.delete last() 5 [7, 3]

len(D) 2 [7, 3]
D.delete last() 3 [7]
D.delete last() 7 [ ]
D.add first(6) – [6]

D.last() 6 [6]
D.add first(8) – [8, 6]
D.is empty() False [8, 6]

D.last() 6 [8, 6]

6.3.2 Implementing a Deque with a Circular Array

We can implement the deque ADT in much the same way as the ArrayQueue class
provided in Code Fragments 6.6 and 6.7 of Section 6.2.2 (so much so that we leave
the details of an ArrayDeque implementation to Exercise P-6.32). We recommend
maintaining the same three instance variables: data, size, and front. Whenever
we need to know the index of the back of the deque, or the first available slot
beyond the back of the deque, we use modular arithmetic for the computation. For
example, our implementation of the last() method uses the index

back = (self. front + self. size − 1) % len(self. data)

Our implementation of the ArrayDeque.add last method is essentially the same
as that for ArrayQueue.enqueue, including the reliance on a resize utility. Like-
wise, the implementation of the ArrayDeque.delete first method is the same as
ArrayQueue.dequeue. Implementations of add first and delete last use similar
techniques. One subtlety is that a call to add first may need to wrap around the
beginning of the array, so we rely on modular arithmetic to circularly decrement
the index, as

self. front = (self. front − 1) % len(self. data) # cyclic shift

The efficiency of an ArrayDeque is similar to that of an ArrayQueue, with all
operations having O(1) running time, but with that bound being amortized for op-
erations that may change the size of the underlying list.
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6.3.3 Deques in the Python Collections Module

An implementation of a deque class is available in Python’s standard collections
module. A summary of the most commonly used behaviors of the collections.deque
class is given in Table 6.4. It uses more asymmetric nomenclature than our ADT.

Our Deque ADT collections.deque Description
len(D) len(D) number of elements
D.add first() D.appendleft() add to beginning
D.add last() D.append() add to end
D.delete first() D.popleft() remove from beginning
D.delete last() D.pop() remove from end
D.first() D[0] access first element
D.last() D[−1] access last element

D[j] access arbitrary entry by index
D[j] = val modify arbitrary entry by index
D.clear() clear all contents
D.rotate(k) circularly shift rightward k steps
D.remove(e) remove first matching element
D.count(e) count number of matches for e

Table 6.4: Comparison of our deque ADT and the collections.deque class.

The collections.deque interface was chosen to be consistent with established
naming conventions of Python’s list class, for which append and pop are presumed
to act at the end of the list. Therefore, appendleft and popleft designate an opera-
tion at the beginning of the list. The library deque also mimics a list in that it is an
indexed sequence, allowing arbitrary access or modification using the D[j] syntax.

The library deque constructor also supports an optional maxlen parameter to
force a fixed-length deque. However, if a call to append at either end is invoked
when the deque is full, it does not throw an error; instead, it causes one element to
be dropped from the opposite side. That is, calling appendleft when the deque is
full causes an implicit pop from the right side to make room for the new element.

The current Python distribution implements collections.deque with a hybrid ap-
proach that uses aspects of circular arrays, but organized into blocks that are them-
selves organized in a doubly linked list (a data structure that we will introduce in
the next chapter). The deque class is formally documented to guarantee O(1)-time
operations at either end, but O(n)-time worst-case operations when using index
notation near the middle of the deque.
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6.4 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-6.1 What values are returned during the following series of stack operations, if
executed upon an initially empty stack? push(5), push(3), pop(), push(2),
push(8), pop(), pop(), push(9), push(1), pop(), push(7), push(6), pop(),
pop(), push(4), pop(), pop().

R-6.2 Suppose an initially empty stack S has executed a total of 25 push opera-
tions, 12 top operations, and 10 pop operations, 3 of which raised Empty
errors that were caught and ignored. What is the current size of S?

R-6.3 Implement a function with signature transfer(S, T) that transfers all ele-
ments from stack S onto stack T, so that the element that starts at the top
of S is the first to be inserted onto T, and the element at the bottom of S
ends up at the top of T.

R-6.4 Give a recursive method for removing all the elements from a stack.
R-6.5 Implement a function that reverses a list of elements by pushing them onto

a stack in one order, and writing them back to the list in reversed order.
R-6.6 Give a precise and complete definition of the concept of matching for

grouping symbols in an arithmetic expression. Your definition may be
recursive.

R-6.7 What values are returned during the following sequence of queue opera-
tions, if executed on an initially empty queue? enqueue(5), enqueue(3),
dequeue(), enqueue(2), enqueue(8), dequeue(), dequeue(), enqueue(9),
enqueue(1), dequeue(), enqueue(7), enqueue(6), dequeue(), dequeue(),
enqueue(4), dequeue(), dequeue().

R-6.8 Suppose an initially empty queue Q has executed a total of 32 enqueue
operations, 10 first operations, and 15 dequeue operations, 5 of which
raised Empty errors that were caught and ignored. What is the current
size of Q?

R-6.9 Had the queue of the previous problem been an instance of ArrayQueue
that used an initial array of capacity 30, and had its size never been greater
than 30, what would be the final value of the front instance variable?

R-6.10 Consider what happens if the loop in the ArrayQueue. resize method at
lines 53–55 of Code Fragment 6.7 had been implemented as:

for k in range(self. size):
self. data[k] = old[k] # rather than old[walk]

Give a clear explanation of what could go wrong.
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R-6.11 Give a simple adapter that implements our queue ADT while using a
collections.deque instance for storage.

R-6.12 What values are returned during the following sequence of deque ADT op-
erations, on initially empty deque? add first(4), add last(8), add last(9),
add first(5), back(), delete first(), delete last(), add last(7), first(),
last(), add last(6), delete first(), delete first().

R-6.13 Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8),
in this order. Suppose further that you have an initially empty queue Q.
Give a code fragment that uses only D and Q (and no other variables) and
results in D storing the elements in the order (1,2,3,5,4,6,7,8).

R-6.14 Repeat the previous problem using the deque D and an initially empty
stack S.

Creativity

C-6.15 Suppose Alice has picked three distinct integers and placed them into a
stack S in random order. Write a short, straight-line piece of pseudo-code
(with no loops or recursion) that uses only one comparison and only one
variable x, yet that results in variable x storing the largest of Alice’s three
integers with probability 2/3. Argue why your method is correct.

C-6.16 Modify the ArrayStack implementation so that the stack’s capacity is lim-
ited to maxlen elements, where maxlen is an optional parameter to the
constructor (that defaults to None). If push is called when the stack is at
full capacity, throw a Full exception (defined similarly to Empty).

C-6.17 In the previous exercise, we assume that the underlying list is initially
empty. Redo that exercise, this time preallocating an underlying list with
length equal to the stack’s maximum capacity.

C-6.18 Show how to use the transfer function, described in Exercise R-6.3, and
two temporary stacks, to replace the contents of a given stack S with those
same elements, but in reversed order.

C-6.19 In Code Fragment 6.5 we assume that opening tags in HTML have form
<name>, as with <li>. More generally, HTML allows optional attributes
to be expressed as part of an opening tag. The general form used is
<name attribute1="value1" attribute2="value2">; for example,
a table can be given a border and additional padding by using an opening
tag of <table border="3" cellpadding="5">. Modify Code Frag-
ment 6.5 so that it can properly match tags, even when an opening tag
may include one or more such attributes.

C-6.20 Describe a nonrecursive algorithm for enumerating all permutations of the
numbers {1,2, . . . ,n} using an explicit stack.
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C-6.21 Show how to use a stack S and a queue Q to generate all possible subsets
of an n-element set T nonrecursively.

C-6.22 Postfix notation is an unambiguous way of writing an arithmetic expres-
sion without parentheses. It is defined so that if “(exp1)op (exp2)” is a
normal, fully parenthesized expression whose operation is op, the postfix
version of this is “pexp1 pexp2 op”, where pexp1 is the postfix version of
exp1 and pexp2 is the postfix version of exp2. The postfix version of a sin-
gle number or variable is just that number or variable. For example, the
postfix version of “((5+2)∗ (8−3))/4” is “5 2 + 8 3 − ∗ 4 /”. Describe
a nonrecursive way of evaluating an expression in postfix notation.

C-6.23 Suppose you have three nonempty stacks R, S, and T . Describe a sequence
of operations that results in S storing all elements originally in T below all
of S’s original elements, with both sets of those elements in their original
order. The final configuration for R should be the same as its original
configuration. For example, if R = [1,2,3], S = [4,5], and T = [6,7,8,9],
the final configuration should have R = [1,2,3] and S = [6,7,8,9,4,5].

C-6.24 Describe how to implement the stack ADT using a single queue as an
instance variable, and only constant additional local memory within the
method bodies. What is the running time of the push(), pop(), and top()
methods for your design?

C-6.25 Describe how to implement the queue ADT using two stacks as instance
variables, such that all queue operations execute in amortized O(1) time.
Give a formal proof of the amortized bound.

C-6.26 Describe how to implement the double-ended queue ADT using two stacks
as instance variables. What are the running times of the methods?

C-6.27 Suppose you have a stack S containing n elements and a queue Q that is
initially empty. Describe how you can use Q to scan S to see if it contains a
certain element x, with the additional constraint that your algorithm must
return the elements back to S in their original order. You may only use S,
Q, and a constant number of other variables.

C-6.28 Modify the ArrayQueue implementation so that the queue’s capacity is
limited to maxlen elements, where maxlen is an optional parameter to the
constructor (that defaults to None). If enqueue is called when the queue
is at full capacity, throw a Full exception (defined similarly to Empty).

C-6.29 In certain applications of the queue ADT, it is common to repeatedly
dequeue an element, process it in some way, and then immediately en-
queue the same element. Modify the ArrayQueue implementation to in-
clude a rotate() method that has semantics identical to the combina-
tion, Q.enqueue(Q.dequeue()). However, your implementation should
be more efficient than making two separate calls (for example, because
there is no need to modify size).
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C-6.30 Alice has two queues, Q and R, which can store integers. Bob gives Alice
50 odd integers and 50 even integers and insists that she store all 100
integers in Q and R. They then play a game where Bob picks Q or R
at random and then applies the round-robin scheduler, described in the
chapter, to the chosen queue a random number of times. If the last number
to be processed at the end of this game was odd, Bob wins. Otherwise,
Alice wins. How can Alice allocate integers to queues to optimize her
chances of winning? What is her chance of winning?

C-6.31 Suppose Bob has four cows that he wants to take across a bridge, but only
one yoke, which can hold up to two cows, side by side, tied to the yoke.
The yoke is too heavy for him to carry across the bridge, but he can tie
(and untie) cows to it in no time at all. Of his four cows, Mazie can cross
the bridge in 2 minutes, Daisy can cross it in 4 minutes, Crazy can cross
it in 10 minutes, and Lazy can cross it in 20 minutes. Of course, when
two cows are tied to the yoke, they must go at the speed of the slower cow.
Describe how Bob can get all his cows across the bridge in 34 minutes.

Projects

P-6.32 Give a complete ArrayDeque implementation of the double-ended queue
ADT as sketched in Section 6.3.2.

P-6.33 Give an array-based implementation of a double-ended queue supporting
all of the public behaviors shown in Table 6.4 for the collections.deque
class, including use of the maxlen optional parameter. When a length-
limited deque is full, provide semantics similar to the collections.deque
class, whereby a call to insert an element on one end of a deque causes an
element to be lost from the opposite side.

P-6.34 Implement a program that can input an expression in postfix notation (see
Exercise C-6.22) and output its value.

P-6.35 The introduction of Section 6.1 notes that stacks are often used to provide
“undo” support in applications like a Web browser or text editor. While
support for undo can be implemented with an unbounded stack, many
applications provide only limited support for such an undo history, with a
fixed-capacity stack. When push is invoked with the stack at full capacity,
rather than throwing a Full exception (as described in Exercise C-6.16),
a more typical semantic is to accept the pushed element at the top while
“leaking” the oldest element from the bottom of the stack to make room.
Give an implementation of such a LeakyStack abstraction, using a circular
array with appropriate storage capacity. This class should have a public
interface similar to the bounded-capacity stack in Exercise C-6.16, but
with the desired leaky semantics when full.
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P-6.36 When a share of common stock of some company is sold, the capital
gain (or, sometimes, loss) is the difference between the share’s selling
price and the price originally paid to buy it. This rule is easy to under-
stand for a single share, but if we sell multiple shares of stock bought
over a long period of time, then we must identify the shares actually be-
ing sold. A standard accounting principle for identifying which shares of
a stock were sold in such a case is to use a FIFO protocol—the shares
sold are the ones that have been held the longest (indeed, this is the de-
fault method built into several personal finance software packages). For
example, suppose we buy 100 shares at $20 each on day 1, 20 shares at
$24 on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day
4 at $30 each. Then applying the FIFO protocol means that of the 150
shares sold, 100 were bought on day 1, 20 were bought on day 2, and 30
were bought on day 3. The capital gain in this case would therefore be
100 ·10+ 20 ·6+ 30 · (−6), or $940. Write a program that takes as input
a sequence of transactions of the form “buy x share(s) at y each”
or “sell x share(s) at y each,” assuming that the transactions oc-
cur on consecutive days and the values x and y are integers. Given this
input sequence, the output should be the total capital gain (or loss) for the
entire sequence, using the FIFO protocol to identify shares.

P-6.37 Design an ADT for a two-color, double-stack ADT that consists of two
stacks—one “red” and one “blue”—and has as its operations color-coded
versions of the regular stack ADT operations. For example, this ADT
should support both a red push operation and a blue push operation. Give
an efficient implementation of this ADT using a single array whose ca-
pacity is set at some value N that is assumed to always be larger than the
sizes of the red and blue stacks combined.

Chapter Notes

We were introduced to the approach of defining data structures first in terms of their ADTs
and then in terms of concrete implementations by the classic books by Aho, Hopcroft, and
Ullman [5, 6]. Exercises C-6.30, and C-6.31 are similar to interview questions said to be
from a well-known software company. For further study of abstract data types, see Liskov
and Guttag [71], Cardelli and Wegner [23], or Demurjian [33].
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In Chapter 5 we carefully examined Python’s array-based list class, and in
Chapter 6 we demonstrated use of that class in implementing the classic stack,
queue, and dequeue ADTs. Python’s list class is highly optimized, and often a
great choice for storage. With that said, there are some notable disadvantages:

1. The length of a dynamic array might be longer than the actual number of
elements that it stores.

2. Amortized bounds for operations may be unacceptable in real-time systems.

3. Insertions and deletions at interior positions of an array are expensive.

In this chapter, we introduce a data structure known as a linked list, which
provides an alternative to an array-based sequence (such as a Python list). Both
array-based sequences and linked lists keep elements in a certain order, but us-
ing a very different style. An array provides the more centralized representation,
with one large chunk of memory capable of accommodating references to many
elements. A linked list, in contrast, relies on a more distributed representation in
which a lightweight object, known as a node, is allocated for each element. Each
node maintains a reference to its element and one or more references to neighboring
nodes in order to collectively represent the linear order of the sequence.

We will demonstrate a trade-off of advantages and disadvantages when con-
trasting array-based sequences and linked lists. Elements of a linked list cannot be
efficiently accessed by a numeric index k, and we cannot tell just by examining a
node if it is the second, fifth, or twentieth node in the list. However, linked lists
avoid the three disadvantages noted above for array-based sequences.

7.1 Singly Linked Lists

A singly linked list, in its simplest form, is a collection of nodes that collectively
form a linear sequence. Each node stores a reference to an object that is an element
of the sequence, as well as a reference to the next node of the list (see Figures 7.1
and 7.2).

next

MSP

element

Figure 7.1: Example of a node instance that forms part of a singly linked list. The
node’s element member references an arbitrary object that is an element of the se-
quence (the airport code MSP, in this example), while the next member references
the subsequent node of the linked list (or None if there is no further node).
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tail

MSP BOSATL

head

LAX

Figure 7.2: Example of a singly linked list whose elements are strings indicating
airport codes. The list instance maintains a member named head that identifies
the first node of the list, and in some applications another member named tail that
identifies the last node of the list. The None object is denoted as Ø.

The first and last node of a linked list are known as the head and tail of the
list, respectively. By starting at the head, and moving from one node to another
by following each node’s next reference, we can reach the tail of the list. We can
identify the tail as the node having None as its next reference. This process is
commonly known as traversing the linked list. Because the next reference of a
node can be viewed as a link or pointer to another node, the process of traversing
a list is also known as link hopping or pointer hopping.

A linked list’s representation in memory relies on the collaboration of many
objects. Each node is represented as a unique object, with that instance storing a
reference to its element and a reference to the next node (or None). Another object
represents the linked list as a whole. Minimally, the linked list instance must keep
a reference to the head of the list. Without an explicit reference to the head, there
would be no way to locate that node (or indirectly, any others). There is not an
absolute need to store a direct reference to the tail of the list, as it could otherwise
be located by starting at the head and traversing the rest of the list. However,
storing an explicit reference to the tail node is a common convenience to avoid
such a traversal. In similar regard, it is common for the linked list instance to keep
a count of the total number of nodes that comprise the list (commonly described as
the size of the list), to avoid the need to traverse the list to count the nodes.

For the remainder of this chapter, we continue to illustrate nodes as objects,
and each node’s “next” reference as a pointer. However, for the sake of simplicity,
we illustrate a node’s element embedded directly within the node structure, even
though the element is, in fact, an independent object. For example, Figure 7.3 is a
more compact illustration of the linked list from Figure 7.2.

LAX MSP BOSATL

head tail

Figure 7.3: A compact illustration of a singly linked list, with elements embedded
in the nodes (rather than more accurately drawn as references to external objects).
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Inserting an Element at the Head of a Singly Linked List

An important property of a linked list is that it does not have a predetermined fixed
size; it uses space proportionally to its current number of elements. When using a
singly linked list, we can easily insert an element at the head of the list, as shown in
Figure 7.4, and described with pseudo-code in Code Fragment 7.1. The main idea
is that we create a new node, set its element to the new element, set its next link to
refer to the current head, and then set the list’s head to point to the new node.

ATL BOSMSP

head

(a)

BOS

newest

MSP ATL

head

LAX

(b)

LAX MSP ATL BOS

headnewest

(c)

Figure 7.4: Insertion of an element at the head of a singly linked list: (a) before
the insertion; (b) after creation of a new node; (c) after reassignment of the head
reference.

Algorithm add first(L,e):

newest = Node(e) {create new node instance storing reference to element e}
newest.next = L.head {set new node’s next to reference the old head node}
L.head = newest {set variable head to reference the new node}
L.size = L.size+ 1 {increment the node count}

Code Fragment 7.1: Inserting a new element at the beginning of a singly linked
list L. Note that we set the next pointer of the new node before we reassign variable
L.head to it. If the list were initially empty (i.e., L.head is None), then a natural
consequence is that the new node has its next reference set to None.
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Inserting an Element at the Tail of a Singly Linked List

We can also easily insert an element at the tail of the list, provided we keep a
reference to the tail node, as shown in Figure 7.5. In this case, we create a new
node, assign its next reference to None, set the next reference of the tail to point to
this new node, and then update the tail reference itself to this new node. We give
the details in Code Fragment 7.2.

ATL BOSMSP

tail

(a)

MIAATL BOSMSP

tail newest

(b)

MSP MIA

tail newest

ATL BOS

(c)

Figure 7.5: Insertion at the tail of a singly linked list: (a) before the insertion;
(b) after creation of a new node; (c) after reassignment of the tail reference. Note
that we must set the next link of the tail in (b) before we assign the tail variable to
point to the new node in (c).

Algorithm add last(L,e):

newest = Node(e) {create new node instance storing reference to element e}
newest.next = None {set new node’s next to reference the None object}
L.tail.next = newest {make old tail node point to new node}
L.tail = newest {set variable tail to reference the new node}
L.size = L.size+ 1 {increment the node count}

Code Fragment 7.2: Inserting a new node at the end of a singly linked list. Note
that we set the next pointer for the old tail node before we make variable tail point
to the new node. This code would need to be adjusted for inserting onto an empty
list, since there would not be an existing tail node.
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Removing an Element from a Singly Linked List

Removing an element from the head of a singly linked list is essentially the reverse
operation of inserting a new element at the head. This operation is illustrated in
Figure 7.6 and given in detail in Code Fragment 7.3.

head

MSP ATL BOSLAX

(a)

BOS

head

MSP ATLLAX

(b)

ATL BOSMSP

head

(c)

Figure 7.6: Removal of an element at the head of a singly linked list: (a) before the
removal; (b) after “linking out” the old head; (c) final configuration.

Algorithm remove first(L):

if L.head is None then
Indicate an error: the list is empty.

L.head = L.head.next {make head point to next node (or None)}
L.size = L.size−1 {decrement the node count}

Code Fragment 7.3: Removing the node at the beginning of a singly linked list.

Unfortunately, we cannot easily delete the last node of a singly linked list. Even
if we maintain a tail reference directly to the last node of the list, we must be able
to access the node before the last node in order to remove the last node. But we
cannot reach the node before the tail by following next links from the tail. The only
way to access this node is to start from the head of the list and search all the way
through the list. But such a sequence of link-hopping operations could take a long
time. If we want to support such an operation efficiently, we will need to make our
list doubly linked (as we do in Section 7.3).
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7.1.1 Implementing a Stack with a Singly Linked List

In this section, we demonstrate use of a singly linked list by providing a complete
Python implementation of the stack ADT (see Section 6.1). In designing such an
implementation, we need to decide whether to model the top of the stack at the head
or at the tail of the list. There is clearly a best choice here; we can efficiently insert
and delete elements in constant time only at the head. Since all stack operations
affect the top, we orient the top of the stack at the head of our list.

To represent individual nodes of the list, we develop a lightweight Node class.
This class will never be directly exposed to the user of our stack class, so we will
formally define it as a nonpublic, nested class of our eventual LinkedStack class
(see Section 2.5.1 for discussion of nested classes). The definition of the Node
class is shown in Code Fragment 7.4.

class Node:
”””Lightweight, nonpublic class for storing a singly linked node.”””

slots = _element , _next # streamline memory usage

def init (self, element, next): # initialize node’s fields
self. element = element # reference to user’s element
self. next = next # reference to next node

Code Fragment 7.4: A lightweight Node class for a singly linked list.

A node has only two instance variables: element and next. We intentionally
define slots to streamline the memory usage (see page 99 of Section 2.5.1 for
discussion), because there may potentially be many node instances in a single list.
The constructor of the Node class is designed for our convenience, allowing us to
specify initial values for both fields of a newly created node.

A complete implementation of our LinkedStack class is given in Code Frag-
ments 7.5 and 7.6. Each stack instance maintains two variables. The head mem-
ber is a reference to the node at the head of the list (or None, if the stack is empty).
We keep track of the current number of elements with the size instance variable,
for otherwise we would be forced to traverse the entire list to count the number of
elements when reporting the size of the stack.

The implementation of push essentially mirrors the pseudo-code for insertion
at the head of a singly linked list as outlined in Code Fragment 7.1. When we push
a new element e onto the stack, we accomplish the necessary changes to the linked
structure by invoking the constructor of the Node class as follows:

self. head = self. Node(e, self. head) # create and link a new node

Note that the next field of the new node is set to the existing top node, and then
self. head is reassigned to the new node.
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1 class LinkedStack:
2 ”””LIFO Stack implementation using a singly linked list for storage.”””
3
4 #-------------------------- nested Node class --------------------------
5 class Node:
6 ”””Lightweight, nonpublic class for storing a singly linked node.”””
7 slots = _element , _next # streamline memory usage
8
9 def init (self, element, next): # initialize node’s fields

10 self. element = element # reference to user’s element
11 self. next = next # reference to next node
12
13 #------------------------------- stack methods -------------------------------
14 def init (self):
15 ”””Create an empty stack.”””
16 self. head = None # reference to the head node
17 self. size = 0 # number of stack elements
18
19 def len (self):
20 ”””Return the number of elements in the stack.”””
21 return self. size
22
23 def is empty(self):
24 ”””Return True if the stack is empty.”””
25 return self. size == 0
26
27 def push(self, e):
28 ”””Add element e to the top of the stack.”””
29 self. head = self. Node(e, self. head) # create and link a new node
30 self. size += 1
31
32 def top(self):
33 ”””Return (but do not remove) the element at the top of the stack.
34
35 Raise Empty exception if the stack is empty.
36 ”””
37 if self.is empty():
38 raise Empty( Stack is empty )
39 return self. head. element # top of stack is at head of list

Code Fragment 7.5: Implementation of a stack ADT using a singly linked list (con-
tinued in Code Fragment 7.6).
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40 def pop(self):
41 ”””Remove and return the element from the top of the stack (i.e., LIFO).
42
43 Raise Empty exception if the stack is empty.
44 ”””
45 if self.is empty():
46 raise Empty( Stack is empty )
47 answer = self. head. element
48 self. head = self. head. next # bypass the former top node
49 self. size −= 1
50 return answer

Code Fragment 7.6: Implementation of a stack ADT using a singly linked list (con-
tinued from Code Fragment 7.5).

When implementing the top method, the goal is to return the element that is
at the top of the stack. When the stack is empty, we raise an Empty exception, as
originally defined in Code Fragment 6.1 of Chapter 6. When the stack is nonempty,
self. head is a reference to the first node of the linked list. The top element can be
identified as self. head. element.

Our implementation of pop essentially mirrors the pseudo-code given in Code
Fragment 7.3, except that we maintain a local reference to the element that is stored
at the node that is being removed, and we return that element to the caller of pop.

The analysis of our LinkedStack operations is given in Table 7.1. We see that
all of the methods complete in worst-case constant time. This is in contrast to the
amortized bounds for the ArrayStack that were given in Table 6.2.

Operation Running Time
S.push(e) O(1)

S.pop() O(1)

S.top() O(1)

len(S) O(1)

S.is empty() O(1)

Table 7.1: Performance of our LinkedStack implementation. All bounds are worst-
case and our space usage is O(n), where n is the current number of elements in the
stack.
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7.1.2 Implementing a Queue with a Singly Linked List

As we did for the stack ADT, we can use a singly linked list to implement the
queue ADT while supporting worst-case O(1)-time for all operations. Because we
need to perform operations on both ends of the queue, we will explicitly maintain
both a head reference and a tail reference as instance variables for each queue.
The natural orientation for a queue is to align the front of the queue with the head of
the list, and the back of the queue with the tail of the list, because we must be able
to enqueue elements at the back, and dequeue them from the front. (Recall from
the introduction of Section 7.1 that we are unable to efficiently remove elements
from the tail of a singly linked list.) Our implementation of a LinkedQueue class is
given in Code Fragments 7.7 and 7.8.

1 class LinkedQueue:
2 ”””FIFO queue implementation using a singly linked list for storage.”””
3
4 class Node:
5 ”””Lightweight, nonpublic class for storing a singly linked node.”””
6 (omitted here; identical to that of LinkedStack. Node)
7
8 def init (self):
9 ”””Create an empty queue.”””

10 self. head = None
11 self. tail = None
12 self. size = 0 # number of queue elements
13
14 def len (self):
15 ”””Return the number of elements in the queue.”””
16 return self. size
17
18 def is empty(self):
19 ”””Return True if the queue is empty.”””
20 return self. size == 0
21
22 def first(self):
23 ”””Return (but do not remove) the element at the front of the queue.”””
24 if self.is empty():
25 raise Empty( Queue is empty )
26 return self. head. element # front aligned with head of list

Code Fragment 7.7: Implementation of a queue ADT using a singly linked list
(continued in Code Fragment 7.8).
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27 def dequeue(self):
28 ”””Remove and return the first element of the queue (i.e., FIFO).
29
30 Raise Empty exception if the queue is empty.
31 ”””
32 if self.is empty():
33 raise Empty( Queue is empty )
34 answer = self. head. element
35 self. head = self. head. next
36 self. size −= 1
37 if self.is empty(): # special case as queue is empty
38 self. tail = None # removed head had been the tail
39 return answer
40
41 def enqueue(self, e):
42 ”””Add an element to the back of queue.”””
43 newest = self. Node(e, None) # node will be new tail node
44 if self.is empty():
45 self. head = newest # special case: previously empty
46 else:
47 self. tail. next = newest
48 self. tail = newest # update reference to tail node
49 self. size += 1

Code Fragment 7.8: Implementation of a queue ADT using a singly linked list
(continued from Code Fragment 7.7).

Many aspects of our implementation are similar to that of the LinkedStack
class, such as the definition of the nested Node class. Our implementation of
dequeue for LinkedQueue is similar to that of pop for LinkedStack, as both remove
the head of the linked list. However, there is a subtle difference because our queue
must accurately maintain the tail reference (no such variable was maintained for
our stack). In general, an operation at the head has no effect on the tail, but when
dequeue is invoked on a queue with one element, we are simultaneously removing
the tail of the list. We therefore set self. tail to None for consistency.

There is a similar complication in our implementation of enqueue. The newest
node always becomes the new tail. Yet a distinction is made depending on whether
that new node is the only node in the list. In that case, it also becomes the new head;
otherwise the new node must be linked immediately after the existing tail node.

In terms of performance, the LinkedQueue is similar to the LinkedStack in that
all operations run in worst-case constant time, and the space usage is linear in the
current number of elements.
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7.2 Circularly Linked Lists

In Section 6.2.2, we introduced the notion of a “circular” array and demonstrated
its use in implementing the queue ADT. In reality, the notion of a circular array was
artificial, in that there was nothing about the representation of the array itself that
was circular in structure. It was our use of modular arithmetic when “advancing”
an index from the last slot to the first slot that provided such an abstraction.

In the case of linked lists, there is a more tangible notion of a circularly linked
list, as we can have the tail of the list use its next reference to point back to the head
of the list, as shown in Figure 7.7. We call such a structure a circularly linked list.

BOS

head tail

LAX MSP ATL

Figure 7.7: Example of a singly linked list with circular structure.

A circularly linked list provides a more general model than a standard linked
list for data sets that are cyclic, that is, which do not have any particular notion of a
beginning and end. Figure 7.8 provides a more symmetric illustration of the same
circular list structure as Figure 7.7.

ATL

BOS

current

MSP

LAX

Figure 7.8: Example of a circular linked list, with current denoting a reference to a
select node.

A circular view similar to Figure 7.8 could be used, for example, to describe
the order of train stops in the Chicago loop, or the order in which players take turns
during a game. Even though a circularly linked list has no beginning or end, per
se, we must maintain a reference to a particular node in order to make use of the
list. We use the identifier current to describe such a designated node. By setting
current = current.next, we can effectively advance through the nodes of the list.
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7.2.1 Round-Robin Schedulers

To motivate the use of a circularly linked list, we consider a round-robin scheduler,
which iterates through a collection of elements in a circular fashion and “services”
each element by performing a given action on it. Such a scheduler is used, for
example, to fairly allocate a resource that must be shared by a collection of clients.
For instance, round-robin scheduling is often used to allocate slices of CPU time to
various applications running concurrently on a computer.

A round-robin scheduler could be implemented with the general queue ADT,
by repeatedly performing the following steps on queue Q (see Figure 7.9):

1. e = Q.dequeue()
2. Service element e
3. Q.enqueue(e)

The Queue

Shared
Service

1. Deque the
next element

3. Enqueue the
serviced element

2. Service the
next element

Figure 7.9: The three iterative steps for round-robin scheduling using a queue.

If we use of the LinkedQueue class of Section 7.1.2 for such an application,
there is unnecessary effort in the combination of a dequeue operation followed soon
after by an enqueue of the same element. One node is removed from the list, with
appropriate adjustments to the head of the list and the size decremented, and then a
new node is created to reinsert at the tail of the list and the size is incremented.

If using a circularly linked list, the effective transfer of an item from the “head”
of the list to the “tail” of the list can be accomplished by advancing a reference
that marks the boundary of the queue. We will next provide an implementation
of a CircularQueue class that supports the entire queue ADT, together with an ad-
ditional method, rotate(), that moves the first element of the queue to the back.
(A similar method is supported by the deque class of Python’s collections module;
see Table 6.4.) With this operation, a round-robin schedule can more efficiently be
implemented by repeatedly performing the following steps:

1. Service element Q.front()
2. Q.rotate()
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7.2.2 Implementing a Queue with a Circularly Linked List

To implement the queue ADT using a circularly linked list, we rely on the intuition
of Figure 7.7, in which the queue has a head and a tail, but with the next reference of
the tail linked to the head. Given such a model, there is no need for us to explicitly
store references to both the head and the tail; as long as we keep a reference to the
tail, we can always find the head by following the tail’s next reference.

Code Fragments 7.9 and 7.10 provide an implementation of a CircularQueue
class based on this model. The only two instance variables are tail, which is a
reference to the tail node (or None when empty), and size, which is the current
number of elements in the queue. When an operation involves the front of the
queue, we recognize self. tail. next as the head of the queue. When enqueue is
called, a new node is placed just after the tail but before the current head, and then
the new node becomes the tail.

In addition to the traditional queue operations, the CircularQueue class supports
a rotate method that more efficiently enacts the combination of removing the front
element and reinserting it at the back of the queue. With the circular representation,
we simply set self. tail = self. tail. next to make the old head become the new tail
(with the node after the old head becoming the new head).

1 class CircularQueue:
2 ”””Queue implementation using circularly linked list for storage.”””
3
4 class Node:
5 ”””Lightweight, nonpublic class for storing a singly linked node.”””
6 (omitted here; identical to that of LinkedStack. Node)
7
8 def init (self):
9 ”””Create an empty queue.”””

10 self. tail = None # will represent tail of queue
11 self. size = 0 # number of queue elements
12
13 def len (self):
14 ”””Return the number of elements in the queue.”””
15 return self. size
16
17 def is empty(self):
18 ”””Return True if the queue is empty.”””
19 return self. size == 0

Code Fragment 7.9: Implementation of a CircularQueue class, using a circularly
linked list as storage (continued in Code Fragment 7.10).
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20 def first(self):
21 ”””Return (but do not remove) the element at the front of the queue.
22
23 Raise Empty exception if the queue is empty.
24 ”””
25 if self.is empty():
26 raise Empty( Queue is empty )
27 head = self. tail. next
28 return head. element
29
30 def dequeue(self):
31 ”””Remove and return the first element of the queue (i.e., FIFO).
32
33 Raise Empty exception if the queue is empty.
34 ”””
35 if self.is empty():
36 raise Empty( Queue is empty )
37 oldhead = self. tail. next
38 if self. size == 1: # removing only element
39 self. tail = None # queue becomes empty
40 else:
41 self. tail. next = oldhead. next # bypass the old head
42 self. size −= 1
43 return oldhead. element
44
45 def enqueue(self, e):
46 ”””Add an element to the back of queue.”””
47 newest = self. Node(e, None) # node will be new tail node
48 if self.is empty():
49 newest. next = newest # initialize circularly
50 else:
51 newest. next = self. tail. next # new node points to head
52 self. tail. next = newest # old tail points to new node
53 self. tail = newest # new node becomes the tail
54 self. size += 1
55
56 def rotate(self):
57 ”””Rotate front element to the back of the queue.”””
58 if self. size > 0:
59 self. tail = self. tail. next # old head becomes new tail

Code Fragment 7.10: Implementation of a CircularQueue class, using a circularly
linked list as storage (continued from Code Fragment 7.9).
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7.3 Doubly Linked Lists

In a singly linked list, each node maintains a reference to the node that is immedi-
ately after it. We have demonstrated the usefulness of such a representation when
managing a sequence of elements. However, there are limitations that stem from
the asymmetry of a singly linked list. In the opening of Section 7.1, we empha-
sized that we can efficiently insert a node at either end of a singly linked list, and
can delete a node at the head of a list, but we are unable to efficiently delete a node
at the tail of the list. More generally, we cannot efficiently delete an arbitrary node
from an interior position of the list if only given a reference to that node, because
we cannot determine the node that immediately precedes the node to be deleted
(yet, that node needs to have its next reference updated).

To provide greater symmetry, we define a linked list in which each node keeps
an explicit reference to the node before it and a reference to the node after it. Such
a structure is known as a doubly linked list. These lists allow a greater variety of
O(1)-time update operations, including insertions and deletions at arbitrary posi-
tions within the list. We continue to use the term “next” for the reference to the
node that follows another, and we introduce the term “prev” for the reference to the
node that precedes it.

Header and Trailer Sentinels

In order to avoid some special cases when operating near the boundaries of a doubly
linked list, it helps to add special nodes at both ends of the list: a header node at the
beginning of the list, and a trailer node at the end of the list. These “dummy” nodes
are known as sentinels (or guards), and they do not store elements of the primary
sequence. A doubly linked list with such sentinels is shown in Figure 7.10.

SFOJFK PVD

next next next

prev prev prevprev

header trailernext

Figure 7.10: A doubly linked list representing the sequence { JFK, PVD, SFO },
using sentinels header and trailer to demarcate the ends of the list.

When using sentinel nodes, an empty list is initialized so that the next field of
the header points to the trailer, and the prev field of the trailer points to the header;
the remaining fields of the sentinels are irrelevant (presumably None, in Python).
For a nonempty list, the header’s next will refer to a node containing the first real
element of a sequence, just as the trailer’s prev references the node containing the
last element of a sequence.
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Advantage of Using Sentinels

Although we could implement a doubly linked list without sentinel nodes (as we
did with our singly linked list in Section 7.1), the slight extra space devoted to the
sentinels greatly simplifies the logic of our operations. Most notably, the header and
trailer nodes never change—only the nodes between them change. Furthermore,
we can treat all insertions in a unified manner, because a new node will always be
placed between a pair of existing nodes. In similar fashion, every element that is to
be deleted is guaranteed to be stored in a node that has neighbors on each side.

For contrast, look back at our LinkedQueue implementation from Section 7.1.2.
Its enqueue method, given in Code Fragment 7.8, adds a new node to the end of
the list. However, its implementation required a conditional to manage the special
case of inserting into an empty list. In the general case, the new node was linked
after the existing tail. But when adding to an empty list, there is no existing tail;
instead it is necessary to reassign self. head to reference the new node. The use of
a sentinel node in that implementation would eliminate the special case, as there
would always be an existing node (possibly the header) before a new node.

Inserting and Deleting with a Doubly Linked List

Every insertion into our doubly linked list representation will take place between
a pair of existing nodes, as diagrammed in Figure 7.11. For example, when a new
element is inserted at the front of the sequence, we will simply add the new node
between the header and the node that is currently after the header. (See Figure 7.12.)

JFKBWI SFO

trailerheader

(a)

BWI PVD SFOJFK

trailerheader

(b)

BWI PVD SFOJFK

trailerheader

(c)

Figure 7.11: Adding an element to a doubly linked list with header and trailer sen-
tinels: (a) before the operation; (b) after creating the new node; (c) after linking the
neighbors to the new node.
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JFKBWI SFO

trailerheader

(a)

PVD BWI JFK SFO

trailerheader

(b)

PVD JFK SFOBWI

trailerheader

(c)

Figure 7.12: Adding an element to the front of a sequence represented by a dou-
bly linked list with header and trailer sentinels: (a) before the operation; (b) after
creating the new node; (c) after linking the neighbors to the new node.

The deletion of a node, portrayed in Figure 7.13, proceeds in the opposite fash-
ion of an insertion. The two neighbors of the node to be deleted are linked directly
to each other, thereby bypassing the original node. As a result, that node will no
longer be considered part of the list and it can be reclaimed by the system. Because
of our use of sentinels, the same implementation can be used when deleting the first
or the last element of a sequence, because even such an element will be stored at a
node that lies between two others.

BWI PVD SFOJFK

trailerheader

(a)

BWI PVD SFOJFK

trailerheader

(b)

JFKBWI SFO

trailerheader

(c)

Figure 7.13: Removing the element PVD from a doubly linked list: (a) before
the removal; (b) after linking out the old node; (c) after the removal (and garbage
collection).
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7.3.1 Basic Implementation of a Doubly Linked List

We begin by providing a preliminary implementation of a doubly linked list, in the
form of a class named DoublyLinkedBase. We intentionally name the class with
a leading underscore because we do not intend for it to provide a coherent public
interface for general use. We will see that linked lists can support general insertions
and deletions in O(1) worst-case time, but only if the location of an operation
can be succinctly identified. With array-based sequences, an integer index was a
convenient means for describing a position within a sequence. However, an index
is not convenient for linked lists as there is no efficient way to find the jth element;
it would seem to require a traversal of a portion of the list.

When working with a linked list, the most direct way to describe the location
of an operation is by identifying a relevant node of the list. However, we prefer
to encapsulate the inner workings of our data structure to avoid having users di-
rectly access nodes of a list. In the remainder of this chapter, we will develop
two public classes that inherit from our DoublyLinkedBase class to provide more
coherent abstractions. Specifically, in Section 7.3.2, we provide a LinkedDeque
class that implements the double-ended queue ADT introduced in Section 6.3; that
class only supports operations at the ends of the queue, so there is no need for a
user to identify an interior position within the list. In Section 7.4, we introduce a
new PositionalList abstraction that provides a public interface that allows arbitrary
insertions and deletions from a list.

Our low-level DoublyLinkedBase class relies on the use of a nonpublic Node
class that is similar to that for a singly linked list, as given in Code Fragment 7.4,
except that the doubly linked version includes a prev attribute, in addition to the
next and element attributes, as shown in Code Fragment 7.11.

class Node:
”””Lightweight, nonpublic class for storing a doubly linked node.”””

slots = _element , _prev , _next # streamline memory

def init (self, element, prev, next): # initialize node’s fields
self. element = element # user’s element
self. prev = prev # previous node reference
self. next = next # next node reference

Code Fragment 7.11: A Python Node class for use in a doubly linked list.

The remainder of our DoublyLinkedBase class is given in Code Fragment 7.12.
The constructor instantiates the two sentinel nodes and links them directly to each
other. We maintain a size member and provide public support for len and
is empty so that these behaviors can be directly inherited by the subclasses.
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1 class DoublyLinkedBase:
2 ”””A base class providing a doubly linked list representation.”””
3
4 class Node:
5 ”””Lightweight, nonpublic class for storing a doubly linked node.”””
6 (omitted here; see previous code fragment)
7
8 def init (self):
9 ”””Create an empty list.”””

10 self. header = self. Node(None, None, None)
11 self. trailer = self. Node(None, None, None)
12 self. header. next = self. trailer # trailer is after header
13 self. trailer. prev = self. header # header is before trailer
14 self. size = 0 # number of elements
15
16 def len (self):
17 ”””Return the number of elements in the list.”””
18 return self. size
19
20 def is empty(self):
21 ”””Return True if list is empty.”””
22 return self. size == 0
23
24 def insert between(self, e, predecessor, successor):
25 ”””Add element e between two existing nodes and return new node.”””
26 newest = self. Node(e, predecessor, successor) # linked to neighbors
27 predecessor. next = newest
28 successor. prev = newest
29 self. size += 1
30 return newest
31
32 def delete node(self, node):
33 ”””Delete nonsentinel node from the list and return its element.”””
34 predecessor = node. prev
35 successor = node. next
36 predecessor. next = successor
37 successor. prev = predecessor
38 self. size −= 1
39 element = node. element # record deleted element
40 node. prev = node. next = node. element = None # deprecate node
41 return element # return deleted element

Code Fragment 7.12: A base class for managing a doubly linked list.
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The other two methods of our class are the nonpublic utilities, insert between
and delete node. These provide generic support for insertions and deletions, re-
spectively, but require one or more node references as parameters. The implemen-
tation of the insert between method is modeled upon the algorithm that was previ-
ously portrayed in Figure 7.11. It creates a new node, with that node’s fields initial-
ized to link to the specified neighboring nodes. Then the fields of the neighboring
nodes are updated to include the newest node in the list. For later convenience, the
method returns a reference to the newly created node.

The implementation of the delete node method is modeled upon the algorithm
portrayed in Figure 7.13. The neighbors of the node to be deleted are linked directly
to each other, thereby bypassing the deleted node from the list. As a formality,
we intentionally reset the prev, next, and element fields of the deleted node to
None (after recording the element to be returned). Although the deleted node will
be ignored by the rest of the list, setting its fields to None is advantageous as it
may help Python’s garbage collection, since unnecessary links to the other nodes
and the stored element are eliminated. We will also rely on this configuration to
recognize a node as “deprecated” when it is no longer part of the list.

7.3.2 Implementing a Deque with a Doubly Linked List

The double-ended queue (deque) ADT was introduced in Section 6.3. With an
array-based implementation, we achieve all operations in amortized O(1) time, due
to the occasional need to resize the array. With an implementation based upon a
doubly linked list, we can achieve all deque operation in worst-case O(1) time.

We provide an implementation of a LinkedDeque class (Code Fragment 7.13)
that inherits from the DoublyLinkedBase class of the preceding section. We do
not provide an explicit init method for the LinkedDeque class, as the inherited
version of that method suffices to initialize a new instance. We also rely on the
inherited methods len and is empty in meeting the deque ADT.

With the use of sentinels, the key to our implementation is to remember that
the header does not store the first element of the deque—it is the node just after the
header that stores the first element (assuming the deque is nonempty). Similarly,
the node just before the trailer stores the last element of the deque.

We use the inherited insert between method to insert at either end of the
deque. To insert an element at the front of the deque, we place it immediately
between the header and the node just after the header. An insertion at the end of
deque is placed immediately before the trailer node. Note that these operations
succeed, even when the deque is empty; in such a situation, the new node is placed
between the two sentinels. When deleting an element from a nonempty deque, we
rely upon the inherited delete node method, knowing that the designated node is
assured to have neighbors on each side.
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1 class LinkedDeque( DoublyLinkedBase): # note the use of inheritance
2 ”””Double-ended queue implementation based on a doubly linked list.”””
3
4 def first(self):
5 ”””Return (but do not remove) the element at the front of the deque.”””
6 if self.is empty():
7 raise Empty("Deque is empty")
8 return self. header. next. element # real item just after header
9

10 def last(self):
11 ”””Return (but do not remove) the element at the back of the deque.”””
12 if self.is empty():
13 raise Empty("Deque is empty")
14 return self. trailer. prev. element # real item just before trailer
15
16 def insert first(self, e):
17 ”””Add an element to the front of the deque.”””
18 self. insert between(e, self. header, self. header. next) # after header
19
20 def insert last(self, e):
21 ”””Add an element to the back of the deque.”””
22 self. insert between(e, self. trailer. prev, self. trailer) # before trailer
23
24 def delete first(self):
25 ”””Remove and return the element from the front of the deque.
26
27 Raise Empty exception if the deque is empty.
28 ”””
29 if self.is empty():
30 raise Empty("Deque is empty")
31 return self. delete node(self. header. next) # use inherited method
32
33 def delete last(self):
34 ”””Remove and return the element from the back of the deque.
35
36 Raise Empty exception if the deque is empty.
37 ”””
38 if self.is empty():
39 raise Empty("Deque is empty")
40 return self. delete node(self. trailer. prev) # use inherited method

Code Fragment 7.13: Implementation of a LinkedDeque class that inherits from the
DoublyLinkedBase class.
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7.4 The Positional List ADT

The abstract data types that we have considered thus far, namely stacks, queues,
and double-ended queues, only allow update operations that occur at one end of a
sequence or the other. We wish to have a more general abstraction. For example,
although we motivated the FIFO semantics of a queue as a model for customers
who are waiting to speak with a customer service representative, or fans who are
waiting in line to buy tickets to a show, the queue ADT is too limiting. What if
a waiting customer decides to hang up before reaching the front of the customer
service queue? Or what if someone who is waiting in line to buy tickets allows a
friend to “cut” into line at that position? We would like to design an abstract data
type that provides a user a way to refer to elements anywhere in a sequence, and to
perform arbitrary insertions and deletions.

When working with array-based sequences (such as a Python list), integer in-
dices provide an excellent means for describing the location of an element, or the
location at which an insertion or deletion should take place. However, numeric in-
dices are not a good choice for describing positions within a linked list because we
cannot efficiently access an entry knowing only its index; finding an element at a
given index within a linked list requires traversing the list incrementally from its
beginning or end, counting elements as we go.

Furthermore, indices are not a good abstraction for describing a local position
in some applications, because the index of an entry changes over time due to inser-
tions or deletions that happen earlier in the sequence. For example, it may not be
convenient to describe the location of a person waiting in line by knowing precisely
how far away that person is from the front of the line. We prefer an abstraction, as
characterized in Figure 7.14, in which there is some other means for describing
a position. We then wish to model situations such as when an identified person
leaves the line before reaching the front, or in which a new person is added to a line
immediately behind another identified person.

Tickets me

Figure 7.14: We wish to be able to identify the position of an element in a sequence
without the use of an integer index.
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As another example, a text document can be viewed as a long sequence of
characters. A word processor uses the abstraction of a cursor to describe a position
within the document without explicit use of an integer index, allowing operations
such as “delete the character at the cursor” or “insert a new character just after the
cursor.” Furthermore, we may be able to refer to an inherent position within a doc-
ument, such as the beginning of a particular section, without relying on a character
index (or even a section number) that may change as the document evolves.

A Node Reference as a Position?

One of the great benefits of a linked list structure is that it is possible to perform
O(1)-time insertions and deletions at arbitrary positions of the list, as long as we
are given a reference to a relevant node of the list. It is therefore very tempting to
develop an ADT in which a node reference serves as the mechanism for describing
a position. In fact, our DoublyLinkedBase class of Section 7.3.1 has methods
insert between and delete node that accept node references as parameters.

However, such direct use of nodes would violate the object-oriented design
principles of abstraction and encapsulation that were introduced in Chapter 2. There
are several reasons to prefer that we encapsulate the nodes of a linked list, for both
our sake and for the benefit of users of our abstraction.

• It will be simpler for users of our data structure if they are not bothered with
unnecessary details of our implementation, such as low-level manipulation
of nodes, or our reliance on the use of sentinel nodes. Notice that to use the
insert between method of our DoublyLinkedBase class to add a node at

the beginning of a sequence, the header sentinel must be sent as a parameter.

• We can provide a more robust data structure if we do not permit users to
directly access or manipulate the nodes. In that way, we ensure that users
cannot invalidate the consistency of a list by mismanaging the linking of
nodes. A more subtle problem arises if a user were allowed to call the
insert between or delete node method of our DoublyLinkedBase class,

sending a node that does not belong to the given list as a parameter. (Go back
and look at that code and see why it causes a problem!)

• By better encapsulating the internal details of our implementation, we have
greater flexibility to redesign the data structure and improve its performance.
In fact, with a well-designed abstraction, we can provide a notion of a non-
numeric position, even if using an array-based sequence.

For these reasons, instead of relying directly on nodes, we introduce an inde-
pendent position abstraction to denote the location of an element within a list, and
then a complete positional list ADT that can encapsulate a doubly linked list (or
even an array-based sequence; see Exercise P-7.46).
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7.4.1 The Positional List Abstract Data Type

To provide for a general abstraction of a sequence of elements with the ability to
identify the location of an element, we define a positional list ADT as well as a
simpler position abstract data type to describe a location within a list. A position
acts as a marker or token within the broader positional list. A position p is unaf-
fected by changes elsewhere in a list; the only way in which a position becomes
invalid is if an explicit command is issued to delete it.

A position instance is a simple object, supporting only the following method:
p.element(): Return the element stored at position p.

In the context of the positional list ADT, positions serve as parameters to some
methods and as return values from other methods. In describing the behaviors of a
positional list, we being by presenting the accessor methods supported by a list L:

L.first(): Return the position of the first element of L, or None if L is empty.

L.last(): Return the position of the last element of L, or None if L is empty.

L.before(p): Return the position of L immediately before position p, or None
if p is the first position.

L.after(p): Return the position of L immediately after position p, or None if
p is the last position.

L.is empty(): Return True if list L does not contain any elements.

len(L): Return the number of elements in the list.

iter(L): Return a forward iterator for the elements of the list. See Sec-
tion 1.8 for discussion of iterators in Python.

The positional list ADT also includes the following update methods:

L.add first(e): Insert a new element e at the front of L, returning the position
of the new element.

L.add last(e): Insert a new element e at the back of L, returning the position
of the new element.

L.add before(p, e): Insert a new element e just before position p in L, returning
the position of the new element.

L.add after(p, e): Insert a new element e just after position p in L, returning
the position of the new element.

L.replace(p, e): Replace the element at position p with element e, returning
the element formerly at position p.

L.delete(p): Remove and return the element at position p in L, invalidat-
ing the position.

For those methods of the ADT that accept a position p as a parameter, an error
occurs if p is not a valid position for list L.
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Note well that the first() and last() methods of the positional list ADT return
the associated positions, not the elements. (This is in contrast to the corresponding
first and last methods of the deque ADT.) The first element of a positional list
can be determined by subsequently invoking the element method on that position,
as L.first().element(). The advantage of receiving a position as a return value is
that we can use that position to navigate the list. For example, the following code
fragment prints all elements of a positional list named data.

cursor = data.first()
while cursor is not None:

print(cursor.element()) # print the element stored at the position
cursor = data.after(cursor) # advance to the next position (if any)

This code relies on the stated convention that the None object is returned when
after is called upon the last position. That return value is clearly distinguishable
from any legitimate position. The positional list ADT similarly indicates that the
None value is returned when the before method is invoked at the front of the list, or
when first or last methods are called upon an empty list. Therefore, the above code
fragment works correctly even if the data list is empty.

Because the ADT includes support for Python’s iter function, users may rely
on the traditional for-loop syntax for such a forward traversal of a list named data.

for e in data:
print(e)

More general navigational and update methods of the positional list ADT are shown
in the following example.

Example 7.1: The following table shows a series of operations on an initially
empty positional list L. To identify position instances, we use variables such as p
and q. For ease of exposition, when displaying the list contents, we use subscript
notation to denote its positions.

Operation Return Value L

L.add last(8) p 8p
L.first() p 8p

L.add after(p, 5) q 8p, 5q
L.before(q) p 8p, 5q

L.add before(q, 3) r 8p, 3r, 5q
r.element() 3 8p, 3r, 5q
L.after(p) r 8p, 3r, 5q
L.before(p) None 8p, 3r, 5q

L.add first(9) s 9s, 8p, 3r, 5q
L.delete(L.last()) 5 9s, 8p, 3r
L.replace(p, 7) 8 9s, 7p, 3r
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7.4.2 Doubly Linked List Implementation

In this section, we present a complete implementation of a PositionalList class
using a doubly linked list that satisfies the following important proposition.

Proposition 7.2: Each method of the positional list ADT runs in worst-case O(1)
time when implemented with a doubly linked list.

We rely on the DoublyLinkedBase class from Section 7.3.1 for our low-level
representation; the primary responsibility of our new class is to provide a public
interface in accordance with the positional list ADT. We begin our class definition
in Code Fragment 7.14 with the definition of the public Position class, nested within
our PositionalList class. Position instances will be used to represent the locations
of elements within the list. Our various PositionalList methods may end up creating
redundant Position instances that reference the same underlying node (for example,
when first and last are the same). For that reason, our Position class defines the

eq and ne special methods so that a test such as p == q evaluates to
True when two positions refer to the same node.

Validating Positions

Each time a method of the PositionalList class accepts a position as a parameter,
we want to verify that the position is valid, and if so, to determine the underlying
node associated with the position. This functionality is implemented by a non-
public method named validate. Internally, a position maintains a reference to the
associated node of the linked list, and also a reference to the list instance that con-
tains the specified node. With the container reference, we can robustly detect when
a caller sends a position instance that does not belong to the indicated list.

We are also able to detect a position instance that belongs to the list, but that
refers to a node that is no longer part of that list. Recall that the delete node of
the base class sets the previous and next references of a deleted node to None; we
can recognize that condition to detect a deprecated node.

Access and Update Methods

The access methods of the PositionalList class are given in Code Fragment 7.15
and the update methods are given in Code Fragment 7.16. All of these methods
trivially adapt the underlying doubly linked list implementation to support the pub-
lic interface of the positional list ADT. Those methods rely on the validate utility
to “unwrap” any position that is sent. They also rely on a make position utility
to “wrap” nodes as Position instances to return to the user, making sure never to
return a position referencing a sentinel. For convenience, we have overridden the
inherited insert between utility method so that ours returns a position associated
with the newly created node (whereas the inherited version returns the node itself ).
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1 class PositionalList( DoublyLinkedBase):
2 ”””A sequential container of elements allowing positional access.”””
3
4 #-------------------------- nested Position class --------------------------
5 class Position:
6 ”””An abstraction representing the location of a single element.”””
7
8 def init (self, container, node):
9 ”””Constructor should not be invoked by user.”””

10 self. container = container
11 self. node = node
12
13 def element(self):
14 ”””Return the element stored at this Position.”””
15 return self. node. element
16
17 def eq (self, other):
18 ”””Return True if other is a Position representing the same location.”””
19 return type(other) is type(self) and other. node is self. node
20
21 def ne (self, other):
22 ”””Return True if other does not represent the same location.”””
23 return not (self == other) # opposite of eq
24
25 #------------------------------- utility method -------------------------------
26 def validate(self, p):
27 ”””Return position s node, or raise appropriate error if invalid.”””
28 if not isinstance(p, self.Position):
29 raise TypeError( p must be proper Position type )
30 if p. container is not self:
31 raise ValueError( p does not belong to this container )
32 if p. node. next is None: # convention for deprecated nodes
33 raise ValueError( p is no longer valid )
34 return p. node

Code Fragment 7.14: A PositionalList class based on a doubly linked list. (Contin-
ues in Code Fragments 7.15 and 7.16.)
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35 #------------------------------- utility method -------------------------------
36 def make position(self, node):
37 ”””Return Position instance for given node (or None if sentinel).”””
38 if node is self. header or node is self. trailer:
39 return None # boundary violation
40 else:
41 return self.Position(self, node) # legitimate position
42
43 #------------------------------- accessors -------------------------------
44 def first(self):
45 ”””Return the first Position in the list (or None if list is empty).”””
46 return self. make position(self. header. next)
47
48 def last(self):
49 ”””Return the last Position in the list (or None if list is empty).”””
50 return self. make position(self. trailer. prev)
51
52 def before(self, p):
53 ”””Return the Position just before Position p (or None if p is first).”””
54 node = self. validate(p)
55 return self. make position(node. prev)
56
57 def after(self, p):
58 ”””Return the Position just after Position p (or None if p is last).”””
59 node = self. validate(p)
60 return self. make position(node. next)
61
62 def iter (self):
63 ”””Generate a forward iteration of the elements of the list.”””
64 cursor = self.first()
65 while cursor is not None:
66 yield cursor.element()
67 cursor = self.after(cursor)

Code Fragment 7.15: A PositionalList class based on a doubly linked list. (Contin-
ued from Code Fragment 7.14; continues in Code Fragment 7.16.)
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68 #------------------------------- mutators -------------------------------
69 # override inherited version to return Position, rather than Node
70 def insert between(self, e, predecessor, successor):
71 ”””Add element between existing nodes and return new Position.”””
72 node = super(). insert between(e, predecessor, successor)
73 return self. make position(node)
74
75 def add first(self, e):
76 ”””Insert element e at the front of the list and return new Position.”””
77 return self. insert between(e, self. header, self. header. next)
78
79 def add last(self, e):
80 ”””Insert element e at the back of the list and return new Position.”””
81 return self. insert between(e, self. trailer. prev, self. trailer)
82
83 def add before(self, p, e):
84 ”””Insert element e into list before Position p and return new Position.”””
85 original = self. validate(p)
86 return self. insert between(e, original. prev, original)
87
88 def add after(self, p, e):
89 ”””Insert element e into list after Position p and return new Position.”””
90 original = self. validate(p)
91 return self. insert between(e, original, original. next)
92
93 def delete(self, p):
94 ”””Remove and return the element at Position p.”””
95 original = self. validate(p)
96 return self. delete node(original) # inherited method returns element
97
98 def replace(self, p, e):
99 ”””Replace the element at Position p with e.

100
101 Return the element formerly at Position p.
102 ”””
103 original = self. validate(p)
104 old value = original. element # temporarily store old element
105 original. element = e # replace with new element
106 return old value # return the old element value

Code Fragment 7.16: A PositionalList class based on a doubly linked list. (Contin-
ued from Code Fragments 7.14 and 7.15.)
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7.5 Sorting a Positional List

In Section 5.5.2, we introduced the insertion-sort algorithm, in the context of an
array-based sequence. In this section, we develop an implementation that operates
on a PositionalList, relying on the same high-level algorithm in which each element
is placed relative to a growing collection of previously sorted elements.

We maintain a variable named marker that represents the rightmost position of
the currently sorted portion of a list. During each pass, we consider the position just
past the marker as the pivot and consider where the pivot’s element belongs relative
to the sorted portion; we use another variable, named walk, to move leftward from
the marker, as long as there remains a preceding element with value larger than the
pivot’s. A typical configuration of these variables is diagrammed in Figure 7.15. A
Python implementation of this strategy is given in Code 7.17.

15 22 25 29 36 23 53 11 42

marker

pivotwalk

Figure 7.15: Overview of one step of our insertion-sort algorithm. The shaded
elements, those up to and including marker, have already been sorted. In this step,
the pivot’s element should be relocated immediately before the walk position.

1 def insertion sort(L):
2 ”””Sort PositionalList of comparable elements into nondecreasing order.”””
3 if len(L) > 1: # otherwise, no need to sort it
4 marker = L.first()
5 while marker != L.last():
6 pivot = L.after(marker) # next item to place
7 value = pivot.element()
8 if value > marker.element(): # pivot is already sorted
9 marker = pivot # pivot becomes new marker

10 else: # must relocate pivot
11 walk = marker # find leftmost item greater than value
12 while walk != L.first( ) and L.before(walk).element( ) > value:
13 walk = L.before(walk)
14 L.delete(pivot)
15 L.add before(walk, value) # reinsert value before walk

Code Fragment 7.17: Python code for performing insertion-sort on a positional list.
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7.6 Case Study: Maintaining Access Frequencies

The positional list ADT is useful in a number of settings. For example, a program
that simulates a game of cards could model each person’s hand as a positional list
(Exercise P-7.47). Since most people keep cards of the same suit together, inserting
and removing cards from a person’s hand could be implemented using the methods
of the positional list ADT, with the positions being determined by a natural order
of the suits. Likewise, a simple text editor embeds the notion of positional insertion
and deletion, since such editors typically perform all updates relative to a cursor,
which represents the current position in the list of characters of text being edited.

In this section, we consider maintaining a collection of elements while keeping
track of the number of times each element is accessed. Keeping such access counts
allows us to know which elements are among the most popular. Examples of such
scenarios include a Web browser that keeps track of a user’s most accessed URLs,
or a music collection that maintains a list of the most frequently played songs for
a user. We model this with a new favorites list ADT that supports the len and
is empty methods as well as the following:

access(e): Access the element e, incrementing its access count, and
adding it to the favorites list if it is not already present.

remove(e): Remove element e from the favorites list, if present.

top(k): Return an iteration of the k most accessed elements.

7.6.1 Using a Sorted List

Our first approach for managing a list of favorites is to store elements in a linked
list, keeping them in nonincreasing order of access counts. We access or remove
an element by searching the list from the most frequently accessed to the least
frequently accessed. Reporting the top k most accessed elements is easy, as they
are the first k entries of the list.

To maintain the invariant that elements are stored in nonincreasing order of
access counts, we must consider how a single access operation may affect the order.
The accessed element’s count increases by one, and so it may become larger than
one or more of its preceding neighbors in the list, thereby violating the invariant.

Fortunately, we can reestablish the sorted invariant using a technique similar to
a single pass of the insertion-sort algorithm, introduced in the previous section. We
can perform a backward traversal of the list, starting at the position of the element
whose access count has increased, until we locate a valid position after which the
element can be relocated.
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Using the Composition Pattern

We wish to implement a favorites list by making use of a PositionalList for storage.
If elements of the positional list were simply elements of the favorites list, we
would be challenged to maintain access counts and to keep the proper count with
the associated element as the contents of the list are reordered. We use a general
object-oriented design pattern, the composition pattern, in which we define a single
object that is composed of two or more other objects. Specifically, we define a
nonpublic nested class, Item, that stores the element and its access count as a
single instance. We then maintain our favorites list as a PositionalList of item
instances, so that the access count for a user’s element is embedded alongside it in
our representation. (An Item is never exposed to a user of a FavoritesList.)

1 class FavoritesList:
2 ”””List of elements ordered from most frequently accessed to least.”””
3
4 #------------------------------ nested Item class ------------------------------
5 class Item:
6 slots = _value , _count # streamline memory usage
7 def init (self, e):
8 self. value = e # the user s element
9 self. count = 0 # access count initially zero

10
11 #------------------------------- nonpublic utilities -------------------------------
12 def find position(self, e):
13 ”””Search for element e and return its Position (or None if not found).”””
14 walk = self. data.first()
15 while walk is not None and walk.element(). value != e:
16 walk = self. data.after(walk)
17 return walk
18
19 def move up(self, p):
20 ”””Move item at Position p earlier in the list based on access count.”””
21 if p != self. data.first(): # consider moving...
22 cnt = p.element(). count
23 walk = self. data.before(p)
24 if cnt > walk.element(). count: # must shift forward
25 while (walk != self. data.first( ) and
26 cnt > self. data.before(walk).element(). count):
27 walk = self. data.before(walk)
28 self. data.add before(walk, self. data.delete(p)) # delete/reinsert

Code Fragment 7.18: Class FavoritesList. (Continues in Code Fragment 7.19.)
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29 #------------------------------- public methods -------------------------------
30 def init (self):
31 ”””Create an empty list of favorites.”””
32 self. data = PositionalList( ) # will be list of Item instances
33
34 def len (self):
35 ”””Return number of entries on favorites list.”””
36 return len(self. data)
37
38 def is empty(self):
39 ”””Return True if list is empty.”””
40 return len(self. data) == 0
41
42 def access(self, e):
43 ”””Access element e, thereby increasing its access count.”””
44 p = self. find position(e) # try to locate existing element
45 if p is None:
46 p = self. data.add last(self. Item(e)) # if new, place at end
47 p.element(). count += 1 # always increment count
48 self. move up(p) # consider moving forward
49
50 def remove(self, e):
51 ”””Remove element e from the list of favorites.”””
52 p = self. find position(e) # try to locate existing element
53 if p is not None:
54 self. data.delete(p) # delete, if found
55
56 def top(self, k):
57 ”””Generate sequence of top k elements in terms of access count.”””
58 if not 1 <= k <= len(self):
59 raise ValueError( Illegal value for k )
60 walk = self. data.first()
61 for j in range(k):
62 item = walk.element( ) # element of list is Item
63 yield item. value # report user’s element
64 walk = self. data.after(walk)

Code Fragment 7.19: Class FavoritesList. (Continued from Code Fragment 7.18.)
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7.6.2 Using a List with the Move-to-Front Heuristic

The previous implementation of a favorites list performs the access(e) method in
time proportional to the index of e in the favorites list. That is, if e is the kth most
popular element in the favorites list, then accessing it takes O(k) time. In many
real-life access sequences (e.g., Web pages visited by a user), once an element is
accessed it is more likely to be accessed again in the near future. Such scenarios
are said to possess locality of reference.

A heuristic, or rule of thumb, that attempts to take advantage of the locality of
reference that is present in an access sequence is the move-to-front heuristic. To
apply this heuristic, each time we access an element we move it all the way to the
front of the list. Our hope, of course, is that this element will be accessed again in
the near future. Consider, for example, a scenario in which we have n elements and
the following series of n2 accesses:

• element 1 is accessed n times
• element 2 is accessed n times
• · · ·
• element n is accessed n times.

If we store the elements sorted by their access counts, inserting each element the
first time it is accessed, then

• each access to element 1 runs in O(1) time
• each access to element 2 runs in O(2) time
• · · ·
• each access to element n runs in O(n) time.

Thus, the total time for performing the series of accesses is proportional to

n+ 2n+ 3n+ · · ·+ n ·n = n(1+ 2+ 3+ · · ·+ n) = n · n(n+ 1)

2
,

which is O(n3).
On the other hand, if we use the move-to-front heuristic, inserting each element

the first time it is accessed, then

• each subsequent access to element 1 takes O(1) time
• each subsequent access to element 2 takes O(1) time
• · · ·
• each subsequent access to element n runs in O(1) time.

So the running time for performing all the accesses in this case is O(n2). Thus,
the move-to-front implementation has faster access times for this scenario. Still,
the move-to-front approach is just a heuristic, for there are access sequences where
using the move-to-front approach is slower than simply keeping the favorites list
ordered by access counts.
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The Trade-Offs with the Move-to-Front Heuristic

If we no longer maintain the elements of the favorites list ordered by their access
counts, when we are asked to find the k most accessed elements, we need to search
for them. We will implement the top(k) method as follows:

1. We copy all entries of our favorites list into another list, named temp.

2. We scan the temp list k times. In each scan, we find the entry with the largest
access count, remove this entry from temp, and report it in the results.

This implementation of method top takes O(kn) time. Thus, when k is a constant,
method top runs in O(n) time. This occurs, for example, when we want to get the
“top ten” list. However, if k is proportional to n, then top runs in O(n2) time. This
occurs, for example, when we want a “top 25%” list.

In Chapter 9 we will introduce a data structure that will allow us to implement
top in O(n + k logn) time (see Exercise P-9.54), and more advanced techniques
could be used to perform top in O(n+ k logk) time.

We could easily achieve O(n logn) time if we use a standard sorting algorithm
to reorder the temporary list before reporting the top k (see Chapter 12); this ap-
proach would be preferred to the original in the case that k is Ω(logn). (Recall
the big-Omega notation introduced in Section 3.3.1 to give an asymptotic lower
bound on the running time of an algorithm.) There is a more specialized sorting
algorithm (see Section 12.4.2) that can take advantage of the fact that access counts
are integers in order to achieve O(n) time for top, for any value of k.

Implementing the Move-to-Front Heuristic in Python

We give an implementation of a favorites list using the move-to-front heuristic in
Code Fragment 7.20. The new FavoritesListMTF class inherits most of its func-
tionality from the original FavoritesList as a base class.

By our original design, the access method of the original class relies on a non-
public utility named move up to enact the potential shifting of an element forward
in the list, after its access count had been incremented. Therefore, we implement
the move-to-front heuristic by simply overriding the move up method so that each
accessed element is moved directly to the front of the list (if not already there). This
action is easily implemented by means of the positional list ADT.

The more complex portion of our FavoritesListMTF class is the new definition
for the top method. We rely on the first of the approaches outlined above, inserting
copies of the items into a temporary list and then repeatedly finding, reporting, and
removing an element that has the largest access count of those remaining.
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1 class FavoritesListMTF(FavoritesList):
2 ”””List of elements ordered with move-to-front heuristic.”””
3
4 # we override move up to provide move-to-front semantics
5 def move up(self, p):
6 ”””Move accessed item at Position p to front of list.”””
7 if p != self. data.first():
8 self. data.add first(self. data.delete(p)) # delete/reinsert
9

10 # we override top because list is no longer sorted
11 def top(self, k):
12 ”””Generate sequence of top k elements in terms of access count.”””
13 if not 1 <= k <= len(self):
14 raise ValueError( Illegal value for k )
15
16 # we begin by making a copy of the original list
17 temp = PositionalList()
18 for item in self. data: # positional lists support iteration
19 temp.add last(item)
20
21 # we repeatedly find, report, and remove element with largest count
22 for j in range(k):
23 # find and report next highest from temp
24 highPos = temp.first()
25 walk = temp.after(highPos)
26 while walk is not None:
27 if walk.element(). count > highPos.element(). count:
28 highPos = walk
29 walk = temp.after(walk)
30 # we have found the element with highest count
31 yield highPos.element(). value # report element to user
32 temp.delete(highPos) # remove from temp list

Code Fragment 7.20: Class FavoritesListMTF implementing the move-to-front
heuristic. This class extends FavoritesList (Code Fragments 7.18 and 7.19) and
overrides methods move up and top.
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7.7 Link-Based vs. Array-Based Sequences

We close this chapter by reflecting on the relative pros and cons of array-based
and link-based data structures that have been introduced thus far. The dichotomy
between these approaches presents a common design decision when choosing an
appropriate implementation of a data structure. There is not a one-size-fits-all so-
lution, as each offers distinct advantages and disadvantages.

Advantages of Array-Based Sequences

• Arrays provide O(1)-time access to an element based on an integer index.
The ability to access the kth element for any k in O(1) time is a hallmark
advantage of arrays (see Section 5.2). In contrast, locating the kth element
in a linked list requires O(k) time to traverse the list from the beginning,
or possibly O(n− k) time, if traversing backward from the end of a doubly
linked list.

• Operations with equivalent asymptotic bounds typically run a constant factor
more efficiently with an array-based structure versus a linked structure. As
an example, consider the typical enqueue operation for a queue. Ignoring
the issue of resizing an array, this operation for the ArrayQueue class (see
Code Fragment 6.7) involves an arithmetic calculation of the new index, an
increment of an integer, and storing a reference to the element in the array.
In contrast, the process for a LinkedQueue (see Code Fragment 7.8) requires
the instantiation of a node, appropriate linking of nodes, and an increment
of an integer. While this operation completes in O(1) time in either model,
the actual number of CPU operations will be more in the linked version,
especially given the instantiation of the new node.

• Array-based representations typically use proportionally less memory than
linked structures. This advantage may seem counterintuitive, especially given
that the length of a dynamic array may be longer than the number of elements
that it stores. Both array-based lists and linked lists are referential structures,
so the primary memory for storing the actual objects that are elements is the
same for either structure. What differs is the auxiliary amounts of memory
that are used by the two structures. For an array-based container of n ele-
ments, a typical worst case may be that a recently resized dynamic array has
allocated memory for 2n object references. With linked lists, memory must
be devoted not only to store a reference to each contained object, but also
explicit references that link the nodes. So a singly linked list of length n
already requires 2n references (an element reference and next reference for
each node). With a doubly linked list, there are 3n references.
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Advantages of Link-Based Sequences

• Link-based structures provide worst-case time bounds for their operations.
This is in contrast to the amortized bounds associated with the expansion or
contraction of a dynamic array (see Section 5.3).

When many individual operations are part of a larger computation, and we
only care about the total time of that computation, an amortized bound is as
good as a worst-case bound precisely because it gives a guarantee on the sum
of the time spent on the individual operations.

However, if data structure operations are used in a real-time system that is de-
signed to provide more immediate responses (e.g., an operating system, Web
server, air traffic control system), a long delay caused by a single (amortized)
operation may have an adverse effect.

• Link-based structures support O(1)-time insertions and deletions at arbi-
trary positions. The ability to perform a constant-time insertion or deletion
with the PositionalList class, by using a Position to efficiently describe the
location of the operation, is perhaps the most significant advantage of the
linked list.

This is in stark contrast to an array-based sequence. Ignoring the issue of
resizing an array, inserting or deleting an element from the end of an array-
based list can be done in constant time. However, more general insertions and
deletions are expensive. For example, with Python’s array-based list class, a
call to insert or pop with index k uses O(n− k + 1) time because of the loop
to shift all subsequent elements (see Section 5.4).

As an example application, consider a text editor that maintains a document
as a sequence of characters. Although users often add characters to the end
of the document, it is also possible to use the cursor to insert or delete one or
more characters at an arbitrary position within the document. If the charac-
ter sequence were stored in an array-based sequence (such as a Python list),
each such edit operation may require linearly many characters to be shifted,
leading to O(n) performance for each edit operation. With a linked-list rep-
resentation, an arbitrary edit operation (insertion or deletion of a character
at the cursor) can be performed in O(1) worst-case time, assuming we are
given a position that represents the location of the cursor.
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7.8 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-7.1 Give an algorithm for finding the second-to-last node in a singly linked
list in which the last node is indicated by a next reference of None.

R-7.2 Describe a good algorithm for concatenating two singly linked lists L and
M, given only references to the first node of each list, into a single list L′

that contains all the nodes of L followed by all the nodes of M.

R-7.3 Describe a recursive algorithm that counts the number of nodes in a singly
linked list.

R-7.4 Describe in detail how to swap two nodes x and y (and not just their con-
tents) in a singly linked list L given references only to x and y. Repeat
this exercise for the case when L is a doubly linked list. Which algorithm
takes more time?

R-7.5 Implement a function that counts the number of nodes in a circularly
linked list.

R-7.6 Suppose that x and y are references to nodes of circularly linked lists,
although not necessarily the same list. Describe a fast algorithm for telling
if x and y belong to the same list.

R-7.7 Our CircularQueue class of Section 7.2.2 provides a rotate() method that
has semantics equivalent to Q.enqueue(Q.dequeue()), for a nonempty
queue. Implement such a method for the LinkedQueue class of Sec-
tion 7.1.2 without the creation of any new nodes.

R-7.8 Describe a nonrecursive method for finding, by link hopping, the middle
node of a doubly linked list with header and trailer sentinels. In the case
of an even number of nodes, report the node slightly left of center as the
“middle.” (Note: This method must only use link hopping; it cannot use a
counter.) What is the running time of this method?

R-7.9 Give a fast algorithm for concatenating two doubly linked lists L and M,
with header and trailer sentinel nodes, into a single list L′.

R-7.10 There seems to be some redundancy in the repertoire of the positional
list ADT, as the operation L.add first(e) could be enacted by the alter-
native L.add before(L.first(), e). Likewise, L.add last(e) might be per-
formed as L.add after(L.last(), e). Explain why the methods add first
and add last are necessary.
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R-7.11 Implement a function, with calling syntax max(L), that returns the max-
imum element from a PositionalList instance L containing comparable
elements.

R-7.12 Redo the previously problem with max as a method of the PositionalList
class, so that calling syntax L.max() is supported.

R-7.13 Update the PositionalList class to support an additional method find(e),
which returns the position of the (first occurrence of) element e in the list
(or None if not found).

R-7.14 Repeat the previous process using recursion. Your method should not
contain any loops. How much space does your method use in addition to
the space used for L?

R-7.15 Provide support for a reversed method of the PositionalList class that
is similar to the given iter , but that iterates the elements in reversed
order.

R-7.16 Describe an implementation of the PositionalList methods add last and
add before realized by using only methods in the set {is empty, first, last,
prev, next, add after, and add first}.

R-7.17 In the FavoritesListMTF class, we rely on public methods of the positional
list ADT to move an element of a list at position p to become the first ele-
ment of the list, while keeping the relative order of the remaining elements
unchanged. Internally, that combination of operations causes one node to
be removed and a new node to be inserted. Augment the PositionalList
class to support a new method, move to front(p), that accomplishes this
goal more directly, by relinking the existing node.

R-7.18 Given the set of element {a,b,c,d,e, f} stored in a list, show the final state
of the list, assuming we use the move-to-front heuristic and access the el-
ements according to the following sequence: (a,b,c,d,e, f ,a,c, f ,b,d,e).

R-7.19 Suppose that we have made kn total accesses to the elements in a list L of
n elements, for some integer k ≥ 1. What are the minimum and maximum
number of elements that have been accessed fewer than k times?

R-7.20 Let L be a list of n items maintained according to the move-to-front heuris-
tic. Describe a series of O(n) accesses that will reverse L.

R-7.21 Suppose we have an n-element list L maintained according to the move-
to-front heuristic. Describe a sequence of n2 accesses that is guaranteed
to take Ω(n3) time to perform on L.

R-7.22 Implement a clear() method for the FavoritesList class that returns the list
to empty.

R-7.23 Implement a reset counts() method for the FavoritesList class that resets
all elements’ access counts to zero (while leaving the order of the list
unchanged).
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Creativity

C-7.24 Give a complete implementation of the stack ADT using a singly linked
list that includes a header sentinel.

C-7.25 Give a complete implementation of the queue ADT using a singly linked
list that includes a header sentinel.

C-7.26 Implement a method, concatenate(Q2) for the LinkedQueue class that
takes all elements of LinkedQueue Q2 and appends them to the end of the
original queue. The operation should run in O(1) time and should result
in Q2 being an empty queue.

C-7.27 Give a recursive implementation of a singly linked list class, such that an
instance of a nonempty list stores its first element and a reference to a list
of remaining elements.

C-7.28 Describe a fast recursive algorithm for reversing a singly linked list.

C-7.29 Describe in detail an algorithm for reversing a singly linked list L using
only a constant amount of additional space and not using any recursion.

C-7.30 Exercise P-6.35 describes a LeakyStack abstraction. Implement that ADT
using a singly linked list for storage.

C-7.31 Design a forward list ADT that abstracts the operations on a singly linked
list, much as the positional list ADT abstracts the use of a doubly linked
list. Implement a ForwardList class that supports such an ADT.

C-7.32 Design a circular positional list ADT that abstracts a circularly linked list
in the same way that the positional list ADT abstracts a doubly linked list,
with a notion of a designated “cursor” position within the list.

C-7.33 Modify the DoublyLinkedBase class to include a reverse method that re-
verses the order of the list, yet without creating or destroying any nodes.

C-7.34 Modify the PositionalList class to support a method swap(p, q) that causes
the underlying nodes referenced by positions p and q to be exchanged for
each other. Relink the existing nodes; do not create any new nodes.

C-7.35 To implement the iter method of the PositionalList class, we relied on the
convenience of Python’s generator syntax and the yield statement. Give
an alternative implementation of iter by designing a nested iterator class.
(See Section 2.3.4 for discussion of iterators.)

C-7.36 Give a complete implementation of the positional list ADT using a doubly
linked list that does not include any sentinel nodes.

C-7.37 Implement a function that accepts a PositionalList L of n integers sorted
in nondecreasing order, and another value V , and determines in O(n) time
if there are two elements of L that sum precisely to V . The function should
return a pair of positions of such elements, if found, or None otherwise.
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C-7.38 There is a simple, but inefficient, algorithm, called bubble-sort, for sorting
a list L of n comparable elements. This algorithm scans the list n−1 times,
where, in each scan, the algorithm compares the current element with the
next one and swaps them if they are out of order. Implement a bubble sort
function that takes a positional list L as a parameter. What is the running
time of this algorithm, assuming the positional list is implemented with a
doubly linked list?

C-7.39 To better model a FIFO queue in which entries may be deleted before
reaching the front, design a PositionalQueue class that supports the com-
plete queue ADT, yet with enqueue returning a position instance and sup-
port for a new method, delete(p), that removes the element associated
with position p from the queue. You may use the adapter design pattern
(Section 6.1.2), using a PositionalList as your storage.

C-7.40 Describe an efficient method for maintaining a favorites list L, with move-
to-front heuristic, such that elements that have not been accessed in the
most recent n accesses are automatically purged from the list.

C-7.41 Exercise C-5.29 introduces the notion of a natural join of two databases.
Describe and analyze an efficient algorithm for computing the natural join
of a linked list A of n pairs and a linked list B of m pairs.

C-7.42 Write a Scoreboard class that maintains the top 10 scores for a game ap-
plication using a singly linked list, rather than the array that was used in
Section 5.5.1.

C-7.43 Describe a method for performing a card shuffle of a list of 2n elements,
by converting it into two lists. A card shuffle is a permutation where a list
L is cut into two lists, L1 and L2, where L1 is the first half of L and L2 is the
second half of L, and then these two lists are merged into one by taking
the first element in L1, then the first element in L2, followed by the second
element in L1, the second element in L2, and so on.

Projects

P-7.44 Write a simple text editor that stores and displays a string of characters
using the positional list ADT, together with a cursor object that highlights
a position in this string. A simple interface is to print the string and then
to use a second line of output to underline the position of the cursor. Your
editor should support the following operations:

• left: Move cursor left one character (do nothing if at beginning).
• right: Move cursor right one character (do nothing if at end).
• insert c: Insert the character c just after the cursor.
• delete: Delete the character just after the cursor (do nothing at end).

www.it-ebooks.info

http://www.it-ebooks.info/


298 Chapter 7. Linked Lists

P-7.45 An array A is sparse if most of its entries are empty (i.e., None). A list
L can be used to implement such an array efficiently. In particular, for
each nonempty cell A[i], we can store an entry (i,e) in L, where e is the
element stored at A[i]. This approach allows us to represent A using O(m)
storage, where m is the number of nonempty entries in A. Provide such
a SparseArray class that minimally supports methods getitem (j) and

setitem (j, e) to provide standard indexing operations. Analyze the
efficiency of these methods.

P-7.46 Although we have used a doubly linked list to implement the positional
list ADT, it is possible to support the ADT with an array-based imple-
mentation. The key is to use the composition pattern and store a sequence
of position items, where each item stores an element as well as that ele-
ment’s current index in the array. Whenever an element’s place in the array
is changed, the recorded index in the position must be updated to match.
Given a complete class providing such an array-based implementation of
the positional list ADT. What is the efficiency of the various operations?

P-7.47 Implement a CardHand class that supports a person arranging a group of
cards in his or her hand. The simulator should represent the sequence of
cards using a single positional list ADT so that cards of the same suit are
kept together. Implement this strategy by means of four “fingers” into the
hand, one for each of the suits of hearts, clubs, spades, and diamonds,
so that adding a new card to the person’s hand or playing a correct card
from the hand can be done in constant time. The class should support the
following methods:

• add card(r, s): Add a new card with rank r and suit s to the hand.
• play(s): Remove and return a card of suit s from the player’s hand;

if there is no card of suit s, then remove and return an arbitrary card
from the hand.

• iter (): Iterate through all cards currently in the hand.
• all of suit(s): Iterate through all cards of suit s that are currently in

the hand.

Chapter Notes

A view of data structures as collections (and other principles of object-oriented design)
can be found in object-oriented design books by Booch [17], Budd [20], Goldberg and
Robson [42], and Liskov and Guttag [71]. Our positional list ADT is derived from the
“position” abstraction introduced by Aho, Hopcroft, and Ullman [6], and the list ADT of
Wood [104]. Implementations of linked lists are discussed by Knuth [64].
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8.1 General Trees

Productivity experts say that breakthroughs come by thinking “nonlinearly.” In
this chapter, we discuss one of the most important nonlinear data structures in
computing—trees. Tree structures are indeed a breakthrough in data organization,
for they allow us to implement a host of algorithms much faster than when using
linear data structures, such as array-based lists or linked lists. Trees also provide a
natural organization for data, and consequently have become ubiquitous structures
in file systems, graphical user interfaces, databases, Web sites, and other computer
systems.

It is not always clear what productivity experts mean by “nonlinear” thinking,
but when we say that trees are “nonlinear,” we are referring to an organizational
relationship that is richer than the simple “before” and “after” relationships be-
tween objects in sequences. The relationships in a tree are hierarchical, with some
objects being “above” and some “below” others. Actually, the main terminology
for tree data structures comes from family trees, with the terms “parent,” “child,”
“ancestor,” and “descendant” being the most common words used to describe rela-
tionships. We show an example of a family tree in Figure 8.1.
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Figure 8.1: A family tree showing some descendants of Abraham, as recorded in
Genesis, chapters 25–36.
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8.1.1 Tree Definitions and Properties

A tree is an abstract data type that stores elements hierarchically. With the excep-
tion of the top element, each element in a tree has a parent element and zero or
more children elements. A tree is usually visualized by placing elements inside
ovals or rectangles, and by drawing the connections between parents and children
with straight lines. (See Figure 8.2.) We typically call the top element the root
of the tree, but it is drawn as the highest element, with the other elements being
connected below (just the opposite of a botanical tree).

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International TV CD Tuner

Sales Purchasing ManufacturingR&D

Electronics R’Us

Figure 8.2: A tree with 17 nodes representing the organization of a fictitious cor-
poration. The root stores Electronics R’Us. The children of the root store R&D,
Sales, Purchasing, and Manufacturing. The internal nodes store Sales, Interna-
tional, Overseas, Electronics R’Us, and Manufacturing.

Formal Tree Definition

Formally, we define a tree T as a set of nodes storing elements such that the nodes
have a parent-child relationship that satisfies the following properties:

• If T is nonempty, it has a special node, called the root of T , that has no parent.
• Each node v of T different from the root has a unique parent node w; every

node with parent w is a child of w.
Note that according to our definition, a tree can be empty, meaning that it does not
have any nodes. This convention also allows us to define a tree recursively such
that a tree T is either empty or consists of a node r, called the root of T , and a
(possibly empty) set of subtrees whose roots are the children of r.
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Other Node Relationships

Two nodes that are children of the same parent are siblings. A node v is external
if v has no children. A node v is internal if it has one or more children. External
nodes are also known as leaves.

Example 8.1: In Section 4.1.4, we discussed the hierarchical relationship be-
tween files and directories in a computer’s file system, although at the time we
did not emphasize the nomenclature of a file system as a tree. In Figure 8.3, we
revisit an earlier example. We see that the internal nodes of the tree are associ-
ated with directories and the leaves are associated with regular files. In the UNIX
and Linux operating systems, the root of the tree is appropriately called the “root
directory,” and is represented by the symbol “/.”

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 8.3: Tree representing a portion of a file system.

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent
of v. Conversely, we say that a node v is a descendant of a node u if u is an ancestor
of v. For example, in Figure 8.3, cs252/ is an ancestor of papers/, and pr3 is a
descendant of cs016/. The subtree of T rooted at a node v is the tree consisting of
all the descendants of v in T (including v itself). In Figure 8.3, the subtree rooted at
cs016/ consists of the nodes cs016/, grades, homeworks/, programs/, hw1, hw2,
hw3, pr1, pr2, and pr3.

Edges and Paths in Trees

An edge of tree T is a pair of nodes (u,v) such that u is the parent of v, or vice
versa. A path of T is a sequence of nodes such that any two consecutive nodes in
the sequence form an edge. For example, the tree in Figure 8.3 contains the path
(cs252/, projects/, demos/, market).
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Example 8.2: The inheritance relation between classes in a Python program forms
a tree when single inheritance is used. For example, in Section 2.4 we provided a
summary of the hierarchy for Python’s exception types, as portrayed in Figure 8.4
(originally Figure 2.5). The BaseException class is the root of that hierarchy, while
all user-defined exception classes should conventionally be declared as descendants
of the more specific Exception class. (See, for example, the Empty class we intro-
duced in Code Fragment 6.1 of Chapter 6.)

ValueError

Exception KeyboardInterruptSystemExit

BaseException

IndexError KeyError ZeroDivisionError

LookupError ArithmeticError

Figure 8.4: A portion of Python’s hierarchy of exception types.

In Python, all classes are organized into a single hierarchy, as there exists a
built-in class named object as the ultimate base class. It is a direct or indirect base
class of all other types in Python (even if not declared as such when defining a new
class). Therefore, the hierarchy pictured in Figure 8.4 is only a portion of Python’s
complete class hierarchy.

As a preview of the remainder of this chapter, Figure 8.5 portrays our own
hierarchy of classes for representing various forms of a tree.

ArrayBinaryTree LinkedBinaryTree

Tree

LinkedTreeBinaryTree

Figure 8.5: Our own inheritance hierarchy for modeling various abstractions and
implementations of tree data structures. In the remainder of this chapter, we provide
implementations of Tree, BinaryTree, and LinkedBinaryTree classes, and high-
level sketches for how LinkedTree and ArrayBinaryTree might be designed.
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Ordered Trees

A tree is ordered if there is a meaningful linear order among the children of each
node; that is, we purposefully identify the children of a node as being the first,
second, third, and so on. Such an order is usually visualized by arranging siblings
left to right, according to their order.

Example 8.3: The components of a structured document, such as a book, are hier-
archically organized as a tree whose internal nodes are parts, chapters, and sections,
and whose leaves are paragraphs, tables, figures, and so on. (See Figure 8.6.) The
root of the tree corresponds to the book itself. We could, in fact, consider expanding
the tree further to show paragraphs consisting of sentences, sentences consisting of
words, and words consisting of characters. Such a tree is an example of an ordered
tree, because there is a well-defined order among the children of each node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

... ...... ...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

... ... ......§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

Figure 8.6: An ordered tree associated with a book.

Let’s look back at the other examples of trees that we have described thus far,
and consider whether the order of children is significant. A family tree that de-
scribes generational relationships, as in Figure 8.1, is often modeled as an ordered
tree, with siblings ordered according to their birth.

In contrast, an organizational chart for a company, as in Figure 8.2, is typically
considered an unordered tree. Likewise, when using a tree to describe an inher-
itance hierarchy, as in Figure 8.4, there is no particular significance to the order
among the subclasses of a parent class. Finally, we consider the use of a tree in
modeling a computer’s file system, as in Figure 8.3. Although an operating system
often displays entries of a directory in a particular order (e.g., alphabetical, chrono-
logical), such an order is not typically inherent to the file system’s representation.
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8.1.2 The Tree Abstract Data Type

As we did with positional lists in Section 7.4, we define a tree ADT using the
concept of a position as an abstraction for a node of a tree. An element is stored
at each position, and positions satisfy parent-child relationships that define the tree
structure. A position object for a tree supports the method:

p.element(): Return the element stored at position p.

The tree ADT then supports the following accessor methods, allowing a user to
navigate the various positions of a tree:

T.root(): Return the position of the root of tree T,
or None if T is empty.

T.is root(p): Return True if position p is the root of Tree T.

T.parent(p): Return the position of the parent of position p,
or None if p is the root of T.

T.num children(p): Return the number of children of position p.

T.children(p): Generate an iteration of the children of position p.

T.is leaf(p): Return True if position p does not have any children.

len(T): Return the number of positions (and hence elements) that
are contained in tree T.

T.is empty(): Return True if tree T does not contain any positions.

T.positions(): Generate an iteration of all positions of tree T.

iter(T): Generate an iteration of all elements stored within tree T.

Any of the above methods that accepts a position as an argument should generate a
ValueError if that position is invalid for T.

If a tree T is ordered, then T.children(p) reports the children of p in the natural
order. If p is a leaf, then T.children(p) generates an empty iteration. In similar
regard, if tree T is empty, then both T.positions() and iter(T) generate empty iter-
ations. We will discuss general means for iterating through all positions of a tree in
Sections 8.4.

We do not define any methods for creating or modifying trees at this point.
We prefer to describe different tree update methods in conjunction with specific
implementations of the tree interface, and specific applications of trees.
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A Tree Abstract Base Class in Python

In discussing the object-oriented design principle of abstraction in Section 2.1.2, we
noted that a public interface for an abstract data type is often managed in Python via
duck typing. For example, we defined the notion of the public interface for a queue
ADT in Section 6.2, and have since presented several classes that implement the
queue interface (e.g., ArrayQueue in Section 6.2.2, LinkedQueue in Section 7.1.2,
CircularQueue in Section 7.2.2). However, we never gave any formal definition of
the queue ADT in Python; all of the concrete implementations were self-contained
classes that just happen to adhere to the same public interface. A more formal
mechanism to designate the relationships between different implementations of the
same abstraction is through the definition of one class that serves as an abstract
base class, via inheritance, for one or more concrete classes. (See Section 2.4.3.)

We choose to define a Tree class, in Code Fragment 8.1, that serves as an ab-
stract base class corresponding to the tree ADT. Our reason for doing so is that there
is quite a bit of useful code that we can provide, even at this level of abstraction, al-
lowing greater code reuse in the concrete tree implementations we later define. The
Tree class provides a definition of a nested Position class (which is also abstract),
and declarations of many of the accessor methods included in the tree ADT.

However, our Tree class does not define any internal representation for stor-
ing a tree, and five of the methods given in that code fragment remain abstract
(root, parent, num children, children, and len ); each of these methods raises a
NotImplementedError. (A more formal approach for defining abstract base classes
and abstract methods, using Python’s abc module, is described in Section 2.4.3.)
The subclasses are responsible for overriding abstract methods, such as children, to
provide a working implementation for each behavior, based on their chosen internal
representation.

Although the Tree class is an abstract base class, it includes several concrete
methods with implementations that rely on calls to the abstract methods of the class.
In defining the tree ADT in the previous section, we declare ten accessor methods.
Five of those are the ones we left as abstract, in Code Fragment 8.1. The other five
can be implemented based on the former. Code Fragment 8.2 provides concrete
implementations for methods is root, is leaf, and is empty. In Section 8.4, we will
explore general algorithms for traversing a tree that can be used to provide concrete
implementations of the positions and iter methods within the Tree class. The
beauty of this design is that the concrete methods defined within the Tree abstract
base class will be inherited by all subclasses. This promotes greater code reuse, as
there will be no need for those subclasses to reimplement such behaviors.

We note that, with the Tree class being abstract, there is no reason to create a
direct instance of it, nor would such an instance be useful. The class exists to serve
as a base for inheritance, and users will create instances of concrete subclasses.
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1 class Tree:
2 ”””Abstract base class representing a tree structure.”””
3
4 #------------------------------- nested Position class -------------------------------
5 class Position:
6 ”””An abstraction representing the location of a single element.”””
7
8 def element(self):
9 ”””Return the element stored at this Position.”””

10 raise NotImplementedError( must be implemented by subclass )
11
12 def eq (self, other):
13 ”””Return True if other Position represents the same location.”””
14 raise NotImplementedError( must be implemented by subclass )
15
16 def ne (self, other):
17 ”””Return True if other does not represent the same location.”””
18 return not (self == other) # opposite of eq
19
20 # ---------- abstract methods that concrete subclass must support ----------
21 def root(self):
22 ”””Return Position representing the tree s root (or None if empty).”””
23 raise NotImplementedError( must be implemented by subclass )
24
25 def parent(self, p):
26 ”””Return Position representing p s parent (or None if p is root).”””
27 raise NotImplementedError( must be implemented by subclass )
28
29 def num children(self, p):
30 ”””Return the number of children that Position p has.”””
31 raise NotImplementedError( must be implemented by subclass )
32
33 def children(self, p):
34 ”””Generate an iteration of Positions representing p s children.”””
35 raise NotImplementedError( must be implemented by subclass )
36
37 def len (self):
38 ”””Return the total number of elements in the tree.”””
39 raise NotImplementedError( must be implemented by subclass )

Code Fragment 8.1: A portion of our Tree abstract base class (continued in Code
Fragment 8.2).
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40 # ---------- concrete methods implemented in this class ----------
41 def is root(self, p):
42 ”””Return True if Position p represents the root of the tree.”””
43 return self.root( ) == p
44
45 def is leaf(self, p):
46 ”””Return True if Position p does not have any children.”””
47 return self.num children(p) == 0
48
49 def is empty(self):
50 ”””Return True if the tree is empty.”””
51 return len(self) == 0

Code Fragment 8.2: Some concrete methods of our Tree abstract base class.

8.1.3 Computing Depth and Height

Let p be the position of a node of a tree T . The depth of p is the number of
ancestors of p, excluding p itself. For example, in the tree of Figure 8.2, the node
storing International has depth 2. Note that this definition implies that the depth of
the root of T is 0. The depth of p can also be recursively defined as follows:

• If p is the root, then the depth of p is 0.

• Otherwise, the depth of p is one plus the depth of the parent of p.

Based on this definition, we present a simple, recursive algorithm, depth, in Code
Fragment 8.3, for computing the depth of a position p in Tree T . This method calls
itself recursively on the parent of p, and adds 1 to the value returned.

52 def depth(self, p):
53 ”””Return the number of levels separating Position p from the root.”””
54 if self.is root(p):
55 return 0
56 else:
57 return 1 + self.depth(self.parent(p))

Code Fragment 8.3: Method depth of the Tree class.

The running time of T.depth(p) for position p is O(dp + 1), where dp denotes
the depth of p in the tree T , because the algorithm performs a constant-time recur-
sive step for each ancestor of p. Thus, algorithm T.depth(p) runs in O(n) worst-
case time, where n is the total number of positions of T , because a position of T
may have depth n− 1 if all nodes form a single branch. Although such a running
time is a function of the input size, it is more informative to characterize the running
time in terms of the parameter dp, as this parameter may be much smaller than n.
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Height

The height of a position p in a tree T is also defined recursively:

• If p is a leaf, then the height of p is 0.
• Otherwise, the height of p is one more than the maximum of the heights of

p’s children.

The height of a nonempty tree T is the height of the root of T . For example, the
tree of Figure 8.2 has height 4. In addition, height can also be viewed as follows.

Proposition 8.4: The height of a nonempty tree T is equal to the maximum of
the depths of its leaf positions.

We leave the justification of this fact to an exercise (R-8.3). We present an
algorithm, height1, implemented in Code Fragment 8.4 as a nonpublic method
height1 of the Tree class. It computes the height of a nonempty tree T based on

Proposition 8.4 and the algorithm depth from Code Fragment 8.3.

58 def height1(self): # works, but O(nˆ2) worst-case time
59 ”””Return the height of the tree.”””
60 return max(self.depth(p) for p in self.positions( ) if self.is leaf(p))

Code Fragment 8.4: Method height1 of the Tree class. Note that this method calls
the depth method.

Unfortunately, algorithm height1 is not very efficient. We have not yet defined
the positions() method; we will see that it can be implemented to run in O(n) time,
where n is the number of positions of T . Because height1 calls algorithm depth(p)
on each leaf of T , its running time is O(n + ∑p∈L(dp + 1)), where L is the set of
leaf positions of T . In the worst case, the sum ∑p∈L(dp + 1) is proportional to n2.
(See Exercise C-8.33.) Thus, algorithm height1 runs in O(n2) worst-case time.

We can compute the height of a tree more efficiently, in O(n) worst-case time,
by relying instead on the original recursive definition. To do this, we will param-
eterize a function based on a position within the tree, and calculate the height of
the subtree rooted at that position. Algorithm height2, shown as nonpublic method
height2 in Code Fragment 8.5, computes the height of tree T in this way.

61 def height2(self, p): # time is linear in size of subtree
62 ”””Return the height of the subtree rooted at Position p.”””
63 if self.is leaf(p):
64 return 0
65 else:
66 return 1 + max(self. height2(c) for c in self.children(p))

Code Fragment 8.5: Method height2 for computing the height of a subtree rooted
at a position p of a Tree.
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It is important to understand why algorithm height2 is more efficient than
height1. The algorithm is recursive, and it progresses in a top-down fashion. If
the method is initially called on the root of T , it will eventually be called once for
each position of T . This is because the root eventually invokes the recursion on
each of its children, which in turn invokes the recursion on each of their children,
and so on.

We can determine the running time of the height2 algorithm by summing, over
all the positions, the amount of time spent on the nonrecursive part of each call.
(Review Section 4.2 for analyses of recursive processes.) In our implementation,
there is a constant amount of work per position, plus the overhead of computing the
maximum over the iteration of children. Although we do not yet have a concrete
implementation of children(p), we assume that such an iteration is generated in
O(cp + 1) time, where cp denotes the number of children of p. Algorithm height2
spends O(cp + 1) time at each position p to compute the maximum, and its overall
running time is O(∑p(cp + 1)) = O(n + ∑p cp). In order to complete the analysis,
we make use of the following property.

Proposition 8.5: Let T be a tree with n positions, and let cp denote the number of
children of a position p of T . Then, summing over the positions of T , ∑p cp = n−1.

Justification: Each position of T , with the exception of the root, is a child of
another position, and thus contributes one unit to the above sum.

By Proposition 8.5, the running time of algorithm height2, when called on the
root of T , is O(n), where n is the number of positions of T .

Revisiting the public interface for our Tree class, the ability to compute heights
of subtrees is beneficial, but a user might expect to be able to compute the height
of the entire tree without explicitly designating the tree root. We can wrap the non-
public height2 in our implementation with a public height method that provides
a default interpretation when invoked on tree T with syntax T.height(). Such an
implementation is given in Code Fragment 8.6.

67 def height(self, p=None):
68 ”””Return the height of the subtree rooted at Position p.
69
70 If p is None, return the height of the entire tree.
71 ”””
72 if p is None:
73 p = self.root()
74 return self. height2(p) # start height2 recursion

Code Fragment 8.6: Public method Tree.height that computes the height of the
entire tree by default, or a subtree rooted at given position, if specified.
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8.2 Binary Trees

A binary tree is an ordered tree with the following properties:

1. Every node has at most two children.
2. Each child node is labeled as being either a left child or a right child.
3. A left child precedes a right child in the order of children of a node.

The subtree rooted at a left or right child of an internal node v is called a left subtree
or right subtree, respectively, of v. A binary tree is proper if each node has either
zero or two children. Some people also refer to such trees as being full binary
trees. Thus, in a proper binary tree, every internal node has exactly two children.
A binary tree that is not proper is improper.

Example 8.6: An important class of binary trees arises in contexts where we wish
to represent a number of different outcomes that can result from answering a series
of yes-or-no questions. Each internal node is associated with a question. Starting at
the root, we go to the left or right child of the current node, depending on whether
the answer to the question is “Yes” or “No.” With each decision, we follow an
edge from a parent to a child, eventually tracing a path in the tree from the root
to a leaf. Such binary trees are known as decision trees, because a leaf position p
in such a tree represents a decision of what to do if the questions associated with
p’s ancestors are answered in a way that leads to p. A decision tree is a proper
binary tree. Figure 8.7 illustrates a decision tree that provides recommendations to
a prospective investor.

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the
money within the next 5 years?

Are you willing to accept risks in
exchange for higher expected returns?Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,
bonds, and short-term instruments.

Figure 8.7: A decision tree providing investment advice.
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Example 8.7: An arithmetic expression can be represented by a binary tree whose
leaves are associated with variables or constants, and whose internal nodes are
associated with one of the operators +, −, ×, and /. (See Figure 8.8.) Each node
in such a tree has a value associated with it.

• If a node is leaf, then its value is that of its variable or constant.

• If a node is internal, then its value is defined by applying its operation to the
values of its children.

An arithmetic expression tree is a proper binary tree, since each operator +, −, ×,
and / takes exactly two operands. Of course, if we were to allow unary operators,
like negation (−), as in “−x,” then we could have an improper binary tree.

/

3 1

+

×

3 2

+

9 5

− 3

×

47

−

6

+

−

Figure 8.8: A binary tree representing an arithmetic expression. This tree represents
the expression ((((3 + 1)× 3)/((9 − 5) + 2))− ((3 × (7− 4)) + 6)). The value
associated with the internal node labeled “/” is 2.

A Recursive Binary Tree Definition

Incidentally, we can also define a binary tree in a recursive way such that a binary
tree is either empty or consists of:

• A node r, called the root of T , that stores an element

• A binary tree (possibly empty), called the left subtree of T

• A binary tree (possibly empty), called the right subtree of T
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8.2.1 The Binary Tree Abstract Data Type

As an abstract data type, a binary tree is a specialization of a tree that supports three
additional accessor methods:

T.left(p): Return the position that represents the left child of p,
or None if p has no left child.

T.right(p): Return the position that represents the right child of p,
or None if p has no right child.

T.sibling(p): Return the position that represents the sibling of p,
or None if p has no sibling.

Just as in Section 8.1.2 for the tree ADT, we do not define specialized update meth-
ods for binary trees here. Instead, we will consider some possible update methods
when we describe specific implementations and applications of binary trees.

The BinaryTree Abstract Base Class in Python

Just as Tree was defined as an abstract base class in Section 8.1.2, we define a
new BinaryTree class associated with the binary tree ADT. We rely on inheritance
to define the BinaryTree class based upon the existing Tree class. However, our
BinaryTree class remains abstract, as we still do not provide complete specifica-
tions for how such a structure will be represented internally, nor implementations
for some necessary behaviors.

Our Python implementation of the BinaryTree class is given in Code Frag-
ment 8.7. By using inheritance, a binary tree supports all the functionality that was
defined for general trees (e.g., parent, is leaf, root). Our new class also inherits the
nested Position class that was originally defined within the Tree class definition.
In addition, the new class provides declarations for new abstract methods left and
right that should be supported by concrete subclasses of BinaryTree.

Our new class also provides two concrete implementations of methods. The
new sibling method is derived from the combination of left, right, and parent. Typ-
ically, we identify the sibling of a position p as the “other” child of p’s parent.
However, if p is the root, it has no parent, and thus no sibling. Also, p may be the
only child of its parent, and thus does not have a sibling.

Finally, Code Fragment 8.7 provides a concrete implementation of the children
method; this method is abstract in the Tree class. Although we have still not speci-
fied how the children of a node will be stored, we derive a generator for the ordered
children based upon the implied behavior of abstract methods left and right.
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1 class BinaryTree(Tree):
2 ”””Abstract base class representing a binary tree structure.”””
3
4 # --------------------- additional abstract methods ---------------------
5 def left(self, p):
6 ”””Return a Position representing p s left child.
7
8 Return None if p does not have a left child.
9 ”””

10 raise NotImplementedError( must be implemented by subclass )
11
12 def right(self, p):
13 ”””Return a Position representing p s right child.
14
15 Return None if p does not have a right child.
16 ”””
17 raise NotImplementedError( must be implemented by subclass )
18
19 # ---------- concrete methods implemented in this class ----------
20 def sibling(self, p):
21 ”””Return a Position representing p s sibling (or None if no sibling).”””
22 parent = self.parent(p)
23 if parent is None: # p must be the root
24 return None # root has no sibling
25 else:
26 if p == self.left(parent):
27 return self.right(parent) # possibly None
28 else:
29 return self.left(parent) # possibly None
30
31 def children(self, p):
32 ”””Generate an iteration of Positions representing p s children.”””
33 if self.left(p) is not None:
34 yield self.left(p)
35 if self.right(p) is not None:
36 yield self.right(p)

Code Fragment 8.7: A BinaryTree abstract base class that extends the existing Tree
abstract base class from Code Fragments 8.1 and 8.2.
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8.2.2 Properties of Binary Trees

Binary trees have several interesting properties dealing with relationships between
their heights and number of nodes. We denote the set of all nodes of a tree T at the
same depth d as level d of T . In a binary tree, level 0 has at most one node (the
root), level 1 has at most two nodes (the children of the root), level 2 has at most
four nodes, and so on. (See Figure 8.9.) In general, level d has at most 2d nodes.

...

0

... ...

1

2

3

1

...

2

4

8

Level Nodes

Figure 8.9: Maximum number of nodes in the levels of a binary tree.

We can see that the maximum number of nodes on the levels of a binary tree
grows exponentially as we go down the tree. From this simple observation, we can
derive the following properties relating the height of a binary tree T with its number
of nodes. A detailed justification of these properties is left as Exercise R-8.8.

Proposition 8.8: Let T be a nonempty binary tree, and let n, nE , nI and h denote
the number of nodes, number of external nodes, number of internal nodes, and
height of T , respectively. Then T has the following properties:

1. h+ 1 ≤ n ≤ 2h+1 −1
2. 1 ≤ nE ≤ 2h

3. h ≤ nI ≤ 2h −1
4. log(n+ 1)−1 ≤ h ≤ n−1

Also, if T is proper, then T has the following properties:
1. 2h+ 1 ≤ n ≤ 2h+1 −1
2. h+ 1 ≤ nE ≤ 2h

3. h ≤ nI ≤ 2h −1
4. log(n+ 1)−1 ≤ h ≤ (n−1)/2
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Relating Internal Nodes to External Nodes in a Proper Binary Tree

In addition to the earlier binary tree properties, the following relationship exists
between the number of internal nodes and external nodes in a proper binary tree.

Proposition 8.9: In a nonempty proper binary tree T , with nE external nodes and
nI internal nodes, we have nE = nI + 1.

Justification: We justify this proposition by removing nodes from T and divid-
ing them up into two “piles,” an internal-node pile and an external-node pile, until
T becomes empty. The piles are initially empty. By the end, we will show that the
external-node pile has one more node than the internal-node pile. We consider two
cases:
Case 1: If T has only one node v, we remove v and place it on the external-node

pile. Thus, the external-node pile has one node and the internal-node pile is
empty.

Case 2: Otherwise (T has more than one node), we remove from T an (arbitrary)
external node w and its parent v, which is an internal node. We place w on
the external-node pile and v on the internal-node pile. If v has a parent u,
then we reconnect u with the former sibling z of w, as shown in Figure 8.10.
This operation, removes one internal node and one external node, and leaves
the tree being a proper binary tree.
Repeating this operation, we eventually are left with a final tree consisting
of a single node. Note that the same number of external and internal nodes
have been removed and placed on their respective piles by the sequence of
operations leading to this final tree. Now, we remove the node of the final
tree and we place it on the external-node pile. Thus, the the external-node
pile has one more node than the internal-node pile.

v

u

wz

u

z

u

z

(a) (b) (c)

Figure 8.10: Operation that removes an external node and its parent node, used in
the justification of Proposition 8.9.

Note that the above relationship does not hold, in general, for improper binary
trees and nonbinary trees, although there are other interesting relationships that do
hold. (See Exercises C-8.32 through C-8.34.)
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8.3 Implementing Trees

The Tree and BinaryTree classes that we have defined thus far in this chapter are
both formally abstract base classes. Although they provide a great deal of support,
neither of them can be directly instantiated. We have not yet defined key imple-
mentation details for how a tree will be represented internally, and how we can
effectively navigate between parents and children. Specifically, a concrete imple-
mentation of a tree must provide methods root, parent, num children, children,

len , and in the case of BinaryTree, the additional accessors left and right.

There are several choices for the internal representation of trees. We describe
the most common representations in this section. We begin with the case of a
binary tree, since its shape is more narrowly defined.

8.3.1 Linked Structure for Binary Trees

A natural way to realize a binary tree T is to use a linked structure, with a node
(see Figure 8.11a) that maintains references to the element stored at a position p
and to the nodes associated with the children and parent of p. If p is the root of
T , then the parent field of p is None. Likewise, if p does not have a left child
(respectively, right child), the associated field is None. The tree itself maintains an
instance variable storing a reference to the root node (if any), and a variable, called
size, that represents the overall number of nodes of T . We show such a linked
structure representation of a binary tree in Figure 8.11b.

parent

element
rightleft

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size
5

(a) (b)

Figure 8.11: A linked structure for representing: (a) a single node; (b) a binary tree.
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Python Implementation of a Linked Binary Tree Structure

In this section, we define a concrete LinkedBinaryTree class that implements the
binary tree ADT by subclassing the BinaryTree class. Our general approach is very
similar to what we used when developing the PositionalList in Section 7.4: We
define a simple, nonpublic Node class to represent a node, and a public Position
class that wraps a node. We provide a validate utility for robustly checking the
validity of a given position instance when unwrapping it, and a make position
utility for wrapping a node as a position to return to a caller.

Those definitions are provided in Code Fragment 8.8. As a formality, the new
Position class is declared to inherit immediately from BinaryTree.Position. Tech-
nically, the BinaryTree class definition (see Code Fragment 8.7) does not formally
declare such a nested class; it trivially inherits it from Tree.Position. A minor ben-
efit from this design is that our position class inherits the ne special method
so that syntax p != q is derived appropriately relative to eq .

Our class definition continues, in Code Fragment 8.9, with a constructor and
with concrete implementations for the methods that remain abstract in the Tree and
BinaryTree classes. The constructor creates an empty tree by initializing root to
None and size to zero. These accessor methods are implemented with careful use
of the validate and make position utilities to safeguard against boundary cases.

Operations for Updating a Linked Binary Tree

Thus far, we have provided functionality for examining an existing binary tree.
However, the constructor for our LinkedBinaryTree class results in an empty tree
and we have not provided any means for changing the structure or content of a tree.

We chose not to declare update methods as part of the Tree or BinaryTree ab-
stract base classes for several reasons. First, although the principle of encapsula-
tion suggests that the outward behaviors of a class need not depend on the internal
representation, the efficiency of the operations depends greatly upon the representa-
tion. We prefer to have each concrete implementation of a tree class offer the most
suitable options for updating a tree.

The second reason we do not provide update methods in the base class is that
we may not want such update methods to be part of a public interface. There are
many applications of trees, and some forms of update operations that are suitable
for one application may be unacceptable in another. However, if we place an update
method in a base class, any class that inherits from that base will inherit the update
method. Consider, for example, the possibility of a method T.replace(p, e) that
replaces the element stored at position p with another element e. Such a general
method may be unacceptable in the context of an arithmetic expression tree (see
Example 8.7 on page 312, and a later case study in Section 8.5), because we may
want to enforce that internal nodes store only operators as elements.
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For linked binary trees, a reasonable set of update methods to support for gen-
eral usage are the following:

T.add root(e): Create a root for an empty tree, storing e as the element,
and return the position of that root; an error occurs if the
tree is not empty.

T.add left(p, e): Create a new node storing element e, link the node as the
left child of position p, and return the resulting position;
an error occurs if p already has a left child.

T.add right(p, e): Create a new node storing element e, link the node as the
right child of position p, and return the resulting position;
an error occurs if p already has a right child.

T.replace(p, e): Replace the element stored at position p with element e,
and return the previously stored element.

T.delete(p): Remove the node at position p, replacing it with its child,
if any, and return the element that had been stored at p;
an error occurs if p has two children.

T.attach(p, T1, T2): Attach the internal structure of trees T1 and T2, respec-
tively, as the left and right subtrees of leaf position p of
T, and reset T1 and T2 to empty trees; an error condition
occurs if p is not a leaf.

We have specifically chosen this collection of operations because each can be
implemented in O(1) worst-case time with our linked representation. The most
complex of these are delete and attach, due to the case analyses involving the
various parent-child relationships and boundary conditions, yet there remains only
a constant number of operations to perform. (The implementation of both methods
could be greatly simplified if we used a tree representation with a sentinel node,
akin to our treatment of positional lists; see Exercise C-8.40).

To avoid the problem of undesirable update methods being inherited by sub-
classes of LinkedBinaryTree, we have chosen an implementation in which none
of the above methods are publicly supported. Instead, we provide nonpublic ver-
sions of each, for example, providing the underscored delete in lieu of a public
delete. Our implementations of these six update methods are provided in Code
Fragments 8.10 and 8.11.

In particular applications, subclasses of LinkedBinaryTree can invoke the non-
public methods internally, while preserving a public interface that is appropriate
for the application. A subclass may also choose to wrap one or more of the non-
public update methods with a public method to expose it to the user. We leave as
an exercise (R-8.15), the task of defining a MutableLinkedBinaryTree subclass that
provides public methods wrapping each of these six update methods.
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1 class LinkedBinaryTree(BinaryTree):
2 ”””Linked representation of a binary tree structure.”””
3
4 class Node: # Lightweight, nonpublic class for storing a node.
5 slots = _element , _parent , _left , _right

6 def init (self, element, parent=None, left=None, right=None):
7 self. element = element
8 self. parent = parent
9 self. left = left

10 self. right = right
11
12 class Position(BinaryTree.Position):
13 ”””An abstraction representing the location of a single element.”””
14
15 def init (self, container, node):
16 ”””Constructor should not be invoked by user.”””
17 self. container = container
18 self. node = node
19
20 def element(self):
21 ”””Return the element stored at this Position.”””
22 return self. node. element
23
24 def eq (self, other):
25 ”””Return True if other is a Position representing the same location.”””
26 return type(other) is type(self) and other. node is self. node
27
28 def validate(self, p):
29 ”””Return associated node, if position is valid.”””
30 if not isinstance(p, self.Position):
31 raise TypeError( p must be proper Position type )
32 if p. container is not self:
33 raise ValueError( p does not belong to this container )
34 if p. node. parent is p. node: # convention for deprecated nodes
35 raise ValueError( p is no longer valid )
36 return p. node
37
38 def make position(self, node):
39 ”””Return Position instance for given node (or None if no node).”””
40 return self.Position(self, node) if node is not None else None

Code Fragment 8.8: The beginning of our LinkedBinaryTree class (continued in
Code Fragments 8.9 through 8.11).
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41 #-------------------------- binary tree constructor --------------------------
42 def init (self):
43 ”””Create an initially empty binary tree.”””
44 self. root = None
45 self. size = 0
46
47 #-------------------------- public accessors --------------------------
48 def len (self):
49 ”””Return the total number of elements in the tree.”””
50 return self. size
51
52 def root(self):
53 ”””Return the root Position of the tree (or None if tree is empty).”””
54 return self. make position(self. root)
55
56 def parent(self, p):
57 ”””Return the Position of p s parent (or None if p is root).”””
58 node = self. validate(p)
59 return self. make position(node. parent)
60
61 def left(self, p):
62 ”””Return the Position of p s left child (or None if no left child).”””
63 node = self. validate(p)
64 return self. make position(node. left)
65
66 def right(self, p):
67 ”””Return the Position of p s right child (or None if no right child).”””
68 node = self. validate(p)
69 return self. make position(node. right)
70
71 def num children(self, p):
72 ”””Return the number of children of Position p.”””
73 node = self. validate(p)
74 count = 0
75 if node. left is not None: # left child exists
76 count += 1
77 if node. right is not None: # right child exists
78 count += 1
79 return count

Code Fragment 8.9: Public accessors for our LinkedBinaryTree class. The class
begins in Code Fragment 8.8 and continues in Code Fragments 8.10 and 8.11.
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80 def add root(self, e):
81 ”””Place element e at the root of an empty tree and return new Position.
82
83 Raise ValueError if tree nonempty.
84 ”””
85 if self. root is not None: raise ValueError( Root exists )
86 self. size = 1
87 self. root = self. Node(e)
88 return self. make position(self. root)
89
90 def add left(self, p, e):
91 ”””Create a new left child for Position p, storing element e.
92
93 Return the Position of new node.
94 Raise ValueError if Position p is invalid or p already has a left child.
95 ”””
96 node = self. validate(p)
97 if node. left is not None: raise ValueError( Left child exists )
98 self. size += 1
99 node. left = self. Node(e, node) # node is its parent

100 return self. make position(node. left)
101
102 def add right(self, p, e):
103 ”””Create a new right child for Position p, storing element e.
104
105 Return the Position of new node.
106 Raise ValueError if Position p is invalid or p already has a right child.
107 ”””
108 node = self. validate(p)
109 if node. right is not None: raise ValueError( Right child exists )
110 self. size += 1
111 node. right = self. Node(e, node) # node is its parent
112 return self. make position(node. right)
113
114 def replace(self, p, e):
115 ”””Replace the element at position p with e, and return old element.”””
116 node = self. validate(p)
117 old = node. element
118 node. element = e
119 return old

Code Fragment 8.10: Nonpublic update methods for the LinkedBinaryTree class
(continued in Code Fragment 8.11).
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120 def delete(self, p):
121 ”””Delete the node at Position p, and replace it with its child, if any.
122
123 Return the element that had been stored at Position p.
124 Raise ValueError if Position p is invalid or p has two children.
125 ”””
126 node = self. validate(p)
127 if self.num children(p) == 2: raise ValueError( p has two children )
128 child = node. left if node. left else node. right # might be None
129 if child is not None:
130 child. parent = node. parent # child s grandparent becomes parent
131 if node is self. root:
132 self. root = child # child becomes root
133 else:
134 parent = node. parent
135 if node is parent. left:
136 parent. left = child
137 else:
138 parent. right = child
139 self. size −= 1
140 node. parent = node # convention for deprecated node
141 return node. element
142
143 def attach(self, p, t1, t2):
144 ”””Attach trees t1 and t2 as left and right subtrees of external p.”””
145 node = self. validate(p)
146 if not self.is leaf(p): raise ValueError( position must be leaf )
147 if not type(self) is type(t1) is type(t2): # all 3 trees must be same type
148 raise TypeError( Tree types must match )
149 self. size += len(t1) + len(t2)
150 if not t1.is empty(): # attached t1 as left subtree of node
151 t1. root. parent = node
152 node. left = t1. root
153 t1. root = None # set t1 instance to empty
154 t1. size = 0
155 if not t2.is empty(): # attached t2 as right subtree of node
156 t2. root. parent = node
157 node. right = t2. root
158 t2. root = None # set t2 instance to empty
159 t2. size = 0

Code Fragment 8.11: Nonpublic update methods for the LinkedBinaryTree class
(continued from Code Fragment 8.10).
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Performance of the Linked Binary Tree Implementation

To summarize the efficiencies of the linked structure representation, we analyze the
running times of the LinkedBinaryTree methods, including derived methods that
are inherited from the Tree and BinaryTree classes:

• The len method, implemented in LinkedBinaryTree, uses an instance variable
storing the number of nodes of T and takes O(1) time. Method is empty,
inherited from Tree, relies on a single call to len and thus takes O(1) time.

• The accessor methods root, left, right, parent, and num children are imple-
mented directly in LinkedBinaryTree and take O(1) time. The sibling and
children methods are derived in BinaryTree based on a constant number of
calls to these other accessors, so they run in O(1) time as well.

• The is root and is leaf methods, from the Tree class, both run in O(1) time,
as is root calls root and then relies on equivalence testing of positions, while
is leaf calls left and right and verifies that None is returned by both.

• Methods depth and height were each analyzed in Section 8.1.3. The depth
method at position p runs in O(dp +1) time where dp is its depth; the height
method on the root of the tree runs in O(n) time.

• The various update methods add root, add left, add right, replace, delete,
and attach (that is, their nonpublic implementations) each run in O(1) time,
as they involve relinking only a constant number of nodes per operation.

Table 8.1 summarizes the performance of the linked structure implementation of a
binary tree.

Operation Running Time
len, is empty O(1)

root, parent, left, right, sibling, children, num children O(1)

is root, is leaf O(1)

depth(p) O(dp + 1)

height O(n)

add root, add left, add right, replace, delete, attach O(1)

Table 8.1: Running times for the methods of an n-node binary tree implemented
with a linked structure. The space usage is O(n).
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8.3.2 Array-Based Representation of a Binary Tree

An alternative representation of a binary tree T is based on a way of numbering the
positions of T . For every position p of T , let f (p) be the integer defined as follows.

• If p is the root of T , then f (p) = 0.

• If p is the left child of position q, then f (p) = 2 f (q)+ 1.

• If p is the right child of position q, then f (p) = 2 f (q)+ 2.

The numbering function f is known as a level numbering of the positions in a
binary tree T , for it numbers the positions on each level of T in increasing order
from left to right. (See Figure 8.12.) Note well that the level numbering is based
on potential positions within the tree, not actual positions of a given tree, so they
are not necessarily consecutive. For example, in Figure 8.12(b), there are no nodes
with level numbering 13 or 14, because the node with level numbering 6 has no
children.
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Figure 8.12: Binary tree level numbering: (a) general scheme; (b) an example.
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The level numbering function f suggests a representation of a binary tree T
by means of an array-based structure A (such as a Python list), with the element
at position p of T stored at index f (p) of the array. We show an example of an
array-based representation of a binary tree in Figure 8.13.
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Figure 8.13: Representation of a binary tree by means of an array.

One advantage of an array-based representation of a binary tree is that a posi-
tion p can be represented by the single integer f (p), and that position-based meth-
ods such as root, parent, left, and right can be implemented using simple arithmetic
operations on the number f (p). Based on our formula for the level numbering, the
left child of p has index 2 f (p)+ 1, the right child of p has index 2 f (p)+ 2, and
the parent of p has index �( f (p)− 1)/2�. We leave the details of a complete im-
plementation as an exercise (R-8.18).

The space usage of an array-based representation depends greatly on the shape
of the tree. Let n be the number of nodes of T , and let fM be the maximum value
of f (p) over all the nodes of T . The array A requires length N = 1 + fM, since
elements range from A[0] to A[ fM]. Note that A may have a number of empty cells
that do not refer to existing nodes of T . In fact, in the worst case, N = 2n − 1,
the justification of which is left as an exercise (R-8.16). In Section 9.3, we will
see a class of binary trees, called “heaps” for which N = n. Thus, in spite of the
worst-case space usage, there are applications for which the array representation
of a binary tree is space efficient. Still, for general binary trees, the exponential
worst-case space requirement of this representation is prohibitive.

Another drawback of an array representation is that some update operations for
trees cannot be efficiently supported. For example, deleting a node and promoting
its child takes O(n) time because it is not just the child that moves locations within
the array, but all descendants of that child.
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8.3.3 Linked Structure for General Trees

When representing a binary tree with a linked structure, each node explicitly main-
tains fields left and right as references to individual children. For a general tree,
there is no a priori limit on the number of children that a node may have. A natural
way to realize a general tree T as a linked structure is to have each node store a
single container of references to its children. For example, a children field of a
node can be a Python list of references to the children of the node (if any). Such a
linked representation is schematically illustrated in Figure 8.14.

element

parent

children
Baltimore Chicago

New York

Providence Seattle

(a) (b)

Figure 8.14: The linked structure for a general tree: (a) the structure of a node; (b) a
larger portion of the data structure associated with a node and its children.

Table 8.2 summarizes the performance of the implementation of a general tree
using a linked structure. The analysis is left as an exercise (R-8.14), but we note
that, by using a collection to store the children of each position p, we can implement
children(p) by simply iterating that collection.

Operation Running Time
len, is empty O(1)

root, parent, is root, is leaf O(1)

children(p) O(cp + 1)

depth(p) O(dp + 1)

height O(n)

Table 8.2: Running times of the accessor methods of an n-node general tree im-
plemented with a linked structure. We let cp denote the number of children of a
position p. The space usage is O(n).
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8.4 Tree Traversal Algorithms

A traversal of a tree T is a systematic way of accessing, or “visiting,” all the posi-
tions of T . The specific action associated with the “visit” of a position p depends
on the application of this traversal, and could involve anything from increment-
ing a counter to performing some complex computation for p. In this section, we
describe several common traversal schemes for trees, implement them in the con-
text of our various tree classes, and discuss several common applications of tree
traversals.

8.4.1 Preorder and Postorder Traversals of General Trees

In a preorder traversal of a tree T , the root of T is visited first and then the sub-
trees rooted at its children are traversed recursively. If the tree is ordered, then
the subtrees are traversed according to the order of the children. The pseudo-code
for the preorder traversal of the subtree rooted at a position p is shown in Code
Fragment 8.12.

Algorithm preorder(T, p):

perform the “visit” action for position p
for each child c in T.children(p) do

preorder(T, c) {recursively traverse the subtree rooted at c}

Code Fragment 8.12: Algorithm preorder for performing the preorder traversal of a
subtree rooted at position p of a tree T.

Figure 8.15 portrays the order in which positions of a sample tree are visited
during an application of the preorder traversal algorithm.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 8.15: Preorder traversal of an ordered tree, where the children of each posi-
tion are ordered from left to right.
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Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. In some
sense, this algorithm can be viewed as the opposite of the preorder traversal, be-
cause it recursively traverses the subtrees rooted at the children of the root first, and
then visits the root (hence, the name “postorder”). Pseudo-code for the postorder
traversal is given in Code Fragment 8.13, and an example of a postorder traversal
is portrayed in Figure 8.16.

Algorithm postorder(T, p):

for each child c in T.children(p) do
postorder(T, c) {recursively traverse the subtree rooted at c}

perform the “visit” action for position p

Code Fragment 8.13: Algorithm postorder for performing the postorder traversal of
a subtree rooted at position p of a tree T.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 8.16: Postorder traversal of the ordered tree of Figure 8.15.

Running-Time Analysis

Both preorder and postorder traversal algorithms are efficient ways to access all the
positions of a tree. The analysis of either of these traversal algorithms is similar to
that of algorithm height2, given in Code Fragment 8.5 of Section 8.1.3. At each
position p, the nonrecursive part of the traversal algorithm requires time O(cp +1),
where cp is the number of children of p, under the assumption that the “visit” itself
takes O(1) time. By Proposition 8.5, the overall running time for the traversal of
tree T is O(n), where n is the number of positions in the tree. This running time is
asymptotically optimal since the traversal must visit all the n positions of the tree.
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8.4.2 Breadth-First Tree Traversal

Although the preorder and postorder traversals are common ways of visiting the
positions of a tree, another common approach is to traverse a tree so that we visit
all the positions at depth d before we visit the positions at depth d + 1. Such an
algorithm is known as a breadth-first traversal.

A breadth-first traversal is a common approach used in software for playing
games. A game tree represents the possible choices of moves that might be made
by a player (or computer) during a game, with the root of the tree being the initial
configuration for the game. For example, Figure 8.17 displays a partial game tree
for Tic-Tac-Toe.
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Figure 8.17: Partial game tree for Tic-Tac-Toe, with annotations displaying the or-
der in which positions are visited in a breadth-first traversal.

A breadth-first traversal of such a game tree is often performed because a computer
may be unable to explore a complete game tree in a limited amount of time. So the
computer will consider all moves, then responses to those moves, going as deep as
computational time allows.

Pseudo-code for a breadth-first traversal is given in Code Fragment 8.14. The
process is not recursive, since we are not traversing entire subtrees at once. We use
a queue to produce a FIFO (i.e., first-in first-out) semantics for the order in which
we visit nodes. The overall running time is O(n), due to the n calls to enqueue and
n calls to dequeue.

Algorithm breadthfirst(T):

Initialize queue Q to contain T.root()
while Q not empty do

p = Q.dequeue() {p is the oldest entry in the queue}
perform the “visit” action for position p
for each child c in T.children(p) do

Q.enqueue(c) {add p’s children to the end of the queue for later visits}
Code Fragment 8.14: Algorithm for performing a breadth-first traversal of a tree.
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8.4.3 Inorder Traversal of a Binary Tree

The standard preorder, postorder, and breadth-first traversals that were introduced
for general trees, can be directly applied to binary trees. In this section, we intro-
duce another common traversal algorithm specifically for a binary tree.

During an inorder traversal, we visit a position between the recursive traver-
sals of its left and right subtrees. The inorder traversal of a binary tree T can be
informally viewed as visiting the nodes of T “from left to right.” Indeed, for every
position p, the inorder traversal visits p after all the positions in the left subtree of
p and before all the positions in the right subtree of p. Pseudo-code for the inorder
traversal algorithm is given in Code Fragment 8.15, and an example of an inorder
traversal is portrayed in Figure 8.18.

Algorithm inorder(p):

if p has a left child lc then
inorder(lc) {recursively traverse the left subtree of p}

perform the “visit” action for position p
if p has a right child rc then

inorder(rc) {recursively traverse the right subtree of p}
Code Fragment 8.15: Algorithm inorder for performing an inorder traversal of a
subtree rooted at position p of a binary tree.

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

Figure 8.18: Inorder traversal of a binary tree.

The inorder traversal algorithm has several important applications. When using
a binary tree to represent an arithmetic expression, as in Figure 8.18, the inorder
traversal visits positions in a consistent order with the standard representation of
the expression, as in 3+ 1×3/9−5+ 2 . . . (albeit without parentheses).
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Binary Search Trees

An important application of the inorder traversal algorithm arises when we store an
ordered sequence of elements in a binary tree, defining a structure we call a binary
search tree. Let S be a set whose unique elements have an order relation. For
example, S could be a set of integers. A binary search tree for S is a binary tree T
such that, for each position p of T :

• Position p stores an element of S, denoted as e(p).
• Elements stored in the left subtree of p (if any) are less than e(p).
• Elements stored in the right subtree of p (if any) are greater than e(p).

An example of a binary search tree is shown in Figure 8.19. The above properties
assure that an inorder traversal of a binary search tree T visits the elements in
nondecreasing order.

36

25

31

42

12

62

75

58

90

Figure 8.19: A binary search tree storing integers. The solid path is traversed when
searching (successfully) for 36. The dashed path is traversed when searching (un-
successfully) for 70.

We can use a binary search tree T for set S to find whether a given search
value v is in S, by traversing a path down the tree T , starting at the root. At each
internal position p encountered, we compare our search value v with the element
e(p) stored at p. If v < e(p), then the search continues in the left subtree of p.
If v = e(p), then the search terminates successfully. If v > e(p), then the search
continues in the right subtree of p. Finally, if we reach an empty subtree, the search
terminates unsuccessfully. In other words, a binary search tree can be viewed as a
binary decision tree (recall Example 8.6), where the question asked at each internal
node is whether the element at that node is less than, equal to, or larger than the
element being searched for. We illustrate several examples of the search operation
in Figure 8.19.

Note that the running time of searching in a binary search tree T is proportional
to the height of T . Recall from Proposition 8.8 that the height of a binary tree with
n nodes can be as small as log(n+ 1)−1 or as large as n−1. Thus, binary search
trees are most efficient when they have small height. Chapter 11 is devoted to the
study of search trees.
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8.4.4 Implementing Tree Traversals in Python

When first defining the tree ADT in Section 8.1.2, we stated that tree T should
include support for the following methods:

T.positions(): Generate an iteration of all positions of tree T.

iter(T): Generate an iteration of all elements stored within tree T.

At that time, we did not make any assumption about the order in which these
iterations report their results. In this section, we demonstrate how any of the tree
traversal algorithms we have introduced could be used to produce these iterations.

To begin, we note that it is easy to produce an iteration of all elements of a
tree, if we rely on a presumed iteration of all positions. Therefore, support for
the iter(T) syntax can be formally provided by a concrete implementation of the
special method iter within the abstract base class Tree. We rely on Python’s
generator syntax as the mechanism for producing iterations. (See Section 1.8.) Our
implementation of Tree. iter is given in Code Fragment 8.16.

75 def iter (self):
76 ”””Generate an iteration of the tree s elements.”””
77 for p in self.positions(): # use same order as positions()
78 yield p.element( ) # but yield each element

Code Fragment 8.16: Iterating all elements of a Tree instance, based upon an iter-
ation of the positions of the tree. This code should be included in the body of the
Tree class.

To implement the positions method, we have a choice of tree traversal algo-
rithms. Given that there are advantages to each of those traversal orders, we will
provide independent implementations of each strategy that can be called directly
by a user of our class. We can then trivially adapt one of those as a default order
for the positions method of the tree ADT.

Preorder Traversal

We begin by considering the preorder traversal algorithm. We will support a public
method with calling signature T.preorder() for tree T, which generates a preorder
iteration of all positions within the tree. However, the recursive algorithm for gen-
erating a preorder traversal, as originally described in Code Fragment 8.12, must
be parameterized by a specific position within the tree that serves as the root of a
subtree to traverse. A standard solution for such a circumstance is to define a non-
public utility method with the desired recursive parameterization, and then to have
the public method preorder invoke the nonpublic method upon the root of the tree.
Our implementation of such a design is given in Code Fragment 8.17.
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79 def preorder(self):
80 ”””Generate a preorder iteration of positions in the tree.”””
81 if not self.is empty():
82 for p in self. subtree preorder(self.root()): # start recursion
83 yield p
84
85 def subtree preorder(self, p):
86 ”””Generate a preorder iteration of positions in subtree rooted at p.”””
87 yield p # visit p before its subtrees
88 for c in self.children(p): # for each child c
89 for other in self. subtree preorder(c): # do preorder of c’s subtree
90 yield other # yielding each to our caller

Code Fragment 8.17: Support for performing a preorder traversal of a tree. This
code should be included in the body of the Tree class.

Formally, both preorder and the utility subtree preorder are generators. Rather
than perform a “visit” action from within this code, we yield each position to the
caller and let the caller decide what action to perform at that position.

The subtree preorder method is the recursive one. However, because we are
relying on generators rather than traditional functions, the recursion has a slightly
different form. In order to yield all positions within the subtree of child c, we loop
over the positions yielded by the recursive call self. subtree preorder(c), and re-
yield each position in the outer context. Note that if p is a leaf, the for loop over
self.children(p) is trivial (this is the base case for our recursion).

We rely on a similar technique in the public preorder method to re-yield all
positions that are generated by the recursive process starting at the root of the tree;
if the tree is empty, nothing is yielded. At this point, we have provided full support
for the preorder generator. A user of the class can therefore write code such as

for p in T.preorder():
# ”visit” position p

The official tree ADT requires that all trees support a positions method as well. To
use a preorder traversal as the default order of iteration, we include the definition
shown in Code Fragment 8.18 within our Tree class. Rather than loop over the
results returned by the preorder call, we return the entire iteration as an object.

91 def positions(self):
92 ”””Generate an iteration of the tree s positions.”””
93 return self.preorder( ) # return entire preorder iteration

Code Fragment 8.18: An implementation of the positions method for the Tree class
that relies on a preorder traversal to generate the results.
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Postorder Traversal

We can implement a postorder traversal using very similar technique as with a
preorder traversal. The only difference is that within the recursive utility for a post-
order we wait to yield position p until after we have recursively yield the positions
in its subtrees. An implementation is given in Code Fragment 8.19.

94 def postorder(self):
95 ”””Generate a postorder iteration of positions in the tree.”””
96 if not self.is empty():
97 for p in self. subtree postorder(self.root()): # start recursion
98 yield p
99

100 def subtree postorder(self, p):
101 ”””Generate a postorder iteration of positions in subtree rooted at p.”””
102 for c in self.children(p): # for each child c
103 for other in self. subtree postorder(c): # do postorder of c’s subtree
104 yield other # yielding each to our caller
105 yield p # visit p after its subtrees

Code Fragment 8.19: Support for performing a postorder traversal of a tree. This
code should be included in the body of the Tree class.

Breadth-First Traversal

In Code Fragment 8.20, we provide an implementation of the breadth-first traversal
algorithm in the context of our Tree class. Recall that the breadth-first traversal
algorithm is not recursive; it relies on a queue of positions to manage the traver-
sal process. Our implementation uses the LinkedQueue class from Section 7.1.2,
although any implementation of the queue ADT would suffice.

Inorder Traversal for Binary Trees

The preorder, postorder, and breadth-first traversal algorithms are applicable to
all trees, and so we include their implementations within the Tree abstract base
class. Those methods are inherited by the abstract BinaryTree class, the concrete
LinkedBinaryTree class, and any other dependent tree classes we might develop.

The inorder traversal algorithm, because it explicitly relies on the notion of a
left and right child of a node, only applies to binary trees. We therefore include its
definition within the body of the BinaryTree class. We use a similar technique to
implement an inorder traversal (Code Fragment 8.21) as we did with preorder and
postorder traversals.
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106 def breadthfirst(self):
107 ”””Generate a breadth-first iteration of the positions of the tree.”””
108 if not self.is empty():
109 fringe = LinkedQueue( ) # known positions not yet yielded
110 fringe.enqueue(self.root()) # starting with the root
111 while not fringe.is empty():
112 p = fringe.dequeue( ) # remove from front of the queue
113 yield p # report this position
114 for c in self.children(p):
115 fringe.enqueue(c) # add children to back of queue

Code Fragment 8.20: An implementation of a breadth-first traversal of a tree. This
code should be included in the body of the Tree class.

37 def inorder(self):
38 ”””Generate an inorder iteration of positions in the tree.”””
39 if not self.is empty():
40 for p in self. subtree inorder(self.root()):
41 yield p
42
43 def subtree inorder(self, p):
44 ”””Generate an inorder iteration of positions in subtree rooted at p.”””
45 if self.left(p) is not None: # if left child exists, traverse its subtree
46 for other in self. subtree inorder(self.left(p)):
47 yield other
48 yield p # visit p between its subtrees
49 if self.right(p) is not None: # if right child exists, traverse its subtree
50 for other in self. subtree inorder(self.right(p)):
51 yield other

Code Fragment 8.21: Support for performing an inorder traversal of a binary tree.
This code should be included in the BinaryTree class (given in Code Fragment 8.7).

For many applications of binary trees, an inorder traversal provides a natural
iteration. We could make it the default for the BinaryTree class by overriding the
positions method that was inherited from the Tree class (see Code Fragment 8.22).

52 # override inherited version to make inorder the default
53 def positions(self):
54 ”””Generate an iteration of the tree s positions.”””
55 return self.inorder( ) # make inorder the default

Code Fragment 8.22: Defining the BinaryTree.position method so that positions are
reported using inorder traversal.
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8.4.5 Applications of Tree Traversals

In this section, we demonstrate several representative applications of tree traversals,
including some customizations of the standard traversal algorithms.

Table of Contents

When using a tree to represent the hierarchical structure of a document, a preorder
traversal of the tree can naturally be used to produce a table of contents for the doc-
ument. For example, the table of contents associated with the tree from Figure 8.15
is displayed in Figure 8.20. Part (a) of that figure gives a simple presentation with
one element per line; part (b) shows a more attractive presentation produced by
indenting each element based on its depth within the tree. A similar presentation
could be used to display the contents of a computer’s file system, based on its tree
representation (as in Figure 8.3).

Paper Paper

Title Title

Abstract Abstract

1 1

1.1 1.1

1.2 1.2

2 2

2.1 2.1

... ...

(a) (b)

Figure 8.20: Table of contents for a document represented by the tree in Figure 8.15:
(a) without indentation; (b) with indentation based on depth within the tree.

The unindented version of the table of contents, given a tree T , can be produced
with the following code:

for p in T.preorder():
print(p.element())

To produce the presentation of Figure 8.20(b), we indent each element with a
number of spaces equal to twice the element’s depth in the tree (hence, the root ele-
ment was unindented). Although we could replace the body of the above loop with
the statement print(2 T.depth(p) + str(p.element())), such an approach is
unnecessarily inefficient. Although the work to produce the preorder traversal runs
in O(n) time, based on the analysis of Section 8.4.1, the calls to depth incur a hid-
den cost. Making a call to depth from every position of the tree results in O(n2)
worst-case time, as noted when analyzing the algorithm height1 in Section 8.1.3.
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A preferred approach to producing an indented table of contents is to redesign
a top-down recursion that includes the current depth as an additional parameter.
Such an implementation is provided in Code Fragment 8.23. This implementation
runs in worst-case O(n) time (except, technically, the time it takes to print strings
of increasing lengths).

1 def preorder indent(T, p, d):
2 ”””Print preorder representation of subtree of T rooted at p at depth d.”””
3 print(2 d + str(p.element())) # use depth for indentation
4 for c in T.children(p):
5 preorder indent(T, c, d+1) # child depth is d+1

Code Fragment 8.23: Efficient recursion for printing indented version of a pre-
order traversal. On a complete tree T , the recursion should be started with form
preorder indent(T, T.root(), 0).

In the example of Figure 8.20, we were fortunate in that the numbering was
embedded within the elements of the tree. More generally, we might be interested
in using a preorder traversal to display the structure of a tree, with indentation and
also explicit numbering that was not present in the tree. For example, we might
display the tree from Figure 8.2 beginning as:

Electronics R’Us

1 R&D

2 Sales

2.1 Domestic

2.2 International

2.2.1 Canada

2.2.2 S. America

This is more challenging, because the numbers used as labels are implicit in
the structure of the tree. A label depends on the index of each position, relative to
its siblings, along the path from the root to the current position. To accomplish the
task, we add a representation of that path as an additional parameter to the recursive
signature. Specifically, we use a list of zero-indexed numbers, one for each position
along the downward path, other than the root. (We convert those numbers to one-
indexed form when printing.)

At the implementation level, we wish to avoid the inefficiency of duplicating
such lists when sending a new parameter from one level of the recursion to the next.
A standard solution is to share the same list instance throughout the recursion. At
one level of the recursion, a new entry is temporarily added to the end of the list
before making further recursive calls. In order to “leave no trace,” that same block
of code must remove the extraneous entry from the list before completing its task.
An implementation based on this approach is given in Code Fragment 8.24.
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1 def preorder label(T, p, d, path):
2 ”””Print labeled representation of subtree of T rooted at p at depth d.”””
3 label = . .join(str(j+1) for j in path) # displayed labels are one-indexed
4 print(2 d + label, p.element())
5 path.append(0) # path entries are zero-indexed
6 for c in T.children(p):
7 preorder label(T, c, d+1, path) # child depth is d+1
8 path[−1] += 1
9 path.pop()

Code Fragment 8.24: Efficient recursion for printing an indented and labeled pre-
sentation of a preorder traversal.

Parenthetic Representations of a Tree

It is not possible to reconstruct a general tree, given only the preorder sequence
of elements, as in Figure 8.20(a). Some additional context is necessary for the
structure of the tree to be well defined. The use of indentation or numbered labels
provides such context, with a very human-friendly presentation. However, there
are more concise string representations of trees that are computer-friendly.

In this section, we explore one such representation. The parenthetic string
representation P(T ) of tree T is recursively defined as follows. If T consists of a
single position p, then

P(T ) = str(p.element()).

Otherwise, it is defined recursively as,

P(T ) = str(p.element())+ ( + P(T1)+ , + · · · + , + P(Tk)+ )

where p is the root of T and T1,T2, . . . ,Tk are the subtrees rooted at the children
of p, which are given in order if T is an ordered tree. We are using “+” here to
denote string concatenation. As an example, the parenthetic representation of the
tree of Figure 8.2 would appear as follows (line breaks are cosmetic):

Electronics R’Us (R&D, Sales (Domestic, International (Canada,

S. America, Overseas (Africa, Europe, Asia, Australia))),

Purchasing, Manufacturing (TV, CD, Tuner))

Although the parenthetic representation is essentially a preorder traversal, we
cannot easily produce the additional punctuation using the formal implementation
of preorder, as given in Code Fragment 8.17. The opening parenthesis must be
produced just before the loop over a position’s children and the closing parenthesis
must be produced just after that loop. Furthermore, the separating commas must
be produced. The Python function parenthesize, shown in Code Fragment 8.25, is
a custom traversal that prints such a parenthetic string representation of a tree T .
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1 def parenthesize(T, p):
2 ”””Print parenthesized representation of subtree of T rooted at p.”””
3 print(p.element(), end= ) # use of end avoids trailing newline
4 if not T.is leaf(p):
5 first time = True
6 for c in T.children(p):
7 sep = ( if first time else , # determine proper separator
8 print(sep, end= )
9 first time = False # any future passes will not be the first

10 parenthesize(T, c) # recur on child
11 print( ) , end= ) # include closing parenthesis

Code Fragment 8.25: Function that prints parenthetic string representation of a tree.

Computing Disk Space

In Example 8.1, we considered the use of a tree as a model for a file-system struc-
ture, with internal positions representing directories and leaves representing files.
In fact, when introducing the use of recursion back in Chapter 4, we specifically
examined the topic of file systems (see Section 4.1.4). Although we did not explic-
itly model it as a tree at that time, we gave an implementation of an algorithm for
computing the disk usage (Code Fragment 4.5).

The recursive computation of disk space is emblematic of a postorder traversal,
as we cannot effectively compute the total space used by a directory until after we
know the space that is used by its children directories. Unfortunately, the formal
implementation of postorder, as given in Code Fragment 8.19 does not suffice for
this purpose. As it visits the position of a directory, there is no easy way to discern
which of the previous positions represent children of that directory, nor how much
recursive disk space was allocated.

We would like to have a mechanism for children to return information to the
parent as part of the traversal process. A custom solution to the disk space prob-
lem, with each level of recursion providing a return value to the (parent) caller, is
provided in Code Fragment 8.26.

1 def disk space(T, p):
2 ”””Return total disk space for subtree of T rooted at p.”””
3 subtotal = p.element().space( ) # space used at position p
4 for c in T.children(p):
5 subtotal += disk space(T, c) # add child’s space to subtotal
6 return subtotal

Code Fragment 8.26: Recursive computation of disk space for a tree. We assume
that a space() method of each tree element reports the local space used at that
position.
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8.4.6 Euler Tours and the Template Method Pattern �

The various applications described in Section 8.4.5 demonstrate the great power
of recursive tree traversals. Unfortunately, they also show that the specific imple-
mentations of the preorder and postorder methods of our Tree class, or the inorder
method of the BinaryTree class, are not general enough to capture the range of
computations we desire. In some cases, we need more of a blending of the ap-
proaches, with initial work performed before recurring on subtrees, additional work
performed after those recursions, and in the case of a binary tree, work performed
between the two possible recursions. Furthermore, in some contexts it was impor-
tant to know the depth of a position, or the complete path from the root to that
position, or to return information from one level of the recursion to another. For
each of the previous applications, we were able to develop a custom implementa-
tion to properly adapt the recursive ideas, but the great principles of object-oriented
programming introduced in Section 2.1.1 include adaptability and reusability.

In this section, we develop a more general framework for implementing tree
traversals based on a concept known as an Euler tour traversal. The Euler tour
traversal of a general tree T can be informally defined as a “walk” around T , where
we start by going from the root toward its leftmost child, viewing the edges of T as
being “walls” that we always keep to our left. (See Figure 8.21.)

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

Figure 8.21: Euler tour traversal of a tree.

The complexity of the walk is O(n), because it progresses exactly two times
along each of the n−1 edges of the tree—once going downward along the edge, and
later going upward along the edge. To unify the concept of preorder and postorder
traversals, we can think of there being two notable “visits” to each position p:

• A “pre visit” occurs when first reaching the position, that is, when the walk
passes immediately left of the node in our visualization.

• A “post visit” occurs when the walk later proceeds upward from that position,
that is, when the walk passes to the right of the node in our visualization.

www.it-ebooks.info

http://www.it-ebooks.info/


342 Chapter 8. Trees

The process of an Euler tour can easily be viewed recursively. In between the
“pre visit” and “post visit” of a given position will be a recursive tour of each of
its subtrees. Looking at Figure 8.21 as an example, there is a contiguous portion
of the entire tour that is itself an Euler tour of the subtree of the node with element
“/”. That tour contains two contiguous subtours, one traversing that position’s left
subtree and another traversing the right subtree. The pseudo-code for an Euler tour
traversal of a subtree rooted at a position p is shown in Code Fragment 8.27.

Algorithm eulertour(T, p):

perform the “pre visit” action for position p
for each child c in T.children(p) do

eulertour(T, c) {recursively tour the subtree rooted at c}
perform the “post visit” action for position p

Code Fragment 8.27: Algorithm eulertour for performing an Euler tour traversal of
a subtree rooted at position p of a tree.

The Template Method Pattern

To provide a framework that is reusable and adaptable, we rely on an interesting
object-oriented software design pattern, the template method pattern. The template
method pattern describes a generic computation mechanism that can be specialized
for a particular application by redefining certain steps. To allow customization, the
primary algorithm calls auxiliary functions known as hooks at designated steps of
the process.

In the context of an Euler tour traversal, we define two separate hooks, a pre-
visit hook that is called before the subtrees are traversed, and a postvisit hook that is
called after the completion of the subtree traversals. Our implementation will take
the form of an EulerTour class that manages the process, and defines trivial defi-
nitions for the hooks that do nothing. The traversal can be customized by defining
a subclass of EulerTour and overriding one or both hooks to provide specialized
behavior.

Python Implementation

Our implementation of an EulerTour class is provided in Code Fragment 8.28. The
primary recursive process is defined in the nonpublic tour method. A tour instance
is created by sending a reference to a specific tree to the constructor, and then by
calling the public execute method, which beings the tour and returns a final result
of the computation.
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1 class EulerTour:
2 ”””Abstract base class for performing Euler tour of a tree.
3
4 hook previsit and hook postvisit may be overridden by subclasses.
5 ”””
6 def init (self, tree):
7 ”””Prepare an Euler tour template for given tree.”””
8 self. tree = tree
9

10 def tree(self):
11 ”””Return reference to the tree being traversed.”””
12 return self. tree
13
14 def execute(self):
15 ”””Perform the tour and return any result from post visit of root.”””
16 if len(self. tree) > 0:
17 return self. tour(self. tree.root(), 0, [ ]) # start the recursion
18
19 def tour(self, p, d, path):
20 ”””Perform tour of subtree rooted at Position p.
21
22 p Position of current node being visited
23 d depth of p in the tree
24 path list of indices of children on path from root to p
25 ”””
26 self. hook previsit(p, d, path) # ”pre visit” p
27 results = [ ]
28 path.append(0) # add new index to end of path before recursion
29 for c in self. tree.children(p):
30 results.append(self. tour(c, d+1, path)) # recur on child s subtree
31 path[−1] += 1 # increment index
32 path.pop( ) # remove extraneous index from end of path
33 answer = self. hook postvisit(p, d, path, results) # ”post visit” p
34 return answer
35
36 def hook previsit(self, p, d, path): # can be overridden
37 pass
38
39 def hook postvisit(self, p, d, path, results): # can be overridden
40 pass

Code Fragment 8.28: An EulerTour base class providing a framework for perform-
ing Euler tour traversals of a tree.
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Based on our experience of customizing traversals for sample applications Sec-
tion 8.4.5, we build support into the primary EulerTour for maintaining the re-
cursive depth and the representation of the recursive path through a tree, using the
approach that we introduced in Code Fragment 8.24. We also provide a mechanism
for one recursive level to return a value to another when post-processing. Formally,
our framework relies on the following two hooks that can be specialized:

• method hook previsit(p, d, path)
This function is called once for each position, immediately before its subtrees
(if any) are traversed. Parameter p is a position in the tree, d is the depth of
that position, and path is a list of indices, using the convention described in
the discussion of Code Fragment 8.24. No return value is expected from this
function.

• method hook postvisit(p, d, path, results)
This function is called once for each position, immediately after its subtrees
(if any) are traversed. The first three parameters use the same convention as
did hook previsit. The final parameter is a list of objects that were provided
as return values from the post visits of the respective subtrees of p. Any value
returned by this call will be available to the parent of p during its postvisit.

For more complex tasks, subclasses of EulerTour may also choose to initialize
and maintain additional state in the form of instance variables that can be accessed
within the bodies of the hooks.

Using the Euler Tour Framework

To demonstrate the flexibility of our Euler tour framework, we revisit the sample
applications from Section 8.4.5. As a simple example, an indented preorder traver-
sal, akin to that originally produced by Code Fragment 8.23, can be generated with
the simple subclass given in Code Fragment 8.29.

1 class PreorderPrintIndentedTour(EulerTour):
2 def hook previsit(self, p, d, path):
3 print(2 d + str(p.element()))

Code Fragment 8.29: A subclass of EulerTour that produces an indented preorder
list of a tree’s elements.

Such a tour would be started by creating an instance of the subclass for a given
tree T, and invoking its execute method. This could be expressed as follows:

tour = PreorderPrintIndentedTour(T)
tour.execute()
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A labeled version of an indented, preorder presentation, akin to Code Frag-
ment 8.24, could be generated by the new subclass of EulerTour shown in Code
Fragment 8.30.

1 class PreorderPrintIndentedLabeledTour(EulerTour):
2 def hook previsit(self, p, d, path):
3 label = . .join(str(j+1) for j in path) # labels are one-indexed
4 print(2 d + label, p.element())

Code Fragment 8.30: A subclass of EulerTour that produces a labeled and indented,
preorder list of a tree’s elements.

To produce the parenthetic string representation, originally achieved with Code
Fragment 8.25, we define a subclass that overrides both the previsit and postvisit
hooks. Our new implementation is given in Code Fragment 8.31.

1 class ParenthesizeTour(EulerTour):
2 def hook previsit(self, p, d, path):
3 if path and path[−1] > 0: # p follows a sibling
4 print( , , end= ) # so preface with comma
5 print(p.element(), end= ) # then print element
6 if not self.tree().is leaf(p): # if p has children
7 print( ( , end= ) # print opening parenthesis
8
9 def hook postvisit(self, p, d, path, results):

10 if not self.tree().is leaf(p): # if p has children
11 print( ) , end= ) # print closing parenthesis

Code Fragment 8.31: A subclass of EulerTour that prints a parenthetic string repre-
sentation of a tree.

Notice that in this implementation, we need to invoke a method on the tree instance
that is being traversed from within the hooks. The public tree() method of the
EulerTour class serves as an accessor for that tree.

Finally, the task of computing disk space, as originally implemented in Code
Fragment 8.26, can be performed quite easily with the EulerTour subclass shown
in Code Fragment 8.32. The postvisit result of the root will be returned by the call
to execute().

1 class DiskSpaceTour(EulerTour):
2 def hook postvisit(self, p, d, path, results):
3 # we simply add space associated with p to that of its subtrees
4 return p.element().space( ) + sum(results)

Code Fragment 8.32: A subclass of EulerTour that computes disk space for a tree.
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The Euler Tour Traversal of a Binary Tree

In Section 8.4.6, we introduced the concept of an Euler tour traversal of a general
graph, using the template method pattern in designing the EulerTour class. That
class provided methods hook previsit and hook postvisit that could be overrid-
den to customize a tour. In Code Fragment 8.33 we provide a BinaryEulerTour
specialization that includes an additional hook invisit that is called once for each
position—after its left subtree is traversed, but before its right subtree is traversed.

Our implementation of BinaryEulerTour replaces the original tour utility to
specialize to the case in which a node has at most two children. If a node has only
one child, a tour differentiates between whether that is a left child or a right child,
with the “in visit” taking place after the visit of a sole left child, but before the visit
of a sole right child. In the case of a leaf, the three hooks are called in succession.

1 class BinaryEulerTour(EulerTour):
2 ”””Abstract base class for performing Euler tour of a binary tree.
3
4 This version includes an additional hook invisit that is called after the tour
5 of the left subtree (if any), yet before the tour of the right subtree (if any).
6
7 Note: Right child is always assigned index 1 in path, even if no left sibling.
8 ”””
9 def tour(self, p, d, path):

10 results = [None, None] # will update with results of recursions
11 self. hook previsit(p, d, path) # ”pre visit” for p
12 if self. tree.left(p) is not None: # consider left child
13 path.append(0)
14 results[0] = self. tour(self. tree.left(p), d+1, path)
15 path.pop()
16 self. hook invisit(p, d, path) # ”in visit” for p
17 if self. tree.right(p) is not None: # consider right child
18 path.append(1)
19 results[1] = self. tour(self. tree.right(p), d+1, path)
20 path.pop()
21 answer = self. hook postvisit(p, d, path, results) # ”post visit” p
22 return answer
23
24 def hook invisit(self, p, d, path): pass # can be overridden

Code Fragment 8.33: A BinaryEulerTour base class providing a specialized tour for
binary trees. The original EulerTour base class was given in Code Fragment 8.28.
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Figure 8.22: An inorder drawing of a binary tree.

To demonstrate use of the BinaryEulerTour framework, we develop a subclass
that computes a graphical layout of a binary tree, as shown in Figure 8.22. The
geometry is determined by an algorithm that assigns x- and y-coordinates to each
position p of a binary tree T using the following two rules:

• x(p) is the number of positions visited before p in an inorder traversal of T .
• y(p) is the depth of p in T .

In this application, we take the convention common in computer graphics that x-
coordinates increase left to right and y-coordinates increase top to bottom. So the
origin is in the upper left corner of the computer screen.

Code Fragment 8.34 provides an implementation of a BinaryLayout subclass
that implements the above algorithm for assigning (x,y) coordinates to the element
stored at each position of a binary tree. We adapt the BinaryEulerTour framework
by introducing additional state in the form of a count instance variable that repre-
sents the number of “in visits” that we have performed. The x-coordinate for each
position is set according to that counter.

1 class BinaryLayout(BinaryEulerTour):
2 ”””Class for computing (x,y) coordinates for each node of a binary tree.”””
3 def init (self, tree):
4 super(). init (tree) # must call the parent constructor
5 self. count = 0 # initialize count of processed nodes
6
7 def hook invisit(self, p, d, path):
8 p.element().setX(self. count) # x-coordinate serialized by count
9 p.element().setY(d) # y-coordinate is depth

10 self. count += 1 # advance count of processed nodes

Code Fragment 8.34: A BinaryLayout class that computes coordinates at which to
draw positions of a binary tree. We assume that the element type for the original
tree supports setX and setY methods.
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8.5 Case Study: An Expression Tree

In Example 8.7, we introduced the use of a binary tree to represent the structure of
an arithmetic expression. In this section, we define a new ExpressionTree class that
provides support for constructing such trees, and for displaying and evaluating the
arithmetic expression that such a tree represents. Our ExpressionTree class is de-
fined as a subclass of LinkedBinaryTree, and we rely on the nonpublic mutators to
construct such trees. Each internal node must store a string that defines a binary op-
erator (e.g., + ), and each leaf must store a numeric value (or a string representing
a numeric value).

Our eventual goal is to build arbitrarily complex expression trees for compound
arithmetic expressions such as (((3 + 1)× 4)/((9− 5)+ 2)). However, it suffices
for the ExpressionTree class to support two basic forms of initialization:

ExpressionTree(value): Create a tree storing the given value at the root.

ExpressionTree(op,E1,E2): Create a tree storing string op at the root (e.g., +),
and with the structures of existing ExpressionTree
instances E1 and E2 as the left and right subtrees of
the root, respectively.

Such a constructor for the ExpressionTree class is given in Code Fragment 8.35.
The class formally inherits from LinkedBinaryTree, so it has access to all the non-
public update methods that were defined in Section 8.3.1. We use add root to cre-
ate an initial root of the tree storing the token provided as the first parameter. Then
we perform run-time checking of the parameters to determine whether the caller
invoked the one-parameter version of the constructor (in which case, we are done),
or the three-parameter form. In that case, we use the inherited attach method to
incorporate the structure of the existing trees as subtrees of the root.

Composing a Parenthesized String Representation

A string representation of an existing expression tree instance, for example, as
(((3+1)x4)/((9-5)+2)) , can be produced by displaying tree elements us-

ing an inorder traversal, but with opening and closing parentheses inserted with
a preorder and postorder step, respectively. In the context of an ExpressionTree
class, we support a special str method (see Section 2.3.2) that returns the
appropriate string. Because it is more efficient to first build a sequence of individ-
ual strings to be joined together (see discussion of “Composing Strings” in Sec-
tion 5.4.2), the implementation of str relies on a nonpublic, recursive method
named parenthesize recur that appends a series of strings to a list. These methods
are included in Code 8.35.
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1 class ExpressionTree(LinkedBinaryTree):
2 ”””An arithmetic expression tree.”””
3
4 def init (self, token, left=None, right=None):
5 ”””Create an expression tree.
6
7 In a single parameter form, token should be a leaf value (e.g., 42 ),
8 and the expression tree will have that value at an isolated node.
9

10 In a three-parameter version, token should be an operator,
11 and left and right should be existing ExpressionTree instances
12 that become the operands for the binary operator.
13 ”””
14 super(). init ( ) # LinkedBinaryTree initialization
15 if not isinstance(token, str):
16 raise TypeError( Token must be a string )
17 self. add root(token) # use inherited, nonpublic method
18 if left is not None: # presumably three-parameter form
19 if token not in +-*x/ :
20 raise ValueError( token must be valid operator )
21 self. attach(self.root(), left, right) # use inherited, nonpublic method
22
23 def str (self):
24 ”””Return string representation of the expression.”””
25 pieces = [ ] # sequence of piecewise strings to compose
26 self. parenthesize recur(self.root(), pieces)
27 return .join(pieces)
28
29 def parenthesize recur(self, p, result):
30 ”””Append piecewise representation of p s subtree to resulting list.”””
31 if self.is leaf(p):
32 result.append(str(p.element())) # leaf value as a string
33 else:
34 result.append( ( ) # opening parenthesis
35 self. parenthesize recur(self.left(p), result) # left subtree
36 result.append(p.element()) # operator
37 self. parenthesize recur(self.right(p), result) # right subtree
38 result.append( ) ) # closing parenthesis

Code Fragment 8.35: The beginning of an ExpressionTree class.
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Expression Tree Evaluation

The numeric evaluation of an expression tree can be accomplished with a simple
application of a postorder traversal. If we know the values represented by the two
subtrees of an internal position, we can calculate the result of the computation that
position designates. Pseudo-code for the recursive evaluation of the value repre-
sented by a subtree rooted at position p is given in Code Fragment 8.36.

Algorithm evaluate recur(p):

if p is a leaf then
return the value stored at p

else
let ◦ be the operator stored at p
x = evaluate recur(left(p))
y = evaluate recur(right(p))
return x ◦ y

Code Fragment 8.36: Algorithm evaluate recur for evaluating the expression rep-
resented by a subtree of an arithmetic expression tree rooted at position p.

To implement this algorithm in the context of a Python ExpressionTree class,
we provide a public evaluate method that is invoked on instance T as T.evaluate().
Code Fragment 8.37 provides such an implementation, relying on a nonpublic
evaluate recur method that computes the value of a designated subtree.

39 def evaluate(self):
40 ”””Return the numeric result of the expression.”””
41 return self. evaluate recur(self.root())
42
43 def evaluate recur(self, p):
44 ”””Return the numeric result of subtree rooted at p.”””
45 if self.is leaf(p):
46 return float(p.element()) # we assume element is numeric
47 else:
48 op = p.element()
49 left val = self. evaluate recur(self.left(p))
50 right val = self. evaluate recur(self.right(p))
51 if op == + : return left val + right val
52 elif op == - : return left val − right val
53 elif op == / : return left val / right val
54 else: return left val right val # treat x or as multiplication

Code Fragment 8.37: Support for evaluating an ExpressionTree instance.
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Building an Expression Tree

The constructor for the ExpressionTree class, from Code Fragment 8.35, provides
basic functionality for combining existing trees to build larger expression trees.
However, the question still remains how to construct a tree that represents an ex-
pression for a given string, such as (((3+1)x4)/((9-5)+2)) .

To automate this process, we rely on a bottom-up construction algorithm, as-
suming that a string can first be tokenized so that multidigit numbers are treated
atomically (see Exercise R-8.30), and that the expression is fully parenthesized.
The algorithm uses a stack S while scanning tokens of the input expression E to
find values, operators, and right parentheses. (Left parentheses are ignored.)

• When we see an operator ◦, we push that string on the stack.
• When we see a literal value v, we create a single-node expression tree T

storing v, and push T on the stack.
• When we see a right parenthesis, ) , we pop the top three items from the

stack S, which represent a subexpression (E1 ◦ E2). We then construct a
tree T using trees for E1 and E2 as subtrees of the root storing ◦, and push
the resulting tree T back on the stack.

We repeat this until the expression E has been processed, at which time the top
element on the stack is the expression tree for E . The total running time is O(n).

An implementation of this algorithm is given in Code Fragment 8.38 in the form
of a stand-alone function named build expression tree, which produces and returns
an appropriate ExpressionTree instance, assuming the input has been tokenized.

1 def build expression tree(tokens):
2 ”””Returns an ExpressionTree based upon by a tokenized expression.”””
3 S = [ ] # we use Python list as stack
4 for t in tokens:
5 if t in +-x*/ : # t is an operator symbol
6 S.append(t) # push the operator symbol
7 elif t not in () : # consider t to be a literal
8 S.append(ExpressionTree(t)) # push trivial tree storing value
9 elif t == ) : # compose a new tree from three constituent parts

10 right = S.pop( ) # right subtree as per LIFO
11 op = S.pop( ) # operator symbol
12 left = S.pop( ) # left subtree
13 S.append(ExpressionTree(op, left, right)) # repush tree
14 # we ignore a left parenthesis
15 return S.pop()

Code Fragment 8.38: Implementation of a build expression tree that produces an
ExpressionTree from a sequence of tokens representing an arithmetic expression.
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8.6 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-8.1 The following questions refer to the tree of Figure 8.3.
a. Which node is the root?
b. What are the internal nodes?
c. How many descendants does node cs016/ have?
d. How many ancestors does node cs016/ have?
e. What are the siblings of node homeworks/?
f. Which nodes are in the subtree rooted at node projects/?
g. What is the depth of node papers/?
h. What is the height of the tree?

R-8.2 Show a tree achieving the worst-case running time for algorithm depth.
R-8.3 Give a justification of Proposition 8.4.
R-8.4 What is the running time of a call to T. height2(p) when called on a

position p distinct from the root of T? (See Code Fragment 8.5.)
R-8.5 Describe an algorithm, relying only on the BinaryTree operations, that

counts the number of leaves in a binary tree that are the left child of their
respective parent.

R-8.6 Let T be an n-node binary tree that may be improper. Describe how to
represent T by means of a proper binary tree T ′ with O(n) nodes.

R-8.7 What are the minimum and maximum number of internal and external
nodes in an improper binary tree with n nodes?

R-8.8 Answer the following questions so as to justify Proposition 8.8.
a. What is the minimum number of external nodes for a proper binary

tree with height h? Justify your answer.
b. What is the maximum number of external nodes for a proper binary

tree with height h? Justify your answer.
c. Let T be a proper binary tree with height h and n nodes. Show that

log(n+ 1)−1 ≤ h ≤ (n−1)/2.

d. For which values of n and h can the above lower and upper bounds
on h be attained with equality?

R-8.9 Give a proof by induction of Proposition 8.9.
R-8.10 Give a direct implementation of the num children method within the class

BinaryTree.
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R-8.11 Find the value of the arithmetic expression associated with each subtree
of the binary tree of Figure 8.8.

R-8.12 Draw an arithmetic expression tree that has four external nodes, storing
the numbers 1, 5, 6, and 7 (with each number stored in a distinct external
node, but not necessarily in this order), and has three internal nodes, each
storing an operator from the set {+,−,×,/}, so that the value of the root
is 21. The operators may return and act on fractions, and an operator may
be used more than once.

R-8.13 Draw the binary tree representation of the following arithmetic expres-
sion: “(((5+ 2)∗ (2−1))/((2+ 9)+ ((7−2)−1))∗8)”.

R-8.14 Justify Table 8.2, summarizing the running time of the methods of a tree
represented with a linked structure, by providing, for each method, a de-
scription of its implementation, and an analysis of its running time.

R-8.15 The LinkedBinaryTree class provides only nonpublic versions of the up-
date methods discussed on page 319. Implement a simple subclass named
MutableLinkedBinaryTree that provides public wrapper functions for each
of the inherited nonpublic update methods.

R-8.16 Let T be a binary tree with n nodes, and let f () be the level numbering
function of the positions of T , as given in Section 8.3.2.

a. Show that, for every position p of T , f (p) ≤ 2n −2.
b. Show an example of a binary tree with seven nodes that attains the

above upper bound on f (p) for some position p.

R-8.17 Show how to use the Euler tour traversal to compute the level number
f (p), as defined in Section 8.3.2, of each position in a binary tree T .

R-8.18 Let T be a binary tree with n positions that is realized with an array rep-
resentation A, and let f () be the level numbering function of the positions
of T , as given in Section 8.3.2. Give pseudo-code descriptions of each of
the methods root, parent, left, right, is leaf, and is root.

R-8.19 Our definition of the level numbering function f (p), as given in Sec-
tion 8.3.2, began with the root having number 0. Some authors prefer
to use a level numbering g(p) in which the root is assigned number 1, be-
cause it simplifies the arithmetic for finding neighboring positions. Redo
Exercise R-8.18, but assuming that we use a level numbering g(p) in
which the root is assigned number 1.

R-8.20 Draw a binary tree T that simultaneously satisfies the following:
• Each internal node of T stores a single character.
• A preorder traversal of T yields EXAMFUN.
• An inorder traversal of T yields MAFXUEN.

R-8.21 In what order are positions visited during a preorder traversal of the tree
of Figure 8.8?
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R-8.22 In what order are positions visited during a postorder traversal of the tree
of Figure 8.8?

R-8.23 Let T be an ordered tree with more than one node. Is it possible that the
preorder traversal of T visits the nodes in the same order as the postorder
traversal of T ? If so, give an example; otherwise, explain why this cannot
occur. Likewise, is it possible that the preorder traversal of T visits the
nodes in the reverse order of the postorder traversal of T ? If so, give an
example; otherwise, explain why this cannot occur.

R-8.24 Answer the previous question for the case when T is a proper binary tree
with more than one node.

R-8.25 Consider the example of a breadth-first traversal given in Figure 8.17.
Using the annotated numbers from that figure, describe the contents of
the queue before each pass of the while loop in Code Fragment 8.14. To
get started, the queue has contents {1} before the first pass, and contents
{2,3,4} before the second pass.

R-8.26 The collections.deque class supports an extend method that adds a col-
lection of elements to the end of the queue at once. Reimplement the
breadthfirst method of the Tree class to take advantage of this feature.

R-8.27 Give the output of the function parenthesize(T, T.root()), as described
in Code Fragment 8.25, when T is the tree of Figure 8.8.

R-8.28 What is the running time of parenthesize(T, T.root()), as given in Code
Fragment 8.25, for a tree T with n nodes?

R-8.29 Describe, in pseudo-code, an algorithm for computing the number of de-
scendants of each node of a binary tree. The algorithm should be based
on the Euler tour traversal.

R-8.30 The build expression tree method of the ExpressionTree class requires
input that is an iterable of string tokens. We used a convenient exam-
ple, (((3+1)x4)/((9-5)+2)) , in which each character is its own to-
ken, so that the string itself sufficed as input to build expression tree.
In general, a string, such as (35 + 14) , must be explicitly tokenized
into list [ ( , 35 , + , 14 , ) ] so as to ignore whitespace and to
recognize multidigit numbers as a single token. Write a utility method,
tokenize(raw), that returns such a list of tokens for a raw string.

Creativity

C-8.31 Define the internal path length, I(T ), of a tree T to be the sum of the
depths of all the internal positions in T . Likewise, define the external path
length, E(T), of a tree T to be the sum of the depths of all the external
positions in T . Show that if T is a proper binary tree with n positions, then
E(T ) = I(T )+ n−1.
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C-8.32 Let T be a (not necessarily proper) binary tree with n nodes, and let D be
the sum of the depths of all the external nodes of T . Show that if T has the
minimum number of external nodes possible, then D is O(n) and if T has
the maximum number of external nodes possible, then D is O(n logn).

C-8.33 Let T be a (possibly improper) binary tree with n nodes, and let D be the
sum of the depths of all the external nodes of T . Describe a configuration
for T such that D is Ω(n2). Such a tree would be the worst case for the
asymptotic running time of method height1 (Code Fragment 8.4).

C-8.34 For a tree T , let nI denote the number of its internal nodes, and let nE

denote the number of its external nodes. Show that if every internal node
in T has exactly 3 children, then nE = 2nI + 1.

C-8.35 Two ordered trees T ′ and T ′′ are said to be isomorphic if one of the fol-
lowing holds:

• Both T ′ and T ′′ are empty.
• The roots of T ′ and T ′′ have the same number k ≥ 0 of subtrees, and

the ith such subtree of T ′ is isomorphic to the ith such subtree of T ′′

for i = 1, . . . ,k.

Design an algorithm that tests whether two given ordered trees are iso-
morphic. What is the running time of your algorithm?

C-8.36 Show that there are more than 2n improper binary trees with n internal
nodes such that no pair are isomorphic (see Exercise C-8.35).

C-8.37 If we exclude isomorphic trees (see Exercise C-8.35), exactly how many
proper binary trees exist with exactly 4 leaves?

C-8.38 Add support in LinkedBinaryTree for a method, delete subtree(p), that
removes the entire subtree rooted at position p, making sure to maintain
the count on the size of the tree. What is the running time of your imple-
mentation?

C-8.39 Add support in LinkedBinaryTree for a method, swap(p,q), that has the
effect of restructuring the tree so that the node referenced by p takes the
place of the node referenced by q, and vice versa. Make sure to properly
handle the case when the nodes are adjacent.

C-8.40 We can simplify parts of our LinkedBinaryTree implementation if we
make use of of a single sentinel node, referenced as the sentinel member
of the tree instance, such that the sentinel is the parent of the real root of
the tree, and the root is referenced as the left child of the sentinel. Fur-
thermore, the sentinel will take the place of None as the value of the left
or right member for a node without such a child. Give a new imple-
mentation of the update methods delete and attach, assuming such a
representation.
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C-8.41 Describe how to clone a LinkedBinaryTree instance representing a proper
binary tree, with use of the attach method.

C-8.42 Describe how to clone a LinkedBinaryTree instance representing a (not
necessarily proper) binary tree, with use of the add left and add right
methods.

C-8.43 We can define a binary tree representation T ′ for an ordered general tree
T as follows (see Figure 8.23):

• For each position p of T , there is an associated position p′ of T ′.
• If p is a leaf of T , then p′ in T ′ does not have a left child; otherwise

the left child of p′ is q′, where q is the first child of p in T .
• If p has a sibling q ordered immediately after it in T , then q′ is the

right child of p′ in T ; otherwise p′ does not have a right child.
Given such a representation T ′ of a general ordered tree T , answer each
of the following questions:

a. Is a preorder traversal of T ′ equivalent to a preorder traversal of T ?
b. Is a postorder traversal of T ′ equivalent to a postorder traversal of T ?
c. Is an inorder traversal of T ′ equivalent to one of the standard traver-

sals of T ? If so, which one?

D

F GE

C

A

B

A

DF

G

E C

B

(a) (b)

Figure 8.23: Representation of a tree with a binary tree: (a) tree T ; (b) binary tree
T ′ for T . The dashed edges connect nodes of T ′ that are siblings in T .

C-8.44 Give an efficient algorithm that computes and prints, for every position p
of a tree T , the element of p followed by the height of p’s subtree.

C-8.45 Give an O(n)-time algorithm for computing the depths of all positions of
a tree T , where n is the number of nodes of T .

C-8.46 The path length of a tree T is the sum of the depths of all positions in T .
Describe a linear-time method for computing the path length of a tree T .

C-8.47 The balance factor of an internal position p of a proper binary tree is the
difference between the heights of the right and left subtrees of p. Show
how to specialize the Euler tour traversal of Section 8.4.6 to print the
balance factors of all the internal nodes of a proper binary tree.
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C-8.48 Given a proper binary tree T , define the reflection of T to be the binary
tree T ′ such that each node v in T is also in T ′, but the left child of v in T
is v’s right child in T ′ and the right child of v in T is v’s left child in T ′.
Show that a preorder traversal of a proper binary tree T is the same as the
postorder traversal of T ’s reflection, but in reverse order.

C-8.49 Let the rank of a position p during a traversal be defined such that the first
element visited has rank 1, the second element visited has rank 2, and so
on. For each position p in a tree T , let pre(p) be the rank of p in a preorder
traversal of T , let post(p) be the rank of p in a postorder traversal of T , let
depth(p) be the depth of p, and let desc(p) be the number of descendants
of p, including p itself. Derive a formula defining post(p) in terms of
desc(p), depth(p), and pre(p), for each node p in T .

C-8.50 Design algorithms for the following operations for a binary tree T :
• preorder next(p): Return the position visited after p in a preorder

traversal of T (or None if p is the last node visited).
• inorder next(p): Return the position visited after p in an inorder

traversal of T (or None if p is the last node visited).
• postorder next(p): Return the position visited after p in a postorder

traversal of T (or None if p is the last node visited).
What are the worst-case running times of your algorithms?

C-8.51 To implement the preorder method of the LinkedBinaryTree class, we re-
lied on the convenience of Python’s generator syntax and the yield state-
ment. Give an alternative implementation of preorder that returns an ex-
plicit instance of a nested iterator class. (See Section 2.3.4 for discussion
of iterators.)

C-8.52 Algorithm preorder draw draws a binary tree T by assigning x- and y-
coordinates to each position p such that x(p) is the number of nodes pre-
ceding p in the preorder traversal of T and y(p) is the depth of p in T .

a. Show that the drawing of T produced by preorder draw has no pairs
of crossing edges.

b. Redraw the binary tree of Figure 8.22 using preorder draw.
C-8.53 Redo the previous problem for the algorithm postorder draw that is simi-

lar to preorder draw except that it assigns x(p) to be the number of nodes
preceding position p in the postorder traversal.

C-8.54 Design an algorithm for drawing general trees, using a style similar to the
inorder traversal approach for drawing binary trees.

C-8.55 Exercise P-4.27 described the walk function of the os module. This func-
tion performs a traversal of the implicit tree represented by the file system.
Read the formal documentation for the function, and in particular its use
of an optional Boolean parameter named topdown. Describe how its be-
havior relates to tree traversal algorithms described in this chapter.
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Figure 8.24: (a) Tree T ; (b) indented parenthetic representation of T .

C-8.56 The indented parenthetic representation of a tree T is a variation of the
parenthetic representation of T (see Code Fragment 8.25) that uses inden-
tation and line breaks as illustrated in Figure 8.24. Give an algorithm that
prints this representation of a tree.

C-8.57 Let T be a binary tree with n positions. Define a Roman position to be
a position p in T , such that the number of descendants in p’s left subtree
differ from the number of descendants in p’s right subtree by at most 5.
Describe a linear-time method for finding each position p of T , such that
p is not a Roman position, but all of p’s descendants are Roman.

C-8.58 Let T be a tree with n positions. Define the lowest common ancestor
(LCA) between two positions p and q as the lowest position in T that has
both p and q as descendants (where we allow a position to be a descendant
of itself ). Given two positions p and q, describe an efficient algorithm for
finding the LCA of p and q. What is the running time of your algorithm?

C-8.59 Let T be a binary tree with n positions, and, for any position p in T , let dp

denote the depth of p in T . The distance between two positions p and q
in T is dp + dq −2da, where a is the lowest common ancestor (LCA) of p
and q. The diameter of T is the maximum distance between two positions
in T . Describe an efficient algorithm for finding the diameter of T . What
is the running time of your algorithm?

C-8.60 Suppose each position p of a binary tree T is labeled with its value f (p) in
a level numbering of T . Design a fast method for determining f (a) for the
lowest common ancestor (LCA), a, of two positions p and q in T , given
f (p) and f (q). You do not need to find position a, just value f (a).

C-8.61 Give an alternative implementation of the build expression tree method
of the ExpressionTree class that relies on recursion to perform an implicit
Euler tour of the tree that is being built.

www.it-ebooks.info

http://www.it-ebooks.info/


8.6. Exercises 359

C-8.62 Note that the build expression tree function of the ExpressionTree class
is written in such a way that a leaf token can be any string; for exam-
ple, it parses the expression (a*(b+c)) . However, within the evaluate
method, an error would occur when attempting to convert a leaf token to
a number. Modify the evaluate method to accept an optional Python dic-
tionary that can be used to map such string variables to numeric values,
with a syntax such as T.evaluate({ a :3, b :1, c :5}). In this way,
the same algebraic expression can be evaluated using different values.

C-8.63 As mentioned in Exercise C-6.22, postfix notation is an unambiguous way
of writing an arithmetic expression without parentheses. It is defined so
that if “(exp1)op(exp2)” is a normal (infix) fully parenthesized expres-
sion with operation op, then its postfix equivalent is “pexp1 pexp2 op”,
where pexp1 is the postfix version of exp1 and pexp2 is the postfix ver-
sion of exp2. The postfix version of a single number or variable is just
that number or variable. So, for example, the postfix version of the infix
expression “((5 + 2) ∗ (8− 3))/4” is “5 2 + 8 3 − ∗ 4 /”. Implement a
postfix method of the ExpressionTree class of Section 8.5 that produces
the postfix notation for the given expression.

Projects

P-8.64 Implement the binary tree ADT using the array-based representation de-
scribed in Section 8.3.2.

P-8.65 Implement the tree ADT using a linked structure as described in Sec-
tion 8.3.3. Provide a reasonable set of update methods for your tree.

P-8.66 The memory usage for the LinkedBinaryTree class can be streamlined by
removing the parent reference from each node, and instead having each
Position instance keep a member, path, that is a list of nodes representing
the entire path from the root to that position. (This generally saves mem-
ory because there are typically relatively few stored position instances.)
Reimplement the LinkedBinaryTree class using this strategy.

P-8.67 A slicing floor plan divides a rectangle with horizontal and vertical sides
using horizontal and vertical cuts. (See Figure 8.25a.) A slicing floor plan
can be represented by a proper binary tree, called a slicing tree, whose
internal nodes represent the cuts, and whose external nodes represent the
basic rectangles into which the floor plan is decomposed by the cuts. (See
Figure 8.25b.) The compaction problem for a slicing floor plan is defined
as follows. Assume that each basic rectangle of a slicing floor plan is
assigned a minimum width w and a minimum height h. The compaction
problem is to find the smallest possible height and width for each rectangle
of the slicing floor plan that is compatible with the minimum dimensions
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Figure 8.25: (a) Slicing floor plan; (b) slicing tree associated with the floor plan.

of the basic rectangles. Namely, this problem requires the assignment of
values h(p) and w(p) to each position p of the slicing tree such that:

w(p)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w if p is a leaf whose basic rectangle has
minimum width w

max(w(�),w(r))
if p is an internal position, associated with
a horizontal cut, with left child � and right
child r

w(�)+w(r)
if p is an internal position, associated with
a vertical cut, with left child � and right
child r

h(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
if p is a leaf node whose basic rectangle
has minimum height h

h(�)+h(r)
if p is an internal position, associated with
a horizontal cut, with left child � and right
child r

max(h(�),h(r))
if p is an internal position, associated with
a vertical cut, with left child � and right
child r

Design a data structure for slicing floor plans that supports the operations:

• Create a floor plan consisting of a single basic rectangle.
• Decompose a basic rectangle by means of a horizontal cut.
• Decompose a basic rectangle by means of a vertical cut.
• Assign minimum height and width to a basic rectangle.
• Draw the slicing tree associated with the floor plan.
• Compact and draw the floor plan.
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P-8.68 Write a program that can play Tic-Tac-Toe effectively. (See Section 5.6.)
To do this, you will need to create a game tree T , which is a tree where
each position corresponds to a game configuration, which, in this case,
is a representation of the Tic-Tac-Toe board. (See Section 8.4.2.) The
root corresponds to the initial configuration. For each internal position p
in T , the children of p correspond to the game states we can reach from
p’s game state in a single legal move for the appropriate player, A (the
first player) or B (the second player). Positions at even depths correspond
to moves for A and positions at odd depths correspond to moves for B.
Leaves are either final game states or are at a depth beyond which we do
not want to explore. We score each leaf with a value that indicates how
good this state is for player A. In large games, like chess, we have to use a
heuristic scoring function, but for small games, like Tic-Tac-Toe, we can
construct the entire game tree and score leaves as +1, 0, −1, indicating
whether player A has a win, draw, or lose in that configuration. A good
algorithm for choosing moves is minimax. In this algorithm, we assign a
score to each internal position p in T , such that if p represents A’s turn, we
compute p’s score as the maximum of the scores of p’s children (which
corresponds to A’s optimal play from p). If an internal node p represents
B’s turn, then we compute p’s score as the minimum of the scores of p’s
children (which corresponds to B’s optimal play from p).

P-8.69 Implement the tree ADT using the binary tree representation described in
Exercise C-8.43. You may adapt the LinkedBinaryTree implementation.

P-8.70 Write a program that takes as input a general tree T and a position p of T
and converts T to another tree with the same set of position adjacencies,
but now with p as its root.

Chapter Notes

Discussions of the classic preorder, inorder, and postorder tree traversal methods can be
found in Knuth’s Fundamental Algorithms book [64]. The Euler tour traversal technique
comes from the parallel algorithms community; it is introduced by Tarjan and Vishkin [93]
and is discussed by JáJá [54] and by Karp and Ramachandran [58]. The algorithm for
drawing a tree is generally considered to be a part of the “folklore” of graph-drawing al-
gorithms. The reader interested in graph drawing is referred to the book by Di Battista,
Eades, Tamassia, and Tollis [34] and the survey by Tamassia and Liotta [92]. The puzzle
in Exercise R-8.12 was communicated by Micha Sharir.
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9.1 The Priority Queue Abstract Data Type

9.1.1 Priorities

In Chapter 6, we introduced the queue ADT as a collection of objects that are
added and removed according to the first-in, first-out (FIFO) principle. A com-
pany’s customer call center embodies such a model in which waiting customers are
told “calls will be answered in the order that they were received.” In that setting, a
new call is added to the back of the queue, and each time a customer service rep-
resentative becomes available, he or she is connected with the call that is removed
from the front of the call queue.

In practice, there are many applications in which a queue-like structure is used
to manage objects that must be processed in some way, but for which the first-in,
first-out policy does not suffice. Consider, for example, an air-traffic control center
that has to decide which flight to clear for landing from among many approaching
the airport. This choice may be influenced by factors such as each plane’s distance
from the runway, time spent waiting in a holding pattern, or amount of remaining
fuel. It is unlikely that the landing decisions are based purely on a FIFO policy.

There are other situations in which a “first come, first serve” policy might seem
reasonable, yet for which other priorities come into play. To use another airline
analogy, suppose a certain flight is fully booked an hour prior to departure. Be-
cause of the possibility of cancellations, the airline maintains a queue of standby
passengers hoping to get a seat. Although the priority of a standby passenger is
influenced by the check-in time of that passenger, other considerations include the
fare paid and frequent-flyer status. So it may be that an available seat is given to
a passenger who has arrived later than another, if such a passenger is assigned a
better priority by the airline agent.

In this chapter, we introduce a new abstract data type known as a priority queue.
This is a collection of prioritized elements that allows arbitrary element insertion,
and allows the removal of the element that has first priority. When an element is
added to a priority queue, the user designates its priority by providing an associated
key. The element with the minimum key will be the next to be removed from the
queue (thus, an element with key 1 will be given priority over an element with
key 2). Although it is quite common for priorities to be expressed numerically, any
Python object may be used as a key, as long as the object type supports a consistent
meaning for the test a < b, for any instances a and b, so as to define a natural
order of the keys. With such generality, applications may develop their own notion
of priority for each element. For example, different financial analysts may assign
different ratings (i.e., priorities) to a particular asset, such as a share of stock.
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9.1.2 The Priority Queue ADT

Formally, we model an element and its priority as a key-value pair. We define the
priority queue ADT to support the following methods for a priority queue P:

P.add(k, v): Insert an item with key k and value v into priority queue P.

P.min(): Return a tuple, (k,v), representing the key and value of an
item in priority queue P with minimum key (but do not re-
move the item); an error occurs if the priority queue is empty.

P.remove min(): Remove an item with minimum key from priority queue P,
and return a tuple, (k,v), representing the key and value of the
removed item; an error occurs if the priority queue is empty.

P.is empty(): Return True if priority queue P does not contain any items.

len(P): Return the number of items in priority queue P.

A priority queue may have multiple entries with equivalent keys, in which case
methods min and remove min may report an arbitrary choice of item having mini-
mum key. Values may be any type of object.

In our initial model for a priority queue, we assume that an element’s key re-
mains fixed once it has been added to a priority queue. In Section 9.5, we consider
an extension that allows a user to update an element’s key within the priority queue.

Example 9.1: The following table shows a series of operations and their effects
on an initially empty priority queue P. The “Priority Queue” column is somewhat
deceiving since it shows the entries as tuples and sorted by key. Such an internal
representation is not required of a priority queue.

Operation Return Value Priority Queue
P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B), (5,A), (9,C)}
P.add(7,D) {(3,B), (5,A), (7,D), (9,C)}

P.min() (3,B) {(3,B), (5,A), (7,D), (9,C)}
P.remove min() (3,B) {(5,A), (7,D), (9,C)}
P.remove min() (5,A) {(7,D), (9,C)}

len(P) 2 {(7,D), (9,C)}
P.remove min() (7,D) {(9,C)}
P.remove min() (9,C) { }

P.is empty() True { }
P.remove min() “error” { }
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9.2 Implementing a Priority Queue

In this section, we show how to implement a priority queue by storing its entries in
a positional list L. (See Section 7.4.) We provide two realizations, depending on
whether or not we keep the entries in L sorted by key.

9.2.1 The Composition Design Pattern

One challenge in implementing a priority queue is that we must keep track of both
an element and its key, even as items are relocated within our data structure. This
is reminiscent of a case study from Section 7.6 in which we maintain access counts
with each element. In that setting, we introduced the composition design pattern,
defining an Item class that assured that each element remained paired with its
associated count in our primary data structure.

For priority queues, we will use composition to store items internally as pairs
consisting of a key k and a value v. To implement this concept for all priority queue
implementations, we provide a PriorityQueueBase class (see Code Fragment 9.1)
that includes a definition for a nested class named Item. We define the syntax
a < b, for item instances a and b, to be based upon the keys.

1 class PriorityQueueBase:
2 ”””Abstract base class for a priority queue.”””
3
4 class Item:
5 ”””Lightweight composite to store priority queue items.”””
6 slots = _key , _value

7
8 def init (self, k, v):
9 self. key = k

10 self. value = v
11
12 def lt (self, other):
13 return self. key < other. key # compare items based on their keys
14
15 def is empty(self): # concrete method assuming abstract len
16 ”””Return True if the priority queue is empty.”””
17 return len(self) == 0

Code Fragment 9.1: A PriorityQueueBase class with a nested Item class that com-
poses a key and a value into a single object. For convenience, we provide a concrete
implementation of is empty that is based on a presumed len impelementation.
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9.2.2 Implementation with an Unsorted List

In our first concrete implementation of a priority queue, we store entries within
an unsorted list. Our UnsortedPriorityQueue class is given in Code Fragment 9.2,
inheriting from the PriorityQueueBase class introduced in Code Fragment 9.1. For
internal storage, key-value pairs are represented as composites, using instances of
the inherited Item class. These items are stored within a PositionalList, identified
as the data member of our class. We assume that the positional list is implemented
with a doubly-linked list, as in Section 7.4, so that all operations of that ADT
execute in O(1) time.

We begin with an empty list when a new priority queue is constructed. At all
times, the size of the list equals the number of key-value pairs currently stored in the
priority queue. For this reason, our priority queue len method simply returns
the length of the internal data list. By the design of our PriorityQueueBase class,
we inherit a concrete implementation of the is empty method that relies on a call to
our len method.

Each time a key-value pair is added to the priority queue, via the add method,
we create a new Item composite for the given key and value, and add that item to
the end of the list. Such an implementation takes O(1) time.

The remaining challenge is that when min or remove min is called, we must
locate the item with minimum key. Because the items are not sorted, we must
inspect all entries to find one with a minimum key. For convenience, we define a
nonpublic find min utility that returns the position of an item with minimum key.
Knowledge of the position allows the remove min method to invoke the delete
method on the positional list. The min method simply uses the position to retrieve
the item when preparing a key-value tuple to return. Due to the loop for finding the
minimum key, both min and remove min methods run in O(n) time, where n is the
number of entries in the priority queue.

A summary of the running times for the UnsortedPriorityQueue class is given
in Table 9.1.

Operation Running Time
len O(1)

is empty O(1)

add O(1)

min O(n)

remove min O(n)

Table 9.1: Worst-case running times of the methods of a priority queue of size
n, realized by means of an unsorted, doubly linked list. The space requirement
is O(n).
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1 class UnsortedPriorityQueue(PriorityQueueBase): # base class defines Item
2 ”””A min-oriented priority queue implemented with an unsorted list.”””
3
4 def find min(self): # nonpublic utility
5 ”””Return Position of item with minimum key.”””
6 if self.is empty(): # is empty inherited from base class
7 raise Empty( Priority queue is empty )
8 small = self. data.first()
9 walk = self. data.after(small)

10 while walk is not None:
11 if walk.element( ) < small.element():
12 small = walk
13 walk = self. data.after(walk)
14 return small
15
16 def init (self):
17 ”””Create a new empty Priority Queue.”””
18 self. data = PositionalList()
19
20 def len (self):
21 ”””Return the number of items in the priority queue.”””
22 return len(self. data)
23
24 def add(self, key, value):
25 ”””Add a key-value pair.”””
26 self. data.add last(self. Item(key, value))
27
28 def min(self):
29 ”””Return but do not remove (k,v) tuple with minimum key.”””
30 p = self. find min()
31 item = p.element()
32 return (item. key, item. value)
33
34 def remove min(self):
35 ”””Remove and return (k,v) tuple with minimum key.”””
36 p = self. find min()
37 item = self. data.delete(p)
38 return (item. key, item. value)

Code Fragment 9.2: An implementation of a priority queue using an unsorted
list. The parent class PriorityQueueBase is given in Code Fragment 9.1, and the
PositionalList class is from Section 7.4.
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9.2.3 Implementation with a Sorted List

An alternative implementation of a priority queue uses a positional list, yet main-
taining entries sorted by nondecreasing keys. This ensures that the first element of
the list is an entry with the smallest key.

Our SortedPriorityQueue class is given in Code Fragment 9.3. The implemen-
tation of min and remove min are rather straightforward given knowledge that the
first element of a list has a minimum key. We rely on the first method of the posi-
tional list to find the position of the first item, and the delete method to remove the
entry from the list. Assuming that the list is implemented with a doubly linked list,
operations min and remove min take O(1) time.

This benefit comes at a cost, however, for method add now requires that we scan
the list to find the appropriate position to insert the new item. Our implementation
starts at the end of the list, walking backward until the new key is smaller than
an existing item; in the worst case, it progresses until reaching the front of the
list. Therefore, the add method takes O(n) worst-case time, where n is the number
of entries in the priority queue at the time the method is executed. In summary,
when using a sorted list to implement a priority queue, insertion runs in linear time,
whereas finding and removing the minimum can be done in constant time.

Comparing the Two List-Based Implementations

Table 9.2 compares the running times of the methods of a priority queue realized
by means of a sorted and unsorted list, respectively. We see an interesting trade-
off when we use a list to implement the priority queue ADT. An unsorted list
supports fast insertions but slow queries and deletions, whereas a sorted list allows
fast queries and deletions, but slow insertions.

Operation Unsorted List Sorted List
len O(1) O(1)

is empty O(1) O(1)

add O(1) O(n)

min O(n) O(1)

remove min O(n) O(1)

Table 9.2: Worst-case running times of the methods of a priority queue of size n,
realized by means of an unsorted or sorted list, respectively. We assume that the
list is implemented by a doubly linked list. The space requirement is O(n).
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1 class SortedPriorityQueue(PriorityQueueBase): # base class defines Item
2 ”””A min-oriented priority queue implemented with a sorted list.”””
3
4 def init (self):
5 ”””Create a new empty Priority Queue.”””
6 self. data = PositionalList()
7
8 def len (self):
9 ”””Return the number of items in the priority queue.”””

10 return len(self. data)
11
12 def add(self, key, value):
13 ”””Add a key-value pair.”””
14 newest = self. Item(key, value) # make new item instance
15 walk = self. data.last( ) # walk backward looking for smaller key
16 while walk is not None and newest < walk.element():
17 walk = self. data.before(walk)
18 if walk is None:
19 self. data.add first(newest) # new key is smallest
20 else:
21 self. data.add after(walk, newest) # newest goes after walk
22
23 def min(self):
24 ”””Return but do not remove (k,v) tuple with minimum key.”””
25 if self.is empty():
26 raise Empty( Priority queue is empty. )
27 p = self. data.first()
28 item = p.element()
29 return (item. key, item. value)
30
31 def remove min(self):
32 ”””Remove and return (k,v) tuple with minimum key.”””
33 if self.is empty():
34 raise Empty( Priority queue is empty. )
35 item = self. data.delete(self. data.first())
36 return (item. key, item. value)

Code Fragment 9.3: An implementation of a priority queue using a sorted list.
The parent class PriorityQueueBase is given in Code Fragment 9.1, and the
PositionalList class is from Section 7.4.
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9.3 Heaps

The two strategies for implementing a priority queue ADT in the previous section
demonstrate an interesting trade-off. When using an unsorted list to store entries,
we can perform insertions in O(1) time, but finding or removing an element with
minimum key requires an O(n)-time loop through the entire collection. In contrast,
if using a sorted list, we can trivially find or remove the minimum element in O(1)
time, but adding a new element to the queue may require O(n) time to restore the
sorted order.

In this section, we provide a more efficient realization of a priority queue using
a data structure called a binary heap. This data structure allows us to perform both
insertions and removals in logarithmic time, which is a significant improvement
over the list-based implementations discussed in Section 9.2. The fundamental
way the heap achieves this improvement is to use the structure of a binary tree to
find a compromise between elements being entirely unsorted and perfectly sorted.

9.3.1 The Heap Data Structure

A heap (see Figure 9.1) is a binary tree T that stores a collection of items at its
positions and that satisfies two additional properties: a relational property defined
in terms of the way keys are stored in T and a structural property defined in terms
of the shape of T itself. The relational property is the following:

Heap-Order Property: In a heap T , for every position p other than the root, the
key stored at p is greater than or equal to the key stored at p’s parent.

As a consequence of the heap-order property, the keys encountered on a path from
the root to a leaf of T are in nondecreasing order. Also, a minimum key is always
stored at the root of T . This makes it easy to locate such an item when min or
remove min is called, as it is informally said to be “at the top of the heap” (hence,
the name “heap” for the data structure). By the way, the heap data structure defined
here has nothing to do with the memory heap (Section 15.1.1) used in the run-time
environment supporting a programming language like Python.

For the sake of efficiency, as will become clear later, we want the heap T to have
as small a height as possible. We enforce this requirement by insisting that the heap
T satisfy an additional structural property—it must be what we term complete.

Complete Binary Tree Property: A heap T with height h is a complete binary tree
if levels 0,1,2, . . . ,h− 1 of T have the maximum number of nodes possible
(namely, level i has 2i nodes, for 0 ≤ i ≤ h− 1) and the remaining nodes at
level h reside in the leftmost possible positions at that level.
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(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Figure 9.1: Example of a heap storing 13 entries with integer keys. The last position
is the one storing entry (13,W ).

The tree in Figure 9.1 is complete because levels 0, 1, and 2 are full, and the six
nodes in level 3 are in the six leftmost possible positions at that level. In formalizing
what we mean by the leftmost possible positions, we refer to the discussion of level
numbering from Section 8.3.2, in the context of an array-based representation of a
binary tree. (In fact, in Section 9.3.3 we will discuss the use of an array to represent
a heap.) A complete binary tree with n elements is one that has positions with level
numbering 0 through n− 1. For example, in an array-based representation of the
above tree, its 13 entries would be stored consecutively from A[0] to A[12].

The Height of a Heap

Let h denote the height of T . Insisting that T be complete also has an important
consequence, as shown in Proposition 9.2.

Proposition 9.2: A heap T storing n entries has height h = �logn�.

Justification: From the fact that T is complete, we know that the number of
nodes in levels 0 through h−1 of T is precisely 1+2+4+ · · ·+2h−1 = 2h−1, and
that the number of nodes in level h is at least 1 and at most 2h. Therefore

n ≥ 2h −1+ 1 = 2h and n ≤ 2h −1+ 2h = 2h+1 −1.

By taking the logarithm of both sides of inequality 2h ≤ n, we see that height
h ≤ logn. By rearranging terms and taking the logarithm of both sides of inequality
n ≤ 2h+1 − 1, we see that log(n + 1)− 1 ≤ h. Since h is an integer, these two
inequalities imply that h = �logn�.
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9.3.2 Implementing a Priority Queue with a Heap

Proposition 9.2 has an important consequence, for it implies that if we can perform
update operations on a heap in time proportional to its height, then those opera-
tions will run in logarithmic time. Let us therefore turn to the problem of how to
efficiently perform various priority queue methods using a heap.

We will use the composition pattern from Section 9.2.1 to store key-value pairs
as items in the heap. The len and is empty methods can be implemented based
on examination of the tree, and the min operation is equally trivial because the
heap property assures that the element at the root of the tree has a minimum key.
The interesting algorithms are those for implementing the add and remove min
methods.

Adding an Item to the Heap

Let us consider how to perform add(k,v) on a priority queue implemented with a
heap T . We store the pair (k,v) as an item at a new node of the tree. To maintain
the complete binary tree property, that new node should be placed at a position p
just beyond the rightmost node at the bottom level of the tree, or as the leftmost
position of a new level, if the bottom level is already full (or if the heap is empty).

Up-Heap Bubbling After an Insertion

After this action, the tree T is complete, but it may violate the heap-order property.
Hence, unless position p is the root of T (that is, the priority queue was empty
before the insertion), we compare the key at position p to that of p’s parent, which
we denote as q. If key kp ≥ kq, the heap-order property is satisfied and the algorithm
terminates. If instead kp < kq, then we need to restore the heap-order property,
which can be locally achieved by swapping the entries stored at positions p and q.
(See Figure 9.2c and d.) This swap causes the new item to move up one level.
Again, the heap-order property may be violated, so we repeat the process, going up
in T until no violation of the heap-order property occurs. (See Figure 9.2e and h.)

The upward movement of the newly inserted entry by means of swaps is con-
ventionally called up-heap bubbling. A swap either resolves the violation of the
heap-order property or propagates it one level up in the heap. In the worst case, up-
heap bubbling causes the new entry to move all the way up to the root of heap T .
Thus, in the worst case, the number of swaps performed in the execution of method
add is equal to the height of T . By Proposition 9.2, that bound is �logn�.
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(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(a) (b)

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

(c) (d)

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(e) (f )

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(g) (h)

Figure 9.2: Insertion of a new entry with key 2 into the heap of Figure 9.1: (a)
initial heap; (b) after performing operation add; (c and d) swap to locally restore
the partial order property; (e and f) another swap; (g and h) final swap.
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Removing the Item with Minimum Key

Let us now turn to method remove min of the priority queue ADT. We know that
an entry with the smallest key is stored at the root r of T (even if there is more than
one entry with smallest key). However, in general we cannot simply delete node r,
because this would leave two disconnected subtrees.

Instead, we ensure that the shape of the heap respects the complete binary tree
property by deleting the leaf at the last position p of T , defined as the rightmost
position at the bottommost level of the tree. To preserve the item from the last
position p, we copy it to the root r (in place of the item with minimum key that is
being removed by the operation). Figure 9.3a and b illustrates an example of these
steps, with minimal item (4,C) being removed from the root and replaced by item
(13,W ) from the last position. The node at the last position is removed from the
tree.

Down-Heap Bubbling After a Removal

We are not yet done, however, for even though T is now complete, it likely violates
the heap-order property. If T has only one node (the root), then the heap-order
property is trivially satisfied and the algorithm terminates. Otherwise, we distin-
guish two cases, where p initially denotes the root of T :

• If p has no right child, let c be the left child of p.

• Otherwise (p has both children), let c be a child of p with minimal key.

If key kp ≤ kc, the heap-order property is satisfied and the algorithm terminates. If
instead kp > kc, then we need to restore the heap-order property. This can be locally
achieved by swapping the entries stored at p and c. (See Figure 9.3c and d.) It is
worth noting that when p has two children, we intentionally consider the smaller
key of the two children. Not only is the key of c smaller than that of p, it is at
least as small as the key at c’s sibling. This ensures that the heap-order property is
locally restored when that smaller key is promoted above the key that had been at
p and that at c’s sibling.

Having restored the heap-order property for node p relative to its children, there
may be a violation of this property at c; hence, we may have to continue swapping
down T until no violation of the heap-order property occurs. (See Figure 9.3e–h.)
This downward swapping process is called down-heap bubbling. A swap either
resolves the violation of the heap-order property or propagates it one level down in
the heap. In the worst case, an entry moves all the way down to the bottom level.
(See Figure 9.3.) Thus, the number of swaps performed in the execution of method
remove min is, in the worst case, equal to the height of heap T , that is, it is �logn�
by Proposition 9.2.
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(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(a) (b)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z) (13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(c) (d)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(e) (f )

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

(g) (h)

Figure 9.3: Removal of the entry with the smallest key from a heap: (a and b)
deletion of the last node, whose entry gets stored into the root; (c and d) swap to
locally restore the heap-order property; (e and f) another swap; (g and h) final swap.
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9.3.3 Array-Based Representation of a Complete Binary Tree

The array-based representation of a binary tree (Section 8.3.2) is especially suitable
for a complete binary tree T . We recall that in this implementation, the elements
of T are stored in an array-based list A such that the element at position p in T is
stored in A with index equal to the level number f (p) of p, defined as follows:

• If p is the root of T , then f (p) = 0.
• If p is the left child of position q, then f (p) = 2 f (q)+ 1.
• If p is the right child of position q, then f (p) = 2 f (q)+ 2.

With this implementation, the elements of T have contiguous indices in the range
[0,n−1] and the last position of T is always at index n−1, where n is the number
of positions of T . For example, Figure 9.4 illustrates the array-based representation
of the heap structure originally portrayed in Figure 9.1.

0 1 2 3 4 5 6 7 8 9 10 11 12

(4,C) (6,Z) (15,K) (9,F) (7,Q) (20,B) (16,X) (25,J) (14,E) (12,H) (11,S) (8,W)(5,A)

Figure 9.4: An array-based representation of the heap from Figure 9.1.

Implementing a priority queue using an array-based heap representation allows
us to avoid some complexities of a node-based tree structure. In particular, the add
and remove min operations of a priority queue both depend on locating the last
index of a heap of size n. With the array-based representation, the last position
is at index n− 1 of the array. Locating the last position of a complete binary tree
implemented with a linked structure requires more effort. (See Exercise C-9.34.)

If the size of a priority queue is not known in advance, use of an array-based
representation does introduce the need to dynamically resize the array on occasion,
as is done with a Python list. The space usage of such an array-based representation
of a complete binary tree with n nodes is O(n), and the time bounds of methods for
adding or removing elements become amortized. (See Section 5.3.1.)

9.3.4 Python Heap Implementation

We provide a Python implementation of a heap-based priority queue in Code Frag-
ments 9.4 and 9.5. We use an array-based representation, maintaining a Python list
of item composites. Although we do not formally use the binary tree ADT, Code
Fragment 9.4 includes nonpublic utility functions that compute the level numbering
of a parent or child of another. This allows us to describe the rest of our algorithms
using tree-like terminology of parent, left, and right. However, the relevant vari-
ables are integer indexes (not “position” objects). We use recursion to implement
the repetition in the upheap and downheap utilities.
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1 class HeapPriorityQueue(PriorityQueueBase): # base class defines Item
2 ”””A min-oriented priority queue implemented with a binary heap.”””
3 #------------------------------ nonpublic behaviors ------------------------------
4 def parent(self, j):
5 return (j−1) // 2
6
7 def left(self, j):
8 return 2 j + 1
9

10 def right(self, j):
11 return 2 j + 2
12
13 def has left(self, j):
14 return self. left(j) < len(self. data) # index beyond end of list?
15
16 def has right(self, j):
17 return self. right(j) < len(self. data) # index beyond end of list?
18
19 def swap(self, i, j):
20 ”””Swap the elements at indices i and j of array.”””
21 self. data[i], self. data[j] = self. data[j], self. data[i]
22
23 def upheap(self, j):
24 parent = self. parent(j)
25 if j > 0 and self. data[j] < self. data[parent]:
26 self. swap(j, parent)
27 self. upheap(parent) # recur at position of parent
28
29 def downheap(self, j):
30 if self. has left(j):
31 left = self. left(j)
32 small child = left # although right may be smaller
33 if self. has right(j):
34 right = self. right(j)
35 if self. data[right] < self. data[left]:
36 small child = right
37 if self. data[small child] < self. data[j]:
38 self. swap(j, small child)
39 self. downheap(small child) # recur at position of small child

Code Fragment 9.4: An implementation of a priority queue using an array-based
heap (continued in Code Fragment 9.5). The extends the PriorityQueueBase class
from Code Fragment 9.1.
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40 #------------------------------ public behaviors ------------------------------
41 def init (self):
42 ”””Create a new empty Priority Queue.”””
43 self. data = [ ]
44
45 def len (self):
46 ”””Return the number of items in the priority queue.”””
47 return len(self. data)
48
49 def add(self, key, value):
50 ”””Add a key-value pair to the priority queue.”””
51 self. data.append(self. Item(key, value))
52 self. upheap(len(self. data) − 1) # upheap newly added position
53
54 def min(self):
55 ”””Return but do not remove (k,v) tuple with minimum key.
56
57 Raise Empty exception if empty.
58 ”””
59 if self.is empty():
60 raise Empty( Priority queue is empty. )
61 item = self. data[0]
62 return (item. key, item. value)
63
64 def remove min(self):
65 ”””Remove and return (k,v) tuple with minimum key.
66
67 Raise Empty exception if empty.
68 ”””
69 if self.is empty():
70 raise Empty( Priority queue is empty. )
71 self. swap(0, len(self. data) − 1) # put minimum item at the end
72 item = self. data.pop( ) # and remove it from the list;
73 self. downheap(0) # then fix new root
74 return (item. key, item. value)

Code Fragment 9.5: An implementation of a priority queue using an array-based
heap (continued from Code Fragment 9.4).
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9.3.5 Analysis of a Heap-Based Priority Queue

Table 9.3 shows the running time of the priority queue ADT methods for the heap
implementation of a priority queue, assuming that two keys can be compared in
O(1) time and that the heap T is implemented with an array-based or linked-based
tree representation.

In short, each of the priority queue ADT methods can be performed in O(1) or
in O(logn) time, where n is the number of entries at the time the method is exe-
cuted. The analysis of the running time of the methods is based on the following:

• The heap T has n nodes, each storing a reference to a key-value pair.

• The height of heap T is O(logn), since T is complete (Proposition 9.2).

• The min operation runs in O(1) because the root of the tree contains such an
element.

• Locating the last position of a heap, as required for add and remove min,
can be performed in O(1) time for an array-based representation, or O(logn)
time for a linked-tree representation. (See Exercise C-9.34.)

• In the worst case, up-heap and down-heap bubbling perform a number of
swaps equal to the height of T .

Operation Running Time
len(P), P.is empty() O(1)

P.min() O(1)

P.add() O(logn)∗

P.remove min() O(logn)∗

∗amortized, if array-based

Table 9.3: Performance of a priority queue, P, realized by means of a heap. We
let n denote the number of entries in the priority queue at the time an operation is
executed. The space requirement is O(n). The running time of operations min and
remove min are amortized for an array-based representation, due to occasional re-
sizing of a dynamic array; those bounds are worst case with a linked tree structure.

We conclude that the heap data structure is a very efficient realization of the
priority queue ADT, independent of whether the heap is implemented with a linked
structure or an array. The heap-based implementation achieves fast running times
for both insertion and removal, unlike the implementations that were based on using
an unsorted or sorted list.

www.it-ebooks.info

http://www.it-ebooks.info/


380 Chapter 9. Priority Queues

9.3.6 Bottom-Up Heap Construction �

If we start with an initially empty heap, n successive calls to the add operation will
run in O(n logn) time in the worst case. However, if all n key-value pairs to be
stored in the heap are given in advance, such as during the first phase of the heap-
sort algorithm, there is an alternative bottom-up construction method that runs in
O(n) time. (Heap-sort, however, still requires Θ(n logn) time because of the second
phase in which we repeatedly remove the remaining element with smallest key.)

In this section, we describe the bottom-up heap construction, and provide an
implementation that can be used by the constructor of a heap-based priority queue.

For simplicity of exposition, we describe this bottom-up heap construction as-
suming the number of keys, n, is an integer such that n = 2h+1 − 1. That is,
the heap is a complete binary tree with every level being full, so the heap has
height h = log(n + 1)− 1. Viewed nonrecursively, bottom-up heap construction
consists of the following h+ 1 = log(n+ 1) steps:

1. In the first step (see Figure 9.5b), we construct (n + 1)/2 elementary heaps
storing one entry each.

2. In the second step (see Figure 9.5c–d), we form (n+1)/4 heaps, each storing
three entries, by joining pairs of elementary heaps and adding a new entry.
The new entry is placed at the root and may have to be swapped with the
entry stored at a child to preserve the heap-order property.

3. In the third step (see Figure 9.5e–f), we form (n + 1)/8 heaps, each storing
7 entries, by joining pairs of 3-entry heaps (constructed in the previous step)
and adding a new entry. The new entry is placed initially at the root, but may
have to move down with a down-heap bubbling to preserve the heap-order
property.

...

i. In the generic ith step, 2≤ i≤ h, we form (n+1)/2i heaps, each storing 2i−1
entries, by joining pairs of heaps storing (2i−1−1) entries (constructed in the
previous step) and adding a new entry. The new entry is placed initially at
the root, but may have to move down with a down-heap bubbling to preserve
the heap-order property.

...

h+ 1. In the last step (see Figure 9.5g–h), we form the final heap, storing all the
n entries, by joining two heaps storing (n− 1)/2 entries (constructed in the
previous step) and adding a new entry. The new entry is placed initially at
the root, but may have to move down with a down-heap bubbling to preserve
the heap-order property.

We illustrate bottom-up heap construction in Figure 9.5 for h = 3.
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415 12 6 7 23 2016

(a) (b)

416 15

9

12 6 7

11

23

17

20

25

2016 25 9

4

12 11 7

6

23

1715

(c) (d)

25 12 11 23 20

1715

16

8

4

9

5

6

7 25 12 11 23 20

1715

16 8

5

9

4 6

7

(e) (f )

25 12 11 8 23 20

17715

6

16

5

14

4

9 25 12 11 8 23 20

17715

6

16 14

4

5

9

(g) (h)

Figure 9.5: Bottom-up construction of a heap with 15 entries: (a and b) we begin by
constructing 1-entry heaps on the bottom level; (c and d) we combine these heaps
into 3-entry heaps, and then (e and f) 7-entry heaps, until (g and h) we create the
final heap. The paths of the down-heap bubblings are highlighted in (d, f, and h).
For simplicity, we only show the key within each node instead of the entire entry.
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Python Implementation of a Bottom-Up Heap Construction

Implementing a bottom-up heap construction is quite easy, given the existence of
a “down-heap” utility function. The “merging” of two equally sized heaps that
are subtrees of a common position p, as described in the opening of this section,
can be accomplished simply by down-heaping p’s entry. For example, that is what
happened to the key 14 in going from Figure 9.5(f ) to (g).

With our array-based representation of a heap, if we initially store all n items in
arbitrary order within the array, we can implement the bottom-up heap construction
process with a single loop that makes a call to downheap from each position of
the tree, as long as those calls are ordered starting with the deepest level and ending
with the root of the tree. In fact, that loop can start with the deepest nonleaf, since
there is no effect when down-heap is called at a leaf position.

In Code Fragment 9.6, we augment the original HeapPriorityQueue class from
Section 9.3.4 to provide support for the bottom-up construction of an initial col-
lection. We introduce a nonpublic utility method, heapify, that calls downheap
on each nonleaf position, beginning with the deepest and concluding with a call at
the root of the tree. We have redesigned the constructor of the class to accept an
optional parameter that can be any sequence of (k,v) tuples. Rather than initializing
self. data to an empty list, we use a list comprehension syntax (see Section 1.9.2)
to create an initial list of item composites based on the given contents. We de-
clare an empty sequence as the default parameter value so that the default syntax
HeapPriorityQueue() continues to result in an empty priority queue.

def init (self, contents=()):
”””Create a new priority queue.

By default, queue will be empty. If contents is given, it should be as an
iterable sequence of (k,v) tuples specifying the initial contents.

”””
self. data = [ self. Item(k,v) for k,v in contents ] # empty by default
if len(self. data) > 1:

self. heapify()

def heapify(self):
start = self. parent(len(self) − 1) # start at PARENT of last leaf
for j in range(start, −1, −1): # going to and including the root

self. downheap(j)

Code Fragment 9.6: Revision to the HeapPriorityQueue class of Code Frag-
ments 9.4 and 9.5 to support a linear-time construction given an initial sequence
of entries.
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Asymptotic Analysis of Bottom-Up Heap Construction

Bottom-up heap construction is asymptotically faster than incrementally inserting
n keys into an initially empty heap. Intuitively, we are performing a single down-
heap operation at each position in the tree, rather than a single up-heap operation
from each. Since more nodes are closer to the bottom of a tree than the top, the
sum of the downward paths is linear, as shown in the following proposition.

Proposition 9.3: Bottom-up construction of a heap with n entries takes O(n)
time, assuming two keys can be compared in O(1) time.

Justification: The primary cost of the construction is due to the down-heap
steps performed at each nonleaf position. Let πv denote the path of T from nonleaf
node v to its “inorder successor” leaf, that is, the path that starts at v, goes to the
right child of v, and then goes down leftward until it reaches a leaf. Although,
πv is not necessarily the path followed by the down-heap bubbling step from v,
the length ‖πv‖ (its number of edges) is proportional to the height of the subtree
rooted at v, and thus a bound on the complexity of the down-heap operation at v.
We can bound the total running time of the bottom-up heap construction algorithm
based on the sum of the sizes of paths, ∑v ‖πv‖. For intuition, Figure 9.6 illustrates
the justification “visually,” marking each edge with the label of the nonleaf node v
whose path πv contains that edge.

We claim that the paths πv for all nonleaf v are edge-disjoint, and thus the sum
of the path lengths is bounded by the number of total edges in the tree, hence O(n).
To show this, we consider what we term “right-leaning” and “left-leaning” edges
(i.e., those going from a parent to a right, respectively left, child). A particular right-
leaning edge e can only be part of the path πv for node v that is the parent in the
relationship represented by e. Left-leaning edges can be partitioned by considering
the leaf that is reached if continuing down leftward until reaching a leaf. Each
nonleaf node only uses left-leaning edges in the group leading to that nonleaf node’s
inorder successor. Since each nonleaf node must have a different inorder successor,
no two such paths can contain the same left-leaning edge. We conclude that the
bottom-up construction of heap T takes O(n) time.

15

6

4

16

5

25 14 12 11 8 23 20

1779
15 7 17

5 4 6

5 4 6

4

9

Figure 9.6: Visual justification of the linear running time of bottom-up heap con-
struction. Each edge e is labeled with a node v for which πv contains e (if any).
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9.3.7 Python’s heapq Module

Python’s standard distribution includes a heapq module that provides support for
heap-based priority queues. That module does not provide any priority queue class;
instead it provides functions that allow a standard Python list to be managed as a
heap. Its model is essentially the same as our own, with n elements stored in list
cells L[0] through L[n− 1], based on the level-numbering indices with the small-
est element at the root in L[0]. We note that heapq does not separately manage
associated values; elements serve as their own key.

The heapq module supports the following functions, all of which presume that
existing list L satisfies the heap-order property prior to the call:

heappush(L, e): Push element e onto list L and restore the heap-order
property. The function executes in O(logn) time.

heappop(L): Pop and return the element with smallest value from list L,
and reestablish the heap-order property. The operation
executes in O(logn) time.

heappushpop(L, e): Push element e on list L and then pop and return the
smallest item. The time is O(logn), but it is slightly more
efficient than separate calls to push and pop because the
size of the list never changes. If the newly pushed el-
ement becomes the smallest, it is immediately returned.
Otherwise, the new element takes the place of the popped
element at the root and a down-heap is performed.

heapreplace(L, e): Similar to heappushpop, but equivalent to the pop be-
ing performed before the push (in other words, the new
element cannot be returned as the smallest). Again, the
time is O(logn), but it is more efficient that two separate
operations.

The module supports additional functions that operate on sequences that do not
previously satisfy the heap-order property.

heapify(L): Transform unordered list to satisfy the heap-order prop-
erty. This executes in O(n) time by using the bottom-up
construction algorithm.

nlargest(k, iterable): Produce a list of the k largest values from a given iterable.
This can be implemented to run in O(n + k logn) time,
where we use n to denote the length of the iterable (see
Exercise C-9.42).

nsmallest(k, iterable): Produce a list of the k smallest values from a given it-
erable. This can be implemented to run in O(n+ k logn)
time, using similar technique as with nlargest.
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9.4 Sorting with a Priority Queue

In defining the priority queue ADT, we noted that any type of object can be used as
a key, but that any pair of keys must be comparable to each other, and that the set
of keys be naturally ordered. In Python, it is common to rely on the < operator to
define such an order, in which case the following properties must be satisfied:

• Irreflexive property: k �< k.
• Transitive property: if k1 < k2 and k2 < k3, then k1 < k3.

Formally, such a relationship defines what is known as a strict weak order, as it
allows for keys to be considered equal to each other, but the broader equivalence
classes are totally ordered, as they can be uniquely arranged from smallest to largest
due to the transitive property.

As our first application of priority queues, we demonstrate how they can be
used to sort a collection C of comparable elements. That is, we can produce a
sequence of elements of C in increasing order (or at least in nondecreasing order if
there are duplicates). The algorithm is quite simple—we insert all elements into an
initially empty priority queue, and then we repeatedly call remove min to retrieve
the elements in nondecreasing order.

An implementation of this algorithm is given in Code Fragment 9.7, assuming
that C is a positional list. (See Chapter 7.4.) We use an original element of the
collection as both a key and value when calling P.add(element, element).

1 def pq sort(C):
2 ”””Sort a collection of elements stored in a positional list.”””
3 n = len(C)
4 P = PriorityQueue()
5 for j in range(n):
6 element = C.delete(C.first())
7 P.add(element, element) # use element as key and value
8 for j in range(n):
9 (k,v) = P.remove min()

10 C.add last(v) # store smallest remaining element in C

Code Fragment 9.7: An implementation of the pq sort function, assuming an ap-
propriate implementation of a PriorityQueue class. Note that each element of the
input list C serves as its own key in the priority queue P.

With a minor modification to this code, we can provide more general sup-
port, sorting elements according to an ordering other than the default. For exam-
ple, when working with strings, the < operator defines a lexicographic ordering,
which is an extension of the alphabetic ordering to Unicode. For example, we have
that 12 < 4 because of the order of the first character of each string, just as
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apple < banana . Suppose that we have an application in which we have a
list of strings that are all known to represent integral values (e.g., 12 ), and our
goal is to sort the strings according to those integral values.

In Python, the standard approach for customizing the order for a sorting algo-
rithm is to provide, as an optional parameter to the sorting function, an object that
is itself a one-parameter function that computes a key for a given element. (See
Sections 1.5 and 1.10 for a discussion of this approach in the context of the built-
in max function.) For example, with a list of (numeric) strings, we might wish
to use the value of int(s) as a key for a string s of the list. In this case, the con-
structor for the int class can serve as the one-parameter function for computing a
key. In that way, the string 4 will be ordered before string 12 because its key
int( 4 ) < int( 12 ). We leave it as an exercise to support such an optional key
parameter for the pq sort function. (See Exercise C-9.46.)

9.4.1 Selection-Sort and Insertion-Sort

Our pq sort function works correctly given any valid implementation of the pri-
ority queue class. However, the running time of the sorting algorithm depends
on the running times of the operations add and remove min for the given priority
queue class. We next discuss a choice of priority queue implementations that in
effect cause the pq sort computation to behave as one of several classic sorting
algorithms.

Selection-Sort

If we implement P with an unsorted list, then Phase 1 of pq sort takes O(n) time,
for we can add each element in O(1) time. In Phase 2, the running time of each
remove min operation is proportional to the size of P. Thus, the bottleneck com-
putation is the repeated “selection” of the minimum element in Phase 2. For this
reason, this algorithm is better known as selection-sort. (See Figure 9.7.)

As noted above, the bottleneck is in Phase 2 where we repeatedly remove an
entry with smallest key from the priority queue P. The size of P starts at n and
incrementally decreases with each remove min until it becomes 0. Thus, the first
operation takes time O(n), the second one takes time O(n− 1), and so on. There-
fore, the total time needed for the second phase is

O(n+(n−1)+ · · ·+ 2+ 1) = O(∑n
i=1 i) .

By Proposition 3.3, we have ∑
n
i=1 i = n(n+ 1)/2. Thus, Phase 2 takes time O(n2),

as does the entire selection-sort algorithm.
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Collection C Priority Queue P
Input (7,4,8,2,5,3) ()
Phase 1 (a) (4,8,2,5,3) (7)

(b) (8,2,5,3) (7,4)
...

...
...

(f ) () (7,4,8,2,5,3)
Phase 2 (a) (2) (7,4,8,5,3)

(b) (2,3) (7,4,8,5)
(c) (2,3,4) (7,8,5)
(d) (2,3,4,5) (7,8)
(e) (2,3,4,5,7) (8)
(f ) (2,3,4,5,7,8) ()

Figure 9.7: Execution of selection-sort on collection C = (7,4,8,2,5,3).

Insertion-Sort

If we implement the priority queue P using a sorted list, then we improve the run-
ning time of Phase 2 to O(n), for each remove min operation on P now takes O(1)
time. Unfortunately, Phase 1 becomes the bottleneck for the running time, since,
in the worst case, each add operation takes time proportional to the current size of
P. This sorting algorithm is better known as insertion-sort (see Figure 9.8); in fact,
our implementation for adding an element to a priority queue is almost identical to
a step of insertion-sort as presented in Section 7.5.

The worst-case running time of Phase 1 of insertion-sort is

O(1+ 2+ . . .+(n−1)+ n) = O(∑n
i=1 i) .

Again, by Proposition 3.3, this implies a worst-case O(n2) time for Phase 1, and
thus, the entire insertion-sort algorithm. However, unlike selection-sort, insertion-
sort has a best-case running time of O(n).

Collection C Priority Queue P
Input (7,4,8,2,5,3) ()
Phase 1 (a) (4,8,2,5,3) (7)

(b) (8,2,5,3) (4,7)
(c) (2,5,3) (4,7,8)
(d) (5,3) (2,4,7,8)
(e) (3) (2,4,5,7,8)
(f ) () (2,3,4,5,7,8)

Phase 2 (a) (2) (3,4,5,7,8)
(b) (2,3) (4,5,7,8)
...

...
...

(f ) (2,3,4,5,7,8) ()

Figure 9.8: Execution of insertion-sort on collection C = (7,4,8,2,5,3).
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9.4.2 Heap-Sort

As we have previously observed, realizing a priority queue with a heap has the
advantage that all the methods in the priority queue ADT run in logarithmic time or
better. Hence, this realization is suitable for applications where fast running times
are sought for all the priority queue methods. Therefore, let us again consider the
pq sort scheme, this time using a heap-based implementation of the priority queue.

During Phase 1, the ith add operation takes O(log i) time, since the heap has i
entries after the operation is performed. Therefore this phase takes O(n logn) time.
(It could be improved to O(n) with the bottom-up heap construction described in
Section 9.3.6.)

During the second phase of pq sort, the jth remove min operation runs in
O(log(n− j + 1)), since the heap has n− j + 1 entries at the time the operation
is performed. Summing over all j, this phase takes O(n logn) time, so the entire
priority-queue sorting algorithm runs in O(n logn) time when we use a heap to im-
plement the priority queue. This sorting algorithm is better known as heap-sort,
and its performance is summarized in the following proposition.

Proposition 9.4: The heap-sort algorithm sorts a collection C of n elements in
O(n logn) time, assuming two elements of C can be compared in O(1) time.

Let us stress that the O(n logn) running time of heap-sort is considerably better
than the O(n2) running time of selection-sort and insertion-sort (Section 9.4.1).

Implementing Heap-Sort In-Place

If the collection C to be sorted is implemented by means of an array-based se-
quence, most notably as a Python list, we can speed up heap-sort and reduce its
space requirement by a constant factor using a portion of the list itself to store the
heap, thus avoiding the use of an auxiliary heap data structure. This is accomplished
by modifying the algorithm as follows:

1. We redefine the heap operations to be a maximum-oriented heap, with each
position’s key being at least as large as its children. This can be done by
recoding the algorithm, or by adjusting the notion of keys to be negatively
oriented. At any time during the execution of the algorithm, we use the left
portion of C, up to a certain index i−1, to store the entries of the heap, and
the right portion of C, from index i to n− 1, to store the elements of the
sequence. Thus, the first i elements of C (at indices 0, . . . , i− 1) provide the
array-list representation of the heap.

2. In the first phase of the algorithm, we start with an empty heap and move the
boundary between the heap and the sequence from left to right, one step at a
time. In step i, for i = 1, . . . ,n, we expand the heap by adding the element at
index i−1.
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3. In the second phase of the algorithm, we start with an empty sequence and
move the boundary between the heap and the sequence from right to left, one
step at a time. At step i, for i = 1, . . . ,n, we remove a maximum element
from the heap and store it at index n− i.

In general, we say that a sorting algorithm is in-place if it uses only a small
amount of memory in addition to the sequence storing the objects to be sorted. The
variation of heap-sort above qualifies as in-place; instead of transferring elements
out of the sequence and then back in, we simply rearrange them. We illustrate the
second phase of in-place heap-sort in Figure 9.9.

(e) 4

57

9

62 4

2 5

7624

(c) 6 4 5 7 9

6 7 9

54

4 5 6 7 9

6

2(f) 2

5

(b) 7 6 5 2 4 9

2

2

4

56

7

42

4 2
9

(a) 9 7 5 2 6 4

2

5(d)

Figure 9.9: Phase 2 of an in-place heap-sort. The heap portion of each sequence
representation is highlighted. The binary tree that each sequence (implicitly) repre-
sents is diagrammed with the most recent path of down-heap bubbling highlighted.
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9.5 Adaptable Priority Queues

The methods of the priority queue ADT given in Section 9.1.2 are sufficient for
most basic applications of priority queues, such as sorting. However, there are
situations in which additional methods would be useful, as shown by the scenarios
below involving the standby airline passenger application.

• A standby passenger with a pessimistic attitude may become tired of waiting
and decide to leave ahead of the boarding time, requesting to be removed
from the waiting list. Thus, we would like to remove from the priority queue
the entry associated with this passenger. Operation remove min does not
suffice since the passenger leaving does not necessarily have first priority.
Instead, we want a new operation, remove, that removes an arbitrary entry.

• Another standby passenger finds her gold frequent-flyer card and shows it to
the agent. Thus, her priority has to be modified accordingly. To achieve this
change of priority, we would like to have a new operation update allowing
us to replace the key of an existing entry with a new key.

We will see another application of adaptable priority queues when implementing
certain graph algorithms in Sections 14.6.2 and 14.7.1.

In this section, we develop an adaptable priority queue ADT and demonstrate
how to implement this abstraction as an extension to our heap-based priority queue.

9.5.1 Locators

In order to implement methods update and remove efficiently, we need a mecha-
nism for finding a user’s element within a priority queue that avoids performing a
linear search through the entire collection. To support our goal, when a new ele-
ment is added to the priority queue, we return a special object known as a locator to
the caller. We then require the user to provide an appropriate locator as a parameter
when invoking the update or remove method, as follows, for a priority queue P:

P.update(loc, k, v): Replace key and value for the item identified by locator loc.

P.remove(loc): Remove the item identified by locator loc from the priority
queue and return its (key,value) pair.

The locator abstraction is somewhat akin to the Position abstraction used in our
positional list ADT from Section 7.4, and our tree ADT from Chapter 8. However,
we differentiate between a locator and a position because a locator for a priority
queue does not represent a tangible placement of an element within the structure.
In our priority queue, an element may be relocated within our data structure during
an operation that does not seem directly relevant to that element. A locator for an
item will remain valid, as long as that item remains somewhere in the queue.
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9.5.2 Implementing an Adaptable Priority Queue

In this section, we provide a Python implementation of an adaptable priority queue
as an extension of our HeapPriorityQueue class from Section 9.3.4. To implement a
Locator class, we will extend the existing Item composite to add an additional field
designating the current index of the element within the array-based representation
of our heap, as shown in Figure 9.10.

0 1 2 3 4 5 6 7

token

(15,K,3) (16,X,7)(9,F,4)(5,A,1) (20,B,6)(6,Z,2) (7,Q,5)(4,C,0)

Figure 9.10: Representing a heap using a sequence of locators. The third element
of each locator instance corresponds to the index of the item within the array. Iden-
tifier token is presumed to be a locator reference in the user’s scope.

The list is a sequence of references to locator instances, each of which stores a
key, value, and the current index of the item within the list. The user will be given
a reference to the Locator instance for each inserted element, as portrayed by the
token identifier in Figure 9.10.

When we perform priority queue operations on our heap, and items are relo-
cated within our structure, we reposition the locator instances within the list and we
update the third field of each locator to reflect its new index within the list. As an ex-
ample, Figure 9.11 shows the state of the above heap after a call to remove min().
The heap operation caused the minimum entry, (4,C), to be removed, and the en-
try, (16,X), to be temporarily moved from the last position to the root, followed by
a down-heap bubble phase. During the down-heap, element (16,X) was swapped

1 2 3 4 5 6 70

token

(9,F,1) (16,X,4) (7,Q,5)(15,K,3) (20,B,6)(6,Z,2)(5,A,0)

Figure 9.11: The result of a call to remove min() on the heap originally portrayed
in Figure 9.10. Identifier token continues to reference the same locator instance
as in the original configuration, but the placement of that locator in the list has
changed, as has the third field of the locator.
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with its left child, (5,A), at index 1 of the list, then swapped with its right child,
(9,F), at index 4 of the list. In the final configuration, the locator instances for all
affected elements have been modified to reflect their new location.

It is important to emphasize that the locator instances have not changed iden-
tity. The user’s token reference, portrayed in Figures 9.10 and 9.11, continues to
reference the same instance; we have simply changed the third field of that instance,
and we have changed where that instance is referenced within the list sequence.

With this new representation, providing the additional support for the adaptable
priority queue ADT is rather straightforward. When a locator instance is sent as a
parameter to update or remove, we may rely on the third field of that structure to
designate where the element resides in the heap. With that knowledge, the update
of a key may simply require an up-heap or down-heap bubbling step to reestablish
the heap-order property. (The complete binary tree property remains intact.) To
implement the removal of an arbitrary element, we move the element at the last
position to the vacated location, and again perform an appropriate bubbling step to
satisfy the heap-order property.

Python Implementation

Code Fragments 9.8 and 9.9 present a Python implementation of an adaptable pri-
ority queue, as a subclass of the HeapPriorityQueue class from Section 9.3.4. Our
modifications to the original class are relatively minor. We define a public Locator
class that inherits from the nonpublic Item class and augments it with an addi-
tional index field. We make it a public class because we will be using locators
as return values and parameters; however, the public interface for the locator class
does not include any other functionality for the user.

To update locators during the flow of our heap operations, we rely on an inten-
tional design decision that our original class uses a nonpublic swap method for all
data movement. We override that utility to execute the additional step of updating
the stored indices within the two swapped locator instances.

We provide a new bubble utility that manages the reinstatement of the heap-
order property when a key has changed at an arbitrary position within the heap,
either due to a key update, or the blind replacement of a removed element with the
item from the last position of the tree. The bubble utility determines whether to
apply up-heap or down-heap bubbling, depending on whether the given location
has a parent with a smaller key. (If an updated key coincidentally remains valid for
its current location, we technically call downheap but no swaps result.)

The public methods are provided in Code Fragment 9.9. The existing add
method is overridden, both to make use of a Locator instance rather than an Item
instance for storage of the new element, and to return the locator to the caller. The
remainder of that method is similar to the original, with the management of locator
indices enacted by the use of the new version of swap. There is no reason to over-

www.it-ebooks.info

http://www.it-ebooks.info/


9.5. Adaptable Priority Queues 393

ride the remove min method because the only change in behavior for the adaptable
priority queue is again provided by the overridden swap method.

The update and remove methods provide the core new functionality for the
adaptable priority queue. We perform robust checking of the validity of a locator
that is sent by a caller (although in the interest of space, our displayed code does
not do preliminary type-checking to ensure that the parameter is indeed a Locator
instance). To ensure that a locator is associated with a current element of the given
priority queue, we examine the index that is encapsulated within the locator object,
and then verify that the entry of the list at that index is the very same locator.

In conclusion, the adaptable priority queue provides the same asymptotic effi-
ciency and space usage as the nonadaptive version, and provides logarithmic per-
formance for the new locator-based update and remove methods. A summary of
the performance is given in Table 9.4.

1 class AdaptableHeapPriorityQueue(HeapPriorityQueue):
2 ”””A locator-based priority queue implemented with a binary heap.”””
3
4 #------------------------------ nested Locator class ------------------------------
5 class Locator(HeapPriorityQueue. Item):
6 ”””Token for locating an entry of the priority queue.”””
7 slots = _index # add index as additional field
8
9 def init (self, k, v, j):

10 super(). init (k,v)
11 self. index = j
12
13 #------------------------------ nonpublic behaviors ------------------------------
14 # override swap to record new indices
15 def swap(self, i, j):
16 super(). swap(i,j) # perform the swap
17 self. data[i]. index = i # reset locator index (post-swap)
18 self. data[j]. index = j # reset locator index (post-swap)
19
20 def bubble(self, j):
21 if j > 0 and self. data[j] < self. data[self. parent(j)]:
22 self. upheap(j)
23 else:
24 self. downheap(j)

Code Fragment 9.8: An implementation of an adaptable priority queue (continued
in Code Fragment 9.9). This extends the HeapPriorityQueue class of Code Frag-
ments 9.4 and 9.5
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25 def add(self, key, value):
26 ”””Add a key-value pair.”””
27 token = self.Locator(key, value, len(self. data)) # initiaize locator index
28 self. data.append(token)
29 self. upheap(len(self. data) − 1)
30 return token
31
32 def update(self, loc, newkey, newval):
33 ”””Update the key and value for the entry identified by Locator loc.”””
34 j = loc. index
35 if not (0 <= j < len(self) and self. data[j] is loc):
36 raise ValueError( Invalid locator )
37 loc. key = newkey
38 loc. value = newval
39 self. bubble(j)
40
41 def remove(self, loc):
42 ”””Remove and return the (k,v) pair identified by Locator loc.”””
43 j = loc. index
44 if not (0 <= j < len(self) and self. data[j] is loc):
45 raise ValueError( Invalid locator )
46 if j == len(self) − 1: # item at last position
47 self. data.pop( ) # just remove it
48 else:
49 self. swap(j, len(self)−1) # swap item to the last position
50 self. data.pop( ) # remove it from the list
51 self. bubble(j) # fix item displaced by the swap
52 return (loc. key, loc. value)

Code Fragment 9.9: An implementation of an adaptable priority queue (continued
from Code Fragment 9.8).

Operation Running Time
len(P), P.is empty(), P.min() O(1)

P.add(k,v) O(logn)∗

P.update(loc, k, v) O(logn)

P.remove(loc) O(logn)∗

P.remove min() O(logn)∗

∗amortized with dynamic array
Table 9.4: Running times of the methods of an adaptable priority queue, P, of size n,
realized by means of our array-based heap representation. The space requirement
is O(n).
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9.6 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-9.1 How long would it take to remove the 
logn� smallest elements from a
heap that contains n entries, using the remove min operation?

R-9.2 Suppose you label each position p of a binary tree T with a key equal to
its preorder rank. Under what circumstances is T a heap?

R-9.3 What does each remove min call return within the following sequence of
priority queue ADT methods: add(5,A), add(4,B), add(7,F), add(1,D),
remove min(), add(3,J), add(6,L), remove min(), remove min(),
add(8,G), remove min(), add(2,H), remove min(), remove min()?

R-9.4 An airport is developing a computer simulation of air-traffic control that
handles events such as landings and takeoffs. Each event has a time stamp
that denotes the time when the event will occur. The simulation program
needs to efficiently perform the following two fundamental operations:

• Insert an event with a given time stamp (that is, add a future event).
• Extract the event with smallest time stamp (that is, determine the

next event to process).

Which data structure should be used for the above operations? Why?

R-9.5 The min method for the UnsortedPriorityQueue class executes in O(n)
time, as analyzed in Table 9.2. Give a simple modification to the class so
that min runs in O(1) time. Explain any necessary modifications to other
methods of the class.

R-9.6 Can you adapt your solution to the previous problem to make remove min
run in O(1) time for the UnsortedPriorityQueue class? Explain your an-
swer.

R-9.7 Illustrate the execution of the selection-sort algorithm on the following
input sequence: (22,15,36,44,10,3,9,13,29,25).

R-9.8 Illustrate the execution of the insertion-sort algorithm on the input se-
quence of the previous problem.

R-9.9 Give an example of a worst-case sequence with n elements for insertion-
sort, and show that insertion-sort runs in Ω(n2) time on such a sequence.

R-9.10 At which positions of a heap might the third smallest key be stored?

R-9.11 At which positions of a heap might the largest key be stored?
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R-9.12 Consider a situation in which a user has numeric keys and wishes to have
a priority queue that is maximum-oriented. How could a standard (min-
oriented) priority queue be used for such a purpose?

R-9.13 Illustrate the execution of the in-place heap-sort algorithm on the follow-
ing input sequence: (2,5,16,4,10,23,39,18,26,15).

R-9.14 Let T be a complete binary tree such that position p stores an element
with key f (p), where f (p) is the level number of p (see Section 8.3.2). Is
tree T a heap? Why or why not?

R-9.15 Explain why the description of down-heap bubbling does not consider the
case in which position p has a right child but not a left child.

R-9.16 Is there a heap H storing seven entries with distinct keys such that a pre-
order traversal of H yields the entries of H in increasing or decreasing
order by key? How about an inorder traversal? How about a postorder
traversal? If so, give an example; if not, say why.

R-9.17 Let H be a heap storing 15 entries using the array-based representation of
a complete binary tree. What is the sequence of indices of the array that
are visited in a preorder traversal of H? What about an inorder traversal
of H? What about a postorder traversal of H?

R-9.18 Show that the sum
n

∑
i=1

log i,

which appears in the analysis of heap-sort, is Ω(n logn).
R-9.19 Bill claims that a preorder traversal of a heap will list its keys in nonde-

creasing order. Draw an example of a heap that proves him wrong.
R-9.20 Hillary claims that a postorder traversal of a heap will list its keys in non-

increasing order. Draw an example of a heap that proves her wrong.
R-9.21 Show all the steps of the algorithm for removing the entry (16,X) from the

heap of Figure 9.1, assuming the entry had been identified with a locator.
R-9.22 Show all the steps of the algorithm for replacing key of entry (5,A) with

18 in the heap of Figure 9.1, assuming the entry had been identified with
a locator.

R-9.23 Draw an example of a heap whose keys are all the odd numbers from 1 to
59 (with no repeats), such that the insertion of an entry with key 32 would
cause up-heap bubbling to proceed all the way up to a child of the root
(replacing that child’s key with 32).

R-9.24 Describe a sequence of n insertions in a heap that requires Ω(n logn) time
to process.

R-9.25 Complete Figure 9.9 by showing all the steps of the in-place heap-sort
algorithm. Show both the array and the associated heap at the end of each
step.
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Creativity

C-9.26 Show how to implement the stack ADT using only a priority queue and
one additional integer instance variable.

C-9.27 Show how to implement the FIFO queue ADT using only a priority queue
and one additional integer instance variable.

C-9.28 Professor Idle suggests the following solution to the previous problem.
Whenever an item is inserted into the queue, it is assigned a key that is
equal to the current size of the queue. Does such a strategy result in FIFO
semantics? Prove that it is so or provide a counterexample.

C-9.29 Reimplement the SortedPriorityQueue using a Python list. Make sure to
maintain remove min’s O(1) performance.

C-9.30 Give a nonrecursive implementation of the upheap method for the class
HeapPriorityQueue.

C-9.31 Give a nonrecursive implementation of the downheap method for the
class HeapPriorityQueue.

C-9.32 Assume that we are using a linked representation of a complete binary
tree T , and an extra reference to the last node of that tree. Show how to
update the reference to the last node after operations add or remove min
in O(logn) time, where n is the current number of nodes of T . Be sure
and handle all possible cases, as illustrated in Figure 9.12.

C-9.33 When using a linked-tree representation for a heap, an alternative method
for finding the last node during an insertion in a heap T is to store, in the
last node and each leaf node of T , a reference to the leaf node immedi-
ately to its right (wrapping to the first node in the next lower level for the
rightmost leaf node). Show how to maintain such references in O(1) time
per operation of the priority queue ADT assuming that T is implemented
with a linked structure.

(11,S)

(2,B)

(5,A) (4,C)

(6,Z)(9,F)(15,K)

(25,J) (12,H)(14,E)(16,X)

(7,Q)

(8,W) (10,L)(20,B)

z

w

(5,A) (6,Z)

(20,B)(9,F)(15,K)

(25,J) (14,E)(16,X)

(7,Q)

(12,H)

(4,C)

w z

(a) (b)

Figure 9.12: Updating the last node in a complete binary tree after operation add or
remove. Node w is the last node before operation add or after operation remove.
Node z is the last node after operation add or before operation remove.
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C-9.34 We can represent a path from the root to a given node of a binary tree
by means of a binary string, where 0 means “go to the left child” and 1
means “go to the right child.” For example, the path from the root to the
node storing (8,W ) in the heap of Figure 9.12a is represented by “101.”
Design an O(logn)-time algorithm for finding the last node of a complete
binary tree with n nodes, based on the above representation. Show how
this algorithm can be used in the implementation of a complete binary tree
by means of a linked structure that does not keep a reference to the last
node.

C-9.35 Given a heap T and a key k, give an algorithm to compute all the entries
in T having a key less than or equal to k. For example, given the heap of
Figure 9.12a and query k = 7, the algorithm should report the entries with
keys 2, 4, 5, 6, and 7 (but not necessarily in this order). Your algorithm
should run in time proportional to the number of entries returned, and
should not modify the heap

C-9.36 Provide a justification of the time bounds in Table 9.4.

C-9.37 Give an alternative analysis of bottom-up heap construction by showing
the following summation is O(1), for any positive integer h:

h

∑
i=1

(
i/2i) .

C-9.38 Suppose two binary trees, T1 and T2, hold entries satisfying the heap-order
property (but not necessarily the complete binary tree property). Describe
a method for combining T1 and T2 into a binary tree T , whose nodes hold
the union of the entries in T1 and T2 and also satisfy the heap-order prop-
erty. Your algorithm should run in time O(h1 + h2) where h1 and h2 are
the respective heights of T1 and T2.

C-9.39 Implement a heappushpop method for the HeapPriorityQueue class, with
semantics akin to that described for the heapq module in Section 9.3.7.

C-9.40 Implement a heapreplace method for the HeapPriorityQueue class, with
semantics akin to that described for the heapq module in Section 9.3.7.

C-9.41 Tamarindo Airlines wants to give a first-class upgrade coupon to their top
logn frequent flyers, based on the number of miles accumulated, where
n is the total number of the airlines’ frequent flyers. The algorithm they
currently use, which runs in O(n logn) time, sorts the flyers by the number
of miles flown and then scans the sorted list to pick the top logn flyers.
Describe an algorithm that identifies the top logn flyers in O(n) time.

C-9.42 Explain how the k largest elements from an unordered collection of size n
can be found in time O(n+ k logn) using a maximum-oriented heap.

C-9.43 Explain how the k largest elements from an unordered collection of size n
can be found in time O(n logk) using O(k) auxiliary space.
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C-9.44 Given a class, PriorityQueue, that implements the minimum-oriented pri-
ority queue ADT, provide an implementation of a MaxPriorityQueue class
that adapts to provide a maximum-oriented abstraction with methods add,
max, and remove max. Your implementation should not make any as-
sumption about the internal workings of the original PriorityQueue class,
nor the type of keys that might be used.

C-9.45 Write a key function for nonnegative integers that determines order based
on the number of 1’s in each integer’s binary expansion.

C-9.46 Give an alternative implementation of the pq sort function, from Code
Fragment 9.7, that accepts a key function as an optional parameter.

C-9.47 Describe an in-place version of the selection-sort algorithm for an array
that uses only O(1) space for instance variables in addition to the array.

C-9.48 Assuming the input to the sorting problem is given in an array A, describe
how to implement the insertion-sort algorithm using only the array A and
at most a constant number of additional variables.

C-9.49 Give an alternate description of the in-place heap-sort algorithm using
the standard minimum-oriented priority queue (instead of a maximum-
oriented one).

C-9.50 An online computer system for trading stocks needs to process orders of
the form “buy 100 shares at $x each” or “sell 100 shares at $y each.” A
buy order for $x can only be processed if there is an existing sell order
with price $y such that y ≤ x. Likewise, a sell order for $y can only be
processed if there is an existing buy order with price $x such that y ≤ x.
If a buy or sell order is entered but cannot be processed, it must wait for a
future order that allows it to be processed. Describe a scheme that allows
buy and sell orders to be entered in O(logn) time, independent of whether
or not they can be immediately processed.

C-9.51 Extend a solution to the previous problem so that users are allowed to
update the prices for their buy or sell orders that have yet to be processed.

C-9.52 A group of children want to play a game, called Unmonopoly, where in
each turn the player with the most money must give half of his/her money
to the player with the least amount of money. What data structure(s)
should be used to play this game efficiently? Why?

Projects

P-9.53 Implement the in-place heap-sort algorithm. Experimentally compare its
running time with that of the standard heap-sort that is not in-place.

P-9.54 Use the approach of either Exercise C-9.42 or C-9.43 to reimplement the
top method of the FavoritesListMTF class from Section 7.6.2. Make sure
that results are generated from largest to smallest.
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P-9.55 Write a program that can process a sequence of stock buy and sell orders
as described in Exercise C-9.50.

P-9.56 Let S be a set of n points in the plane with distinct integer x- and y-
coordinates. Let T be a complete binary tree storing the points from S
at its external nodes, such that the points are ordered left to right by in-
creasing x-coordinates. For each node v in T , let S(v) denote the subset of
S consisting of points stored in the subtree rooted at v. For the root r of
T , define top(r) to be the point in S = S(r) with maximum y-coordinate.
For every other node v, define top(r) to be the point in S with highest y-
coordinate in S(v) that is not also the highest y-coordinate in S(u), where
u is the parent of v in T (if such a point exists). Such labeling turns T into
a priority search tree. Describe a linear-time algorithm for turning T into
a priority search tree. Implement this approach.

P-9.57 One of the main applications of priority queues is in operating systems—
for scheduling jobs on a CPU. In this project you are to build a program
that schedules simulated CPU jobs. Your program should run in a loop,
each iteration of which corresponds to a time slice for the CPU. Each job
is assigned a priority, which is an integer between −20 (highest priority)
and 19 (lowest priority), inclusive. From among all jobs waiting to be pro-
cessed in a time slice, the CPU must work on a job with highest priority.
In this simulation, each job will also come with a length value, which is an
integer between 1 and 100, inclusive, indicating the number of time slices
that are needed to process this job. For simplicity, you may assume jobs
cannot be interrupted—once it is scheduled on the CPU, a job runs for a
number of time slices equal to its length. Your simulator must output the
name of the job running on the CPU in each time slice and must process
a sequence of commands, one per time slice, each of which is of the form
“add job name with length n and priority p” or “no new job this slice”.

P-9.58 Develop a Python implementation of an adaptable priority queue that is
based on an unsorted list and supports location-aware entries.

Chapter Notes

Knuth’s book on sorting and searching [65] describes the motivation and history for the
selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due
to Williams [103], and the linear-time heap construction algorithm is due to Floyd [39].
Additional algorithms and analyses for heaps and heap-sort variations can be found in
papers by Bentley [15], Carlsson [24], Gonnet and Munro [45], McDiarmid and Reed [74],
and Schaffer and Sedgewick [88].
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10.1 Maps and Dictionaries

Python’s dict class is arguably the most significant data structure in the language. It
represents an abstraction known as a dictionary in which unique keys are mapped
to associated values. Because of the relationship they express between keys and
values, dictionaries are commonly known as associative arrays or maps. In this
book, we use the term dictionary when specifically discussing Python’s dict class,
and the term map when discussing the more general notion of the abstract data type.

As a simple example, Figure 10.1 illustrates a map from the names of countries
to their associated units of currency.

Rupee

Turkey Spain China United States IndiaGreece

Lira Euro Yuan Dollar

Figure 10.1: A map from countries (the keys) to their units of currency (the values).

We note that the keys (the country names) are assumed to be unique, but the values
(the currency units) are not necessarily unique. For example, we note that Spain
and Greece both use the euro for currency. Maps use an array-like syntax for in-
dexing, such as currency[ Greece ] to access a value associated with a given key
or currency[ Greece ] = Drachma to remap it to a new value. Unlike a stan-
dard array, indices for a map need not be consecutive nor even numeric. Common
applications of maps include the following.

• A university’s information system relies on some form of a student ID as a
key that is mapped to that student’s associated record (such as the student’s
name, address, and course grades) serving as the value.

• The domain-name system (DNS) maps a host name, such as www.wiley.com,
to an Internet-Protocol (IP) address, such as 208.215.179.146.

• A social media site typically relies on a (nonnumeric) username as a key that
can be efficiently mapped to a particular user’s associated information.

• A computer graphics system may map a color name, such as turquoise ,
to the triple of numbers that describes the color’s RGB (red-green-blue) rep-
resentation, such as (64,224,208).

• Python uses a dictionary to represent each namespace, mapping an identifying
string, such as pi , to an associated object, such as 3.14159.

In this chapter and the next we demonstrate that a map may be implemented so
that a search for a key, and its associated value, can be performed very efficiently,
thereby supporting fast lookup in such applications.
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10.1.1 The Map ADT

In this section, we introduce the map ADT, and define its behaviors to be consistent
with those of Python’s built-in dict class. We begin by listing what we consider the
most significant five behaviors of a map M as follows:

M[k]: Return the value v associated with key k in map M, if
one exists; otherwise raise a KeyError. In Python, this is
implemented with the special method getitem .

M[k] = v: Associate value v with key k in map M, replacing the ex-
isting value if the map already contains an item with key
equal to k. In Python, this is implemented with the special
method setitem .

del M[k]: Remove from map M the item with key equal to k; if M
has no such item, then raise a KeyError. In Python, this is
implemented with the special method delitem .

len(M): Return the number of items in map M. In Python, this is
implemented with the special method len .

iter(M): The default iteration for a map generates a sequence of
keys in the map. In Python, this is implemented with the
special method iter , and it allows loops of the form,
for k in M.

We have highlighted the above five behaviors because they demonstrate the core
functionality of a map—namely, the ability to query, add, modify, or delete a key-
value pair, and the ability to report all such pairs. For additional convenience,
map M should also support the following behaviors:

k in M: Return True if the map contains an item with key k. In
Python, this is implemented with the special contains
method.

M.get(k, d=None): Return M[k] if key k exists in the map; otherwise return
default value d. This provides a form to query M[k] with-
out risk of a KeyError.

M.setdefault(k, d): If key k exists in the map, simply return M[k]; if key k
does not exist, set M[k] = d and return that value.

M.pop(k, d=None): Remove the item associated with key k from the map and
return its associated value v. If key k is not in the map,
return default value d (or raise KeyError if parameter d is
None).
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M.popitem(): Remove an arbitrary key-value pair from the map, and re-
turn a (k,v) tuple representing the removed pair. If map is
empty, raise a KeyError.

M.clear(): Remove all key-value pairs from the map.

M.keys(): Return a set-like view of all keys of M.

M.values(): Return a set-like view of all values of M.

M.items(): Return a set-like view of (k,v) tuples for all entries of M.

M.update(M2): Assign M[k] = v for every (k,v) pair in map M2.

M == M2: Return True if maps M and M2 have identical key-value
associations.

M != M2: Return True if maps M and M2 do not have identical key-
value associations.

Example 10.1: In the following, we show the effect of a series of operations on
an initially empty map storing items with integer keys and single-character values.
We use the literal syntax for Python’s dict class to describe the map contents.

Operation Return Value Map
len(M) 0 { }

M[ K ] = 2 – { K : 2}
M[ B ] = 4 – { K : 2, B : 4}
M[ U ] = 2 – { K : 2, B : 4, U : 2}
M[ V ] = 8 – { K : 2, B : 4, U : 2, V : 8}
M[ K ] = 9 – { K : 9, B : 4, U : 2, V : 8}

M[ B ] 4 { K : 9, B : 4, U : 2, V : 8}
M[ X ] KeyError { K : 9, B : 4, U : 2, V : 8}

M.get( F ) None { K : 9, B : 4, U : 2, V : 8}
M.get( F , 5) 5 { K : 9, B : 4, U : 2, V : 8}
M.get( K , 5) 9 { K : 9, B : 4, U : 2, V : 8}

len(M) 4 { K : 9, B : 4, U : 2, V : 8}
del M[ V ] – { K : 9, B : 4, U : 2}
M.pop( K ) 9 { B : 4, U : 2}
M.keys() B , U { B : 4, U : 2}

M.values() 4, 2 { B : 4, U : 2}
M.items() ( B , 4), ( U , 2) { B : 4, U : 2}

M.setdefault( B , 1) 4 { B : 4, U : 2}
M.setdefault( A , 1) 1 { A : 1, B : 4, U : 2}

M.popitem() ( B , 4) { A : 1, U : 2}
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10.1.2 Application: Counting Word Frequencies

As a case study for using a map, consider the problem of counting the number
of occurrences of words in a document. This is a standard task when performing a
statistical analysis of a document, for example, when categorizing an email or news
article. A map is an ideal data structure to use here, for we can use words as keys
and word counts as values. We show such an application in Code Fragment 10.1.

We break apart the original document using a combination of file and string
methods that results in a loop over a lowercased version of all whitespace separated
pieces of the document. We omit all nonalphabetic characters so that parentheses,
apostrophes, and other such punctuation are not considered part of a word.

In terms of map operations, we begin with an empty Python dictionary named
freq. During the first phase of the algorithm, we execute the command

freq[word] = 1 + freq.get(word, 0)

for each word occurrence. We use the get method on the right-hand side because the
current word might not exist in the dictionary; the default value of 0 is appropriate
in that case.

During the second phase of the algorithm, after the full document has been pro-
cessed, we examine the contents of the frequency map, looping over freq.items()
to determine which word has the most occurrences.

1 freq = { }
2 for piece in open(filename).read().lower().split():
3 # only consider alphabetic characters within this piece
4 word = .join(c for c in piece if c.isalpha())
5 if word: # require at least one alphabetic character
6 freq[word] = 1 + freq.get(word, 0)
7
8 max word =
9 max count = 0

10 for (w,c) in freq.items(): # (key, value) tuples represent (word, count)
11 if c > max count:
12 max word = w
13 max count = c
14 print( The most frequent word is , max word)
15 print( Its number of occurrences is , max count)

Code Fragment 10.1: A program for counting word frequencies in a document, and
reporting the most frequent word. We use Python’s dict class for the map. We
convert the input to lowercase and ignore any nonalphabetic characters.
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10.1.3 Python’s MutableMapping Abstract Base Class

Section 2.4.3 provides an introduction to the concept of an abstract base class
and the role of such classes in Python’s collections module. Methods that are de-
clared to be abstract in such a base class must be implemented by concrete sub-
classes. However, an abstract base class may provide concrete implementation of
other methods that depend upon use of the presumed abstract methods. (This is an
example of the template method design pattern.)

The collections module provides two abstract base classes that are relevant to
our current discussion: the Mapping and MutableMapping classes. The Mapping
class includes all nonmutating methods supported by Python’s dict class, while the
MutableMapping class extends that to include the mutating methods. What we
define as the map ADT in Section 10.1.1 is akin to the MutableMapping abstract
base class in Python’s collections module.

The significance of these abstract base classes is that they provide a framework
to assist in creating a user-defined map class. In particular, the MutableMapping
class provides concrete implementations for all behaviors other than the first five
outlined in Section 10.1.1: getitem , setitem , delitem , len , and

iter . As we implement the map abstraction with various data structures, as
long as we provide the five core behaviors, we can inherit all other derived behav-
iors by simply declaring MutableMapping as a parent class.

To better understand the MutableMapping class, we provide a few examples of
how concrete behaviors can be derived from the five core abstractions. For example,
the contains method, supporting the syntax k in M, could be implemented by
making a guarded attempt to retrieve self[k] to determine if the key exists.

def contains (self, k):
try:

self[k] # access via getitem (ignore result)
return True

except KeyError:
return False # attempt failed

A similar approach might be used to provide the logic of the setdefault method.

def setdefault(self, k, d):
try:

return self[k] # if getitem succeeds, return value
except KeyError: # otherwise:

self[k] = d # set default value with setitem
return d # and return that newly assigned value

We leave as exercises the implementations of the remaining concrete methods of
the MutableMapping class.
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10.1.4 Our MapBase Class

We will be providing many different implementations of the map ADT, in the re-
mainder of this chapter and next, using a variety of data structures demonstrating a
trade-off of advantages and disadvantages. Figure 10.2 provides a preview of those
classes.

The MutableMapping abstract base class, from Python’s collections module
and discussed in the preceding pages, is a valuable tool when implementing a map.
However, in the interest of greater code reuse, we define our own MapBase class,
which is itself a subclass of the MutableMapping class. Our MapBase class pro-
vides additional support for the composition design pattern. This is a technique
we introduced when implementing a priority queue (see Section 9.2.1) in order to
group a key-value pair as a single instance for internal use.

More formally, our MapBase class is defined in Code Fragment 10.2, extend-
ing the existing MutableMapping abstract base class so that we inherit the many
useful concrete methods that class provides. We then define a nonpublic nested
Item class, whose instances are able to store both a key and value. This nested

class is reasonably similar in design to the Item class that was defined within our
PriorityQueueBase class in Section 9.2.1, except that for a map we provide sup-
port for both equality tests and comparisons, both of which rely on the item’s key.
The notion of equality is necessary for all of our map implementations, as a way to
determine whether a key given as a parameter is equivalent to one that is already
stored in the map. The notion of comparisons between keys, using the < operator,
will become relevant when we later introduce a sorted map ADT (Section 10.3).

ProbeHashMap

MutableMapping

(Section 10.1.4)
MapBase

(Section 10.3.1)
SortedTableMap

(Chapter 11)
TreeMap

(Section 10.2.4)
HashMapBase

(Section 10.2.4)
ChainHashMap

(Section 10.2.4)

(collections module)

(Section 10.1.5)
UnsortedTableMap

(additional subclasses)

Figure 10.2: Our hierarchy of map types (with references to where they are defined).
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1 class MapBase(MutableMapping):
2 ”””Our own abstract base class that includes a nonpublic Item class.”””
3
4 #------------------------------- nested Item class -------------------------------
5 class Item:
6 ”””Lightweight composite to store key-value pairs as map items.”””
7 slots = _key , _value

8
9 def init (self, k, v):

10 self. key = k
11 self. value = v
12
13 def eq (self, other):
14 return self. key == other. key # compare items based on their keys
15
16 def ne (self, other):
17 return not (self == other) # opposite of eq
18
19 def lt (self, other):
20 return self. key < other. key # compare items based on their keys

Code Fragment 10.2: Extending the MutableMapping abstract base class to provide
a nonpublic Item class for use in our various map implementations.

10.1.5 Simple Unsorted Map Implementation

We demonstrate the use of the MapBase class with a very simple concrete imple-
mentation of the map ADT. Code Fragment 10.3 presents an UnsortedTableMap
class that relies on storing key-value pairs in arbitrary order within a Python list.

An empty table is initialized as self. table within the constructor for our map.
When a new key is entered into the map, via line 22 of the setitem method,
we create a new instance of the nested Item class, which is inherited from our
MapBase class.

This list-based map implementation is simple, but it is not particularly efficient.
Each of the fundamental methods, getitem , setitem , and delitem ,
relies on a for loop to scan the underlying list of items in search of a matching key.
In a best-case scenario, such a match may be found near the beginning of the list, in
which case the loop terminates; in the worst case, the entire list will be examined.
Therefore, each of these methods runs in O(n) time on a map with n items.
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1 class UnsortedTableMap(MapBase):
2 ”””Map implementation using an unordered list.”””
3
4 def init (self):
5 ”””Create an empty map.”””
6 self. table = [ ] # list of Item’s
7
8 def getitem (self, k):
9 ”””Return value associated with key k (raise KeyError if not found).”””

10 for item in self. table:
11 if k == item. key:
12 return item. value
13 raise KeyError( Key Error: + repr(k))
14
15 def setitem (self, k, v):
16 ”””Assign value v to key k, overwriting existing value if present.”””
17 for item in self. table:
18 if k == item. key: # Found a match:
19 item. value = v # reassign value
20 return # and quit
21 # did not find match for key
22 self. table.append(self. Item(k,v))
23
24 def delitem (self, k):
25 ”””Remove item associated with key k (raise KeyError if not found).”””
26 for j in range(len(self. table)):
27 if k == self. table[j]. key: # Found a match:
28 self. table.pop(j) # remove item
29 return # and quit
30 raise KeyError( Key Error: + repr(k))
31
32 def len (self):
33 ”””Return number of items in the map.”””
34 return len(self. table)
35
36 def iter (self):
37 ”””Generate iteration of the map s keys.”””
38 for item in self. table:
39 yield item. key # yield the KEY

Code Fragment 10.3: An implementation of a map using a Python list as an unsorted
table. Parent class MapBase is given in Code Fragment 10.2.
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10.2 Hash Tables

In this section, we introduce one of the most practical data structures for imple-
menting a map, and the one that is used by Python’s own implementation of the
dict class. This structure is known as a hash table.

Intuitively, a map M supports the abstraction of using keys as indices with a
syntax such as M[k]. As a mental warm-up, consider a restricted setting in which
a map with n items uses keys that are known to be integers in a range from 0 to
N −1 for some N ≥ n. In this case, we can represent the map using a lookup table
of length N, as diagrammed in Figure 10.3.

0 1 2 3 4 5 6 7 8 9 10

D Z C Q

Figure 10.3: A lookup table with length 11 for a map containing items (1,D), (3,Z),
(6,C), and (7,Q).

In this representation, we store the value associated with key k at index k of the
table (presuming that we have a distinct way to represent an empty slot). Basic map
operations of getitem , setitem , and delitem can be implemented in
O(1) worst-case time.

There are two challenges in extending this framework to the more general set-
ting of a map. First, we may not wish to devote an array of length N if it is the case
that N � n. Second, we do not in general require that a map’s keys be integers.
The novel concept for a hash table is the use of a hash function to map general
keys to corresponding indices in a table. Ideally, keys will be well distributed in the
range from 0 to N −1 by a hash function, but in practice there may be two or more
distinct keys that get mapped to the same index. As a result, we will conceptualize
our table as a bucket array, as shown in Figure 10.4, in which each bucket may
manage a collection of items that are sent to a specific index by the hash function.
(To save space, an empty bucket may be replaced by None.)

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

Figure 10.4: A bucket array of capacity 11 with items (1,D), (25,C), (3,F), (14,Z),
(6,A), (39,C), and (7,Q), using a simple hash function.
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10.2.1 Hash Functions

The goal of a hash function, h, is to map each key k to an integer in the range
[0,N − 1], where N is the capacity of the bucket array for a hash table. Equipped
with such a hash function, h, the main idea of this approach is to use the hash
function value, h(k), as an index into our bucket array, A, instead of the key k
(which may not be appropriate for direct use as an index). That is, we store the
item (k,v) in the bucket A[h(k)].

If there are two or more keys with the same hash value, then two different items
will be mapped to the same bucket in A. In this case, we say that a collision has
occurred. To be sure, there are ways of dealing with collisions, which we will
discuss later, but the best strategy is to try to avoid them in the first place. We say
that a hash function is “good” if it maps the keys in our map so as to sufficiently
minimize collisions. For practical reasons, we also would like a hash function to
be fast and easy to compute.

It is common to view the evaluation of a hash function, h(k), as consisting of
two portions—a hash code that maps a key k to an integer, and a compression
function that maps the hash code to an integer within a range of indices, [0,N −1],
for a bucket array. (See Figure 10.5.)

-1

hash code

1 20-2. . . . . .

compression function

1 20 N-1. . .

Arbitrary Objects

Figure 10.5: Two parts of a hash function: a hash code and a compression function.

The advantage of separating the hash function into two such components is that
the hash code portion of that computation is independent of a specific hash table
size. This allows the development of a general hash code for each object that can
be used for a hash table of any size; only the compression function depends upon
the table size. This is particularly convenient, because the underlying bucket array
for a hash table may be dynamically resized, depending on the number of items
currently stored in the map. (See Section 10.2.3.)
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Hash Codes

The first action that a hash function performs is to take an arbitrary key k in our
map and compute an integer that is called the hash code for k; this integer need not
be in the range [0,N −1], and may even be negative. We desire that the set of hash
codes assigned to our keys should avoid collisions as much as possible. For if the
hash codes of our keys cause collisions, then there is no hope for our compression
function to avoid them. In this subsection, we begin by discussing the theory of
hash codes. Following that, we discuss practical implementations of hash codes in
Python.

Treating the Bit Representation as an Integer

To begin, we note that, for any data type X that is represented using at most as many
bits as our integer hash codes, we can simply take as a hash code for X an integer
interpretation of its bits. For example, the hash code for key 314 could simply be
314. The hash code for a floating-point number such as 3.14 could be based upon
an interpretation of the bits of the floating-point representation as an integer.

For a type whose bit representation is longer than a desired hash code, the above
scheme is not immediately applicable. For example, Python relies on 32-bit hash
codes. If a floating-point number uses a 64-bit representation, its bits cannot be
viewed directly as a hash code. One possibility is to use only the high-order 32 bits
(or the low-order 32 bits). This hash code, of course, ignores half of the information
present in the original key, and if many of the keys in our map only differ in these
bits, then they will collide using this simple hash code.

A better approach is to combine in some way the high-order and low-order por-
tions of a 64-bit key to form a 32-bit hash code, which takes all the original bits
into consideration. A simple implementation is to add the two components as 32-
bit numbers (ignoring overflow), or to take the exclusive-or of the two components.
These approaches of combining components can be extended to any object x whose
binary representation can be viewed as an n-tuple (x0,x1, . . . ,xn−1) of 32-bit inte-
gers, for example, by forming a hash code for x as ∑

n−1
i=0 xi, or as x0⊕x1⊕·· ·⊕xn−1,

where the ⊕ symbol represents the bitwise exclusive-or operation (which is ˆ in
Python).

Polynomial Hash Codes

The summation and exclusive-or hash codes, described above, are not good choices
for character strings or other variable-length objects that can be viewed as tuples of
the form (x0,x1, . . . ,xn−1), where the order of the xi’s is significant. For example,
consider a 16-bit hash code for a character string s that sums the Unicode values
of the characters in s. This hash code unfortunately produces lots of unwanted
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collisions for common groups of strings. In particular, "temp01" and "temp10"

collide using this function, as do "stop", "tops", "pots", and "spot". A better
hash code should somehow take into consideration the positions of the xi’s. An
alternative hash code, which does exactly this, is to choose a nonzero constant,
a �= 1, and use as a hash code the value

x0an−1 + x1an−2 + · · ·+ xn−2a+ xn−1.

Mathematically speaking, this is simply a polynomial in a that takes the compo-
nents (x0,x1, . . . ,xn−1) of an object x as its coefficients. This hash code is therefore
called a polynomial hash code. By Horner’s rule (see Exercise C-3.50), this poly-
nomial can be computed as

xn−1 + a(xn−2 + a(xn−3 + · · ·+ a(x2 + a(x1 + ax0)) · · · )).

Intuitively, a polynomial hash code uses multiplication by different powers as a
way to spread out the influence of each component across the resulting hash code.

Of course, on a typical computer, evaluating a polynomial will be done using
the finite bit representation for a hash code; hence, the value will periodically over-
flow the bits used for an integer. Since we are more interested in a good spread of
the object x with respect to other keys, we simply ignore such overflows. Still, we
should be mindful that such overflows are occurring and choose the constant a so
that it has some nonzero, low-order bits, which will serve to preserve some of the
information content even as we are in an overflow situation.

We have done some experimental studies that suggest that 33, 37, 39, and 41
are particularly good choices for a when working with character strings that are
English words. In fact, in a list of over 50,000 English words formed as the union
of the word lists provided in two variants of Unix, we found that taking a to be 33,
37, 39, or 41 produced less than 7 collisions in each case!

Cyclic-Shift Hash Codes

A variant of the polynomial hash code replaces multiplication by a with a cyclic
shift of a partial sum by a certain number of bits. For example, a 5-bit cyclic shift
of the 32-bit value 00111101100101101010100010101000 is achieved by taking
the leftmost five bits and placing those on the rightmost side of the representation,
resulting in 10110010110101010001010100000111. While this operation has little
natural meaning in terms of arithmetic, it accomplishes the goal of varying the bits
of the calculation. In Python, a cyclic shift of bits can be accomplished through
careful use of the bitwise operators << and >>, taking care to truncate results to
32-bit integers.
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An implementation of a cyclic-shift hash code computation for a character
string in Python appears as follows:

def hash code(s):
mask = (1 << 32) − 1 # limit to 32-bit integers
h = 0
for character in s:

h = (h << 5 & mask) | (h >> 27) # 5-bit cyclic shift of running sum
h += ord(character) # add in value of next character

return h

As with the traditional polynomial hash code, fine-tuning is required when using a
cyclic-shift hash code, as we must wisely choose the amount to shift by for each
new character. Our choice of a 5-bit shift is justified by experiments run on a list of
just over 230,000 English words, comparing the number of collisions for various
shift amounts (see Table 10.1).

Collisions
Shift Total Max

0 234735 623
1 165076 43
2 38471 13
3 7174 5
4 1379 3
5 190 3
6 502 2
7 560 2
8 5546 4
9 393 3

10 5194 5
11 11559 5
12 822 2
13 900 4
14 2001 4
15 19251 8
16 211781 37

Table 10.1: Comparison of collision behavior for the cyclic-shift hash code as ap-
plied to a list of 230,000 English words. The “Total” column records the total num-
ber of words that collide with at least one other, and the “Max” column records the
maximum number of words colliding at any one hash code. Note that with a cyclic
shift of 0, this hash code reverts to the one that simply sums all the characters.
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Hash Codes in Python

The standard mechanism for computing hash codes in Python is a built-in function
with signature hash(x) that returns an integer value that serves as the hash code for
object x. However, only immutable data types are deemed hashable in Python. This
restriction is meant to ensure that a particular object’s hash code remains constant
during that object’s lifespan. This is an important property for an object’s use as
a key in a hash table. A problem could occur if a key were inserted into the hash
table, yet a later search were performed for that key based on a different hash code
than that which it had when inserted; the wrong bucket would be searched.

Among Python’s built-in data types, the immutable int, float, str, tuple, and
frozenset classes produce robust hash codes, via the hash function, using tech-
niques similar to those discussed earlier in this section. Hash codes for character
strings are well crafted based on a technique similar to polynomial hash codes,
except using exclusive-or computations rather than additions. If we repeat the ex-
periment described in Table 10.1 using Python’s built-in hash codes, we find that
only 8 strings out of the set of more than 230,000 collide with another. Hash codes
for tuples are computed with a similar technique based upon a combination of the
hash codes of the individual elements of the tuple. When hashing a frozenset, the
order of the elements should be irrelevant, and so a natural option is to compute the
exclusive-or of the individual hash codes without any shifting. If hash(x) is called
for an instance x of a mutable type, such as a list, a TypeError is raised.

Instances of user-defined classes are treated as unhashable by default, with a
TypeError raised by the hash function. However, a function that computes hash
codes can be implemented in the form of a special method named hash within
a class. The returned hash code should reflect the immutable attributes of an in-
stance. It is common to return a hash code that is itself based on the computed hash
of the combination of such attributes. For example, a Color class that maintains
three numeric red, green, and blue components might implement the method as:

def hash (self):
return hash( (self. red, self. green, self. blue) ) # hash combined tuple

An important rule to obey is that if a class defines equivalence through eq ,
then any implementation of hash must be consistent, in that if x == y, then
hash(x) == hash(y). This is important because if two instances are considered
to be equivalent and one is used as a key in a hash table, a search for the second
instance should result in the discovery of the first. It is therefore important that the
hash code for the second match the hash code for the first, so that the proper bucket
is examined. This rule extends to any well-defined comparisons between objects
of different classes. For example, since Python treats the expression 5 == 5.0 as
true, it ensures that hash(5) and hash(5.0) are the same.
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Compression Functions

The hash code for a key k will typically not be suitable for immediate use with a
bucket array, because the integer hash code may be negative or may exceed the ca-
pacity of the bucket array. Thus, once we have determined an integer hash code for
a key object k, there is still the issue of mapping that integer into the range [0,N−1].
This computation, known as a compression function, is the second action per-
formed as part of an overall hash function. A good compression function is one
that minimizes the number of collisions for a given set of distinct hash codes.

The Division Method

A simple compression function is the division method, which maps an integer i to

i mod N,

where N, the size of the bucket array, is a fixed positive integer. Additionally, if we
take N to be a prime number, then this compression function helps “spread out” the
distribution of hashed values. Indeed, if N is not prime, then there is greater risk
that patterns in the distribution of hash codes will be repeated in the distribution of
hash values, thereby causing collisions. For example, if we insert keys with hash
codes {200,205,210,215,220, . . . ,600} into a bucket array of size 100, then each
hash code will collide with three others. But if we use a bucket array of size 101,
then there will be no collisions. If a hash function is chosen well, it should ensure
that the probability of two different keys getting hashed to the same bucket is 1/N.
Choosing N to be a prime number is not always enough, however, for if there is
a repeated pattern of hash codes of the form pN + q for several different p’s, then
there will still be collisions.

The MAD Method

A more sophisticated compression function, which helps eliminate repeated pat-
terns in a set of integer keys, is the Multiply-Add-and-Divide (or “MAD”) method.
This method maps an integer i to

[(ai+ b) mod p] mod N,

where N is the size of the bucket array, p is a prime number larger than N, and a
and b are integers chosen at random from the interval [0, p− 1], with a > 0. This
compression function is chosen in order to eliminate repeated patterns in the set of
hash codes and get us closer to having a “good” hash function, that is, one such that
the probability any two different keys collide is 1/N. This good behavior would be
the same as we would have if these keys were “thrown” into A uniformly at random.
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10.2.2 Collision-Handling Schemes

The main idea of a hash table is to take a bucket array, A, and a hash function, h, and
use them to implement a map by storing each item (k,v) in the “bucket” A[h(k)].
This simple idea is challenged, however, when we have two distinct keys, k1 and k2,
such that h(k1) = h(k2). The existence of such collisions prevents us from simply
inserting a new item (k,v) directly into the bucket A[h(k)]. It also complicates our
procedure for performing insertion, search, and deletion operations.

Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[ j]
store its own secondary container, holding items (k,v) such that h(k) = j. A natural
choice for the secondary container is a small map instance implemented using a list,
as described in Section 10.1.5. This collision resolution rule is known as separate
chaining, and is illustrated in Figure 10.6.

A

1 2 3 4 5 6 7 8 9 100 11 12

12

38

25

90

54

28

41

36

18 10

Figure 10.6: A hash table of size 13, storing 10 items with integer keys, with colli-
sions resolved by separate chaining. The compression function is h(k) = k mod 13.
For simplicity, we do not show the values associated with the keys.

In the worst case, operations on an individual bucket take time proportional to
the size of the bucket. Assuming we use a good hash function to index the n items
of our map in a bucket array of capacity N, the expected size of a bucket is n/N.
Therefore, if given a good hash function, the core map operations run in O(
n/N�).
The ratio λ = n/N, called the load factor of the hash table, should be bounded by
a small constant, preferably below 1. As long as λ is O(1), the core operations on
the hash table run in O(1) expected time.
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Open Addressing

The separate chaining rule has many nice properties, such as affording simple im-
plementations of map operations, but it nevertheless has one slight disadvantage:
It requires the use of an auxiliary data structure—a list—to hold items with collid-
ing keys. If space is at a premium (for example, if we are writing a program for a
small handheld device), then we can use the alternative approach of always storing
each item directly in a table slot. This approach saves space because no auxiliary
structures are employed, but it requires a bit more complexity to deal with colli-
sions. There are several variants of this approach, collectively referred to as open
addressing schemes, which we discuss next. Open addressing requires that the load
factor is always at most 1 and that items are stored directly in the cells of the bucket
array itself.

Linear Probing and Its Variants

A simple method for collision handling with open addressing is linear probing.
With this approach, if we try to insert an item (k,v) into a bucket A[ j] that is already
occupied, where j = h(k), then we next try A[( j + 1) mod N]. If A[( j + 1) mod N]
is also occupied, then we try A[( j + 2) mod N], and so on, until we find an empty
bucket that can accept the new item. Once this bucket is located, we simply in-
sert the item there. Of course, this collision resolution strategy requires that we
change the implementation when searching for an existing key—the first step of all

getitem , setitem , or delitem operations. In particular, to attempt
to locate an item with key equal to k, we must examine consecutive slots, starting
from A[h(k)], until we either find an item with that key or we find an empty bucket.
(See Figure 10.7.) The name “linear probing” comes from the fact that accessing a
cell of the bucket array can be viewed as a “probe.”

26

1 2 3 4 5 6 7 8 9 100

New element with
key = 15 to be inserted

Must probe 4 times
before finding empty slot

5 37 16 2113

Figure 10.7: Insertion into a hash table with integer keys using linear probing. The
hash function is h(k) = k mod 11. Values associated with keys are not shown.
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To implement a deletion, we cannot simply remove a found item from its slot
in the array. For example, after the insertion of key 15 portrayed in Figure 10.7,
if the item with key 37 were trivially deleted, a subsequent search for 15 would
fail because that search would start by probing at index 4, then index 5, and then
index 6, at which an empty cell is found. A typical way to get around this diffi-
culty is to replace a deleted item with a special “available” marker object. With
this special marker possibly occupying spaces in our hash table, we modify our
search algorithm so that the search for a key k will skip over cells containing the
available marker and continue probing until reaching the desired item or an empty
bucket (or returning back to where we started from). Additionally, our algorithm
for setitem should remember an available cell encountered during the search
for k, since this is a valid place to put a new item (k,v), if no existing item is found.

Although use of an open addressing scheme can save space, linear probing
suffers from an additional disadvantage. It tends to cluster the items of a map into
contiguous runs, which may even overlap (particularly if more than half of the cells
in the hash table are occupied). Such contiguous runs of occupied hash cells cause
searches to slow down considerably.

Another open addressing strategy, known as quadratic probing, iteratively tries
the buckets A[(h(k)+ f (i)) mod N], for i = 0,1,2, . . ., where f (i) = i2, until finding
an empty bucket. As with linear probing, the quadratic probing strategy compli-
cates the removal operation, but it does avoid the kinds of clustering patterns that
occur with linear probing. Nevertheless, it creates its own kind of clustering, called
secondary clustering, where the set of filled array cells still has a non-uniform
pattern, even if we assume that the original hash codes are distributed uniformly.
When N is prime and the bucket array is less than half full, the quadratic probing
strategy is guaranteed to find an empty slot. However, this guarantee is not valid
once the table becomes at least half full, or if N is not chosen as a prime number;
we explore the cause of this type of clustering in an exercise (C-10.36).

An open addressing strategy that does not cause clustering of the kind produced
by linear probing or the kind produced by quadratic probing is the double hashing
strategy. In this approach, we choose a secondary hash function, h′, and if h maps
some key k to a bucket A[h(k)] that is already occupied, then we iteratively try
the buckets A[(h(k)+ f (i)) mod N] next, for i = 1,2,3, . . ., where f (i) = i · h′(k).
In this scheme, the secondary hash function is not allowed to evaluate to zero; a
common choice is h′(k) = q− (k mod q), for some prime number q < N. Also, N
should be a prime.

Another approach to avoid clustering with open addressing is to iteratively try
buckets A[(h(k)+ f (i)) mod N] where f (i) is based on a pseudo-random number
generator, providing a repeatable, but somewhat arbitrary, sequence of subsequent
probes that depends upon bits of the original hash code. This is the approach cur-
rently used by Python’s dictionary class.
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10.2.3 Load Factors, Rehashing, and Efficiency

In the hash table schemes described thus far, it is important that the load factor,
λ = n/N, be kept below 1. With separate chaining, as λ gets very close to 1, the
probability of a collision greatly increases, which adds overhead to our operations,
since we must revert to linear-time list-based methods in buckets that have col-
lisions. Experiments and average-case analyses suggest that we should maintain
λ < 0.9 for hash tables with separate chaining.

With open addressing, on the other hand, as the load factor λ grows beyond 0.5
and starts approaching 1, clusters of entries in the bucket array start to grow as well.
These clusters cause the probing strategies to “bounce around” the bucket array for
a considerable amount of time before they find an empty slot. In Exercise C-10.36,
we explore the degradation of quadratic probing when λ ≥ 0.5. Experiments sug-
gest that we should maintain λ < 0.5 for an open addressing scheme with linear
probing, and perhaps only a bit higher for other open addressing schemes (for ex-
ample, Python’s implementation of open addressing enforces that λ < 2/3).

If an insertion causes the load factor of a hash table to go above the specified
threshold, then it is common to resize the table (to regain the specified load factor)
and to reinsert all objects into this new table. Although we need not define a new
hash code for each object, we do need to reapply a new compression function that
takes into consideration the size of the new table. Each rehashing will generally
scatter the items throughout the new bucket array. When rehashing to a new table, it
is a good requirement for the new array’s size to be at least double the previous size.
Indeed, if we always double the size of the table with each rehashing operation, then
we can amortize the cost of rehashing all the entries in the table against the time
used to insert them in the first place (as with dynamic arrays; see Section 5.3).

Efficiency of Hash Tables

Although the details of the average-case analysis of hashing are beyond the scope
of this book, its probabilistic basis is quite intuitive. If our hash function is good,
then we expect the entries to be uniformly distributed in the N cells of the bucket
array. Thus, to store n entries, the expected number of keys in a bucket would
be 
n/N�, which is O(1) if n is O(N).

The costs associated with a periodic rehashing, to resize a table after occasional
insertions or deletions can be accounted for separately, leading to an additional
O(1) amortized cost for setitem and getitem .

In the worst case, a poor hash function could map every item to the same bucket.
This would result in linear-time performance for the core map operations with sepa-
rate chaining, or with any open addressing model in which the secondary sequence
of probes depends only on the hash code. A summary of these costs is given in
Table 10.2.
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Operation List Hash Table
expected worst case

getitem O(n) O(1) O(n)

setitem O(n) O(1) O(n)

delitem O(n) O(1) O(n)

len O(1) O(1) O(1)

iter O(n) O(n) O(n)

Table 10.2: Comparison of the running times of the methods of a map realized by
means of an unsorted list (as in Section 10.1.5) or a hash table. We let n denote
the number of items in the map, and we assume that the bucket array supporting
the hash table is maintained such that its capacity is proportional to the number of
items in the map.

In practice, hash tables are among the most efficient means for implementing
a map, and it is essentially taken for granted by programmers that their core oper-
ations run in constant time. Python’s dict class is implemented with hashing, and
the Python interpreter relies on dictionaries to retrieve an object that is referenced
by an identifier in a given namespace. (See Sections 1.10 and 2.5.) The basic com-
mand c = a + b involves two calls to getitem in the dictionary for the local
namespace to retrieve the values identified as a and b, and a call to setitem
to store the result associated with name c in that namespace. In our own algorithm
analysis, we simply presume that such dictionary operations run in constant time,
independent of the number of entries in the namespace. (Admittedly, the number
of entries in a typical namespace can almost surely be bounded by a constant.)

In a 2003 academic paper [31], researchers discuss the possibility of exploiting
a hash table’s worst-case performance to cause a denial-of-service (DoS) attack
of Internet technologies. For many published algorithms that compute hash codes,
they note that an attacker could precompute a very large number of moderate-length
strings that all hash to the identical 32-bit hash code. (Recall that by any of the
hashing schemes we describe, other than double hashing, if two keys are mapped
to the same hash code, they will be inseparable in the collision resolution.)

In late 2011, another team of researchers demonstrated an implementation of
just such an attack [61]. Web servers allow a series of key-value parameters to be
embedded in a URL using a syntax such as ?key1=val1&key2=val2&key3=val3.
Typically, those key-value pairs are immediately stored in a map by the server,
and a limit is placed on the length and number of such parameters presuming that
storage time in the map will be linear in the number of entries. If all keys were
to collide, that storage requires quadratic time (causing the server to perform an
inordinate amount of work). In spring of 2012, Python developers distributed a
security patch that introduces randomization into the computation of hash codes
for strings, making it less tractable to reverse engineer a set of colliding strings.
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10.2.4 Python Hash Table Implementation

In this section, we develop two implementations of a hash table, one using sepa-
rate chaining and the other using open addressing with linear probing. While these
approaches to collision resolution are quite different, there are a great many com-
monalities to the hashing algorithms. For that reason, we extend the MapBase
class (from Code Fragment 10.2), to define a new HashMapBase class (see Code
Fragment 10.4), providing much of the common functionality to our two hash table
implementations. The main design elements of the HashMapBase class are:

• The bucket array is represented as a Python list, named self. table, with all
entries initialized to None.

• We maintain an instance variable self. n that represents the number of dis-
tinct items that are currently stored in the hash table.

• If the load factor of the table increases beyond 0.5, we double the size of the
table and rehash all items into the new table.

• We define a hash function utility method that relies on Python’s built-in
hash function to produce hash codes for keys, and a randomized Multiply-
Add-and-Divide (MAD) formula for the compression function.

What is not implemented in the base class is any notion of how a “bucket”
should be represented. With separate chaining, each bucket will be an independent
structure. With open addressing, however, there is no tangible container for each
bucket; the “buckets” are effectively interleaved due to the probing sequences.

In our design, the HashMapBase class presumes the following to be abstract
methods, which must be implemented by each concrete subclass:

• bucket getitem(j, k)
This method should search bucket j for an item having key k, returning the
associated value, if found, or else raising a KeyError.

• bucket setitem(j, k, v)
This method should modify bucket j so that key k becomes associated with
value v. If the key already exists, the new value overwrites the existing value.
Otherwise, a new item is inserted and this method is responsible for incre-
menting self. n.

• bucket delitem(j, k)
This method should remove the item from bucket j having key k, or raise a
KeyError if no such item exists. (self. n is decremented after this method.)

• iter
This is the standard map method to iterate through all keys of the map. Our
base class does not delegate this on a per-bucket basis because “buckets” in
open addressing are not inherently disjoint.
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1 class HashMapBase(MapBase):
2 ”””Abstract base class for map using hash-table with MAD compression.”””
3
4 def init (self, cap=11, p=109345121):
5 ”””Create an empty hash-table map.”””
6 self. table = cap [ None ]
7 self. n = 0 # number of entries in the map
8 self. prime = p # prime for MAD compression
9 self. scale = 1 + randrange(p−1) # scale from 1 to p-1 for MAD

10 self. shift = randrange(p) # shift from 0 to p-1 for MAD
11
12 def hash function(self, k):
13 return (hash(k) self. scale + self. shift) % self. prime % len(self. table)
14
15 def len (self):
16 return self. n
17
18 def getitem (self, k):
19 j = self. hash function(k)
20 return self. bucket getitem(j, k) # may raise KeyError
21
22 def setitem (self, k, v):
23 j = self. hash function(k)
24 self. bucket setitem(j, k, v) # subroutine maintains self. n
25 if self. n > len(self. table) // 2: # keep load factor <= 0.5
26 self. resize(2 len(self. table) − 1) # number 2ˆx - 1 is often prime
27
28 def delitem (self, k):
29 j = self. hash function(k)
30 self. bucket delitem(j, k) # may raise KeyError
31 self. n −= 1
32
33 def resize(self, c): # resize bucket array to capacity c
34 old = list(self.items()) # use iteration to record existing items
35 self. table = c [None] # then reset table to desired capacity
36 self. n = 0 # n recomputed during subsequent adds
37 for (k,v) in old:
38 self[k] = v # reinsert old key-value pair

Code Fragment 10.4: A base class for our hash table implementations, extending
our MapBase class from Code Fragment 10.2.
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Separate Chaining

Code Fragment 10.5 provides a concrete implementation of a hash table with sepa-
rate chaining, in the form of the ChainHashMap class. To represent a single bucket,
it relies on an instance of the UnsortedTableMap class from Code Fragment 10.3.

The first three methods in the class use index j to access the potential bucket in
the bucket array, and a check for the special case in which that table entry is None.
The only time we need a new bucket structure is when bucket setitem is called on
an otherwise empty slot. The remaining functionality relies on map behaviors that
are already supported by the individual UnsortedTableMap instances. We need a
bit of forethought to determine whether the application of setitem on the chain
causes a net increase in the size of the map (that is, whether the given key is new).

1 class ChainHashMap(HashMapBase):
2 ”””Hash map implemented with separate chaining for collision resolution.”””
3
4 def bucket getitem(self, j, k):
5 bucket = self. table[j]
6 if bucket is None:
7 raise KeyError( Key Error: + repr(k)) # no match found
8 return bucket[k] # may raise KeyError
9

10 def bucket setitem(self, j, k, v):
11 if self. table[j] is None:
12 self. table[j] = UnsortedTableMap( ) # bucket is new to the table
13 oldsize = len(self. table[j])
14 self. table[j][k] = v
15 if len(self. table[j]) > oldsize: # key was new to the table
16 self. n += 1 # increase overall map size
17
18 def bucket delitem(self, j, k):
19 bucket = self. table[j]
20 if bucket is None:
21 raise KeyError( Key Error: + repr(k)) # no match found
22 del bucket[k] # may raise KeyError
23
24 def iter (self):
25 for bucket in self. table:
26 if bucket is not None: # a nonempty slot
27 for key in bucket:
28 yield key

Code Fragment 10.5: Concrete hash map class with separate chaining.

www.it-ebooks.info

http://www.it-ebooks.info/


10.2. Hash Tables 425

Linear Probing

Our implementation of a ProbeHashMap class, using open addressing with linear
probing, is given in Code Fragments 10.6 and 10.7. In order to support deletions,
we use a technique described in Section 10.2.2 in which we place a special marker
in a table location at which an item has been deleted, so that we can distinguish
between it and a location that has always been empty. In our implementation, we
declare a class-level attribute, AVAIL, as a sentinel. (We use an instance of the
built-in object class because we do not care about any behaviors of the sentinel,
just our ability to differentiate it from other objects.)

The most challenging aspect of open addressing is to properly trace the series
of probes when collisions occur during an insertion or search for an item. To this
end, we define a nonpublic utility, find slot, that searches for an item with key k
in “bucket” j (that is, where j is the index returned by the hash function for key k).

1 class ProbeHashMap(HashMapBase):
2 ”””Hash map implemented with linear probing for collision resolution.”””
3 AVAIL = object( ) # sentinal marks locations of previous deletions
4
5 def is available(self, j):
6 ”””Return True if index j is available in table.”””
7 return self. table[j] is None or self. table[j] is ProbeHashMap. AVAIL
8
9 def find slot(self, j, k):

10 ”””Search for key k in bucket at index j.
11
12 Return (success, index) tuple, described as follows:
13 If match was found, success is True and index denotes its location.
14 If no match found, success is False and index denotes first available slot.
15 ”””
16 firstAvail = None
17 while True:
18 if self. is available(j):
19 if firstAvail is None:
20 firstAvail = j # mark this as first avail
21 if self. table[j] is None:
22 return (False, firstAvail) # search has failed
23 elif k == self. table[j]. key:
24 return (True, j) # found a match
25 j = (j + 1) % len(self. table) # keep looking (cyclically)

Code Fragment 10.6: Concrete ProbeHashMap class that uses linear probing for
collision resolution (continued in Code Fragment 10.7).
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26 def bucket getitem(self, j, k):
27 found, s = self. find slot(j, k)
28 if not found:
29 raise KeyError( Key Error: + repr(k)) # no match found
30 return self. table[s]. value
31
32 def bucket setitem(self, j, k, v):
33 found, s = self. find slot(j, k)
34 if not found:
35 self. table[s] = self. Item(k,v) # insert new item
36 self. n += 1 # size has increased
37 else:
38 self. table[s]. value = v # overwrite existing
39
40 def bucket delitem(self, j, k):
41 found, s = self. find slot(j, k)
42 if not found:
43 raise KeyError( Key Error: + repr(k)) # no match found
44 self. table[s] = ProbeHashMap. AVAIL # mark as vacated
45
46 def iter (self):
47 for j in range(len(self. table)): # scan entire table
48 if not self. is available(j):
49 yield self. table[j]. key

Code Fragment 10.7: Concrete ProbeHashMap class that uses linear probing for
collision resolution (continued from Code Fragment 10.6).

The three primary map operations each rely on the find slot utility. When at-
tempting to retrieve the value associated with a given key, we must continue probing
until we find the key, or until we reach a table slot with the None value. We cannot
stop the search upon reaching an AVAIL sentinel, because it represents a location
that may have been filled when the desired item was once inserted.

When a key-value pair is being assigned in the map, we must attempt to find
an existing item with the given key, so that we might overwrite its value, before
adding a new item to the map. Therefore, we must search beyond any occurrences
of the AVAIL sentinel when inserting. However, if no match is found, we prefer to
repurpose the first slot marked with AVAIL, if any, when placing the new element
in the table. The find slot method enacts this logic, continuing the search until a
truly empty slot, but returning the index of the first available slot for an insertion.

When deleting an existing item within bucket delitem, we intentionally set
the table entry to the AVAIL sentinel in accordance with our strategy.
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10.3 Sorted Maps

The traditional map ADT allows a user to look up the value associated with a given
key, but the search for that key is a form known as an exact search.

For example, computer systems often maintain information about events that
have occurred (such as financial transactions), organizing such events based upon
what are known as time stamps. If we can assume that time stamps are unique
for a particular system, then we might organize a map with a time stamp serving
as the key, and a record about the event that occurred at that time as the value. A
particular time stamp could serve as a reference ID for an event, in which case we
can quickly retrieve information about that event from the map. However, the map
ADT does not provide any way to get a list of all events ordered by the time at
which they occur, or to search for which event occurred closest to a particular time.
In fact, the fast performance of hash-based implementations of the map ADT relies
on the intentionally scattering of keys that may seem very “near” to each other in
the original domain, so that they are more uniformly distributed in a hash table.

In this section, we introduce an extension known as the sorted map ADT that
includes all behaviors of the standard map, plus the following:

M.find min(): Return the (key,value) pair with minimum key
(or None, if map is empty).

M.find max(): Return the (key,value) pair with maximum key
(or None, if map is empty).

M.find lt(k): Return the (key,value) pair with the greatest key that
is strictly less than k (or None, if no such item exists).

M.find le(k): Return the (key,value) pair with the greatest key that
is less than or equal to k (or None, if no such item
exists).

M.find gt(k): Return the (key,value) pair with the least key that is
strictly greater than k (or None, if no such item exists).

M.find ge(k): Return the (key,value) pair with the least key that is
greater than or equal to k (or None, if no such item).

M.find range(start, stop): Iterate all (key,value) pairs with start <= key < stop.
If start is None, iteration begins with minimum key; if
stop is None, iteration concludes with maximum key.

iter(M): Iterate all keys of the map according to their natural
order, from smallest to largest.

reversed(M): Iterate all keys of the map in reverse order; in Python,
this is implemented with the reversed method.
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10.3.1 Sorted Search Tables

Several data structures can efficiently support the sorted map ADT, and we will
examine some advanced techniques in Section 10.4 and Chapter 11. In this section,
we begin by exploring a simple implementation of a sorted map. We store the
map’s items in an array-based sequence A so that they are in increasing order of
their keys, assuming the keys have a naturally defined order. (See Figure 10.8.) We
refer to this implementation of a map as a sorted search table.

92 4 5 7 8 12 14 17 19 22 25 27 28 33

5

37

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

Figure 10.8: Realization of a map by means of a sorted search table. We show only
the keys for this map, so as to highlight their ordering.

As was the case with the unsorted table map of Section 10.1.5, the sorted search
table has a space requirement that is O(n), assuming we grow and shrink the array
to keep its size proportional to the number of items in the map. The primary advan-
tage of this representation, and our reason for insisting that A be array-based, is that
it allows us to use the binary search algorithm for a variety of efficient operations.

Binary Search and Inexact Searches

We originally presented the binary search algorithm in Section 4.1.3, as a means for
detecting whether a given target is stored within a sorted sequence. In our original
presentation (Code Fragment 4.3 on page 156), a binary search function returned
True of False to designate whether the desired target was found. While such an
approach could be used to implement the contains method of the map ADT,
we can adapt the binary search algorithm to provide far more useful information
when performing forms of inexact search in support of the sorted map ADT.

The important realization is that while performing a binary search, we can de-
termine the index at or near where a target might be found. During a successful
search, the standard implementation determines the precise index at which the tar-
get is found. During an unsuccessful search, although the target is not found, the
algorithm will effectively determine a pair of indices designating elements of the
collection that are just less than or just greater than the missing target.

As a motivating example, our original simulation from Figure 4.5 on page 156
shows a successful binary search for a target of 22, using the same data we portray
in Figure 10.8. Had we instead been searching for 21, the first four steps of the
algorithm would be the same. The subsequent difference is that we would make an
additional call with inverted parameters high=9 and low=10, effectively conclud-
ing that the missing target lies in the gap between values 19 and 22 in that example.
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Implementation

In Code Fragments 10.8 through 10.10, we present a complete implementation of a
class, SortedTableMap, that supports the sorted map ADT. The most notable fea-
ture of our design is the inclusion of a find index utility function. This method
using the binary search algorithm, but by convention returns the index of the left-
most item in the search interval having key greater than or equal to k. Therefore, if
the key is present, it will return the index of the item having that key. (Recall that
keys are unique in a map.) When the key is missing, the function returns the index
of the item in the search interval that is just beyond where the key would have been
located. As a technicality, the method returns index high + 1 to indicate that no
items of the interval had a key greater than k.

We rely on this utility method when implementing the traditional map opera-
tions and the new sorted map operations. The body of each of the getitem ,

setitem , and delitem methods begins with a call to find index to deter-
mine a candidate index at which a matching key might be found. For getitem ,
we simply check whether that is a valid index containing the target to determine the
result. For setitem , recall that the goal is to replace the value of an existing
item, if one with key k is found, but otherwise to insert a new item into the map. The
index returned by find index will be the index of the match, if one exists, or oth-
erwise the exact index at which the new item should be inserted. For delitem ,
we again rely on the convenience of find index to determine the location of the
item to be popped, if any.

Our find index utility is equally valuable when implementing the various in-
exact search methods given in Code Fragment 10.10. For each of the methods
find lt, find le, find gt, and find ge, we begin with a call to find index utility,
which locates the first index at which there is an element with key ≥ k, if any. This
is precisely what we want for find ge, if valid, and just beyond the index we want
for find lt. For find gt and find le we need some extra case analysis to distinguish
whether the indicated index has a key equal to k. For example, if the indicated
item has a matching key, our find gt implementation increments the index before
continuing with the process. (We omit the implementation of find le, for brevity.)
In all cases, we must properly handle boundary cases, reporting None when unable
to find a key with the desired property.

Our strategy for implementing find range is to use the find index utility to
locate the first item with key≥ start (assuming start is not None). With that knowl-
edge, we use a while loop to sequentially report items until reaching one that has
a key greater than or equal to the stopping value (or until reaching the end of the
table). It is worth noting that the while loop may trivially iterate zero items if the
first key that is greater than or equal to start also happens to be greater than or equal
to stop. This represents an empty range in the map.
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1 class SortedTableMap(MapBase):
2 ”””Map implementation using a sorted table.”””
3
4 #----------------------------- nonpublic behaviors -----------------------------
5 def find index(self, k, low, high):
6 ”””Return index of the leftmost item with key greater than or equal to k.
7
8 Return high + 1 if no such item qualifies.
9

10 That is, j will be returned such that:
11 all items of slice table[low:j] have key < k
12 all items of slice table[j:high+1] have key >= k
13 ”””
14 if high < low:
15 return high + 1 # no element qualifies
16 else:
17 mid = (low + high) // 2
18 if k == self. table[mid]. key:
19 return mid # found exact match
20 elif k < self. table[mid]. key:
21 return self. find index(k, low, mid − 1) # Note: may return mid
22 else:
23 return self. find index(k, mid + 1, high) # answer is right of mid
24
25 #----------------------------- public behaviors -----------------------------
26 def init (self):
27 ”””Create an empty map.”””
28 self. table = [ ]
29
30 def len (self):
31 ”””Return number of items in the map.”””
32 return len(self. table)
33
34 def getitem (self, k):
35 ”””Return value associated with key k (raise KeyError if not found).”””
36 j = self. find index(k, 0, len(self. table) − 1)
37 if j == len(self. table) or self. table[j]. key != k:
38 raise KeyError( Key Error: + repr(k))
39 return self. table[j]. value

Code Fragment 10.8: An implementation of a SortedTableMap class (continued in
Code Fragments 10.9 and 10.10).
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40 def setitem (self, k, v):
41 ”””Assign value v to key k, overwriting existing value if present.”””
42 j = self. find index(k, 0, len(self. table) − 1)
43 if j < len(self. table) and self. table[j]. key == k:
44 self. table[j]. value = v # reassign value
45 else:
46 self. table.insert(j, self. Item(k,v)) # adds new item
47
48 def delitem (self, k):
49 ”””Remove item associated with key k (raise KeyError if not found).”””
50 j = self. find index(k, 0, len(self. table) − 1)
51 if j == len(self. table) or self. table[j]. key != k:
52 raise KeyError( Key Error: + repr(k))
53 self. table.pop(j) # delete item
54
55 def iter (self):
56 ”””Generate keys of the map ordered from minimum to maximum.”””
57 for item in self. table:
58 yield item. key
59
60 def reversed (self):
61 ”””Generate keys of the map ordered from maximum to minimum.”””
62 for item in reversed(self. table):
63 yield item. key
64
65 def find min(self):
66 ”””Return (key,value) pair with minimum key (or None if empty).”””
67 if len(self. table) > 0:
68 return (self. table[0]. key, self. table[0]. value)
69 else:
70 return None
71
72 def find max(self):
73 ”””Return (key,value) pair with maximum key (or None if empty).”””
74 if len(self. table) > 0:
75 return (self. table[−1]. key, self. table[−1]. value)
76 else:
77 return None

Code Fragment 10.9: An implementation of a SortedTableMap class (together with
Code Fragments 10.8 and 10.10).
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78 def find ge(self, k):
79 ”””Return (key,value) pair with least key greater than or equal to k.”””
80 j = self. find index(k, 0, len(self. table) − 1) # j s key >= k
81 if j < len(self. table):
82 return (self. table[j]. key, self. table[j]. value)
83 else:
84 return None
85
86 def find lt(self, k):
87 ”””Return (key,value) pair with greatest key strictly less than k.”””
88 j = self. find index(k, 0, len(self. table) − 1) # j s key >= k
89 if j > 0:
90 return (self. table[j−1]. key, self. table[j−1]. value) # Note use of j-1
91 else:
92 return None
93
94 def find gt(self, k):
95 ”””Return (key,value) pair with least key strictly greater than k.”””
96 j = self. find index(k, 0, len(self. table) − 1) # j s key >= k
97 if j < len(self. table) and self. table[j]. key == k:
98 j += 1 # advanced past match
99 if j < len(self. table):

100 return (self. table[j]. key, self. table[j]. value)
101 else:
102 return None
103
104 def find range(self, start, stop):
105 ”””Iterate all (key,value) pairs such that start <= key < stop.
106
107 If start is None, iteration begins with minimum key of map.
108 If stop is None, iteration continues through the maximum key of map.
109 ”””
110 if start is None:
111 j = 0
112 else:
113 j = self. find index(start, 0, len(self. table)−1) # find first result
114 while j < len(self. table) and (stop is None or self. table[j]. key < stop):
115 yield (self. table[j]. key, self. table[j]. value)
116 j += 1

Code Fragment 10.10: An implementation of a SortedTableMap class (continued
from Code Fragments 10.9 and 10.10). We omit the find le method due to space.

www.it-ebooks.info

http://www.it-ebooks.info/


10.3. Sorted Maps 433

Analysis

We conclude by analyzing the performance of our SortedTableMap implementa-
tion. A summary of the running times for all methods of the sorted map ADT
(including the traditional map operations) is given in Table 10.3. It should be clear
that the len , find min, and find max methods run in O(1) time, and that iter-
ating the keys of the table in either direction can be peformed in O(n) time.

The analysis for the various forms of search all depend on the fact that a binary
search on a table with n entries runs in O(logn) time. This claim was originally
shown as Proposition 4.2 in Section 4.2, and that analysis clearly applies to our
find index method as well. We therefore claim an O(logn) worst-case running

time for methods getitem , find lt, find gt, find le, and find ge. Each of these
makes a single call to find index, followed by a constant number of additional
steps to determine the appropriate answer based on the index. The analysis of
find range is a bit more interesting. It begins with a binary search to find the first
item within the range (if any). After that, it executes a loop that takes O(1) time per
iteration to report subsequent values until reaching the end of the range. If there are
s items reported in the range, the total running time is O(s+ logn).

In contrast to the efficient search operations, update operations for a sorted table
may take considerable time. Although binary search can help identify the index at
which an update occurs, both insertions and deletions require, in the worst case, that
linearly many existing elements be shifted in order to maintain the sorted order of
the table. Specifically, the potential call to table.insert from within setitem
and table.pop from within delitem lead to O(n) worst-case time. (See the
discussion of corresponding operations of the list class in Section 5.4.1.)

In conclusion, sorted tables are primarily used in situations where we expect
many searches but relatively few updates.

Operation Running Time
len(M) O(1)

k in M O(logn)

M[k] = v O(n) worst case; O(logn) if existing k
del M[k] O(n) worst case

M.find min(), M.find max() O(1)

M.find lt(k), M.find gt(k)
O(logn)

M.find le(k), M.find ge(k)

M.find range(start, stop) O(s+ logn) where s items are reported
iter(M), reversed(M) O(n)

Table 10.3: Performance of a sorted map, as implemented with SortedTableMap.
We use n to denote the number of items in the map at the time the operation is
performed. The space requirement is O(n).
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10.3.2 Two Applications of Sorted Maps

In this section, we explore applications in which there is particular advantage to
using a sorted map rather than a traditional (unsorted) map. To apply a sorted
map, keys must come from a domain that is totally ordered. Furthermore, to take
advantage of the inexact or range searches afforded by a sorted map, there should
be some reason why nearby keys have relevance to a search.

Flight Databases

There are several Web sites on the Internet that allow users to perform queries on
flight databases to find flights between various cities, typically with the intent to
buy a ticket. To make a query, a user specifies origin and destination cities, a depar-
ture date, and a departure time. To support such queries, we can model the flight
database as a map, where keys are Flight objects that contain fields corresponding
to these four parameters. That is, a key is a tuple

k = (origin,destination,date,time).

Additional information about a flight, such as the flight number, the number of seats
still available in first (F) and coach (Y) class, the flight duration, and the fare, can
be stored in the value object.

Finding a requested flight is not simply a matter of finding an exact match
for a requested query. Although a user typically wants to exactly match the ori-
gin and destination cities, he or she may have flexibility for the departure date,
and certainly will have some flexibility for the departure time on a specific day.
We can handle such a query by ordering our keys lexicographically. Then, an ef-
ficient implementation for a sorted map would be a good way to satisfy users’
queries. For instance, given a user query key k, we could call find ge(k) to return
the first flight between the desired cities, having a departure date and time match-
ing the desired query or later. Better yet, with well-constructed keys, we could
use find range(k1, k2) to find all flights within a given range of times. For exam-
ple, if k1 = (ORD, PVD, 05May, 09:30), and k2 = (ORD, PVD, 05May, 20:00),
a respective call to find range(k1, k2) might result in the following sequence of
key-value pairs:

(ORD, PVD, 05May, 09:53) : (AA 1840, F5, Y15, 02:05, 251),
(ORD, PVD, 05May, 13:29) : (AA 600, F2, Y0, 02:16, 713),
(ORD, PVD, 05May, 17:39) : (AA 416, F3, Y9, 02:09, 365),
(ORD, PVD, 05May, 19:50) : (AA 1828, F9, Y25, 02:13, 186)
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Maxima Sets

Life is full of trade-offs. We often have to trade off a desired performance measure
against a corresponding cost. Suppose, for the sake of an example, we are interested
in maintaining a database rating automobiles by their maximum speeds and their
cost. We would like to allow someone with a certain amount of money to query our
database to find the fastest car they can possibly afford.

We can model such a trade-off problem as this by using a key-value pair to
model the two parameters that we are trading off, which in this case would be the
pair (cost,speed) for each car. Notice that some cars are strictly better than other
cars using this measure. For example, a car with cost-speed pair (20000,100) is
strictly better than a car with cost-speed pair (30000,90). At the same time, there
are some cars that are not strictly dominated by another car. For example, a car with
cost-speed pair (20000,100) may be better or worse than a car with cost-speed pair
(30000,120), depending on how much money we have to spend. (See Figure 10.9.)

Figure 10.9: Illustrating the cost-performance trade-off with pairs represented by
points in the plane. Notice that point p is strictly better than points c, d, and e, but
may be better or worse than points a, b, f , g, and h, depending on the price we are
willing to pay. Thus, if we were to add p to our set, we could remove the points c,
d, and e, but not the others.

Formally, we say a cost-performance pair (a,b) dominates pair (c,d) �= (a,b)
if a ≤ c and b ≥ d, that is, if the first pair has no greater cost and at least as good
performance. A pair (a,b) is called a maximum pair if it is not dominated by any
other pair. We are interested in maintaining the set of maxima of a collection of
cost-performance pairs. That is, we would like to add new pairs to this collection
(for example, when a new car is introduced), and to query this collection for a given
dollar amount, d, to find the fastest car that costs no more than d dollars.
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Maintaining a Maxima Set with a Sorted Map

We can store the set of maxima pairs in a sorted map, M, so that the cost is the
key field and performance (speed) is the value field. We can then implement opera-
tions add(c, p), which adds a new cost-performance pair (c, p), and best(c), which
returns the best pair with cost at most c, as shown in Code Fragment 10.11.

1 class CostPerformanceDatabase:
2 ”””Maintain a database of maximal (cost,performance) pairs.”””
3
4 def init (self):
5 ”””Create an empty database.”””
6 self. M = SortedTableMap( ) # or a more efficient sorted map
7
8 def best(self, c):
9 ”””Return (cost,performance) pair with largest cost not exceeding c.

10
11 Return None if there is no such pair.
12 ”””
13 return self. M.find le(c)
14
15 def add(self, c, p):
16 ”””Add new entry with cost c and performance p.”””
17 # determine if (c,p) is dominated by an existing pair
18 other = self. M.find le(c) # other is at least as cheap as c
19 if other is not None and other[1] >= p: # if its performance is as good,
20 return # (c,p) is dominated, so ignore
21 self. M[c] = p # else, add (c,p) to database
22 # and now remove any pairs that are dominated by (c,p)
23 other = self. M.find gt(c) # other more expensive than c
24 while other is not None and other[1] <= p:
25 del self. M[other[0]]
26 other = self. M.find gt(c)

Code Fragment 10.11: An implementation of a class maintaining a set of maxima
cost-performance pairs using a sorted map.

Unfortunately, if we implement M using the SortedTableMap, the add behavior
has O(n) worst-case running time. If, on the other hand, we implement M using
a skip list, which we next describe, we can perform best(c) queries in O(logn)
expected time and add(c, p) updates in O((1 + r) log n) expected time, where r is
the number of points removed.
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10.4 Skip Lists

An interesting data structure for realizing the sorted map ADT is the skip list. In
Section 10.3.1, we saw that a sorted array will allow O(logn)-time searches via the
binary search algorithm. Unfortunately, update operations on a sorted array have
O(n) worst-case running time because of the need to shift elements. In Chapter 7
we demonstrated that linked lists support very efficient update operations, as long
as the position within the list is identified. Unfortunately, we cannot perform fast
searches on a standard linked list; for example, the binary search algorithm requires
an efficient means for direct accessing an element of a sequence by index.

Skip lists provide a clever compromise to efficiently support search and update
operations. A skip list S for a map M consists of a series of lists {S0,S1, . . . ,Sh}.
Each list Si stores a subset of the items of M sorted by increasing keys, plus items
with two sentinel keys denoted −∞ and +∞, where −∞ is smaller than every
possible key that can be inserted in M and +∞ is larger than every possible key
that can be inserted in M. In addition, the lists in S satisfy the following:

• List S0 contains every item of the map M (plus sentinels −∞ and +∞).
• For i = 1, . . . ,h−1, list Si contains (in addition to −∞ and +∞) a randomly

generated subset of the items in list Si−1.
• List Sh contains only −∞ and +∞.

An example of a skip list is shown in Figure 10.10. It is customary to visualize a
skip list S with list S0 at the bottom and lists S1, . . . ,Sh above it. Also, we refer to h
as the height of skip list S.

Intuitively, the lists are set up so that Si+1 contains more or less alternate items
of Si. As we shall see in the details of the insertion method, the items in Si+1 are
chosen at random from the items in Si by picking each item from Si to also be in
Si+1 with probability 1/2. That is, in essence, we “flip a coin” for each item in Si

31

25

25

-∞

-∞

-∞

-∞

-∞

-∞

17

17

17

1712

S5

S4

S3

S2

S1

S0

55

55

55

5512 17 20 25 31 38 39 44 50 +∞

+∞

+∞

+∞

+∞

+∞

4438

31

25

Figure 10.10: Example of a skip list storing 10 items. For simplicity, we show only
the items’ keys, not their associated values.
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and place that item in Si+1 if the coin comes up “heads.” Thus, we expect S1 to have
about n/2 items, S2 to have about n/4 items, and, in general, Si to have about n/2i

items. In other words, we expect the height h of S to be about logn. The halving of
the number of items from one list to the next is not enforced as an explicit property
of skip lists, however. Instead, randomization is used.

Functions that generate numbers that can be viewed as random numbers are
built into most modern computers, because they are used extensively in computer
games, cryptography, and computer simulations, Some functions, called pseudo-
random number generators, generate random-like numbers, starting with an initial
seed. (See discusion of random module in Section 1.11.1.) Other methods use
hardware devices to extract “true” random numbers from nature. In any case, we
will assume that our computer has access to numbers that are sufficiently random
for our analysis.

The main advantage of using randomization in data structure and algorithm
design is that the structures and functions that result are usually simple and efficient.
The skip list has the same logarithmic time bounds for searching as is achieved by
the binary search algorithm, yet it extends that performance to update methods
when inserting or deleting items. Nevertheless, the bounds are expected for the
skip list, while binary search has a worst-case bound with a sorted table.

A skip list makes random choices in arranging its structure in such a way that
search and update times are O(logn) on average, where n is the number of items
in the map. Interestingly, the notion of average time complexity used here does not
depend on the probability distribution of the keys in the input. Instead, it depends
on the use of a random-number generator in the implementation of the insertions
to help decide where to place the new item. The running time is averaged over all
possible outcomes of the random numbers used when inserting entries.

Using the position abstraction used for lists and trees, we view a skip list as a
two-dimensional collection of positions arranged horizontally into levels and ver-
tically into towers. Each level is a list Si and each tower contains positions storing
the same item across consecutive lists. The positions in a skip list can be traversed
using the following operations:

next(p): Return the position following p on the same level.

prev(p): Return the position preceding p on the same level.

below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.
We conventionally assume that the above operations return None if the position
requested does not exist. Without going into the details, we note that we can eas-
ily implement a skip list by means of a linked structure such that the individual
traversal methods each take O(1) time, given a skip-list position p. Such a linked
structure is essentially a collection of h doubly linked lists aligned at towers, which
are also doubly linked lists.
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10.4.1 Search and Update Operations in a Skip List

The skip-list structure affords simple map search and update algorithms. In fact,
all of the skip-list search and update algorithms are based on an elegant SkipSearch
method that takes a key k and finds the position p of the item in list S0 that has the
largest key less than or equal to k (which is possibly −∞).

Searching in a Skip List

Suppose we are given a search key k. We begin the SkipSearch method by setting
a position variable p to the topmost, left position in the skip list S, called the start
position of S. That is, the start position is the position of Sh storing the special
entry with key −∞. We then perform the following steps (see Figure 10.11), where
key(p) denotes the key of the item at position p:

1. If S.below(p) is None, then the search terminates—we are at the bottom and
have located the item in S with the largest key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p = S.below(p).

2. Starting at position p, we move p forward until it is at the rightmost position
on the present level such that key(p) ≤ k. We call this the scan forward step.
Note that such a position always exists, since each level contains the keys
+∞ and −∞. It may be that p remains where it started after we perform
such a forward scan for this level.

3. Return to step 1.
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Figure 10.11: Example of a search in a skip list. The positions examined when
searching for key 50 are highlighted.

We give a pseudo-code description of the skip-list search algorithm, SkipSearch,
in Code Fragment 10.12. Given this method, the map operation M[k] is performed
by computing p = SkipSearch(k) and testing whether or not key(p) = k. If these
two keys are equal, we return the associated value; otherwise, we raise a KeyError.
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Algorithm SkipSearch(k):
Input: A search key k
Output: Position p in the bottom list S0 with the largest key such that key(p)≤ k

p = start {begin at start position}
while below(p) �= None do

p = below(p) {drop down}
while k ≥ key(next(p)) do

p = next(p) {scan forward}
return p.

Code Fragment 10.12: Algorthm to search a skip list S for key k.

As it turns out, the expected running time of algorithm SkipSearch on a skip list
with n entries is O(logn). We postpone the justification of this fact, however, until
after we discuss the implementation of the update methods for skip lists. Navigation
starting at the position identified by SkipSearch(k) can be easily used to provide the
additional forms of searches in the sorted map ADT (e.g., find gt, find range).

Insertion in a Skip List

The execution of the map operation M[k] = v begins with a call to SkipSearch(k).
This gives us the position p of the bottom-level item with the largest key less than or
equal to k (note that p may hold the special item with key −∞). If key(p) = k, the
associated value is overwritten with v. Otherwise, we need to create a new tower for
item (k,v). We insert (k,v) immediately after position p within S0. After inserting
the new item at the bottom level, we use randomization to decide the height of the
tower for the new item. We “flip” a coin, and if the flip comes up tails, then we stop
here. Else (the flip comes up heads), we backtrack to the previous (next higher)
level and insert (k,v) in this level at the appropriate position. We again flip a coin;
if it comes up heads, we go to the next higher level and repeat. Thus, we continue
to insert the new item (k,v) in lists until we finally get a flip that comes up tails.
We link together all the references to the new item (k,v) created in this process to
create its tower. A coin flip can be simulated with Python’s built-in pseudo-random
number generator from the random module by calling randrange(2), which returns
0 or 1, each with probability 1/2.

We give the insertion algorithm for a skip list S in Code Fragment 10.13 and
we illustrate it in Figure 10.12. The algorithm uses an insertAfterAbove(p,q,(k,v))
method that inserts a position storing the item (k,v) after position p (on the same
level as p) and above position q, returning the new position r (and setting internal
references so that next, prev, above, and below methods will work correctly for p,
q, and r). The expected running time of the insertion algorithm on a skip list with
n entries is O(logn), which we show in Section 10.4.2.
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Algorithm SkipInsert(k,v):
Input: Key k and value v
Output: Topmost position of the item inserted in the skip list

p = SkipSearch(k)
q = None {q will represent top node in new item’s tower}
i = −1
repeat

i = i+ 1
if i ≥ h then

h = h+ 1 {add a new level to the skip list}
t = next(s)
s = insertAfterAbove(None,s,(−∞,None)) {grow leftmost tower}
insertAfterAbove(s,t,(+∞,None)) {grow rightmost tower}

while above(p) is None do
p = prev(p) {scan backward}

p = above(p) {jump up to higher level}
q = insertAfterAbove(p,q,(k,v)) {increase height of new item’s tower}

until coinFlip() == tails
n = n+ 1
return q

Code Fragment 10.13: Insertion in a skip list. Method coinFlip() returns “heads” or
“tails”, each with probability 1/2. Instance variables n, h, and s hold the number
of entries, the height, and the start node of the skip list.
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Figure 10.12: Insertion of an entry with key 42 into the skip list of Figure 10.10. We
assume that the random “coin flips” for the new entry came up heads three times in a
row, followed by tails. The positions visited are highlighted. The positions inserted
to hold the new entry are drawn with thick lines, and the positions preceding them
are flagged.
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Removal in a Skip List

Like the search and insertion algorithms, the removal algorithm for a skip list is
quite simple. In fact, it is even easier than the insertion algorithm. That is, to per-
form the map operation del M[k] we begin by executing method SkipSearch(k).
If the position p stores an entry with key different from k, we raise a KeyError.
Otherwise, we remove p and all the positions above p, which are easily accessed
by using above operations to climb up the tower of this entry in S starting at posi-
tion p. While removing levels of the tower, we reestablish links between the hor-
izontal neighbors of each removed position. The removal algorithm is illustrated
in Figure 10.13 and a detailed description of it is left as an exercise (R-10.24). As
we show in the next subsection, deletion operation in a skip list with n entries has
O(logn) expected running time.

Before we give this analysis, however, there are some minor improvements to
the skip-list data structure we would like to discuss. First, we do not actually need
to store references to values at the levels of the skip list above the bottom level,
because all that is needed at these levels are references to keys. In fact, we can
more efficiently represent a tower as a single object, storing the key-value pair,
and maintaining j previous references and j next references if the tower reaches
level Sj. Second, for the horizontal axes, it is possible to keep the list singly linked,
storing only the next references. We can perform insertions and removals in strictly
a top-down, scan-forward fashion. We explore the details of this optimization in
Exercise C-10.44. Neither of these optimizations improve the asymptotic perfor-
mance of skip lists by more than a constant factor, but these improvements can,
nevertheless, be meaningful in practice. In fact, experimental evidence suggests
that optimized skip lists are faster in practice than AVL trees and other balanced
search trees, which are discussed in Chapter 11.
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Maintaining the Topmost Level

A skip list S must maintain a reference to the start position (the topmost, left po-
sition in S) as an instance variable, and must have a policy for any insertion that
wishes to continue inserting a new entry past the top level of S. There are two
possible courses of action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value that
is a function of n, the number of entries currently in the map (from the analysis we
will see that h = max{10,2
log n�} is a reasonable choice, and picking h = 3
logn�
is even safer). Implementing this choice means that we must modify the insertion
algorithm to stop inserting a new position once we reach the topmost level (unless

logn� < 
log(n+ 1)�, in which case we can now go at least one more level, since
the bound on the height is increasing).

The other possibility is to let an insertion continue inserting a new position as
long as heads keeps getting returned from the random number generator. This is
the approach taken by algorithm SkipInsert of Code Fragment 10.13. As we show
in the analysis of skip lists, the probability that an insertion will go to a level that is
more than O(logn) is very low, so this design choice should also work.

Either choice will still result in the expected O(logn) time to perform search,
insertion, and removal, however, which we show in the next section.

10.4.2 Probabilistic Analysis of Skip Lists �

As we have shown above, skip lists provide a simple implementation of a sorted
map. In terms of worst-case performance, however, skip lists are not a superior data
structure. In fact, if we do not officially prevent an insertion from continuing signif-
icantly past the current highest level, then the insertion algorithm can go into what
is almost an infinite loop (it is not actually an infinite loop, however, since the prob-
ability of having a fair coin repeatedly come up heads forever is 0). Moreover, we
cannot infinitely add positions to a list without eventually running out of memory.
In any case, if we terminate position insertion at the highest level h, then the worst-
case running time for performing the getitem , setitem , and delitem
map operations in a skip list S with n entries and height h is O(n+ h). This worst-
case performance occurs when the tower of every entry reaches level h−1, where
h is the height of S. However, this event has very low probability. Judging from
this worst case, we might conclude that the skip-list structure is strictly inferior to
the other map implementations discussed earlier in this chapter. But this would not
be a fair analysis, for this worst-case behavior is a gross overestimate.

www.it-ebooks.info

http://www.it-ebooks.info/


444 Chapter 10. Maps, Hash Tables, and Skip Lists

Bounding the Height of a Skip List

Because the insertion step involves randomization, a more accurate analysis of skip
lists involves a bit of probability. At first, this might seem like a major undertaking,
for a complete and thorough probabilistic analysis could require deep mathemat-
ics (and, indeed, there are several such deep analyses that have appeared in data
structures research literature). Fortunately, such an analysis is not necessary to un-
derstand the expected asymptotic behavior of skip lists. The informal and intuitive
probabilistic analysis we give below uses only basic concepts of probability theory.

Let us begin by determining the expected value of the height h of a skip list S
with n entries (assuming that we do not terminate insertions early). The probability
that a given entry has a tower of height i ≥ 1 is equal to the probability of getting i
consecutive heads when flipping a coin, that is, this probability is 1/2i. Hence, the
probability Pi that level i has at least one position is at most

Pi ≤ n
2i ,

for the probability that any one of n different events occurs is at most the sum of
the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability
that level i has at least one position, that is, it is no more than Pi. This means that h
is larger than, say, 3logn with probability at most

P3 logn ≤ n
23log n

=
n
n3 =

1
n2 .

For example, if n = 1000, this probability is a one-in-a-million long shot. More
generally, given a constant c > 1, h is larger than c logn with probability at most
1/nc−1. That is, the probability that h is smaller than c logn is at least 1−1/nc−1.
Thus, with high probability, the height h of S is O(logn).

Analyzing Search Time in a Skip List

Next, consider the running time of a search in skip list S, and recall that such a
search involves two nested while loops. The inner loop performs a scan forward on
a level of S as long as the next key is no greater than the search key k, and the outer
loop drops down to the next level and repeats the scan forward iteration. Since the
height h of S is O(logn) with high probability, the number of drop-down steps is
O(logn) with high probability.
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So we have yet to bound the number of scan-forward steps we make. Let ni be
the number of keys examined while scanning forward at level i. Observe that, after
the key at the starting position, each additional key examined in a scan-forward at
level i cannot also belong to level i + 1. If any of these keys were on the previous
level, we would have encountered them in the previous scan-forward step. Thus,
the probability that any key is counted in ni is 1/2. Therefore, the expected value of
ni is exactly equal to the expected number of times we must flip a fair coin before
it comes up heads. This expected value is 2. Hence, the expected amount of time
spent scanning forward at any level i is O(1). Since S has O(logn) levels with high
probability, a search in S takes expected time O(logn). By a similar analysis, we
can show that the expected running time of an insertion or a removal is O(logn).

Space Usage in a Skip List

Finally, let us turn to the space requirement of a skip list S with n entries. As we
observed above, the expected number of positions at level i is n/2i, which means
that the expected total number of positions in S is

h

∑
i=0

n
2i

= n
h

∑
i=0

1
2i

.

Using Proposition 3.5 on geometric summations, we have

h

∑
i=0

1
2i =

(
1
2

)h+1 −1
1
2 −1

= 2 ·
(

1− 1
2h+1

)
< 2 for all h ≥ 0.

Hence, the expected space requirement of S is O(n).
Table 10.4 summarizes the performance of a sorted map realized by a skip list.

Operation Running Time
len(M) O(1)

k in M O(logn) expected
M[k] = v O(logn) expected
del M[k] O(logn) expected

M.find min(), M.find max() O(1)

M.find lt(k), M.find gt(k)
O(logn) expected

M.find le(k), M.find ge(k)

M.find range(start, stop) O(s+ logn) expected, with s items reported
iter(M), reversed(M) O(n)

Table 10.4: Performance of a sorted map implemented with a skip list. We use n to
denote the number of entries in the dictionary at the time the operation is performed.
The expected space requirement is O(n).
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10.5 Sets, Multisets, and Multimaps

We conclude this chapter by examining several additional abstractions that are
closely related to the map ADT, and that can be implemented using data structures
similar to those for a map.

• A set is an unordered collection of elements, without duplicates, that typi-
cally supports efficient membership tests. In essence, elements of a set are
like keys of a map, but without any auxiliary values.

• A multiset (also known as a bag) is a set-like container that allows duplicates.

• A multimap is similar to a traditional map, in that it associates values with
keys; however, in a multimap the same key can be mapped to multiple val-
ues. For example, the index of this book maps a given term to one or more
locations at which the term occurs elsewhere in the book.

10.5.1 The Set ADT

Python provides support for representing the mathematical notion of a set through
the built-in classes frozenset and set, as originally discussed in Chapter 1, with
frozenset being an immutable form. Both of those classes are implemented using
hash tables in Python.

Python’s collections module defines abstract base classes that essentially mirror
these built-in classes. Although the choice of names is counterintuitive, the abstract
base class collections.Set matches the concrete frozenset class, while the abstract
base class collections.MutableSet is akin to the concrete set class.

In our own discussion, we equate the “set ADT” with the behavior of the built-
in set class (and thus, the collections.MutableSet base class). We begin by listing
what we consider to be the five most fundamental behaviors for a set S:

S.add(e): Add element e to the set. This has no effect if the set
already contains e.

S.discard(e): Remove element e from the set, if present. This has no
effect if the set does not contain e.

e in S: Return True if the set contains element e. In Python, this
is implemented with the special contains method.

len(S): Return the number of elements in set S. In Python, this
is implemented with the special method len .

iter(S): Generate an iteration of all elements of the set. In Python,
this is implemented with the special method iter .
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In the next section, we will see that the above five methods suffice for deriving
all other behaviors of a set. Those remaining behaviors can be naturally grouped as
follows. We begin by describing the following additional operations for removing
one or more elements from a set:

S.remove(e): Remove element e from the set. If the set does not contain e,
raise a KeyError.

S.pop(): Remove and return an arbitrary element from the set. If the
set is empty, raise a KeyError.

S.clear(): Remove all elements from the set.

The next group of behaviors perform Boolean comparisons between two sets.

S == T: Return True if sets S and T have identical contents.

S != T: Return True if sets S and T are not equivalent.

S <= T: Return True if set S is a subset of set T.

S < T: Return True if set S is a proper subset of set T.

S >= T: Return True if set S is a superset of set T.

S > T: Return True if set S is a proper superset of set T.

S.isdisjoint(T): Return True if sets S and T have no common elements.

Finally, there exists a variety of behaviors that either update an existing set, or
compute a new set instance, based on classical set theory operations.

S | T: Return a new set representing the union of sets S and T.

S |= T: Update set S to be the union of S and set T.

S & T: Return a new set representing the intersection of sets S and T.

S &= T: Update set S to be the intersection of S and set T.

S ˆ T: Return a new set representing the symmetric difference of sets
S and T, that is, a set of elements that are in precisely one of
S or T.

S ˆ= T: Update set S to become the symmetric difference of itself and
set T.

S − T: Return a new set containing elements in S but not T.

S −= T: Update set S to remove all common elements with set T.
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10.5.2 Python’s MutableSet Abstract Base Class

To aid in the creation of user-defined set classes, Python’s collections module pro-
vides a MutableSet abstract base class (just as it provides the MutableMapping ab-
stract base class discussed in Section 10.1.3). The MutableSet base class provides
concrete implementations for all methods described in Section 10.5.1, except for
five core behaviors (add, discard, contains , len , and iter ) that must
be implemented by any concrete subclass. This design is an example of what is
known as the template method pattern, as the concrete methods of the MutableSet
class rely on the presumed abstract methods that will subsequently be provided by
a subclass.

For the purpose of illustration, we examine algorithms for implementing several
of the derived methods of the MutableSet base class. For example, to determine if
one set is a proper subset of another, we must verify two conditions: a proper subset
must have size strictly smaller than that of its superset, and each element of a subset
must be contained in the superset. An implementation of the corresponding lt
method based on this logic is given in Code Fragment 10.14.

def lt (self, other): # supports syntax S < T
”””Return true if this set is a proper subset of other.”””
if len(self) >= len(other):

return False # proper subset must have strictly smaller size
for e in self:

if e not in other:
return False # not a subset since element missing from other

return True # success; all conditions are met

Code Fragment 10.14: A possible implementation of the MutableSet. lt
method, which tests if one set is a proper subset of another.

As another example, we consider the computation of the union of two sets.
The set ADT includes two forms for computing a union. The syntax S | T should
produce a new set that has contents equal to the union of existing sets S and T . This
operation is implemented through the special method or in Python. Another
syntax, S |= T is used to update existing set S to become the union of itself and
set T . Therefore, all elements of T that are not already contained in S should
be added to S. We note that this “in-place” operation may be implemented more
efficiently than if we were to rely on the first form, using the syntax S = S | T, in
which identifier S is reassigned to a new set instance that represents the union. For
convenience, Python’s built-in set class supports named version of these behaviors,
with S.union(T) equivalent to S | T, and S.update(T) equivalent to S |= T (yet,
those named versions are not formally provided by the MutableSet abstract base
class).
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def or (self, other): # supports syntax S | T
”””Return a new set that is the union of two existing sets.”””
result = type(self)( ) # create new instance of concrete class
for e in self:

result.add(e)
for e in other:

result.add(e)
return result

Code Fragment 10.15: An implementation of the MutableSet. or method,
which computes the union of two existing sets.

An implementation of the behavior that computes a new set as a union of two
others is given in the form of the or special method, in Code Fragment 10.15.
An important subtlety in this implementation is the instantiation of the resulting
set. Since the MutableSet class is designed as an abstract base class, instances
must belong to a concrete subclass. When computing the union of two such con-
crete instances, the result should presumably be an instance of the same class as the
operands. The function type(self) returns a reference to the actual class of the in-
stance identified as self, and the subsequent parentheses in expression type(self)()
call the default constructor for that class.

In terms of efficiency, we analyze such set operations while letting n denote
the size of S and m denote the size of set T for an operation such as S | T. If
the concrete sets are implemented with hashing, the expected running time of the
implementation in Code Fragment 10.15 is O(m + n), because it loops over both
sets, performing constant-time operations in the form of a containment check and
a possible insertion into the result.

Our implementation of the in-place version of a union is given in Code Frag-
ment 10.16, in the form of the ior special method that supports syntax S |= T.
Notice that in this case, we do not create a new set instance, instead we modify and
return the existing set, after updating its contents to reflect the union operation. The
in-place version of the union has expected running time O(m) where m is the size
of the second set, because we only have to loop through that second set.

def ior (self, other): # supports syntax S |= T
”””Modify this set to be the union of itself an another set.”””
for e in other:

self.add(e)
return self # technical requirement of in-place operator

Code Fragment 10.16: An implementation of the MutableSet. ior method,
which performs an in-place union of one set with another.
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10.5.3 Implementing Sets, Multisets, and Multimaps

Sets

Although sets and maps have very different public interfaces, they are really quite
similar. A set is simply a map in which keys do not have associated values. Any
data structure used to implement a map can be modified to implement the set ADT
with similar performance guarantees. We could trivially adapt any map class by
storing set elements as keys, and using None as an irrelevant value, but such an
implementation is unnecessarily wasteful. An efficient set implementation should
abandon the Item composite that we use in our MapBase class and instead store
set elements directly in a data structure.

Multisets

The same element may occur several times in a multiset. All of the data structures
we have seen can be reimplemented to allow for duplicates to appear as separate
elements. However, another way to implement a multiset is by using a map in
which the map key is a (distinct) element of the multiset, and the associated value
is a count of the number of occurrences of that element within the multiset. In fact,
that is essentially what we did in Section 10.1.2 when computing the frequency of
words within a document.

Python’s standard collections module includes a definition for a class named
Counter that is in essence a multiset. Formally, the Counter class is a subclass of
dict, with the expectation that values are integers, and with additional functionality
like a most common(n) method that returns a list of the n most common elements.
The standard iter reports each element only once (since those are formally the
keys of the dictionary). There is another method named elements() that iterates
through the multiset with each element being repeated according to its count.

Multimaps

Although there is no multimap in Python’s standard libraries, a common imple-
mentation approach is to use a standard map in which the value associated with a
key is itself a container class storing any number of associated values. We give an
example of such a MultiMap class in Code Fragment 10.17. Our implementation
uses the standard dict class as the map, and a list of values as a composite value in
the dictionary. We have designed the class so that a different map implementation
can easily be substituted by overriding the class-level MapType attribute at line 3.
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1 class MultiMap:
2 ”””A multimap class built upon use of an underlying map for storage.”””
3 MapType = dict # Map type; can be redefined by subclass
4
5 def init (self):
6 ”””Create a new empty multimap instance.”””
7 self. map = self. MapType( ) # create map instance for storage
8 self. n = 0
9

10 def iter (self):
11 ”””Iterate through all (k,v) pairs in multimap.”””
12 for k,secondary in self. map.items():
13 for v in secondary:
14 yield (k,v)
15
16 def add(self, k, v):
17 ”””Add pair (k,v) to multimap.”””
18 container = self. map.setdefault(k, [ ]) # create empty list, if needed
19 container.append(v)
20 self. n += 1
21
22 def pop(self, k):
23 ”””Remove and return arbitrary (k,v) with key k (or raise KeyError).”””
24 secondary = self. map[k] # may raise KeyError
25 v = secondary.pop()
26 if len(secondary) == 0:
27 del self. map[k] # no pairs left
28 self. n −= 1
29 return (k, v)
30
31 def find(self, k):
32 ”””Return arbitrary (k,v) pair with given key (or raise KeyError).”””
33 secondary = self. map[k] # may raise KeyError
34 return (k, secondary[0])
35
36 def find all(self, k):
37 ”””Generate iteration of all (k,v) pairs with given key.”””
38 secondary = self. map.get(k, [ ]) # empty list, by default
39 for v in secondary:
40 yield (k,v)

Code Fragment 10.17: An implementation of a MultiMap using a dict for storage.
The len method, which returns self. n, is omitted from this listing.

www.it-ebooks.info

http://www.it-ebooks.info/


452 Chapter 10. Maps, Hash Tables, and Skip Lists

10.6 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-10.1 Give a concrete implementation of the pop method in the context of the
MutableMapping class, relying only on the five primary abstract methods
of that class.

R-10.2 Give a concrete implementation of the items() method in the context of
the MutableMapping class, relying only on the five primary abstract meth-
ods of that class. What would its running time be if directly applied to the
UnsortedTableMap subclass?

R-10.3 Give a concrete implementation of the items() method directly within the
UnsortedTableMap class, ensuring that the entire iteration runs in O(n)
time.

R-10.4 What is the worst-case running time for inserting n key-value pairs into an
initially empty map M that is implemented with the UnsortedTableMap
class?

R-10.5 Reimplement the UnsortedTableMap class from Section 10.1.5, using the
PositionalList class from Section 7.4 rather than a Python list.

R-10.6 Which of the hash table collision-handling schemes could tolerate a load
factor above 1 and which could not?

R-10.7 Our Position classes for lists and trees support the eq method so that
two distinct position instances are considered equivalent if they refer to the
same underlying node in a structure. For positions to be allowed as keys
in a hash table, there must be a definition for the hash method that
is consistent with this notion of equivalence. Provide such a hash
method.

R-10.8 What would be a good hash code for a vehicle identification number that
is a string of numbers and letters of the form “9X9XX99X9XX999999,”
where a “9” represents a digit and an “X” represents a letter?

R-10.9 Draw the 11-entry hash table that results from using the hash function,
h(i) = (3i+5) mod 11, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20,
16, and 5, assuming collisions are handled by chaining.

R-10.10 What is the result of the previous exercise, assuming collisions are han-
dled by linear probing?

R-10.11 Show the result of Exercise R-10.9, assuming collisions are handled by
quadratic probing, up to the point where the method fails.
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R-10.12 What is the result of Exercise R-10.9 when collisions are handled by dou-
ble hashing using the secondary hash function h′(k) = 7− (k mod 7)?

R-10.13 What is the worst-case time for putting n entries in an initially empty hash
table, with collisions resolved by chaining? What is the best case?

R-10.14 Show the result of rehashing the hash table shown in Figure 10.6 into a
table of size 19 using the new hash function h(k) = 3k mod 17.

R-10.15 Our HashMapBase class maintains a load factor λ ≤ 0.5. Reimplement
that class to allow the user to specify the maximum load, and adjust the
concrete subclasses accordingly.

R-10.16 Give a pseudo-code description of an insertion into a hash table that uses
quadratic probing to resolve collisions, assuming we also use the trick of
replacing deleted entries with a special “deactivated entry” object.

R-10.17 Modify our ProbeHashMap to use quadratic probing.

R-10.18 Explain why a hash table is not suited to implement a sorted map.

R-10.19 Describe how a sorted list implemented as a doubly linked list could be
used to implement the sorted map ADT.

R-10.20 What is the worst-case asymptotic running time for performing n deletions
from a SortedTableMap instance that initially contains 2n entries?

R-10.21 Consider the following variant of the find index method from Code Frag-
ment 10.8, in the context of the SortedTableMap class:

def find index(self, k, low, high):
if high < low:

return high + 1
else:

mid = (low + high) // 2
if self. table[mid]. key < k:

return self. find index(k, mid + 1, high)
else:

return self. find index(k, low, mid − 1)

Does this always produce the same result as the original version? Justify
your answer.

R-10.22 What is the expected running time of the methods for maintaining a max-
ima set if we insert n pairs such that each pair has lower cost and perfor-
mance than one before it? What is contained in the sorted map at the end
of this series of operations? What if each pair had a lower cost and higher
performance than the one before it?

R-10.23 Draw an example skip list S that results from performing the following
series of operations on the skip list shown in Figure 10.13: del S[38],
S[48] = x , S[24] = y , del S[55]. Record your coin flips, as well.
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R-10.24 Give a pseudo-code description of the delitem map operation when
using a skip list.

R-10.25 Give a concrete implementation of the pop method, in the context of a
MutableSet abstract base class, that relies only on the five core set behav-
iors described in Section 10.5.2.

R-10.26 Give a concrete implementation of the isdisjoint method in the context
of the MutableSet abstract base class, relying only on the five primary
abstract methods of that class. Your algorithm should run in O(min(n,m))
where n and m denote the respective cardinalities of the two sets.

R-10.27 What abstraction would you use to manage a database of friends’ birth-
days in order to support efficient queries such as “find all friends whose
birthday is today” and “find the friend who will be the next to celebrate a
birthday”?

Creativity

C-10.28 On page 406 of Section 10.1.3, we give an implementation of the method
setdefault as it might appear in the MutableMapping abstract base class.
While that method accomplishes the goal in a general fashion, its effi-
ciency is less than ideal. In particular, when the key is new, there will be
a failed search due to the initial use of getitem , and then a subse-
quent insertion via setitem . For a concrete implementation, such as
the UnsortedTableMap, this is twice the work because a complete scan
of the table will take place during the failed getitem , and then an-
other complete scan of the table takes place due to the implementation of

setitem . A better solution is for the UnsortedTableMap class to over-
ride setdefault to provide a direct solution that performs a single search.
Give such an implementation of UnsortedTableMap.setdefault.

C-10.29 Repeat Exercise C-10.28 for the ProbeHashMap class.

C-10.30 Repeat Exercise C-10.28 for the ChainHashMap class.

C-10.31 For an ideal compression function, the capacity of the bucket array for a
hash table should be a prime number. Therefore, we consider the problem
of locating a prime number in a range [M,2M]. Implement a method for
finding such a prime by using the sieve algorithm. In this algorithm, we
allocate a 2M cell Boolean array A, such that cell i is associated with the
integer i. We then initialize the array cells to all be “true” and we “mark
off” all the cells that are multiples of 2, 3, 5, 7, and so on. This process
can stop after it reaches a number larger than

√
2M. (Hint: Consider a

bootstrapping method for finding the primes up to
√

2M.)
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C-10.32 Perform experiments on our ChainHashMap and ProbeHashMap classes
to measure its efficiency using random key sets and varying limits on the
load factor (see Exercise R-10.15).

C-10.33 Our implementation of separate chaining in ChainHashMap conserves
memory by representing empty buckets in the table as None, rather than
as empty instances of a secondary structure. Because many of these buck-
ets will hold a single item, a better optimization is to have those slots of
the table directly reference the Item instance, and to reserve use of sec-
ondary containers for buckets that have two or more items. Modify our
implementation to provide this additional optimization.

C-10.34 Computing a hash code can be expensive, especially for lengthy keys. In
our hash table implementations, we compute the hash code when first in-
serting an item, and recompute each item’s hash code each time we resize
our table. Python’s dict class makes an interesting trade-off. The hash
code is computed once, when an item is inserted, and the hash code is
stored as an extra field of the item composite, so that it need not be recom-
puted. Reimplement our HashTableBase class to use such an approach.

C-10.35 Describe how to perform a removal from a hash table that uses linear
probing to resolve collisions where we do not use a special marker to
represent deleted elements. That is, we must rearrange the contents so that
it appears that the removed entry was never inserted in the first place.

C-10.36 The quadratic probing strategy has a clustering problem related to the way
it looks for open slots. Namely, when a collision occurs at bucket h(k), it
checks buckets A[(h(k)+ i2) mod N], for i = 1,2, . . . ,N −1.

a. Show that i2 mod N will assume at most (N + 1)/2 distinct values,
for N prime, as i ranges from 1 to N − 1. As a part of this justifica-
tion, note that i2 mod N = (N − i)2 mod N for all i.

b. A better strategy is to choose a prime N such that N mod 4 = 3 and
then to check the buckets A[(h(k)± i2) mod N] as i ranges from 1
to (N − 1)/2, alternating between plus and minus. Show that this
alternate version is guaranteed to check every bucket in A.

C-10.37 Refactor our ProbeHashMap design so that the sequence of secondary
probes for collision resolution can be more easily customized. Demon-
strate your new framework by providing separate concrete subclasses for
linear probing and quadratic probing.

C-10.38 Design a variation of binary search for performing the multimap opera-
tion find all(k) implemented with a sorted search table that includes du-
plicates, and show that it runs in time O(s+ logn), where n is the number
of elements in the dictionary and s is the number of items with given key k.
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C-10.39 Although keys in a map are distinct, the binary search algorithm can be
applied in a more general setting in which an array stores possibly duplica-
tive elements in nondecreasing order. Consider the goal of identifying the
index of the leftmost element with key greater than or equal to given k.
Does the find index method as given in Code Fragment 10.8 guarantee
such a result? Does the find index method as given in Exercise R-10.21
guarantee such a result? Justify your answers.

C-10.40 Suppose we are given two sorted search tables S and T , each with n entries
(with S and T being implemented with arrays). Describe an O(log2 n)-
time algorithm for finding the kth smallest key in the union of the keys
from S and T (assuming no duplicates).

C-10.41 Give an O(logn)-time solution for the previous problem.
C-10.42 Suppose that each row of an n×n array A consists of 1’s and 0’s such that,

in any row of A, all the 1’s come before any 0’s in that row. Assuming A
is already in memory, describe a method running in O(n logn) time (not
O(n2) time!) for counting the number of 1’s in A.

C-10.43 Given a collection C of n cost-performance pairs (c, p), describe an algo-
rithm for finding the maxima pairs of C in O(n logn) time.

C-10.44 Show that the methods above(p) and prev(p) are not actually needed to
efficiently implement a map using a skip list. That is, we can imple-
ment insertions and deletions in a skip list using a strictly top-down, scan-
forward approach, without ever using the above or prev methods. (Hint:
In the insertion algorithm, first repeatedly flip the coin to determine the
level where you should start inserting the new entry.)

C-10.45 Describe how to modify a skip-list representation so that index-based
operations, such as retrieving the item at index j, can be performed in
O(logn) expected time.

C-10.46 For sets S and T , the syntax S ˆ T returns a new set that is the symmet-
ric difference, that is, a set of elements that are in precisely one of S or
T . This syntax is supported by the special xor method. Provide an
implementation of that method in the context of the MutableSet abstract
base class, relying only on the five primary abstract methods of that class.

C-10.47 In the context of the MutableSet abstract base class, describe a concrete
implementation of the and method, which supports the syntax S & T
for computing the intersection of two existing sets.

C-10.48 An inverted file is a critical data structure for implementing a search en-
gine or the index of a book. Given a document D, which can be viewed
as an unordered, numbered list of words, an inverted file is an ordered list
of words, L, such that, for each word w in L, we store the indices of the
places in D where w appears. Design an efficient algorithm for construct-
ing L from D.
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C-10.49 Python’s collections module provides an OrderedDict class that is unre-
lated to our sorted map abstraction. An OrderedDict is a subclass of the
standard hash-based dict class that retains the expected O(1) performance
for the primary map operations, but that also guarantees that the iter
method reports items of the map according to first-in, first-out (FIFO)
order. That is, the key that has been in the dictionary the longest is re-
ported first. (The order is unaffected when the value for an existing key
is overwritten.) Describe an algorithmic approach for achieving such per-
formance.

Projects

P-10.50 Perform a comparative analysis that studies the collision rates for various
hash codes for character strings, such as various polynomial hash codes
for different values of the parameter a. Use a hash table to determine
collisions, but only count collisions where different strings map to the
same hash code (not if they map to the same location in this hash table).
Test these hash codes on text files found on the Internet.

P-10.51 Perform a comparative analysis as in the previous exercise, but for 10-digit
telephone numbers instead of character strings.

P-10.52 Implement an OrderedDict class, as described in Exercise C-10.49, en-
suring that the primary map operations run in O(1) expected time.

P-10.53 Design a Python class that implements the skip-list data structure. Use
this class to create a complete implementation of the sorted map ADT.

P-10.54 Extend the previous project by providing a graphical animation of the
skip-list operations. Visualize how entries move up the skip list during
insertions and are linked out of the skip list during removals. Also, in a
search operation, visualize the scan-forward and drop-down actions.

P-10.55 Write a spell-checker class that stores a lexicon of words, W , in a Python
set, and implements a method, check(s), which performs a spell check
on the string s with respect to the set of words, W . If s is in W , then
the call to check(s) returns a list containing only s, as it is assumed to
be spelled correctly in this case. If s is not in W , then the call to check(s)
returns a list of every word in W that might be a correct spelling of s. Your
program should be able to handle all the common ways that s might be a
misspelling of a word in W , including swapping adjacent characters in a
word, inserting a single character in between two adjacent characters in a
word, deleting a single character from a word, and replacing a character in
a word with another character. For an extra challenge, consider phonetic
substitutions as well.
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Chapter Notes

Hashing is a well-studied technique. The reader interested in further study is encouraged
to explore the book by Knuth [65], as well as the book by Vitter and Chen [100]. Skip
lists were introduced by Pugh [86]. Our analysis of skip lists is a simplification of a pre-
sentation given by Motwani and Raghavan [80]. For a more in-depth analysis of skip lists,
please see the various research papers on skip lists that have appeared in the data structures
literature [59, 81, 84]. Exercise C-10.36 was contributed by James Lee.
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11.1 Binary Search Trees

In Chapter 8 we introduced the tree data structure and demonstrated a variety of
applications. One important use is as a search tree (as described on page 332). In
this chapter, we use a search tree structure to efficiently implement a sorted map.
The three most fundamental methods of a map M (see Section 10.1.1) are:

M[k]: Return the value v associated with key k in map M, if one exists;
otherwise raise a KeyError; implemented with getitem method.

M[k] = v: Associate value v with key k in map M, replacing the existing value
if the map already contains an item with key equal to k; implemented
with setitem method.

del M[k]: Remove from map M the item with key equal to k; if M has no such
item, then raise a KeyError; implemented with delitem method.

The sorted map ADT includes additional functionality (see Section 10.3), guar-
anteeing that an iteration reports keys in sorted order, and supporting additional
searches such as find gt(k) and find range(start, stop).

Binary trees are an excellent data structure for storing items of a map, assuming
we have an order relation defined on the keys. In this context, a binary search tree
is a binary tree T with each position p storing a key-value pair (k,v) such that:

• Keys stored in the left subtree of p are less than k.
• Keys stored in the right subtree of p are greater than k.

An example of such a binary search tree is given in Figure 11.1. As a matter of
convenience, we will not diagram the values associated with keys in this chapter,
since those values do not affect the placement of items within a search tree.

80

825428 93

6532 97

44

8817

8

7629

Figure 11.1: A binary search tree with integer keys. We omit the display of associ-
ated values in this chapter, since they are not relevant to the order of items within a
search tree.
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11.1.1 Navigating a Binary Search Tree

We begin by demonstrating that a binary search tree hierarchically represents the
sorted order of its keys. In particular, the structural property regarding the place-
ment of keys within a binary search tree assures the following important conse-
quence regarding an inorder traversal (Section 8.4.3) of the tree.

Proposition 11.1: An inorder traversal of a binary search tree visits positions in
increasing order of their keys.

Justification: We prove this by induction on the size of a subtree. If a subtree
has at most one item, its keys are trivially visited in order. More generally, an
inorder traversal of a (sub)tree consists of a recursive traversal of the (possibly
empty) left subtree, followed by a visit of the root, and then a recursive traversal of
the (possibly empty) right subtree. By induction, a recursive inorder traversal of the
left subtree will produce an iteration of the keys in that subtree in increasing order.
Furthermore, by the binary search tree property, all keys in the left subtree have
keys strictly smaller than that of the root. Therefore, visiting the root just after that
subtree extends the increasing order of keys. Finally, by the search tree property,
all keys in the right subtree are strictly greater than the root, and by induction, an
inorder traversal of that subtree will visit those keys in increasing order.

Since an inorder traversal can be executed in linear time, a consequence of this
proposition is that we can produce a sorted iteration of the keys of a map in linear
time, when represented as a binary search tree.

Although an inorder traversal is typically expressed using a top-down recur-
sion, we can provide nonrecursive descriptions of operations that allow more fine-
grained navigation among the positions of a binary search relative to the order of
their keys. Our generic binary tree ADT from Chapter 8 is defined as a positional
structure, allowing direct navigation using methods such as parent(p), left(p), and
right(p). With a binary search tree, we can provide additional navigation based on
the natural order of the keys stored in the tree. In particular, we can support the
following methods, akin to those provided by a PositionalList (Section 7.4.1).

first(): Return the position containing the least key, or None if the tree is empty.

last(): Return the position containing the greatest key, or None if empty tree.

before(p): Return the position containing the greatest key that is less than that of
position p (i.e., the position that would be visited immediately before p
in an inorder traversal), or None if p is the first position.

after(p): Return the position containing the least key that is greater than that of
position p (i.e., the position that would be visited immediately after p
in an inorder traversal), or None if p is the last position.
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The “first” position of a binary search tree can be located by starting a walk at
the root and continuing to the left child, as long as a left child exists. By symmetry,
the last position is reached by repeated steps rightward starting at the root.

The successor of a position, after(p), is determined by the following algorithm.

Algorithm after(p):

if right(p) is not None then {successor is leftmost position in p’s right subtree}
walk = right(p)
while left(walk) is not None do

walk = left(walk)
return walk

else {successor is nearest ancestor having p in its left subtree}
walk = p
ancestor = parent(walk)
while ancestor is not None and walk == right(ancestor) do

walk = ancestor
ancestor = parent(walk)

return ancestor

Code Fragment 11.1: Computing the successor of a position in a binary search tree.

The rationale for this process is based purely on the workings of an inorder
traversal, given the correspondence of Proposition 11.1. If p has a right subtree,
that right subtree is recursively traversed immediately after p is visited, and so the
first position to be visited after p is the leftmost position within the right subtree.
If p does not have a right subtree, then the flow of control of an inorder traversal
returns to p’s parent. If p were in the right subtree of that parent, then the parent’s
subtree traversal is complete and the flow of control progresses to its parent and
so on. Once an ancestor is reached in which the recursion is returning from its
left subtree, then that ancestor becomes the next position visited by the inorder
traversal, and thus is the successor of p. Notice that the only case in which no such
ancestor is found is when p was the rightmost (last) position of the full tree, in
which case there is no successor.

A symmetric algorithm can be defined to determine the predecessor of a po-
sition, before(p). At this point, we note that the running time of single call to
after(p) or before(p) is bounded by the height h of the full tree, because it is found
after either a single downward walk or a single upward walk. While the worst-case
running time is O(h), we note that either of these methods run in O(1) amortized
time, in that series of n calls to after(p) starting at the first position will execute in a
total of O(n) time. We leave a formal justification of this fact to Exercise C-11.34,
but intuitively the upward and downward paths mimic steps of the inorder traversal
(a related argument was made in the justification of Proposition 9.3).
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11.1.2 Searches

The most important consequence of the structural property of a binary search tree
is its namesake search algorithm. We can attempt to locate a particular key in a
binary search tree by viewing it as a decision tree (recall Figure 8.7). In this case,
the question asked at each position p is whether the desired key k is less than, equal
to, or greater than the key stored at position p, which we denote as p.key(). If the
answer is “less than,” then the search continues in the left subtree. If the answer
is “equal,” then the search terminates successfully. If the answer is “greater than,”
then the search continues in the right subtree. Finally, if we reach an empty subtree,
then the search terminates unsuccessfully. (See Figure 11.2.)

80

825428 93

6532 97
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8817

8

7629

825428 93

6532 97

44

8817

8

80

7629

(a) (b)
Figure 11.2: (a) A successful search for key 65 in a binary search tree; (b) an
unsuccessful search for key 68 that terminates because there is no subtree to the
left of the key 76.

We describe this approach in Code Fragment 11.2. If key k occurs in a subtree
rooted at p, a call to TreeSearch(T, p, k) results in the position at which the key
is found; in this case, the getitem map operation would return the associated
value at that position. In the event of an unsuccessful search, the TreeSearch al-
gorithm returns the final position explored on the search path (which we will later
make use of when determining where to insert a new item in a search tree).

Algorithm TreeSearch(T, p, k):

if k == p.key() then
return p {successful search}

else if k < p.key() and T.left(p) is not None then
return TreeSearch(T, T.left(p), k) {recur on left subtree}

else if k > p.key() and T.right(p) is not None then
return TreeSearch(T, T.right(p), k) {recur on right subtree}

return p {unsuccessful search}
Code Fragment 11.2: Recursive search in a binary search tree.
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Analysis of Binary Tree Searching

The analysis of the worst-case running time of searching in a binary search tree
T is simple. Algorithm TreeSearch is recursive and executes a constant number
of primitive operations for each recursive call. Each recursive call of TreeSearch
is made on a child of the previous position. That is, TreeSearch is called on the
positions of a path of T that starts at the root and goes down one level at a time.
Thus, the number of such positions is bounded by h+1, where h is the height of T .
In other words, since we spend O(1) time per position encountered in the search,
the overall search runs in O(h) time, where h is the height of the binary search
tree T . (See Figure 11.3.)

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

Figure 11.3: Illustrating the running time of searching in a binary search tree. The
figure uses standard caricature of a binary search tree as a big triangle and a path
from the root as a zig-zag line.

In the context of the sorted map ADT, the search will be used as a subroutine
for implementing the getitem method, as well as for the setitem and

delitem methods, since each of these begins by trying to locate an existing
item with a given key. To implement sorted map operations such as find lt and
find gt, we will combine this search with traversal methods before and after. All
of these operations will run in worst-case O(h) time for a tree with height h. We
can use a variation of this technique to implement the find range method in time
O(s+ h), where s is the number of items reported (see Exercise C-11.34).

Admittedly, the height h of T can be as large as the number of entries, n, but we
expect that it is usually much smaller. Indeed, later in this chapter we show various
strategies to maintain an upper bound of O(logn) on the height of a search tree T .
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11.1.3 Insertions and Deletions

Algorithms for inserting or deleting entries of a binary search tree are fairly straight-
forward, although not trivial.

Insertion

The map command M[k] = v, as supported by the setitem method, begins
with a search for key k (assuming the map is nonempty). If found, that item’s
existing value is reassigned. Otherwise, a node for the new item can be inserted
into the underlying tree T in place of the empty subtree that was reached at the end
of the failed search. The binary search tree property is sustained by that placement
(note that it is placed exactly where a search would expect it). Pseudo-code for
such a TreeInsert algorithm is given in in Code Fragment 11.3.

Algorithm TreeInsert(T, k, v):
Input: A search key k to be associated with value v

p = TreeSearch(T,T.root(),k)
if k == p.key() then

Set p’s value to v
else if k < p.key() then

add node with item (k,v) as left child of p
else

add node with item (k,v) as right child of p

Code Fragment 11.3: Algorithm for inserting a key-value pair into a map that is
represented as a binary search tree.

An example of insertion into a binary search tree is shown in Figure 11.4.
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5428 93

6532 97

44

8817

8

80

76

82

29

(a) (b)

Figure 11.4: Insertion of an item with key 68 into the search tree of Figure 11.2.
Finding the position to insert is shown in (a), and the resulting tree is shown in (b).
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Deletion

Deleting an item from a binary search tree T is a bit more complex than inserting
a new item because the location of the deletion might be anywhere in the tree. (In
contrast, insertions are always enacted at the bottom of a path.) To delete an item
with key k, we begin by calling TreeSearch(T, T.root(), k) to find the position p
of T storing an item with key equal to k. If the search is successful, we distinguish
between two cases (of increasing difficulty):

• If p has at most one child, the deletion of the node at position p is easily
implemented. When introducing update methods for the LinkedBinaryTree
class in Section 8.3.1, we declared a nonpublic utility, delete(p), that deletes
a node at position p and replaces it with its child (if any), presuming that p has
at most one child. That is precisely the desired behavior. It removes the item
with key k from the map while maintaining all other ancestor-descendant
relationships in the tree, thereby assuring the upkeep of the binary search
tree property. (See Figure 11.5.)

• If position p has two children, we cannot simply remove the node from T
since this would create a “hole” and two orphaned children. Instead, we
proceed as follows (see Figure 11.6):

◦ We locate position r containing the item having the greatest key that is
strictly less than that of position p, that is, r = before(p) by the notation
of Section 11.1.1. Because p has two children, its predecessor is the
rightmost position of the left subtree of p.

◦ We use r’s item as a replacement for the one being deleted at position p.
Because r has the immediately preceding key in the map, any items in
p’s right subtree will have keys greater than r and any other items in p’s
left subtree will have keys less than r. Therefore, the binary search tree
property is satisfied after the replacement.

◦ Having used r’s as a replacement for p, we instead delete the node at
position r from the tree. Fortunately, since r was located as the right-
most position in a subtree, r does not have a right child. Therefore, its
deletion can be performed using the first (and simpler) approach.

As with searching and insertion, this algorithm for a deletion involves the
traversal of a single path downward from the root, possibly moving an item between
two positions of this path, and removing a node from that path and promoting its
child. Therefore, it executes in time O(h) where h is the height of the tree.
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Figure 11.5: Deletion from the binary search tree of Figure 11.4b, where the item
to delete (with key 32) is stored at a position p with one child r : (a) before the
deletion; (b) after the deletion.
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Figure 11.6: Deletion from the binary search tree of Figure 11.5b, where the item
to delete (with key 88) is stored at a position p with two children, and replaced by
its predecessor r : (a) before the deletion; (b) after the deletion.
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11.1.4 Python Implementation

In Code Fragments 11.4 through 11.8 we define a TreeMap class that implements
the sorted map ADT using a binary search tree. In fact, our implementation is more
general. We support all of the standard map operations (Section 10.1.1), all ad-
ditional sorted map operations (Section 10.3), and positional operations including
first(), last(), find position(k), before(p), after(p), and delete(p).

Our TreeMap class takes advantage of multiple inheritance for code reuse,
inheriting from the LinkedBinaryTree class of Section 8.3.1 for our representation
as a positional binary tree, and from the MapBase class from Code Fragment 10.2
of Section 10.1.4 to provide us with the key-value composite item and the concrete
behaviors from the collections.MutableMapping abstract base class. We subclass
the nested Position class to support more specific p.key() and p.value() accessors
for our map, rather than the p.element() syntax inherited from the tree ADT.

We define several nonpublic utilities, most notably a subtree search(p, k)
method that corresponds to the TreeSearch algorithm of Code Fragment 11.2. That
returns a position, ideally one that contains the key k, or otherwise the last position
that is visited on the search path. We rely on the fact that the final position dur-
ing an unsuccessful search is either the nearest key less than k or the nearest key
greater than k. This search utility becomes the basis for the public find position(k)
method, and also for internal use when searching, inserting, or deleting items from
a map, as well as for the robust searches of the sorted map ADT.

When making structural modifications to the tree, we rely on nonpublic update
methods, such as add right, that are inherited from the LinkedBinaryTree class
(see Section 8.3.1). It is important that these inherited methods remain nonpublic,
as the search tree property could be violated through misuse of such operations.

Finally, we note that our code is peppered with calls to presumed methods
named rebalance insert, rebalance delete, and rebalance access. These meth-
ods serve as hooks for future use when balancing search trees; we discuss them in
Section 11.2. We conclude with a brief guide to the organization of our code.

Code Fragment 11.4: Beginning of TreeMap class including redefined Position
class and nonpublic search utilities.

Code Fragment 11.5: Positional methods first(), last(), before(p), after(p),
and find position(p) accessor.

Code Fragment 11.6: Selected methods of the sorted map ADT: find min(),
find ge(k), and find range(start, stop); related methods
are omitted for the sake of brevity.

Code Fragment 11.7: getitem (k), setitem (k, v), and iter ().

Code Fragment 11.8: Deletion either by position, as delete(p), or by key, as
delitem (k).
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1 class TreeMap(LinkedBinaryTree, MapBase):
2 ”””Sorted map implementation using a binary search tree.”””
3
4 #---------------------------- override Position class ----------------------------
5 class Position(LinkedBinaryTree.Position):
6 def key(self):
7 ”””Return key of map s key-value pair.”””
8 return self.element(). key
9

10 def value(self):
11 ”””Return value of map s key-value pair.”””
12 return self.element(). value
13
14 #------------------------------- nonpublic utilities -------------------------------
15 def subtree search(self, p, k):
16 ”””Return Position of p s subtree having key k, or last node searched.”””
17 if k == p.key(): # found match
18 return p
19 elif k < p.key(): # search left subtree
20 if self.left(p) is not None:
21 return self. subtree search(self.left(p), k)
22 else: # search right subtree
23 if self.right(p) is not None:
24 return self. subtree search(self.right(p), k)
25 return p # unsucessful search
26
27 def subtree first position(self, p):
28 ”””Return Position of first item in subtree rooted at p.”””
29 walk = p
30 while self.left(walk) is not None: # keep walking left
31 walk = self.left(walk)
32 return walk
33
34 def subtree last position(self, p):
35 ”””Return Position of last item in subtree rooted at p.”””
36 walk = p
37 while self.right(walk) is not None: # keep walking right
38 walk = self.right(walk)
39 return walk

Code Fragment 11.4: Beginning of a TreeMap class based on a binary search tree.
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40 def first(self):
41 ”””Return the first Position in the tree (or None if empty).”””
42 return self. subtree first position(self.root()) if len(self) > 0 else None
43
44 def last(self):
45 ”””Return the last Position in the tree (or None if empty).”””
46 return self. subtree last position(self.root()) if len(self) > 0 else None
47
48 def before(self, p):
49 ”””Return the Position just before p in the natural order.
50
51 Return None if p is the first position.
52 ”””
53 self. validate(p) # inherited from LinkedBinaryTree
54 if self.left(p):
55 return self. subtree last position(self.left(p))
56 else:
57 # walk upward
58 walk = p
59 above = self.parent(walk)
60 while above is not None and walk == self.left(above):
61 walk = above
62 above = self.parent(walk)
63 return above
64
65 def after(self, p):
66 ”””Return the Position just after p in the natural order.
67
68 Return None if p is the last position.
69 ”””
70 # symmetric to before(p)
71
72 def find position(self, k):
73 ”””Return position with key k, or else neighbor (or None if empty).”””
74 if self.is empty():
75 return None
76 else:
77 p = self. subtree search(self.root(), k)
78 self. rebalance access(p) # hook for balanced tree subclasses
79 return p

Code Fragment 11.5: Navigational methods of the TreeMap class.
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80 def find min(self):
81 ”””Return (key,value) pair with minimum key (or None if empty).”””
82 if self.is empty():
83 return None
84 else:
85 p = self.first()
86 return (p.key(), p.value())
87
88 def find ge(self, k):
89 ”””Return (key,value) pair with least key greater than or equal to k.
90
91 Return None if there does not exist such a key.
92 ”””
93 if self.is empty():
94 return None
95 else:
96 p = self.find position(k) # may not find exact match
97 if p.key( ) < k: # p’s key is too small
98 p = self.after(p)
99 return (p.key(), p.value()) if p is not None else None

100
101 def find range(self, start, stop):
102 ”””Iterate all (key,value) pairs such that start <= key < stop.
103
104 If start is None, iteration begins with minimum key of map.
105 If stop is None, iteration continues through the maximum key of map.
106 ”””
107 if not self.is empty():
108 if start is None:
109 p = self.first()
110 else:
111 # we initialize p with logic similar to find ge
112 p = self.find position(start)
113 if p.key( ) < start:
114 p = self.after(p)
115 while p is not None and (stop is None or p.key( ) < stop):
116 yield (p.key(), p.value())
117 p = self.after(p)

Code Fragment 11.6: Some of the sorted map operations for the TreeMap class.
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118 def getitem (self, k):
119 ”””Return value associated with key k (raise KeyError if not found).”””
120 if self.is empty():
121 raise KeyError( Key Error: + repr(k))
122 else:
123 p = self. subtree search(self.root(), k)
124 self. rebalance access(p) # hook for balanced tree subclasses
125 if k != p.key():
126 raise KeyError( Key Error: + repr(k))
127 return p.value()
128
129 def setitem (self, k, v):
130 ”””Assign value v to key k, overwriting existing value if present.”””
131 if self.is empty():
132 leaf = self. add root(self. Item(k,v)) # from LinkedBinaryTree
133 else:
134 p = self. subtree search(self.root(), k)
135 if p.key( ) == k:
136 p.element(). value = v # replace existing item’s value
137 self. rebalance access(p) # hook for balanced tree subclasses
138 return
139 else:
140 item = self. Item(k,v)
141 if p.key( ) < k:
142 leaf = self. add right(p, item) # inherited from LinkedBinaryTree
143 else:
144 leaf = self. add left(p, item) # inherited from LinkedBinaryTree
145 self. rebalance insert(leaf) # hook for balanced tree subclasses
146
147 def iter (self):
148 ”””Generate an iteration of all keys in the map in order.”””
149 p = self.first()
150 while p is not None:
151 yield p.key()
152 p = self.after(p)

Code Fragment 11.7: Map operations for accessing and inserting items in the
TreeMap class. Reverse iteration can be implemented with reverse , using
symmetric approach to iter .
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153 def delete(self, p):
154 ”””Remove the item at given Position.”””
155 self. validate(p) # inherited from LinkedBinaryTree
156 if self.left(p) and self.right(p): # p has two children
157 replacement = self. subtree last position(self.left(p))
158 self. replace(p, replacement.element()) # from LinkedBinaryTree
159 p = replacement
160 # now p has at most one child
161 parent = self.parent(p)
162 self. delete(p) # inherited from LinkedBinaryTree
163 self. rebalance delete(parent) # if root deleted, parent is None
164
165 def delitem (self, k):
166 ”””Remove item associated with key k (raise KeyError if not found).”””
167 if not self.is empty():
168 p = self. subtree search(self.root(), k)
169 if k == p.key():
170 self.delete(p) # rely on positional version
171 return # successful deletion complete
172 self. rebalance access(p) # hook for balanced tree subclasses
173 raise KeyError( Key Error: + repr(k))

Code Fragment 11.8: Support for deleting an item from a TreeMap, located either
by position or by key.

11.1.5 Performance of a Binary Search Tree

An analysis of the operations of our TreeMap class is given in Table 11.1. Almost
all operations have a worst-case running time that depends on h, where h is the
height of the current tree. This is because most operations rely on a constant amount
of work for each node along a particular path of the tree, and the maximum path
length within a tree is proportional to the height of the tree. Most notably, our
implementations of map operations getitem , setitem , and delitem
each begin with a call to the subtree search utility which traces a path downward
from the root of the tree, using O(1) time at each node to determine how to con-
tinue the search. Similar paths are traced when looking for a replacement during a
deletion, or when computing a position’s inorder predecessor or successor. We note
that although a single call to the after method has worst-case running time of O(h),
the n successive calls made during a call to iter require a total of O(n) time,
since each edge is traced at most twice; in a sense, those calls have O(1) amortized
time bounds. A similar argument can be used to prove the O(s + h) worst-case
bound for a call to find range that reports s results (see Exercise C-11.34).
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Operation Running Time
k in T O(h)

T[k], T[k] = v O(h)

T.delete(p), del T[k] O(h)

T.find position(k) O(h)

T.first(), T.last(), T.find min(), T.find max() O(h)

T.before(p), T.after(p) O(h)

T.find lt(k), T.find le(k), T.find gt(k), T.find ge(k) O(h)

T.find range(start, stop) O(s+ h)

iter(T), reversed(T) O(n)

Table 11.1: Worst-case running times of the operations for a TreeMap T. We denote
the current height of the tree with h, and the number of items reported by find range
as s. The space usage is O(n), where n is the number of items stored in the map.

A binary search tree T is therefore an efficient implementation of a map with n
entries only if its height is small. In the best case, T has height h = 
log(n+1)�−1,
which yields logarithmic-time performance for all the map operations. In the worst
case, however, T has height n, in which case it would look and feel like an ordered
list implementation of a map. Such a worst-case configuration arises, for example,
if we insert items with keys in increasing or decreasing order. (See Figure 11.7.)

30

40

10

20

Figure 11.7: Example of a binary search tree with linear height, obtained by insert-
ing entries with keys in increasing order.

We can nevertheless take comfort that, on average, a binary search tree with
n keys generated from a random series of insertions and removals of keys has ex-
pected height O(logn); the justification of this statement is beyond the scope of the
book, requiring careful mathematical language to precisely define what we mean
by a random series of insertions and removals, and sophisticated probability theory.

In applications where one cannot guarantee the random nature of updates, it
is better to rely on variations of search trees, presented in the remainder of this
chapter, that guarantee a worst-case height of O(logn), and thus O(logn) worst-
case time for searches, insertions, and deletions.
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11.2 Balanced Search Trees

In the closing of the previous section, we noted that if we could assume a random
series of insertions and removals, the standard binary search tree supports O(logn)
expected running times for the basic map operations. However, we may only claim
O(n) worst-case time, because some sequences of operations may lead to an unbal-
anced tree with height proportional to n.

In the remainder of this chapter, we explore four search tree algorithms that
provide stronger performance guarantees. Three of the four data structures (AVL
trees, splay trees, and red-black trees) are based on augmenting a standard binary
search tree with occasional operations to reshape the tree and reduce its height.

The primary operation to rebalance a binary search tree is known as a rotation.
During a rotation, we “rotate” a child to be above its parent, as diagrammed in
Figure 11.8.

y x

y

T1

T2 T3T1 T2

T3

x

Figure 11.8: A rotation operation in a binary search tree. A rotation can be per-
formed to transform the left formation into the right, or the right formation into the
left. Note that all keys in subtree T1 have keys less than that of position x, all keys
in subtree T2 have keys that are between those of positions x and y, and all keys in
subtree T3 have keys that are greater than that of position y.

To maintain the binary search tree property through a rotation, we note that
if position x was a left child of position y prior to a rotation (and therefore the
key of x is less than the key of y), then y becomes the right child of x after the
rotation, and vice versa. Furthermore, we must relink the subtree of items with
keys that lie between the keys of the two positions that are being rotated. For
example, in Figure 11.8 the subtree labeled T2 represents items with keys that are
known to be greater than that of position x and less than that of position y. In the
first configuration of that figure, T2 is the right subtree of position x; in the second
configuration, it is the left subtree of position y.

Because a single rotation modifies a constant number of parent-child relation-
ships, it can be implemented in O(1) time with a linked binary tree representation.
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In the context of a tree-balancing algorithm, a rotation allows the shape of a
tree to be modified while maintaining the search tree property. If used wisely, this
operation can be performed to avoid highly unbalanced tree configurations. For
example, a rightward rotation from the first formation of Figure 11.8 to the second
reduces the depth of each node in subtree T1 by one, while increasing the depth
of each node in subtree T3 by one. (Note that the depth of nodes in subtree T2 are
unaffected by the rotation.)

One or more rotations can be combined to provide broader rebalancing within a
tree. One such compound operation we consider is a trinode restructuring. For this
manipulation, we consider a position x, its parent y, and its grandparent z. The goal
is to restructure the subtree rooted at z in order to reduce the overall path length
to x and its subtrees. Pseudo-code for a restructure(x) method is given in Code
Fragment 11.9 and illustrated in Figure 11.9. In describing a trinode restructuring,
we temporarily rename the positions x, y, and z as a, b, and c, so that a precedes b
and b precedes c in an inorder traversal of T . There are four possible orientations
mapping x, y, and z to a, b, and c, as shown in Figure 11.9, which are unified
into one case by our relabeling. The trinode restructuring replaces z with the node
identified as b, makes the children of this node be a and c, and makes the children
of a and c be the four previous children of x, y, and z (other than x and y), while
maintaining the inorder relationships of all the nodes in T .

Algorithm restructure(x):
Input: A position x of a binary search tree T that has both a parent y and a

grandparent z
Output: Tree T after a trinode restructuring (which corresponds to a single or

double rotation) involving positions x, y, and z

1: Let (a, b, c) be a left-to-right (inorder) listing of the positions x, y, and z, and
let (T1,T2,T3,T4) be a left-to-right (inorder) listing of the four subtrees of x,
y, and z not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b.
3: Let a be the left child of b and let T1 and T2 be the left and right subtrees of a,

respectively.
4: Let c be the right child of b and let T3 and T4 be the left and right subtrees of

c, respectively.

Code Fragment 11.9: The trinode restructuring operation in a binary search tree.

In practice, the modification of a tree T caused by a trinode restructuring op-
eration can be implemented through case analysis either as a single rotation (as in
Figure 11.9a and b) or as a double rotation (as in Figure 11.9c and d). The double
rotation arises when position x has the middle of the three relevant keys and is first
rotated above its parent, and then above what was originally its grandparent. In any
of the cases, the trinode restructuring is completed with O(1) running time.
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single rotation
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Figure 11.9: Schematic illustration of a trinode restructuring operation: (a and b)
require a single rotation; (c and d) require a double rotation.
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11.2.1 Python Framework for Balancing Search Trees

Our TreeMap class, introduced in Section 11.1.4, is a concrete map implementation
that does not perform any explicit balancing operations. However, we designed
that class to also serve as a base class for other subclasses that implement more
advanced tree-balancing algorithms. A summary of our inheritance hierarchy is
shown in Figure 11.10.

(Section 11.3.2)

MapBase
(Section 8.3.1)

(Section 11.4.3)

TreeMap

SplayTreeMap

(Section 11.1.4)

(Section 11.6.2)
RedBlackTreeMap

(Section 10.1.4)
LinkedBinaryTree

AVLTreeMap

Figure 11.10: Our hierarchy of balanced search trees (with references to where they
are defined). Recall that TreeMap inherits multiply from LinkedBinaryTree and
MapBase.

Hooks for Rebalancing Operations

Our implementation of the basic map operations in Section 11.1.4 includes strategic
calls to three nonpublic methods that serve as hooks for rebalancing algorithms:

• A call to rebalance insert(p) is made from within the setitem method
immediately after a new node is added to the tree at position p.

• A call to rebalance delete(p) is made each time a node has been deleted
from the tree, with position p identifying the parent of the node that has just
been removed. Formally, this hook is called from within the public delete(p)
method, which is indirectly invoked by the public delitem (k) behavior.

• We also provide a hook, rebalance access(p), that is called when an item at
position p of a tree is accessed through a public method such as getitem .
This hook is used by the splay tree structure (see Section 11.4) to restructure
a tree so that more frequently accessed items are brought closer to the root.

We provide trivial declarations of these three methods, in Code Fragment 11.10,
having bodies that do nothing (using the pass statement). A subclass of TreeMap
may override any of these methods to implement a nontrivial action to rebalance
a tree. This is another example of the template method design pattern, as seen in
Section 8.4.6.
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174 def rebalance insert(self, p): pass
175 def rebalance delete(self, p): pass
176 def rebalance access(self, p): pass

Code Fragment 11.10: Additional code for the TreeMap class (continued from Code
Fragment 11.8), providing stubs for the rebalancing hooks.

Nonpublic Methods for Rotating and Restructuring

A second form of support for balanced search trees is our inclusion of nonpub-
lic utility methods rotate and restructure that, respectively, implement a single
rotation and a trinode restructuring (described at the beginning of Section 11.2).
Although these methods are not invoked by the public TreeMap operations, we
promote code reuse by providing these implementation in this class so that they are
inherited by all balanced-tree subclasses.

Our implementations are provided in Code Fragment 11.11. To simplify the
code, we define an additional relink utility that properly links parent and child
nodes to each other, including the special case in which a “child” is a None ref-
erence. The focus of the rotate method then becomes redefining the relationship
between the parent and child, relinking a rotated node directly to its original grand-
parent, and shifting the “middle” subtree (that labeled as T2 in Figure 11.8) between
the rotated nodes. For the trinode restructuring, we determine whether to perform
a single or double rotation, as originally described in Figure 11.9.

Factory for Creating Tree Nodes

We draw attention to an important subtlety in the design of both our TreeMap class
and the original LinkedBinaryTree subclass. The low-level definition of a node is
provided by the nested Node class within LinkedBinaryTree. Yet, several of our
tree-balancing strategies require that auxiliary information be stored at each node
to guide the balancing process. Those classes will override the nested Node class
to provide storage for an additional field.

Whenever we add a new node to the tree, as within the add right method of
the LinkedBinaryTree (originally given in Code Fragment 8.10), we intentionally
instantiate the node using the syntax self. Node, rather than the qualified name
LinkedBinaryTree. Node. This is vital to our framework! When the expression
self. Node is applied to an instance of a tree (sub)class, Python’s name resolution
follows the inheritance structure (as described in Section 2.5.2). If a subclass has
overridden the definition for the Node class, instantiation of self. Node relies on
the newly defined node class. This technique is an example of the factory method
design pattern, as we provide a subclass the means to control the type of node that
is created within methods of the parent class.
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177 def relink(self, parent, child, make left child):
178 ”””Relink parent node with child node (we allow child to be None).”””
179 if make left child: # make it a left child
180 parent. left = child
181 else: # make it a right child
182 parent. right = child
183 if child is not None: # make child point to parent
184 child. parent = parent
185
186 def rotate(self, p):
187 ”””Rotate Position p above its parent.”””
188 x = p. node
189 y = x. parent # we assume this exists
190 z = y. parent # grandparent (possibly None)
191 if z is None:
192 self. root = x # x becomes root
193 x. parent = None
194 else:
195 self. relink(z, x, y == z. left) # x becomes a direct child of z
196 # now rotate x and y, including transfer of middle subtree
197 if x == y. left:
198 self. relink(y, x. right, True) # x. right becomes left child of y
199 self. relink(x, y, False) # y becomes right child of x
200 else:
201 self. relink(y, x. left, False) # x. left becomes right child of y
202 self. relink(x, y, True) # y becomes left child of x
203
204 def restructure(self, x):
205 ”””Perform trinode restructure of Position x with parent/grandparent.”””
206 y = self.parent(x)
207 z = self.parent(y)
208 if (x == self.right(y)) == (y == self.right(z)): # matching alignments
209 self. rotate(y) # single rotation (of y)
210 return y # y is new subtree root
211 else: # opposite alignments
212 self. rotate(x) # double rotation (of x)
213 self. rotate(x)
214 return x # x is new subtree root

Code Fragment 11.11: Additional code for the TreeMap class (continued from Code
Fragment 11.10), to provide nonpublic utilities for balanced search tree subclasses.
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11.3 AVL Trees

The TreeMap class, which uses a standard binary search tree as its data structure,
should be an efficient map data structure, but its worst-case performance for the
various operations is linear time, because it is possible that a series of operations
results in a tree with linear height. In this section, we describe a simple balancing
strategy that guarantees worst-case logarithmic running time for all the fundamental
map operations.

Definition of an AVL Tree

The simple correction is to add a rule to the binary search tree definition that will
maintain a logarithmic height for the tree. Although we originally defined the
height of a subtree rooted at position p of a tree to be the number of edges on
the longest path from p to a leaf (see Section 8.1.3), it is easier for explanation in
this section to consider the height to be the number of nodes on such a longest path.
By this definition, a leaf position has height 1, while we trivially define the height
of a “null” child to be 0.

In this section, we consider the following height-balance property, which char-
acterizes the structure of a binary search tree T in terms of the heights of its nodes.

Height-Balance Property: For every position p of T , the heights of the children
of p differ by at most 1.

Any binary search tree T that satisfies the height-balance property is said to be an
AVL tree, named after the initials of its inventors: Adel’son-Vel’skii and Landis.
An example of an AVL tree is shown in Figure 11.11.

78

88

44

0

0 0 0 0

0 00 0

4

2 3

11 2

11

17

32

48 62

50

Figure 11.11: An example of an AVL tree. The keys of the items are shown inside
the nodes, and the heights of the nodes are shown above the nodes (with empty
subtrees having height 0).
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An immediate consequence of the height-balance property is that a subtree of an
AVL tree is itself an AVL tree. The height-balance property has also the important
consequence of keeping the height small, as shown in the following proposition.

Proposition 11.2: The height of an AVL tree storing n entries is O(logn).

Justification: Instead of trying to find an upper bound on the height of an AVL
tree directly, it turns out to be easier to work on the “inverse problem” of finding a
lower bound on the minimum number of nodes n(h) of an AVL tree with height h.
We will show that n(h) grows at least exponentially. From this, it will be an easy
step to derive that the height of an AVL tree storing n entries is O(logn).

We begin by noting that n(1) = 1 and n(2) = 2, because an AVL tree of height
1 must have exactly one node and an AVL tree of height 2 must have at least two
nodes. Now, an AVL tree with the minimum number of nodes having height h for
h ≥ 3, is such that both its subtrees are AVL trees with the minimum number of
nodes: one with height h− 1 and the other with height h− 2. Taking the root into
account, we obtain the following formula that relates n(h) to n(h−1) and n(h−2),
for h ≥ 3:

n(h) = 1+ n(h−1)+ n(h−2). (11.1)

At this point, the reader familiar with the properties of Fibonacci progressions (Sec-
tion 1.8 and Exercise C-3.49) will already see that n(h) is a function exponential
in h. To formalize that observation, we proceed as follows.

Formula 11.1 implies that n(h) is a strictly increasing function of h. Thus, we
know that n(h− 1) > n(h− 2). Replacing n(h− 1) with n(h− 2) in Formula 11.1
and dropping the 1, we get, for h ≥ 3,

n(h) > 2 ·n(h−2). (11.2)

Formula 11.2 indicates that n(h) at least doubles each time h increases by 2, which
intuitively means that n(h) grows exponentially. To show this fact in a formal way,
we apply Formula 11.2 repeatedly, yielding the following series of inequalities:

n(h) > 2 ·n(h−2)

> 4 ·n(h−4)

> 8 ·n(h−6)

...

> 2i ·n(h−2i). (11.3)

That is, n(h) > 2i ·n(h−2i), for any integer i, such that h−2i ≥ 1. Since we already
know the values of n(1) and n(2), we pick i so that h−2i is equal to either 1 or 2.
That is, we pick

i =

⌈
h
2

⌉
−1.
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By substituting the above value of i in Formula 11.3, we obtain, for h ≥ 3,

n(h) > 2
 h
2�−1 ·n

(
h−2

⌈
h
2

⌉
+ 2

)
≥ 2
 h

2�−1n(1)

≥ 2
h
2−1. (11.4)

By taking logarithms of both sides of Formula 11.4, we obtain

log(n(h)) >
h
2
−1,

from which we get
h < 2log(n(h))+2, (11.5)

which implies that an AVL tree storing n entries has height at most 2logn+ 2.

By Proposition 11.2 and the analysis of binary search trees given in Section 11.1,
the operation getitem , in a map implemented with an AVL tree, runs in time
O(logn), where n is the number of items in the map. Of course, we still have to
show how to maintain the height-balance property after an insertion or deletion.

11.3.1 Update Operations

Given a binary search tree T , we say that a position is balanced if the absolute
value of the difference between the heights of its children is at most 1, and we say
that it is unbalanced otherwise. Thus, the height-balance property characterizing
AVL trees is equivalent to saying that every position is balanced.

The insertion and deletion operations for AVL trees begin similarly to the corre-
sponding operations for (standard) binary search trees, but with post-processing for
each operation to restore the balance of any portions of the tree that are adversely
affected by the change.

Insertion

Suppose that tree T satisfies the height-balance property, and hence is an AVL tree,
prior to the insertion of a new item. An insertion of a new item in a binary search
tree, as described in Section 11.1.3, results in a new node at a leaf position p. This
action may violate the height-balance property (see, for example, Figure 11.12a),
yet the only positions that may become unbalanced are ancestors of p, because
those are the only positions whose subtrees have changed. Therefore, let us de-
scribe how to restructure T to fix any unbalance that may have occurred.
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T1

T2

T4

54

62

0 0

48

13

0 0

88
2

4

5

44

0

0

17

32

0
1

1

2

1

z

y

0

0 0

x

T3

50

78

T4T1 T2

62

T3

0

2

3

4

44

0

0

17

0

1

2
x

y 78 z
2

50

0 0

1

0 0

54

1 1

0 0

48 88

32

(a) (b)

Figure 11.12: An example insertion of an item with key 54 in the AVL tree of
Figure 11.11: (a) after adding a new node for key 54, the nodes storing keys 78
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance
property. We show the heights of nodes above them, and we identify the nodes x,
y, and z and subtrees T1, T2, T3, and T4 participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple
“search-and-repair” strategy. In particular, let z be the first position we encounter in
going up from p toward the root of T such that z is unbalanced (see Figure 11.12a.)
Also, let y denote the child of z with higher height (and note that y must be an
ancestor of p). Finally, let x be the child of y with higher height (there cannot be a
tie and position x must also be an ancestor of p, possibly p itself ). We rebalance
the subtree rooted at z by calling the trinode restructuring method, restructure(x),
originally described in Section 11.2. An example of such a restructuring in the
context of an AVL insertion is portrayed in Figure 11.12.

To formally argue the correctness of this process in reestablishing the AVL
height-balance property, we consider the implication of z being the nearest ancestor
of p that became unbalanced after the insertion of p. It must be that the height
of y increased by one due to the insertion and that it is now 2 greater than its
sibling. Since y remains balanced, it must be that it formerly had subtrees with
equal heights, and that the subtree containing x has increased its height by one.
That subtree increased either because x = p, and thus its height changed from 0
to 1, or because x previously had equal-height subtrees and the height of the one
containing p has increased by 1. Letting h ≥ 0 denote the height of the tallest child
of x, this scenario might be portrayed as in Figure 11.13.

After the trinode restructuring, we see that each of x, y, and z has become
balanced. Furthermore, the node that becomes the root of the subtree after the
restructuring has height h + 2, which is precisely the height that z had before the
insertion of the new item. Therefore, any ancestor of z that became temporarily
unbalanced becomes balanced again, and this one restructuring restores the height-
balance property globally.
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Figure 11.13: Rebalancing of a subtree during a typical insertion into an AVL tree:
(a) before the insertion; (b) after an insertion in subtree T3 causes imbalance at z;
(c) after restoring balance with trinode restructuring. Notice that the overall height
of the subtree after the insertion is the same as before the insertion.
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Deletion

Recall that a deletion from a regular binary search tree results in the structural
removal of a node having either zero or one children. Such a change may violate
the height-balance property in an AVL tree. In particular, if position p represents
the parent of the removed node in tree T , there may be an unbalanced node on the
path from p to the root of T . (See Figure 11.14a.) In fact, there can be at most one
such unbalanced node. (The justification of this fact is left as Exercise C-11.49.)
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Figure 11.14: Deletion of the item with key 32 from the AVL tree of Figure 11.12b:
(a) after removing the node storing key 32, the root becomes unbalanced; (b) a
(single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .
In particular, let z be the first unbalanced position encountered going up from p
toward the root of T . Also, let y be the child of z with larger height (note that
position y is the child of z that is not an ancestor of p), and let x be the child of y
defined as follows: If one of the children of y is taller than the other, let x be the
taller child of y; else (both children of y have the same height), let x be the child of
y on the same side as y (that is, if y is the left child of z, let x be the left child of
y, else let x be the right child of y). In any case, we then perform a restructure(x)
operation. (See Figure 11.14b.)

The restructured subtree is rooted at the middle position denoted as b in the
description of the trinode restructuring operation. The height-balance property is
guaranteed to be locally restored within the subtree of b. (See Exercises R-11.11
and R-11.12). Unfortunately, this trinode restructuring may reduce the height of the
subtree rooted at b by 1, which may cause an ancestor of b to become unbalanced.
So, after rebalancing z, we continue walking up T looking for unbalanced positions.
If we find another, we perform a restructure operation to restore its balance, and
continue marching up T looking for more, all the way to the root. Still, since the
height of T is O(logn), where n is the number of entries, by Proposition 11.2,
O(logn) trinode restructurings are sufficient to restore the height-balance property.
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Performance of AVL Trees

By Proposition 11.2, the height of an AVL tree with n items is guaranteed to be
O(logn). Because the standard binary search tree operation had running times
bounded by the height (see Table 11.1), and because the additional work in main-
taining balance factors and restructuring an AVL tree can be bounded by the length
of a path in the tree, the traditional map operations run in worst-case logarithmic
time with an AVL tree. We summarize these results in Table 11.2, and illustrate
this performance in Figure 11.15.

Operation Running Time
k in T O(logn)

T[k] = v O(logn)

T.delete(p), del T[k] O(logn)

T.find position(k) O(logn)

T.first(), T.last(), T.find min(), T.find max() O(logn)

T.before(p), T.after(p) O(logn)

T.find lt(k), T.find le(k), T.find gt(k), T.find ge(k) O(logn)

T.find range(start, stop) O(s+ logn)

iter(T), reversed(T) O(n)

Table 11.2: Worst-case running times of operations for an n-item sorted map real-
ized as an AVL tree T, with s denoting the number of items reported by find range.

O(logn)

O(1)

Height Time per level

Worst-case time:

AVL Tree T:

down phase

up phase

O(logn)

O(1)

O(1)

Figure 11.15: Illustrating the running time of searches and updates in an AVL tree.
The time performance is O(1) per level, broken into a down phase, which typi-
cally involves searching, and an up phase, which typically involves updating height
values and performing local trinode restructurings (rotations).
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11.3.2 Python Implementation

A complete implementation of an AVLTreeMap class is provided in Code Frag-
ments 11.12 and 11.13. It inherits from the standard TreeMap class and relies on
the balancing framework described in Section 11.2.1. We highlight two important
aspects of our implementation. First, the AVLTreeMap overrides the definition of
the nested Node class, as shown in Code Fragment 11.12, in order to provide sup-
port for storing the height of the subtree stored at a node. We also provide several
utilities involving heights of nodes, and the corresponding positions.

To implement the core logic of the AVL balancing strategy, we define a utility,
named rebalance, that suffices as a hook for restoring the height-balance property
after an insertion or a deletion. Although the inherited behaviors for insertion and
deletion are quite different, the necessary post-processing for an AVL tree can be
unified. In both cases, we trace an upward path from the position p at which the
change took place, recalculating the height of each position based on the (updated)
heights of its children, and using a trinode restructuring operation if an imbalanced
position is reached. If we reach an ancestor with height that is unchanged by the
overall map operation, or if we perform a trinode restructuring that results in the
subtree having the same height it had before the map operation, we stop the pro-
cess; no further ancestor’s height will change. To detect the stopping condition, we
record the “old” height of each node and compare it to the newly calculated height.

1 class AVLTreeMap(TreeMap):
2 ”””Sorted map implementation using an AVL tree.”””
3
4 #-------------------------- nested Node class --------------------------
5 class Node(TreeMap. Node):
6 ”””Node class for AVL maintains height value for balancing.”””
7 slots = _height # additional data member to store height
8
9 def init (self, element, parent=None, left=None, right=None):

10 super(). init (element, parent, left, right)
11 self. height = 0 # will be recomputed during balancing
12
13 def left height(self):
14 return self. left. height if self. left is not None else 0
15
16 def right height(self):
17 return self. right. height if self. right is not None else 0

Code Fragment 11.12: AVLTreeMap class (continued in Code Fragment 11.13).
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18 #------------------------- positional-based utility methods -------------------------
19 def recompute height(self, p):
20 p. node. height = 1 + max(p. node.left height(), p. node.right height())
21
22 def isbalanced(self, p):
23 return abs(p. node.left height( ) − p. node.right height()) <= 1
24
25 def tall child(self, p, favorleft=False): # parameter controls tiebreaker
26 if p. node.left height( ) + (1 if favorleft else 0) > p. node.right height():
27 return self.left(p)
28 else:
29 return self.right(p)
30
31 def tall grandchild(self, p):
32 child = self. tall child(p)
33 # if child is on left, favor left grandchild; else favor right grandchild
34 alignment = (child == self.left(p))
35 return self. tall child(child, alignment)
36
37 def rebalance(self, p):
38 while p is not None:
39 old height = p. node. height # trivially 0 if new node
40 if not self. isbalanced(p): # imbalance detected!
41 # perform trinode restructuring, setting p to resulting root,
42 # and recompute new local heights after the restructuring
43 p = self. restructure(self. tall grandchild(p))
44 self. recompute height(self.left(p))
45 self. recompute height(self.right(p))
46 self. recompute height(p) # adjust for recent changes
47 if p. node. height == old height: # has height changed?
48 p = None # no further changes needed
49 else:
50 p = self.parent(p) # repeat with parent
51
52 #---------------------------- override balancing hooks ----------------------------
53 def rebalance insert(self, p):
54 self. rebalance(p)
55
56 def rebalance delete(self, p):
57 self. rebalance(p)

Code Fragment 11.13: AVLTreeMap class (continued from Code Fragment 11.12).
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11.4 Splay Trees

The next search tree structure we study is known as a a splay tree. This structure is
conceptually quite different from the other balanced search trees we discuss in this
chapter, for a splay tree does not strictly enforce a logarithmic upper bound on the
height of the tree. In fact, there are no additional height, balance, or other auxiliary
data associated with the nodes of this tree.

The efficiency of splay trees is due to a certain move-to-root operation, called
splaying, that is performed at the bottommost position p reached during every in-
sertion, deletion, or even a search. (In essence, this is a tree variant of the move-
to-front heuristic that we explored for lists in Section 7.6.2.) Intuitively, a splay
operation causes more frequently accessed elements to remain nearer to the root,
thereby reducing the typical search times. The surprising thing about splaying is
that it allows us to guarantee a logarithmic amortized running time, for insertions,
deletions, and searches.

11.4.1 Splaying

Given a node x of a binary search tree T , we splay x by moving x to the root of T
through a sequence of restructurings. The particular restructurings we perform are
important, for it is not sufficient to move x to the root of T by just any sequence
of restructurings. The specific operation we perform to move x up depends upon
the relative positions of x, its parent y, and (if it exists) x’s grandparent z. There are
three cases that we consider.

zig-zig: The node x and its parent y are both left children or both right children.
(See Figure 11.16.) We promote x, making y a child of x and z a child of y,
while maintaining the inorder relationships of the nodes in T .

T1

y

T2

T3 T4

z
10

x

20

30

T4

T3

T2T1

20
y10

30

z

x

(a) (b)

Figure 11.16: Zig-zig: (a) before; (b) after. There is another symmetric configura-
tion where x and y are left children.
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zig-zag: One of x and y is a left child and the other is a right child. (See Fig-
ure 11.17.) In this case, we promote x by making x have y and z as its chil-
dren, while maintaining the inorder relationships of the nodes in T .

x

z

T4

y

T2 T3

30

10

20

T1

10

T2

y

T3 T4

20

z

x 30

T1

(a) (b)

Figure 11.17: Zig-zag: (a) before; (b) after. There is another symmetric configura-
tion where x is a right child and y is a left child.

zig: x does not have a grandparent. (See Figure 11.18.) In this case, we perform a
single rotation to promote x over y, making y a child of x, while maintaining
the relative inorder relationships of the nodes in T .

T1

T2 T3

10
y

20
x

T1 T2

T3

10
y

20
x

(a) (b)

Figure 11.18: Zig: (a) before; (b) after. There is another symmetric configuration
where x is originally a left child of y.

We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a
zig when x has a parent but not a grandparent. A splaying step consists of repeating
these restructurings at x until x becomes the root of T . An example of the splaying
of a node is shown in Figures 11.19 and 11.20.
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Figure 11.19: Example of splaying a node: (a) splaying the node storing 14 starts
with a zig-zag; (b) after the zig-zag; (c) the next step will be a zig-zig. (Continues
in Figure 11.20.)
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Figure 11.20: Example of splaying a node:(d) after the zig-zig; (e) the next step is
again a zig-zig; (f ) after the zig-zig. (Continued from Figure 11.19.)
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11.4.2 When to Splay

The rules that dictate when splaying is performed are as follows:

• When searching for key k, if k is found at position p, we splay p, else we
splay the leaf position at which the search terminates unsuccessfully. For
example, the splaying in Figures 11.19 and 11.20 would be performed after
searching successfully for key 14 or unsuccessfully for key 15.

• When inserting key k, we splay the newly created internal node where k
gets inserted. For example, the splaying in Figures 11.19 and 11.20 would
be performed if 14 were the newly inserted key. We show a sequence of
insertions in a splay tree in Figure 11.21.

1 1

3 1

3

(a) (b) (c)

3

1

2

1 3

2 2

1 3

4

(d) (e) (f )

1

4

3

2

(g)

Figure 11.21: A sequence of insertions in a splay tree: (a) initial tree; (b) after
inserting 3, but before a zig step; (c) after splaying; (d) after inserting 2, but before
a zig-zag step; (e) after splaying; (f ) after inserting 4, but before a zig-zig step;
(g) after splaying.
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• When deleting a key k, we splay the position p that is the parent of the re-
moved node; recall that by the removal algorithm for binary search trees, the
removed node may be that originally containing k, or a descendant node with
a replacement key. An example of splaying following a deletion is shown in
Figure 11.22.

8

103

4

5

6

7

w

p
11 4

103

11

6

7

5

(a) (b)

5

106

114

3

7

5

106

114

3

7

(c) (d)
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Figure 11.22: Deletion from a splay tree: (a) the deletion of 8 from the root node
is performed by moving to the root the key of its inorder predecessor w, deleting
w, and splaying the parent p of w; (b) splaying p starts with a zig-zig; (c) after the
zig-zig; (d) the next step is a zig; (e) after the zig.
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11.4.3 Python Implementation

Although the mathematical analysis of a splay tree’s performance is complex (see
Section 11.4.4), the implementation of splay trees is a rather simple adaptation to
a standard binary search tree. Code Fragment 11.14 provides a complete imple-
mentation of a SplayTreeMap class, based upon the underlying TreeMap class and
use of the balancing framework described in Section 11.2.1. It is important to note
that our original TreeMap class makes calls to the rebalance access method, not
just from within the getitem method, but also during setitem when mod-
ifying the value associated with an existing key, and after any map operations that
result in a failed search.

1 class SplayTreeMap(TreeMap):
2 ”””Sorted map implementation using a splay tree.”””
3 #--------------------------------- splay operation --------------------------------
4 def splay(self, p):
5 while p != self.root():
6 parent = self.parent(p)
7 grand = self.parent(parent)
8 if grand is None:
9 # zig case

10 self. rotate(p)
11 elif (parent == self.left(grand)) == (p == self.left(parent)):
12 # zig-zig case
13 self. rotate(parent) # move PARENT up
14 self. rotate(p) # then move p up
15 else:
16 # zig-zag case
17 self. rotate(p) # move p up
18 self. rotate(p) # move p up again
19
20 #---------------------------- override balancing hooks ----------------------------
21 def rebalance insert(self, p):
22 self. splay(p)
23
24 def rebalance delete(self, p):
25 if p is not None:
26 self. splay(p)
27
28 def rebalance access(self, p):
29 self. splay(p)

Code Fragment 11.14: A complete implementation of the SplayTreeMap class.
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11.4.4 Amortized Analysis of Splaying �

After a zig-zig or zig-zag, the depth of position p decreases by two, and after a zig
the depth of p decreases by one. Thus, if p has depth d, splaying p consists of a
sequence of �d/2� zig-zigs and/or zig-zags, plus one final zig if d is odd. Since a
single zig-zig, zig-zag, or zig affects a constant number of nodes, it can be done in
O(1) time. Thus, splaying a position p in a binary search tree T takes time O(d),
where d is the depth of p in T . In other words, the time for performing a splaying
step for a position p is asymptotically the same as the time needed just to reach that
position in a top-down search from the root of T .

Worst-Case Time

In the worst case, the overall running time of a search, insertion, or deletion in a
splay tree of height h is O(h), since the position we splay might be the deepest
position in the tree. Moreover, it is possible for h to be as large as n, as shown in
Figure 11.21. Thus, from a worst-case point of view, a splay tree is not an attractive
data structure.

In spite of its poor worst-case performance, a splay tree performs well in an
amortized sense. That is, in a sequence of intermixed searches, insertions, and
deletions, each operation takes on average logarithmic time. We perform the amor-
tized analysis of splay trees using the accounting method.

Amortized Performance of Splay Trees

For our analysis, we note that the time for performing a search, insertion, or deletion
is proportional to the time for the associated splaying. So let us consider only
splaying time.

Let T be a splay tree with n keys, and let w be a node of T . We define the
size n(w) of w as the number of nodes in the subtree rooted at w. Note that this
definition implies that the size of a nonleaf node is one more than the sum of the
sizes of its children. We define the rank r(w) of a node w as the logarithm in base 2
of the size of w, that is, r(w) = log(n(w)). Clearly, the root of T has the maximum
size, n, and the maximum rank, logn, while each leaf has size 1 and rank 0.

We use cyber-dollars to pay for the work we perform in splaying a position p
in T , and we assume that one cyber-dollar pays for a zig, while two cyber-dollars
pay for a zig-zig or a zig-zag. Hence, the cost of splaying a position at depth d is
d cyber-dollars. We keep a virtual account storing cyber-dollars at each position of
T . Note that this account exists only for the purpose of our amortized analysis, and
does not need to be included in a data structure implementing the splay tree T .
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An Accounting Analysis of Splaying

When we perform a splaying, we pay a certain number of cyber-dollars (the exact
value of the payment will be determined at the end of our analysis). We distinguish
three cases:

• If the payment is equal to the splaying work, then we use it all to pay for the
splaying.

• If the payment is greater than the splaying work, we deposit the excess in the
accounts of several nodes.

• If the payment is less than the splaying work, we make withdrawals from the
accounts of several nodes to cover the deficiency.

We show below that a payment of O(logn) cyber-dollars per operation is sufficient
to keep the system working, that is, to ensure that each node keeps a nonnegative
account balance.

An Accounting Invariant for Splaying

We use a scheme in which transfers are made between the accounts of the nodes
to ensure that there will always be enough cyber-dollars to withdraw for paying for
splaying work when needed.

In order to use the accounting method to perform our analysis of splaying, we
maintain the following invariant:

Before and after a splaying, each node w of T has r(w) cyber-dollars
in its account.

Note that the invariant is “financially sound,” since it does not require us to make a
preliminary deposit to endow a tree with zero keys.

Let r(T ) be the sum of the ranks of all the nodes of T . To preserve the invariant
after a splaying, we must make a payment equal to the splaying work plus the total
change in r(T ). We refer to a single zig, zig-zig, or zig-zag operation in a splaying
as a splaying substep. Also, we denote the rank of a node w of T before and after
a splaying substep with r(w) and r′(w), respectively. The following proposition
gives an upper bound on the change of r(T ) caused by a single splaying substep.
We will repeatedly use this lemma in our analysis of a full splaying of a node to the
root.
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Proposition 11.3: Let δ be the variation of r(T ) caused by a single splaying sub-
step (a zig, zig-zig, or zig-zag) for a node x in T . We have the following:

• δ ≤ 3(r′(x)− r(x))−2 if the substep is a zig-zig or zig-zag.
• δ ≤ 3(r′(x)− r(x)) if the substep is a zig.

Justification: We use the fact (see Proposition B.1, Appendix A) that, if a > 0,
b > 0, and c > a+ b,

loga+ logb < 2logc−2. (11.6)

Let us consider the change in r(T ) caused by each type of splaying substep.

zig-zig: (Recall Figure 11.16.) Since the size of each node is one more than the
size of its two children, note that only the ranks of x, y, and z change in a
zig-zig operation, where y is the parent of x and z is the parent of y. Also,
r′(x) = r(z), r′(y) ≤ r′(x), and r(x) ≤ r(y). Thus,

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

= r′(y)+ r′(z)− r(x)− r(y)

≤ r′(x)+ r′(z)−2r(x). (11.7)

Note that n(x) + n′(z) < n′(x). Thus, r(x) + r′(z) < 2r′(x)− 2, as per For-
mula 11.6; that is,

r′(z) < 2r′(x)− r(x)−2.

This inequality and Formula 11.7 imply

δ ≤ r′(x)+ (2r′(x)− r(x)−2)−2r(x)

≤ 3(r′(x)− r(x))−2.

zig-zag: (Recall Figure 11.17.) Again, by the definition of size and rank, only the
ranks of x, y, and z change, where y denotes the parent of x and z denotes the
parent of y. Also, r(x) < r(y) < r(z) = r′(x). Thus,

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

= r′(y)+ r′(z)− r(x)− r(y)

≤ r′(y)+ r′(z)−2r(x). (11.8)

Note that n′(y)+ n′(z) < n′(x); hence, r′(y)+ r′(z) < 2r′(x)−2, as per For-
mula 11.6. Thus,

δ ≤ 2r′(x)−2−2r(x)

= 2(r′(x)− r(x))−2 ≤ 3(r′(x)− r(x))−2.

zig: (Recall Figure 11.18.) In this case, only the ranks of x and y change, where y
denotes the parent of x. Also, r′(y) ≤ r(y) and r′(x) ≥ r(x). Thus,

δ = r′(y)+ r′(x)− r(y)− r(x)

≤ r′(x)− r(x)

≤ 3(r′(x)− r(x)).
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Proposition 11.4: Let T be a splay tree with root t, and let Δ be the total variation
of r(T ) caused by splaying a node x at depth d. We have

Δ ≤ 3(r(t)− r(x))−d + 2.

Justification: Splaying node x consists of c = 
d/2� splaying substeps, each
of which is a zig-zig or a zig-zag, except possibly the last one, which is a zig if
d is odd. Let r0(x) = r(x) be the initial rank of x, and for i = 1, . . . ,c, let ri(x) be
the rank of x after the ith substep and δi be the variation of r(T ) caused by the ith

substep. By Proposition 11.3, the total variation Δ of r(T ) caused by splaying x is

Δ =
c

∑
i=1

δi

≤ 2+
c

∑
i=1

3(ri(x)− ri−1(x))−2

= 3(rc(x)− r0(x))−2c+ 2

≤ 3(r(t)− r(x))−d + 2.

By Proposition 11.4, if we make a payment of 3(r(t)− r(x))+2 cyber-dollars
towards the splaying of node x, we have enough cyber-dollars to maintain the in-
variant, keeping r(w) cyber-dollars at each node w in T , and pay for the entire
splaying work, which costs d cyber-dollars. Since the size of the root t is n, its
rank r(t) = logn. Given that r(x) ≥ 0, the payment to be made for splaying is
O(logn) cyber-dollars. To complete our analysis, we have to compute the cost for
maintaining the invariant when a node is inserted or deleted.

When inserting a new node w into a splay tree with n keys, the ranks of all
the ancestors of w are increased. Namely, let w0,wi, . . . ,wd be the ancestors of w,
where w0 = w, wi is the parent of wi−1, and wd is the root. For i = 1, . . . ,d, let
n′(wi) and n(wi) be the size of wi before and after the insertion, respectively, and
let r′(wi) and r(wi) be the rank of wi before and after the insertion. We have

n′(wi) = n(wi)+ 1.

Also, since n(wi)+ 1 ≤ n(wi+1), for i = 0,1, . . . ,d − 1, we have the following for
each i in this range:

r′(wi) = log(n′(wi)) = log(n(wi)+ 1) ≤ log(n(wi+1)) = r(wi+1).

Thus, the total variation of r(T ) caused by the insertion is
d

∑
i=1

(
r′(wi)− r(wi)

) ≤ r′(wd)+
d−1

∑
i=1

(r(wi+1)− r(wi))

= r′(wd)− r(w0)

≤ logn.

Therefore, a payment of O(logn) cyber-dollars is sufficient to maintain the invariant
when a new node is inserted.
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When deleting a node w from a splay tree with n keys, the ranks of all the an-
cestors of w are decreased. Thus, the total variation of r(T ) caused by the deletion
is negative, and we do not need to make any payment to maintain the invariant
when a node is deleted. Therefore, we may summarize our amortized analysis in
the following proposition (which is sometimes called the “balance proposition” for
splay trees):

Proposition 11.5: Consider a sequence of m operations on a splay tree, each one
a search, insertion, or deletion, starting from a splay tree with zero keys. Also, let
ni be the number of keys in the tree after operation i, and n be the total number of
insertions. The total running time for performing the sequence of operations is

O

(
m +

m

∑
i=1

logni

)
,

which is O(m logn).

In other words, the amortized running time of performing a search, insertion,
or deletion in a splay tree is O(logn), where n is the size of the splay tree at the
time. Thus, a splay tree can achieve logarithmic-time amortized performance for
implementing a sorted map ADT. This amortized performance matches the worst-
case performance of AVL trees, (2,4) trees, and red-black trees, but it does so
using a simple binary tree that does not need any extra balance information stored
at each of its nodes. In addition, splay trees have a number of other interesting
properties that are not shared by these other balanced search trees. We explore one
such additional property in the following proposition (which is sometimes called
the “Static Optimality” proposition for splay trees):

Proposition 11.6: Consider a sequence of m operations on a splay tree, each one
a search, insertion, or deletion, starting from a splay tree T with zero keys. Also, let
f (i) denote the number of times the entry i is accessed in the splay tree, that is, its
frequency, and let n denote the total number of entries. Assuming that each entry is
accessed at least once, then the total running time for performing the sequence of
operations is

O

(
m +

n

∑
i=1

f (i) log(m/ f (i))

)
.

We omit the proof of this proposition, but it is not as hard to justify as one might
imagine. The remarkable thing is that this proposition states that the amortized
running time of accessing an entry i is O(log(m/ f (i))).
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11.5 (2,4) Trees

In this section, we consider a data structure known as a (2,4) tree. It is a particular
example of a more general structure known as a multiway search tree, in which
internal nodes may have more than two children. Other forms of multiway search
trees will be discussed in Section 15.3.

11.5.1 Multiway Search Trees

Recall that general trees are defined so that internal nodes may have many children.
In this section, we discuss how general trees can be used as multiway search trees.
Map items stored in a search tree are pairs of the form (k,v), where k is the key and
v is the value associated with the key.

Definition of a Multiway Search Tree

Let w be a node of an ordered tree. We say that w is a d-node if w has d children.
We define a multiway search tree to be an ordered tree T that has the following
properties, which are illustrated in Figure 11.23a:

• Each internal node of T has at least two children. That is, each internal node
is a d-node such that d ≥ 2.

• Each internal d-node w of T with children c1, . . . ,cd stores an ordered set of
d −1 key-value pairs (k1,v1), . . ., (kd−1,vd−1), where k1 ≤ ·· · ≤ kd−1.

• Let us conventionally define k0 = −∞ and kd = +∞. For each item (k,v)
stored at a node in the subtree of w rooted at ci, i = 1, . . . ,d, we have that
ki−1 ≤ k ≤ ki.

That is, if we think of the set of keys stored at w as including the special fictitious
keys k0 = −∞ and kd = +∞, then a key k stored in the subtree of T rooted at a
child node ci must be “in between” two keys stored at w. This simple viewpoint
gives rise to the rule that a d-node stores d − 1 regular keys, and it also forms the
basis of the algorithm for searching in a multiway search tree.

By the above definition, the external nodes of a multiway search do not store
any data and serve only as “placeholders.” These external nodes can be efficiently
represented by None references, as has been our convention with binary search
trees (Section 11.1). However, for the sake of exposition, we will discuss these
as actual nodes that do not store anything. Based on this definition, there is an
interesting relationship between the number of key-value pairs and the number of
external nodes in a multiway search tree.

Proposition 11.7: An n-item multiway search tree has n+ 1 external nodes.

We leave the justification of this proposition as an exercise (C-11.52).
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Figure 11.23: (a) A multiway search tree T ; (b) search path in T for key 12 (unsuc-
cessful search); (c) search path in T for key 24 (successful search).

www.it-ebooks.info

http://www.it-ebooks.info/


504 Chapter 11. Search Trees

Searching in a Multiway Tree

Searching for an item with key k in a multiway search tree T is simple. We perform
such a search by tracing a path in T starting at the root. (See Figure 11.23b and c.)
When we are at a d-node w during this search, we compare the key k with the keys
k1, . . . ,kd−1 stored at w. If k = ki for some i, the search is successfully completed.
Otherwise, we continue the search in the child ci of w such that ki−1 < k < ki.
(Recall that we conventionally define k0 = −∞ and kd = +∞.) If we reach an
external node, then we know that there is no item with key k in T , and the search
terminates unsuccessfully.

Data Structures for Representing Multiway Search Trees

In Section 8.3.3, we discuss a linked data structure for representing a general tree.
This representation can also be used for a multiway search tree. When using a
general tree to implement a multiway search tree, we must store at each node one
or more key-value pairs associated with that node. That is, we need to store with w
a reference to some collection that stores the items for w.

During a search for key k in a multiway search tree, the primary operation
needed when navigating a node is finding the smallest key at that node that is greater
than or equal to k. For this reason, it is natural to model the information at a
node itself as a sorted map, allowing use of the find ge(k) method. We say such
a map serves as a secondary data structure to support the primary data structure
represented by the entire multiway search tree. This reasoning may at first seem
like a circular argument, since we need a representation of a (secondary) ordered
map to represent a (primary) ordered map. We can avoid any circular dependence,
however, by using the bootstrapping technique, where we use a simple solution to
a problem to create a new, more advanced solution.

In the context of a multiway search tree, a natural choice for the secondary
structure at each node is the SortedTableMap of Section 10.3.1. Because we want
to determine the associated value in case of a match for key k, and otherwise the
corresponding child ci such that ki−1 < k < ki, we recommend having each key
ki in the secondary structure map to the pair (vi,ci). With such a realization of a
multiway search tree T , processing a d-node w while searching for an item of T
with key k can be performed using a binary search operation in O(logd) time. Let
dmax denote the maximum number of children of any node of T , and let h denote the
height of T . The search time in a multiway search tree is therefore O(h logdmax).
If dmax is a constant, the running time for performing a search is O(h).

The primary efficiency goal for a multiway search tree is to keep the height as
small as possible. We next discuss a strategy that caps dmax at 4 while guaranteeing
a height h that is logarithmic in n, the total number of items stored in the map.
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11.5.2 (2,4)-Tree Operations

A multiway search tree that keeps the secondary data structures stored at each node
small and also keeps the primary multiway tree balanced is the (2,4) tree, which is
sometimes called a 2-4 tree or 2-3-4 tree. This data structure achieves these goals
by maintaining two simple properties (see Figure 11.24):
Size Property: Every internal node has at most four children.

Depth Property: All the external nodes have the same depth.

12

17116 7 83 4

5 10 15

13 14

Figure 11.24: A (2,4) tree.

Again, we assume that external nodes are empty and, for the sake of simplicity,
we describe our search and update methods assuming that external nodes are real
nodes, although this latter requirement is not strictly needed.

Enforcing the size property for (2,4) trees keeps the nodes in the multiway
search tree simple. It also gives rise to the alternative name “2-3-4 tree,” since it
implies that each internal node in the tree has 2, 3, or 4 children. Another implica-
tion of this rule is that we can represent the secondary map stored at each internal
node using an unordered list or an ordered array, and still achieve O(1)-time perfor-
mance for all operations (since dmax = 4). The depth property, on the other hand,
enforces an important bound on the height of a (2,4) tree.

Proposition 11.8: The height of a (2,4) tree storing n items is O(logn).

Justification: Let h be the height of a (2,4) tree T storing n items. We justify
the proposition by showing the claim

1
2

log(n+ 1) ≤ h ≤ log(n+ 1). (11.9)

To justify this claim note first that, by the size property, we can have at most
4 nodes at depth 1, at most 42 nodes at depth 2, and so on. Thus, the number of
external nodes in T is at most 4h. Likewise, by the depth property and the definition
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of a (2,4) tree, we must have at least 2 nodes at depth 1, at least 22 nodes at depth
2, and so on. Thus, the number of external nodes in T is at least 2h. In addition, by
Proposition 11.7, the number of external nodes in T is n+ 1. Therefore, we obtain

2h ≤ n+ 1 ≤ 4h.

Taking the logarithm in base 2 of the terms for the above inequalities, we get that

h ≤ log(n+ 1) ≤ 2h,

which justifies our claim (Formula 11.9) when terms are rearranged.

Proposition 11.8 states that the size and depth properties are sufficient for keep-
ing a multiway tree balanced. Moreover, this proposition implies that performing
a search in a (2,4) tree takes O(logn) time and that the specific realization of the
secondary structures at the nodes is not a crucial design choice, since the maximum
number of children dmax is a constant.

Maintaining the size and depth properties requires some effort after performing
insertions and deletions in a (2,4) tree, however. We discuss these operations next.

Insertion

To insert a new item (k,v), with key k, into a (2,4) tree T , we first perform a search
for k. Assuming that T has no item with key k, this search terminates unsuccessfully
at an external node z. Let w be the parent of z. We insert the new item into node w
and add a new child y (an external node) to w on the left of z.

Our insertion method preserves the depth property, since we add a new external
node at the same level as existing external nodes. Nevertheless, it may violate the
size property. Indeed, if a node w was previously a 4-node, then it would become
a 5-node after the insertion, which causes the tree T to no longer be a (2,4) tree.
This type of violation of the size property is called an overflow at node w, and it
must be resolved in order to restore the properties of a (2,4) tree. Let c1, . . . ,c5 be
the children of w, and let k1, . . . ,k4 be the keys stored at w. To remedy the overflow
at node w, we perform a split operation on w as follows (see Figure 11.25):

• Replace w with two nodes w′ and w′′, where
◦ w′ is a 3-node with children c1,c2,c3 storing keys k1 and k2

◦ w′′ is a 2-node with children c4,c5 storing key k4.
• If w is the root of T , create a new root node u; else, let u be the parent of w.
• Insert key k3 into u and make w′ and w′′ children of u, so that if w was child

i of u, then w′ and w′′ become children i and i+ 1 of u, respectively.
As a consequence of a split operation on node w, a new overflow may occur at the
parent u of w. If such an overflow occurs, it triggers in turn a split at node u. (See
Figure 11.26.) A split operation either eliminates the overflow or propagates it into
the parent of the current node. We show a sequence of insertions in a (2,4) tree in
Figure 11.27.
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h1 h2

c3c2c1 c5

u

w

k1 k2 k3 k4

c4

k3

c3c2c1 c5

w

k1 k2 k4

c4

u

h1 h2

w′

c2c1 c4 c5

k1 k2 k4

h1 k3 h2

u

w′′

c3

(a) (b) (c)

Figure 11.25: A node split: (a) overflow at a 5-node w; (b) the third key of w inserted
into the parent u of w; (c) node w replaced with a 3-node w′ and a 2-node w′′.
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6 7 8 11 13 14 17

15
5 10 12

3 4 13 14 17116 7 83 4

5 10 12 15
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12

13 14 17116 7 83 4

5 10 15 15

17116 7 83 4

12

5 10

13 14

(e) (f )

Figure 11.26: An insertion in a (2,4) tree that causes a cascading split: (a) before
the insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split
a new overflow occurs; (e) another split, creating a new root node; (f ) final tree.
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(a) (b) (c) (d)
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10
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3 1564

5
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12

104 6 8
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Figure 11.27: A sequence of insertions into a (2,4) tree: (a) initial tree with one
item; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an
overflow; (e) split, which causes the creation of a new root node; (f ) after the split;
(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the
split; (k) insertion of 10; (l) insertion of 8.
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Analysis of Insertion in a (2,4) Tree

Because dmax is at most 4, the original search for the placement of new key k uses
O(1) time at each level, and thus O(logn) time overall, since the height of the tree
is O(logn) by Proposition 11.8.

The modifications to a single node to insert a new key and child can be im-
plemented to run in O(1) time, as can a single split operation. The number of
cascading split operations is bounded by the height of the tree, and so that phase of
the insertion process also runs in O(logn) time. Therefore, the total time to perform
an insertion in a (2,4) tree is O(logn).

Deletion

Let us now consider the removal of an item with key k from a (2,4) tree T . We begin
such an operation by performing a search in T for an item with key k. Removing
an item from a (2,4) tree can always be reduced to the case where the item to be
removed is stored at a node w whose children are external nodes. Suppose, for
instance, that the item with key k that we wish to remove is stored in the ith item
(ki,vi) at a node z that has only internal-node children. In this case, we swap the
item (ki,vi) with an appropriate item that is stored at a node w with external-node
children as follows (see Figure 11.28d):

1. We find the rightmost internal node w in the subtree rooted at the ith child of
z, noting that the children of node w are all external nodes.

2. We swap the item (ki,vi) at z with the last item of w.

Once we ensure that the item to remove is stored at a node w with only external-
node children (because either it was already at w or we swapped it into w), we
simply remove the item from w and remove the ith external node of w.

Removing an item (and a child) from a node w as described above preserves the
depth property, for we always remove an external child from a node w with only
external children. However, in removing such an external node, we may violate
the size property at w. Indeed, if w was previously a 2-node, then it becomes a
1-node with no items after the removal (Figure 11.28a and d), which is not allowed
in a (2,4) tree. This type of violation of the size property is called an underflow
at node w. To remedy an underflow, we check whether an immediate sibling of w
is a 3-node or a 4-node. If we find such a sibling s, then we perform a transfer
operation, in which we move a child of s to w, a key of s to the parent u of w and s,
and a key of u to w. (See Figure 11.28b and c.) If w has only one sibling, or if both
immediate siblings of w are 2-nodes, then we perform a fusion operation, in which
we merge w with a sibling, creating a new node w′, and move a key from the parent
u of w to w′. (See Figure 11.28e and f.)
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Figure 11.28: A sequence of removals from a (2,4) tree: (a) removal of 4, causing
an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal
of 12, causing an underflow; (e) a fusion operation; (f ) after the fusion operation;
(g) removal of 13; (h) after removing 13.
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A fusion operation at node w may cause a new underflow to occur at the parent
u of w, which in turn triggers a transfer or fusion at u. (See Figure 11.29.) Hence,
the number of fusion operations is bounded by the height of the tree, which is
O(logn) by Proposition 11.8. If an underflow propagates all the way up to the root,
then the root is simply deleted. (See Figure 11.29c and d.)

11

178 10

6

5

14
15 6

w

8 10 17

11

u

5

15

(a) (b)

8 10

6
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w

17155

11

1785 10

6 11

15

(c) (d)

Figure 11.29: A propagating sequence of fusions in a (2,4) tree: (a) removal of 14,
which causes an underflow; (b) fusion, which causes another underflow; (c) second
fusion operation, which causes the root to be removed; (d) final tree.

Performance of (2,4) Trees

The asymptotic performance of a (2,4) tree is identical to that of an AVL tree (see
Table 11.2) in terms of the sorted map ADT, with guaranteed logarithmic bounds
for most operations. The time complexity analysis for a (2,4) tree having n key-
value pairs is based on the following:

• The height of a (2,4) tree storing n entries is O(logn), by Proposition 11.8.
• A split, transfer, or fusion operation takes O(1) time.
• A search, insertion, or removal of an entry visits O(logn) nodes.

Thus, (2,4) trees provide for fast map search and update operations. (2,4) trees
also have an interesting relationship to the data structure we discuss next.
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11.6 Red-Black Trees

Although AVL trees and (2,4) trees have a number of nice properties, they also
have some disadvantages. For instance, AVL trees may require many restructure
operations (rotations) to be performed after a deletion, and (2,4) trees may require
many split or fusing operations to be performed after an insertion or removal. The
data structure we discuss in this section, the red-black tree, does not have these
drawbacks; it uses O(1) structural changes after an update in order to stay balanced.

Formally, a red-black tree is a binary search tree (see Section 11.1) with nodes
colored red and black in a way that satisfies the following properties:
Root Property: The root is black.
Red Property: The children of a red node (if any) are black.
Depth Property: All nodes with zero or one children have the same black depth,

defined as the number of black ancestors. (Recall that a node is its own
ancestor).

An example of a red-black tree is shown in Figure 11.30.

10 13 17

15

12

5

3

4

86

7 11 14

Figure 11.30: An example of a red-black tree, with “red” nodes drawn in white. The
common black depth for this tree is 3.

We can make the red-black tree definition more intuitive by noting an interest-
ing correspondence between red-black trees and (2,4) trees (excluding their trivial
external nodes). Namely, given a red-black tree, we can construct a corresponding
(2,4) tree by merging every red node w into its parent, storing the entry from w at
its parent, and with the children of w becoming ordered children of the parent. For
example, the red-black tree in Figure 11.30 corresponds to the (2,4) tree from Fig-
ure 11.24, as illustrated in Figure 11.31. The depth property of the red-black tree
corresponds to the depth property of the (2,4) tree since exactly one black node of
the red-black tree contributes to each node of the corresponding (2,4) tree.

Conversely, we can transform any (2,4) tree into a corresponding red-black tree
by coloring each node w black and then performing the following transformations,
as illustrated in Figure 11.32.
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11
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15

12

4
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7
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Figure 11.31: An illustration that the red-black tree of Figure 11.30 corresponds to
the (2,4) tree of Figure 11.24, based on the highlighted grouping of red nodes with
their black parents.

• If w is a 2-node, then keep the (black) children of w as is.

• If w is a 3-node, then create a new red node y, give w’s last two (black)
children to y, and make the first child of w and y be the two children of w.

• If w is a 4-node, then create two new red nodes y and z, give w’s first two
(black) children to y, give w’s last two (black) children to z, and make y and
z be the two children of w.

Notice that a red node always has a black parent in this construction.

Proposition 11.9: The height of a red-black tree storing n entries is O(logn).

15
←→

15

(a)

13 14
←→

13

14

14

13

or

(b)

76 8
←→

7

86
(c)

Figure 11.32: Correspondence between nodes of a (2,4) tree and a red-black tree:
(a) 2-node; (b) 3-node; (c) 4-node.
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Justification: Let T be a red-black tree storing n entries, and let h be the height
of T . We justify this proposition by establishing the following fact:

log(n+ 1)−1 ≤ h ≤ 2log(n+ 1)−2.

Let d be the common black depth of all nodes of T having zero or one children.
Let T ′ be the (2,4) tree associated with T , and let h′ be the height of T ′ (excluding
trivial leaves). Because of the correspondence between red-black trees and (2,4)
trees, we know that h′ = d. Hence, by Proposition 11.8, d = h′ ≤ log(n+1)−1. By
the red property, h≤ 2d. Thus, we obtain h≤ 2log(n+1)−2. The other inequality,
log(n+1)−1 ≤ h, follows from Proposition 8.8 and the fact that T has n nodes.

11.6.1 Red-Black Tree Operations

The algorithm for searching in a red-black tree T is the same as that for a standard
binary search tree (Section 11.1). Thus, searching in a red-black tree takes time
proportional to the height of the tree, which is O(logn) by Proposition 11.9.

The correspondence between (2,4) trees and red-black trees provides important
intuition that we will use in our discussion of how to perform updates in red-black
trees; in fact, the update algorithms for red-black trees can seem mysteriously com-
plex without this intuition. Split and fuse operations of a (2,4) tree will be effec-
tively mimicked by recoloring neighboring red-black tree nodes. A rotation within
a red-black tree will be used to change orientations of a 3-node between the two
forms shown in Figure 11.32(b).

Insertion

Now consider the insertion of a key-value pair (k,v) into a red-black tree T . The
algorithm initially proceeds as in a standard binary search tree (Section 11.1.3).
Namely, we search for k in T until we reach a null subtree, and we introduce a new
leaf x at that position, storing the item. In the special case that x is the only node
of T , and thus the root, we color it black. In all other cases, we color x red. This
action corresponds to inserting (k,v) into a node of the (2,4) tree T ′ with external
children. The insertion preserves the root and depth properties of T , but it may
violate the red property. Indeed, if x is not the root of T and the parent y of x is
red, then we have a parent and a child (namely, y and x) that are both red. Note that
by the root property, y cannot be the root of T , and by the red property (which was
previously satisfied), the parent z of y must be black. Since x and its parent are red,
but x’s grandparent z is black, we call this violation of the red property a double
red at node x. To remedy a double red, we consider two cases.
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Case 1: The Sibling s of y Is Black (or None). (See Figure 11.33.) In this case,
the double red denotes the fact that we have added the new node to a cor-
responding 3-node of the (2,4) tree T ′, effectively creating a malformed
4-node. This formation has one red node (y) that is the parent of another
red node (x), while we want it to have the two red nodes as siblings instead.
To fix this problem, we perform a trinode restructuring of T . The trinode
restructuring is done by the operation restructure(x), which consists of the
following steps (see again Figure 11.33; this operation is also discussed in
Section 11.2):

• Take node x, its parent y, and grandparent z, and temporarily relabel
them as a, b, and c, in left-to-right order, so that a, b, and c will be
visited in this order by an inorder tree traversal.

• Replace the grandparent z with the node labeled b, and make nodes a
and c the children of b, keeping inorder relationships unchanged.

After performing the restructure(x) operation, we color b black and we color
a and c red. Thus, the restructuring eliminates the double-red problem. No-
tice that the portion of any path through the restructured part of the tree is
incident to exactly one black node, both before and after the trinode restruc-
turing. Therefore, the black depth of the tree is unaffected.
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a c
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Figure 11.33: Restructuring a red-black tree to remedy a double red: (a) the four
configurations for x, y, and z before restructuring; (b) after restructuring.
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Case 2: The Sibling s of y Is Red. (See Figure 11.34.) In this case, the double red
denotes an overflow in the corresponding (2,4) tree T ′. To fix the problem,
we perform the equivalent of a split operation. Namely, we do a recoloring:
we color y and s black and their parent z red (unless z is the root, in which
case, it remains black). Notice that unless z is the root, the portion of any
path through the affected part of the tree is incident to exactly one black
node, both before and after the recoloring. Therefore, the black depth of the
tree is unaffected by the recoloring unless z is the root, in which case it is
increased by one.
However, it is possible that the double-red problem reappears after such a
recoloring, albeit higher up in the tree T , since z may have a red parent. If
the double-red problem reappears at z, then we repeat the consideration of the
two cases at z. Thus, a recoloring either eliminates the double-red problem
at node x, or propagates it to the grandparent z of x. We continue going
up T performing recolorings until we finally resolve the double-red problem
(with either a final recoloring or a trinode restructuring). Thus, the number
of recolorings caused by an insertion is no more than half the height of tree
T , that is, O(logn) by Proposition 11.9.
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. . . 30 . . .
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Figure 11.34: Recoloring to remedy the double-red problem: (a) before recoloring
and the corresponding 5-node in the associated (2,4) tree before the split; (b) after
recoloring and the corresponding nodes in the associated (2,4) tree after the split.

As further examples, Figures 11.35 and 11.36 show a sequence of insertion
operations in a red-black tree.
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Figure 11.35: A sequence of insertions in a red-black tree: (a) initial tree; (b) inser-
tion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring; (e)
insertion of 15, which causes a double red; (f ) after recoloring (the root remains
black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a
double red; (j) after restructuring; (k) insertion of 18, which causes a double red;
(l) after recoloring. (Continues in Figure 11.36.)
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Figure 11.36: A sequence of insertions in a red-black tree: (m) insertion of 16,
which causes a double red; (n) after restructuring; (o) insertion of 17, which causes
a double red; (p) after recoloring there is again a double red, to be handled by a
restructuring; (q) after restructuring. (Continued from Figure 11.35.)
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Deletion

Deleting an item with key k from a red-black tree T initially proceeds as for a binary
search tree (Section 11.1.3). Structurally, the process results in the removal a node
that has at most one child (either that originally containing key k or its inorder
predecessor) and the promotion of its remaining child (if any).

If the removed node was red, this structural change does not affect the black
depths of any paths in the tree, nor introduce any red violations, and so the resulting
tree remains a valid red-black tree. In the corresponding (2,4) tree T ′, this case
denotes the shrinking of a 3-node or 4-node. If the removed node was black, then
it either had zero children or it had one child that was a red leaf (because the null
subtree of the removed node has black height 0). In the latter case, the removed
node represents the black part of a corresponding 3-node, and we restore the red-
black properties by recoloring the promoted child to black.

The more complex case is when a (nonroot) black leaf is removed. In the cor-
responding (2,4) tree, this denotes the removal of an item from a 2-node. Without
rebalancing, such a change results in a deficit of one for the black depth along the
path leading to the deleted item. By necessity, the removed node must have a sib-
ling whose subtree has black height 1 (given that this was a valid red-black tree
prior to the deletion of the black leaf ).

To remedy this scenario, we consider a more general setting with a node z that
is known to have two subtrees, Theavy and Tlight, such that the root of Tlight (if any) is
black and such that the black depth of Theavy is exactly one more than that of Tlight,
as portrayed in Figure 11.37. In the case of a removed black leaf, z is the parent of
that leaf and Tlight is trivially the empty subtree that remains after the deletion. We
describe the more general case of a deficit because our algorithm for rebalancing
the tree will, in some cases, push the deficit higher in the tree (just as the resolution
of a deletion in a (2,4) tree sometimes cascades upward). We let y denote the root
of Theavy. (Such a node exists because Theavy has black height at least one.)

y

Theavy

Tlight

z

Figure 11.37: Portrayal of a deficit between the black heights of subtrees of node z.
The gray color in illustrating y and z denotes the fact that these nodes may be
colored either black or red.
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We consider three possible cases to remedy a deficit.

Case 1: Node y Is Black and Has a Red Child x. (See Figure 11.38.)

We perform a trinode restructuring, as originally described in Section 11.2.
The operation restructure(x) takes the node x, its parent y, and grandparent
z, labels them temporarily left to right as a, b, and c, and replaces z with the
node labeled b, making it the parent of the other two. We color a and c black,
and give b the former color of z.

Notice that the path to Tlight in the result includes one additional black node
after the restructure, thereby resolving its deficit. In contrast, the number
of black nodes on paths to any of the other three subtrees illustrated in Fig-
ure 11.38 remains unchanged.

Resolving this case corresponds to a transfer operation in the (2,4) tree T ′

between the two children of the node with z. The fact that y has a red child
assures us that it represents either a 3-node or a 4-node. In effect, the item
previously stored at z is demoted to become a new 2-node to resolve the
deficiency, while an item stored at y or its child is promoted to take the place
of the item previously stored at z.

y

z

x

Tlight

x

zy

Tlight

10 30

20

10

30 20

z

y

x

Tlight

y

zx

Tlight

10 30

2030

20

10

Figure 11.38: Resolving a black deficit in Tlight by performing a trinode restructuring
as restructure(x). Two possible configurations are shown (two other configurations
are symmetric). The gray color of z in the left figures denotes the fact that this node
may be colored either red or black. The root of the restructured portion is given
that same color, while the children of that node are both colored black in the result.
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Case 2: Node y Is Black and Both Children of y Are Black (or None).

Resolving this case corresponds to a fusion operation in the corresponding
(2,4) tree T ′, as y must represent a 2-node. We do a recoloring; we color
y red, and, if z is red, we color it black. (See Figure 11.39). This does not
introduce any red violation, because y does not have a red child.

In the case that z was originally red, and thus the parent in the corresponding
(2,4) tree is a 3-node or 4-node, this recoloring resolves the deficit. (See
Figure 11.39a.) The path leading to Tlight includes one additional black node
in the result, while the recoloring did not affect the number of black nodes
on the path to the subtrees of Theavy.

In the case that z was originally black, and thus the parent in the correspond-
ing (2,4) tree is a 2-node, the recoloring has not increased the number of
black nodes on the path to Tlight; in fact, it has reduced the number of black
nodes on the path to Theavy. (See Figure 11.39b.) After this step, the two chil-
dren of z will have the same black height. However, the entire tree rooted at
z has become deficient, thereby propogating the problem higher in the tree;
we must repeat consideration of all three cases at the parent of z as a remedy.

z

y

Theavy

Tlight

z

y30

20

30

20

(a)

z

Tlight

yy

Theavy

Tlight

z

30

2020

30

(b)

Figure 11.39: Resolving a black deficit in Tlight by a recoloring operation: (a) when
z is originally red, reversing the colors of y and z resolves the black deficit in Tlight,
ending the process; (b) when z is originally black, recoloring y causes the entire
subtree of z to have a black deficit, requiring a cascading remedy.
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Case 3: Node y Is Red. (See Figure 11.40.)

Because y is red and Theavy has black depth at least 1, z must be black and the
two subtrees of y must each have a black root and a black depth equal to that
of Theavy. In this case, we perform a rotation about y and z, and then recolor y
black and z red. This denotes a reorientation of a 3-node in the corresponding
(2,4) tree T ′.

This does not immediately resolve the deficit, as the new subtree of z is an old
subtree of y with black root y′ and black height equal to that of the original
Theavy. We reapply the algorithm to resolve the deficit at z, knowing that the
new child y′, that is the root of Theavy is now black, and therefore that either
Case 1 applies or Case 2 applies. Furthermore, the next application will be
the last, because Case 1 is always terminal and Case 2 will be terminal given
that z is red.

y

z

Theavy

y′

Tlight

z

y

Theavy

Tlight

3020

30 20

Figure 11.40: A rotation and recoloring about red node y and black node z, assuming
a black deficit at z. This amounts to a change of orientation in the corresponding
3-node of a (2,4) tree. This operation does not affect the black depth of any paths
through this portion of the tree. Furthermore, because y was originally red, the
new subtree of z must have a black root y′ and must have black height equal to the
original Theavy. Therefore, a black deficit remains at node z after the transformation.

In Figure 11.41, we show a sequence of deletions on a red-black tree. A dashed
edge in those figures, such as to the right of 7 in part (c), represents a branch with a
black deficiency that has not yet been resolved. We illustrate a Case 1 restructuring
in parts (c) and (d). We illustrate a Case 2 recoloring in parts (f ) and (g). Finally,
we show an example of a Case 3 rotation between parts (i) and (j), concluding with
a Case 2 recoloring in part (k).
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Figure 11.41: A sequence of deletions from a red-black tree: (a) initial tree; (b) re-
moval of 3; (c) removal of 12, causing a black deficit to the right of 7 (handled by
restructuring); (d) after restructuring; (e) removal of 17; (f ) removal of 18, causing
a black deficit to the right of 16 (handled by recoloring); (g) after recoloring; (h) re-
moval of 15; (i) removal of 16, causing a black deficit to the right of 14 (handled
initially by a rotation); (j) after the rotation the black deficit needs to be handled by
a recoloring; (k) after the recoloring.
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Performance of Red-Black Trees

The asymptotic performance of a red-black tree is identical to that of an AVL tree
or a (2,4) tree in terms of the sorted map ADT, with guaranteed logarithmic time
bounds for most operations. (See Table 11.2 for a summary of the AVL perfor-
mance.) The primary advantage of a red-black tree is that an insertion or deletion
requires only a constant number of restructuring operations. (This is in contrast
to AVL trees and (2,4) trees, both of which require a logarithmic number of struc-
tural changes per map operation in the worst case.) That is, an insertion or deletion
in a red-black tree requires logarithmic time for a search, and may require a loga-
rithmic number of recoloring operations that cascade upward. Yet we show, in the
following propositions, that there are a constant number of rotations or restructure
operations for a single map operation.

Proposition 11.10: The insertion of an item in a red-black tree storing n items
can be done in O(logn) time and requires O(logn) recolorings and at most one
trinode restructuring.

Justification: Recall that an insertion begins with a downward search, the cre-
ation of a new leaf node, and then a potential upward effort to remedy a double-red
violation. There may be logarithmically many recoloring operations due to an up-
ward cascading of Case 2 applications, but a single application of the Case 1 action
eliminates the double-red problem with a trinode restructuring. Therefore, at most
one restructuring operation is needed for a red-black tree insertion.

Proposition 11.11: The algorithm for deleting an item from a red-black tree with
n items takes O(logn) time and performs O(logn) recolorings and at most two
restructuring operations.

Justification: A deletion begins with the standard binary search tree deletion
algorithm, which requires time proportional to the height of the tree; for red-black
trees, that height is O(logn). The subsequent rebalancing takes place along an
upward path from the parent of a deleted node.

We considered three cases to remedy a resulting black deficit. Case 1 requires a
trinode restructuring operation, yet completes the process, so this case is applied at
most once. Case 2 may be applied logarithmically many times, but it only involves
a recoloring of up to two nodes per application. Case 3 requires a rotation, but this
case can only apply once, because if the rotation does not resolve the problem, the
very next action will be a terminal application of either Case 1 or Case 2.

In the worst case, there will be O(logn) recolorings from Case 2, a single rota-
tion from Case 3, and a trinode restructuring from Case 1.
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11.6.2 Python Implementation

A complete implementation of a RedBlackTreeMap class is provided in Code Frag-
ments 11.15 through 11.17. It inherits from the standard TreeMap class and relies
on the balancing framework described in Section 11.2.1.

We begin, in Code Fragment 11.15, by overriding the definition of the nested
Node class to introduce an additional Boolean field to denote the current color

of a node. Our constructor intentionally sets the color of a new node to red to
be consistent with our approach for inserting items. We define several additional
utility functions, at the top of Code Fragment 11.16, that aid in setting the color of
nodes and querying various conditions.

When an element has been inserted as a leaf in the tree, the rebalance insert
hook is called, allowing us the opportunity to modify the tree. The new node is
red by default, so we need only look for the special case of the new node being
the root (in which case it should be colored black), or the possibility that we have
a double-red violation because the new node’s parent is also red. To remedy such
violations, we closely follow the case analysis described in Section 11.6.1.

The rebalancing after a deletion also follows the case analysis described in
Section 11.6.1. An additional challenge is that by the time the rebalance hook is
called, the old node has already been removed from the tree. That hook is invoked
on the parent of the removed node. Some of the case analysis depends on knowing
about the properties of the removed node. Fortunately, we can reverse engineer that
information by relying on the red-black tree properties. In particular, if p denotes
the parent of the removed node, it must be that:

• If p has no children, the removed node was a red leaf. (Exercise R-11.26.)
• If p has one child, the removed node was a black leaf, causing a deficit,

unless that one remaining child is a red leaf. (Exercise R-11.27.)
• If p has two children, the removed node was a black node with one red child,

which was promoted. (Exercise R-11.28.)

1 class RedBlackTreeMap(TreeMap):
2 ”””Sorted map implementation using a red-black tree.”””
3 class Node(TreeMap. Node):
4 ”””Node class for red-black tree maintains bit that denotes color.”””
5 slots = _red # add additional data member to the Node class
6
7 def init (self, element, parent=None, left=None, right=None):
8 super(). init (element, parent, left, right)
9 self. red = True # new node red by default

Code Fragment 11.15: Beginning of the RedBlackTreeMap class. (Continued in
Code Fragment 11.16.)
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10 #------------------------- positional-based utility methods -------------------------
11 # we consider a nonexistent child to be trivially black
12 def set red(self, p): p. node. red = True
13 def set black(self, p): p. node. red = False
14 def set color(self, p, make red): p. node. red = make red
15 def is red(self, p): return p is not None and p. node. red
16 def is red leaf(self, p): return self. is red(p) and self.is leaf(p)
17
18 def get red child(self, p):
19 ”””Return a red child of p (or None if no such child).”””
20 for child in (self.left(p), self.right(p)):
21 if self. is red(child):
22 return child
23 return None
24
25 #------------------------- support for insertions -------------------------
26 def rebalance insert(self, p):
27 self. resolve red(p) # new node is always red
28
29 def resolve red(self, p):
30 if self.is root(p):
31 self. set black(p) # make root black
32 else:
33 parent = self.parent(p)
34 if self. is red(parent): # double red problem
35 uncle = self.sibling(parent)
36 if not self. is red(uncle): # Case 1: misshapen 4-node
37 middle = self. restructure(p) # do trinode restructuring
38 self. set black(middle) # and then fix colors
39 self. set red(self.left(middle))
40 self. set red(self.right(middle))
41 else: # Case 2: overfull 5-node
42 grand = self.parent(parent)
43 self. set red(grand) # grandparent becomes red
44 self. set black(self.left(grand)) # its children become black
45 self. set black(self.right(grand))
46 self. resolve red(grand) # recur at red grandparent

Code Fragment 11.16: Continuation of the RedBlackTreeMap class. (Continued
from Code Fragment 11.15, and concluded in Code Fragment 11.17.)
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47 #------------------------- support for deletions -------------------------
48 def rebalance delete(self, p):
49 if len(self) == 1:
50 self. set black(self.root()) # special case: ensure that root is black
51 elif p is not None:
52 n = self.num children(p)
53 if n == 1: # deficit exists unless child is a red leaf
54 c = next(self.children(p))
55 if not self. is red leaf(c):
56 self. fix deficit(p, c)
57 elif n == 2: # removed black node with red child
58 if self. is red leaf(self.left(p)):
59 self. set black(self.left(p))
60 else:
61 self. set black(self.right(p))
62
63 def fix deficit(self, z, y):
64 ”””Resolve black deficit at z, where y is the root of z s heavier subtree.”””
65 if not self. is red(y): # y is black; will apply Case 1 or 2
66 x = self. get red child(y)
67 if x is not None: # Case 1: y is black and has red child x; do ”transfer”
68 old color = self. is red(z)
69 middle = self. restructure(x)
70 self. set color(middle, old color) # middle gets old color of z
71 self. set black(self.left(middle)) # children become black
72 self. set black(self.right(middle))
73 else: # Case 2: y is black, but no red children; recolor as ”fusion”
74 self. set red(y)
75 if self. is red(z):
76 self. set black(z) # this resolves the problem
77 elif not self.is root(z):
78 self. fix deficit(self.parent(z), self.sibling(z)) # recur upward
79 else: # Case 3: y is red; rotate misaligned 3-node and repeat
80 self. rotate(y)
81 self. set black(y)
82 self. set red(z)
83 if z == self.right(y):
84 self. fix deficit(z, self.left(z))
85 else:
86 self. fix deficit(z, self.right(z))

Code Fragment 11.17: Conclusion of the RedBlackTreeMap class. (Continued from
Code Fragment 11.16.)
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11.7 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-11.1 If we insert the entries (1,A), (2,B), (3,C), (4,D), and (5,E), in this order,
into an initially empty binary search tree, what will it look like?

R-11.2 Insert, into an empty binary search tree, entries with keys 30, 40, 24, 58,
48, 26, 11, 13 (in this order). Draw the tree after each insertion.

R-11.3 How many different binary search trees can store the keys {1,2,3}?

R-11.4 Dr. Amongus claims that the order in which a fixed set of entries is inserted
into a binary search tree does not matter—the same tree results every time.
Give a small example that proves he is wrong.

R-11.5 Dr. Amongus claims that the order in which a fixed set of entries is inserted
into an AVL tree does not matter—the same AVL tree results every time.
Give a small example that proves he is wrong.

R-11.6 Our implementation of the TreeMap. subtree search utility, from Code
Fragment 11.4, relies on recursion. For a large unbalanced tree, Python’s
default limit on recursive depth may be prohibitive. Give an alternative
implementation of that method that does not rely on the use of recursion.

R-11.7 Do the trinode restructurings in Figures 11.12 and 11.14 result in single
or double rotations?

R-11.8 Draw the AVL tree resulting from the insertion of an entry with key 52
into the AVL tree of Figure 11.14b.

R-11.9 Draw the AVL tree resulting from the removal of the entry with key 62
from the AVL tree of Figure 11.14b.

R-11.10 Explain why performing a rotation in an n-node binary tree when using
the array-based representation of Section 8.3.2 takes Ω(n) time.

R-11.11 Give a schematic figure, in the style of Figure 11.13, showing the heights
of subtrees during a deletion operation in an AVL tree that triggers a tri-
node restructuring for the case in which the two children of the node de-
noted as y start with equal heights. What is the net effect of the height of
the rebalanced subtree due to the deletion operation?

R-11.12 Repeat the previous problem, considering the case in which y’s children
start with different heights.
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R-11.13 The rules for a deletion in an AVL tree specifically require that when the
two subtrees of the node denoted as y have equal height, child x should be
chosen to be “aligned” with y (so that x and y are both left children or both
right children). To better understand this requirement, repeat Exercise R-
11.11 assuming we picked the misaligned choice of x. Why might there
be a problem in restoring the AVL property with that choice?

R-11.14 Perform the following sequence of operations in an initially empty splay
tree and draw the tree after each set of operations.

a. Insert keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.
b. Search for keys 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, in this order.
c. Delete keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

R-11.15 What does a splay tree look like if its entries are accessed in increasing
order by their keys?

R-11.16 Is the search tree of Figure 11.23(a) a (2,4) tree? Why or why not?

R-11.17 An alternative way of performing a split at a node w in a (2,4) tree is
to partition w into w′ and w′′, with w′ being a 2-node and w′′ a 3-node.
Which of the keys k1, k2, k3, or k4 do we store at w’s parent? Why?

R-11.18 Dr. Amongus claims that a (2,4) tree storing a set of entries will always
have the same structure, regardless of the order in which the entries are
inserted. Show that he is wrong.

R-11.19 Draw four different red-black trees that correspond to the same (2,4) tree.

R-11.20 Consider the set of keys K = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.
a. Draw a (2,4) tree storing K as its keys using the fewest number of

nodes.
b. Draw a (2,4) tree storing K as its keys using the maximum number

of nodes.

R-11.21 Consider the sequence of keys (5,16,22,45,2,10,18,30,50,12,1). Draw
the result of inserting entries with these keys (in the given order) into

a. An initially empty (2,4) tree.
b. An initially empty red-black tree.

R-11.22 For the following statements about red-black trees, provide a justification
for each true statement and a counterexample for each false one.

a. A subtree of a red-black tree is itself a red-black tree.
b. A node that does not have a sibling is red.
c. There is a unique (2,4) tree associated with a given red-black tree.
d. There is a unique red-black tree associated with a given (2,4) tree.

R-11.23 Explain why you would get the same output in an inorder listing of the
entries in a binary search tree, T , independent of whether T is maintained
to be an AVL tree, splay tree, or red-black tree.
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R-11.24 Consider a tree T storing 100,000 entries. What is the worst-case height
of T in the following cases?

a. T is a binary search tree.
b. T is an AVL tree.
c. T is a splay tree.
d. T is a (2,4) tree.
e. T is a red-black tree.

R-11.25 Draw an example of a red-black tree that is not an AVL tree.

R-11.26 Let T be a red-black tree and let p be the position of the parent of the
original node that is deleted by the standard search tree deletion algorithm.
Prove that if p has zero children, the removed node was a red leaf.

R-11.27 Let T be a red-black tree and let p be the position of the parent of the
original node that is deleted by the standard search tree deletion algorithm.
Prove that if p has one child, the deletion has caused a black deficit at p,
except for the case when the one remaining child is a red leaf.

R-11.28 Let T be a red-black tree and let p be the position of the parent of the
original node that is deleted by the standard search tree deletion algorithm.
Prove that if p has two children, the removed node was black and had one
red child.

Creativity

C-11.29 Explain how to use an AVL tree or a red-black tree to sort n comparable
elements in O(n logn) time in the worst case.

C-11.30 Can we use a splay tree to sort n comparable elements in O(n logn) time
in the worst case? Why or why not?

C-11.31 Repeat Exercise C-10.28 for the TreeMap class.

C-11.32 Show that any n-node binary tree can be converted to any other n-node
binary tree using O(n) rotations.

C-11.33 For a key k that is not found in binary search tree T , prove that both the
greatest key less than k and the least key greater than k lie on the path
traced by the search for k.

C-11.34 In Section 11.1.2 we claim that the find range method of a binary search
tree executes in O(s+h) time where s is the number of items found within
the range and h is the height of the tree. Our implementation, in Code
Fragment 11.6 begins by searching for the starting key, and then repeat-
edly calling the after method until reaching the end of the range. Each call
to after is guaranteed to run in O(h) time. This suggests a weaker O(sh)
bound for find range, since it involves O(s) calls to after. Prove that this
implementation achieves the stronger O(s+ h) bound.
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C-11.35 Describe how to perform an operation remove range(start, stop) that re-
moves all the items whose keys fall within range(start, stop) in a sorted
map that is implemented with a binary search tree T , and show that this
method runs in time O(s + h), where s is the number of items removed
and h is the height of T .

C-11.36 Repeat the previous problem using an AVL tree, achieving a running time
of O(s logn). Why doesn’t the solution to the previous problem trivially
result in an O(s+ logn) algorithm for AVL trees?

C-11.37 Suppose we wish to support a new method count range(start, stop) that
determines how many keys of a sorted map fall in the specified range. We
could clearly implement this in O(s+h) time by adapting our approach to
find range. Describe how to modify the search tree structure to support
O(h) worst-case time for count range.

C-11.38 If the approach described in the previous problem were implemented as
part of the TreeMap class, what additional modifications (if any) would be
necessary to a subclass such as AVLTreeMap in order to maintain support
for the new method?

C-11.39 Draw a schematic of an AVL tree such that a single remove operation
could require Ω(logn) trinode restructurings (or rotations) from a leaf to
the root in order to restore the height-balance property.

C-11.40 In our AVL implementation, each node stores the height of its subtree,
which is an arbitrarily large integer. The space usage for an AVL tree
can be reduced by instead storing the balance factor of a node, which is
defined as the height of its left subtree minus the height of its right subtree.
Thus, the balance factor of a node is always equal to −1, 0, or 1, except
during an insertion or removal, when it may become temporarily equal to
−2 or +2. Reimplement the AVLTreeMap class storing balance factors
rather than subtree heights.

C-11.41 If we maintain a reference to the position of the leftmost node of a bi-
nary search tree, then operation find min can be performed in O(1) time.
Describe how the implementation of the other map methods need to be
modified to maintain a reference to the leftmost position.

C-11.42 If the approach described in the previous problem were implemented as
part of the TreeMap class, what additional modifications (if any) would
be necessary to a subclass such as AVLTreeMap in order to accurately
maintain the reference to the leftmost position?

C-11.43 Describe a modification to the binary search tree implementation having
worst-case O(1)-time performance for methods after(p) and before(p)
without adversely affecting the asymptotics of any other methods.
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C-11.44 If the approach described in the previous problem were implemented as
part of the TreeMap class, what additional modifications (if any) would
be necessary to a subclass such as AVLTreeMap in order to maintain the
efficiency?

C-11.45 For a standard binary search tree, Table 11.1 claims O(h)-time perfor-
mance for the delete(p) method. Explain why delete(p) would run in
O(1) time if given a solution to Exercise C-11.43.

C-11.46 Describe a modification to the binary search tree data structure that would
support the following two index-based operations for a sorted map in O(h)
time, where h is the height of the tree.

at index(i): Return the position p of the item at index i of a sorted map.

index of(p): Return the index i of the item at position p of a sorted map.

C-11.47 Draw a splay tree, T1, together with the sequence of updates that produced
it, and a red-black tree, T2, on the same set of ten entries, such that a
preorder traversal of T1 would be the same as a preorder traversal of T2.

C-11.48 Show that the nodes that become temporarily unbalanced in an AVL tree
during an insertion may be nonconsecutive on the path from the newly
inserted node to the root.

C-11.49 Show that at most one node in an AVL tree becomes temporarily un-
balanced after the immediate deletion of a node as part of the standard

delitem map operation.

C-11.50 Let T and U be (2,4) trees storing n and m entries, respectively, such
that all the entries in T have keys less than the keys of all the entries in
U . Describe an O(logn+ logm)-time method for joining T and U into a
single tree that stores all the entries in T and U .

C-11.51 Repeat the previous problem for red-black trees T and U .

C-11.52 Justify Proposition 11.7.

C-11.53 The Boolean indicator used to mark nodes in a red-black tree as being
“red” or “black” is not strictly needed when we have distinct keys. De-
scribe a scheme for implementing a red-black tree without adding any
extra space to standard binary search tree nodes.

C-11.54 Let T be a red-black tree storing n entries, and let k be the key of an entry
in T . Show how to construct from T , in O(logn) time, two red-black trees
T ′ and T ′′, such that T ′ contains all the keys of T less than k, and T ′′

contains all the keys of T greater than k. This operation destroys T .

C-11.55 Show that the nodes of any AVL tree T can be colored “red” and “black”
so that T becomes a red-black tree.

www.it-ebooks.info

http://www.it-ebooks.info/


11.7. Exercises 533

C-11.56 The standard splaying step requires two passes, one downward pass to
find the node x to splay, followed by an upward pass to splay the node
x. Describe a method for splaying and searching for x in one downward
pass. Each substep now requires that you consider the next two nodes
in the path down to x, with a possible zig substep performed at the end.
Describe how to perform the zig-zig, zig-zag, and zig steps.

C-11.57 Consider a variation of splay trees, called half-splay trees, where splaying
a node at depth d stops as soon as the node reaches depth �d/2�. Perform
an amortized analysis of half-splay trees.

C-11.58 Describe a sequence of accesses to an n-node splay tree T , where n is odd,
that results in T consisting of a single chain of nodes such that the path
down T alternates between left children and right children.

C-11.59 As a positional structure, our TreeMap implementation has a subtle flaw.
A position instance p associated with an key-value pair (k,v) should re-
main valid as long as that item remains in the map. In particular, that
position should be unaffected by calls to insert or delete other items in the
collection. Our algorithm for deleting an item from a binary search tree
may fail to provide such a guarantee, in particular because of our rule for
using the inorder predecessor of a key as a replacement when deleting a
key that is located in a node with two children. Given an explicit series of
Python commands that demonstrates such a flaw.

C-11.60 How might the TreeMap implementation be changed to avoid the flaw
described in the previous problem?

Projects

P-11.61 Perform an experimental study to compare the speed of our AVL tree,
splay tree, and red-black tree implementations for various sequences of
operations.

P-11.62 Redo the previous exercise, including an implementation of skip lists.
(See Exercise P-10.53.)

P-11.63 Implement the Map ADT using a (2,4) tree. (See Section 10.1.1.)

P-11.64 Redo the previous exercise, including all methods of the Sorted Map ADT.
(See Section 10.3.)

P-11.65 Redo Exercise P-11.63 providing positional support, as we did for bi-
nary search trees (Section 11.1.1), so as to include methods first(), last(),
before(p), after(p), and find position(k). Each item should have a dis-
tinct position in this abstraction, even though several items may be stored
at a single node of a tree.
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P-11.66 Write a Python class that can take any red-black tree and convert it into its
corresponding (2,4) tree and can take any (2,4) tree and convert it into its
corresponding red-black tree.

P-11.67 In describing multisets and multimaps in Section 10.5.3, we describe a
general approach for adapting a traditional map by storing all duplicates
within a secondary container as a value in the map. Give an alternative
implementation of a multimap using a binary search tree such that each
entry of the map is stored at a distinct node of the tree. With the existence
of duplicates, we redefine the search tree property so that all items in the
left subtree of a position p with key k have keys that are less than or equal
to k, while all items in the right subtree of p have keys that are greater than
or equal to k. Use the public interface given in Code Fragment 10.17.

P-11.68 Prepare an implementation of splay trees that uses top-down splaying as
described in Exercise C-11.56. Perform extensive experimental studies to
compare its performance to the standard bottom-up splaying implemented
in this chapter.

P-11.69 The mergeable heap ADT is an extension of the priority queue ADT
consisting of operations add(k, v), min(), remove min() and merge(h),
where the merge(h) operations performs a union of the mergeable heap h
with the present one, incorporating all items into the current one while
emptying h. Describe a concrete implementation of the mergeable heap
ADT that achieves O(logn) performance for all its operations, where n
denotes the size of the resulting heap for the merge operation.

P-11.70 Write a program that performs a simple n-body simulation, called “Jump-
ing Leprechauns.” This simulation involves n leprechauns, numbered 1 to
n. It maintains a gold value gi for each leprechaun i, which begins with
each leprechaun starting out with a million dollars worth of gold, that is,
gi = 1000000 for each i = 1,2, . . . ,n. In addition, the simulation also
maintains, for each leprechaun, i, a place on the horizon, which is repre-
sented as a double-precision floating-point number, xi. In each iteration
of the simulation, the simulation processes the leprechauns in order. Pro-
cessing a leprechaun i during this iteration begins by computing a new
place on the horizon for i, which is determined by the assignment

xi = xi + rgi,

where r is a random floating-point number between −1 and 1. The lep-
rechaun i then steals half the gold from the nearest leprechauns on either
side of him and adds this gold to his gold value, gi. Write a program that
can perform a series of iterations in this simulation for a given number,
n, of leprechauns. You must maintain the set of horizon positions using a
sorted map data structure described in this chapter.
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Chapter Notes

Some of the data structures discussed in this chapter are extensively covered by Knuth
in his Sorting and Searching book [65], and by Mehlhorn in [76]. AVL trees are due to
Adel’son-Vel’skii and Landis [2], who invented this class of balanced search trees in 1962.
Binary search trees, AVL trees, and hashing are described in Knuth’s Sorting and Search-
ing [65] book. Average-height analyses for binary search trees can be found in the books by
Aho, Hopcroft, and Ullman [6] and Cormen, Leiserson, Rivest and Stein [29]. The hand-
book by Gonnet and Baeza-Yates [44] contains a number of theoretical and experimental
comparisons among map implementations. Aho, Hopcroft, and Ullman [5] discuss (2,3)

trees, which are similar to (2,4) trees. Red-black trees were defined by Bayer [10]. Vari-
ations and interesting properties of red-black trees are presented in a paper by Guibas and
Sedgewick [48]. The reader interested in learning more about different balanced tree data
structures is referred to the books by Mehlhorn [76] and Tarjan [95], and the book chapter
by Mehlhorn and Tsakalidis [78]. Knuth [65] is excellent additional reading that includes
early approaches to balancing trees. Splay trees were invented by Sleator and Tarjan [89]
(see also [95]).
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12.1 Why Study Sorting Algorithms?

Much of this chapter focuses on algorithms for sorting a collection of objects.
Given a collection, the goal is to rearrange the elements so that they are ordered
from smallest to largest (or to produce a new copy of the sequence with such an
order). As we did when studying priority queues (see Section 9.4), we assume that
such a consistent order exists. In Python, the natural order of objects is typically1

defined using the < operator having following properties:
• Irreflexive property: k �< k.
• Transitive property: if k1 < k2 and k2 < k3, then k1 < k3.

The transitive property is important as it allows us to infer the outcome of certain
comparisons without taking the time to perform those comparisons, thereby leading
to more efficient algorithms.

Sorting is among the most important, and well studied, of computing problems.
Data sets are often stored in sorted order, for example, to allow for efficient searches
with the binary search algorithm (see Section 4.1.3). Many advanced algorithms
for a variety of problems rely on sorting as a subroutine.

Python has built-in support for sorting data, in the form of the sort method of
the list class that rearranges the contents of a list, and the built-in sorted function
that produces a new list containing the elements of an arbitrary collection in sorted
order. Those built-in functions use advanced algorithms (some of which we will
describe in this chapter), and they are highly optimized. A programmer should
typically rely on calls to the built-in sorting functions, as it is rare to have a special
enough circumstance to warrant implementing a sorting algorithm from scratch.

With that said, it remains important to have a deep understanding of sorting
algorithms. Most immediately, when calling the built-in function, it is good to
know what to expect in terms of efficiency and how that may depend upon the
initial order of elements or the type of objects that are being sorted. More generally,
the ideas and approaches that have led to advances in the development of sorting
algorithm carry over to algorithm development in many other areas of computing.

We have introduced several sorting algorithms already in this book:
• Insertion-sort (see Sections 5.5.2, 7.5, and 9.4.1)
• Selection-sort (see Section 9.4.1)
• Bubble-sort (see Exercise C-7.38)
• Heap-sort (see Section 9.4.2)
In this chapter, we present four other sorting algorithms, called merge-sort,

quick-sort, bucket-sort, and radix-sort, and then discuss the advantages and disad-
vantages of the various algorithms in Section 12.5.

1In Section 12.6.1, we will explore another technique used in Python for sorting data according
to an order other than the natural order defined by the < operator.
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12.2 Merge-Sort

12.2.1 Divide-and-Conquer

The first two algorithms we describe in this chapter, merge-sort and quick-sort, use
recursion in an algorithmic design pattern called divide-and-conquer. We have
already seen the power of recursion in describing algorithms in an elegant manner
(see Chapter 4). The divide-and-conquer pattern consists of the following three
steps:

1. Divide: If the input size is smaller than a certain threshold (say, one or two
elements), solve the problem directly using a straightforward method and
return the solution so obtained. Otherwise, divide the input data into two or
more disjoint subsets.

2. Conquer: Recursively solve the subproblems associated with the subsets.

3. Combine: Take the solutions to the subproblems and merge them into a so-
lution to the original problem.

Using Divide-and-Conquer for Sorting

We will first describe the merge-sort algorithm at a high level, without focusing on
whether the data is an array-based (Python) list or a linked list; we will soon give
concrete implementations for each. To sort a sequence S with n elements using the
three divide-and-conquer steps, the merge-sort algorithm proceeds as follows:

1. Divide: If S has zero or one element, return S immediately; it is already
sorted. Otherwise (S has at least two elements), remove all the elements
from S and put them into two sequences, S1 and S2, each containing about
half of the elements of S; that is, S1 contains the first �n/2� elements of S,
and S2 contains the remaining 
n/2� elements.

2. Conquer: Recursively sort sequences S1 and S2.

3. Combine: Put back the elements into S by merging the sorted sequences S1

and S2 into a sorted sequence.

In reference to the divide step, we recall that the notation �x� indicates the floor of
x, that is, the largest integer k, such that k ≤ x. Similarly, the notation 
x� indicates
the ceiling of x, that is, the smallest integer m, such that x ≤ m.

www.it-ebooks.info

http://www.it-ebooks.info/


12.2. Merge-Sort 539

We can visualize an execution of the merge-sort algorithm by means of a binary
tree T , called the merge-sort tree. Each node of T represents a recursive invocation
(or call) of the merge-sort algorithm. We associate with each node v of T the
sequence S that is processed by the invocation associated with v. The children of
node v are associated with the recursive calls that process the subsequences S1 and
S2 of S. The external nodes of T are associated with individual elements of S,
corresponding to instances of the algorithm that make no recursive calls.

Figure 12.1 summarizes an execution of the merge-sort algorithm by showing
the input and output sequences processed at each node of the merge-sort tree. The
step-by-step evolution of the merge-sort tree is shown in Figures 12.2 through 12.4.

This algorithm visualization in terms of the merge-sort tree helps us analyze
the running time of the merge-sort algorithm. In particular, since the size of the
input sequence roughly halves at each recursive call of merge-sort, the height of
the merge-sort tree is about logn (recall that the base of log is 2 if omitted).

45
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24 17 3163 45 96 50

45632485 17 31 96 50

17 31 96 5085 24 63 45

85 63 17 9624

(a)

31 50

24

96

85 17 3145 63 50 96

17 31 50 9624 45 63 85

45312417 50 63 85 96

85 63 1724 45

(b)

Figure 12.1: Merge-sort tree T for an execution of the merge-sort algorithm on
a sequence with 8 elements: (a) input sequences processed at each node of T ;
(b) output sequences generated at each node of T .
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Figure 12.2: Visualization of an execution of merge-sort. Each node of the tree
represents a recursive call of merge-sort. The nodes drawn with dashed lines repre-
sent calls that have not been made yet. The node drawn with thick lines represents
the current call. The empty nodes drawn with thin lines represent completed calls.
The remaining nodes (drawn with thin lines and not empty) represent calls that are
waiting for a child invocation to return. (Continues in Figure 12.3.)
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Figure 12.3: Visualization of an execution of merge-sort. (Combined with Fig-
ures 12.2 and 12.4.)
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24

17 31 96 50
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85634524
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63 85 96501724 3145 45312417 50 63 85 96
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Figure 12.4: Visualization of an execution of merge-sort (continued from Fig-
ure 12.3). Several invocations are omitted between (m) and (n). Note the merging
of two halves performed in step (p).

Proposition 12.1: The merge-sort tree associated with an execution of merge-
sort on a sequence of size n has height 
logn�.

We leave the justification of Proposition 12.1 as a simple exercise (R-12.1). We
will use this proposition to analyze the running time of the merge-sort algorithm.

Having given an overview of merge-sort and an illustration of how it works,
let us consider each of the steps of this divide-and-conquer algorithm in more de-
tail. Dividing a sequence of size n involves separating it at the element with index

n/2�, and recursive calls can be started by passing these smaller sequences as pa-
rameters. The difficult step is combining the two sorted sequences into a single
sorted sequence. Thus, before we present our analysis of merge-sort, we need to
say more about how this is done.
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12.2.2 Array-Based Implementation of Merge-Sort

We begin by focusing on the case when a sequence of items is represented as an
(array-based) Python list. The merge function (Code Fragment 12.1) is responsible
for the subtask of merging two previously sorted sequences, S1 and S2, with the
output copied into S. We copy one element during each pass of the while loop,
conditionally determining whether the next element should be taken from S1 or S2.
The divide-and-conquer merge-sort algorithm is given in Code Fragment 12.2.

We illustrate a step of the merge process in Figure 12.5. During the process,
index i represents the number of elements of S1 that have been copied to S, while
index j represents the number of elements of S2 that have been copied to S. Assum-
ing S1 and S2 both have at least one uncopied element, we copy the smaller of the
two elements being considered. Since i + j objects have been previously copied,
the next element is placed in S[i+ j]. (For example, when i + j is 0, the next ele-
ment is copied to S[0]). If we reach the end of one of the sequences, we must copy
the next element from the other.

1 def merge(S1, S2, S):
2 ”””Merge two sorted Python lists S1 and S2 into properly sized list S.”””
3 i = j = 0
4 while i + j < len(S):
5 if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
6 S[i+j] = S1[i] # copy ith element of S1 as next item of S
7 i += 1
8 else:
9 S[i+j] = S2[j] # copy jth element of S2 as next item of S

10 j += 1

Code Fragment 12.1: An implementation of the merge operation for Python’s array-
based list class.
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Figure 12.5: A step in the merge of two sorted arrays for which S2[ j] < S1[i]. We
show the arrays before the copy step in (a) and after it in (b).
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1 def merge sort(S):
2 ”””Sort the elements of Python list S using the merge-sort algorithm.”””
3 n = len(S)
4 if n < 2:
5 return # list is already sorted
6 # divide
7 mid = n // 2
8 S1 = S[0:mid] # copy of first half
9 S2 = S[mid:n] # copy of second half

10 # conquer (with recursion)
11 merge sort(S1) # sort copy of first half
12 merge sort(S2) # sort copy of second half
13 # merge results
14 merge(S1, S2, S) # merge sorted halves back into S

Code Fragment 12.2: An implementation of the recursive merge-sort algorithm for
Python’s array-based list class (using the merge function defined in Code Frag-
ment 12.1.

12.2.3 The Running Time of Merge-Sort

We begin by analyzing the running time of the merge algorithm. Let n1 and n2

be the number of elements of S1 and S2, respectively. It is clear that the operations
performed inside each pass of the while loop take O(1) time. The key observation is
that during each iteration of the loop, one element is copied from either S1 or S2 into
S (and that element is considered no further). Therefore, the number of iterations
of the loop is n1 + n2. Thus, the running time of algorithm merge is O(n1 + n2).

Having analyzed the running time of the merge algorithm used to combine
subproblems, let us analyze the running time of the entire merge-sort algorithm,
assuming it is given an input sequence of n elements. For simplicity, we restrict our
attention to the case where n is a power of 2. We leave it to an exercise (R-12.3) to
show that the result of our analysis also holds when n is not a power of 2.

When evaluating the merge-sort recursion, we rely on the analysis technique
introduced in Section 4.2. We account for the amount of time spent within each
recursive call, but excluding any time spent waiting for successive recursive calls
to terminate. In the case of our merge sort function, we account for the time to
divide the sequence into two subsequences, and the call to merge to combine the
two sorted sequences, but we exclude the two recursive calls to merge sort.
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A merge-sort tree T , as portrayed in Figures 12.2 through 12.4, can guide our
analysis. Consider a recursive call associated with a node v of the merge-sort tree T .
The divide step at node v is straightforward; this step runs in time proportional to
the size of the sequence for v, based on the use of slicing to create copies of the two
list halves. We have already observed that the merging step also takes time that is
linear in the size of the merged sequence. If we let i denote the depth of node v,
the time spent at node v is O(n/2i), since the size of the sequence handled by the
recursive call associated with v is equal to n/2i.

Looking at the tree T more globally, as shown in Figure 12.6, we see that, given
our definition of “time spent at a node,” the running time of merge-sort is equal to
the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes at
depth i. This simple observation has an important consequence, for it implies that
the overall time spent at all the nodes of T at depth i is O(2i ·n/2i), which is O(n).
By Proposition 12.1, the height of T is 
logn�. Thus, since the time spent at each
of the 
logn�+ 1 levels of T is O(n), we have the following result:

Proposition 12.2: Algorithm merge-sort sorts a sequence S of size n in O(n logn)
time, assuming two elements of S can be compared in O(1) time.

Height Time per level

Total time: O(n logn)

O(n)

O(n)

O(logn)

O(n)

n

n/2

n/4n/4n/4n/4

n/2

Figure 12.6: A visual analysis of the running time of merge-sort. Each node rep-
resents the time spent in a particular recursive call, labeled with the size of its
subproblem.
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12.2.4 Merge-Sort and Recurrence Equations �
There is another way to justify that the running time of the merge-sort algorithm is
O(n logn) (Proposition 12.2). Namely, we can deal more directly with the recursive
nature of the merge-sort algorithm. In this section, we present such an analysis of
the running time of merge-sort, and in so doing, introduce the mathematical concept
of a recurrence equation (also known as recurrence relation).

Let the function t(n) denote the worst-case running time of merge-sort on an
input sequence of size n. Since merge-sort is recursive, we can characterize func-
tion t(n) by means of an equation where the function t(n) is recursively expressed
in terms of itself. In order to simplify our characterization of t(n), let us restrict
our attention to the case when n is a power of 2. (We leave the problem of showing
that our asymptotic characterization still holds in the general case as an exercise.)
In this case, we can specify the definition of t(n) as

t(n) =

{
b if n ≤ 1
2t(n/2)+ cn otherwise.

An expression such as the one above is called a recurrence equation, since the
function appears on both the left- and right-hand sides of the equal sign. Although
such a characterization is correct and accurate, what we really desire is a big-Oh
type of characterization of t(n) that does not involve the function t(n) itself. That
is, we want a closed-form characterization of t(n).

We can obtain a closed-form solution by applying the definition of a recurrence
equation, assuming n is relatively large. For example, after one more application
of the equation above, we can write a new recurrence for t(n) as

t(n) = 2(2t(n/22)+ (cn/2))+ cn

= 22t(n/22)+ 2(cn/2)+ cn = 22t(n/22)+ 2cn.

If we apply the equation again, we get t(n) = 23t(n/23)+ 3cn. At this point, we
should see a pattern emerging, so that after applying this equation i times, we get

t(n) = 2it(n/2i)+ icn.

The issue that remains, then, is to determine when to stop this process. To see when
to stop, recall that we switch to the closed form t(n) = b when n ≤ 1, which will
occur when 2i = n. In other words, this will occur when i = logn. Making this
substitution, then, yields

t(n) = 2log nt(n/2log n)+ (logn)cn

= nt(1)+ cn log n

= nb+ cn logn.

That is, we get an alternative justification of the fact that t(n) is O(n logn).
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12.2.5 Alternative Implementations of Merge-Sort

Sorting Linked Lists

The merge-sort algorithm can easily be adapted to use any form of a basic queue
as its container type. In Code Fragment 12.3, we provide such an implementation,
based on use of the LinkedQueue class from Section 7.1.2. The O(n logn) bound
for merge-sort from Proposition 12.2 applies to this implementation as well, since
each basic operation runs in O(1) time when implemented with a linked list. We
show an example execution of this version of the merge algorithm in Figure 12.7.

1 def merge(S1, S2, S):
2 ”””Merge two sorted queue instances S1 and S2 into empty queue S.”””
3 while not S1.is empty( ) and not S2.is empty():
4 if S1.first( ) < S2.first():
5 S.enqueue(S1.dequeue())
6 else:
7 S.enqueue(S2.dequeue())
8 while not S1.is empty(): # move remaining elements of S1 to S
9 S.enqueue(S1.dequeue())

10 while not S2.is empty(): # move remaining elements of S2 to S
11 S.enqueue(S2.dequeue())
12
13 def merge sort(S):
14 ”””Sort the elements of queue S using the merge-sort algorithm.”””
15 n = len(S)
16 if n < 2:
17 return # list is already sorted
18 # divide
19 S1 = LinkedQueue( ) # or any other queue implementation
20 S2 = LinkedQueue()
21 while len(S1) < n // 2: # move the first n//2 elements to S1
22 S1.enqueue(S.dequeue())
23 while not S.is empty(): # move the rest to S2
24 S2.enqueue(S.dequeue())
25 # conquer (with recursion)
26 merge sort(S1) # sort first half
27 merge sort(S2) # sort second half
28 # merge results
29 merge(S1, S2, S) # merge sorted halves back into S

Code Fragment 12.3: An implementation of merge-sort using a basic queue.

www.it-ebooks.info

http://www.it-ebooks.info/


548 Chapter 12. Sorting and Selection

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S

(a) (b)

24

45 63 85S1

17

31 50 96S2

S 24

45 63 85S1

17

50 96S2

S 31

(c) (d)

24

63 85S1

17

50 96S2

S 31 45 24

63 85S1

17

96S2

S 31 45 50

(e) (f )

24

85S1

17

96S2

S 31 45 50 63
24

S1

17

96S2

S 31 45 50 63 85

(g) (h)

24

S1

17

S2

S 31 45 50 63 85 96

(i)

Figure 12.7: Example of an execution of the merge algorithm, as implemented in
Code Fragment 12.3 using queues.
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A Bottom-Up (Nonrecursive) Merge-Sort

There is a nonrecursive version of array-based merge-sort, which runs in O(n logn)
time. It is a bit faster than recursive merge-sort in practice, as it avoids the extra
overheads of recursive calls and temporary memory at each level. The main idea
is to perform merge-sort bottom-up, performing the merges level by level going up
the merge-sort tree. Given an input array of elements, we begin by merging every
successive pair of elements into sorted runs of length two. We merge these runs into
runs of length four, merge these new runs into runs of length eight, and so on, until
the array is sorted. To keep the space usage reasonable, we deploy a second array
that stores the merged runs (swapping input and output arrays after each iteration).
We give a Python implementation in Code Fragment 12.4. A similar bottom-up
approach can be used for sorting linked lists. (See Exercise C-12.29.)

1 def merge(src, result, start, inc):
2 ”””Merge src[start:start+inc] and src[start+inc:start+2 inc] into result.”””
3 end1 = start+inc # boundary for run 1
4 end2 = min(start+2 inc, len(src)) # boundary for run 2
5 x, y, z = start, start+inc, start # index into run 1, run 2, result
6 while x < end1 and y < end2:
7 if src[x] < src[y]:
8 result[z] = src[x]; x += 1 # copy from run 1 and increment x
9 else:

10 result[z] = src[y]; y += 1 # copy from run 2 and increment y
11 z += 1 # increment z to reflect new result
12 if x < end1:
13 result[z:end2] = src[x:end1] # copy remainder of run 1 to output
14 elif y < end2:
15 result[z:end2] = src[y:end2] # copy remainder of run 2 to output
16
17 def merge sort(S):
18 ”””Sort the elements of Python list S using the merge-sort algorithm.”””
19 n = len(S)
20 logn = math.ceil(math.log(n,2))
21 src, dest = S, [None] n # make temporary storage for dest
22 for i in (2 k for k in range(logn)): # pass i creates all runs of length 2i
23 for j in range(0, n, 2 i): # each pass merges two length i runs
24 merge(src, dest, j, i)
25 src, dest = dest, src # reverse roles of lists
26 if S is not src:
27 S[0:n] = src[0:n] # additional copy to get results to S

Code Fragment 12.4: An implementation of the nonrecursive merge-sort algorithm.
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12.3 Quick-Sort

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this
algorithm is also based on the divide-and-conquer paradigm, but it uses this tech-
nique in a somewhat opposite manner, as all the hard work is done before the
recursive calls.

High-Level Description of Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple recursive approach.
The main idea is to apply the divide-and-conquer technique, whereby we divide
S into subsequences, recur to sort each subsequence, and then combine the sorted
subsequences by a simple concatenation. In particular, the quick-sort algorithm
consists of the following three steps (see Figure 12.8):

1. Divide: If S has at least two elements (nothing needs to be done if S has
zero or one element), select a specific element x from S, which is called the
pivot. As is common practice, choose the pivot x to be the last element in S.
Remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x
• E , storing the elements in S equal to x
• G, storing the elements in S greater than x

Of course, if the elements of S are distinct, then E holds just one element—
the pivot itself.

2. Conquer: Recursively sort sequences L and G.
3. Combine: Put back the elements into S in order by first inserting the elements

of L, then those of E , and finally those of G.

2. Recur.

1. Split using pivot x.

3. Concatenate.

2. Recur.

G(> x)L(< x)

E(= x)

Figure 12.8: A visual schematic of the quick-sort algorithm.
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Like merge-sort, the execution of quick-sort can be visualized by means of a bi-
nary recursion tree, called the quick-sort tree. Figure 12.9 summarizes an execution
of the quick-sort algorithm by showing the input and output sequences processed at
each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree
is shown in Figures 12.10, 12.11, and 12.12.

Unlike merge-sort, however, the height of the quick-sort tree associated with an
execution of quick-sort is linear in the worst case. This happens, for example, if the
sequence consists of n distinct elements and is already sorted. Indeed, in this case,
the standard choice of the last element as pivot yields a subsequence L of size n−1,
while subsequence E has size 1 and subsequence G has size 0. At each invocation
of quick-sort on subsequence L, the size decreases by 1. Hence, the height of the
quick-sort tree is n−1.

45

45

632485 17 31 96 50

85 63 9624 45 17 31

24 85 6317

24 85

(a)

24

31 63 85 96

45312417 50 63 85 96

17 24 45

17 63 85

24 85

45

(b)

Figure 12.9: Quick-sort tree T for an execution of the quick-sort algorithm on a se-
quence with 8 elements: (a) input sequences processed at each node of T ; (b) output
sequences generated at each node of T . The pivot used at each level of the recursion
is shown in bold.
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632485 17 31 96 5045 24 31 85 63 965045 17
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(c) (d)

63 9650

45

24 17

31

85 63 9650

4531

17 24

85

(e) (f )

Figure 12.10: Visualization of quick-sort. Each node of the tree represents a re-
cursive call. The nodes drawn with dashed lines represent calls that have not been
made yet. The node drawn with thick lines represents the running invocation. The
empty nodes drawn with thin lines represent terminated calls. The remaining nodes
represent suspended calls (that is, active invocations that are waiting for a child in-
vocation to return). Note the divide steps performed in (b), (d), and (f ). (Continues
in Figure 12.11.)
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Figure 12.11: Visualization of an execution of quick-sort. Note the concatenation
step performed in (k). (Continues in Figure 12.12.)
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85 63 9650

17 24 31
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85 63 9650

24 3117 45

63 965024 3117 45 85

(o) (p)

85634517 3124 50 96 5024 3117 45 63 85 96

(q) (r)

Figure 12.12: Visualization of an execution of quick-sort. Several invocations be-
tween (p) and (q) have been omitted. Note the concatenation steps performed in (o)
and (r). (Continued from Figure 12.11.)
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Performing Quick-Sort on General Sequences

In Code Fragment 12.5, we give an implementation of the quick-sort algorithm
that works on any sequence type that operates as a queue. This particular version
relies on the LinkedQueue class from Section 7.1.2; we provide a more streamlined
implementation of quick-sort using an array-based sequence in Section 12.3.2.

Our implementation chooses the first item of the queue as the pivot (since it
is easily accessible), and then it divides sequence S into queues L, E , and G of
elements that are respectively less than, equal to, and greater than the pivot. We
then recur on the L and G lists, and transfer elements from the sorted lists L, E ,
and G back to S. All of the queue operations run in O(1) worst-case time when
implemented with a linked list.

1 def quick sort(S):
2 ”””Sort the elements of queue S using the quick-sort algorithm.”””
3 n = len(S)
4 if n < 2:
5 return # list is already sorted
6 # divide
7 p = S.first( ) # using first as arbitrary pivot
8 L = LinkedQueue()
9 E = LinkedQueue()

10 G = LinkedQueue()
11 while not S.is empty(): # divide S into L, E, and G
12 if S.first( ) < p:
13 L.enqueue(S.dequeue())
14 elif p < S.first():
15 G.enqueue(S.dequeue())
16 else: # S.first() must equal pivot
17 E.enqueue(S.dequeue())
18 # conquer (with recursion)
19 quick sort(L) # sort elements less than p
20 quick sort(G) # sort elements greater than p
21 # concatenate results
22 while not L.is empty():
23 S.enqueue(L.dequeue())
24 while not E.is empty():
25 S.enqueue(E.dequeue())
26 while not G.is empty():
27 S.enqueue(G.dequeue())

Code Fragment 12.5: Quick-sort for a sequence S implemented as a queue.
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Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for
merge-sort in Section 12.2.3. Namely, we can identify the time spent at each node
of the quick-sort tree T and sum up the running times for all the nodes.

Examining Code Fragment 12.5, we see that the divide step and the final con-
catenation of quick-sort can be implemented in linear time. Thus, the time spent
at a node v of T is proportional to the input size s(v) of v, defined as the size of
the sequence handled by the invocation of quick-sort associated with node v. Since
subsequence E has at least one element (the pivot), the sum of the input sizes of the
children of v is at most s(v)−1.

Let si denote the sum of the input sizes of the nodes at depth i for a particular
quick-sort tree T . Clearly, s0 = n, since the root r of T is associated with the entire
sequence. Also, s1 ≤ n− 1, since the pivot is not propagated to the children of r.
More generally, it must be that si < si−1 since the elements of the subsequences at
depth i all come from distinct subsequences at depth i−1, and at least one element
from depth i−1 does not propagate to depth i because it is in a set E (in fact, one
element from each node at depth i−1 does not propagate to depth i).

We can therefore bound the overall running time of an execution of quick-sort
as O(n ·h) where h is the overall height of the quick-sort tree T for that execution.
Unfortunately, in the worst case, the height of a quick-sort tree is Θ(n), as observed
in Section 12.3. Thus, quick-sort runs in O(n2) worst-case time. Paradoxically,
if we choose the pivot as the last element of the sequence, this worst-case behav-
ior occurs for problem instances when sorting should be easy—if the sequence is
already sorted.

Given its name, we would expect quick-sort to run quickly, and it often does
in practice. The best case for quick-sort on a sequence of distinct elements oc-
curs when subsequences L and G have roughly the same size. In that case, as
we saw with merge-sort, the tree has height O(logn) and therefore quick-sort runs
in O(n logn) time; we leave the justification of this fact as an exercise (R-12.10).
More so, we can observe an O(n logn) running time even if the split between L
and G is not as perfect. For example, if every divide step caused one subsequence
to have one-fourth of those elements and the other to have three-fourths of the
elements, the height of the tree would remain O(logn) and thus the overall perfor-
mance O(n logn).

We will see in the next section that introducing randomization in the choice of
a pivot will makes quick-sort essentially behave in this way on average, with an
expected running time that is O(n logn).
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12.3.1 Randomized Quick-Sort

One common method for analyzing quick-sort is to assume that the pivot will al-
ways divide the sequence in a reasonably balanced manner. We feel such an as-
sumption would presuppose knowledge about the input distribution that is typically
not available, however. For example, we would have to assume that we will rarely
be given “almost” sorted sequences to sort, which are actually common in many
applications. Fortunately, this assumption is not needed in order for us to match
our intuition to quick-sort’s behavior.

In general, we desire some way of getting close to the best-case running time
for quick-sort. The way to get close to the best-case running time, of course, is for
the pivot to divide the input sequence S almost equally. If this outcome were to
occur, then it would result in a running time that is asymptotically the same as the
best-case running time. That is, having pivots close to the “middle” of the set of
elements leads to an O(n logn) running time for quick-sort.

Picking Pivots at Random

Since the goal of the partition step of the quick-sort method is to divide the sequence
S with sufficient balance, let us introduce randomization into the algorithm and pick
as the pivot a random element of the input sequence. That is, instead of picking
the pivot as the first or last element of S, we pick an element of S at random as the
pivot, keeping the rest of the algorithm unchanged. This variation of quick-sort is
called randomized quick-sort. The following proposition shows that the expected
running time of randomized quick-sort on a sequence with n elements is O(n logn).
This expectation is taken over all the possible random choices the algorithm makes,
and is independent of any assumptions about the distribution of the possible input
sequences the algorithm is likely to be given.

Proposition 12.3: The expected running time of randomized quick-sort on a se-
quence S of size n is O(n logn).

Justification: We assume two elements of S can be compared in O(1) time.
Consider a single recursive call of randomized quick-sort, and let n denote the size
of the input for this call. Say that this call is “good” if the pivot chosen is such that
subsequences L and G have size at least n/4 and at most 3n/4 each; otherwise, a
call is “bad.”

Now, consider the implications of our choosing a pivot uniformly at random.
Note that there are n/2 possible good choices for the pivot for any given call of
size n of the randomized quick-sort algorithm. Thus, the probability that any call is
good is 1/2. Note further that a good call will at least partition a list of size n into
two lists of size 3n/4 and n/4, and a bad call could be as bad as producing a single
call of size n−1.
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Now consider a recursion trace for randomized quick-sort. This trace defines a
binary tree, T , such that each node in T corresponds to a different recursive call on
a subproblem of sorting a portion of the original list.

Say that a node v in T is in size group i if the size of v’s subproblem is greater
than (3/4)i+1n and at most (3/4)in. Let us analyze the expected time spent working
on all the subproblems for nodes in size group i. By the linearity of expectation
(Proposition B.19), the expected time for working on all these subproblems is the
sum of the expected times for each one. Some of these nodes correspond to good
calls and some correspond to bad calls. But note that, since a good call occurs with
probability 1/2, the expected number of consecutive calls we have to make before
getting a good call is 2. Moreover, notice that as soon as we have a good call for
a node in size group i, its children will be in size groups higher than i. Thus, for
any element x from in the input list, the expected number of nodes in size group i
containing x in their subproblems is 2. In other words, the expected total size of all
the subproblems in size group i is 2n. Since the nonrecursive work we perform for
any subproblem is proportional to its size, this implies that the total expected time
spent processing subproblems for nodes in size group i is O(n).

The number of size groups is log4/3 n, since repeatedly multiplying by 3/4 is
the same as repeatedly dividing by 4/3. That is, the number of size groups is
O(logn). Therefore, the total expected running time of randomized quick-sort is
O(n logn). (See Figure 12.13.)

If fact, we can show that the running time of randomized quick-sort is O(n logn)
with high probability. (See Exercise C-12.54.)

O(n)

O(n)

O(n)

O(n logn)

per size group
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Total expected time:

size group 1

size group 2

size group 0
s(r)

s(b)
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Figure 12.13: A visual time analysis of the quick-sort tree T . Each node is shown
labeled with the size of its subproblem.
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12.3.2 Additional Optimizations for Quick-Sort

An algorithm is in-place if it uses only a small amount of memory in addition
to that needed for the original input. Our implementation of heap-sort, from Sec-
tion 9.4.2, is an example of such an in-place sorting algorithm. Our implementation
of quick-sort from Code Fragment 12.5 does not qualify as in-place because we use
additional containers L, E , and G when dividing a sequence S within each recursive
call. Quick-sort of an array-based sequence can be adapted to be in-place, and such
an optimization is used in most deployed implementations.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-
ever, for we must use the input sequence itself to store the subsequences for all the
recursive calls. We show algorithm inplace quick sort, which performs in-place
quick-sort, in Code Fragment 12.6. Our implementation assumes that the input
sequence, S, is given as a Python list of elements. In-place quick-sort modifies
the input sequence using element swapping and does not explicitly create subse-
quences. Instead, a subsequence of the input sequence is implicitly represented by
a range of positions specified by a leftmost index a and a rightmost index b. The

1 def inplace quick sort(S, a, b):
2 ”””Sort the list from S[a] to S[b] inclusive using the quick-sort algorithm.”””
3 if a >= b: return # range is trivially sorted
4 pivot = S[b] # last element of range is pivot
5 left = a # will scan rightward
6 right = b−1 # will scan leftward
7 while left <= right:
8 # scan until reaching value equal or larger than pivot (or right marker)
9 while left <= right and S[left] < pivot:

10 left += 1
11 # scan until reaching value equal or smaller than pivot (or left marker)
12 while left <= right and pivot < S[right]:
13 right −= 1
14 if left <= right: # scans did not strictly cross
15 S[left], S[right] = S[right], S[left] # swap values
16 left, right = left + 1, right − 1 # shrink range
17
18 # put pivot into its final place (currently marked by left index)
19 S[left], S[b] = S[b], S[left]
20 # make recursive calls
21 inplace quick sort(S, a, left − 1)
22 inplace quick sort(S, left + 1, b)

Code Fragment 12.6: In-place quick-sort for a Python list S.
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divide step is performed by scanning the array simultaneously using local variables
left, which advances forward, and right, which advances backward, swapping pairs
of elements that are in reverse order, as shown in Figure 12.14. When these two
indices pass each other, the division step is complete and the algorithm completes
by recurring on these two sublists. There is no explicit “combine” step, because the
concatenation of the two sublists is implicit to the in-place use of the original list.

It is worth noting that if a sequence has duplicate values, we are not explicitly
creating three sublists L, E , and G, as in our original quick-sort description. We in-
stead allow elements equal to the pivot (other than the pivot itself ) to be dispersed
across the two sublists. Exercise R-12.11 explores the subtlety of our implementa-
tion in the presence of duplicate keys, and Exercise C-12.33 describes an in-place
algorithm that strictly partitions into three sublists L, E , and G.
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l

(f )

24 17 4531 85 96 6350

(g)

Figure 12.14: Divide step of in-place quick-sort, using index l as shorthand for iden-
tifier left, and index r as shorthand for identifier right. Index l scans the sequence
from left to right, and index r scans the sequence from right to left. A swap is per-
formed when l is at an element as large as the pivot and r is at an element as small
as the pivot. A final swap with the pivot, in part (f ), completes the divide step.
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Although the implementation we describe in this section for dividing the se-
quence into two pieces is in-place, we note that the complete quick-sort algorithm
needs space for a stack proportional to the depth of the recursion tree, which in
this case can be as large as n−1. Admittedly, the expected stack depth is O(logn),
which is small compared to n. Nevertheless, a simple trick lets us guarantee the
stack size is O(logn). The main idea is to design a nonrecursive version of in-place
quick-sort using an explicit stack to iteratively process subproblems (each of which
can be represented with a pair of indices marking subarray boundaries). Each iter-
ation involves popping the top subproblem, splitting it in two (if it is big enough),
and pushing the two new subproblems. The trick is that when pushing the new
subproblems, we should first push the larger subproblem and then the smaller one.
In this way, the sizes of the subproblems will at least double as we go down the
stack; hence, the stack can have depth at most O(logn). We leave the details of this
implementation as an exercise (P-12.56).

Pivot Selection

Our implementation in this section blindly picks the last element as the pivot at each
level of the quick-sort recursion. This leaves it susceptible to the Θ(n2)-time worst
case, most notably when the original sequence is already sorted, reverse sorted, or
nearly sorted.

As described in Section 12.3.1, this can be improved upon by using a randomly
chosen pivot for each partition step. In practice, another common technique for
choosing a pivot is to use the median of tree values, taken respectively from the
front, middle, and tail of the array. This median-of-three heuristic will more often
choose a good pivot and computing a median of three may require lower overhead
than selecting a pivot with a random number generator. For larger data sets, the
median of more than three potential pivots might be computed.

Hybrid Approaches

Although quick-sort has very good performance on large data sets, it has rather
high overhead on relatively small data sets. For example, the process of quick-
sorting a sequence of eight elements, as illustrated in Figures 12.10 through 12.12,
involves considerable bookkeeping. In practice, a simple algorithm like insertion-
sort (Section 7.5) will execute faster when sorting such a short sequence.

It is therefore common, in optimized sorting implementations, to use a hybrid
approach, with a divide-and-conquer algorithm used until the size of a subsequence
falls below some threshold (perhaps 50 elements); insertion-sort can be directly
invoked upon portions with length below the threshold. We will further discuss
such practical considerations in Section 12.5, when comparing the performance of
various sorting algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/


562 Chapter 12. Sorting and Selection

12.4 Studying Sorting through an Algorithmic Lens

Recapping our discussions on sorting to this point, we have described several meth-
ods with either a worst case or expected running time of O(n logn) on an input se-
quence of size n. These methods include merge-sort and quick-sort, described in
this chapter, as well as heap-sort (Section 9.4.2). In this section, we study sorting
as an algorithmic problem, addressing general issues about sorting algorithms.

12.4.1 Lower Bound for Sorting

A natural first question to ask is whether we can sort any faster than O(n logn)
time. Interestingly, if the computational primitive used by a sorting algorithm is the
comparison of two elements, this is in fact the best we can do—comparison-based
sorting has an Ω(n logn) worst-case lower bound on its running time. (Recall the
notation Ω(·) from Section 3.3.1.) To focus on the main cost of comparison-based
sorting, let us only count comparisons, for the sake of a lower bound.

Suppose we are given a sequence S = (x0,x1, . . . ,xn−1) that we wish to sort,
and assume that all the elements of S are distinct (this is not really a restriction
since we are deriving a lower bound). We do not care if S is implemented as an
array or a linked list, for the sake of our lower bound, since we are only counting
comparisons. Each time a sorting algorithm compares two elements xi and x j (that
is, it asks, “is xi < x j?”), there are two outcomes: “yes” or “no.” Based on the result
of this comparison, the sorting algorithm may perform some internal calculations
(which we are not counting here) and will eventually perform another comparison
between two other elements of S, which again will have two outcomes. Therefore,
we can represent a comparison-based sorting algorithm with a decision tree T (re-
call Example 8.6). That is, each internal node v in T corresponds to a comparison
and the edges from position v to its children correspond to the computations result-
ing from either a “yes” or “no” answer. It is important to note that the hypothetical
sorting algorithm in question probably has no explicit knowledge of the tree T . The
tree simply represents all the possible sequences of comparisons that a sorting algo-
rithm might make, starting from the first comparison (associated with the root) and
ending with the last comparison (associated with the parent of an external node).

Each possible initial order, or permutation, of the elements in S will cause
our hypothetical sorting algorithm to execute a series of comparisons, traversing a
path in T from the root to some external node. Let us associate with each external
node v in T , then, the set of permutations of S that cause our sorting algorithm to
end up in v. The most important observation in our lower-bound argument is that
each external node v in T can represent the sequence of comparisons for at most
one permutation of S. The justification for this claim is simple: If two different
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permutations P1 and P2 of S are associated with the same external node, then there
are at least two objects xi and x j, such that xi is before x j in P1 but xi is after x j

in P2. At the same time, the output associated with v must be a specific reordering
of S, with either xi or x j appearing before the other. But if P1 and P2 both cause the
sorting algorithm to output the elements of S in this order, then that implies there is
a way to trick the algorithm into outputting xi and x j in the wrong order. Since this
cannot be allowed by a correct sorting algorithm, each external node of T must be
associated with exactly one permutation of S. We use this property of the decision
tree associated with a sorting algorithm to prove the following result:

Proposition 12.4: The running time of any comparison-based algorithm for sort-
ing an n-element sequence is Ω(n logn) in the worst case.

Justification: The running time of a comparison-based sorting algorithm must
be greater than or equal to the height of the decision tree T associated with this
algorithm, as described above. (See Figure 12.15.) By the argument above, each
external node in T must be associated with one permutation of S. Moreover, each
permutation of S must result in a different external node of T . The number of
permutations of n objects is n! = n(n− 1)(n− 2) · · ·2 · 1. Thus, T must have at
least n! external nodes. By Proposition 8.8, the height of T is at least log(n!). This
immediately justifies the proposition, because there are at least n/2 terms that are
greater than or equal to n/2 in the product n!; hence,

log(n!) ≥ log

((n
2

) n
2

)
=

n
2

log
n
2
,

which is Ω(n logn).

(i.e., worst-case running time)
Minimum Height

log(n!)

n!

xk < xl ?xg < xh ?

xc < xd ?

xm < xn ?

xa < xb ?

xe < xf ?

xi < xj ?

Figure 12.15: Visualizing the lower bound for comparison-based sorting.
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12.4.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort

In the previous section, we showed that Ω(n logn) time is necessary, in the worst
case, to sort an n-element sequence with a comparison-based sorting algorithm. A
natural question to ask, then, is whether there are other kinds of sorting algorithms
that can be designed to run asymptotically faster than O(n logn) time. Interest-
ingly, such algorithms exist, but they require special assumptions about the input
sequence to be sorted. Even so, such scenarios often arise in practice, such as when
sorting integers from a known range or sorting character strings, so discussing them
is worthwhile. In this section, we consider the problem of sorting a sequence of en-
tries, each a key-value pair, where the keys have a restricted type.

Bucket-Sort

Consider a sequence S of n entries whose keys are integers in the range [0,N −1],
for some integer N ≥ 2, and suppose that S should be sorted according to the keys
of the entries. In this case, it is possible to sort S in O(n+ N) time. It might seem
surprising, but this implies, for example, that if N is O(n), then we can sort S in
O(n) time. Of course, the crucial point is that, because of the restrictive assumption
about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort, which is not based on
comparisons, but on using keys as indices into a bucket array B that has cells in-
dexed from 0 to N − 1. An entry with key k is placed in the “bucket” B[k], which
itself is a sequence (of entries with key k). After inserting each entry of the input
sequence S into its bucket, we can put the entries back into S in sorted order by enu-
merating the contents of the buckets B[0],B[1], . . . ,B[N − 1] in order. We describe
the bucket-sort algorithm in Code Fragment 12.7.

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0,N−1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty
for each entry e in S do

k = the key of e
remove e from S and insert it at the end of bucket (sequence) B[k]

for i = 0 to N−1 do
for each entry e in sequence B[i] do

remove e from B[i] and insert it at the end of S

Code Fragment 12.7: Bucket-sort.
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It is easy to see that bucket-sort runs in O(n + N) time and uses O(n + N)
space. Hence, bucket-sort is efficient when the range N of values for the keys is
small compared to the sequence size n, say N = O(n) or N = O(n logn). Still, its
performance deteriorates as N grows compared to n.

An important property of the bucket-sort algorithm is that it works correctly
even if there are many different elements with the same key. Indeed, we described
it in a way that anticipates such occurrences.

Stable Sorting

When sorting key-value pairs, an important issue is how equal keys are handled. Let
S = ((k0,v0), . . . ,(kn−1,vn−1)) be a sequence of such entries. We say that a sorting
algorithm is stable if, for any two entries (ki,vi) and (k j,v j) of S such that ki = k j

and (ki,vi) precedes (k j,v j) in S before sorting (that is, i < j), entry (ki,vi) also
precedes entry (k j,v j) after sorting. Stability is important for a sorting algorithm
because applications may want to preserve the initial order of elements with the
same key.

Our informal description of bucket-sort in Code Fragment 12.7 guarantees sta-
bility as long as we ensure that all sequences act as queues, with elements processed
and removed from the front of a sequence and inserted at the back. That is, when
initially placing elements of S into buckets, we should process S from front to back,
and add each element to the end of its bucket. Subsequently, when transferring el-
ements from the buckets back to S, we should process each B[i] from front to back,
with those elements added to the end of S.

Radix-Sort

One of the reasons that stable sorting is so important is that it allows the bucket-sort
approach to be applied to more general contexts than to sort integers. Suppose, for
example, that we want to sort entries with keys that are pairs (k, l), where k and l
are integers in the range [0,N−1], for some integer N ≥ 2. In a context such as this,
it is common to define an order on these keys using the lexicographic (dictionary)
convention, where (k1, l1) < (k2, l2) if k1 < k2 or if k1 = k2 and l1 < l2 (see page 15).
This is a pairwise version of the lexicographic comparison function, which can be
applied to equal-length character strings, or to tuples of length d.

The radix-sort algorithm sorts a sequence S of entries with keys that are pairs,
by applying a stable bucket-sort on the sequence twice; first using one component
of the pair as the key when ordering and then using the second component. But
which order is correct? Should we first sort on the k’s (the first component) and
then on the l’s (the second component), or should it be the other way around?
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To gain intuition before answering this question, we consider the following
example.

Example 12.5: Consider the following sequence S (we show only the keys):

S = ((3,3),(1,5),(2,5), (1,2), (2,3), (1,7), (3,2),(2,2)).

If we sort S stably on the first component, then we get the sequence

S1 = ((1,5),(1,2),(1,7),(2,5),(2,3),(2,2),(3,3),(3,2)).

If we then stably sort this sequence S1 using the second component, we get the
sequence

S1,2 = ((1,2),(2,2),(3,2),(2,3),(3,3),(1,5),(2,5),(1,7)),

which is unfortunately not a sorted sequence. On the other hand, if we first stably
sort S using the second component, then we get the sequence

S2 = ((1,2),(3,2),(2,2),(3,3),(2,3),(1,5),(2,5),(1,7)).

If we then stably sort sequence S2 using the first component, we get the sequence

S2,1 = ((1,2),(1,5),(1,7),(2,2),(2,3),(2,5),(3,2),(3,3)),

which is indeed sequence S lexicographically ordered.

So, from this example, we are led to believe that we should first sort using
the second component and then again using the first component. This intuition is
exactly right. By first stably sorting by the second component and then again by
the first component, we guarantee that if two entries are equal in the second sort
(by the first component), then their relative order in the starting sequence (which
is sorted by the second component) is preserved. Thus, the resulting sequence is
guaranteed to be sorted lexicographically every time. We leave to a simple exercise
(R-12.18) the determination of how this approach can be extended to triples and
other d-tuples of numbers. We can summarize this section as follows:

Proposition 12.6: Let S be a sequence of n key-value pairs, each of which has a
key (k1,k2, . . . ,kd), where ki is an integer in the range [0,N − 1] for some integer
N ≥ 2. We can sort S lexicographically in time O(d(n+ N)) using radix-sort.

Radix sort can be applied to any key that can be viewed as a composite of
smaller pieces that are to be sorted lexicographically. For example, we can apply
it to sort character strings of moderate length, as each individual character can be
represented as an integer value. (Some care is needed to properly handle strings
with varying lengths.)
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12.5 Comparing Sorting Algorithms

At this point, it might be useful for us to take a moment and consider all the algo-
rithms we have studied in this book to sort an n-element sequence.

Considering Running Time and Other Factors

We have studied several methods, such as insertion-sort, and selection-sort, that
have O(n2)-time behavior in the average and worst case. We have also studied sev-
eral methods with O(n logn)-time behavior, including heap-sort, merge-sort, and
quick-sort. Finally, the bucket-sort and radix-sort methods run in linear time for
certain types of keys. Certainly, the selection-sort algorithm is a poor choice in any
application, since it runs in O(n2) time even in the best case. But, of the remaining
sorting algorithms, which is the best?

As with many things in life, there is no clear “best” sorting algorithm from
the remaining candidates. There are trade-offs involving efficiency, memory usage,
and stability. The sorting algorithm best suited for a particular application depends
on the properties of that application. In fact, the default sorting algorithm used
by computing languages and systems has evolved greatly over time. We can offer
some guidance and observations, therefore, based on the known properties of the
“good” sorting algorithms.

Insertion-Sort

If implemented well, the running time of insertion-sort is O(n + m), where m is
the number of inversions (that is, the number of pairs of elements out of order).
Thus, insertion-sort is an excellent algorithm for sorting small sequences (say, less
than 50 elements), because insertion-sort is simple to program, and small sequences
necessarily have few inversions. Also, insertion-sort is quite effective for sorting
sequences that are already “almost” sorted. By “almost,” we mean that the number
of inversions is small. But the O(n2)-time performance of insertion-sort makes it a
poor choice outside of these special contexts.

Heap-Sort

Heap-sort, on the other hand, runs in O(n logn) time in the worst case, which is
optimal for comparison-based sorting methods. Heap-sort can easily be made to ex-
ecute in-place, and is a natural choice on small- and medium-sized sequences, when
input data can fit into main memory. However, heap-sort tends to be outperformed
by both quick-sort and merge-sort on larger sequences. A standard heap-sort does
not provide a stable sort, because of the swapping of elements.
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Quick-Sort

Although its O(n2)-time worst-case performance makes quick-sort susceptible in
real-time applications where we must make guarantees on the time needed to com-
plete a sorting operation, we expect its performance to be O(n logn)-time, and ex-
perimental studies have shown that it outperforms both heap-sort and merge-sort on
many tests. Quick-sort does not naturally provide a stable sort, due to the swapping
of elements during the partitioning step.

For decades quick-sort was the default choice for a general-purpose, in-memory
sorting algorithm. Quick-sort was included as the qsort sorting utility provided in C
language libraries, and was the basis for sorting utilities on Unix operating systems
for many years. It was also the standard algorithm for sorting arrays in Java through
version 6 of that language. (We discuss Java7 below.)

Merge-Sort

Merge-sort runs in O(n logn) time in the worst case. It is quite difficult to make
merge-sort run in-place for arrays, and without that optimization the extra overhead
of allocate a temporary array, and copying between the arrays is less attractive than
in-place implementations of heap-sort and quick-sort for sequences that can fit en-
tirely in a computer’s main memory. Even so, merge-sort is an excellent algorithm
for situations where the input is stratified across various levels of the computer’s
memory hierarchy (e.g., cache, main memory, external memory). In these contexts,
the way that merge-sort processes runs of data in long merge streams makes the best
use of all the data brought as a block into a level of memory, thereby reducing the
total number of memory transfers.

The GNU sorting utility (and most current versions of the Linux operating sys-
tem) relies on a multiway merge-sort variant. Since 2003, the standard sort method
of Python’s list class has been a hybrid approach named Tim-sort (designed by Tim
Peters), which is essentially a bottom-up merge-sort that takes advantage of some
initial runs in the data while using insertion-sort to build additional runs. Tim-sort
has also become the default algorithm for sorting arrays in Java7.

Bucket-Sort and Radix-Sort

Finally, if an application involves sorting entries with small integer keys, character
strings, or d-tuples of keys from a discrete range, then bucket-sort or radix-sort is
an excellent choice, for it runs in O(d(n+N)) time, where [0,N −1] is the range of
integer keys (and d = 1 for bucket sort). Thus, if d(n+ N) is significantly “below”
the n logn function, then this sorting method should run faster than even quick-sort,
heap-sort, or merge-sort.
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12.6 Python’s Built-In Sorting Functions

Python provides two built-in ways to sort data. The first is the sort method of the
list class. As an example, suppose that we define the following list:

colors = [ red , green , blue , cyan , magenta , yellow ]

That method has the effect of reordering the elements of the list into order, as de-
fined by the natural meaning of the < operator for those elements. In the above
example, within elements that are strings, the natural order is defined alphabeti-
cally. Therefore, after a call to colors.sort(), the order of the list would become:

[ blue , cyan , green , magenta , red , yellow ]

Python also supports a built-in function, named sorted, that can be used to
produce a new ordered list containing the elements of any existing iterable con-
tainer. Going back to our original example, the syntax sorted(colors) would return
a new list of those colors, in alphabetical order, while leaving the contents of the
original list unchanged. This second form is more general because it can be ap-
plied to any iterable object as a parameter; for example, sorted( green ) returns
[ e , e , g , n , r ].

12.6.1 Sorting According to a Key Function

There are many situations in which we wish to sort a list of elements, but according
to some order other than the natural order defined by the < operator. For example,
we might wish to sort a list of strings from shortest to longest (rather than alphabet-
ically). Both of Python’s built-in sort functions allow a caller to control the notion
of order that is used when sorting. This is accomplished by providing, as an op-
tional keyword parameter, a reference to a secondary function that computes a key
for each element of the primary sequence; then the primary elements are sorted
based on the natural order of their keys. (See pages 27 and 28 of Section 1.5.1 for
a discussion of this technique in the context of the built-in min and max functions.)

A key function must be a one-parameter function that accepts an element as a
parameter and returns a key. For example, we could use the built-in len function
when sorting strings by length, as a call len(s) for string s returns its length. To sort
our colors list based on length, we use the syntax colors.sort(key=len) to mutate
the list or sorted(colors, key=len) to generate a new ordered list, while leaving the
original alone. When sorted with the length function as a key, the contents are:

[ red , blue , cyan , green , yellow , magenta ]

These built-in functions also support a keyword parameter, reverse, that can be
set to True to cause the sort order to be from largest to smallest.
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Decorate-Sort-Undecorate Design Pattern

Python’s support for a key function when sorting is implemented using what is
known as the decorate-sort-undecorate design pattern. It proceeds in 3 steps:

1. Each element of the list is temporarily replaced with a “decorated” version
that includes the result of the key function applied to the element.

2. The list is sorted based upon the natural order of the keys (Figure 12.16).
3. The decorated elements are replaced by the original elements.

10 2 3 4 5

63 4

4 blue 5 green

red yellow

7 magenta

cyan

Figure 12.16: A list of “decorated” strings, using their lengths as decoration. This
list has been sorted by those keys.

Although there is already built-in support for Python, if we were to implement
such a strategy ourselves, a natural way to represent a “decorated” element is using
the same composition strategy that we used for representing key-value pairs within
a priority queue. Code Fragment 9.1 of Section 9.2.1 includes just such an Item
class, defined so that the < operator for items relies upon the given keys. With such
a composition, we could trivially adapt any sorting algorithm to use the decorate-
sort-undecorate pattern, as demonstrated in Code Fragment 12.8 with merge-sort.

1 def decorated merge sort(data, key=None):
2 ”””Demonstration of the decorate-sort-undecorate pattern.”””
3 if key is not None:
4 for j in range(len(data)):
5 data[j] = Item(key(data[j]), data[j]) # decorate each element
6 merge sort(data) # sort with existing algorithm
7 if key is not None:
8 for j in range(len(data)):
9 data[j] = data[j]. value # undecorate each element

Code Fragment 12.8: An approach for implementing the decorate-sort-undecorate
pattern based upon the array-based merge-sort of Code Fragment 12.1. The Item
class is identical to that which was used in the PriorityQueueBase class. (See Code
Fragment 9.1.)

www.it-ebooks.info

http://www.it-ebooks.info/


12.7. Selection 571

12.7 Selection

As important as it is, sorting is not the only interesting problem dealing with a total
order relation on a set of elements. There are a number of applications in which
we are interested in identifying a single element in terms of its rank relative to
the sorted order of the entire set. Examples include identifying the minimum and
maximum elements, but we may also be interested in, say, identifying the median
element, that is, the element such that half of the other elements are smaller and the
remaining half are larger. In general, queries that ask for an element with a given
rank are called order statistics.

Defining the Selection Problem

In this section, we discuss the general order-statistic problem of selecting the kth

smallest element from an unsorted collection of n comparable elements. This is
known as the selection problem. Of course, we can solve this problem by sorting
the collection and then indexing into the sorted sequence at index k − 1. Using
the best comparison-based sorting algorithms, this approach would take O(n logn)
time, which is obviously an overkill for the cases where k = 1 or k = n (or even
k = 2, k = 3, k = n− 1, or k = n− 5), because we can easily solve the selection
problem for these values of k in O(n) time. Thus, a natural question to ask is
whether we can achieve an O(n) running time for all values of k (including the
interesting case of finding the median, where k = �n/2�).

12.7.1 Prune-and-Search

We can indeed solve the selection problem in O(n) time for any value of k. More-
over, the technique we use to achieve this result involves an interesting algorithmic
design pattern. This design pattern is known as prune-and-search or decrease-
and-conquer. In applying this design pattern, we solve a given problem that is
defined on a collection of n objects by pruning away a fraction of the n objects
and recursively solving the smaller problem. When we have finally reduced the
problem to one defined on a constant-sized collection of objects, we then solve
the problem using some brute-force method. Returning back from all the recursive
calls completes the construction. In some cases, we can avoid using recursion, in
which case we simply iterate the prune-and-search reduction step until we can ap-
ply a brute-force method and stop. Incidentally, the binary search method described
in Section 4.1.3 is an example of the prune-and-search design pattern.
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12.7.2 Randomized Quick-Select

In applying the prune-and-search pattern to finding the kth smallest element in an
unordered sequence of n elements, we describe a simple and practical algorithm,
known as randomized quick-select. This algorithm runs in O(n) expected time,
taken over all possible random choices made by the algorithm; this expectation
does not depend whatsoever on any randomness assumptions about the input dis-
tribution. We note though that randomized quick-select runs in O(n2) time in the
worst case, the justification of which is left as an exercise (R-12.24). We also
provide an exercise (C-12.55) for modifying randomized quick-select to define a
deterministic selection algorithm that runs in O(n) worst-case time. The existence
of this deterministic algorithm is mostly of theoretical interest, however, since the
constant factor hidden by the big-Oh notation is relatively large in that case.

Suppose we are given an unsorted sequence S of n comparable elements to-
gether with an integer k ∈ [1,n]. At a high level, the quick-select algorithm for
finding the kth smallest element in S is similar to the randomized quick-sort algo-
rithm described in Section 12.3.1. We pick a “pivot” element from S at random and
use this to subdivide S into three subsequences L, E , and G, storing the elements of
S less than, equal to, and greater than the pivot, respectively. In the prune step, we
determine which of these subsets contains the desired element, based on the value
of k and the sizes of those subsets. We then recur on the appropriate subset, noting
that the desired element’s rank in the subset may differ from its rank in the full set.
An implementation of randomized quick-select is shown in Code Fragment 12.9.

1 def quick select(S, k):
2 ”””Return the kth smallest element of list S, for k from 1 to len(S).”””
3 if len(S) == 1:
4 return S[0]
5 pivot = random.choice(S) # pick random pivot element from S
6 L = [x for x in S if x < pivot] # elements less than pivot
7 E = [x for x in S if x == pivot] # elements equal to pivot
8 G = [x for x in S if pivot < x] # elements greater than pivot
9 if k <= len(L):

10 return quick select(L, k) # kth smallest lies in L
11 elif k <= len(L) + len(E):
12 return pivot # kth smallest equal to pivot
13 else:
14 j = k − len(L) − len(E) # new selection parameter
15 return quick select(G, j) # kth smallest is jth in G

Code Fragment 12.9: Randomized quick-select algorithm.
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12.7.3 Analyzing Randomized Quick-Select

Showing that randomized quick-select runs in O(n) time requires a simple prob-
abilistic argument. The argument is based on the linearity of expectation, which
states that if X and Y are random variables and c is a number, then

E(X +Y ) = E(X)+ E(Y) and E(cX) = cE(X),

where we use E(Z) to denote the expected value of the expression Z .
Let t(n) be the running time of randomized quick-select on a sequence of size n.

Since this algorithm depends on random events, its running time, t(n), is a random
variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive
invocation of our algorithm is “good” if it partitions S so that the size of each of L
and G is at most 3n/4. Clearly, a recursive call is good with probability at least 1/2.
Let g(n) denote the number of consecutive recursive calls we make, including the
present one, before we get a good one. Then we can characterize t(n) using the
following recurrence equation:

t(n) ≤ bn ·g(n)+ t(3n/4),

where b ≥ 1 is a constant. Applying the linearity of expectation for n > 1, we get

E (t(n)) ≤ E (bn ·g(n)+ t(3n/4)) = bn ·E (g(n))+E (t(3n/4)) .

Since a recursive call is good with probability at least 1/2, and whether a recursive
call is good or not is independent of its parent call being good, the expected value
of g(n) is at most the expected number of times we must flip a fair coin before it
comes up “heads.” That is, E(g(n)) ≤ 2. Thus, if we let T (n) be shorthand for
E(t(n)), then we can write the case for n > 1 as

T (n) ≤ T (3n/4)+ 2bn.

To convert this relation into a closed form, let us iteratively apply this inequality
assuming n is large. So, for example, after two applications,

T (n) ≤ T ((3/4)2n)+ 2b(3/4)n+ 2bn.

At this point, we should see that the general case is

T (n) ≤ 2bn ·
�log4/3 n�

∑
i=0

(3/4)i.

In other words, the expected running time is at most 2bn times a geometric sum
whose base is a positive number less than 1. Thus, by Proposition 3.5, T (n) is O(n).

Proposition 12.7: The expected running time of randomized quick-select on a
sequence S of size n is O(n), assuming two elements of S can be compared in O(1)
time.
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12.8 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-12.1 Give a complete justification of Proposition 12.1.

R-12.2 In the merge-sort tree shown in Figures 12.2 through 12.4, some edges are
drawn as arrows. What is the meaning of a downward arrow? How about
an upward arrow?

R-12.3 Show that the running time of the merge-sort algorithm on an n-element
sequence is O(n logn), even when n is not a power of 2.

R-12.4 Is our array-based implementation of merge-sort given in Section 12.2.2
stable? Explain why or why not.

R-12.5 Is our linked-list-based implementation of merge-sort given in Code Frag-
ment 12.3 stable? Explain why or why not.

R-12.6 An algorithm that sorts key-value entries by key is said to be straggling
if, any time two entries ei and e j have equal keys, but ei appears before e j

in the input, then the algorithm places ei after e j in the output. Describe a
change to the merge-sort algorithm in Section 12.2 to make it straggling.

R-12.7 Suppose we are given two n-element sorted sequences A and B each with
distinct elements, but potentially some elements that are in both sequences.
Describe an O(n)-time method for computing a sequence representing the
union A∪B (with no duplicates) as a sorted sequence.

R-12.8 Suppose we modify the deterministic version of the quick-sort algorithm
so that, instead of selecting the last element in an n-element sequence as
the pivot, we choose the element at index �n/2�. What is the running time
of this version of quick-sort on a sequence that is already sorted?

R-12.9 Consider a modification of the deterministic version of the quick-sort al-
gorithm where we choose the element at index �n/2� as our pivot. De-
scribe the kind of sequence that would cause this version of quick-sort to
run in Ω(n2) time.

R-12.10 Show that the best-case running time of quick-sort on a sequence of size
n with distinct elements is Ω(n logn).

R-12.11 Suppose function inplace quick sort is executed on a sequence with du-
plicate elements. Prove that the algorithm still correctly sorts the input
sequence. What happens in the partition step when there are elements
equal to the pivot? What is the running time of the algorithm if all the
input elements are equal?

www.it-ebooks.info

http:\\www.wiley.com/college/goodrich
http://www.it-ebooks.info/


12.8. Exercises 575

R-12.12 If the outermost while loop of our implementation of inplace quick sort
(line 7 of Code Fragment 12.6) were changed to use condition left < right
(rather than left <= right), there would be a flaw. Explain the flaw and
give a specific input sequence on which such an implementation fails.

R-12.13 If the conditional at line 14 of our inplace quick sort implementation of
Code Fragment 12.6 were changed to use condition left < right (rather
than left <= right), there would be a flaw. Explain the flaw and give a
specific input sequence on which such an implementation fails.

R-12.14 Following our analysis of randomized quick-sort in Section 12.3.1, show
that the probability that a given input element x belongs to more than
2logn subproblems in size group i is at most 1/n2.

R-12.15 Of the n! possible inputs to a given comparison-based sorting algorithm,
what is the absolute maximum number of inputs that could be correctly
sorted with just n comparisons?

R-12.16 Jonathan has a comparison-based sorting algorithm that sorts the first k
elements of a sequence of size n in O(n) time. Give a big-Oh characteri-
zation of the biggest that k can be?

R-12.17 Is the bucket-sort algorithm in-place? Why or why not?

R-12.18 Describe a radix-sort method for lexicographically sorting a sequence S of
triplets (k, l,m), where k, l, and m are integers in the range [0,N −1], for
some N ≥ 2. How could this scheme be extended to sequences of d-tuples
(k1,k2, . . . ,kd), where each ki is an integer in the range [0,N −1]?

R-12.19 Suppose S is a sequence of n values, each equal to 0 or 1. How long will
it take to sort S with the merge-sort algorithm? What about quick-sort?

R-12.20 Suppose S is a sequence of n values, each equal to 0 or 1. How long will
it take to sort S stably with the bucket-sort algorithm?

R-12.21 Given a sequence S of n values, each equal to 0 or 1, describe an in-place
method for sorting S.

R-12.22 Give an example input list that requires merge-sort and heap-sort to take
O(n logn) time to sort, but insertion-sort runs in O(n) time. What if you
reverse this list?

R-12.23 What is the best algorithm for sorting each of the following: general com-
parable objects, long character strings, 32-bit integers, double-precision
floating-point numbers, and bytes? Justify your answer.

R-12.24 Show that the worst-case running time of quick-select on an n-element
sequence is Ω(n2).
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Creativity

C-12.25 Linda claims to have an algorithm that takes an input sequence S and
produces an output sequence T that is a sorting of the n elements in S.

a. Give an algorithm, is sorted, that tests in O(n) time if T is sorted.
b. Explain why the algorithm is sorted is not sufficient to prove a par-

ticular output T to Linda’s algorithm is a sorting of S.
c. Describe what additional information Linda’s algorithm could out-

put so that her algorithm’s correctness could be established on any
given S and T in O(n) time.

C-12.26 Describe and analyze an efficient method for removing all duplicates from
a collection A of n elements.

C-12.27 Augment the PositionalList class (see Section 7.4) to support a method
named merge with the following behavior. If A and B are PositionalList
instances whose elements are sorted, the syntax A.merge(B) should merge
all elements of B into A so that A remains sorted and B becomes empty.
Your implementation must accomplish the merge by relinking existing
nodes; you are not to create any new nodes.

C-12.28 Augment the PositionalList class (see Section 7.4) to support a method
named sort that sorts the elements of a list by relinking existing nodes;
you are not to create any new nodes. You may use your choice of sorting
algorithm.

C-12.29 Implement a bottom-up merge-sort for a collection of items by placing
each item in its own queue, and then repeatedly merging pairs of queues
until all items are sorted within a single queue.

C-12.30 Modify our in-place quick-sort implementation of Code Fragment 12.6 to
be a randomized version of the algorithm, as discussed in Section 12.3.1.

C-12.31 Consider a version of deterministic quick-sort where we pick as our pivot
the median of the d last elements in the input sequence of n elements, for
a fixed, constant odd number d ≥ 3. What is the asymptotic worst-case
running time of quick-sort in this case?

C-12.32 Another way to analyze randomized quick-sort is to use a recurrence
equation. In this case, we let T (n) denote the expected running time
of randomized quick-sort, and we observe that, because of the worst-case
partitions for good and bad splits, we can write

T (n) ≤ 1
2

(T (3n/4)+ T (n/4))+
1
2

(T (n−1))+bn,

where bn is the time needed to partition a list for a given pivot and concate-
nate the result sublists after the recursive calls return. Show, by induction,
that T (n) is O(n logn).
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C-12.33 Our high-level description of quick-sort describes partitioning the ele-
ments into three sets L, E , and G, having keys less than, equal to, or
greater than the pivot, respectively. However, our in-place quick-sort im-
plementation of Code Fragment 12.6 does not gather all elements equal
to the pivot into a set E . An alternative strategy for an in-place, three-
way partition is as follows. Loop through the elements from left to right
maintaining indices i, j, and k and the invariant that all elements of slice
S[0:i] are strictly less than the pivot, all elements of slice S[i:j] are equal
to the pivot, and all elements of slice S[j:k] are strictly greater than the
pivot; elements of S[k:n] are yet unclassified. In each pass of the loop,
classify one additional element, performing a constant number of swaps
as needed. Implement an in-place quick-sort using this strategy.

C-12.34 Suppose we are given an n-element sequence S such that each element in S
represents a different vote for president, where each vote is given as an in-
teger representing a particular candidate, yet the integers may be arbitrar-
ily large (even if the number of candidates is not). Design an O(n logn)-
time algorithm to see who wins the election S represents, assuming the
candidate with the most votes wins.

C-12.35 Consider the voting problem from Exercise C-12.34, but now suppose that
we know the number k < n of candidates running, even though the integer
IDs for those candidates can be arbitrarily large. Describe an O(n logk)-
time algorithm for determining who wins the election.

C-12.36 Consider the voting problem from Exercise C-12.34, but now suppose the
integers 1 to k are used to identify k < n candidates. Design an O(n)-time
algorithm to determine who wins the election.

C-12.37 Show that any comparison-based sorting algorithm can be made to be
stable without affecting its asymptotic running time.

C-12.38 Suppose we are given two sequences A and B of n elements, possibly
containing duplicates, on which a total order relation is defined. Describe
an efficient algorithm for determining if A and B contain the same set of
elements. What is the running time of this method?

C-12.39 Given an array A of n integers in the range [0,n2 − 1], describe a simple
method for sorting A in O(n) time.

C-12.40 Let S1,S2, . . . ,Sk be k different sequences whose elements have integer
keys in the range [0,N −1], for some parameter N ≥ 2. Describe an algo-
rithm that produces k respective sorted sequences in O(n+ N) time, were
n denotes the sum of the sizes of those sequences.

C-12.41 Given a sequence S of n elements, on which a total order relation is de-
fined, describe an efficient method for determining whether there are two
equal elements in S. What is the running time of your method?
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C-12.42 Let S be a sequence of n elements on which a total order relation is de-
fined. Recall that an inversion in S is a pair of elements x and y such
that x appears before y in S but x > y. Describe an algorithm running in
O(n logn) time for determining the number of inversions in S.

C-12.43 Let S be a sequence of n integers. Describe a method for printing out all
the pairs of inversions in S in O(n+k) time, where k is the number of such
inversions.

C-12.44 Let S be a random permutation of n distinct integers. Argue that the ex-
pected running time of insertion-sort on S is Ω(n2). (Hint: Note that half
of the elements ranked in the top half of a sorted version of S are expected
to be in the first half of S.)

C-12.45 Let A and B be two sequences of n integers each. Given an integer m,
describe an O(n logn)-time algorithm for determining if there is an integer
a in A and an integer b in B such that m = a+ b.

C-12.46 Given a set of n integers, describe and analyze a fast method for finding
the 
logn� integers closest to the median.

C-12.47 Bob has a set A of n nuts and a set B of n bolts, such that each nut in A
has a unique matching bolt in B. Unfortunately, the nuts in A all look the
same, and the bolts in B all look the same as well. The only kind of a
comparison that Bob can make is to take a nut-bolt pair (a,b), such that a
is in A and b is in B, and test it to see if the threads of a are larger, smaller,
or a perfect match with the threads of b. Describe and analyze an efficient
algorithm for Bob to match up all of his nuts and bolts.

C-12.48 Our quick-select implementation can be made more space-efficient by ini-
tially computing only the counts for sets L, E , and G, creating only the new
subset that will be needed for recursion. Implement such a version.

C-12.49 Describe an in-place version of the quick-select algorithm in pseudo-code,
assuming that you are allowed to modify the order of elements.

C-12.50 Show how to use a deterministic O(n)-time selection algorithm to sort a
sequence of n elements in O(n logn) worst-case time.

C-12.51 Given an unsorted sequence S of n comparable elements, and an integer k,
give an O(n logk) expected-time algorithm for finding the O(k) elements
that have rank 
n/k�, 2
n/k�, 3
n/k�, and so on.

C-12.52 Space aliens have given us a function, alien split, that can take a sequence
S of n integers and partition S in O(n) time into sequences S1,S2, . . . ,Sk of
size at most 
n/k� each, such that the elements in Si are less than or equal
to every element in Si+1, for i = 1,2, . . . ,k−1, for a fixed number, k < n.
Show how to use alien split to sort S in O(n logn/ logk) time.

C-12.53 Read documenation of the reverse keyword parameter of Python’s sorting
functions, and describe how the decorate-sort-undecorate paradigm could
be used to implement it, without assuming anything about the key type.
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C-12.54 Show that randomized quick-sort runs in O(n logn) time with probability
at least 1−1/n, that is, with high probability, by answering the following:

a. For each input element x, define Ci, j(x) to be a 0/1 random variable
that is 1 if and only if element x is in j + 1 subproblems that belong
to size group i. Argue why we need not define Ci, j for j > n.

b. Let Xi, j be a 0/1 random variable that is 1 with probability 1/2 j,
independent of any other events, and let L = 
log4/3 n�. Argue why

∑
L−1
i=0 ∑

n
j=0Ci, j(x) ≤ ∑

L−1
i=0 ∑

n
j=0 Xi, j.

c. Show that the expected value of ∑
L−1
i=0 ∑

n
j=0 Xi, j is (2−1/2n)L.

d. Show that the probability that ∑
L
i=0 ∑

n
j=0 Xi, j > 4L is at most 1/n2,

using the Chernoff bound that states that if X is the sum of a finite
number of independent 0/1 random variables with expected value
μ > 0, then Pr(X > 2μ) < (4/e)−μ, where e = 2.71828128 . . ..

e. Argue why the previous claim proves randomized quick-sort runs in
O(n logn) time with probability at least 1−1/n.

C-12.55 We can make the quick-select algorithm deterministic, by choosing the
pivot of an n-element sequence as follows:

Partition the set S into 
n/5� groups of size 5 each (except pos-
sibly for one group). Sort each little set and identify the median
element in this set. From this set of 
n/5� “baby” medians, ap-
ply the selection algorithm recursively to find the median of the
baby medians. Use this element as the pivot and proceed as in
the quick-select algorithm.

Show that this deterministic quick-select algorithm runs in O(n) time by
answering the following questions (please ignore floor and ceiling func-
tions if that simplifies the mathematics, for the asymptotics are the same
either way):

a. How many baby medians are less than or equal to the chosen pivot?
How many are greater than or equal to the pivot?

b. For each baby median less than or equal to the pivot, how many
other elements are less than or equal to the pivot? Is the same true
for those greater than or equal to the pivot?

c. Argue why the method for finding the deterministic pivot and using
it to partition S takes O(n) time.

d. Based on these estimates, write a recurrence equation to bound the
worst-case running time t(n) for this selection algorithm (note that in
the worst case there are two recursive calls—one to find the median
of the baby medians and one to recur on the larger of L and G).

e. Using this recurrence equation, show by induction that t(n) is O(n).
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Projects

P-12.56 Implement a nonrecursive, in-place version of the quick-sort algorithm, as
described at the end of Section 12.3.2.

P-12.57 Experimentally compare the performance of in-place quick-sort and a ver-
sion of quick-sort that is not in-place.

P-12.58 Perform a series of benchmarking tests on a version of merge-sort and
quick-sort to determine which one is faster. Your tests should include
sequences that are “random” as well as “almost” sorted.

P-12.59 Implement deterministic and randomized versions of the quick-sort al-
gorithm and perform a series of benchmarking tests to see which one is
faster. Your tests should include sequences that are very “random” looking
as well as ones that are “almost” sorted.

P-12.60 Implement an in-place version of insertion-sort and an in-place version of
quick-sort. Perform benchmarking tests to determine the range of values
of n where quick-sort is on average better than insertion-sort.

P-12.61 Design and implement a version of the bucket-sort algorithm for sorting
a list of n entries with integer keys taken from the range [0,N − 1], for
N ≥ 2. The algorithm should run in O(n+ N) time.

P-12.62 Design and implement an animation for one of the sorting algorithms de-
scribed in this chapter. Your animation should illustrate the key properties
of this algorithm in an intuitive manner.

Chapter Notes

Knuth’s classic text on Sorting and Searching [65] contains an extensive history of the
sorting problem and algorithms for solving it. Huang and Langston [53] show how to
merge two sorted lists in-place in linear time. The standard quick-sort algorithm is due
to Hoare [51]. Several optimizations for quick-sort are described by Bentley and McIl-
roy [16]. More information about randomization, including Chernoff bounds, can be found
in the appendix and the book by Motwani and Raghavan [80]. The quick-sort analysis
given in this chapter is a combination of the analysis given in an earlier Java edition of this
book and the analysis of Kleinberg and Tardos [60]. Exercise C-12.32 is due to Littman.
Gonnet and Baeza-Yates [44] analyze and compare experimentally several sorting algo-
rithms. The term “prune-and-search” comes originally from the computational geometry
literature (such as in the work of Clarkson [26] and Megiddo [75]). The term “decrease-
and-conquer” is from Levitin [70].
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13.1 Abundance of Digitized Text

Despite the wealth of multimedia information, text processing remains one of the
dominant functions of computers. Computer are used to edit, store, and display
documents, and to transport documents over the Internet. Furthermore, digital sys-
tems are used to archive a wide range of textual information, and new data is being
generated at a rapidly increasing pace. A large corpus can readily surpass a petabyte
of data (which is equivalent to a thousand terabytes, or a million gigabytes). Com-
mon examples of digital collections that include textual information are:

• Snapshots of the World Wide Web, as Internet document formats HTML and
XML are primarily text formats, with added tags for multimedia content

• All documents stored locally on a user’s computer
• Email archives
• Customer reviews
• Compilations of status updates on social networking sites such as Facebook
• Feeds from microblogging sites such as Twitter and Tumblr

These collections include written text from hundreds of international languages.
Furthermore, there are large data sets (such as DNA) that can be viewed computa-
tionally as “strings” even though they are not language.

In this chapter we explore some of the fundamental algorithms that can be used
to efficiently analyze and process large textual data sets. In addition to having
interesting applications, text-processing algorithms also highlight some important
algorithmic design patterns.

We begin by examining the problem of searching for a pattern as a substring
of a larger piece of text, for example, when searching for a word in a document.
The pattern-matching problem gives rise to the brute-force method, which is often
inefficient but has wide applicability.

Next, we introduce an algorithmic technique known as dynamic programming,
which can be applied in certain settings to solve a problem in polynomial time that
appears at first to require exponential time to solve. We demonstrate the application
on this technique to the problem of finding partial matches between strings that may
be similar but not perfectly aligned. This problem arises when making suggestions
for a misspelled word, or when trying to match related genetic samples.

Because of the massive size of textual data sets, the issue of compression is
important, both in minimizing the number of bits that need to be communicated
through a network and to reduce the long-term storage requirements for archives.
For text compression, we can apply the greedy method, which often allows us to
approximate solutions to hard problems, and for some problems (such as in text
compression) actually gives rise to optimal algorithms.

Finally, we examine several special-purpose data structures that can be used to
better organize textual data in order to support more efficient run-time queries.
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13.1.1 Notations for Strings and the Python str Class

We use character strings as a model for text when discuss algorithms for text pro-
cessing. Character strings can come from a wide variety of sources, including
scientific, linguistic, and Internet applications. Indeed, the following are examples
of such strings:

S = "CGTAAACTGCTTTAATCAAACGC"

T = "http://www.wiley.com"

The first string, S, comes from DNA applications, and the second string, T , is the
Internet address (URL) for the publisher of this book. We refer to Appendix A for
an overview of the operations supported by Python’s str class.

To allow fairly general notions of a string in our algorithm descriptions, we
only assume that characters of a string come from a known alphabet, which we
denote as Σ. For example, in the context of DNA, there are four symbols in the
standard alphabet, Σ = {A,C,G,T}. This alphabet Σ can, of course, be a subset of
the ASCII or Unicode character sets, but it could also be something more general.
Although we assume that an alphabet has a fixed finite size, denoted as |Σ|, that
size can be nontrivial, as with Python’s treatment of the Unicode alphabet, which
allows for more than a million distinct characters. We therefore consider the impact
of |Σ| in our asymptotic analysis of text-processing algorithms.

Several string-processing operations involve breaking large strings into smaller
strings. In order to be able to speak about the pieces that result from such oper-
ations, we will rely on Python’s indexing and slicing notations. For the sake of
notation, we let S denote a string of length n. In that case, we let S[j] refer to the
character at index j for 0 ≤ j≤ n−1. We let notation S[j:k] for 0 ≤ j≤ k≤ n denote
the slice (or substring) of S consisting of characters S[j] up to and including S[k−1],
but not S[k]. By this definition, note that substring S[j : j + m] has length m and
that substring S[j:j] is trivially the null string, having length 0. In accordance with
Python conventions, the substring S[j:k] is also the null string when k < j.

In order to distinguish some special kinds of substrings, let us refer to any
substring of the form S[0:k] for 0 ≤ k ≤ n as a prefix of S; such a prefix results in
Python when the first index is omitted from slice notation, as in S[:k]. Similarly,
any substring of the form S[j:n] for 0 ≤ j ≤ n is a suffix of S; such a suffix results
in Python when the second index is omitted from slice notation, as in S[j:]. For
example, if we again take S to be the string of DNA given above, then "CGTAA" is
a prefix of S, "CGC" is a suffix of S, and "C" is both a prefix and suffix of S. Note
that the null string is a prefix and a suffix of any string.

www.it-ebooks.info

http:\\www.wiley.com
http://www.it-ebooks.info/


584 Chapter 13. Text Processing

13.2 Pattern-Matching Algorithms

In the classic pattern-matching problem, we are given a text string T of length n
and a pattern string P of length m, and want to find whether P is a substring of T.
If so, we may want to find the lowest index j within T at which P begins, such that
T[j:j+m] equals P, or perhaps to find all indices of T at which pattern P begins.

The pattern-matching problem is inherent to many behaviors of Python’s str
class, such as P in T, T.find(P), T.index(P), T.count(P), and is a subtask of more
complex behaviors such as T.partition(P), T.split(P), and T.replace(P, Q).

In this section, we present three pattern-matching algorithms (with increasing
levels of difficulty). For simplicity, we model the outward semantics of our func-
tions upon the find method of the string class, returning the lowest index at which
the pattern begins, or −1 if the pattern is not found.

13.2.1 Brute Force

The brute-force algorithmic design pattern is a powerful technique for algorithm
design when we have something we wish to search for or when we wish to optimize
some function. When applying this technique in a general situation, we typically
enumerate all possible configurations of the inputs involved and pick the best of all
these enumerated configurations.

In applying this technique to design a brute-force pattern-matching algorithm,
we derive what is probably the first algorithm that we might think of for solving
the problem—we simply test all the possible placements of P relative to T. An
implementation of this algorithm is shown in Code Fragment 13.1.

1 def find brute(T, P):
2 ”””Return the lowest index of T at which substring P begins (or else -1).”””
3 n, m = len(T), len(P) # introduce convenient notations
4 for i in range(n−m+1): # try every potential starting index within T
5 k = 0 # an index into pattern P
6 while k < m and T[i + k] == P[k]: # kth character of P matches
7 k += 1
8 if k == m: # if we reached the end of pattern,
9 return i # substring T[i:i+m] matches P

10 return −1 # failed to find a match starting with any i

Code Fragment 13.1: An implementation of brute-force pattern-matching algo-
rithm.
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Performance

The analysis of the brute-force pattern-matching algorithm could not be simpler.
It consists of two nested loops, with the outer loop indexing through all possible
starting indices of the pattern in the text, and the inner loop indexing through each
character of the pattern, comparing it to its potentially corresponding character
in the text. Thus, the correctness of the brute-force pattern-matching algorithm
follows immediately from this exhaustive search approach.

The running time of brute-force pattern matching in the worst case is not good,
however, because, for each candidate index in T, we can perform up to m character
comparisons to discover that P does not match T at the current index. Referring to
Code Fragment 13.1, we see that the outer for loop is executed at most n−m + 1
times, and the inner while loop is executed at most m times. Thus, the worst-case
running time of the brute-force method is O(nm).

Example 13.1: Suppose we are given the text string

T = "abacaabaccabacabaabb"

and the pattern string

P = "abacab"

Figure 13.1 illustrates the execution of the brute-force pattern-matching algorithm
on T and P.

a

b

ab c

c

10

2322

b

11 comparisons not shown

ba a a bc

7

Text:

Pattern:

ba

a a a bc

654321

a a

ba a a bc

8 9

bc

27262524

ba a a

bbaaabaccabaac ba

Figure 13.1: Example run of the brute-force pattern-matching algorithm. The algo-
rithm performs 27 character comparisons, indicated above with numerical labels.
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13.2.2 The Boyer-Moore Algorithm

At first, it might seem that it is always necessary to examine every character in T in
order to locate a pattern P as a substring or to rule out its existence. But this is not
always the case. The Boyer-Moore pattern-matching algorithm, which we study in
this section, can sometimes avoid comparisons between P and a sizable fraction of
the characters in T. In this section, we describe a simplified version of the original
algorithm by Boyer and Moore.

The main idea of the Boyer-Moore algorithm is to improve the running time of
the brute-force algorithm by adding two potentially time-saving heuristics. Roughly
stated, these heuristics are as follows:

Looking-Glass Heuristic: When testing a possible placement of P against T, be-
gin the comparisons from the end of P and move backward to the front of P.

Character-Jump Heuristic: During the testing of a possible placement of P within
T, a mismatch of text character T[i]=c with the corresponding pattern char-
acter P[k] is handled as follows. If c is not contained anywhere in P, then
shift P completely past T[i] (for it cannot match any character in P). Other-
wise, shift P until an occurrence of character c in P gets aligned with T[i].

We will formalize these heuristics shortly, but at an intuitive level, they work as an
integrated team. The looking-glass heuristic sets up the other heuristic to allow us
to avoid comparisons between P and whole groups of characters in T. In this case at
least, we can get to the destination faster by going backwards, for if we encounter a
mismatch during the consideration of P at a certain location in T, then we are likely
to avoid lots of needless comparisons by significantly shifting P relative to T using
the character-jump heuristic. The character-jump heuristic pays off big if it can be
applied early in the testing of a potential placement of P against T. Figure 13.2
demonstrates a few simple applications of these heuristics.

s i

·

Pattern:

·····s···e·· · · ··Text: · ··

hus s i

hus s i

hu s

Figure 13.2: A simple example demonstrating the intuition of the Boyer-Moore
pattern-matching algorithm. The original comparison results in a mismatch with
character e of the text. Because that character is nowhere in the pattern, the entire
pattern is shifted beyond its location. The second comparison is also a mismatch,
but the mismatched character s occurs elsewhere in the pattern. The pattern is next
shifted so that its last occurrence of s is aligned with the corresponding s in the
text. The remainder of the process is not illustrated in this figure.
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The example of Figure 13.2 is rather basic, because it only involves mismatches
with the last character of the pattern. More generally, when a match is found for
that last character, the algorithm continues by trying to extend the match with the
second-to-last character of the pattern in its current alignment. That process contin-
ues until either matching the entire pattern, or finding a mismatch at some interior
position of the pattern.

If a mismatch is found, and the mismatched character of the text does not occur
in the pattern, we shift the entire pattern beyond that location, as originally illus-
trated in Figure 13.2. If the mismatched character occurs elsewhere in the pattern,
we must consider two possible subcases depending on whether its last occurrence
is before or after the character of the pattern that was aligned with the mismatched.
Those two cases are illustrated in Figure 13.3.

(a)

·

· b ··

kj

i′

· a

· ··

· b ··

j + 1

m− ( j + 1)

Text:

Pattern:

·····a········ · ·

i

a ·

(b)

·

k j

i′

· · b·· a

· · b·· a

k

m− k

Text:

Pattern:

· ·······a········ · ·

i

Figure 13.3: Additional rules for the character-jump heuristic of the Boyer-Moore
algorithm. We let i represent the index of the mismatched character in the text, k
represent the corresponding index in the pattern, and j represent the index of the
last occurrence of T [i] within the pattern. We distinguish two cases: (a) j < k,
in which case we shift the pattern by k − j units, and thus, index i advances by
m− ( j + 1) units; (b) j > k, in which case we shift the pattern by one unit, and
index i advances by m− k units.

In the case of Figure 13.3(b), we slide the pattern only one unit. It would
be more productive to slide it rightward until finding another occurrence of mis-
matched character T [i] in the pattern, but we do not wish to take time to search for
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another occurrence. The efficiency of the Boyer-Moore algorithm relies on creat-
ing a lookup table that quickly determines where a mismatched character occurs
elsewhere in the pattern. In particular, we define a function last(c) as

• If c is in P, last(c) is the index of the last (rightmost) occurrence of c in P.
Otherwise, we conventionally define last(c) = −1.

If we assume that the alphabet is of fixed, finite size, and that characters can be
converted to indices of an array (for example, by using their character code), the
last function can be easily implemented as a lookup table with worst-case O(1)-
time access to the value last(c). However, the table would have length equal to the
size of the alphabet (rather than the size of the pattern), and time would be required
to initialize the entire table.

We prefer to use a hash table to represent the last function, with only those
characters from the pattern occurring in the structure. The space usage for this
approach is proportional to the number of distinct alphabet symbols that occur in
the pattern, and thus O(m). The expected lookup time remains independent of the
problem (although the worst-case bound is O(m)). Our complete implementation
of the Boyer-Moore pattern-matching algorithm is given in Code Fragment 13.2.

1 def find boyer moore(T, P):
2 ”””Return the lowest index of T at which substring P begins (or else -1).”””
3 n, m = len(T), len(P) # introduce convenient notations
4 if m == 0: return 0 # trivial search for empty string
5 last = { } # build ’last’ dictionary
6 for k in range(m):
7 last[ P[k] ] = k # later occurrence overwrites
8 # align end of pattern at index m-1 of text
9 i = m−1 # an index into T

10 k = m−1 # an index into P
11 while i < n:
12 if T[i] == P[k]: # a matching character
13 if k == 0:
14 return i # pattern begins at index i of text
15 else:
16 i −= 1 # examine previous character
17 k −= 1 # of both T and P
18 else:
19 j = last.get(T[i], −1) # last(T[i]) is -1 if not found
20 i += m − min(k, j + 1) # case analysis for jump step
21 k = m − 1 # restart at end of pattern
22 return −1

Code Fragment 13.2: An implementation of the Boyer-Moore algorithm.
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The correctness of the Boyer-Moore pattern-matching algorithm follows from
the fact that each time the method makes a shift, it is guaranteed not to “skip” over
any possible matches. For last(c) is the location of the last occurrence of c in P.
In Figure 13.4, we illustrate the execution of the Boyer-Moore pattern-matching
algorithm on an input string similar to Example 13.1.

c a b c d
last(c) 4 5 3 −1

acdabaac ba ab cText:

Pattern: ba a a bc

1

ba a a bc

234

ba a a bc

5

ba a a bc

6

ba a a bc

7

ba a a bc

8910111213

bbaaaba

Figure 13.4: An illustration of the Boyer-Moore pattern-matching algorithm, in-
cluding a summary of the last(c) function. The algorithm performs 13 character
comparisons, which are indicated with numerical labels.

Performance

If using a traditional lookup table, the worst-case running time of the Boyer-Moore
algorithm is O(nm + |Σ|). Namely, the computation of the last function takes time
O(m+ |Σ|), and the actual search for the pattern takes O(nm) time in the worst case,
the same as the brute-force algorithm. (With a hash table, the dependence on |Σ| is
removed.) An example of a text-pattern pair that achieves the worst case is

T =

n︷ ︸︸ ︷
aaaaaa · · · a

P = b
m−1︷ ︸︸ ︷

aa · · ·a
The worst-case performance, however, is unlikely to be achieved for English text,
for, in that case, the Boyer-Moore algorithm is often able to skip large portions
of text. Experimental evidence on English text shows that the average number of
comparisons done per character is 0.24 for a five-character pattern string.

We have actually presented a simplified version of the Boyer-Moore algorithm.
The original algorithm achieves running time O(n+m+ |Σ|) by using an alternative
shift heuristic to the partially matched text string, whenever it shifts the pattern
more than the character-jump heuristic. This alternative shift heuristic is based on
applying the main idea from the Knuth-Morris-Pratt pattern-matching algorithm,
which we discuss next.
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13.2.3 The Knuth-Morris-Pratt Algorithm

In examining the worst-case performances of the brute-force and Boyer-Moore
pattern-matching algorithms on specific instances of the problem, such as that given
in Example 13.1, we should notice a major inefficiency. For a certain alignment of
the pattern, if we find several matching characters but then detect a mismatch, we
ignore all the information gained by the successful comparisons after restarting
with the next incremental placement of the pattern.

The Knuth-Morris-Pratt (or “KMP”) algorithm, discussed in this section, avoids
this waste of information and, in so doing, it achieves a running time of O(n+ m),
which is asymptotically optimal. That is, in the worst case any pattern-matching
algorithm will have to examine all the characters of the text and all the characters
of the pattern at least once. The main idea of the KMP algorithm is to precom-
pute self-overlaps between portions of the pattern so that when a mismatch occurs
at one location, we immediately know the maximum amount to shift the pattern
before continuing the search. A motivating example is shown in Figure 13.5.

a · · · · · · · · · ·

am

am t o nima a g al

t o nima a g al

·t

am t o nima a g al

Text:

Pattern:

a amaglamc

Figure 13.5: A motivating example for the Knuth-Morris-Pratt algorithm. If a mis-
match occurs at the indicated location, the pattern could be shifted to the second
alignment, without explicit need to recheck the partial match with the prefix ama.
If the mismatched character is not an l, then the next potential alignment of the
pattern can take advantage of the common a.

The Failure Function

To implement the KMP algorithm, we will precompute a failure function, f , that
indicates the proper shift of P upon a failed comparison. Specifically, the failure
function f (k) is defined as the length of the longest prefix of P that is a suffix
of P[1:k+1] (note that we did not include P[0] here, since we will shift at least
one unit). Intuitively, if we find a mismatch upon character P[k+1], the function
f (k) tells us how many of the immediately preceding characters can be reused to
restart the pattern. Example 13.2 describes the value of the failure function for the
example pattern from Figure 13.5.
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Example 13.2: Consider the pattern P = "amalgamation" from Figure 13.5.
The Knuth-Morris-Pratt (KMP) failure function, f (k), for the string P is as shown
in the following table:

k 0 1 2 3 4 5 6 7 8 9 10 11
P[k] a m a l g a m a t i o n
f (k) 0 0 1 0 0 1 2 3 0 0 0 0

Implementation

Our implementation of the KMP pattern-matching algorithm is shown in Code
Fragment 13.3. It relies on a utility function, compute kmp fail, discussed on
the next page, to compute the failure function efficiently.

The main part of the KMP algorithm is its while loop, each iteration of which
performs a comparison between the character at index j in T and the character at
index k in P. If the outcome of this comparison is a match, the algorithm moves on
to the next characters in both T and P (or reports a match if reaching the end of the
pattern). If the comparison failed, the algorithm consults the failure function for a
new candidate character in P, or starts over with the next index in T if failing on
the first character of the pattern (since nothing can be reused).

1 def find kmp(T, P):
2 ”””Return the lowest index of T at which substring P begins (or else -1).”””
3 n, m = len(T), len(P) # introduce convenient notations
4 if m == 0: return 0 # trivial search for empty string
5 fail = compute kmp fail(P) # rely on utility to precompute
6 j = 0 # index into text
7 k = 0 # index into pattern
8 while j < n:
9 if T[j] == P[k]: # P[0:1+k] matched thus far

10 if k == m − 1: # match is complete
11 return j − m + 1
12 j += 1 # try to extend match
13 k += 1
14 elif k > 0:
15 k = fail[k−1] # reuse suffix of P[0:k]
16 else:
17 j += 1
18 return −1 # reached end without match

Code Fragment 13.3: An implementation of the KMP pattern-matching algorithm.
The compute kmp fail utility function is given in Code Fragment 13.4.
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Constructing the KMP Failure Function

To construct the failure function, we use the method shown in Code Fragment 13.4,
which is a “bootstrapping” process that compares the pattern to itself as in the KMP
algorithm. Each time we have two characters that match, we set f ( j) = k+1. Note
that since we have j > k throughout the execution of the algorithm, f (k − 1) is
always well defined when we need to use it.

1 def compute kmp fail(P):
2 ”””Utility that computes and returns KMP fail list.”””
3 m = len(P)
4 fail = [0] m # by default, presume overlap of 0 everywhere
5 j = 1
6 k = 0
7 while j < m: # compute f(j) during this pass, if nonzero
8 if P[j] == P[k]: # k + 1 characters match thus far
9 fail[j] = k + 1

10 j += 1
11 k += 1
12 elif k > 0: # k follows a matching prefix
13 k = fail[k−1]
14 else: # no match found starting at j
15 j += 1
16 return fail

Code Fragment 13.4: An implementation of the compute kmp fail utility in sup-
port of the KMP pattern-matching algorithm. Note how the algorithm uses the
previous values of the failure function to efficiently compute new values.

Performance

Excluding the computation of the failure function, the running time of the KMP
algorithm is clearly proportional to the number of iterations of the while loop. For
the sake of the analysis, let us define s = j− k. Intuitively, s is the total amount by
which the pattern P has been shifted with respect to the text T . Note that throughout
the execution of the algorithm, we have s ≤ n. One of the following three cases
occurs at each iteration of the loop.

• If T [ j] = P[k], then j and k each increase by 1, and thus, s does not change.
• If T [ j] �= P[k] and k > 0, then j does not change and s increases by at least 1,

since in this case s changes from j− k to j− f (k− 1), which is an addition
of k− f (k−1), which is positive because f (k−1) < k.

• If T [ j] �= P[k] and k = 0, then j increases by 1 and s increases by 1, since k
does not change.
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Thus, at each iteration of the loop, either j or s increases by at least 1 (possibly
both); hence, the total number of iterations of the while loop in the KMP pattern-
matching algorithm is at most 2n. Achieving this bound, of course, assumes that
we have already computed the failure function for P.

The algorithm for computing the failure function runs in O(m) time. Its analysis
is analogous to that of the main KMP algorithm, yet with a pattern of length m
compared to itself. Thus, we have:

Proposition 13.3: The Knuth-Morris-Pratt algorithm performs pattern matching
on a text string of length n and a pattern string of length m in O(n+ m) time.

The correctness of this algorithm follows from the definition of the failure func-
tion. Any comparisons that are skipped are actually unnecessary, for the failure
function guarantees that all the ignored comparisons are redundant—they would
involve comparing the same matching characters over again.

In Figure 13.6, we illustrate the execution of the KMP pattern-matching algo-
rithm on the same input strings as in Example 13.1. Note the use of the failure
function to avoid redoing one of the comparisons between a character of the pat-
tern and a character of the text. Also note that the algorithm performs fewer overall
comparisons than the brute-force algorithm run on the same strings (Figure 13.1).

The failure function:

k 0 1 2 3 4 5
P[k] a b a c a b
f (k) 0 0 1 0 1 2

a

a bc

13

ba a a bc

191817161514

no comparison
performed

Text:

Pattern: ba a a bc

654321

bbaaabaccabaac ba ab c

ba a a bc

7

ba a a bc

8 9 10 11 12

ba a

Figure 13.6: An illustration of the KMP pattern-matching algorithm. The primary
algorithm performs 19 character comparisons, which are indicated with numerical
labels. (Additional comparisons would be performed during the computation of the
failure function.)
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13.3 Dynamic Programming

In this section, we discuss the dynamic programming algorithm-design technique.
This technique is similar to the divide-and-conquer technique (Section 12.2.1), in
that it can be applied to a wide variety of different problems. Dynamic program-
ming can often be used to take problems that seem to require exponential time and
produce polynomial-time algorithms to solve them. In addition, the algorithms that
result from applications of the dynamic programming technique are usually quite
simple—often needing little more than a few lines of code to describe some nested
loops for filling in a table.

13.3.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-
namic programming technique, we begin by giving a classic, concrete example.
Suppose we are given a collection of n two-dimensional matrices for which we
wish to compute the mathematical product

A = A0 ·A1 ·A2 · · ·An−1,

where Ai is a di × di+1 matrix, for i = 0,1,2, . . . ,n − 1. In the standard matrix
multiplication algorithm (which is the one we will use), to multiply a d×e-matrix B
times an e× f -matrix C, we compute the product, A, as

A[i][ j] =
e−1

∑
k=0

B[i][k] ·C[k][ j].

This definition implies that matrix multiplication is associative, that is, it implies
that B · (C ·D) = (B ·C) ·D. Thus, we can parenthesize the expression for A any
way we wish and we will end up with the same answer. However, we will not
necessarily perform the same number of primitive (that is, scalar) multiplications
in each parenthesization, as is illustrated in the following example.

Example 13.4: Let B be a 2×10-matrix, let C be a 10×50-matrix, and let D be
a 50× 20-matrix. Computing B · (C ·D) requires 2 · 10 · 20 + 10 · 50 · 20 = 10400
multiplications, whereas computing (B ·C) ·D requires 2 ·10 ·50+2 ·50 ·20 = 3000
multiplications.

The matrix chain-product problem is to determine the parenthesization of the
expression defining the product A that minimizes the total number of scalar mul-
tiplications performed. As the example above illustrates, the differences between
parenthesizations can be dramatic, so finding a good solution can result in signifi-
cant speedups.
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Defining Subproblems

One way to solve the matrix chain-product problem is to simply enumerate all the
possible ways of parenthesizing the expression for A and determine the number
of multiplications performed by each one. Unfortunately, the set of all different
parenthesizations of the expression for A is equal in number to the set of all dif-
ferent binary trees that have n leaves. This number is exponential in n. Thus, this
straightforward (“brute-force”) algorithm runs in exponential time, for there are an
exponential number of ways to parenthesize an associative arithmetic expression.

We can significantly improve the performance achieved by the brute-force al-
gorithm, however, by making a few observations about the nature of the matrix
chain-product problem. The first is that the problem can be split into subproblems.
In this case, we can define a number of different subproblems, each of which is to
compute the best parenthesization for some subexpression Ai ·Ai+1 · · ·A j. As a con-
cise notation, we use Ni, j to denote the minimum number of multiplications needed
to compute this subexpression. Thus, the original matrix chain-product problem
can be characterized as that of computing the value of N0,n−1. This observation
is important, but we need one more in order to apply the dynamic programming
technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-
lem is that it is possible to characterize an optimal solution to a particular subprob-
lem in terms of optimal solutions to its subproblems. We call this property the
subproblem optimality condition.

In the case of the matrix chain-product problem, we observe that, no mat-
ter how we parenthesize a subexpression, there has to be some final matrix mul-
tiplication that we perform. That is, a full parenthesization of a subexpression
Ai ·Ai+1 · · ·A j has to be of the form (Ai · · ·Ak) · (Ak+1 · · ·A j), for some k ∈ {i, i +
1, . . . , j−1}. Moreover, for whichever k is the correct one, the products (Ai · · ·Ak)
and (Ak+1 · · ·A j) must also be solved optimally. If this were not so, then there would
be a global optimal that had one of these subproblems solved suboptimally. But this
is impossible, since we could then reduce the total number of multiplications by re-
placing the current subproblem solution by an optimal solution for the subproblem.
This observation implies a way of explicitly defining the optimization problem for
Ni, j in terms of other optimal subproblem solutions. Namely, we can compute Ni, j

by considering each place k where we could put the final multiplication and taking
the minimum over all such choices.
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Designing a Dynamic Programming Algorithm

We can therefore characterize the optimal subproblem solution, Ni, j, as

Ni, j = min
i≤k< j

{Ni,k + Nk+1, j + didk+1dj+1},
where Ni,i = 0, since no work is needed for a single matrix. That is, Ni, j is the
minimum, taken over all possible places to perform the final multiplication, of the
number of multiplications needed to compute each subexpression plus the number
of multiplications needed to perform the final matrix multiplication.

Notice that there is a sharing of subproblems going on that prevents us from
dividing the problem into completely independent subproblems (as we would need
to do to apply the divide-and-conquer technique). We can, nevertheless, use the
equation for Ni, j to derive an efficient algorithm by computing Ni, j values in a
bottom-up fashion, and storing intermediate solutions in a table of Ni, j values. We
can begin simply enough by assigning Ni,i = 0 for i = 0,1, . . . ,n− 1. We can then
apply the general equation for Ni, j to compute Ni,i+1 values, since they depend only
on Ni,i and Ni+1,i+1 values that are available. Given the Ni,i+1 values, we can then
compute the Ni,i+2 values, and so on. Therefore, we can build Ni, j values up from
previously computed values until we can finally compute the value of N0,n−1, which
is the number that we are searching for. A Python implementation of this dynamic
programming solution is given in Code Fragment 13.5; we use techniques from
Section 5.6 for representing a multidimensional table in Python.

1 def matrix chain(d):
2 ”””d is a list of n+1 numbers such that size of kth matrix is d[k]-by-d[k+1].
3
4 Return an n-by-n table such that N[i][j] represents the minimum number of
5 multiplications needed to compute the product of Ai through Aj inclusive.
6 ”””
7 n = len(d) − 1 # number of matrices
8 N = [[0] n for i in range(n)] # initialize n-by-n result to zero
9 for b in range(1, n): # number of products in subchain

10 for i in range(n−b): # start of subchain
11 j = i + b # end of subchain
12 N[i][j] = min(N[i][k]+N[k+1][j]+d[i] d[k+1] d[j+1] for k in range(i,j))
13 return N

Code Fragment 13.5: Dynamic programming algorithm for the matrix chain-
product problem.

Thus, we can compute N0,n−1 with an algorithm that consists primarily of three
nested loops (the third of which computes the min term). Each of these loops
iterates at most n times per execution, with a constant amount of additional work
within. Therefore, the total running time of this algorithm is O(n3).
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13.3.2 DNA and Text Sequence Alignment

A common text-processing problem, which arises in genetics and software engi-
neering, is to test the similarity between two text strings. In a genetics application,
the two strings could correspond to two strands of DNA, for which we want to com-
pute similarities. Likewise, in a software engineering application, the two strings
could come from two versions of source code for the same program, for which we
want to determine changes made from one version to the next. Indeed, determining
the similarity between two strings is so common that the Unix and Linux operating
systems have a built-in program, named diff, for comparing text files.

Given a string X = x0x1x2 · · ·xn−1, a subsequence of X is any string that is of
the form xi1 xi2 · · ·xik , where i j < i j+1; that is, it is a sequence of characters that are
not necessarily contiguous but are nevertheless taken in order from X . For example,
the string AAAG is a subsequence of the string CGAT AAT T GAGA.

The DNA and text similarity problem we address here is the longest common
subsequence (LCS) problem. In this problem, we are given two character strings,
X = x0x1x2 · · ·xn−1 and Y = y0y1y2 · · ·ym−1, over some alphabet (such as the alpha-
bet {A,C,G,T} common in computational genetics) and are asked to find a longest
string S that is a subsequence of both X and Y . One way to solve the longest
common subsequence problem is to enumerate all subsequences of X and take the
largest one that is also a subsequence of Y . Since each character of X is either in
or not in a subsequence, there are potentially 2n different subsequences of X , each
of which requires O(m) time to determine whether it is a subsequence of Y . Thus,
this brute-force approach yields an exponential-time algorithm that runs in O(2nm)
time, which is very inefficient. Fortunately, the LCS problem is efficiently solvable
using dynamic programming.

The Components of a Dynamic Programming Solution

As mentioned above, the dynamic programming technique is used primarily for
optimization problems, where we wish to find the “best” way of doing something.
We can apply the dynamic programming technique in such situations if the problem
has certain properties:

Simple Subproblems: There has to be some way of repeatedly breaking the global
optimization problem into subproblems. Moreover, there should be a way to
parameterize subproblems with just a few indices, like i, j, k, and so on.

Subproblem Optimization: An optimal solution to the global problem must be a
composition of optimal subproblem solutions.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain
subproblems in common.
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Applying Dynamic Programming to the LCS Problem

Recall that in the LCS problem, we are given two character strings, X and Y , of
length n and m, respectively, and are asked to find a longest string S that is a sub-
sequence of both X and Y . Since X and Y are character strings, we have a natural
set of indices with which to define subproblems—indices into the strings X and Y .
Let us define a subproblem, therefore, as that of computing the value L j,k, which
we will use to denote the length of a longest string that is a subsequence of both
prefixes X [0 : j] and Y [0 : k]. This definition allows us to rewrite L j,k in terms of
optimal subproblem solutions. This definition depends on which of two cases we
are in. (See Figure 13.7.)

L10,12 = 1+ L9,11 L9,11 = max(L9,10, L8,11)

6 7 8 9 10 11

G T T C C T A A T A

C A T A A T T GG AGA

0 1 2 3 4 5 6 7 8 9
X =

0
Y =

1 2 3 4 5 5 6 7 8 9 10

G T T C C T A A T

C A T A A T T GG GA

0 1 2 3 4 5 6 7 8
X =

0
Y =

1 2 3 4

(a) (b)

Figure 13.7: The two cases in the longest common subsequence algorithm for com-
puting L j,k: (a) x j−1 = yk−1; (b) x j−1 �= yk−1.

• x j−1 = yk−1. In this case, we have a match between the last character of
X [0: j] and the last character of Y [0 : k]. We claim that this character be-
longs to a longest common subsequence of X [0 : j] and Y [0 : k]. To justify
this claim, let us suppose it is not true. There has to be some longest com-
mon subsequence xa1 xa2 . . .xac = yb1 yb2 . . .ybc . If xac = x j−1 or ybc = yk−1,
then we get the same sequence by setting ac = j− 1 and bc = k− 1. Alter-
nately, if xac �= x j−1 and ybc �= yk−1, then we can get an even longer common
subsequence by adding x j−1 = yk−1 to the end. Thus, a longest common
subsequence of X [0: j] and Y [0:k] ends with x j−1. Therefore, we set

L j,k = 1+ L j−1,k−1 if x j−1 = yk−1.

• x j−1 �= yk−1. In this case, we cannot have a common subsequence that in-
cludes both x j−1 and yk−1. That is, we can have a common subsequence end
with x j−1 or one that ends with yk−1 (or possibly neither), but certainly not
both. Therefore, we set

L j,k = max{L j−1,k , L j,k−1} if x j−1 �= yk−1.

We note that because slice Y [0 : 0] is the empty string, L j,0 = 0 for j = 0,1, . . . ,n;
similarly, because slice X [0:0] is the empty string, L0,k = 0 for k = 0,1, . . . ,m.
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The LCS Algorithm

The definition of L j,k satisfies subproblem optimization, for we cannot have a
longest common subsequence without also having longest common subsequences
for the subproblems. Also, it uses subproblem overlap, because a subproblem so-
lution L j,k can be used in several other problems (namely, the problems L j+1,k,
L j,k+1, and L j+1,k+1). Turning this definition of L j,k into an algorithm is actually
quite straightforward. We create an (n+1)×(m+1) array, L, defined for 0 ≤ j ≤ n
and 0 ≤ k ≤ m. We initialize all entries to 0, in particular so that all entries of the
form L j,0 and L0,k are zero. Then, we iteratively build up values in L until we have
Ln,m, the length of a longest common subsequence of X and Y . We give a Python
implementation of this algorithm in Code Fragment 13.6.

1 def LCS(X, Y):
2 ”””Return table such that L[j][k] is length of LCS for X[0:j] and Y[0:k].”””
3 n, m = len(X), len(Y) # introduce convenient notations
4 L = [[0] (m+1) for k in range(n+1)] # (n+1) x (m+1) table
5 for j in range(n):
6 for k in range(m):
7 if X[j] == Y[k]: # align this match
8 L[j+1][k+1] = L[j][k] + 1
9 else: # choose to ignore one character

10 L[j+1][k+1] = max(L[j][k+1], L[j+1][k])
11 return L

Code Fragment 13.6: Dynamic programming algorithm for the LCS problem.

The running time of the algorithm of the LCS algorithm is easy to analyze,
for it is dominated by two nested for loops, with the outer one iterating n times
and the inner one iterating m times. Since the if-statement and assignment inside
the loop each requires O(1) primitive operations, this algorithm runs in O(nm)
time. Thus, the dynamic programming technique can be applied to the longest
common subsequence problem to improve significantly over the exponential-time
brute-force solution to the LCS problem.

The LCS function of Code Fragment 13.6 computes the length of the longest
common subsequence (stored as Ln,m), but not the subsequence itself. Fortunately,
it is easy to extract the actual longest common subsequence if given the complete
table of L j,k values computed by the LCS function. The solution can be recon-
structed back to front by reverse engineering the calculation of length Ln,m. At any
position L j,k, if x j = yk, then the length is based on the common subsequence as-
sociated with length L j−1,k−1, followed by common character x j. We can record x j

as part of the sequence, and then continue the analysis from L j−1,k−1. If x j �= yk,
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then we can move to the larger of L j,k−1 and L j−1,k. We continue this process until
reaching some L j,k = 0 (for example, if j or k is 0 as a boundary case). A Python
implementation of this strategy is given in Code Fragment 13.7. This function con-
structs a longest common subsequence in O(n+m) additional time, since each pass
of the while loop decrements either j or k (or both). An illustration of the algorithm
for computing the longest common subsequence is given in Figure 13.8.

1 def LCS solution(X, Y, L):
2 ”””Return the longest common substring of X and Y, given LCS table L.”””
3 solution = [ ]
4 j,k = len(X), len(Y)
5 while L[j][k] > 0: # common characters remain
6 if X[j−1] == Y[k−1]:
7 solution.append(X[j−1])
8 j −= 1
9 k −= 1

10 elif L[j−1][k] >= L[j][k−1]:
11 j −=1
12 else:
13 k −= 1
14 return .join(reversed(solution)) # return left-to-right version

Code Fragment 13.7: Reconstructing the longest common subsequence.

1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 2 2 2 2 2 2 2 2 2

0 0 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 4 4 4 4 4

0 1 1 2 2 3 3 3 4 4 5 5 5
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Figure 13.8: Illustration of the algorithm for constructing a longest common subse-
quence from the array L. A diagonal step on the highlighted path represents the use
of a common character (with that character’s respective indices in the sequences
highlighted in the margins).
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13.4 Text Compression and the Greedy Method

In this section, we consider an important text-processing task, text compression.
In this problem, we are given a string X defined over some alphabet, such as the
ASCII or Unicode character sets, and we want to efficiently encode X into a small
binary string Y (using only the characters 0 and 1). Text compression is useful in
any situation where we wish to reduce bandwidth for digital communications, so
as to minimize the time needed to transmit our text. Likewise, text compression is
useful for storing large documents more efficiently, so as to allow a fixed-capacity
storage device to contain as many documents as possible.

The method for text compression explored in this section is the Huffman code.
Standard encoding schemes, such as ASCII, use fixed-length binary strings to en-
code characters (with 7 or 8 bits in the traditional or extended ASCII systems,
respectively). The Unicode system was originally proposed as a 16-bit fixed-
length representation, although common encodings reduce the space usage by al-
lowing common groups of characters, such as those from the ASCII system, with
fewer bits. The Huffman code saves space over a fixed-length encoding by using
short code-word strings to encode high-frequency characters and long code-word
strings to encode low-frequency characters. Furthermore, the Huffman code uses
a variable-length encoding specifically optimized for a given string X over any al-
phabet. The optimization is based on the use of character frequencies, where we
have, for each character c, a count f (c) of the number of times c appears in the
string X .

To encode the string X , we convert each character in X to a variable-length
code-word, and we concatenate all these code-words in order to produce the en-
coding Y for X . In order to avoid ambiguities, we insist that no code-word in our
encoding be a prefix of another code-word in our encoding. Such a code is called
a prefix code, and it simplifies the decoding of Y to retrieve X . (See Figure 13.9.)
Even with this restriction, the savings produced by a variable-length prefix code
can be significant, particularly if there is a wide variance in character frequencies
(as is the case for natural language text in almost every written language).

Huffman’s algorithm for producing an optimal variable-length prefix code for
X is based on the construction of a binary tree T that represents the code. Each
edge in T represents a bit in a code-word, with an edge to a left child representing
a “0” and an edge to a right child representing a “1.” Each leaf v is associated
with a specific character, and the code-word for that character is defined by the
sequence of bits associated with the edges in the path from the root of T to v. (See
Figure 13.9.) Each leaf v has a frequency, f (v), which is simply the frequency in
X of the character associated with v. In addition, we give each internal node v in T
a frequency, f (v), that is the sum of the frequencies of all the leaves in the subtree
rooted at v.
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(a)
Character a b d e f h i k n o r s t u v
Frequency 9 5 1 3 7 3 1 1 1 4 1 5 1 2 1 1

(b)

46

5

k
1

i
1

2

o
1

2

4

8

t
2

s
1

15

n
4

7

f
3

4

v
1

u
1

2

5

b
1

2

h
1

d
3

12

e
7

2719

a
5

10

9
r

Figure 13.9: An illustration of an example Huffman code for the input string
X = "a fast runner need never be afraid of the dark": (a) frequency
of each character of X ; (b) Huffman tree T for string X . The code for a character c
is obtained by tracing the path from the root of T to the leaf where c is stored, and
associating a left child with 0 and a right child with 1. For example, the code for
“r” is 011, and the code for “h” is 10111.

13.4.1 The Huffman Coding Algorithm

The Huffman coding algorithm begins with each of the d distinct characters of the
string X to encode being the root node of a single-node binary tree. The algorithm
proceeds in a series of rounds. In each round, the algorithm takes the two binary
trees with the smallest frequencies and merges them into a single binary tree. It
repeats this process until only one tree is left. (See Code Fragment 13.8.)

Each iteration of the while loop in Huffman’s algorithm can be implemented
in O(logd) time using a priority queue represented with a heap. In addition, each
iteration takes two nodes out of Q and adds one in, a process that will be repeated
d − 1 times before exactly one node is left in Q. Thus, this algorithm runs in
O(n + d logd) time. Although a full justification of this algorithm’s correctness is
beyond our scope here, we note that its intuition comes from a simple idea—any
optimal code can be converted into an optimal code in which the code-words for the
two lowest-frequency characters, a and b, differ only in their last bit. Repeating the
argument for a string with a and b replaced by a character c, gives the following:

Proposition 13.5: Huffman’s algorithm constructs an optimal prefix code for a
string of length n with d distinct characters in O(n+ d logd) time.
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Algorithm Huffman(X):
Input: String X of length n with d distinct characters
Output: Coding tree for X

Compute the frequency f (c) of each character c of X .
Initialize a priority queue Q.
for each character c in X do

Create a single-node binary tree T storing c.
Insert T into Q with key f (c).

while len(Q) > 1 do
( f1,T1) = Q.remove min()
( f2,T2) = Q.remove min()
Create a new binary tree T with left subtree T1 and right subtree T2.
Insert T into Q with key f1 + f2.

( f ,T ) = Q.remove min()
return tree T

Code Fragment 13.8: Huffman coding algorithm.

13.4.2 The Greedy Method

Huffman’s algorithm for building an optimal encoding is an example application
of an algorithmic design pattern called the greedy method. This design pattern is
applied to optimization problems, where we are trying to construct some structure
while minimizing or maximizing some property of that structure.

The general formula for the greedy method pattern is almost as simple as that
for the brute-force method. In order to solve a given optimization problem using
the greedy method, we proceed by a sequence of choices. The sequence starts
from some well-understood starting condition, and computes the cost for that ini-
tial condition. The pattern then asks that we iteratively make additional choices
by identifying the decision that achieves the best cost improvement from all of
the choices that are currently possible. This approach does not always lead to an
optimal solution.

But there are several problems that it does work for, and such problems are said
to possess the greedy-choice property. This is the property that a global optimal
condition can be reached by a series of locally optimal choices (that is, choices
that are each the current best from among the possibilities available at the time),
starting from a well-defined starting condition. The problem of computing an opti-
mal variable-length prefix code is just one example of a problem that possesses the
greedy-choice property.
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13.5 Tries

The pattern-matching algorithms presented in Section 13.2 speed up the search in
a text by preprocessing the pattern (to compute the failure function in the Knuth-
Morris-Pratt algorithm or the last function in the Boyer-Moore algorithm). In this
section, we take a complementary approach, namely, we present string searching
algorithms that preprocess the text. This approach is suitable for applications where
a series of queries is performed on a fixed text, so that the initial cost of preprocess-
ing the text is compensated by a speedup in each subsequent query (for example, a
Web site that offers pattern matching in Shakespeare’s Hamlet or a search engine
that offers Web pages on the Hamlet topic).

A trie (pronounced “try”) is a tree-based data structure for storing strings in
order to support fast pattern matching. The main application for tries is in infor-
mation retrieval. Indeed, the name “trie” comes from the word “retrieval.” In an
information retrieval application, such as a search for a certain DNA sequence in a
genomic database, we are given a collection S of strings, all defined using the same
alphabet. The primary query operations that tries support are pattern matching and
prefix matching. The latter operation involves being given a string X , and looking
for all the strings in S that contain X as a prefix.

13.5.1 Standard Tries

Let S be a set of s strings from alphabet Σ such that no string in S is a prefix
of another string. A standard trie for S is an ordered tree T with the following
properties (see Figure 13.10):

• Each node of T , except the root, is labeled with a character of Σ.
• The children of an internal node of T have distinct labels.
• T has s leaves, each associated with a string of S, such that the concatenation

of the labels of the nodes on the path from the root to a leaf v of T yields the
string of S associated with v.

Thus, a trie T represents the strings of S with paths from the root to the leaves
of T . Note the importance of assuming that no string in S is a prefix of another
string. This ensures that each string of S is uniquely associated with a leaf of T .
(This is similar to the restriction for prefix codes with Huffman coding, as described
in Section 13.4.) We can always satisfy this assumption by adding a special char-
acter that is not in the original alphabet Σ at the end of each string.

An internal node in a standard trie T can have anywhere between 1 and |Σ|
children. There is an edge going from the root r to one of its children for each
character that is first in some string in the collection S. In addition, a path from the
root of T to an internal node v at depth k corresponds to a k-character prefix X [0:k]
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Figure 13.10: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock,
stop}.

of a string X of S. In fact, for each character c that can follow the prefix X [0:k] in
a string of the set S, there is a child of v labeled with character c. In this way, a trie
concisely stores the common prefixes that exist among a set of strings.

As a special case, if there are only two characters in the alphabet, then the
trie is essentially a binary tree, with some internal nodes possibly having only one
child (that is, it may be an improper binary tree). In general, although it is possible
that an internal node has up to |Σ| children, in practice the average degree of such
nodes is likely to be much smaller. For example, the trie shown in Figure 13.10 has
several internal nodes with only one child. On larger data sets, the average degree
of nodes is likely to get smaller at greater depths of the tree, because there may
be fewer strings sharing the common prefix, and thus fewer continuations of that
pattern. Furthermore, in many languages, there will be character combinations that
are unlikely to naturally occur.

The following proposition provides some important structural properties of a
standard trie:

Proposition 13.6: A standard trie storing a collection S of s strings of total length
n from an alphabet Σ has the following properties:

• The height of T is equal to the length of the longest string in S.
• Every internal node of T has at most |Σ| children.
• T has s leaves
• The number of nodes of T is at most n+ 1.

The worst case for the number of nodes of a trie occurs when no two strings
share a common nonempty prefix; that is, except for the root, all internal nodes
have one child.

www.it-ebooks.info

http://www.it-ebooks.info/


606 Chapter 13. Text Processing

A trie T for a set S of strings can be used to implement a set or map whose keys
are the strings of S. Namely, we perform a search in T for a string X by tracing
down from the root the path indicated by the characters in X . If this path can be
traced and terminates at a leaf node, then we know X is a key in the map. For
example, in the trie in Figure 13.10, tracing the path for “bull” ends up at a leaf.
If the path cannot be traced or the path can be traced but terminates at an internal
node, then X is not a key in the map. In the example in Figure 13.10, the path for
“bet” cannot be traced and the path for “be” ends at an internal node. Neither such
word is in the map.

It is easy to see that the running time of the search for a string of length m is
O(m · |Σ|), because we visit at most m + 1 nodes of T and we spend O(|Σ|) time
at each node determining the child having the subsequent character as a label. The
O(|Σ|) upper bound on the time to locate a child with a given label is achievable,
even if the children of a node are unordered, since there are at most |Σ| children.
We can improve the time spent at a node to be O(log |Σ|) or expected O(1), by
mapping characters to children using a secondary search table or hash table at each
node, or by using a direct lookup table of size |Σ| at each node, if |Σ| is sufficiently
small (as is the case for DNA strings). For these reasons, we typically expect a
search for a string of length m to run in O(m) time.

From the discussion above, it follows that we can use a trie to perform a spe-
cial type of pattern matching, called word matching, where we want to determine
whether a given pattern matches one of the words of the text exactly. Word match-
ing differs from standard pattern matching because the pattern cannot match an
arbitrary substring of the text—only one of its words. To accomplish this, each
word of the original document must be added to the trie. (See Figure 13.11.) A
simple extension of this scheme supports prefix-matching queries. However, ar-
bitrary occurrences of the pattern in the text (for example, the pattern is a proper
suffix of a word or spans two words) cannot be efficiently performed.

To construct a standard trie for a set S of strings, we can use an incremental
algorithm that inserts the strings one at a time. Recall the assumption that no string
of S is a prefix of another string. To insert a string X into the current trie T , we
trace the path associated with X in T , creating a new chain of nodes to store the
remaining characters of X when we get stuck. The running time to insert X with
length m is similar to a search, with worst-case O(m · |Σ|) performance, or expected
O(m) if using secondary hash tables at each node. Thus, constructing the entire trie
for set S takes expected O(n) time, where n is the total length of the strings of S.

There is a potential space inefficiency in the standard trie that has prompted the
development of the compressed trie, which is also known (for historical reasons)
as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie
that have only one child, and the existence of such nodes is a waste. We discuss the
compressed trie next.
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Figure 13.11: Word matching with a standard trie: (a) text to be searched (articles
and prepositions, which are also known as stop words, excluded); (b) standard trie
for the words in the text, with leaves augmented with indications of the index at
which the given work begins in the text. For example, the leaf for the word stock

notes that the word begins at indices 17, 40, 51, and 62 of the text.
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13.5.2 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node
in the trie has at least two children. It enforces this rule by compressing chains of
single-child nodes into individual edges. (See Figure 13.12.) Let T be a standard
trie. We say that an internal node v of T is redundant if v has one child and is not
the root. For example, the trie of Figure 13.10 has eight redundant nodes. Let us
also say that a chain of k ≥ 2 edges,

(v0,v1)(v1,v2) · · · (vk−1,vk),

is redundant if:
• vi is redundant for i = 1, . . . ,k−1.
• v0 and vk are not redundant.

We can transform T into a compressed trie by replacing each redundant chain
(v0,v1) · · · (vk−1,vk) of k ≥ 2 edges into a single edge (v0,vk), relabeling vk with
the concatenation of the labels of nodes v1, . . . ,vk.

s

to
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e id

ar yll

u

ll

ell

Figure 13.12: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,
stop}. (Compare this with the standard trie shown in Figure 13.10.) In addition to
compression at the leaves, notice the internal node with label to shared by words
stock and stop.

Thus, nodes in a compressed trie are labeled with strings, which are substrings
of strings in the collection, rather than with individual characters. The advantage of
a compressed trie over a standard trie is that the number of nodes of the compressed
trie is proportional to the number of strings and not to their total length, as shown
in the following proposition (compare with Proposition 13.6).

Proposition 13.7: A compressed trie storing a collection S of s strings from an
alphabet of size d has the following properties:

• Every internal node of T has at least two children and most d children.
• T has s leaves nodes.
• The number of nodes of T is O(s).
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The attentive reader may wonder whether the compression of paths provides
any significant advantage, since it is offset by a corresponding expansion of the
node labels. Indeed, a compressed trie is truly advantageous only when it is used as
an auxiliary index structure over a collection of strings already stored in a primary
structure, and is not required to actually store all the characters of the strings in the
collection.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s− 1]. Instead of storing the label X of a node explicitly, we represent
it implicitly by a combination of three integers (i, j : k), such that X = S[i][ j : k];
that is, X is the slice of S[i] consisting of the characters from the jth up to but
not including the kth. (See the example in Figure 13.13. Also compare with the
standard trie of Figure 13.11.)

S[2] =
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S[1] =
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1, 2:4 8, 2:4 2, 2:4

(b)

Figure 13.13: (a) Collection S of strings stored in an array. (b) Compact represen-
tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the
trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n
is the total length of the strings in S and s is the number of strings in S. We must
still store the different strings in S, of course, but we nevertheless reduce the space
for the trie.

Searching in a compressed trie is not necessarily faster than in a standard tree,
since there is still need to compare every character of the desired pattern with the
potentially multi-character labels while traversing paths in the trie.
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13.5.3 Suffix Tries

One of the primary applications for tries is for the case when the strings in the
collection S are all the suffixes of a string X . Such a trie is called the suffix trie (also
known as a suffix tree or position tree) of string X . For example, Figure 13.14a
shows the suffix trie for the eight suffixes of string “minimize.” For a suffix trie, the
compact representation presented in the previous section can be further simplified.
Namely, the label of each vertex is a pair ( j,k) indicating the string X [ j : k]. (See
Figure 13.14b.) To satisfy the rule that no suffix of X is a prefix of another suffix,
we can add a special character, denoted with $, that is not in the original alphabet Σ

at the end of X (and thus to every suffix). That is, if string X has length n, we build
a trie for the set of n strings X [ j :n], for j = 0, . . . ,n−1.

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several space
compression techniques, including those used for the compressed trie.

The advantage of the compact representation of tries now becomes apparent for
suffix tries. Since the total length of the suffixes of a string X of length n is

1+ 2+ · · ·+ n =
n(n+ 1)

2
,

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suf-
fix trie represents these strings implicitly in O(n) space, as formally stated in the
following proposition.

Proposition 13.8: The compact representation of a suffix trie T for a string X of
length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algo-
rithm like the one given in Section 13.5.1. This construction takes O(|Σ|n2) time
because the total length of the suffixes is quadratic in n. However, the (compact)
suffix trie for a string of length n can be constructed in O(n) time with a specialized
algorithm, different from the one for general tries. This linear-time construction
algorithm is fairly complex, however, and is not reported here. Still, we can take
advantage of the existence of this fast construction algorithm when we want to use
a suffix trie to solve other problems.
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Figure 13.14: (a) Suffix trie T for the string X = "minimize". (b) Compact repre-
sentation of T , where pair j :k denotes slice X [ j :k] in the reference string.

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern-matching
queries on text X . Namely, we can determine whether a pattern P is a substring
of X by trying to trace a path associated with P in T . P is a substring of X if and
only if such a path can be traced. The search down the trie T assumes that nodes in
T store some additional information, with respect to the compact representation of
the suffix trie:

If node v has label ( j,k) and Y is the string of length y associated with
the path from the root to v (included), then X [k− y :k] = Y .

This property ensures that we can easily compute the start index of the pattern in
the text when a match occurs.
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13.5.4 Search Engine Indexing

The World Wide Web contains a huge collection of text documents (Web pages).
Information about these pages are gathered by a program called a Web crawler,
which then stores this information in a special dictionary database. A Web search
engine allows users to retrieve relevant information from this database, thereby
identifying relevant pages on the Web containing given keywords. In this section,
we present a simplified model of a search engine.

Inverted Files

The core information stored by a search engine is a dictionary, called an inverted
index or inverted file, storing key-value pairs (w,L), where w is a word and L is
a collection of pages containing word w. The keys (words) in this dictionary are
called index terms and should be a set of vocabulary entries and proper nouns as
large as possible. The elements in this dictionary are called occurrence lists and
should cover as many Web pages as possible.

We can efficiently implement an inverted index with a data structure consisting
of the following:

1. An array storing the occurrence lists of the terms (in no particular order).
2. A compressed trie for the set of index terms, where each leaf stores the index

of the occurrence list of the associated term.
The reason for storing the occurrence lists outside the trie is to keep the size of the
trie data structure sufficiently small to fit in internal memory. Instead, because of
their large total size, the occurrence lists have to be stored on disk.

With our data structure, a query for a single keyword is similar to a word-
matching query (Section 13.5.1). Namely, we find the keyword in the trie and we
return the associated occurrence list.

When multiple keywords are given and the desired output are the pages con-
taining all the given keywords, we retrieve the occurrence list of each keyword
using the trie and return their intersection. To facilitate the intersection computa-
tion, each occurrence list should be implemented with a sequence sorted by address
or with a map, to allow efficient set operations.

In addition to the basic task of returning a list of pages containing given key-
words, search engines provide an important additional service by ranking the pages
returned by relevance. Devising fast and accurate ranking algorithms for search
engines is a major challenge for computer researchers and electronic commerce
companies.
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13.6 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-13.1 List the prefixes of the string P ="aaabbaaa" that are also suffixes of P.

R-13.2 What is the longest (proper) prefix of the string "cgtacgttcgtacg" that
is also a suffix of this string?

R-13.3 Draw a figure illustrating the comparisons done by brute-force pattern
matching for the text "aaabaadaabaaa" and pattern "aabaaa".

R-13.4 Repeat the previous problem for the Boyer-Moore algorithm, not counting
the comparisons made to compute the last(c) function.

R-13.5 Repeat Exercise R-13.3 for the Knuth-Morris-Pratt algorithm, not count-
ing the comparisons made to compute the failure function.

R-13.6 Compute a map representing the last function used in the Boyer-Moore
pattern-matching algorithm for characters in the pattern string:

"the quick brown fox jumped over a lazy cat".

R-13.7 Compute a table representing the Knuth-Morris-Pratt failure function for
the pattern string "cgtacgttcgtac".

R-13.8 What is the best way to multiply a chain of matrices with dimensions that
are 10×5, 5×2, 2×20, 20×12, 12×4, and 4×60? Show your work.

R-13.9 In Figure 13.8, we illustrate that GTTTAA is a longest common subse-
quence for the given strings X and Y . However, that answer is not unique.
Give another common subsequence of X and Y having length six.

R-13.10 Show the longest common subsequence array L for the two strings:

X = "skullandbones"

Y = "lullabybabies"

What is a longest common subsequence between these strings?

R-13.11 Draw the frequency array and Huffman tree for the following string:

"dogs do not spot hot pots or cats".

R-13.12 Draw a standard trie for the following set of strings:

{ abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca }.

R-13.13 Draw a compressed trie for the strings given in the previous problem.

R-13.14 Draw the compact representation of the suffix trie for the string:

"minimize minime".

www.it-ebooks.info

http:\\www.wiley.com/college/goodrich
http://www.it-ebooks.info/


614 Chapter 13. Text Processing

Creativity

C-13.15 Describe an example of a text T of length n and a pattern P of length
m such that force the brute-force pattern-matching algorithm achieves a
running time that is Ω(nm).

C-13.16 Adapt the brute-force pattern-matching algorithm in order to implement a
function, rfind brute(T,P), that returns the index at which the rightmost
occurrence of pattern P within text T , if any.

C-13.17 Redo the previous problem, adapting the Boyer-Moore pattern-matching
algorithm appropriately to implement a function rfind boyer moore(T,P).

C-13.18 Redo Exercise C-13.16, adapting the Knuth-Morris-Pratt pattern-matching
algorithm appropriately to implement a function rfind kmp(T,P).

C-13.19 The count method of Python’s str class reports the maximum number of
nonoverlapping occurrences of a pattern within a string. For example, the
call abababa .count( aba ) returns 2 (not 3). Adapt the brute-force
pattern-matching algorithm to implement a function, count brute(T,P),
with similar outcome.

C-13.20 Redo the previous problem, adapting the Boyer-Moore pattern-matching
algorithm in order to implement a function count boyer moore(T,P).

C-13.21 Redo Exercise C-13.19, adapting the Knuth-Morris-Pratt pattern-matching
algorithm appropriately to implement a function count kmp(T,P).

C-13.22 Give a justification of why the compute kmp fail function (Code Frag-
ment 13.4) runs in O(m) time on a pattern of length m.

C-13.23 Let T be a text of length n, and let P be a pattern of length m. Describe an
O(n+m)-time method for finding the longest prefix of P that is a substring
of T .

C-13.24 Say that a pattern P of length m is a circular substring of a text T of length
n > m if P is a (normal) substring of T , or if P is equal to the concatenation
of a suffix of T and a prefix of T , that is, if there is an index 0 ≤ k < m,
such that P = T [n−m+ k :n]+T [0:k]. Give an O(n+m)-time algorithm
for determining whether P is a circular substring of T .

C-13.25 The Knuth-Morris-Pratt pattern-matching algorithm can be modified to
run faster on binary strings by redefining the failure function as:

f (k) = the largest j < k such that P[0: j]p̂ j is a suffix of P[1:k + 1],

where p̂ j denotes the complement of the jth bit of P. Describe how to
modify the KMP algorithm to be able to take advantage of this new failure
function and also give a method for computing this failure function. Show
that this method makes at most n comparisons between the text and the
pattern (as opposed to the 2n comparisons needed by the standard KMP
algorithm given in Section 13.2.3).
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C-13.26 Modify the simplified Boyer-Moore algorithm presented in this chapter
using ideas from the KMP algorithm so that it runs in O(n+ m) time.

C-13.27 Design an efficient algorithm for the matrix chain multiplication problem
that outputs a fully parenthesized expression for how to multiply the ma-
trices in the chain using the minimum number of operations.

C-13.28 A native Australian named Anatjari wishes to cross a desert carrying only
a single water bottle. He has a map that marks all the watering holes along
the way. Assuming he can walk k miles on one bottle of water, design an
efficient algorithm for determining where Anatjari should refill his bottle
in order to make as few stops as possible. Argue why your algorithm is
correct.

C-13.29 Describe an efficient greedy algorithm for making change for a specified
value using a minimum number of coins, assuming there are four denomi-
nations of coins (called quarters, dimes, nickels, and pennies), with values
25, 10, 5, and 1, respectively. Argue why your algorithm is correct.

C-13.30 Give an example set of denominations of coins so that a greedy change-
making algorithm will not use the minimum number of coins.

C-13.31 In the art gallery guarding problem we are given a line L that repre-
sents a long hallway in an art gallery. We are also given a set X =
{x0,x1, . . . ,xn−1} of real numbers that specify the positions of paintings
in this hallway. Suppose that a single guard can protect all the paintings
within distance at most 1 of his or her position (on both sides). Design
an algorithm for finding a placement of guards that uses the minimum
number of guards to guard all the paintings with positions in X .

C-13.32 Let P be a convex polygon, a triangulation of P is an addition of diag-
onals connecting the vertices of P so that each interior face is a triangle.
The weight of a triangulation is the sum of the lengths of the diagonals.
Assuming that we can compute lengths and add and compare them in con-
stant time, give an efficient algorithm for computing a minimum-weight
triangulation of P.

C-13.33 Let T be a text string of length n. Describe an O(n)-time method for
finding the longest prefix of T that is a substring of the reversal of T .

C-13.34 Describe an efficient algorithm to find the longest palindrome that is a
suffix of a string T of length n. Recall that a palindrome is a string that is
equal to its reversal. What is the running time of your method?

C-13.35 Given a sequence S = (x0,x1, . . . ,xn−1) of numbers, describe an O(n2)-
time algorithm for finding a longest subsequence T = (xi0 ,xi1 , . . . ,xik−1)
of numbers, such that i j < i j+1 and xi j > xi j+1 . That is, T is a longest
decreasing subsequence of S.

C-13.36 Give an efficient algorithm for determining if a pattern P is a subsequence
(not substring) of a text T . What is the running time of your algorithm?
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C-13.37 Define the edit distance between two strings X and Y of length n and m,
respectively, to be the number of edits that it takes to change X into Y . An
edit consists of a character insertion, a character deletion, or a character
replacement. For example, the strings "algorithm" and "rhythm" have
edit distance 6. Design an O(nm)-time algorithm for computing the edit
distance between X and Y .

C-13.38 Let X and Y be strings of length n and m, respectively. Define B( j,k) to
be the length of the longest common substring of the suffix X [n− j :n] and
the suffix Y [m−k :m]. Design an O(nm)-time algorithm for computing all
the values of B( j,k) for j = 1, . . . ,n and k = 1, . . . ,m.

C-13.39 Anna has just won a contest that allows her to take n pieces of candy out
of a candy store for free. Anna is old enough to realize that some candy is
expensive, while other candy is relatively cheap, costing much less. The
jars of candy are numbered 0, 1, . . ., m−1, so that jar j has nj pieces in
it, with a price of c j per piece. Design an O(n + m)-time algorithm that
allows Anna to maximize the value of the pieces of candy she takes for
her winnings. Show that your algorithm produces the maximum value for
Anna.

C-13.40 Let three integer arrays, A, B, and C, be given, each of size n. Given an
arbitrary integer k, design an O(n2 logn)-time algorithm to determine if
there exist numbers, a in A, b in B, and c in C, such that k = a+ b+ c.

C-13.41 Give an O(n2)-time algorithm for the previous problem.

C-13.42 Given a string X of length n and a string Y of length m, describe an O(n+
m)-time algorithm for finding the longest prefix of X that is a suffix of Y .

C-13.43 Give an efficient algorithm for deleting a string from a standard trie and
analyze its running time.

C-13.44 Give an efficient algorithm for deleting a string from a compressed trie
and analyze its running time.

C-13.45 Describe an algorithm for constructing the compact representation of a
suffix trie, given its noncompact representation, and analyze its running
time.

Projects

P-13.46 Use the LCS algorithm to compute the best sequence alignment between
some DNA strings, which you can get online from GenBank.

P-13.47 Write a program that takes two character strings (which could be, for ex-
ample, representations of DNA strands) and computes their edit distance,
showing the corresponding pieces. (See Exercise C-13.37.)
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P-13.48 Perform an experimental analysis of the efficiency (number of character
comparisons performed) of the brute-force and KMP pattern-matching al-
gorithms for varying-length patterns.

P-13.49 Perform an experimental analysis of the efficiency (number of charac-
ter comparisons performed) of the brute-force and Boyer-Moore pattern-
matching algorithms for varying-length patterns.

P-13.50 Perform an experimental comparison of the relative speeds of the brute-
force, KMP, and Boyer-Moore pattern-matching algorithms. Document
the relative running times on large text documents that are then searched
using varying-length patterns.

P-13.51 Experiment with the efficiency of the find method of Python’s str class
and develop a hypothesis about which pattern-matching algorithm it uses.
Try using inputs that are likely to cause both best-case and worst-case
running times for various algorithms. Describe your experiments and your
conclusions.

P-13.52 Implement a compression and decompression scheme that is based on
Huffman coding.

P-13.53 Create a class that implements a standard trie for a set of ASCII strings.
The class should have a constructor that takes a list of strings as an argu-
ment, and the class should have a method that tests whether a given string
is stored in the trie.

P-13.54 Create a class that implements a compressed trie for a set of ASCII strings.
The class should have a constructor that takes a list of strings as an argu-
ment, and the class should have a method that tests whether a given string
is stored in the trie.

P-13.55 Create a class that implements a prefix trie for an ASCII string. The class
should have a constructor that takes a string as an argument, and a method
for pattern matching on the string.

P-13.56 Implement the simplified search engine described in Section 13.5.4 for
the pages of a small Web site. Use all the words in the pages of the site
as index terms, excluding stop words such as articles, prepositions, and
pronouns.

P-13.57 Implement a search engine for the pages of a small Web site by adding
a page-ranking feature to the simplified search engine described in Sec-
tion 13.5.4. Your page-ranking feature should return the most relevant
pages first. Use all the words in the pages of the site as index terms, ex-
cluding stop words, such as articles, prepositions, and pronouns.
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Chapter Notes

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [66],
and Boyer and Moore describe their algorithm in a journal article published the same
year [18]. In their article, however, Knuth et al. [66] also prove that the Boyer-Moore
algorithm runs in linear time. More recently, Cole [27] shows that the Boyer-Moore algo-
rithm makes at most 3n character comparisons in the worst case, and this bound is tight.
All of the algorithms discussed above are also discussed in the book chapter by Aho [4],
albeit in a more theoretical framework, including the methods for regular-expression pat-
tern matching. The reader interested in further study of string pattern-matching algorithms
is referred to the book by Stephen [90] and the book chapters by Aho [4], and Crochemore
and Lecroq [30].

Dynamic programming was developed in the operations research community and for-
malized by Bellman [13].

The trie was invented by Morrison [79] and is discussed extensively in the classic
Sorting and Searching book by Knuth [65]. The name “Patricia” is short for “Practical
Algorithm to Retrieve Information Coded in Alphanumeric” [79]. McCreight [73] shows
how to construct suffix tries in linear time. An introduction to the field of information
retrieval, which includes a discussion of search engines for the Web, is provided in the
book by Baeza-Yates and Ribeiro-Neto [8].
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14.1 Graphs

A graph is a way of representing relationships that exist between pairs of objects.
That is, a graph is a set of objects, called vertices, together with a collection of
pairwise connections between them, called edges. Graphs have applications in
modeling many domains, including mapping, transportation, computer networks,
and electrical engineering. By the way, this notion of a “graph” should not be
confused with bar charts and function plots, as these kinds of “graphs” are unrelated
to the topic of this chapter.

Viewed abstractly, a graph G is simply a set V of vertices and a collection E
of pairs of vertices from V , called edges. Thus, a graph is a way of representing
connections or relationships between pairs of objects from some set V . Incidentally,
some books use different terminology for graphs and refer to what we call vertices
as nodes and what we call edges as arcs. We use the terms “vertices” and “edges.”

Edges in a graph are either directed or undirected. An edge (u,v) is said to
be directed from u to v if the pair (u,v) is ordered, with u preceding v. An edge
(u,v) is said to be undirected if the pair (u,v) is not ordered. Undirected edges are
sometimes denoted with set notation, as {u,v}, but for simplicity we use the pair
notation (u,v), noting that in the undirected case (u,v) is the same as (v,u). Graphs
are typically visualized by drawing the vertices as ovals or rectangles and the edges
as segments or curves connecting pairs of ovals and rectangles. The following are
some examples of directed and undirected graphs.

Example 14.1: We can visualize collaborations among the researchers of a cer-
tain discipline by constructing a graph whose vertices are associated with the re-
searchers themselves, and whose edges connect pairs of vertices associated with
researchers who have coauthored a paper or book. (See Figure 14.1.) Such edges
are undirected because coauthorship is a symmetric relation; that is, if A has coau-
thored something with B, then B necessarily has coauthored something with A.

Chiang

Goldwasser

TamassiaGoodrich

GargSnoeyink

Tollis

Vitter Preparata

Figure 14.1: Graph of coauthorship among some authors.

www.it-ebooks.info

http://www.it-ebooks.info/


14.1. Graphs 621

Example 14.2: We can associate with an object-oriented program a graph whose
vertices represent the classes defined in the program, and whose edges indicate
inheritance between classes. There is an edge from a vertex v to a vertex u if
the class for v inherits from the class for u. Such edges are directed because the
inheritance relation only goes in one direction (that is, it is asymmetric).

If all the edges in a graph are undirected, then we say the graph is an undirected
graph. Likewise, a directed graph, also called a digraph, is a graph whose edges
are all directed. A graph that has both directed and undirected edges is often called
a mixed graph. Note that an undirected or mixed graph can be converted into a
directed graph by replacing every undirected edge (u,v) by the pair of directed
edges (u,v) and (v,u). It is often useful, however, to keep undirected and mixed
graphs represented as they are, for such graphs have several applications, as in the
following example.

Example 14.3: A city map can be modeled as a graph whose vertices are intersec-
tions or dead ends, and whose edges are stretches of streets without intersections.
This graph has both undirected edges, which correspond to stretches of two-way
streets, and directed edges, which correspond to stretches of one-way streets. Thus,
in this way, a graph modeling a city map is a mixed graph.

Example 14.4: Physical examples of graphs are present in the electrical wiring
and plumbing networks of a building. Such networks can be modeled as graphs,
where each connector, fixture, or outlet is viewed as a vertex, and each uninter-
rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com-
ponents of much larger graphs, namely the local power and water distribution net-
works. Depending on the specific aspects of these graphs that we are interested in,
we may consider their edges as undirected or directed, for, in principle, water can
flow in a pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are called the end vertices (or endpoints)
of the edge. If an edge is directed, its first endpoint is its origin and the other is the
destination of the edge. Two vertices u and v are said to be adjacent if there is an
edge whose end vertices are u and v. An edge is said to be incident to a vertex if
the vertex is one of the edge’s endpoints. The outgoing edges of a vertex are the
directed edges whose origin is that vertex. The incoming edges of a vertex are the
directed edges whose destination is that vertex. The degree of a vertex v, denoted
deg(v), is the number of incident edges of v. The in-degree and out-degree of a
vertex v are the number of the incoming and outgoing edges of v, and are denoted
indeg(v) and outdeg(v), respectively.
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Example 14.5: We can study air transportation by constructing a graph G, called
a flight network, whose vertices are associated with airports, and whose edges
are associated with flights. (See Figure 14.2.) In graph G, the edges are directed
because a given flight has a specific travel direction. The endpoints of an edge e in
G correspond respectively to the origin and destination of the flight corresponding
to e. Two airports are adjacent in G if there is a flight that flies between them,
and an edge e is incident to a vertex v in G if the flight for e flies to or from the
airport for v. The outgoing edges of a vertex v correspond to the outbound flights
from v’s airport, and the incoming edges correspond to the inbound flights to v’s
airport. Finally, the in-degree of a vertex v of G corresponds to the number of
inbound flights to v’s airport, and the out-degree of a vertex v in G corresponds to
the number of outbound flights.
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Figure 14.2: Example of a directed graph representing a flight network. The end-
points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.
The in-degree of DFW is 3, and the out-degree of DFW is 2.

The definition of a graph refers to the group of edges as a collection, not a
set, thus allowing two undirected edges to have the same end vertices, and for two
directed edges to have the same origin and the same destination. Such edges are
called parallel edges or multiple edges. A flight network can contain parallel edges
(Example 14.5), such that multiple edges between the same pair of vertices could
indicate different flights operating on the same route at different times of the day.
Another special type of edge is one that connects a vertex to itself. Namely, we say
that an edge (undirected or directed) is a self-loop if its two endpoints coincide. A
self-loop may occur in a graph associated with a city map (Example 14.3), where
it would correspond to a “circle” (a curving street that returns to its starting point).

With few exceptions, graphs do not have parallel edges or self-loops. Such
graphs are said to be simple. Thus, we can usually say that the edges of a simple
graph are a set of vertex pairs (and not just a collection). Throughout this chapter,
we assume that a graph is simple unless otherwise specified.
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A path is a sequence of alternating vertices and edges that starts at a vertex and
ends at a vertex such that each edge is incident to its predecessor and successor
vertex. A cycle is a path that starts and ends at the same vertex, and that includes at
least one edge. We say that a path is simple if each vertex in the path is distinct, and
we say that a cycle is simple if each vertex in the cycle is distinct, except for the
first and last one. A directed path is a path such that all edges are directed and are
traversed along their direction. A directed cycle is similarly defined. For example,
in Figure 14.2, (BOS, NW 35, JFK, AA 1387, DFW) is a directed simple path, and
(LAX, UA 120, ORD, UA 877, DFW, AA 49, LAX) is a directed simple cycle.
Note that a directed graph may have a cycle consisting of two edges with opposite
direction between the same pair of vertices, for example (ORD, UA 877, DFW,
DL 335, ORD) in Figure 14.2. A directed graph is acyclic if it has no directed
cycles. For example, if we were to remove the edge UA 877 from the graph in
Figure 14.2, the remaining graph is acyclic. If a graph is simple, we may omit the
edges when describing path P or cycle C, as these are well defined, in which case
P is a list of adjacent vertices and C is a cycle of adjacent vertices.

Example 14.6: Given a graph G representing a city map (see Example 14.3), we
can model a couple driving to dinner at a recommended restaurant as traversing a
path though G. If they know the way, and do not accidentally go through the same
intersection twice, then they traverse a simple path in G. Likewise, we can model
the entire trip the couple takes, from their home to the restaurant and back, as a
cycle. If they go home from the restaurant in a completely different way than how
they went, not even going through the same intersection twice, then their entire
round trip is a simple cycle. Finally, if they travel along one-way streets for their
entire trip, we can model their night out as a directed cycle.

Given vertices u and v of a (directed) graph G, we say that u reaches v, and
that v is reachable from u, if G has a (directed) path from u to v. In an undirected
graph, the notion of reachability is symmetric, that is to say, u reaches v if an only
if v reaches u. However, in a directed graph, it is possible that u reaches v but v does
not reach u, because a directed path must be traversed according to the respective
directions of the edges. A graph is connected if, for any two vertices, there is a path
between them. A directed graph �G is strongly connected if for any two vertices u
and v of �G, u reaches v and v reaches u. (See Figure 14.3 for some examples.)

A subgraph of a graph G is a graph H whose vertices and edges are subsets of
the vertices and edges of G, respectively. A spanning subgraph of G is a subgraph
of G that contains all the vertices of the graph G. If a graph G is not connected,
its maximal connected subgraphs are called the connected components of G. A
forest is a graph without cycles. A tree is a connected forest, that is, a connected
graph without cycles. A spanning tree of a graph is a spanning subgraph that is a
tree. (Note that this definition of a tree is somewhat different from the one given in
Chapter 8, as there is not necessarily a designated root.)
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Figure 14.3: Examples of reachability in a directed graph: (a) a directed path from
BOS to LAX is highlighted; (b) a directed cycle (ORD, MIA, DFW, LAX, ORD) is
highlighted; its vertices induce a strongly connected subgraph; (c) the subgraph of
the vertices and edges reachable from ORD is highlighted; (d) the removal of the
dashed edges results in an acyclic directed graph.

Example 14.7: Perhaps the most talked about graph today is the Internet, which
can be viewed as a graph whose vertices are computers and whose (undirected)
edges are communication connections between pairs of computers on the Inter-
net. The computers and the connections between them in a single domain, like
wiley.com, form a subgraph of the Internet. If this subgraph is connected, then two
users on computers in this domain can send email to one another without having
their information packets ever leave their domain. Suppose the edges of this sub-
graph form a spanning tree. This implies that, if even a single connection goes
down (for example, because someone pulls a communication cable out of the back
of a computer in this domain), then this subgraph will no longer be connected.
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In the propositions that follow, we explore a few important properties of graphs.

Proposition 14.8: If G is a graph with m edges and vertex set V , then

∑
v in V

deg(v) = 2m.

Justification: An edge (u,v) is counted twice in the summation above; once by
its endpoint u and once by its endpoint v. Thus, the total contribution of the edges
to the degrees of the vertices is twice the number of edges.

Proposition 14.9: If G is a directed graph with m edges and vertex set V , then

∑
v in V

indeg(v) = ∑
v in V

outdeg(v) = m.

Justification: In a directed graph, an edge (u,v) contributes one unit to the
out-degree of its origin u and one unit to the in-degree of its destination v. Thus,
the total contribution of the edges to the out-degrees of the vertices is equal to the
number of edges, and similarly for the in-degrees.

We next show that a simple graph with n vertices has O(n2) edges.

Proposition 14.10: Let G be a simple graph with n vertices and m edges. If G is
undirected, then m ≤ n(n−1)/2, and if G is directed, then m ≤ n(n−1).

Justification: Suppose that G is undirected. Since no two edges can have the
same endpoints and there are no self-loops, the maximum degree of a vertex in G
is n−1 in this case. Thus, by Proposition 14.8, 2m ≤ n(n−1). Now suppose that
G is directed. Since no two edges can have the same origin and destination, and
there are no self-loops, the maximum in-degree of a vertex in G is n−1 in this case.
Thus, by Proposition 14.9, m ≤ n(n−1).

There are a number of simple properties of trees, forests, and connected graphs.

Proposition 14.11: Let G be an undirected graph with n vertices and m edges.

• If G is connected, then m ≥ n−1.

• If G is a tree, then m = n−1.

• If G is a forest, then m ≤ n−1.
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14.1.1 The Graph ADT

A graph is a collection of vertices and edges. We model the abstraction as a com-
bination of three data types: Vertex, Edge, and Graph. A Vertex is a lightweight
object that stores an arbitrary element provided by the user (e.g., an airport code);
we assume it supports a method, element(), to retrieve the stored element. An
Edge also stores an associated object (e.g., a flight number, travel distance, cost),
retrieved with the element() method. In addition, we assume that an Edge supports
the following methods:

endpoints(): Return a tuple (u,v) such that vertex u is the origin of
the edge and vertex v is the destination; for an undirected
graph, the orientation is arbitrary.

opposite(v): Assuming vertex v is one endpoint of the edge (either
origin or destination), return the other endpoint.

The primary abstraction for a graph is the Graph ADT. We presume that a graph
can be either undirected or directed, with the designation declared upon construc-
tion; recall that a mixed graph can be represented as a directed graph, modeling
edge {u,v} as a pair of directed edges (u,v) and (v,u). The Graph ADT includes
the following methods:

vertex count(): Return the number of vertices of the graph.

vertices(): Return an iteration of all the vertices of the graph.

edge count(): Return the number of edges of the graph.

edges(): Return an iteration of all the edges of the graph.

get edge(u,v): Return the edge from vertex u to vertex v, if one exists;
otherwise return None. For an undirected graph, there is
no difference between get edge(u,v) and get edge(v,u).

degree(v, out=True): For an undirected graph, return the number of edges inci-
dent to vertex v. For a directed graph, return the number
of outgoing (resp. incoming) edges incident to vertex v,
as designated by the optional parameter.

incident edges(v, out=True): Return an iteration of all edges incident to vertex v. In
the case of a directed graph, report outgoing edges by
default; report incoming edges if the optional parameter
is set to False.

insert vertex(x=None): Create and return a new Vertex storing element x.

insert edge(u, v, x=None): Create and return a new Edge from vertex u to vertex v,
storing element x (None by default).

remove vertex(v): Remove vertex v and all its incident edges from the graph.

remove edge(e): Remove edge e from the graph.
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14.2 Data Structures for Graphs

In this section, we introduce four data structures for representing a graph. In each
representation, we maintain a collection to store the vertices of a graph. However,
the four representations differ greatly in the way they organize the edges.

• In an edge list, we maintain an unordered list of all edges. This minimally
suffices, but there is no efficient way to locate a particular edge (u,v), or the
set of all edges incident to a vertex v.

• In an adjacency list, we maintain, for each vertex, a separate list containing
those edges that are incident to the vertex. The complete set of edges can
be determined by taking the union of the smaller sets, while the organization
allows us to more efficiently find all edges incident to a given vertex.

• An adjacency map is very similar to an adjacency list, but the secondary
container of all edges incident to a vertex is organized as a map, rather than
as a list, with the adjacent vertex serving as a key. This allows for access to
a specific edge (u,v) in O(1) expected time.

• An adjacency matrix provides worst-case O(1) access to a specific edge
(u,v) by maintaining an n × n matrix, for a graph with n vertices. Each
entry is dedicated to storing a reference to the edge (u,v) for a particular pair
of vertices u and v; if no such edge exists, the entry will be None.

A summary of the performance of these structures is given in Table 14.1. We
give further explanation of the structures in the remainder of this section.

Operation Edge List Adj. List Adj. Map Adj. Matrix

vertex count() O(1) O(1) O(1) O(1)

edge count() O(1) O(1) O(1) O(1)

vertices() O(n) O(n) O(n) O(n)

edges() O(m) O(m) O(m) O(m)

get edge(u,v) O(m) O(min(du,dv)) O(1) exp. O(1)

degree(v) O(m) O(1) O(1) O(n)

incident edges(v) O(m) O(dv) O(dv) O(n)

insert vertex(x) O(1) O(1) O(1) O(n2)

remove vertex(v) O(m) O(dv) O(dv) O(n2)

insert edge(u,v,x) O(1) O(1) O(1) exp. O(1)

remove edge(e) O(1) O(1) O(1) exp. O(1)

Table 14.1: A summary of the running times for the methods of the graph ADT, us-
ing the graph representations discussed in this section. We let n denote the number
of vertices, m the number of edges, and dv the degree of vertex v. Note that the
adjacency matrix uses O(n2) space, while all other structures use O(n+ m) space.
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14.2.1 Edge List Structure

The edge list structure is possibly the simplest, though not the most efficient, rep-
resentation of a graph G. All vertex objects are stored in an unordered list V , and
all edge objects are stored in an unordered list E . We illustrate an example of the
edge list structure for a graph G in Figure 14.4.
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Figure 14.4: (a) A graph G; (b) schematic representation of the edge list structure
for G. Notice that an edge object refers to the two vertex objects that correspond to
its endpoints, but that vertices do not refer to incident edges.

To support the many methods of the Graph ADT (Section 14.1), we assume the
following additional features of an edge list representation. Collections V and E are
represented with doubly linked lists using our PositionalList class from Chapter 7.

Vertex Objects

The vertex object for a vertex v storing element x has instance variables for:

• A reference to element x, to support the element() method.

• A reference to the position of the vertex instance in the list V , thereby allow-
ing v to be efficiently removed from V if it were removed from the graph.

Edge Objects

The edge object for an edge e storing element x has instance variables for:

• A reference to element x, to support the element() method.

• References to the vertex objects associated with the endpoint vertices of e.
These allow the edge instance to provide constant-time support for methods
endpoints() and opposite(v).

• A reference to the position of the edge instance in list E , thereby allowing e
to be efficiently removed from E if it were removed from the graph.
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Performance of the Edge List Structure

The performance of an edge list structure in fulfilling the graph ADT is summarized
in Table 14.2. We begin by discussing the space usage, which is O(n + m) for
representing a graph with n vertices and m edges. Each individual vertex or edge
instance uses O(1) space, and the additional lists V and E use space proportional
to their number of entries.

In terms of running time, the edge list structure does as well as one could hope
in terms of reporting the number of vertices or edges, or in producing an iteration
of those vertices or edges. By querying the respective list V or E , the vertex count
and edge count methods run in O(1) time, and by iterating through the appropriate
list, the methods vertices and edges run respectively in O(n) and O(m) time.

The most significant limitations of an edge list structure, especially when com-
pared to the other graph representations, are the O(m) running times of methods
get edge(u,v), degree(v), and incident edges(v). The problem is that with all
edges of the graph in an unordered list E , the only way to answer those queries
is through an exhaustive inspection of all edges. The other data structures intro-
duced in this section will implement these methods more efficiently.

Finally, we consider the methods that update the graph. It is easy to add a new
vertex or a new edge to the graph in O(1) time. For example, a new edge can be
added to the graph by creating an Edge instance storing the given element as data,
adding that instance to the positional list E , and recording its resulting Position
within E as an attribute of the edge. That stored position can later be used to
locate and remove this edge from E in O(1) time, and thus implement the method
remove edge(e)

It is worth discussing why the remove vertex(v) method has a running time of
O(m). As stated in the graph ADT, when a vertex v is removed from the graph, all
edges incident to v must also be removed (otherwise, we would have a contradiction
of edges that refer to vertices that are not part of the graph). To locate the incident
edges to the vertex, we must examine all edges of E .

Operation Running Time

vertex count(), edge count() O(1)

vertices() O(n)

edges() O(m)

get edge(u,v), degree(v), incident edges(v) O(m)

insert vertex(x), insert edge(u,v,x), remove edge(e) O(1)

remove vertex(v) O(m)

Table 14.2: Running times of the methods of a graph implemented with the edge
list structure. The space used is O(n+m), where n is the number of vertices and m
is the number of edges.
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14.2.2 Adjacency List Structure

In contrast to the edge list representation of a graph, the adjacency list structure
groups the edges of a graph by storing them in smaller, secondary containers that
are associated with each individual vertex. Specifically, for each vertex v, we main-
tain a collection I(v), called the incidence collection of v, whose entries are edges
incident to v. (In the case of a directed graph, outgoing and incoming edges can be
respectively stored in two separate collections, Iout(v) and Iin(v).) Traditionally, the
incidence collection I(v) for a vertex v is a list, which is why we call this way of
representing a graph the adjacency list structure.

We require that the primary structure for an adjacency list maintain the col-
lection V of vertices in a way so that we can locate the secondary structure I(v)
for a given vertex v in O(1) time. This could be done by using a positional list
to represent V , with each Vertex instance maintaining a direct reference to its I(v)
incidence collection; we illustrate such an adjacency list structure of a graph in Fig-
ure 14.5. If vertices can be uniquely numbered from 0 to n− 1, we could instead
use a primary array-based structure to access the appropriate secondary lists.

The primary benefit of an adjacency list is that the collection I(v) contains ex-
actly those edges that should be reported by the method incident edges(v). There-
fore, we can implement this method by iterating the edges of I(v) in O(deg(v))
time, where deg(v) is the degree of vertex v. This is the best possible outcome for
any graph representation, because there are deg(v) edges to be reported.
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Figure 14.5: (a) An undirected graph G; (b) a schematic representation of the ad-
jacency list structure for G. Collection V is the primary list of vertices, and each
vertex has an associated list of incident edges. Although not diagrammed as such,
we presume that each edge of the graph is represented with a unique Edge instance
that maintains references to its endpoint vertices.
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Performance of the Adjacency List Structure

Table 14.3 summarizes the performance of the adjacency list structure implemen-
tation of a graph, assuming that the primary collection V and all secondary collec-
tions I(v) are implemented with doubly linked lists.

Asymptotically, the space requirements for an adjacency list are the same as
an edge list structure, using O(n + m) space for a graph with n vertices and m
edges. The primary list of vertices uses O(n) space. The sum of the lengths of
all secondary lists is O(m), for reasons that were formalized in Propositions 14.8
and 14.9. In short, an undirected edge (u,v) is referenced in both I(u) and I(v), but
its presence in the graph results in only a constant amount of additional space.

We have already noted that the incident edges(v) method can be achieved in
O(deg(v)) time based on use of I(v). We can achieve the degree(v) method of
the graph ADT to use O(1) time, assuming collection I(v) can report its size in
similar time. To locate a specific edge for implementing get edge(u,v), we can
search through either I(u) and I(v). By choosing the smaller of the two, we get
O(min(deg(u),deg(v))) running time.

The rest of the bounds in Table 14.3 can be achieved with additional care. To
efficiently support deletions of edges, an edge (u,v) would need to maintain a ref-
erence to its positions within both I(u) and I(v), so that it could be deleted from
those collections in O(1) time. To remove a vertex v, we must also remove any
incident edges, but at least we can locate those edges in O(deg(v)) time.

The easiest way to support edges() in O(m) and count edges() in O(1) is to
maintain an auxiliary list E of edges, as in the edge list representation. Otherwise,
we can implement the edges method in O(n+m) time by accessing each secondary
list and reporting its edges, taking care not to report an undirected edge (u,v) twice.

Operation Running Time

vertex count(), edge count() O(1)

vertices() O(n)

edges() O(m)

get edge(u,v) O(min(deg(u),deg(v)))
degree(v) O(1)

incident edges(v) O(deg(v))
insert vertex(x), insert edge(u,v,x) O(1)

remove edge(e) O(1)

remove vertex(v) O(deg(v))

Table 14.3: Running times of the methods of a graph implemented with the adja-
cency list structure. The space used is O(n+ m), where n is the number of vertices
and m is the number of edges.
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14.2.3 Adjacency Map Structure

In the adjacency list structure, we assume that the secondary incidence collections
are implemented as unordered linked lists. Such a collection I(v) uses space pro-
portional to O(deg(v)), allows an edge to be added or removed in O(1) time, and
allows an iteration of all edges incident to vertex v in O(deg(v)) time. However,
the best implementation of get edge(u,v) requires O(min(deg(u),deg(v))) time,
because we must search through either I(u) or I(v).

We can improve the performance by using a hash-based map to implement I(v)
for each vertex v. Specifically, we let the opposite endpoint of each incident edge
serve as a key in the map, with the edge structure serving as the value. We call such
a graph representation an adjacency map. (See Figure 14.6.) The space usage for
an adjacency map remains O(n + m), because I(v) uses O(deg(v)) space for each
vertex v, as with the adjacency list.

The advantage of the adjacency map, relative to an adjacency list, is that the
get edge(u,v) method can be implemented in expected O(1) time by searching for
vertex u as a key in I(v), or vice versa. This provides a likely improvement over the
adjacency list, while retaining the worst-case bound of O(min(deg(u),deg(v))).

In comparing the performance of adjacency map to other representations (see
Table 14.1), we find that it essentially achieves optimal running times for all meth-
ods, making it an excellent all-purpose choice as a graph representation.
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Figure 14.6: (a) An undirected graph G; (b) a schematic representation of the ad-
jacency map structure for G. Each vertex maintains a secondary map in which
neighboring vertices serve as keys, with the connecting edges as associated values.
Although not diagrammed as such, we presume that there is a unique Edge instance
for each edge of the graph, and that it maintains references to its endpoint vertices.
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14.2.4 Adjacency Matrix Structure

The adjacency matrix structure for a graph G augments the edge list structure with
a matrix A (that is, a two-dimensional array, as in Section 5.6), which allows us to
locate an edge between a given pair of vertices in worst-case constant time. In the
adjacency matrix representation, we think of the vertices as being the integers in
the set {0,1, . . . ,n− 1} and the edges as being pairs of such integers. This allows
us to store references to edges in the cells of a two-dimensional n× n array A.
Specifically, the cell A[i, j] holds a reference to the edge (u,v), if it exists, where u
is the vertex with index i and v is the vertex with index j. If there is no such edge,
then A[i, j] = None. We note that array A is symmetric if graph G is undirected, as
A[i, j] = A[ j, i] for all pairs i and j. (See Figure 14.7.)

The most significant advantage of an adjacency matrix is that any edge (u,v)
can be accessed in worst-case O(1) time; recall that the adjacency map supports
that operation in O(1) expected time. However, several operation are less efficient
with an adjacency matrix. For example, to find the edges incident to vertex v, we
must presumably examine all n entries in the row associated with v; recall that an
adjacency list or map can locate those edges in optimal O(deg(v)) time. Adding or
removing vertices from a graph is problematic, as the matrix must be resized.

Furthermore, the O(n2) space usage of an adjacency matrix is typically far
worse than the O(n + m) space required of the other representations. Although,
in the worst case, the number of edges in a dense graph will be proportional to
n2, most real-world graphs are sparse. In such cases, use of an adjacency matrix
is inefficient. However, if a graph is dense, the constants of proportionality of an
adjacency matrix can be smaller than that of an adjacency list or map. In fact, if
edges do not have auxiliary data, a Boolean adjacency matrix can use one bit per
edge slot, such that A[i, j] = True if and only if associated (u,v) is an edge.
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Figure 14.7: (a) An undirected graph G; (b) a schematic representation of the aux-
iliary adjacency matrix structure for G, in which n vertices are mapped to indices 0
to n−1. Although not diagrammed as such, we presume that there is a unique Edge
instance for each edge, and that it maintains references to its endpoint vertices. We
also assume that there is a secondary edge list (not pictured), to allow the edges()
method to run in O(m) time, for a graph with m edges.
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14.2.5 Python Implementation

In this section, we provide an implementation of the Graph ADT. Our implementa-
tion will support directed or undirected graphs, but for ease of explanation, we first
describe it in the context of an undirected graph.

We use a variant of the adjacency map representation. For each vertex v, we
use a Python dictionary to represent the secondary incidence map I(v). However,
we do not explicitly maintain lists V and E , as originally described in the edge list
representation. The list V is replaced by a top-level dictionary D that maps each
vertex v to its incidence map I(v); note that we can iterate through all vertices by
generating the set of keys for dictionary D. By using such a dictionary D to map
vertices to the secondary incidence maps, we need not maintain references to those
incidence maps as part of the vertex structures. Also, a vertex does not need to
explicitly maintain a reference to its position in D, because it can be determined
in O(1) expected time. This greatly simplifies our implementation. However, a
consequence of our design is that some of the worst-case running time bounds for
the graph ADT operations, given in Table 14.1, become expected bounds. Rather
than maintain list E , we are content with taking the union of the edges found in the
various incidence maps; technically, this runs in O(n+ m) time rather than strictly
O(m) time, as the dictionary D has n keys, even if some incidence maps are empty.

Our implementation of the graph ADT is given in Code Fragments 14.1 through
14.3. Classes Vertex and Edge, given in Code Fragment 14.1, are rather simple,
and can be nested within the more complex Graph class. Note that we define the

hash method for both Vertex and Edge so that those instances can be used as
keys in Python’s hash-based sets and dictionaries. The rest of the Graph class is
given in Code Fragments 14.2 and 14.3. Graphs are undirected by default, but can
be declared as directed with an optional parameter to the constructor.

Internally, we manage the directed case by having two different top-level dictio-
nary instances, outgoing and incoming, such that outgoing[v] maps to another
dictionary representing Iout(v), and incoming[v] maps to a representation of Iin(v).
In order to unify our treatment of directed and undirected graphs, we continue to
use the outgoing and incoming identifiers in the undirected case, yet as aliases
to the same dictionary. For convenience, we define a utility named is directed to
allow us to distinguish between the two cases.

For methods degree and incident edges, which each accept an optional param-
eter to differentiate between the outgoing and incoming orientations, we choose the
appropriate map before proceeding. For method insert vertex, we always initial-
ize outgoing[v] to an empty dictionary for new vertex v. In the directed case, we
independently initialize incoming[v] as well. For the undirected case, that step is
unnecessary as outgoing and incoming are aliases. We leave the implementations
of methods remove vertex and remove edge as exercises (C-14.37 and C-14.38).
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1 #------------------------- nested Vertex class -------------------------
2 class Vertex:
3 ”””Lightweight vertex structure for a graph.”””
4 slots = _element

5
6 def init (self, x):
7 ”””Do not call constructor directly. Use Graph s insert vertex(x).”””
8 self. element = x
9

10 def element(self):
11 ”””Return element associated with this vertex.”””
12 return self. element
13
14 def hash (self): # will allow vertex to be a map/set key
15 return hash(id(self))
16
17 #------------------------- nested Edge class -------------------------
18 class Edge:
19 ”””Lightweight edge structure for a graph.”””
20 slots = _origin , _destination , _element

21
22 def init (self, u, v, x):
23 ”””Do not call constructor directly. Use Graph s insert edge(u,v,x).”””
24 self. origin = u
25 self. destination = v
26 self. element = x
27
28 def endpoints(self):
29 ”””Return (u,v) tuple for vertices u and v.”””
30 return (self. origin, self. destination)
31
32 def opposite(self, v):
33 ”””Return the vertex that is opposite v on this edge.”””
34 return self. destination if v is self. origin else self. origin
35
36 def element(self):
37 ”””Return element associated with this edge.”””
38 return self. element
39
40 def hash (self): # will allow edge to be a map/set key
41 return hash( (self. origin, self. destination) )

Code Fragment 14.1: Vertex and Edge classes (to be nested within Graph class).
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1 class Graph:
2 ”””Representation of a simple graph using an adjacency map.”””
3
4 def init (self, directed=False):
5 ”””Create an empty graph (undirected, by default).
6
7 Graph is directed if optional paramter is set to True.
8 ”””
9 self. outgoing = { }

10 # only create second map for directed graph; use alias for undirected
11 self. incoming = { } if directed else self. outgoing
12
13 def is directed(self):
14 ”””Return True if this is a directed graph; False if undirected.
15
16 Property is based on the original declaration of the graph, not its contents.
17 ”””
18 return self. incoming is not self. outgoing # directed if maps are distinct
19
20 def vertex count(self):
21 ”””Return the number of vertices in the graph.”””
22 return len(self. outgoing)
23
24 def vertices(self):
25 ”””Return an iteration of all vertices of the graph.”””
26 return self. outgoing.keys()
27
28 def edge count(self):
29 ”””Return the number of edges in the graph.”””
30 total = sum(len(self. outgoing[v]) for v in self. outgoing)
31 # for undirected graphs, make sure not to double-count edges
32 return total if self.is directed( ) else total // 2
33
34 def edges(self):
35 ”””Return a set of all edges of the graph.”””
36 result = set( ) # avoid double-reporting edges of undirected graph
37 for secondary map in self. outgoing.values():
38 result.update(secondary map.values()) # add edges to resulting set
39 return result

Code Fragment 14.2: Graph class definition (continued in Code Fragment 14.3).
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40 def get edge(self, u, v):
41 ”””Return the edge from u to v, or None if not adjacent.”””
42 return self. outgoing[u].get(v) # returns None if v not adjacent
43
44 def degree(self, v, outgoing=True):
45 ”””Return number of (outgoing) edges incident to vertex v in the graph.
46
47 If graph is directed, optional parameter used to count incoming edges.
48 ”””
49 adj = self. outgoing if outgoing else self. incoming
50 return len(adj[v])
51
52 def incident edges(self, v, outgoing=True):
53 ”””Return all (outgoing) edges incident to vertex v in the graph.
54
55 If graph is directed, optional parameter used to request incoming edges.
56 ”””
57 adj = self. outgoing if outgoing else self. incoming
58 for edge in adj[v].values():
59 yield edge
60
61 def insert vertex(self, x=None):
62 ”””Insert and return a new Vertex with element x.”””
63 v = self.Vertex(x)
64 self. outgoing[v] = { }
65 if self.is directed():
66 self. incoming[v] = { } # need distinct map for incoming edges
67 return v
68
69 def insert edge(self, u, v, x=None):
70 ”””Insert and return a new Edge from u to v with auxiliary element x.”””
71 e = self.Edge(u, v, x)
72 self. outgoing[u][v] = e
73 self. incoming[v][u] = e

Code Fragment 14.3: Graph class definition (continued from Code Fragment 14.2).
We omit error-checking of parameters for brevity.
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14.3 Graph Traversals

Greek mythology tells of an elaborate labyrinth that was built to house the mon-
strous Minotaur, which was part bull and part man. This labyrinth was so complex
that neither beast nor human could escape it. No human, that is, until the Greek
hero, Theseus, with the help of the king’s daughter, Ariadne, decided to implement
a graph traversal algorithm. Theseus fastened a ball of thread to the door of the
labyrinth and unwound it as he traversed the twisting passages in search of the
monster. Theseus obviously knew about good algorithm design, for, after finding
and defeating the beast, Theseus easily followed the string back out of the labyrinth
to the loving arms of Ariadne.

Formally, a traversal is a systematic procedure for exploring a graph by exam-
ining all of its vertices and edges. A traversal is efficient if it visits all the vertices
and edges in time proportional to their number, that is, in linear time.

Graph traversal algorithms are key to answering many fundamental questions
about graphs involving the notion of reachability, that is, in determining how to
travel from one vertex to another while following paths of a graph. Interesting
problems that deal with reachability in an undirected graph G include the following:

• Computing a path from vertex u to vertex v, or reporting that no such path
exists.

• Given a start vertex s of G, computing, for every vertex v of G, a path with
the minimum number of edges between s and v, or reporting that no such
path exists.

• Testing whether G is connected.

• Computing a spanning tree of G, if G is connected.

• Computing the connected components of G.

• Computing a cycle in G, or reporting that G has no cycles.

Interesting problems that deal with reachability in a directed graph �G include the
following:

• Computing a directed path from vertex u to vertex v, or reporting that no such
path exists.

• Finding all the vertices of �G that are reachable from a given vertex s.

• Determine whether �G is acyclic.

• Determine whether �G is strongly connected.

In the remainder of this section, we present two efficient graph traversal algo-
rithms, called depth-first search and breadth-first search, respectively.
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14.3.1 Depth-First Search

The first traversal algorithm we consider in this section is depth-first search (DFS).
Depth-first search is useful for testing a number of properties of graphs, including
whether there is a path from one vertex to another and whether or not a graph is
connected.

Depth-first search in a graph G is analogous to wandering in a labyrinth with
a string and a can of paint without getting lost. We begin at a specific starting
vertex s in G, which we initialize by fixing one end of our string to s and painting
s as “visited.” The vertex s is now our “current” vertex—call our current vertex u.
We then traverse G by considering an (arbitrary) edge (u,v) incident to the current
vertex u. If the edge (u,v) leads us to a vertex v that is already visited (that is,
painted), we ignore that edge. If, on the other hand, (u,v) leads to an unvisited
vertex v, then we unroll our string, and go to v. We then paint v as “visited,” and
make it the current vertex, repeating the computation above. Eventually, we will get
to a “dead end,” that is, a current vertex v such that all the edges incident to v lead
to vertices already visited. To get out of this impasse, we roll our string back up,
backtracking along the edge that brought us to v, going back to a previously visited
vertex u. We then make u our current vertex and repeat the computation above for
any edges incident to u that we have not yet considered. If all of u’s incident edges
lead to visited vertices, then we again roll up our string and backtrack to the vertex
we came from to get to u, and repeat the procedure at that vertex. Thus, we continue
to backtrack along the path that we have traced so far until we find a vertex that has
yet unexplored edges, take one such edge, and continue the traversal. The process
terminates when our backtracking leads us back to the start vertex s, and there are
no more unexplored edges incident to s.

The pseudo-code for a depth-first search traversal starting at a vertex u (see
Code Fragment 14.4) follows our analogy with string and paint. We use recursion
to implement the string analogy, and we assume that we have a mechanism (the
paint analogy) to determine whether a vertex or edge has been previously explored.

Algorithm DFS(G,u): {We assume u has already been marked as visited}
Input: A graph G and a vertex u of G
Output: A collection of vertices reachable from u, with their discovery edges

for each outgoing edge e = (u,v) of u do
if vertex v has not been visited then

Mark vertex v as visited (via edge e).
Recursively call DFS(G,v).

Code Fragment 14.4: The DFS algorithm.
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Classifying Graph Edges with DFS

An execution of depth-first search can be used to analyze the structure of a graph,
based upon the way in which edges are explored during the traversal. The DFS
process naturally identifies what is known as the depth-first search tree rooted at
a starting vertex s. Whenever an edge e = (u,v) is used to discover a new vertex v
during the DFS algorithm of Code Fragment 14.4, that edge is known as a discovery
edge or tree edge, as oriented from u to v. All other edges that are considered during
the execution of DFS are known as nontree edges, which take us to a previously
visited vertex. In the case of an undirected graph, we will find that all nontree edges
that are explored connect the current vertex to one that is an ancestor of it in the
DFS tree. We will call such an edge a back edge. When performing a DFS on a
directed graph, there are three possible kinds of nontree edges:

• back edges, which connect a vertex to an ancestor in the DFS tree

• forward edges, which connect a vertex to a descendant in the DFS tree

• cross edges, which connect a vertex to a vertex that is neither its ancestor nor
its descendant.

An example application of the DFS algorithm on a directed graph is shown in
Figure 14.8, demonstrating each type of nontree edge. An example application of
the DFS algorithm on an undirected graph is shown in Figure 14.9.

BOS

JFK
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MIA

SFO
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DFW

4

1
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2

3
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7

SFO

MIA

JFK

DFW

BOS

ORD

LAX

(a) (b)

Figure 14.8: An example of a DFS in a directed graph, starting at vertex (BOS):
(a) intermediate step, where, for the first time, a considered edge leads to an al-
ready visited vertex (DFW); (b) the completed DFS. The tree edges are shown
with thick lines, the back edges are shown with dashed lines, and the forward and
cross edges are shown with dotted lines. The order in which the vertices are vis-
ited is indicated by a label next to each vertex. The edge (ORD,DFW) is a back
edge, but (DFW,ORD) is a forward edge. Edge (BOS,SFO) is a forward edge, and
(SFO,LAX) is a cross edge.
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Figure 14.9: Example of depth-first search traversal on an undirected graph starting
at vertex A. We assume that a vertex’s adjacencies are considered in alphabetical
order. Visited vertices and explored edges are highlighted, with discovery edges
drawn as solid lines and nontree (back) edges as dashed lines: (a) input graph;
(b) path of tree edges, traced from A until back edge (G,C) is examined; (c) reach-
ing F, which is a dead end; (d) after backtracking to I, resuming with edge (I,M),
and hitting another dead end at O; (e) after backtracking to G, continuing with edge
(G,L), and hitting another dead end at H; (f ) final result.
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Properties of a Depth-First Search

There are a number of observations that we can make about the depth-first search
algorithm, many of which derive from the way the DFS algorithm partitions the
edges of a graph G into groups. We begin with the most significant property.

Proposition 14.12: Let G be an undirected graph on which a DFS traversal start-
ing at a vertex s has been performed. Then the traversal visits all vertices in the
connected component of s, and the discovery edges form a spanning tree of the
connected component of s.

Justification: Suppose there is at least one vertex w in s’s connected component
not visited, and let v be the first unvisited vertex on some path from s to w (we may
have v = w). Since v is the first unvisited vertex on this path, it has a neighbor u
that was visited. But when we visited u, we must have considered the edge (u,v);
hence, it cannot be correct that v is unvisited. Therefore, there are no unvisited
vertices in s’s connected component.

Since we only follow a discovery edge when we go to an unvisited vertex, we
will never form a cycle with such edges. Therefore, the discovery edges form a
connected subgraph without cycles, hence a tree. Moreover, this is a spanning
tree because, as we have just seen, the depth-first search visits each vertex in the
connected component of s.

Proposition 14.13: Let �G be a directed graph. Depth-first search on �G starting at
a vertex s visits all the vertices of �G that are reachable from s. Also, the DFS tree
contains directed paths from s to every vertex reachable from s.

Justification: Let Vs be the subset of vertices of �G visited by DFS starting at
vertex s. We want to show that Vs contains s and every vertex reachable from s
belongs to Vs. Suppose now, for the sake of a contradiction, that there is a vertex w
reachable from s that is not in Vs. Consider a directed path from s to w, and let (u,v)
be the first edge on such a path taking us out of Vs, that is, u is in Vs but v is not
in Vs. When DFS reaches u, it explores all the outgoing edges of u, and thus must
reach also vertex v via edge (u,v). Hence, v should be in Vs, and we have obtained
a contradiction. Therefore, Vs must contain every vertex reachable from s.

We prove the second fact by induction on the steps of the algorithm. We claim
that each time a discovery edge (u,v) is identified, there exists a directed path from
s to v in the DFS tree. Since u must have previously been discovered, there exists
a path from s to u, so by appending the edge (u,v) to that path, we have a directed
path from s to v.

Note that since back edges always connect a vertex v to a previously visited
vertex u, each back edge implies a cycle in G, consisting of the discovery edges
from u to v plus the back edge (u,v).
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Running Time of Depth-First Search

In terms of its running time, depth-first search is an efficient method for traversing
a graph. Note that DFS is called at most once on each vertex (since it gets marked
as visited), and therefore every edge is examined at most twice for an undirected
graph, once from each of its end vertices, and at most once in a directed graph,
from its origin vertex. If we let ns ≤ n be the number of vertices reachable from
a vertex s, and ms ≤ m be the number of incident edges to those vertices, a DFS
starting at s runs in O(ns +ms) time, provided the following conditions are satisfied:

• The graph is represented by a data structure such that creating and iterating
through the incident edges(v) takes O(deg(v)) time, and the e.opposite(v)
method takes O(1) time. The adjacency list structure is one such structure,
but the adjacency matrix structure is not.

• We have a way to “mark” a vertex or edge as explored, and to test if a vertex
or edge has been explored in O(1) time. We discuss ways of implementing
DFS to achieve this goal in the next section.

Given the assumptions above, we can solve a number of interesting problems.

Proposition 14.14: Let G be an undirected graph with n vertices and m edges. A
DFS traversal of G can be performed in O(n + m) time, and can be used to solve
the following problems in O(n+ m) time:

• Computing a path between two given vertices of G, if one exists.
• Testing whether G is connected.
• Computing a spanning tree of G, if G is connected.
• Computing the connected components of G.
• Computing a cycle in G, or reporting that G has no cycles.

Proposition 14.15: Let �G be a directed graph with n vertices and m edges. A
DFS traversal of �G can be performed in O(n + m) time, and can be used to solve
the following problems in O(n+ m) time:

• Computing a directed path between two given vertices of �G, if one exists.
• Computing the set of vertices of �G that are reachable from a given vertex s.
• Testing whether �G is strongly connected.
• Computing a directed cycle in �G, or reporting that �G is acyclic.
• Computing the transitive closure of �G (see Section 14.4).

The justification of Propositions 14.14 and 14.15 is based on algorithms that
use slightly modified versions of the DFS algorithm as subroutines. We will explore
some of those extensions in the remainder of this section.
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14.3.2 DFS Implementation and Extensions

We begin by providing a Python implementation of the basic depth-first search
algorithm, originally described with pseudo-code in Code Fragment 14.4. Our DFS
function is presented in Code Fragment 14.5.

1 def DFS(g, u, discovered):
2 ”””Perform DFS of the undiscovered portion of Graph g starting at Vertex u.
3
4 discovered is a dictionary mapping each vertex to the edge that was used to
5 discover it during the DFS. (u should be ”discovered” prior to the call.)
6 Newly discovered vertices will be added to the dictionary as a result.
7 ”””
8 for e in g.incident edges(u): # for every outgoing edge from u
9 v = e.opposite(u)

10 if v not in discovered: # v is an unvisited vertex
11 discovered[v] = e # e is the tree edge that discovered v
12 DFS(g, v, discovered) # recursively explore from v

Code Fragment 14.5: Recursive implementation of depth-first search on a graph,
starting at a designated vertex u.

In order to track which vertices have been visited, and to build a representation
of the resulting DFS tree, our implementation introduces a third parameter, named
discovered. This parameter should be a Python dictionary that maps a vertex of the
graph to the tree edge that was used to discover that vertex. As a technicality, we
assume that the source vertex u occurs as a key of the dictionary, with None as its
value. Thus, a caller might start the traversal as follows:

result = {u : None} # a new dictionary, with u trivially discovered
DFS(g, u, result)

The dictionary serves two purposes. Internally, the dictionary provides a mecha-
nism for recognizing visited vertices, as they will appear as keys in the dictionary.
Externally, the DFS function augments this dictionary as it proceeds, and thus the
values within the dictionary are the DFS tree edges at the conclusion of the process.

Because the dictionary is hash-based, the test, “if v not in discovered,” and
the record-keeping step, “discovered[v] = e,” run in O(1) expected time, rather
than worst-case time. In practice, this is a compromise we are willing to accept,
but it does violate the formal analysis of the algorithm, as given on page 643. If we
could assume that vertices could be numbered from 0 to n−1, then those numbers
could be used as indices into an array-based lookup table rather than a hash-based
map. Alternatively, we could store each vertex’s discovery status and associated
tree edge directly as part of the vertex instance.
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Reconstructing a Path from u to v

We can use the basic DFS function as a tool to identify the (directed) path lead-
ing from vertex u to v, if v is reachable from u. This path can easily be recon-
structed from the information that was recorded in the discovery dictionary during
the traversal. Code Fragment 14.6 provides an implementation of a secondary func-
tion that produces an ordered list of vertices on the path from u to v.

To reconstruct the path, we begin at the end of the path, examining the discovery
dictionary to determine what edge was used to reach vertex v, and then what the
other endpoint of that edge is. We add that vertex to a list, and then repeat the
process to determine what edge was used to discover it. Once we have traced the
path all the way back to the starting vertex u, we can reverse the list so that it is
properly oriented from u to v, and return it to the caller. This process takes time
proportional to the length of the path, and therefore it runs in O(n) time (in addition
to the time originally spent calling DFS).

1 def construct path(u, v, discovered):
2 path = [ ] # empty path by default
3 if v in discovered:
4 # we build list from v to u and then reverse it at the end
5 path.append(v)
6 walk = v
7 while walk is not u:
8 e = discovered[walk] # find edge leading to walk
9 parent = e.opposite(walk)

10 path.append(parent)
11 walk = parent
12 path.reverse( ) # reorient path from u to v
13 return path

Code Fragment 14.6: Function to reconstruct a directed path from u to v, given the
trace of discovery from a DFS started at u. The function returns an ordered list of
vertices on the path.

Testing for Connectivity

We can use the basic DFS function to determine whether a graph is connected. In
the case of an undirected graph, we simply start a depth-first search at an arbitrary
vertex and then test whether len(discovered) equals n at the conclusion. If the graph
is connected, then by Proposition 14.12, all vertices will have been discovered;
conversely, if the graph is not connected, there must be at least one vertex v that is
not reachable from u, and that will not be discovered.
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For directed graph, �G, we may wish to test whether it is strongly connected, that
is, whether for every pair of vertices u and v, both u reaches v and v reaches u. If we
start an independent call to DFS from each vertex, we could determine whether this
was the case, but those n calls when combined would run in O(n(n+m)). However,
we can determine if �G is strongly connected much faster than this, requiring only
two depth-first searches.

We begin by performing a depth-first search of our directed graph �G starting at
an arbitrary vertex s. If there is any vertex of �G that is not visited by this traversal,
and is not reachable from s, then the graph is not strongly connected. If this first
depth-first search visits each vertex of �G, we need to then check whether s is reach-
able from all other vertices. Conceptually, we can accomplish this by making a
copy of graph �G, but with the orientation of all edges reversed. A depth-first search
starting at s in the reversed graph will reach every vertex that could reach s in the
original. In practice, a better approach than making a new graph is to reimplement
a version of the DFS method that loops through all incoming edges to the current
vertex, rather than all outgoing edges. Since this algorithm makes just two DFS
traversals of �G, it runs in O(n+ m) time.

Computing all Connected Components

When a graph is not connected, the next goal we may have is to identify all of the
connected components of an undirected graph, or the strongly connected compo-
nents of a directed graph. We begin by discussing the undirected case.

If an initial call to DFS fails to reach all vertices of a graph, we can restart a
new call to DFS at one of those unvisited vertices. An implementation of such a
comprehensive DFS all method is given in Code Fragment 14.7.

1 def DFS complete(g):
2 ”””Perform DFS for entire graph and return forest as a dictionary.
3
4 Result maps each vertex v to the edge that was used to discover it.
5 (Vertices that are roots of a DFS tree are mapped to None.)
6 ”””
7 forest = { }
8 for u in g.vertices():
9 if u not in forest:

10 forest[u] = None # u will be the root of a tree
11 DFS(g, u, forest)
12 return forest

Code Fragment 14.7: Top-level function that returns a DFS forest for an entire
graph.
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Although the DFS complete function makes multiple calls to the original DFS
function, the total time spent by a call to DFS complete is O(n+ m). For an undi-
rected graph, recall from our original analysis on page 643 that a single call to
DFS starting at vertex s runs in time O(ns +ms) where ns is the number of vertices
reachable from s, and ms is the number of incident edges to those vertices. Because
each call to DFS explores a different component, the sum of ns +ms terms is n+m.
The O(n+m) total bound applies to the directed case as well, even though the sets
of reachable vertices are not necessarily disjoint. However, because the same dis-
covery dictionary is passed as a parameter to all DFS calls, we know that the DFS
subroutine is called once on each vertex, and then each outgoing edge is explored
only once during the process.

The DFS complete function can be used to analyze the connected components
of an undirected graph. The discovery dictionary it returns represents a DFS forest
for the entire graph. We say this is a forest rather than a tree, because the graph may
not be connected. The number of connected components can be determined by the
number of vertices in the discovery dictionary that have None as their discovery
edge (those are roots of DFS trees). A minor modification to the core DFS method
could be used to tag each vertex with a component number when it is discovered.
(See Exercise C-14.44.)

The situation is more complex for finding strongly connected components of
a directed graph. There exists an approach for computing those components in
O(n + m) time, making use of two separate depth-first search traversals, but the
details are beyond the scope of this book.

Detecting Cycles with DFS

For both undirected and directed graphs, a cycle exists if and only if a back edge
exists relative to the DFS traversal of that graph. It is easy to see that if a back edge
exists, a cycle exists by taking the back edge from the descendant to its ancestor
and then following the tree edges back to the descendant. Conversely, if a cycle
exists in the graph, there must be a back edge relative to a DFS (although we do not
prove this fact here).

Algorithmically, detecting a back edge in the undirected case is easy, because
all edges are either tree edges or back edges. In the case of a directed graph, ad-
ditional modifications to the core DFS implementation are needed to properly cat-
egorize a nontree edge as a back edge. When a directed edge is explored leading
to a previously visited vertex, we must recognize whether that vertex is an ancestor
of the current vertex. This requires some additional bookkeeping, for example, by
tagging vertices upon which a recursive call to DFS is still active. We leave details
as an exercise (C-14.43).
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14.3.3 Breadth-First Search

The advancing and backtracking of a depth-first search, as described in the previ-
ous section, defines a traversal that could be physically traced by a single person
exploring a graph. In this section, we consider another algorithm for traversing
a connected component of a graph, known as a breadth-first search (BFS). The
BFS algorithm is more akin to sending out, in all directions, many explorers who
collectively traverse a graph in coordinated fashion.

A BFS proceeds in rounds and subdivides the vertices into levels. BFS starts
at vertex s, which is at level 0. In the first round, we paint as “visited,” all vertices
adjacent to the start vertex s—these vertices are one step away from the beginning
and are placed into level 1. In the second round, we allow all explorers to go
two steps (i.e., edges) away from the starting vertex. These new vertices, which
are adjacent to level 1 vertices and not previously assigned to a level, are placed
into level 2 and marked as “visited.” This process continues in similar fashion,
terminating when no new vertices are found in a level.

A Python implementation of BFS is given in Code Fragment 14.8. We follow
a convention similar to that of DFS (Code Fragment 14.5), using a discovered dic-
tionary both to recognize visited vertices, and to record the discovery edges of the
BFS tree. We illustrate a BFS traversal in Figure 14.10.

1 def BFS(g, s, discovered):
2 ”””Perform BFS of the undiscovered portion of Graph g starting at Vertex s.
3
4 discovered is a dictionary mapping each vertex to the edge that was used to
5 discover it during the BFS (s should be mapped to None prior to the call).
6 Newly discovered vertices will be added to the dictionary as a result.
7 ”””
8 level = [s] # first level includes only s
9 while len(level) > 0:

10 next level = [ ] # prepare to gather newly found vertices
11 for u in level:
12 for e in g.incident edges(u): # for every outgoing edge from u
13 v = e.opposite(u)
14 if v not in discovered: # v is an unvisited vertex
15 discovered[v] = e # e is the tree edge that discovered v
16 next level.append(v) # v will be further considered in next pass
17 level = next level # relabel ’next’ level to become current

Code Fragment 14.8: Implementation of breadth-first search on a graph, starting at
a designated vertex s.
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Figure 14.10: Example of breadth-first search traversal, where the edges incident to
a vertex are considered in alphabetical order of the adjacent vertices. The discovery
edges are shown with solid lines and the nontree (cross) edges are shown with
dashed lines: (a) starting the search at A; (b) discovery of level 1; (c) discovery of
level 2; (d) discovery of level 3; (e) discovery of level 4; (f) discovery of level 5.
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When discussing DFS, we described a classification of nontree edges being
either back edges, which connect a vertex to one of its ancestors, forward edges,
which connect a vertex to one of its descendants, or cross edges, which connect a
vertex to another vertex that is neither its ancestor nor its descendant. For BFS on
an undirected graph, all nontree edges are cross edges (see Exercise C-14.47), and
for BFS on a directed graph, all nontree edges are either back edges or cross edges
(see Exercise C-14.48).

The BFS traversal algorithm has a number of interesting properties, some of
which we explore in the proposition that follows. Most notably, a path in a breadth-
first search tree rooted at vertex s to any other vertex v is guaranteed to be the
shortest such path from s to v in terms of the number of edges.

Proposition 14.16: Let G be an undirected or directed graph on which a BFS
traversal starting at vertex s has been performed. Then

• The traversal visits all vertices of G that are reachable from s.
• For each vertex v at level i, the path of the BFS tree T between s and v has i

edges, and any other path of G from s to v has at least i edges.
• If (u,v) is an edge that is not in the BFS tree, then the level number of v can

be at most 1 greater than the level number of u.

We leave the justification of this proposition as an exercise (C-14.50).
The analysis of the running time of BFS is similar to the one of DFS, with

the algorithm running in O(n + m) time, or more specifically, in O(ns + ms) time
if ns is the number of vertices reachable from vertex s, and ms ≤ m is the number
of incident edges to those vertices. To explore the entire graph, the process can
be restarted at another vertex, akin to the DFS complete function of Code Frag-
ment 14.7. Also, the actual path from vertex s to vertex v can be reconstructed
using the construct path function of Code Fragment 14.6

Proposition 14.17: Let G be a graph with n vertices and m edges represented
with the adjacency list structure. A BFS traversal of G takes O(n+ m) time.

Although our implementation of BFS in Code Fragment 14.8 progresses level
by level, the BFS algorithm can also be implemented using a single FIFO queue
to represent the current fringe of the search. Starting with the source vertex in the
queue, we repeatedly remove the vertex from the front of the queue and insert any
of its unvisited neighbors to the back of the queue. (See Exercise C-14.51.)

In comparing the capabilities of DFS and BFS, both can be used to efficiently
find the set of vertices that are reachable from a given source, and to determine paths
to those vertices. However, BFS guarantees that those paths use as few edges as
possible. For an undirected graph, both algorithms can be used to test connectivity,
to identify connected components, or to locate a cycle. For directed graphs, the
DFS algorithm is better suited for certain tasks, such as finding a directed cycle in
the graph, or in identifying the strongly connected components.
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14.4 Transitive Closure

We have seen that graph traversals can be used to answer basic questions of reach-
ability in a directed graph. In particular, if we are interested in knowing whether
there is a path from vertex u to vertex v in a graph, we can perform a DFS or BFS
traversal starting at u and observe whether v is discovered. If representing a graph
with an adjacency list or adjacency map, we can answer the question of reachability
for u and v in O(n+ m) time (see Propositions 14.15 and 14.17).

In certain applications, we may wish to answer many reachability queries more
efficiently, in which case it may be worthwhile to precompute a more convenient
representation of a graph. For example, the first step for a service that computes
driving directions from an origin to a destination might be to assess whether the
destination is reachable. Similarly, in an electricity network, we may wish to be
able to quickly determine whether current flows from one particular vertex to an-
other. Motivated by such applications, we introduce the following definition. The
transitive closure of a directed graph �G is itself a directed graph �G∗ such that the
vertices of �G∗ are the same as the vertices of �G, and �G∗ has an edge (u,v), when-
ever �G has a directed path from u to v (including the case where (u,v) is an edge of
the original �G).

If a graph is represented as an adjacency list or adjacency map, we can compute
its transitive closure in O(n(n+ m)) time by making use of n graph traversals, one
from each starting vertex. For example, a DFS starting at vertex u can be used to
determine all vertices reachable from u, and thus a collection of edges originating
with u in the transitive closure.

In the remainder of this section, we explore an alternative technique for comput-
ing the transitive closure of a directed graph that is particularly well suited for when
a directed graph is represented by a data structure that supports O(1)-time lookup
for the get edge(u,v) method (for example, the adjacency-matrix structure). Let �G
be a directed graph with n vertices and m edges. We compute the transitive closure
of �G in a series of rounds. We initialize �G0 = �G. We also arbitrarily number the
vertices of �G as v1,v2, . . . , vn. We then begin the computation of the rounds, begin-
ning with round 1. In a generic round k, we construct directed graph �Gk starting
with �Gk = �Gk−1 and adding to �Gk the directed edge (vi,v j) if directed graph �Gk−1

contains both the edges (vi,vk) and (vk,v j). In this way, we will enforce a simple
rule embodied in the proposition that follows.

Proposition 14.18: For i = 1, . . . , n, directed graph �Gk has an edge (vi,v j) if and
only if directed graph �G has a directed path from vi to v j, whose intermediate
vertices (if any) are in the set {v1, . . . ,vk}. In particular, �Gn is equal to �G∗, the
transitive closure of �G.
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Proposition 14.18 suggests a simple algorithm for computing the transitive clo-
sure of �G that is based on the series of rounds to compute each �Gk. This algorithm
is known as the Floyd-Warshall algorithm, and its pseudo-code is given in Code
Fragment 14.9. We illustrate an example run of the Floyd-Warshall algorithm in
Figure 14.11.

Algorithm FloydWarshall(�G):
Input: A directed graph �G with n vertices
Output: The transitive closure �G∗ of �G

let v1,v2, . . . , vn be an arbitrary numbering of the vertices of �G
�G0 = �G
for k = 1 to n do

�Gk = �Gk−1

for all i, j in {1, . . . , n} with i �= j and i, j �= k do
if both edges (vi,vk) and (vk,v j) are in �Gk−1 then

add edge (vi,v j) to �Gk (if it is not already present)
return �Gn

Code Fragment 14.9: Pseudo-code for the Floyd-Warshall algorithm. This algo-
rithm computes the transitive closure �G∗ of G by incrementally computing a series
of directed graphs �G0, �G1, . . . , �Gn, for k = 1, . . . , n.

From this pseudo-code, we can easily analyze the running time of the Floyd-
Warshall algorithm assuming that the data structure representing G supports meth-
ods get edge and insert edge in O(1) time. The main loop is executed n times and
the inner loop considers each of O(n2) pairs of vertices, performing a constant-time
computation for each one. Thus, the total running time of the Floyd-Warshall al-
gorithm is O(n3). From the description and analysis above we may immediately
derive the following proposition.

Proposition 14.19: Let �G be a directed graph with n vertices, and let �G be repre-
sented by a data structure that supports lookup and update of adjacency information
in O(1) time. Then the Floyd-Warshall algorithm computes the transitive closure
�G∗ of �G in O(n3) time.

Performance of the Floyd-Warshall Algorithm

Asymptotically, the O(n3) running time of the Floyd-Warshall algorithm is no bet-
ter than that achieved by repeatedly running DFS, once from each vertex, to com-
pute the reachability. However, the Floyd-Warshall algorithm matches the asymp-
totic bounds of the repeated DFS when a graph is dense, or when a graph is sparse
but represented as an adjacency matrix. (See Exercise R-14.12.)
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Figure 14.11: Sequence of directed graphs computed by the Floyd-Warshall algo-
rithm: (a) initial directed graph �G = �G0 and numbering of the vertices; (b) directed
graph �G1; (c) �G2; (d) �G3; (e) �G4; (f ) �G5. Note that �G5 = �G6 = �G7. If directed
graph �Gk−1 has the edges (vi,vk) and (vk,v j), but not the edge (vi,v j), in the draw-
ing of directed graph �Gk, we show edges (vi,vk) and (vk,v j) with dashed lines, and
edge (vi,v j) with a thick line. For example, in (b) existing edges (MIA,LAX) and
(LAX,ORD) result in new edge (MIA,ORD).
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The importance of the Floyd-Warshall algorithm is that it is much easier to
implement than DFS, and much faster in practice because there are relatively few
low-level operations hidden within the asymptotic notation. The algorithm is par-
ticularly well suited for the use of an adjacency matrix, as a single bit can be used
to designate the reachability modeled as an edge (u,v) in the transitive closure.

However, note that repeated calls to DFS results in better asymptotic perfor-
mance when the graph is sparse and represented using an adjacency list or adja-
cency map. In that case, a single DFS runs in O(n+ m) time, and so the transitive
closure can be computed in O(n2 + nm) time, which is preferable to O(n3).

Python Implementation

We conclude with a Python implementation of the Floyd-Warshall algorithm, as
presented in Code Fragment 14.10. Although the original algorithm is described
using a series of directed graphs �G0, �G1, . . . , �Gn, we create a single copy of the
original graph (using the deepcopy method of Python’s copy module) and then re-
peatedly add new edges to the closure as we progress through rounds of the Floyd-
Warshall algorithm.

The algorithm requires a canonical numbering of the graph’s vertices; therefore,
we create a list of the vertices in the closure graph, and subsequently index that list
for our order. Within the outermost loop, we must consider all pairs i and j. Finally,
we optimize by only iterating through all values of j after we have verified that i
has been chosen such that (vi,vk) exists in the current version of our closure.

1 def floyd warshall(g):
2 ”””Return a new graph that is the transitive closure of g.”””
3 closure = deepcopy(g) # imported from copy module
4 verts = list(closure.vertices()) # make indexable list
5 n = len(verts)
6 for k in range(n):
7 for i in range(n):
8 # verify that edge (i,k) exists in the partial closure
9 if i != k and closure.get edge(verts[i],verts[k]) is not None:

10 for j in range(n):
11 # verify that edge (k,j) exists in the partial closure
12 if i != j != k and closure.get edge(verts[k],verts[j]) is not None:
13 # if (i,j) not yet included, add it to the closure
14 if closure.get edge(verts[i],verts[j]) is None:
15 closure.insert edge(verts[i],verts[j])
16 return closure

Code Fragment 14.10: Python implementation of the Floyd-Warshall algorithm.
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14.5 Directed Acyclic Graphs

Directed graphs without directed cycles are encountered in many applications.
Such a directed graph is often referred to as a directed acyclic graph, or DAG,
for short. Applications of such graphs include the following:

• Prerequisites between courses of a degree program.

• Inheritance between classes of an object-oriented program.

• Scheduling constraints between the tasks of a project.

We explore this latter application further in the following example:

Example 14.20: In order to manage a large project, it is convenient to break it up
into a collection of smaller tasks. The tasks, however, are rarely independent, be-
cause scheduling constraints exist between them. (For example, in a house building
project, the task of ordering nails obviously precedes the task of nailing shingles
to the roof deck.) Clearly, scheduling constraints cannot have circularities, because
they would make the project impossible. (For example, in order to get a job you
need to have work experience, but in order to get work experience you need to have
a job.) The scheduling constraints impose restrictions on the order in which the
tasks can be executed. Namely, if a constraint says that task a must be completed
before task b is started, then a must precede b in the order of execution of the tasks.
Thus, if we model a feasible set of tasks as vertices of a directed graph, and we
place a directed edge from u to v whenever the task for u must be executed before
the task for v, then we define a directed acyclic graph.

14.5.1 Topological Ordering

The example above motivates the following definition. Let �G be a directed graph
with n vertices. A topological ordering of �G is an ordering v1, . . . ,vn of the vertices
of �G such that for every edge (vi,v j) of �G, it is the case that i < j. That is, a topo-
logical ordering is an ordering such that any directed path in �G traverses vertices in
increasing order. Note that a directed graph may have more than one topological
ordering. (See Figure 14.12.)

Proposition 14.21: �G has a topological ordering if and only if it is acyclic.

Justification: The necessity (the “only if” part of the statement) is easy to
demonstrate. Suppose �G is topologically ordered. Assume, for the sake of a con-
tradiction, that �G has a cycle consisting of edges (vi0 ,vi1),(vi1 ,vi2), . . . ,(vik−1 ,vi0).
Because of the topological ordering, we must have i0 < i1 < · · · < ik−1 < i0, which
is clearly impossible. Thus, �G must be acyclic.
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Figure 14.12: Two topological orderings of the same acyclic directed graph.

We now argue the sufficiency of the condition (the “if” part). Suppose �G is
acyclic. We will give an algorithmic description of how to build a topological
ordering for �G. Since �G is acyclic, �G must have a vertex with no incoming edges
(that is, with in-degree 0). Let v1 be such a vertex. Indeed, if v1 did not exist,
then in tracing a directed path from an arbitrary start vertex, we would eventually
encounter a previously visited vertex, thus contradicting the acyclicity of �G. If we
remove v1 from �G, together with its outgoing edges, the resulting directed graph is
still acyclic. Hence, the resulting directed graph also has a vertex with no incoming
edges, and we let v2 be such a vertex. By repeating this process until the directed
graph becomes empty, we obtain an ordering v1, . . . ,vn of the vertices of �G. Because
of the construction above, if (vi,v j) is an edge of �G, then vi must be deleted before
v j can be deleted, and thus, i < j. Therefore, v1, . . . ,vn is a topological ordering.

Proposition 14.21’s justification suggests an algorithm for computing a topo-
logical ordering of a directed graph, which we call topological sorting. We present
a Python implementation of the technique in Code Fragment 14.11, and an example
execution of the algorithm in Figure 14.13. Our implementation uses a dictionary,
named incount, to map each vertex v to a counter that represents the current number
of incoming edges to v, excluding those coming from vertices that have previously
been added to the topological order. Technically, a Python dictionary provides O(1)
expected time access to entries, rather than worst-case time; as was the case with
our graph traversals, this could be converted to worst-case time if vertices could be
indexed from 0 to n−1, or if we store the counter as an element of a vertex.

As a side effect, the topological sorting algorithm of Code Fragment 14.11
also tests whether the given directed graph �G is acyclic. Indeed, if the algorithm
terminates without ordering all the vertices, then the subgraph of the vertices that
have not been ordered must contain a directed cycle.
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1 def topological sort(g):
2 ”””Return a list of verticies of directed acyclic graph g in topological order.
3
4 If graph g has a cycle, the result will be incomplete.
5 ”””
6 topo = [ ] # a list of vertices placed in topological order
7 ready = [ ] # list of vertices that have no remaining constraints
8 incount = { } # keep track of in-degree for each vertex
9 for u in g.vertices():

10 incount[u] = g.degree(u, False) # parameter requests incoming degree
11 if incount[u] == 0: # if u has no incoming edges,
12 ready.append(u) # it is free of constraints
13 while len(ready) > 0:
14 u = ready.pop( ) # u is free of constraints
15 topo.append(u) # add u to the topological order
16 for e in g.incident edges(u): # consider all outgoing neighbors of u
17 v = e.opposite(u)
18 incount[v] −= 1 # v has one less constraint without u
19 if incount[v] == 0:
20 ready.append(v)
21 return topo

Code Fragment 14.11: Python implementation for the topological sorting algorithm.
(We show an example execution of this algorithm in Figure 14.13.)

Performance of Topological Sorting

Proposition 14.22: Let �G be a directed graph with n vertices and m edges, using
an adjacency list representation. The topological sorting algorithm runs in O(n+m)
time using O(n) auxiliary space, and either computes a topological ordering of �G
or fails to include some vertices, which indicates that �G has a directed cycle.

Justification: The initial recording of the n in-degrees uses O(n) time based
on the degree method. Say that a vertex u is visited by the topological sorting al-
gorithm when u is removed from the ready list. A vertex u can be visited only
when incount(u) is 0, which implies that all its predecessors (vertices with outgo-
ing edges into u) were previously visited. As a consequence, any vertex that is on
a directed cycle will never be visited, and any other vertex will be visited exactly
once. The algorithm traverses all the outgoing edges of each visited vertex once, so
its running time is proportional to the number of outgoing edges of the visited ver-
tices. In accordance with Proposition 14.9, the running time is (n+ m). Regarding
the space usage, observe that containers topo, ready, and incount have at most one
entry per vertex, and therefore use O(n) space.
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Figure 14.13: Example of a run of algorithm topological sort (Code Frag-
ment 14.11). The label near a vertex shows its current incount value, and its
eventual rank in the resulting topological order. The highlighted vertex is one
with incount equal to zero that will become the next vertex in the topological or-
der. Dashed lines denote edges that have already been examined and which are no
longer reflected in the incount values.
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14.6 Shortest Paths

As we saw in Section 14.3.3, the breadth-first search strategy can be used to find a
shortest path from some starting vertex to every other vertex in a connected graph.
This approach makes sense in cases where each edge is as good as any other, but
there are many situations where this approach is not appropriate.

For example, we might want to use a graph to represent the roads between
cities, and we might be interested in finding the fastest way to travel cross-country.
In this case, it is probably not appropriate for all the edges to be equal to each other,
for some inter-city distances will likely be much larger than others. Likewise, we
might be using a graph to represent a computer network (such as the Internet), and
we might be interested in finding the fastest way to route a data packet between
two computers. In this case, it again may not be appropriate for all the edges to
be equal to each other, for some connections in a computer network are typically
much faster than others (for example, some edges might represent low-bandwidth
connections, while others might represent high-speed, fiber-optic connections). It
is natural, therefore, to consider graphs whose edges are not weighted equally.

14.6.1 Weighted Graphs

A weighted graph is a graph that has a numeric (for example, integer) label w(e)
associated with each edge e, called the weight of edge e. For e = (u,v), we let
notation w(u,v) = w(e). We show an example of a weighted graph in Figure 14.14.
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Figure 14.14: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK to
LAX of total weight 2,777 (going through ORD and DFW). This is the minimum-
weight path in the graph from JFK to LAX.
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Defining Shortest Paths in a Weighted Graph

Let G be a weighted graph. The length (or weight) of a path is the sum of the
weights of the edges of P. That is, if P = ((v0,v1),(v1,v2), . . . ,(vk−1,vk)), then the
length of P, denoted w(P), is defined as

w(P) =
k−1

∑
i=0

w(vi,vi+1).

The distance from a vertex u to a vertex v in G, denoted d(u,v), is the length of a
minimum-length path (also called shortest path) from u to v, if such a path exists.

People often use the convention that d(u,v) = ∞ if there is no path at all from
u to v in G. Even if there is a path from u to v in G, however, if there is a cycle
in G whose total weight is negative, the distance from u to v may not be defined.
For example, suppose vertices in G represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the “cost” of the
edge (JFK,ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cycle in G and distances
would no longer be defined. That is, anyone could now build a path (with cycles)
in G from any city A to another city B that first goes to JFK and then cycles as
many times as he or she likes from JFK to ORD and back, before going on to B.
The existence of such paths would allow us to build arbitrarily low negative-cost
paths (and, in this case, make a fortune in the process). But distances cannot be
arbitrarily low negative numbers. Thus, any time we use edge weights to represent
distances, we must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest
path from some vertex s to each other vertex in G, viewing the weights on the edges
as distances. In this section, we explore efficient ways of finding all such shortest
paths, if they exist. The first algorithm we discuss is for the simple, yet common,
case when all the edge weights in G are nonnegative (that is, w(e)≥ 0 for each edge
e of G); hence, we know in advance that there are no negative-weight cycles in G.
Recall that the special case of computing a shortest path when all weights are equal
to one was solved with the BFS traversal algorithm presented in Section 14.3.3.

There is an interesting approach for solving this single-source problem based
on the greedy method design pattern (Section 13.4.2). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.
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14.6.2 Dijkstra’s Algorithm

The main idea in applying the greedy method pattern to the single-source shortest-
path problem is to perform a “weighted” breadth-first search starting at the source
vertex s. In particular, we can use the greedy method to develop an algorithm that
iteratively grows a “cloud” of vertices out of s, with the vertices entering the cloud
in order of their distances from s. Thus, in each iteration, the next vertex chosen
is the vertex outside the cloud that is closest to s. The algorithm terminates when
no more vertices are outside the cloud (or when those outside the cloud are not
connected to those within the cloud), at which point we have a shortest path from
s to every vertex of G that is reachable from s. This approach is a simple, but
nevertheless powerful, example of the greedy method design pattern. Applying the
greedy method to the single-source, shortest-path problem, results in an algorithm
known as Dijkstra’s algorithm.

Edge Relaxation

Let us define a label D[v] for each vertex v in V , which we use to approximate the
distance in G from s to v. The meaning of these labels is that D[v] will always store
the length of the best path we have found so far from s to v. Initially, D[s] = 0 and
D[v] = ∞ for each v �= s, and we define the set C, which is our “cloud” of vertices,
to initially be the empty set. At each iteration of the algorithm, we select a vertex
u not in C with smallest D[u] label, and we pull u into C. (In general, we will use
a priority queue to select among the vertices outside the cloud.) In the very first
iteration we will, of course, pull s into C. Once a new vertex u is pulled into C, we
then update the label D[v] of each vertex v that is adjacent to u and is outside of
C, to reflect the fact that there may be a new and better way to get to v via u. This
update operation is known as a relaxation procedure, for it takes an old estimate
and checks if it can be improved to get closer to its true value. The specific edge
relaxation operation is as follows:

Edge Relaxation:

if D[u]+ w(u,v) < D[v] then
D[v] = D[u]+ w(u,v)

Algorithm Description and Example

We give the pseudo-code for Dijkstra’s algorithm in Code Fragment 14.12, and
illustrate several iterations of Dijkstra’s algorithm in Figures 14.15 through 14.17.
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Algorithm ShortestPath(G,s):
Input: A weighted graph G with nonnegative edge weights, and a distinguished

vertex s of G.
Output: The length of a shortest path from s to v for each vertex v of G.

Initialize D[s] = 0 and D[v] = ∞ for each vertex v �= s.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u = value returned by Q.remove min()
for each vertex v adjacent to u such that v is in Q do

{perform the relaxation procedure on edge (u,v)}
if D[u]+ w(u,v) < D[v] then

D[v] = D[u]+ w(u,v)
Change to D[v] the key of vertex v in Q.

return the label D[v] of each vertex v

Code Fragment 14.12: Pseudo-code for Dijkstra’s algorithm, solving the single-
source shortest-path problem.
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Figure 14.15: An execution of Dijkstra’s algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertex v stores the label D[v]. The edges of
the shortest-path tree are drawn as thick arrows, and for each vertex u outside the
“cloud” we show the current best edge for pulling in u with a thick line. (Continues
in Figure 14.16.)
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Figure 14.16: An example execution of Dijkstra’s algorithm. (Continued from Fig-
ure 14.15; continued in Figure 14.17.)
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Figure 14.17: An example execution of Dijkstra’s algorithm. (Continued from Fig-
ure 14.16.)

Why It Works

The interesting aspect of the Dijkstra algorithm is that, at the moment a vertex u
is pulled into C, its label D[u] stores the correct length of a shortest path from v
to u. Thus, when the algorithm terminates, it will have computed the shortest-path
distance from s to every vertex of G. That is, it will have solved the single-source
shortest-path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds the
shortest path from the start vertex s to each other vertex u in the graph. Why is it
that the distance from s to u is equal to the value of the label D[u] at the time vertex
u is removed from the priority queue Q and added to the cloud C? The answer
to this question depends on there being no negative-weight edges in the graph, for
it allows the greedy method to work correctly, as we show in the proposition that
follows.

Proposition 14.23: In Dijkstra’s algorithm, whenever a vertex v is pulled into the
cloud, the label D[v] is equal to d(s,v), the length of a shortest path from s to v.

Justification: Suppose that D[v] > d(s,v) for some vertex v in V , and let z
be the first vertex the algorithm pulled into the cloud C (that is, removed from
Q) such that D[z] > d(s,z). There is a shortest path P from s to z (for otherwise
d(s,z) = ∞ = D[z]). Let us therefore consider the moment when z is pulled into
C, and let y be the first vertex of P (when going from s to z) that is not in C at this
moment. Let x be the predecessor of y in path P (note that we could have x = s).
(See Figure 14.18.) We know, by our choice of y, that x is already in C at this point.
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the first “wrong” vertex picked

z picked implies
that D[z] ≤ D[y]

P

D[z] > d(s,z)

C

D[y] = d(s,y)
y

z

s

x

D[x] = d(s,x)

Figure 14.18: A schematic illustration for the justification of Proposition 14.23.

Moreover, D[x] = d(s,x), since z is the first incorrect vertex. When x was pulled
into C, we tested (and possibly updated) D[y] so that we had at that point

D[y] ≤ D[x]+ w(x,y) = d(s,x)+ w(x,y).

But since y is the next vertex on the shortest path from s to z, this implies that

D[y] = d(s,y).

But we are now at the moment when we are picking z, not y, to join C; hence,

D[z] ≤ D[y].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
since y is on the shortest path from s to z,

d(s,y)+ d(y,z) = d(s,z).

Moreover, d(y,z) ≥ 0 because there are no negative-weight edges. Therefore,

D[z] ≤ D[y] = d(s,y) ≤ d(s,y)+ d(y,z) = d(s,z).

But this contradicts the definition of z; hence, there can be no such vertex z.

The Running Time of Dijkstra’s Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote
with n and m the number of vertices and edges of the input graph G, respectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra’s algorithm in
Code Fragment 14.12, analyzing its running time requires that we give more details
on its implementation. Specifically, we should indicate the data structures used and
how they are implemented.
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Let us first assume that we are representing the graph G using an adjacency
list or adjacency map structure. This data structure allows us to step through the
vertices adjacent to u during the relaxation step in time proportional to their number.
Therefore, the time spent in the management of the nested for loop, and the number
of iterations of that loop, is

∑
u in VG

outdeg(u),

which is O(m) by Proposition 14.9. The outer while loop executes O(n) times,
since a new vertex is added to the cloud during each iteration. This still does not
settle all the details for the algorithm analysis, however, for we must say more about
how to implement the other principal data structure in the algorithm—the priority
queue Q.

Referring back to Code Fragment 14.12 in search of priority queue operations,
we find that n vertices are originally inserted into the priority queue; since these are
the only insertions, the maximum size of the queue is n. In each of n iterations of
the while loop, a call to remove min is made to extract the vertex u with smallest
D label from Q. Then, for each neighbor v of u, we perform an edge relaxation,
and may potentially update the key of v in the queue. Thus, we actually need an
implementation of an adaptable priority queue (Section 9.5), in which case the key
of a vertex v is changed using the method update(�,k), where � is the locator for
the priority queue entry associated with vertex v. In the worst case, there could be
one such update for each edge of the graph. Overall, the running time of Dijkstra’s
algorithm is bounded by the sum of the following:

• n insertions into Q.

• n calls to the remove min method on Q.

• m calls to the update method on Q.

If Q is an adaptable priority queue implemented as a heap, then each of the
above operations run in O(logn), and so the overall running time for Dijkstra’s
algorithm is O((n+m) logn). Note that if we wish to express the running time as a
function of n only, then it is O(n2 logn) in the worst case.

Let us now consider an alternative implementation for the adaptable priority
queue Q using an unsorted sequence. (See Exercise P-9.58.) This, of course, re-
quires that we spend O(n) time to extract the minimum element, but it affords
very fast key updates, provided Q supports location-aware entries (Section 9.5.1).
Specifically, we can implement each key update done in a relaxation step in O(1)
time—we simply change the key value once we locate the entry in Q to update.
Hence, this implementation results in a running time that is O(n2 + m), which can
be simplified to O(n2) since G is simple.
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Comparing the Two Implementations

We have two choices for implementing the adaptable priority queue with location-
aware entries in Dijkstra’s algorithm: a heap implementation, which yields a run-
ning time of O((n + m) logn), and an unsorted sequence implementation, which
yields a running time of O(n2). Since both implementations would be fairly simple
to code, they are about equal in terms of the programming sophistication needed.
These two implementations are also about equal in terms of the constant factors in
their worst-case running times. Looking only at these worst-case times, we prefer
the heap implementation when the number of edges in the graph is small (that is,
when m < n2/ logn), and we prefer the sequence implementation when the number
of edges is large (that is, when m > n2/ logn).

Proposition 14.24: Given a weighted graph G with n vertices and m edges, such
that the weight of each edge is nonnegative, and a vertex s of G, Dijkstra’s algorithm
can compute the distance from s to all other vertices of G in the better of O(n2) or
O((n+ m) logn) time.

We note that an advanced priority queue implementation, known as a Fibonacci
heap, can be used to implement Dijkstra’s algorithm in O(m + n logn) time.

Programming Dijkstra’s Algorithm in Python

Having given a pseudo-code description of Dijkstra’s algorithm, let us now present
Python code for performing Dijkstra’s algorithm, assuming we are given a graph
whose edge elements are nonnegative integer weights. Our implementation of the
algorithm is in the form of a function, shortest path lengths, that takes a graph and
a designated source vertex as parameters. (See Code Fragment 14.13.) It returns a
dictionary, named cloud, mapping each vertex v that is reachable from the source
to its shortest-path distance d(s,v). We rely on our AdaptableHeapPriorityQueue
developed in Section 9.5.2 as an adaptable priority queue.

As we have done with other algorithms in this chapter, we rely on dictionaries
to map vertices to associated data (in this case, mapping v to its distance bound
D[v] and its adaptable priority queue locator). The expected O(1)-time access to
elements of these dictionaries could be converted to worst-case bounds, either by
numbering vertices from 0 to n− 1 to use as indices into a list, or by storing the
information within each vertex’s element.

The pseudo-code for Dijkstra’s algorithm begins by assigning d[v] = ∞ for
each v other than the source. We rely on the special value float( inf ) in Python
to provide a numeric value that represents positive infinity. However, we avoid in-
cluding vertices with this “infinite” distance in the resulting cloud that is returned
by the function. The use of this numeric limit could be avoided altogether by wait-
ing to add a vertex to the priority queue until after an edge that reaches it is relaxed.
(See Exercise C-14.64.)
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1 def shortest path lengths(g, src):
2 ”””Compute shortest-path distances from src to reachable vertices of g.
3
4 Graph g can be undirected or directed, but must be weighted such that
5 e.element() returns a numeric weight for each edge e.
6
7 Return dictionary mapping each reachable vertex to its distance from src.
8 ”””
9 d = { } # d[v] is upper bound from s to v

10 cloud = { } # map reachable v to its d[v] value
11 pq = AdaptableHeapPriorityQueue( ) # vertex v will have key d[v]
12 pqlocator = { } # map from vertex to its pq locator
13
14 # for each vertex v of the graph, add an entry to the priority queue, with
15 # the source having distance 0 and all others having infinite distance
16 for v in g.vertices():
17 if v is src:
18 d[v] = 0
19 else:
20 d[v] = float( inf ) # syntax for positive infinity
21 pqlocator[v] = pq.add(d[v], v) # save locator for future updates
22
23 while not pq.is empty():
24 key, u = pq.remove min()
25 cloud[u] = key # its correct d[u] value
26 del pqlocator[u] # u is no longer in pq
27 for e in g.incident edges(u): # outgoing edges (u,v)
28 v = e.opposite(u)
29 if v not in cloud:
30 # perform relaxation step on edge (u,v)
31 wgt = e.element()
32 if d[u] + wgt < d[v]: # better path to v?
33 d[v] = d[u] + wgt # update the distance
34 pq.update(pqlocator[v], d[v], v) # update the pq entry
35
36 return cloud # only includes reachable vertices

Code Fragment 14.13: Python implementation of Dijkstra’s algorithm for comput-
ing the shortest-path distances from a single source. We assume that e.element()
for edge e represents the weight of that edge.
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Reconstructing the Shortest-Path Tree

Our pseudo-code description of Dijkstra’s algorithm in Code Fragment 14.12, and
our implementation in Code Fragment 14.13, computes the value d[v], for each ver-
tex v, that is the length of the shortest path from the source vertex s to v. However,
those forms of the algorithm do not explicitly compute the actual paths that achieve
those distances. The collection of all shortest paths emanating from source s can be
compactly represented by what is known as the shortest-path tree. The paths form
a rooted tree because if a shortest path from s to v passes through an intermediate
vertex u, it must begin with a shortest path from s to u.

In this section, we demonstrate that the shortest-path tree rooted at source s
can be reconstructed in O(n + m) time, given the set of d[v] values produced by
Dijkstra’s algorithm using s as the source. As we did when representing the DFS
and BFS trees, we will map each vertex v �= s to a parent u (possibly, u = s), such
that u is the vertex immediately before v on a shortest path from s to v. If u is the
vertex just before v on the shortest path from s to v, it must be that

d[u]+ w(u,v) = d[v].

Conversely, if the above equation is satisfied, then the shortest path from s to u,
followed by the edge (u,v) is a shortest path to v.

Our implementation in Code Fragment 14.14 reconstructs the tree based on this
logic, testing all incoming edges to each vertex v, looking for a (u,v) that satisfies
the key equation. The running time is O(n+m), as we consider each vertex and all
incoming edges to those vertices. (See Proposition 14.9.)

1 def shortest path tree(g, s, d):
2 ”””Reconstruct shortest-path tree rooted at vertex s, given distance map d.
3
4 Return tree as a map from each reachable vertex v (other than s) to the
5 edge e=(u,v) that is used to reach v from its parent u in the tree.
6 ”””
7 tree = { }
8 for v in d:
9 if v is not s:

10 for e in g.incident edges(v, False): # consider INCOMING edges
11 u = e.opposite(v)
12 wgt = e.element()
13 if d[v] == d[u] + wgt:
14 tree[v] = e # edge e is used to reach v
15 return tree

Code Fragment 14.14: Python function that reconstructs the shortest paths, based
on knowledge of the single-source distances.
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14.7 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the
least amount of cable. We can model this problem using an undirected, weighted
graph G whose vertices represent the computers, and whose edges represent all
the possible pairs (u,v) of computers, where the weight w(u,v) of edge (u,v) is
equal to the amount of cable needed to connect computer u to computer v. Rather
than computing a shortest-path tree from some particular vertex v, we are interested
instead in finding a tree T that contains all the vertices of G and has the minimum
total weight over all such trees. Algorithms for finding such a tree are the focus of
this section.

Problem Definition

Given an undirected, weighted graph G, we are interested in finding a tree T that
contains all the vertices in G and minimizes the sum

w(T ) = ∑
(u,v) in T

w(u,v).

A tree, such as this, that contains every vertex of a connected graph G is said to
be a spanning tree, and the problem of computing a spanning tree T with smallest
total weight is known as the minimum spanning tree (or MST) problem.

The development of efficient algorithms for the minimum spanning tree prob-
lem predates the modern notion of computer science itself. In this section, we
discuss two classic algorithms for solving the MST problem. These algorithms
are both applications of the greedy method, which, as was discussed briefly in the
previous section, is based on choosing objects to join a growing collection by it-
eratively picking an object that minimizes some cost function. The first algorithm
we discuss is the Prim-Jarńık algorithm, which grows the MST from a single root
vertex, much in the same way as Dijkstra’s shortest-path algorithm. The second
algorithm we discuss is Kruskal’s algorithm, which “grows” the MST in clusters
by considering edges in nondecreasing order of their weights.

In order to simplify the description of the algorithms, we assume, in the follow-
ing, that the input graph G is undirected (that is, all its edges are undirected) and
simple (that is, it has no self-loops and no parallel edges). Hence, we denote the
edges of G as unordered vertex pairs (u,v).

Before we discuss the details of these algorithms, however, let us give a crucial
fact about minimum spanning trees that forms the basis of the algorithms.
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A Crucial Fact about Minimum Spanning Trees

The two MST algorithms we discuss are based on the greedy method, which in this
case depends crucially on the following fact. (See Figure 14.19.)

V1 V2

e

min-weight
“bridge” edge

e Belongs to a Minimum Spanning Tree

Figure 14.19: An illustration of the crucial fact about minimum spanning trees.

Proposition 14.25: Let G be a weighted connected graph, and let V1 and V2 be a
partition of the vertices of G into two disjoint nonempty sets. Furthermore, let e be
an edge in G with minimum weight from among those with one endpoint in V1 and
the other in V2. There is a minimum spanning tree T that has e as one of its edges.

Justification: Let T be a minimum spanning tree of G. If T does not contain
edge e, the addition of e to T must create a cycle. Therefore, there is some edge
f �= e of this cycle that has one endpoint in V1 and the other in V2. Moreover, by
the choice of e, w(e) ≤ w( f ). If we remove f from T ∪{e}, we obtain a spanning
tree whose total weight is no more than before. Since T was a minimum spanning
tree, this new tree must also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is
unique; we leave the justification of this less crucial fact as an exercise (C-14.65).
In addition, note that Proposition 14.25 remains valid even if the graph G con-
tains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.
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14.7.1 Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single
cluster starting from some “root” vertex s. The main idea is similar to that of
Dijkstra’s algorithm. We begin with some vertex s, defining the initial “cloud” of
vertices C. Then, in each iteration, we choose a minimum-weight edge e = (u,v),
connecting a vertex u in the cloud C to a vertex v outside of C. The vertex v is
then brought into the cloud C and the process is repeated until a spanning tree is
formed. Again, the crucial fact about minimum spanning trees comes into play,
for by always choosing the smallest-weight edge joining a vertex inside C to one
outside C, we are assured of always adding a valid edge to the MST.

To efficiently implement this approach, we can take another cue from Dijkstra’s
algorithm. We maintain a label D[v] for each vertex v outside the cloud C, so that
D[v] stores the weight of the minimum observed edge for joining v to the cloud
C. (In Dijkstra’s algorithm, this label measured the full path length from starting
vertex s to v, including an edge (u,v).) These labels serve as keys in a priority
queue used to decide which vertex is next in line to join the cloud. We give the
pseudo-code in Code Fragment 14.15.

Algorithm PrimJarnik(G):
Input: An undirected, weighted, connected graph G with n vertices and m edges
Output: A minimum spanning tree T for G

Pick any vertex s of G
D[s] = 0
for each vertex v �= s do

D[v] = ∞
Initialize T = ∅.
Initialize a priority queue Q with an entry (D[v],(v,None)) for each vertex v,
where D[v] is the key in the priority queue, and (v,None) is the associated value.
while Q is not empty do

(u,e) = value returned by Q.remove min()
Connect vertex u to T using edge e.
for each edge e′ = (u,v) such that v is in Q do

{check if edge (u,v) better connects v to T}
if w(u,v) < D[v] then

D[v] = w(u,v)
Change the key of vertex v in Q to D[v].
Change the value of vertex v in Q to (v,e′).

return the tree T

Code Fragment 14.15: The Prim-Jarńık algorithm for the MST problem.
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Analyzing the Prim-Jarńık Algorithm

The implementation issues for the Prim-Jarńık algorithm are similar to those for
Dijkstra’s algorithm, relying on an adaptable priority queue Q (Section 9.5.1).
We initially perform n insertions into Q, later perform n extract-min operations,
and may update a total of m priorities as part of the algorithm. Those steps are
the primary contributions to the overall running time. With a heap-based priority
queue, each operation runs in O(logn) time, and the overall time for the algorithm
is O((n + m) logn), which is O(m logn) for a connected graph. Alternatively, we
can achieve O(n2) running time by using an unsorted list as a priority queue.

Illustrating the Prim-Jarńık Algorithm

We illustrate the Prim-Jarńık algorithm in Figures 14.20 through 14.21.
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Figure 14.20: An illustration of the Prim-Jarńık MST algorithm, starting with vertex
PVD. (Continues in Figure 14.21.)
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Figure 14.21: An illustration of the Prim-Jarńık MST algorithm. (Continued from
Figure 14.20.)
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Python Implementation

Code Fragment 14.16 presents a Python implementation of the Prim-Jarńık algo-
rithm. The MST is returned as an unordered list of edges.

1 def MST PrimJarnik(g):
2 ”””Compute a minimum spanning tree of weighted graph g.
3
4 Return a list of edges that comprise the MST (in arbitrary order).
5 ”””
6 d = { } # d[v] is bound on distance to tree
7 tree = [ ] # list of edges in spanning tree
8 pq = AdaptableHeapPriorityQueue( ) # d[v] maps to value (v, e=(u,v))
9 pqlocator = { } # map from vertex to its pq locator

10
11 # for each vertex v of the graph, add an entry to the priority queue, with
12 # the source having distance 0 and all others having infinite distance
13 for v in g.vertices():
14 if len(d) == 0: # this is the first node
15 d[v] = 0 # make it the root
16 else:
17 d[v] = float( inf ) # positive infinity
18 pqlocator[v] = pq.add(d[v], (v,None))
19
20 while not pq.is empty():
21 key,value = pq.remove min()
22 u,edge = value # unpack tuple from pq
23 del pqlocator[u] # u is no longer in pq
24 if edge is not None:
25 tree.append(edge) # add edge to tree
26 for link in g.incident edges(u):
27 v = link.opposite(u)
28 if v in pqlocator: # thus v not yet in tree
29 # see if edge (u,v) better connects v to the growing tree
30 wgt = link.element()
31 if wgt < d[v]: # better edge to v?
32 d[v] = wgt # update the distance
33 pq.update(pqlocator[v], d[v], (v, link)) # update the pq entry
34 return tree

Code Fragment 14.16: Python implementation of the Prim-Jarńık algorithm for the
minimum spanning tree problem.
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14.7.2 Kruskal’s Algorithm

In this section, we introduce Kruskal’s algorithm for constructing a minimum span-
ning tree. While the Prim-Jarńık algorithm builds the MST by growing a single tree
until it spans the graph, Kruskal’s algorithm maintains a forest of clusters, repeat-
edly merging pairs of clusters until a single cluster spans the graph.

Initially, each vertex is by itself in a singleton cluster. The algorithm then
considers each edge in turn, ordered by increasing weight. If an edge e connects
two different clusters, then e is added to the set of edges of the minimum spanning
tree, and the two clusters connected by e are merged into a single cluster. If, on the
other hand, e connects two vertices that are already in the same cluster, then e is
discarded. Once the algorithm has added enough edges to form a spanning tree, it
terminates and outputs this tree as the minimum spanning tree.

We give pseudo-code for Kruskal’s MST algorithm in Code Fragment 14.17
and we show an example of this algorithm in Figures 14.22, 14.23, and 14.24.

Algorithm Kruskal(G):
Input: A simple connected weighted graph G with n vertices and m edges
Output: A minimum spanning tree T for G

for each vertex v in G do
Define an elementary cluster C(v) = {v}.

Initialize a priority queue Q to contain all edges in G, using the weights as keys.
T = ∅ {T will ultimately contain the edges of the MST}
while T has fewer than n−1 edges do

(u,v) = value returned by Q.remove min()
Let C(u) be the cluster containing u, and let C(v) be the cluster containing v.
if C(u) �= C(v) then

Add edge (u,v) to T .
Merge C(u) and C(v) into one cluster.

return tree T

Code Fragment 14.17: Kruskal’s algorithm for the MST problem.

As was the case with the Prim-Jarńık algorithm, the correctness of Kruskal’s al-
gorithm is based upon the crucial fact about minimum spanning trees from Propo-
sition 14.25. Each time Kruskal’s algorithm adds an edge (u,v) to the minimum
spanning tree T , we can define a partitioning of the set of vertices V (as in the
proposition) by letting V1 be the cluster containing v and letting V2 contain the rest
of the vertices in V . This clearly defines a disjoint partitioning of the vertices of
V and, more importantly, since we are extracting edges from Q in order by their
weights, e must be a minimum-weight edge with one vertex in V1 and the other in
V2. Thus, Kruskal’s algorithm always adds a valid minimum spanning tree edge.
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Figure 14.22: Example of an execution of Kruskal’s MST algorithm on a graph with
integer weights. We show the clusters as shaded regions and we highlight the edge
being considered in each iteration. (Continues in Figure 14.23.)
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Figure 14.23: An example of an execution of Kruskal’s MST algorithm. Rejected
edges are shown dashed. (Continues in Figure 14.24.)
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Figure 14.24: Example of an execution of Kruskal’s MST algorithm (continued).
The edge considered in (n) merges the last two clusters, which concludes this exe-
cution of Kruskal’s algorithm. (Continued from Figure 14.23.)

The Running Time of Kruskal’s Algorithm

There are two primary contributions to the running time of Kruskal’s algorithm.
The first is the need to consider the edges in nondecreasing order of their weights,
and the second is the management of the cluster partition. Analyzing its running
time requires that we give more details on its implementation.

The ordering of edges by weight can be implemented in O(m logm), either by
use of a sorting algorithm or a priority queue Q. If that queue is implemented with
a heap, we can initialize Q in O(m logm) time by repeated insertions, or in O(m)
time using bottom-up heap construction (see Section 9.3.6), and the subsequent
calls to remove min each run in O(logm) time, since the queue has size O(m). We
note that since m is O(n2) for a simple graph, O(logm) is the same as O(logn).
Therefore, the running time due to the ordering of edges is O(m logn).

The remaining task is the management of clusters. To implement Kruskal’s
algorithm, we must be able to find the clusters for vertices u and v that are endpoints
of an edge e, to test whether those two clusters are distinct, and if so, to merge
those two clusters into one. None of the data structures we have studied thus far
are well suited for this task. However, we conclude this chapter by formalizing
the problem of managing disjoint partitions, and introducing efficient union-find
data structures. In the context of Kruskal’s algorithm, we perform at most 2m
find operations and n− 1 union operations. We will see that a simple union-find
structure can perform that combination of operations in O(m + n logn) time (see
Proposition 14.26), and a more advanced structure can support an even faster time.

For a connected graph, m ≥ n−1, and therefore, the bound of O(m logn) time
for ordering the edges dominates the time for managing the clusters. We conclude
that the running time of Kruskal’s algorithm is O(m logn).
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Python Implementation

Code Fragment 14.18 presents a Python implementation of Kruskal’s algorithm. As
with our implementation of the Prim-Jarńık algorithm, the minimum spanning tree
is returned in the form of a list of edges. As a consequence of Kruskal’s algorithm,
those edges will be reported in nondecreasing order of their weights.

Our implementation assumes use of a Partition class for managing the cluster
partition. An implementation of the Partition class is presented in Section 14.7.3.

1 def MST Kruskal(g):
2 ”””Compute a minimum spanning tree of a graph using Kruskal s algorithm.
3
4 Return a list of edges that comprise the MST.
5
6 The elements of the graph s edges are assumed to be weights.
7 ”””
8 tree = [ ] # list of edges in spanning tree
9 pq = HeapPriorityQueue( ) # entries are edges in G, with weights as key

10 forest = Partition( ) # keeps track of forest clusters
11 position = { } # map each node to its Partition entry
12
13 for v in g.vertices():
14 position[v] = forest.make group(v)
15
16 for e in g.edges():
17 pq.add(e.element(), e) # edge’s element is assumed to be its weight
18
19 size = g.vertex count()
20 while len(tree) != size − 1 and not pq.is empty():
21 # tree not spanning and unprocessed edges remain
22 weight,edge = pq.remove min()
23 u,v = edge.endpoints()
24 a = forest.find(position[u])
25 b = forest.find(position[v])
26 if a != b:
27 tree.append(edge)
28 forest.union(a,b)
29
30 return tree

Code Fragment 14.18: Python implementation of Kruskal’s algorithm for the mini-
mum spanning tree problem.
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14.7.3 Disjoint Partitions and Union-Find Structures

In this section, we consider a data structure for managing a partition of elements
into a collection of disjoint sets. Our initial motivation is in support of Kruskal’s
minimum spanning tree algorithm, in which a forest of disjoint trees is maintained,
with occasional merging of neighboring trees. More generally, the disjoint partition
problem can be applied to various models of discrete growth.

We formalize the problem with the following model. A partition data structure
manages a universe of elements that are organized into disjoint sets (that is, an
element belongs to one and only one of these sets). Unlike with the Set ADT or
Python’s set class, we do not expect to be able to iterate through the contents of a
set, nor to efficiently test whether a given set includes a given element. To avoid
confusion with such notions of a set, we will refer to the clusters of our partition as
groups. However, we will not require an explicit structure for each group, instead
allowing the organization of groups to be implicit. To differentiate between one
group and another, we assume that at any point in time, each group has a designated
entry that we refer to as the leader of the group.

Formally, we define the methods of a partition ADT using position objects,
each of which stores an element x. The partition ADT supports the following meth-
ods.

make group(x): Create a singleton group containing new element x and
return the position storing x.

union(p, q): Merge the groups containing positions p and q.

find(p): Return the position of the leader of the group containing
position p.

Sequence Implementation

A simple implementation of a partition with a total of n elements uses a collection
of sequences, one for each group, where the sequence for a group A stores element
positions. Each position object stores a variable, element, which references its
associated element x and allows the execution of an element() method in O(1) time.
In addition, each position stores a variable, group, that references the sequence
storing p, since this sequence is representing the group containing p’s element.
(See Figure 14.25.)

With this representation, we can easily perform the make group(x) and find(p)
operations in O(1) time, allowing the first position in a sequence to serve as the
“leader.” Operation union(p,q) requires that we join two sequences into one and
update the group references of the positions in one of the two. We choose to imple-
ment this operation by removing all the positions from the sequence with smaller
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C
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Figure 14.25: Sequence-based implementation of a partition consisting of three
groups: A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

size, and inserting them in the sequence with larger size. Each time we take a po-
sition from the smaller group a and insert it into the larger group b, we update the
group reference for that position to now point to b. Hence, the operation union(p,q)
takes time O(min(np,nq)), where np (resp. nq) is the cardinality of the group con-
taining position p (resp. q). Clearly, this time is O(n) if there are n elements in the
partition universe. However, we next present an amortized analysis that shows this
implementation to be much better than appears from this worst-case analysis.

Proposition 14.26: When using the above sequence-based partition implementa-
tion, performing a series of k make group, union, and find operations on an initially
empty partition involving at most n elements takes O(k + n logn) time.

Justification: We use the accounting method and assume that one cyber-dollar
can pay for the time to perform a find operation, a make group operation, or the
movement of a position object from one sequence to another in a union operation.
In the case of a find or make group operation, we charge the operation itself 1
cyber-dollar. In the case of a union operation, we assume that 1 cyber-dollar pays
for the constant-time work in comparing the sizes of the two sequences, and that
we charge 1 cyber-dollar to each position that we move from the smaller group to
the larger group. Clearly, the 1 cyber-dollar charged for each find and make group
operation, together with the first cyber-dollar collected for each union operation,
accounts for a total of k cyber-dollars.

Consider, then, the number of charges made to positions on behalf of union
operations. The important observation is that each time we move a position from
one group to another, the size of that position’s group at least doubles. Thus, each
position is moved from one group to another at most logn times; hence, each po-
sition can be charged at most O(logn) times. Since we assume that the partition is
initially empty, there are O(n) different elements referenced in the given series of
operations, which implies that the total time for moving elements during the union
operations is O(n logn).
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A Tree-Based Partition Implementation �
An alternative data structure for representing a partition uses a collection of

trees to store the n elements, where each tree is associated with a different group.
(See Figure 14.26.) In particular, we implement each tree with a linked data struc-
ture whose nodes are themselves the group position objects. We view each position
p as being a node having an instance variable, element, referring to its element x,
and an instance variable, parent, referring to its parent node. By convention, if p is
the root of its tree, we set p’s parent reference to itself.

2

9 11

6 107 34

1

12

5

8

Figure 14.26: Tree-based implementation of a partition consisting of three groups:
A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

With this partition data structure, operation find(p) is performed by walking
up from position p to the root of its tree, which takes O(n) time in the worst case.
Operation union(p,q) can be implemented by making one of the trees a subtree
of the other. This can be done by first locating the two roots, and then in O(1)
additional time by setting the parent reference of one root to point to the other root.
See Figure 14.27 for an example of both operations.
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Figure 14.27: Tree-based implementation of a partition: (a) operation union(p,q);
(b) operation find(p), where p denotes the position object for element 12.
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At first, this implementation may seem to be no better than the sequence-based
data structure, but we add the following two simple heuristics to make it run faster.

Union-by-Size: With each position p, store the number of elements in the subtree
rooted at p. In a union operation, make the root of the smaller group become
a child of the other root, and update the size field of the larger root.

Path Compression: In a find operation, for each position q that the find visits,
reset the parent of q to the root. (See Figure 14.28.)
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Figure 14.28: Path-compression heuristic: (a) path traversed by operation find on
element 12; (b) restructured tree.

A surprising property of this data structure, when implemented using the union-
by-size and path-compression heuristics, is that performing a series of k operations
involving n elements takes O(k log∗ n) time, where log∗ n is the log-star function,
which is the inverse of the tower-of-twos function. Intuitively, log∗ n is the number
of times that one can iteratively take the logarithm (base 2) of a number before
getting a number smaller than 2. Table 14.4 shows a few sample values.

minimum n 2 22 = 4 222
= 16 2222

= 65,536 22222

= 265,536

log∗ n 1 2 3 4 5

Table 14.4: Some values of log∗ n and critical values for its inverse.

Proposition 14.27: When using the tree-based partition representation with both
union-by-size and path compression, performing a series of k make group, union,
and find operations on an initially empty partition involving at most n elements
takes O(k log∗ n) time.

Although the analysis for this data structure is rather complex, its implemen-
tation is quite straightforward. We conclude with complete Python code for the
structure, given in Code Fragment 14.19.
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1 class Partition:
2 ”””Union-find structure for maintaining disjoint sets.”””
3
4 #------------------------- nested Position class -------------------------
5 class Position:
6 slots = _container , _element , _size , _parent

7
8 def init (self, container, e):
9 ”””Create a new position that is the leader of its own group.”””

10 self. container = container # reference to Partition instance
11 self. element = e
12 self. size = 1
13 self. parent = self # convention for a group leader
14
15 def element(self):
16 ”””Return element stored at this position.”””
17 return self. element
18
19 #------------------------- public Partition methods -------------------------
20 def make group(self, e):
21 ”””Makes a new group containing element e, and returns its Position.”””
22 return self.Position(self, e)
23
24 def find(self, p):
25 ”””Finds the group containging p and return the position of its leader.”””
26 if p. parent != p:
27 p. parent = self.find(p. parent) # overwrite p. parent after recursion
28 return p. parent
29
30 def union(self, p, q):
31 ”””Merges the groups containg elements p and q (if distinct).”””
32 a = self.find(p)
33 b = self.find(q)
34 if a is not b: # only merge if different groups
35 if a. size > b. size:
36 b. parent = a
37 a. size += b. size
38 else:
39 a. parent = b
40 b. size += a. size

Code Fragment 14.19: Python implementation of a Partition class using union-by-
size and path compression.
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14.8 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-14.1 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3
connected components.

R-14.2 If G is a simple undirected graph with 12 vertices and 3 connected com-
ponents, what is the largest number of edges it might have?

R-14.3 Draw an adjacency matrix representation of the undirected graph shown
in Figure 14.1.

R-14.4 Draw an adjacency list representation of the undirected graph shown in
Figure 14.1.

R-14.5 Draw a simple, connected, directed graph with 8 vertices and 16 edges
such that the in-degree and out-degree of each vertex is 2. Show that there
is a single (nonsimple) cycle that includes all the edges of your graph, that
is, you can trace all the edges in their respective directions without ever
lifting your pencil. (Such a cycle is called an Euler tour.)

R-14.6 Suppose we represent a graph G having n vertices and m edges with the
edge list structure. Why, in this case, does the insert vertex method run
in O(1) time while the remove vertex method runs in O(m) time?

R-14.7 Give pseudo-code for performing the operation insert edge(u,v,x) in O(1)
time using the adjacency matrix representation.

R-14.8 Repeat Exercise R-14.7 for the adjacency list representation, as described
in the chapter.

R-14.9 Can edge list E be omitted from the adjacency matrix representation while
still achieving the time bounds given in Table 14.1? Why or why not?

R-14.10 Can edge list E be omitted from the adjacency list representation while
still achieving the time bounds given in Table 14.3? Why or why not?

R-14.11 Would you use the adjacency matrix structure or the adjacency list struc-
ture in each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is important
to use as little space as possible.

b. The graph has 10,000 vertices and 20,000,000 edges, and it is im-
portant to use as little space as possible.

c. You need to answer the query get edge(u,v) as fast as possible, no
matter how much space you use.
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R-14.12 Explain why the DFS traversal runs in O(n2) time on an n-vertex simple
graph that is represented with the adjacency matrix structure.

R-14.13 In order to verify that all of its nontree edges are back edges, redraw the
graph from Figure 14.8b so that the DFS tree edges are drawn with solid
lines and oriented downward, as in a standard portrayal of a tree, and with
all nontree edges drawn using dashed lines.

R-14.14 A simple undirected graph is complete if it contains an edge between every
pair of distinct vertices. What does a depth-first search tree of a complete
graph look like?

R-14.15 Recalling the definition of a complete graph from Exercise R-14.14, what
does a breadth-first search tree of a complete graph look like?

R-14.16 Let G be an undirected graph whose vertices are the integers 1 through 8,
and let the adjacent vertices of each vertex be given by the table below:

vertex adjacent vertices
1 (2, 3, 4)
2 (1, 3, 4)
3 (1, 2, 4)
4 (1, 2, 3, 6)
5 (6, 7, 8)
6 (4, 5, 7)
7 (5, 6, 8)
8 (5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are
returned in the same order as they are listed in the table above.

a. Draw G.
b. Give the sequence of vertices of G visited using a DFS traversal

starting at vertex 1.
c. Give the sequence of vertices visited using a BFS traversal starting

at vertex 1.

R-14.17 Draw the transitive closure of the directed graph shown in Figure 14.2.

R-14.18 If the vertices of the graph from Figure 14.11 are numbered as (v1 = JFK,
v2 = LAX, v3 = MIA, v4 = BOS, v5 = ORD, v6 = SFO, v7 = DFW), in
what order would edges be added to the transitive closure during the
Floyd-Warshall algorithm?

R-14.19 How many edges are in the transitive closure of a graph that consists of a
simple directed path of n vertices?

R-14.20 Given an n-node complete binary tree T , rooted at a given position, con-
sider a directed graph �G having the nodes of T as its vertices. For each
parent-child pair in T , create a directed edge in �G from the parent to the
child. Show that the transitive closure of �G has O(n logn) edges.
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R-14.21 Compute a topological ordering for the directed graph drawn with solid
edges in Figure 14.3d.

R-14.22 Bob loves foreign languages and wants to plan his course schedule for the
following years. He is interested in the following nine language courses:
LA15, LA16, LA22, LA31, LA32, LA126, LA127, LA141, and LA169.
The course prerequisites are:

• LA15: (none)
• LA16: LA15
• LA22: (none)
• LA31: LA15
• LA32: LA16, LA31
• LA126: LA22, LA32
• LA127: LA16
• LA141: LA22, LA16
• LA169: LA32

In what order can Bob take these courses, respecting the prerequisites?
R-14.23 Draw a simple, connected, weighted graph with 8 vertices and 16 edges,

each with unique edge weights. Identify one vertex as a “start” vertex and
illustrate a running of Dijkstra’s algorithm on this graph.

R-14.24 Show how to modify the pseudo-code for Dijkstra’s algorithm for the case
when the graph is directed and we want to compute shortest directed paths
from the source vertex to all the other vertices.

R-14.25 Draw a simple, connected, undirected, weighted graph with 8 vertices and
16 edges, each with unique edge weights. Illustrate the execution of the
Prim-Jarńık algorithm for computing the minimum spanning tree of this
graph.

R-14.26 Repeat the previous problem for Kruskal’s algorithm.
R-14.27 There are eight small islands in a lake, and the state wants to build seven

bridges to connect them so that each island can be reached from any other
one via one or more bridges. The cost of constructing a bridge is propor-
tional to its length. The distances between pairs of islands are given in the
following table.

1 2 3 4 5 6 7 8

1 - 240 210 340 280 200 345 120
2 - - 265 175 215 180 185 155
3 - - - 260 115 350 435 195
4 - - - - 160 330 295 230
5 - - - - - 360 400 170
6 - - - - - - 175 205
7 - - - - - - - 305
8 - - - - - - - -

Find which bridges to build to minimize the total construction cost.
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R-14.28 Describe the meaning of the graphical conventions used in Figure 14.9
illustrating a DFS traversal. What do the line thicknesses signify? What
do the arrows signify? How about dashed lines?

R-14.29 Repeat Exercise R-14.28 for Figure 14.8 that illustrates a directed DFS
traversal.

R-14.30 Repeat Exercise R-14.28 for Figure 14.10 that illustrates a BFS traversal.
R-14.31 Repeat Exercise R-14.28 for Figure 14.11 illustrating the Floyd-Warshall

algorithm.
R-14.32 Repeat Exercise R-14.28 for Figure 14.13 that illustrates the topological

sorting algorithm.
R-14.33 Repeat Exercise R-14.28 for Figures 14.15 and 14.16 illustrating Dijkstra’s

algorithm.
R-14.34 Repeat Exercise R-14.28 for Figures 14.20 and 14.21 that illustrate the

Prim-Jarńık algorithm.
R-14.35 Repeat Exercise R-14.28 for Figures 14.22 through 14.24 that illustrate

Kruskal’s algorithm.
R-14.36 George claims he has a fast way to do path compression in a partition

structure, starting at a position p. He puts p into a list L, and starts follow-
ing parent pointers. Each time he encounters a new position, q, he adds q
to L and updates the parent pointer of each node in L to point to q’s parent.
Show that George’s algorithm runs in Ω(h2) time on a path of length h.

Creativity

C-14.37 Give a Python implementation of the remove vertex(v) method for our
adjacency map implementation of Section 14.2.5, making sure your im-
plementation works for both directed and undirected graphs. Your method
should run in O(deg(v)) time.

C-14.38 Give a Python implementation of the remove edge(e) method for our ad-
jacency map implementation of Section 14.2.5, making sure your imple-
mentation works for both directed and undirected graphs. Your method
should run in O(1) time.

C-14.39 Suppose we wish to represent an n-vertex graph G using the edge list
structure, assuming that we identify the vertices with the integers in the set
{0,1, . . . ,n− 1}. Describe how to implement the collection E to support
O(logn)-time performance for the get edge(u,v) method. How are you
implementing the method in this case?

C-14.40 Let T be the spanning tree rooted at the start vertex produced by the depth-
first search of a connected, undirected graph G. Argue why every edge of
G not in T goes from a vertex in T to one of its ancestors, that is, it is a
back edge.
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C-14.41 Our solution to reporting a path from u to v in Code Fragment 14.6 could
be made more efficient in practice if the DFS process ended as soon as v
is discovered. Describe how to modify our code base to implement this
optimization.

C-14.42 Let G be an undirected graph G with n vertices and m edges. Describe
an O(n+m)-time algorithm for traversing each edge of G exactly once in
each direction.

C-14.43 Implement an algorithm that returns a cycle in a directed graph �G, if one
exists.

C-14.44 Write a function, components(g), for undirected graph g, that returns a
dictionary mapping each vertex to an integer that serves as an identifier for
its connected component. That is, two vertices should be mapped to the
same identifier if and only if they are in the same connected component.

C-14.45 Say that a maze is constructed correctly if there is one path from the start
to the finish, the entire maze is reachable from the start, and there are no
loops around any portions of the maze. Given a maze drawn in an n× n
grid, how can we determine if it is constructed correctly? What is the
running time of this algorithm?

C-14.46 Computer networks should avoid single points of failure, that is, network
vertices that can disconnect the network if they fail. We say an undi-
rected, connected graph G is biconnected if it contains no vertex whose
removal would divide G into two or more connected components. Give an
algorithm for adding at most n edges to a connected graph G, with n ≥ 3
vertices and m ≥ n− 1 edges, to guarantee that G is biconnected. Your
algorithm should run in O(n+ m) time.

C-14.47 Explain why all nontree edges are cross edges, with respect to a BFS tree
constructed for an undirected graph.

C-14.48 Explain why there are no forward nontree edges with respect to a BFS tree
constructed for a directed graph.

C-14.49 Show that if T is a BFS tree produced for a connected graph G, then, for
each vertex v at level i, the path of T between s and v has i edges, and any
other path of G between s and v has at least i edges.

C-14.50 Justify Proposition 14.16.

C-14.51 Provide an implementation of the BFS algorithm that uses a FIFO queue,
rather than a level-by-level formulation, to manage vertices that have been
discovered until the time when their neighbors are considered.

C-14.52 A graph G is bipartite if its vertices can be partitioned into two sets X and
Y such that every edge in G has one end vertex in X and the other in Y .
Design and analyze an efficient algorithm for determining if an undirected
graph G is bipartite (without knowing the sets X and Y in advance).
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C-14.53 An Euler tour of a directed graph �G with n vertices and m edges is a
cycle that traverses each edge of �G exactly once according to its direction.
Such a tour always exists if �G is connected and the in-degree equals the
out-degree of each vertex in �G. Describe an O(n+ m)-time algorithm for
finding an Euler tour of such a directed graph �G.

C-14.54 A company named RT&T has a network of n switching stations connected
by m high-speed communication links. Each customer’s phone is directly
connected to one station in his or her area. The engineers of RT&T have
developed a prototype video-phone system that allows two customers to
see each other during a phone call. In order to have acceptable image
quality, however, the number of links used to transmit video signals be-
tween the two parties cannot exceed 4. Suppose that RT&T’s network is
represented by a graph. Design an efficient algorithm that computes, for
each station, the set of stations it can reach using no more than 4 links.

C-14.55 The time delay of a long-distance call can be determined by multiplying
a small fixed constant by the number of communication links on the tele-
phone network between the caller and callee. Suppose the telephone net-
work of a company named RT&T is a tree. The engineers of RT&T want
to compute the maximum possible time delay that may be experienced in
a long-distance call. Given a tree T , the diameter of T is the length of
a longest path between two nodes of T . Give an efficient algorithm for
computing the diameter of T .

C-14.56 Tamarindo University and many other schools worldwide are doing a joint
project on multimedia. A computer network is built to connect these
schools using communication links that form a tree. The schools decide
to install a file server at one of the schools to share data among all the
schools. Since the transmission time on a link is dominated by the link
setup and synchronization, the cost of a data transfer is proportional to the
number of links used. Hence, it is desirable to choose a “central” location
for the file server. Given a tree T and a node v of T , the eccentricity of v
is the length of a longest path from v to any other node of T . A node of T
with minimum eccentricity is called a center of T .

a. Design an efficient algorithm that, given an n-node tree T , computes
a center of T .

b. Is the center unique? If not, how many distinct centers can a tree
have?

C-14.57 Say that an n-vertex directed acyclic graph �G is compact if there is some
way of numbering the vertices of �G with the integers from 0 to n−1 such
that �G contains the edge (i, j) if and only if i < j, for all i, j in [0,n− 1].
Give an O(n2)-time algorithm for detecting if �G is compact.

www.it-ebooks.info

http://www.it-ebooks.info/


692 Chapter 14. Graph Algorithms

C-14.58 Let �G be a weighted directed graph with n vertices. Design a variation
of Floyd-Warshall’s algorithm for computing the lengths of the shortest
paths from each vertex to every other vertex in O(n3) time.

C-14.59 Design an efficient algorithm for finding a longest directed path from a
vertex s to a vertex t of an acyclic weighted directed graph �G. Specify the
graph representation used and any auxiliary data structures used. Also,
analyze the time complexity of your algorithm.

C-14.60 An independent set of an undirected graph G = (V,E) is a subset I of V
such that no two vertices in I are adjacent. That is, if u and v are in I, then
(u,v) is not in E . A maximal independent set M is an independent set
such that, if we were to add any additional vertex to M, then it would not
be independent any more. Every graph has a maximal independent set.
(Can you see this? This question is not part of the exercise, but it is worth
thinking about.) Give an efficient algorithm that computes a maximal
independent set for a graph G. What is this method’s running time?

C-14.61 Give an example of an n-vertex simple graph G that causes Dijkstra’s
algorithm to run in Ω(n2 logn) time when its implemented with a heap.

C-14.62 Give an example of a weighted directed graph �G with negative-weight
edges, but no negative-weight cycle, such that Dijkstra’s algorithm incor-
rectly computes the shortest-path distances from some start vertex s.

C-14.63 Consider the following greedy strategy for finding a shortest path from
vertex start to vertex goal in a given connected graph.

1: Initialize path to start.
2: Initialize set visited to {start}.
3: If start=goal, return path and exit. Otherwise, continue.
4: Find the edge (start,v) of minimum weight such that v is adjacent to

start and v is not in visited.
5: Add v to path.
6: Add v to visited.
7: Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal?
Either explain intuitively why it works, or give a counterexample.

C-14.64 Our implementation of shortest path lengths in Code Fragment 14.13 re-
lies on use of “infinity” as a numeric value, to represent the distance bound
for vertices that are not (yet) known to be reachable from the source.
Reimplement that function without such a sentinel, so that vertices, other
than the source, are not added to the priority queue until it is evident that
they are reachable.

C-14.65 Show that if all the weights in a connected weighted graph G are distinct,
then there is exactly one minimum spanning tree for G.
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C-14.66 An old MST method, called Barůvka’s algorithm, works as follows on a
graph G having n vertices and m edges with distinct weights:

Let T be a subgraph of G initially containing just the vertices in V .
while T has fewer than n−1 edges do

for each connected component Ci of T do
Find the lowest-weight edge (u,v) in E with u in Ci and v not in
Ci.
Add (u,v) to T (unless it is already in T ).

return T

Prove that this algorithm is correct and that it runs in O(m logn) time.
C-14.67 Let G be a graph with n vertices and m edges such that all the edge weights

in G are integers in the range [1,n]. Give an algorithm for finding a mini-
mum spanning tree for G in O(m log∗ n) time.

C-14.68 Consider a diagram of a telephone network, which is a graph G whose ver-
tices represent switching centers, and whose edges represent communica-
tion lines joining pairs of centers. Edges are marked by their bandwidth,
and the bandwidth of a path is equal to the lowest bandwidth among the
path’s edges. Give an algorithm that, given a network and two switch-
ing centers a and b, outputs the maximum bandwidth of a path between a
and b.

C-14.69 NASA wants to link n stations spread over the country using communica-
tion channels. Each pair of stations has a different bandwidth available,
which is known a priori. NASA wants to select n−1 channels (the mini-
mum possible) in such a way that all the stations are linked by the channels
and the total bandwidth (defined as the sum of the individual bandwidths
of the channels) is maximum. Give an efficient algorithm for this prob-
lem and determine its worst-case time complexity. Consider the weighted
graph G = (V,E), where V is the set of stations and E is the set of chan-
nels between the stations. Define the weight w(e) of an edge e in E as the
bandwidth of the corresponding channel.

C-14.70 Inside the Castle of Asymptopia there is a maze, and along each corridor
of the maze there is a bag of gold coins. The amount of gold in each
bag varies. A noble knight, named Sir Paul, will be given the opportunity
to walk through the maze, picking up bags of gold. He may enter the
maze only through a door marked “ENTER” and exit through another
door marked “EXIT.” While in the maze he may not retrace his steps.
Each corridor of the maze has an arrow painted on the wall. Sir Paul may
only go down the corridor in the direction of the arrow. There is no way
to traverse a “loop” in the maze. Given a map of the maze, including the
amount of gold in each corridor, describe an algorithm to help Sir Paul
pick up the most gold.
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C-14.71 Suppose you are given a timetable, which consists of:
• A set A of n airports, and for each airport a in A, a minimum con-

necting time c(a).
• A set F of m flights, and the following, for each flight f in F :

◦ Origin airport a1( f ) in A
◦ Destination airport a2( f ) in A
◦ Departure time t1( f )
◦ Arrival time t2( f )

Describe an efficient algorithm for the flight scheduling problem. In this
problem, we are given airports a and b, and a time t, and we wish to com-
pute a sequence of flights that allows one to arrive at the earliest possible
time in b when departing from a at or after time t. Minimum connecting
times at intermediate airports must be observed. What is the running time
of your algorithm as a function of n and m?

C-14.72 Suppose we are given a directed graph �G with n vertices, and let M be the
n×n adjacency matrix corresponding to �G.

a. Let the product of M with itself (M2) be defined, for 1 ≤ i, j ≤ n, as
follows:

M2(i, j) = M(i,1)�M(1, j)⊕·· ·⊕M(i,n)�M(n, j),

where “⊕” is the Boolean or operator and “�” is Boolean and.
Given this definition, what does M2(i, j) = 1 imply about the ver-
tices i and j? What if M2(i, j) = 0?

b. Suppose M4 is the product of M2 with itself. What do the entries of
M4 signify? How about the entries of M5 = (M4)(M)? In general,
what information is contained in the matrix Mp?

c. Now suppose that �G is weighted and assume the following:

1: for 1 ≤ i ≤ n, M(i, i) = 0.
2: for 1 ≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) is in E .
3: for 1 ≤ i, j ≤ n, M(i, j) = ∞ if (i, j) is not in E .

Also, let M2 be defined, for 1 ≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i,1)+ M(1, j), . . . ,M(i,n)+ M(n, j)}.

If M2(i, j) = k, what may we conclude about the relationship be-
tween vertices i and j?

C-14.73 Karen has a new way to do path compression in a tree-based union/find
partition data structure starting at a position p. She puts all the positions
that are on the path from p to the root in a set S. Then she scans through
S and sets the parent pointer of each position in S to its parent’s parent
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pointer (recall that the parent pointer of the root points to itself ). If this
pass changed the value of any position’s parent pointer, then she repeats
this process, and goes on repeating this process until she makes a scan
through S that does not change any position’s parent value. Show that
Karen’s algorithm is correct and analyze its running time for a path of
length h.

Projects

P-14.74 Use an adjacency matrix to implement a class supporting a simplified
graph ADT that does not include update methods. Your class should in-
clude a constructor method that takes two collections—a collection V of
vertex elements and a collection E of pairs of vertex elements—and pro-
duces the graph G that these two collections represent.

P-14.75 Implement the simplified graph ADT described in Project P-14.74, using
the edge list structure.

P-14.76 Implement the simplified graph ADT described in Project P-14.74, using
the adjacency list structure.

P-14.77 Extend the class of Project P-14.76 to support the update methods of the
graph ADT.

P-14.78 Design an experimental comparison of repeated DFS traversals versus
the Floyd-Warshall algorithm for computing the transitive closure of a
directed graph.

P-14.79 Perform an experimental comparison of two of the minimum spanning
tree algorithms discussed in this chapter (Kruskal and Prim-Jarńık). De-
velop an extensive set of experiments to test the running times of these
algorithms using randomly generated graphs.

P-14.80 One way to construct a maze starts with an n×n grid such that each grid
cell is bounded by four unit-length walls. We then remove two boundary
unit-length walls, to represent the start and finish. For each remaining
unit-length wall not on the boundary, we assign a random value and cre-
ate a graph G, called the dual, such that each grid cell is a vertex in G
and there is an edge joining the vertices for two cells if and only if the
cells share a common wall. The weight of each edge is the weight of the
corresponding wall. We construct the maze by finding a minimum span-
ning tree T for G and removing all the walls corresponding to edges in
T . Write a program that uses this algorithm to generate mazes and then
solves them. Minimally, your program should draw the maze and, ideally,
it should visualize the solution as well.
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P-14.81 Write a program that builds the routing tables for the nodes in a computer
network, based on shortest-path routing, where path distance is measured
by hop count, that is, the number of edges in a path. The input for this
problem is the connectivity information for all the nodes in the network,
as in the following example:

241.12.31.14: 241.12.31.15 241.12.31.18 241.12.31.19

which indicates three network nodes that are connected to 241.12.31.14,
that is, three nodes that are one hop away. The routing table for the node at
address A is a set of pairs (B,C), which indicates that, to route a message
from A to B, the next node to send to (on the shortest path from A to B)
is C. Your program should output the routing table for each node in the
network, given an input list of node connectivity lists, each of which is
input in the syntax as shown above, one per line.

Chapter Notes

The depth-first search method is a part of the “folklore” of computer science, but Hopcroft
and Tarjan [52, 94] are the ones who showed how useful this algorithm is for solving
several different graph problems. Knuth [64] discusses the topological sorting problem.
The simple linear-time algorithm that we describe for determining if a directed graph is
strongly connected is due to Kosaraju. The Floyd-Warshall algorithm appears in a paper
by Floyd [38] and is based upon a theorem of Warshall [102].

The first known minimum spanning tree algorithm is due to Barůvka [9], and was
published in 1926. The Prim-Jarńık algorithm was first published in Czech by Jarńık [55]
in 1930 and in English in 1957 by Prim [85]. Kruskal published his minimum spanning
tree algorithm in 1956 [67]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [47]. The
current asymptotically fastest minimum spanning tree algorithm is a randomized method
of Karger, Klein, and Tarjan [57] that runs in O(m) expected time. Dijkstra [35] published
his single-source, shortest-path algorithm in 1959. The running time for the Prim-Jarńık
algorithm, and also that of Dijkstra’s algorithm, can actually be improved to be O(n logn+
m) by implementing the queue Q with either of two more sophisticated data structures, the
“Fibonacci Heap” [40] or the “Relaxed Heap” [37].

To learn about different algorithms for drawing graphs, please see the book chapter by
Tamassia and Liotta [92] and the book by Di Battista, Eades, Tamassia and Tollis [34]. The
reader interested in further study of graph algorithms is referred to the books by Ahuja,
Magnanti, and Orlin [7], Cormen, Leiserson, Rivest and Stein [29], Mehlhorn [77], and
Tarjan [95], and the book chapter by van Leeuwen [98].

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter

15 Memory Management and B-Trees

Contents

15.1 Memory Management . . . . . . . . . . . . . . . . . . . . . 698

15.1.1 Memory Allocation . . . . . . . . . . . . . . . . . . . . . 699

15.1.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . . 700

15.1.3 Additional Memory Used by the Python Interpreter . . . . 703

15.2 Memory Hierarchies and Caching . . . . . . . . . . . . . . 705

15.2.1 Memory Systems . . . . . . . . . . . . . . . . . . . . . . 705

15.2.2 Caching Strategies . . . . . . . . . . . . . . . . . . . . . 706

15.3 External Searching and B-Trees . . . . . . . . . . . . . . . 711

15.3.1 (a,b) Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 712

15.3.2 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

15.4 External-Memory Sorting . . . . . . . . . . . . . . . . . . . 715

15.4.1 Multiway Merging . . . . . . . . . . . . . . . . . . . . . . 716

15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

www.it-ebooks.info

http://www.it-ebooks.info/


698 Chapter 15. Memory Management and B-Trees

Our study of data structures thus far has focused primarily upon the efficiency
of computations, as measured by the number of primitive operations that are exe-
cuted on a central processing unit (CPU). In practice, the performance of a com-
puter system is also greatly impacted by the management of the computer’s memory
systems. In our analysis of data structures, we have provided asymptotic bounds for
the overall amount of memory used by a data structure. In this chapter, we consider
more subtle issues involving the use of a computer’s memory system.

We first discuss ways in which memory is allocated and deallocated during the
execution of a computer program, and the impact that this has on the program’s
performance. Second, we discuss the complexity of multilevel memory hierarchies
in today’s computer systems. Although we often abstract a computer’s memory
as consisting of a single pool of interchangeable locations, in practice, the data
used by an executing program is stored and transferred between a combination
of physical memories (e.g., CPU registers, caches, internal memory, and external
memory). We consider the use of classic data structures in the algorithms used to
manage memory, and how the use of memory hierarchies impacts the choice of
data structures and algorithms for classic problems such as searching and sorting.

15.1 Memory Management

In order to implement any data structure on an actual computer, we need to use
computer memory. Computer memory is organized into a sequence of words, each
of which typically consists of 4, 8, or 16 bytes (depending on the computer). These
memory words are numbered from 0 to N − 1, where N is the number of mem-
ory words available to the computer. The number associated with each memory
word is known as its memory address. Thus, the memory in a computer can be
viewed as basically one giant array of memory words. For example, in Figure 5.1
of Section 5.2, we portrayed a section of the computer’s memory as follows:
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In order to run programs and store information, the computer’s memory must
be managed so as to determine what data is stored in what memory cells. In this
section, we discuss the basics of memory management, most notably describing the
way in which memory is allocated to store new objects, the way in which portions
of memory are deallocated and reclaimed, when no longer needed, and the way in
which the Python interpreter uses memory in completing its tasks.
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15.1.1 Memory Allocation

With Python, all objects are stored in a pool of memory, known as the memory
heap or Python heap (which should not be confused with the “heap” data structure
presented in Chapter 9). When a command such as

w = Widget()

is executed, assuming Widget is the name of a class, a new instance of the class
is created and stored somewhere within the memory heap. The Python interpreter
is responsible for negotiating the use of space with the operating system and for
managing the use of the memory heap when executing a Python program.

The storage available in the memory heap is divided into blocks, which are con-
tiguous array-like “chunks” of memory that may be of variable or fixed sizes. The
system must be implemented so that it can quickly allocate memory for new ob-
jects. One popular method is to keep contiguous “holes” of available free memory
in a linked list, called the free list. The links joining these holes are stored inside
the holes themselves, since their memory is not being used. As memory is allocated
and deallocated, the collection of holes in the free lists changes, with the unused
memory being separated into disjoint holes divided by blocks of used memory. This
separation of unused memory into separate holes is known as fragmentation. The
problem is that it becomes more difficult to find large continuous chunks of mem-
ory, when needed, even though an equivalent amount of memory may be unused
(yet fragmented). Therefore, we would like to minimize fragmentation as much as
possible.

There are two kinds of fragmentation that can occur. Internal fragmentation
occurs when a portion of an allocated memory block is unused. For example, a
program may request an array of size 1000, but only use the first 100 cells of this
array. There is not much that a run-time environment can do to reduce internal
fragmentation. External fragmentation, on the other hand, occurs when there is a
significant amount of unused memory between several contiguous blocks of allo-
cated memory. Since the run-time environment has control over where to allocate
memory when it is requested, the run-time environment should allocate memory in
a way to try to reduce external fragmentation as much as reasonably possible.

Several heuristics have been suggested for allocating memory from the heap
so as to minimize external fragmentation. The best-fit algorithm searches the en-
tire free list to find the hole whose size is closest to the amount of memory being
requested. The first-fit algorithm searches from the beginning of the free list for
the first hole that is large enough. The next-fit algorithm is similar, in that it also
searches the free list for the first hole that is large enough, but it begins its search
from where it left off previously, viewing the free list as a circularly linked list
(Section 7.2). The worst-fit algorithm searches the free list to find the largest hole
of available memory, which might be done faster than a search of the entire free list
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if this list were maintained as a priority queue (Chapter 9). In each algorithm, the
requested amount of memory is subtracted from the chosen memory hole and the
leftover part of that hole is returned to the free list.

Although it might sound good at first, the best-fit algorithm tends to produce
the worst external fragmentation, since the leftover parts of the chosen holes tend
to be small. The first-fit algorithm is fast, but it tends to produce a lot of external
fragmentation at the front of the free list, which slows down future searches. The
next-fit algorithm spreads fragmentation more evenly throughout the memory heap,
thus keeping search times low. This spreading also makes it more difficult to allo-
cate large blocks, however. The worst-fit algorithm attempts to avoid this problem
by keeping contiguous sections of free memory as large as possible.

15.1.2 Garbage Collection

In some languages, like C and C++, the memory space for objects must be explic-
itly deallocated by the programmer, which is a duty often overlooked by beginning
programmers and is the source of frustrating programming errors even for experi-
enced programmers. The designers of Python instead placed the burden of memory
management entirely on the interpreter. The process of detecting “stale” objects,
deallocating the space devoted to those objects, and returning the reclaimed space
to the free list is known as garbage collection.

To perform automated garbage collection, there must first be a way to detect
those objects that are no longer necessary. Since the interpreter cannot feasibly
analyze the semantics of an arbitrary Python program, it relies on the following
conservative rule for reclaiming objects. In order for a program to access an object,
it must have a direct or indirect reference to that object. We will define such objects
to be live objects. In defining a live object, a direct reference to an object is in the
form of an identifier in an active namespace (i.e., the global namespace, or the local
namespace for any active function). For example, immediately after the command
w = Widget() is executed, identifier w will be defined in the current namespace
as a reference to the new widget object. We refer to all such objects with direct
references as root objects. An indirect reference to a live object is a reference
that occurs within the state of some other live object. For example, if the widget
instance in our earlier example maintains a list as an attribute, that list is also a live
object (as it can be reached indirectly through use of identifier w). The set of live
objects are defined recursively; thus, any objects that are referenced within the list
that is referenced by the widget are also classified as live objects.

The Python interpreter assumes that live objects are the active objects currently
being used by the running program; these objects should not be deallocated. Other
objects can be garbage collected. Python relies on the following two strategies for
determining which objects are live.
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Reference Counts

Within the state of every Python object is an integer known as its reference count.
This is the count of how many references to the object exist anywhere in the system.
Every time a reference is assigned to this object, its reference count is incremented,
and every time one of those references is reassigned to something else, the reference
count for the former object is decremented. The maintenance of a reference count
for each object adds O(1) space per object, and the increments and decrements to
the count add O(1) additional computation time per such operations.

The Python interpreter allows a running program to examine an object’s ref-
erence count. Within the sys module there is a function named getrefcount that
returns an integer equal to the reference count for the object sent as a parameter. It
is worth noting that because the formal parameter of that function is assigned to the
actual parameter sent by the caller, there is temporarily one additional reference to
that object in the local namespace of the function at the time the count is reported.

The advantage of having a reference count for each object is that if an object’s
count is ever decremented to zero, that object cannot possibly be a live object and
therefore the system can immediately deallocate the object (or place it in a queue
of objects that are ready to be deallocated).

Cycle Detection

Although it is clear that an object with a reference count of zero cannot be a live
object, it is important to recognize that an object with a nonzero reference count
need not qualify as live. There may exist a group of objects that have references to
each other, even though none of those objects are reachable from a root object.

For example, a running Python program may have an identifier, data, that is a
reference to a sequence implemented using a doubly linked list. In this case, the
list referenced by data is a root object, the header and trailer nodes that are stored
as attributes of the list are live objects, as are all the intermediate nodes of the list
that are indirectly referenced and all the elements that are referenced as elements
of those nodes. If the identifier, data, were to go out of scope, or to be reassigned
to some other object, the reference count for the list instance may go to zero and
be garbage collected, but the reference counts for all of the nodes would remain
nonzero, stopping them from being garbage collected by the simple rule above.

Every so often, in particular when the available space in the memory heap is
becoming scarce, the Python interpreter uses a more advanced form of garbage
collection to reclaim objects that are unreachable, despite their nonzero reference
counts. There are different algorithms for implementing cycle detection. (The
mechanics of garbage collection in Python are abstracted in the gc module, and
may vary depending on the implementation of the interpreter.) A classic algorithm
for garbage collection is the mark-sweep algorithm, which we next discuss.
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The Mark-Sweep Algorithm

In the mark-sweep garbage collection algorithm, we associate a “mark” bit with
each object that identifies whether that object is live. When we determine at some
point that garbage collection is needed, we suspend all other activity and clear
the mark bits of all the objects currently allocated in the memory heap. We then
trace through the active namespaces and we mark all the root objects as “live.” We
must then determine all the other live objects—the ones that are reachable from the
root objects. To do this efficiently, we can perform a depth-first search (see Sec-
tion 14.3.1) on the directed graph that is defined by objects reference other objects.
In this case, each object in the memory heap is viewed as a vertex in a directed
graph, and the reference from one object to another is viewed as a directed edge.
By performing a directed DFS from each root object, we can correctly identify and
mark each live object. This process is known as the “mark” phase. Once this pro-
cess has completed, we then scan through the memory heap and reclaim any space
that is being used for an object that has not been marked. At this time, we can also
optionally coalesce all the allocated space in the memory heap into a single block,
thereby eliminating external fragmentation for the time being. This scanning and
reclamation process is known as the “sweep” phase, and when it completes, we
resume running the suspended program. Thus, the mark-sweep garbage collec-
tion algorithm will reclaim unused space in time proportional to the number of live
objects and their references plus the size of the memory heap.

Performing DFS In-Place

The mark-sweep algorithm correctly reclaims unused space in the memory heap,
but there is an important issue we must face during the mark phase. Since we are
reclaiming memory space at a time when available memory is scarce, we must take
care not to use extra space during the garbage collection itself. The trouble is that
the DFS algorithm, in the recursive way we have described it in Section 14.3.1, can
use space proportional to the number of vertices in the graph. In the case of garbage
collection, the vertices in our graph are the objects in the memory heap; hence, we
probably do not have this much memory to use. So our only alternative is to find a
way to perform DFS in-place rather than recursively, that is, we must perform DFS
using only a constant amount of additional storage.

The main idea for performing DFS in-place is to simulate the recursion stack
using the edges of the graph (which in the case of garbage collection correspond
to object references). When we traverse an edge from a visited vertex v to a new
vertex w, we change the edge (v,w) stored in v’s adjacency list to point back to v’s
parent in the DFS tree. When we return back to v (simulating the return from the
“recursive” call at w), we can then switch the edge we modified to point back to w,
assuming we have some way to identify which edge we need to change back.
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15.1.3 Additional Memory Used by the Python Interpreter

We have discussed, in Section 15.1.1, how the Python interpreter allocates memory
for objects within a memory heap. However, this is not the only memory that is
used when executing a Python program. In this section, we discuss some other
important uses of memory.

The Run-Time Call Stack

Stacks have a most important application to the run-time environment of Python
programs. A running Python program has a private stack, known as the call stack
or Python interpreter stack, that is used to keep track of the nested sequence of
currently active (that is, nonterminated) invocations of functions. Each entry of
the stack is a structure known as an activation record or frame, storing important
information about an invocation of a function.

At the top of the call stack is the activation record of the running call, that is,
the function activation that currently has control of the execution. The remaining
elements of the stack are activation records of the suspended calls, that is, func-
tions that have invoked another function and are currently waiting for that other
function to return control when it terminates. The order of the elements in the stack
corresponds to the chain of invocations of the currently active functions. When a
new function is called, an activation record for that call is pushed onto the stack.
When it terminates, its activation record is popped from the stack and the Python
interpreter resumes the processing of the previously suspended call.

Each activation record includes a dictionary representing the local namespace
for the function call. (See Sections 1.10 and 2.5 for further discussion of name-
spaces). The namespace maps identifiers, which serve as parameters and local
variables, to object values, although the objects being referenced still reside in the
memory heap. The activation record for a function call also includes a reference to
the function definition itself, and a special variable, known as the program counter,
to maintain the address of the statement within the function that is currently exe-
cuting. When one function returns control to another, the stored program counter
for the suspended function allows the interpreter to properly continue execution of
that function.

Implementing Recursion

One of the benefits of using a stack to implement the nesting of function calls is
that it allows programs to use recursion. That is, it allows a function to call it-
self, as discussed in Chapter 4. We implicitly described the concept of the call
stack and the use of activation records within our portrayal of recursion traces in

www.it-ebooks.info

http://www.it-ebooks.info/


704 Chapter 15. Memory Management and B-Trees

that chapter. Interestingly, early programming languages, such as Cobol and For-
tran, did not originally use call stacks to implement function calls. But because of
the elegance and efficiency that recursion allows, almost all modern programming
languages utilize a call stack for function calls, including the current versions of
classic languages like Cobol and Fortran.

Each box of a recursive trace corresponds to an activation record that is placed
on the call stack during the execution of a recursive function. At any point in
time, the content of the call stack corresponds to the chain of boxes from the initial
function invocation to the current one. To better illustrate how a call stack is used
by recursive functions, we refer back to the Python implementation of the classic
recursive definition of the factorial function,

n! = n(n−1)(n−2) · · ·1,

with the code originally given in Code Fragment 4.1, and the recursive trace in
Figure 4.1. The first time we call factorial, its activation record includes a name-
space storing the parameter value n. The function recursively calls itself to com-
pute (n−1)!, causing a new activation record, with its own namespace and param-
eter, to be pushed onto the call stack. In turn, this recursive invocation calls itself to
compute (n− 2)!, and so on. The chain of recursive invocations, and thus the call
stack, grows up to size n + 1, with the most deeply nested call being factorial(0),
which returns 1 without any further recursion. The run-time stack allows several
invocations of the factorial function to exist simultaneously. Each has an activation
record that stores the value of its parameter, and eventually the value to be returned.
When the first recursive call eventually terminates, it returns (n−1)!, which is then
multiplied by n to compute n! for the original call of the factorial method.

The Operand Stack

Interestingly, there is actually another place where the Python interpreter uses a
stack. Arithmetic expressions, such as ((a + b) ∗ (c + d))/e, are evaluated by the
interpreter using an operand stack. In Section 8.5 we described how to evaluate an
arithmetic expression using a postorder traversal of an explicit expression tree. We
described that algorithm in a recursive way; however, this recursive description can
be simulated using a nonrecursive process that maintains an explicit operand stack.
A simple binary operation, such as a + b, is computed by pushing a on the stack,
pushing b on the stack, and then calling an instruction that pops the top two items
from the stack, performs the binary operation on them, and pushes the result back
onto the stack. Likewise, instructions for writing and reading elements to and from
memory involve the use of pop and push methods for the operand stack.
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15.2 Memory Hierarchies and Caching

With the increased use of computing in society, software applications must man-
age extremely large data sets. Such applications include the processing of online
financial transactions, the organization and maintenance of databases, and analy-
ses of customers’ purchasing histories and preferences. The amount of data can be
so large that the overall performance of algorithms and data structures sometimes
depends more on the time to access the data than on the speed of the CPU.

15.2.1 Memory Systems

In order to accommodate large data sets, computers have a hierarchy of differ-
ent kinds of memories, which vary in terms of their size and distance from the
CPU. Closest to the CPU are the internal registers that the CPU itself uses. Ac-
cess to such locations is very fast, but there are relatively few such locations. At
the second level in the hierarchy are one or more memory caches. This memory
is considerably larger than the register set of a CPU, but accessing it takes longer.
At the third level in the hierarchy is the internal memory, which is also known as
main memory or core memory. The internal memory is considerably larger than
the cache memory, but also requires more time to access. Another level in the hi-
erarchy is the external memory, which usually consists of disks, CD drives, DVD
drives, and/or tapes. This memory is very large, but it is also very slow. Data stored
through an external network can be viewed as yet another level in this hierarchy,
with even greater storage capacity, but even slower access. Thus, the memory hi-
erarchy for computers can be viewed as consisting of five or more levels, each of
which is larger and slower than the previous level. (See Figure 15.1.) During the
execution of a program, data is routinely copied from one level of the hierarchy to
a neighboring level, and these transfers can become a computational bottleneck.

External Memory

Internal Memory

Caches

Registers

CPU

Bigger

Network Storage Faster

Figure 15.1: The memory hierarchy.
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15.2.2 Caching Strategies

The significance of the memory hierarchy on the performance of a program de-
pends greatly upon the size of the problem we are trying to solve and the physical
characteristics of the computer system. Often, the bottleneck occurs between two
levels of the memory hierarchy—the one that can hold all data items and the level
just below that one. For a problem that can fit entirely in main memory, the two
most important levels are the cache memory and the internal memory. Access times
for internal memory can be as much as 10 to 100 times longer than those for cache
memory. It is desirable, therefore, to be able to perform most memory accesses
in cache memory. For a problem that does not fit entirely in main memory, on
the other hand, the two most important levels are the internal memory and the ex-
ternal memory. Here the differences are even more dramatic, for access times for
disks, the usual general-purpose external-memory device, are typically as much as
100000 to 1000000 times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore
who wants to send a request-for-money message to his parents in Chicago. If the
student sends his parents an email message, it can arrive at their home computer
in about five seconds. Think of this mode of communication as corresponding to
an internal-memory access by a CPU. A mode of communication corresponding to
an external-memory access that is 500,000 times slower would be for the student
to walk to Chicago and deliver his message in person, which would take about a
month if he can average 20 miles per day. Thus, we should make as few accesses
to external memory as possible.

Most algorithms are not designed with the memory hierarchy in mind, in spite
of the great variance between access times for the different levels. Indeed, all of
the algorithm analyses described in this book so far have assumed that all memory
accesses are equal. This assumption might seem, at first, to be a great oversight—
and one we are only addressing now in the final chapter—but there are good reasons
why it is actually a reasonable assumption to make.

One justification for this assumption is that it is often necessary to assume that
all memory accesses take the same amount of time, since specific device-dependent
information about memory sizes is often hard to come by. In fact, information
about memory size may be difficult to get. For example, a Python program that
is designed to run on many different computer platforms cannot easily be defined
in terms of a specific computer architecture configuration. We can certainly use
architecture-specific information, if we have it (and we will show how to exploit
such information later in this chapter). But once we have optimized our software
for a certain architecture configuration, our software will no longer be device-
independent. Fortunately, such optimizations are not always necessary, primarily
because of the second justification for the equal-time memory-access assumption.
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Caching and Blocking

Another justification for the memory-access equality assumption is that operating
system designers have developed general mechanisms that allow most memory
accesses to be fast. These mechanisms are based on two important locality-of-
reference properties that most software possesses:

• Temporal locality: If a program accesses a certain memory location, then
there is increased likelihood that it accesses that same location again in the
near future. For example, it is common to use the value of a counter vari-
able in several different expressions, including one to increment the counter’s
value. In fact, a common adage among computer architects is that a program
spends 90 percent of its time in 10 percent of its code.

• Spatial locality: If a program accesses a certain memory location, then there
is increased likelihood that it soon accesses other locations that are near this
one. For example, a program using an array may be likely to access the
locations of this array in a sequential or near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-
periments to justify the claim that most software possesses both of these kinds of
locality of reference. For example, a nested for loop used to repeatedly scan through
an array will exhibit both kinds of locality.

Temporal and spatial localities have, in turn, given rise to two fundamental
design choices for multilevel computer memory systems (which are present in the
interface between cache memory and internal memory, and also in the interface
between internal memory and external memory).

The first design choice is called virtual memory. This concept consists of pro-
viding an address space as large as the capacity of the secondary-level memory, and
of transferring data located in the secondary level into the primary level, when they
are addressed. Virtual memory does not limit the programmer to the constraint of
the internal memory size. The concept of bringing data into primary memory is
called caching, and it is motivated by temporal locality. By bringing data into pri-
mary memory, we are hoping that it will be accessed again soon, and we will be
able to respond quickly to all the requests for this data that come in the near future.

The second design choice is motivated by spatial locality. Specifically, if data
stored at a secondary-level memory location � is accessed, then we bring into
primary-level memory a large block of contiguous locations that include the lo-
cation �. (See Figure 15.2.) This concept is known as blocking, and it is motivated
by the expectation that other secondary-level memory locations close to � will soon
be accessed. In the interface between cache memory and internal memory, such
blocks are often called cache lines, and in the interface between internal memory
and external memory, such blocks are often called pages.
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A block in the external memory address space

A block on disk

0 1 2 3 ... 1024 ... 2048 ...

Figure 15.2: Blocks in external memory.

When implemented with caching and blocking, virtual memory often allows
us to perceive secondary-level memory as being faster than it really is. There is
still a problem, however. Primary-level memory is much smaller than secondary-
level memory. Moreover, because memory systems use blocking, any program
of substance will likely reach a point where it requests data from secondary-level
memory, but the primary memory is already full of blocks. In order to fulfill the
request and maintain our use of caching and blocking, we must remove some block
from primary memory to make room for a new block from secondary memory in
this case. Deciding which block to evict brings up a number of interesting data
structure and algorithm design issues.

Caching in Web Browsers

For motivation, we consider a related problem that arises when revisiting informa-
tion presented in Web pages. To exploit temporal locality of reference, it is often
advantageous to store copies of Web pages in a cache memory, so these pages
can be quickly retrieved when requested again. This effectively creates a two-level
memory hierarchy, with the cache serving as the smaller, quicker internal memory,
and the network being the external memory. In particular, suppose we have a cache
memory that has m “slots” that can contain Web pages. We assume that a Web page
can be placed in any slot of the cache. This is known as a fully associative cache.

As a browser executes, it requests different Web pages. Each time the browser
requests such a Web page p, the browser determines (using a quick test) if p is
unchanged and currently contained in the cache. If p is contained in the cache,
then the browser satisfies the request using the cached copy. If p is not in the
cache, however, the page for p is requested over the Internet and transferred into
the cache. If one of the m slots in the cache is available, then the browser assigns
p to one of the empty slots. But if all the m cells of the cache are occupied, then
the computer must determine which previously viewed Web page to evict before
bringing in p to take its place. There are, of course, many different policies that can
be used to determine the page to evict.
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Page Replacement Algorithms

Some of the better-known page replacement policies include the following (see
Figure 15.3):

• First-in, first-out (FIFO): Evict the page that has been in the cache the
longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur-
thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache.

New block Old block (chosen at random)

Random policy:

New block Old block (present longest)

FIFO policy:

New block Old block (least recently used)

LRU policy:

insert time: 8:00am 9:05am 7:10am 7:30am 10:10am 8:45am7:48am

last used: 7:25am 9:22am 6:50am 8:20am 10:02am 9:50am8:12am

Figure 15.3: The random, FIFO, and LRU page replacement policies.

The random strategy is one of the easiest policies to implement, for it only re-
quires a random or pseudo-random number generator. The overhead involved in
implementing this policy is an O(1) additional amount of work per page replace-
ment. Moreover, there is no additional overhead for each page request, other than to
determine whether a page request is in the cache or not. Still, this policy makes no
attempt to take advantage of any temporal locality exhibited by a user’s browsing.
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The FIFO strategy is quite simple to implement, as it only requires a queue
Q to store references to the pages in the cache. Pages are enqueued in Q when
they are referenced by a browser, and then are brought into the cache. When a
page needs to be evicted, the computer simply performs a dequeue operation on Q
to determine which page to evict. Thus, this policy also requires O(1) additional
work per page replacement. Also, the FIFO policy incurs no additional overhead
for page requests. Moreover, it tries to take some advantage of temporal locality.

The LRU strategy goes a step further than the FIFO strategy, for the LRU strat-
egy explicitly takes advantage of temporal locality as much as possible, by always
evicting the page that was least-recently used. From a policy point of view, this is
an excellent approach, but it is costly from an implementation point of view. That
is, its way of optimizing temporal and spatial locality is fairly costly. Implement-
ing the LRU strategy requires the use of an adaptable priority queue Q that supports
updating the priority of existing pages. If Q is implemented with a sorted sequence
based on a linked list, then the overhead for each page request and page replace-
ment is O(1). When we insert a page in Q or update its key, the page is assigned
the highest key in Q and is placed at the end of the list, which can also be done
in O(1) time. Even though the LRU strategy has constant-time overhead, using
the implementation above, the constant factors involved, in terms of the additional
time overhead and the extra space for the priority queue Q, make this policy less
attractive from a practical point of view.

Since these different page replacement policies have different trade-offs be-
tween implementation difficulty and the degree to which they seem to take advan-
tage of localities, it is natural for us to ask for some kind of comparative analysis
of these methods to see which one, if any, is the best.

From a worst-case point of view, the FIFO and LRU strategies have fairly
unattractive competitive behavior. For example, suppose we have a cache con-
taining m pages, and consider the FIFO and LRU methods for performing page
replacement for a program that has a loop that repeatedly requests m + 1 pages in
a cyclic order. Both the FIFO and LRU policies perform badly on such a sequence
of page requests, because they perform a page replacement on every page request.
Thus, from a worst-case point of view, these policies are almost the worst we can
imagine—they require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses on
each protocol’s behavior for one bad sequence of page requests. An ideal analy-
sis would be to compare these methods over all possible page-request sequences.
Of course, this is impossible to do exhaustively, but there have been a great num-
ber of experimental simulations done on page-request sequences derived from real
programs. Based on these experimental comparisons, the LRU strategy has been
shown to be usually superior to the FIFO strategy, which is usually better than the
random strategy.
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15.3 External Searching and B-Trees

Consider the problem of maintaining a large collection of items that does not fit in
main memory, such as a typical database. In this context, we refer to the secondary-
memory blocks as disk blocks. Likewise, we refer to the transfer of a block between
secondary memory and primary memory as a disk transfer. Recalling the great
time difference that exists between main memory accesses and disk accesses, the
main goal of maintaining such a collection in external memory is to minimize the
number of disk transfers needed to perform a query or update. We refer to this
count as the I/O complexity of the algorithm involved.

Some Inefficient External-Memory Representations

A typical operation we would like to support is the search for a key in a map. If we
were to store n items unordered in a doubly linked list, searching for a particular
key within the list requires n transfers in the worst case, since each link hop we
perform on the linked list might access a different block of memory.

We can reduce the number of block transfers by using an array-based sequence.
A sequential search of an array can be performed using only O(n/B) block transfers
because of spatial locality of reference, where B denotes the number of elements
that fit into a block. This is because the block transfer when accessing the first
element of the array actually retrieves the first B elements, and so on with each
successive block. It is worth noting that the bound of O(n/B) transfers is only
achieved when using a compact array representation (see Section 5.2.2). The
standard Python list class is a referential container, and so even though the sequence
of references are stored in an array, the actual elements that must be examined
during a search are not generally stored sequentially in memory, resulting in n
transfers in the worst case.

We could alternately store a sequence using a sorted array. In this case, a search
performs O(log2 n) transfers, via binary search, which is a nice improvement. But
we do not get significant benefit from block transfers because each query during
a binary search is likely in a different block of the sequence. As usual, update
operations are expensive for a sorted array.

Since these simple implementations are I/O inefficient, we should consider the
logarithmic-time internal-memory strategies that use balanced binary trees (for ex-
ample, AVL trees or red-black trees) or other search structures with logarithmic
average-case query and update times (for example, skip lists or splay trees). Typi-
cally, each node accessed for a query or update in one of these structures will be in
a different block. Thus, these methods all require O(log2 n) transfers in the worst
case to perform a query or update operation. But we can do better! We can perform
map queries and updates using only O(logB n) = O(logn/ logB) transfers.
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15.3.1 (a,b) Trees

To reduce the number of external-memory accesses when searching, we can repre-
sent our map using a multiway search tree (Section 11.5.1). This approach gives
rise to a generalization of the (2,4) tree data structure known as the (a,b) tree.

An (a,b) tree is a multiway search tree such that each node has between a and
b children and stores between a−1 and b−1 entries. The algorithms for searching,
inserting, and removing entries in an (a,b) tree are straightforward generalizations
of the corresponding ones for (2,4) trees. The advantage of generalizing (2,4) trees
to (a,b) trees is that a generalized class of trees provides a flexible search structure,
where the size of the nodes and the running time of the various map operations
depends on the parameters a and b. By setting the parameters a and b appropriately
with respect to the size of disk blocks, we can derive a data structure that achieves
good external-memory performance.

Definition of an (a,b) Tree

An (a,b) tree, where parameters a and b are integers such that 2 ≤ a ≤ (b + 1)/2,
is a multiway search tree T with the following additional restrictions:

Size Property: Each internal node has at least a children, unless it is the root, and
has at most b children.

Depth Property: All the external nodes have the same depth.

Proposition 15.1: The height of an (a,b) tree storing n entries is Ω(logn/ logb)
and O(logn/ loga).

Justification: Let T be an (a,b) tree storing n entries, and let h be the height of
T . We justify the proposition by establishing the following bounds on h:

1
logb

log(n+ 1) ≤ h ≤ 1
loga

log
n+ 1

2
+ 1.

By the size and depth properties, the number n′′ of external nodes of T is at least
2ah−1 and at most bh. By Proposition 11.7, n′′ = n+ 1. Thus,

2ah−1 ≤ n+ 1 ≤ bh.

Taking the logarithm in base 2 of each term, we get

(h−1) loga+ 1 ≤ log(n+ 1) ≤ h logb.

An algebraic manipulation of these inequalities completes the justification.
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Search and Update Operations

We recall that in a multiway search tree T , each node v of T holds a secondary
structure M(v), which is itself a map (Section 11.5.1). If T is an (a,b) tree, then
M(v) stores at most b entries. Let f (b) denote the time for performing a search
in a map, M(v). The search algorithm in an (a,b) tree is exactly like the one for
multiway search trees given in Section 11.5.1. Hence, searching in an (a,b) tree T
with n entries takes O( f (b)

log a logn) time. Note that if b is considered a constant (and
thus a is also), then the search time is O(logn).

The main application of (a,b) trees is for maps stored in external memory.
Namely, to minimize disk accesses, we select the parameters a and b so that each
tree node occupies a single disk block (so that f (b) = 1 if we wish to simply count
block transfers). Providing the right a and b values in this context gives rise to
a data structure known as the B-tree, which we will describe shortly. Before we
describe this structure, however, let us discuss how insertions and removals are
handled in (a,b) trees.

The insertion algorithm for an (a,b) tree is similar to that for a (2,4) tree.
An overflow occurs when an entry is inserted into a b-node w, which becomes an
illegal (b + 1)-node. (Recall that a node in a multiway tree is a d-node if it has d
children.) To remedy an overflow, we split node w by moving the median entry of w
into the parent of w and replacing w with a 
(b+1)/2�-node w′ and a �(b+1)/2�-
node w′′. We can now see the reason for requiring a ≤ (b + 1)/2 in the definition
of an (a,b) tree. Note that as a consequence of the split, we need to build the
secondary structures M(w′) and M(w′′).

Removing an entry from an (a,b) tree is similar to what was done for (2,4)
trees. An underflow occurs when a key is removed from an a-node w, distinct from
the root, which causes w to become an illegal (a−1)-node. To remedy an underflow,
we perform a transfer with a sibling of w that is not an a-node or we perform a
fusion of w with a sibling that is an a-node. The new node w′ resulting from the
fusion is a (2a−1)-node, which is another reason for requiring a ≤ (b+ 1)/2.

Table 15.1 shows the performance of a map realized with an (a,b) tree.

Operation Running Time

M[k] O
(

f (b)
log a logn

)
M[k] = v O

(
g(b)
log a logn

)
del M[k] O

(
g(b)
log a logn

)
Table 15.1: Time bounds for an n-entry map realized by an (a,b) tree T . We assume
the secondary structure of the nodes of T support search in f (b) time, and split and
fusion operations in g(b) time, for some functions f (b) and g(b), which can be
made to be O(1) when we are only counting disk transfers.
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15.3.2 B-Trees

A version of the (a,b) tree data structure, which is the best-known method for
maintaining a map in external memory, is called the “B-tree.” (See Figure 15.4.) A
B-tree of order d is an (a,b) tree with a = 
d/2� and b = d. Since we discussed
the standard map query and update methods for (a,b) trees above, we restrict our
discussion here to the I/O complexity of B-trees.

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

Figure 15.4: A B-tree of order 6.

An important property of B-trees is that we can choose d so that the d children
references and the d − 1 keys stored at a node can fit compactly into a single disk
block, implying that d is proportional to B. This choice allows us to assume that a
and b are also proportional to B in the analysis of the search and update operations
on (a,b) trees. Thus, f (b) and g(b) are both O(1), for each time we access a node
to perform a search or an update operation, we need only perform a single disk
transfer.

As we have already observed above, each search or update requires that we
examine at most O(1) nodes for each level of the tree. Therefore, any map search
or update operation on a B-tree requires only O(log�d/2� n), that is, O(logn/ logB),
disk transfers. For example, an insert operation proceeds down the B-tree to locate
the node in which to insert the new entry. If the node would overflow (to have d +1
children) because of this addition, then this node is split into two nodes that have
�(d + 1)/2� and 
(d + 1)/2� children, respectively. This process is then repeated
at the next level up, and will continue for at most O(logB n) levels.

Likewise, if a remove operation results in a node underflow (to have 
d/2�−1
children), then we move references from a sibling node with at least 
d/2�+ 1
children or we perform a fusion operation of this node with its sibling (and repeat
this computation at the parent). As with the insert operation, this will continue up
the B-tree for at most O(logB n) levels. The requirement that each internal node
have at least 
d/2� children implies that each disk block used to support a B-tree is
at least half full. Thus, we have the following:

Proposition 15.2: A B-tree with n entries has I/O complexity O(logB n) for search
or update operation, and uses O(n/B) blocks, where B is the size of a block.
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15.4 External-Memory Sorting

In addition to data structures, such as maps, that need to be implemented in external
memory, there are many algorithms that must also operate on input sets that are too
large to fit entirely into internal memory. In this case, the objective is to solve the
algorithmic problem using as few block transfers as possible. The most classic
domain for such external-memory algorithms is the sorting problem.

Multiway Merge-Sort

An efficient way to sort a set S of n objects in external memory amounts to a sim-
ple external-memory variation on the familiar merge-sort algorithm. The main idea
behind this variation is to merge many recursively sorted lists at a time, thereby
reducing the number of levels of recursion. Specifically, a high-level description
of this multiway merge-sort method is to divide S into d subsets S1, S2, . . ., Sd of
roughly equal size, recursively sort each subset Si, and then simultaneously merge
all d sorted lists into a sorted representation of S. If we can perform the merge pro-
cess using only O(n/B) disk transfers, then, for large enough values of n, the total
number of transfers performed by this algorithm satisfies the following recurrence:

t(n) = d · t(n/d)+ cn/B,

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can
perform a single block transfer at this point, getting all of the objects into internal
memory, and then sort the set with an efficient internal-memory algorithm. Thus,
the stopping criterion for t(n) is

t(n) = 1 if n/B ≤ 1.

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is

O((n/B) log(n/B)/ log d).

Thus, if we can choose d to be Θ(M/B), where M is the size of the internal memory,
then the worst-case number of block transfers performed by this multiway merge-
sort algorithm will be quite low. For reasons given in the next section, we choose

d = (M/B)−1.

The only aspect of this algorithm left to specify, then, is how to perform the d-way
merge using only O(n/B) block transfers.
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15.4.1 Multiway Merging

In a standard merge-sort (Section 12.2), the merge process combines two sorted
sequences into one by repeatedly taking the smaller of the items at the front of the
two respective lists. In a d-way merge, we repeatedly find the smallest among the
items at the front of the d sequences and place it as the next element of the merged
sequence. We continue until all elements are included.

In the context of an external-memory sorting algorithm, if main memory has
size M and each block has size B, we can store up to M/B blocks within main
memory at any given time. We specifically choose d = (M/B)− 1 so that we can
afford to keep one block from each input sequence in main memory at any given
time, and to have one additional block to use as a buffer for the merged sequence.
(See Figure 15.5.)

Q11

13 16 19 33

44 53 56

60

66 75

72 78 88

25 27 40 43

41 49 50 57

37 46 52 58

35 48 51 59

45 54 654230 39

12 24 26 34

17 18 29

7 8 10

Figure 15.5: A d-way merge with d = 5 and B = 4. Blocks that currently reside in
main memory are shaded.

We maintain the smallest unprocessed element from each input sequence in
main memory, requesting the next block from a sequence when the preceding block
has been exhausted. Similarly, we use one block of internal memory to buffer the
merged sequence, flushing that block to external memory when full. In this way,
the total number of transfers performed during a single d-way merge is O(n/B),
since we scan each block of list Si once, and we write out each block of the merged
list S′ once. In terms of computation time, choosing the smallest of d values can
trivially be performed using O(d) operations. If we are willing to devote O(d)
internal memory, we can maintain a priority queue identifying the smallest element
from each sequence, thereby performing each step of the merge in O(logd) time
by removing the minimum element and replacing it with the next element from the
same sequence. Hence, the internal time for the d-way merge is O(n logd).

Proposition 15.3: Given an array-based sequence S of n elements stored com-
pactly in external memory, we can sort S with O((n/B) log(n/B)/ log(M/B)) block
transfers and O(n logn) internal computations, where M is the size of the internal
memory and B is the size of a block.
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15.5 Exercises

For help with exercises, please visit the site, www.wiley.com/college/goodrich.

Reinforcement

R-15.1 Julia just bought a new computer that uses 64-bit integers to address mem-
ory cells. Argue why Julia will never in her life be able to upgrade the
main memory of her computer so that it is the maximum-size possible,
assuming that you have to have distinct atoms to represent different bits.

R-15.2 Describe, in detail, algorithms for adding an item to, or deleting an item
from, an (a,b) tree.

R-15.3 Suppose T is a multiway tree in which each internal node has at least five
and at most eight children. For what values of a and b is T a valid (a,b)
tree?

R-15.4 For what values of d is the tree T of the previous exercise an order-d
B-tree?

R-15.5 Consider an initially empty memory cache consisting of four pages. How
many page misses does the LRU algorithm incur on the following page
request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R-15.6 Consider an initially empty memory cache consisting of four pages. How
many page misses does the FIFO algorithm incur on the following page
request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R-15.7 Consider an initially empty memory cache consisting of four pages. What
is the maximum number of page misses that the random algorithm incurs
on the following page request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?
Show all of the random choices the algorithm made in this case.

R-15.8 Draw the result of inserting, into an initially empty order-7 B-tree, entries
with keys (4,40,23,50,11,34,62,78,66,22,90,59,25,72,64,77,39,12),
in this order.

Creativity

C-15.9 Describe an efficient external-memory algorithm for removing all the du-
plicate entries in an array list of size n.

C-15.10 Describe an external-memory data structure to implement the stack ADT
so that the total number of disk transfers needed to process a sequence of
k push and pop operations is O(k/B).
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C-15.11 Describe an external-memory data structure to implement the queue ADT
so that the total number of disk transfers needed to process a sequence of
k enqueue and dequeue operations is O(k/B).

C-15.12 Describe an external-memory version of the PositionalList ADT (Sec-
tion 7.4), with block size B, such that an iteration of a list of length n is
completed using O(n/B) transfers in the worst case, and all other methods
of the ADT require only O(1) transfers.

C-15.13 Change the rules that define red-black trees so that each red-black tree T
has a corresponding (4,8) tree, and vice versa.

C-15.14 Describe a modified version of the B-tree insertion algorithm so that each
time we create an overflow because of a split of a node w, we redistribute
keys among all of w’s siblings, so that each sibling holds roughly the same
number of keys (possibly cascading the split up to the parent of w). What
is the minimum fraction of each block that will always be filled using this
scheme?

C-15.15 Another possible external-memory map implementation is to use a skip
list, but to collect consecutive groups of O(B) nodes, in individual blocks,
on any level in the skip list. In particular, we define an order-d B-skip
list to be such a representation of a skip list structure, where each block
contains at least 
d/2� list nodes and at most d list nodes. Let us also
choose d in this case to be the maximum number of list nodes from a level
of a skip list that can fit into one block. Describe how we should modify
the skip-list insertion and removal algorithms for a B-skip list so that the
expected height of the structure is O(logn/ logB).

C-15.16 Describe how to use a B-tree to implement the partition (union-find) ADT
(from Section 14.7.3) so that the union and find operations each use at
most O(logn/ logB) disk transfers.

C-15.17 Suppose we are given a sequence S of n elements with integer keys such
that some elements in S are colored “blue” and some elements in S are
colored “red.” In addition, say that a red element e pairs with a blue
element f if they have the same key value. Describe an efficient external-
memory algorithm for finding all the red-blue pairs in S. How many disk
transfers does your algorithm perform?

C-15.18 Consider the page caching problem where the memory cache can hold m
pages, and we are given a sequence P of n requests taken from a pool
of m + 1 possible pages. Describe the optimal strategy for the offline
algorithm and show that it causes at most m + n/m page misses in total,
starting from an empty cache.

C-15.19 Describe an efficient external-memory algorithm that determines whether
an array of n integers contains a value occurring more than n/2 times.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter Notes 719

C-15.20 Consider the page caching strategy based on the least frequently used
(LFU) rule, where the page in the cache that has been accessed the least
often is the one that is evicted when a new page is requested. If there are
ties, LFU evicts the least frequently used page that has been in the cache
the longest. Show that there is a sequence P of n requests that causes LFU
to miss Ω(n) times for a cache of m pages, whereas the optimal algorithm
will miss only O(m) times.

C-15.21 Suppose that instead of having the node-search function f (d) = 1 in an
order-d B-tree T , we have f (d) = logd. What does the asymptotic run-
ning time of performing a search in T now become?

Projects

P-15.22 Write a Python class that simulates the best-fit, worst-fit, first-fit, and next-
fit algorithms for memory management. Determine experimentally which
method is the best under various sequences of memory requests.

P-15.23 Write a Python class that implements all the methods of the ordered map
ADT by means of an (a,b) tree, where a and b are integer constants passed
as parameters to a constructor.

P-15.24 Implement the B-tree data structure, assuming a block size of 1024 and
integer keys. Test the number of “disk transfers” needed to process a
sequence of map operations.

Chapter Notes

The reader interested in the study of the architecture of hierarchical memory systems is
referred to the book chapter by Burger et al. [21] or the book by Hennessy and Patter-
son [50]. The mark-sweep garbage collection method we describe is one of many different
algorithms for performing garbage collection. We encourage the reader interested in fur-
ther study of garbage collection to examine the book by Jones and Lins [56]. Knuth [62]
has very nice discussions about external-memory sorting and searching, and Ullman [97]
discusses external memory structures for database systems. The handbook by Gonnet and
Baeza-Yates [44] compares the performance of a number of different sorting algorithms,
many of which are external-memory algorithms. B-trees were invented by Bayer and Mc-
Creight [11] and Comer [28] provides a very nice overview of this data structure. The
books by Mehlhorn [76] and Samet [87] also have nice discussions about B-trees and their
variants. Aggarwal and Vitter [3] study the I/O complexity of sorting and related problems,
establishing upper and lower bounds. Goodrich et al. [46] study the I/O complexity of
several computational geometry problems. The reader interested in further study of I/O-
efficient algorithms is encouraged to examine the survey paper of Vitter [99].
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Appendix

A Character Strings in Python

A string is a sequence of characters that come from some alphabet. In Python, the
built-in str class represents strings based upon the Unicode international character
set, a 16-bit character encoding that covers most written languages. Unicode is
an extension of the 7-bit ASCII character set that includes the basic Latin alpha-
bet, numerals, and common symbols. Strings are particularly important in most
programming applications, as text is often used for input and output.

A basic introduction to the str class was provided in Section 1.2.3, including use
of string literals, such as hello , and the syntax str(obj) that is used to construct
a string representation of a typical object. Common operators that are supported
by strings, such as the use of + for concatenation, were further discussed in Sec-
tion 1.3. This appendix serves as a more detailed reference, describing convenient
behaviors that strings support for the processing of text. To organize our overview
of the str class behaviors, we group them into the following broad categories of
functionality.

Searching for Substrings

The operator syntax, pattern in s, can be used to determine if the given pattern
occurs as a substring of string s. Table A.1 describes several related methods that
determine the number of such occurrences, and the index at which the leftmost or
rightmost such occurrence begins. Each of the functions in this table accepts two
optional parameters, start and end, which are indices that effectively restrict the
search to the implicit slice s[start:end]. For example, the call s.find(pattern, 5)
restricts the search to s[5: ].

Calling Syntax Description
s.count(pattern) Return the number of non-overlapping occurrences of pattern
s.find(pattern) Return the index starting the leftmost occurrence of pattern; else -1
s.index(pattern) Similar to find, but raise ValueError if not found
s.rfind(pattern) Return the index starting the rightmost occurrence of pattern; else -1
s.rindex(pattern) Similar to rfind, but raise ValueError if not found

Table A.1: Methods that search for substrings.
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Constructing Related Strings

Strings in Python are immutable, so none of their methods modify an existing string
instance. However, many methods return a newly constructed string that is closely
related to an existing one. Table A.2 provides a summary of such methods, includ-
ing those that replace a given pattern with another, that vary the case of alphabetic
characters, that produce a fixed-width string with desired justification, and that pro-
duce a copy of a string with extraneous characters stripped from either end.

Calling Syntax Description
s.replace(old, new) Return a copy of s with all occurrences of old replaced by new
s.capitalize() Return a copy of s with its first character having uppercase
s.upper() Return a copy of s with all alphabetic characters in uppercase
s.lower() Return a copy of s with all alphabetic characters in lowercase
s.center(width) Return a copy of s, padded to width, centered among spaces
s.ljust(width) Return a copy of s, padded to width with trailing spaces
s.rjust(width) Return a copy of s, padded to width with leading spaces
s.zfill(width) Return a copy of s, padded to width with leading zeros
s.strip() Return a copy of s, with leading and trailing whitespace removed
s.lstrip() Return a copy of s, with leading whitespace removed
s.rstrip() Return a copy of s, with trailing whitespace removed

Table A.2: String methods that produce related strings.

Several of these methods accept optional parameters not detailed in the table.
For example, the replace method replaces all nonoverlapping occurrences of the old
pattern by default, but an optional parameter can limit the number of replacements
that are performed. The methods that center or justify a text use spaces as the
default fill character when padding, but an alternate fill character can be specified
as an optional parameter. Similarly, all variants of the strip methods remove leading
and trailing whitespace by default, but an optional string parameter designates the
choice of characters that should be removed from the ends.

Testing Boolean Conditions

Table A.3 includes methods that test for a Boolean property of a string, such as
whether it begins or ends with a pattern, or whether its characters qualify as be-
ing alphabetic, numeric, whitespace, etc. For the standard ASCII character set,
alphabetic characters are the uppercase A–Z, and lowercase a–z, numeric digits are
0–9, and whitespace includes the space character, tab character, newline, and car-
riage return. Conventions for what are considered alphabetic and numeric character
codes are extended to more general Unicode character sets.
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Calling Syntax Description
s.startswith(pattern) Return True if pattern is a prefix of string s
s.endswith(pattern) Return True if pattern is a suffix of string s
s.isspace() Return True if all characters of nonempty string are whitespace
s.isalpha() Return True if all characters of nonempty string are alphabetic
s.islower() Return True if there are one or more alphabetic characters,

all of which are lowercased
s.isupper() Return True if there are one or more alphabetic characters,

all of which are uppercased
s.isdigit() Return True if all characters of nonempty string are in 0–9
s.isdecimal() Return True if all characters of nonempty string represent

digits 0–9, including Unicode equivalents
s.isnumeric() Return True if all characters of nonempty string are numeric

Unicode characters (e.g., 0–9, equivalents, fraction characters)
s.isalnum() Return True if all characters of nonempty string are either

alphabetic or numeric (as per above definitions)

Table A.3: Methods that test Boolean properties of strings.

Splitting and Joining Strings

Table A.4 describes several important methods of Python’s string class, used to
compose a sequence of strings together using a delimiter to separate each pair, or
to take an existing string and determine a decomposition of that string based upon
existence of a given separating pattern.

Calling Syntax Description
sep.join(strings) Return the composition of the given sequence of strings,

inserting sep as delimiter between each pair
s.splitlines() Return a list of substrings of s, as delimited by newlines
s.split(sep, count) Return a list of substrings of s, as delimited by the first count

occurrences of sep. If count is not specified, split on all
occurrences. If sep is not specified, use whitespace as delimiter.

s.rsplit(sep, count) Similar to split, but using the rightmost occurrences of sep
s.partition(sep) Return (head, sep, tail) such that s = head + sep + tail,

using leftmost occurrence of sep, if any; else return (s, , )
s.rpartition(sep) Return (head, sep, tail) such that s = head + sep + tail,

using rightmost occurrence of sep, if any; else return ( , , s)

Table A.4: Methods for splitting and joining strings.

The join method is used to assemble a string from a series of pieces. An exam-
ple of its usage is and .join([ red , green , blue ]), which produces the
result red and green and blue . Note well that spaces were embedded in the
separator string. In contrast, the command and .join([ red , green , blue ])
produces the result redandgreenandblue .
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The other methods discussed in Table A.4 serve a dual purpose to join, as they
begin with a string and produce a sequence of substrings based upon a given de-
limiter. For example, the call red and green and blue .split( and ) pro-
duces the result [ red , green , blue ]. If no delimiter (or None) is specified,
split uses whitespace as a delimiter; thus, red and green and blue .split()
produces [ red , and , green , and , blue ].

String Formatting

The format method of the str class composes a string that includes one or more for-
matted arguments. The method is invoked with a syntax s.format(arg0, arg1, ...),
where s serves as a formatting string that expresses the desired result with one
or more placeholders in which the arguments will be substituted. As a simple
example, the expression {} had a little {} .format( Mary , lamb ) pro-
duces the result Mary had a little lamb . The pairs of curly braces in the
formatting string are the placeholders for fields that will be substituted into the
result. By default, the arguments sent to the function are substituted using posi-
tional order; hence, Mary was the first substitute and lamb the second. How-
ever, the substitution patterns may be explicitly numbered to alter the order, or
to use a single argument in more than one location. For example, the expres-
sion {0}, {0}, {0} your {1} .format( row , boat ) produces the result
row, row, row your boat .

All substitution patterns allow use of annotations to pad an argument to a par-
ticular width, using a choice of fill character and justification mode. An example of
such an annotation is {:-^20} .format( hello ). In this example, the hyphen
(-) serves as a fill character, the caret (^) designates a desire for the string to be
centered, and 20 is the desired width for the argument. This example results in
the string -------hello-------- . By default, space is used as a fill character
and an implied < character dictates left-justification; an explicit > character would
dictate right-justification.

There are additional formatting options for numeric types. A number will be
padded with zeros rather than spaces if its width description is prefaced with a
zero. For example, a date can be formatted in traditional “YYYY/MM/DD” form
as {}/{:02}/{:02} .format(year, month, day). Integers can be converted to
binary, octal, or hexadecimal by respectively adding the character b, o, or x as a
suffix to the annotation. The displayed precision of a floating-point number is spec-
ified with a decimal point and the subsequent number of desired digits. For exam-
ple, the expression {:.3}.format(2/3) produces the string 0.667 , rounded
to three digits after the decimal point. A programmer can explicitly designate use
of fixed-point representation (e.g., 0.667 ) by adding the character f as a suffix,
or scientific notation (e.g., 6.667e-01 ) by adding the character e as a suffix.
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B Useful Mathematical Facts

In this appendix we give several useful mathematical facts. We begin with some
combinatorial definitions and facts.

Logarithms and Exponents

The logarithm function is defined as

logb a = c if a = bc.

The following identities hold for logarithms and exponents:

1. logb ac = logb a+ logb c
2. logb a/c = logb a− logb c
3. logb ac = c logb a
4. logb a = (logc a)/ logc b
5. blogc a = alogc b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c

In addition, we have the following:

Proposition B.1: If a > 0, b > 0, and c > a+ b, then

loga+ logb < 2logc−2.

Justification: It is enough to show that ab < c2/4. We can write

ab =
a2 + 2ab+ b2 − a2 + 2ab−b2

4

=
(a+ b)2 − (a−b)2

4
≤ (a+ b)2

4
<

c2

4
.

The natural logarithm function lnx = loge x, where e = 2.71828 . . ., is the value
of the following progression:

e = 1+
1
1!

+
1
2!

+
1
3!

+ · · · .
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In addition,

ex = 1+
x
1!

+
x2

2!
+

x3

3!
+ · · ·

ln(1+ x) = x− x2

2!
+

x3

3!
− x4

4!
+ · · · .

There are a number of useful inequalities relating to these functions (which
derive from these definitions).
Proposition B.2: If x > −1,

x
1+ x

≤ ln(1+ x) ≤ x.

Proposition B.3: For 0 ≤ x < 1,

1+ x ≤ ex ≤ 1
1− x

.

Proposition B.4: For any two positive real numbers x and n,(
1+

x
n

)n ≤ ex ≤
(

1+
x
n

)n+x/2
.

Integer Functions and Relations

The “floor” and “ceiling” functions are defined respectively as follows:
1. �x� = the largest integer less than or equal to x.
2. 
x� = the smallest integer greater than or equal to x.
The modulo operator is defined for integers a ≥ 0 and b > 0 as

a mod b = a−
⌊a

b

⌋
b.

The factorial function is defined as

n! = 1 ·2 ·3 · · · · · (n−1)n.

The binomial coefficient is (
n
k

)
=

n!
k!(n− k)!

,

which is equal to the number of different combinations one can define by choosing
k different items from a collection of n items (where the order does not matter).
The name “binomial coefficient” derives from the binomial expansion:

(a+ b)n =
n

∑
k=0

(
n
k

)
akbn−k.

We also have the following relationships.
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Proposition B.5: If 0 ≤ k ≤ n, then(n
k

)k
≤

(
n
k

)
≤ nk

k!
.

Proposition B.6 (Stirling’s Approximation):

n! =
√

2πn
(n

e

)n
(

1+
1

12n
+ ε(n)

)
,

where ε(n) is O(1/n2).

The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1,
and Fn = Fn−1 + Fn−2 for n ≥ 2.

Proposition B.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn),
where g = (1+

√
5)/2 is the so-called golden ratio.

Summations

There are a number of useful facts about summations.

Proposition B.8: Factoring summations:

n

∑
i=1

a f (i) = a
n

∑
i=1

f (i),

provided a does not depend upon i.

Proposition B.9: Reversing the order:

n

∑
i=1

m

∑
j=1

f (i, j) =
m

∑
j=1

n

∑
i=1

f (i, j).

One special form of is a telescoping sum:

n

∑
i=1

( f (i)− f (i−1)) = f (n)− f (0),

which arises often in the amortized analysis of a data structure or algorithm.
The following are some other facts about summations that arise often in the

analysis of data structures and algorithms.

Proposition B.10: ∑
n
i=1 i = n(n+ 1)/2.

Proposition B.11: ∑
n
i=1 i2 = n(n+ 1)(2n+ 1)/6.
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Proposition B.12: If k ≥ 1 is an integer constant, then

n

∑
i=1

ik is Θ(nk+1).

Another common summation is the geometric sum, ∑
n
i=0 ai, for any fixed real

number 0 < a �= 1.

Proposition B.13:
n

∑
i=0

ai =
an+1 −1

a−1
,

for any real number 0 < a �= 1.

Proposition B.14:
∞

∑
i=0

ai =
1

1−a

for any real number 0 < a < 1.

There is also a combination of the two common forms, called the linear expo-
nential summation, which has the following expansion:

Proposition B.15: For 0 < a �= 1, and n ≥ 2,

n

∑
i=1

iai =
a− (n+ 1)a(n+1) + na(n+2)

(1−a)2 .

The nth Harmonic number Hn is defined as

Hn =
n

∑
i=1

1
i
.

Proposition B.16: If Hn is the nth harmonic number, then Hn is lnn+ Θ(1).

Basic Probability

We review some basic facts from probability theory. The most basic is that any
statement about a probability is defined upon a sample space S, which is defined
as the set of all possible outcomes from some experiment. We leave the terms
“outcomes” and “experiment” undefined in any formal sense.

Example B.17: Consider an experiment that consists of the outcome from flip-
ping a coin five times. This sample space has 25 different outcomes, one for each
different ordering of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.
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Example B.18: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being a sequence
of i tails followed by a single flip that comes up heads, for i = 1,2,3, . . ..

A probability space is a sample space S together with a probability function
Pr that maps subsets of S to real numbers in the interval [0,1]. It captures math-
ematically the notion of the probability of certain “events” occurring. Formally,
each subset A of S is called an event, and the probability function Pr is assumed to
possess the following basic properties with respect to events defined from S:

1. Pr(∅) = 0.
2. Pr(S) = 1.
3. 0 ≤ Pr(A) ≤ 1, for any A ⊆ S.
4. If A,B ⊆ S and A∩B = ∅, then Pr(A∪B) = Pr(A)+ Pr(B).
Two events A and B are independent if

Pr(A∩B) = Pr(A) ·Pr(B).

A collection of events {A1,A2, . . . ,An} is mutually independent if

Pr(Ai1 ∩Ai2 ∩ ·· ·∩Aik) = Pr(Ai1)Pr(Ai2) · · ·Pr(Aik).

for any subset {Ai1 ,Ai2 , . . . ,Aik}.
The conditional probability that an event A occurs, given an event B, is denoted

as Pr(A|B), and is defined as the ratio

Pr(A∩B)

Pr(B)
,

assuming that Pr(B) > 0.
An elegant way for dealing with events is in terms of random variables. Intu-

itively, random variables are variables whose values depend upon the outcome of
some experiment. Formally, a random variable is a function X that maps outcomes
from some sample space S to real numbers. An indicator random variable is a
random variable that maps outcomes to the set {0,1}. Often in data structure and
algorithm analysis we use a random variable X to characterize the running time of
a randomized algorithm. In this case, the sample space S is defined by all possible
outcomes of the random sources used in the algorithm.

We are most interested in the typical, average, or “expected” value of such a
random variable. The expected value of a random variable X is defined as

E(X) = ∑
x

xPr(X = x),

where the summation is defined over the range of X (which in this case is assumed
to be discrete).
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Proposition B.19 (The Linearity of Expectation): Let X and Y be two ran-
dom variables and let c be a number. Then

E(X +Y ) = E(X)+ E(Y) and E(cX) = cE(X).

Example B.20: Let X be a random variable that assigns the outcome of the roll
of two fair dice to the sum of the number of dots showing. Then E(X) = 7.

Justification: To justify this claim, let X1 and X2 be random variables corre-
sponding to the number of dots on each die. Thus, X1 = X2 (i.e., they are two
instances of the same function) and E(X) = E(X1 + X2) = E(X1)+ E(X2). Each
outcome of the roll of a fair die occurs with probability 1/6. Thus,

E(Xi) =
1
6

+
2
6

+
3
6

+
4
6

+
5
6

+
6
6

=
7
2
,

for i = 1,2. Therefore, E(X) = 7.

Two random variables X and Y are independent if

Pr(X = x|Y = y) = Pr(X = x),

for all real numbers x and y.

Proposition B.21: If two random variables X and Y are independent, then

E(XY ) = E(X)E(Y ).

Example B.22: Let X be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E(X) = 49/4.

Justification: Let X1 and X2 be random variables denoting the number of dots
on each die. The variables X1 and X2 are clearly independent; hence

E(X) = E(X1X2) = E(X1)E(X2) = (7/2)2 = 49/4.

The following bound and corollaries that follow from it are known as Chernoff
bounds.

Proposition B.23: Let X be the sum of a finite number of independent 0/1 ran-
dom variables and let μ > 0 be the expected value of X . Then, for δ > 0,

Pr(X > (1+ δ)μ) <

[
eδ

(1+ δ)(1+δ)

]μ

.
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Useful Mathematical Techniques

To compare the growth rates of different functions, it is sometimes helpful to apply
the following rule.

Proposition B.24 (L’Hôpital’s Rule): If we have limn→∞ f (n) = +∞ and we
have limn→∞ g(n) = +∞, then limn→∞ f (n)/g(n) = limn→∞ f ′(n)/g′(n), where
f ′(n) and g′(n) respectively denote the derivatives of f (n) and g(n).

In deriving an upper or lower bound for a summation, it is often useful to split
a summation as follows:

n

∑
i=1

f (i) =
j

∑
i=1

f (i) +
n

∑
i= j+1

f (i).

Another useful technique is to bound a sum by an integral. If f is a nonde-
creasing function, then, assuming the following terms are defined,

Z b

a−1
f (x)dx ≤

b

∑
i=a

f (i) ≤
Z b+1

a
f (x)dx.

There is a general form of recurrence relation that arises in the analysis of
divide-and-conquer algorithms:

T (n) = aT (n/b)+ f (n),

for constants a ≥ 1 and b > 1.

Proposition B.25: Let T (n) be defined as above. Then
1. If f (n) is O(nlogb a−ε), for some constant ε > 0, then T (n) is Θ(nlogb a).
2. If f (n) is Θ(nlogb a logk n), for a fixed nonnegative integer k ≥ 0, then T (n) is

Θ(nlogb a logk+1 n).
3. If f (n) is Ω(nlogb a+ε), for some constant ε > 0, and if a f (n/b) ≤ c f (n), then

T (n) is Θ( f (n)).

This proposition is known as the master method for characterizing divide-and-
conquer recurrence relations asymptotically.
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[55] V. Jarńık, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke

Spolecnosti, vol. 6, pp. 57–63, 1930. (in Czech).
[56] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic Dynamic Mem-

ory Management. John Wiley and Sons, 1996.
[57] D. R. Karger, P. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find

minimum spanning trees,” Journal of the ACM, vol. 42, pp. 321–328, 1995.
[58] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory ma-

chines,” in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.),
pp. 869–941, Amsterdam: Elsevier/The MIT Press, 1990.

[59] P. Kirschenhofer and H. Prodinger, “The path length of random skip lists,” Acta
Informatica, vol. 31, pp. 775–792, 1994.
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join function of str class, 723
Jones, Richard, 719

www.it-ebooks.info

http://www.it-ebooks.info/


Index 743

Karger, David, 696
Karp, Richard, 361
KeyboardInterrupt, 33, 83, 303
KeyError, 33, 34, 83, 303, 403, 404, 422,

460
keyword parameter, 27
Klein, Philip, 696
Kleinberg, Jon, 580
Knuth, Donald, 147, 227, 298, 361, 400,

458, 535, 580, 618, 696, 719
Knuth-Morris-Pratt algorithm, 590–593
Kosaraju, S. Rao, 696
Kruskal’s algorithm, 676–684
Kruskal, Joseph, 696
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