


In this book Christian Gourieroux and Alain Monfort provide an
up-to-date and comprehensive analysis of modern time series
econometrics. They have succeeded in synthesising in an organised and
integrated way a broad and diverse literature. While the book does not
assume a deep knowledge of economics, one of its most attractive
features is the close attention it pays to economic models and
phenomena throughout. The coverage represents a major reference tool
for graduate students, researchers and applied economists.

Section one, Traditional methods, provides a detailed treatment of
classical seasonal adjustment or smoothing methods, giving a central
role to empirical analysis, a subject which is often ignored in textbooks.
Section two, Probabilistic and statistical properties of stationary
processes, gives a thorough coverage of various mathematical tools (in
particular Box-Jenkins methodology). Section three, Times series
econometrics: stationary and nonstationary models, is the heart of the
book. It is devoted to a range of important topics including causality,
exogeneity shocks, multipliers, lag structure, structural forms, error
correction models, cointegration, and fractionally integrated models.
The final section, State space models, describes the main contribution
of filtering and smoothing theory to time series econometric problems.
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List of Adopted Notations

xt the value of a variable at time t, or the variable itself.
{xt} a sequence or a stochastic process indexed by t.
y a (column) vector.
A a matrix.
A' a transposed matrix.
det A the determinant of a matrix.
g(A) the rank of matrix A.
tr (A) the trace of matrix A.
A(L) a matrix polynomial in the lag operator L.
degree (B) the degree of a (matrix) polynomial.
-^ convergence in probability.
—> convergence in distribution.
—>' almost sure convergence.

plimT_>_|_oo probability limit.
E expectation operator,
var variance operator,
avar asymptotic variance operator,
cov covariance operator,
acov asymptotic covariance operator.
ft171 the set of real numbers in the m-dimensional space.
W the n-dimensional Brownian motion.
1 the indicator function.



Preface

The analysis of the evolution of one or more time varying phenomena has
long been the domain of interest of experts in various fields. Probability
theorists have built an impressive mathematical construction, the theory
of stochastic processes, which allows one to study in great detail the
properties of a set of random variables indexed by time. Statistical
theorists have suggested a number of approaches to the problems of
estimation, of hypothesis testing, of forecasting, of filtering, of smoothing
for the stochastic processes. Empirical analysts in many fields (physics,
engineering, economics...) have developed suitable techniques to solve
their own problems, thus creating a wide array of analytical tools which
are not always rigorously linked to the theoretical literature.

Confronted with this huge variety of suggestions in time series anal-
ysis, the interested students and researchers find themselves somewhat
at a loss. The goal of this book is to help them in their training. In
order for this help to be effective it was important to avoid too much
abstraction or alternatively a mere support to practitioners without any
theoretical content. We have tried our best to navigate between these
two courses, granting ourselves some freedom from mathematical for-
malism when it became too cumbersome, but also highlighting the weak
theoretical support of certain practices.

Mostly, we have tried to present a variety of aspects of time-series
analysis in a synthetic manner: statistical problems, such as seasonal
adjustment and forecasting; econometric problems, such as causality,
exogeneity, cointegration, and expectations; and some engineering
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problems, such as Kalman filtering and smoothing. In deciding on the
boundaries of the exposition, we were obviously forced to cut out many
aspects of time-series analysis, mainly those related to nonlinearities.

The book is made of four main parts:

Part I: Traditional Methods — chapters 2 to 4 In these first chap-
ters we describe a number of techniques, which have been very important
from an historical point of view, and which still play a central role in
empirical analysis: seasonal adjustment by linear regression methods
(chapter 2), seasonal adjustment by moving averages (chapter 3), and
exponential smoothing methods (chapter 4). It was important for us to
recall these classical methods in a detailed fashion, since they are sel-
dom presented in the most popular time-series books, even if they are
included in the econometric packages available to the practitioners.

Part II: Probabilistic and Statistical Properties of Stationary
Processes - chapters 5 to 9 This part is devoted to a self-contained
presentation of the main properties of the stationary processes both from
a probabilistic and a statistical point of view, without making any spe-
cific reference to particular fields of application. Chapter 5 contains an
analysis of the properties of the univariate stationary processes; chapter
6 analyzes aspects related to prediction based on ARMA and ARIMA
processes; extension to the multivariate processes is included in chapter
7, whereas their various representations are suggested in chapter 8. Fi-
nally, chapter 9 describes estimation and testing for the univariate and
multivariate stationary processes.

Part III: Time-series Econometrics: Stationary and Nonstatio-
nary Models — chapters 10 to 14 This part is more closely related
to the concepts, models, and methods employed in econometrics. Thus,
the notions of causality, exogeneity, shock, and multiplier are analyzed in
chapter 10, while the ideas behind cointegration, error correction models,
and fractional processes are presented in chapter 11. Chapter 12 is
devoted to the role and treatment of expectations in econometrics, in
particular rational expectations: the cases of expectations of current and
future variables, of multiple expectations, and of multivariate models
are analyzed. In chapter 13 the attention is focussed on the problem of
specification search, where a general to specific method is proposed when
testing for causality, predeterminedness, exogeneity, structural form, lag
structure, rational expectations, etc. Finally, chapter 14 introduces the
statistical methods suitable for nonstationary models: methods based
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on the empirical moments, unit root tests, regression with nonstationary
regressors, cointegration tests (limited- and full-information methods),
and determination of the integration order.

Part IV: State-space Models In this last part we look at the con-
tributions of filtering theory to time-series econometrics. Chapter 15
contains Kalman filtering and smoothing, and chapter 16 suggests a
number of applications: linear models, ARM A and ARIMA models, un-
observed component models, missing data, rational expectation models
and learning.

We are very grateful to Martine Germond, who graciously took care
of typing the French edition. We would like to extend a special thanks
to Giampiero M. Gallo, who not only translated the French edition into
English, but also suggested some improvements in the presentation of
the topics.

Finally, we would like to gratefully acknowledge the financial support
for the publication of the French edition of this book and for its trans-
lation into English received, respectively, from the French Ministry of
Research and Technology, and from the Ministry of Culture.

C. Gourieroux

A. Monfort





Introduction

1.1 Definition of a Time Series

The goal of empirical economic analysis is to highlight economic mech-
anisms and decision making: a number of observations on the relevant
variables are thus required to study the existing links among them. The
impossibility of controlled experiments in most economic fields has, as
a consequence, that these observations can be obtained only through
surveys or resorting to existing databases. These data may be avail-
able, for example, once a year or once a quarter and thus come from
repeated observations, corresponding to different dates. The sequence
of observations on one variable (yt,t E T) is called time series.

The observation dates are usually equally spaced: this is the case with
monthly, quarterly series, etc. One year contains an integer number s
of intervals separating two subsequent observation dates: s = 12 for a
monthly series, s = 4 for a quarterly series, and so on. The equally
spaced dates are henceforth indexed by integers t — 1,... ,T where T
indicates the number of observations.

Note that in other domains different from economics, certain charac-
teristics (temperature, humidity, etc.) are observed continuously in time
by means of mechanical instruments. The index t is then valid in an in-
terval of 1?. The latter case is very different from the previous, since
an infinity of observations is available. The closest economics can get to
continuous data are the tick-by-tick observations recorded for price or
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Table 1.1 French Monthly Consumer Price Index (July 1970 = 100)

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

1970 97.9 98.2 98.5 99.0 99.4 99.8 100.0 100.4 100.8 101.2 101.6 101.9
1971 102.5 103.0 103.4 104.0 104.7 105.1 105.6 106.0 106.5 107.1 107.5 108.0
1972 108.3 108.9 109.4 109.8 110.4 111.0 111.9 112.5 113.2 114.2 114.9 115.5
1973 115.5 115.8 116.4 117.2 118.3 119.2 120.2 121.0 122.1 123.4 124.5 125.3
1974 127.4 129.1 130.6 132.7 134.3 135.8 137.5 138.6 140.1 141.8 143.1 144.3
1975 145.9 147.0 148.2 149.5 150.6 151.7 152.8 153.8 155.1 156.3 157.3 158.8
1976 159.9 161.0 162.4 163.8 164.9 165.6 167.2 168.4 200.2 171.8 173.2 173.8
1977 174.3 175.5 177.1 179.4 181.1 182.5 184.1 185.1 186.7 188.2 188.9 189.4
1978 190.3 191.7 193.4 195.5 197.4 198.9 201.5 202.5 203.8 205.7 206.8 207.8

quantities exchanged on the financial markets. The peculiarities linked
to continuous data will not be studied in what follows.

The observations can correspond to flows or stocks. The monthly oil
consumption is a flow; each observation corresponds to a period. In
order for these observations to be directly comparable, we would need
the time periods to be the same. In the case of monthly consumption,
this time period is 28, 29, 30, or 31 days, and it may be necessary to
correct the raw series. A simple way of doing this consists in calculating
the average daily consumption for each month. In the case of a stock, the
observations correspond to specific dates. The daily value of a US dollar
in terms of French francs at the opening of the foreign exchange market
is an example of a stock. Note that a flow can always be considered as
the difference between two stocks.

1.2 Examples of Time Series
In tables 1.1 and 1.2 we give the values of two time series which will
be used in what follows as examples to illustrate the different methods
analyzed. The first refers to the monthly French Consumer Price Index
(July 1970=100) the second to the monthly French National Railroad
Company passenger traffic.

1.3 Graphical Representation

The series are usually presented in a Cartesian plan with the observation
values on the ?/-axis and the corresponding dates on the x-axis. The
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Table 1.2 Passenger Traffic

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

1750
1710
1670
1810
1850
1834
1798
1854
2008
2084
2081
2223
2481
2667
2706
2820
3313
2848

1560
1600
1640
1640
1590
1792
1850
1823
1835
2034
2112
2248
2428
2668
2586
2857
2644
2913

1820
1800
1770
1860
1880
1860
1981
2005
2120
2152
2279
2421
2596
2804
2796
3306
2872
3248

2090
2120
2190
1990
2210
2138
2085
2418
2304
2522
2661
2710
2923
2806
2978
3333
3267
3250

1910
2100
2020
2110
2110
2115
2120
2219
2264
2318
2281
2505
2795
2976
3053
3141
3391
3375

2410
2460
2610
2500
2480
2485
2491
2722
2175
2684
2929
3021
3287
3430
3463
3512
3682
3640

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

3140 2850 2090 1850 1630 2420
3200 2960 2190 1870 1770 2270
3190 2860 2140 1870 1760 2360
3030 2900 2160 1940 1750 2330
2880 2670 2100 1920 1670 2520
2581 2639 2038 1936 1784 2391
2834 2725 1932 2085 1856 2553
2912 2771 2153 2136 1910 2537
2928 2738 2178 2137 2009 2546
2971 2759 2267 2152 1978 2723
3089 2803 2296 2210 2135 2862
3327 3044 2607 2525 2160 2876
3598 3118 2875 2754 2588 3266
3705 3053 2764 2802 2707 3307
3649 3095 2839 2966 2863 3375
3744 3179 2984 2950 2896 3611
3937 3284 2849 3085 3043 3541
3771 3259 3206 3269 3181 4008

Data for the SNCF Passenger Traffic (French National Railroad Company)

in 2nd class, expressed in millions of passengers per kilometer. The monthly

observations refer to the period 1963-80.

evolution of the monthly consumer price index between the months of
January 1970 and December 1978 (table 1.1) is given in figure 1.1.

The chosen scale for time (a relatively small unit such as a month)
allows us to show the medium-term evolution of the series. In this case,
it seems to present a break-point at the end of 1973, on the occasion of
the first abrupt increase in oil prices.

We define the growth rate of the index between the dates t — 1 and t
as

cr h - It-i
olt = —z ,

h-i

where It is the value of the index in month t.
The numerical values of this growth can be derived from the values

appearing in table 1.1.
This new series shows more changes in variation than the initial series

It; an abrupt increase in the index is often compensated for by a weaker
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200

100

1970 1973 1979

Figure 1.1 Monthly Consumer Price Index

Table 1.3 Monthly Growth Rates of the Consumer Price Index
between February 1970 and December 1978 (percent)

1970
1971
1972
1973
1974
1975
1976
1977
1978

Jan.

0.59
0.28
0.00
1.68
1.11
0.69
0.29
0.48

Feb.

0.31
0.49
0.55
0.26
1.33
0.75
0.69
0.69
0.74

Mar.

0.31
0.39
0.46
0.52
1.16
0.82
0.87
0.91
0.89

Apr.

0.51
0.58
0.37
0.69
1.61
0.88
0.86
1.30
1.09

May

0.40
0.67
0.55
0.94
1.21
0.74
0.67
0.95
0.97

June

0.40
0.38
0.54
0.76
1.12
0.73
0.42
0.77
0.76

July

0.20
0.48
0.81
0.84
1.25
0.73
0.97
0.88
1.31

Aug.

0.40
0.38
0.54
0.67
0.80
0.65
0.72
0.54
0.50

Sep.

0.40
0.47
0.62
0.91
1.08
0.85
1.07
0.86
0.64

Oct.

0.40
0.56
0.88
1.06
1.21
0.77
0.94
0.80
0.93

Nov.

0.40
0.37
0.61
0.89
0.92
0.64
0.81
0.37
0.53

Dec.

0.30
0.47
0.52
0.64
0.84
0.95
0.35
0.26
0.48

growth one or two months later. This is an explanation for the various
"peaks" and "troughs" displayed in figure 1.2.

Once we have eliminated the "peaks" and the "troughs" in the very
short period, we can see a medium-term evolution including four main
phases: the first, until October 1973 corresponds to an almost fixed
growth rate close to 0.4% monthly. This growth has increased rapidly
until mid 1974, then showing a decrease, and since 1976 has stabilized
at a level close to 0.7%, higher than the one in the initial period.

The almost stability of 6It over the period 1970-72 can be highlighted
by showing the series It in semi-logarithmic scale (with lnlt on the
2/-axis, and t on the x-axis). In fact, the series corresponds to the ap-
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0
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Figure 1.2 Monthly Growth Rates in the Consumer Price Index

1.6

0
1970 1979

Figure 1.3 Medium-Term Evolution in the Growth Rate of the Price Index

proximated relationship

It ~ It-i

It-i

where So is a constant and therefore approximately satisfies the relation-
ship It = Ji(l + 6o)t~1. Taking the logarithm of this relationship, we
can see that the medium-term evolution for the period 1970-72 will be
almost linear on a semi-logarithmic scale.

The previous series presents other regularities: in fact the growth rate
of the index for August is always less than for July and for September.
This peculiarity is clearly explained by the "slumber" of the economy
during summer holidays. The effect of this month on the value of the
index (seasonal phenomenon) is however less pronounced on the price
index series than on other series (e.g., the series in figure 1.5).
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Figure 1.4 Price Index Growth from January 1972 to December 1974

30

20
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Figure 1.5 Passenger Traffic from January 1963 to December 1966

If we want to highlight this periodicity graphically, we can easily com-
pare the data for one month for different years. This can be done by
showing on the same graph the data for each year, having time (months)
on the x-axis.

This graphical representation highlights the similarities in the shape
within the year. In fact, between May and December, the three years
show peaks for the same months.

Similar remarks can be made for the other series. The graph for
the data relative to the SNCF (French National Railroad Company)
traffic (figure 1.5) shows a medium-term evolution approximately con-
stant and a definitely stronger periodicity of 12 than the previous se-
ries.
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1.4 Some Problems in Time Series

1.4.1 Forecasting

The problem of forecasting consists in evaluating the future values yr+h
h > 1 of a variable starting from the observation of its past values y\,
V2,--,yT> The forecast denoted yr{h) or ryr+h derived from these
observations will generally be different from the value that the variable
will take at time T + h. For this reason we often prefer to suggest
a forecast interval [y^(/i), y^(h)]^ likely to contain the unknown value
VT+h-

The quality of the forecast will depend upon the way in which the
series evolves. The more the series is a "regular" function of time, the
easier it will be to forecast it. For example, the forecasts will be good for
most economic variables in growth periods, when the general behavior
of the series is linear or exponential. On the other hand, the various
forecast methods do not allow to forecast a change in the evolution due
to a modification of the economic structure, when nothing in its past
suggested it could happen.

The quality of the forecast depends on the horizon h and is generally
better when h is small.

The methods used for forecasting can be used to compute the past
value of a variable as well. We use then the term backcast instead of fore-
cast. This can be useful, for example, in the case of missing data and can
therefore allow the reconstruction of a time series. These backcast val-
ues can also be used to measure the effects of an accidental phenomenon
(strike, exceptional weather conditions). The backcast gives an idea of
the value which the variable could have taken had that phenomenon not
occurred.

1.4.2 Trend Removal

During a growth period, many economic variables have similar medium-
term evolutions (trend). These variables are therefore strongly correlated
with each other, even if this does not translate into the existence of an
explanatory link among these variables. To see whether such links exist,
it may be useful to remove this trend.

1.4.3 Seasonal Adjustment

When we introduced the series for the SNCF traffic we remarked that
the values observed for a certain month were generally on the same side
with respect to the annual mean: for example, the values for August
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Figure 1.6 GNP Growth Rate - Spain

are always below it. We define the series obtained after having removed
the seasonal effect from the initial series seasonally adjusted series or
de-seasonalized series, noted as ysA-

This series, adjusted for the seasonal variations, is of great interest for
the interpretation of time series. Let us assume, for example, that an
economic policy decision is made in July to reduce the price increase.
Does the observation of a lower growth rate in the price index in August
allow one to judge the effect of that measure? There is the danger of
too quick a conclusion: observation of the raw series shows that a de-
crease in the growth rate was present every year, therefore the question
becomes whether this decrease was stronger or weaker than usual. Ob-
servation of the values in the seasonally adjusted series, where seasonal
variations have been eliminated, allows one to answer this question di-
rectly. Note also that seasonal adjustment may be needed before looking
for explanatory links among variables, for the same reasons presented
above.

1.4.4 Detection of a Structural Break

Following changes in economic policy or deep changes in the structural
relations among variables, the series can show breaks, both in the level
or in the slope. We present here two series. The first (figure 1.6 - growth
rate of Spanish GNP) shows a sudden fall in its level in correspondence
with the several oil crises.

The second (figure 1.7) gives the evolution of the growth rate of the
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Figure 1.7 British Pound/US Dollar Exchange Rate

British Pound/US Dollar exchange rate. We can observe various breaks
in the slope.

It is clearly important to try and forecast these breakpoints, or, if this
is impossible, to detect their existence as early as possible in the analysis.

1.4.5 Causality — Time Lags

The simultaneous observation of several variables in time can allow one
to address some questions about causality. For the period 1975-79, are
the oil prices formed on the basis of the observed prices for gold? Or,
rather, is it the latter which follows the former? Once the direction of
causality is determined, if possible, we need to know with what lag and
during which period the explanatory variable influenced the explained
variable (assessment of the time lags).

1.4.6 Distinction between Short and Long Run

It takes more or less time for the influences among variables to exert their
effects and these influences are persistent to a greater or lesser extent.
One of the important problems in macroeconomics is to separate the
persistent relationships (defined as long term) from those which are not.
The latter are often interpreted in terms of adjustment to the long-run
relationship.

1.4.7 Study of Agents' Expectations

Time-series analysis also allows one to study how agents react with re-
spect to time. In fact, we often have data both on the values taken by
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Actual

Expected

1971 1962

Figure 1.8 Machinery Orders: Actual and Expected

certain economic variables and on the forecasts of these values formu-
lated by company managers three months before (figure 1.8).

We can ask ourselves if they predict the level of the variable correctly,
or its evolution. We can try to understand how they implicitly form
their expectations, and so on.

1.5 Properties of the Methods Used

Various methods have been devised to solve the problems previously
mentioned. The optimal character of each of these methods depends on
the problem at hand, for example, seasonal adjustment or forecasting,
but at the same time on the available series. There is no single method
which can be used to treat all time-series data in a satisfactory way.
To illustrate this statement, we can consider three criteria proposed by
Lovell (1963) which an acceptable seasonal adjustment method needs to
satisfy:

(i) XSA + VSA = (x + y)SA, Vx,y,

(ii) XXSA = (\X)SA, V x, V A e R+,

(Hi) XSAVSA = (xy)sA, V x,y.
The first of these properties will be very important in practice, since it
will allow to obtain the aggregate seasonally adjusted series from the
seasonally adjusted primary series. By the same token, it will allow
to obtain the seasonally adjusted series of a stock starting from the
associated flow and conversely.

The second property expresses the independence of the seasonal ad-
justment method with respect to a change in units: a series for oil
consumption expressed in cubic meters or in barrels should lead to the
same result.

The third property will allow to obtain, for example, the unemploy-
ment rate taking the ratio of the seasonally adjusted number of unem-
ployed to the seasonally adjusted work force.
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Although they may sound trivial, these three properties nevertheless
translate into methods which cannot be used in practice. The first two
properties imply the linearity of the seasonal adjustment process. That
is, there exist some real numbers a^r such that

If we write the third property

at,Txr I f ^T atiTyT 1 = ] T at,TxT yT Vx T ,y T ,
/ \ T / T

we conclude that there exists a value to such that

V r ^ t0 at,T = 0

and
JO

at,t0 = \ 1

which implies that the seasonally adjusted value will be equal to either
a lagged value or to zero, not such an appealing result!

In spite of the fact that each method will not possess good properties
for all existing series, it will always be possible to find acceptable meth-
ods for each series studied. Generally, the usual methods are derived
from a model describing the time series. They will possess certain "op-
timality" properties for the series responding to the model. The farther
the series is from the assumed model, the worse the adopted method
will be, and the more the results will be affected by serious biases.

1.6 Time-series Modeling

The solution for the various problems mentioned rests on some models
describing how the series evolves. It is useful to distinguish among three
types of models: adjustment models, autopredictive models, and explana-
tory models. We now present these three types of models briefly, and,
in due course, we will point out how they will be used in the rest of the
book.

1.6.1 Adjustment Models

The Principle The observation of real data generally shows several
regularities. If, for example, we consider the series for passenger traffic
between January 1963 and December 1966 (figure 1.5), we can observe
that the medium-term movement (trend) is approximately constant. If
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we remove this trend from the initial series we obtain an approximately
periodic curve with a zero mean. Thus, we can formulate the hypothesis
that the series was generated by a model of the type

yt = a + st + ut,

where a is an unknown constant representing the trend, and St is a
periodic function of time (e.g., sine) with period 12, zero mean, which
we will call the seasonal component; uu called irregular component, will
be a zero mean random variable. Note that this irregular component is
often small relative to the other two, even if this is not to say that it
is negligible. On the contrary, this component often contains the most
interesting fluctuations from an economic point of view.

The previous decomposition is classic; sometimes a fourth compo-
nent is added called cycle, which represents periodic medium-term move-
ments.

More generally, we can formulate a model of the type

Vt = f(t,ut),

where / is a function characterized by a finite number of unknown pa-
rameters and ut is a zero mean random variable about which various hy-
potheses can be formulated. Such a model is called an adjustment model.

Global and Local Adjustment The hypotheses made about the ran-
dom variable ut translate into estimation methods for the function / ,
chosen on the basis of optimality properties. In fact, in chapter 2, we will
propose an optimal estimation method (called the ordinary least squares
method) for the case when u± have the same variance and are uncorre-
lated. We will also propose a method for the case when ut have the same
variance and are correlated. These methods let each observation play
the same role, so that we can say that they lead to global adjustment.
The results of the obtained estimation can be used in different ways and,
in particular, for seasonal adjustment and forecasting.

In certain cases we may want to base the models and the estimation
methods on criteria which allow a different contribution for each ob-
servation. In chapter 3 on moving averages we will define series which
locally behave as low degree polynomials, that is they are invariant with
respect to a local polynomial adjustment involving a small number of
observations. This definition allows us to introduce an important class
of methods of seasonal adjustment.

Chapter 4 is devoted to forecasting methods by smoothing. In it we
will see also that these methods can be justified by a local adjustment of
several functions (polynomials, periodical functions, exponentials, etc.)
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around the current value. In these adjustments, the observations play
an exponentially decreasing role as we go back in the past, hence the
name of exponential smoothing given to these methods.

Additive or Multiplicative Adjustment The adjustment function
f(t,ut) is often additive, that is it can be decomposed in

f(t,ut) =g{t) + ut.
In this case we say that the model is an additive adjustment model.

If the function f(t,Ut) can be written as

f{t,ut) = g(t) -ut

we say that the model is a multiplicative adjustment model.
Note that, when the various variables are positive, we can transform a

multiplicative model into an additive one using the logarithmic function.

Deterministic and Random Adjustment We have seen that an
additive adjustment model can be written as

Vt =g(t) + ut,
where g(t) is an unobservable, but deterministic function of time.

It is equally possible to assume that g(t),t integer is a stochastic
process independent of the process ut,t integer. A specific class of this
kind of model, called the unobserved component model, is studied in
chapter 15.

1.6.2 Autopredictive Models

In an autopredictive model, we suppose that yt is a function of its past
values and of a random disturbance ut

Vt = f{yt-uyt-2,»">ut)-
A class of these models, particularly useful for prediction, are the
ARIMA models studied in chapter 5 and beyond, first for the univariate
case, then for the multivariate case. As we shall see, this class allows
for a variety of models by means of a relatively limited number of pa-
rameters. Moreover, it is possible to propose the so-called identification
methods, which allow the choice of the model from among a set of these
models which seems the most suitable for the available data. Once the
model is chosen, we can estimate its parameters and determine optimal
predictions.

Among the methods of forecasting we find in particular the methods
of exponential smoothing. The main advantage of the identification-
estimation-prediction method based on the ARIMA models (sometimes
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called Box-Jenkins method) is that it allows for the selection of the
optimal forecasting method from a large set of possibilities, whereas the
classical methods (global adjustment or smoothing) involve a greater
arbitrariness in the choice of function chosen for the adjustment.

Moreover, we shall see that in the multivariate case these models al-
low us to give answers to causality related problems, to the distinction
between short and long term, and to the agents' expectation behavior
(chapters 10 to 13).

1.6.3 Explanatory Models

In this model category, the variable yt is expressed as a function of a
vector of observable variables, called exogenous, xt and of a random
disturbance ut

yt = f(xuut).
xt is either deterministic or random; in the latter case the processes {xt}
and {ut} have certain properties of independence or uncorrelation.

We consider this class of basic econometric models to draw a connec-
tion between them and the autopredictive models.

Static Explanatory Model In a static explanatory model the vari-
ables xt do not contain past values of yt, and ut are mutually and serially
independent. For example, a model of this type will be

yt = a + bxt + uu t = 1,. . . , T,

where the Xt are independent of all the i^'s, and the u^s have zero mean
and are independent of each other.

Dynamic Explanatory Model An explanatory model can be dy-
namic both because the ut are autocorrelated, and because xt contains
past values of yt, that is some variables called "lagged endogenous".
Autocorrelated Disturbances A useful way of taking into account the
autocorrelation of ut is to assume that the series Ut follows an autopre-
dictive model. The autopredictive approach allows therefore to suggest
a class of models for the disturbances, that is for the unexplained com-
ponent, and appears complementary to the formalization which links y
and x, the latter being based on the knowledge of economic mechanisms.
Lagged Endogenous Variables Economic theory often gives indications
about the nature of the variables to include in a model. In turn, it
rarely gives suggestions about the appropriate temporal lags. The auto-
predictive approach can also be useful, as we will see in chapter 10, to
make this choice.
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These dynamic explanatory models will be studied in detail in what
follows. We will analyze stationary and nonstationary models (chapters
11, 13, and 14), we will consider dynamic models based on rational ex-
pectations (chapter 12) and we will link dynamic models to the Kalman
filter theory proposed by engineers (chapters 15 and 16).
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Linear Regression
for Seasonal Adjustment

2.1 Linear Model Setup

We suppose that the raw series Xt is the sum of two deterministic compo-
nents (the trend zt and the seasonality st) and of a random component
(the disturbance ut)

Xt = Zt + St +Ut.

In order for the model description to be complete, we need to specify
the functional forms of the deterministic components and to make some
assumptions about the distribution of the disturbances u ,̂ t = 1, . . . , T.
Each deterministic component is written as a linear combination of
known functions of time

k

zt = z\bx + z*b2 + • • • + zfyk = ^2 4
2 = 1

St = s\ci + S2
tC2

where b\,..., bk, C\,..., cm are unknown constants to be estimated from
the observations.

The disturbances ut are chosen to have zero mean E(ut) =0 , V t, the
same variance var (ut) — a2, V t, and are not correlated cov (ut, uT) =
0, V t^r.
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Table 2.1 Industrial Production Index.
Housing and Public Works Sectors

Year

1966
1967
1968
1969
1970
1971
1972
1973

Source:

Q i

84

88

91

91

94

91

99

99

INSEE.

Q2

96

99

94

103

108

104

105

105

Q3

87

89

90

94

96

95

92

93

Q4

92

95

95

97

102

102

101

98

Summarizing, the model can be written as
k m

xt = ^T4bi + Ylstcj + Ut * = i, • • •,r, (2.i)

with E{ut) = 0,var(i^) = cr2,cov (ut,ur) = 0, if t ^ r. The determin-
istic part appears as a linear function of the k + m parameters b and c,
hence the name of linear model given to (2.1).

This model may be written in vector form. Let us define x, z 1 , . . . , zfc,
s 1 , . . . , s m ,u as the vectors in RT the components of which at time t
with t = 1 , . . . , T are, respectively, xt, z\,..., z*, s],..., s™, ut. The
system of equations (2.1) means that the random vector x allows the
decomposition

k m

X = ^^ ^h + ^ S?Cj + U,

with E(u) — 0, var (u) = <j2l, a scalar matrix.

The trend Xw=i z*̂ » 1S a n element of the vector subspace Z spanned
by the vectors z 1 , . . . , zk. This subspace has size k since these vectors
are linearly independent. By the same token, the seasonal component
S j = i sj°j is a n element of the subspace S spanned by s1 , . . . , sm. The
size of this subspace is m since the vectors s 1 , . . . , sm form a basis.
From now on, we will assume that these conditions on the size of Z
and S are satisfied.
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1966 1973

Figure 2.1 French Industrial Production Index

Figure 2.2 Detrended Industrial Production Index

The functions zl and si depend on the way the variable x varies with
time. Let us consider, for example, the quarterly series of an industrial
production index (figure 2.1 - the data are reproduced in table 2.1). The
medium-term growth for the period considered is approximately linear:
we can then approximate the trend with a line of the type: zt = 6i +b2t.
The subspace Z of size 2 is spanned by the series z\ = 1 and z\ =t. If
we remove this medium-term movement from the raw data, the result-
ing series (figure 2.2) shows peaks and troughs of comparable amplitude
at regular intervals (in this case four observations - corresponding to
one year). A four-period periodic function can be chosen for the sea-
sonal component st which will take each of four values (called seasonal
coefficients), Ci,c2,c3,c4. Thus, st = Cj, according to which quarter j
corresponds to the date t. We can then write st = 4ci+5tc2+s?c3+s^C4
where sJ

t is the indicator function for the quarter j taking the value 1 if
the date t corresponds to this quarter and the value 0 otherwise.
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As a first approximation to describe this particular series we can pro-
pose a model of the type

xt = 61 + b2t + s]ci + s2
tc2 + s\c3 -f 4 c 4 + v*. (2.2)

Generally speaking, we can choose a smooth function (one showing little
variation in the rate of change) for the trend, oftentimes a low degree
polynomial. The simplest model for the seasonal component is one in
which the seasonal effect is fixed, as in the previous example. Other
types can be proposed: a slow variation in each seasonal coefficient can
be described by choosing them as polynomial functions of time. The
coefficients of the polynomial are then different from one subperiod to
another (cf. exercise 2.6).

The extraction of the seasonal component can also include some vari-
ables showing nonzero values for more than one subperiod. For example,
one of such variables could be the number of working days in the con-
sidered subperiod. Holiday effects, as well as strikes or weekend effects
can be represented in the same manner.

2.2 Uniqueness of the Decomposition

The representation chosen for the deterministic components has to be
such as to produce a unique decomposition of the raw series between
trend and seasonal component. In other words, we may not have two
distinct couples (z,s) and (z*,s*) such that zt + st = zf + s£, or
Zt — zl = st — s% V t = 1,. . . ,T. Therefore, only the null function
can be interpreted at once as trend and seasonal component. In other
words, we need Zf)S = {0}. In order for this condition to be satisfied, we
need the system z 1 , . . . , zfc, s 1 , . . . , sm to be a basis. Let us reexamine
model (2.2) from this point of view. The subspace Z is spanned by
z1 = (1, 1,...,1)' and z2 = (1, 2 , . . . , T)'; the seasonal component
subspace is spanned by

s2 = (0,1,0,0,0,1,0,0,0,1,...) ' ,

s3 = (0,0,1,0,0,0,1,0,0,0,...) ' ,

s4 = (0,0,0,1,0,0,0,1,0,0,...) ' .

The uniqueness of the decomposition is not satisfied. In fact, the six
vectors, z1, z2, s1, s2, s3, s4, are related to each other by the relation-
ship z1 = s1 + s2 + s3 + s4. In order to establish the uniqueness of the
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decomposition, one suggestion is to impose a constraint of the type

ci + c2 + c3 + c4 = 0 (2.3)

on the seasonal effects, so that they cancel each other out within one
year. Therefore the subspace of seasonal components S* includes all
functions 5, such that

\ s\c2 + s\c$ + s\c± s.t. c\ + c2 + c3 -f c4 = 0.

Replacing c4 with (—ci — c2 — C3), we get

st = (sj - s£)ci + (s? - 4)C2 + ( 4 - 4)C3-
The subspace of seasonal components 5* of size 3 is spanned by

S1*=S1-84, S2*=S2-S4,

Model (2.2)-(2.3) is called Buys-Ballot's quarterly model (Buys-Ballot,
1847).

2.3 Transformations for the Raw Series

The simplicity of the linear model makes it interesting to describe the
characteristics of a series since it is possible to study its analytical mathe-
matical properties. Even if the linear assumptions seem restrictive, they
are less strong than one may think. In fact, several models can be writ-
ten in a linear form after a transformation of the raw series

These models are of the same type as (2.1) by choosing a new variable
x* as dependent variable defined as

Xt = J{XuXt-\,. . . ,Xt-p).

2.3.1 Examples

The Multiplicative Model The quarterly model

ln(xt) = &i + b2t + s\ci + s\c2 + s?c3 -h s\c± + uu xt > 0, V t,

where sJ
t is the indicator function for the quarter and the seasonal co-

efficients satisfying c\+C2+c%+C4 = 0 are of the type (2.4). The series de-
rived from the original series is #* = hx{xt). It is a multiplicative model,
since each component describing the original series can be highlighted
by a straightforward application of the exponential function. We have
xt = ZtS*Ut, with z\ = exp(&i +b2t), s% = exp(s£ci
and Ut =
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Figure 2.3 Multiplicative Model: Case b<i > 0

Figure 2.4 Logistic Model: Case b2 < 0

The medium-term trend shows an exponentially increasing shape if
62 > 0 (cf. figure 2.3), decreasing otherwise. Moreover, if 62 > 0 the
seasonal effects grow in absolute value as t grows.

The Logistic Model Let us consider the model given by
4

Icj + ut, 0 <xt < 1, V t.

The variable Xt can be written as

/1 — \
In ( — ) = 6 1

J

1 + exp(6i + b2t + ^2j=i sJ
tCj + Ut)

Its behavior is depicted in figure 2.4 for the case where b2 is negative.
This model is called logistic and proved itself suited to study house-

holds' durable-good consumption behavior, among other phenomena.
In this case, xt would represent the proportion of households owning a
certain good at time t.
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2.4 Ordinary Least Squares Estimator

Let us consider the linear model (2.1)

xt =

The ordinary least squares (OLS) method consists in choosing as esti-
mators of the parameters &*, Cj the values 6;, Cj minimizing the square
of the distance between the series and its deterministic part

t=l t=l

Let us denote b = f 6 i , . . . , 6̂  J , c = (ci , . . . , cm)f the estimators of the
parameter vectors and Z, S the (Txfc), respectively (T x ra), matrices,
the columns of which are z 1 , . . . , zfc, respectively, s 1 , . . . , sm. The solu-
tions b and c of this minimization problem satisfy the system of k + m
normal equations

Z'Zb + Z'Sc = Z'x,

S'Zb + S'Sc = S'x.

This system can be written as
/Z'Z Z'S\ / b \ /Z ; x \

(̂ s'z sfsj yt) = \s'x)'
Since the vectors z 1 , . . . , zfc, s 1 , . . . , sm are linearly independent, the first
matrix on the right-hand side is nonsingular and can be inverted; the
system admits the unique solution

'b\ /Z'Z Z'S\"Vz'x\

s'z s'sj VS'xJ- (25)

The expressions for b and c can be derived from the system of normal
equations. We have

c = (S 'S^S 'x - (S 'S^S'Zb.

Substituting in the first k normal equations we get

(Z'Z - Z'SfS'SJ^S'Z) b = Z'x - Z'S(S'S)-xS'x,

or

b = (Z'Z - Z'S(S'S)~1S'Z)"1 (Z'x - Z'S(S'S)-1S'x). (2.6)

By the same token we have

c = (S'S - S'Z(Z'Z)-1Z'S)"1 (S'x - S'Z(Z'Z)-1Z'x). (2.7)
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Remark 2.1: In the absence of seasonal components (m = 0), we need
to discard the block relative to S and to c in the system of normal
equations; equation (2.5) will then read b = (Z/Z)~1Z/x.

Remark 2.2: The method just described is based on the hypothesis
that the vectors z 1 , . . . , zfc, s 1 , . . . , sm form a basis, therefore it may not
be applied to the Buys-Ballot model directly. We will see in section 2.5.2
how it can be modified to suit this model.

2.5 Applications

2.5.1 The Multiplicative Model

Let us consider the multiplicative model without seasonal component
defined as

\nxt = b1+b2t + ut, t = 1,. . . , T.

The matrix Z has two columns equal to

z1 = ( l , . . . , l ) / and z2 = ( l , 2 , . . . , r ) ' .

The estimators t>i and l>2 are given by

6i

Hence

= (Z'ZJ^Z'x*, withx* =
I

\n(xT)<

r T(T +

t = i

( T

-J2t\n(xt) + *1±I £ln(st) /(T(T2 - 1)).
t=i * t=i )

2.5.2 Buys-Ballot's Quarterly Model

Recall Buys-Ballot's quarterly model

xt = h + b2t + 5^ci + 5^c2 + 5^c3 + 5^c4 + tzt, t = 1, . . . , T,



Linear Regression 27

where the seasonal coefficients verify c\ + c2 + C3 + C4 = 0. In this case,
OLS must be applied by considering the constraint explicitly. The esti-
mators 61, 62, ci, C2, C3, C4 are obtained as solutions of the constrained
minimization problem

S.t. C\ + C2 + C3 -f C4 = 0.

Since ]C?=i 5t = 1? ^ ^ this problem can be formulated as

with b\ = \ Y^j=i fij ano^ cj — ^3; ~ \ Ej=i fy ^ J- This last minimiza-
tion problem shows that the estimators 61, 62, Cj, j = 1,. . . , 4, can be
calculated in a two-step procedure. First, we solve the minimization of

2

for 62,fij, j = 1,...,4, that is, applying OLS without intercept and
regressing xt on z\ = t,s\,s\,s\,s\. Then, we can obtain b\ and dj
using the identities

(2.8)

As a first step, therefore let us determine the values of 62,67. In order
to simplify computations, let us assume that the number of observations
T corresponds to an integer number of years AT, that is: T = AN. The
observation corresponding to the j-th quarter of the n-th year is indexed
byt = 4 ( n - l ) + j , n = 1, . . . , N, j = 1,... ,4.

Let us also denote with

xn — the mean of the observations on x relative to the four quarters of
year n;

Xj = the mean of the observations on x relative to the j-th quarter;
x = the overall mean of all observations on x.
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Note that

The estimators of the parameters (cf. exercise 2.9) are

Sj=xj-(j + 2(N-l))b2, j = l , . . . ,4 (2.9)

and
v-^iV ~ _ N(N+1) -

We can then obtain the estimators b\ and dj using the formulae in (2.8)

bi = \ Ej=i «,• = S - (f + 2(iV - 1)) b2,

Cj = 6j —b\ = Xj — x — 62 (j — 2) •)

Note that the estimators 61 and 62 of the trend parameters can be ob-
tained running a simple regression of the annual averages xn on the index
representing the middle of the year in quarterly units: in = 4(n — 1) + |
(cf. exercise 2.1).

2.6 Statistical Properties of the Estimators
The estimators of the parameters derived in section 2.4 are random vari-
ables approximating the true unknown values b and c. Their statistical
properties need to be investigated, in particular to get an idea of the
error contained in these approximations.

2.6.1 First-order Moments

Under the hypothesis E(ut) — 0, the OLS estimators are unbiased, that
is, their mean is equal to the values to be estimated. We have that
V hi, Cj, E(bi) — bi, i = 1,. . . , /c, and E{CJ) = Cj, j = 1, . . . , m. In other
words, on average, there is neither overestimation nor underestimation
of the unknown values.

Moreover the values

are unbiased estimates of the unknown values of the trend and of the
seasonal component at time t.

2.6.2 Second-order Moments

A linear function of the estimators d = Yli=i Pfii + S j=i 7jA?
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the /3i and the 7̂  are known numbers) is an unbiased estimator of the

linear function of the parameters d = ^ iL i Pih + !Cj=i 7jcj-

The error made in approximating d with d can be measured by the
mean square error E(d — d)2. Since d — E(d), this error is equal to
the variance of <i, denoted by var(<i). Let us write this variance in an
explicit way

var (d) = var

2=1 j = l t = l j =

/e r — 1 m j — 1

The computation of this variance assumes the estimator variances and
covariances as known. These quantities are generally presented in matrix
form in the variance-covariance matrix var (b, c)'. This is a square,
symmetric matrix of order (k + m), which can be partitioned as follows

/ var(b) cov(b,c)\

ycov(b,c)/ var(c) J

The matrix var (b) is a square matrix with k rows and columns which
has the covariance between hi and bi* as a generic term of order (z, z*);
in particular, the diagonal elements are just the variances var (bi). The
other blocks, cov (b, c) and var(c), are of size (k x m) and (ra x m),
and have generic terms equal to cov (6j, dj) and cov (dj, Cj*).

Denoting (3 = (fa,... ,f3k)' and 7 = (71,. . . , 7 m / , var (d) can be
written as

var(d) = (/3'V)var r j r j . (2.12)

If the disturbances are zero mean, homoskedastic and noncorrelated, we

b, c j is given

by

Z'Z Z ' S \ " XJ
Let us recall also that the main justification for the ordinary least squares
method is the Gauss-Markov theorem which shows that d is the best
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(i.e., minimum variance) unbiased estimator of d, as a linear function of
the observations Xf.

Example 2.1: Let us consider the Buys-Ballot model introduced in
(2.2) above. We have

(b2\ /z2'z2 z 2 V 1

var U 2

\6 j \ S'z2 S;S

The expression

var (6) = a2 (s'S - S ' z V V j -

allows us to compute the variances and covariances of the estimated
seasonal coefficients c.

2.6.3 Estimation of the Random Disturbance Variance

The matrix in (2.13) cannot be evaluated numerically since its expression
depends on the unknown parameter cr2. In order to obtain an unbiased
estimator of cr2, let Ut be the estimation residual at time £, that is
ut = Xt — zt — st. Ut is a random approximation to the disturbance ut.
The quantity

T

s2 = Y^u2
t/{T-k-m) (2.14)

t=i

is an unbiased estimator of a2. The variance-covariance matrix is then
estimated by

b \ ILL Z t 5 \

c ) = S ( s ' Z S'sJ • <2"15)
By the same token, the variance of a linear combination of the estimators

is estimated by

2.6.4 Confidence Intervals

Rather than referring to a point estimation d of d, it is often preferable
to provide an interval of the type d\ < d < c^ • The confidence interval
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(di, (I2) is random and is such as to include the true parameter d with a
certain probability. If we assume independent and identically distributed
7V(0, a2) disturbances, an interval which includes the true value d with
95% probability is given by

di=d-T\/v5i(d)i d2 = d + rJvSi(d) , (2.16)

where the probability of the absolute value of a Student's t random
variable with (T — k — m) degrees of freedom being greater than r is
2.5%. If T is large, r is approximately equal to 2.

2.7 Applications of the Regression Analysis

2.7.1 Outlier Detection

Some observations do not look compatible with the rest of the sample.
It is therefore important to investigate whether they are true outliers,
i.e., not generated by the same mechanism as the other data; in fact,
there is even a chance that neglecting their nature may impair the whole
analysis. These atypical data can occur due to several reasons:

(i) They could be ascribed to measurement, transcription, or calcu-
lation errors. In such a case, we can hope to correct them by
reexamining the way in which the data were collected and pro-
cessed.

(ii) They can reflect occasional phenomena (a strike, for instance). The
corresponding dates can be traced back easily. For example, out-
liers appear often in French economic time series for 1963 (miners'
strike) and for 1968 (general strike). These occurrences, foreign to
the evolution of the series, are customarily eliminated.

We can possibly consider as outliers certain data generated by the
same mechanism as the others but drawn from the tails of the distribu-
tion. In fact, if we sample every year a group of individuals, we could
find at any point in time a billionaire. The treatment of such a case is
not clear-cut, but often the corresponding data are discarded and the
analysis is carried out on the remaining sample.

Method 1 Until now we have considered a decomposition of Xt of the
type

xt = zt + st + ut * = 1 , . . . ,T , (2.17)

with no outliers. Assuming that the model (2.17) is well specified to de-
scribe the series x*, and that the disturbances are normally distributed,
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-2s

Figure 2.5 Outliers

Ut is included between — 2a and +2cr in 95% of the cases. Using all the
available approximations, we can say that ut should be included between
—2s and +2s most of the time. The dates pertaining to residuals outside
this interval could correspond to outliers (cf. figure 2.5). This approach
can be easily improved upon, taking into consideration the distribution
of the residuals. Let us denote by A the matrix

/z'z z'sV1
A = I -< z ' s ) ( s ' z s'sj

The residuals have mean zero and variance-covariance matrix

var (u) = a2 A.

The studentized residual is given by

where att is the t-th diagonal element of A. If there are no outliers, the
studentized residuals follow a standard normal distribution and are less
than 2 in 95% of the cases. Then we can reject the null hypothesis of
no outliers (i.e., detect an outlier) if

ut > 2

and accept it otherwise.

Method 2 Another approach includes the possibility of the existence
of an outlier at time to by including an indicator variable for such a
date

xt = zt + st+ alt=tQ + uu (2.18)
where tt=t0 — 0 if t ^ to, and 1 otherwise. The absence of an outlier
can be formulated as HQ : {a = 0}, a test of which can be performed by
the usual Student's t-test.
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Under the general hypothesis, the OLS estimator of a is just the
expression (xto — zto — sto). We can see that for the unrestricted model,
the residual sum of squares is just the one obtained by running OLS on
the model (2.17) using xt, t ̂  t0. Let us denote it by RSS(-.to)- Under
the null hypothesis, the residual sum of squares for the restricted model
is obtained by running OLS on the complete set of data. The absolute
value of the Student's t-statistic is then

/
[(RSS -

A value of this statistic higher than the critical value (at 95% confidence
level) of the Student's t-distribution leads to the rejection of the null
hypothesis of no outliers and, hence, to the detection of an outlier at
time to.

2.7.2 Seasonal Adjustment

The series without the seasonal component xfA = Xt — st can be esti-
mated by

m

xfA = X t - s t = x t -

The mean square error of approximating xfA by xfA is estimated as

E(x?A-x?Af= E(st-st)2

.7 = 1

2.7.3 Forecasting

The estimators 6̂ , dj can be used to forecast a value of x yet unobserved,
say, xr+h, h > 1. Assuming that the model specification is still valid at
time T + ft, we have

k m

XT+h = Yl ZT+hPi + Yl ST+hC3i
i=l j=l

with E(uT+h) = 0, var (ur+h) = o2\ cov (wT+h, ut) = 0, t = 1,. . . , T,
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and the value xr+h being approximated by

1=1 j = l

It can be shown that xr(h) is the best unbiased forecast (with respect
to a mean square error criterion) which is a linear combination of the
observed values X\,...,XT of the variable x. In fact, it satisfies the
condition

E(xT(h) - xT+h) = 0.

Thus, the estimated variance of the forecast error is

eh = E(xT(h) - xT+h)
2

= vSr(d) +

where d is the estimator of

i=l j=l

Under the normality hypothesis, we get a 95% forecast interval for
considering

(xT(h) - re]/2, xT{h) + re}/2) ,

where r is denned as in (2.16).

2.8 Autocorrelated Disturbances

In the previous examples we have assumed that the disturbances were
not correlated. Nevertheless, it is possible that the values taken by a
time series at contiguous periods be linked to each other. Such links
can be taken into account by formulating a few hypotheses about the
disturbances.

2.8.1 First-order Autocorrelation

Let us assume that the disturbances follow

ut = put-! +e t , (2.21)

where the variables et are i.i.d. 7V(0, a2) and p is a real number included
between —1 and +1 (cf. chapter 5 for more general models including
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(2.21) as a special case). For the sake of simplicity, we will assume that
the relationship (2.21) is valid for t G (—oo,..., —1,0,1,..., +oo), that
is, valid for unobserved values corresponding to indices not included
between 1 and T. The model for the disturbances can be written as

ut = put-i +et

= et + pet-i + p2ut-2

i =0

From this notation we can see that the moments of ut can be expressed

as

and
i=0

var (ut) = var I ^ plet-

i=0

a

i=0

2

and for all ft > 0

cov (ut,ut-h) — cov
j=0

2 P

I-pi'

(Cf. the justification for the interchange of the expectation and the
summation operators given in the appendix to chapter 5.)

The variance-covariance matrix of the disturbances is nonscalar, and
can be represented as

/I p ... p ^

var u)

1

\p

(2.22)
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Let us consider the linear model again

(2.23)
*=1

where we will assume t h a t t he vectors zl and s-7 are linearly indepen-

dent , and t h a t the dis turbance t e rm u follows (2.21); the OLS method

described in the previous section provides unbiased es t imators , bu t these

est imators are not t he "best" (i.e., min imum variance) ones. The accu-

racy can be improved upon by using the generalized least squares (GLS)

est imator , denned as

The mat r ix Q can be easily wr i t ten in its inverse form as

/ I -p 0 ••• 0\
- p 1 + p2 - p ••• 0

0 - p 1 + p 2 ••• 0

o 0 — p 1

This GLS estimator coincides with the OLS estimator applied to the
model

2 = 1 j = l

where H is such that HUH7 = I, or H'H = Q~1, and can be written as

0 ••• 0 0 \
-p 1 ••• 0 0

0

y 0

-p '

o "•
. o
. 1

• -p

0

0

1)

and v = Hu.
Let H* be the (T — 1 x T) matrix obtained by deleting the first row

of H. The GLS estimator is slightly different from the OLS estimator
applied to

H*x w,



Linear Regression 37

that is, the estimator obtained by regressing (xt — pxt-\) on (z\— pz\_^)
and [s\ — ps\_^), for t = 2, . . . , T. This approach was first suggested
by Cochrane and Orcutt (1949).

These two estimation methods, generalized least squares and Coch-
rane-Orcutt, cannot be applied straightforwardly because they assume
that the parameter p is known; since, in general, p is unknown, we need
to apply a two-step procedure:

(i) in the first step we estimate the parameter p. This parameter can
be interpreted as the correlation between ut and ut-\\ it can be
estimated as the empirical correlation between the residuals Ut and
Ut-i derived by OLS

(ii) in the second step, we can use the GLS or the Cochrane-Orcutt
estimator by replacing the unknown parameter p with its estimated
value p.

2.8.2 Testing for First-order Autocorrelation

Before specifying a time-series model with autocorrelated disturbances,
it is necessary to establish if such a model is appropriate. To do that, we
need to test the hypothesis p = 0 (absence of serial correlation - hence
appropriateness of OLS) against an alternative hypothesis (correlation
- hence use of GLS).

Durbin—Watson Test The most commonly used test is performed
according to the procedure suggested by Durbin and Watson (1950,
1951), based on the statistic

V T TV2

2^t=i ut

where ut is the estimated residual from OLS.
If the number of observations is large, we have

t=2 t=l t=2 t=\

The distribution of such a statistic under the hypothesis p = 0 depends
on the values of the variables zl and sJ. However, it is possible to relate
DW to two statistics, the distribution of which does not depend upon
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Table 2.2 Distribution of Signs
for First-order Autocorrelation

Sign of

Sign of + T n T12

ut-i ~ T2i T22

these variables. This leads to a test involving the two critical values
di < du as a function of the number of observations T and the number of
the explanatory variables k' excluding the constant (cf. table 6 reported
at the end of the book). Thus, in model (2.23), k' = k + m + 1. When
we want to test no autocorrelation versus positive autocorrelation, we
reject the null hypothesis of no autocorrelation if DW < di, we accept
it if DW > du; if di < DW < du we are in the inconclusive region. This
way of setting up the test presents the nuisance of not always allowing
a choice between the two hypotheses.

The same procedure can be applied to test no autocorrelation versus
negative autocorrelation by considering 4 — DW instead of DW. If
(4 - DW) < d\ we reject the null hypothesis of no autocorrelation;
if (4 — DW) > du, we accept this hypothesis. Again, we are in the
inconclusive region if di < (4 — DW) < du.

Sign Test Another method to test the hypothesis p = 0 versus the
alternative p ^ 0, can be based on the sign comparison of the residuals
Ut and &t_i, t = 2,4, The different combinations of signs and the
number of times they appear can be arranged as in table 2.2. The sum
of the elements in the table is equal to the integer part of T/2.

The hypothesis of no autocorrelation could be tested by applying a
X2 test to this 2 x 2 contingency table. Whenever the sign test leads to
the acceptance of independence, OLS can be applied; if this hypothesis
is rejected, we should use the GLS or the Cochrane-Orcutt estimation
method.

2.8.3 Forecasting

If the disturbances are autocorrelated, the forecasting expressions (2.20)
have to be modified to take into consideration the links between the
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observations at two different dates. For example, let us assume that
we have available the observations x\ up to #T, and that we want to
forecast the corresponding value at time T + 1

where UT+I = pur + CT+I, with eT+i independent of € I , . . . , C T and
normally distributed with zero mean and variance a2.

We have

= pxT

The optimal forecast of XT+I (when the parameters are known) is equal
to the deterministic part

pxT Xfc X^
i=l j=\

When the parameters are unknown, a forecast of XT+I will be
k m

xT(i) =

With UT = XT — Z^i=i zTbi ~ Z^j=l STCJ'

2.8.4 Higher-order Autocorrelation

In a linear model, the disturbance represents mainly the effects of omit-
ted variables. If these variables contain a seasonal component them-
selves, this will appear as autocorrelation. For example, let us consider
a quarterly series. It may be preferable to introduce the autocorrelation
between disturbances as ut — put-4 + e*, — 1 < p < 1. In this case,
the procedure described in the case of first-order autocorrelation can be
easily generalized.

Let us assume that we have 4T observations available. The variance-
covariance matrix of u is

var (u) = a2 ft <g> I,
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where ft is the matrix described in (2.22), I is an identity matrix of
order 4, and 0 is the matrix Kronecker product. *
Hence

and the GLS estimator is given by

K j = ((z, s)'(frx ® i)(z, s))-1 (z, snfr1® i)x.

This estimator can be approximated by the OLS estimator obtained by
regressing (xt-pxt-4) on {z\-pz\_4) and (s{ -ps{_4), for t = 5 , . . . , T.

These estimation methods assume p known, therefore, as a first step
we will always need to estimate it. Again, a possible estimation proce-
dure for p is

T T

t=5 t=4

Finally, we can notice that:

(i) Hypothesis testing for p = 0 based on the signs is immediately
generalized to this case under the condition of comparing the signs
of ut and ut-4.

(ii) The forecasting technique is the same as before if we consider

2.9 Two Shortcomings of OLS

Difficulties in Updating The estimators b and c depend upon the
available number of observations; in this section we denote by b T , cT

their expressions relative to the sample 1,. . . , T. As soon as we have an

If A = {ciij} is a (p x q) matrix and B is a (g x h) matrix, the Kronecker
product between A and B, A (g> B, is the (pg x qh) matrix which can be
written as

( a n B

When A and B are square, nonsingular matrices, A ® B is a square, non-
singular matrix with
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extra observation available, say, #T+I> these estimators become b T + 1 ,
cT + 1 . Note, however, there is no simple relationship between (bT + 1 ,
cT+1) and (bT, cT) (cf. exercise 2.7).

Structural Change The desirable statistical properties of OLS stem
from the assumption that the linear model

l CJ + uti (2-25)
t = l 3 = 1

gives a proper description of the original series. However, it may happen
that the functional form relating zl, sJ, and x changes within the sample
period. Then, a more appropriate model may be

{ E t i z% + £7=i 4cj + ut, if t < t0,
(2.26)

Zti *?** + £ £ i *?<% + "t, if t > to-
In this case, a seasonal adjustment made using model (2.25) leads to
the wrong results. It is therefore necessary to detect a structural change
by observing how the series xt behaves. If found, it must be taken into
consideration in the estimation process. Let us consider, for example,
model (2.26) corresponding to a structural change; let us denote by
at the variable assuming the value 1 if t < to, and 0 otherwise. We
have

k k* mm*

i = l 2=1 3 = 1 3 = 1

Model (2.26) can be written as a linear model where the explanatory
variables are (^Ja*), (zp(l — at)), (sJ

tcit) and (s£J(l — Q>t))- The pa-
rameters can be estimated by OLS or by GLS applied to this new
model.

2.10 An Application

Let us take as an example the monthly series of the train passenger
traffic, choosing the most classical model with a linear trend b\ + b^t
and a 12-period seasonal component XI 7=1 cjst with X^7=i cj = 0- The
parameters 61 and b2 relative to the trend component and the twelve
seasonal coefficients c3 were estimated by OLS over the sample period
1963-79. The last twelve observations relative to 1980 were not used for
estimation purposes. This will allow us to evaluate the quality of the
forecasts obtained for this year with the estimated model.
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Table

i>2

6.2

2.3 Unconstrained

h

1552

h

2579

h
1444

*8

2262

Coefficient Estimates

h

1639

£9

1728

1893

<$10

1645

1809

$11

1483

2210

<$12

2122

Table 2.4

Jan. Feb.

-310 -420

Estimated

Mar. Apr

-225 29

Seasonal Coefficients

. May June July Aug.

-55 346 715 398

Sep.

-136

Oct.

-219

Nov.

-381

Dec.

258

The unconstrained estimates of 62 and 63; = b\ + c ,̂ j = 1 , . . . , 12,
are reported in table 2.3.

Averaging the fy's, we get an estimate of b\ = 1864. By differencing,
then, we estimate the seasonal coefficients Cj, the values of which are
reported in table 2.4.

Note that the sum of the seasonal components is equal to zero. As one
would expect, the seasonal coefficients for the vacation months (April,
June, July, August, and December) are positive, since more people travel
in these months. The quality of the seasonal adjustment can be analyzed
by reporting on the same figure the observed values of xt and the ad-
justed values Xt (figure 2.6) or examining the behavior of the estimation
residuals (figure 2.7). The latter shows that the evolution of the residuals
does not correspond to a sequence of uncorrelated random variables with
zero mean and a constant variance, leading us to the conclusion that the
fit is unsatisfactory. In particular, figure 2.7 gives the impression that
the time trend may be convex. This could be taken into consideration
by adopting an additive model (time trend modeled as a second-order
degree polynomial), or a monthly version of the multiplicative model
described in section 2.3. Note also that even the hypothesis of seasonal
coefficient stability could be questioned by inspection of figure 2.6.

The seasonally adjusted series can be obtained by subtracting the
estimated seasonal coefficients from the original series. Both original and
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Figure 2.6 Historical and Fitted Series, 1963-70
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Figure 2.7 Estimated Residuals (1963-79) with 95% Confidence Bands
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SA
xt,xt Historical series

Seasonally adjusted series

Figure 2.8 Historical and Seasonally Adjusted Series, 1972-79

seasonally adjusted series are represented in figure 2.8. We can notice
that the seasonal adjustment has the effect of smoothing the peaks and
troughs of the original series.

Finally, the square root of the mean square error between actual and
forecasted values for the twelve months outside the sample (correspond-
ing to 1980) is equal to 6.9%.
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2.11 Exercises

Exercise 2.1: Write the explicit expression of the OLS estimators of
bi and b2 in the model

xn = bi+ b2in + un, n = 1 , . . . , TV,

with in = 4(n — 1) + 5/2 and compare them with the estimators 61 and
b2 obtained in (2.10) and (2.11).

Exercise 2.2: Let us consider the model xt = zt + st + alt=t0 4- ̂ t
introduced in (2.18). We regress xt on the zj's and the s{'s in order
to get estimators of the b^s and c^'s. Verify that these estimators are
biased if a ^ 0.

Exercise 2.3: In order to estimate the seasonal component we may
think that it is better to extract the time trend first. For example,
in Buys-Ballot's quarterly model, we can compute x^ = xt — 2xt-\ +
Xt-2, t = 3 , . . . , T. Verify that the deterministic part of x\ is a linear
function of the c/s. How would you estimate the c '̂s?

Exercise 2.4: Describe the evolution of the mean square forecast
error e^ as a function of the horizon h in Buys-Ballot's model. What
conclusions can you draw?

Exercise 2.5: Let us consider two quarterly series satisfying
x\ = b\ + b2t + s\c\ + s\c2

c\ + c2 + c3 + c4 = 0,

«£C3

c\ + c2 + c% + C4 = 0,

where 5̂  is the j-th quarter indicator variable and the disturbances are
intertemporally independent, but may be contemporaneously correlated,
i.e.

[0, V t^r,
cov(ut,Uf) = < l L .

I cri2, otherwise.
Using the properties of stacked regressions (cf. Johnston, 1972, p. 240),
verify that it does not matter whether you estimate the regressions for
x\ and x\ separately or simultaneously.
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Table 2.5 Variance-Covariance Matrix for Exercise 2.8

0.056
-5.54 2904
-5.59 542 2915
-5.65 548 553 2926

-5.71 553 559 565 2938

-5.76 559 565 570 576 2949
-5.82 564 570 576 582 588 2961

-5.88 570 576 583 588 593 600 2973
-5.94 575 581 588 594 599 605 611 2984

-5.99 581 587 593 599 605 611 617 623 2996
-6.05 586 592 599 605 611 617 623 629 635 3008
-6.11 592 598 605 610 617 623 629 635 641 647 3020

-6.16 598 604 610 616 623 629 635 641 647 653 659 3033

Note: Only the lower half of the matrix is given, since it is symmetric.

Exercise 2.6: Let us consider a quarterly model where the seasonal
coefficients are a linear function of time

4

b2t ut.

Verify that there exist two independent relationships among the explana-
tory variables. Show that the mean of the seasonal coefficients cannot
be zero for four consecutive quarters, unless dj = 0, j = 1 , . . . , 4. How
does this result change when we impose that the mean of these coeffi-
cients be zero over the four quarters of the same year?

Exercise 2.7: Verify that

= A

bT+l

\ • /
where A is a matrix which will be determined (cf. section 2.9 for the
notation).
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Exercise 2.8: Let us consider the train passenger example of section
2.10. The estimated disturbance variance is s2 = (200.6)2, and the
variance-covariance matrix of a, 6j, j = 1,. . . , 12 is given in table 2.5.

(i) Calculate the variances of the estimated seasonal coefficients Cj,
j = l , . . . ,12.

(ii) Calculate the 95% forecast interval width as a function of the hori-
zon.

Exercise 2.9: Let us consider Buys-Ballot's model once again.

(i) Determine Ylt=i ^ •> ^2t=i ̂ 5t> an(^ e x P r e s s ^2t=i ^
as a function of xn, x, Xj.

(ii) Using the formulae

«i = -i(s>"x-s>V&2))

and

b {! ( / ) ~ 1 / ) ( ^ ^

with z2 = (1 , . . • ,T)7, derive formulae (2.9) and (2.10).



Moving Averages
for Seasonal Adjustment

3.1 Introduction

Let us consider a series x = {x*}, allowing for an additive decomposition
of the type

xt = zt + st+v*, t = 1,...,T.

A simple way of determining each component of this series, for instance
the trend zt, is to apply a linear transformation / to the series, such
that the trend is left unchanged and the other components are set to
zero. More precisely, let us denote by x*, z\, s*, u£ the t-th components
of the series x,z,s and u after having been transformed by / . Since /
is linear, we have x\ — z% + s\ + u\\ moreover, s\ = 0, u^ = 0 since /
sets the seasonal and disturbance components to zero while keeping the
trend unchanged zf = zt. Hence the transformed series x* is just the
trend component.

Evidently, the difficulty of such a method rests in the choice of the
transformation / . Since the very definitions of the various components
are fairly vague, we cannot reasonably expect to build a transforma-
tion which exactly saves the trend component while exactly deleting all
seasonal and random effects. At most we can try to determine these
properties in an approximate fashion z% ~ zt, s£ ~ 0, u£ ~ 0, and in
an exact fashion only for particular forms of the components. Thus, the
choice of a function / is not automatic and has to be based on a pre-
liminary inspection of the series and on an explicit formalization of the
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various components. The choice of such a function allows one to avoid
certain shortcomings of the regression analysis already mentioned, we
must have:

(i) simple computations;
(ii) easy updating, as T increases;
(iii) no sensitivity to structural change.

The transformations customarily used are the moving averages where
x\ is by definition a weighted sum of values of x corresponding to dates
around t

- T ox (5U)

— / J "iXt+i,

i=—mi

where mi, 7712 are positive integers and #_ m i , . . . , 6rri2 G Ft. The number
of periods m\ + 777-2 + 1 intervening in the transformation is called order
of the moving average.

It is possible to formulate a moving average value x% only when
777,1 + 1 < t < T — 777-2,

so that we need to find a different notation for the boundary values
#J , . . . , x^1 and ^71-m2+i' • • •' XT m terms of the values of the original
series. As a first step it is better not to consider this difficulty. We could,
for example, assume that the observed series is indexed by an integer t;
t can vary between —00 and +00 and there are no boundary values.

Let us denote the lag operator by L which is such that if applied to
the original series {xt, t integer} the new series is {xt-\,t integer}. The
series transformed by the moving average can by written as

(
i=—mi

We can derive the following definition of a moving average.
Definition 3.1: A moving average is a linear transformation which can
be written as a finite linear combination of positive and negative powers
of the lag operator

M =

The moving averages are oftentimes chosen as centered such that mi =
777,2 — wi- The operator M can be written as
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Let us denote the lead operator by F = L~l and © the polynomial such
that

Q(x) = 0-m + 6-m+iX + • • • + 0rnX2m-

We have

M = Lm0(F).

The degree of the polynomial © characterizes the centered average M.
We know both the order of this average, since 2ra + 1 = degree (0) + 1,
and its coefficients, as they are the same as those of the polynomial 0.
The techniques based on moving averages are mainly used for seasonal
adjustment. Customarily the series is adjusted using an iterative pro-
cedure. We start by applying a first moving average aimed at keeping
the trend and deleting the two other components. By doing so we get a
first estimation of the trend and hence, by differencing from the original
series, of the sum s + u. The seasonal component is estimated from s + u
(which is easier than from z + s + u) applying a moving average which,
in turn, aims at isolating s and eliminating u.

Subtracting the estimate of s from the original series, x, we get an
estimated value for z + u. This can be used as a basis for a new, more
precise, trend estimation and so on. This iterative approach allows one to
build satisfactory seasonal adjustment procedures by simple steps. Note
that the averages used isolate the trend and eliminate the seasonality,
or the other way round, but all have to eliminate the disturbance or, at
least, to reduce it.

3.2 The Set of Moving Averages

3.2.1 Composition of Moving Averages

Definition 3.2: The composition (or product) of two given moving aver-
ages M and M is the transformation M which generates the new series
MX — MMx from any series x.

It is easy to see that the application M = MM is still a moving average.
This result is very important in practice since it allows one to define
moving averages starting from simpler moving averages of a smaller or-
der. It also shows that the iterative procedure proposed in the previous
chapter is still a moving average method. The composition of moving
averages is clearly associative; it is also commutative: MM — MM,
that is to say, that the moving averages can be applied to the original
series in any order.
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Theorem 3.1: The composed average of two centered moving averages
is still a centered moving average.

PROOF: Let us consider two centered averages

M = L™9(F) with degree (6) = 2m,

M = L™9(F) with degree (9) = 2m.

Their product is equal to

M = MM = L™+^

Since the degree of Q(F)Q(F) is equal to 2m + 2m the average is cen-

tered. Its order is equal to the sum of the orders of M and of M minus 1

2ra + 1 = (2m + 1) + (2m + 1) - 1.

Note that a centered moving average can be obtained as the product of
two noncentered moving averages. Let us consider, for example, the two
"first-difference" operators

A = / — L <& Axt — Xt — xt-i Backward difference,

and

V = F - I = FA <& Vxt = Xt+i - xt Forward difference.

Their composition, AV = (/ - L)(L~l -1) = L~l - 2/ + L is a centered
moving average of order 3.

3.2.2 Symmetric Moving Averages
Definition 3.3: A moving average is symmetric if it is centered and if
the coefficients having symmetric indices with respect to 0 take the same
values

0i — 0_i i — 1 , . . . , ? n .
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The characteristics (order and coefficients) of such a moving average are
denoted as {[2m + 1] ; [0m, 0_m+i,... ,0o]}; the central term 0O is from
now on written in bold face.

Theorem 3.2: A moving average is symmetric if and only if the asso-
ciated polynomial © is symmetric.

PROOF: This follows directly from the condition Oi = 0_*, i — 1,. . . , m.
•

The symmetry condition of the polynomial O can be written as
= 0_m + 0-m-fiZ/ + . . . + 0mL m

= L2m[0_mF2m + 0 - m + iF 2 m - 1 4- • • • + 00m]

Theorem 3.3: The set of symmetric moving averages is closed with
respect to composition.

PROOF: Let us consider two symmetric averages M and M. Their
associated polynomials satisfy

6(L) = L2ihG(F) and <§>(L) = L2^&(F).

On the basis of theorem 3.2, the composed average M = MM is centered
and has an associated polynomial O = 0 0 . Since

Gk(T\ £2k(T\dk(T\ T 2(77i-|-77i) r\( r?\r\( rp\ T(^>rridi(T?\
\y\ljj — KJ I Ju ) w I LJ i — LJ KJ\V \\J\F I — LJ \J\F ),

we conclude that the polynomial is symmetric. •

3.2.3 The Vector Space of Moving Averages

The set of moving averages forms a vector space on H of infinite dimen-
sion; it is the smaller subspace containing the powers of the lag operator
Ll,i integer. The same space can be spanned by other generators in
particular those formed by the first difference operators

{V2, A1, i positive integer}

(cf. exercise 3.7).
This system can be interesting from a computational point of view

since the first differences of a series x are generally smaller (in absolute
value) than the series itself. Finally we can notice that the set of symmet-
ric moving averages forms a vector subspace of the moving average space.
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Recalling known results about symmetric polynomials we can show that
this subspace is generated by the system {(L + F)\i positive integer}
or, equivalently, by the system

{6* = (VA)* = (L + F - 2I)1: i positive integer}.

3,3 Eigenvectors of a Moving Average

A moving average is a linear application of the R°° space onto itself.
We can analyze some of its characteristics such as its eigenvalues and its
eigenvectors. In what follows, we consider centered averages even if the
results can be easily generalized to any averages.

3.3.1 Solution to a Linear Difference Equation

In this section we recall some established results on the sequences (xtlt
integer) satisfying any equation of the type

a0Xt + CiiXt+l -f . . . -f CL2mXt+2rn = 0, V t, (3.2)

called the linear difference equation of order 2m.
The solutions of equation (3.2) form a vector subspace in R°° of di-

mension 2ra. In order to define this subspace we need to find 2ra in-
dependent solutions to (3.2). We start by conjecturing the existence
of a solution xt = X1 with A complex. The value A must satisfy the
characteristic equation

a0 + aiA + . . . + a2mA2m - 0. (3.3)

The Distinct Roots Case If this equation admits 2m distinct roots

we get 2m independent solutions of equation (3.2)

X\i = A}, . . . , Xjt = Aj, . . . , X2mt = A2m •

The solution of the linear difference equation is given by
2m 2m

^ = E w = Ec^' (3-4)
j=l 3=1

with Cj complex. The roots Aj can be real or complex. If Aj is real, the
corresponding solution Xjt = A*- follows an exponential pattern according
to the value of Aj (cf. figure 3.1).

When Aj > 0 the series can be interpreted as a trend; when Aj < 0 the
series can be interpreted as the seasonal component of period 2. When
the root Aj is complex
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- 1 < Xj < 0

-1

V

Figure 3.1 Patterns of

P; >

Figure 3.2 Patterns of Xjt relative to

with

and UJ e [0, 2TT), the real coefficient characteristic equation admits the
conjugate root

Xr = \3 = p3e^

as a solution. The real combinations of x3t and Xj>t can be written as

xt — pl
3\c t i t )

These series have a sine-wave shape with convergent behavior if p3 < 1
or explosive behavior if p3 > 1 (cf. figure 3.2).

Such a function can be interpreted as a seasonal component when
its period (equal to 2TT/LJJ) corresponds to a natural periodicity of the
original series. If the period is large (UJ3 small) such a series can be
interpreted as a trend (or as a cycle).
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The Multiple Roots Case In the general case, some of the roots of
the characteristic equation can be repeated. If there are J distinct roots

A i , . . . , A j , . . . , Aj,

each with multiplicity

Oil,. • • ,OLJ, . . . , a j ,

the general solution to (3.2) can be written under the form

xt = Ai(Cl l+ci2t+.. .+c l a i ^
1 ~ 1 )+ . . .+AS(CJI+ . . • + c J a j t

a ^ 1 ) , (3.5)

with Cjk complex j = 1 , . . . , J, k = 1, . . . , ĉ -.
Equation (3.5) can be written even keeping separate the real roots

from the complex roots. Let us assume that the real roots are the
first Jo ones. Since the characteristic equation has real coefficients, if
Xj = pjeluJj is a complex root with multiplicity a^, SO is its conjugate Xj
with the same multiplicity ctj. We can group the complex roots pairwise,
so as to isolate sine and cosine functions. In the more general case the
real series solutions to the nullspace can be written as

Jo

aj2t

3.3.2 Nullspace of a Moving Average

Definition 3.4: The nullspace of a moving average M (denoted by
J\f (M)) is the set of time series x such that Mx is equal to zero

Af(M) = {x: Mx = 0}.

This condition can be written as
Mxt = 0-mXt-m + • • • + OrnXt+m = 0 , V t,

or

0-mXt + • • • + 0mXt+2m = 0 , V t.

The elements of the nullspace are therefore solutions to a linear difference
equation and can be derived following the procedure described previously
in (3.3.1).

Theorem 3.4:
Af (MM) DAf(M)+N(M),

where -f indicates the sum of subspaces.
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PROOF: If x e N (M), we have MMx = M 0 = 0. Hence M (MM) D
Af(M). By the same token, for symmetry reasons, it has to be that
M (MM) = N (MM) D Af (M); since M (MM) is a vector subspace
the result follows. •

Moreover, since the dimension of N (MM) — 2ra + 2ra is equal to
the sum of the dimensions of J\f (M) and of AT (M): the two subspaces
AT (MM) and AT (M) + AT (M) coincide if and only if AT (M) nAf (M) =
{0}.

3.3.3 Invariance with Respect to a Moving Average

Definition 3.5: The series x is invariant with respect to the moving
average M if and only if

= Xt, V t.

The series invariant with respect to M satisfy

Mxt = 0-mXt-m + • • • + OmXt+m = XU V t,

or

6-mXt + . . . + 0mXt+2m = Xt + m, V t.

They are solutions to a linear difference equation of order 2ra and, in
particular, they form a vector subspace J(M) of size 2m. These solu-
tions are determined from the solutions to the characteristic equation
©(A) — Am = 0. Among the solutions only those showing little movement
in their rate of change (exponential functions or long-term sine wave)
can be interpreted as trends.

Preservation of the Polynomials of Degree p The moving average
preserves the polynomials of degree smaller than or equal to p, if A = 1 is
a root of multiplicity p+ 1 of the characteristic equation O(A) — Am = 0.
The polynomial O(F) - Fm is then divisible by Vp+1 = (F - / )^ + 1 . In
fact, applying the operator V, we are able to decrease the degree of any
polynomial by one. For instance, if xt = tn, Vxt = (t + l) n — tn =

n~l
nt

Theorem 3.5:
(i) A moving average preserves the constants if and only if

0-m + 0-m+l + • • • + 0m = 1-
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(ii) A symmetric moving average preserving the constants pre-
serves the polynomials of degree 1.

PROOF: Part (i) is straightforward. In order to show (ii) it is enough
to consider the series xt — t. We have

x*t = 0-m(t - ra) + . . . + 9m(t + m)

= t{0-m + . . . + 0m) + m(6Lm - 6>m)+

+ (ra - l ) (0 m - i - 6Lm + 1) + . . . + 06>o

n

Invariants of a Composed Moving Average Recalling that J(M)
represents the set of series invariant to M, let us suppose that M can be
written as a composition of two moving averages M and M. We have
then

J(M) Dj(M)nj(M). (3.6)

In fact, if x G J(M) D J(M) then

Mx = MMx = Mx = x.

The composition of two moving averages preserving the polynomials of
a degree smaller than or equal to p, preserves also such polynomials.

3.3.4 Transformed Series from a Geometric Series

The elements of the nullspace and the invariant series are special cases
of eigenvectors of the moving average M, associated with the eigen-
values 0 and 1. Any generic geometric series provides other examples of
eigenvectors.

Let us consider, for example, the series xt — X1 where A is real or
complex

The initial series is multiplied by the factor A~m©(A) appearing also as
an eigenvalue. When A is real, the application corresponds to a homo-
thetic transformation of factor A~mO(A).

Let us consider the general case where A is complex, A = peluJ. The
series xt — ptelu;t is multiplied by a complex number A~m©(A) = ce2^,
with c = p-™ | 9(A) | and 0 = ar^[A"m6(A)]. Thus
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Figure 3.3 Amplitude (p = l , c > l , 0 = O) and
Phase (p = 1, c> 1,0 ^ 0) Effects

Decomposing this complex series according to its real and imaginary
parts, and using the linearity of the moving average, we can see that
a series appearing in the form p£cos(u;£), respectively, pl sin(u;t) will be
transformed in cpl cos(a;£ + </>), respectively, cpt sin(ut + 0). A twofold
effect can be observed for these series:

(i) an amplitude effect by multiplying the modulus of xt by c,
(ii) a phase effect adding the term 0 which results in a change of the

time origin.

The amplitude effect modifies the height of the peaks in the series. The
phase effect is more complex; in fact, it introduces effects interpret able
as seasonal components (peaks or troughs) at dates where there were
not any (cf. figure 3.3).

When p = 1, the latter effect can in turn be partially eliminated by
choosing symmetric moving averages; hence the importance attributed
to them. Let us consider such an average

given the symmetry of the polynomial 6 ; since A = eiuj we get

The eigenvalue associated with the series xt = eiuJt is real and the ar-
gument 0 is equal to 0 or to TT according to whether this real number
is greater or smaller than zero. In the former case, 0 = 0, there are
no phase effects; in the latter, 0 = TT, there is a phase inversion, peaks
become troughs and vice versa. (We will see in what follows that this
phenomenon does not have any important consequences.)

Note that the amplitude effect turns out to be

O(eiuj) | =

The application UJ h-»| @(elu;) | is called gain of the moving average.
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Obviously, these results are applicable to real series of the form

xt = a cos tut,

or Xt = a sin u>t with a £ JR.
Even in the case of a symmetric moving average, the other eigenvectors

pteiujt w - t ] 1 p zfz \ are generally associated with complex eigenvalues.
Therefore, for these series, there exists a phase effect.

3.4 Transformation of a White Noise
by a Moving Average

We turn now to the ways in which the disturbance u can be transformed.
We assume that the ut are zero mean random variables, uncorrelated and
homoskedastic. To simplify the notation, we consider a centered moving
average

These new variables have zero mean since
m

E{u*t) = Y, W^t+i) = 0.
i= — m

3.4.1 Correlogram of u*

These variables all have the same variance equal to

The importance of the disturbance is lessened by the transformation if
residual variance reduction ratio is

a

i=—m

which can be interpreted as the capability of the moving average to
reduce the disturbance.

The transformed variables are correlated with each other. Thus, the
covariance between u^ and u^^ (h > 0) is equal to

m m

—rnj ——rn

2 v^m

0, otherwise.
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lm

Figure 3.4 Correlogram

Table 3.

0.4
-0.2
1.0

-0.7
-0.9
-0.3

.1

0
0
0

First

.8 0.

.8 -0.

.3 0.

Simulation

.0
1
9

-0.9
0.
0.

4
,8

-0.5
-0.7
0.8

: Values

-0.6
0.9
0.0

0.4
-0.5
-0.1

ofut

-0.9
0.5
0.2

0.1
-0.9
0.5

Note: The values should be read horizontally line

by line.

This covariance does not depend on t and becomes zero when h > 2m.
The previous results may be summarized in the correlogram which gives
the values of the correlations

P(h) =
7(0)'

as a function of h (cf. figure 3.4). These correlations do not depend on
the white noise variance a2.

3.4.2 Slutzky-Yule Effect

In this subsection we will propose an intuitive presentation of this effect.
The existence of nonzero correlations between adjacent values of the
process u* introduces a spurious effect called Slutzky-Yule effect.

The series u* will present more or less regular oscillations which may
suggest the presence of a seasonal component. The outcome would be a
wrong estimation of the other components. In order to better understand
this phenomenon, in tables 3.1 and 3.2 we consider two simulated series
of thirty observations each of a disturbance uniformly distributed on
[-1,-0.9,. . . , 0.9,1].

If we consider the graphical representation of the evaluation of ut we
obtain a very irregular shape depicted in figures 3.5 and 3.6.

Let us apply to each of these series the moving average defined by

u*t = [ut-2 + 2ut-i + 2ut + 2ut+i -
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-1

Table 3

-0.
0.
0.

.1 0.7

.8 0.6

.7 0.9

.2 Second

0.5
-0.9
-0.9

-0.3
-0.3
-0.9

Simulation:

0.
-0.
0,

.4

.1

.0

-0.
0.
0.

.1

.9
,6

-0,
-0.

Values

.2 0.0

.1 0.4
0.5 -0.5

ofut

0.
-0.
0.

.1

.5

.9

-0
0

-0

.2

.6

.7

Note: The values should be read horizontally line

by line.

Figure 3.5 First Simulation

Figure 3.6 Second Simulation

Table 3.3 First Simulation: Values of u^

-0.26
0.15

-0.07
0.25

-0
-0
0

.04

.01

.45

-0.16
0.07
0.56

-0.35
0.14
0.66

-0.45
0.07
0.50

-0.40
0.04
0.30

-0.32
0.02
0.19

-0
0

.20

.01
-0
0

.20

.05

Note: Since the moving average is of order 5, we cannot

compute 11% for the first two and the last two dates.

The values for u^ from the simulated series are reported in tables 3.3
and 3.4, with their graphical representations in figures 3.7 and 3.8.

The transformed series u^ has a more regular shape than the initial
white noise Ut. It shows oscillations which may be mistaken for a sea-
sonal phenomenon. Thus, although the series u* is not strictly periodic,
we see cycles appear especially in the second series. The local maxima
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Table 3.4 Second Simulation: Values of

0.20
0.37

0.06
0.14

0.01
-0.06
-0.14

0.22
-0.14
-0.26

0.04
0.00

-0.12

-0.01
0.19
0.01

-0.
0.
0.

01
22
26

-0.06
0.14
0.21

0
0

.05

.20
0
0

.25

.36

Note: Since the moving average is of order 5, we cannot
compute u^ for the first two and the last two dates.

-1

20

Figure 3.7 First Simulation

30

10 20 30

Figure 3.8 Second Simulation

are almost at the same distance from each other (the distance is of 6,
7, 4, and 6 periods). We can try to specify this effect by computing the
average period of these cycles. Let us define the average period r as
the average time interval separating two points where the series changes
signs, passing from a negative to a positive sign. We have r = \j[i where
H is the average number of the x-axis crossings per units of time. The
quantity /i = Pr(uJc < 0, u£+1 > 0) can be easily computed when the
disturbances ut follow a standard normal distribution

. = Pr(



64 Chapter 3

where a is the angle between the two hyperplanes
m m

^2 Oiut+i = 0 and ^^ 9iut+i+i = 0-
i=—m i= — m

The cosine of this angle is given by
sr^m— 1 /i r\

from which the value of \i can be derived as
arccosp(l)

" = — 2 ^ —
The average distance separating two upward crossings of the x-axis is
approximately

- 2n

arccosp(l)
The result just given provides a rather vague idea of these spurious

cycles. The distance between two crossings of the x-axis is fundamentally
random so that the results observed for a certain path can be different
from the result derived in (3.8). Thus, in our example

p(l) = 0.85, r = ^ — - « 11.3.
arccos0.85

For the first simulated series these distances r are around 11 and 15
while for the second around 6 and 10.

It is not possible to avoid this Slutzky-Yule effect. Therefore, one may
hope that the average period of spurious oscillations r be close to the
period of the seasonal component since these are strongly reduced in the
iterative procedure of the series. On the other hand, we note that these
spurious oscillations become negligible when there is a strong reduction
of the disturbance amplitude, that is when the residual variance ratio
(<7*2/cr2) is small. This reduction effect is visible when one considers the
examples and examines the original and the transformed series.

3.5 Arithmetic Averages

The simplest symmetric moving average example can be obtained as-
suming that it preserves the constants, that is, assuming that

(recall that it preserves the polynomials of degree 1), and that it mini-
mizes the influence of the disturbance. The coefficients can be obtained
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as a solution to the constrained minimization problem
771

min Y Of

S.t. ^ 6i = 1>
i=—m

which results in 8{ = 1 /(2m + 1), V i Therefore

X[ = (Xt-m + Xt-m+1 + • • • + Xt+m) /(2m + 1),

which corresponds to the usual arithmetic average. For the first four val-
ues of m, these means can be written in the adopted symbolic notation as

[1] - {[i]; [1]}, [3] = {[3]; [\, | ] } ,

[5] = {[5]; [\, \, | ] } , [7] = {[7]; [1, \, i , \\}.

3.5.1 Nullspace of the (2m+l) Order Arithmetic Average

The polynomial associated to this moving average is

0(A) = (1 + A + A2 + . . . + A2m)/(2m + 1)

~ (2ra+l)(l-A)*
The characteristic equation ©(A) = 0 admits as solutions the (2ra+l)-th
roots different from 1

The elements of the nullspace are thus of the form

? cos
27TJt . 27TJt \

h c2? sin
2m + 1 3 2m + l)

3 = 1

These are the periodic sequences of period 2m + 1 which are zero on
average over their period

st+i = 0, Vt.
i=—m

Given a seasonal component made by a zero mean periodic function
with an odd period, there always exists an arithmetic average capable
of setting it to zero.

3.5.2 Some Series Invariant to the Arithmetic Average

By construction, this average does not alter constant series. Since it is
symmetric, it also does not alter the polynomials of degree 1. On the
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contrary, this property is not maintained for the polynomials of degree
2. As an example, let us consider xt = t2

1 m

1 2m + 1 ^
i m

+ l

(2m
2m + 1

2 ra(ra+l)

The other invariant series can be determined by solving a difference
equation. Thus for a five-term arithmetic average, the characteristic
polynomial associated to such a difference equation is

6(A) - A2 = - (A4 + A3 - 4A2 + A + l ) .
5

This polynomial is divisible by (A — I)2 and

6(A) - A2 = \ (A - 1)2(A2 + 3A + 1).
5

The roots different from 1 are (—3 ± V/5)/2 and the corresponding in-
variant series are

xt = and xt =

3.5.3 Transformations of a Geometric Series

In order to evaluate the effects of the arithmetic average on other per-
iodic functions, we can compute the gain of such an average | Q{eluJ) \
with UJ G [0, TT). The value | @(eluJ) \ measures the amplitude effect for
periodic functions with period 2TT/UJ

I

2m + I
1 + e"" + ... + e

_ e{2m+l)iu

2imu>

2m + 1 1 1 - el

sin(2m •

2m-hi sin ^
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2n
5

Figure 3.9

4JTC

5
Gain Function

This function becomes zero whenever
2ibr

id =
2m + 1'

k = 1,2,...

We find again the series belonging to the nullspace of the moving average.
The periodic series with a frequency close to fc/(2ra+ 1) will be reduced
as well, given the continuity of | @(eluJ) |. As a; tends to zero, Q{eluJ)
tends to one; hence the property of preservation of certain trends.

The modification of the amplitude depends on the order of the moving
average as well; in particular, we note that as m tends to oo, Q(eluJ) tends
to zero, for LJ ^ 0. This is a consequence of the fact that if we apply an
arithmetic average with a large number of terms to any series, this will
tend to make it constant. When m = 2 the gain function has the form
shown in figure 3.9.

Since the arithmetic average corresponding to m = 2 is symmetric,
there is no phase effect for sine-wave functions with UJ included between
zero and 2TT/5 or larger than 4TT/5 and there is phase inversion if u is
included between 2TT/5 and 4TT/5.

3.5.4 Transformation of a White Noise Process

The covariance j(h) = cov [u^u^h) — 0 whenever h > 2m + 1. For
values of h included between 0 and 2m, it is equal to

1 o 2m 4- 1 — ht — G
(2m + I)2 '

i=h-m v '

The variance reduction for the disturbance term is therefore

7(0) 1.*2

72 2m + 1"



68 Chapter 3

I •
2m+ 1 h

Figure 3.10 Autocorrelation Function

Table 3

m 1

r 7.4

.5 Examples

2 3

9.7 11.8

of]

4

12.9

Values

5

14.5

of r.

6

15.7

The autocorrelation function

P(h) =
0<h<2m,

7(0)
0, otherwise,

corresponds to a straight line as in figure 3.10.
Since the first-order autocorrelation is close to 1, the Slutsky-Yule

effect introduces spurious regularities with a large period. This period
is approximately given by

2?r 2TT
T =

arccos
2m

2m+l arccos(1 -

In table 3.5 we give values of r for different values of m.

3.5.5 How to Cancel Seasonal Components with Even Periods

The arithmetic average with 2m + 1 terms allows periodic functions of
period 2m + 1 which are zero on average over their period to cancel out.
Notice that the seasonal components introduced correspond in practice
to an even period 2m. In particular for a quarterly series such a period
is 4 and for a monthly series it is 12. If we take an arithmetic average
on 2m terms, namely

\ i + )
or

X2t = lT-{xt-r
Zm

•Xt+m),
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it does not involve symmetry around the date t. In order to reintroduce
such a symmetry, let us consider the series denned as

xt ~ 2 ^ 1 * ~*~ X2t)

1 (I 1 (38)
— ~ I TT t̂-m + Xt-m+l + . . . + Xt+m-1 + nXt+

2m \2 2
The associated polynomial for this moving average is

1 1 , _ 1 - A2

2m 2V ' ' 1-A '
This moving average sets to zero all periodic functions of period 2ra
for which the sum of seasonal coefficients is zero and also the series
st = (—1)**. Like the arithmetic average, this moving average preserves
the polynomials of degree 1. Moreover, to give an idea of the order of
magnitude of the variance reduction ratio and the average period of the
oscillations induced by the Slutsky-Yule effect, consider that the former
is equal to 0.08 while the latter is equal to 15.3, for m = 12.

3.6 Averages Derived from the Arithmetic Averages

The arithmetic averages have the advantage of being easy to compute.
Combining them allows us to derive a quite large family of moving aver-
ages with a simple structure of coefficients and to achieve good approx-
imation to more sophisticated averages.

3.6.1 Composition of Arithmetic Averages

Let us assume that we are interested in constructing a simple moving
average which preserves the polynomials of degree 1 and sets to zero
the seasonal components of period 4 (quarters) with a linearly varying
amplitude of the type

st =Ai sin nt/2 + B\ cos nt/2 + B2 cos nt

+ A3t sin TT£/2 + B%t cos nt/2 + B±t cos nt.

We can consider the composed average of two arithmetic averages of
order 4 denoted by 4 chosen in such a way that the resulting moving
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average M be centered

M=^(L + I + F + F2)^{L2 + L + I + F)

= -!-(L3 + 2L2 +3L + 4I + 3F + 2F2 + F3).
16

In symbolic notation

M = [ 4 ] 2 = {[7];1[1,2,3,4]}.

This moving average M sets the function st to zero; in fact, the charac-
teristic equation associated to the nullspace is equal to (l-f-A+A2-f A3)2 =
0 and allows as solutions the fourth roots of the unity different from 1,
each with multiplicity 2. Note that the average is centered, symmetric,
and the sum of its coefficients is equal to 1: therefore, it preserves the
polynomials of degree less than or equal to 1. Also, the variance reduc-
tion ratio for the disturbance is equal to 0.17 and the average period of
the oscillations r is approximately equal to 15.

3.6.2 Spencer Averages of Order 15 and 21

The compositions of the arithmetic averages like the ones examined in
the previous section do not preserve the polynomials of a degree larger
than 1. We need to modify them if the set of possible trends includes
such polynomials. The Spencer averages are an example of such a gener-
alization. Their main characteristics are that they are moving averages
which:

(i) set to zero the seasonal components of periodicity 4 with a linearly
varying amplitude;

(ii) set to zero the seasonal components of periodicity 5 (this last con-
dition allows some flexibility in the period of the seasonal compo-
nent);

(iii) preserve the polynomials of degree smaller than or equal to 3; and
(iv) have a relatively simple structure of coefficients.

The first condition on the nullspace is easily satisfied taking the con-
volution of the arithmetic averages of order 4 and of an arithmetic av-
erage of order 5. Let us denote it by Mi = [4]2[5]. This condition will
be satisfied by any moving average of the form M = MiM2, where M^
is any moving average, because N(M) D M(Mi). We know that M\
preserves the polynomials of degree less than or equal to 1. It does not,
though, preserve the polynomials of higher degree. In order to show
this, we can write its expression as a function of S

L~l(I - L)2 = L + F - 21
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so that the arithmetic average of order 5, [5], can be written as

[5] = \{L2 + L + / + F + F2) = \{82 + 58 + 5/),

and the composition of two arithmetic averages of order 4, denoted by
[4]2 can be written as

(L2 + L + I + F)(L + / + F + F2)/16 = (<53 + S82 + 2O<5 + 16/)/16.

Finally, Mi can be written as

Mi = / + (18O<5 + 156<52 + 65<53 + 13<S4 + <S5)/80.

In order for the average Mi to preserve the polynomials of the third
degree, we need that L5(Mi — /) can be divided by (/ — L)4, or, equiva-
lently, that the expression of Mi — I as a function of 6 does not contain
the first order term. It is easy to obtain this condition by multiplying
Mi by / — 180/80<5 = I — 9/4<5. We can write the new average as

M3 = Mi(J - 9/46) = [4]2[5](7 - 9/46).

In order to simplify the moving average coefficients, we attach the term
3(52/4 to the term (/ — 9/45) which still satisfies the conditions about
the nullspace and the invariant polynomials. We then get

--8- -82

4 4

, „ / - 3L 2 + SL + 4/ + 3F - 3F2

= Mi 4
called the Spencer average of order 15. In symbolic notation we can
write

M - {[15]; ^ [ - 3 , -6 , - 5 , 3, 21,46,67, 74]}. (3.9)

For this average the variance reduction ratio is equal to

a*2

- = - « 0.19.
2

The average period of the cyclicality induced by the Slutsky-Yule effect
is

r ^ 15.9.

Analogously, the twenty-one term Spencer average is given by

M = [5]2[7](J - 4<52 - 3<54 - 86/2)

= [5]2[7](-L3 + L + 2/ + F + F3)/2.

In the adopted notation we have

M = {[21]; 3 ^ [ - 1 , - 3 , - 5 , - 5 , -2,6,18,33,47,57,60]}.
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Figure 3.11 Correlogram

The variance reduction ratio is equal to
*2

and the average period of the induced cyclically is

r«21 .3 .

The correlogram associated to this average has a damped sine-wave
shape and becomes zero for h > 21 (see figure 3.11).

We will not present here the Spencer averages to adjust monthly series
for which the reader should refer to Kendall and Stuart (1968).

3.7 Moving Regressions

3.7.1 Local Polynomials

Modeling a trend by low degree polynomials can be very restrictive.
The trend which measures the medium- (long-) term evolution has the
property of showing little changes of variation over short periods. When
this happens, it could be approximated by polynomials. Upon a suitable
definition of local polynomial, a better representation could be achieved
by choosing functions locally resembling low degree polynomials.

Definition 3.6: A series (xt,t G —oo,..., — 1,0,1,..., +00) can be rep-
resented by a polynomial of degree p on any interval of length 2ra + 1
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if fitting a polynomial of degree p on each of these intervals (t — m,t —
ra + 1, . . . , £ , . . . , £ + m) by the least squares method shows that the es-
timated and actual values coincide for the central point of the interval,
i.e., x% = x%.

The important difference with respect to the fit of a polynomial of degree
p for the whole observation period (by the regression method presented
in chapter 2) is that the estimated coefficients of the polynomials depend
on the interval and therefore are different across intervals.

Let us examine how we can write the condition

xt = xt.

The values of the series considered on the interval are

xt+i, i = —m, — m + 1, . . . , ra.

and the polynomial of degree p can be written as

a0 + a\i + a2i
2 + . . . + api

p.

The coefficients will be estimated by the method of ordinary least squa-
res, i.e., minimizing

771

i - ao - o,ii - a2i
2 - . . . - api

p}2.

If we denote by do, d i , . . . , ap the coefficient estimators of the polynomial,
the estimated values of the series are

£t+i = d0 + aii + . . . + dpi
p.

The condition xt = xt boils down to xt = d0. Since the least squares
estimators are linear functions of the observations, do can be written as

where the 0's are real numbers not depending on t.
The series is therefore locally interpretable by a polynomial of degree

p if its value at point £, xt is equal to the quantity Yl^L-m ^ixt+i'i this
quantity can be considered as the value at time t of a centered moving
average of order 2ra + 1 with coefficients Oi. This moving average leaves
unchanged the series locally interpretable as a polynomial of degree p.
Moreover, it can be shown that this moving average is symmetric (cf.
the example below).
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Table 3.6 Characteristics of
Some Moving Averages

p

3
3
3
3

5
5

m

2
3
6
7

6
7

<x*>2

0.49
0.33
0.17
0.15

0.28
0.24

r

6.5
8.4

13.0
14.3

10.3
11.5

i3)

3.7.2 An Example
Let us apply this procedure, estimating the coefficients when m = 2 and
p = 3. The quantity to be minimized can be written as

2

i=-2

The estimators ao, ai, a2, a3 are obtained by solving the system of normal
equations

2 2 2 2 2
<2o 2_^ 1 + ^1 2_^ i + d2 2_^ ^ + ^3

i=-2 i=-2 i=-2 i

a0
i2 + d2 ^ i3 + a3 ^ i4 =

i=-2 z=-2 i=-2 i=-2 i=-2

2 2 2 2 2

^ i2 + ai ^ i3 + a2 ^ i4 + a3 ^ i5 = ^
i=-2 i=-2 i--2 i=-2 i--2

2 2 2 2 2

a0 __
i=-2 i=-2 i=-2 i=-2 i=-2

All sums of odd powers such as Yli=-2 ^ ^2i=-2 ̂  anc^ s o o n ' a r e

to zero. The system can be rewritten as

5a0 +10d2 =
10ai +34a3 ' =

10a0 +34a2 =

34ai +130a3 =
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We obtain the expression for a® using the first and the third equations
2

fio = Yl (17 ~ 5i2) W 3 5 ,
i=-2

or

a0 = — (Sxt-2 + 12xt_i + 17xt + 12xt+i - 3xi+2) •

As a general result, do will be obtained by solving a subsystem the right-
hand side elements of which depend on xt+i and xt-i in a symmetric
fashion. Therefore a0 will always be a symmetric moving average.

Moving Averages Preserving Third Degree Local Polynomials
They are given by

m - 2 : M = {[5];-l-[-3,1

m = 6 : M = {[13]; [-11,0,9,16,21,24,25]},

m = 7 : M = {[15], [-78,-13,42,87,122,147,162,167]},
1105

m = 10 : M = {[21]; [-171,-76,9,84,149,204,249,284,309,324,329]}.
OUOc/

Moving Averages Preserving 5th Degree Local Polynomials.
They are given by

m = 6 : M = {[13]; [110,-198,-135,110,390,600,677]},

m = 7 : M = {[15]; [2145,-2860,-2937,-165,3755,7500,
46189

10125,11063]},

m = 10 : M = {[21]; [11628,-6460,-13005,-11220,-3940,6378,
1 1 J ' 260015L ' ' '

17655, 28190, 36660, 42120, 44003]}.

The characteristics of some of these moving averages in terms of their
power to reduce the residual variance and the period of the induced cycle
are given in table 3.6.

3.7.3 Some Properties of the Averages
Preserving the Local Polynomials

(i) An average preserving the local polynomials of degree p preserves
in particular the polynomials of degree p since the estimated values
coincide with the initial series.
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(ii) Since the constant series are preserved by these averages, the sum
of the coefficients is always equal to 1.

(iii) The averages computed for the local polynomials of even degree
p = 2q are the same as those computed for the polynomials of odd
degree p = 2q+l. This is the outcome of a very peculiar form of the
normal equations. Let us consider the case m = 2, p = 3. All that
is needed for the determination of d0 is just the first three normal
equations, that is those corresponding to the case m = 2, p = 2.

(iv) The residual variance reduction ratio is easy to compute, since it
is equal to

^*2 m

Let us show this equality. The fitted series on the interval (t —
m,..., t + m) is obtained from the original series through an
orthogonal projection matrix P

-m \

= P

The matrix P is square of order 2ra + 1 and its (m + l)-th row
corresponds to the elements (#- m , . . . , 9o,..., 0m). Since it is sym-
metric and idempotent, its (m + l)-th column is

/0-m\

\ 6m

and the product of its (ra + l)-th row and column is the (ra + l)-th
diagonal element of the matrix P, which can be written as

771

] P of = e0.
i=—m

(v) The cancellation of the seasonal component has not been
taken into consideration in the construction of the previous moving
averages. This problem is generally solved ex-post, leading to the
choice of particular values of m.
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3.8 Moving Averages Derived from
Minimizing the Reduction Ratio under Constraints

There exist many moving averages which leave certain trend compo-
nents unchanged and set to zero certain seasonal components. How can
we choose within this set of averages? In the previous sections we have
considered either averages with simple coefficients (Spencer averages) or
averages whose size was given a priori (moving regression). Other more
interesting criteria can be proposed. The customary constraints relate
to the trend and the seasonal components. If we want to take into con-
sideration the disturbance term then a possible choice criterion is based
on the minimization of

_*2
G

In order to express this problem in mathematical terms, let us assume
that the set of trend components forms a vector subspace of size k of the
space formed by the time-series, generated by z1,..., zk; by the same to-
ken, let us assume that the set of seasonal components be a subspace of
size / generated by s 1 , . . . , sl. The linear transformation moving average
M must satisfy the conditions

Mz* = z\ i = l , . . . , A;

Msj = 0 , j = 1 , . . . , / .

If these conditions can be reduced to a finite number p of indepen-
dent affine constraints on the 0j, the set of moving averages of order
2ra + 1 > p satisfying these conditions forms an affine subspace M. of
size 2ra + 1 — p.

This average will minimize the reduction ratio if the coefficients 6{ are
solutions to (Bongard, 1962)

m

min Y Of

s.t. M eM.

Thus, we need to minimize the norm of the coefficient vector, knowing
that it must belong to A4. The solution to this optimization problem is,
therefore, the orthogonal projection of the origin on M (cf. appendix
3.14).

If, for example, we are looking for an average of this kind which sets
to zero the seasonal component of period 12 (/-ll) and preserving the
polynomials of third degree (k=4), there are four constraints for the
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trend

and eleven constraints for the seasonal component

0; i = l 6,

0; i = l 5.

The average must have at least 2ra 4-1 = 15 elements. Choosing this or-
der will correspond to a subspace M containing a single point; that will
be the solution and we will not have applied the reduction ratio crite-
rion. If we increase the number of terms of the average to 2ra + 1 = 19,
M has size 4; there are four degrees of freedom to better choose the
coefficients 0*.

The obtained average is as

M = {[19]; —"— [-267, -122,23,168,313,458,603,336,336,336}.

(3.10)
It is characterized by

%- =0.13,

r = 12.4.

3.9 Distribution of the Moving Average Coefficients

3.9.1 Smoothing [Macaulay (1931)]

Whenever we use a moving average to isolate the trend component, this
average must reduce the size of the original oscillations in the series.
The transformed series shows a smoother profile. The moving averages
preserving the polynomials of degree 1 and having positive coefficients
have this property. Actually, in this case, the sequence of coefficients
can be considered as a probability distribution and the point

is the center of mass for the points

[t + i, #t+i]> i — —m,..., m.
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x,x*

Figure 3.12 Original and Transformed Series

e,
1/13

Figure 3.13 Arithmetic Average on 13 Points

e,

Figure 3.14 Spencer Average on 15 Points

Such an average reduces the size of the concavities and convexities in
the original series (cf. figure 3.12).

The transformed series [t,s^] may not always be interpreted as a center
of mass. In fact, the moving averages which preserve local polynomials
often have some negative coefficients. The problem is now to find another
criterion ensuring that the transformed series is smooth.

Let us consider the series
_ J 0, if t^ 0,

Xt = j i , if* = 0.

Its transformation by a moving average is given by

0, i f t < - r a - l ,

x[ — I 0u if —ra < t < m,

0, if t > m + 1 .
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Figure 3.15 Average on 13 Points Preserving Local Polynomials of Degree 2

Figure 3.16 Average on 19 Points Obtained as a Minimization of a*2/a

This transformation is smooth if the function providing the coefficients of
the moving average is smooth. We could then see how these coefficients
behave as a function of their index. In figures 3.13 to 3.16 we provide
the profiles corresponding to some of the moving averages previously
studied. Among the four averages presented in the figures, only the
Spencer average does not show any discontinuity in correspondence to
the extreme values of the coefficients.

Generally, the "smoothness" of the coefficient distribution curve can
be measured as

This quantity is zero when the 0*'s are on a parabola; in the general case,
Q measures the deviation between the parabola and the actual curve for
the ft.

3.9.2 Henderson Averages

The suggestion by Henderson was to choose among the moving averages
of order 2ra + 1 which preserve the polynomials of degree 2, the one
minimizing Q.
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The coefficients are obtained as solutions to the constrained minimiza-
tion problem

s.t. < > , iOi = 0,

i29i = 0.

Making use of the results presented in the appendix, we can see that
solving for the coefficients we get

_ 315 ((n - I)2 - i2) (n2 - i2) ((n + I)2 - i2) (3n2 - 16 - 1H2)
1 ~ 8n(n2 - l)(4n2 - l)(4n2 - 9)(4n2 - 25) '

(3.11)
with n = 77i-|-2. These averages are symmetric and the sum of the
coefficients is equal to 1 by construction. For example, the Henderson
average with fifteen terms (ra = 7, n = 9) is equal to

1 [-2652, -3732, -2730, 3641, 16016, 28182, 37422, 40860]}.
193154

Such averages do not, in general, eliminate the seasonal components. A
good choice of m may allow a good approximation of this constraint.
Thus, a Henderson average with 33 points gets rid of 98.5% of the sea-
sonal component of period 12. An average on 37 points gets rid of 95%.
The number of terms needed will be much higher if we decided to impose
the elimination of the seasonal components in the minimization problem.

For quarterly series (period 4) we adopt a five-term Henderson average

M = {[5]'^[-21'84.160]}-

3.10 Repeated Moving Averages

3.10.1 Summary of the Properties of the Main Averages

Appealing moving averages must respond to certain criteria, as we have
shown: preservation of the trend, elimination of the seasonal compo-
nent, high capability of reducing the residual variance, smoothness of
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Table 3.7 Synthesis of the Properties of the Various Averages

Average Preservation Seasonality Reduction Series Simplicity
of the Trend Set to 0 Power Smoothing of the

Coefficients

Arithmetic 0 +4- 4- — +4-

Spencer 4- + + 4- 4-4-

Preserving

Local Polyn. ++ 4- 4- - 0

Henderson + 4- + ++ +

Constrained
Minimization + + +4- - 0

Note: Properties of the average: (very strong ++); (strong +); (neutral 0);
(weak - ) .

the coefficients, simplicity of the coefficients, elimination of the phase
effect, and so on.

Each moving average previously presented was built to satisfy certain
criteria, and its behavior with respect to other criteria has been exam-
ined afterwards. Each average responds to specific criteria. Combining
these averages with each other will allow the derivation of moving aver-
ages satisfying a larger number of criteria. Before giving an example of
such a combination, we recall in table 3.7 the relevant properties of the
main averages.

3.10.2 The Program Census XI1

The program Census XI1 (Shiskin, Young, and Musgrave, 1965; Laro-
que, 1977) in its quarterly version is articulated in the following steps.

First Trend Estimation We compute an approximation of the trend
applying an arithmetic average eliminating the seasonal components of
order 4

so that the first estimate of the trend is

Z = MQX.
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First Estimate of the Detrended Series We subtract the estimated
trend from the initial series

s -\- u — x — z = (I — Mo)x.

First Estimate of the Seasonal Component A five-year moving
average of the type

Mi = {[17]; ^[1,0,0,0, 2,0,0,0,3]},

is applied to s^Tu. Then we apply the average

/ - M o = {[5]; i [-1,-2,6]}

to the series thus obtained so that the sum of seasonal coefficients is
approximately zero. The first estimate of s is given by

s = ( J -Mo)Mi(J-M o)a;

= Mi( / -M 0 ) 2 x .

First Estimate of a Seasonally Adjusted Series We obtain a sea-
sonally adjusted series by subtracting the estimated seasonal coefficients
from the orginal series

=x-s= (I - Mi(J - M0)
2) x.

Second Estimate of the Trend We apply to XSA a five-term Hender-
son average

which provides a second estimate of the trend

I = M2xSA = M2 (/ - Mi(J - M0)
2) x.

Second Estimate of the Detrended Series It is obtained by sub-
tracting z from the original series

iTu =(I-M2(I- Mi(/ - M0)
2)) x.

Second Estimate of the Seasonality A seven-year moving average
M3 is applied to the seasonal coefficients

M3 = {[25],^[l,0,0,0,2,0,0,0,3,0,0,0,3]}.
10

The result is transformed by / — Mo so that the sum of the coefficients
is approximately zero. We have

s = (I - M0)M3 (/ - M2[I - Mi(J - Mo)
2]) x.
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Table 3.8 Coefficients of the Average I-M

Oi

0.029 14 0.016 21 0.000
-0.097 15 -0.005 22 0.002
0.038 16 -0.010 23 0.000
0.025 17 0.000 24 0.000
0.012 18 0.008 25 0.000

5 0.055 12 -0.053 19 -0.002 26 0.000
6 0.034 13 0.021 20 -0.030 27 0.000

0
1
2
3
4

0.856
0.051
0.041
0.050
-0.140

7
8
9
10
11

The seasonal component is a moving average. Its order can be computed
using the formula to derive the order of a product

order(I - M 0) 2 = 2 order(I - Mo) - 1

= 10 - 1 = 9,

order[I - Mi (I - M0)2] = order(Mi) + order (I - M 0) 2 - 1

= 17 + 9 - 1 = 25,

order {I - M2[I - MX(I - M0)2]} = order(M2) + 2 5 - 1

= 30 - 1 = 29,

order M3{I - M2[I - MX(I - M0)2]} = order(M3) + 2 9 - 1

= 25 + 29 - 1 = 53,

order(M) = order(I - Mo) + 53 - 1 = 5 + 53 - 1 = 57.

The average has twenty-eight quarters on each side besides the current
quarter. Since all averages involved are symmetric, M is symmetric
as well. Table 3.8 shows the coefficients of the average I — M used
to pass from the original series to the seasonally adjusted series. The
distribution of the coefficients of this moving average can be represented
graphically as in figure 3.17.

The troughs of the curve correspond to the quarters of the same type
as the current one. The weights are negligible for i > 16.

The gain function (shown in figure 3.18)

6j cos JUJ

clearly shows the preservation of the trend (| Q(eluJ) | is close to 1 at low
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Figure 3.17 Distribution of the Coefficients of I - M.

Figure 3.18 Square of the Gain of / - M.

frequencies) and the elimination of the seasonal components of period 4
(| 6(ei27r/4) |« 0,1 6(ei47r/4) |« 0,.. .)•

Note that there is a monthly version of the program Census XI1 and
that both versions can be adapted to the multiplicative case. The latter
case can be treated by simply applying the additive version to a logarith-
mic transformation of the series. Also, there exist options allowing the
number of working days, the outliers, etc. to be taken into consideration.

3.11 Treatment of the Extreme Points in the Series

When the index of the series under analysis does not span from -oo to
+oo, but can take on a finite set of values t = 0, . . . , T, the application
of a centered moving average M of order 2M + 1 allows the derivation
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of the transformed series just for the dates

t = 771, . . . , T — 771.

In particular, we are not able to derive a seasonally adjusted series for
the most recent values. It is therefore necessary to extend the method
in order to include the treatment of extreme points in the series. We
can think of two approaches.

1 For the recent data xt, t = T — ra+1,..., T, use noncentered moving
averages of the type

m-1

These averages Mj which allow the transformed series to be derived, are
different from each other in that they involve a different number of terms
of the series used in the adjustment but also for the value of the various
coefficients. The use of such moving averages will lead to readjust the
seasonally adjusted values each time that a new observation is available.
Thus the value at time T of the transformed series denoted by x^ will
be equal to x^0 if the data are available up to time T, to x^i if they
are available up to time T + m — 1. A stable value will be computed only
starting from time T + m, after which x^ will always be equal to

2 A second approach consists in extrapolating the observed series xt,
t = 0 , . . . , T to obtain some forecast xt of xt for t = T + 1, . . . , T + m.
Generally, xt is computed as a linear combination of the observed values
xt, t = 0 , . . . , T; we can then apply the centered moving average M to
the extrapolated series. The derivation of the extrapolated series must
be performed again every time that we have a new observation available.
For example, let us consider the transformed value of XT according to
this approach

m
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0.5

0
84

Figure 3.19 Coefficient Distribution for

The forecast XT+J is denned as a linear combination of the observed
values of x; let us consider it as

o
XT+3

 = z2 bijXT+i, j = 1, • •., m.

We have
m 0

XT =
j=1 z=—m

from which we see that this second approach is equivalent to apply-
ing noncentered moving averages in the same way as the first method
proposed.

We could have modified both approaches so as to have all moving
averages with the same number of terms. In such a case, x^ would be
defined as

o
XT,0 = 22 ^

i=-2m
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e,

0.5

- 1 2

Figure 3.20 Coefficient Distribution for M\2

e.

0.5

-84 0 84

Figure 3.21 Coefficient Distribution for

and 4 _ m + 1 as
m - 1

i = — m— 1

Note that in this case we would need to modify the extrapolation ex-
pressions in the second approach.

An important aspect of this methodology is the choice of the various
noncentered averages Mo, Mi , . . . , Mm_i. In this respect, the second
approach seems more manageable because it implies the derivation of
optimal forecasts of future values of x with the methods described in
chapter 6 (cf. Cleveland and Tiao, 1976; Dagum, 1979). For a given
sequence of moving averages, it is possible to study their properties ex
post; that is how the coefficients, the variance reduction, the gain evolve.
We will present such an analysis for the case of the monthly version of the
seasonal adjustment program Census XI1 (Wallis, 1982). The symmetric
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Figure 3.22 Square of the Gain for Mo

Figure 3.23 Square of the Gain for

Figure 3.24 Square of the Gain for M84

average of this program computes the seasonally adjusted value using
observations spanning over seven years, on each side, that is, eighty-four
months. In order to extend the seasonal adjustment we need then to
define eighty-four noncentered moving averages. The distributions of
the coefficients of Mo, Mi2, and M84 are given in figures 3.19, 3.20, and
3.21. Note that M84 is symmetric. The visual inspection of the gain
function for these three moving averages is somewhat interesting. We
can see that the gain functions of noncentered averages are quite different
from the ones of symmetric averages, in particular for frequencies close
to the annual cycle.

The ratios for the residual variance reduction are given in table 3.9.
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Table 3

Moving
Average

.9 Variance

MQ MI

0.93 0.84

Reduction Ratios

M2 Ms M\

0.79 0.79 0.80

Mi 2

0.72

M24 MSQ

0.74 0.78

M84

0.78

11 /
Figure 3.25 Original and Estimated Trend with the Regression Method

3.12 Structural Change

One of the main advantages of the moving average method is that it is
better suited than regression to treat abrupt changes in the series. Let
us consider a simple example given by the series

Xt = J 2 t - l l + (-l)*, if t > 12 .

The trend, defined by

(t if t < 11,
Zt = i 2t- 11 if t > 11 ,

is linear for each of the sub-periods t < 11 and t > 11, but it is clearly
not linear for the whole period. The seasonal component st = (—1)*
retains the same form for the whole period.

Let us assume that we do not suspect the presence of a structural
break in the trend and use the regression method with a linear model
of the type xt = at + b + c(—iy. We would estimate the series free of
seasonal components (here coinciding with the trend) as xsA,t — at -\-b
(cf. figure 3.25).
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— " XSA

Figure 3.26 Observed and Estimated Trend by the Moving Average Method

Historical series
Seasonally adjusted series

1968 1969 1970 1971 1972 1973

Figure 3.27 Passenger Traffic January 1968-December 1973

If we use a moving average method, for example an average of the
type

which preserves the polynomials of degree 1 but eliminates the seasonal
component st = (—1)*. The estimated seasonally adjusted series will be

1 1 1
+ +

will t>e equal to the trend for all values of t except for t = 11.
Looking at figure (3.26) it is clear that for this example the latter

method gives a better approximation. The choice of a moving period
for the computations (rather than a fixed one in the regression) allows
one to eliminate the effects of a structural change rapidly.
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Seasonally adjusted series
Trend

1969 1970 1971 1973 t

Figure 3.28 Passenger Traffic January 1968-December 1973

700

1963 1979 t

Figure 3.29 Evolution of Seasonal Coefficients for August

3.13 Application to the Passenger Traffic Series

The additive and multiplicative versions of the program Census XI1
have been applied to the series for train passenger traffic presented in
chapter 1. The results are fairly close to each other for the two versions,
so that we report here only those of the additive version. In figure 3.27
we present the original and the seasonally adjusted series; in figure 3.28
the seasonally adjusted series and the trend estimated by Census XI1
for the period January 1968-December 1973. It is clear that the trend
gives a better idea of the changes in the medium-term evolutions than
in the regression method where the estimated trend was a line.

By the same token, the method leads to a higher degree of flexibility
in the estimation of the seasonal components. In the regression method,
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Table 3.10 Seasonal Coefficients

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

1963 -418 -543 -343
1964 -441 -543 -337
1965 -400 -530 -330
1966 -388 -504 -313
1967 -376 -473 -294
1968 -362 -450 -266
1969 -348 -425 -245
1970-342 -404 -224
1971 -338 -386 -212
1972 -330 -376 -199
1973 -322 -360 -194
1974 -316 -350 -189
1975 -315 -342 -186
1976 -309 -344 -181
1977 -306 -341 -176
1978 -302 -343 -172
1979 -300 -341 -168 55 30 411 637 30 -216 -181 -259 302

they were chosen constants. The moving average approach allows one to
get varying coefficients according to the year of reference and to study
their evolution.

As an example, we give the values of the seasonal coefficients for the
month of August in figure 3.29 and table 3.10. The inspection of the
coefficients shows that they are positive (corresponding to a higher than
average demand in this period), and that they decrease with time. The
growth of traffic in the month of August as a function of time, conse-
quence of both a medium-term growth (in the trend) and of a decreasing
seasonal component, is less pronounced than the growth in other months;
in fact, between 1963 and 1979 the traffic for the month of August grew
at about a 14% rate whereas the average growth had been 60% (cf. table
3.11).

3.14 Appendix
Derivation of the Averages Defined in 3.8 and 3.9

The coefficients of these averages are obtained as a solution to a con-
strained minimization problem of the type

min fl0
e

s.t. R'0 = a
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Table 3.11 Seasonally Adjusted Series

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Jan.

2168
2121
2070
2198
2226
2196
2146
2196
2346
2414
2403
2539
2796
2976
3012
3122
3613

Feb.

2103
2143
2170
2144
2063
2242
2275
2227
2221
2410
2472
2598
1770
3012
2927
3200
2985

Mar.

2163
2137
2100
2173
2174
2126
2226
2229
2332
2351
2473
2610
2782
2985
2972
3478
3040

Apr.

2101
2124
2187
1973
2179
2092
2025
2338
2203
2408
2543
2602
2825
2727
2910
3274
3212

May

2036
2216
2116
2189
2174
2173
2173
2277
2333
2394
2358
2573
2847
3002
3054
3120
3361

June

2079
2128
2275
2162
2141
2147
2156
2383
1827
2324
2556
2630
2885
3020
3053
3100
3271

July

2152
2235
2271
2176
2100
1867
2170
2278
2307
2349
2454
2680
2946
3051
2998
3100
3300

Aug.

2124
2248
2179
2268
2186
2106
2234
2320
2327
2396
2501
2807
2947
2939
3026
3137
3254

Sep.

2112
2215
2175
2212
2174
2136
2049
2288
2322
2411
2439
2759
3038
2942
3032
3193
3065

Oct.

2141
2157
2150
2204
2163
2157
2266
2346
2354
2377
2437
2745
2960
2995
3152
3134
3266

Nov.

2072
2217
2204
2188
2098
2201
2260
2304
2399
2368
2519
2527
2932
3023
3153
3166
3302

Dec.

2277
2124
2206
2155
2323
2172
2321
2289
2289
2460
2591
2596
2977
3016
3077
3310
3239

Note: Seasonal adjustment by the additive version of Census XI1.

where fl is a symmetric, positive, definite matrix of order 2ra + 1, R is
a (2ra + 1, k) matrix, and a is a vector of size k.

Hence for the Henderson averages we have

ffne =

1 —m m \
1 -ra + 1 (m-1)2

0
1

m

1
0
1

m2

a =

\ 1 m m2 /

This minimization problem is solved by considering a vector of La-
grange multipliers 2A of order k searching for an unconstrained minimum
of

OTtO - 20'RA.
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The first-order condition can be written as

OB - R A = 0 =» 0 = fi^RA.

Replacing 0 by this expression in the constraint R'0 = a we get

a = R/O-^RA => A = (R fi^R)^

and
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3,15 Exercises

Exercise 3.1: Show that the eigenvectors of a moving average are of
the type xt = P(£)A* where P{i) is a polynomial in t, and A is a complex
number. Is the reverse true?

Exercise 3.2: Verify that necessary and sufficient conditions for a mov-
ing average to preserve the polynomials of degree 1 are such that

?m+i = 1 and
i=—m

Do they imply that the moving average is symmetric?

Exercise 3.3: Show the expressions of A2, A 3 , . . . , Ap as a function of
the lag operator L.

Exercise 3.4: Verify that a moving average preserving xt = t5 preserves
all polynomials of degree less than or equal to 5 as well.

Exercise 3.5: Which conditions can be imposed on the coefficients to
eliminate the phase effect for the series Xt = 2teluJt, u £ 12?

Exercise 3.6: Derive the smallest order moving averages preserving
the polynomials of degree 1 and eliminating the seasonal component of
order 4

Exercise 3.7: Show that any moving average can be decomposed as a
function of the powers of the forward difference V and of the backward
difference A knowing that L = I — A and that F = V — / .

Exercise 3.8: Show that the symmetric moving averages can be de-
composed as functions of the powers of the operator L + F.

Exercise 3.9: Let M and M be two averages such that Af (M) D

Af(M). Show that it is possible to find an average M such that M =
MM. Analyze Af (M).
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Exercise 3.10: Compute the quantity Q = 5^(A Oi) f°r a moving
average of order 2ra + 1 the coefficients of which are given by

if |z |>ra + l,
(2m-hi)"1, if \i \< m.

Show how Q varies with m.



Exponential Smoothing Methods

4.1 Simple Exponential Smoothing

4.1.1 Introduction

We have a time series available, that is T real numbers ( X I , . .

indexed by t = 1 , . . . , T. Suppose we are at T and we want to forecast
the value xr+k\ let us denote such a forecast by xr{k) where k is the
horizon of the forecast.

Definition 4.1: The value xr{k) given by the simple exponential
smoothing method is

T - l

xT(k) = (l-(3)J2FxT_J, (4.1)
3=0

with (3 called smoothing parameter 0 < /3 < 1. *

Formula (4.1) rests on a simple idea: we are assuming that the farther the
observations are from the date T at which we compute the forecast, the
less they should influence it. Moreover, we consider that this influence
decreases exponentially. We easily see that the closer the smoothing
parameter is to 1, the more influenced the forecast is by observations
distant in time. Also, the forecast is more rigid in the sense that it is

* Note that sometimes the smoothing parameter is denoted by (1 — /?).
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not very sensitive to short-term fluctuations. On the other hand, the
closer the parameter (3 is to zero, the softer is the forecast, that is it is
influenced by recent observations.

We need to note that, if (3 is chosen independently of /c, xr{k) does not
depend upon k; for this reason, from here on, we will use the notation
XT rather than xr(k).

4.1.2 Other Interpretations

From formula (4.1) we can deduce that

xT = 0xT-i + (1 - (3)xT. (4.2)

The forecast XT appears as a weighted average between the forecast
XT-i done at time (T — 1) and the last observation XT, the stronger the
weight given to this observation the weaker is (3.

Expression (4.2) can be written

xT = xT-i + (1 - P)(xT - £ T - I ) , (4.3)

where XT can be interpreted as the forecast at the previous date XT-I
corrected by a term proportional to the last forecast error. The expres-
sion (4.3) is the one used in explanatory linear models to define shifting
(or drifting) expectations: once XT is solved for, it implies a distributed
lag structure of the Koyck type (expressed in (4.1)).

We can also note that expressions (4.2) or (4.3) provide a simple up-
dating procedure for forecast where the information supplied by the past
is summarized in XT-I-

If we want to use formulas (4.2) or (4.3) we need to initialize the
algorithm. The simplest way is to take x\ = #i; however, it is clear that
the chosen value for x\ has little influence on XT when T is larger.*

The interpretation of such a procedure is useful because it will allow
us to propose some generalizations of the method. Let us consider the
minimization problem

T-l

mm^^^T^-a)2, (4.4)
j=o

the solution to which is

The computational simplicity has been a strong argument in favor of the
simple exponential smoothing for a long time; even with increased computer
speed such an argument is still important when the number of series consid-
ered is large.
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Hence, for T large enough

XT ~ Q"

XT can be interpreted as the constant which fits the series the best in a
neighborhood of T. The expression "neighborhood" translates the fact
that in the expression (4.4) the influence of the observations decreases
as we get far from the date T. Note that (4.4) can be interpreted as a
weighted regression on a constant, with weights exponentially decreasing
with the distance from T.

The latter interpretation shows that the method can be used only
when the series can be approximated by a constant in a neighborhood
of T. In particular, the method is to be avoided when the series exhibits
a nonconstant trend or some fluctuations (these problems will be treated
in more detail in chapter 5).

4.1.3 The Choice of the Smoothing Parameter

A further problem to analyze is the choice of j3. In practice, the choice
of /? is oftentimes based on subjective criteria of forecast "rigidity" or of
"flexibility" (cf. section 4.1.1). There exists, however, a more objective
method which bases the choice of the constant upon the minimization
of the forecast error sum of squares at dates 1, . . . , T - k0 for a given
horizon ko

T-k0

t=l

Thus, for ko = 1 we need to minimize

t-i

3=0

First of all, it is interesting to note that in general the influence of the
choice of (3 on the results is not too strong for fairly large intervals of (3.
In order to show this point, we will refer to an example taken from Cox
(1961). Let us suppose that xt is a random variable such that

E(xt) = 0, V integer t,

var (xt) = E(xt) = 1, V integer t,

cov(xuxt+h) = E(xtxt+h) = Plhl, V integers t,h,
with | p |< 1. This set of random variables will be treated in detail in

chapter 5 as a first-order autoregressive process.
The fc-step ahead forecast error with the simple exponential smoothing
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method can be measured as

,p) = E(xT+k-xT(k)f, k>0,

where

J=0

which differs from (4.1) because the finite sum has been replaced by its
limit; this modification is a minor one if T is sufficiently large.

We have then

E (xT+k - xT(k))2 = E (x%+k) - 2E (xT+kXT{k)) + E {x2
T(k)) .

Postponing to chapter 5 the discussion of why the expectation operator
and the infinite sum operator can be interchanged, we can consider the
three terms on the right-hand side as

F (T2 ) - 1& [xT+k) - J-J

E {xT+kxT(k)) = E \ xT+k(l -f3)J2&XT-
3=0

oo

j=o

(1 - 0p) •

( oo oo

j=0 i=0

j=0 i=0

(1
1

(1
-a2

-py

3=»

>
4-

2 ( 1 - .

3=0

3)2pp

2 = 0

h=l

1-0*
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Dp(l,P)

0.6

Chapter 4

p = -0.5

= 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1 Forecast Error as a Function of f3 and p

Hence, we can write

2 ( 1 - / ? ) /

2(l-0)(0p-pk-0pk

1 + 0

In particular for k = 1 we have

0)(l-0p)

Analyzing this function of 0 in the interval (0 < 0 < 1) we note that

dlogDp _ p + 20p-l
d0 0)(1-0PY

If p is in the interval (1/3,1) the function has a minimum at ^-^; if p is
in the interval (—1,1/3), the function is decreasing on [0,1]. Therefore,
the optimal (3 noted as (3 is

0 =
1 if - 1 < p < 1/3,

if 1/3 < p < 1.

Representing the function of (3 on a graph for different values of p (e.g.,
p = -0 .5 ; p = 0; p = 0.4; p = 0.7; p - 0.9) we get figure 4.1.



Exponential Smoothing Methods 103

We can see that for negative values of p the error is high and that
for positive values of p (here p = 0.4; p = 0.7; p = 0.9), the curve is
fairly flat if (3 is smaller than 0.7 or 0.8. Hence, we have verified on this
example that if p is negative, the method gives bad results; moreover,
if we think that p is definitely positive, the best values of f3 are 0.7
or 0.8. These are the most frequently used values (cf. Brown, 1962,
chapter 8).

4.2 Double Exponential Smoothing

4.2.1 Rationale for the Method

In the previous section, we have shown that the single exponential
smoothing was suitable for a series which could be approximated by
a horizontal line near T. A straightforward generalization can be ob-
tained if we assume that a series yt can be approximated by a line in a
neighborhood of T

Vt = CLI + (t-T)a2.

This suggests we use as a predictor the function

xT(k) = a1(T) + ka2(T), (4.5)

where ai(T) and a2{T) are the values of a\ and a2 minimizing the
expression

T- l

Q=Y1 PJ(xT-j ~ ai + a2j)
2. (4.6)

j=0

The expressions of a\(T) and d2(T) can be derived by taking partial
derivatives of Q. We have

3=0

dQ T l

— 2 y j(3J (XT—J — CL\ -\- &2J) •

Equating these partial derivatives to zero we get
T- l T- l T- l

3=0 j=0 3=0

T- l T- l T- l

j=0 j=0 J=0
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where replacing finite sums with infinite ones, that is
T~i . i

V with X - P

^ ' w i t h

3=0

we get

(1 - P) Y, PJXT-j - oi + a2~T

(4J)

XT-i-ax/3

Denoting the smoothed series by
t-i

3=0
and the doubly smoothed series by

3=0
we see immediately that

T-l T-j-1

j=0 i=0

T-lT-j-1

a - p? E E (
T-l

h=0
T - l

3hh/3hxT-h + (1

The equations (4.7) can then be written as

S i ( T ) - a 1 + a 2 — ^ - = 0 ,

(4-8)

«2(T) - (i-0)81(T)-a1l3 + a 2 ^ - ^ = 0.
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Solving for a\ and 0,2 we get

a1(T) = 2s1(T)-82(T),

(1 - 0) (4-9)

&2(T)={-^-(Sl(T)-s2(T)).

We can also express si(T) and S2(T) as a function of ai(T) and a2(T)

Sl(T) = a,(T) -—^—a2(T),
(4-10)

4.2.2 Updating Formulas

In equation (4.9), we have expressed d\ (T) and a2 (T) as a function of
si(T) and s2(T), in order to obtain very simple updating formulas. In
fact, from the definition of si(T) and s2(T) we derive

s2(T) = (1 - (3)Sl(T) + 0s2(T - 1)

= (1 - 0)2xT + (3(1 - 0)8l(T - 1) + 0s2(T - 1).

Using (4.9) we get

fiiCT) = 2(1 - 0)xT + 2(3Sl(T - 1) - (1 - (3)2xT

= xT(l - /32) + 0(0 + l)si(T - 1) - /?S2(T - 1).

Using (4.10) this expression becomes

cn(T) = xT(l - /32) + P2 (oi(T - 1) + a2(T - 1));

then, using (4.5) with k = 1

oi(T) = ai(T - 1) + a2(T - 1) + (1 - (32) (xT - i r _ i ( l ) ) .

By the same token, for a>2(T) we have

a2(T) = ̂ y ^ (/3(1 - 0)xT + P2S!(T - 1) - (3s2(T - 1))

= (1 - 0fxT + 0(1 ~ P)'i(T - 1) - (1 - d)s2(T - 1)

= (1 - 0fxT + (3(1 - 0)&i(T - 1) - (32a2(T - 1)

= (1 - (3)2xT - (1 - (3fax(T - 1) + (20 - (32)a2(T - 1),

where

a2(T) = a2(T - 1) + (1 - /?)2 (xT ~ * T
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T-\ T
Figure 4.2 Forecast Lines

Finally, we get the updating formulas

d\\l ) — CLiyI — 1J ~r ^ 2 ^ — 1J + (̂ 1 — fj ) \XT ~ XT-

a2(T) = a2(T - 1) + (1 - (3)2 (xT - ^ T - I ( I ) ) •

In order to understand these formulas, let us assume that x\
perfectly at time T — 1, i.e., that XT-I(1) = XT- We have

was forecast

(4.12)
d2(T)=a2(T-l).

The forecast lines are the same at time T — 1 and at time T (cf. figure
4.2).

To obtain (4.11), we are adding terms (proportional to the one-step
ahead forecast error at the previous date) to the change in the origin im-
plied by the updating terms (4.12). Note that, in order to use formulas
(4.11), we need to have initial values for the sequences di(t) and a2(t).
In general, we choose ai(2) = x2 and a2(2) — x2 — x\.

4.3 The Generalized Exponential Smoothing

4.3.1 Fixed Transition Matrices

Let us try to generalize the methods described in the first two sec-
tions fitting a function in a neighborhood of T. In particular we will
propose a function, more complicated than an affine one, which may
have a periodic component so that it could be applied to seasonal se-
ries. We also want to keep an eye on the relative simplicity of the
computation involved. This problem was solved by Brown (1962) who
introduced the notion of a vector function with a fixed transition ma-
trix.
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Definition 4.2: We define the vector

hit)'

with integer t as a vector function with a fixed transition matrix, if there
exists a regular matrix A such that

f(t) = Af (t - 1), V integer t.

The method of generalized exponential smoothing consists of fitting a
function (j)(t — T) to the series Xt in a neighborhood of T, with

and to use this fitted function for forecasting purposes
Let us show first that the class of functions (f)(t) so defined includes

the most common functions.

Constant Function : <j>(t) = a We get the constant function by posing
f(t) = 1, and A — 1. With such a function the method of generalized
exponential smoothing coincides with the method of simple exponential
smoothing.

Linear Function : <f)(t) = a\ -f a^t We get the linear function by pos-
ing

so that

A = | \ °1), since (]) = (\ J ) ( V
With this function the method of generalized exponential smoothing
coincides with the double exponential smoothing.

Polynomials of Degree m We take as a basis the polynomials of the
type

m!
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Following the generalization of the Pascal triangle, we have

Hence the vector

f(*) = ,

\/m+l(«).

has a fixed transition matrix of the type

/ I 0 0 ... 0 \
1 1 0 ... 0
0 1 1 ... 0

Vo 1 /

Sine-wave Functions The functions <p(i)
be obtained by taking

f sin ujt\

and in this case, we have

cos UJ sin a;

— sin uo cos UJ

+ 0,2 COSujt can

Exponential Function </>(t) = aeat is obtained with f(t) = eat; in
this case, A = ea.

4.3.2 Description of the Method

Fitting the function
n

<t>(t - T) = ^ a,/,(t - T) = f \ t - T)a

in a neighborhood of T is equivalent to
T- l

nun -J ~ f (-i)a)2 . (4.13)
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Let us introduce the following notation
/xT-

/n(0)

and
/ I 0

o /r1

\ o o ... p-(T-
From regression theory, it is clear that the regression of y on the columns
of F, associated with the covariance matrix Ct formally leads to the same
minimization problem as in (4.13). Therefore its unique solution is

&(r) = (F'n^Fj'Vn-y
Denoting F 'n^F by M(T) and F ' O ^ y by z(T) we have

a(T) = MCO-yT). (4.14)
The matrices M(T) and z(T) can be written as

T-l

M(T) =

T - l

3=0

(4.15)

From expression (4.15), we can see that, in general, M(T) converges to
a finite matrix M, as T —> oo. If we limit ourselves to the common
functions 0, the only terms of M(T) which could pose a problem for
convergence are of the type /3je~2a:j, which are divergent if (3 > e2a.
Notice that, in an economic context, the functions of the type eat are
introduced to express an increasing trend. Therefore, a > 0 and (3 < e2a.
We can then replace M(T) with its limit, assumed to be a regular matrix,
obtaining

a(r) = M"1z(T), (4.16)

with

= f y f(-j)f(-j).
3=0
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Recall that the forecast of xt+k made at time T is

xT(k) = f(k)k(T). (4.17)

If we want to update a(T), we have

T- l

j=0
T-l

xr/(0) +

(4.18)
^f(-j - l)xr-i-i

J=0

r - 2

3=0

= xTf(0)+PA-1z(T-l).

Therefore, using (4.16), we obtain

a(T) = i r M ^ f (0) + PM'1 A^M^T - 1),

or

a ( T ) = g x T - f G a ( T - l ) ,

withg = M-1f(0), (4.19)

G = /3M"1A-1M.

The matrices g and G are independent of T, and can be computed once
and for all. Expression (4.19) can be written under a different form. In
fact

j=0
oo

h=l

i(M-f(0)f'(0))A'.

We get

G = ( I -
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and
a(T) = gxT + A'a(T - 1) - gf'(l)a(T - 1)

which generalizes (4.4) and (4.11).
Obviously, an important practical problem is the choice of f. The

nature of the series (trend, seasonal component) may give some guide-
lines, but a certain degree of arbitrariness (much less present in the
Box-Jenkins techniques introduced in chapter 6) exists.

4.4 The Holt-Winters Methods

4.4.1 The Nonseasonal Method

The methods proposed by Brown, presented in sections 4.2 and 4.3, can
be seen as a generalization of the simple exponential smoothing obtained
by fitting a horizontal line locally.

Holt and Winters (cf. Winters, 1960) followed a different approach.
Like the double exponential smoothing, the nonseasonal Holt-Winters
method is based on the assumptions that fitting a line of the type
yt = a\ + (t — T)a2 in a neighborhood of T, is preferable to fitting a
horizontal line. This generalization leads to the updating formula (4.2);
more precisely, Holt and Winters propose updating formulas for a\ and
a2 of the type

a^T) = (1 - a)xT + a (ai(T - 1) + d2(T - 1)), 0 < a < 1, (4.20)

a2(T) = (1 - 7) (ai(T) - ai(T - 1)) + ja2(T - 1), 0 < 7 < 1. (4.21)

Formula (4.20) can be interpreted as a weighted average of two pieces of
information on the "level" of the series a\ at date T, the observation XT
and the forecast made at time T — 1. Formula (4.21) can be interpreted
as a weighted average of two pieces of information on the "slope" of the
series a2 at time T, the difference between the estimated levels at time
T — 1 and T, and the estimated slope at time T — 1.

In order to use (4.20) and (4.21), we first need to initialize the sequence
(ai(t),a2(t)). In general, we can take ai(2) = x2 and a2{2) = x2 — x\.
The forecast is then

xT(k) = al{T) + ka2(T).

This method is more flexible than the double exponential smoothing
method, since it introduces two parameters (a and 7) instead of one
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(/?). More precisely, the equations (4.11) can be written as

a^T) = (1 - (32)xT + P2 (O!(T - 1) + &2(T - 1)),

&2(T) = a2(T- 1) + {±=-^- (ax(r) - a x ( T - 1) - o a ( T - 1)),

which coincide with equations (4.20) and (4.21) if we take

The counterpart to this flexibility lies also, evidently, in the choice of
the two parameters, instead of one. This choice is possibly arbitrary
through subjective procedures (a and 7 close to one imply an extremely
"smooth" forecast, since the weight given to the past is very strong);
alternatively, we can minimize

T-l

min V" {xt+1 -xt(l))
2 .a7 tt

4.4.2 The Additive Seasonal Method

Let us suppose that the series can be approximated in a neighborhood
of Tby

ax + (t-T)a2 + su

where st is a seasonal component.
Let us suggest the following updating formulas for ai, a2, and st

ai(T) = (1 - a)(xT - sT-j) + a (ai(T - 1) + a2(T - 1)), 0 < a < 1,

d2(T) = (1 - 7) (cuiT) - ai(T - 1)) + 7«2(T - 1), 0 < 7 < 1,

Sr = (1 - *) (xT - ai(T)) + foT-j, 0 < 5 < 1,
where j is a constant indicating the number of "seasons," i.e., j = 12 for
monthly observations, j = 4 for quarterly observations. The forecast is

( ai(T) + fca2(T) + 5T+fc-j if 1 < fe < s,

ai(T) + ka2{T) + sT+fc-2j if s < k < 2s,

and so on. The expressions (4.22) can be interpreted in the same way
as equations (4.20) and (4.21). The main problem is the one of choosing
a, 7, and 6, the methods for which are very similar to those mentioned
previously.

In order to apply the formulas (4.22), we need to have initial values
for the sequences ai(t), a2{i)^ and St. We can suggest, for example, for
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the case j; = 4

1 1 1 1 1
ai(4) = -x2 + -x3 + -X4 + -x 5 -f -x6 ,

a2(4) = ai(4)-ai(3),

with

a2(4),

4.4.3 The Multiplicative Seasonal Method

According to this method, the underlying approximation to the series is

The updating formulas become, then

ax(T) - (1 - a)-P— + a {dx(T - 1) + a2{T - 1)), 0 < a < 1,

a2(T) - (1 - 7) (ai(T) - ai(T - 1)) + 7«2(T - 1), 0 < 7 < 1,
XT

sT = (1 - 6)^7^7 + «5T_j, 0 < S < 1,

and the forecast

{ (cn(T) + ka2(T)) sr+k-j if 1 < fc < j ,

(ai(T) + fca2(r)) 5T+fc-2j ^ j < * < 2j,

and so on. In the case j = 4, we could take as initial values for &i and a2,
the initial values of a\ and a2 previously computed. The initial values
of si, 52, S3, S4 can be obtained dividing the observations by the linear
trend computed from ai(4) and a2(4).

With the exception of the last one, all the methods examined in this
chapter are special cases of the forecasting techniques due to Box and
Jenkins (1970). The advantage of these techniques is that they allow to
select the most appropriate method for the series under analysis among a
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great variety of possible methods, whereas the methods presented here
are suitable only to a specific kind of series. Last, the Box-Jenkins
techniques do not allow an arbitrary choice of the smoothing parameters.
On their part, these techniques require a higher degree of complexity in
their implementation. *

The optimality aspects of the methods presented in this chapter will be
discussed later. For the moment, relevant references on this subject are for
the simple exponential smoothing, Muth (1960); for the Brown techniques,
Cogger (1974); for the Holt-Winters methods, Harrison(1967), Granger and
Newbold (1986, p.170), Theil and Wage (1964), and Nerlove and Wage
(1964).
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4.5 Exercises

Exercise 4.1: In the simple exponential smoothing, we can consider
that the "mean lag" between the observations and the forecast based on
them

T-l

3=0

is measurable by
T-l

i=o
Simplify this expression of r as a function of /? and T. What happens
to the expression when T —> oo?

Exercise 4.2: Verify that the functions

or

4>(t) = (ai + a%t) sinujt •

can be written in the form
4

2 = 1

where the vector f (t) has a fixed transition matrix.

Exercise 4.3: Verify that the updating formulas for the simple expo-
nential smoothing, and for the double exponential smoothing are special
cases of formula (4.20).

Exercise 4.4: Simple exponential smoothing - Comparison with the
optimal linear forecast. Let us assume that the hypotheses in Theorem
4.1c are satisfied.

1 Show that the orthogonal projection of xr+k on the whole subspace
spanned by [x{, Xi+i,..., XT, 1], V i < T in a L2 sense is

x^(k) = pkxT.

Compute D*{k) = E (xT+k - x%(k))2.



116 Chapter 4

2 Draw on the same graph £)*(1) and Dp (l,/?*(p)) as a function of
p. Recall that /3*(p) indicates the optimal value of /?, that is

l i f - l < P < i

if § < p < 1.

For which values of p is there an equality between D*(l) and
Dp (l,/?*(p))? What kind of a process is {xt}, then?

Exercise 4.5: Simple exponential smoothing - Optimality conditions.
Let us suppose now that

t-i

» Ao 7̂  0, t > 0,

where the process {e*; integer t} is an independent process such that
E(et) = 0 and var (et) = a^.

1 Is the process {xt} stationary? Show that we can always normalize
A = 0 and that we can put xt in the form

t-i

3 = 1

How can we compute the <j>j 's as a function of the Xj 's?
2 Compute E (#r+i I x i , . . . , XT). For which values of Â  do we have

T-l

E(xT+i I x i , . . . ,xT) = (1 - /?) 5 ^ ^

Compute now i£ (x^+fc | #i, • • •, ^T) and XT —



II
Probabilistic and Statistical Properties

of Stationary Processes





Some Results on the Univariate Processes

As an introduction to the forecasting techniques suggested by Box and
Jenkins (chapter 6), some concepts and results from probability theory
and from the theory of stochastic processes need to be introduced. In this
chapter, we adopt a simplified presentation of the main concepts, con-
fining ourselves to the univariate case. This will allow us to understand
the main aspects of AutoRegressive Moving Average models (ARMA)
and AutoRegressive Integrated Moving Average models (ARIMA.) More
general results which can be applied to the multivariate case will be dis-
cussed in chapter 8 and beyond.

5.1 Covariance Stationary Processes

5.1.1 The Set of Square Integrable Variables

The set L2 of square integrable variables is analyzed in any standard
textbook of probability theory. Rigorously speaking, L2 can be denned
as the set of the equivalence classes of random variables which satisfy
E(x2) < oo and differ only on a set of probability zero. Here, we will
limit ourselves to recalling the simplest properties of this set.

The set of square integrable real random variables E(x2) < oo, is a
normed linear space Ft, the norm of which is equal to || x \\= (E{x2))
For two variables in this space, x, and y, it is possible to compute the
expected value of their product E(xy). The mapping (x,y) »-• E(xy)
defines a scalar product on this space.
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Figure 5.1 Orthogonal Projection

Definition 5.1: Two variables x and y, such that E(x2) < oo and
E(y2) < oo are said to be orthogonal with respect to L^ if E{xy) — 0.

Definition 5.2: A sequence of variables xn, satisfying E(x2
l) < oo con-

verges to a variable x with respect to L2 (or converges in square mean)
if || xn — x ||—• 0 as n —> 00.

The existence of a concept of orthogonality and of convergence on a
space of square integrable variables allows us to introduce the concept
of orthogonal projection. More precisely, let us consider a family of
variables Zi, i £ I such that E(zi) < 00, Mi. We will define H(zi) the
smallest closed subspace of square integrable variables containing all the
affine combinations of variables Zi (and their limits with respect to L2),
indexed over the integer set.

Given a variable x, E(x2) < 00, we can look for an element x* G H{zi)
which approximates it, that is, satisfies

|| x — x* ||= min || x — z ||, with z G H(zi). (5.1)
z

Such an element exists. It is called affine regression of x on (z{). x* is
characterized by the fact that x — x* is orthogonal to all the elements of
H(zi) with respect to the space L2 (more simply, to the z^s and to the
constant 1

E(x-x*)z = 0, MzeH(zi). (5.2)

Although the space of square integrable variables has an infinite di-
mension, we resort to a representation in JR3 (as in figure 5.1) in order
to be able to visualize the orthogonal projection x*. The orthogonality
condition is represented by a square angle.

With a finite number of variables zi, i = 1 , . . . , n, we can write the
affine regression in an explicit way by using the orthogonality condition
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(5.2). In fact
n

x* — a0 + y^djZj,
i=l

which satisfies
E(x 1) = E(x* 1),

E(x Zi) = E(x* Zi),

E(x z{) =

n v \ i v~^^ 771/
PJ\X\ Z=- CLQ ~T~ / • -1 QjjJ-j\

E(x z^ - E(x)E(zi) =

for i = 1,. . . , n. The vector of coefficient is given by

where var (z) (assumed nonsingular) is the (n x n) variance-covariance
matrix of (zi,..., zn), whose (i,j)-th generic term is cov (^, Zj). a0 can
then be obtained using the first equality. Finally, we get

x* = E(x) + cov (x, z)(var {z))~1{z - E(z))

where cov (x, z) is the row vector whose entries are cov(x,^), i =
l , . . . ,n .

The concept of affine regression is related to the one of conditional ex-
pectation. Under some additional conditions (normality or independence
of the innovations in the linear processes), the two concepts coincide (cf.
section 6.4.1 and Monfort, 1980, chapter XXII.E). From now on, we will
therefore use the notation x* = E (x\z) to indicate an affine regression.

5.1.2 Covariance Stationary Process

A discrete time stationary process is a sequence of real random vari-
ables (xt, t integer). The distribution of such a process is described by
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the distributions of any finite subfamily xtl, • . . , xtn, n positive integer,
£1, . . . ,tn integers (Kolmogorov Theorem.) In the case when each vari-
able xt satisfies E(xl) < oo (second-order process), the distribution of
the process can be partially summarized by the expected values of the
variables E(xt) and by their covariances cov (xti xt+h)- In general, these
quantities depend on t.

Definition 5.3: A process is covariance stationary if

(i) V integer t, E(x%) < oo;
(ii) V t, E(xt) = m (independent oft);
(Hi) V integer £, /i, cov (xt,xt+h) — l(h) (independent oft).

In what follows, the term "stationary" will always mean "covariance
stationary"; we will omit also the specification that its index belongs to
the set of integer numbers. Such a process admits a distribution which
is invariant to changes in the indexing of time for its two first moments.
In particular, the variables Xt have the same variance equal to 7(0) (the
property known as homoskedasticity).

The function 7 : h —• 7(ft), h integer, is called an autocovariance
function. This function is:

(i) even: V h, i(-h) = j(h);
(ii) positive, since

3 = 1 k=l

V positive integer n, V a^a^ real, V tj integer.

Theorem 5.1: If(xt) is a stationary process, and if (a ,̂ z integer) forms
a sequence of absolutely summable real numbers with

+00

Y^ \ai\< +°°>
i= — 00

the variables obtained through the expressions
+00

yt =

define a new stationary process.
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PROOF: The series formed by aiXt-i is convergent in square mean since
+00 +00

E 11 «*-* 11 = E
i= — 00 z= —00

+00
2\l/2

-m2) '

The expression JZi^oo aixt-i ls a n element of L2, and ?/t so defined is
square integrable. Relying on the results in the appendix for a justifi-
cation of the interchange between the expected value and infinite sum
operators, the moments of the process {yt} can be written as

( +00 \ +00

y aixt-i = y aiEyxt-i)
_ / _
+00

cti = my (independent of t);

4-00 +00

cov(2/t,2/t+/i) = cov ( Y aixt-i, Y aoxt+h-j
k i= — 00 j = — oo

+00 +00

a^ajcov (xt-i,xt+h-j)

+00 +00

i= — 00 j = — oo

(independent of t). a

Example 5.1: An example of a stationary process is given by the white
noise, a sequence of random variables (et) with mean 0, E(et) = 0,
serially uncorrelated, 7(/i) = 0,V h ̂  0, and with the same variance
var (et) = o~2 = 7(0). The path of one white noise can be very different
from another. In figures 5.2 and 5.3 we give examples of univariate white
noises, where the observations et correspond to random draws from the
same distribution, discrete in the first case, continuous in the second
one.

In figure 5.4, instead, we give an example of a white noise where
the variables et are zero mean, unit variance, and independent, but are
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- l

Figure 5.2 Draws from 1/2(5(_1) + 1/26(1) (6X Point Mass at x)

Figure 5.3 Draws from the Uniform Distribution [-1,1]

,-1

Figure 5.4 Draws from: (l - \) 6{0) + ^ (<5(^} + <$(_

drawn from different distributions. They can take values either of 0 or of
±\/t. Since we need to compensate for the increasing values zb\/t which
the noise can take, we need to assign a smaller and smaller probability
to it, namely l/2t. Therefore, as t increases, the path often coincides
with the t axis, except at rare points where it takes a large value.

Definition 5.4: // (xt) is a covariance stationary process, we will call
linear innovation of the process at time t, the variable xt — x\, where x\
is the affine regression of Xt on (xs, s < t — 1).

x\ can be interpreted as the best affine approximation of xt which is a
function of the past of the process. It is an optimal forecast of xt based
on the information set It-\ = {xt-i,xt-2, • • •}• We can denote it also by

xt_i(l) =t_i xt = E (xt | h-i) •
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12

Figure 5.5 Correlogram for the Process in Example 5.2

The linear innovation is the part of xt uncorrelated with its past; it can
be interpreted as the forecast error on xt, when the forecast is made at
time t — 1. It can be shown that the innovation process (xt — x*) is a
white noise if the process (xt) is stationary.

5.1.3 Autocorrelation

The autocovariance function gives information on the variability of the
series and on its time links. If the only aspect of interest is the latter one,
we can limit ourselves to the computation of the successive correlations.

Definition 5.5: The autocorrelation function is defined as

p{h) = WY

p(h) measures the correlation between xt and Xt + ft, since

y/wai(xt)vai(xt+h) ~ ^7(0)7(0) ~ 7(0)'
Like the autocovariance function, the function p(ft) is also even and
positive. Moreover, it satisfies the condition p(0) = 1. This function is
often represented in a graph for positive values of ft (since it is even).
This graphical representation is called a correlogram.

Example 5.2: From a white noise process {et} with variance cr2, let us
consider the stationary process {xt} defined as

xt = et ~ ct-12.

Its autocorrelation function is

2a2, ifft = 0,

= { -a2, if ft = ±12,

0, otherwise.
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We can derive the autocorrelation function as

{ 1, if ft = 0,
-\, if ft = ±12,
0, otherwise.

The correlogram is depicted in figure 5.5.
If we consider m successive observations xtlxt+i,..., xt+m_i of the

process, we can introduce the concept of an autocorrelation matrix for
the vector (xt,xt+i, •.. ,xt+m-i)' as

p(2) ... p(m-l)\
p(l) ... p(m — 2)

R(m) =

, p ( m - l ) p (m-2) p (m-3) ... 1 /

From the result that the covariance operator is Hermitian positive, we
can see that the function p is also positive and this implies that any
symmetric matrix R(ra) is positive definite. The matrix R(ra) can be
written as

p ( m - l ) \

R(ra) =
R(ra - 1)

yp ( r a - l )

where the upper block diagonal element of order m — 1 is the matrix
R(ra — 1). Since a symmetric matrix is associated with a positive
quadratic form if and only if its principal minors are positive, we can
derive the following theorem.

Theorem 5.2: det(R(ra)) > 0 V integer m.

The successive autocorrelations are thus subject to a number of con-
straints

(i) det(i?(l)) > 0 <̂> p(l)2 < 1 (which is a classical property of the
correlation coefficient).

(ii) det(R{2)) > 0 <̂  (1 - p(2)) (l + p(2) - 2p(l)2) > 0. Since p(2)
is a correlation coefficient smaller than 1 and given the classical
property, we have that p(2) > 2p(l)2 - 1. Therefore, if the correla-
tion of order 1 is high, namely close to 1, so is also the correlation
of order 2. We cannot have a sudden change of value between p(l)
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- l
Figure 5.6 Domain of Admissible Values for p(l) and p(2)

and /?(2), when p(l) is high. In particular, the process cannot have
a zero autocorrelation of order 2, p(2) = 0, unless | p(l) |< l/\/2-
The domain of admissible values for p(l), p(2) is given in figure
5.6.

5.1.4 Partial Autocorrelation

Linear Forecasts as a Function of Memory Size Let us consider
a stationary process x for which the autocorrelation matrices R(ra) are
assumed all nonsingular for integer m. We are interested in the best
linear affine prediction of Xt based on the K previous values (K is called
memory size)

Xt-l,Xt-2,...,Xt-.K'

In order to simplify the notation, let us assume a zero mean for the
process. The prediction is then

E(xt | xt-i,...,xt-K) = a1{K)xt-i + ... + aK(K)xt-K, (5.3)

where the vector a.(K) — (ai(K),... ,a^(i^)) ' of the regression coeffi-
cients is given by

(5.4)

Theorem 5.3: The regression coefficients on the past are linked to the
regression coefficients on the future in the sense that

E(xt | x t + i , . . . , z t + x ) = ai(K)xt+i + ...
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PROOF: The vector of regression coefficients is given by

P(K)

using the fact that the autocorrelation function is even. •

We can use this proposition to study the way in which the regression
coefficients vary with the memory size K. Let us note first that on the
basis of (5.3) we can obtain an expression for the projection of xt on the
past K — 1 values

E(xt | x t _ i , . . . , x t _ x + i ) = ai(K)xt-i + . . . + aK-i(K)xt-K+i

+ aK(K)E(xt-K

Using the definition of the coefficients dk(K) and theorem 5.3 we can
derive
K-\ K-\ K-\

^2 ak(K - l)xt-k = ^T ak(K)xt-k + aK(K) ^2 aK-k(K - l)xt-k.
k=i fc=i k=i

The final relationship among the regression coefficients is given by the
following theorem.

Theorem 5.4: We have

ak(K) = ak(K - 1) - aK(K)aK.k(K - 1), k = 1,. . . , K - 1. (5.5)

This formula allows one to get the terms ak(K), k = 1 , . . . , K - 1 start-
ing from the regression coefficients corresponding to a shorter memory
size K — 1 once CLK(K) is known. To complete the recursive algorithm,
we need to find the expression of the coefficient ax{K) as a function of
the values ak(K — 1), fc = 1 , . . . , AT — 1. Considering the last line of the
expression (5.4) we can write

p(K - l)ai(K) + ... 4- p(l)aK-i(K) + aK(K) = p(K)

aK(K) = p(K) - (p(K -
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Taking into consideration the recursive formula (5.5) we have

aK(K) = p(K)

( K-\ K-l \

]T P{K - k)ak(K - 1) - aK(K) £ p(k)ak(K - 1)
fc=i fc=i /

a (K) =

(5.6)

Definition 5.6: The recursive system (5.5) and (5.6) is called Durbin's
algorithm, with the initial condition ai(l) =

This algorithm allows for the recursive computation of the various re-
gression coefficients avoiding the inversion of the correlation matrices

contained in the expression of the regression coefficients (5.4).

Example 5.3: Let us consider the case of a moving average process
xt = et - 6et-i, where et is a white noise process with variance cr2, and
6 is a real number.

We have

^ = O, i f h > 2 .

Expression (5.6) becomes then for K > 2

-KiW-i(^-i)
aK{K)= 1 - p(l)ai(K - 1) •

On the other hand, from (5.5) we get

ai(K) = ai(K - 1) - aKWaK-^K - 1).
These two equations allow the recursive computation of

aK = (ai(K), aK(K)),
i.e., the two regression coefficients at the extremes from which the other
values can be derived.

Partial Autocorrelations We can now give a simple interpretation
of the central role played by the coefficient

Theorem 5.5: The coefficient CLK(K) is equal to the coefficient of cor-
relation between

Xt - E(xt | Xt-i,...,X
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and

Xt-K - E(xt-K | Xt-i,---

It is defined as the partial autocorrelation of order K, noted as r(K).
r(K) = CLK{K) measures the linear link between xt and xt-K once the
influence of intervening variables Xt-i, • •., xt-K+\ has been removed.

PROOF: Regressing (5.3) on # t - i> . . . ,xt-K-\-i and subtracting from
(5.3) we get

E(xt | Z t_ i , . . . ,£ t _K) - E(xt | xt

= aK(K)(xt-K ~ E(xt-K

hence
cov (g, j)

aK(K) = ——
var (yj)

where

f = E(xt | xt-i,...,xt-K) - E(xt

^ = Xt-K ~ E(xt-K | X t _ i , . . . , £ t _

The result is derived by noting that

cov (xt - E(xt | x t _ i , . . . , x t _K) , ^ ) = 0,

and that

var (xt - E(xt \ xt-i, • • • ,xt-

n

Theorem 5.6: T/ie autocorrelation function (p(h)) and the partial au-
tocorrelation function (r(h)) are equivalent.

PROOF:

(i) We have already seen how it is possible to compute the regression
coefficients a,k(K) (in particular CLK(K)) recursively as a function
of the autocorrelations. Let us remark that on the basis of for-
mula (5.4), the coefficients dk(K), k = 1 , . . . , K are just functions
of p(l),..., p(K), and do not depend on higher-order autocorrela-
tions.

(ii) Conversely, we can show by induction that the correlation p(K) is
a function of r ( l ) , . . . ,r(K). This proposition is true for K = 1,
since we have (cf. 5.4) a i ( l ) = r ( l ) = p(l). Let us assume that it
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is true for K — 1. From (5.4) we have

ai(K) \ /p(K-iy

« • ( * - 1 ) I i I + (
\p{K-l).

and
/ CL\(K) \

+ aKW=/>(X).

Using the first subsystem, and the induction hypothesis, we can
see that

ai(K)

is a function of just r ( l ) , . . . , r(K); the proposition is true also for
p(K) using the second subsystem, n

Remark 5.1: By analogy to the autocorrelogram, the graph of partial
autocorrelations is called partial correlogram.

Remark 5.2: We can derive the expression of r(K) as a function of
the autocorrelations, using the two subsytems appearing in theorem 5.6.
We have

ai(K)

p(K-l)

\r(K).

p(K-l)) \ 1
Substituting this in the second subsystem we get

p(A"-lW"K) W
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For example

r(2) =

5.1.5 Spectral Density

In this section, we will introduce the concept of spectral density, which
will be shown to be equivalent to the autocovariance function.

In what follows, we will consider infinite moving average processes of
the type

+ OO

where {ê } is a white noise with a constant variance a1 and where â
forms an absolutely summable sequence, that is, such that

+00

%——00

The autocovariance function of this process is
+00

= a2

This function is such that
+00

E oo,

since

— 2 V^

+oo

E
+oo

0>i-h = a

i-/i

< +OO.

Definition 5.7: The spectral density of the process {xt} is the real-valued
function defined as

1 +oo

2TT
h= — oo

This function exists, since the series formed by the terms ^{h)elujh is ab-
solutely convergent. Using the evenness of the autocorrelation function,
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we can verify that the spectral density is a real-valued function
, / +00 \

/ H = ^ I 7(0) + E 7W (e^ + e"-")

+CX)

It is an even, continuous, periodic function with period 2n. Moreover,
it can be shown that it is positive (cf. chapter 7 for the intuition behind
the proof).

Theorem 5.7: The autocovariance function and the spectral density
function are equivalent. We have

f= f f(uo)cosujhduj= f
J—IT J—IT

PROOF: This equality can be verified by replacing / as a function of 7.
The possibility of interchanging J and ^ is ensured by

+00

E l7(>0l<oo
h= — 00

(cf. the appendix).

f/ f{uj)coscuhduj= f f(uj)e-lujhd
J—n J— TV

, + 7 r +00

= / ^ E 70
^ j = -OQ

= ^ E 70") /

Since
• + 7 r

\ 2TT if J =

hence

/ : ;
•
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Theorem 5.8: Let {xt} be an infinite moving average process of the
type

+ OO

and {yt} the stationary process defined by

+ OC

= Y a3xt-j.

with
+ OO

Y I ai l< °°-
j = -oo

The spectral densities of the two processes satisfy

+ CX)

,IU3

PROOF: Let us assume that the process {yt} admits an infinite moving
average representation (as will be shown later). It is possible to define
the spectral density of y as

= ^ E
h= — oc

since
+ OO +OO

(cf. theorem 5.1), and

j = — oo k= — o

+ OO

We have that

E
h= — oo j= — oo k= — oo
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as the series is absolutely convergent, we can group the summation signs
obtaining

^ +00 +00 +00

- o o

a^e

k= — oc

2

Example 5.4: The spectral density of a white noise with variance a2

is

., , 1 +°°

= 7 ( 0 ) = = ^
2TT 2TT

which is a constant function of LO. Conversely, if x is a stationary process
with a constant spectral density f(u>) = c, we have

7(ft) = / ccosujhduj = 0, if ft ^ 0.

Therefore, such a process is a white noise.

5.1.6 Inverse Autocorrelations

Let us consider a stationary process {xt} with autocovariance function
7(ft) and with spectral density / . It may well be that the function 1 / /
be interpretable as a spectral density (this is possible if, for example,
1 / / is continuous). We can then study the properties of a process with
spectral density 1/ / .

Definition 5.8: The inverse autocovariance function ^i{h), with h in-
teger, is the autocovariance function associated to the inverse spectrum
1/ / . It is defined as

W-^re- i w h du; , V ft,
Jyu)

1 + o °



136 Chapter 5

Evidently, we can introduce the associated concepts of inverse autocorre-
lation and of inverse partial autocorrelation functions. Hence the inverse
autocorrelation function is defined by

The inverse autocorrelation function can be obtained by applying theo-
rem 5.6 or Durbin's algorithm to the function pi.

Hence, we have

pi{K) - (pi(K - 1). . . pi(l)) Ri(K - I)" 1

ri(K) =
pi(K - 1)

1 - (pi(K - 1). . . pi{\)) Ri(K - I)"1

\

yPi{K-l)j

Example 5.5: The functions p and pi coincide if and only if the func-
tions 7 and ^i are proportional. In terms of spectral density this condi-
tion becomes

3 A > 0 : f(u) = A 1 3 A :

This can occur if and only if the process {xt} is a white noise.

Example 5.6: Let e be a white noise and x a first-order moving average
process defined as

xt = €t-0et-u I 0 |< 1.

If we indicate the variance of the noise with a1, we can see that

7(1) = 7 ( - l ) =-0<r2,

= 0, if | h\>2.
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Therefore

2TT

It can be shown that

2

92 -20COSUJ).

5.2 Lead and Lag Operators

Let us recall the definitions of the lead and lag operators already in-
troduced in chapter 3 before examining how to apply them in this con-
text.

The lag operator L transforms the process {xt} into a process {yt}
such that yt = Lxt = £t-i- This operator is linear, it is invertible,
and its inverse is defined as Fxt = xt+\. F is called lead (or forward)
operator. These operators are such that

Lnxt = xt-n, Fnxt = x t + n ,

and

\i=0 / i=0

The latter equality shows the effect of a polynomial in L on a
process.

5.2.1 Series in L

In a more general way, we can define the series in the operator L (or in
the operator F). In order to do that, let us restrict ourselves to the set
of stationary processes.

Given a stationary process {xt} and an absolutely summable sequence
ai such that X^J^oo I a* l< +°°5 w e know that the process defined
as

+00

yt =



138 Chapter 5

is a stationary process (cf. theorem 5.6). Let us denote as

+ OO

the mapping of the stationary process {xt} onto the stationary process
{yt}. These operator series in L enjoy some properties which allow their
manipulation as the original series. In particular, we can sum them and
compose them with one another.

Sums of Series in
/ +00

\i= — 00

+ 0 0

i= — 00

+ 0 0

= lim I
m—> + oo \

= lim (
' T O O y

+ OO

i= — 00

+ 0 0

i = — 00

+ 0 0

i = — oc

+ V
i = — 00

\i=—m

( n

(limit in L2)

+00 \

since the sequence a + a is absolutely summable, given that both a and
a are summable. Finally we can see that

+00 +00 +00

Analogously, we can show that

+ OO +OO

A
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Product of Series in L

Theorem 5.9:
+00 \ / +00

ij=-oo

-.JSP- 5 > " £
Jf = —

PROOF: Let us denote

+00

J — — OO

+ OO

5= V c

Ss,r = 5 1 a^

We have

= || S(Sxt) - Sn,m(Sxt) || + || Sn,m{Sxt - 58>r

< || S(Sxt) - Sn,m{Sxt) || + I ^ I aj I j || Sxt - Ss,rxt

( +00

5 ^ I a; I I I S l t - SStrXt || .
j=-oo

The proposition is then a consequence of

Syt = lim Sn,m2/t,
n,77i—^+00

where the limits are taken in L2. •

Syt = lim Snimyu Sxt = lim S8irxt.
n,m—^+00 r,s—•+00
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Corollary: The product of two series in L is a series in L.

PROOF:
+00

E ai

n+s / min(s,/e+m)

V 5Z a^fc-f I Lkxt
k=-m-r yi=max(-r,fc-n)

+00 / +00

E
k= — oo \i= — oo /

since 6̂  = X^j^oo &iak-i exists and the series with terms bk is abso-
lutely summable. The sequence is just the convolution product of the
sequences a and a. u

Corollary: The product of series in L is commutative.

PROOF:
+00 +00

5.2.2 Inversion of (1-XL)

(1 — XL) is a mapping of the set of stationary processes onto itself. Let
us show that this mapping is invertible if and only if |A| ^ 1 and derive
its inverse when it exists.

Case |A| <1 The real series

(A*, if i > 0,
ai = I 0, if i < 0,

is absolutely summable, so that the series ^£0^ A2L* can be defined.
Multiplying this series by (1 — AL) we get

+00

2 = 0
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(1 — XL) is therefore invertible and its inverse, denoted as (1 — XL)~l or
1/(1 — XL), is equal to

+ OO

i=0

Put in a different way, given a stationary process {xt}, the process
{yt}, defined as

+00

Vt — / ^ XlXt-i,

is the only stationary process satisfying

(1 - XL)y* = y* - Xyl_x = xt.

This is not the only process satisfying this equation. The other solutions
can be found adding to yt the general solution to the homogeneous equa-
tion yl — AyjLjL = 0, that is AX1, where A is a generic random variable.
The solutions corresponding to A ^ 0 are not stationary.

Case |A| > 1 We have

1 - XL = -XL ( 1 - ; j

The inverse of (-XL) is equal to -\F = -\L~l. Note that | j | < 1
and the series

+oo 1 +oo 1

F
i=0 i=0

exists and is the inverse of (1 — jF). Therefore (1 — AL), composition
of two invertible functions, is invertible as well. Its inverse is given by

- l

+ OO

Y
i =0

1 — OO

Case |A| = 1 In this case, the mapping (1 —AL) is not invertible. Let us
assume for example A = 1. Any constant process xt = m is transformed
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into (1 - L)xt = m - m — 0. The mapping is not one-to-one. By the
same token it is not onto either, since integrating out the process m ^ 0
does not provide a stationary process. If there existed one, we would in
fact have

Xt — Xt-i = m => E(xt) — E(xt-i) = m => 0 = ra,

a contradiction.

5.2.3 Inverse of a Polynomial

Let us consider a polynomial

$(z) = 1 + 012+ . . . +(ppZ
P

the roots of which, Zj — l/Xj are greater than 1 in modulus. We know
that there exists an integer series

+ OC

2 = 0

such that
+ OO

i=0

Being the properties of the series in L (an operator defined on the set of
stationary series) identical to those of the power series, we have that

${L)V(L) - 1.

Hence the polynomial ${L) = 1 + (\)\L + . . . + 4>VLV is invertible and its
inverse is ^(L).

The coefficients ipi can be determined using one of the three following
methods.

First Method Make explicit the relationship $>(z)ty(z) — 1. Isolating
the coefficients of the terms of the same degree, we get a system of
equations in tpi which can be solved in a recursive way

^o = 1,

+ 01 = 0,

+ 01^1 + 02 = 0,
(5.8)

= 0,

n + 01^n-l + • • • + 0p-l'0n-p+l + 0p^n-p = 0, V U > p.
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Second Method Divide 1 by $(z) according to increasing powers of
z (cf. the appendix to chapter 7). The coefficients i/jj will result from

1 = <&(z) (i/'o + ty\z + . . . + *l)rz
r) + zr+1Xr(z), V r,

where Xr(z) are polynomials in z.

Third Method Decompose the fraction l/$(z) in simple elements and
write the series expansion of each element of the decomposition. Thus,
if all roots of $ are real distinct, we can write

1 _ 1 _ ^ CLi

+oo +00

j=Q j=0 \i =

The case of complex or multiple roots can be treated in the usual way
(Branson, 1991).

The inverse of the polynomial $(L), an operator defined on the set
of the stationary processes, exists as long as the roots of $ are different
from 1 in modulus. Let us assume that the first r roots are greater than
1 in modulus, and the second p — r less than 1 in modulus.

- KL)

-A,L) n f 1 - ^ ) ftn ^)
2=1 i=r+l V K t J t=r+l

where, with an obvious notation

Since $i and ^2 have their roots greater than 1 in modulus, we know
that $i(L) and $2(F) are invertible. Therefore, Q(L) is invertible, and
its inverse is given by

In this series expansion of 1/$(L) the negative powers of L are present
if and only if p = r, that is if and only if all roots are greater than 1 in
modulus.
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5.3 ARMA Processes

5.3.1 Autoregressive Processes

Definition 5.9: We define as an autoregressive process of order p a
stationary process {xt} satisfying a relationship of the type

v
t-i = eu (5.9)

where the <\>i 's are real numbers and {et} is a white noise with variance
a2

The relationship (5.9) can be written also as

( l + ^ L + . - . + ^ Z ^ ) ^ =€tl

or

*(L)xt = et. (5.10)

Such a process is denoted AR(p).

Infinite Moving Average Representation This process is defined
for the moment in implicit form. In particular, it is not certain that
equation (5.9) admits a stationary solution always. In order to study
this problem, we can use the results obtained in section 5.2.3.

If the polynomial <I> has all its roots different from 1 in modulus, we can
invert the operator $(L) defined on the set of the stationary processes,
so that the equation admits a unique solution with an infinite moving
average representation of the type

xt = $(L)~1et = ^2 hj€t-j, with ^ \hj\ < +oo.
j= — oo j= — oo

Generally, the present value of the process {xt} depends upon past,
present and future values of the white noise at once. Certain of these
components may however disappear in the expression of xt. Thus if the
polynomial 3> has all its roots strictly greater than 1 in modulus, the
inverse operator $ (L) - 1 admits an expansion which involves only the
positive powers of L. We have then

xt = /~^ hj€t-j, with \ J \hj\ < H-oo, and ho — 1.
j=0 j=0

In this case, x^-i, Xt-i-> • • • are linear functions of e^-i, Q_2, • • • and are
not correlated with e*. Projecting the autoregressive relationship (5.8)
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onto the past of x: xt-i,xt-2i..., we get
v

i=i (5.11)

The white noise can then be interpreted as the innovation process asso-
ciated with x. When the components et are not only uncorrelated, but
also independent, xt_i(l) = - Y%=i <\>ixt-i is not only the affine regres-
sion of Xt on the xs, s < t — 1, but also the conditional expectation of
Xt based on the x*. s < t — 1.

Transformation of the Roots Whenever the roots of $(z) are differ-
ent from 1 in modulus, it can be shown that we can always assume that
these roots are greater than 1 in modulus, even if this entails a change
in the associated white noise. It is instructive to start from the spectral
density of the process. We have

from which

a2

2TT |2

G*

where Zj = 1/Aj are the roots of 3>.
Let us assume that the first r roots of $ are greater than 1 in modulus,

and that the last (p - r) are smaller than 1 in modulus. We will denote
the polynomial obtained by replacing in $ the roots smaller than 1 in
modulus by their inverses by

r / T \ p

* (Z) = I I U ( I " Z3L)'
\ Z /

3 = 1 V J / j=r+l

Let us consider the stationary process {77*} defined as

(5.12)
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The computation of the spectral density of such a process shows imme-
diately that it is a white noise. In fact

/ » = | **(e*") |2 fx(u>)

a

2TT

1 - Zj

2TT . 1 1 \l-±-±-eiw I2

j=r+l

a IT i

which is independent of u. Thus {rjt} is a white noise with variance
p

^ u I^-I2

j=r+l

which is smaller than the one of {e*}. This shows that we can always
assume the roots of an autoregressive process greater than 1 in modulus.
Moreover, the representation of {xt} thus obtained involves a white noise
{rjt} which can be interpreted as an innovation, the variance of which is
smaller than the variance of the initial white noise.

It should be clear that by taking a root or its inverse we get multiple
representations of {xt} (exactly 2P if the roots are real) and we need
to choose among them. It should also be clear that the choice of the
representation in which the roots are greater than 1 in modulus (defined
as canonical representation) is the best one in the sense that it is the
only one that shows the innovation explicitly. We will retain this choice
in what follows. We have

Xt = 2_.hjet-j with V^ \hj\ < +oo, and ho = 1.
j=0 j=0

The various hj can be obtained by dividing 1 by (1 + <\>\z + . . . + (fipz
p)

according to increasing powers of z.
Let us remark that if we considered the process {£t} defined as

6 = *(F)xt, (5.13)

we would have obtained a white noise with the same variance as e*. £$
may be interpreted as a backcast error of xt based on the knowledge of
its future

Then we say that we have obtained a time reversal and equation (5.12)
is called forward representation of the process {x}.
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Yule—Walker Equations Let us examine the autocovariance function
of {xt}. Multiplying (5.9) by xt we get

Xt = —

Taking the expectation

Therefore, dividing both sides by 7(0) and collecting terms
2

Multiplying (5.9) by xt-h, h > 0, taking the expectation and dividing
by 7(0), we get

v
p(h) + V <t>iP(h - i) = 0, V h > 0. (5.14)

The sequence of the autocorrelations satisfies a linear homogeneous dif-
ference equation of order p, the coefficients of which are directly related
to those of the autoregressive polynomial.

The characteristic polynomial associated with this difference equation
is

the roots of which, equal to z"1, are smaller than 1 in modulus. We
know that, as a consequence, the function p(h) will be a combination of
various components: decreasing exponentials corresponding to the real
roots, dampened sine-waves corresponding to the complex roots, with
multiple roots introducing polynomial factors (cf. chapter 3).

Writing (5.13) for h = 1,... ,p and exploiting the evenness of p(h) we
get the so-called Yule-Walker equations

1 p(l) p(2) .. . p(p-l)\
p(l) 1 p(l) . . . p(p-2)

Pip)
1 /

(5.15)
These equations are bilinear in p(h),(f>i. In the form (5.14) they allow
to get the 0j's as a function of p(l),..., p(p) by inversion. We can
also express them as a linear system in p(l),... ,p(p) and obtain the
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expression of these quantities as a function of </>i,..., 4>p. The other
values of p(h) are obtained recursively using (5.13).

The difference equation (5.13) admits just one sequence as a solution,
which can be interpreted as an autocorrelation function. In fact, as we
have just shown, the initial values p ( l ) , . . . , p(p) are determined without
ambiguity.

Partial Autocorrelation Function The partial autocorrelation func-
tion r(h) can be obtained starting from the correlations p(h) using the
general methods exposed previously in section 5.1.4. For an AR(p) pro-
cess, however, we need to stress an important property

r(h) = 0, Vf t>p . (5.16)

In fact, V h > p, (5.9) can be written as
P h

i=l i=p+l

with E(et) = 0, E(etxt-i) = 0, i = 1 , . . . , h. As a consequence, r(h) = 0,
since r(h) can be interpreted as the coefficient of xt-h in the regression
of xt on xt-u-.-,xt-h-

Note that r(p) = 0P, so that r(p) is different from zero if <\>v is different
from zero, that is if the process is a true AR(p).

Autoregressive Process of Order 1 Let us suppose that we have

xt - <j)xt-\ = eu (5.17)

where {et} is a white noise with variance a2.

(i) If 14>\ = 1 there is no stationary process satisfying this equation.
In fact, let us suppose that, for example, 0 = 1 . By substitution
we would get

Xt ~ Xt-n =*t+ Ct-1 + • • • + Ct-n+l-

Therefore

E(xt -xt-nf = na2,

V integer n. If {xt} were stationary, we would have

E(xt - xt-n)
2 < 4a%,

since |cov (x^, Xt-n)\ ^ ^ , where a2 is the common variance of the
t. Hence

na2
x < 4&1, V integer n,

which is impossible. An analogous reasoning leads to the same
result for (j) = — 1.
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Hence we may assume \(p\ ^ 1, and we know that there is a unique
stationary process satisfying

xt — (j)xt-i = et,

or

(1 -cj)L)xt = ct.

(ii) If |0| > 1, we have

+ OO

1 = 1

and the canonical representation is

1
Xt ~ 1Xt~l

where rjt is the innovation at time t.
(iii) If |0| < 1 we have

xt = (1 -
+ OO

where et is the innovation at the date t.
The forward representation of the process is then

xt -

We can express the white noise £ as a function of e

_ 1 - 0 F
6 6

+ OO +OO

i=0

+00

1 Vj<
2=0
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By the same token, note that

+ OO

i=0

and therefore ££ is uncorrelated with xs, V s > t + 1.
Finally, we have

p(ft) = 0p( f t -1 ) , Vft > 0 ,

from which

p(ft) = <//*, V ft > 0,

since p(0) = 1 and p(h) = <j>\h\ V ft

r(l) = </>, r(ft) = 0, V ft > 1.

The coefficient (j) can be interpreted as the correlation of order 1. The
variance-covariance matrix of xt, #t+i, . . . , %t+h c a n be written as

/I 6 62 ... 6h \
' xt \ '

var
Xt+l

a

1

1

\ 1

for ft > 0.

Graphical Representations of Second-Order Properties

Example 5.7: Let us derive as an example the autocorrelation function
for an AR(2) process of the type

xt + 0.9xt-i - 0.8xt_2 = et.

The polynomial $ is of second degree; its discriminant is equal to —2.39,
hence it is negative. The roots are complex. This explains the sine-wave
shape of the correlogram (figure 5.7).

The correlations of order 1, 3, 6 are fairly large in modulus. This
property should be reproduced in the paths of the series generated by
this process. A large value at a certain date should in general imply a
small value after three time periods and a large value six periods after
(the size of the values - large or small - depends on the sign of p).
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Figure 5.7 Correlogram for the AR(2) process
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Figure 5.8 Path for an AR(2) process

In figure 5.8 we report the path of xu showing this phenomenon. The
presence of the white noise (with variance a2 = 4) implies that the
function is not strictly periodical.

Example 5.8: The temporal links can be analyzed through the spectral
density. In the case of an AR(1) process, we have

G 1

2?r I 1 - (peiuj |2 2TT1 + </>2-2</>cosu/
The spectrum implies the graph in figure 5.9 for 0 > 0. We see that the
largest values of the spectral density correspond to low frequencies, that
is to long periods.

This phenomenon becomes more apparent as </> approaches 1, since

In this case, there is a greater importance of the long-period phenomena
(cf. chapter 8). Since the long-period series show a very smooth profile,
this characteristic should be found in their paths. These should fluctuate
"not much" and without a marked periodic behavior for 4> « 1. We
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Figure 5.9 Example of the spectrum of an AR(1) process
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Figure 5.10 Path of an AR(1) process

present in figure 5.10 a realization of a process of the type xt = 0.8xt_i +
ct with cr2 = 4.

We see clearly that, although the process has a theoretical mean of
zero, this property cannot be found in the graph. The fairly strong cor-
relation p(l) — (j) = 0.8 has the consequence that the first observation,
fairly large here, influences the following ones. The various fluctuations
due to the white noise are fairly small relative to the value of the empir-
ical mean of xt. This shows mainly that some AR models can be used
in certain cases to approximate time series with a nonstationary profile.

Inverse Autocorrelations The inverse of the spectral density is given
by

1 2TT • 9

The series expansion of l//(o;) as a function of the powers of eiuj shows
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that

J v y / i=-oo j = ~P

where the coefficients Cj can be obtained starting from the polynomial <£.
We can conclude that

pi{h) = 0 V h > p + l ,

/w(p) = Pi(-P) = cP ¥" 0.

Thus, the order p is such that the inverse autocorrelations become zero
starting from p + 1. This time p is characterized by the values of the
inverse autocorrelations pi(h). To determine the latter we have

Hence
p-j

ci = E
k=o

and Cj = C-j. Moreover, since

7»(0)
we have the expression

forO<h<p. (5.18)

This formula is at the basis of the computation of the inverse autocor-
relations (Cleveland, 1972).

5.3.2 Moving Average Processes

Definition 5.10: We call moving average process of order q, MA(q) a
process {xt} defined as

%t ~~ ^t ~t~ v\€.t — \ -\- . . . -\- Uq€t—q, (5.19)

where the 8i are real numbers, and et is a white noise with variance a2.
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This relationship can be written as

or

xt =

Note that, contrary to the case of an AR(p), the definition of an MA(q) is

explicit and does not pose any problems. The process {xt} is completely

defined by (5.18) and is automatically stationary.

Infinite Autoregressive Representation Whenever (as we will as-
sume in what follows) Q(z) does not have roots equal to 1 in modulus,
we can write

+ OO +OO

^2 ^iXt-i = et, with ^2 W <

Moreover, if the roots of Q(z) are all greater than 1 in modulus, we
have TTi = 0, V i < 0, and et can be interpreted as the innovation of the
process. The proof is analogous to the one of section 5.3.2 above. We
say then that the process is invertible.

Transformation of the Roots As it will be shown, so long as 6(2)
does not have roots equal to 1 in modulus, we can assume that the
process is invertible, but this entails a change in the white noise process.
We have

+00 +00

xt = -^^TTiXt-i + et, with ^2 \ni\ < +°°- (5.20)

Let us assume that Q(z) does not have roots equal to 1 in modulus. Let
us denote by Q*(z) the polynomial obtained from @(z) replacing the
roots smaller than 1 in modulus by their inverse and let us consider the
process {rjt} defined as

xt = e*(L)rH.

We can easily verify that the spectral density of {xt} is

Computing the spectral density of {r]t} we can show (following the same
procedure as for the autoregressive case) that this process is a white
noise with variance

cr2

n \ 7 • 2 '

The Zn are the roots smaller than 1 in modulus: therefore the variance
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of T)t is greater than the one of et. More generally, we can get multiple
representations of the process {x} of this type by inverting any number
of roots of 0 (taking the conjugate complex roots in pairs).

In what follows we will avoid this identification problem, imposing that
the roots of @(z) be greater than 1 in modulus. This representation will
be labelled canonical representation: the white noise appearing in such
a representation will be called innovation of the process, and the TT̂ 'S
can be obtained by the long division of 1 by @(z).

Forward Representation Following (5.12), the process {&} defined
as xt = Q(F)£t is a white noise with variance a2. This provides the
forward representation of the process. Since 0 has its roots greater than
1 in modulus, £t is uncorrelated with xSJ s > t + 1.

Autocovariance Function The autocovariance function is given by

-h)a
2, iil <h<q,

if h > q.

The autocorrelation function can be derived as

I + e\ +... + 02
if 1 < h < q or equal to 0 if h > q.

Note that

i + flj+... + *

is different from zero as soon as 0q is different from zero, that is, if the
process is a true MA(g). The function p(h) becomes zero for h > q.
There exists a sort of "duality" between the autocorrelation function
p(-) of an MA(q) process and the partial autocorrelation function r(-) of
an AR(p) process.

Partial Autocorrelations The partial autocorrelation function r(-)
can be computed by the general methods exposed in the autoregressive
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case, but the formulas are more complicated. Moreover, r(h) does not
have the property of becoming zero for h beyond a certain value.

Moving Average Process of Order 1 A moving average process of
order 1 is defined as

xt = et -0et-i = (l-OL)eu

where et is a white noise with variance a2.

(i) Correlation We have

which implies

(5.21)

02'

2 ~ r v J ~ 2
and p(/i) = 0 V h > 2. A moving average process is not appropriate to
describe strong first-order correlations.

(ii) Regression Coefficients The regression coefficients of xt on
Xt-i, • • •, Xt~K are such that

/ 1 p(l) . . . 0 0 \
0 0

0

\

0

0

0

0 1 V 0 )

V/f.

Thus, for A; = 2 , . . . , K — 1, we have

= 0.

The regression coefficients satisfy a second-order linear difference equa-
tion. The characteristic polynomial of this relationship is

p(l)z2 + z + = z-

Whenever \6\ ^ 1 the regression coefficients can be written under the
form

The constants A and B are determined using the first and the last rela-
tionships

ai(K) + p(l)a2(K)=0,

aK-1(K)p(l)+aK(K) = 0.
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After solving we find

i
A = — -

_ Q2K+2 '

B = 1 _ 02K+2 *

Hence
9k Q2K+2-k

I _ 02K+2 '

In particular the partial autocorrelation of order K is

f)K(n2 _ i\

(iii) Regression Coefficients in the Limit Case 0=1 When 0 =
1 the difference equation allowing to determine the coefficients ak{K)
admits a double root 9 = 1/9 = 1. The regression coefficients appear
under the form ak(K) = A + Bk. The use of the two relationships at
the extremes allows as before to determine the constants A and B. We
find

K + l-k

Thus we have

, , ^K + l-k
| ) V Xt-k-

„, , , ^K + l-
E{xt | Xt-l,...,Xt-K) = - V „ , 1

ti K+1ti

(iv) Innovations

(a) When \9\ < 1, the polynomial (1 — 9L) is invertible and its inverse
admits an expansion in positive powers of L. et is the innovation
at time t.

(b) When |0| > 1, we need to replace the initial model by inverting the
root. The canonical representation is

_ 1

9

and the innovation is

*t=[l—9L
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(c) The limit cases 0 — ±1 are more difficult to deal with. Let us
assume, for example, that 9 = +1. Then

f t _ i ( l ) = E(xt\ xt-i,...)

— lim E{xt\xt-\,...,xt-K)
K—>-+oo

K^aoKrr
It is apparent that taking the limit coefficient by coefficient would
result in — Xlfc î xt-k-> a meaningless quantity since Ylk=i xt-k —
€t-i—€t-K-i does not converge as K goes to infinity. The optimal
forecast in this case, although it exists, does not imply an infinite
autoregressive expression, which means that the process Xt is not
invert ible.

The forecast error is

( 1 K+1 \

Also in this limit case, then, the innovation is et.

5.3.3 The Autoregressive Moving Average Processes

The ARMA modeling generalizes at once the pure autoregressive models
and the pure moving average models studied in the previous sections. It
introduces the advantage of a greater flexibility in the applications and
provides a better approximation to real-world series with less parameters
than the pure models.

Definition 5.11: A stationary process x admits a minimal ARMA(p,q)
representation if it can be written as

Xt \ \ t \ p p t p t i t l q t q
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where

(i) cj>p ± 0, 0q ± 0;
(ii) The polynomials <I> and © have roots strictly greater than 1 in mod-

ulus;
(Hi) $ and © do not have roots in common;
(iv) {et} is a white noise with variance a2 ^ 0.

Note that we could have chosen a more general representation which
would have been allowed had we considered noncentered stationary pro-
cesses. For example, one possibility is to have

Xt + <t>lXt-l + . . . + 4>VXt-V = 0* + C t + OlCt-l + . . .

We can go back to the case in (5.21) replacing xt by

xt - E(xt) =xt- p——.
1 + z2 <t>

An ARMA representation could be studied at first without imposing
the constraints on $ and © introduced in the definition 5.11. Such a
representation admits a stationary solution if the polynomial $ has roots
different from 1 in modulus. The polynomial $(L) is invertible and the
solution is given by

e(L)

that is under an infinite moving average form involving past and future
values of the white noise. If the roots of $ are all outside the unit circle,
only the past values of the white noise appear in the moving average
representation.

A similar step can be followed for the polynomial ©. Let us assume
that this polynomial has all its roots different from 1 in modulus. Then
it is invertible and the infinite autoregressive representation can be ob-
tained as

If the roots of © are all outside the unit circle, this AR(oo) representation
involves only the past values of the white noise, e is the innovation
process for the process x, if $ and 0 have roots simultaneously outside
the unit circle.

A stationary process admitting an ARMA representation without con-
straints on $ and © allows for many other representations of the same
type. The other possible representations can be obtained examining the
shape of the spectral density. If &(L)xt = Q(L)et and $(L)xt = Q(L)et
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are two representations of the same process, then

2TT | $(e*
w) |2 '

In addition to the possibility of changing the roots of $ and © with
their inverses, we can get the same spectral density by multiplying or
dividing <I> and © by the same polynomial factor. Among the various
representations, we will choose the one in which <1> and 0 have their roots
outside the unit circle and for which fx(uj) is an irreducible fraction in
eluJ'. This in turn implies that $ and © do not have common roots. In
this representation, the orders p and q are the smallest possible, and
they are defined from the spectral density without ambiguity.

In what follows, we will assume that the ARMA representations con-
sidered are minimal in the sense of (5.21).

Theorem 5.10: If x is a stationary process with a minimal ARM A (p,q)
representation

= @(L)et.

x admits an MA ôĉ ) representation

e(L) +o°
xt = •

(ii) x admits an AR/oo^ representation
+ OO

t-j = e t, With 7T0 = 1,

(Hi) x admits e as innovation.

Remark 5.3: When the polynomials $ and © are not constrained, there
might exist a stationary solution to the equation &(L)xt = @(L)et, in
spite of the fact that <1> has roots equal to 1 in modulus, so long as
also © has an equal number of roots equal to 1 in modulus. Thus, the
representation

(1 - L)xt = (1 - L)et

admits the stationary solution xt = et.

Remark 5.4: The pure processes are special cases of ARMA represen-
tations. In fact, an MA(q) process is an ARMA(0, q), and an AR(p)
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process is an ARMAQs, 0). The only process which admits both a pure
MA representation and a pure AR representation is the ARMA(0,0)
case, that is, a white noise.

Autocovariance

Theorem 5.11: The autocovariance function of a process {x} corre-
sponding to a minimal ARMA representation

where the order of $> is p and the order of © is q is such that
v

PROOF: We have

3=1 3 = 1

multiplying by xt-hi h > q 4- 1, and taking expectations, we get

3=1 \ 3=1

The sequence of the covariances (or of the correlations) satisfies a dif-
ference equation of order p starting from h > q + 1. The characteristic
polynomial of this equation is zp$(l/z).

For example, if $ has all distinct roots Zj, j = 1, . . . ,p, \ZJ\ > 1, the
covariances are in the form

R + l - p , 0 ) . (5.24)
3 = 1 Z3

This relationship, however, does not allow the determination of all val-
ues 7(h) since initial conditions are needed. These first values of the
autocovariance function may be determined starting from the infinite
moving average representation

+ OO

3=0

In fact, if we multiply
v

3=1 3=1
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by xt-h with 0 < h < q and take expectations, we have
q +oo

3 = 1 \ 3 = 1 3=0

= v2{6h + / i i^+i + . . . + hq_heq).

Using these relationships, the difference equations (5.22) and the fact
that 7(ft) = 7(—h), we can get all the autocovariances.

Infinite Autoregressive Representation The coefficients of the in-
finite autoregressive representation are such that

n(L)6(L) =

Making this equality explicit we get
+oo q

3=0 3=0 j=0

with 7T0 = #o = 0o = 1 and ]Cj=o ®3nh-j = 0, V h> max(p + 1, c?).

Theorem 5.12: The coefficients of the infinite autoregressive represen-
tation satisfy a recurrence relation of order q starting from max(j9+l, q).
This equation has a characteristic polynomial zqQ{\).

Example 5.9: Let x be an ARMA(1,1) process denned as

xt -<t>xt-i = et -Oet-i

with (j) ^ 0, 0 7̂  0, |0| < 1, |0| < 1. The regression coefficients on the
past are easily obtained since

^ 6L + 92L2 + . . .r = (1
1 — uL

((p0 - 62)L2 - . . . - (cj)Oj-1 - 0J)L3

Therefore TTJ = -((/) - e)0j~1, j > 1.

Infinite Moving Average Representation Symmetrically to the au-
toregressive representation, the coefficients of the moving average repre-
sentation are such that

p

f)jhi-j = 0 , V / >
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They satisfy a difference equation of order p, the characteristic polyno-
mial of which is directly related to the autoregressive polynomial <1>.

Spectral Density

Theorem 5.13: The spectral density of a stationary process ARM A
{x} is a rational fraction in eluJ. It is given by

2TT I $(e*") I2 '

Canonical Correlations The canonical correlations between the vec-
tors (xt,Xt-i, • • • ,xt-i) a nd (xt-j-i, • • • i xt-j-i-i) a r e by definition
the eigenvalues of the matrix

where

A(t,j)=

\ 70' + 1 - 0 7C/ + 2 - 0 ••• 7(J

The product of the various canonical correlations is

(5.25)

where A(i, j ) 2 indicates the determinant

A(iJ) =detA(z, j ) . (5.26)

Note in particular that A(z,j)2 < A(z, —I)2. In the next section, we
will see that the canonical correlations play an important role for the
determination of the order of an ARMA process. At this stage, we just
mention a formula allowing a recursive computation of these determi-
nants.

Theorem 5.14:

(cf. Glasbey, 1982, and Pham Dinh, 1984).
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5.3.4 Determination of the Orders

The minimal orders p, q have appeared in the previous sections either as
indices after which certain sequences become zero, or as orders of linear
difference equations. In fact, these different properties provide a way to
determine these orders. To show that these properties are peculiar to
the series is often difficult, so that we will limit ourselves to mentioning
the results without providing a formal proof.

These results are valid for centered regular stationary processes. Such
processes have to be such that

lim E(xt | xt-K,xt-K-u---) = E(xt) = 0,

or, equivalently, have to admit an infinite moving average representation
+ OO

This equivalence is based on Wold's Decomposition Theorem (cf. chapter

7).

Pure Models The various properties of the pure autoregressive or
pure moving average processes show that there exists a certain duality
between the two types of models. This is clear from table 5.1 where the
different possible definitions of orders are provided. We are assuming
that the roots of the autoregressive and moving average polynomials are
strictly greater than 1 in modulus.

Mixed Models In the case of mixed models, we get the following
generalizations of these characterizations.

Theorem 5.15: A regular stationary process for which the autocovari-
ance function satisfies a linear difference equation starting from a certain
index admits a minimal ARM A (p, q) representation. The autoregressive
order p is the smallest possible order of such a difference equation. Con-
sidering this minimal order p, the moving average order q is such that
q + 1 is the smallest index from which such a difference equation is sat-
isfied.

Theorem 5.16: If x admits a minimal ARM A (p,q) representation:

(i) p is the smallest order of the difference equations satisfied by the
coefficients of the Mk(oo) representation starting from a certain
index.
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Table 5.1 Determination of the Orders for Pure Models

Autoregressive AR(p) Moving Average MA(q)

p is the degree of q is the degree of 6(L)

p + 1 is the smallest index from q + 1 is the smallest index from

which the partial autocorrelations which the direct autocorrelations

become zero become zero

p + 1 is the smallest index from q + 1 is the smallest index from

which the inverse autocorrelations which the partial inverse autocorrelations
become zero become zero

p is the smallest order of

the linear difference equations

satisfied by the coefficients of

the MA(oo) representation.

q is the smallest order of

the linear difference equations

satisfied by the coefficients of

the AR(oo) representation.

p is the smallest order of

the difference equations

satisfied by the direct

autocorrelations.

q is the smallest order of
the difference equations
satisfied by the inverse
autocorrelations.

(ii) q is the smallest order of the difference equations satisfied by the
coefficients of the AR(bo^ representation starting from a certain
index.

Theorem 5.17: A regular stationary process admits a minimal
ARM A (p, q) representation if and only if

A ( i , j ) = 0 , V i > p , V j > q

In this case we have

, Vz >

(cf. Beguin, Gourieroux, and Monfort, 1980; Gourieroux, 1987).
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Table 5.2 Illustration of the Corner
Method for an ARMA (p,q)

0 1 q-1 q

0

1

2

p-1

P

X XX

x 0 0

x 0 0

x 0 0

0 <̂> A(z,j) = 0

This theorem leads to the construction of table 5.2 in which the row
index is i and the column index is j containing the different values of the
determinants A(i, j). The process x admits an ARMA representation if
and only if this table contains a lower right corner (or orthant) made of
zeros only. This explains why the name corner method was given to this
way of determining the orders.

For the MA(q) case, the appropriate table becomes table 5.3 where,
since A(0, j) = *y(j + 1), we find the condition ^y(q) ^ 0 and j(h) = 0,
Vfc > q + 1.

The AR(p) case is shown in table 5.4. Recall that the system (5.4)
defining the partial autocorrelations implies that

A(i — 1,-1) is strictly positive, as it is the determinant of a
variance-covariance matrix. As a consequence, examining the first
column of table 5.4, we find the condition r(p) ^ 0 and r(h) — 0,
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Table 5.3 Illustration of the
Corner Method for an MA (q)

3 0 q-1 q

A(0,0) x 0

x 0

x 0

Table 5.4 Illustration of
the Corner Method for an
AR(p)

j
i

0

p-1

P

0

A(0,0)

X

0

1

X

0

X

0

5.4 ARIMA Processes

It is apparent that for most economic series, the stationarity hypothesis
is not appropriate. On the other hand, if we consider, for example, the
first differences (or, more generally, differences of order d) of such series,
the stationarity hypothesis becomes often more credible. We can then
consider the class of processes where the difference of a certain order will
correspond to an ARM A representation.

If we denote by Adxt the difference of order d of xt, that is, (1 - L)dxt,
we are interested in the process {xt} satisfying

- L)dxt = Q(L)et, (5.27)
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where the roots of 0 and © are greater than 1 in modulus, and {et} is a
centered white noise with variance a2.

Equation (5.26) can also be written as

(5.28)

where

Equation (5.27) is similar to the equation denning an ARMA(p + d, q)
process with the important difference that the polynomial <£ admits 1
as a root of order d.

The introduction just presented does not suffice; in fact, we may not
assume, contrary to the stationary case, that equation (5.27) is valid for
any index t and derive xt by inversion of &(L) since the resulting series
in et is diverging. To complete the definition, we need to introduce a
starting mechanism. In order to help the intuition, we will start with
two simple examples.

Let us define a random walk, that is a process x satisfying

Xt - Xt-l = €t,

starting from a certain date which we will assume equal to 0. If an initial
value x_i, deterministic or random, is given, we have

xt = x-i +
j=o

The only requirement which may be imposed is that x-\ be uncorrelated
with future values of the noise. The process {xt} is then unambiguously
defined.

By the same token, if we consider a process x satisfying

xt - xt-i = et - 0et_i, V t > 0,

this process is completely defined by giving the initial conditions x_i,
e_i.

More generally, we adopt the following definition

Definition 5.12: A process x = {x ,̂ t > 0} is an ARIMA(p,d,q) process
(Integrated Autoregressive Moving Average) if it satisfies a relationship
of the type

- L)dxt = 0(L)e t, t >0 ,
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where

6(L) = 1 + 6>iL 4 - . . . + OqL
q, Oq^O

are polynomials with roots greater than 1 in modulus;
(ii) the initial conditions

(x_i,... ,z_p_d,€-i,... ,e_q)

are uncorrelated with eo, e i , . . . , e*,.. .;
(̂ m̂ ) £/ie process e = {e*, £ > —9} is a w/ii£e noise wi£/i variance a2.

Clearly, for certain initial conditions and a given process e, the process
x is completely defined, since #o is given by the definition equation for
t = 0, X\ is given by the equation corresponding to t = 1, and so on.

Theorem 5.18: Lei x be an ARIMA (p,d,q) process. The process Adxt
tends toward a stationary ARMA process.

PROOF: Let us consider the identity given by the division of 1 by <j)(L)
according to increasing powers up to the order t

where the degree of qt is £, and the degree of rt < p — 1. Multiplying the
equality Ad(/>(L)xt = @(L)et by qt(L) we get

(1 - Lt+1rt(L)) Adxt = qt(L)e(L)eu

or

Adxt = qt(L)Q(L)et +rt(L)Adx.1.

The terms raised to powers from 0 to £ in qt(L)Q(L) are the same as
those of -77TT. We have then

4>{L)

where

_(eu if t > 0,
et ~ I 0, if t < 0.

Since the roots of 0 are outside the unit circle, we easily see that
hj(t), j = l , . . . , g and hj(t), j = l , . . . , p tend to zero as t goes to
infinity. Consequently, the difference between Adxt and the process
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tends to zero in quadratic mean as t goes to infinity. Hence Adxt
is said to be asymptotically stationary. •

Let us turn now to the study of the function mt = E(xt), t > 0.

Theorem 5.19: If{xt,t > 0} is an ARIMA(p,d,q) process, the function
mt — E(xt) is the solution to the difference equation

<&(L)mt = 0, t > 0,

with initial values E(x-i), i = 1, . . . ,p + d.

PROOF: Taking the expected value of the definition equations of xt

*(L)xt = O(L)eu t > 0

with

(x_i,.. . ,x_p_d ,e_i,. . . ,e_g)

as initial conditions, we get

$(L)mt = 0, t > 0,

with E(x-i), i = l , . . . , p + das initial values. •

Since Q(L) = (1 — L)d(j)(L), the characteristic polynomial of the differ-
ence equation satisfied by mt is

the roots of which are 1 of order d and other roots are smaller than 1 in
modulus. Hence mt is asymptotically equivalent to a polynomial in t of
degree d — 1.

The previous definitions and results can easily be generalized to the
case when the second member of the definition equation of Xt contains
a constant element 6*

In particular, we can see that Adxt is asymptotically equivalent to a
stationary ARMA process 4>{L)yt = 6Q + Q(L)et and that mt = E(xt) is
the solution to $(L)xt = #o with E(x-i), i — 1,. . . ,p-f d as initial values.
The latter remark implies that, asymptotically, mt is a polynomial in t
of degree d.

5.4.1 Moving Average and Autoregressive Representations

Let us denote
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We can express xt in a moving average form or in an autoregressive form
using z_i.

Theorem 5.20: Let {xt} be an ARIMA(p,d,q) process and z_i the set
of initial values.

(i) Xt can be written in a moving average form
t

xt = ^hjet-j + /i*(£)z_i,

j=o

where the hj 's represent the coefficients of the long division of O
by $ (with ho = I), and h*(t) is a row vector of functions oft.

(ii) xt has also an autoregressive form
t

KjXt-j + h(t)z-i + eu

where the TTJ 'S j > 1 are the coefficients of the long division of $
by Q, and h(t) is a vector of functions of t tending to zero as t
goes to infinity.

PROOF: (i) Let us consider the identity given by the long division of
1 by $(L) up to the order t

l = Qt(L)$(L) + Lt+1Rt(L), (5.29)

with degree (Qt) = t and degree (Rt) < p + d — 1. Multiplying the
definition equation $>(L)xt = Q(L)et by Qt(L) and using (5.28),
we get

(1 - Lt+1Rt(L))xt = Qt(L)G(L)et,

or

Multiplying (5.28) by @(L) we see that the terms raised to powers
from 0 to t in Qt(L)Q(L) are the same as those of $
Therefore

t q p+d

j = 0 2=1 2=1

t

3=0

(ii) In a symmetrical manner, we can employ the identity given by the
long division of 1 by Q(L).

Lt+1R;(L), (5.30)
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with degree(Qt) = t and degree(R^) < q — 1. Note that the
coefficients of Rl(L) tend to zero as t goes to infinity, since the
roots of ©(£) are outside the unit circle. Multiplying the definition
equation of xt by Q%(L), we have

$(L)Q*t(L)xt=(l-Lt+1R*t(L))et.

The same line of reasoning implies as above
t p+d

Y^KjXt-j + Y2h2i{t)x-i = et- R*t(L)et-i
j=0 i=\

i=0

We have seen that hu(t), i = l,...,q tends to 0 as t goes to
infinity, and, for the same reasons, the same happens to h2i(t), i —
1, . . . ,p + d. Finally, as TTO = 1 we have

t

xt = - ^2 nJxt-j + h(t)z-i + et,

where h(t) has the desired property. •

5.5 Appendix

Interchange of E (or J) and J2t^o
Let us consider a sequence of random variables un in L
+oo), and let us assume that un converges in quadratic mean to
u, that is limn_^+oo E(un — u)2 = 0. We know that this property
implies limn_^+oc E | un — u |= 0, and a fortiori l imn^+ o o E(un) =
E(u). Consequently, if the series Ylt^o x* c o n v^ rg^ s m ^25 we have

2=0

applying the previous result with un — X^=o xi anc^ u = S S xi-
(ii) Let us consider two sequences of random variables un and vn in

L2. Let us suppose that un, vn converge to u, respectively, v in
L2. Denoting the norm in L2 by || • || we have

E | UnVm | < || Un || || Vm ||< +00,

E | uv | < || u || || v \\< H-oo,
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and
E\unVm-Uv\= E\ Un{Vm - v) + v(un - u)

< | un(vm -v)\+E\ v(un - u)

Hence l imm 5 n_+ o o E \ unvm - uv \= 0, since

We can conclude that

lim E(un vm) = E(u v)
m,n—>oo

and hence, if the series Ylt^o x* anc* Sj^o Vj a r e convergent in L2,
we get

+ 0 0

by applying the previous result with
+ 0 0

i=0 i=0 i=0 i=0

(iii) Let gh(x) be a sequence of real or complex functions defined on M
such that

+00 p

/ I () I < -foo,/ I 9h(x)

then (cf. Rudin, 1966), there exists a function of x, denoted by
+00

h=0

such that

lim /
7W + OO J h=0 h=0

Moreover, this function is such that

\h=o h=o

f

dx = 0.

9h(x)dx.
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5.6 Exercises

Exercise 5.1: Let {et} be a white noise. Verify that the processes
defined as Xt = tt and yt = (—l)*et are stationary. Show that their sum

is not stationary.

Exercise 5.2: Let yi, 2/2? %i,..., zn be square integrable random vari-
ables. Let us denote by y{, respectively y%, the affine regression of 2/1,
respectively y2 on zi,... ,zn. The partial correlation coefficient between
y\ and 2/2 with respect to z\,..., zn is

_ cov(yi -2/1,2/2 -2/2)

yVar (2/1 - 2/*) y/var (7/2 - 2/2)
Show that the partial correlation coefficient Py1,y2,zi,...,zri between y\ and
2/2 with respect to z\,..., zn is equal to

p - PizRT1 P2z

(1 - p'lzn- Viz)1/2(i - P L R - V 2 , ) 1 / 2 '
where p is the linear correlation coefficient between 2/1 and 2/2, P\z-> re-
spectively p22, is the vector of linear correlation coefficients between 2/1,
respectively 2/2, and the ^ ' s i = l , . . . , n . R is the matrix of correlations
of the vector containing the z^s i = 1 , . . . , n. Verify also that, if n = 1
we have

Exercise 5.3: Show that, if the random vector (2/1,2/2? ̂ i? • • • ? zn) is nor-
mal, Py1,y2;z1,...,zn can be interpreted as the linear correlation coefficient
in the conditional (normal) distribution of (2/1,2/2) given ( z i , . . . , zn).

Exercise 5.4: (AR(2) processes) Let us consider the stationary process
Xt defined as

Xt + <\>\Xt-\

where {et} is a white noise with variance a2 > 0 and the roots of the
polynomial &(z) = 1 + <\>\z + 02^2 are different from 1 in modulus.

(i) Find the domain D<f> for the point 4> = (0i, ^2) corresponding to a
polynomial $ with roots strictly greater than 1 in modulus (which
will be assumed in what follows).
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(ii) Describe the shape of the autocorrelation function p(-). Find the
domain of variation Dp of (p(l), p(2)). How are these results trans-
formed if we did not assume roots of $ strictly greater than 1 in
modulus?

(iii) Compute the partial autocorrelation function r(-) as a function of
0i and fa- Study also the sign of r(l) and r(2).

Exercise 5.5: (MA(2) processes) Let us consider the stationary process
xt defined as

xt = et

where {ê } is a white noise with variance a2 > 0
(i) The domain DQ which corresponds to a polynomial Q(z) = 1 +

61 z + 62 z2 strictly greater than 1 in modulus can be derived from
Dff) in exercise 5.4. Compute the function p(-) and partition DQ
according to the signs of p\ and p2-

(ii) Let us consider the process {xt} defined by

xt = et- 2Aet-i + 0.8et_2,

where {ê } is a white noise. Write {xt} in the form
+00 +00

Xt = ^TtTiXt-i +r)t, 5Z 7T*| < + ° ° '
2 = 1 i=l

What is the usefulness of such a representation?
Write r\t as a function of the es's and et as a function of the rjs's.

Exercise 5.6: (ARMA(1,1) processes) Let us consider the process de-
fined as

Xt -<\>Xt-\ = €t -Oct-l,

where {ê } is a white noise with variance a2 > 0.
Let us assume that | </> | < 1 and that | 0 \ < 1

(i) Analyze the autocorrelation function p(-).
(ii) Let us consider the process {xt} defined as

4

where ut is a white noise with E(u2) = ^ . Let us assume that zt is
affected by a measurement error, and that we observe yt = zt + r]t,
where rjt is a white noise uncorrelated with ut (that is, E(rjt us) =
0, V t, s) and with E(r]2) = \. Show that yt can be written as an
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ARMA(1,1) process. Derive a representation of yt of the type

with Xli^T I ^ l< "I"00 an<^ {£*} *s a white noise such that

E^tyt-i) = 0, V i > 0, V t.

What is the usefulness of such a representation?

Exercise 5.7: Given two stationary processes {xt} and {xt} defined as

<f>(L)xt =

where et and et are white noises with unit variance. Let us denote the
autocovariance functions by 7(-), respectively 7(«).

(i) Show that, V h ^ 0, we have

and
+ OO

(ii) Let us assume that <&(L) = 1 so that the process x is a moving
average process MA(q) with degree (©) = g, and that x is an AR(p)
process. Let us denote by T the square matrix of order r the
elements of which are

lij = 7 0 ' - * ) » i = l , . . . , r , j = l , . . . , r .

Show that the elements a^ of A = F""1 are given by a^ = *y(j — i)
for q + 1 < i < r — q, 1 < j < r.

This result can be used to get an approximated form for the inverse
of the variance-covariance matrix of an autoregressive process.

Exercise 5.8: Let us consider the process {yt} defined as

V\ = c i ,

(1 - (f>L)yt = (1 - 6L)et, V t > 2, 0 ^ 0,

where {e^} is a sequence of zero mean variables, uncorrelated and with
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the same variance a2 = 1. Describe the conditions under which the
process {yt} is asymptotically stationary, that is

3 stationary {xt} lim E(yt — xt)
2 = 0.

t—•4-oo

Compute the limit (when t goes to infinity) of the variance of yt as a
function of </> and 6.

Exercise 5.9: Let us consider a stationary process {xt} defined as

where et is a zero mean white noise with unit variance.

(i) Compute the innovation rjt of Xt as a function of the es's. Provide
the standard deviation of rjt.

(ii) What is the autocovariance function of the sum of the two white
noises et and rjt?

(iii) Compute the linear regression x\ of xt on the future values xt+i,
xt+2, • • •• What is the standard deviation of xt — x$?

Exercise 5.10: Let us consider the stationary process {yt} defined as

yt = 6t-eet-u - 1 < 0 < 1 ,

where {ê } is a Gaussian white noise with zero mean and variance a2.
Let us define the process {xt} as

f l ifj/t>0,
X t ~ [ o if 3/t < 0.

(i) Show that the process {xt} is stationary. What is its autocorrela-
tion function p(-)?

(ii) What is the variation domain of p(l)?

Exercise 5.11: Let

nK(z) = ai(K) + a2(K)z + ... + aK(K)zK-\

where the ajt(K)'s are the regression coefficients defined in (5.4). Show
that

KK(Z) — KK-I(Z) + O>K(K)Z ~ f 1 KK-I ( -

\ z \ z
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Exercise 5.12: Show that the expression for r(K) given in remark 5.2
can be manipulated to provide the second equation (5.6) of Durbin's
algorithm.

Exercise 5.13: Is the equality

possible?



6

The Box and Jenkins Method
for Forecasting

6.1 Description of the Method

Box and Jenkins (1970) have proposed a general forecasting method
for univariate series: such a method is based on the notion of ARIMA
processes. Let us assume that the available observations x\,... XT * can
be considered as compatible with an ARIMA model

where degree(4>)=p, degree(O)=g, and var(ej) = a2. We will assume
that the usual hypotheses on the lag polynomials and on the white noise
are satisfied. At time T, the theoretical forecast of a future value XT+K

is given by the linear affine regression of XT+H °n XT, # T - I , The co-
efficients of this regression depend on the parameters of the model. Such
a formula cannot be used directly, since these parameters are unknown.
Their estimation is then needed as the first step. This estimation phase
is a fairly delicate one, since the model parameters are subject to var-
ious constraints. We usually distinguish the unknown degrees p and q
(which are integer values) from the other parameters, the coefficients
0j, 0i of the lag polynomials and the variance a1 of the noise. The
latter can take values over a continuous interval, even if they are subject
to a fairly complex set of constraints (for example, those deriving from

In order to simplify the notation we are not distinguishing between the ran-
dom variables and their realizations.
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the requirement that the roots of the polynomial 4> and © be outside the
unit circle). The parameter estimation for the integer values is a prob-
lem which technically is very close to a problem of testing or of choice
among various competing models. The fundamental intuition behind
the Box and Jenkins method is to keep separate the phase of the search
of the orders (phase of identification) from the phase of estimation of
the other parameters. This method can be summarized as follows

(i) In a first stage, we will look for plausible values for the orders
(p, d, q) using methods not depending on the estimation of the
other parameters. This is an a priori identification, that is prior
to estimation. This stage leads to considering various triplets
(pj,dj,qj, j = 1 , . . . , J ) .

(ii) For each of the plausible models, we will search for the correspond-
ing values of the other parameters

</>!,. . . , < f > P j , O \ O U . . . , O q . , < T 2 .

This is the estimation stage, at the end of which we will have J
estimated models: Mj, j = 1 , . . . , J.

(iii) In the third stage, we will examine whether or not these estimated
models are compatible with the hypothesis underlying the model:
are the values of the residuals in line with the hypothesis of a
white noise? Is it necessary to increase the order pj, the order
qj, and so on? We will establish a number of requirements which
should isolate the models compatible with the data. After this
phase (called the validation stage) we will generally have a smaller
number of estimated models available.

(iv) If the previous phases have been correctly carried out, the retained
models show very similar properties in view of their use for fore-
casting. In the phase of the model choice we will keep one Mj of
these models. The phases of validation and model choice are called
the a posteriori identification stage.

(v) We will be able to produce forecasts using the theoretical forecast-
ing formula after having replaced the unknown parameters with
their estimates obtained for Mj.

Note that these phases do not succeed one another in a sequential
way. In fact, the validation phase could lead to the rejection of all
models, requiring a new phase of a priori identification. In the latter,
what is needed is to retain enough models in order to pass the validation
phase, and not too many in order not to have too many parameters to
estimate (since estimation is the most costly phase). The method can
be summarized with the chart reproduced in figure 6.1.
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A priori identification <

Estimation of retained models

A posteriori
identification

Validation

If no models are left

If several models are left:
Model selection

Forecasting
Figure 6.1 Scheme for the Box-Jenkins Method

In the next sections, we will describe in a greater detail these various
phases, by stressing the empirical aspects of the method, and by illus-
trating them with a practical example. Various theoretical justifications
about the estimation and testing procedures can be found in chapter 9.

6.2 Estimation of an ARIMA Model

Let us start by illustrating the estimation method which will employ
standard statistical techniques. The parameters 0j, Oj,a2 are generally
estimated following the maximum likelihood method or a least squares
technique. These methods are applied assuming the orders pj,dj,qj
as fixed, equal to the values found in the phase of identification a
priori.

6.2.1 The Estimation Methods

Let us recall that an ARIMA(p, d, q) model verifies the relationship
d (6.1)

where the e*'s are nonzero, uncorrelated variables, with the same vari-
ance cr2, and the roots of the polynomials (j) and 0 have modulus greater
than 1. The process wt = Adxt is then (at least asymptotically, given
the starting values problem) an ARMA(p, q) process such as

(6.2)
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Consequently, if we have x\,... ,XTQ as available observations of the
process {xt} we can compute the d-th order differences

wTo =AdxTo,

and we are back to the estimation of the parameters of model (6.2)
starting from these observations. We have previously remarked that we
may suppress the constant 0* so long as we replace wt by wt = wt — [i
with // = 0*/(l + 0i + . . . + 0P). In what follows we will suppose that
8* — 0, but the results can be extended to the case #* ^ 0 by replacing Wt
by wt- The additional parameter /i can be estimated in the same way as
the others. When there is a constant 0*, another frequently used method
to suppress it is to replace the process {w} with the centered process
{wt — w} and to estimate the other parameters afterwards. Finally, we
have to solve the estimation problem of the parameters of an ARMA(p, q)
without a constant, that is, of the parameters

(/>i,...,0p,0i,...,0g,o-2,

from the information contained in the observations, denoted by

*i , . . . ,#r , T = T0-d.

We will assume that the et are normal, in order to derive the asymptotic
properties of the estimators more easily.

The Case of an ARMA(0,q) = MA(qr) Let us start by deriving the
likelihood of the model or, which is the same, the joint density of the
observations z\,..., ZT . We have

or
q

*t = et + 5 ^ c t - » ' (6-3)

where the et are assumed normal. The vector z7 = (zi , . . . , ZT) can be
expressed as a linear transformation of the vector e' — (ei_g,... ,er);
therefore it is normally distributed. We could then write a matrix M(0)
such that z = M(0)e and derive from this the density of z. This will be
the density of the normal distribution

However, this method is not the most suitable to solve the likelihood
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maximization problem, since it implies the computation of the matrix
(M(0)M(0)')~ the dimension of which is T. Let us follow a different
route, starting from the system

e_i =e_i,

(6.4)

-1 — . . . - 6q€T-q.

Let us imagine that we substitute ei in the expression for e2 with a
function of eo,.. . , €i-9, then e\ and e2 in the expression for 63 with a
function of eo,.. . , ei_g, and so on, obtaining

e = Nz + Xe*, (6.5)

where N is a (T + q) x T matrix equal to

e* = ( e i _ g , . . . , e 0 ) ,

X is a (T + q) x q matrix of the type

Ai(0) is a T x T lower triangular matrix with unit elements along the
main diagonal, and A2(0) is a T x q matrix. Equation (6.5) can also be
written as

c — I -/V 1̂ 1 ) I I . I O .U)

The square matrix (X N) is lower triangular, with unit elements along
the main diagonal: hence its determinant is equal to one. We can get
the density of the random vector (e* z') , by replacing the vector e
by Nz + Xe* in the density of e. We obtain

1

(27R7r
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Hence we can refer to the computation of the marginal distribution of

z from the distribution of I I. The orthogonal projection of Nz on

the subspace of RT+q spanned by the columns of X is given by Xe*
where

e* = - ( X ' X ^ X ' N z .

Pythagoras's Theorem allows us to write (6.7) in the form

^ ^ + Xe.)' (Nz 4- Xe.)

We derive the density of z by integrating with respect to e*. We have

(6.9)

exp(-^(Nz + Xe.)'(Nz + Xe,))-

Denoting

we get

exp ( - ^ (Nz + Xe,)'(Nz + Xe,)) •

S{9) = (Nz + Xe,)'(Nz + Xe.),

lnLT = - ^

This log-likelihood can be maximized with respect to the parameters
0 and a2 to determine the maximum likelihood estimators. Often we
carry out the maximization in two steps, looking for the estimator of 0
by concentrating out the likelihood. Setting to zero the partial derivative
of In LT with respect to a2, we get

<91nLT _ T S{0)
da2 ^ + ~

From which we get

. ? . (6.10,
Substituting it in the log-likelihood, we see that the concentrated log-
likelihood is

= - | In27r - | In ̂  - 1 ln(det(X'X)) - | .

Finally, the function to be minimized is

l*T = T\nS(0) -f ln(det(X/X)). (6.11)
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At this stage, we can suggest two kinds of method to find an estimator
of*

(i) The exact methods aimed at minimizing /£ directly, using numer-
ical methods (cf. Osborn, 1976 for an interesting simplification,
and section 15.2 for the utilization of the Kalman Filter).

(ii) The least squares methods aimed at minimizing 5(0), on the basis
that the second term of l^ becomes negligible with respect to the
first as T increases. The least squares methods are the most used
ones. They allow the use of simple algorithms to compute the
value of the objective function. These algorithms are generally
linked to recursive methods of forecast computations. One of such
procedures, proposed by Box and Jenkins, is backforecasting.

Equation (6.8) shows that e* is the conditional expectation of e* given
z. Denoting by e the conditional expectation of e given z, we can use
relationship (6.5) to get

and 5(0) can be written as

Sifi) = \\ef =
i=l-q

This interpretation of 5(0) allows the derivation of a simple computation
rule for a given 0. We first determine e* by "backforecasting". More
precisely, we have

that is

since e\-q-i = 0, i = 1 , . . . , q. By the same token, we have

Thus, e* is known when the forecasts Zi = E(zi | z), i = 1 — g,. . . , 0 are
known. The computation of the Z{ is easily done by using the forward
representation of the process z

Zt =
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In fact, one may use the forecasting techniques described in section 4.4
by inverting the direction of time

+oo T

where the TT'S are the same as the ones used in the forward forecast, that
is the coefficients of the long division of 1 by ©. The ez-, i = 1, . . . , T
are then computed recursively using the expressions (6.4). This fast
computation of S(0) translates into the possibility of using numerical
optimization algorithms.

The Case of an ARMA(p, q) The two types of method exist also
under the general case. The exact methods (cf. Newbold, 1974 and
McLeod, 1977) and the least squares methods can be generalized to the
case of an ARMA(p, q) extending the case of an TS/LA(q) process just
described. The basic intuition behind the treatment of an ARMA(p, q)
is that it can be written in a moving average form

i=0
which can be approximated by an MA(Q) process

Q

2=0

with Q large enough. For all practical purposes we need to solve the
problem of the choice of Q. We have seen that for an MA(q), the z~i
are 0 for i < —q. In the ARMA(p, q) case we will stop the backward
forecast when the £;'s become negligible. Then we have a simple way of
computing

T

5(0,0)+ Yl *?>
i=l-Q

for given

v = (0i,..., 0q),

which can be minimized numerically.

6.2.2 Initial Values

The optimization algorithms used in the various estimation methods
need initial values for the parameters. The choice of the initial values is
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important, since, on the one hand, it reflects on the number of needed
iterations to reach the optimum, while, on the other, it results in the
attainment of a local or global optimum. In this section we will show
that it is possible to compute consistent estimators for (\>3 and Oj. These
estimators are asymptotically less efficient than those proposed in the
previous section, but may provide meaningful initial values.

Use of the Yule-Walker Equations We have seen that the Yule-
Walker equations for an ARMA(p, q) imply a link among the autoregres-
sive coefficients and the autocorrelations

/p(q + l)\ ( p(q) . . . p{q-p+l)^

V

(6.13)

p(q)
The empirical autocorrelations

rp fo / j-^—fa-i-iv t ZT)\Zt—\i ZT)
Ph = ± T —— ,

where Z~T = -f Ylt=i Zt Proyide consistent estimators of the theoretical
autocorrelations (cf. chapter 9). After having replaced the autocorrela-
tions by their consistent estimators we can solve the Yule-Walker system
to get consistent estimators of the autoregressive parameters.

Use of the Inverse Autocorrelations The choice of initial values
for the moving average coefficients Oi is a bit more complicated. In
fact, we know that, for example, in the case of an MA(g), the p(h)
are nonlinear functions of the Oi in such a way that the computation
of the Oi as a function of the p(h), h — 1, . . . , q poses some problems.
Evidently, we cannot obtain simple estimators of the Oi's following this
route. The notion of inverse autocorrelation, introduced in the previous
chapter (section 5.3.1), allows one to solve this problem. Resorting to
these inverse autocorrelations, we have available a Yule-Walker system
of the type

pi(p) . . . pi(p - q

M (614)

fri(p + q-l) . . . pi(q) ) \0qJ

The estimation of the inverse autocorrelations can be obtained by writing
the process in an infinite autoregressive form

+ OO

zt =
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Approximations to the coefficients TTJ are obtained by regressing zt on the
past values zt-\,..., zt-p with ordinary least squares, where the index
P is chosen large enough. If TTJ, j = 1 , . . . , P denote these approxima-
tions, the estimators of the inverse autocorrelations can be derived using
formula (5.17)

for 0 < h < P.

Two-step Regressions Even if it may be not included in the most
popular packages, we mention here another approach which presents
the twofold advantage of being simple and of providing the simultaneous
estimation of the three types of parameters 6j, </>j, and a2. The intuition
behind it can be summarized as follows

(i) We start by regressing zt on its past zt-i,..., zt-p fixing an order
P large enough. We can derive the estimates of the coefficients
TTJ, j = 1, . . . , P and of the estimation residuals as well

p

(ii) We turn to the ARMA representation of the process by writ-
ing it in the form

Zt = (~<Mt-l - • • • - <t>PZt-p + #1^-1 + . . . + OqCt-q) + *t-

This expression shows that it is possible to regress zt on

zt-li - • • > Zt—pi et-l> • • • 5 et-q,

by ordinary least squares. The regression coefficients so obtained
provide consistent estimators of — 0 i , . . . , — 0P, # i , . . . , 6q. The sum
of the squared corresponding residuals divided by the number of
observations corrected by the degrees of freedom is an estimator of
a2.

6.2.3 Asymptotic Properties of the Estimators

The parameter estimators obtained either by maximizing the exact log-
likelihood or by minimizing the approximation S((j),6) have identical
asymptotic properties. Moreover, these properties are very similar to
those usually encountered in a sampling framework. More precisely,
let us denote by a the vector (0 i , . . . , </>p, # i , . . . , 6q)

f and d^, o\ the
estimators mentioned above. If we assume that the components of the
noise are independently normally distributed, it is possible to show that:
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Theorem 6.1: The estimators GLT, G\ converge to ex, a2.

On the other hand, asymptotic normality holds for the estimators

OCT-OL\ A ( /A 0'

where

= phm - -

It is possible (cf. chapter 9) to give various equivalent expressions for
these limits, when the noise is Gaussian. The estimators of these ex-
pressions can be used to build confidence intervals or to test hypotheses.
Note that these asymptotic results are valid whenever the degrees p, d, q
are known, without taking into consideration the previous phase of a
priori identification.

6.3 Identification

6.3.1 A Priori Identification

Choice of d Let us assume that the process {xt} generating the ob-
servations is an ARIMA with d > 0. It is clear that, the process being
nonstationary we cannot define the autocorrelation function p(h). How-
ever, the function

x (xt+h)
is always a meaningful expression, since it can be shown that it tends to
1 as t goes to infinity. Values of the estimated autocorrelation function
Pr(ti) close to 1 for a large enough number of values of h are an indication
that the series needs differencing to make it stationary. In practice, given
the random oscillations due to sampling, it seems that the criterion of
proximity to one of the first values of pr(h) should be replaced by one
of closedness among themselves of these values. In other words, we
consider that the series needs differencing if the first pr(h) are close to
each other, even if p(l) is fairly different from 1 (cf. Box and Jenkins,
1970, appendix A.6.1). In chapter 14 we will introduce some rigorous
tests for nonstationarity. When the decision of differencing a series has
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been made, we apply the same criterion to the differenced series, in order
to understand whether a second differencing is needed, and so on. For
economic series the most common values of d are 0,1, 2. Higher values
are very rare.

Choice of q (or p) for an MA (or AR) process The guidelines
for the choice of p and q come from the shape of the functions pr(h)
and fr(h) of the series differenced d times. We can think, for example,
that a tendency of pr(h) toward values close to 0 for h > q indicates an
MA(q) or that a tendency of r^(/i) toward values close to 0 for h > p
indicates an AR(p). In order to decide whether values of pr(h) or rrih)
are significantly different from 0, it is advisable to derive their standard
error. We can show (cf. chapter 9) that for an MA(q) we have

Vh>q,

where T is the number of observations in the series after differencing d
times. As an estimator of the standard error, we can take then

1 / 2

By the same token, using a result by Quenouille (1949a), we can take
-4= as an approximate standard error of rr{h) forh>p if the process
is an AR(p). In order to identify the degree p of an autoregressive pro-
cess, we can represent the sequence of the estimated partial autocorre-
lations rr(h) and examine from which value on it stays within the band
f —1.96/y/T, 1.96/VTJ. Thus, for the example represented in figure
6.2, we can assume that p — 3. Such a step of testing the null hypoth-
esis of zero partial correlation r(h) separately for each autocorrelation
at the significance level of 5% is not strictly rigorous from a statistical
point of view, but provides a useful guideline in practice. By the same
token, in order to identify the degree q of a moving average process we
can represent graphically the sequence of the estimated autocorrelations
Pr(h) and check after what value of h all pr(h) stay within the interval
of bounds

In fact, under the null hypothesis that the process is an MA(q) we have

VfpT(h) - i Af(0, 1 + 2 ( ^ ( 1 ) + . . . + $ ( h - l ) ) ) , V h>q.

The program used in section 6.5 below, provides approximate values of
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rT(h)

1.96

1 2 3 4

1.96

Figure 6.2 Example of Estimated Partial Autocorrelations

these intervals equal to ±^7p for 1 < h < 12, the values provided by

for 13 < h < 24, and so on.

Choice of p and q for an ARM A Process: the Corner Method A
simultaneous identification method for p and q can be derived from the
characterization of these orders introduced in theorem 5.17. Let us pro-
vide a formulation of this in terms of autocorrelations rather than of
autocovariances. Recall that p and q are such that

A(z, j) =0 V i > p and j > q.

V j

where

P(j)
i,j) =det

The values of A(i, j) are unknown, but they can be estimated by the
A(z, j) obtained by replacing the correlations p(h) with their estimators
Pr(h) in the determinant. Since the A(i, j) are consistent estimators
of the A(i, j) , it is likely that we will notice a "break" between rows
i = p — 1 and i = p, and between the columns j = q — 1 and j = q in the
matrix with elements A(i, j) . In practice, since the A(i, j) are estimators
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Table 6.1 Identification by the t-ratios
(Critical Value 1.96)

7 0 1 2 3 4 5

0

1

2

3

4

5

7.76

8.41

2.53

2.76

2.20

11.56

4.99

3.15

2.32

0.80

0.21

1.23

2.58

0.91

0.48

0.13

0.85

0.75

0.41

0.55

0.13

0.44

0.95

0.99

0.58

0.38

0.54

0.72

0.52

0.20

0.53

0.48

0.48

0.44

0.43

0.13

with different variabilities, it is preferable to search for such "breaks"
with the aid of the matrix containing the Student t-ratios associated with
A(i,j). The asymptotic variance of A(i,j) can be estimated recalling
that A(i,j) is a differentiate function of the autocorrelations pr(h).
The distribution of the latter is normal (cf. chapter 9). Denoting the
estimated variance by vaf(A(i,j)), the t-ratio associated with the null
hypothesis A(i,j) = 0 is given by

/var(A(z,j))

Comparing the value of this ratio to 1.96 we get an asymptotic test of
the hypothesis A(i,j) = 0 at a significance level of 5%. Again, like in
the case of the pure processes, such a procedure consists in testing the
hypothesis of zero determinants separately, and hence is not rigorous,
strictly speaking, from a statistical point of view. It can be improved
upon, by testing various determinants to be simultaneously zero, for
example A(z, j), A(i + 1, j) , A(i,j + 1). The test is then based on a
quadratic form in A(i,j), A(z + l,j), A(i,j +1) which is asymptotically
distributed as a X2(3) under the null hypothesis (cf. Beguin, Gourieroux,
and Monfort, 1980). In order to illustrate this identification procedure,
we have generated 300 observations from the process

(1 - 0.5L)xt = (1 + 0.1L - 0.56L2)et,

where et is a Gaussian white noise with unit variance. Table 6.1, con-
taining the t-ratios, shows four possible corners corresponding to the
MA(3), ARMA(1,2), ARMA(3,1), and AR(5) processes.
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Table 6.2 Identification by the \2 (Critical
Value 7.81)

j

i

0

1

2

3

0

*

1221585

22.76

22.95

1

523.1

73.18

24.95

29.59

2

853.56

5.67

5.31

1.29

3 4

3.34 1.81

1.64 0.56

0.40 0.90

0.99 0.55

I X.

0

1

K

0 1 2 3 K

Figure 6.3 Various Orders (p, q) Compatible with the Corner Method

Table 6.2 shows the procedure based on the quadratic forms in A(z,j),
A(z + 1, j) , A(z, j + 1). It shows only two acceptable models: MA(3) and
ARMA(1,2), the latter being the true model used for the simulation. The
data appear compatible with an MA(3) model since the infinite moving
average representation of the process

+ OO

xt = (1 + 0.1L - 0.56L2)

has relatively small coefficients tpi for i > 4. Generally, like in the
previous example, the method leads to retain several candidate couples
(p, q) as shown in figure 6.3.

For each row, that is for each value of p, there corresponds a possible
value of q = f(p). Conversely, for each column, that is for each value of q,
there corresponds a value p = g(q). The functions q = f(p) and p = g(q)
are decreasing functions of p and q. This empirical regularity can be
explained by noting that an ARMA(p0, Qo) representation can be well
approximated by a process ARMA(p0 - 1 , f(po -1)) with f(p0 -1) > qo,
and so on. From this remark, we can derive a simple way of determining
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the orders by excess. In fact, we can choose the values g(0) and /(0),
that is the first values after which the sequence of the estimated partial
autocorrelations and the sequence of the estimated autocorrelations can
be considered 0. We are thus back to the methods described for the
identification of pure AR and MA models. Note, however, that a pure
AR or MA representation may require more parameters than an ARMA
representation.

6.3.2 Validation

The tests adopted for the model are of two types: the tests regarding the
parameters 4>j and 9j of the model and those regarding the hypotheses
on the noise e.

Tests on the Parameters In order to compare an ARMA(p, q) rep-
resentation with an ARMA(pi, </i), it is convenient to set up a situation
where one of the models is a special case of the other. Let us suppose
in what follows that we start from an ARMA(p, q) model and that we
examine the tests corresponding to different values of p\, q\.

(i) pi = p - 1, q1 = q. This would be the case where it is possible to
reduce the order of lags intervening in the autoregressive part by
1. This is equivalent to testing the significance of the coefficient
4>p which can be done by a Student-type test. Let <j)p be the es-
timator of (f)p in the ARMA(p, q) representation, and vaF((/>p) its
estimated variance. We will not be able to reject the hypothesis of
an ARMA(p — 1, q) (at a significance level of 5%) if

< 1.96.

We will accept the ARMA(p, q) representation if the inequality is
inverted. Clearly, a similar test holds for pi = p, q\ = q — 1.

(ii) pi = p + 1, q\ = q. This would be the case where it is possible to
add an extra lag in the autoregressive part. This can be done by
estimating an ARMA(pi,gi)=ARMA(p + l,q) model and testing
the hypothesis </>p+i = 0 in this model. This is the same as the
procedure described previously.

(iii) pi = p H - l , # i = </ + 1. We do not know how to test the need
for increasing the orders of the autoregressive and moving average
polynomials simultaneously. In fact, a process w with an ARMA
representation $(L)wt = @{L)et admits also ARMA(p + l,g + 1)
representations by multiplying 3>(L) and Q(L) by the same poly-
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nomial 1 4- XL. Therefore, within the ARMA(p + 1, </ + 1) model,
the null hypothesis of an ARMA(p, q) is not identifiable. The usual
tests such as the likelihood ratio tests are not usable.

White Noise Tests Their purpose is to verify whether the series of
estimated residuals,

€f — T Xf,

Q(L)

is consistent with the white noise hypothesis for the e*.

Portmanteau Test This test, very popular, was proposed by Box and
Pierce (1970). It is based on the statistics

K

h=l

where /3h(e) is the empirical correlation among residuals h periods apart
from each other. Under the null hypothesis of independence of the dis-
turbances et, we can show that Q is asymptotically distributed as a \2

with K—p—q degrees of freedom. We reject the independence hypothesis
at the a significance level if

Q>X\-o{K-p-q).

The small sample properties of Q are fairly different from the large
sample properties, even for a fairly large T. For this reason, a modified
statistics has been proposed in order to correct for this difference

K 1

(cf. Davies, Triggs and Newbold, 1977; Prothero and Wallis, 1976).
The number K must be chosen large enough, usually between fifteen
and thirty in practice. Once the white noise hypothesis is shown in-
adequate by the test, we can reexamine the sequence of the estimated
autocorrelations to know in which direction to modify the model.
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6.3.3 Choice of a Model

It may happen that several models pass the validation phase and that
a choice within such a set is needed. The first thing to do is to isolate
"twin models," that is to say those corresponding in fact to different
representations of the same model (or of close models) and therefore
equivalent for forecasting purposes. Once a representative in each class
of "twins" is chosen, we may be faced with quite different models, making
the choice more difficult. However, there exists a certain number of
choice criteria. Some authors even think that these criteria (not very
rigorous from a theoretical point of view) allow for the suppression of
the identification phase and hence for a completely automatic forecasting
procedure.

Predictive Capability Criteria In the case of an ARMA model, the
one-step ahead forecast error is such that var (et(l)) = cr2. We can then
propose to choose the model resulting in a fairly small forecast error.
Various criteria can be proposed

(i) the estimated variance <J2;
(ii) the determination coefficient,

#-!-£,
V being the empirical variance of the series differenced d times.
This second criterion is simply a standardized version of the pre-
vious one;

(iii) the modified determination coefficient

2 _ ^/(T-p-q)

v/cr-i) '
which allows for the explicit inclusion in the criterion of the orders
of the autoregressive and moving average polynomials;

(iv) Fisher's F
(V-cr2)/(p + q)
^/{T-p-q) '

introduced by analogy to the linear model case.
The criterion (i) is to be minimized, whereas (ii), (iii), and (iv) are to

be maximized.

Information Criteria An approach proposed by Akaike (1969) con-
sists of assuming that the ARMA(p, q) models provide approximations
to reality, and that the true distribution of the observations Vdxt does
not necessarily correspond to such a model. We can then base the choice
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of the model on a measure of the deviation between the true unknown
distribution and the proposed model. The common measure is given
by the Kullback information quantity. Let fo(x) be the unknown prob-
ability density of the observations, [/(#),/ £ FPiQ] the density family
corresponding to an ARMA(p, q) model. The deviation between the
true density and the model is measured by

Hfo, Fp,q) = min (In ^ / 0 ( x ) dx.
fttp*J J\X)

This quantity is always positive, and becomes 0 only when the true
density /o is a member of FPiq. The value of the information quan-
tity I(fo,Fp^q) is clearly unknown, but if we have a "good" estimator
I(fo,Fp,q) of this quantity, it could be used as a criterion. The chosen
model will be the one corresponding to the smallest estimated value of
I(fo,Fp,q). The proposed estimators for the information quantity are

(i) AIC(p, q) = In a2 + 2{p + q)/T,

(ii) BICfa q) = In a2 + (p + «j)ln T/T,

(iii) </>(p, q) = ln<72 + (p + q) c In In T/T, where c> 2.
The first of these criteria was introduced by Akaike (1969) and is by

far the most used one. The BIC criterion was proposed by Akaike (1977)
and Schwartz (1978), while the third one was introduced by Hannan and
Quinn (1979). However, the only consistent estimators of p and q are
those from the latter two, and lead to an asymptotically correct selection
of the model (Hannan, 1980).

6.4 Forecasting with ARIMA Models

6.4.1 Optimal Forecasts with an ARIMA Model

Let us consider an ARIMA process {xt} defined by

0(L)(1 - L)dxt = 0(L)e t, t > 0,

or

*{L)xt = O(L)eu t > 0,

and by the initial conditions
( \f

uncorrelated with e0, € i , . . . , eu — The optimal forecast of xt+fc, k >
0 formulated at time t is denoted by t%t+k or xt(k) and k is called
the forecast horizon. This optimal forecast is by definition the affine
regression of xt+k on (z_i; Xi, i = 0 , . . . , t) or, which is equivalent, on
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Formula Derived from the Moving Average Form The moving

average representation of the process (cf. (5.28)) allows to write

i+fc

xt+k = 2_^hjet+k-j + h*(t + fc)z_i.
j=o

T h e a f f ine r e g r e s s i o n o f Xt+k o n ( z - i 5 ^ 2 = 0 , . . . , £ ) i s

t+fc

or
t

hk+jet-j +h*(t + fc)z_i. (6.17)

We know that this affine regression can be interpreted as a conditional

expectation in two cases. The case when the set of variables is normal,

and the case when the hypothesis of uncorrelation among the Q and of

z_i and the ê , i > 0 is replaced by an hypothesis of independence. The

forecast error et{k) = xt+k — xt(k) is obtained as

k-l

(6.18)

In particular, the one-step ahead forecast error is

e t ( l ) = c t + i . (6.19)

Updating Formulas Formula (6.17) cannot be used directly, since

it involves the unobservable ej's. However, it can be modified into an

interesting updating formula

t+k t+k

~ Xt(k) = ^ h3et+k-3 ~ Y
j=k-l j=k

or

- 1) - xt(k) - hk-! (xt+i ~ xt{l)). (6.20)

Formula Derived from the Autoregressive Form The autoregres-

sive representation of the process allows to derive a useful relationship

Xt+h ~ - /2 KjXt+k-j + h(t + fe)z_i

3 = 1

The term h(t + k)z-i becomes negligible when t is large enough, so that,
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approximately
t+k

xt+k ~ "" / v KjXt+k-j + £t+/o

from which
t+fc

XtyK) — y i\nXf-i-fc ^', lo.^x )

with

Formula Derived from the ARIMA Form Finally, the expression
denning an ARIMA process provides the relationship

p+d q

3=1 3=0

with
p+d

3=0

3=0

and 0o = #o = 1- We have then
p+d q

J2 Yl (6.22)
3=1 3=1

with

Joint Use of these Formulas Let us assume that we want to forecast
up to a horizon K. At time T, we have to compute xr(k), k = 1, . . . , K.
At time T+l , we have a new observation available which needs to be
considered to modify the forecasts of XT+I, • • • ,%T+K, that is to com-
pute XT+i{k), k = l , . . . , l f — 1. We have also to determine a new
forecast, that of XT+K+I- These computations can be done by using
the expressions presented above in a joint fashion, after replacing the
various parameters by consistent estimators.
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(i) We compute xr(k), k = 1, . . . , K by (6.21) at the first date consid-
ered T. Once this computation is done we will not use the values
xs, s<T.

(ii) At time T + 1, since we know the value of £T+I>
 w e c a n compute

(iii) The computation of XT+I{K) can be simply done using (6.22) so
long as K was chosen greater than q (so that et+K-% = 0, i =
1,. . . , q) and K > p+d (which allows for not needing to keep track
of the observations, since xt+K-i = xt(K — i), i = 1,... ,p + d).
Knowing #T+I (&), k = 1, . . . , K we can repeat the updating phases
(ii) and (iii) at time T + 2 and so on.

6.4.2 Forecast Functions

In the previous section, we have seen how to compute the forecasts Xt(k).
It is interesting to study how Xt(k) varies as a function of k for fixed t.
This function of k is called forecast function. Following (6.22) we have

xt(k) - Y, <l>Mk - J) = 0, V k > q, (6.23)

with xt(k — j) = Xt+k-j if fc < j . Therefore, we have

(6-24)

The fi{k), i — 1,... ,p + d are the solutions to the difference equation
with characteristic polynomial

P+d

i=l

The bi(t) are determined by the initial values, called in this context
pivotal values, namely

According to the values of q and p + d, the pivotal values are forecasts
and observations, or just observations. In fact:

(i) if q > p+d, the pivotal values are forecasts; moreover, the forecasts
xt(l),..., xt(q — p + d) do not satisfy (6.24);

(ii) if q = p + d, the pivotal values are forecasts and all forecasts satisfy
(6.24);

(iii) if q < p + d, the pivotal values are a mixture of the forecasts xt (q),
. . . , Xt(l) and of the observations Xt, ..., xt+q-p-d+i>

Therefore, the forecast function will be determined by the polynomial
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ARIMA (0,2,0)
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ARIMA (0,2, 1)

(d)

ARIMA (0,2, 2) ARIMA (0,2, 3)

O Pivotal values x Observations • Forecast

Figure 6.4 Pivotal Values for Various ARIMA Models

3>; in particular, since $ has d roots equal to 1 and the other roots
greater than 1 in modulus, the forecast function admits an asymptotic
representation of degree d — 1. Also, the way this function is linked to
the observations depends upon q. In order to illustrate these outcomes,
let us introduce some simple examples. For an ARIMA(0,2,0) (figure
6.4a) the forecast function is a polynomial in k of degree 1, represented
by a line. The pivotal values at time t are the observations xt and xt-i.
In the case of an ARIMA(0,2,l) (figure 6.4b) the forecast function is still
a line but the pivotal values become xt(l) and xt. By the same token,
for an ARIMA(0,2,2) (figure 6.4c) or for an ARIMA(0,2,3) (figure 6.4d),
the forecast function is still a line, but the pivotal values are #t(l), x£(2),
respectively, xt(2), xt(3).

If there is a constant 0* in the definition of the ARIMA process, we
need to add to (6.24) a particular solution to the equation

P+d

Xt{k) ~\~ y <fiiXf(k — %) = 9*.
2 = 1

We can choose
9*kd

dty(l)
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as a particular solution (since the autoregressive polynomial is (1 —
L)d(j){L)). The bi(tys are hence derived in a similar fashion as the ones
described above. As an example, let us consider the model

(1 - L)2(l - Q.hVjxt = 2 + (1 - 0.8L)et.

The particular solution here is 2k2 and the forecast function appears in
the form

The pivotal values are £$(1), xt and xt-\. If these pivotal values are
respectively equal to 1, 2, and 1, we get

2 + a + 6 + 0.5c = 1,

a + c = 2,

2 + a - 6 + 2 c = l ,

from which a = 14, b = —9, and c — —12. The forecast function is thus

which shows that this function admits an asymptotic parabola of the
type

y = 14-9/c + 2/c2.

6.4.3 Forecast Intervals

From the expression of the forecast error (6.18) and from the hypothesis
of uncorrelation (or of independence) of the et we derive that

k-1

var(et(/c)) = °2^h2.
j=o

If we assume that the et are normal, the forecast error has a normal
distribution

fc-i
xt+k - xt(k) = et(k) - A/"(0, a2 ] £ /i2).

j=0

Consequently, denoting GyJ^^o ^j ky s-e\et{k)), we have that for any
value of a between 0 and 1

Pr (xt(k) — U\-°L s.e.(et(k)) < Xt+k f5 %t{k) ~f~ v>i—2.s.e.(et{k))) = 1 — a,

where i^i-^ is the (l — f )-th quantile of the standard normal distribu-
tion. The interval with bounds

Xt(k)
fc-i
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is a forecast interval of xt+k at the level I — a, with a and hj consistent
estimators of a and h. Generally, this interval is chosen at a level I — a —
95%.

6.5 Some Issues

In the previous sections, we have presented the approach introduced
by Box and Jenkins to analyze a series by an ARIMA model. A num-
ber of variations can be proposed to this method in order to take into
consideration exponential trends, break points, outliers, and seasonal
phenomena. Below we present some of these variations. Other types of
nonstationarity are studied in chapters 11, 13, and 14 in more detail.

6.5.1 Data Transformation

The goal of the operator Ad = (1 — L)d applied to xt is to make the
series stationary. However, for some kinds of series this is not suitable.

Logarithmic Transformation For example, if the series xt has an
expected value which is an exponential function of t (exponential trend),
no operator Ad will set it to 0, since Ad(eat) = {ea - l)dea^-d\ In such
a case, we could apply a logarithmic transformation to the series xt,
before applying an operator Ad. By the same token, if the series is
of the type xt = (at + b)zt, where zt is stationary, with E(zt) — 1,
var (zt) = cr2, a > 0, and at + b > 0, we have

E(xt) =at + b,

E(Axt) = a,

var (Axt) = a2({at + b)2 + (a(t - 1) + b)2

= a2 (a2 + 2(1 - p(l))(at + b)(a(t - 1) + b)) .

Note that the differenced series Axt has a constant expected value and
an increasing (with i) variance. If we take logarithms, however, we have

at -\-b
l

« Alnzt.

If zt is strictly stationary, A In Xt will be asymptotically stationary. The
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logarithmic transformation can be useful. The conditions most generally
accepted for its application are either an exponentially growing trend,
or a growth of the variability of Axt together with a constant mean. As-
suming that the series yt = Inxt is an ARIMA process, we can apply the
techniques of the previous chapters to it, thus obtaining an estimation
of

yt(k) = E(yt+k \ yuyt_u...).

The problem is then to get a forecast x*(k) of xt+k from the forecast
yt(k). The first suggestion is to consider

x*t{k)=exp(yt(k)).

It is clear however that x%(k) is different from the optimal forecast

xt(k) = E (xt+k | Xt,xt-i,...) •

On the basis of Jensen's Inequality we have

xt(k) = E(exp(]nxt+k) I xt,xt-i,...)

> expE(lnxt+k \ x t , x t _ i , . . . ) = x%(k).

Assuming that yt is normal (or xt log-normal) we have

xt{k) = E(exp(yt+k) \ yuyt_u...)

= exp (E(yt(k))) exp ( -var (yt+fc | yu yt-U..

since the expected value of the log-normal distribution associated with
a normal distribution jV(m, a2) is

Hence

xt(k) = Xt(k)exp I -var (yt+k \ yt,yt-i,.. /

In order to compute the correction factor, note that

var (yt+fc | yt,yt-i, • • •) = v a r (2/t+fc I ct,et_i,...)
k-i

where et is the white noise associated to yt. Finally, the forecast function
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of xt+h is

In practice, however, the parameters will be replaced by their estimators.

Box—Cox Transformation The logarithmic transformation is un-
doubtedly the most used one for economic time series. However, this
transformation is an element of a more general class (called Box-Cox
transformation) defined as

Tx(xt) = ^ = i , 0 < A < 1, (6.25)

where Xt is assumed positive. The parameter A can be estimated at
the same time as the other parameters of the model by the maximum
likelihood method. The apparent advantage of the Box-Cox method is
that it lets the most appropriate type of transformation be chosen by the
data. The identity transformation is included in this class (translated
by —1) for A = 1, and the logarithmic transformation corresponds to
A = 0. Obviously, there is a noticeable increase in the computing time
(cf. Ansley, Spivey, and Wrobleski, 1977a and 1977b, for a better suited
algorithm from this point of view).

6.5.2 Seasonal Models

We know that, for example some monthly series have a marked seasonal
profile, that is the data relative to the same month for different years
tend to be related in the same way to the yearly average. This would
suggest we introduce some sort of a shift at intervals which are multiples
of 12. Theoretically, we could just choose p and q large enough as to
include these lags. However, it is clear that this would involve increasing
the number of parameters, making it practically impossible to estimate
them. In order to avoid inflating the number of parameters, Box and
Jenkins suggest a particular type of models, called seasonal ARIMA.
These are models of the multiplicative type

where s is the period of the seasonal component (s = 12 in the previous
example, s = 4 for quarterly series, . . . ) ; A = 1 — L; As = 1 — Ls, 0P,
4>P, Og, 6 Q are polynomials of degree p, P, q, Q the roots of which are
greater than 1 in modulus, and e* is a white noise. A process xt satisfying
this relationship is called SARIMAs((p, d, q), (P,D,Q)). The intuition
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behind this model is that, starting from xt, we can obtain s series (one
for each month in the example) by applying the same transformation

We can then assume that the resulting series

at = eQ(L*) Xt> (6-27)

does not have a seasonal component, and can be expressed as an ARIMA
(p, d, q) with small values of (p, d, q)

Ad(j>p(L)at = Gq(L)et. (6.28)

Combining (6.27) and (6.28), we get (6.26). The seasonal series can be
recognized by examining the estimated autocorrelation and partial auto-
correlation functions. In fact, both take large values in correspondence
to indices which are multiples of s. The identification of the parameters
P,D,Q of the seasonal factors can be done by methods similar to those
previously described, and keeping the values of h multiples of s in p(h)
and f(h) (cf. Hamilton and Watts, 1978, for a detailed study of f(h)).
The phases of estimation and validation can be carried out by the same
procedures as the nonseasonal models.

6.5.3 Intervention Analysis

Box and Tiao (1975) proposed models to take into account breaks in
the mean or in the trend. Their idea is to present these breaks as a
consequence of exogenous shocks on the series. These shocks may have
a permanent or a transitory effect. The model studied in detail is

E uJi(L)

where CĴ  <S*, (i = 1,... ,ra) are polynomials, rjt is an ARIMA process.
The variable xit can assume one of three characterizations:

(i)
fO, if t<Ti,

xit = JTi(t) = {h i n > T j ;

so that xu is a jump variable, used to describe the influence of a
phenomenon starting at Ti, for example, a change in regulation.

(ii)
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(a)

(b)

(c) 0)

1-6

1-6L

(c)

+(02

1-6L \-L
+0)2

Figure 6.5 Various Choices of ^k4 applied to J?.,

so that x^ is an impulse variable, used to describe the influence
on yt of a phenomenon which happened just in Ti, for example, a
strike.

(iii)

= STi (t) =
0, if t < TXi ovt >T2i,

so that x^ is a step variable, used to describe the influence on yt
of a transitory phenomenon happening between Tn and Ti2, for
example, a temporary change in regulation.

When the form of the polynomials UJI and 8{ is chosen, that is when
their degree is chosen, and possibly the number of unit roots in 6i is
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Confidence interval upper bound

F i g u r e 6.6 Correlogram of

detected, we can estimate the various parameters by least squares or
maximum likelihood methods.

Transforming the elementary functions J^ and / ^ by rational frac-
tions jrA we get a sizeable set of functions within which we can choose
according to the situation. Figures 6.5a to 6.5e show various examples
of the possible functions.

6.6 Application to the Passenger Traffic Series
In this section, we will apply the Box-Jenkins forecast method to the
monthly series of passenger traffic (number of passengers/kilometer) cor-
responding to second-class travel on the French main railroad network
for the period 1963-79 (cf. 1.2.2).

6.6.1 Model Identification

An inspection of figure 2.5 shows an approximately linear trend and,
with all likelihood, we will need to difference the original series. As noted
before, the series presents a seasonal component of period 12 which can
be taken into consideration by using lag polynomials in L12. Finally, we
note that there is no noticeable evolution of the variability, nor a need
for a Box-Cox transformation. The estimated autocorrelation function
p(h) in figure 6.6 is clearly positive for the first values of h (at least
for h < 12). There is room for first differencing the series as the visual
inspection of the original series suggested. The corresponding values of
p(h) are reported in table 6.3.

The correlogram of the differenced series (1 - L)xt appears in figure
6.7, showing strong autocorrelations for values of h multiples of 12. The
corresponding values of p(h) are reported in table 6.4. This implies that
we need to apply the operator (1 — L12) to the series (1 - L)xt at least
once.



Box and Jenkins Method 209

Table 6.3 Estimated Autocorrelation of xt

h

1

2

3

4

5

6

7

8

9

10

11

12

p(h)

0.726

0.523

0.421

0.421

0.353

0.335

0.338

0.400

0.400

0.481

0.645

0.854

h

13

14

15

16

17

18

19

20

21

22

23

24

p(h)

0.615

0.431

0.341

0.339

0.272

0.249

0.256

0.319

0.320

0.392

0.535

0.724

h

25

26

27

28

29

30

31

32

33

34

35

36

p(h)

0.493

0.323

0.241

0.242

0.187

0.171

0.172

0.228

0.226

0.301

0.432

0.595

h

37

38

39

40

41

42

43

44

45

46

47

48

f>(h)

0.375

0.222

0.153

0.157

0.106

0.084

0.084

0.140

0.140

0.206

0.317

0.459

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1
-0.2
-0.3

I I I 1 I I I I I

H-LUJJJ.'N r i rT | " I 1

Confidence interval bounds

Figure 6.7 Correlogram of (1 — L)xt.

The correlogram of the series (1 — L)(l — L12)xt does not present sys-
tematically large autocorrelations for small values of h or for h multiples
of 12 (cf. figure 6.8 and table 6.5). Therefore, we can assume that the
series (1 — L)(l — L12)xt is generated by a stationary process.

Note that figure 6.8 shows large values of p(l) and of p(12). This
suggests we introduce into the moving average polynomial a term of the
type (1 — 0\L){\ — 02L

12). The choice of a moving average representation
is confirmed by the shape of the estimated partial autocorrelation func-
tion of (1 — L)(l — L12)xt (figure 6.9 and table 6.6). An autoregressive
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0.3-
0.2-
0.1-

0
-0.1 -
-0.2-
-0.3
-0.4

Table 6.4 Estimated Autocorrelation of (1 — L)xt

h

1

2

3

4

5

6

7

8

9

10

11

12

p(h)

-0.124

-0.191

-0.179

0.109

-0.106

-0.011

-0.114

0.105

-0.149

-0.159

-0.090

0.836

h

13

14

15

16

17

18

19

20

21

22

23

24

p{h)

-0.085

-0.179

-0.162

0.117

-0.094

-0.035

-0.099

0.094

-0.145

-0.126

-0.075

0.775

h

25

26

27

28

29

30

31

32

33

34

35

36

p(h)

-0.099

-0.173

-0.143

0.092

-0.079

-0.011

-0.101

0.097

-0.150

-0.105

-0.050

0.705

h

37

38

39

40

41

42

43

44

45

46

47

48

p(h)

-0.115

-0.160

-0.136

0.098

-0.070

-0.019

-0.094

0.093

-0.132

-0.088

-0.045

0.649

T" . - :1T J I

•'-•X...
1 | I ' ' I1 I I I I

Confidence interval bounds

Figure 6.8 Correlogram of (1 - L)(l - L12)xt

representation would need a larger number of parameters, since the par-
tial autocorrelations, especially the first five, are significantly different
from 0.

A moving average, of the type

(1 — Q\L)(1 — 62L )et = et — 6i€t-i — #2^-12 + #i#2Q-i35

admits autocorrelations p(h) different from 0 for h = 1,11,12,13. This
is compatible with the values assumed by p(ll) and p(13). Finally, the
empirical mean of (1 — L)(l — L12)xt is equal to -0.16 and the empirical
variance is 28527. The asymptotic variance of the empirical mean of a
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Table 6.5

h

1

2

3

4

5

6

7

8

9

10

11

12

0.4-

0.3-

0.2-

o . i -

-0.1 -.

-0.2-

-0.3

-0.4-1

p(h)

-0.401

-0.048

-0.116

0.056

0.010

0.131

-0.171

-0.012

0.069

0.013

0.179

-0.394

IflT

Estimated Autocorrelation of
1 - L)xt

h

13

14

15

16

17

18

19

20

21

22

23

24

1 '1'

Pih)

0.178

0.007

-0.023

0.051

0.069

-0.185

0.134

-0.085

0.078

0.007

-0.107

0.025

1 . 1.

"11

h

25

26

27

28

29

30

31

32

33

34

35

36

p(h)

0.039

-0.008

0.049

-0.030

-0.096

0.133

-0.044

0.037

-0.074

-0.043

0.134

-0.017

. 1 1

' 1 "

Confidence interval bounds

Figure 6.9 Estimated

h

37

38

39

40

41

42

43

44

45

46

47

48

II"

Partial Autocorrelation of

p(h)

-0.054

0.046

0.007

-0.194

0.185

-0.072

0.062

0.036

-0.043

-0.034

0.037

-0.028

I.I
1 h

(l-LMl-

moving average (1 - 6\L)(l -

i 2p(l)

is given by (cf. chapter 9)

+ 2p(12) + 2p(13)),
JL

where T is the number of observations of (1 - L)(l - Ll2)xt. This
variance is estimated as

1

204 - 13
28527 (1 + 2(-0.4)) + 2(0.18) + 2(-0.39) + 2(0.18)) = 21.
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Table 6.6 Estimated Partial Autocorrelation of

h

1

2

3

4

5

6

7

8

9

10

11

12

r(h)

-0.401

-0.249

-0.306

0.215

-0.172

0.037

-0.117

-0.155

-0.049

-0.051

0.250

0.249

h

13

14

15

16

17

18

19

20

21

22

23

24

r(h)

-0.041

0.022

-0.195

-0.030

0.059

-0.019

0.011

-0.131

0.055

0.033

-0.027

-0.131

h

25

26

27

28

29

30

31

32

33

34

35

36

r(h)

-0.057

-0.037

-0.099

0.016

-0.007

-0.007

0.035

-0.012

0.005

-0.086

0.060

-0.009

h

37

38

39

40

41

42

43

44

45

46

47

48

r(h)

-0.018

0.057

0.134

-0.189

-0.081

-0.074

-0.015

0.095

0.034

0.017

0.077

-0.041

The empirical mean is smaller (in modulus) than twice its estimated
standard error, so that the process can be considered centered around a
mean of 0.

6.6.2 Estimation of the Model

The retained model is a SARIMAi2 (0,1, l)(0,1,1)

(1 - L)(l - L12)xt = (1- 0!L)(1 - 62L
12)et

with E(et) = 0 and var (et) = a2. Therefore, there are three parameters
to estimate, 0i,02>0"2- The estimation method is least squares with
"backforecasting." The estimated values of #i,#2 are reported in table
6.7 with their estimated standard errors. The estimated variance of the
white noise is 15100.

6.6.3 Validation

Tests on the Parameters The t-ratios associated with 6\ and 02
are, respectively, 21 and 7. Since they are greater than 1.96 the two
coefficients are significantly different from 0.
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Table 6.7 Estimated
Parameters

Estimated

value

Estimated
st. error

0.84

0.04

02

0.51

0.07

Figure 6.10 Estimated Residuals

White Noise Tests

(i) Series of Estimated Residuals A first step consists of inspecting
the sequence of estimated residuals graphically to see whether they show
some tendencies or regularities which would lead to the rejection of the
white noise hypothesis. In figure 6.10 the series seems compatible with
such a hypothesis.

(ii) Portmanteau Test The values of the statistics Q1 are reported
in table 6.9, corresponding to K = 12,24,36, together with the critical
values of a \2 distribution associated with 10, 22, 34 degrees of free-
dom. Since the estimated statistics fall in the acceptance region, the
Portmanteau Test leads to the acceptance of the white noise hypothesis.

This model passes the most common tests. However, it could be im-
proved upon by trying to take into consideration the outliers correspond-
ing to the residuals of period 54 and 89. These exceptional phenomena
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Table

K

Q'(K)

6.1

Critical
values (a

3 Portmanteau

12

15.5

- 5%) 18

Test

24

25.4

34

36

36.8

46

0.15 -

-0.15

: . . . , . lh
T i 1 ' i

i

'"1
ill ,

I I I "̂
1 h

Figure 6.11 Correlogram of the Estimated Residuals

could be taken into consideration by inserting variables for structural
breaks (cf. 6.5.3). Another improvement can be achieved by studying
the behavior of the estimated autocorrelations of the residuals in more
detail than by the Portmanteau Test. The graphical representation is
given in figure 6.11 for values reported in table 6.9.

6.6.4 Forecast

The forecasted values for the twelve months of year 1980 are compared
with the actual values (not included in the estimation period) in table
6.10. The mean of the relative deviations between the actual values
and the forecasts, equal to 4.4%, is much smaller than the one (6.9%)
obtained by a regression method. Like in the case of the Buys-Ballot's
regression model, the forecast function is equal to the sum of a first-
degree polynomial and of seasonal coefficients equal to 0 on average
over one year. The improvement in the quality of the forecast comes
from the closer adequacy of the forecast function to the characteristics
of the series. Note that the pivotal values are the first thirteen fore-
casts.
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Table 6.9 Autocorrelation of the Residuals

h
1

2

3

4

5

6

7

8

9

10

11

12

p(h)

0.16

-0.04

-0.12

0.02

-0.02

0.02

-0.16

-0.07

0.02

0.04

0.02

-0.02

h

13

14

15

16

17

18

19

20

21

22

23

24

p(h)

0.08

0.06

-0.00

0.04

0.00

-0.13

-0.05

-0.09

-0.04

-0.05

-0.02

0.04

h
25

26

27

28

29

30

31

32

33

34

35

36

p(h)

0.09

0.05

0.02

-0.03

0.01

0.09

0.02

-0.01

-0.08

-0.01

0.14

0.03

h
37

38

39

40

41

42

43

44

45

46

47

48

p{h)

-0.03

-0.05

-0.07

-0.11

0.06

0.03

0.05

0.05

-0.04

-0.02

0.02

-0.01

Table 6.10 Realized Values and Forecasts

Horizon

1

2

3

4

5

6

7

8

9

10

11

12

Realized

value

2848

2913

3248

3250

3375

3640

3771

3259

3206

3269

3181

4008

Predicted

value

3180

2845

3116

3361

3382

3733

3977

3379

3041

3159

3092

3666

Lower

bound

2939

2602

2870

3112

3130

3478

3719

3118

2777

2893

2823

3394

Upper

bound

3420

3088

3362

3610

3634

3988

4235

3640

3304

3426

3361

3938

Forecast

error

-332

67

131

-111

-7

-93

-206

-120

165

109

89

342
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6.7 Exercises

Exercise 6.1: Let us consider an ARIMA process of the type (1—L) (1 —
L4)xt = S + et, where {ê } is a zero mean white noise, interpret able as
the innovation on Xt. Provide the expression for the forecast function as
a function of five parameters. Indicate which are the pivotal values.

Exercise 6.2: Let us consider an ARMA process {xt} defined as

$(L)xt = Q(L)ct,

where {e*} is a zero mean white noise with variance a2 > 0. Assume
that $ and 6 have roots greater than 1 in modulus. Show that, for any
fixed t,

lim Xt(k) = 0
k—>-+oo

in Z/2-

Exercise 6.3: Let us consider the process defined by some initial
condition (without a need to specify them), and by the condition
(1 — 2Lcoso; + L2)xt = Q, where {ê } is a zero mean white noise with
unit variance a2, interpretable as the innovation of xt. We observe the
process at time t — 1, . . . , T. The values for T — 1, respectively T, are
XT-I = 0 and XT — 1-

(i) What is the forecast function for the process?
(ii) What is the forecast error variance at the horizons k = 1, 2,3?

Exercise 6.4: Let us consider the stationary process {xt} defined as

where tt is a zero mean white noise with variance a2 = 1.

(i) Express xt as a function of the et-is What is the covariance
between xt and et-{l

(ii) What is the one-step ahead forecast error variance?
(iii) What is the autocorrelation function of the process?

Exercise 6.5: Optimality of the Double Exponential Smoothing We
have seen that the double exponential smoothing leads to the forecast
function

xt(k) = ai(t) + ka2(t), VA:>0, (1)
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and to the updating formulae

ai(t) = cn(t - 1) + a2(t - 1) + (1 - (32) (xt

&2(t) = 0>2(t — 1) + (1 — (3)2 (Xt — Xf-l

217

(2)

where /3 is the smoothing parameter. On the other hand, the forecasting
theory based on an ARIMA(p, d, q) process shows that

P+d

(3)

where the fi(k) are the elementary solutions of the difference equation
associated with $(!/) and the bi(t) are determined writing (3) for k =
q,q-l,...,q-p-d+l. Let

fP+d(k)

. . . fp+d(k+p + c

b(t) =

hk

(i) Show that, V k > q-p- d

b(t) = (4)

where {et} is the noise innovation of the ARIMA(p, d, q) process,
and the /i/s have the usual meaning.
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(ii) Show that in order for (3) to be written as (1) we must have
(1 — I/)2. Show that the formulae (2) and (4) coincide if and only

(iii) Verify that the double exponential smoothing is optimal for
satisfying

A2xt = (l-(3L)2et.

Exercise 6.6: For each of the models below, write the expressions of
the forecast functions at time £, Xt{k). Show the pivotal elements as
well, which will allow the derivation of the parameters.

(l-L)2(l-ct>L)xt=O*+eu

(1 - L)(l - L4)(l - <\>L)xt = 0* + (1 -

Exercise 6.7: Let us consider the model

(1 - L)(l - Q.5L)xt = (1 - 0.8L)et,

where et is a zero mean white noise with variance a2 = 0.25. Let us
assume that

xT = 12 and xT(l) = 10.

Provide a forecast interval for XT+2 at 95%.

Exercise 6.8: Show that a confidence region for the parameter vector

a = ((/>i,.. . , 0 p ,0 i , . . . ,oqy

is given by

S(&T) ~V-'// -

where 6LT is the least squares estimator of a. The contours of this region
are described by the equation

Exercise 6.9: Denoting by lnL^ the concentrated log-likelihood, ob-
tained by replacing the parameter a2 in lnL^ by its expression as a
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function of a, that is, a2 — a^(ct) derived from dinLT/da2 = 0. We
have, then

InLy(a) = lnLT (a,<72(a)) ,

with
<91nLT(a,cr2(^

do^2

Compute
<92lnL*

= 0.

docdoc' '
and show that the matrix

can also be written as

A = -plim [ -3-
dotdoL'

In the above expressions, OLT and a2 denote the maximum likelihood
estimators of a and of a2.

Exercise 6.10: Show that
d2lnL*T _ T S(cx)

da2 ^ ~ " ^ "
and

. 2 _

Show that b in expression (6.16)

f l
6 = -phm —

can also be written as

In the above expressions OLT and a2 denote the maximum likelihood
estimators of a and of o\.

Exercise 6.11: Let us consider an ARIMA(0,l,q) process x. Compute

v/var(xt),var(xt+/l)

Verify that p(h, t) tends to 1 when t —> +cxo.
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Table 6.11 Values for
Exercise 6.12

1

p(h) 0.56 0.26 0.08

r(h) 0.56 -0.08 -0.05

pi(h) -0.47 0.03 0.02

Exercise 6.12: The identification phase of a series xt provides the
values for the estimated autocorrelations, partial autocorrelations, and
inverse autocorrelations for wt = Axt reported in table 6.11.

The empirical value of the mean of wt is 10. Which initial values
would you suggest for the following models?

ARIMA(2,l,0) with constant term.
ARIMA(1,1,1) without constant term.
ARIMA(1,1,2) with constant term.

Exercise 6.13: {xt} is the first-order moving average process defined
as

xt = et -2e t_i ,

where {ê } is a white noise with variance 1.

(i) What is the correlogram of
(ii) Express et as a function of the xt-iS.
(iii) A statistician suggests we use the simple exponential method to

forecast xt+k- Not knowing which smoothing parameter to choose,
he chooses the middle value (3 = 0.5. As a result the optimal
forecast xt{k) is equal to 10. Do you agree with the procedure?

(iv) Compute the values of var (et(k)) for all integer k > 0.
(v) Assume that the process xt is unobservable, and that what we

observe is, in fact, the process yt defined as

where {£*} is a white noise with variance 0.8, representing mea-
surement errors assumed uncorrelated with {et} (i.e., E(et£s) —
0 V M ) .
Show that {yt} is a moving average process of order 1 and write it
in explicit form. (Hint: use spectral densities.)
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(vi) Knowing that with the smoothing parameter (3 = 0.4, the simple
exponential smoothing of {yt} at time t is equal to 9, give for all
k the numerical values of yt(k) and of the forecast error variances.

Exercise 6.14: Spatial Aggregation of Two Autoregressive Processes of
Order 1 Let us consider two independent stationary processes {xt} and
{yt} such that

{I- PiL)xt = ut, \pi\ < 1,

(1 - p2L)yt = vu \p2\ < 1,

with
E{ut) = E{vt) = 0, V *,

E{utus) =(rl6ts, V t,5,

E(vtv8) = *l6ts, Vt,s.

Let zt = xt +yt-

(i) Let us suppose that the xt and the yt are observed up to date T,
and that we want to forecast ZT+I- What is the forecast error vari-
ance VD if we use the optimal forecast based on the {xt, yt}, t < T?

(ii) Show that the process {zt} is an ARMA(2,1) corresponding to an
expression

$(L)zt = (1 - 0L)eu

where

*(L) = 1 - (pi + p2)L + P1P2L2,

and {et} is a zero mean white noise. (Hint: Recall that the sum of
two uncorrelated moving averages of order 1 is a moving average
of order at most equal to 1.)

(iii) What relationship do pi, p2? ^ &% have to satisfy, in order for
the process {zt} to be an AR(2). Show that, if p\ and p2 have the
same sign, {zt} cannot be an AR(2).

(iv) Show that we cannot have 6 = ±1 and that we can always assume
| 0 | < 1 .

(v) Show that we can write
(0-p2) (0-Pi)

Derive an expression for VA ~ VD, where VA is the forecast error
variance for 2^+1 when we use the optimal forecast based on the
aggregated variables {zt}. Verify that VA — VD is greater than or
equal to 0. When is it 0?
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Exercise 6.15: Temporal Aggregation of an AR(1) on Two Periods Let
us consider a stationary process {xt} such that

(1 - pL)xt = ut | p |< 1,

where ut is a white noise with zero mean and unit variance. Let us also
define the aggregate process

ZT = X2T + X2T-1-

Denoting

note that

L = X2T-2 +

(i) Let us assume that the disaggregated process {xt} is known until
t — 2T and that we want to forecast ZT+I- Compute the error
variance VD of the optimal forecast based on the {#*}, t < 2T.

(ii) Express

VT = (1 — P2L)ZT

as a function of ^ 2 T ? ^ 2 T - I 7 ^ 2 T - 2 - Compute the autocorrelation
function of the process {VT}- Recalling the result according to
which a zero autocovariance function for h > q characterizes an
MA(q), show that {ZT} can be written as an ARM A (1,1) of the
type

(1 - p2L)zT = (1 - 0L)eT,

where e* is a zero mean white noise with variance a\.
(iii) Compute 6 and a2 as a function of p so as to have CT as the

innovation of ZT-
(iv) Let us denote VA the forecast error variance for ZT+I when we use

the optimal forecast based on the aggregated variables {zs}, s <T.
Compute the relative increase in variance due to aggregation as a
function of p

Verify that a(p) is greater than or equal to 0. What values of p
correspond to a(p) = 0? What is the behavior of the function in a
neighborhood of p — 0? What is its limit as p —> 1?



Multivariate Time Series

The notion of stationarity and the autoregressive-moving average repre-
sentations can be easily extended to the multivariate time series. This
generalization is important from a practical point of view, because the
multivariate framework is needed to analyze the links among different
time series. In this chapter we will restrict ourselves to the case of
series which may be seen as a linear transformation of a white noise.
The introduction of an initial date allows one to describe stationary and
nonstationary series as well. Finally, we will introduce some formulas
for forecasts in matrix form, which will be at the basis of the state-space
representation studied in the following chapter.

7,1 Introduction

The set of variables of interest is summarized by a vector of size n which
we will denote as y; the values taken by this vector at the different dates
t e T are yt. The set of indices for the time T can be the set of the
positive integers, or of all integers according to whether we introduce a
starting time. We will generally omit the reference to such a set unless
necessary.

Each component yjt, j = 1,... ,n is a real random variable. The
complete sequence y = {y^} forms an n-dimensional process.

The distribution of a process can often be summarized by the first two
moments (which we will assume exist).
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(i) The mean of the process is the n-dimensional sequence defined as

mt = E(yt). (7.1)

The j-th component of this sequence is the mean of the j-th com-
ponent of y: rrijt = E(yjt). When m* = 0, the process is defined
as centered.

(ii) The moments of order 2 are defined as autocovariances, collected
in the (n x n) matrices T(t,h) with 7j,z(£, ft) = cov (yjt,yij-h) as
its generic element

T(t,h) = cov(yt,yt_/l)
(7.2)

= E {(yt - mt)(yt-/ l - mt-h)
f)

The sequence of the autocovariances has a high informative content
about the process. In fact, it gives an idea about the evolution of

(i) the variability of each variable since

7j,j(*, 0) = cov (yju yjt) = var (yjt);

(ii) the instantaneous links among two components of the process since
the correlation between yjt and y\t is

(iii) the temporal links between two values of the same series associated
to two different dates, since the correlation between y^t and yj,t-h
is

More generally, it gives a measure of the temporal link among two
different components.

7.2 Stationary Processes

7.2.1 Definitions

Let us start from the processes the properties of which are invariant with
respect to time.

Definition 7.1: A process y = {y^} is called stationary if the mean m^
and the autocovariances T(t, ft) are independent oft.

The first two moments are characterized by

(i) a constant m, being the common mean of the various variables y*;
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(ii) an autocovariance function

T(h) =cov(yt,yt-h).

This function T must satisfy a number of conditions ensuring that
T(h) can be interpreted as a covariance. In fact, we must have

cov (yt,yt-h) = cov (yt-h, YtY = cov (yt,yt+h)',

that is, in terms of autocovariances

T(h) = T{-h)'. (7.3)

On the other hand, if a^, k = 1, . . . , K is a sequence of n-dimen-
sional vectors we have

var ffVf cyt + f c j > 0, V K, V afc) fc = 1,... ,K

which can be rewritten as
K K

^T ] T a^cov (yt+fc, yt+i) on > 0, V X, V afc, A; = 1,. . . , K
fc=l Z = l

or, in terms of autocovariances
K K

0, VIT, V a k , fc = l , . . . , / f . (7.4)

Example 7.1: As in the univariate case, the simplest stationary pro-
cesses are white noises. A white noise is a sequence of random vectors
\st\ with zero mean E(et) = 0 and with the same variance var (et) = H,
uncorrelated between themselves, cov (et,£T) = 0, if t ^ r. Its autoco-
variance function is given by

(ft if h = 0,

^ ' ~ I 0, otherwise.

7.2.2 Moving Average Representation

The white noise plays a special role in the analysis of stationary pro-
cesses. We can in fact show that, under certain regularity conditions,
any stationary process y = {y^} can be expressed as a function of a
white noise {et}

+ OO

+m> (7.5)

where the matrices Hj are of order n x n and Ho = I. This expression
goes under the name of Wold Representation.
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Let us study the properties of such a process with possibly a noise
with a different size.

Definition 7.2: The process y = {y^} admits an infinite moving average
representation if it can be written as

yt = 5^HJ-et_J-+m,
j=0

where e is an n-dimensional process with a nonsingular variance-co-
variance matrix ft and the matrices Hj are of order n x h.

In order to simplify the various computations of the sequence of coeffi-
cients Hj, j = 0 ,1 , . . . (called Markov coefficients), we will impose that
it be absolutely summable

^||Hj<+oc, (7.6)
jf=o

where || A|| indicates the largest eigenvalue of A A' (or, equivalently, of
A'A).

We can derive a direct computation of the expressions of the two first
moments of y as a function of m, fi, and of the sequence H = {H?, j =
0,1,...}. We have

E(yt) = ^HjEiet-j) + m = m,
3=0

since e has a zero mean, and

j=0 1=0

+ OO

3=0

where we used the convention Hj — 0 if j < 0. Since the two first
moments do not depend on time t we have found stationarity of the
process again. The expression for the autocovariance function

ry(fc) = 5^HJ-nH;_fc, (7.7)
3=0

where we used the convention Hj = 0 if j < 0, can be written in a sim-
pler form if we use the generating functions associated to the sequences
Hj and T(h).



Multivariate Time Series 227

Definition 7.3:

(i) We define the autocovariance generating function the power series
+00

h= — oo

(ii) We define the generating function of H the power series
+00

3=0

These series provide a suitable notation to represent a sequence in short
form. We can define various operations on these series which have their
counterpart in terms of sequences (cf. the appendix). These operations
are defined in a way as to be compatible with the usual operations on
the integer series. Thus using expression (7.7) of the autocovariances we
have

+00

changing the indices and using the convention Hj = 0 if j < 0.
Finally, the expression (7.7) can be written as

(7.8)

For the time being, we have a dummy argument z appearing in the
definition of the series. We can however replace it with some operator
or with complex numbers, which gives a fairly different meaning to the
corresponding series. These replacements are possible since

+00

^ | | H j | | < +00.

j=o

This, in turn, implies the absolute summability of the sequence of auto-
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covariances, since
+00 +00 +00

E nryWii= EE
h= — oo j=0

+00 +00

11 TT r^tr/
i-h< E E11 H ^ -

/i=-oo j=0

+00 +00

E II H i II II n IIII H ; - »
h=-oo j=0

Thus, we may replace the argument z with a complex number equal to
1 in modulus, keeping the meaning of convergence for the series.

Definition 7.4:

(i) The spectral density function of the process y is a mapping from
(—7T, TT) to the set of the n x n matrices with complex coefficients.
It is defined as

. , . 1 _

(ii) The transfer function of the moving average H is the mapping
transforming u> £ (—TT, TT) mio H (exp(zu;)).

The spectral density function and the transfer function (divided by 2TT)
are the Fourier transforms of the sequences {Ty(h)} and {H?}. They
contain the same information as the initial sequences. In particular, we
can get the autocovariances from the spectral density function using the
expression

Ty(h)= f exp{-ihu)fy(uj)duj. (7.9)
J—n

Symmetry condition (7.3) and positiveness condition (7.4) satisfied by
the autocovariance function have their analogs in terms of spectral den-
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sity. Thus, using the symmetry T(h) = T(—h)', we have
1 +00

=9~ E exp(iha;)ry(/i)

-J

h= — oo

+ OO

=—00

+00x +00

= oZ E

As far as positiveness is concerned, it is easy to extend condition (7.4) to
the complex case. For any value of K and any family of n-dimensional
vectors a^, fc = 1,. . . , if with complex elements, we have

K K

Choosing otk = a. exp(iujk) with a an n—dimensional vector of complex
elements and co G [—TT, TT] we have

a' I 2 ^ 2 ^ exp (zo;(/c - /)) r y (fc - /) I a > 0,
\ f c = l Z=l /

V if, a, a;. Letting if tend to infinity we can show that

a > 0

V a, a;.

Theorem 7.1: T/ie spectral density function matrix is Hermitian pos-
itive

(ii) ~a! fy(uj)oL > 0, for any OL, n— dimensional vector of complex ele-
ments.

As a consequence, the diagonal terms of fy corresponding to the spectral
densities of the elements of y are real and positive.
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Example 7.2: In the case of a white noise e with variance-covariance
matrix ft we have T(0) = ft, T(h) = 0 if h is different from 0. The
spectral density function is thus equal to

/e(w) = -!-n,

independent of a;. Conversely, through (7.9) we can easily verify that any
stationary process with a constant spectral density function is necessarily
a white noise.

Definition 7.5: The lag operator denoted by L is the mapping trans-
forming a (deterministic or random, uni- or multidimensional) sequence
y = {yt} into the sequence y* = {y^} with y$ = Lyt — yt-i-

This notation was already used in the univariate case and has the same
properties as before. If we apply this operator repeatedly we slide the
time index toward the past

Lnyt = y*-n. (7.10)

This operator is invertible. Its inverse denoted by F = L~l is called the
lead or forward operator. Its effect on the series is

Fyt = L-lyt = yt+1. (7.11)

We can show that the application of the lag operator to the stationary
process has a unit norm (cf. exercise 7.1). This implies that the sum

3=0

is meaningful since

+00 +00 -(-00

J2 II HjV ||< "£ II H, || || V ||= £ || H, ||< +00.
j=0 j=0 j=0

The operator H(L) is called a linear filter or moving average transforma-
tion. The moving average representation of the process y can be written
in the synthetic form

y t = H ( L ) e t + m. (7.12)
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7.2.3 Autoregressive Representation

Whenever the noise and the process have the same dimension n and when
Ho = I, the power series H(z) = J2t^o^-jz^ is such that H(0) = Ho
is invertible. It is therefore possible to derive the inverse series (cf. the
appendix)

U(z) = (H(z))-1 = n 0 + n i z + . . . + UjZj + . . . (7.13)

such that U(z)H(z) = I.
When the series Z =̂̂ o H ' (yt-j ~ m ) converges in quadratic mean,

we can write (7.12) in its equivalent form

U(L) (yt - m) = et. (7.14)

Definition 7.6:

(i) The stationary process y defined by the moving average representa-
tion (7.12) is said to be invertible if the series Ylj^o ^j (yt-j ~ m )
converges in quadratic mean.

(ii) Expression (7.14) is called infinite autoregressive form of the pro-
cess.

Since (yt — m) is a stationary process, a sufficient condition for invert-
ibility is that the sequence of the autoregressive coefficients n^ be ab-
solutely summable Xlj^o II H 11̂  +°°-

In the univariate case we have seen that, when it exists, the autore-
gressive form is well suited to the forecast calculations. This result is
carried over to the general case. Since IIo = I, expression (7.14) can also
be written as

yt = m + (I - n(L)) (yt - m) + et.

Let us assume that the vectors et are independent and let us denote by
It-i the information contained in the past values yt-i , yt-25 • • •• This in-
formation will be identified with the set of these variables y^-i, yt-2, • - ••
Noting that et is independent of It-i, and that (I — Tl(L)) (yt — m) de-
pends just on the past values of the process, we have

E(yt | Jt_!) = m + E ((I - U(L)) (yt - m) | It_x) + E (et | / t _ i ) ,

This forecast will be denoted by t-iyt which contains the index of the
variable to be forecast and the date at which the forecast is made.
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Theorem 7.2: // the vectors Et are independent:

(i) The best forecast o/y* on the basis of the information set It-i is

t-iyt = E(yt | Jt_i) = m + (I - U(L)) (yt - m);

(ii) The corresponding forecast error is

The white noise can be interpreted as the sequence of the forecast errors.
It constitutes the innovation process of the process y.

7.3 Linear Processes

7.3.1 Definitions

The stationarity hypothesis is not always suited to the study of the
available series. Therefore, we need a class of simple models which can
describe certain cases of nonstationarity. By analogy with the infinite
moving average representation, from now on we will consider processes
defined as

_i t > 0, (7.15)
3=0

where the process e is a white noise and the matrices Hj are Markov
coefficients. This form differs from the one of the previous section for a
number of reasons

(i) the process is characterized by an index t > 0. The analysis of the
nonstationary processes requires that an initial date be fixed (by
convention equal to 0).

(ii) The values of the process depend on the past, prior to the initial
date. We suppose here that all information relative to this past
is summarized into a random vector z_i. This initial vector z_i
is called initial condition and is assumed to be uncorrelated with
the future values of the noise eo, €i, 62, The coefficient matrix
h(t) is deterministic and depends on time.

(iii) We do not formulate any a priori assumptions on the absolute
summability of the sequence Hj.

(iv) The sum Y^j=o^-jet-j n a s a finite number of terms, function of
the date t. This peculiarity is fairly unimportant. In fact, if we
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define the process *

= j
if t > 0,

0 if t < 0 , ^ ml '

we can write the expression (7.15) as

-i, (7.17)

The two first-order moments of a process expressed as the linear rep-
resentation (7.15) can be determined as follows
(i) The mean is given by

(ii) The autocovariances can be derived from the assumptions of un-
correlation

T(t,h) = cov(yt,yt-h)

( t t-h

j=0 1=0

+ cov

j h + h(*)var (Z_!)h(* - h)'.
j=0

This representation allows one to consider fairly different cases:
(i) Certain multivariate stationary processes can be easily written in

this form. Thus, noting A an n x n matrix with norm strictly less
than one, we know that the process

+00

3=0

is stationary. We can also write it as
t +00

3=0 j= t+l

3=0

Note that the past prior to the initial date is summarized in y_i.

* The process € is clearly not a white noise.
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(ii) A number of processes of the form (7.17), although nonstationary,
can be close to a stationary process. Thus the process defined as

t

with t > 0 and || A ||< 1, is such that
+ OO

3=0

Since E(\\ y_i ||)2 < +oo, and since || A ||< 1 we see that the
square mean error between yt and ŷ  tends to 0 as t goes to infinity.

Definition 7.7: A process y = {yt} is said to be asymptotically sta-
tionary if there exists a stationary process y = {y^} such that

lim E || yt-yt \\2= 0.
£ > + o o

A sufficient condition for the process
t

3=0

to be asymptotically stationary is that
+ OC

lim h(t) - 0 and ^ || Hj \\< +oo. (7.19)
*~'+00 j=o

In this case yt approximates yt = Sj^o ^j£t-j-

(iii) Finally, expression (7.17) allows us also to describe true nonstatio-
nary processes. The simplest example is the random walk

t

yt = $>*-*• (7.20)
j=0

In this case we have mt = E(yt) = 0, and

T(t, h) = cov (yuyt-h) = min(t + 1, t + 1 - h)Q.

When t tends to infinity

tends also to infinity, which implies a tendency toward explosive
paths. Moreover, we note that the temporal correlation of a
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component yj is

cov
corr (2/^,2/^-/1) = —/=

min(t -f 1, t + 1 —

- h)

which tends to 1 as £ goes to infinity.
As in the stationary case, the sequence of the Markov coefficients

is characterized by the power series
+ OO

J=0

In general, the sequence of these coefficients is not absolutely summable
and the sum of the series with general term Hj (exp(iuj)) may not
exist. However, when the integer series has a radius of convergence
equal to 1 we can sometimes define H(exp(zo;)) by a continuity argu-
ment for almost all w G [—7r,7r]. This happens for example for the
series

3=0

In this limit case, H(exp(zu;)) is called pseudo-transfer function and

/(w) = —H(exp(iu;))nH(expM)

is called pseudo-spectrum. Beware of not considering the function / as
the Fourier transform of the autocovariance function, because the latter
is not defined in the case of a nonstationary process.

7.3.2 Forecasts

System (7.17) can be written explicitly as

j=0

for various dates, for example those after t. Keeping separate the values
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of the noise for the past from those for the future (relative to t) we have

yt \ / H o Hi H2 . . . \ / £t \

£t-i

et-2

\

H i

H2

V :

( °
Ho
H i

H2

H3

0

0

Ho

H 3

H 4

0

0

0

/ V /

h(t + 1)
h(t + 2) Z - l

or, with synthetic notation

y+ = Hkt + Tet + h+z-i, (7.21)

where + and ~ mean future and past (including the present) respectively.
H and T are infinite Hankel and Toeplitz matrices, the latter scaled down
by one element (cf. the appendix).

The matrices TL and T are characterizations of the sequence of Markov
coefficients. The usual operations on the sequences {Hj} may be trans-
lated to operations on these matrices (cf. the appendix). The de-
composition (7.21) has an interpretation in terms of forecasts, when
the matrix Ho is nonsingular. In this case, if the variables e0, e i , . . . ,
et,. . . , z_i are independent, and if It is the information contained in
yt ,yt- i , . . . ,yo, z_i or, equivalently, in eu et-i,.. •, e0, z_i we can de-
termine the forecasts of the variables yt+h> h > 0.

The /i-step ahead forecast made at time t is tYt+h = E(yt+h I It)- We
have that

t9t \

(7.22)
tyt+2

The rows of the matrix H represent the coefficients of the noise elements
in the formulas for the forecasts. The forecast errors at the different
horizons are given by

t\h) = tli. (7.23)

Note that considering the time t as part of the past and not of the future
is just a convention. Had we chosen the opposite convention we would
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have had

y*+2

' Hi H2 H3

H2 H3 H4

'Ho 0 0
i Ho 0

V : / V
or

This time, the Hankel matrix is the scaled down one. Although in this
decomposition the Toeplitz matrix appears in its usual form, note that
this expression presents the inconvenience that the scaled down Hankel
matrix does not characterize the sequence anymore (cf. the appendix).
However, the interpretation for the forecasts rests since

7.3.3 Autoregressive Form

When a model is written in the form

y«=H(L)e + h(t)*-i, (7.25)

with Ho = I, it is always possible to provide an equivalent autoregressive
form. This possibility is due to the existence of initial conditions. As
HQ = I is invertible, we can divide I by H(z) according to increasing
powers (cf. the appendix). We have

I = Qt(z)H(z) + Rt(z)zt+\ (7.26)

in the case of the right division of I by H(z) where Qt has degree t. Left
multiplying by Qt(L) the two members of (7.25), we get

Qt(L)yt = Qt(L)H(L)e + Qt(L)h(*)z_i V t > 0,

Qt(L)yt = et- R*(L)e_i + Qt(L)h(*)z-i V t > 0.

Since e_i = e_i if t > 0 and e_i = 0 V t < 0, we get

Qt(L)yt = e t - Qt(L)h(*)z_i. (7.27)

The current value yt of the variable is expressed as a function of the in-
novation et, of the past values yt- i , y*-2>..., yo and of initial conditions
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Using the theorem 7.5 in the appendix we can say that

Qt(L) = I + IIiL + IItL*,
with

j=0

Let us introduce the notations
_ f Yt if t > 0,

Yt "" 1 0, otherwise,

I 0, otherwise .

We can derive an autoregressive form equivalent to (7.27)

U(L)yt = et + (II(L)h*(*)) z_i t > 0. (7.28)

Remark 7.1: If the initial condition z_i = 0 or if h(t) tends to 0
as £ —• +oo, and moreover, if the sequences associated with the power
series H(z) and 11(2) = (H(z))~ are absolutely summable, the pro-
cess {yt,t > 0} is asymptotically stationary and the relationship (7.28)
"tends" toward the autoregressive relationship

n(L)y t = e t .
The common stationary case appears as a limit case of this formulation.

7.4 Appendix
Representation of Matrix Sequences

7.4.1 Operations on the Sequences

The set of sequences denned in RnK, indexed by j positive integer, can
be identified with a set of sequences of matrices of size n x K with real
coefficients. Such a sequence is denoted by

A = {Aj} = (A0 ,Ai,A2 , . . . ) .

We can define a number of operations on this set, the definitions of which
are provided below.

Addition If A = {Aj} and B = {Bj} are two sequences in RnK, their
sum is defined by A + B = {Aj + Bj}, obtained summing A and B
element by element.
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Matrix Multiplication If A = {Aj} is a sequence in RnK, and Q is
a square matrix of size n, we can introduce the sequence "left product"
of Q by A. This sequence is defined by QA = {QAj} and is obtained
by left multiplying each element of the sequence by the same matrix Q.

The right multiplication by a matrix is denned in an analogous, sym-
metric manner. When the matrix Q is a scalar matrix, that is, Q = AI,
the operation boils down to a multiplication by a scalar. The joint prop-
erties of addition and multiplication by a scalar allow to show that the
set of sequences in RnK is a vector space on R.

Convolution Product

Definition 7.8: Given two sequences A — {A^} in RnK (n rows, K
columns) and~B = {Sj} in RKH (K rows, H columns), the convolution
of the sequences A and B is the sequence C in RnIi the general term of
which is

3 j

k=0 k=0

noted as C = A * B.

The operation convolution is

(i) Associative

( A * B ) * C = A * ( B * C ) .

(ii) Distributive to the left and to the right relative to the addition

(iii) It is not commutative in general

A*B^B*A.
This is a consequence of the noncommutativity of matrix multipli-
cation. Note however that in the case of real sequences a = {%},
b = {bj}, the convolution product is commutative.

Theorem 7.3: If a and b are two real sequences,

a * b = b * a.

(iv) The operation convolution admits a neutral element to the left
(respectively to the right). This sequence is of the form

e = (1,0,0,0,...)
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where the matr ix size i s n x n (respectively K x K). In fact we

have
3

(e * A)j = ^^ ek^j-k = eoA.? = Aj.
j=o

(v) The last operation to discuss is the invertibility of a sequence given
by the product *. Let us limit ourselves to the case of square
matrices n — K. In this case the neutral element to the left is
equal to the neutral element to the right. We try to solve the
equation

A * B = e

with respect to B. Writing this equation element by element we get
A0B0 = I,

AiB0 = 0,

A0B2 + AiBi + A2B0 = 0,

A necessary condition for the invertibility of the sequence is that
Ao be nonsingular, since det AodetBo = 1^0 . Under this con-
dition we can solve recursively

\

B2 = - A ^ 1 AiBi - AQ xA2B0,

o x - A2

Therefore we have

Theorem 7.4: A sequence A of square matrices n x n is invertible for
a convolution product, if and only if the first term of the sequence Ao is
invertible.

7.4.2 Power Series

Definitions and Operations Other types of notation are often used to
describe such sequences. Here we introduce the power series associated
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to the sequence A noted as

+00

A(z) = ^ A , A (1)
3=0

This is just a useful notation; in particular the argument z in this ex-
pression should not be interpreted as a real number, nor as a complex
number, nor as an operator. The notation here is meaningful indepen-
dently of any notion of convergence of the series. The various operations
introduced above for the sequences have their counterparts in terms of
series. Thus

(i) The operation addition of the sequences translates into addition of
the series. We can replace the notation (A-\-'B)(z) with A(z)+B(z)
and simply write

4-00 +00

j=0

+00

j=0

(ii) By the same token, the operation multiplication by a matrix Q is
directly carried over

(QA)(z) = QA(*)

that is

+00 +00

3=0 j=o

(iii) Finally, we need to find a counterpart notation for the analog of
the convolution product. By definition we have

+00 j

j=0 fc=O
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Let us assume, for a moment, that z is a complex number and that
the integer series A(z) and B(z) are convergent. We could write

+00 j +00 /+00 \

J2 £ (A*B;-*) *J = £ £ Mztej-tz*-*
j=Ok=O j=0 \k=0 /

+ 0 0(
= A(z)B(z).

We will denote as "multiplication" the isomorphic operation of the
convolution product.

Theorem 7.5: The operation multiplication is defined on the set of the
series as

A(z)B(z) = (A*B)(z).

Prom the properties of the convolution products, we derive that the
product of series of size n x n admits I as the neutral element, and that
a series A(z) is invertible if and only if Ao = A(0) is a nonsingular
matrix. In this case the inverse is noted (A(z))~ (or ̂ Uy in the scalar
case).

Use of the Properties of the Polynomials The proposed notations
for the series and for the analog of the convolution product allow us to
use a large number of established results for the polynomials. Let us
start by giving a definition of a polynomial.

Definition 7.9: The series A(z) is a polynomial of degree p if and only
if Ap^0 and A3-, = 0, V j > p + 1.

For our purposes, we need to derive the results about the divisions.

(i) Divisors Given two polynomials A(z) and B(z) of size n x n we
say that B(z) divides A(z) to the left if there exists a polynomial Q(z)
such that

A(z)=B(z)Q(z).

If B(z) is nonsingular, that is if Bo is a nonsingular matrix, B(z) divides
A(z) when the coefficients of the sequence associated to 'B(z)~1A(z)
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become 0 after a certain rank. The right division can be denned sym-
metrically.

(ii) Long Division It is useful to recall the main results related to the
long division of a series. We present here the case of the left division,
since the same result can be shown for the right division.

Let us consider two series A(z) and B(z), assuming B(z) nonsingular.

Theorem 7.6:

(i) For all integer k > 0 there exists a polynomial Qk(z) of degree k
and a series Hk(z) such that

(ii) The pair (Qh(z),Hk(z)) is unique.

PROOF:

(i) The existence of such a pair can be proved by induction. For k = 0
we can write A(z) = B(z)Qo(z) + zHo(z) with Qo(z) = B ^ A Q
and ZHQ(Z) = A(z) — B (Z)B^ 1 AQ. If we assume that the result
holds true for k < K, given, we can write

A(z) = B(2)QK(z) + zK+1RK (z),

Thus

A(z) = B(z)

We need just to choose

(ii) Uniqueness can be proved by noting that if

are two decompositions of A(z) we have

B(z) (Qk(z) - Qk(z)) = zk+1 (Rk(z) - Rfc(z))

Equating the coefficients of the zero degree term, we get

Bo (Qofe - Qofc) = 0

= o
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since Bo is nonsingular. Equating next the coefficients of the first
degree term

Bo ( Q I * - Qifc) + Bx ( Q 0 * - Qofc) = 0

Bo (Qifc - Qifc) = 0

This procedure can be repeated up to the fc-th degree term. We
conclude then that Qfc(̂ ) = Qk(z) a nd that Rfc(z) = Rfc(>z)- D

The quotients Qk(z) of the long division are easy to obtain in practice
thanks to the following proposition.

Theorem 7.7: Let
+ OO

j=0

the left quotient Qk(z) i>s given by
k

j=0

PROOF: We have
A(z) = B(z)Tl(z)

k +OO

j=o j=fc+i

and the result follows from the uniqueness of the pair Qfc(^), Rfc(^). n

Note that when A(z) and B(z) are polynomials of degree p, respectively
g, the remainder Rfc(̂ ) is also a polynomial. The degree of the remainder
Rfc(z) is at most max(p, q+k) — k — 1 and is equal to q— 1 = degree(B) —1
when k is large enough.

Use of the Properties of Matrices We can also extend various
familiar matrix operations to the matrix series.

(i) We can define the transposed series as
+ OC

3=0
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Assuming the nonsingularity of A, we can easily verify that

(z) + B(z))' = A'(z) + B'(z),

(A(z)B(z))' = B'(z)A'(z),

(ii) We can even write down the expressions in terms of single elements
of the series A(z). Let a^j be the (A;,Z)-th element of Aj and
a<ki(z) = Zlj^o akijzj the scalar series associated to the sequence
of these elements. We can write

a>n(z)(
an2(z) . . . anK(z)

The various elements can be combined together by operations of
the type: addition, product, multiplication by a scalar, etc.

(iii) We can define the determinant of A(z) through the usual formula.
For any n x n matrix series we have
where S indicates the set of permutations of {1 , . . . , n} and e(a)
the sign of the a permutation. A direct computation shows that

(detA(*))z=0 =

The following theorem is a consequence of this result.

Theorem 7.8: The series A(z) of size n x n is invertible if and only
if the scalar series det A(z) is invertible.

(iv) Theorem 7.8 allows us to express the inversion of the matrix series
A(z) in terms of one of the series det A(z). We have

where A(z) is the adjoint matrix of A.

Extensions to the Series Indexed in (—00, -foe) The notation for
the series can be extended to the sequences indexed in (—00, +00). Given
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such a series {Aj} we can associate to it the series
+00

= ... + A _ i - + Ao + Ai^ + A2z
2 + ... .

z
The operations sum and multiplication by a scalar can be defined as pre-
viously. The convolution product needs some clarification. The sequence
C = A * B should have

+00

as the general term. Since the sequence involves an infinite number of
terms, it may not exist. It is therefore necessary to impose some condi-
tions on the sequences A and B to give a meaning to the convolution
product.

Theorem 7.9: We can define the convolution product on the set of the
abolutely summable sequences.

PROOF: This is the result of the inequalities
+00 +00 +00

+00 -(-00

< +00-

•

Under these conditions, we may define the product of the associated
series.

One transformation is common in the computations. Let A be the
sequence derived from A as Aj = A-j then A(z) = A (^). Thus, under
the hypothesis of absolute summability, the sequence C with general
term

+00

k=—oo
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is associated to the series

C(z)=A[-)B(z).

7.4.3 Hankel and Toeplitz Matrices

Definitions In the applications, it is fairly straightforward to repre-
sent the sequences through tables with an infinite number of rows and
columns (infinite size matrices). Two types of matrices are used. Let
A = {Aj} be a sequence of matrices. We call the corresponding infinite
size Hankel matrix the matrix defined as

/ A o Ai A2 .. *
Ai A2 A3 ..
A2 A3 A4 ..« ( A ) =

\

This "matrix" shows the peculiarity of having equal blocks on the sec-
ondary diagonals.

By the same token we define the Toeplitz Matrix associated to the
sequence as

/ A o 0 0 ..
i Ao 0 ..

T(A) = Ao . . .

\
This is a lower block-triangular matrix with identical blocks on the di-
agonals.

Some Operations on the Infinite Matrices The operations addition
and multiplication by a constant (possibly a matrix) are immediately
translated to the infinite matrices. We get formulas of the type

and

W(QA) = QW(A),

where A and B are sequences and Q a matrix of suitable size.
In certain cases we can extend the matrix product to infinite size

matrices. The idea is to preserve the usual computation formula for
the elements of the product matrix summing in this case over an infinite
number of terms. To do that, we need the infinite sum to be meaningful.
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For instance, we can perform matrix multiplication between two Toep-
litz matrices

/Ao 0 0 ...\ /Bo 0 0 ...\

T(A)T(B) -
i Ao 0

Ao ...

\ /

Bi Bo 0 ...

B 2 Bi BQ

\

A0B0 0 0
A T*> I A T> A |j f\

A2B0 + AiBi -f A0B2 AiB0 + A0B! A0B0

\
that is to say

T(A)T(B) = T(A*B).

A

(3)

The convolution product of sequences is translated into a matrix product
of the associated Toeplitz representations.
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7.5 Exercises

Exercise 7.1: Given a unidimensional stationary process of order 2
with zero mean {xt} show that

|| Lxt || = || xt ||,

where || x ||= y/E(x2). Derive the expression for the norm of the oper-
ator L, that is

„ „ || L
|| L \\= sup

Exercise 7.2: Let us consider the right and left divisions of I by

Compute the product Qt(z)H(z)Qt(z) in two different ways, and deduce
that Qt(z) and Qt(z) are equal.

Exercise 7.3: Derive the quotient and the remainder of the long divi-
sion of 1 by (1 — z)p up to the order t.

Exercise 7.4: Let A(z) and B(z) be series of size n x K and K x H
respectively. Let their product A(z)B(z) be defined as in theorem 7.5 in
the appendix. Verify that we can associate a scalar series to each element
of A(z)H(z), obtained by the usual rules of matrix multiplication from
the elements of A(z) and B(z).

Exercise 7.5: Let us consider the n x n polynomial A(z) = I — Az.
Compute (A(z))~ . Under what conditions is the sequence of matrices
associated with (A(z))~ absolutely summable?
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Time-series Representations

8.1 ARM A Representations

8.1.1 Stationary ARMA Processes

Definition 8.1: A stationary process {yt} admitting an infinite moving
average representation

+ OO

j=o
with E(et) = 0 and var(et) = Q nonsingular, is called ARMA(p, q),
that is, Autoregressive-Moving Average of order p and q, if it satisfies a
difference equation of the type

*(L)y t = ®(L)eu

where &{L) and 0(L) are matrix polynomials of order p and q, respec-
tively, i.e.

where * 0 = I, * p =̂ 0, 0O = I, 0 9 / 0.

Prom this definition, e and y are of the same size, and Ho = I. In
the limit case q = 0, the process can be written as *(L)y t = et and is
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called autoregressive of order p - XR(p). When p — 0 y* = ®(L)et and
is called moving average of order q - MA(q).

Nonuniqueness of the Representation. Note immediately that,
for a given ARMA process, the pairs of polynomials (*(L),0(L)) and
the orders p, q are not unique.

(i) Thus, if &(L)yt = ®(L)et and if A(L) is another matrix polyno-
mial of size (n x n), by premultiplying by A(L), we get

A(L)*(L)yt = A(L)®(L)et o **(L)yt = ©*(L)et,

with **(£,) = A(L)*(L) and 0*(L) = A(L)0(L).
(ii) Independently of this "common factors" problem, other cases of

multiplicity of the representation can exist. Let us consider, for
example, a nilpotent matrix ©i, and the stationary MA(1) process

yt =et - ©iCt-i-

Multiplying the two sides of the equation by (I + @\L) we get

(I + 0iL)y t = (I - ®\L2)et <* (I + ©xLJy* = et

since 0f = 0. The process y t admits an AR(1) and an MA(1)
representation at the same time.

It is clear that we would need to introduce a concept of minimal rep-
resentation ARMA(p, q), that is such that the process does not admit
an ARMA(p',q') representation with p < p', q < q'', one of the two in-
equalities being a strict one. These problems of minimality are complex
from a mathematical point of view and will not be discussed in what
follows, even if they should be kept present in many of the results of this
chapter.

Restrictions on the Autoregressive Polynomial For a given choice
of the polynomials *(!/), ©(£), there does not necessarily exist a sta-
tionary solution to the equation

*(L)y t = &(L)et.

Thus, the processes satisfying

(I - L)yt =yt- yt-i = et

are such that

r=0

We have seen that var (yt) = (t + l)fl + var (y-i). As soon as 17 ̂  0,
this form of variance is incompatible with stationarity.
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We can easily find a set of restrictions on the autoregressive polyno-
mials ensuring that the difference equation admits a stationary solution.

Theorem 8.1: Let us consider a matrix polynomial $ such that the
roots of the polynomial det($(z)) (z complex), be all outside the unit
circle, that is, strictly greater than 1 in modulus. Then the equation
&(L)yt = &(L)et admits a stationary solution y and such a solution is
unique.

PROOF: The condition on the roots of det(<£(z)) allows us to write the
coefficients of the series

det(*(*))
v v >> j=Q

in the form

where A& is the inverse of a root of det(&(z)), and Pk(j) is a polynomial
in j the degree of which depends on the order of multiplicity of this root.
Since |A |̂ < 1, we conclude that the series with ipj as a general term is
absolutely summable. This allows us to give a meaning to the operator

= ^(^) defined on the stationary processes. The equation
= &(L)et can be written as

where &{L) is the adjoint matrix of
The moving average process yt = H(L)et = $>(L)~1®(L)et is sta-

tionary, given the absolute summability; it is also the only stationary
solution of the ARM A model. •

The condition on the roots of the determinant of the autoregressive
polynomial in theorem 8.1 is not necessary. Thus the equation

yt - 2yt_i =et- 2et_i

in which the autoregressive polynomial has a root equal to 0.5, admits
the stationary solution yt = et.



Time-series Representations 253

Existence of an Autoregressive Representation

Theorem 8.2: Let y = {yt} a stationary process satisfying the ARMA
representation

*(L)y« = 0(L)e(.

// the polynomial det(©(L)) has all its roots strictly outside the unit
circle, then y admits the infinite autoregressive representation

PROOF: The condition on the roots of det(0(^)) implies the invertibil-
ity of the operator 0(L) defined on the values of a stationary process,
hence the result. •

In the ARMA representation of a stationary process, in practice we often
impose the two conditions

det(*(z)) = 0 => \z\ > 1,

det(0(z)) = 0 =>|*| > 1.

This allows us to use one or the other of the three equivalent represen-
tations

ARMA(p,q) 9(L)yt = @(L)et

MA(oc) yt

AR(oo)

In this case e is the innovation process of y.

Some Examples of Paths
In order to illustrate the behavior of processes satisfying an ARMA rep-
resentation, we give in this section some examples of paths corresponding
respectively to an MA(1) and an AR(1) process.

Example 8.1: Let us consider a bivariate process y defined as

/ 0.2 0.3 \

* = * - -0.6 i.i r*-1
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0 25 50 75 100 125 150 175 200 225 250

Figure 8.1 Simulated Path of y\ from a Bivariate MA
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Figure 8.2 Simulated Path of y<i from a Bivariate MA

with

var(ct) = ft =
4 1
1 1

The polynomial det(I -h &\z) = 1- 1.3z - OAz2 has two distinct roots
Ai = l^jbos a n d A2 = i ^ o s b o t h g r e a t e r t h a n im

Figures 8.1 and 8.2 give a simulated path of each of the components
of y.
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Figure 8.3 Simulated Path of y\ from a Bivariate AR
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Figure 8.4 Simulated Path of t/2 from a Bivariate AR

Example 8.2: Analogously, figures 8.3 and 8.4 provide the graphical
representations of the simulated paths of an AR(1) process defined as

/ 0.2 0.3 ^
Yt y-0.6 1.1

with

var = ft =
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Autocovariance and Spectral Density Functions In the case of
an ARMA process, the autocovariance function satisfies some linear dif-
ference equations, which can be determined to derive its form explicitly.
We can obtain such an equation in the following way. Let us consider
an ARMA process

with $o = ©o = I- Its MA(oo) representation is
+ OO

3=0

We can write, then, for h > 0

cov

= cov (&oet+h + ©iet+h-1 + • • • + ®qet+h-q,

Expanding this equality we get

* o r f c + « 1 r f c _ 1 + . . . + * P r , _ p = j ^ , _ j 0 . + h f i H ; , \fhll

Theorem 8.3:

(i) An XRMA(p,q) process admits an autocovariance function satis-
fying a linear homogeneous difference equation of order p starting
from the rank q + 1.

(ii) In particular, the autocovariances of a pure MA (q) moving average
process become zero starting from the rank q + 1.

These properties of the sequence of the autocovariances characterize the
stationary processes admitting ARMA representations.

Theorem 8.4: Let us consider a linear stationary process
+ OO

3=0

where Ho = I and e is the innovation of the process such that the se-
quence of the autocovariances satisfies

$0Th + ®1Th-1 + ... + $pTh-p = 0 \/h>q + l,

with *o = I- Then y admits an ARMA(p,q) representation.
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PROOF: The condition on the autocovariances means that

cov (*oy*+/i + *iyt+/i-i + .. . + &pyt+h-P, y«) = 0 V ft > g + l,

<̂> cov (*oy« + *iy*-i + • • • + *Pyt-P, yt-/i) = o v ft > g + l.

Therefore the vector

$oy* + *iy*-i + • • • 4-

uncorrelated with yt-q-i,yt-q-2, • • • is also uncorrelated with the in-
novations c t_9_i,et_g_2,— The MA(oo) representation of 3>oyt +
*iy*-i + .. • + <&pyt-P interpretable as the decomposition of this vec-
tor in the "orthogonal basis" et,et-\,..., et-q, et-q-i,. •., admits zero
components for the £t-j, j > q + 1. We have then

*oyt + * iy t - i + • • • + ®Pyt-P = ^et + ^ ie t - i + ... + il>qet-q,
that is, an ARMA(p, g) representation. •

In particular, an infinite moving average process admits an MA(q) rep-
resentation if and only if the sequence of autocovariances becomes zero
starting from q + 1.

Example 8.3: Let us consider a stationary univariate process the
autocovariance function of which satisfies

p

><j Vft>0,

where the Xj are real numbers smaller than 1 in modulus. We can easily
see that

p

= 0 Vft>p,

where we have L^(h) = j(h — 1). The constraint ft > p comes from
the fact that the particular form for 7(ft) is not satisfied but for positive
values of ft. We can conclude that the process y admits an ARM A
(p,p — 1) representation.

The spectral density function of an ARMA process

*(L)yt = e(L)e t ,

with var (et) = f2, can be obtained easily from definition 7.4
f(") = b

(8.2)
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This formula can be applied when det($(z)) has all its roots outside the
unit circle. It has a meaning, however, so long as ^ and 0 have certain
common roots smaller than 1 in modulus. In fact, some simplifications
can be operated when we carry out the product

The spectral density function can also be written as

= 1 ^(exp(iu;))S{exp(iu;))nS(exp(iuj)y^f(exp(iu;))
1 ] 2TT I det *(exp(io;)) |2 ' l ]

Written in this form f(uj) is a matrix the elements of which are rational
fractions of exp(iu;). This property is a characteristic of the ARMA
process.

Theorem 8.5: Any stationary process for which the spectral density
function can be written as a matrix the elements of which are rational
fractions of exp(ico) is an ARMA process.

PROOF: cf. Azencott and Dacunha-Castelle (1984). •

Linear Transformation of an ARMA process

Theorem 8.6: Let y = {yt} be a stationary process of size n admitting
an ARMA representation

*(L)yt = &(L)et,

where var (et) — ft, and let tp(L) be a polynomial in L of size (ra x n).
The stationary process y£ = ^(L)yt admits also an ARMA representa-
tion.

PROOF: The spectral density function of y* is

V M = '0(exp(za;))f1/(a;)'0(exp(iu;))/

= —
2TT

Since its elements are rational fractions in exp(zo;), the result is a direct
consequence of theorem 8.5. •

The expressions of the polynomials $* and 0* of the ARMA rep-
resentation of the process y* are often of difficult derivation. We give
hereafter an example of such a derivation.
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Example 8.4: Let y\ and y2 be two moving average processes of order
1, uncorrelated with each other. They are defined as

V\t — tit —

U2t — €2t —

with var(eit) = a2 and var(e2t) = o\ a nd the two white noises un-
correlated, cov(eit,e2r) — 0 Vt , r . The bidimensional process can be
represented as

(yu\ (-Ox o \

with

Let us examine now the process

On the basis of the theorem 8.6, we are dealing with a process admitting
an ARMA representation. More precisely, noting that

cov(2/it,yi,t+fc) = 0 V h > 2,

cov (y2u 2/2,t+/i) = ° V ft > 2,

cov(ylt,y2T) = 0 Vt,r,

we have

cov (y?, 2/t+h) = c o v (?/i* + 2/2*»2/i,t+/i -f 2/2,t+/i) = 0 V ft > 2.
As a result of theorem 8.4 the process y* admits an MA(1) representa-
tion, that is, it can be written as

with var(e^) = a*2. In order to find 6* and a*2 we can write the first
two elements of the autocovariance function of y*. We have

7*(0) = v a r (Vit) + var (y2t),

7*(1) = cov (2/lt, 2/i,t-i)

which implies
a*2(l + r 2 ) = <72(1 +

This system admits two pairs of solutions (0*,cr*2). In fact if we look
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for the solution for 0* we get
1 a?(l + 0?) •' ~

(7 "\O\ '

This second-order equation in 0* admits two solutions, one of which is
the inverse of the other. In order to obtain the representation which
allows for an interpretation in terms of innovation, we will choose the
value of 6* smaller than 1 in modulus.

8.1.2 Nonstationary Processes
Admitting an ARMA Representation

Definition 8.2: More generally, we say that a process y — {y*} admits
an ARMA representation if it satisfies a difference equation of the type

*(L)yt = e(L)c t ,

with

0(L) = 0 O + 0 i L + .. . + &qL
q.

$o = I , ^ p ^ 0, ©o = I, ®q 7̂  0, where the variables y_ i , . . . ,y_p,
e_i , . . . ,e-p are assumed to be uncorrelated with eo> £ i , . . . , e t , . . . , o,nd
where {et} is a white noise with nonsingular covariance matrix ft.

The previous relationship unambiguously defines the process y. In fact,
if we introduce the quotient of the long right-division of I by $(L) we
get

with degree (Q*(Z/)) = t and degree(R*(L)) < p — 1. This division may
be carried out since ^o = I is invertible. Premultiplying by Qt(L) the
two sides of the difference equation, we get

The result is an expression of the type

yt = J2HJ£t-j + ££,.(*)*.,• +Ytj
i=o j=i j=i

with degree (Qt(L)0(L)) < t + q and degree (R*(L)) < p - 1. We find
thus a (generally nonstationary) process admitting a linear representa-
tion, with a sequence of coefficients given by
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and by the initial values

Remark 8.1: Since the series H(^) has the form of a rational fraction
in z, the sequence Hj j > 0 is completely characterized by the knowledge
of this rational fraction for z = exp(iu>), u e [—7r, n] — W^ where Wd
indicates a finite set of discontinuity points. Thus it is possible to define
the pseudo-spectrum

f (w) = — H ( e x p M ) « H ( e x p M ) ' ,

since it is also a rational fraction, and has a finite number of discontinuity
points.

ARIMA Processes Among all the nonstationary processes admitting
an ARMA representation, generally special attention is given to the pro-
cesses called ARIMA (i.e., Autoregressive Integrated Moving Average).

Definition 8.3: A process {yt} admits an ARIMA representation if it
satisfies a difference equation of the type

*(L)yt = &{L)eu

where in addition to the conditions of definition 8.2 we impose

(i) det(0(z)) has all its roots outside the unit circle;
(ii) det(&(z)) has all its roots outside the unit circle but for some equal

to 1.

Such processes are introduced especially for the following case. Let us
consider the operator first difference Ayt = yt — yt-i, and let us assume
that the autoregressive polynomial can be written as *(L) = <p(L)Ad,
where the matrix polynomial <f>(L) is such that det(0(z)) has all its roots
outside the unit circle. The model becomes

0(L)Adyt = S(L)et. (8.4)

If degree (<t>(L)) = p and degree (Q(L)) = q we say that the model
admits an ARIMA(p, d, q) representation.

The polynomial det(<j>(z)) has all its roots strictly greater than 1 in
modulus. Noting et = et if t > 0 or 0 otherwise, we can then write the
relationship under the form

3 = 1
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where Ttt(L) is the remainder of the long division of I by </>(L) up to
the order t and where the hj(t), t = 1 , . . . ,q are linear combinations
of the coefficient of order t,t — 1, . . . ,£ — q — 1 of the quotient of I by
<f). When t tends to infinity R*(L)y_i and hj(t), j = 1 , . . . , q tend to
0 and the process differenced d times tends to the stationary process

Note that all ARIMA processes do not necessarily appear in this form.
fl-L 0 \

Thus the autoregressive polynomial I 1 is not divisible by

(1 - L) although its determinant is so. In this example the first and
second components have different integration orders.

We can try to establish the order of nonstationarity of an ARIMA
process. In order to simplify computations, let us consider a scalar
ARIMA(0,d,0) process defined as

Adyt = et t > 0,

where the initial conditions (y_i , . . . , y~d) are fixed, {y^} can be written
as

t

3=0

where m* indicates the mean of y^, and is a function of the initial values
y_ i , . . . ,y_d and where n(z) = (1 - z)~d.

Taking the expected value on the two sides of the difference equation
we have £(Adyt) = E(et) <^ Admt = 0.

The sequence {mf} is solution of a difference equation admitting 1 as
a root of multiplicity d. It can be written as a polynomial in t of degree
smaller than or equal to d — 1. If now we consider the random part, we
can write the coefficients TTJ explicitly. Given that

(d-lV.
3=0 3=0 V ;*

the variance of the purely random part is

var n ^ e H \=° 2-^*3
V=o / j=o

t

3=0

This quantity is of the same order as A^2j=oJ2d~2 with A > 0, that is,
of the same order as 5 t 2 d - 1 . The standard error is of the same order
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as y/Btd~1^2. Thus we see that the order d or, rather, d — \ can be
interpreted as the degree of nonstationarity.

8.1.3 Characterization of the ARMA Representation
through Markov Coefficients

Markov Coefficients Imposing that the stationary or nonstationary
linear process admits an ARMA representation is equivalent to imposing
some constraints on the sequence of the Markov coefficients. In order to
simplify the notation, we consider the stationary case, but the results are
rigorously the same in the nonstationary case. The process ŷ  = H(L)e^
admits an ARMA representation if and only if there exist two matrix
polynomials ^ and 0 of order (n x n) such that

#(L)yt = 0(L)e( <=> #(L)H(L)et = 0(L)et ,

where degree (<£(L)) = p and degree (0(L)) = q. Since var (et) = Q is
nonsingular, this condition is equivalent to

#(L)H(L) = B(L).

Element by element this condition becomes

i f / <
otherwise.

Theorem 8.7: The process admits an ARMA representation if and
only if the Markov coefficients sequence satisfies a homogeneous linear
difference equation starting from a certain index.

PROOF:

(i) Necessary Condition It is straightforward, as we have (cf. (8.5))
v

j H / - j = 0 v l> max(p, q + 1).

(ii) Sufficient Condition Conversely, let us assume that the sequence
{Hj} is such that

p

i=o
with 4>0 = I. The term Yl^=o^j^-j ls t n e ^"tn coefficient of
the convolution $ • H (with * = (3>0, * i , . . . , ^ P , 0...)). Thus
($ • H)i = 0 V / > r. This means that &(z)H(z) is a series not
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involving powers of z greater than or equal t o r .
polynomial, and the process y* = H(L)et satisfies

*(L)y t = *(L)H(L)e t = ®(L)et.

D

Example 8.5: The first-order autoregressive process

y t = *yt - i +c t
has a sequence of Markov coefficients

This sequence satisfies the relationship Hj — <I>H/_i = 0, for / > 1.

Characterization through the Hankel Matrix Rank The condi-
tion on the Markov coefficients can be rewritten in terms of the infinite
Hankel matrix

/ HQ Hi H2 • • • \
Hi H2

n= H2

\ :

Note that there exist three different ways to define the rank of such an
infinite matrix

(i) the column rank of H is equal to the largest number of linearly
independent (sequence) columns of H;

(ii) the row rank of 7i is equal to the largest number of linearly inde-
pendent (sequence) rows of H;

(iii) the rank of TL can also be defined as

sup Q(H)MM'
N,N'

where g(-) indicates the rank, with
/ H o Hi . . .

Hi H2

We know that the three definitions coincide for finite size matrices.
Hereafter we will see that this result carries over to the case of
infinite Hankel matrices.
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Theorem 8.8: The process admits an ARMA representation if and
only if the row rank of the Hankel matrix is finite.

PROOF:

(i) Note that the condition

such that
p

^2 * j H «- i = ° V Z > r > p

is equivalent to
/ T J TT \ Jfr /TT TT TT \
^ ± l r , ± l r + l , . . . ) = —<§>l ( k X l r _ i , ± l r , ± l r + l , . . . ) — . . .

— ft* / " I T W "l
^p y*1-!—pi -t^-r—p+li - • •) •

This relationship means that the rows in
/TT TT TT \

are linear combinations of the rows in
/TT TT TT \ /TT TT \

^Jtir_i, r i r , nr_j_i,.. .) , . . . , [rir-p, nr_p_|_i,. . . ) .
(ii) Let us assume then that the matrix H has a finite rank r0. There

exists an index r - 1 such that the rows of
/ Ho Hi ..."

Hi H2 ...

\ H r - i Hr ...
contain a complete subsystem of rank r$. In this case, the rows
of (Hr,Hr+i,Hr+2, •. •) are linear combinations of the preceding
ones, that is, 3<&i,..., $ r such that

(Hr,Hr+i,Hr+2>.. •)
Jft /TT TT TT \ ^|^ /TT TT \

— —^1 ^±ir_i, ±ir , x i r + i , . . . ) — ... — <Pr {tio, "-1? • • -)

so that on the basis of (i) and of theorem 8.7, the process is ARMA.
(iii) Conversely, if the process is ARMA(p, q), from (i) we have that:

(Hr , H r + i , . . . ) = — 4>i (H r _ i , H r , . . . ) — . . . — &p (H r _ p , Hr_p-|_i,...)
(8.6)

for an appropriately chosen r. This equality involves in par-
ticular that

(Hr-j_i,Hr-|_25 • • •) = —$1 ( H r , H r + i , . . . ) . . . — &p ( H r _ p + i , . . . ) .

Thus the (r -f l)-th row block is a combination of the p previous
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ones. Replacing (H r ,H r+i, . . . ) with its expression from (8.6),
we see that the (r 4- l)-th row block is a linear function of the
(r — l)-th, ..., (r — p)-th. row blocks. We can follow an inductive
approach. Any row block with indices r + h, /i > 0 is a linear
combination of the row blocks with indices r — 1,. . . , r — p. Thus
the subspace spanned by the rows of the Hankel matrix coincides
with the subspace spanned by those associated with the blocks
with indices 0 ,1 , . . . , (r — 1). Hence TC has a finite rank. •

We could even adopt the reverse approach and examine under what
circumstances the Markov coefficients are such that two polynomials
exist, **(£,) and 0*(L) with H(L)**(L) = 0*(L). We would have
obtained then the finiteness of the rank of H as a necessary and sufficient
condition. This leads to

Theorem 8.9: The process admits an ARMA representation if and
only if the column rank of the Hankel matrix is finite.

PROOF: In fact, if the process is ARMA, we have
= 0(L)

=» H(L) det *(L) =

since det(<&(L)) is a scalar. Hence the matrix H has a finite column
rank.

Conversely, if TL has a finite column rank we have

and the process admits an ARMA representation. •

Corollary: The three definitions for the rank coincide for a Hankel
matrix.

PROOF: We have

sup Q(HN,N') > sup£>(W)̂ ,oo = row rank.

Therefore, we can just restrict ourselves to the case where the row rank
is finite (the column rank is finite as well on the basis of theorems 8.8
and 8.9). If this row rank ro is finite, we must have
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so that

sup Q(HN,N') < r0.
N,N'

On the other hand, choosing N large enough to include the r0 inde-
pendent rows, then N' large enough, we see that it is possible to reach
the value r0. Thus, row rank = SUPNN,Q(HN,N')- Since the line of
reasoning is symmetric for the column rank, the result follows. •

Predictor Space We have seen in chapter 7 that successive forecasts
can be expressed through the matrix H

+00

E(yt+h I It) = tYt+h = ^Hj+het-j, V h > 0.
j=o

Since the variance-covariance matrix of et is nonsingular, it is equivalent
to writing the linear independence conditions on the forecasts, or to write
them on the components Hj+h> Theorem 8.8 can then be expressed as

Theorem 8.10: The process admits an ARM A representation if and
only if the space spanned by the forecasts tYt+hi h > 0 is of finite di-
mension. The dimension of this space is then equal to the rank of the
Hankel matrix H.

Given the importance of the predictor space, it is interesting to explain
how to find its bases.

Theorem 8.11: There exist bases for the predictor space in the form

tYt»• • y

where r\,..., rn are positive or zero integers, the sum of which r\ + r2 +
... + rn = r and where y-7 indicates the forecast of the j-th component
ofy-

We are adopting the convention that if rj = 0 there is no forecast rel-
ative to the j-th component in the basis. The peculiarity of such a basis
is that for each component it contains all the forecasts corresponding to
a horizon smaller than a given value.
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PROOF:

(i) Let us consider the forecasts ty\+h ft > 0 relative to the first ele-
ment. There exists a smallest integer r\ (possibly 0) for which the
forecasts {yt,..., tYt+n a r e n n e a r ly dependent. Since

+00

3=0

where H] denotes the first row of Hj, we have
+ OO

J=0

The condition of a linear relationship between ^y*, . . . , and ty\+ri

implies the existence of real numbers a n , . . . , ai r i such that

= ^ y 4-.. .

J + r i i n j - - f . . .

V j > 0. As in the proof for theorem 8.8, we can show that
tyj+fc, ft > n is linearly dependent on tyj , . . . , ty t

1
+ r i_1.

(ii) The procedure for the construction of a basis is carried out consid-
ering the forecasts tYt+hi h > 0 linearly dependent on the second
component. We define r2 as the smallest integer (possibly 0) such
that the system

~ 1 ~ l - 2 - 1

tYt 5 • • • ̂  ty^+n-i' tYt ^ • • • ̂  tyt+r2-i

be linearly dependent. We can show by moving average expansions
that tYt+hi h > r2 is linearly dependent on t y j , . . . ,tyt+r2-i

 fo r

ft>r2.
(iii) The line of reasoning is completed recursively for all components,

up to index n. •

The particular form of the previous basis leads to the decomposition of
the dimension of the predictor space, showing the number of elements
(r i , . . . , r n ) corresponding to each component. This allows us to find
the "maximum lags" associated with each variable, conditionally on the
previous ones. It is clear, however, that a basis of the same type could
have been built using a different order of the indices, for example starting
from the n-th component, then the (n—l)-th, and so on. With a different
ordering, we obtain a "decomposed dimension" (r* .. . r*) which is not
necessarily the same as before (as shown in the Example 8.6).

Example 8.6: Let us consider a bivariate case. Let us assume that the
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predictor space is defined by the Hankel matrix
/(I 0

0 1
0 1
0 0
0 0

.0 0

\ :

0 1
0 0
0 0
0 0
0 0
0 0

0 0

0 0

0 0

0 0

0 0

0 0

The rank of the matrix TL is equal to 2.

(i) Building the basis from the first component y1 we see that ty],
tyj+i> corresponding to the first and third row, are independent.
Thus we have a "decomposed dimension" equal to (2,0).
If we start to build from the second component, we keep tyt (sec-
ond row) and {y\ (first row). The new "decomposed dimension"
is equal to (1,1).

(ii)

The particular bases in the predictor space just described, correspond to
specific ARM A representations. To highlight them, we need to write the
expansions of the links among the predictors. We have already presented
those corresponding to the first component

for j > 7*1. In terms of power series, this relationship can be written as

where ^n(z) = l—anz—...—airiz
ri and where S1 (z) is a polynomial of

size (l,ra) with elements @ij(z), (j = 1, . . . , n), at most of order (r\ — 1).
Note that, since ty\, • • •, tYt+n-i a r e linearly independent, we have that
the maximum common divisor (m.c.d.) of

m.c.d. ($n(z), ©n(z) , . . . , ©in(^)) — 1,
and

max (degree (*n(2;)), degree (©11(2:)) + 1,. . . ,

degree (0 i n (z)) + 1 ) = n .
At the second stage, r2 is the minimal order for which tYt+h *s linearly
dependent on

~1 ^1 ~ 2 - 1

for h > r2.
This condition can be expressed in terms of power series as
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with

max (degree ($22(2)), degree (©21(2)) + 1 . . . , degree (©2n(^)) + 1) = r2

degree (*2i (z)) < n

and the minimality condition for r2 can be expressed as

m.C.d. ($22(*), ©2l(*), • • • , ©2n(^)) - 1,

and so on.
This allows us to state the following result

Theorem 8.12: To a basis of the predictor space of the type
- 1 -1 -2

/£ according to the order 1,2, . . . , n 0/ £/ie indices, corresponds an
ARMA representation satisfying

0 \

0

= (©«(*))>

degree*y(2;) < r^,

max (degree (^^(z)), degree (©«(^)) + 1,. • •,

degree (&in(z)) + 1) = ri5 V i,

m.c.d. ($ , i (4 e«(z),... , &in(z)) = 1, V t.
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This ARMA representation appears in a very specific form since the
autoregressive matrix is triangular.

8.2 State-space Representation

We have considered in the previous section the particular case of dy-
namic linear systems for which the Hankel matrix giving the predictors
has a finite rank. We have seen that they could be translated into an au-
toregressive moving average representation. Under the same condition,
we can show now the existence of another type of representation.

8.2.1 State-space Representation

The Form of the System Let us consider the evolution of a set of n
real variables, denoted as a vector y and let us assume that the values
taken by the various elements of y depend on the values taken by other
variables z. This dependency can be described by the equation system

t+i = Azt + But
(8.7)

yt = Czt + Duf

for t > 0. In (8.7) ut is m x 1, zt is K x 1, yt is n x 1 and the
matrices A, B, C, D are, respectively, K x K, K x ra, n x K, n x ra.
In the system theory terminology, the variables u are called inputs, the
variables y are outputs or observations. The variables z which intuitively
summarize the dynamic effect of u on y are called state variables. These
variables are predetermined in that they depend only on the past values
U t _ i , U t _ 2 , . . . .

System (8.7) implies two separate equations. The first one, called
state equation explains how the state variable evolves according to the
input. The second one, called measurement equation, determines the
output as a function of the state of the system. The previous system
gives a unique path for y for a given path of w, for given A, B, C, D
and for given initial state zo of the system. This system can be seen as
a linear mapping S of the space of the ra-dimensional sequences into a
space of n-dimensional sequences. This mapping is characterized by the
given A, B, C, D and zo noted as

5 = 5(A,B,C,D,z0). (8.8)

In system theory reference is made to a black-box representation
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in order to stress this interpretation of the system as a mapping, and
the fact that this mapping is defined by a state variable.

8.2.2 Multiplicity of the Representations

Definition 8.4: Given a system So, we define a system representation,
any family A, B, C, D, zo such that So — S(A, B, C, D, zo).

A system So admits many different representations. For any nonsingular
matrix Q of order K, we can write the system (8.7) as

yt = CQ-1zt*+Dut,

with t > 0, and z£ = Qz£. This expression is similar to the one in (8.7)
with z£ as a new state variable.

Theorem 8.13:

(i) For any nonsingular matrix Q of order K, we have
S(A, B, C, D, z0) = S(QAQ-\ QB, CQ-\ D, Qz0).

(ii) Two representations (A,B,C,D,zo) and (A*,B*, C*,D*,ZQ) of
the same system are said to be equivalent if there exists a nonsin-
gular Q such that

A* = QAQ"\ B* = QB,

C* = CCT\ D * = D ,

ZQ = Qz0.

There exists a number of other representations which are not derived
from (8.7) through a regular transformation. Thus the system

U+J = U A2

y* = ( C 0 ) ( ! t ) + D u t )

with t > 0, is also equivalent to the initial system. Intuitively, the rep-
resentation (8.7) is preferable to this new representation; in fact, the
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variable zt does not exert any influence on the output and its consid-
eration seems of little practical interest. This leads us to introduce the
following definition

Definition 8.5:

(i) The minimal size of a system So admitting a state-space represen-
tation is the smallest possible size of the state vector. It is denoted
as K.

(ii) A representation (A, B , C , D , Z Q ) of So is called minimal if A is
of order K* K-

We can notice that a minimal representation necessarily does exist;
moreover, it is not unique, since any representation equivalent to a min-
imal representation is also minimal.

8.2.3 Expanded Expression for y
By successive substitutions in the first equation of the system (8.7)

we get
t

zt+i = A t+1z0 + ] T A'But-j
j=0

from which we derive the following expression of the output value at
time t

t

yt = But + Yl CA^But-j + CA*z0. (8.9)
J=I

When the input u is an n-dimensional white noise, we see that the
output has a moving average representation. By the same token, we call
the Markov coefficients with index j the coefficients H7 of \it-j in this
expression. These coefficients are given by

H0 = D, H ^ C A ^ B , j>\. (8.10)

Remark 8.2: The expression (8.9) for the output value is obtained
taking t = 0 as a starting date. This choice must be considered as a
convention. Thus, taking successively t = 0 and t = h as starting dates,
we have

yt+h = CA t+ / lz0 + DuH / l ' + ^

yt+h =
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These expressions show that the influence of the past previous to h — 1
on yt+h, that is CA*+hz0 + CA*Bu^_i + .. . + CA£+/l~1Bu0, is equal to
CAtZh- It is perfectly summarized by the given state z^. We find once
again the result that the state variable contains all the useful information
about y.

If now we write down the moving average expansions for successive
values yt, yt+i,. . . of the output, we get

/ y*
/ H i

H2

H3

V :

/ H o

H i

H2

H2

H3

0

Ho

\

h(t) \
h(t + 1

with lit = Ut, V t > 0, 0 otherwise. In matrix form, and using the
notation of chapter 7, we have

y+ = Hu-.i + Tut + h+(t)z0,

where, in particular

/ CB CAB CA2B
CAB CA2B
CA2B

The structure of this infinite Hankel matrix is fairly peculiar. In fact,
using an infinite size matrix product, we can write

n =

C \
CA
CA2 (B AB A2B . . . ) .

This expression leads us to introduce the two infinite matrices called
controllability and observability matrices, which play an important role
in what follows.
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Definition 8.6:

(i) We call observability matrix the infinite matrix

C \

CA

CA2

\ :

(ii) The controllability matrix is the infinite matrix

C = ( B A B A 2 B . . . )

50 that

H = OC. (8.11)

Although the two matrices O and C have infinite size, it is not difficult
to define their rank. In fact, since the observability matrix has a finite
number of columns, a definition of rank based on the number of linearly
independent columns gives a finite rank. We can say that this rank is
equal to

g(O) = (column rank(O)) = lim g(ON),
N—>oo

where ON is made of the first N rows of O. By the same token we have

Q(C) = (rowrank(C)) = lim g(CN>).

Finally, we need to mention some conditions on the matrices O and C
as they are to appear in the theorems which follow.

Definition 8.7: The representation (A, B, C, D, zo) of the system S
where A is of order K x K is said to be

(i) observable if g(O) = K;
(ii) controllable if g(C) = K.

8.2.4 Realization Theory

Let us consider a linear system written in a moving average form
t

3=0

for t > 0.
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The realization theory pertains to the existence conditions of a state-
space representation of this system

z t + 1 = Azt + Bu t,

yt = Czt +Du t ,

for t > 0. In terms of Markov coefficients, we are looking for the condi-
tions under which there exist some matrices A, B, C, D such that

Ho = D and H7 = C A j l B j > 1.

Systems with finite rank Hankel matrices

Theorem 8.14: The Hankel matrix H of a system admitting a state-
space representation has a finite rank smaller than or equal to the di-
mension of the state.

PROOF: We have

Q(H) = sup HN,N' < sup Q(ON) < K.
N,N' ' N

Since this theorem is valid for any representation of the system, we derive
the following corollary

Corollary: The Hankel matrix H of a system admitting a state-space
representation has a rank smaller than or equal to the smallest size K_.

The following theorem is the dual of the one just proved.

Theorem 8.15: A system with a finite rank Hankel matrix H admits
a state-space representation. This representation can be chosen with a
size equal to the rank of the Hankel matrix. In particular we have

Q(H) = K.

PROOF: The proof is fairly long, but it is instructive, since it shows
that suitable forecasts are an exhaustive summary of the past.

(i) Since the matrix H has a finite rank, we can make use of the
interpretation in terms of predictors in theorem 8.11. We need to
take into account the rescaling in the Hankel matrix, that is the
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fact that 7i has replaced 7i. If TL has finite rank (it is the same as
W), we can then find a predictor basis the elements of which are

~ 2 ~ 2
t » • • • » t - l Ys - l ' ' • • »

t-lJt i — • i t-lJt+rn-li

where r i , . . . , rn are positive integers such that ^ r* = £(W). The
elements of this basis should summarize the information contained
in the past of u about the future of y. Let us write

\

(ii) Let us examine if z satisfies a state-space equation. We have, for
all positive k

tYt+k =t-i Yt+k + Hfciit,

from the moving average representation of the prediction function.
This allows us to write

\ / t-iYt+i \

But, (8.12)

where B indicates a matrix whose rows are derived directly from
the matrix H.

(iii) Moreover, in the proof of theorem 8.11 the constructed basis has
the following property:
t-iVt+n i s a l i n e a r combination of t-iyj > • • •» t-i

is a linear combination of t-iy , • • • , t -

t_iyt
n

+rn is a linear combination of t - iyj , • • •, t- iyj+n-n

We can take into account these relationships to write equation
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(8.12) under the form

zt+i = Azt -fBu t.

Matrix A admits a block decomposition of the form

/ A n A i 2 . . . A i n \

A =
A 2 i

^nl An2 . . . AnnJ

with blocks A^ of order (r̂  x rj) such that

and

" • i i —

0

0

/o
0

0

, *

1
0

0

*

0
0

0

*

0
1

0

*

0
0

0

*

. . . 0^

... 0

... 1

... 0)

. . . 0\

. . . 0

... 0
* i

\

for i > j , and Aij — 0 if i < j . The *'s indicate the possibility of
elements different from 0.

(iv) Let us examine now the measurement equation. We can always
write the value yt as the sum of the prediction and of the prediction
error

This relationship can be rewritten in terms of the state vector zt

which (assuming, for simplicity, r\ > 0, . . . , rn > 0) contains

among its components. We have then

yt = Czt

with D = Ho and C = (Ci , . . . , Cn) where the block Cj, of order
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(n x rj), can be written as

/O 0 0 .. . O\

0 0 0 ... 0
1 0 0 .. . 0

0 0 0 0

with a unit element occurring at the j-th row of the first column.
(v) We have shown how the initial system can be written in a state-

space form. The order of this representation is the same as the size
of z, that is g(H). In particular, g(H) > 2£, and therefore, given
the corollary to theorem 8.13, g(H) — K- The representation thus
constructed is therefore minimal. •

8.2.5 Minimal Representations

Let us now look for simple characterizations of minimal representations.
These will help us in constructing minimal representations different from
the one just presented and easier to use in practice.

Theorem 8.16: A representation of S is minimal if and only if it is
observable and controllable.

PROOF:

Necessary Condition For a minimal representation we have H = OC
where O has K_ columns and C has K_ rows. On the other hand, we know
that

K = g(H) < inf (0(0), g(C)) < sup^O) , g(C)) < JC.

This inequality can be derived from similar inequalities valid for finite
dimension matrices. Thus, we have g(O) = g(C) = K_.

Sufficient Condition Let us now suppose that H = OC where O and
C are (oo x K), respectively, (K x oo) of rank K. Then, for all values
N and N' large enough we have
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with Q(ON) = Q(CN') = K- Since ON has full column rank, O'NON is
nonsingular and

(O'NON) O'NHNN' =CN']

applying the inequalities on the ranks, we have

K > g(H) > Q{HNN>) > Q{CN>) = K.

Thus we have that gift) = K which shows that the representation is
minimal. •

In order to derive the other properties, we will use the following lemma

Lemma: / / H is a matrix of size (N x Nf) with rank K_ which can be
written as: H = P R = P*R* with P and P* of size (N x K), R and
R* of size (K_ x N'), then there exists a nonsingular matrix Q of size
Kx K such that P = P*Q and R = Q^R*.

PROOF: Cf. exercise 8.1. n

Theorem 8.17: // the Hankel matrix H has a finite rank K_ and admits
a decomposition

where P includes K_ columns and R includes K_ rows, then there exists
some unique matrices A, B, C such that

C \
CA

C A 2 , R = (B AB A2B . . ) ,

\ :

where A is of order (i£ x K).

PROOF:

(i) In the proof of theorem 8.15, we have stressed the existence of a
minimal representation. Let us denote such a representation as
A*,B*, C*,D* and let us note O* and C* the associated control-
lability and observability matrices. From theorems 8.15 and 8.16
we have

where (9* is (ooxK), C* is (£xoo) , g(H) = g(O*) = g(C*) = K.
On the other hand, since H = PR with g(H) = g(P) = g(R) = K_
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we deduce from the lemma applied to truncated matrices that there
exists a nonsingular matrix Q of order {K_ x K) such that

P = 0*Q and R = Q-1C*.

Expanding these relationships we obtain

C*Q \
C*QQ1A*Q

R = ( Q - 1 B * , Q - 1 A * Q Q 1 B * , . . . ) ,

that is

•p

c \
CA
CA2

\
R = ( B , A B , A 2 B , . . . ) ,

with C = C*Q, B = Q ^ B , A = Q"1A*Q, which proves the
existence.

(ii) We need now to show the uniqueness. This part of the proof is in-
teresting because it will provide us with a simple way of computing
A, B, and C starting from P and R. Let us denote Pi the first
n rows of P and Ri the first m columns of R. We have C = Pi ,
B = Ri, so that C and B are defined without ambiguity. In
order to show that A is also determined without ambiguity, let
us consider the Hankel matrix H = PR, and let us introduce a
similar matrix scaled down by one element

H2 H3 H4 . . . \ / C A B CA2B
H3 H4 H5 ... I _ I CA2B CA3B

This matrix can be written also as

TH = PAR

Since P and R are of full column, respectively, row rank, upon
truncation we can compute the left-inverse of P and the right-
inverse of R. For N large enough we have Q(PN) = Q(RN) = K>
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Thus
THNN =

which shows how A can be calculated starting from P and
,N ( R J V R J V ) >

R. •

Corollary: If the initial conditions are zero, i.e., ZQ = 0, two minimal
state-space representations of the same system are necessarily equivalent
(cf theorem 8.12).

PROOF: It follows from the proof of theorem 8.16. •

8.2.6 Derivation of the Minimal Representations

The technique used for the proof of theorem 8.16 provides a simple way
to find the minimal representations associated with a Hankel matrix
with finite rank I£.

Algorithm We can use the following iterative procedure
Step 1: Look for N and N' integer such that

Q(H) = Q{HNN>) = K.

Step 2: Factorize HNN' as HNN1 = PTVR;V where matrices P ^ and
RJV' have K columns, respectively, rows;
Step 3: Find the first n rows Pi of P and the first m columns Ri of R;
Step 4' Compute the matrix

(P'NPN) P ' T H R ( R R )

r e s

A =

A minimal representation is

P ) p T ^ R f ( R R ' )

Singular Value Decomposition In order to perform step 2 we need
to get a simple way of factorizing the matrix HNN' • In order to simplify
the notation, in what follows we will consider the case m = n which is
the only one used in this context. Let us take N = N' as well. The
truncated Hankel matrix H.NN is a square matrix of order (nN x nN).
We can obtain a factorization of this matrix starting from a Singular
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Value Decomposition theorem (the proof of which is reported in the
appendix).

Theorem 8.18: Any square matrix M can be written in the form
M = U A V where A is a diagonal matrix with positive elements and
where U and V are orthogonal matrices.

PROOF: Let us apply the singular value decomposition to the matrix
H = U A V . Since we have chosen N large enough to have Q(HNN) —
if = Q(H), it follows that g(A) — if. Ordering the singular values, that
is the diagonal elements of A in decreasing order we can write

Ai 0 ••• 0 ••• 0 \

0 A2 ••• 0 • • • 0

HNN = U 0 0

0 0

0
V.

Indicating by U the submatrix of U consisting of the first K_ columns
and similarly for V, we have

/Ai 0 •

0 A2

— H

Step 2 can be taken with

Ai 0

0 A2

\0 0

0 \
0

0

A/c/

V7.

and R N = V '

We could also use singular value decompositions where matrices U
and V are orthogonal with respect to scalar products other than the
identity matrix (cf. exercise 8.2).
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8.2.7 ARM A Representation and State Representation

Comparison Given an n-dimensional process y = {y*, t > 0} denned
as

3=0

where e is an n-dimensional white noise process e = (et, t > 0) with
Ho = I, we have seen in theorem 8.9 that it admits an ARMA represen-
tation if and only if the Hankel matrix 7i has a finite rank. By the same
token, we have just seen that it admits a state-space representation

= Azt + Be£

yt = C z t + e t ,
for t > 0 and D = Ho = I, if and only if the Hankel matrix H has a
finite rank. The two matrices H and Ji are different by n columns, so
that it is the same to say that the rank of Ti is finite or the rank of H is
finite.

Theorem 8.19: A process

j=0

with HQ = I, admits an ARMA representation if and only if it admits a
state-space representation.

This equivalence can be expressed in terms of a transfer function. The
transfer function of an ARMA process is

$(L)yt = S(L)et is ^(z^Qiz).

The transfer function associated to a state-space representation is
+oo +oo

J2HJZJ = I + ^2CAJ~lBzi = I + C (I - Az)~l Bz.
3=0 j=0

Corollary:

(i) Any rational transfer function &(z)~1@(z) where $ and O are
square of order n can be written as

I + C(I-Az)~1Bz,
where C, A, and B are of order (n x K), (K x K) and (K xn),
respectively, (ii) The reverse is also true.
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Unidimensional ARMA Process: Minimal Orders Some more
precise results can be obtained in the unidimensional case n = 1. We
know that a unidimensional ARMA process can be expressed in a variety
of representations

*(L)yt = Q(L)eu $*(L)yt = 6*(L)€£, • • •

Given two such representations, we have the equality of the transfer
functions

Among all these representations, the one corresponding to the form of
the rational fraction where no simplifications are possible gives the small-
est possible values of p and q.

Definition 8.8: The representation $(L)yt = Q(L)et of the unidimen-
sional process y is called minimal ARMAfp, q) if and only if (j)p i=- 0 and
0q z£ 0 and if the polynomials <£ and Q do not have common factors.
The resulting orders p and q are called minimal orders.

These orders can be expressed in terms of a difference equation on the
Markov coefficients. Let

Jh^fy, if j > 0,
yhj = 0, otherwise

be the enlarged sequence of the Markov coefficients. We know (cf. chap-
ter 5) that the minimal order p is the smallest order of the homogeneous
linear difference equations satisfied after a certain rank by h. The small-
est index from which this p-th order equation is satisfied is then q + 1.

Minimal Orders of ARMA Representations and Minimal Di-
mension of the State Representations We have just introduced
the notion of minimal order p, q of an ARMA process. Moreover, it
admits state-space representations as well, some of which have minimal
dimension K.

Theorem 8.20: We have I£ = max(g, q).

PROOF: Recall that K_ is the dimension of the predictor space

t-iVt, t-iVt+i, - • -, t-iVt+j, • • • ,
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and that K is also the first index k for which t-iVt+k is the linear com-
bination of t-iVt, • • •, t-iVt+k-i (cf. the procedure shown in theorem
8.11). Let us rewrite this condition in an explicit way in terms of Markov
coefficients. K_ is the first index k for which there exist 0 i , . . . , 0fc with

hj + (j)ihj-i + ... -f (p^hj-k = 0

for j > fc-f-1. The result follows from the characterization of p, q derived
from the difference equations. •

Example 8.7: For an AR(1) process
+00

yt = pyt-i + e* = Y]
3=0

the predictors take the form
-|-oo

t-12/t+Jfe = 22 f^et+k-j = Pk (ptt-1 + P2£t~2 + . . . ) = Pt-iit-
j=k+l

Since they are all proportional to t-i])t, we have

K_ = 1 = max(p, q) = max(l, 0).

Example 8.8: In the case of an MA(q) process, we have

and the predictors are

t-lijt+l — 0 2 e £ - l + . . . + Oq€t — q+l,

t-iyt+k = 0 V k>q.

The predictor space has dimension

K_ = q = max(p, q) — max(0, q).

Some State Representations of an ARMA Process

(i) Representation in terms of a predictor basis. A minimal state-space
representation was shown in theorem 8.15. We will determine it
from a minimal ARMA representation of the univariate process

yt + <t>iyt-i + . . . + <\>vyt-v = *t + Oi^t-i + • • • + 0qet-q.
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If K_ = max(p, g), we know that the choice of the state vector is

( t-iVt

:

t-lVt+K_-l >

Moreover, we know that V A; > 0, tVt+k — t-\Vt+k + hkCt- Hence,
the ARMA representation K_ periods ahead is

Taking the forecast of each member conditional on the past prior
to t— 1 and recalling that K_— q > 0 we have the difference equation
among predictors

t-iVt+K + 01 t-12/t+K-i + • • • + 0p t-iVt+n-p = 0 V t.
Then, letting

3 [0, otherwise,

the resulting state-space representation is
/ 0

0
1
0

0
1

0 \
0

0 ) z t - f et.

(ii) Representation in terms of an ARMA equation. We have

Vt — f—0i2/t—l + . . . — <fipyt-p + 0i€t-i + . . .

so that we can summarize the past as

/ 2/t-i \

\et-qj

(8.13)
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The resulting state-space representation is

01
1

0

0

0

-02 •••
0

1

0

0

-0P-1
0

0

1

0

~0p
0~

0

0

0

#1 • •

0 ••
0 ••

0 ••
1 ••

• Oq-1

0

0

• 0
0

eq_\
0

0

0

0

0 0 0 0

0

0

1
0

\o/

This representation of dimension p + q is not minimal except
in the case when p + q = max(p, g), that is in the case of pure AR
or MA. For an AR(p), the state vector is made of the past values
of the process. For an MA(q) it involves only past innovations.

8.3 Frequency Domain

In the previous sections, we have taken into consideration essentially the
time series y by means of the autocovariance function or of the sequence
of the Markov coefficients. The idea was to analyze the links between
past and future, giving the spotlight to the time index t. This approach
is called time domain approach.

Other approaches are possible. The spectral representation theorem
introduced in this section, allows one to write the components yjj, j —
l , . . . ,n of the process as "combinations with random coefficients" of
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periodic functions exp(itu;). We can then study the importance of each
frequency in the values taken by yt, that is, how the correlations can
be decomposed at each frequency. Such an approach is called frequency
domain approach.

8.3.1 Spectral Representation Theorem: Univariate Case

The spectral representation theorem is based on the notions of stochastic
integrals and measures. These notions are complex from a mathematical
point of view, so that we will only outline their characteristics here, in
that they are a good example of the calculations used in what follows.

Let y — (yt) be a zero mean stationary process, with autocovariance
function 'j(h) and spectral density function (assuming that it exists)
/(a;), UJ e [—7T, +TT]. The links between the autocovariance and the
spectral density functions are given by (cf. section 5.1.5)

1 +oo

This last equality can be written as

E (yt Vt-h) = J exp -(itv)exp-(i(t-h)u>)f(uj)du>, (8.14)

where the term on the left-hand side contains the scalar product between
yt and yt-h m ^(P) and the term on the right-hand side the scalar
product between exp — (ituj) and exp —(i(t — h)uj) in L^(/(o;) duo). This
leads us to introduce a mapping J which associates the variables yt to
the functions exp — (itu)

yt = J(exp-(itu)).

Equation (8.14) shows that the mapping J is closed with respect to
the scalar product. Then it is possible to show that J is an isomet-
ric map from the space generated by the functions exp— (itu), that is
L2

c(j\uj)duo), onto the space of the square integrable variables generated
by {yt}'

To better interpret this isometric mapping, we need to examine the
possible transformations of the indicator functions for sets of [—TT, +TT].
Let us denote the image of such an indicator function as J(1A) = £(^.)-
(i) If A and A are disjoint sets, the linearity of the mapping J implies

that

£(AUA) = J(lAuA) =
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The possibly complex valued random function £ is therefore ad-
ditive. We can then interpret £ as a kind of measure; £ is called
a stochastic measure associated with y. Since J is the isometric
mapping which extends £, we can denote and interpret it as an
integral. From now on, we will denote

J(-) = I " ( -KH, (8.15)
«/—7T

and we will call it a stochastic integral with respect to £.
(ii) Let us now analyze the closedness with respect to the scalar prod-

uct. That can be written as

(8.16)

COV
' —7T

= f
J —

A(oj)B(oj)f(w)d(uj)

for all square integrable functions A and B with respect to
f(uj)duj. In particular, choosing some indicator functions, we have

cov (£(A), £(£)) = E (t(A) £(!)) - 0, (8.17)

if A and B are disjoint, and

var (£(A)) = E (|£(A)|2) - / f(u)du>. (8.18)
J A

These two expressions are often rewritten in terms of the process
£(u;) = £ ((—TT,O;]) and the increment d£(u;) = £(u;,u; + <iu;). Let us
then state the following theorem in a simplified form:

Theorem 8.21: Spectral Representation Theorem
Let y = {yt} be a univariate stationary process with spectral density
function f(uo). We can then write

yt = /
J —7T

where the stochastic measure £ is such that: (i)
0 Vw.

( )(%; COV (df (U;), d^(a))) = £ (d£(u;)d€(u>)) = 0 \f

(in) var (d^(o;)) - /(w)d(o;) V CJ.
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yt is then expressed as a linear combination of the single components
exp-(ittu) associated with each of the frequencies UJ. The component
with frequency u has a "random weight" d£(u). The average impor-
tance, so to speak, of this infinitesimal weight can be measured as

Thus, if f(uJi) > /((J2)? the frequency component uj\ is more important
than the frequency component 002 in the decomposition of yt. Note that
condition (ii) of uncorrelation between the various d£(uj) is essential
for the interpretation (we say that £(u;) has orthogonal increments). It
allows us to decompose a certain number of indices used in the time
domain at each frequency. For instance, we know that

var (yt) = 7(0) = f f{u)du = f var (d£(u>))
J— n J — n

= var ^J
The total variance of the process is then obtained by summing all the
variances at each frequency.

Finally, note that if the process y is normal, the space generated by
the variables yt is composed of normal variables only (combinations of
the previous ones or limits in quadratic mean of such combinations).

Theorem 8.22: If y is normal, the process {^(UJ)},UJ e (-TT, +TT] is
normal as well.

8.3.2 Spectral Representat ion Theorem: Mult ivariate Case

The spectral representation theorem can be generalized to the multidi-
mensional case. In order to write

= /
J — n

we need an n-dimensional stochastic measure £.

Theorem 8.23: Let y = {y^} be a multivariate stationary process with
spectral density function f(uo). We can write

-i:yt = I exp-(itLj)d£(uj)
J
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where the n-dimensional stochastic measure is such that:

(i) E(di(u>)) = 0 Vw.

(ii) cov (df(cj), (%(&)) = E (d£(u)),d£(u>y} =0 V w /
(Hi) var (d£(cj)) = f(u>)d(u>) V CJ.

In order to give the intuition behind the theorem, let us take into con-
sideration the bivariate case. We can write the result for the two com-
ponents of the process

= /
J — TV

r +
= /

«/ — 7T

2/2* = / exp-(itu;)d^2(uj).
«/ — 7T

We can derive that the components of £(LJ) are the stochastic measures
associated with each of the components of y. The stochastic weights
d£\(uj) and d£2(uj) attached to the frequency u can be correlated. In
fact, from (iii) of theorem 8.23 we get

cov (d£i(uj),d£2(uj)) = fi2(v)du.

Let us introduce an appropriate definition of correlation at each fre-
quency to measure this link.

Definition 8.9: The coherence between the components y\ and y2 is the
function defined as

#12 M =
V'var

The modulus in the definition is needed since /i2(^) is generally a com-
plex number and in order to ensure the symmetry K\2 = K2\.

Note that the decomposition of the variance by frequency is valid for
the covariance as well. In fact

f{)d I cov= / fi2{u)du= I
J—TV J—

8.3.3 Linear Transformations in the Frequency Domain

On the basis of the spectral representation theorem we know that it
is the same to work with the process y or with the stochastic measure
d£(u;), u) G [—7r, +TT]. The results established in sections 8.1 and 8.2
can then be expressed in the frequency domain, that is, as a function of
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£. Let us consider here the case of linear transformations of stationary
processes.

Let {Aj} be a sequence of (m x n) matrices absolutely summable; we
can then introduce the stationary process y defined as

+00

j=-oo

Replacing yt_j in (8.18) by its spectral expression, we get

yt = 2_^ A? / exP —(^ ~ j)00)^^)
j= — oo ~n

r+K +00

exp— (itu) VJ Aj exp(ijuj)d£(uj)
j=-oo

= /

exp — (ituj)A (exp(iu)

This is a spectral representation expression with stochastic measure

Theorem 8.24: The linear transformation y ofy by the moving aver-
age A(L) has an associated stochastic measure

where d£ is the measure associated with y.

From this relationship between stochastic measures we find the relation-
ship among spectral densities

f(u)duj = var f d£(u>)) = var (A (exp(iuj)) d£(u)))

= A (exp(zu;)) var (d£(uj)) A (exp(iu>))

= A(exp(iw)) f(u;)duA(exp(iLu))\

from which f(u>) = A (exp(zo;)) /(a;) A (exp(ia;)) .

8.3.4 Kolmogorov's Equality

Let y = {yt} be a stationary process, whose innovation process {et}
has a nonsingular variance-covariance matrix fi. Kolmogorov's Equality
establishes a relationship between this matrix and the spectral density
function of the process y

1 f+n

In det Ct = — / In det (2TT/(U;)) du.
27r J-n

(8.20)
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In the univariate case, the forecast error variance results as the geometric
average of 2TT f(u)

°2 = exp (J-J \n (2TT/(U;)) du?j . (8.21)

The Intuition behind the Equality The usual proof of the equality
rests on some results of the analytical function theory; for this reason it
presents little interest in this context. Rather, we will explain the intui-
tion behind the equality. In order to simplify matters, let us consider
the unidimensional case.

(i) Let us consider a random vector y which can be written in two
different ways

y = Qi^i = Q2^2,

where Qi and Q2 are two square matrices of order T with deter-
minants det (Qi) = det (Q2) = ±1 and where ei and e2 are two
random vectors with diagonal variance-covariance matrices

0

vax(ci) =

We have

, var(e2) =

0

'A 2 i

0

0

var (y) = Qi var (ei) Qi = Q 2 var (e2) Q2

det (var (y)) = det (Qi var (ei) Q[) = det (Q2 var (e2) Q2)

<̂> det (vax(ci)) = det (var(e2))

1 T 1 T

t=i t=\

Although in our case we are dealing with processes, that is with
infinite-order vectors, we have available two expressions of the pre-
vious type.
We know that the moving average decomposition is

yt = et

and var (et) — o1. In infinite matrix form this becomes
/••• 1 0 0 ••• 0 . . . \

• fti 1 0 ••• 0 •

• h2 hi 1 ••• 0 •
y = e.
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The transformation matrix Qi is triangular with l's on the main
diagonal. Its "determinant" is equal to det(Qi) = 1. On the
other hand, the components of e are uncorrelated, with the same
variance a2. Therefore

1 T

lim — >^Invar (e*) = In a1.
T^+oo T ^

(iii) We have the spectral representation

yt = / exp-(ituj)d£(u;).
J — IT

A difficulty with this representation is that the number of com-
ponents of y is countable whereas d£ is continuous. To solve this
difficulty, we can make the integral discrete. For t — 1, • - ,T
we can partition the interval (—TT, +TT) in T intervals of the same
length. Let us set

27TJ

T '

and let us approximate yt as

Vt

T

We have then for any t and r

T
-j

i=i v " v " j=i

w — / exp — (zto;) exp(ira;)da; = <5tT.
T̂T y_7r

The coefficients ^ exp(-zta;J-)> j = 1 , . . . , T, t = 1 , . . . , T ap-
proximately form an orthogonal matrix Q2, and |det(Q2)| ~ 1.
Moreover, the variables y/T(£(ujj) — ^(LUJ-I)) are uncorrelated with
variance T (F(LJJ) — F(LJJ-I)), where F is the cumulative distribu-
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tion function associated with /

We can then compute the average of the logarithms of the variances
of the components of 62

(iv) Comparing the two geometric means, we have

lna 2 = — / ln(27r/(o;))cL;.
27r J-n

We can give another interesting interpretation to Kolmogorov's equality
in the univariate case. We have seen in the proof that if \JT, j = 1, . . . , T
are the eigenvalues of the variance-covariance matrix

= var

we have

1 T 1 /*+7r

T ^ + O° j = 1 ^ J-7V

Let us introduce the uniform distribution \x on the interval [—7r,7r]. We
have

T1 Vl _ 1 f1"
-+oo T j=i 2?r J_n

= [ lnA d^f{\),
Jo

where fi2ir^ indicates the transformed distribution of the uniform distri-
bution through the mapping 2TT/.

We can then easily show (cf. Grenander and Szego, 1958) that the
same relationship exists whenever the function In is replaced by any
other bounded continuous function, say h

rp

lim — / _ ] ^ ( A J T ) = / h(\)d{i2nf (X), V continuous bounded h.
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This theorem is equivalent to the convergence in distribution of the
empirical distribution of the eigenvalues.

Theorem 8.25: Let

= var

The empirical distribution of the eigenvalues of Y>T converges in distri-
bution to the transformation of the uniform distribution on [—TT, +TT] by
the mapping 2irf.

8.4 Appendix
Singular Value Decomposition Theorem

8.4.1 Some Notions

Let us recall some classic results of matrix theory. If M is a square
matrix of order n, we can define its square both as the matrix MM'
or as M'M. These two matrices are symmetric, and positive definite.
They have positive real eigenvalues and it is possible to choose for each
of these matrices orthonormal bases of eigenvectors. Let us establish
how this choice of basis can be done.

Theorem 8.26:

(i) Let us note \\ > A| > ... > Aj the strictly positive eigenvalues
of MM7 arranged in a decreasing order, and u0;, j = 1,. . . , J an
orthonormal system of associated eigenvectors. The system

^-, J = 1,. . . , J,Vj 7
A3

is an orthonormal system of eigenvectors of MM' associated with
the same set of eigenvalues.

(ii) In particular MM' and M'M have the same set of eigenvalues
with the same order of multiplicity.

PROOF:

(i) We have, in fact

where 6kj is Kronecker's delta. Thus the system is orthonormal.
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(ii) We need to prove that Vj is just the eigenvector of MM' associated
with A?. We have

MMV -
1V11V1 Wj — Aj

- A

In matrix form we have

MM' = UA2U',

M'M = VA2V,

U'U = I,

V'V = I,

M'U = VA,

MV = UA,
where U = (m,. . . ,uj), V = (vi , . . . ,vj) and

i ••• 0

Corollary: Singular Value Decomposition Any square matrix M
can be written as: M = UAV, where A is diagonal with strictly positive
terms and U and V satisfy U ;U - V ;V = I.

PROOF: V can be completed by column vectors of the nullspace of M,
equal to the nullspace of M'M, so as to obtain an orthogonal matrix
V* satisfying MV* = UA*, with A* = (A,0). We deduce that M =
UA*V"1 = UA*V*' = UAV. •

This decomposition can be written in explicit form in terms of the vectors
Uj and Vj

0 \

M =
0 • • • AJJ

that is



Time-series Representations 299

Note that the corollary can be used to find other types of decompositions.

Corollary: Let Q and S be two symmetric and positive definite matrices
of order n. Any matrix M can be written as

M = UA V

with A diagonal with strictly positive terms, U'QU = I, and V'SV = I.
It is possible to change the metrics on the spaces used, and these

changes can be done independently one from the other.

PROOF: Applying the singular value decomposition to the matrix
Q-i /2 M S - i /2 w e c a n See that Q - ^ M S " 1 / 2 = UAV', with U'U - I,
V'V = I. Therefore M = Q^UAV'S1 /2 and it suffices to pose U =

) and V = S1/2V to obtain the result. •
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8.5 Exercises

Exercise 8.1: Let us consider the hypotheses of the lemma preceding
theorem 8.17.

(i) Prove that ^(P) = g(P*) = g(R) = £>(R*) = K;
(ii) Verify that R = (P'P)"1 P'P*R*;
(iii) Show that ^(P'P*) = K_ and derive the result of the Lemma.

Exercise 8.2: Develop an algorithm (as in section 8.2.6) by decompos-
ing the matrix HNN' according to a singular value decomposition with
a different metric from the identity (use the corollary in the appendix).

Exercise 8.3: Let us consider a real stationary process with spectral
representation

/+ 7 r

J-7T
yt

Let us denote the real, respectively, imaginary parts of £ (a;) as u(uo)
and V(<JU). Show that

yt
= / cos(u>t)du(uj) + / sin(<jji)dv(uj).

J — 7T J—TV

Let us denote by Uj, Vj, j — 1 , . . . , n the components of u and v. Show
that

and

E(duj(<jo)dvj((jj)) = 0.

Exercise 8.4: Let us consider a bivariate stationary process

* • & ) •

and let

V2t =

where {et} is a stationary process uncorrelated with the process {yu}.
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Let us pose

yjt = / exp-(ita;)^(a;), j = 1,2

• / — 7T

ct = / exp-(ztu;)dfe(u;).

Show that
c^2(^) = a (exp(iuj)) d^(u;) + d&M,

with
+00

a(exp(zu;)) = ^ a^exp(i/ia;).
h= — 00

Denoting the spectral density functions of 2/1, 2/2 > and e as / n , /22, and
/€ respectively, show that

/22M =1 a(exp(zo;)) |2 /n(o;) + /c(a;).

Show also that

/21M = a(exp(io;))/ii(a;).

Derive from this result that the square of the coherence between 7/11 and
2/2* is

TV.2 / N _ 1 a(exp(zo;)) \2 /II(CJ) _ _ /c(o;)
/22M;

and that the coherence is equal to 1 if and only if 3/2* is a linear function
of the 2/i,t-j's.

Exercise 8.5: Let us consider a bivariate stationary moving average
process

6 1 2(L)\ / C l t

with var ( ] = I. Let us consider the linear regression of 2/2* on the

2/i,t-/i's; this regression is denoted as J^TLoo ahVi,t-h- Use the results
of the previous exercise to compute the Fourier transform of the ah

+00

a(exp(zu;)) = ^ a/l(exp(i/ia;))
h=—00

as a function of

0n(exp(ia;)), e22(exp(zct;)), 0i2(exp(iu;)), 02i(exp(za;)).
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Estimation and Testing
(Stationary Case)

In chapter 6, we have presented the approach proposed by Box and
Jenkins to analyze univariate time-series. This consists in deriving an
ARMA or ARIMA model compatible with the data, in order to perform
a number of diagnostic checks concerning the estimated model and to
forecast future values of the series. In this chapter we address the issues
related to statistical inference in a more rigorous fashion. Since the main
results available concern the asymptotic behavior of the estimators, in
section 1 we present some limit theorems which generalize the law of
large numbers and the central limit theorem to the case of stationary
processes. It is then possible to derive the asymptotic behavior of the
empirical means, of the periodogram, of the empirical autocovariances
and partial autocovariances.

In section 2, we discuss the maximum likelihood estimation of the
parameters in a univariate time-series model. We check whether the
classical sampling theory results still hold, that is whether the estimator
is consistent, asymptotically normal, and its asymptotic variance is the
inverse of Fisher's Information Matrix associated to the model. We
give various forms of this matrix according to the representation (time
domain, frequency domain, etc.) chosen to describe the series.

In the third section, we recall the main testing procedures currently
used in statistics: the likelihood ratio, Wald, Lagrange multiplier (or
score) tests. We develop in greater detail the latter type of test, which
is often the simplest to use. We give a complete description of how this
testing procedure is used in order to verify the hypothesis of white noise.
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Finally in the last section, we generalize these results to the case of
multivariate time-series.

9.1 Limit Distributions of Empirical Moments

The first- and second-order moments of a stationary process, that is the
mean, the autocovariance function, the spectral density function, and so
on, are unknown in reality and have to be estimated from a sample of
observations. A first suggestion is to estimate the theoretical moments
by their empirical counterparts. In this section we provide the main
asymptotic properties of empirical moments, and refer the reader to the
proofs in Anderson (1971) and Fuller (1976).

9.1.1 Empirical Mean

Let us denote by y i , . . . , yr the available observations.

Theorem 9.1: Let y be a stationary process having an infinite moving
average representation

IIH^ H2 < + 0 0 -
3=0 j=0

Then yT = ^ YlJ=i v t converges to 0 in quadratic mean.

The result can be easily extended to include processes of the form
oo

j=o
It follows from theorem 9.1 that y^ is a consistent estimator of the mean
m of the process.

The inspection of the variance-covariance matrix of VTyr gives an
idea of the speed of convergence. In fact, we have

. / T \ 1 T-i
var (VfyT) = -var £ y t = - £ (T- | k \)T(k)

\ t l / k l Tk=l-T

+oo

r(fc) = 27rf(0).

Now we are in the condition of understanding the more precise result
below, which states the asymptotic normality of the empirical mean.
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Theorem 9.2: Let y* = YlJLo ^-jet-j be an infinite moving average
stationary process based on a vector of independent white noise distur-
bances; if the spectral density function f is bounded, continuous in 0,
and such that det f (0) ^ 0, the variable VTyr is asymptotically normal

JV(0,27rf(0))=JV(0, ^ T(k)).
k= — oc

Example 9.1: For an ARMA(p, q) process satisfying the relationship

*(L)xt = Q(L)et,

where e is an independent white noise, we get

Therefore

9.1.2 The Periodogram

The periodogram is denned by

1 1 T

1 ( T" 1 } 1
5Z (

k=-(T-l)

It is a natural estimator of the spectral density function

_, . i +o°

However, when k is close to the boundaries ±(T — 1) the estimated au-
tocovariances Ft (A;) are computed from a small number of observations.
Therefore, they are a bad estimate of the actual autocovariances. This
explains the inconsistency result in theorem 9.3.

Theorem 9.3: The periodogram I T ( ^ ) is an asymptotically unbiased
estimator of the spectral density function f (a;), but it is not consistent
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The inconsistency of the periodogram does not forbid its use. Given
the estimator is unbiased, we could hope that although we are making
a mistake on the value of the function / , we can have a good idea of its
general form. But this is not true in practice. We can show that in the
univariate case

{ /2(u;) if u ^ 0, ±TT,
of2/ \ -f _ n 4-

lim cov (/^(u), It(uor)) = 0, if a; ̂  a/.
T—•-l-oo

Since the periodogram values associated with different frequencies are
not correlated, an irregular and erratic shape for the function IT will
result. Nevertheless, the periodogram is the basis on which to build
consistent estimators. The idea is to suppress the erratic character of
the function IT by smoothing it. For example, this can be done by
considering some integrals of continuous functions with respect to the
measure of density IT(W) on [—TT, TT].

The results below are given under the normality assumption for the
white noise. Even though this condition is not necessary for consis-
tency and for asymptotic normality, it intervenes in a crucial way in the
determination of the asymptotic variance. Indeed, when normality is
not satisfied, we have to add to the asymptotic variance expression a
correction term which is a function of the kurtosis of the noise

E{4)

Theorem 9.4: Let us denote by g a continuous bounded complex func-
tion defined on (—IT, IT). We can write

= / g(u)
J—•n

If y is a Gaussian stationary process having an infinite moving average
representation, we have

r as r
/ g(uj)lT{u) (LJ ^4" f(g)= / g{cu)f(uj)duj.

J—TV J— TV

Moreover we obtain asymptotic normality. In order to keep the notation
simple, we give the result for the univariate case only. The version for
the multivariate case is obtained by applying the result on all the linear
combinations of the coordinates of y.
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Theorem 9.5: Let x be a unidimensional Gaussian stationary process,
having an infinite moving average representation, and such that

-foe

k=-oo

Then, for any gi,..-,gp, bounded continuous complex function on
(—7r,7r), we have

/lT(gi)-f(gi)

Vfl :
\lT(gP)-f(gP)

where

uhl = acov (y/T(IT(gh) - f(gh)),VT(It(9l) -

= 4TT / gh{w)gi{u)f2{u) dw.
J — 7T

9.1.3 Empirical Autocovariances

The results concerning the periodogram apply directly to the study of
the empirical autocovariances. Let us show the details for the univariate
case. We have

= /
J —

One just needs to perform the inverse Fourier transform of the relation-
ship

^ k=-(T-l)

From theorems 9.4 and 9.5, we then obtain

Theorem 9.6: Under the same conditions of regularity as in theorems
94 and 9.5

(i) 7T(&) ^ a consistent estimator ofry(k);
(ii) for all values of K

/ 7T(1) - 7(1) \

Vfl : i M(0,il),
\rr(K)-'y(K)/
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where

= acov (l) - 7(0))
/•7T

= 4?r / cos(o;A;) cos(o;/) /2(a;) da;.
*/—7T

The asymptotic variance is given here in the frequency domain, but its
expression in the time domain follows quite easily.

Theorem 9.7:
ukl = acov

+ OO +OO

j= — oo j= — oo

PROOF: We have

uoki = 2n ( C O S (u(k + I)) 4- c o s (v(k - I))) f2{uo)duj.
J — n

Since f*^ cos(ouk) f2 (oj)duj is the coefficient of exp(—iku) in the Fourier

series of 2nf2(uj) and is equal to -^ Sj"=^oo l(i)l{J ~ )̂» t n e Pro°f is
trivial. •

Example 9.2: In the case of the process xt = €t (i-e-5
 a white noise),

we have

a4 r
Wki = TT~ / ( c o s (o;(fc + / ) ) + c o s (a;(A; - / ) ) ) da;

271" J-7T

= — / c o s (u(k — I)) duo
27r J-n

JO, if k ^ I

In particular, for a white noise, the empirical autocovariances of various
orders are asymptotically independent.

9.1.4 Application of Previous Results

From the asymptotic properties of the mean and empirical autocovari-
ances we derive the limit theorems of a large number of other estimators.
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Functions of Asymptotically Normal Estimators Let 0T be a
consistent estimator of a parameter vector 0 G JRP'. We suppose that
\/T(0T — 0) converges in distribution to a normal distribution M (0, S).
This implies in particular that Or converges in probability to 0. Let us
then consider a function g denned from Rp to Rq and the problem of
estimating g(0). A natural estimator of this function is

Theorem 9.8: If g is continuous, g(0r) converges in probability to
8(0).

This property (see Monfort, 1980, chapter 23, theorem 8) shows that
g(0r) is a consistent estimator of g(0).

In order to study the asymptotic distribution of g(0r), we assume
g to be a continuously differentiate function, and we can expand (in
probability) g{0r) in a neighborhood of the value 0

y/r (g(oT) - g(0)) « -^i{0)y/f{eT - 0).

Thus, the difference between the estimator and its limit is asymptotically
similar to a linear transformation of a normal vector. This gives

Theorem 9.9: If g is continuously differentiate in a neighborhood of
0, we have

Vf (g(0T) - g(0)) ± Ji

Asymptotic Behavior of pr(k) =7T(fc)/7r(0) We have

= Vf 7T(fc)7(0)-7T(0)7(fc)
7T(0) 7 (0 )

7(0) (jr(k) - j(k)) — j(k) (7T(0) - 7(0))
7(0)2

7^.(0)-7(0)).

Let cjfe,z be the asymptotic covariance between y/T (7T(^) ~ 7(^)) an<i
>/T (TT(0 — 7(0) given in theorem 9.7; we can easily derive the asymp-
totic behavior of empirical autocorrelations from theorems 9.8, 9.9, and
from the expansion above.
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Theorem 9.10:

(i) pr(k) is a consistent estimator of p(k).
(ii) The vector y/T (pr(l) — p(l), •.., Pr{K) — p(K))f is asymptotical-

ly normal, with a variance-covariance matrix with entries

acov (Vf(pT(k) - p{k)) ,Vf(pT(l) ~

We can write this expression in terms of correlations only as

acov (Vf (pT(k) - p(k)), Vf (pT(l) -

+ 0 0

j=-oo

+00 +00

- 2p(k)

Example 9.3: Let us consider a pure moving average process MA(q)
xt = €t + 0i€t-i. • • + 0q€t-q. We know that the correlations vanish after
the order q + 1. Then, if we examine the asymptotic variance of pr(k),
for k > q + 1, we have

+00 +00

j=-oo

+00

+ 2p(k)2 £
j=-oo

Recalling that for k > q -f 1, we have p(k) = 0, p(j)p{j + 2fc) = 0 Vj
and p(j) = 0, if | j |> q + 1, the formula can be simplified to give

avar (Vf (pr(k) - pr(k))) = fl P^ = l + 2 E
j I
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In particular, this expression does not depend on the index k. The
expression above is useful especially when we need to determine the
confidence intervals in the representation of the correlogram (cf. section
6.3).

Moving Average of Empirical Autocovariances Let us consider
a univariate stationary process {x} and let us denote by 7T(&) its em-
pirical autocovariances. We now examine the moving averages of these
autocovariances.

Let a i , . . . , ap be p real numbers. We define

^r(ft) = irih) + aijT(h - 1). . . + ap^T{h - p).

The associated parameters are

iP(h) = 7(ft) + ai7(/i - 1). . . + ap7(ft - p).

We obtain directly from the asymptotic properties of the empirical au-
tocovariances that iprih) converges to ip(h), and the vector

Vf
has an asymptotically normal distribution. We still have to determine
the form of the asymptotic covariances. We have (setting a0 = 1)

acov (Vf

v p

J 2 Y 1 a i a k acov ( ^ ( ^ - fi ~ ^h - ' » ' ^ &T(1 - k ) - i{l - k)))
j=0 k=0

P P

j=Ok=O

(from Theorem (9.6) ),

ajCLk I cos(uj(h- j)) cos (u(l - k))f2(uj)duj

P P

= 2TT 2~^ Z^ Q>jO>k I (cos (UJI) + cosI

(whereof = a;(ft + 1 — k — j) andcj2 = ^(ft — I + k — j))

P P

I e x P (wj(ft + 0) exp(—zcjfc) exp(—iu>j)f (u) duo
P P riV

= 2?r } y CLjdk I

p p

+2TT VJ \ J â afc / exp (iu(h — 1)) exp(iuk) exp(—iuj)f2(u;) duo
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exp (iu(h + /)) A(exp -(iu))2f2(u)du>

exp (iu(h - /)) | ̂ (exp -(iu))

where A(exp(iu;)) = ]Cj=o aj
This formula can be simplified for some particular moving averages

A.

Theorem 9.11: Let x be a univariate ARM A process satisfying

where degree ($) = p, degree (©) = q.

Vf (^r(ft) - V(ft)) = Vf$(L) (jT(h) - 7(ft)), h > q

is an asymptotically stationary Gaussian process with zero mean and
admits an ARMA (p, 2q) representation

with rjt = a .

PROOF: Let us look at the form of the autocovariance function of the
process

Vf\
Since

f(J\ = ^ I Q ( e x P(^)) I"

and

A(exp(iuj)) =

we have

acov

. . .,_ ,. | e(exp(iw)) |4

a4 r . , / t ,, | e(exp(tw)) |4 .

If h and Z are greater than q + 1, the function in the first integral has
an expansion which contains only strictly positive powers of exp(w<;).
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Therefore the first integral is equal to zero and we have

acov (VT (fh(h) - VW) , Vf (T{>T(1)

©(exp(ia;))|4

;)) |2

This covariance depends only on the difference between the indexes h
and /, and the theorem 9.11 is a consequence of this expression. •

Remark 9.1: Note that if Xt = e.t is a white noise, the series of empirical
autocovariances 7T(^)? h > 1 is also asymptotically a white noise.

9.2 Maximum Likelihood Estimator

9.2.1 The Model

In this section and in the next one, we are interested in univariate sta-
tionary processes x = {#*}, having both infinite moving average and
infinite autoregressive representations based on an independent white
noise with unknown variance a2. We assume that the coefficients of the
moving-average and autoregressive processes are unknown, but they de-
pend on a parameter 0 G 0 C ftK. Therefore the model can be written
in the moving average form

(9.1)
3=0

with ho(O) = 1, E(et) = 0 and var(et) = cr2, or in the autoregressive
form

Ue(L)xt = Y^iTjWxt-j = eu (9.2)
j=o

with 7TO(0) = 1, E(et) = 0 var (ct) = a2.
We can also describe it through the autocovariance function or the

spectral density function. Since the parameters in 0 appear uniquely in
H or II, we can write

le^{k) = a2c9{k), (9.3)

and

fo,*z(u) = cr2ge(u). (9.4)

Written in this way, the previous model is semi-parametric, since the
distribution of the noise has not been specified. Most of the results that
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are presented below are valid in this setting: for example the consistency
of estimators, their asymptotic normality, etc. Nevertheless, in order to
simplify the presentation, we assume the noise to be Gaussian

et~A/*(0,a2). (9.5)

Moreover, these results are similar to those available in a sampling frame-
work, and are valid as soon as the temporal links are not too large, for
example if the correlations decrease in an exponential manner. This
regularity condition is supposed to be satisfied for all possible values of
the parameter and in particular in the case of the ARM A processes.

9.2.2 The Log-Likelihood and its Approximations

The Exact Log-Likelihood Function Let us denote by x\... XT
the successive observations on the process. The log-likelihood function
is obtained directly by using the assumption of normality of the noise,
which characterizes the distribution of the process {x}.

It is given by

LT (XT;0,CT2) = - - Iog27r - - logdetlY (0,<r2)
2 2 (9.6)

where x^ = (x\,..., XT)1 and where TT (0, cr2) is the variance-covarian-
ce matrix of (#i , . . . , xr)f• Its generic element is

lGa2(i-j) = a
2ce(i-j), 1 < i, j < T.

This log-likelihood function can be rewritten by separating the two pa-
rameters 0 and a2. In order to do this, let us introduce the matrix

1
a2

We have

LT (xT;0,<72) = - - I o g 2 7 r - - logcr2 - - logdet CT(0)

2cr2 T T'
We can notice that given that the matrix CT(0) is a Toeplitz matrix (it
has the same elements on the subdiagonals parallel to the main diago-
nal), the quadratic form X^CT(0)XT has a simple form. This result does
not carry over to the quadratic form X^CT(0)~1XT indeed, the inverse
of a Toeplitz matrix is not in general Toeplitz itself (see the appendix
to chapter 7). We can suggest various approximations to the exact log-
likelihood function, when the number of observations T is large. We
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give below the two most typical ones: the approximation by conditional
distributions and the approximation in the frequency domain.

Approximation by Conditional Distributions The distribution of
the vector X71 = (x\... XTY can be expressed by making explicit the
successive conditional distributions. Let

l(xt I £t_i,...,zi;0,cr2)

be the density function of Xt conditional o n ^ _ i . . . x i . We have
T

ZT(xT;0,a2) =

Each of these conditional distributions is normal, with mean

E(xt I xt-i,... , x i ) ,

and variance

var (xt I £*_!,..., zi) = var (xt - E (xt \ xt-i,... ,£1)).

When t goes to infinity, the expectation E (xt | # t - i , . . . , #i) converges
to the expectation based on the infinite past

E(xt I xt_i,...,a:i)

By the same token, the conditional variance can be approximated by the
quadratic error of the corresponding expectation, that is a2. Therefore
a possible approximation to the log-likelihood function is

T
LC

T(XT;6,<J2) = - f Iog27r - I log a2 - ^ fl (Ke(L)xt)
2 . (9.8)

This function is called theoretical conditional log-likelihood function. A
shortcoming of this representation is that it does not depend on the
observations X\,..., XT only, but on the whole past of the process. It
can be modified to overcome this problem, for example, introducing the
conditional log-likelihood function

Lc
T(xT;0, a2) = - 1 log 2TT - | log a2

1 T (9.9)

Approximation in the Frequency Domain Another approximation
introduced by Whittle (1951) is very useful. It is obtained by writing the
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log-likelihood function in the frequency domain. First of all let us remark
that the approximation by conditional distributions calls for replacing
logdetFj'(fl, a2) by Tlogcr2. This approximation can be viewed also as
a consequence of the Kolmogorov equality. On the other hand, if we
consider the infinite Toeplitz matrix Too(0, cr2), we can assimilate it to
the series of coefficients (70^2 (ft)) of the Fourier transform

(cf. the appendix to chapter 7).
The "normalized" inverse spectral function

is then associated to the sequence of the "normalized" inverse autocova-
riances of the process (720,0-2 (ft)). This sequence is linked to the sequence
of the direct autocovariances by

10,0* * lie,** = e,

where * is the convolution product and where e is the neutral element
sequence for this product. Introducing the matrix rioo(0, a2) associated
to the sequence {720,0-2 (ft)}, the existing relation between the sequences
is written in matrix form by (cf. the appendix to chapter 7)

roo(0,a2)rioo(0,a2)=Ioo

Therefore we can approximate the inverse T^,1(6, a2) by a main subma-
trix of rioo(0, a2) of size T; thus, we get the approximation

We can then use the results concerning the quadratic forms based on
the Toeplitz matrices. We see that

—ituj)
t = l

T

-du.

Let IT(U) = 2^T I StLi x

of the process x, we have

where // is the uniform distribution on (—TT, TT].

be the periodogram of order T

y,cr^
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Replacing it in the expression of the exact log-likelihood function, we
get

LT(xT;0,a2) = ~ l o g 2 7 r - | log a2 - ^E^ (^j , (9.10)

where fe^ = °29o-

9.2.3 Definition and Consistency of
Maximum Likelihood Estimators

Consistency Condition Having found several (exact or approxima-
ted) forms of the log-likelihood function, we can now define several max-
imum likelihood estimators by optimizing one or the other of these ex-
pressions. All of these estimators are solutions to a problem

,<72), (9.11)

where

L*T — LT OTLJI or LT-

We denote these estimators by (0T,&T)'

In order to know whether such an estimator exists and converges to
the true value (9O,(TQ) of the parameter, the standard approach is to
study the asymptotic behavior of the objective function L ^ ( X T , 0 , o"2),
or, which is the same, that of

KT(P I Po) = ^(xT ;0 o ,<7 2 ) " ^LWT'A*2). (9.12)

The problem of deriving the maximum likelihood estimator is equivalent
to the following one

m i n i ^ ( P | P 0 ) . (9.13)
0,0*̂

If the objective function Kj,(P | -Po) converges almost surely uniformly
in the (0, a2) space to a limit K*(P | Po), and furthermore this limit
admits a unique minimum in the (0, a2) space at (do, CTQ), then the finite
sample problem (9.13) admits a solution for a large enough sample size T
and this solution converges to (Oo, <7Q), the solution of the limit problem

miniT(P|Po) . (9.14)

We expand on this approach below. We can verify that the objective
function does not depend on the (exact or approximated) form of the
log-likelihood function. Therefore we can write it as K(P | PQ). On the
other hand, the quantity K(P | Po) is interesting in itself. Indeed, it can
be interpreted as a measure of the proximity between the distributions
Po a nd P. The function K is called Kullback contrast.



Estimation and Testing 317

Forms of the Kullback Contrast It is clear from the previous dis-
cussion, that a possible definition of K (P | Po) is

K(P\PQ) = vlim (±L*T(xT;Oo,al)-±;L*T(xT;0,a2)). (9.15)

Other expressions can be obtained from the various forms of the likeli-
hood function.

(a) Use of the Approximation in the Frequency Domain
We have

2 al
logf! ^

2 al 2<rg \ge

Although the periodogram does not converge to the exact spectral den-
sity function, we have seen that, for any bounded continuous function
h, the integral E^{hit) converges to E^h^^) (cf. theorem 9.4). Ap-
plying this result, we have

After simplification, the expression of the contrast is given by the fol-
lowing

Theorem 9.12: The contrast between Po and P is

2 M \ o~l a2 ge

Remark 9.2: Prom Kolmogorov's inequality

one can obtain another equivalent expression of this contrast

which has a simple interpretation.
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Theorem 9.13: The contrast between PQ and P is the average of the
measures of proximity frequency by frequency

where

V,a*

(b) Use of the Conditional Distributions

Another expression for the Kullback contrast is derived from the likeli-
hood function written in terms of conditional distributions. We have

K(P | Po) =i?lim
T—»-+oo

where

is the conditional density function of xt given x t - 1 = (xt-i,xt-2, • • •)•
By using the stationarity property of the process and the convergence
of the empirical mean to the theoretical expectation, we get

(9.16)

& / ( x ( | x t _ i ; e , «

Introducing then the quantity

which can be interpreted as the contrast conditional on the past val-
ues, we can notice that K (P \ Po) = E0K (P | Po; x^-i)- This formula
gives a decomposition in the time domain which is similar to the one
established in theorem 9.13 for the frequency domain.
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Finally, substituting the conditional densities by their expressions, we
have

K(P | PQ) = Eo\ (log^J - ^ (n0o(L)xt)
2 + ± (I

1 / , (72 1 , „ , _ x . 1
2

= - (log ^ 2varo (Reo(L)xt) + -jvaro {Ue(L)xt)

(9.17)

Existence of a Unique Solution to the Minimization Problem
We still need to analyze under which conditions the problem

mmK(P\P0)

has the unique solution 0 = Oo,cr2 = CTQ. In order to find this result,
we can take one of the equivalent forms of the Kullback contrast. For
example, let us take the formula in the frequency domain, and let us
write

a(x) = — log x — 1 + x.

We notice that the function a is continuous, positive, and is zero only
for x = 1. Since the Kullback contrast is written as

it is always nonnegative and reaches its minimum of 0 for fea2 = feo^2.

Definition 9.1: The parameter vector 0, a2 is identifiable if and only if

fo,(T2 = feo,a
2 which implies 0 = #o, o~2 — &o-

We can easily verify (cf. exercise 9.1) that the previous condition, equiv-
alent to Ug(L) = Ugo(L), gives 0 = 0Q.

Theorem 9.14: The maximum likelihood estimator exists asymptoti-
cally and is consistent if and only if the parameters are identifiable.

9.2.4 Vector of Scores

If the actual value of (OQ,<TQ) belongs to the set of possible values of
the parameter, if the parameter is identifiable and if the likelihood func-
tion has first derivatives then the consistency of the maximum likelihood
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estimator guarantees that it satisfies asymptotically the first-order con-
dition

This leads us to write explicitly the vector of scores as

for the various forms (exact or approximated) of the log-likelihood func-
tion.

Exact Score Let us start with the exact form given in (9.7). We have

da2 ' ' 2cr2 *
and

dOk

(9.19)

which can be found by using some classical formulae of matrix differen-
tiation (cf. exercise 9.3).

Approximated Score Derived from the Conditional
Expression From the conditional formula (9.8), we find

dLr ™ * T

and

dLc
n

Under this infinite autoregressive form, we can give the usual interpre-
tation in terms of nonlinear least squares. Thus the expression for the
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likelihood equation

can be seen as an orthogonality condition between the residuals
oo

and the "explanatory variables"

with k varying.
The other likelihood equation provides an estimator for the variance

from the sum of squares of residuals

1 T

t=l

Approximated Score in the Frequency Domain Finally, from
expression (9.10) of the log-likelihood function, we get

and

T „ , , . - , „ . (Q 2 Q )

Taking the derivatives of the Kolmogorov equality,

log 2^ + ^ ^ ^ = 0,

with respect to the parameter 0, the second derivative above can also be
written as

uLiT, n 2\ ^ T7i / / T _2 . / / i \ \ A ^w \ (9 21")

9.2.5 Asymptotic Distributions and
Fisher's Information Matrix

Asymptotic Distribution of Scores In this subsection we show the
main asymptotic properties of the score vector. These properties are
summarized below and given without proof (cf. Gourieroux and Mon-
fort, 1989, chapter 17).
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Theorem 9.15:

(i) The score vector divided by T
1 dLT ( n

converges (almost surely) to 0.
(ii) IfL?r andUf are two expressions for the likelihood function (exact

or approximated), then

converges to 0 in probability.
(Hi) Asymptotic normality holds

dL*T
7(xT;

Obviously, these properties are valid under certain regularity conditions,
for example if {et} is an independent white noise and if the moving
average and autoregressive coefficients decrease in an exponential way.
Result (ii) is more difficult to obtain. Since it implies that the asymptotic
variance matrix J(0o> 0"o) does not depend on the choice of the likelihood
function, we use it in order to derive many equivalent expressions for this
matrix.

As in the sampling case, the matrix J(0o,<Jo) ^S ca^ed the Fisher's
information matrix.

Use of the Score in the Frequency Domain The score is written
as an integral of the periodogram

£M

We can now apply directly the asymptotic properties of the periodogram
(cf. theorems 9.4 and 9.5). We have

o
= 0.
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On the other hand

with
f d log ge0 d log ge0 \ 9 p ( d loS 9ec

80 dO' ' '
og pe0 \ 2rp ( d loS

do1 ) aorj^y d

( f2

Using Kolmogorov equality, which leads to

we see that the Fisher's information matrix is given by

~^\ de de' ) . (9.22)
l / 2 g /0

Since this matrix is block-diagonal, we obtain right away the following
theorem

Theorem 9.16: The two components

and
1 dlT t

of the score vector are asymptotically independent.

Use of the Conditional Score Let us consider now the conditional
form

The variables
d\ogl(xt 1 x^flp,

_
Zt~present in the sum are such that

. x P fdlogl(xt |3ct_1;g0,gg)
I x ) = £ ( *-i) = 0.

Therefore they constitute a stationary sequence satisfying the martin-
gale difference condition: Eo(zt \ z_t-\) — 0, and therefore it is serially
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uncorrelated. Then, given the limit theorems in the time domain, we
get

... /aiogf(at | x^flo.ggU _
"* °V d{&2)' )1,a2)' ""* °V d{&,a2)'

Furthermore, we obtain asymptotic normality

with

J(0O, al) = var0

Making this last formula explicit, we have

( 1 v~~>oo

^ €+ / • •

l " , 1 2

Using the normality of et, we have Eoe^ = aQ.Eoe^ =
and therefore

° X (9.24)

An Alternative Expression for the Information Matrix An
equivalent form of the information matrix can be easily derived with
the conditional approach. We have

ao) = varo

{d\ogl(xt | x^jfloj^o

d2\ogl{xt\lkt_1;00,o
2)

d{&,a2)'d{#,a2)

9.2.6 Asymptotic Normality of
Maximum Likelihood Estimators

The asymptotic distribution of the estimator (0T,<rf,) is derived in the
usual way from the one of the score. Performing an expansion in prob-
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ability of the first-order conditions, we get

/ =

- lim I

"T — ^o
^2

- cr,0

Since the asymptotic distribution of the score is normal with zero mean
and variance-covariance matrix J(0o,0"o)> we obtain

Theorem 9.17: The maximum likelihood estimator is asymptotically
normal

Moreover, using the form of the information matrix, we get the following:

Corollary:

(i) The estimators OT and a\ are asymptotically independent,
(ii) The asymptotic precision of OT is independent of the value of the

variance a\.

It follows from the expression of the matrix J(0o> 0"o) that

(9.26)
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Generally the matrix avar ( \JT(OT — #o)) must be estimated. A consis-

tent estimator is, for example

(9-27)

with
(xu if * > 1,

xt = \
10, otherwise,

1 T

t=l

9.2.7 Some Examples

Estimation of the Parameters of an AR(p) Process Let us con-
sider the model

x t + < P i X t - i + •••-

with a parameter vector

We have

dU$0(L)
var0 W f v

( xt-i\ / 7(0)

Xt-PJ \ 7 ( P - 1 ) ••• 7(0)

Given expression (9.26), we obtain

avax ( VT(<PT — f)) =
7(0)

p(l) 1 . . . p(p-2)
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Estimation of the Parameters of an MA(1) Process Let us con-
sider the model xt = et - 6et-\. We have

II* (L) = 1 + 0L + 02 L2 + ... + W Lj + ...

var0

80
/ango(L)xA
V 96 J

= var o (xt-i + 20oSt-2 + ... + j^xt-j + ...)

- 7(0) ̂ j2o2
o
j-2 -f 27(i) E JU+

j=l 3=1

3 = 1 3 = 1

Therefore

avar

We could go on computing the sum of the series appearing in this ex-
pression. However, it is clear that the precision of the components of
the moving average part is more difficult to derive than the precision of
the components of the autoregressive part.

9.3 Testing Procedures

9.3.1 Main Testing Procedures

Let us consider a stationary process x, whose distribution depends on
a parameter vector 7 of dimension K. We assume that this parameter
vector 7 can be decomposed in two subvectors

7 =

where /3 is of size r and a of size K — r. In what follows, we test the
hypothesis Ho : ((3 = 0) with a sample of T observations x\... XT of
the process. Let Lj-(xT;a,/3) be the log-likelihood function associated
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with these T observations and let
(OL

lT = \ 3
be the maximum likelihood estimator (possibly computed from an ap-
proximated likelihood function); it is implicitly defined by

LT(xT;dT,/3T) = maxLT(xT;a,/3).
a, (3

Similarly, we introduce the restricted maximum likelihood estimator un-
/ a0 \

der the hypothesis Ho. We write 7^ = 1 ) implicitly defined by

^ ; a ,0).

There are several asymptotic methods to test the null hypothesis

Ho : (0 = 0);

the best-known ones are the likelihood ratio test, the Wald test, and
the Lagrange multiplier (or score) test. We quickly illustrate these ap-
proaches which are asymptotically equivalent under the null hypothesis.
In the following sections, we look at the principle of the Lagrange mul-
tiplier in detail, since this approach is often easier to work out and to
interpret.

Likelihood Ratio Test The idea behind this test is to accept the null
hypothesis if the difference between the restricted and the nonrestricted
maxima of the log-likelihood function is small enough. The test statistic
is

&R = 2 (LT(XT; &T, 0T) - LT(XT; «r, 0)) , (9.28)

and is always nonnegative.
Under regularity conditions almost identical to the ones guaranteeing

the asymptotic normality of the maximum likelihood estimator, it can
be shown that under the null hypothesis

&R - XV), (9-29)
where r denotes the number of restrictions implied by Ho (that is the
number of elements of 0). This gives the critical value against which
the value of the test statistic is to be compared.

Theorem 9.18: The likelihood ratio test of the hypothesis Ho : (0 = 0)
entails the following decision rule

j accept the null hypothesis, if ^R < Xg5% (r),

i reject the null hypothesis, otherwise,
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where X95%(r) denotes the 95% percentile of the chi-square distribution
with r degrees of freedom ( the probability of Type I error has been fixed
at 5%).

Wald Test The principle consists of accepting the null hypothesis if
the unrestricted estimator of (3 is almost zero. In section 9.2, we derived
the asymptotic normality of the maximum likelihood estimator. Let

Jaa, Ja/3? Jpen J/3/3

be the Fisher information matrix blocks associated with the subvectors
of parameters and let J be some estimators of these blocks under the
null hypothesis; under Ho

Examining only the lower right block of the asymptotic variance-covari-
ance matrix, we have

Vf(3T -i /
Finally, computing the associated quadratic form, after estimating the
variances, we notice that under Ho

ia«3«p)0T -^ X2(r). (9.30)

The statistic ^ is called Wald statistic.

Theorem 9.19: The Wald test of the hypothesis Ho : (/3 = 0) entails
the following decision rule

( accept the null hypothesis, if (^ ^ Xgs% (r) J
I reject the null hypothesis, otherwise.

Lagrange Multiplier Test (or Score Test) Another idea is to accept
the null hypothesis if the restricted score is almost 0. Since the score is

0

it is enough to look at the second term.
To determine the critical value, we have to look at the asymptotic

distribution of

^ ^ 0 )
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under the null hypothesis. We know that the asymptotic relationship
between the estimator a^ and the corresponding score is

o J - 1°T - «) « (jo

On the other hand, expanding around a, we get

Then given the asymptotic normality of the score (cf. 9.17) we have
under the null hypothesis

0 n\ d A/'fn-T0 T° (l° T 1 T°

The associated quadratic form is

T , . 0 n\fi0 TOLM 1 dLT , . 0 n\fi0 TO /TO V 1 ! 0 ^

(9.31)

Theorem 9.20: T/ie Lagrange multiplier test of the hypothesis Ho :
(/3 = 0) entails the following decision rule

( accept the null hypothesis, if £^M < Xgs% (r) >

I reject the null hypothesis, otherwise.

We can notice that the matrix of the quadratic form is equal to the one
appearing in the Wald statistic, apart from being computed under HQ.

Comparison of the Three Approaches The three previous ap-
proaches above give quite similar asymptotic results. This comes from
the property below which is given without proof (cf. Gourieroux and
Monfort, 1989, chapter 17).

Theorem 9.21: Under the null hypothesis, the statistics ^ ^ , ^ 7 ^ , and
£^M are asymptotically equivalent.

The choice between the three principles can then be based on their
properties in small samples, but these properties are difficult to derive;
it may also be based on simplicity of computation.

Since the likelihood ratio statistic requires the computation of the
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restricted and unrestricted estimators, the Wald test requires the un-
restricted estimator and the Lagrange multiplier the restricted one, it
is often the latter approach which is the simplest one, the null hypoth-
esis being characterized by a smaller number of parameters than the
maintained hypothesis.

In the next section we provide two simple ways of computing the
statistic £^M which only involve linear regressions.

9.3.2 Approximate Linear Model (Univariate Case)

The Model The Lagrange multiplier statistic can be simplified when
the parameter of interest 0 restricted by the hypothesis HQ concerns only
the lag polynomial. Introducing the variance of the noise separately, and
modifying the notations consequently, the model is defined by

Ue(L)xt = et ^ xt = He(L)et,

where e = {e*} is a scalar Gaussian white noise, with variance <r2. The

parameter 0 is decomposed into 0 = ( 1 and the hypothesis to be

tested is Ho : (/3 — 0).
Taking into account the change of notation, and letting

the Lagrange multiplier statistic is

^LM = ±_bt ( jo _ jo

Since the Fisher's information matrix of this model is block diagonal

"* 0

J0 = I 4a 3% 0
0 0 3a2o

we can easily verify that the matrix in the quadratic form defining •
reduces to

fjo _ jo ( TO
V

and that

The Linear Model Built from the Scores There exist several equiv-
alent forms of the Lagrange multiplier statistics, depending on the like-
lihood function type used (exact or approximated) and on the choice
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of the consistent estimator of the information matrix. Looking at the
conditional likelihood function, we have

dL

t , ,
with Xt = s

[ 0, otherwise.
Let us define

E

an*. (L) du§0 (L)
-K- *U Z2t = ^ Xt,

d{3
Zlt = K * U Z2t = ^

da d{3
and let us denote the residual under the null hypothesis as

The restricted estimator of the variance is
1 T

-02 l V ^ /rO\2

t=l

On the other hand, consistent estimators of the elements of the infor-
mation matrix are

T

t=1

T

TO _ ! * V ^ /

^ 2 U n'
Substituting them in the expression of the test statistic, we get the
following result

Theorem 9.22: A possible choice of the Lagrange multiplier statistic
is

i t=l \t=l

— — —

t=l t=\ t=l
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with

This expression for the statistic has a direct interpretation in terms of
regression. Let us consider the auxiliary regression model

e? = z'lta + z'2tb + et, * = 1,...,T, (9.33)

and the corresponding null hypothesis HQ : (b = 0).
If we write Z(resp.Zi) the matrices with rows (z'u,z2t) (resp. z'lt),

and M = Z(Z/Z)~1Z/, Mi = Z ^ Z i Z i ^ Z i , the respective projectors
on the spaces spanned by the columns of Z = (Zi, Z2) and of Zi, from
the likelihood equations we get

Mie0 = 0 <* Zie0 = 0.

This restriction satisfied by the residuals leads to the following interpre-
tation.

Theorem 9.23: If SSRu represents the sum of the square residuals of
the unrestricted auxiliary model (9.33), and SSRR represents the same
sum under the null hypothesis HQ, we get

LM _ SSRR — SSRu

PROOF: We have

SSRR - SSRu = e'°(I - Mi)e° - e/0(I - M)e°

= e / 0 ( M - M i ) e ° = e / 0 M e °

= e/0Z(Z/Z)-1Z/e°

e Z2{ZZ2 Z Z i ( Z Z ) ^^2} Z £e Z2{Z2Z2 — Z2Zi(Z 1Zi)

- 02 CLM
T VT •
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Locally Equivalent Alternatives Let us consider two models which
are introduced to describe the evolution of the series and have the same
types of parameters

= eu et ~ 7V(0, a2), (9.34)

=rh, ryt-7V(0,a2), (9.35)
keeping the same parameter notation for ease of reference.

Since the Lagrange multiplier test is based on the behavior of the
derivative of the log-likelihood function in a null hypothesis neighbor-
hood, it is therefore natural to study these models in such a neighbor-
hood.

Definition 9.2: The two models are said to provide locally equivalent
alternatives, in a neighborhood of Ho : (/3 = 0), if the two following
conditions are satisfied

(i) nQ,0(L) = n*>0(L);
(ii) dTLa,o(L)/d(3 — A (dU^0(L)/d/3) for a nonsingular matrix A.

The first condition means that both hypothesis HQ : (/3 = 0), defined
on the model (9.35), and H£ : (/3 = 0) denned on the model (9.36),
correspond to the same set of distributions. The second equality deals
with the alternatives Hi : ((3 ^ 0) and H{ : (/3 ^ 0) associated with
both models. Restricting ourselves to the alternative hypotheses involv-
ing distributions corresponding to small values of the parameter /3, we
conclude that these alternatives are first-order equivalent.

The condition (i) implies that the restricted estimators d^ and <J§?

are the same ones for both models. It also leads to
anQ,0(L) = du*afi(L)

da da
the component vectors

d i 0 ( ) _ , d i 0 ( .

zu = da xt and zl t = ^ xt

coincide. On the other hand, the condition (ii) implies that the vectors
Z2t and z%t are linked by a linear bijective function. We derive then the
following theorem

Theorem 9.24: If two models provide locally equivalent alternatives in
a neighborhood of the null hypothesis, the Lagrange multiplier statistics
computed from the conditional approach coincide

CLM _ C*LM
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This result may be used in two different ways

(i) When the test rejects the null hypothesis, it is obvious that there
is a priori no reason to select Hi rather than H{.

(ii) The property may serve to determine more easily the statistic £^M

by substituting to the initial model another more convenient, lo-
cally equivalent model.

Decomposable Models In order to illustrate the approach of locally
equivalent alternatives, we consider the usual case, where the autore-
gressive operator is decomposed into

iLAL) = ni(L)nj|(L), withni(o) = 1 (9.36)
(and therefore also II|(0) = 1).

Expanding this operator in a neighborhood of (3 = 0, we get

n
Since we can always choose by convention the decomposition so that
UQ(L) = 1, we have

Therefore it is natural to consider both models

ni(L)H2
0(L)xt = eu var (et) = a2, (9.37)

xt = Jfc.var fa) = a2.

(9.38)
We verify right away that

and that
dUafi(L) t dU2(L) &a*a,0(L)

dp a{ ' dp dp "

Theorem 9.25: To perform the Lagrange multiplier test of the hypoth-
esis Ho : (/? = 0), the decomposable model (9.36) can be replaced by

Ui(L)xt + Hi(L)^^-xt0 = rju var (Vt) = a2,

which provides a locally equivalent alternative.

The advantage is obvious. We substitute the initial model, generally
nonlinear in (3, with another model, which is linear.
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Another approximately linear model can easily be deduced from the
model just obtained. Let us write

«* = ni.(L)^*t, (9.39)

and let us introduce the artificial model

ni(L)xt + z'tP = wt,va.x (wt) = M2. (9.40)
If we perform the Lagrange multiplier test of Ho : {/3 = 0} as if the
estimator d^ in zt were deterministic, we notice that the Lagrange mul-
tiplier test statistic coincides with the one of the initial model.

Theorem 9.26: The statistic £^M can be computed from the approxi-
mately linear model

with zt = II^o (L)—-§7f^Xt, and considering d^ as deterministic.

This last approximation is very simple to use:

(i) generally we start by estimating the model under the null hypoth-
esis which provides the estimators a ^ <jj? and the restricted resid-
uals e?,£ = 1,...,T.

(ii) Then we get the statistic £^M by testing (/3 = 0) in the artificial
model

nl(L)xt+z't/3 = u;t, with zt = ^ | | ^ C - ? .

Thus, the test becomes a test of the omitted variables zt, which
are easily computed from the restricted residuals.

Another interpretation of the test is deduced from the estimated score
expression. Indeed, we get

^ d 3
1 t—1

Therefore the test turns out to be a test of the orthogonality of the
restricted residuals and the variables zt.

Inverse Models Given a decomposable model

Hl
a(L)Tll(L)xt = et, var(ct) = a2,with U2

0(L) = 1,
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we can consider at the same time the partially inverted model

t=r,t, vax(r)t)=a2. (9.41)

Theorem 9.27: The decomposable model and the associated partially
inverted model provide locally equivalent alternatives for the hypothesis
Ho : (0 = 0).

PROOF: Let us write Ua^(L) = Il£(L)/IIj|(L). Then we can verify
both conditions of definition 9.2

(i)

ilafi(L) = Ui(l

dflafi(L) UJ(L) ang(L) dUa<0(L)
d/3 (ng(L))2 op dp •

Example 9.4: For example let us suppose that the null hypothesis
corresponds to an ARMA(p, q) representation

Uia(L) = S r i with degree (̂ >) =p, degree (0) = q,

and let us take a lag polynomial of degree r as the second factor

The direct model n^(L)II^(L) corresponds to an ARMA(p + r, q) rep-
resentation and the inverse model

to an ARMA(p, q + r) representation. Thus, from theorem 9.27, the La-
grange multiplier statistic to test an ARMA(p, q) representation against
an ARMA(p+r, q) representation is identical to the one obtained to test
an ARMA(p, q) representation against an ARMA(p, q + r) representa-
tion.
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Moreover, we can easily derive an interpretation of the test statistic.
We have

dUa>0(L)

e(L)

L\
L2

U )
The variables Z2t appearing in the expression of the Lagrange Multiplier
statistic (cf. theorem 9.22) are

L\ / L\

Z2t — ~

e
xt =

\LrJ
Thus the product Ylf=i Z2t£? is equal to

/ T T

and the test statistic appears as a function of the first r sample covar-
iances computed on restricted residuals.

9.3.3 White Noise Test

As an example let us examine the white noise hypothesis tests more
closely. For simplification purposes, we limit ourselves to the statistic to
be used when the parameter vector (3 contains just one element.

A Class of Tests Under the white noise hypothesis the components Xt
of the process are not correlated. Thus, there is no correlation between
the current value of the process at time £,#*, and a linear combination
of past values

A(L)xt = (aiL + a2L
2 + .. . + akL

K + .. .)xt.

It is natural to consider the statistic corresponding to the square empir-
ical correlation between xt and A(L)xt

(9.42)

Under the null hypothesis, {#*} is an independent white noise and we
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can apply the standard limit theorems

1 T

£li™ r Yl x* = var (x

Moreover, asymptotic normality follows
T / oo \

Indeed, the components Xt,A(L)xt are uncorrelated, since

= E(xt)E ((A(L)xt) xt+h (A(L)xt+h)) = 0

for h < 0 and their common variance is

E (x2
t (A(L)xt)

2) = E(x2
t)E(A(L)xtf = a4 J a \ .

Thus we have the following theorem

Theorem 9.28: Under the white noise hypothesis, we have

Therefore, a white noise test entails the following decision rule

( accept the null hypothesis, if T£T{A) < Xgs% (1) >

I reject the null hypothesis, otherwise.

Distribution of the Test Statistic under Local Alternatives In
order to get the form of the test, we have determined the distribution
of T£T(A) under the null hypothesis. Now we are looking for this dis-
tribution under a sequence of local alternatives. We assume that the
alternative model is

U0T(L)xt=et, n*T(0) = l, (9.43)

where the parameter OT is not fixed, but is a function of the number of
observations. More precisely, we write

0T = f=. (9.44)
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We have then the approximations

o(L) =

Since II0 (0) = 1, notice that we always have

We can then establish the asymptotic behavior of the test statistic (cf.
exercise 9.7).

Theorem 9.29: Under the sequence of local alternatives (9.44),
converges in distribution to a noncentral chi-square distribution with one
degree of freedom, and the noncentrality parameter

var (A(L)et)

Search for a Locally Optimal Test Let us then assume that the
model

Ue(L)xt = €t,
corresponds to the maintained hypothesis. It is interesting to examine
whether there exists a test with the greatest power, among all the pre-
vious tests based on £T(A) with A varying. In fact, we cannot compare
the power of the test for any value of the parameter in a uniform way,
but we can do it in a neighborhood of 0 = 0, for example for the local
alternatives associated with 0T = 0*/VT. The asymptotic power of the
test is

Since under 0T, T£T(A) follows asymptotically a noncentral chi-square
distribution, and since the quantity limr PeT (T£T(A) > X95%(1)) is an
increasing function of the noncentrality parameter, the search for a lo-
cally optimal test comes down to the solution of the problem
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We know that the correlation between these zero-mean variables is the
greatest when the variables are proportional; this provides the solutions

dU0{L)
A*(L) = a- dO

Theorem 9.30: The Lagrange multiplier test of the white noise hypoth-
esis against the model Iie(L)xt = £t> is optimal in the previous class.

PROOF: By direct application of formulas in section 9.3.2, we have

(JU u (JU

This shows that the test is based on the empirical covariance between
Xt and

1 dUo(L)

(and the statistic is derived directly from the square correlation after
reduction). •

9.4 Extensions to the Multivariate Case

The results in the previous sections can be extended to the multivari-
ate case. We present such generalizations for (exact or approximated)
likelihood function expressions, likelihood equations, and Fisher's infor-
mation matrix. Moreover, we explain the estimation problem of a pure
autoregressive model and describe one case where it is possible to treat
it as a univariate model.

In this section, the observations y i , . . . , yr relate to an n-dimensional
stationary process having an infinite autoregressive representation

Ue(L)yt = eu with n*(0) = I, var (et) = ft,

where the parameters 0 and ft are not related to each other.

9.4.1 Conditional Log-likelihood Function

It is easy to give a number of expressions for the conditional log-likeli-
hood function
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recalling that in this expression the values of ŷ  associated with null or
negative indexes t are put to zero.

Time Domain We have

nT T
Lc

T(y;0,Sl) = - — Iog27r - - logdetQ

t=i

This expression can also be written

nT T
Lc

T{y-0,Sl) = -— Iog27r - - logdet ft

1 t=i

Using the properties of the trace operator

tr (AB) = tr (BA),

we have
m rp

Lc
T{y;0, fl) = - — Iog27r - - logdet U

Frequency Domain The log-likelihood function

nT T
L^(y; 0, ft) = log 2?r - — log det Q

T ( !
- 2 t r ( " : t = i

depends on the observations through the empirical variances of the vari-
ables Ylo(L)yt. Switching to the Fourier transform and noticing that the
periodogram associated with the process He(L)yt is

lie (exp(icj)) IT (to) (Uo expzu;)',
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where IT{W) is the periodogram of y i , . . . , yt, we have

nT T
Lc

T(y;0,rt) « -—Iog27r - - logdetft

— — tr I fi"1 / Ilo(exp(iuj))lT{w)(TLoexpiuj) cLu
^ \ J — 7T

T r
du

nT T
= — 5 - log2TT--logdet ft

- I /" tr ( fn^expCzu;))-1^ ((ne exp(tw))') J IT{u) \ <LJ.

We recognize under the integral the expression of the spectral density
function of the process y; moreover, using Kolmogorov's inequality, we
have

nT T
Lc

T(y;0,n) « -—Iog27r - -
T

- - ^ t

This formula generalizes (9.10).

9.4.2 First-order Conditions

The maximum likelihood estimators OT-, ^ T are found when setting the
derivatives of the log-likelihood function to zero.

Derivative w.r.t. 0 We have

This is an orthogonality condition for the scalar product H^1 between
the residuals et and the variables
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Differential w.r.t. ft To optimize with respect to ft, it is easier to
consider the differential. We have

dLc
T = -^d(logdetn) - ^ t r

2 2 \

Then (cf. exercise 9.3), we see that
T

dLc
T = — — tr (ft'

2

\ t=i

We notice that this differential is zero, for
, T

Theorem 9.31: The maximum likelihood estimators Or and &T are
such that

1 T

J
t=l

with = U§T(L)yt.

9.4.3 Fisher's Information Matrix

The information matrix is obtained by computing the expectation of
the inverse of the second derivative of the log-likelihood function with
respect to the parameters, with its sign changed.

Cross Terms Let us first consider an element of this matrix corre-
sponding to one element of 0 and to one element of ft ( or, equivalently,
of ft'1). We have

dOj

where HQ(L) denotes the A;-th row of the matrix Tie(L) and ukl is the
(fc, Z)-th element of the inverse matrix fl'1.
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Taking into account the symmetry of the matrix ft"1, we have

d2L9r T

d0j

T
+E(^-n^L)y0(n^L)y)

for A: ^ Z,and

d

d6j

These two derivatives have a zero expected value. Indeed, let us consider
for example the second one

since dli^Vjyt/dOj does not depend on the current values of y and since
the noise e has a zero expected value. Thus, the information matrix
and its inverse are block diagonal. Taking into account the asymptotic
normality of these estimators we have the following theorem

Theorem 9.32: The estimators 0T and £IT are asymptotically inde-
pendent.

Square Term Relative to 0 The asymptotic precision of the estimator
of the parameter 0 can be derived from the term Jee of the information
matrix, as shown in theorem 9.32. We have
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fdU'e(L)yt

9.4.4 Estimation of a Pure Autoregressive Process

The estimation is particularly simple in the case of pure autoregressive
processes without restriction on the parameters. This explains in part
the success of these models in the multivariate case. Let us assume that
the process yt can be written as

where var (et) = fi, t = 1, . . . , T and the parameters $ i , . . . , $ p , ft are
not related to each other.

We can write this expression by separating the components of y. With
obvious notation, we get the so-called seemingly unrelated regression
model

yjt = (y{-i>• • • ,y{-P)$3 + *jt, j = i . . . M = i . . . r ,

where ij)j is a vector of parameters of size pn.
Let us denote

l-

The previous system can be written as

y o

with

var

Introducing (A <g> B) as the Kronecker product of matrices A and B,
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the model can be written as

: =(l®z) !

with

under the normality assumption. The first-order condition relative to

••(")

gives the generalized least squares formula
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using the formulae
(A 0 B)(C 0 D) = AC 0 BD,

(A0B)"1 = A - ^ B " 1 ,

(A®B)' = A'0B'.
We conclude that

This provides the following result:

Theorem 9.33: In the case of a pure unrestricted autoregressive model,
the autoregressive coefficients can be estimated by applying the method
of ordinary least squares to each equation separately.

Hence, it is possible to follow the univariate setup and obtain the max-
imum likelihood estimators <&i... &p without prior estimation of the
variance-covariance matrix ft.

The estimated variance-covariance matrix of the estimator is given by
the usual formula

v a r " ~_

\+*r) " ' (9-46)

- 1



Estimation and Testing 349

9,5 Exercises

Exercise 9.1: Verify that the following two conditions are equivalent

(i) f0tff2 = f0oi<r2 =» 0 = 0O, °2 = °h

Exercise 9.2: Using the inverse Fourier transform show that

var0 (Ue(L)xt) = / fne(L)xt(u)du; = a2E^ I ° I .
J-TT \ J0,(J2 J

Prom it, give a straightforward proof of the equality of the expressions
(9.12) and (9.13) for the Kullback contrast.

Exercise 9.3:

(i) Verify that

- CT(0)~l

i

« - CT(V) —QQ— CT(0) dBk.

Prove that

(ii) Verify that

det ( CT(0) + " ' v v > d0k ) - det CT(0)

= det CT(0)det (l + CT(0)-ldCZ^Mk) ~ detCT(0)

t=i

where att(0) is the t-th diagonal element of the matrix

Show that

A
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Exercise 9.4: From the expression of the score in the frequency domain
and from the definition of the periodogram show that

<91ogLT.
dO

T-l
T

duo.
h=l-T

Exercise 9.5: Consider a white noise Xt = tt having a standard normal
distribution et ~ JV(0,1).

T
 2

(i) Verify that, if IT{u) = -p? Et=i et exp(itcu) ,

) 4- ^
S S It

s t

s t

_ 3 1 1 - exp(-2zu;T) 1 - exp(2zu;T)
~T+ + T 2 l-exp(-2ia;) 1 - exp(2zo;) '

(ii) Prove that

hm var

Exercise 9.6:

(i) Write 7T(^) = ^ ]C*=i (xt ~~ ^ T ) (%t+h — %T) as an explicit func-
tion of 7T(^) and of the empirical means of the values of x.

(ii) Prove that if x is zero mean, 7T(^) has the same limiting distribu-
tion as

Exercise 9.7: Under the same conditions as in section 3.2, verify that

T ^ \ ~^ 2 2
phm — >^ x\ = a ,
~~" °° t=i

k=l
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and

t=l

jV -0*cov ^fleuA(L)et , var (et) var
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Causality, Exogeneity, and Shocks

10.1 Dynamic Macroeconometric Models

10.1.1 General Aspects

Some Goals of Macroeconomic Modeling In this chapter and in
the following ones, we are mainly interested in the use of time-series
techniques in the domain of macroeconomics. The available data refer
to variables which can be generally classified as quantities (production,
consumption, investment, imports, money supply, total employment,
unsatisfied employment demand, etc.) and as prices (prices of consump-
tion goods, of investment goods, foreign prices, wages, interest rates,
etc.). These quantities and prices are the result of aggregation proce-
dures with respect to economic agents, goods, and time. For example,
the term "price" should be interpreted as a price index relative to a cer-
tain period and to a certain category of goods. Macroeconomics studies
how certain variables are related to each other.

In a macroeconomic study, we generally start by choosing the appro-
priate variables. These are then divided into two groups. Some are
specific to the phenomenon under study, and the knowledge of their val-
ues at regular intervals allows one to follow its evolution. These are
called endogenous. To consider only these endogenous variables trans-
lates into just a descriptive study and not an interpretive one. In order
to be able to have some explanation for the phenomenon, we need to
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take into consideration other variables as well which can possibly have
an influence on the endogenous variables, the values of which are fixed
outside the phenomenon. These variables are called exogenous (a more
precise definition will be given in section 10.3). The phenomenon and its
explanation are summarized in a macroeconometric model. If we limit
ourselves only to the case of a linear model, such a model takes the form
of a linear system linking current endogenous variables to the exogenous
variables and to the lagged values of the endogenous and exogenous vari-
ables. If we denote by y* the vector of the n endogenous variables at
time £, xt the vector of the m exogenous variables at time t, the system
can be written as

Aoyt + Aiyt_i + . . . + Apyt-P + Boxt + Bixt_i + . . . + Bpxt_p + [x = 0,
(10.1)

where AJ5 j = 0,.. . ,p are (n, n) matrices, Bj, j = 0,.. . ,p are (n, m)
matrices, and /x is a (n, 1) vector. The matrix Ao is supposed nonsingu-
lar, so that system (10.1) allows for a unique determination of the current
values of the endogenous variables. In order to illustrate this procedure,
let us introduce a simplified Keynesian model. This model was first
proposed to derive the impact on the economy of an autonomous expen-
diture policy, decided exogenously by the government. The endogenous
variables are:

Gross Domestic Product: GDPt,
Consumption: Ct,
Investment: It.
There is just one exogenous variable, the autonomous public expen-

diture Gt. The system is made of three equations

Ct = aGDPt-u

It = b(GDPt-1-GDPt-2).

The first equation gives the equilibrium between total supply GDPt and
total demand, represented by the sum of demand by consumers Ct, by
firms /t, and by the government Gt> The second equation describes con-
sumption behavior: consumption at time t is a function of the revenue
distributed at the previous date. The coefficient a is positive (consump-
tion increases with revenue); on the other hand, it is likely to be less than
1 (since one cannot spend more than one earns for an extended time).
Finally, the last equation describes the propensity to invest (b > 0) in a
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period of growth. The previous system can be written in vector form as
1 - 1 - 1 \ /GDPt\ / 0 0 0N

0 1 O i l Ct - a 0 0
It ) \b 0 0,

(10.2)

Note that the matrices Ao, Ai, A2 are subject to a number of con-
straints; in particular a lot of their coefficients are equal to 0.

10.1.2 Introduction of the Random Disturbances

The dynamic model (10.2) is deterministic, which for the moment does
not allow for comparisons with those models we used for time-series
analysis. This difficulty is solved by introducing random disturbances in
the various equations. If the whole dynamics has been correctly included
in the initial specification of the model, these disturbances should be
temporally independent. However, before introducing them, we need to
give a more precise interpretation to the various equations. We usually
make the distinction among three types of equations

(i) The accounting identities are equations defining certain variables.
Thus in the Keynesian model there is an implicit definition of total
demand TDt

TDt = Ct + It + Gu

where the relationship is satisfied without error.
(ii) The equilibrium conditions express the equality between demand

and supply. This equality is assumed to be the result of an ad-
justment in prices. The equation GDPt = TDt is an example of
such equilibrium equations. When we suppose that equilibrium
takes place, there is no reason to introduce error terms in the cor-
responding equation.

(iii) The behavioral equations express the way in which economic agents
determine certain variables conditionally on certain others. Thus

Ct=a GDPt^

describes a consumption behavior

It = b (GDPt-i - GDPt-2)
an investment behavior.
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In the previous example, these behaviors have been formalized in a
very simplistic fashion; it is clear that consumption depends on factors
other than revenue. Generally, it is in these behavioral equations that
the error terms are introduced, in order to represent these "forgotten"
effects or those thought of as secondary with respect to the problem of
interest. With the introduction of a random disturbance term the initial
model can be written as

GDPt = TDU

Ct = aGDPt-i+uu

It = b (GDP^ - GDPt-2) + vt.

In order to obtain a more homogeneous specification, where the distur-
bances appear in all the retained equations, oftentimes we get rid of the
accounting identities or the equilibrium relationships. Thus eliminat-
ing GDPt and TDt we get a model describing the evolution of the pair
(CUIT)

Ct = aCt-i + alt-i + aGt-i + ut,

It — bCt-i + blt-i + bGt-i — bCt-2 — bIt-2 — bGt-2 + t̂>

or

This model contains the whole dynamics of the initial model. The value
of GDPt can be derived from the relationship GDPt = Ct + It + Gt>
The previous example shows that after the introduction of the additive
disturbance terms in the behavioral equations and the elimination of the
accounting identities and the equilibrium relationships the model can be
expressed in the form

i + .. . + Apy t_p
(10.3)

+ ii = e t,

where et is the vector of which the elements are the disturbances asso-
ciated to the behavioral equations.
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10.1.3 Control Variables and Environment Variables

In the previous sections we have made a distinction between endogenous
and exogenous variables. Other distinctions are possible. We often
observe that certain exogenous variables can be controlled, that is fixed
to an arbitrary level by a policy maker. These are called instruments
(of economic policy), control variables, or decision variables. The other
exogenous variables have their own evolution on which we cannot easily
intervene. They are called environment variables. These differences
in interpretation between exogenous variables should show up in the
expression of the model. We can therefore start by separating the two
types of variables in expression (10.3). Keeping the same notation x for
the environment exogenous variables, we can denote the control variables
by z. We have

Aoyt + Aiyt_i + ... 4 Apyt_p + Boxt

4 Coz* + Cizt_i 4 .. . 4 Cpzt-P 4 fi = et.
(10.4)

This expression is perfectly symmetric in x and z, so that the distinction
between the two types will not appear unless we complete the model by
describing the evolution of the exogenous variables.

Evolution of the Environment Variables As a first approximation,
let us consider the control variables as fixed and let us describe the
evolution of the environment variables. The latter, which influence the
endogenous variables are assumed to be determined before the values
yt. Choosing a linear model, we can describe this concept as

Aoyt + Aiyt_i + ... 4 Apyt_p 4 Boxt 4

4- Cozt + Cizt_i + ... + Cpzt.p 4 n = eu

xt 4- Dixt_i 4 .. . 4- Dpxt_p + Eozt 4- Eizt_i 4 ... 4-

4 Fiy*_i 4 .. . Fpyt_p + i/ = ut,
(10.5)

where {et} and {ut} are two mutually uncorrelated white noises. Two
hypotheses are behind the previous expression

(i) The control variables can have an impact on the values of the
endogenous variables, but also on the values of the environment
variables. However, they do not influence directly the dynamics of
the variables y and x, that is the coefficients Aj, Bj, Dj, Fj.

(ii) The variables x are exogenous in the sense that the x*'s are fixed
prior to the yt's. This concept is translated into the constraints
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yt-\

Figure 10.1 Causal Chain Scheme

Figure 10.2 Modified Causal Chain Scheme

Fo = 0 and cov (ut, et) = 0. Fixing the values is performed accord-
ing to the scheme represented in figure 10.1 (called causal chain)
for the model

+ Boxt + Cozt + /x = et,

_i -h Eozt + Piyt-i + i/ = ut.

Sometimes, model (10.5) is called block-recursive (determination of x
and then of y). The recursive model (10.5) corresponds to a fairly weak
notion of exogeneity. We could introduce a more restrictive notion as-
suming, for example, that the values of x$ are determined autonomously,
that is, without a relationship to the lagged endogenous variables. This
corresponds to imposing Fj = 0 , V j , and leads to a model of the type

+ Boxt

(10.6)
with cov (et,Ut) = 0. As an illustrative example, let us consider the
model

Aoyt + Aiyt_i + Boxt + Cozt + /x = eu

xt + Dixt_i -h Eoz£ + v = ut.

The modified causal chain appears in figure 10.2. The two types of
exogeneity will be rigorously defined in section 10.3.

Characterization of Economic Policy In order to have a certain
effect on the evolution of the endogenous variables, a policy maker should
intervene on the control variables z. For example, he could fix the evo-
lution of the control variables in a way that will lead to the desired
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evolutions of the endogenous variables. Taking the Keynesian model
as an example, the government can affect consumption, gross domestic
product, and investment through government expenditure. We can en-
visage various economic policies. For example, it could be decided to
maintain a constant level of expenditure

or to modify government expenditure according to the observed evolu-
tion of investment

These simple examples show that a direct way of describing economic
policy consists in explaining how the values of the control variables will
be fixed, in terms of the main aggregates. This can be expressed by
adding to (10.5) a new equation giving the determination of the variables

Aiy t_i 4- • • • + Apyt-p 4- Box t

4- Cozt + CiZt_i 4-.. . 4- CpZt-p H

xt + Dix t_i 4-.. . 4- DpXt-p 4- Eoz t -

, 4-1/ = u t,

4- Iiyt-i + • • • Ipyt-p + 7 = v t,
(10.7)

with cov(ct»Ut) = cov (etjVt) = cov(ut,vt) = 0. In this model there
is an additional recursiveness: determination of z, then of x, then of y.
However the distinction between the two types of exogenous variables
rests on a different level. While the first two equations describe the reac-
tions of the environment, the last describes an economic policy possibly
chosen by the policy maker. Thus, we can think that the decision maker
may give the values he wants to the coefficients Gj, Hj, Ij, whereas he
does not have any influence on the other parameters of the model.

Equilibrium Relationships In the above framework, we stressed the
idea of block recursiveness. We need, though, to give a possible inter-
pretation for when this recursiveness is not satisfied. This leads us back
to the notion of equilibrium and to a definition of an equilibrium rela-
tionship. Let us take the classical example of a model describing how
the exchanged quantities and prices are fixed on the goods market. The
model, called "tatonnement" model is constructed by analogy to certain
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markets where we see the evolution of the demanded and supplied quan-
tities, as well as of the prices during the day. Let us denote by t the
index of the day, and by r = 1,2,... the successive instants of trading
during the day. At any instant (t,r), we have a price quotation ptjT.
The buyers attach a desired quantity to this price

where a < 0, and Xt indicates the set of variables affecting behavior. At
the same price, the sellers propose to sell a quantity

with a > 0. In general, these two quantities are different: either we have
an excess demand DtT > St,T or we have an excess supply St,T > A,r-
In the former case we would increase the price whereas in the latter we
would decrease it. In a simplified fashion, we can consider that the next
price quotation is fixed according to a price adjustment equation

Pt,T+l - Pt,r = A (A,r - St,T) ,
with A > 0. During the day, we have a succession of values for pt)T,
A,r, StiT- What is the path for the prices? Replacing the expressions
for DtT and St,T in the adjustment equation we get

Pt,T+i ~ Pt,r = X(a-a) ptjT + A (xtb - xt/3)

<^Pt,r+i - (1 + A (a - a)) ptiT = A (xtb - xt(3).

The price satisfies a linear difference equation. The coefficient 1—A(a—a)
is less than 1 by assumption (since A > 0, a < 0, a > 0). If it is greater
than —1, the sequence of the prices ptjT will tend to a limit p\ = pt,oo
for which

Pt ~ Pt = A (A,oo - St,<x>)

The limit p\ is called equilibrium price, and is characterized by the equal-
ity of demand and supply. The quantity exchanged at this equilibrium
price is assumed equal to this common value

Qt = Dt,oo — St,oo-

The macroeconomic models are aggregate models with respect to indi-
viduals, goods, but also with respect to time. Since the phase of price
adjustment cannot be taken into consideration if it is quick enough, the
used observations are relative just to the equilibrium values p%, Q% (if the
equilibrium is reached). In order to provide an interpretation in terms
of recursiveness, it is interesting to examine the causal chain during the
phase of adjustment (figure 10.3).
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Figure 10.3 Causal Chain Scheme for the Price Evolution

Figure 10.4 Limit Behavior for the Price Evolution

However, if we observe just the equilibrium, that is the limit behavior
of this chain, we get the situation depicted in figure 10.4.

The prices look like they are determining the quantities which, in turn,
seemingly determine the prices. Thus the recursive behavior is lost, and
we say that there is a simultaneous determination of the variables p and

Q-

10.1.4 Various Forms of a Dynamic Model

There exist various ways of writing a dynamic model, in which a distinc-
tion will be made between endogenous and exogenous variables. These
different expressions are interesting for analyzing the models and for
better understanding, for example, the links among the variables.

The Structural Form The structural form corresponds to the initial
equation (10.1). It is written as

(10.8)
where e* is a white noise. Each of these equations provides the value
of one of the endogenous variables as a function of the current values of
the other endogenous variables, of the past values of the endogenous and
exogenous variables (we do not make a distinction here between control
and environment variables) and of an error term. The matrix Ao is often
expressed with unit elements along its main diagonal. Then the model
can be written as

yt = (I - Ao) yt -

where I — Ao has zero elements on the main diagonal. Although it is
derived from macroeconomic theory, such a system can be difficult to
interpret without additional constraints. Thus the simultaneity among
the variables can be introduced at the same time through the coefficients
of AQ and through the nonzero contemporaneous correlations of the
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elements of the vector e. While the simultaneity appearing in Ao is
easily interpretable in terms of equilibrium, the one appearing in var (e)
is not. Moreover (cf. exercise 10.7), it is easy to show that it is not
possible to keep the two sources of simultaneity separate.

The Reduced Form The reduced form of the model is the expression
in which each endogenous variable is expressed as a function of the lagged
endogenous variables, of the exogenous variables, and of the disturbance
term. Such a form can be written as

We can simplify the notation by introducing the lag polynomials

B(L) = B0 + BXL + ... + BpL
p.

We have then

yt = -A(O)-1 ((A(L) - A(0))yt + B(L)xt + //) 4- AtO)"1^- (10.10)
The time independence of the elements of the error term vector A(0)-1et
shows that the whole dynamics of the system, that is the effect of the
past on the present, is summarized in the functions A^"1Ai,..., A^"1AP,
A^1BOv .., A^1BP. These transformations of the initial parameters of
the system are often called reduced form parameters.

The Final Form We can also express the current value of the en-
dogenous variables yt as a function of the exogenous variables and of
the disturbances e r , r < t. This expression is called final form. When
the polynomial A(L) is such that det A(L) has all its roots outside the
unit circle, this form is expressed as

yt = -A(L)"1B(L)x t - A(L)"V + A(L)~1e£, (10.11)

or

yt = —A(L)~1B(L)xt — A(L)~1/i + A(L)~1Ao (A^et)
which allows us to separate the influence of the exogenous variables and
of the disturbances on y (cf. section 10.3).

10.2 Causality

We have seen that in the macroeconometric practice we are used to
a distinction between endogenous and exogenous variables and within
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the group of the exogenous, between control and environment variables.
However, we can consider a different approach, consisting in analyzing
the joint evolution of the various variables of interest, and in examining
whether some of them are fixed before others. Such an approach can be
developed only if we consider a model describing the joint determination
of all variables. It can be applied to both endogenous and environment
exogenous variables, or to the set of all variables when the policy is
described as in (10.7). It will never allow one to know which variables
can be used for control purposes. In order to simplify notation, we will
introduce the main concept without considering the variables z. We have
available then observations on the multivariate processes {x*}, {y*}.

10.2.1 Definitions

We can associate with each process the information contained in the
past behavior of the process itself. Thus, for example, we can consider

xt = ( x t , x t - i , . . . ) = (xt_t, i > 0 ) ,

(xt,yt) = (xt-t, i > 0, yt_i, i > 0).

This information can be used to forecast future values of the variables.
In what follows, we will assume that the forecasts of the variables are
obtained by the linear regression method. The best linear forecast of
a vector x based on the information / is denoted by E(x. \ I). The
corresponding forecast error is e(x | /) = x — E(x. \ I). The associ-
ated mean square error can be computed from the estimated residual
variance-covariance matrix

var(e(x| /)) .

Granger (1969) has suggested the introduction of the following defini-
tions which involve the variable forecasts starting from their past.

Definition 10.1:

(i) y causes x at time t if and only if

E

(ii) y causes x instantaneously at time t if and only if

E (xt | xt_i,yf) + E (xt | x t - i . y ^ i ) •

As a result of the properties of the linear regression, the variable forecast
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based on more information is necessarily the best one. Thus we always
have

var(e(xt | x ^ y ^ ) ) < var(e(xt | xt_i)).

We can then present the condition of noncausality starting from the
forecast error (cf. the appendix).

Theorem 10.1:

(i) y does not cause x at time t if and only if

var(e(xt | x ^ y ^ ) ) = var(e(xt | xt_i)).

(ii) y does not cause x instantaneously at time t if and only if

var(e(x* | xt_1?yt)) = vax(c(xt | x ^ . ^ y ^ ) ) .

Thus y causes x at time t if the past of y provides additional information
for the forecast of xt with respect to considering the past of x alone.
The conditions of noncausality allow for an interpretation in terms of
partial uncorrelation. Let us recall that two vectors x and y are partially
uncorrelated with respect to an information set / (denoted x _L y | /) if
and only if

cov (x - E(x | / ) , y - E(y | /)) = cov (e(x | / ) , e(y | /)) = 0.

Theorem 10.2: (i) y does not cause x at time t if and only if xt

and yt_1 are not partially correlated with respect to xt_l7 that is

x t -L ( y t _ 1 | x t _ i ) .

(ii) y does not cause x instantaneously at time t if and only if

x^ and yt are not partially correlated with respect to (x t _ 1 ? y+_•,)>

that is

xt J-yt I (xt-i, yt_x).

PROOF: In the appendix at the end of this chapter. •

Under the latter characterization, note that the definition of instan-
taneous causality involves the two processes x and y in a symmetric
fashion. Thus, we have the following corollary.

Corollary: The two following statements are equivalent

(i) y does not cause x instantaneously at time t;
(ii) x does not cause y instantaneously at time t.
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The previous definitions of causality have been criticized (see, for exam-
ple, Zellner, 1979) since they differ from others used by epistemologists.
This type of critique can be applied to many mathematical definitions,
and boils down to a matter of semantics. It is clear that definition
10.1 involves conditions on the forecast error only. It might be prefer-
able, then, to use terms such as "predictability" and "instantaneous
predictability" instead of "causality" and "instantaneous causality." We
will use the latter terms, however, given their more frequent use. Never-
theless, we should keep constantly in mind the implications and the lim-
its of the previous definitions, when we use them to describe a real-world
phenomenon.

Example 10.1: Let us consider the process defined as
xt = et + arit + br}t-i,

Vt = Vt,

where e and 77 are independent white noises. We have

(i)

E (xt I xt-iiyt_i) = b7lt-i = byt-i.

Since the expression involves yt-i we immediately see that y causes
x at time t if and only if b / 0.

(ii)

E \xt I £t-i>|/t) = ar)t + brjt-i = ayt + 6yt-i-

There is instantaneous causality of y to x at time t if and only if
the term involving yt is actually present in the expression, that is,
if a ^ 0.

(iii) Note that from this example we conclude that there is no link
between the two concepts of causality, since the parameters a and
b of the example are not functionally related.

The definitions of causality proposed are valid for any time t. In
reality, for certain phenomena we could observe a causality reversal.
Thus y may cause x, and x not cause y before a certain date; after that
date we might see x causing y and y not causing x. Definition 10.2
provides a definition applicable in the absence of such reversals.

Definition 10.2: y does not cause x (instantaneously) if and only ify
does not cause x (instantaneously) at time t for all possible times t.
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When the process (x, y) is stationary, it is apparent that the definitions
for a certain date or for all dates coincide.

10.2.2 Other Characterizations of Causality

Two other characterizations of causality have been proposed in the lit-
erature and are valid for stationary regular processes x, y.

Theorem 10.3: (Pierce-Haugh) y does not cause x if and only if

cov

PROOF: Cf. the appendix. •

The previous result can be easily interpreted. In order to simplify mat-
ters, let us consider the case when x and y are univariate. We can
express xt and y tasa function of their own past

+ OO

+oo

yt = Yl
3 = 1

The innovations correspond to
ut = e(xt | xt_i),
vt =e(yt \y_t_l)-

The condition proposed by Pierce and Haugh is a constraint of uncorre-
lation between the current innovation of Xt and all past innovations of y,
namely vt-i,vt-2, — We can also introduce the notion of instantaneous
noncausality in terms of these innovations.

Corollary: y does not cause x and does not cause x instantaneously if

and only if

cov (xt | xt_!), e(yt-j | y^j^)) = 0> 3> 0.

Note however that instantaneous noncausality is not equivalent to the
condition

cov (e(xt I Xt-i), e(yt \ yt_x)) = 0

(cf. Price, 1979).
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Theorem 10.4: (Sims) y does not cause x, that is xt -L Y_t_1 I *t-i tf
and only ifx.t+i — (xt+i5

xt+2, • • •) is partially uncorrelated with yt with
respect to xt

x t +i _L yt | xt.

PROOF: Cf. the appendix, n

Limiting ourselves to univariate processes, the condition can be inter-
preted as follows: let us consider the regression of yt on all values (past,
current, and future) of xt

+00

yt =

y does not cause x if and only if the future values of x cannot be used
to predict yt, that is, if and only if CLJ = 0, V j < 0.

10.2.3 Causality and Multivariate Autoregressive Models

The definitions of causality can be simplified in the case of autoregressive
stationary processes. Let us consider an expression of the type

/ *W(L)
[*XV(L)

where the usual conditions on the roots of the autoregressive charac-
teristic polynomial are satisfied. We can choose a normalization of the
type

eyt\ y\
so that I J can be interpreted as the innovation of the process I J.
In this case, all simultaneous links between the two processes are sum-
marized in the covariance cov (eyt,£xt)-

Theorem 10.5:

(i) y does not cause x if and only if &xy(L) = 0.
(ii) y and x do not instantaneously cause each other if and only if

cov(eyt,ext) = 0.
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PROOF: Let us prove, for instance, the first proposition. We have

E (x t | x * _ i , y t x ) - - (**(£) - I) x t - *Xy(L)yt + cx.

y does not cause x if and only if the past values of y do not appear
in the expression for the forecast, that is if and only if &xy(L) = 0.
•

Theorem 10.5 depends crucially upon the chosen normalization

*(0) = I.

If we had an autoregressive model

\9xy(L) *X(L) ) [xtj
 = [cx)

 + [ext)>

( eyt\
cannot be interpreted as theextj

innovation of the process. We would have to transform the model by
premultiplying it by ^(O)"1. Introducing a partitioned inverse notation
we have

The corresponding normalized model would be

, (o) ̂ (0)JU(L) Yd))(z

We will have noncausality of y to x if and only if

**y(0)*y(L) + **(0)*xy(L) = 0.

We will have instantaneous noncausality of y to x if and only if

+ &yx(0)vai(ext)&
x(0y = 0.

Evidently, an adequate normalization choice simplifies writing down the
constraints. In particular, for instantaneous noncausality the choice
$ = I avoids introducing constraints where there appear both autore-
gressive parameters and elements of the error term variance-covariance
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matrix. We will see in section 10.3.2 that a block-recursive normaliza-
tion allows one to write this hypothesis of instantaneous noncausality
without resorting to the variances and covariances of the error term.

10.2.4 Measures of Causality

In practice, the three types of causality, of y to x, of x to y and in-
stantaneous, can coexist. It is necessary, then, to determine the relative
importance of each type, i.e., to introduce measures of causality. These
measures will have to satisfy certain properties which will translate into
simple usage and interpretation. They will have to be positive, not to
become 0 unless there is noncausality, and to be easy to determine, for
example on the basis of regression results. Such measures can be defined
from the characterization given in theorem 10.1. If y causes x, we have

var (e(~x.t [^. .^y )) ^var(e(xt | xt_1)).

On the other hand, the bigger the difference between the two matrices,
the more information is contained in y about x. A suggestion is for
a positive valued scalar function of these variance-covariance matrices
which is an increasing function of the difference and is equal to zero if
and only if the two matrices are equal to each other.

An example of such a function is

, det var
= In

detvar (e{xt I X t - i , ^ )

Definition 10.3: The causality measures are defined as

(i) causality of y to x
/

detvar (e(x*
Cy^x = In

(ii) causality o/x to y

detvar [e(yt \xt-1,y_t_l)

(Hi) instantaneous causality between x and y

detvar (e(xt | xt_!,y )V — t - i(
detvar

All these measures are positive by construction and become 0 only when
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the corresponding noncausality occurs. Some of these measures admit
other expressions. We provide alternative expressions of the instanta-
neous causality measure in theorem 10.6 (cf. the appendix).

Theorem 10.6:
'detvar (e(x t | x̂

?x~y = In
det var

' det var
- I n

detvar (e(yt | x^y

'detvar (e(x t | ̂ ^ y ^ j ) ) detvar
ln

detvar

The first equality comes from the symmetry of instantaneous causality
with respect to x and y. The second comes from the characterization
of instantaneous causality in terms of uncorrelated innovations. Adding
up the three causality measures we get

= l n

+ ln

= ln

By this quantity it is possible to know whether the two series should
be studied jointly the term detvar fe(xt,y* | Xt-i>y )) or rather
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considered separately from each other

[the term detvar (e(xt | xt_i)) detvar (e(yt | yt_1))J •

This quantity can be interpreted as a measure of the dependence between
the two processes.

Definition 10.4: The dependence measure between the two processes x

and y is defined as

'detvar (e(xt | x^)) detvar (e(yt | y ^ )
Cx,y = In

detvar (e(xt,yt Ixt-i

Theorem 10.7: We have the following equality

^x,y :== (~^y—>x i ^x—>y i ^x*-+y

This equality establishes that the dependence measure = the unidi-
rectional causality measure of x to y + the unidirectional causality
measure of y to x + the instantaneous causality measure.

Since all measures are positive, we can show that the two processes do
not have any link (cov (x*, yT) = 0, V t ^ r) if and only if Cx,y — 0, that
is if there is no unidirectional causality (in either direction) nor instan-
taneous causality (cf. exercise 10.8). The convenience of the previous
measures rests upon their derivability from regressions of the variables
on their past.

Let us consider the following regressions

Regression of x* on its own past
+oo

xt = Y, A)xt-j +ax +uj, var(uj) = «i.

Regression of yt on its own past
+ OO

Aiy*-j + a 2 + u t > v a r

Regression of x̂  on the past of x and y

xt = Y^ A?xt-i + J2 ^-i + a3 + u?' var (
3 = 1 3 = 1
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Regression of y* on the past of x and y
+00 +00

yt = E A?xt-i + E A?yt-i + a4 + u
v a r

Regression of x̂  on the past of x and y and on current y
+00 4-00

= E AJx*-i + E Afy*-i
j=l j=0

u t ' v a r (ut) =

Regression of yt on the past of x and y and on current x
+00 +00

yt = E A?x*-i + E Afyt-i + a6 + u?, var (u?) = n6.
J=0 3=1

Regression of x*, yt on the past of x and y

We have

= In
detft5

= In 1= In detfi

10.2.5 Decomposition of Causality Measures

The links between the two series x and y can be decomposed both in the
time domain by specifying the lags needed for one variable to influence
the other ones and in the frequency domain, by analyzing the links at
each frequency.

Decomposition in the Time Domain The first decomposition pro-
posed concerns the effect of yt-j on x* conditionally to the past x t - 1

and yt_._1- It can be measured as

detvar

As a consequence we have the decomposition
+00 +00

Cx,y = Cx^y + J2C¥1X + T,
j=l i=\
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For instance such a decomposition can pinpoint the presence of a short-
term causality of y to x - if the values Cy-Lx are fairly large for small
j - with the absence of a long-term causality of y to x - if the values
Cy-Lx are small for large j .

Let us provide, as an example of such a decomposition, the case of
the evolution of German and French prices. After the abandonment of
the gold-standard and the generalization of the floating exchange rates,
the German and French prices have experienced two kinds of evolution.
From 1978 to 1982 there has been an acceleration in inflation in both
countries. After 1982, there has been a disinflation period. It is advis-
able, therefore to keep separate the two periods before and after 1982.
This year was a year of changes for other reasons as well. In fact, during
this year the monetary changes made during 1981 have shown their ef-
fects. Thus, the causality analysis has been conducted separately on the
two sub-periods (January 1978-April 1982) and (May 1982-December
1985) on the monthly price indices published by the European Commu-
nity. The measures have been computed on the price rates of change.
The ratios (in percentage terms)

estimated from the associated regression models with eleven lags, are
given in the tables 10.1 (for the first period) and 10.2 (for the second
period).

Note the marked difference of the causal shares between the two pe-
riods. On the first subperiod, the two unidirectional causalities are ap-
proximately of the same order of magnitude. In the disinflation period,
the influence of French prices on German prices is stronger than the
other way around. To be noted also is the increase in simultaneity (in-
stantaneous causality) in the price formation. This latter phenomenon
is to be connected to the values of the unidirectional mean lags. These
are defined as

_ 2^j=lJ^x^y

D = ^ = l J 7 7 x , (10.14)

Analogously, we could define a mean causality lag taking into account
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Table 10.1 Causality Decomposition - Period
1978.01-1982.04

Lag Instantaneous Causality Causality

causality French prices German prices

German prices French prices

0
1
2
3
4
5
6
7
8
9

10
11

2.4

6.8

« 0

1.1

0.9

« 0

14.0

1.0

0.5

6.8

5.7

9.4

6.6

2.3

0.8

5.4

13.1
3.5

2.2

2.1

15.1

0.3

Total 2.4 46.2 51.4 100

all possible directions. Referring to the causality of x to y, we have

D =
Cx,y

The various mean lags are related to each other through

— ZXi—K-r — ^ •
CT

(10.15)

(10.16)

The values of these lags on the price series are reported in table 10.3;
they show a noticeable decrease in the unidirectional mean lag between
the two periods, on average by two months.

The same phenomenon can be seen visually, when we represent the
cumulated effects for each kind of causality and on each period (figures
10.5 and 10.6). These effects can be defined as

icy
yj L

J —
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Table 10.2 Causality Decomposition - Period
1982.05/1985.12

Lag Instantaneous Causality Causality

causality French prices German prices

German prices French prices

0
1
2
3
4
5
6
7
8
9

10
11

8.9

1.1

8.0

1.8

7.6

25.9
5.9

0.2

1.6

^ 0

9.3

1.0

6.0

9.9

~ 0

0.5

6.5

^ 0

0.1

1.1

3.6

0.5

0.5

Total 8.9 62.4 28.7 100

Fx-ly gives the importance of the short-term causality, short-term being
defined as the set of lags less than or equal to j .

The cumulative functions corresponding to the period 1978-82 are
always less than the cumulative functions corresponding to the other
period (but for the lag j = 1 and for one direction). Thus the short-term
component appears proportionately stronger in the phase of disinflation,
no matter what definition of short-term we adopt, namely for all values
of j . Note that the previous discussion gives some ideas about the link
between the two series, but does not provide any information about the
autonomous evolution of each of the two series separately, that is the
influence of the past values on the current value of the same series. For
this purpose we can introduce a variance decomposition of xt, separating
the effects of the lagged values of x (i.e., effect of its own past), the lagged
values effects of y and the residual effect. The decompositions for the
example are given in tables 10.4 and 10.5.
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Figure 10.6 Cumulated Effects German Prices —> French Prices

Table 10.3 Mean Causality Lags

Average Unidirectional Unidirectional

lag French prices German prices Global

German prices French prices

1978-82 7.14 5.99 0.22

1982-5 5.38 3.92 2.23

Between the two periods we can observe a systematic decrease of the
residual component, an increase in the own effect in the evolution of
the French prices and an increase of the influence of French prices on
German prices.
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Table 10.4 Decomposition for the French Prices

1978-82

1982-5

Effect from

its own past

16

48

Effect from

German prices

43

26

Residual

effect

41

26

100

100

Table 10.5 Decomposition for the German Prices

1978-82

1982-5

Effect of

its own past

44

39

Effect from

German prices

25

45

Residual

effect

31

16

100

100

Frequency Domain Decomposition We can try to decompose the
links between the two series as well, by showing the causality links at
each frequency. We are looking for functions gx,y, 9x^y, 9y^x-> 9x*-*y
defined on the frequency domain, corresponding to the intuition behind
the procedure. They must be positive and admit the decomposition

9x,y = 9x->y + 9y-+x + 9x~y, (10.18)

and such that

C
1 f+*

,y = ^ gx,y{

l (10.19)
= -^ I 9x-+y{u) du,

Such a decomposition for each frequency is easy to derive for the global
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link measure Cx,y- In fact, we know that

/detvar (e(xt | x ^ ) ) det var (e(yt | yt_x)
= In

detvar (e(xt ,y t

and, using the Kolmogorov equality (cf. 8.20), we can write

C 1 /•+7r
ln/det(27rfx(oj))det(27rf2/H)\ ±

x'y~27rJ_7r
 n \ det(27rfx,,,(a;)) /

In ( j—yz—^-TT ) dw.
det(fx,2/(o;))

We can then choose

Note also that when the two processes are univariate, this measure can
be written also as

gXlV(w) = -In (1-Klv(u>)),

where K^y(u)) = (fx,y{u))2/fx(w)fy(uj) is the square of the coherency.
We see then that gx^y(u) can be interpreted as a measure of the link
relative to the frequency u. It is always positive; it becomes 0 when the
coherency is 0, that is when the spectral measures are uncorrelated at
this frequency

cov (d£x(u>), d£y(u>)) = 0& gx,y{uj) = 0.

It attains its maximum when d£x(uj) and d£y(u) are linearly related.
In order to get the decomposition of other causality measures, for ex-

ample for Cx^y, we can argue along the following steps. Let us consider
the recursive form of the model where x$ is determined as a function of
the past of the two processes x and y, and where y* is expressed as a
function also of x*

x* = Yl A?X*-^ + Yl Aiy*-i + a3 + u*3> var (u?) = n3>
J f = l 3 = 1

yt = E A>*-3 + E Ai°y*-i + a6 + u ' ' var (u') = n*-
3=0 j=l

Introducing the lag polynomials, we can get an expression of the type
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with

Since the disturbances uf and u£ are uncorrelated, all simultaneous
effects have been combined with the effects of x to y in the second
group of equations. Then the first group summarizes just the effects
of y to x. We can invert the previous expression to derive a moving

average representation as a function of I 6 I. Noting the elements of
\ut J

the inverse matrix with a subscript index we get

/ x t \ /A3(L) A 4 ( L ) W / a 3 \ / u 3 \ \

U ) - ( A . ( 1 , Al0(i)J ((a-H-?))
In particular x t can be decomposed as a function of the noises,

x( = A3( i ) (a3 + u3) + A4(L) (a6 + u6
t).

Since these noises are uncorrelated, the spectral density of x can be
written as

fa (a;) = A3 (exp(ia;)) Ct3A3 (exp(-zcj))/

+ A41

The second term of this decomposition provides a measure of the influ-
ence of y to x. We can then choose

! ^ ( W ) = In ( d 6 t W
 7) . (10.21)

\det A3 (exp(ia;)) ^3A3 (exp(-zo;)) /

Analogously, taking the other recursive expression we get

«~»=ln

The last function is obtained as a residual (to ensure the adding up
constraint). We have

= In ̂ t e ^ ^ ) ) (10.23)

+ In (det A8 (exp(icj)) ft5A8 (exp(-ia;))/) .

We can establish the following result (cf. exercise 10.9).
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Theorem 10.8:

(i) We have

^~hL •

1 />+7r

x~y ~ 2TT J_n
 9x~y U

(ii) The various functions g are positive valued.

10,3 Exogeneity

In the previous sections the concept of exogeneity has been presented in a
very intuitive fashion. We need now to analyze it more rigorously so that
we can work with definitions mathematically precise and statistically
testable. In what follows, we will distinguish between those variables
possibly responding to certain exogeneity properties (noted x) and the
others (noted y).

10.3.1 Vector Autoregressive (VAR) Representations

Canonical Form Let us assume (in line with what has been mentioned
previously) that the vector of the observations is partitioned in two sub-

(yt\
vectors I I of size n, respectively m. Let this vector of observationsvxv
form a stationary vector autoregressive process (VAR) of order p

Yt ' ' " ' ' °- ' (10.24)
Yxyy±jj Yxyu) j » At j \ ^ x I \ c x t I

We note

At this stage we do not impose any constraint on the parameters but
those implied by the stationarity of the process and the positive defi-
niteness of S. We maintain the usual normalization

* y ( 0 ) = I , *yx(0) = 0,

**„(()) = 0, * x ( 0 ) = I .
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With this normalization convention can be interpreted as the

yt\
innovation of I I. The expression (10.24) is called canonical form.Vxv
Note that in this form the current value of xt does not intervene in the
first set of equations and yt does not intervene in the second one.

Block-recursive Representation Other autoregressive representa-
tions, equivalent to the previous one, can be obtained by premultiplying
(10.24) by a nonsingular matrix. Thus we can achieve a new representa-
tion in which the two new disturbance vectors are uncorrelated. In fact,
the regression of eyt on ext is J^yxJl~lext. The residual of this regres-

1sion is r)yt = eyt — 'EyXJ}~1Ext- This residual is uncorrelated with ex

If we premultiply the two elements of equation (10.24) by the matrix

we get

(

with

*+(L) = *y(L) - Vyx-Z-l*xy(L) = I - JT #+ L\
2 = 1

i=0

C 2 j 2 j

(Vyt\
The variance-covariance matrix of is then block-diagonal

\ et ]

with 5]+ = 5^ — Xl^S^ 1S:E?/. The representation (10.25) (equivalent to
(10.23)), is called a block-recursive representation of the process. In this
representation the correlation among the disturbances r\yt and ext is 0.
The current value x* enters the first set of equations, whereas yt never
enters the second set of equations. The first set of equations provides
the regressions of yt on the past values of y and on the present and past
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values of x

= E *>-< + E *»»*-
The second set of equations provides the regressions of the components
of xt on the past values of x and y

p v
a;tXt_i + Cx + ex t . (10.28)

The uncorrelation of r̂ yt and ext and the absence of the current value
y* in (10.28) are the conditions which led to a first intuitive notion of
exogeneity (xt being determined before yt). In the present context, we
are verifying that this notion is meaningless because we can always find
a representation, namely (10.24), satisfying these conditions. In fact,
the notion of exogeneity becomes of interest only after having defined a
structural form.

10.3.2 Linear Structural Form

Besides being represented as a VAR, let us suppose that the process
fyt\
I I satisfies a model suggested by the economic theory. This model
or structural form consists of a system of equations linking the various
variables y and x, and of a separation between a group of variables x
having certain "exogeneity" properties and other variables y.

The Equations The relationships among the variables are of the type

(10.29)
The matrix Ao is supposed nonsingular and {et} is a white noise with
a generic variance-covariance matrix Q and uncorrelated with the past
values of y$. Since these relationships are derived from the economic
theory, the parameters A ,̂ B^, i = 1,2,... ,p and /i are often inter-
pretable. Thus they may be subject to a number of constraints. The
most frequent constraints are (cf. 10.2):

the equality of certain parameters to 1 (normalization restriction);
the equality of certain parameters to 0 (zero restriction);
the equality of certain parameters among each other.
All these constraints can be expressed linearly with respect to the

elements of the matrices A ,̂ B^, and /x. Denoting by

T = (Ao,Ai, . . . ,Ap,Bo,Bi, . . . ,Bp,/z),
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and by vec F the vector obtained by stacking the elements of F starting
from the first column of Ao, then its second column, and so on, we can
write the constraints as

RvecF-r, (10.30)

where r is a known vector of size g, R is a known matrix of size (q x
n((n + m)(p + 1) + 1). We suppose that R has rank q. In practice, the
set of restrictions can be partitioned into constraints relative to Ao and
Bo and constraints relative to the other parameters. We will denote the
constraints relative to AQ and Bo by

Ro vecF0 = r0, (10.31)

with Fo = (AQ, Bo). These constraints are particularly interesting be-
cause they define in which equations the current values of the variables
intervene. We can refer to them as defining a simultaneity structure.

Weak Structural Form

Definition 10.5: A weak structural form is made of

(i) a system of equations

Aoyt + Aiyt_i + ... + Apyt_p

+ Boxt + Bixt_i + ... + Bpxt_p + /x = et, (cf. (10.29)),
where {et} is a white noise with a generic variance-covariance
matrix Q and uncorrelated with the past values of yt;

(ii) a number of restrictions on the coefficients

R vecF = r (cf. (10.30));

(Hi) a condition called predeterminedness

cov(e t ,x t_ f c )=0, Vfc>0. (10.32)

The coefficients A^, B*, and /x of this form are called structural co-
efficients and the variable x is said predetermined with respect to the
structural form. It is not trivial that such a weak structural form be
compatible with a VAR model. This will be the case if the coefficients
of the autoregressive polynomials <&+, $ ^ , ĉ ~ called reduced form coef-
ficients satisfy certain constraints.

Theorem 10.9: The VAR model is compatible with a weak structural

form satisfying (10.30) and (10.32) if and only if there exists

r = (Ao,Ai, . . . ,Ap,Bo,Bi , . . . ,Bp,M),
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such that

A o * ^ + Bi = 0, z = O,...,p,

A0*+ i + Ai = 0, i = l , . . . ,p ,

Aoc+ + /x = 0,

R vec T = r.

PROOF: From (10.29) we can write
yt + AQ X Aiy£_i + ... + A^1 Apy t_p

+ A^BoXt + ... + AQ ^pXt^p + AQ V = AQ ^ t .
This form can be equated to the first subsystem of the block-recursive
representation (10.27) since in both cases we are expressing the current
value of yt as a function of the past values of yt and of the current and
past values of x*. •

If we have a weak structural form (10.29), and if we assume that the

( eyt\ I is normally distributed, the conditional distribution of yt
ext)

given y t _i , . . . , yt_p, x t, x t _i , . . . , x t_p is normal with expected value
- A ^ A i y t - i - . • . - A Q ^ y t - p - A o ^ o x t - . . . - A ^ B p X ^ p - A ^ V ,
with variance-covariance matrix A^"1QA^"1. We can denote this condi-
tional density as / t

y(yt;r, Q). The conditional distribution of x$ given
yt-i, • • •, yt_p,Xt, Xt_i,..., Xt_p is normal with expected value

p v

i=l 2 = 1

(cf. (10.28)), and with variance-covariance matrix S x . The associated
density function can be denoted by ff (xt; 0), where <p contains the
parameters of the distribution. The likelihood of the T observations
(conditional on the p initial observations) is

t=l t=l t=l

If we are interested in estimating the parameters of the weak structural
form F, Q by the maximum likelihood method, we can thus maximize
I l t l i ft(yt] I \ Q), and ignore the other term. In other words, the knowl-
edge of the structural form is sufficient, and we can neglect the set of
equations (10.28). Note, however, that Ylt=i ft(yt'iT,Q,) is not, in gen-
eral, a density function. If we want to simulate yr+i, • • • ,yr+h f°r

fixed values of xT+i, . . . ,XT+^, having observed x and y up to time
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T, we need to determine the conditional distribution of yr+i given
Yi? • •-yT>xi,... jXT+fc. If the expression (10.29) is weak structural,
er+i is, in general, correlated with XT+2, • • • ,XT+/I, and hence the con-
ditional distribution cannot be derived on the basis of the structural
form (10.29) only.

Strong Structural Form

Definition 10.6: A strong structural form is made of

(i) a system of equations

+ Boxt + Bixt_i + ... + Bpxt_p + fi = et (cf. (10.29)),
where {et} is a white noise with a generic variance-covariance ma-
trix Q and uncorrelated with the past values of yt; (ii) a number
of restrictions on the coefficients

R vecr = r (cf. (10.30));

(Hi) a condition called strict exogeneity

cov(et, *t-k) = 0, V/c. (10.33)

The variable x is called strictly exogenous with respect to the strong
structural form. On the other hand, we see that a strong structural
form is also a weak structural form. The existence of a strong structural
form implies some constraints also on the reduced form parameters.

Theorem 10.10: The VAR model is compatible with a strong structural
form satisfying (10.29) and (10.33) if and only if

^ + B< = 0, z = 0 , . . . , p ,

Aoc+ + ix = 0,

R vecT = r,

PROOF:

(i) Let us assume that the VAR model is compatible with a strong
structural form denned by (10.29), (10.30) and (10.33). Since this
strong structural form is also weak, theorem 10.9 shows that the
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only condition to be verified is $>Xyi = 0 i = 1,... ,p. Comparison
of (10.27) and (10.29) implies that r)yt — A^"1^. Then equation
(10.28) is written for time t + 1 as

p v

= 53 ^xyiYt+i-i + 53 *xi

On the basis of (10.33), we know that x*+i and et are uncorrelated.
It is so also for x$+i and r)yt, and the previous equation implies

J57(xt+it^t) = &xylE(ytri'yt)

= 0,

from which

**Bi = 0.
By the same token

&xy2E(ytT)'yt)

= o,
from which $^2 = 0> so that, by induction <&xyi = 0, i = 1,... ,p.
(ii) Conversely, under the conditions of the theorem, the VAR
model is compatible with the weak structural form (10.29), (10.30),
(10.32) on the basis of theorem 10.9. Moreover, since we know that
®xyi = 0, i = 1,... ,p, we have

v

2 = 1

and
p

£(x t + ie ; j - 53 ^ B (xt+i_ie{) = 0.
i=l

By the same token, E{x.t+ie
r
yt) = 0, V i > 0, which implies that the

VAR model is compatible with the strong structural form (10.29),
(10.30) and (10.33). •

Now the conditions have implications also for the second subsystem of
the block-recursive decomposition. This additional condition allows us
to interpret the decomposition of the likelihood function given after the-
orem 10.9 in terms of marginal and conditional distributions. I"It=i ft
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is the marginal density of x i , . . . ,XT, and hence fltLi ft ls t n e condi-
tional density of y i , . . . ,yr given x i , . . . , X T - Therefore, the conditional
distribution of yr+i given y i , . . . , y^, x i , . . . , x.T+h can be derived now
from the structural form. This distribution is normal with mean

p p

i=l i=0

and with a variance-covariance matrix A^"1Q(A^"1)/. We can predict
yr+i given xi, . . . , x j ^^ on the basis of the structural form; the same
can be done for yr+2> • • • >VT+/I- The simulation of scenarios, imposing
future values on the exogenous variables, can be done on the basis of a
strong structural form (but not from a weak structural form).

10.3.3 Analysis of the Simultaneity Structure

We have seen that the constraints R vec T = r can often be partitioned
in restrictions relative to Ao, Bo and restrictions relative to the other
parameters. The restrictions on Ao and Bo, that is Ro vec To = i*o (cf.
10.31) define the simultaneity structure. It may be of interest, at least
as a first step, to take into consideration these restrictions only, defining
some concepts which involve them alone.

Definition 10.7: The variable x is predetermined for the simultaneity
structure (10.31) Ro vec To = ro if and only if

A o *^o + Bo = 0,

Ro vecT0 = r0.

Definition 10.8: The variable x is strictly exogenous for the simultane-
ity structure (10.31) if and only if

A o * ^ + Bo = 0,

Ro vecTo = r0,

<£~*~ = 0 7 — 1 T)

Definition 10.7, respectively 10.8, means that the VAR model is com-
patible with a weak (respectively, strong) structural form satisfying
the simultaneity structure Ro vecF0 = r0. The difference between
the two systems of restrictions comes from the additional conditions
&xyi = 0, i = 1,... ,p corresponding to the condition of noncausality
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of y to x (cf. theorem 10.5(i)). This concept of strict exogeneity corre-
sponds to the restrictive notion of exogeneity introduced in section 10.1
in an intuitive fashion. Note also that the instantaneous noncausality
between x and y defined by Ylyx = 0 is equivalent to &y~x0 = 0 since
from (10.26) &y~x0

 = ~^yx^xX• I*1 particular, we see that x can be
predetermined or strictly exogenous even if there is a link of contempo-
raneous causality with y, since this link translates into &yx0 ^ 0, that
is, Bo ^ 0.

10.3.4 Identification

Until now we have discussed the compatibility conditions with a VAR
model, ensuring the existence of a (weak or strong) structural form. We
may also wonder whether the structural parameters

r = (Ao ,Ai, . . . ,Ap ,Bo,Bi, . . . ,Bp , fx) ,

are uniquely determined as a function of the reduced-form parameters,
$+ , i = 1,... ,p, &+xi, i = 0,... ,p and c+ (cf. (10.27)), taking into
consideration the constraints (10.30) R vecF = r. This is denned as the
first-order identification problem.

Theorem 10.11: The structural form (10.29), (10.30), and (10.32) is
first-order identifiable if and only if the rank condition

is satisfied where n is the number of endogenous variables y.

PROOF: Let us suppose that we have another set of parameters

corresponding to the same reduced form. We would have

W = A Aj = A A I = 1 /?

• V = A 0 B i = A ; B : , < = 0,.. . ,p,

c* = - A Q V = -K~V*, i = i , . . . ,p.

Posing M = AQA^"1 we see that we would have F* = MF. This set of
parameters must satisfy the restrictions (10.30) as well. Hence,

)I) v e c M - r .
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We know that this system admits vec M = vec I as a unique solution if
and only if the matrix R (F' ® I) has full column rank (n2). •

Corollary: A necessary condition for identification is the order condi-
tion q > n2.

PROOF: Note that the matrix R (F' ® I) has q rows. •

The difference q — n2 is called the degree of overidentification of the
structural form. We can even ask ourselves if the simultaneity structure,
that is, the constraints Ro vecF0 = r0 allow us to uniquely determine
vecF0 = (Ao Bo). This is the first-order contemporaneous identification
problem. From theorem 10.11 we can conclude that this will happen if
and only if

rankRo (Tf
0 <g> I) = n2. (10.34)

This condition implies the order condition qo > n2, and qo — n2 is called
the degree of contemporaneous overidentification.

10.3.5 Nested Hypotheses Involving the Dynamic Structure

In the previous sections we have analyzed six hypotheses

Hv General VAR hypothesis (10.24),
HP Hypothesis of predeterminedness of x (cf. definition 10.7),
HE Hypothesis of strict exogeneity of x (cf. definition 10.8),
HN Hypothesis of noncausality of y to x (cf. theorem 10.5.(i)),
Hw Hypothesis of existence of a weak structural form (cf. theorem

10.9),
Hs Hypothesis of existence of a strong structural form (cf. theorem

10.10).
Going from the most general to the most restrictive, these hypotheses

can be nested in three different ways

Hy D Hp D H\\r D Its,

HyD HPD HED HS, (10.35)

HVDHNDHED HS.

These three paths can be visualized in figure 10.7.

Let us note that these hypotheses are restrictive in various degrees with
respect to the structural form.

HN does not impose anything on the structural form.
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Hv WAR

HN

Non-causality

HP

Predeterm inedness

HE
Strict exogeneity

Weak structural form

Strong structural form

Figure 10.7 Nested hypotheses

Hp and HE impose the definition of the simultaneity structure on the
structural form.

Hw and Hs impose the set of restrictions on the structural form.

10.4 Shocks and Multipliers

10.4.1 Deterministic Control

The Keynesian Model Let us recall the Keynesian model introduced
in (10.2). Let us suppose that there is a change in government expen-
diture by AG at a given date to- This change will exert its effects on
the endogenous variables of the model. At time t these variables are
changed by AGDPU ACt and AIt with

AGDPtQ = ACtQ + A/t0 + AG,

- 0,

which implies

A/t0 = 0,

AGDPt0 = ,

ACto = 0,

A/t0 = 0.

There is, therefore, an immediate effect on GDP and no immediate effect
on consumption and investment. In fact, this effect starts at the next
period due to the lag existing between the determination of GDP and
of C and /. We have

AGDPt0+l = ACfo+i + A/to+i,

AC t0+1 = aAGDPt0 = aAG,

A/t0+i = bAGDPt0 = 6AG,
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which implies

AGDPt0+1 = (a + b)AG,

ACt0+i = aAG,

A/t 0 + 1 = bAG.

Such effects will be exerted on future values of the endogenous variables.
Their nature is the subject of this section.

Shocks on a Control Variable Let us consider the model with de-
terministic control defined in (10.5). Introducing the polynomials in the
lag operator

A(L) = Ao + ... +

C(L) = Co + ... +

E(L) = Eo + ... +

This model appears in the

A(L)yt +

D(L)xt +

APL*>,

CPLP,

EPLP,

form

B(L)xt H

•E(L)zt-

B(L) =

D(L) =

F(L) = ]

h C(L)z( +

f F(L)yt 4

B o

I+ .

/x =

i/ =

f . . . + I

... + DP

... + F1

= e t ,

= U t ,
(10.36)

where y is the vector of endogenous variables, x is the vector of the
exogenous environment variables, z is the vector of the exogenous con-
trol variables, and (et) and (ut) are two uncorrelated noises. From the
previous model, we can derive the expressions for xt and yt as a func-
tion of the current and past values of the control variables and of the
disturbances. We obtain

/A(L) B ( L ) W y t \ _ _ / C ( L ) \ (fx\ tet\

Inverting

/yt\__/A(L) B(L)\ 1 (C(L)\
U J ~ VF(L) D(L)J [E(L))Zt

/A(L)
+ \F(L) D(L)j

We can derive an expression of the type

xt =K(L)zt+u*t,

where ej1 and u^ are functions of current and past disturbances and of
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the constants, and where
+00

-X{L)-lC{L) - AiLy'BiL) (D(L) - F(L)A(L)"1B(L))-1

(P(L)A(L)-1C(L)-E(L)),

= (D(L) - P ^ A ^ - ' B W ) " 1 (F(L)A(L)-1C(L) - E(L)).

Thus we can apply various forms of shocks to the control variables. We
will assume that such shocks can be applied without changes in the
values of the disturbances e and 77. A shock is said to be transitory if
it affects the value of the control variable corresponding to a given date
to. If the extent of the shock is Azto, the effects on the variables y and
x at time to + j , j > 0 are given by

Ayto+j = HyA^ , Axfo+j = KjAzto.

The coefficients Hj and Kj of the polynomials H(L) and K(L) allow to
measure the effects of the shocks. They are called dynamic multipliers.
Ho and Ko are called impact multipliers; Hj and Kj are called lagged
multipliers. Note that the effect of the shock on the endogenous variable
can be decomposed into two parts; in fact, H(L) is the sum of

which measures the direct effect of z on y, and of

which gives the effect of z on y through the intermediate variable x.
Other shocks can be considered. Let us define, for example, a permanent
or sustained shock, as a constant modification of the values of z after
a certain date to- The corresponding changes in the other variables are
obtained by cumulating the dynamic multipliers

Ayto+; = ( E H * ) A z Ax*o+, (
\k=0 / \k=0

In particular, we call long-term multipliers the limit of the cumulated
multipliers as j tends to infinity. These multipliers are given by

+00 +00

Hfc = H(l), £ Kfe = K(l). (10.37)
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Shocks on an Environment Variable In our model, the environment
variables are different from the control variables in that they cannot be
modified in an arbitrary way. We can however study the consequences
of a shock on the environment at a given date to, represented by the
innovation Ut0 associated with that date. The disturbances of the type
u enter in the expressions of x* and y* through some lag operators given
by

M(L)ut = (D(L) - F(L)A(L)-1B(L))"1 ut

j=0

for the x and

N(L)ut = -AiLy'BiL) (D(L) - F ^ A ^ B ^ ) ) " 1 ut

+00

j=0

for the y, respectively. The effect of the shock at time to can be measured
by the innovation variance Q = var (uto). The total effect of the shocks
on u on the endogenous variable variance can be measured by the sum

+00

j=0

each term of which represents the effect of the shock realized j periods
before. The same line of reasoning applies to the environment variable,
since the effects on x̂  of the various shocks can be measured by Mj!7M^.
When the variable y* or x̂  considered is a single variable, the various
measures NjfiN^ (or Mj!7M^) have positive values. We can then as-
sociate with each lag j the variance share due to the innovation at that
date, that is

In such a way, we define a probability distribution on the lags which can
be used as any probability distribution. Thus, we can define an mean
lag

m = E
j=0

which can be used as a synthetic characteristic of the polynomial N(L).
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Example 10.2: In order to illustrate the previous definitions, let us
consider the following dynamic model

yt = Ayt-i + Bxt + Czt + eu

xt = ut.

The only lags present in the model refer to the endogenous variables y.
To simplify matters, we have assumed z univariate.

(i) A shock on the control variable z exerts its effect on y in the
following way

- ]T AjCzt-j + (I - AL)"1 (Bu, + et).
j=o

The multipliers representing the impact on y of a transitory shock
on z are given by

We see that the evolution of these multipliers as a function of j
depends uniquely on A-7'. Thus, if the matrix A can be diago-
nalized with eigenvalues Aj, j = 1,2,..., n, the effect on the i-th.
endogenous variable is of the kind

that is, a combination of exponential functions.
(ii) Let us consider now an environment shock; to simplify the nota-

tion, let us assume x univariate. The effect on ŷ  of the innovations
{ut-j, j > 0} is summarized by

+ OO

The effect of ut-j is measured by

Also in this case we could make explicit the role of the eigenvalues
of the matrix A.

10.4.2 Stochastic Control

In the previous section, we have derived the dynamic multipliers under
the assumption that the control variable be deterministic and could be
subject to an arbitrary shock at each date. Now, we are in a position



Causality, Exogeneity, and Shocks 397

to analyze the case of a control variable fixed on the basis of the values
assumed by the various variables at previous times. Therefore, we will
consider that during the period under consideration, an economic policy
has been conducted through a control variable z, and that this policy
can be described through the dynamic equation

G(L)zt + H(L)xt + I(L)yt + 7 = vt, (10.38)

with

G(L) = J2GjLi, H(L) = £ > ^ , I(L) = £ 1 ^ ,
j=o j=i j=i

where {wt} is a white noise uncorrelated with {et} and with {ut}.

Shocks Associated with the Control Variables and with the
Environment Variables The variable z is ruled by the scheme given
in (10.38). The impact of the shocks on this variable should be examined
through the effects of the innovations v intervening in the definition of
the variable z. In order to determine this effect, we need to write the
whole system. In matrix form we have

/A(L) B(L) C(L)\
F(L) D(L) E(L)

\l(L) H(L) G(L)J

By inverting the first matrix on the left, we can work with a moving
average representation of the system

com-1

We can then evaluate the effects of the innovations vt on the future val-
ues of the various variables y*+j, x^+j and Zt+j. As in section 10.2.3, we
consider, for example the moving average coefficient Pj of yt associated
with vt-j. The impact of the shock is measured by P^var (vt)P^. Note
that the previous system can be used to measure the effects of shocks
in the environment. We just examine the effect of ut on the future val-
ues of the variables. We can see that, in general, the consequence of a
shock is different from that obtained with a deterministic control. In



398 Chapter 10

fact, since the followed policy is fixed in terms of the values of x and
y, a shock on the environment generally implies a shock on the control
variable z, which is transmitted as a supplementary shock to x, and so
on.

Changes in Economic Policy Let us now examine the consequences
of a change in economic policy. Such a change can be carried out taking
different values of the parameters of economic policy, i.e., I(L), H(L),
G(L), and var (vt) = Q. We have seen that the impact of the shocks
vt-j on the endogenous variables ŷ  can be measured by P^var (vt)P^ =
PjftPj. It is clear that the matrices P j , j — 0 ,1 , . . . depend in par-
ticular on I(L), H(L), G(L), so that P , = Pj (I(L),H(L), G(L)). A
change in the economic policy has an effect on the values of the multi-
pliers. Finally, let us examine the case in which all variables y, x, z are
univariate. We have then

(B(L) C(L)\

\D(L) E(L))

( B(L) C(LY
det F(L) D(L) E(L)

I(L) H(L) G(

Pj is for example, a nonlinear function of the coefficients h of the poly-
nomial I(L). As a result, the effect on Pj of a change in Ik depends on
the values of Ij, j > 0, and these changes (also called variations) must
be carried out for different values of Ij, j > 0. If the policy shock is not
very strong, we can summarize the effects through the partial derivatives
of Pj with respect to //-.

10.5 Appendix
Partial Links among Random Vectors

10.5.1 Some Results on Linear Regression

Definition 10.9: Given two square integrable random vectors x and y
of size m, respectively, n, we can try to approximate the elements ofy by
affine linear functions of the elements o/x. We know that this optimal
linear prediction exists and can be written in the form

E{y | x) = £(y) +cov(y,x)var(x)-1(x - £(x)), (10.39)
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since the variance-covariance matrix o /x is invertible. The correspond-
ing forecast error (or regression residual) is written as

e(y | x) =y-E(y | x) = y- E(y) - cov (y,x)var (x)"1(x - £(x)).
(10.40)

The residual variance provides a good measure of the mean square error;
it is given by

var (e(y | x)) = var (y) - cov (y, x)var (x)~1cov (x, y), (10.41)

var (e(y | x)) = var (y) - var (E(y | x)). (10.42)

Properties of Linear Regression Each element E(yj | x), j =
1,. . . , n can be interpreted as the orthogonal projection in L2 of yj on
the subspace spanned by the elements of the vector x and the constant
random variable 1. It has all the usual properties of such projections.
Let us recall here some of them.

Theorem 10.12: (Iterated Regressions Theorem) // x, y and z are
three random vectors,

E(E(y | x,z) | z) = E{y | z) = E (E(y | z) | x,z) .

Theorem 10.13: (Frisch-Waugh Theorem) // x, y and z are three
square integrable random vectors, we have the decompositions

E(y | x,z) = E(y | x) + E (y | z - E(z | x)) - £(y),

e(y | x,z) = e(y | x) - E(y | z - E(z \ x)) + JB(y),

var E(y | x, z) = var E(y \ x) + var E (y | z - E(z \ x)),

var (e(y | x, z)) = var (e(y | x)) - var E (y | z - E(z \ x)).

In particular, the following corollary holds

Corollary:

var£(y | x,z) > var£(y | x),

var (e(y | x,z)) < var (e(y | x))

with equality holding if and only if
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10.5.2 Partial Uncorrelation

Definition 10.10: Two random vectors x and y are partially uncorre-
lated with a third vector z if and only if

cov (e(x | z), e(y | z)) = 0.

In what follows, we will indicate this condition as y _L x | z. Two vectors
x and y partially uncorrelated with z are vectors which are linearly
unrelated, once the linear influence of z has been extracted from both
vectors. The previous condition is equivalent to

cov (e(xi | z), e(yj | z)) = 0, V i = 1,. . . ,m, V j = l , . . . , n .

Any combination of the elements of x is partially uncorrelated with any
combination of the elements of y. This shows that the partial uncorrela-
tion is actually a property of the subspaces spanned by (x^, i — 1 , . . . , m)
respectively (yi? i = 1 , . . . , n), and (z/c, i = 1 , . . . , K). The partial un-
correlation can be characterized in several ways.

Theorem 10.14: There is equivalence among the following propositions

(i)

y -L x | z,

(ii)

x-Ly | z,

(Hi)

y _L (x - £7(x | z)) | z,

(vi)

var (e(y | x,z)) = var (e(y | z)),

(vii)

cov(y,x) = cov(y, z)var(z)"1cov(z,x).
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10.5.3 Recursive Properties of Partial Uncorrelation

Theorem 10.15: We have the equivalence

' y -L xi | z

y ±x2 | (z,zi)
y _L (x i ,x 2 , . . . ,x n ) | z<£> <

y _Lxn | ( z ,x i , . . . ,x n _ i ) .

PROOF:

Necessary Condition: Partial uncorrelation is equivalent to

E(y | z ,x i ,x 2 , . . . , x n ) = E(y | z).

Applying on each side the operator E (y | z, #i, x 2 , . . . , xi) and using the
property of iterated projections we obtain

E (y | z, xi, x2,.. •, a;,) = £(y | z), V z.

Thus we have

E(y | z , x i , x 2 , . . . , ^ ) = -£?(y | z ,x i ,x 2 , . . . ,z*-i) , V i,

that is

y ±Xi | (z,xi, . . . ,Xi_i), Vi.

Sufficient Condition: Conversely, if we have

E(y | z ,z i ,x2 , . . . ,Zi) = S ( y | z ,x i ,x 2 , . . . ,x2_i) Vi,

we also have

25(y | z ,x i ,x 2 , . . . , x n ) = 2?(y | z) ,

which corresponds to the property of partial uncorrelation. •

10.5.4 Sims's Characterization of Noncausality

The equivalence between the definitions of noncausality suggested by
Granger and by Sims can be shown using the theorem 10.16, which is
just an extension of theorem 10.15. This extension is valid when the
x, y, and z have an infinite order corresponding to successive values of
stationary processes.



402 Chapter 10

Theorem 10.16: The Granger noncausality of y to x

is equivalent to the noncausality in the sense of Sims

x*+i -Ly t | x t ,

when {xt,yt} is a stationary process.

PROOF: From stationarity, we have

_L yt_fc | x t _! V t , V / i > 0

± y t | Xt+/l_i V t, V h > 0

given the stationarity

± yt 12̂

given the extension of (10.15).

10.5.5 Pierce and Haugh's Characterization of Noncausality

Theorem 10.17: Let us consider a stationary process {x,y} and let us
denote the innovations associated with each process as

= y-E(yt | yt_!)-

T/iere zs noncausality ofy to x m £/ie sense o/ Granger

x.t l y M | xt_i, V t,

z/ and only if

cav(e t(x),eT(y)) = 0, V t > r.

PROOF: We have previously noted that the property of partial un-
correlation is a property relative to vector subspaces spanned by the



Causality, Exogeneity, and Shocks 403

components of y , respectively, xt_1. We have then

xt ± yt_x I xt_j

e^iy) |et_1(x), Vt

(xt - £ (xt | et_x(x))) J_ e ^ y ) | gt_1(x), V t

given theorem 10.14(iii)

et(x) J_ ct_i(y) | et-i(
x)> V *,

& cov (et(xj,et_!(yjj = cov

var (et_1(x)) cov (et_1(-x)et_1(y)) V t

given theorem 10.14(vii)

<* cov (ct(x),ct_!(y)) - 0 W,
the last result being derived from the fact that e*(x) is an innovation
process and hence cov (et(x),et_1(x)) = 0 . •

10.5.6 Measures of Partial Links

Let us introduce now a measure of the link between two random vec-
tors conditionally to a third one. This measure will be denned from
the joint distribution of the three vectors. Applying the results to the
case of the normal distribution, we will obtain measures of partial link
based just on the linear predictions of the vectors. Let us consider three
random vectors (x, y,z), the joint probability density function (p.d.f.)
of which is indicated by / (x, y, z) with respect to a product measure.
We can easily derive the marginal p.d.f. /(x), / (y) , / (z) , Z(x,y),
/(x, z), /(y, z), and the conditional p.d.f. through a formula of the
type

l(y | x,z) = ' \ .

Theorem 10.18:

(i) The quantity

is always positive or 0. (ii) It becomes 0 if and only if

/ ( y | x , z ) = / ( y | z ) ,

that is, z/x and y are independent conditionally to z.
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PROOF: (i) We have

given the convexity inequality

(ii) On the other hand, the quantity becomes 0 if and only if
there is an equality in the convexity inequality. This happens if
and only if / (y | x, z) = / (y | z). •

It is possible to give other equivalent expressions to the previous quan-
tity. In fact, we have

l(y 1 x,z) _ i(x,y,z) _ /(x,y
Z(y|z) - / ( y | z ) / ( x , z ) - / ( y | z ) /

Z ( y | z ) Z ( x | z ) '

Theorem 10.19: We have also the identities

J(y |*)
i (x |y ,z)

The quantity K measures the deviation between the distribution of the
pair x, y conditional on z, and the product of the marginal distributions
/ (y | z), / (x | z). It may be interpreted as a measure of partial link.

Let us consider now the particular case where the vectors y, x, z are
normal, making explicit the expression of the measure of the link. The
conditional distribution of y given z, for example, is normal as well. If
n indicates the size of the vector y we have

exp (-± (y - E(y \ z))'var (y | z)'1 (y - E(y | z))) ,
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from which

In/ (y | z) = - - ln(27r) - - lndet (var (y | z))

- ±Tr (var (y | z)"1 (y - E(y | z)) (y - E(y | z))').

Taking the conditional expectation with respect to z we get

£7(lni(y | z) | z) = -^ln(27r) - \ Indet (var (y | z)) - \ ,

and hence also

^£(ln/(y | z)) = -^ln(27r) - l- In det (var (y | z)) - | ,

since, in the normal case, the conditional variance-covariance matrix
does not depend on the conditioning variable. We derive the following
result

Theorem 10.20: In the Gaussian case, we have

with

det var (y | x, z) det var (e(y | x, z))

The quantity

,z))
(10.43)

can be computed even if the vectors are not normal. It may be inter-
preted as a measure of the partial linear link between x and y given z.
From theorem 10.19, we derive immediately that

_

det var (e(y | x, z)) det var (e(x | y, z))

det var (e(y | z)) det var (e(x | z))
det var (e(x, y | z))

(10 44)

The measure of the partial linear link can be seen as a generalization
of the notion of partial correlation. In fact, if we consider the case of
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univariate variables, we have

C{x,y\z)

= ln
z))

det
(e(x\z),e(y\z))}

var(e(y | z)) \j
var (e(x \ z)) c

cov(e(x | z),e(y \ z))

cov2(g(x | z),e(y \ z))

which is an increasing function of the square of the partial correlation.
10.5.7 Application to Stationary Processes

The previous measures can be extended to the stationary processes,
when the conditioning vectors are infinite sized, corresponding to the
past of such a process. We can then define causality measures starting
from the distributions of such processes.

(i) Instantaneous causality

Xt-^y^J / (yt I x t - i ^ .

(ii) Unidirectional causality of x to

(x - ?/) = Eln
yt_J

(iii) Unidirectional causality of y to

x.-i)
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(iv) Dependency

K(y,x) = E\n V

/ (xt I xt_x) I (y t

We can see immediately that K (y, x) = K (x <-> y) + K (x —> y) +
K (y —• x). Similar expressions for the linear causality measures
can be derived directly considering the case of the normal distri-
bution. For example,

detvar(e(yt | X t -nY^) )

detvar(e(yt | x t,y t_1))

detvar(e(yt | 2ct_1,yt_1))detvar(c(xt | ^t-i^^))
= ln

detvar(e(x t,y t | ^t-^y^

and
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10.6 Exercises

Exercise 10.1: Verify that y does not cause y.

Exercise 10.2: Show that the causality relationship is not transitive.
[Hint: take xt = eu yt = tt-i + Vt, zt = Vt-i, where e and rj are
independent white noises.]

Exercise 10.3: Show that the noncausality relationship is not transi-
tive. [Hint: take xt = zt-\ = et, yt = r\u where e and rj are independent
white noises. 1

Exercise 10.4: Show that x may cause y even if it does not cause
(y,z). [Hint: take yt = zt-\ = eu xt-\ = et + rjt, where e and rj are
independent white noises.]

Exercise 10.5: Show that (x, z) does not cause y if and only if x does
not cause y and z does not cause y.

Exercise 10.6: Let us consider the process yt — et + r]t, xt-\ = et —r)t,
zt_i — rjt, where e and rj are independent white noises with the same
variance. Verify that it is possible that x causes (y,z), even if it does
not cause either y or z.

Exercise 10.7: A static simultaneous equation model is defined as

where we suppose that the disturbance term follows a normal distribu-
tion with mean zero and variance-covariance matrix 17. The diagonal
elements of Ao are equal to one. Let us assume that there are no other
constraints on AO,BQ, and ft.

(i) Derive the distribution of yt -
(ii) Verify that it is not possible to derive the elements of A0,B0, and

ft unambiguously as functions of this distribution.
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Exercise 10.8: Let us consider a bivariate stationary Gaussian process
(x,y). Use theorem 10.20 (in the appendix) relating the measures of the
links based on the distributions and on the second-order moments to
show that the two processes x and y are independent (i.e., uncorrelated
in this case) if and only if the causality measures are all 0.

Exercise 10.9:

(i) Let D(L) = I + DiL + D2L2 + . . . a series with I as a constant
term. Prom Kolmogorov's inequality show that

L lndet(D(exp(zo;))D(exp-(za;)/)) dw =

(ii) Using the notation of section 10.2.5, let us consider the causa-
lity measure of y to x at each frequency (cf. (10.21))

(a) Verify that A3(L) is such that A3(0) = I.
(b) From (a) show that

=- r llldet
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Trend Components

The starting point for the analysis of series of observations indexed by
time {yt, t > 0} is to examine their graphical representations. Often-
times it happens that the series exhibit an explosive pattern, that is,
they give the impression of tending toward infinity with t. In such a
case, the attention is focused on the dominant components of the series
which are smoother than the original ones, but asymptotically equiva-
lent to them. In this chapter we will mainly stress the importance of
such components, which we will assume are diverging in a polynomial
fashion. It is possible to obtain such a behavior through a nonlinear
transformation of the original series most of the time. We can ask a
number of questions about this trend component, according to whether
we examine the series separately or jointly.

What is the rate of divergence of the various series? What are the
differences among them?

What happens to the series once the dominant component is elimi-
nated; are there still some diverging components and how important are
they?

The joint plot of two series sometimes shows fairly strong links among
the trend components of the series. Is it possible to make these links
explicit, to study the cases where they are particularly strong, and to
compare the strength of these links with those of other components of
the series?
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Such a study is interesting for a number of reasons:

(i) Since it is regular and dominant, a trend is important for forecast-
ing. In particular, to improve the forecasts, it seems important to
detect relevant links among the trends of different series,

(ii) The statistical concept of trend can be put in relation with the
economic concept of "equilibrium path," and the notion of a re-
lationship among trends of different series can be put in relation
with the concept of "long-term model."

As we have seen in previous chapters, a study of the trend component
must be based on a model.

In the first section we examine in particular the ARIMA models where
the trend is introduced by means of an autoregressive polynomial with
some roots equal to 1. We show that such a model is well suited for
a nonstationary series decomposition in components with smaller and
smaller rates of divergence. This decomposition allows us also to study
series whose dominant components are strongly linked (cointegrated se-
ries).

In section 11.2, we examine the links between the time-series models
and the usual dynamic macroeconomic models. We recall some basic
notions of macroeconomic model building - objective functions, partial
adjustment, balanced growth - examining the constraints that they im-
pose on the time-series models.

In section 11.3, we introduce a generalization of the ARIMA processes
of the type

(1 - L)d$(L)yt = S(L)iu

where the power d is not necessarily an integer. Such processes are called
"fractional processes." We give the main properties of such processes,
stationarity and invertibility, the expressions of the spectral density and
of the autocovariances, showing how they are produced by aggregation
of autoregressive processes.

11.1 Decomposition of a Series with Polynomial Trend
11.1.1 Decomposition Formula

In this section, we consider a time series which can be represented as a
multivariate ARIMA

9(L)yt = ®(L)eu t > 0, (11.1)

where the size of yt is n, and where et is a white noise with a variance-
covariance matrix S.
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Let us assume that the values of the white noise before the initial date t
are 0, as are the corresponding values of the process. The autoregressive
polynomial is such that det($(L)) has all roots outside the unit circle,
apart from some equal to 1. We can then write the expression (11.1) as

indicating by **(L) the adjoint of the matrix &(L). Isolating the roots
of det($(L)) equal to 1 from the others, we get an expression of the type

(1 - L)dyt = H(L)et, (11.2)

where d is an integer number and where

_ **(L)e(L)
1 ; (det(#(L))/(l-JL)")

is a rational fraction admitting a series expansion with exponentially
decreasing coefficients.

As soon as the power d is strictly positive, the series in general includes
nonstationary components. In the moving average representation of this
series (cf. chapter 8)

H(L) .
Yt~ ( 1 - L ) " e "

the coefficient of et-j is of the same order as j d ~ 1 for large j . This gives
an idea of the magnitude of the nonstationarity: thus the variance of y$
is of the same order as Y?j=iJ2d~2i t n a t *s °f the same order as t2d~1

and the standard deviation of the same order as td~i. The number d—\
is called the degree of nonstationarity of the series (d > 1) (cf. section
8.1.2). This degree of nonstationarity also appears in the decomposition
of the series based on Taylor's formula.

Theorem 11.1: Taylor's Formula

(i) //H(L) is a polynomial in the lag operator, we can write

k=o

where p indicates the degree of the polynomial H, and H^fc^(l) is
the k-th derivative ofH evaluated at 1. (ii) If

H ( L ) "
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is a rational fraction in the lag operator with a scalar denominator,
we can write

where R(Z/) is a series with exponentially decreasing coefficients if
b(L) /ms a// roote outside the unit circle.

PROOF: The first part of the theorem is just Taylor's formula. In order
to verify the second part, note that

A(L) - b(L) ]T £LJii(-i)*(i - L)k

k=o K'

k=o K'

is a polynomial in L with zero derivatives of order 1,. . . , d — 1, when
evaluated in 1. From (i) it follows that this polynomial is divisible by
(1—L)d, that is, can be written as (1—L)dB(L), where B is a polynomial.
The result is derived by setting

The exponentially decreasing behavior of the coefficients of R(L) comes
from this expression in a rational fraction form. •

Replacing H(L) in the moving average representation by its Taylor ex-
pansion, we get

yt = H(l)(l - L)-det - HW(1)(1 - L)~d+let 4-.. .

(1L3)

which is an expression where ŷ  appears as the sum of various compo-
nents

with

\ K(L)et if k = 0.

The component ŷ  ^ is asymptotically stationary, because of the hy-
pothesis made on det($(L)) which implies that R(£) has coefficients
exponentially approaching 0. The other components ŷ  are in general
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nonstationary with a nonstationarity degree equal to k - \. Thus the
larger k, the more rapidly the corresponding component diverges.

Remark 11.1: Such a decomposition of the series into components with
different degrees of nonstationarity is not unique. Without modifying
the degrees, we could have taken

The dominant component would have been

We can verify that the decomposition chosen above is the one for which
the dominant component admits an ARMA representation with the
smallest autoregressive order (here d), and then conditional on the AR
order, the smallest moving average order (here 0). In this canonical
decomposition the components are chosen so as to obtain the most par-
simonious dynamic representation.

Remark 11.2: The assumption on the initial values y : y t = 0 V £ < 0
is not neutral with respect to this decomposition. In fact, had we
introduced nonzero initial conditions, their effect on the series would
have corresponded to a solution of the homogeneous difference equa-
tion &(L)yt = 0. Since *(L) admits d unit roots, this solution is
in general of order d — 1. This effect can dominate all components
ŷ  ~ , . . . , ŷ  ,y t . Only the dominant component ŷ  ' is not sensi-
tive to the choice of initial values. The same kind of remark can be
done for the case where a constant term is introduced in the model (cf.
exercise 11.4).

Note that so far we have supposed that the dominant component is
the one of order d, i.e., we have assumed that H(l) ^ 0, or that 1 - L
cannot be factorized in H(L). This is not always the case, as shown in
the following example.

Example 11.1: Let us consider a model of the type

(l-L)<f>(L)yt = &(L)et,

where det(0(L)) has all roots outside the unit circle. The direct ap-
plication of the decomposition consists in computing the determinant
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of the autoregressive polynomial, which here contains a unit root with
multiplicity n equal to the dimension of the series

det ((1 - L)0(L)) = (1 - L)n det(0(L)).

Thus we have a decomposition of the type

However, in this simple case, we see that the first components yj ,
yj , ..., yj are all 0. In fact, we can write

Yt =

with only the components ŷ  and ŷ  appearing in the expression.

Example 11.2: The various coordinates of the series do not necessarily
have the same rate of divergence. Let us consider a bivariate series of
the type

-L L

,£2t

We have
Lt2t ( €2t

V2t = £2t [ y2t = c2t.

The first coordinate is explosive, whereas the second is stationary. By
the same token, we see from this example that the innovation in y^,
i.e., in, does not coincide with the innovation €2* of its dominant part.
In fact, the latter forms the innovation of the second component y2t>

This aspect of the innovations of the various components can be stud-
ied from the decomposition formula (11.3). As soon as H(0) = I, the
innovation of yt is et. The innovations of the explosive components
j + 1 K — i-, • •« , a a r e

d _ f c H ( l ) ( 1 L)k
( } (d-fc)! *~[ '

The innovation of the stationary part is given by
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11.1.2 Transformation of the Components by Filtering

Let us consider a series {yt}, admitting a decomposition of the type
(11.3)

yt = - L)-det + ... + (_i)«*-i

Let us assume that we transform this series with a linear filter A(L),
with exponentially decreasing coefficients. The new series is defined as

y? = A(L)yt.

Replacing yt by its expression as a function of the noise, we obtain a
moving average representation of the transformed series

= H*(L) ^

withH*(L) = A(L)H(L).
Let us consider the decomposition of the transformed series. We can

write

y*t=H*(l)(l-L)-d~et + ...

Since H*(L) = A(L)H(L), the various derivatives can be written as

p

k=0

The fc-th component of y£ is given by

j=k

j—k
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Theorem 11.2: Given a filter A(L) with exponentially decreasing co-
efficients (toward 0) and y* the transformed series of y through this
filter, the components of the transformed series can be derived from the
components of the initial one through

j=k w '

i.e., the k-th component of the transformed series depends on the com-
ponents with index k or higher in the initial series.

Example 11.3: Let us consider the case d = 1. We have

which gives the decomposition of y. The decomposition of y* is

. A(1)H(1) A(L)H(£)-A(1)H(1)_
yt = X_L * + r r i e "

= A( l )y t
( 1 ) + ( (A(L) - A ( l ) ) yt

(1) + A(L)y< 0 ) ) .

Note tha t the last term is stationary, since A(L) — A ( l ) contains the

factor 1 — L which takes away the nonstationarity from y j .

11.1.3 Cointegration

Integrated Series of Order d Let us consider a multivariate time
series where all components have the same degree of nonstationarity.
This means that the decomposition of the series ŷ  is such that

yt = H(l)(l - L)-det + ... + ( - i ) ' - i - ^ - A J ( i - £)- ie t + R(L)et

with no row of H(l) equal to 0.
We say that the series is integrated of order d with the notation

y t ~ / ( d ) . (n.4)

We can easily see that if yand y are two series of the same dimension and
integrated of order Jand d, with d ^ d, subject to the same disturbances
or to independent disturbances, their sum y + y is an integrated series of
order max(d, d). Moreover, if d = J, we can have simplifications among
dominant components, which may lead to a decrease in the degree of
nonstationarity of some components.
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Cointegrated Series Although each component yjt, j = 1 , . . . , n has
an explosive behavior with a nonstationarity degree d — \, it may hap-
pen that some of the explosive evolutions be strongly related to each
other. In particular, it may happen that some linear combination of the
components

have a "more stationary" behavior than each component.

Definition 11.1: The series {yjt}, j = 1,. . . ,ra, where yt is integrated
of order d, are called cointegrated if and only if there exists a nontrivial
linear combination of the components which is integrated of order strictly
smaller than d.

A linear combination of the components ot'yt admits the decomposition

- L)~det + ...

The dominant component disappears if and only if a ;H(l) = 0.

Theorem 11.3: The series {yjt}, j = 1,. . . ,n are cointegrated if and
only if the nullspace o/H(l)7, A/r(H(l)/) is not empty, that is z/H(l)
is singular. In this case, the linear combinations with smaller nonsta-
tionarity degrees are obtained for all nonzero vectors a belonging to

. These vectors are called cointegrating vectors.

Remark 11.3: Note that in the presence of cointegration there is an
infinity of cointegrating vectors.

Degree of Cointegration If the series {yjt}, j = 1, • • •, n, are cointe-
grated and if a is a cointegrating vector, the degree of nonstationarity
of oc'yt may, in principle, take different values. It may happen, in fact,
that several dominant components of ŷ  are simultaneously put to 0 in
the combination ot!yt. In order to clarify this concept, let us introduce
some vector subspaces of Hn

) k = 0,l,...,d-l. (11.5)
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These subspaces have the property

Eo a Ei C ... C#d- i .

If a nonzero vector a belongs to Ek, the combination at!yt admits a
dominant term with a nonstationarity degree smaller than or equal to
k — \. Moreover if a does not belong to Ek-i, the nonstationarity
degree of ct'yt is exactly k — ^. In particular the nonzero elements of
j^o, if they exist, correspond to some stationary combinations ct'yt of
the nonstationary series {yjt}, j — 1,. . . , n.

Definition 11.2: The degree of cointegration of the vector y is equal to
b (integer smaller than or equal to d) if and only if

Ed.b ± {0} and £d_b_i = {0}.

A vector a ^ 0 is called a cointegrating vector of degree 6(a) if a G
Ed-b(a) and ot $. Ed-b((x)-i (it follows that it must be b(a) < b). In this
case, we can write

yt ~CJ(d,6) . (11.6)

Relationships among Components It is interesting to stress the
mathematical interpretation of the cointegration condition, a is a coin-
tegrating vector of degree 1 if a'H(l) = 0 or, equivalently, if ct'yt — 0.
Thus, there is a static (i.e., without lagged variables) deterministic rela-
tionship, among the various dominant components of the various series.
Let us consider a vector a with the degree of cointegration equal to 2.
We have at the same time a/H(l) = 0, a 'H^^ l ) = 0, that is a.'y{

t
d) = 0

and ot'yt ~ — 0. The static deterministic relationship exists simulta-
neously for the first two dominant components. We will see in section
11.2 that it is sometimes possible to give to these relationships a meaning
of long-term equilibrium.

Dynamic Cointegration There is no a priori reason to look just for
static links among dominant components. Analogously, we could be
interested in dynamic links implying a small number of lags. To make
this point clear, let us see under which conditions a combination of y*
and yt-i , or, which is the same, of yt and Ay*, can decrease the degree
of nonstationarity. Such a combination can be written as cx'yt + /3fAyt.
By looking at the two first dominating components we have
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In order to eliminate the first component, we need a to be a cointegrating
vector. However, we see that if a 'H^^ l ) ^ 0 that is if the cointegration
degree associated with a is equal to 1, it is sometimes possible to equate
to 0 also the second component. In order to do that we need a, /3 to be
such that

a/H(l) = 0

The condition of dynamic cointegration with a single lag dynamics is

* ( I I 7 )

Example 11.4:

(i) Let us consider a very simple model defined as

Vit ~ 2/i,t-i + V\t + Vit - (it,

yu - yi,t-i + V2t - yi,t-\ = ti

Using the lag polynomials, we have

'2-L 1

0 -1\ et , ( 1 0
+

The process is integrated of order 2. (ii) We have

o 1 ) \-i 1

which is spanned by the vector ( I, so that a combination of the

type yu 4- V2t has a smaller degree of nonstationarity. Moreover,
we see that

so that yu + ?/2t ~ -f(l) and yt ~ C/(2,1). (iii) Let us exam-
ine now the possibility of a dynamic cointegration through the
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nullspace

N
(

- 1

1

V o
An element of the nullspace

0
1
-1
1

must
-Oil

a2 -•Pi

+
-

+

0
0
0

- 1

\
0

0

1 /

satisfy the relationships

OL2 =

OL2 =

p2 =

o,
o,
0.

These vectors can be written as
/ a \

a

\ a i
The corresponding dynamic combinations are

a (yit + Vit + &y\t) + /?A (yu + 2/2t),
and are integrated of order 0, that is, are stationary.

11.1.4 Frequency Domain

The definition of cointegration refers mainly to the components associ-
ated with the autoregressive unit root, that is the components associated
with low frequencies. This suggests characterization of the phenomenon
in the frequency domain. Since the series are nonstationary, we cannot
utilize the spectral representation theorem. However, we have seen that
the concept of spectral density can be extended to the case of ARIMA
models.

Pseudo-spectrum For notational convenience, we restrict ourselves
to a model of the type

where det 4>(L) has all its roots outside the unit circle and the noise
variance is var (et) = S.

The pseudo-spectrum is defined as
„, , 1 </)(exp(io;))-10(exp(za;))Ee/(exp(za;))0/(exp(-ia;))-1

t\LU) — T> n /. x |9 •
2?r I 1 — exp(za;) \z

This matrix, the elements of which are rational fractions in exp(zcj),



422 Chapter 11

is defined for all u;'s but u = 0. In this case, some elements are in-
finite because of the factor | 1 — exp(zu;) |~2; this simply corresponds
to the nonstationarity of the series y. The series is cointegrated if and
only ifH(l) = </>(l)~10(l) is singular, or, equivalently, if and only if
H(1)£H(1)' is singular.

Theorem 11.4: The series y following an ARIMA process

(1 - L)<p(L)yt = ®(L)et

is cointegrated if and only if its pseudo-spectrum is such that

lim I 1 - expUuj) I2 f (u)
u;—•()

has a 0 determinant.

Pseudo-coherence This property can be described in an equivalent
form by introducing the pseudo-coherences among the components of the
series. By analogy with the stationary case, let us define the pseudo-
coherence between yi and yj as

where fij(oo) is the z,j-th element of the pseudo-spectrum.
Let us set ^1\UJ) =| 1 — exp(zu;) |2 f(u;) the spectral density of the

differenced process (1 — L)y (which is asymptotically stationary) and

the coherence between the z-th and j-th components of the differenced
process. Note that it is equivalent to evaluating the pseudo-coherences
on the initial process or on the differenced process

Kii{u,) = K$\u).
Moreover, the theorem below expresses the existence of a strict link
among the low frequency components, in the case of cointegration.

Theorem 11.5: The components of the vector y following an ARIMA
process are cointegrated if and only if the determinant of the matrix of
the pseudo-coherences evaluated at 0 is 0 itself, that is

det(K(0)) = 0.
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Example 11.5: In the case n = 3, this condition can be written as
1 #12(0) # i 3 (

det #21 (0) 1

#31 (0) #32(0) 1

- 1 - I #i2(0) |2 - I #13(O) #23(0)

- #12(0)#23(0)#3l(0) " #2i(0)#13(0)#32(0)

= 0.

11.1.5 Explanatory Models and Shock Transmission

A Recursive Model In practice, the explanatory models make a dif-
ference between the exogenous variables x and the endogenous ones y
(cf. chapter 10). In the univariate case and for a strictly exogenous x
the model may be written as

a(L)yt + b(L)xt = eu,

(1 - L)c{L)xt = e2t,

where a(L) and c(L) are lag polynomials with roots strictly outside the
unit circle, and e ^ , ^ represent uncorrelated noises.

The bivariate autoregressive representation of the model is

/a(L) b(L) \fyt

\ 0 (l-L)c(L)){x V

and its moving average representation can be written as

- L)a(L)c(L) 0 a{L)

We can easily isolate the dominant components, by introducing the poly-
nomials 6*(L),a*(L) defined through the relationships

We have

yt

a(L) = a(

1 0 -

(1 - L)a{L)c{L) \Q a(l) )

1 (c(L) -6*(L)
+ a{L)c{L) I 0 a*(L)

cit

C2t

Clt

C2t
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Thus the recursive form of the model and the introduction of a non-
stationarity in the process x imply that these processes x and y are
cointegrated. Moreover, a stationary combination of these processes is

6(1)

Sustained Shock on the Control Variable Let us assume that the
variable x may be interpreted as a control variable and that the changes
in y from changes in x may be calculated from the first equation of the
system

a(L)yt + b(L)xt = eu.

A sustained shock of Ax on the variables xt, t > 0 implies a long-
term change in y equal to — 4^4 Ax. Therefore we see that the stationary

combination of the process yt + ~^(T)xt can be interpreted as the deviation

between the process y and the process — ̂ Wr# representing the long-term
effect of x on y.

Transitory Shock on the Innovation of the Explanatory Vari-
able We may as well introduce other types of shocks (cf. section 10.3)
on the explanatory variable, for example shocks on the innovation e2.
Let us assume that the innovation at time t — 0 is modified by Ae2o,
so that it will have an effect on all the future values of the explana-
tory process. In fact, the moving average representation of xt is of the
form xt = ^2j=ohj€2,t-j, where the coefficients hj, derived from the
long division of 1 by (1 — L)c(L), tend asymptotically to a nonzero value
/loo. The long-term effect on x of a transitory change in e2 is therefore
nonzero. The same line of reasoning is valid for all combinations of x
and y admitting a dominant nonstationary component.

On the other hand, the moving average representation of yt + ~Jmxt
involves moving average coefficients asymptotically tending to 0. Thus,
a transitory shock on the innovation of the explanatory variable has
a persistent effect on all the nonstationary combinations of x and y,
but it has an asymptotically zero effect on the combination yt + ^mxt
corresponding to the cointegrating vector.

11.1.6 Steady Growth Path

The ideas of dominant components and of cointegration are strongly
related to the practice by macroeconometricians of examining the steady
state representation of a given model. The fact that this line of reasoning
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usually starts from a deterministic model does not prevent from drawing
an analogy between the two approaches.

The Usual Approach Let us consider a dynamic macroeconometric
model written as

( t - l ) , x ( t ) ) , t > 0,
where y(t) is an (n x 1) vector of endogenous variables and x(t) is an
(m x 1) vector of exogenous variables.

A solution {(x(£), y(t)), t > 0} of this system is called a steady growth
path solution if it has the form

; ; $ j = l , . . . ,n , (6, > 1).

It is common practice to investigate whether the model is compatible
with these paths and possibly to modify its specification in order to
achieve such a compatibility. With this respecification, we show that
in the usual macroeconometric models all the growth rates of the en-
dogenous variables 61,62, • • • ,bn can be derived from some base rates.
Oftentimes three exogenous growth rates are used, that is,

77 the exogenous population growth rate,
7 the exogenous technological progress growth rate,
m the exogenous money supply growth rate or pe the foreign price
growth rate.
Generally, the endogenous variables corresponding to levels evolve fol-

lowing the same growth rate g such that (1 + g) — (1 + 77) (1 + 7).

The Relationship with Cointegration We can immediately see
three differences with respect to the specification used until now:

(i) The model is deterministic;
(ii) The growth is assumed of an exponential and not a polynomial

type;
(iii) The solution has a simple form.

The choice of exponential evolution is to be interpreted as a conven-
tion, since a simple logarithmic transformation leads to linear evolutions.
On the other hand, the choice of a strictly exponential form is not nec-
essary to obtain the fundamental result about the links among growth
rates. These results can also be obtained if we just assume that the
variables have dominant components of an exponential type
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In order to interpret the relationships among growth rates of the type
(1 + g) = (1 + 77) (1 + 7), let us consider some variables such that

We have

The existence of the relationship (1 + g) = (1 + 7y)(l + 7) implies that
some linear combinations of the variables expressed in logarithms have
some dominant terms of order strictly smaller than t. Thus we have

log2/1 (t) - logxi(t) - \ogx2(t) = o(t),

providing a condition very similar to the one defining cointegration with
cointegrating vectors given a priori.

11.2 Some Relationships
with Macroeconometric Modeling:

Error Correction Models and Cointegration

Although the ARIMA models were first introduced for forecasting pur-
poses, we have already noted in chapter 10 that they may prove useful in
order to understand the mechanisms ruling the dynamics of a macroe-
conometric model or to derive its specification. In this respect, we have
examined the notions of causality and of shock transmission.

The presence of trending variables and the properties of cointegration
can be examined in the perspective of explanatory model building. The
model building process follows two steps:

(i) economic theory or some intuitive line of reasoning is used to ob-
tain some equations linking the variables of interest; the resulting
system is basically static;

(ii) this system is augmented by considering the dynamic aspect, in
order to capture a number of phenomena which should be mod-
eled in a specific way: technological progress, expectations by the
economic agents, behavioral changes, adjustment costs, learning,
and so on.
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The basic static model often allows for an interpretation in terms
of long-run equilibrium, whereas the additional dynamics can be inter-
preted as the result of the adjustment around this equilibrium. The
intuition behind a separation between short- and long-run is appealing:
the aim of this section is to propose other representations for ARIMA
models, where such a separation is made evident.

11.2.1 Error Correction Models (ECM)

A Model for Targets and Adjustment Costs Control theory is one
of the tools used to specify models. It starts from the assumption that a
decision maker wishes to fix the values of some economically important
variables or to specify the relationship among them. Thus, for example,
a government might decide to control the ratio of the budget deficit to
GNP, to set the wage increase equal to inflation, and so on.

Let us denote by y = (2/1,2/2, ••• ,yn)
f the variables of interest on

which we can define some objectives specified in the form of relationships
(called target relationships) which these variables should satisfy. For the
sake of simplicity, let us assume that these relationships are linear, so
that the objectives can be written as

ct'yt = 0. (11.8)

Evidently, these target relationships will not be satisfied in practice be-
cause of adjustment or transaction costs, or because of a stochastic en-
vironment.

The adjustment costs are a function of the importance of the changes
made to the variables. These changes can be measured in levels

Ay* = yt -yt-i

or in growth rates

A2y* = yt - yt-i - (yt-i - yt-2).

The decision maker takes into account the desired objectives and the
ensuing costs. In a simple formulation, we can assume that he fixes the
values yt which minimize the criterion function

min (a'yt) ' « i (a'y*) + (Ayt)' « 2 (Ayt) + (A2yt)' « 3 (A2yt),
where Hj, j = 1,2,3 are positive definite matrices of appropriate size.

The solution to this optimization problem is such that

afWyt + fi2Ayt + f&3A
2yt = 0, (11.9)

which is a relationship between the errors made on the objectives ot'yt
(the so-called tracking errors, in general nonzero) and the adjustments
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Ayt, A2y*. This relationship is dynamic but deterministic. The in-
troduction of a stochastic term can be done in two different ways. We
can either add an error term to the deterministic equation (11.9), by
changing it to

ctfWy* + fi2Ayt + fi3A
2yt = et (11.10)

or we could start from a stochastic target equation otfyt = et in the
place of cx'yt = 0 which would provide a similar result.

11.2.2 Definitions

By analogy with the equation (11.10) let us introduce the following
definition:

Definition 11.3: A dynamic linear system of the type

jA
jyt = et, t>0,

where a! is an (r x n) matrix of rank r and C is an (n x r) of rank r,
is called an Error Correction Model - ECM.

The interest of such a representation is clear. Thinking of it as the

outcome of an optimization process based on the concepts of targets

and of adjustment costs, the parameters a', C and Bj have precise

interpretations, a! provides the coefficients to the target equations,

and the parameters C and Bj summarize the cost and the utility of

the decision maker. It is then natural to introduce constraints on the

coefficients through a, for example, rather than through the combined

coefficients such as the coefficient on yt, i.e. Ca ' + Y^f=\ Bi-

ll .2.3 ECM Representation of a Dynamic Model

Let us consider the constraints imposed on a dynamic model in order for
the ECM representation to exist. In fact, we will see that, in general,
any model can be written in this form. It would be preferable, therefore,
to talk about an error correction form or representation, rather than an
error correction model.

The Case of an Autoregressive Model Let us consider an autore-
gressive process defined as

*(£)y* = it, (i i . i l)

where $(L) is a matrix polynomial of degree p with $(0) = I and where
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yt = 0 if t < 0. Let us assume that the roots of det($(L)) are greater
than or equal to 1 in modulus.

Theorem 11.6: An autoregressive model admits an error correction
representation

PROOF: The polynomial 4>(L) can be written as

with

hence the result. •

We can then write the model in the error correction representation of
definition 11.3 by posing 3>(1) = Ca ' . It is apparent that this represen-
tation is not unique. However, the number of rows r of a! (or of columns
of C) is clearly defined since it is equal to the rank of $(1). The rank
of *(1) has a simple interpretation in terms of structural parameters,
since it provides the number of underlying equilibrium relationships.

Let us consider in particular the case where yt is integrated of order
1, which can be written as

(1 - L)yt = U(L)et, (11.12)

where H(L) is a matrix series in L (whose terms decrease exponentially)
such that no row in H(l) is 0. This condition implies, in particular, that
1 is a root of det(*(L)) with multiplicity order d > 1. Thus we have
det(*(L)) = (1 — L)d(j)(L), the roots of 0(L) being strictly greater than
1 in modulus; as a consequence, the model can also be written as

it, (11-13)

where $*(L) is the adjoint of &(L). By comparing (11.12) and (11.13)
we get

#*(L) = 0(L)H(L)(1 - L)d~l = *(L)(1 - L)d~\

where

We have then ^(1) = 0(1)H(1), and since 0(1) is a nonzero scalar, the
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nullspaces of $'(1) and of H'(l) are the same. On this basis we can
show the following

Theorem 11.7: Engle—Granger Representation Theorem
(Engle and Granger, 1987)

(i) The series y is not cointegrated if and only if the model (11.11)
can be written as

= et,
where <&(L) is a matrix polynomial of degree p — 1 such that the
roots o/det(4>(L)) are strictly outside of the unit circle,

(ii) If the series y is cointegrated and if a.' is a matrix (r x n) the rows
of which are independent cointegrating vectors, the model (11.11)
admits an error correction representation of the type

where D is a matrix (n x r) and *(0) = I — Da ' or, equivalently,

= et

with

i = i.
PROOF: From the definition of an adjoint matrix we have

#(L)#*(L)=Idet(*(L)),

*(L)*(L)(1 - I)*'1 =1(1 - L)
or, also,

*(L)9(L) = 1(1 - L)4>(L).

This in turn implies

As a consequence, the rows of ^(1) belong to the nullspace of ^ (1) ,
which is also the nullspace of H^l), i.e., the space of the cointegrating
vectors (on the basis of theorem 11.3).
(i) if

we have

det(*(L)) = det(*(L))(l - L)n.

Moreover

= 1(1 - L)4>{L)
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implies

det(*(L))det(*(L)) = (1 - L)n<j)n(L),

so that

det(*(L))det(*(L)) = <t)n(L)

and, in particular

det(*(l))det(*(l)) = <f)n(l) ^ 0.

Thus *(1) is non singular, as well as H(l), and the space of coin-
tegrating vectors is reduced to {0}. Conversely, if the series is not
cointegrated, A/^H^l)) = {0}, we must have *(1) = 0 since the
rows of *(1) belong to A/*(H'(1)). As a consequence, *(L) can be
written as 4>(L)(1 — L). Moreover, since (1 — L)yt is stationary,
det(4>(L)) has its roots outside the unit circle,

(ii) Let us assume now that the series is cointegrated. Since

* ( l ) * ( l ) = 0 ,

the rows of $(1) belong to ^($ '(1)) = Af(H'(l)). The rows of a '
form a basis of N (H!{1)) and this allows us to write ^(1) in the
form*(l) = D Q ' . Let us write, then, *(L) =
Then model (11.11) becomes

where

Since *(0) = I, we have

I = *(l) + *(0),

or *(0) = I — Da7. Replacing yt by yt-i + Ayt, we get also

DaVt-i + (*(L) + Da'j Ayt = et

or

Da'yt- i + *( i )Ay t = ct

with

It is readily seen that *(0) = I. n

The Case of an ARIMA Model Let us assume now that yt is an
ARIMA process defined as

*(L)yt = 0(L)ct (11.14)
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with yt = 0 if t < 0, $(0) = 0(0) = I and where the roots of det($(L))
and det(0(L)) are equal to 1 or outside the unit circle. The degree of
the polynomials &(L) and 0(1/) is p, respectively, q.

General Result

Theorem 11.8: An A RIM A model admits an error correction repre-
sentation of the type

PROOF: The demonstration is the same as in theorem 11.6. •

Case of yt integrated of order 1 Equation (11.13) becomes

from which, comparing it with the general result (11.12) we get

- L)d~\

where *(L) = </>(L)H(L). We always have *(1) = 0(1)H(1) so that

Theorem 11.9:

(i) Let us assume &(L) nonsingular. y is not cointegrated if and only
if the model (11.14) can be written as

*(L)Ayt = ®{L)eu

where &(L)is a matrix polynomial of degree p — 1 such that the
roots o/det($(L)) are outside the unit circle.

(ii) If the series y is cointegrated and if a! is a (r x n) matrix the rows
of which are independent cointegrating vectors, the model (11.14)
admits an error correction representation

Da'yt + *(L) Ayt = ®{L)et

with 4^(0) = I — D a ' or, equivalently

Da'yt-i + 4(L)Ayt = &(L)et

with 4>(0) = I.
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PROOF: A line of reasoning similar to the one in the Engle-Granger
Representation Theorem implies

In particular

so that *(1) = Da' .
If *(L) = *(L)(1 - L), we get

det(*(L))det(*(L)) = det(0(L))(l -

det(*(L))det(*(L)) -

Hence
det(*(l))det(*(l)) =

Since ®(L) is nonsingular, det(0(l)) is nonzero, so that det(*(l)) is
nonzero, which implies that A/"(H'(1)) = {0} so that y is not cointe-
grated. The remainder of the proof is identical to that of theorem 11.7.
•

The error correction representations proposed in the previous theorem
are not unique. As an example we have also (cf. exercise 11.5)

t = det(0(L))et,
(11.15)

= det(0(L))et

with *i(0) = I - D ia ' and #i(0) = I.

Example 11.6: Let us consider the bivariate autoregressive process

/1-0.9L 0.1L \ fylt\ _ .
^ 0.4L 1-0.6LJ \y2t) ~ £ "

The determinant of the matrix 4>(L) is
(1 - 0.9L)(l - 0.6L) - 0.04L2 = (1 - L)(l - 0.5L).

We can write
(yit\ , /1-0.6L -0.1L \

{l-L){y,t)
={1-°-5L) [-0AL 1-0.9LJ**-

The process yt is integrated of order 1. The matrix
/ 1 - 0 . 6 L -0.1L \

M )
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is such that
/ 0.4 -0.1 \

H(l) = 2 ^_Q4 Q1 J •

H'(l) has a rank equal to 1 and its nullspace is spanned by a = I I,

which is a cointegrating vector. The error correction representation

Da'y* 4- &(L)Ayt = et

of theorem 11.7 is written here as
' 0 . 1 \ , . / 0.9 -0.1 \ .

The expression

Da'yt-i + ®(L)Ayt = et

becomes

0 4

11.2.4 Explicit Representation of the Long-run Model

Let us consider now the possibility of introducing some error correction
representations so that the long-run coefficients appear in an explicit
way.

The first error correction representation (Davidson, Hendry, Srba, and
Yeo, 1978) was based on this idea. The most classical application is the
estimation of a consumption function. The two variables of interest are
total consumption Ct and income Xt. If we assume that income has a
dominating component evolving at an exponential rate, i.e., Xt ~ X^p1,
it is natural to assume that consumption as well evolves at the same
rate Ct ~ C^p1. In fact, if we had a faster rate of evolution p > p so
that Ct ~ Co/3*, we would have Ct/Xt tending to infinity and implying
that the consumers would consume infinitely more than their resources,
which is unsustainable in the long run. If the rate of divergence were
weaker p < p so that Ct ~ Cop1:, we would have Ct/Xt tending to 0 so
that consumption could become negligible in the long run with respect
to saving. Thus, most likely, the growth rate of the two variables must
be the same (cf. the section on the steady growth paths). Turning to
logarithms, we have

Often we express the same concept by saying that the long-run elasticity
of consumption with respect to income is unity. If we want to test this
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hypothesis, we should make explicit the coefficient expressing long-run
elasticity. Denoting ct = log(Ct) and xt — log(Xt), let us assume that
the dynamic relationship between ct and xt can be written as

a(L)ct + b(L)xt = et,

with a(0) = 1

ct = -
3=1 3=0

This relationship can also be written as

X* "•" Z^ a3^Ct-3 "T Z^ °3^Xt-J "+• e^
"v" ; j=o i=o

This expression contains the long-run coefficient — 4^4 (which can be
studied for its proximity to 1) and the adjustments Act-j and Axt-j.
This expression is very similar to the one given in definition 11.3 for the
definition of an ECM. However, note that the two representations have
different goals:

(i) There is no preconceived idea about the equilibrium relationship
in the previous approach, and how to approach this equilibrium.
It is just a suitable expression to test the long-run behavior of the
model.

(ii) This difference is apparent from the expression itself: in fact, here
we consider a model conditional on y whereas before we considered
unconditional models. Moreover, it would have been possible here
to replace the form obtained with another expression which shows
the long-run coefficient as well. For example, we could choose

b(l) r~l s~l

v ' 3=0 3=0

with p < min(r — 1, s — 1).
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11.3 Fractional Processes

In the previous sections we have taken into consideration the trend com-
ponents by considering an autoregressive polynomial the determinant of
which admits 1 as a (possibly multiple) root. This leads us to write the
process as

with d positive integer and with H(L) a matrix series in L the terms of
which decrease exponentially.

Choosing an integer degree of differencing involves a number of dif-
ficulties, both from the point of view of the specification and from the
point of view of the statistical inference. Thus, we have seen in chapter
6 that d integer leads to separate the phase of estimation (identification)
of d from the one of the other model parameters.

In this section, we will introduce a more general class of models in
which d may be real, known as fractional processes. In order to make
the presentation simple, we will refer to the univariate case, but it is
easy to extend the results to the multivariate case.

11.3.1 Definition and Moving Average Representation

Definition 11.4: A fractional process is a process yt, t > 0 satisfying
a system of difference equations of the type

$(L)(1 - L)dyt = Q(L)et

for t > 0 with initial conditions yt = 0, if t < 0 and where

{ €t, white noise ift>0,
0, otherwise,

where &(L) and Q(L) are two polynomials with roots strictly outside the
unit circle, d is a real number and where

The ARIMA (p,d,q) process corresponds to the special case where d
is a positive integer. The proposed definition for (1 — L)d is based on
the series expansion of the power function. This expansion admits a
synthetic expression by introducing the notation

T(d) = / x*-1 exp(-x)dx d>0.
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-3

A

-2 -1

Figure 11.1 Behavior of the Gamma Function

The extension to the negative values of d is based on the formula T(d)
T(d + l)/d. The function F has the behavior shown in figure 11.1.

From the definition of T(d) we derive

r(d)
We have also

L)d

+ 0 0

The moving average representation of the process is obtained directly
by inverting the autoregressive series. We have

Vt = (1 - L)-d$(L)-1O(L)et

= (1 - L)-dA{L)it

with

J = 0
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The asymptotic stationarity or nonstationarity properties of the model
can be studied from the limit behavior of the coefficients hj of the moving
average representation of yt.

Theorem 11.10: A fractional process admits an infinite moving aver-
age representation with moving average coefficients such that

as j tends to infinity.

PROOF: We have

j=0

We can derive that

'?-fc-
r(fe

k=0
r(d) r(fc

since F(fc -f 1) = /̂ !. From Stirling's formula we get

as A: tends to oo. We have then

'j-k

fe=0

T(k + d)
T{d)T(k + ] T(dY

r(d)

\T(d) T(d)J Ê >T(d)

Using the fact that the series with aj as a general term decreases expo-
nentially and the inequality

3c:
T(k + d) kd~l

T(d)T(k + 1) T(d)
<ck 4-2 V k> 1,
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we can verify that each element on the right-hand side of the inequality
tends to 0 when j tends to infinity (cf. Akonom and Gourieroux, 1988).
•

The knowledge of the asymptotic behavior of the moving average co-
efficients allows for a classification of the time series according to the
following scheme

Definition 11.5: The series

3=0

is:

(i) asymptotically stationary i/Xlj^o ^j < +°°'
(ii) (asymptotically) nonstationary ifY^^o tf = +°°-
// it is asymptotically stationary it is defined as having:
(ia) short-memory ifYlj^o l^il < +°°?
(ib) long-memory ifYl^^o \hj\ = +oc.

Up to now the stationary series taken into consideration generally had
ARMA representations with autoregressive and moving average polyno-
mials with roots outside the unit circle. In such a case the coefficients of
the infinite moving average representation decrease exponentially and, in
particular, Sj"=̂ o \^j\ < +°°- The ARMA processes have short-memory.

Let us now consider a fractional process; on the basis of theorem 11.10

The series with the general term j d ~ 1 can be summable, square-sum-
mable or nonsummable according to the values taken by the exponent
d. We have then

Theorem 11.11:

(i) The fractional process is asymptotically stationary if and only if
d< \.

(ii) The fractional process is asymptotically stationary with short-mem-
ory if d < 0, with long-memory ifO<d< \.
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Figure 11.2 PseudoSpectrum of Fractional Processes

11.3.2 Second-Order Properties

Spectrum and Pseudo-Spectrum We can define the pseudo-spec-
trum of the series irrespective of whether it is asymptotically stationary
or not

/M = ^ T I S ? K I 1 - expM |-2d . (11.16)
In a neighborhood of u = 0 we have

2 /Q(l)\2
 a2

f(u) « — I —7—r I I 1 — exp(iuj) \~2d& — ( I o;~2d. (11.17)

A study of the function / at low frequencies allows to detect the differ-
encing order d. Therefore the ratio

1 — exp(icj) - 2 d

is only a function of / and k. Knowing the pseudo-spectrum, we can
then determine the properties of

a2 / 6 ( e x p M ) \ 2

2TT \$(exp(ia;))/

that is the second-order properties of the differenced process (1 — L)dyt

(for large t).
The behavior of the pseudo-spectrum near 0 allows one to understand

the difference between short-memory and long-memory (or nonstation-
ary) processes. For the latter ones, the pseudo-spectrum is, in fact,
infinite for u) = 0.
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In particular, when d is positive, the longer is the memory, the more
rapidly the pseudo-spectrum tends to infinity as u tends to 0. Referring
to (11.17) we note that log (/(a;)) « constant — 2d\og(uo). Thus a loga-
rithmic transformation expresses this rate directly to the exponent d.

Autocovariance Function The autocovariance function has a mean-
ing in the asymptotically stationary case, that is, for d < 1/2. The auto-
covariances do not have simple expressions in the general case. However,
we can establish the following

Theorem 11.12: Let us consider a fractional process

(1 - L)dyt = it

with d < 1/2. The covariance 7(£, h) = cov(yt,yt+h) tends to

d) r(i-2d)
-1 - d) r(d)r(i - d)

as t goes to infinity.

PROOF: The moving average representation of the process is

We conclude that
+00

7(h) = a ^
2 V- r ( j + d)

4

T(h + l ) r(d) \T(h + d)T(d) j ^

where

rubc-z) r ( c )

indicates the hypergeometric function. A classical formula for this func-
tion is (cf. Abramovitz and Stegun, 1985)

F(abc-l) = Tic)T{C~a~b)

^ ' ' ' ' T(c - a)r(c - b)'
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from which we get

r(fe + i)r(d) r(ft +1 - d)r(i - d)
- d) T(l - 2d)

D

Starting from this example we can study the rate of convergence to 0 of
the autocovariances. For h large enough

^2.2^1 r(i-2d)
"*1 T(d)T(l-dY

The autocovariances decrease at a smaller rate than the usual exponen-
tial rate. Moreover, we see that the correlation

p(h) = ~ ~ constant x h2d~l

7(0)
tends to grow with the value of d for h large enough. Prom an intuitive
point of view, this corresponds to the idea of long-memory. Since the
correlations are stronger than the usual ARMA case, a shock to the
innovation at time t will tend to have an impact on the future values
yt+h f°r a longer period. Let us remark also that, if d is a negative
integer, yt is a moving average process and that the equivalence for j(h)
given above is not valid anymore since | T(d) \= +00; we have, though,

= 0 for h large enough.

11.3.3 Aggregation of First-order Autoregressive Processes

The presence of strong temporal correlations can be the outcome of
aggregation. If a number of series {yi,t),i = l , . . . ,n are correlated
among each other, the computation of the mean ynj = ̂  Yl7=i 2/M c a n

introduce a temporal smoothing of the aggregated series and therefore
a stronger dependence between successive values of the series.

The Principle Let us consider several time-series data

y^t, i = 1,. . . , n , . . . ; t = 0 ,1 , . . . , T,

In order to simplify matters, let us assume that each series (y^t, t >
0) i = 1,. . . , n , . . . satisfies a first-order autoregressive representation
with an adjustment coefficient depending on i. By the same token, let
us take into consideration the possibility of a correlation among series
by introducing an error decomposition in time effect and cross effect.
More precisely, let us pose

yi,t = <i>%yi,t-\ + +
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for t > 0, i = 1,2,... with 2/i,-i =0 , V i. The noise terms e*, 771*, 772*, • • •
are assumed pairwise independent, with zero mean and with variances
var(et) = cr2, vai (rja) = /i2,V i. We have retained the recursive re-
lation only for positive indices. This allows us to treat simultaneously
the case of asymptotically stationary processes (\4>i\ < 1) and that of
nonstationary processes {\4>i\ > 1).

Let us complete the set of assumptions needed for the aggregation
by formulating some hypotheses about the structural coefficients 0Z-,Q.

Let us assume that these values can be considered as independently
drawn according to the same density function, that they are independent
of the values taken by the noise terms and that the variables 0 and
c are independent between each other. The parameter c is assumed
to have a nonzero mean. The mean calculated on the first n series
is

1 n t

- Yl ̂ 2
n i=i k=o

2 = 1

fc=o

As n goes to infinity, we get

lim - J^tfci = E(<j)kc) =
n-+oo

lim - y>fo , t_ f c = E{<t>krn,t-k) = E(4>k)E(rH,t-k) = 0-
2 = 1

We can see that at the limit the aggregated process

n

satisfies a relationship such as

yt = £>(^)£(c) e t_ f c = J2E(<t>k)tt-k,
fc=0 k=0

with et = E(c)et. Thus, the temporal dependence of the process y is
introduced by the terms Ci€t and comes into play only because of the
contemporaneous correlation between the innovations of the various dis-
aggregated series.
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Effects of the Aggregation

Theorem 11.13: If the density function ofcj) is defined over positive real
numbers, and if the aggregated process is stationary, the autocorrelations
for the aggregated series are greater than the means of the disaggregated
autocorrelations.

PROOF:

(i) The disaggregated correlations are

Pi(h) = $,

and therefore their mean is E(p(h)) = E((j)h).
(ii) The correlation of order h of the aggregated series can be obtained

from the coefficients of its moving average representation. We have

(iii) We can then note that for h and k given, the mappings </> *—• (fth

and 0 i—> </>k are increasing. We conclude that (cf. exercise 11.1)

or that E((t)k+h) - E(4>k)E((t)h) > 0.
(iv) Finally, we can establish the following inequality for p(h)

\2 \^+c

= E(p(h)).
n

Thus this effect leads to an increase in the autocorrelations, except in
the limit case where 0 is the same for the various series. In this case we
have p(h) = E(p(h)).

Aggregation with a Beta Density The increase in correlation can
be sizeable. Thus the aggregation of a short-memory series can generate
a long-memory stationary series or even nonstationary series. Let us
illustrate this point by taking into consideration the autoregressive coef-
ficient as being generated by a Beta distribution B(p, 1 — p), 0 < p < 1.
The density function can be written as
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with -B(p, 1 — p) = T(p)T(l — p). The moments of this distribution are

T(p) r ( l + fc)'
The aggregated process admits the representation

+00

with it = 0 if t < 0
+ OO

fc=O

that is, a fractional aggregated series.

Theorem 11.14: The aggregation of first-order autoregressive series
associated with a Beta distribution B(p, 1 — p), 0 < p < 1 is a fractional
process. In particular

(i) It is long-memory stationary if p < \.
(ii) It is nonstationary if p> \.

11.3.4 Change in the Time or Measurement Units

The Principle If we represent a time series graphically, it may show a
dominant polynomial component, which can be isolated by an appropri-
ate choice of the units for the axes (time axis and axis for the values of
the variable). The explosive characteristics can be eliminated by means
of an adequate choice of the unit for the y—axis and the resulting curve
can be smoothed by means of an appropriate choice of the time unit.
This is the approach presented in this section.

Let us replace the initial series y\,..., yr with a concentrated series
defined as

= ^ ? , (11-18)

for a > 0 and 0 < r < 1, and where [x] indicates the integer part
of x. These series are indexed by the same index r G [0,1]. On the
other hand, the coefficient a will be chosen, whenever possible, in such
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yTir)

0 '1
Figure 11.3 Steps of Transformation of a Series

a way as to make the resulting series yrfr) neither explosive nor close
to 0. We can interpret a as the degree of nonstationarity of the series.
The transformation of the original series into the concentrated series is
described graphically in figure 11.3.

It is clear that, from a mathematical point of view, the concentrated
series is a process x(r) indexed by a continuous set [0,1]. The properties
of such processes are fairly close to the ones of discrete-time processes.
Thus we can define their distribution, their expected value (a function
which maps x(r) into E(x(r))), and their covariances (a function which
maps x(ri),x(r2) into cov(x(ri),x(r2)) = 0(^1,^2))-

Since the index set is continuous, it is also possible to introduce a con-
cept of continuity of the process. Let us define the process as continuous
in quadratic mean if

\2V r lim E (x(r + h) - x(r)y = 0.

We can then provide the following definition

Definition 11.6: The series yt, t > 0 is asymptotically locally equivalent
to a monomial of degree a if and only if the concentrated series converges
in distribution to a continuous in quadratic mean, nontrivial second-
order process

V[Tr] d TJr/ \
= - ^ -> W(r).
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Intuitively, for T large enough, we can replace the concentrated series by
W ( ^ ) and the initial series by TaW ( ^ ) . The continuity of W implies
that, in a neighborhood of a value 7*0, we have W(r) « W(ro) and thus,
in a neighborhood of to = foT, we have

The series can be approximated by a monomial of degree a in a neigh-
borhood of £0 — TQT. Obviously, a change in the value of r$ modifies
the leading coefficient of the monomial.

Note that the convergence in distribution intervening in the defini-
tion 11.5 involves random functions indexed by [0,1]. In such a case,
it does not suffice that there be convergence of any finite subfamily
[UT(TI), • ••• ,yT(rn)]

 m order to have convergence in distribution of the
random function itself. In addition, it is necessary that this random
function be sufficiently smooth (tightness condition). In order to keep
the presentation simple, let us not insist in what follows on this addi-
tional technical requirement, referring the interested reader to Billingsley
(1968).

Donsker's Theorem The condition of convergence in distribution
introduced in definition 11.6 is satisfied for the processes used so far
to model the series with polynomial trends. Let us verify this for a
univariate random walk by considering a univariate independent white
noise (et) with variance a2 and the process defined as

yt - yt-i = et,

for t > 1 and with yo = 0. We have

r=l

Changing the time units and assuming a = | , since the random walk
explodes at a rate of VT, we get

V[Tr] 1 V^

From the central limit theorem we have that
\Tr]

is asymptotically distributed as a normal jV(0,r) . This provides the
convergence in distribution of ^ ( r ) for each value of r. Let us consider
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now several components associated with different values of r; we can al-
ways adopt a multivariate central limit theorem to derive similar results.
Thus taking into account two components we have

/ ^T(ri) \

[ )

0/ ymin(ri,r2) r2 J y
This line of reasoning on a finite number of components can be extended
to obtain the convergence in distribution of the concentrated process (cf.
Billingsley, 1968).

The limit distribution thus obtained corresponds to a process [-B(r)]
indexed by r G [0,1], normal with zero mean, and with variances and
covariances given by cov (B(r\),B{r2)) = min(ri,r2).

Definition 11.7: The process {B(r),r € [0,1]), normal with zero mean,
and such that

cov(B(ri),B(r2)) =min(ri,r2)
V n , r2 G [0,1] 25 called Brownian motion on [0,1] .

The result about the convergence in distribution can be expressed as
follows

Theorem 11.15: Donsker's Theorem
V (ytit > 0) is a random walk based on an independent white noise

with variance a2 then

±yT{r) -i B(r),

where B is a Brownian motion on [0,1] (cf. Billingsley, 1968).

Stochastic Integral with Respect to a Brownian Motion Let us
consider a Brownian motion on [0,1] and some values r\ < r2 < r3 < r4.
We have

cov(B(r2)-B(ri),B(r4)-B(r3))

= cov (B(r2), B(r4)) - cov (B(n), B(r4))

- cov (B(r2), B(r3)) + cov (B(n), B(r3))

= r2 - r\ - r2 + r\ = 0.
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Thus, the Brownian motion has uncorrelated increments; since it is nor-
mally distributed the increments are independent. As a result, we can
use it as a stochastic measure and construct the associated stochastic
integral. Let us define dB(r) the stochastic measure; the associated
density function is

f(r)dr = var (dB(r)) « var (B(r + dr) - B(r)) = dr,

which corresponds to the uniform distribution on [0,1].
For any square integrable function g on [0,1]

g2{r)dr < oo,

we can introduce the stochastic integral

' g(r)dB(r).
Jo

Using the interpretation of the stochastic integral as being an isometry
we get

Jo

E Qf g(r)dB(r^j = jf * g(r)dE (B(r)) = 0,

and

al , 1 X , 1

g(r)dB(r), / h(r)dB(r) = / g(r)h(r)dr.
Jo ) Jo

Note that the stochastic integral can be seen also as a limit in quadratic
mean of Riemann sums

(11.19)

Asymptotic Behavior of Stationary Fractional Processes Let us
now verify heuristically that the fractional processes are asymptotically
locally approximated by monomials. For the sake of simplicity let us
consider once again the univariate process y defined as

vt = (i - Ly
for t > 0, where

_ Jet, if * > 0,
1 I 0, otherwise

with e an independent white noise with variance cr2, $ and © lag poly-
nomials with roots outside the unit circle. The integration order d is
greater than 1/2 which involves the nonstationarity of the series.
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Denoting the moving average representation of the process as
t

yt = J2ht-ke^

we know from theorem 11.10 that the moving average coefficients are
such that

h{d) _ Q(1) .d-1

for t large enough. The concentrated process

can be approximated by

k=l

\Tr]

9(1)

6(1) 1^ _
aHi)T(d) ^ V r

+ e2 + . . . + efc 1 ei + e2 + • • • + efc-

Applying Donsker's Theorem which allows for the approximation in dis-
tribution of the sums

1 ei + e 2 + • • • + efc

by B (y) we have

i ^ l d1 k - l

which is a Riemann sum which asymptotically can be replaced by the
corresponding stochastic integral

Theorem 11.16: Given a nonstationary fractional process
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with d > 1/2, the concentrated process

= jgziTa J/p>]

is such that

Remark 11.4: As one would expect, the stationary part of the model,
0(1)

that is, $(L)-10(L) appears only through the long-run multiplier

Remark 11.5: The previous theorem allows for the evaluation of the
order of magnitude of the second-order moment of the process yr- In
fact, we have

J\i -
Thus

var (yT(l)) = moH_i™r(yT) ~ ^2X7TTrF71w i1 ~

so that
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11.4 Exercises

Exercise 11.1: Let x be a real-valued random variable and g, ft two
increasing functions. Let us consider two independent variables x\ and
x2 with the same distribution as x.

(i) Verify that (g(xi) — g(x2)) (ft(#i) — ft(#2)) ls always nonnegative.
(ii) Write

E(g(x1)-g(x2))(h(x1)-h(x2))

as a function of cov (g(x), h(x)). From (i) show that this covariance
is positive.

Exercise 11.2: Let us consider the process y with *(L)yt = et a
bivariate autoregressive process of order 1. Which are the conditions on
the coefficients of $ in order for yt to be integrated of order 1? and in
order for the components of yt to be cointegrated?

Exercise 11.3: Under the assumptions of formulas 11.11 and 11.12,
show that det(*(L)) = (1 - L)n-d0n-1(L) by using the equality

*(L)**(L) = det(*(L))I.

Show that d < n and that if n — d, *(1) is invertible.

Exercise 11.4:

(i) A nonstationary process y is defined by

(1 - L)d(yt - ro) = it

for t > 0 and yt = 0 if t < 0. Provide a canonical decomposi-
tion of y using components with different rates of divergence, and
separating the deterministic and the stochastic terms,

(ii) Solve the same problem for a process defined as

(1-L)dyt = et + m

and compare the rates of divergence of the deterministic and sto-
chastic components.

Exercise 11.5: Show that the equation defining an ARIMA process
= ®(L)et can also be written as
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where 0*(L) is the adjoint matrix of &(L) or also as

with $i(0) = I. Derive expression (11.15) applying theorem 11.9.

Exercise 11.6: Let us consider a univariate series y satisfying an
autoregressive model of order 1

yt = p(0)yt-i +e t ,

with var(et) = cr2, where the correlation coefficient depends on an un-
observable heterogeneity factor 6. Let us assume that this factor is
independent of the noise e and has a continuous density function TT(6).

We want to compare the first-order correlation obtained by integrating
out the heterogeneity factor

__ E(ytyt-i)
P

with the mean of the correlations

(i) Let u and v be two random variables. Using the fact that

J \E(v) \vJ E(v) \ \v J \v
derive the result that the difference between the ratio of the ex-
pected values and the average of the ratios is equal to a covariance
up to a factor.

(ii) Applying this result to the case of correlations prove that

p -Jp(e)n(0)d6 = ^ y c o v {p{6),E{yl\6))

1 cov (,(<?),—4:

(iii) Deduce that if p(9) > 0, V 6, then

p- f p(0)7r(8)dO>O.

What happens if p(0) < 0, V 61

Exercise 11.7: Let us consider an autoregressive model of order 1,
integrated of order 1, for which a basis of r cointegrating vectors is
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formed by the columns of a matrix a. This model admits an error
correction representation

y*. - yt-i = Da 'yt- i + et

with D a (n x r) matrix.

(i) Let (3 be a matrix the columns of which together with those of a
form a basis in Rn. Verify that

oc'yt = (I + a 'D)a 'yt- i + a'et,

P'yt = /3Vt-i + /3'Da'yt-i + /3;ct.
Prove that the matrix D is necessarily subject to some constraints
so that the first equation leads to a stationary process oc'yt-

(ii) Let us denote var(et) = ft. We can then choose a, (3 such that
a'fl/3 = 0. Prove that the initial model admits a recursive form
where the components ot'y are determined first and then the com-
ponents /3'y are derived.
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Expectations

Most of the models and results described in the previous chapters are
based on the notion of an optimal forecast of a variable given its past. For
example, this notion has been useful to define the autoregressive form
of a process, its innovation, and so on, but also to analyze in greater
details the links between processes (partial correlation, causality mea-
surement, etc.) or to develop estimation methods (maximum likelihood
in conditional form).

In this chapter we are interested in a more practical aspect of this
optimal forecast.

Economic agents, e.g., firms, financial operators, consumers, must in
general decide their current behavior taking into consideration the ideas
they have about the future. Since this future is partially unknown, they
have to forecast it in a proper way. This leads us to study two questions
which are linked to each other:

(i) How do agents foresee their future?
(ii) How do their expectations influence their current behavior?

In the first section we will start by recalling a number of results on
forecasts which have been introduced in the previous chapters. We will
treat the updating problem in great detail and specify the economic
terminology which is slightly different from the probabilistic terminology
used up to now.

The other sections are all related to the analysis of explanatory mod-
els containing expectations among the explanatory variables. More pre-
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cisely, we will look at the properties of these models in the case of optimal
expectations (or rational in the economic terminology).

12.1 Review of the Expectation Schemes

12.1.1 Forecast Problem

When a variable of interest y is unknown, we can focus on some approx-
imations y. These are called forecasts or expectations. In general they
are found using the available information on other variables x. Then a
forecast of y is of the form

y = f(x), (i2.i)

where / represents the computation method which allows one to go
from the observations x to the approximation y of y. Thus, given an
information set / = {#}, there exist as many ways to obtain forecasts
as choices of the function / . The latter is often called an expectation
scheme.

Later on we will always consider that the variable to be approximated
y and the explanatory variables x are random. On the other hand, the
computation method / is assumed nonrandom. Since the forecast y is a
nonrandom function of the random variables x, it is random as well.

The expectation problem is the problem of finding an "adequate" ap-
proximation y of y. This approximation is in general different from y
and the corresponding forecast error, e = y — y, is also random. This
error may be summarized by means of the mean square error

Ee2 = E(y-y)2.

12.1.2 Successive Forecasts

Later on we will often be led to consider forecasts made at different
dates. Thus we need to introduce processes {yt}, {%t}, instead of the
variables yt and xt only. Similarly, we have to introduce a sequence of
information sets; the set It is interpreted as the available information
at time t. This information is often built from observable variables
considering the current and past values of these variables

It = (xt,xt-i...) = (xt)

(this information could also contain values of the process y).
Then the available information increases with time. At time t + 1,

this information is increased by #t+i : /*+i = {xt+i,h}-
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Nevertheless, notice (cf. exercise 12.2) that it is also possible to in-
troduce nonincreasing information sets. If we just keep the last ten
observations of x, we have

It = (xt,xt-i,... ,xt-g).

The set It+i is derived from It adding the information in xt+\ and
eliminating the one in xt-9.

In this dynamic context, we can consider various forecasting problems.
Thus, let us assume that we are at time t and that the information is
It. This information can be used to forecast the different values yt+h of
the process y. A forecast of yt+h done at time t is of the form

tVt+h = ft,h(h)
so that we have a series of forecasts available with a double index t and
h.

When t + h = T is fixed and t varies, we get the series of successive
forecasts of the variable yr = yt+h, made at various dates. We can then
study the evolution of the forecasts when the information changes. The
variation between two successive dates is

tVT ~ t-lVT = ft,T-t(It) - ft-l,T-t+l(It-l)' (12.2)
This difference represents the updating of forecasts.

12.1.3 The Main Expectation Schemes

In the previous chapters we encountered various expectation schemes.
Let us briefly recall their definitions; the reader can refer to the appro-
priate chapters (4 and 6) for more details.

Adaptive Scheme It is the simple exponential model. The scheme is
defined directly by the updating formula

tyt+i = ( l - A ) t - i y t + Aj/t, (12.3)
with A G [0,1].

Solving iteratively we get the extrapolative form of this scheme

^-^Jyt-j, (12-4)
j=0

as soon as the series of the second term in (12.4) exists. These two
equivalent formulations show that there exist several couples (ft, It)
corresponding to this forecast scheme. From (12.4) we can take It =
(yt,yt-i • •.) and (12.3) shows that this information can be summarized
by It = (yt, t-iVt)- Note that in both cases the corresponding func-
tions ft and ft are independent of time t. Then, we can say that the
expectation scheme is stationary.
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Naive Expectation Note that when A = 1, the adaptive scheme forces
us to choose the last observed value as a forecast

= yt

This expectation is called naive.

Rational Scheme Various criteria can be considered to choose among
expectation schemes: the ease of computation, the possibility of repro-
ducing the cycles present in the series (yt), but above all accuracy of
the proposed approximation. We have seen that, when this accuracy is
measured by the mean square error, the best approximation of a var-
iable y based on an information / = {x} is computed as a conditional
expectation (or as a linear regression). In the economic literature such
an optimal forecast is called rational. It is written E(y \ I) as before.

12.1.4 Some Properties of Rational Expectations

We derive various properties of rational expectations from the well-
known ones of conditional expectations.

Theorem 12.1: The forecast error e = y — E(y | I)

(i) has zero mean: Ee = 0,

(ii) is uncorrelated with the forecast

E(eE(y\I))=cov(e,E(y,\I)) = 0,

(Hi) is uncorrelated with any variable x in the information set

E(ex) = cov (e,x) = 0,

Vi6/.

PROOF: Left as an exercise to the reader. •

The properties derived in a dynamic context and relative to forecast er-
rors at multiple horizons and to the updating rules are more interesting.

Thus, let us consider a process y = {yt}, and a sequence {It} of
information sets. This sequence is assumed to be increasing, and yt is
assumed to be in It.

The forecast errors at time t and horizon h are

vtth = yt+h-E(yt+h\It). (12.5)

The successive updates are

eh
t = E (yt+h | It) - E{yt+h \ It_x). (12.6)



Expectations 459

The forecast errors can easily be expressed as functions of successive
updates. We have

vt,h = Vt+h -E(yt+h | It)

= yt+h ~ E {yt+h | It+h-i)

+ E {yt+h | It+h-i) ~ E (yt+h \ It+h-2)

+ E (yt+h | /t+i) - £ (yt+h I i t) ,

2 = 0

The updates have various martingale properties: some definitions are
therefore in order.

Definition 12.1: Consider an increasing sequence of information sets
/ = (/«):
(i) A process m = {mt} is a martingale if and only if

E(mt+i | It) = mt

V t integer,
(ii) A process d — {dt} is a martingale difference sequence if and only

ifdt e It and E(dt+i \ h) = 0.

A martingale appears as a process for which the rational expectation and
naive expectations coincide. A martingale difference sequence is such
that each component is uncorrelated with the past. Note in particular
that a martingale difference sequence is such that

Edt = EE(dt | Jt_i) = 0,

E(dtdt-i) = E (dt-iE(dt | It-i)) =0 , V i > 0.

Therefore it has zero mean and no serial correlation.

Theorem 12.2:

(i) The sequence {e^, t varying} of updates at horizon h is a martin-
gale difference sequence.

(ii) The sequence {e^~*, t varying} of updates is a martingale differ-
ence sequence.

(Hi) The sequence {E(yr \ It), t varying} of rational forecasts of yr is
a martingale.
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PROOF: AS an example let us check the second result. We have

We derive
E (ef-* | Jt_i) = E (E(yT | It) \ It-i) - E (E(yT \ It_x) \ It_{)

= E(yT \ It-i) - E(yT \ It-i) = 0.
n

In particular the third property was applied by Samuelson (1965) to the
forward prices. If pr is the price on the market at time T, if tPr is
the price to pay at time t to buy a unit of a good at time T (forward
price), it may be possible to assume that tpr coincides with E(pr \ It)
for an efficient market. Then the sequence of forward prices should be
a martingale for such a market.

12.2 Model with Expectation of the Current Variable
12.2.1 Walrasian Equilibrium Model

Historically, the first rational expectation model was introduced by Muth
(1961). It was an equilibrium model for an agricultural good market,
where producers must decide their behavior without completely knowing
the values of some variables of interest for the economy. Since we are
particularly interested in the expectation patterns of the suppliers, we
keep the whole demand function to a simple specification.

Let pt be the price of the good at time t, let qt be the demanded
quantity, and let z\t be some exogenous variables acting on the demand;
the inverse demand function is

pt = D(qt,zlt).

Let us look now at the supply behavior assuming, for simplicity, the
existence of a single firm. Let z2* be the exogenous variables entering
the production function, and let C(q, z2t) be the cost at time t of a
production q. The corresponding profit is

When deciding on the quantity to produce, the producer does not neces-
sarily know the exact value of the price pt and of the exogenous variables
Zit,z2t. On the basis of the available information set It-\ we can, as
a first approximation, consider that the producer will maximize the ex-
pected profit

E(ptq-C(q,z2t) | It-i)
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where Ce(q,It-i) = E(C(q,Z2t) \ h-i) is the expected cost function.
The optimal quantity is then obtained by setting the expected cost equal
to the marginal expected cost (Ce is assumed convex w.r.t. q)

d
- gq Wt, t - i j .

It is derived from the expected price through the inverse function of the
marginal expected cost

(E(JH | It-i),It-i).

Finally in equilibrium, we have the equality of supply and demand

pt =

We deduce an equilibrium price equation

(E(pt | I t- i) , It-i), zi t j . (12.8)

The price is expressed as a function of the expected price, of the exoge-
nous variables in the demand function and of the forecasts of exogenous
variables in the supply equation (through expected cost).

Nevertheless, this form cannot be considered as a reduced form, since
the price appears in the right hand side term through its expectation. It
is possible here to derive from equation (12.8), the form of the expect-
ation E(pt | h-i)- Indeed, introducing the function of expected inverse
demand, we have

Taking the expectation of each term in equation (12.8) conditional on
It-i, we have

((Jj\ ), !*_!),!,_! J . (12.9)
It is an implicit relation in E(pt | h-i)- The equilibrium exists if this
equation admits at least one solution, and, if it exists, the number of
equilibria is equal to the number of solutions of this equation.

This relation provides the expected price as a function of the expec-
tations of the transformed exogenous variables Zit, Z2t (through the
expected cost and demand functions).
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Solving in E(pt \ h-i) the equation (12.9) and putting it in the re-
lation (12.8) gives the equilibrium price pt as a function only of the
exogenous variables and of their expectations.

Example 12.1: The model just described is customarily used with a
linear demand function and a quadratic cost function. Moreover, the
exogenous variables are introduced in order to make easy the derivation
of the expected cost and demand functions.

Let us write

D(q,z2t) = aq+ z'ltb

and

C(q, z2t) = 2a<72 + z2tP<l + v(z2t)-

The expected cost is

Ce(q,z2t) = -aq2 + E(z2t \ h-i)'Pq + E(<p(z2t)

The supply function is derived from the equation

E(JH | It-i) = ̂ Ce{quz2t) = aqt + E(z2t | Jt

qt = -E(pt | /,_!) - -E(z2t | It-J'13.
a a

We get the equation of price determination by equating supply and de-
mand

pt = a (^(pt | ^) It-i)'0\ + z'ltb.

As in the general presentation, taking the expectation of each member
conditional on It-i, we have

E(JH | It-!) = a (-E(pt | /,_!) - -E(z2t | It-J'p) + E(zlt \ I^'h.

Usually the coefficient a is negative and the coefficient a is positive;
therefore we have (a/a) ̂  1 and the previous equation admits a unique
solution. There is existence and uniqueness of the equilibrium. Also, we
get the following expressions for the price expectation and for the price

E{pt | It-!) = ^ LrE(z2t | it_1y0+
— a/a 1 — a/a

Eiz^ | I^O/S + ^ T
1 — a/a 1 — a/a

+ z'ltb.
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12.3 Dynamic Properties of a Linear Model
with Expectation of the Current Variable

12.3.1 Rational Expectation Model
Before eliminating the expectation and assuming linearity, the reduced

form of the model is of the type

yt = aE{yt | J ^ J + xJb. (12.10)

Let y be the endogenous variable (e.g., the price in the previous ex-
ample), let x be the vector of exogenous variables (including the con-
stant term, in some cases the expected exogenous variables and the error
term), let a and b be the reduced form parameters, in general nonlinear
functions of the structural parameters. As seen previously, we derive
from the previous equation

E(yt | Jt_!) = aE(yt | It_x) + £(xt | Jt_i)'b

and

I — a
with o ^ l .

A careful look at this equation shows that the dynamic aspect will be
derived once the dependence of the exogenous variables with respect to
the past is known. It is necessary to complete the model specifying

(i) the available information It-i',
(ii) the temporal evolution of the exogenous variables and of the infor-

mation.
In general, a different evolution of the endogenous process corresponds

to each of these specifications.

Case of Perfect Foresight Assume the available information It-i
contains the current values x̂  of the exogenous variables. They can be
predicted without any error E(xt | It-i) = x*, and the equation giving
the current value of the endogenous variable is written as

Vt = T ^ x * b + x* b = TZr~*'th

It corresponds to the perfect foresight model

yt = ayt + x£b,

which is without error. As we would expect, the perfect foresight hypo-
thesis appears as a particular case of rational expectation corresponding
to a large enough information set.
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Future Partially Unknown The rational expectation model is never-
theless more interesting, when the future is only partially known. As-
sume that among the K independent variables x, the first K, xt, are
known at time t — 1 and the (K* = K — K), x*, are not. We have

yt = 7 ^ - £ ( x t I /t-i) 'b + T ^ - £ ( X £ | J t - i ) V + x £ + x*V,

yt ^ K + J M | t t Y + ?
1 — a 1 — a

The model must then be completed by specifying the form of the fore-
casts of the exogenous variables x£. Choosing a first-order autoregressive
scheme, we have

£(x*' | / t_x) - H o + x^Hi + xJ_iH2 + x*!1H3 + 2/ t-iH4,

where H o , H i , H2 , H 3 , and H 4 are matrices of sizes, (1 x K*), (K x K*),
(K x K*), (K* x X*), and (1 x X*), respectively. We get a dynamic
model in the variables y, x

Vt T H o b + xj(b + alW) + x b +
1 — a 1 — a 1 — a

+ X^Hsb + yt_lHih

1 — a 1 — a

xf = H o + xjHi + Xt_iH2 + x ^ H a + 2/t-iH4 + v t ,
(12.11)

with J5(vt | / t - i ) = 0.
The model appears in an autoregressive form for y,x*, conditional on

the predetermined variables x.

12.3.2 Comparison with t he Unres t r ic ted Reduced Form

The previous model (12.11) can be compared in a direct way with the
unrestricted reduced form

yt = n 0 ; i f 2 j . ^ 3 j . ^ y t i 5 ,
(12.12)

x*' = Ho -f x^Hi + x;_!H2 + x ^ H s + y t_iH4 + v t.
The existence of a form involving rational expectations on the current
variable yt depends on the form of the reduced-form coefficients. It is
possible if and only if it exists a, b, b* with

IIo = ^ - H o b * , Ili = - L - (b + aHib*) , n 2 = b*.
1—a 1 — a V /

n 3 = T-^-Hab*, n 4 = ^
1 a
T H a b , n 4 H 3 b , n 5 ^
1 — a 1 — a 1 — a
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Letting c = (1 — a)/a, d = b/a this system of constraints can also be
written as

3 c,d,b* : cIIo = Hob*, cUx = d 4- H lD*, U2 = b*,
(12.13)

tfl3 = H2b*, d l 4 = H3b*.
Note that these constraints are linear both in the parameters n 0 , III,
E[2, II3, HQ, Hi, H2, H3, and in the auxiliary parameters: c,d,b*.
This particular form of the constraints will be used to build hypothesis
testing procedures of the rational expectation hypothesis in chapter 13.

12.3.3 Comparison of Various Expectation Schemes

The model (12.10) summarizes in a single relation two quite different
ideas. The expectation effect on the values of the variables is given by

Vt = a t-i2/t+xjb,

where t-iVt stands for the expectation of the variable yt at time t — 1.
On the other hand, we are assuming that the expectation is rational

t-ijjt = E(yt I It-i).

In this section we propose to modify this second part of the model and
to discuss the consequences of such a modification over the evolution of
the endogenous process. To simplify the discussion, we restrict ourselves
to the case of a single independent variable x and we assume that it has
an autoregressive representation

xt = pxt-i + et,

with I p |< 1.

Rational Expectation Model When the expectation is rational based
on the information

we have

= E(yt I It-i) = E(xt I It-i) =
1 al _ a v - « — / i_a~

Hence

2/t = a>t-iyt + &£* = a^t-i + &^t.
I — a

Introducing the lag operator L, we have the joint model

- pL)xt = ct.
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The endogenous process can be expressed as a function of the innovation
e of the exogenous process

Vt = (YZ^L + b) (1 - PL)'1 et. (12.14)

This process admits an ARM A (1,1) representation and in particular is
stationary, whatever the values of the structural parameters a and b
(with a ^ l ) are.

Moreover, it is worthwhile looking at the effect on the endogenous
variable of a shock intervening on the exogenous process. It is custom-
ary to define such a shock as a change in the innovation process e. A
sustained shock of Ae on the components et of the noise leads to a mod-
ification Ax = jzrz Ae in the exogenous variable xt, Ayt = ,1_J)\P(1_ \ Ae
in the expectation t-iVt and

1 / abp \ A

Ay = - —Z- + b Ae
1 - p \ l - a )

in the endogenous variable yt. Thus a modification of the evolution
scheme of the exogenous process has a double effect on the endogenous
process: direct, through the term bxt and indirect through the expecta-
tion

Ay_ = abp _^ b

Ax I-a ' (12.15)

indirect effect direct effect
Moreover the size of the effect depends on the dynamics of the exogenous
process due to the presence of the parameter p (see Lucas, 1972, 1973).
Adaptative Expectation Model Assume now that the expectation
is defined through an adaptive scheme, so that the model becomes

yt = at-iyt + xtb,

t-iVt = A2/t_i + (1 - A) t-22/t-i, with A e [0,1],

xt = pxt-i +e t .
Prom the first equation and the form of the expectations scheme, we
deduce that

yt - (1 - X)yt-i = a(t-iVt - (1 - A)t-22/t-i)

yt - (1 - \)yt-i = o,\yt-i + (xt - (1 - X)xt-i)b,

(1 - (1 - A + a\)L) yt = b (1 - (1 - \)L) xt
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Figure 12.1 Parameter Region for a Stationary Solution

The equation just obtained is of the ARMA type, but does not always
lead to a stationary solution y. For that the parameter 1 — A + a A must
be strictly between -1 and +1. This condition is equivalent to

2
1 - - < a < 1.

A

We give the area for which parameter values lead to a stationary solution
in figure 12.1.

The larger the adaptation coefficient A is, the smaller is the interval
of values a leading to stationarity. In the presence of stationarity the
effect on the endogenous variable of a sustained shock on the exogenous
variable x is

Ay 6 (1 - (1 -A) ) _ b
Ax 1-fl-

Ay
Ax

ab
1-a

aA)

+ b.

1 - a '
(12.16)

indirect effect direct effect
We find again a decomposition of the effect into a direct effect of x and
an indirect effect through the expectation. Since the adaptative expec-
tation scheme is chosen independently of the evolution of the exogenous
process, we see that the indirect effect is independent of p. It is also
independent of the adaptation coefficient A.

12.4 Models with Future Variables Expectations
The original Muth model introduced in the previous section leads to an
equation, where the endogenous variable yt is a function of the expecta-
tion of its current value E(yt \ It-i) and of the values taken by various
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exogenous variables (observable or not). The fact that in general such
an equation admits a unique solution simplifies its study. In this section,
we consider a seemingly minor modification of the initial formulation, by
replacing the rational expectation of the current variable E(yt | h-i) by
the expectation of the future variable E(yt+i \ It)- As we will see later
on, this change has an important impact on the solutions of the model,
since in this case the model has an infinity of solutions to be studied in
detail.

12.4.1 An Example

A classical model with expectation of the future variable is used to de-
scribe the evolution of the price of a financial asset.

Let us first consider a deterministic environment and let pt be the
price of the asset at time £, let dt be the dividend paid over the
period [t,t + 1), and let 77 be the short-term interest rate (assumed
constant). The condition of no dynamic arbitrage opportunity implies
the equilibrium condition

Pt = Y ^ - ( P t + i + * ) (12.17)

with t > 0. This means that the dividend compensates exactly for the
present discounted change in price.

Analogously, in an uncertain environment, a relationship of the same
type is often written by replacing the future price by its expectation

^ \ I t ) + d t ) (12.18)

with t > 0. Thus, we implicitly assume that the dividend dt and the
interest rate rj are known at time t. On the other hand, we have as-
sumed that the equilibrium model in an uncertain environment is di-
rectly derived from the model in a certain environment by replacing
some variables by their conditional means.

12.4.2 Description of the Solution Methods

In this section, let us consider a reduced form equation analogous to
the price equation (12.18). Let yt be the endogenous variable, It be the
available information at time t. The equation is

yt = aE(yt+1 \It) + ut (12.19)

with t > 0.
Let us assume that the distribution of the residual term (ut,t > 0)

is given. A solution of the equation (12.19) is a process (yt,t > 0)



Expectations 469

compatible with the relation. In order for the expectation of the variable
to have a real effect on the realization we constrain the parameter a to
be different from 0.

Forward-Backward Approaches A first suggestion consists in solv-
ing recursively the equation toward the future (forward approach) or
toward the past (backward approach).
Forward approach
The recursive solution toward the future leads to

yt = aE(yt+i \ It) + ut

= a2E(yt+2 | It) + ut + aE(ut+i-i \ It)

It) + ut + aE(ut+i | /*) + . . . + a1'1 E(ut+i-i | h).

If the series of general term alE(ut+i \ It) converges, the equation (12.19)

has the particular solution, called the forward solution

It). (12.20)
i=0

Note that if the residual exogenous term ut is stationary, we have

var (E(ut+i \ It)) < var (izt+i) = var(ixt).

As soon as a is smaller than 1 in modulus, we have the convergence in
quadratic mean of the series defining yf.

Theorem 12.3: A sufficient condition for the existence of the forward
solution is the stationarity of the exogenous process and the restriction
lakl.

Example 12.2: When the exogenous process is a first-order autore-
gressive process

with | p |< 1, we have

H | h) — P v>t)

1

Note that the series converges if | ap \< 1.
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Remark 12.1: In some applications the forward solution may have
interesting economic interpretations. Consider equation (12.18) giving
the evolution of an asset price. The forward solution provides the price

2=0 ^ *

oo

= £
where Vt = X ^ o (i+ \t+i dt+i is interpreted as the present discounted
value of the sum of the dividends paid between t and oo. p%° is then the
expectation of this discounted value.
Backward approach
To solve backward the equation (12.19), we need to be able to express
the future value yt+i as a function of the current value yt. Therefore we
need to extract the realization yt+i from its expectation E{yt+\ \ It)-
As a first step, we often examine whether there exists a solution with
perfect foresight, such that 2/t+i — ^(2/t+i I It)- The extraction problem
is then solved right away and the equation becomes

yt = ayt+i + ut

1 1
= -yt ut

a a
1 1
-yt-i —u>t-i-

a a
It is an equation without expectation which can be directly analyzed.
Assuming that the process {ut} exists also for negative indexes, by sub-
stitution we see that the series (if it exists)

2 = 1

is a solution to the initial equation (12.19), since the information set It

contains the current and past values of the exogenous variable appearing
in the residual term Ut.

Theorem 12.4: When the series of general term ~TUt-i converges (in
quadratic mean) and when the information It contains ut,ut-i,... then

is a solution to the rational expectation model (12.19). It is called the
backward solution.

This particular solution can be written in a synthetic form by introducing
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the lag operator L. We have
0 0 1 T

a a LJ
2 = 1

When the process {ut} is stationary, we see right away that the backward
solution exists if and only if the coefficient a is greater than 1 in modulus.

Linear Solutions
Exogenous Variable Dynamics
It is often convenient to complete the initial formulation by describing
the dynamics of the exogenous variables {ut,t>0}. In a moving average
framework, let us assume that

t 00

ut = ̂ hjet-j =^2hjet-j = h(L)eu
j=o j=o

where e = (e*, t > 0) is a multidimensional white noise, Et — St if t > 0,
et = 0 if t < 0, and h j , j = 1 , . . . , are row vectors.
Linear Solutions
Assume the available information at time t is made of current and past
values of e. We can see if there exist some solutions y allowing for a
similar expression as for Ut. This amounts to writing

00

yt =c(L)et = ^2cjet-j.
3=0

When this moving average form is imposed, we have

(£) — c0 ^
e2/t+i = c(L)e t+i = coe*+i H

M \ It) + E

Replacing it in the dynamic equation for ?/, we get

yt = aE{yt+l \ It) + ut

^ c(L)et = aC{L\~Coet + h(L)et

L — a L — a
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This method is just an undetermined coefficient approach such as the
one used by Muth (1961) or McCallum (1976). The use of polynomials
in the lag operator simplifies this solution a lot. Note that the moving
average operator obtained, c(L), depends not only on the dynamics of
the exogenous variables h(L), and on the structural parameter of the
conditional model a, but also on the auxiliary parameters in the row
vector CQ the size of which is p.

Theorem 12.5: Let us consider the model yt = aE(yt+\ \ It) + ut,
where the exogenous process satisfies

ut = h(L)et

and where the information is

It = (et,£t-i,itt-2, •. •) •
This model admits an infinite number of linear solutions given by

Lh(L)\ _
1 e*L — a L — a )

where Co £ Rp (p being the size of et).

In the present context, the backward solution always exists and is given
by

B L Lh{L) _
L — a L — a

Comparing this equation with the general expression for the linear solu-
tions, we see that the latter can be expressed as functions of the back-
ward solution

aco ~ , B

yt = --T—et + yf-
L — a

The linear solutions span an affine space containing the backward solu-
tion and of dimension equal to the size p of the underlying noise.
Stationary Linear Solutions
The previous solution allows one to get the results relative to the asymp-
totically stationary case. Let us assume an asymptotically stationary
exogenous process

j=0

0 ^ ;

Among the linear solutions previously obtained, we can select the
asymptotically stationary ones. We need to check if YJ%,OCJC'J

 ls finite
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or not. Since

c(L) = —!— (-oco + Lh(L)),
L — a

two cases have to be considered:

(i) If | a |> 1, the moving average representation of ^ ^ corresponds
to a convergent series and the solution is asymptotically stationary
for every choice of Co-

(ii) If | a |< 1, the representation of ^-^ corresponds to a noncon-
verging series. The condition 2 ° l 0

 cJc'j < °° c a n on^v ^e satisfied
if a is a root of the numerator. The only possible choice of the
auxiliary parameter is CQ = h(a).

Theorem 12.6: Consider the model yt = aE{yt+\ \ It) + Ut, where the
exogenous process is stationary and defined as

ut = h(L)et,
j=o

and where It = (e t ,e t_i , . . . ) .
(i) If\a\>l, the model admits an infinity of stationary solutions

ac0

with c0 G F .
(ii) If | a |< 1, the model admits a unique stationary linear solution.

It is given by
Lh(L) - ah(a)

Vt = j e t .
L — a

When | a |< 1, we have seen that the forward solution exists. It coincides
with the one derived in theorem 12.6

F Lh(L) - ah(a)
Vt = -J —ct-

L — a

General Solution
Approach Based on the Homogeneous Equation
The equation to solve is a linear difference equation, up to the presence
of the expectation term. This kind of linear difference equation is usually
solved by searching for the solution of the corresponding homogeneous
equation. The same steps can be followed in our context (see Gourieroux,
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Laffont, and Monfort, 1982). Let (y%) be a solution (called specific) to
the equation and yt be another solution to the same equation. We have
at the same time

yt = aE(yt+1 | It) + ut,

Taking the difference and using the linearity of the conditional expecta-
tion, we notice that the difference zt = yt — y® between the two solutions
satisfies an homogeneous equation

zt = aE(zt+i | It)

^alzt = at+1E(zt+1 | It).

The process (mt = atzt) is such that the rational expectation

E(mt+i | It)

coincides with the naive expectation mt, i.e., it is a martingale.

Theorem 12.7: // (y%) is a specific solution of the equation, the other
solutions are obtained by

o 1Vt =yt+—tmt,

where {mt) is a martingale which can be arbitrarily chosen.

Introduction of the Forecast Errors
An approach which seems to extend easily to more general models was
proposed by Broze, Gourieroux, and Szafarz (1985). The idea is to use
the same steps as for the backward solution without assuming perfect
foresight anymore. More precisely, by introducing the forecast error, we
can always express the expectation as a function of the realizations

2/t+i = E(yt+1 | i t )+ €?+!•

The process {e£} must have the properties of a forecast error process
E(et | It~i) = 0, thus must be a martingale difference sequence.

The initial equation yt = aE(yt+i | It) + ut can then be replaced by
yt = a>(yt+i — e?+i) + ut, or in an equivalent way

1 ut-i . oyt = -yt-i + et.a a
Of course, the possible choices for the forecast error are to be found.
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Theorem 12.8:

(i) If y is a solution to the rational expectation model, then y satisfies
the linear difference equation

Vt = -yt-i

a
y t i q , »

a a
where e® is the forecast error on yt.

(ii) Conversely, let e° be a random martingale difference sequence and
let y be a solution to the difference equation

a a
Then y is a solution to the rational expectation model.

PROOF: We just need to verify the second part of the proposition. For
that, we can compute the forecast conditional on It-i for each of the
elements of the difference equation

E(yt | I^) = -yt.! - ^=1 + E(e°t | It^)

= -yt-ia y t i ,a a
since (ej) is a martingale difference sequence. We deduce that we have
necessarily

e°t=yt-E(yt \ It-i).

Replacing e° by this expression in the difference equation, we get

yt = -yt-i — + yt - E(yt \ h-\)
a a

& yt-i = aE(yt | It-i) -h ut-u V t

But this is the initial equation, n

12.4.3 Properties of the Solutions Set

Effect of a Terminal Condition When the solution is known at a
time to, from the equation we have that

2/to-i = aE(yt01
 Jt0-i) + uto-i,

i.e., yto-i is a function of the exogenous variables and of yto, and there-
fore is also known. By backward substitution, once yto is known, we see
that the set of past values yto-i, 2/to-2> • • • is determined.
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Figure 12.2 Multiple Solutions in the Future

Effect of an Initial Condition On the other hand, the future value
is given by

2/to+i = -yt0 - ~r + eto+n
(Jb (Ji

where e£0+1 is any variable orthogonal to Ito. Thus, there is an infinite
number of future values yto+i compatible with a given value at time to.

Examining the value 2/to+2> we have

= ayt^- a + 6

uto . 0
T" e *o+2

6

a* a a* "u' ** a
This time, the multiplicity comes from two arbitrary variables

orthogonal to /t0, respectively, to Ito+i- Thus there is an increase of
the multiplicity as the horizon increases, for a given value yto (cf. figure
12.2).

This multiplicity is specific to the expectation models and does not
exist in the corresponding deterministic models (that is, with perfect
foresight) yt = aj/t+i 4- Ut>

Sunspots Often we choose the information set as the one spanned by
the current and past values of the exogenous variables of the underlying
structural model. We could also extend the set It as to include some ob-
servations on some explanatory variables independent of the exogenous
disturbances. Such variables, "external" to the initial structural model,
are often called sunspots. To simplify matters, we consider only linear
cases; we can introduce the sunspots by writing

ut = h(L)et = hi(L)eu + h2(L)e2t = hi(L)eit.

The residual variable depends only on the innovation variables e\ and
does not depend on the outside innovation variables e2. Moreover, we
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impose the independence between e\ and £2- From theorem 12.5 the
form of the linear solutions can be written as

Vt = -1 — a J L — a
The solution may depend on these outside variables €2 although the
latter do not really enter the structural model which expresses the real-
ization yt = CL ti)t+i +u>t as a function of the expectation tj/t+i. Thus just
thinking that sunspots may have an influence, say, on prices and taking
into consideration these outside variables in the expectation formation
can lead to a real effect on prices themselves, and reinforce the agents'
idea that sunspots matter.

Moreover, using the independence of e\ and £2, note that

var (yt) = var - - e l t + -7 eu + var e2t

L — a L — a J \L — a

> var c l t +
L — a L — a

The presence of these outside variables leads to a greater variability in
the solution.

Variability of the Stationary Linear Solutions Restricting our-
selves to the stationary linear solutions, and considering the case | a |> 1,
we can write

/ ^ + (
\ L — a L — a J

with c0 G F .
Let us introduce the processes

0 _ Lh(L) j _ a

with j = 1,... ,p, and where ejt indicates the j-th component of e*. The
general solution is written in the form of an affine linear combination

v

The question is now whether there exists a choice of coefficients c ,̂
j = 1,... ,p, leading to a minimal variability of the solution (cf. Taylor,
1977). This is the same as solving the problem



478 Chapter 12

The optimal choice dj j = 1,... ,p of the coefficients corresponds to the
opposite of the regression coefficients of y® on y[, j = 1,... ,p

KCV) VCOV(y\,$) . . . var (yf)

= - (var (y*))"1 cov (yt, j/°),

withy* = (yt,...,yt)''
The minimum variance solution is therefore

p

and is interpreted as the residual of the previous regression. In particular
it is orthogonal to the variables y{, j = 1,... ,p.

All the other solutions can then be written as
p

The corresponding variance is

var (yt) = var (yt) -f (c - c)'Var(yt)(c - c),

which is a variance decomposition into the minimum variance and the
deviation with respect to it. The solution yt plays an important role as
it corresponds to a less erratic behavior, y is found in the literature as
the bubbleless solution. The other solutions whose variance is greater
are called bubble solutions; the importance of the bubble is measured by
the additional term (c — c)'var (y*)(c — c).

12.5 Models with Several Expectations

Some of the solution methods discussed in the previous sections can
be extended to the case of an equation showing different types of ex-
pectations. Thus, following the martingale difference approach, we can
transform the initial structural model into a dynamic equation with re-
spect to yt by simply rewriting the expectations as a function of the y^s
and the errors. This equation involves observable variables and is the
basis for the solution. Let us start by studying some examples which will
show that sometimes it is necessary to impose some constraints between
successive forecast errors. Then we will describe the general result and
its use in finding stationary solutions.
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12.5.1 Some Examples

A Model with Several Expectations of the Current Variable
An extension of Muth's model consists in introducing in the equation
current variable expectations at various past times. An example of such
a model is

yt = aE(yt \ It_{) + bE(yt \ It_2) + ut. (12.23)

Taking the conditional expectation of the two terms of the equation
with respect to the information set It-i, and then with respect to the
information set /t_2, w e get

E(yt | It-i) = aE(yt \ It_{) + bE(yt | Jt_2) + E(ut \ It_x),

E(yt | Jt_2) - aE(yt \ It_2) + bE(yt | Jt_2) + E(ut | Jt_2),
which allows one to write the expectations of the endogenous variable
as a function of the expectations of the exogenous variables. We have

E(yt | /(_!) = - A - -— 1 —rE(u t | Jt_2) + - ^ — E(ut | 7t_i),
1 — al — a — b 1 — a

E(yt | It_2) = -E[ut | / t _ 2 ) .
1 — a — b

Therefore, the model (12.23) admits a unique solution like Muth's model.
This one is

{1 — a)(l — a — b) I — a

Thus, if the exogenous process verifies a first-order autoregressive process
ut = put-i + et, | p |< 1, and if the information set is made up of the
current and past values of yt, ut, yt-i, ^ t - i , • • •, we have

E(ut | It-l) = pUt-!, E(ut | It-2j = p2Ut-2.

The solution is
bp2ut-2 . ap

Ut = jz rvz rr + Ut-i + Ut.(1 — a ) ( l — a — b) I — a
The dynamics of the exogenous variable has an impact on the dynamics
of the endogenous one through the expectation mechanism.

A Generalization of the Model with Expectation of the Future
Variable An extension of the model studied in section 12.3 is

\ h) + ut. (12.24)

Writing this expectation as a function of the realization and of the fore-
cast error, we get

yt = a(yt+2 - ^ , 2 ) + ^ ,
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with vti2 = Vt+2 - E(yt+2 | It)- Hence

yt = a(yt+2 - 4+2 - 4+

with
e?+2 =yt+2-E(yt+2

cj+ 1 = £(</t+21 h+i)

Therefore we have

yt = -yt-2 - -ut-2 + c? + ej_i, (12.25)
a a

where e° and e1 are two martingale difference sequences.
Conversely, given any two martingale difference sequences e° and e1

and a process y satisfying the equation (12.25), we can get

E(yt | It-2) = -yt-2 - -ut-2 + E(e°t \ Jt_2) + E(e\ \ It-2)a a
1 1

= -yt-2 Ut-2,
a a

by taking the conditional expectation of each term with respect to It-2-
This equation coincides with the initial rational expectation model.

The solutions are thus all obtained considering the equation (12.25)
with any e° and e1. There is here an infinity of solutions "parameterized"
by e° and e1. We will say that the dimension of the solutions space is 2
with respect to the arbitrary martingale difference sequences.

A Model with Expectations of a Current and a Future Variable
Taylor (1977) has obtained the reduced form of a macroeconomic model
with rational expectations as

yt = aE(yt+i \ h-i) + bE(yt | It-i) + uu (12.26)

containing both types of expectations previously examined. Introducing
the forecast errors at horizons 1 and 2, we see that any solution to (12.26)
satisfies

yt = a{yt+1 - c?+1 - e,1) + b{yt - e°t) + uu (12.27)

where (e®) and (4) are martingale difference sequences associated with
the forecast updates.

Conversely, let us consider a solution of the equation (12.27), where
e° and e1 are martingale difference sequences and let us examine if they
can be interpreted as forecast updates.

Computing the forecasts of each member of (12.27) with respect to It

and Jt_i, we get

yt = a(tyt+1 - e}) + b(yt - e°) + uu (12.28)
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and

t—i2/t = a*-i2/<+i + &t-i& + t-i^t- (12.29)
Subtracting (12.28) from (12.27), we get

0 = a(yt+i ~ tj/t+i -e?+i) ,
which shows that the martingale difference sequence ê  is to be inter-
preted as the sequence of forecast errors at horizon 1. Subtracting now
(12.29) from (12.28), we have

Vt ~ t-iVt = a(tyt+i ~ i-12/t+i - 4 ) +k (Vt ~ t-iVt - e?) + ut- t-iut-
Taking into account the expression of e£, note that this equation can be
written as

so that e1 can be interpreted as the update

4 = tyt+i - t-iyt+i,
if and only if e£ = ut — t-iUt-

Equation (12.27) provides a solution to the model (12.26) only if one
of the martingale difference sequences is previously restricted. Here the
forecast error on y at horizon 1 must coincide with the forecast error
at horizon 1 on the exogenous term u. The equation in the observed
variable which is equivalent to the initial model is

yt = a (s/t+i - (wt+i - tut+i) ~ 4 ) +b(yt-ut- t - A ) ) + ut,

1 - 6 w r , 6 - 1
Vt-\ +ut- E(ut It-i) H ut-i

(12.30)
where e1 is an arbitrary martingale difference sequence.

These few examples show that resorting to the introduction of updates
will most probably allow us to find the solutions in a general model,
provided that one examines the various restrictions satisfied by these
updates. Moreover, the dimension of the set of solutions with respect to
the arbitrary martingale difference sequences may vary according to the
number and the type of expectations in the model.

12.5.2 General Cases

The Model The most general linear model with rational expectations
is

K H K

yt = ^2^2akhE(yt+h-k I h-k) + ^2cikoVt-k + ut. (12.31)
fc=0Ji=l fc=l
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The endogenous variable depends on the lagged variables yt-i.. .yt-K,
on a synthesis of the exogenous term ut and on a number of expectations.
These can refer to the future (h > k), current (h = k), or past (h < k)
variables; they can be formulated at dates prior (k > 0), or contemporary
to the realization (A; = 0). h is interpreted as the forecast horizon, H as
the largest horizon appearing in the model.

Expectations as a Function of the Realizations We can express
each of the expectations as a function of the corresponding realization;
we have

h - l

E(yt+h-k | It-k) = Vt+h-k -^24+h-k-j-
j=o

Replacing it in the initial model, we get
K H h - l K

2/* = U S akh(yt+h-k - Y2 ei+h-k-j) + ]C akoyt-k + ut.
k=0h=l j=0 k=l

Introducing the sum of the structural coefficients associated with each
realization

ke{o,...,K}
i + ke{0,...,H}

(with ftOo = —1), we get the equation
/i K H h-l

^ atyt+i = Y,Y,a*>>Y, <+h-k-j - «t. (12-32)
i=/0 k=0 h=l j=0

where the two integers Jo and h are defined by

Jo = min(z : a* ̂  0), h = max(z : a* ̂  0). (12.33)

This equation involves H martingale difference sequences, that is, the
successive updates e°, e1 , . . . , e11'1.

Restrictions on the Updates The previous result shows that every
solution of the initial model satisfies the relation in (12.32) with the
various updates as martingale difference sequences. Conversely, given
arbitrary martingale difference sequences, we can analyze whether a so-
lution y to the equation (12.32) will satisfy the initial structural model
(12.31). Obviously, this is not always the case as we have seen in the
example described in section 12.1.3. In fact, there is a general need for
constraining the martingale difference sequences e° .. . eH-1, so they can
in turn be interpreted as updates. These necessary and sufficient con-
straints are described below (see Broze, Gourieroux, and Szafarz, 1985,
for a proof).
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Theorem 12.9: The solution to the model (12.32) satisfies the initial
model with rational expectations if the martingale difference sequences
satisfy the constraints

i H

fc=O h=0

i = 0,...,ff-/i-l, forH >/i.
If H = I\, the martingale difference sequences can be arbitrarily cho-

sen.

Some Consequences

(i) The previous proposition provides in particular the "dimension" of
the solution set in terms of martingale difference sequences. Ini-
tially there are H martingale difference sequences constrained by
H — 11 linear relations. After solving, there remain I\ arbitrary
martingale difference sequences.

(ii) On the other hand, recall that in the case of the model with future
variable expectation the multiplicity of solutions has two compo-
nents: the first one comes from the dynamics inside the model with
respect to perfect foresight, that is to the fact that y is allowed to
interact with its lagged values. This happens when h ^ Jo. Nev-
ertheless, this multiplicity can be solved by imposing some restric-
tions on the initial conditions. The second cause of multiplicity
comes from the possibility of arbitrarily choosing martingale dif-
ference sequences for I\ > 0. We saw that this cause cannot be
reduced by imposing initial conditions. It seems therefore advis-
able to look for models with a "small" number of solutions.

Theorem 12.10: Rational expectation models whose solutions are char-
acterized by the knowledge of a finite number of initial values correspond
to the case I\ = 0.

For example, this is the case for models such as
K k K

Vt = ^2 1[1 akhE(yt+h-k | h-k) + ^2 afco^-fc + Ut

fc=0/i=l k=l

which contain only expectations of the current or past values of the
endogenous variable.
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Theorem 12.11: The rational expectation models admitting a unique
solution are characterized by Io = I\ = 0.

These are models such as
K

k=l

which contain only expectations of the current variable and which can
easily be solved recursively following the method used for (12.23).
(iii) We could also examine under which conditions a backward solution

exists. Such a solution corresponds to the case where the rational
expectations coincide with the perfect foresight, that is where the
martingale difference sequences e°, . . . , eH~l are all equal to 0. It
suffices to examine whether these zero conditions are compatible
with the restrictions in theorem 12.10 on the updates. Note that
if H > I\ the constraints will be compatible when E(ut+i I h) —
E(ut+i | i t - i) , i = 0, . . . , H — I\ — 1, which corresponds to the
unlikely hypothesis of a predetermination of the exogenous process.
Thus a backward solution can only exist when H = I\.

Some Applications We have gathered in table 12.1 the reduced forms
associated with the various rational expectation models ordered by value
of the indexes i/, if, I\.

12.5.3 Linear Solutions

General Form of the Linear Solutions Let us assume that the ex-
ogenous process admits a moving average representation (possibly non-
stationary)

ut = 9(L)€t,

where
(et, if t > 0,
\ 0, otherwise,

and e is a white noise.
We might be interested in the existence of linear solutions, that is,

admitting a similar moving average expression
yt = A(L)et = aoet + aiet-i + .. . ate0.

The successive updates are then proportional to the innovation of the
exogenous process

i j . (12.34)
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Table 12.1 Various R.E. Models with their Reduced Forms

Ayt = aE(yt | It-i) + ut => yt = Y^E(ut \ It-i) + ut (Muth)

with H = l, K = l, h = 0;

B yt = aE{yt+i \ It) +ut => yt = -yt-i ut-i + e? (Cagan)
a a

with H = l, K = 0, Ji = 1;

C | / t = a£(2/t+i|Jt_i) + ut

=> Vt = -yt-l ut-i +ut- E(ut\It-i) 4- ej_!

with iJ = 2, K = 1, h = 1;

B yt = aE(yt+i\It) + ^/t-i + wt =* 2/t = —J/t—l 2/t-2 ut-\ +
a a a

with H = l, K = l, h = 1;

E 2/t = aE(j/t+i|/t-i) + 6£?(j/t|/t-i) + ut (Taylor)

yt = yt-l +ut - E(ut\h-i) + ut-i E(ut-\\It-2)

with H = 2, if = 1, h = 1;

F j/t = a£(2/t+2|/t) + Mt =̂  yt = -2/t-2 - ~ ^ - 2 + et + 4 -1

with if = 2, K = 0, h = 2;

G 2/t = a

_ b 1 1 0 b (

a a a a

with if = 2, K = 0, fi = 2;

if H

h=l a h=l

H h-1

+ l^ahZ^et+h-j-H ~ ~JiUt~H

h=l j=O

with H = H, K = 0, h=H.
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Conversely, in order to obtain all the linear solutions, it will suffice to
choose martingale difference sequences of this form such that they satisfy
possible restrictions.

Asymptotic Stationarity of the Linear Solutions Let us assume
now that the exogenous process is (asymptotically) stationary. The ques-
tion is whether among the linear solutions there exist some which are
(asymptotically) stationary, i.e., such that

3=0

We can show that the restrictions on the martingale difference se-
quences in theorem 12.10 allow one to express the differences as a linear
function of the last I\ ones, i.e., eH~Jl,... ,eH~1. We can then express
the former as a function of the latter and replace them in model (12.32)
in terms of the realizations. The result is a relation of the type

h H-l Kj

Y a*^*+<= Y Y c3k^Uh-k+9t+hfa)>
i=I0 j=H-h k=kj

where gt (u) is a linear stationary function of the process u as soon as u
is linear and stationary gt(u) = Q(L)e^.

The linear solutions are then parameterized by the coefficients a ,̂
j = H — 11,..., H — 1 and are given by

h H-I / K3

Y ^yt+t = Y [Y
i=I0 j=H-h \k=kj

H-l Kj

)yt=[ Y Y
i=0 / \j=H-h k=kj J

(12.35)
It is an ARMA representation of the linear solutions. Nonetheless, in
order to know whether they correspond to asymptotically stationary
solutions or not, we have to examine the roots of the autoregressive
polynomial and their position with respect to the unit circle.

Let us assume that this autoregressive polynomial admits a root called
Ai inside the unit circle. It is possible to get rid of this root by forcing
it to be a root of the moving average polynomial as well. This implies
the constraint

H-l Kj

j=H-h k=kj
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on the parameters an-in • • •, O>H-I- We can of course follow this ap-
proach for the various roots misplaced in the autoregressive part. This
brings us to the following theorem:

Theorem 12.12: Let N be the number of roots of the polynomial

i=0

inside the unit circle.
If 11 — N > 0, the general stationary linear solution involves I\ — N

arbitrary scalar parameters.
If Ii = N, there is a single stationary linear solution.
If I\ — N < 0, there is no stationary linear solution.

An Example Let us consider the model

yt = aE{yt+2 \ It) + bE{yt+1 \ h) + et

with a^O.
From table 12.1 we get that the general solution can be obtained from

the model
b 1 1 n b n i

yt = —y t - ! + -yt-2 - -et-2 + $ ~ - q _ i + et-i-a a a a
The linear solutions can be derived by taking €® = aoet, e\ — a\et. After
replacing, we get

6 1 1 b
Vt = —2/t—i + -JJt-2 et_2 + aott do^t-i + di^t-i,

a a a a
(a + bL - L2)yt = (aa0 + (aai - bao)L - L2)et.

Various cases must be taken into account depending on the position of
the roots of a -f b\ — A2 = 0.

(i) If the two roots are outside the unit circle, there is a double infinity
of stationary solutions, parameterized by ao,ai.

(ii) If only one of the roots is outside the unit circle, there is a single
infinity of stationary solutions. If Ai stands for the other root, the
parameters ao and ai are restricted by

aa0 + (aai — bao)Xi — A? = 0.

(iii) If the two roots are inside the unit circle there is a unique stationary
solution coinciding with yt — ^t-
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12.6 Multivariate Models with Rational Expectations

12.6.1 A Canonical Form

The results of the previous sections can be extended to the case of mul-
tivariate endogenous variables. The model appears under the form

K H K

Yt = ^2 5Z AkhE(yt+h-k I h-k) + 5Z Afcoy*-fc + u*'
k=0h=l k=l

where yt, ut are vectors of size n and Akh are square matrices of order
n.

The first possible simplification of this expression has to be compared
with the state space representation of an autoregressive model. The idea
is to decrease the number of horizons and lags by considering a series zt

of greater dimension built from the original series and its expectations.

Theorem 12.13: Every model with rational expectations can be rewrit-
ten in the equivalent form

zt = A£(z t+i | It) + Bzt_i + vt

which involves just an expectation on a future variable and a lagged vari-
able.

PROOF:

(i) We will examine whether the two transformations

y t ^ E(yt+1\It)

and

yt - • y t - i

may be composed to recover all independent variables on the right-
hand side of the structural equation.
We get Phyt = E(yt+h | Jt), h = 0, . . . , H, by applying the theo-
rem of iterated projections. Then we can write

LkPhyt = E{yt+h-k | /*-*), * = 0, . . . , K.

(ii) To build the underlying vector z it suffices to consider the various
expectations Phyt = E(yt+h \ It), h = 0, . . . , H. For each horizon
h we can determine the largest number of lags occurring in the
structural equation Kh = max(A: : Ahk ¥" 0)- The elements of the
vector zt are

zkih(t) = LkPhyt = E{yt+h-k \ It_fc),

with h = 0, . . . , H, k = 0, . . . , Kh - 1.
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(iii) The model describing the evolution of zt is obtained by construct-
ing the first equation as the one derived from the structural equa-
tion where all the variables are replaced as functions of the com-
ponents of z. The other equations are obtained using the relations

zo,h(t) = Pzo,h-i(t) = E(zOth-i(t + 1) | It)

with h — 1, . . . , H and fc = 1,. . . , Kh-i- •

As an example, let us consider the following univariate model

Vt = aoiVt-i + ao2Vt-2 + a2oE(yt+2 \ It) + aio#(2/t+i I It)

+ a12E(yt-i | /t_2) + a2i£(2/*+i | Jt-i) -f ut.
The largest horizon is H = 2. At each horizon the largest numbers of
lags are Ko = 2,Ki= 2, K2 = 1.

The underlying vector zt is

/ 2/t \

E(yt | /t-i)

The expectations E(yt+i \ It) = z3t and E(yt+2 \ h) — z>ht are recur-
sively derived by writing

z%t — E(zij+i | /t)andz5t = E(z%j+i I It)-

The other components can then be derived taking lags z2,t = ^i,t-i ,
z4j = zsjt-i. Moreover, since z2,t-i = Vt-2, ^4,t-i = E(yt~i \ h-2) and
^5,t-i — E{yt+\ I h-i), we get the following form which is equivalent to
the initial structural model

/ 0
0
1
0

\ 0

-h

0
0
0
1

0

0

0

0

0

0

0

0

0 /

E(*t+i 1 h)

0

1
0

0

^ 0

0
0

0

0

0
0

1

0

0
0

0

0

0
0

0

0

Zt-1 +

/ut\
0
0
0

\ 0 /



490 Chapter 12

The tradeoff for the decreased number of expectations appearing in the
model is the increase in the dimension and the introduction of a large
number of zeros or normalization constraints on the elements of the
matrices A and B.

12.6.2 Solution

At this stage we will only stress some of the new difficulties concern-
ing the solution of these models referring for general results to Broze,
Gourieroux, and Szafarz (1990). For this matter, we will solve just the
canonical form.

Nonsingular Matrix A Starting from the canonical form

zt = A£7(zt+i | It) + Bzf_! + v t, (12.36)

we can introduce the forecast errors at horizon 1 on the transformed
process z. Let r$ be these errors. After substituting we get an equation
necessarily satisfied by the solutions

zt = A(z t+i - ffc°+1) + Bz t_! + v t, (12.37)
where 17J+1 is a process of dimension equal to the one of z and for which
all components are martingale difference sequences. To examine whether
we can choose this vector process arbitrarily, let us take a process sat-
isfying (12.37) and compute the forecast of each element conditional on
the information at date t. We get

zt - A£(z t + i | It) + Bzt-i + v t,
and subtracting from (12.37), we see that

0 = A(zt+i - £7(zt+i | It) - f?t°+i).
Since A is assumed nonsingular, we see that the martingale difference
must correspond to the forecast error on z and that the solution of
(12.37) satisfies the initial structural model.

Example 12.3: Let us consider the model yt = Ylh=i ahE(yt+h \ It) +
ut. Using the canonical form it can be written as

i l

1

0

a>2

0 .
1 .

0

0

aH

0

0

0 0

E(zt+1 \It)

\ o /
with zt = (yt, E(yt+i | J t ) , . . . , E(yt+H-i I It))' (in this specific case it is
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not necessary to introduce E(yt+H \ h))- The matrix A is nonsingular
since a# is nonzero. We can then arbitrarily choose the elements of

= (yt - E(yt | Jt_i

E{yt+H\It)-E{yt+H-i I h-i))'

Thus we have the possibility of arbitrarily choosing the Jf-th first up-
dates of the initial process y, since H = l\ in this model.

Nilpotent Matrix A When the matrix A is singular, the martingale
difference sequences intervening in rfi cannot be chosen arbitrarily and
would be subject to some constraints. The extreme case is when the
matrix A is nilpotent and B is null; there exists an integer p such that
Ap = 0 or, equivalently, the matrix A has all its eigenvalues equal to 0.
A forward solution can then be obtained
zt = v t

zt = vt + A£(vt+i | It)

zt = vt + AE(vt+i | It) + • • • + A^Efrt+p-i | It) + A*E(zt+p | Jt).
Since Ap is nilpotent, the last term on the right-hand side is 0 and the
model admits a unique solution

zt = vt + AE(vt+i | Jt) + .. . + A ' - ^ v t + p - i | Jt).
Note that the occurrence of a nilpotent matrix is not only a theoretical
one. In fact, it may arise when the initial model exhibits a recursivity
of a certain type such as

3/1* = a>E(y2t+i | It) + 63/2* + wit,

3/2* = ^ 2 t .

This simple case can be solved recursively: from the second equation,
we derive the expectation i£(?/2t+i I Jt)> which can then be substituted
in the first one to get the expression of the first component.
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12.7 Exercises

Exercise 12.1: Is the series vt,h = yt+h - E(yt+h I h), t varying, a
martingale difference sequence? Is it a martingale? What about the
series (vr-t,t), t varying?

Exercise 12.2: Let us consider a first-order autoregressive process

yt = pyt-i + €*, \ p l< i,

and the information set

It = (yt,yt-\,---,yt-K)->

where K is a given positive integer.

(i) Derive the rational expectation at the horizon h

tijt+h = E(yt+h | It) = E(yt+h | yt,yt-i, • • • ,yt-x)-

(ii) Derive the mean square forecast error

a\k = E(yt+h — tyt+h)2-

How does this error vary with /i, with K?

Exercise 12.3: Let (mt) be a martingale with respect to the sequence
of information sets (It). Verify that (dt = mt — ra^-i), t varying is a
martingale difference sequence.

Exercise 12.4: Let (mt) be a martingale. Verify that

E(mt+i) = E(mt) and var (rat+i) > var (mt).

Can a martingale be second-order stationary?

Exercise 12.5: Consider the model
M K

1=0 k=l

with a^^O and where ut = et is a white noise.

(i) Verify that there is a constraint on the updates, and that it takes
the form

e°t = e t .
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(ii) Let us assume that the roots of the characteristic equation
M K

1=0 k=l

are outside the unit circle. Find the stationary linear solutions,
(iii) Show that the stationary linear solutions can all be represented as

ARMA (K + M, M) processes with an autoregressive polynomial
common to every solution and given by

O-M &M

whereas the moving average polynomial can be arbitrarily chosen.

Exercise 12.6: Let us consider the model

yt = aE(yt+i \ h) 4- byt-i 4- czt 4- dE(zt+i \ h) 4- uu

where zt is an exogenous variable and (ut) a white noise. Verify that
the solutions are obtained from

( o - L 4 bL2)yt = ae°t - czt-X 4- dE(zt \ h-i) - ut-u
where e° is an arbitrary martingale difference sequence.

Exercise 12.7: Find the rational expectation model for which the
canonical form given in theorem 12.13 can be written as

(i) * = .
(ii) Zf-

Exercise 12.8: We consider the linear rational expectation model
K H K

yt = ̂ 2 ]C akhE(yt+h-k | h-k) 4- ^2 akoyt-k 4- ut.
k=Qh=l k=l

Let us assume H = I\ and take an ARMA (po,qo) for the exogenous
process. From equation (12.32) derive the maximum autoregressive and
moving average orders of the ARMA solutions of the model.
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Specification Analysis

13.1 General Remarks on Specification Search

13.1.1 Top-Down or Bottom-Up Approach

The classical econometric approach starts from the estimation of a model
suggested by economic theory. The next step is the comparison of the
model with a more general one to test the appropriateness of the re-
strictions. This approach is dubbed "bottom-up" in that it starts from
a particular model which is extended toward a more general one. This
kind of approach presents a number of advantages: the base model has a
good economic interpretation by definition, the number of parameters is
relatively small, and when the battery of tests for a correct specification
is chosen to be of the Lagrange multiplier type, it is the only model to
be estimated. By the same token, there are some disadvantages deriving
from the fact that the model may be excessively restrictive, that some
of the restrictions are not tested, and that the various hypothesis tests
are not independent. In this chapter we will not follow the classical
approach, which is described in the econometrics textbooks, but rather
we will present a "top-down" approach. This approach starts from a
general model, that is a VAR (Vector Autoregressive) model; an increas-
ingly restrictive set of hypotheses is then tested. Let us start by recalling
some concepts on the main testing procedures available, on the nested
hypotheses, and on the various forms of null hypotheses.
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13.1.2 The Various Testing Procedures

Let us consider a stationary dynamic model, the log-likelihood of which
is LT(0), where T is the number of observations and 0 is the unknown
k-vector of parameters. Let us denote the unconstrained maximum like-
lihood estimator as OT obtained through the maximization of LT(0). Let
us consider a null hypothesis of the type

Ho : {g(0) = 0},
where g is a vector function of size r < k such that dg/d0' has rank
r. We know that there exist three types of asymptotically equivalent
tests for this hypothesis: the Lagrange multiplier (or score) test, the
Wald test, and the likelihood ratio test. These tests are based on the
following statistics

&R = 2 (LT{0T) - L

where (6%,) is the maximum likelihood estimator under if0, (AT) is the
Lagrange multiplier associated with the constraints g(0) = 0, and X is a
consistent estimator of the Fisher Information matrix under HQ

Given ft the density function of the current observations conditional on
the past, we could take

lf^2log/(flT)

( 3 '

( 3 '3 )

J - T^ mm
or

X-T2-<I M dff

with Or = OT or Ofy (cf. Gourieroux and Monfort, 1989, chapter 17).
These tests imply asymptotic critical regions at the significance level a

where £T is one of the statistics above. They are asymptotically equiv-
alent under the null hypothesis (and under a sequence of local alter-
natives). The Lagrange multiplier test statistic £j,M c a n ^e calculated
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only on the basis of the constrained estimator (fy of 0. Instead, the Wald
statistic ^jf can be calculated only on the basis of the unconstrained es-
timator £}f of 0. Hence, the former seems more suitable for a bottom-up
approach and the latter for a top-down (or general to specific) approach.

13.1.3 Nested or Nonnested Hypotheses

Let us assume that in the unconstrained model we have defined a se-
quence of L nested hypotheses

ftf D. . .DJf jDff£- 1 D. . .DiJ 0
1 .

We can then choose the following strategy. We test the hypothesis HQ
at the level OLL in the unconstrained model. If HQ is rejected, we stop
the procedure, otherwise we test Ho ~

l in the model constrained by HQ
and so forth until one hypothesis HQ is rejected, in which case H1^1 is
the more restrictive hypothesis accepted, or HQ is accepted. In practice,
at each step we use one of the classical testing procedures: Lagrange
multiplier or Wald or likelihood ratio tests. If £l

T indicates the statistic
used to test the hypothesis HQ in H1^1 and if the number of independent
constraints needed to pass from H1^1 to HQ is r/, the critical region of
this test is

The top-down approach is summarized in figure 13.1.
The sequence £l

T, / = 1,. . . , L of the test statistics has some interesting
independence properties. We can show (cf. Gourieroux and Monfort,
1989, chapter 19) that the statistics £^,£^l~1, . . . ,££ are asymptotically
independent under the null hypothesis HQ. This result allows us to
compute the significance level of the top-down procedure to test the
hypothesis HQ in the context of the general model. In fact, we reject HQ
if at least one of the conditions

is verified. Using the asymptotic independence, we see that the proba-
bility of such an event tends to 1 — fji=z(l — oti). Note that a statistic
£l

T can be obtained also by using the formula

& = & - & + 1 (13-4)
where £l

T is one of the statistics (Lagrange multiplier, Wald, likelihood
ratio) used to test HQ in the unconstrained model. This remark is par-
ticularly interesting if we use the Wald statistic: the computation of
the statistic ^ a n d therefore of the statistic £^ needs just the estima-
tion of the unconstrained model. In a top-down strategy, therefore, the
Wald tests are the easiest to use. The approach can be extended to the
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Accept the
unconstrained
hypothesis

n o Accept Ho

Figure 13.1 Top-down Strategy

case of nonnested hypotheses. Let us consider L nonnested hypotheses
HQ, I = 1,...,L and let us consider the hypothesis testing for their
intersection Ho = H^HQ. We can consider each hypothesis Hl

0 in the
unconstrained model by testing it at the significance level a/, and ac-
cept Ho if all hypotheses Hl

0 are accepted. When Ho is rejected, this
approach allows one to isolate the hypotheses HQ responsible for the re-
jection. The test statistics are not independent under the null hypothesis
Ho anymore and we cannot compute the exact asymptotic significance
level of the procedure. However, denoting by Wi, I = 1,. . . , L the critical
regions of the various tests, the critical region for Ho is W — UJL-^Wi and
therefore the significance level for the procedure is less than Yli=i ai-

Other Expressions for the Null Hypothesis Until now we have
assumed that the null hypothesis was written as r constraints on the
parameter Ho : g(0) = 0. This is called implicit form. There are other
expressions possible for the null hypothesis. In the explicit form the
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parameter 0 of size k can be expressed as a function of ko parameters A
chosen on the basis of the null hypothesis.

Then the hypothesis can be written as HQ : {0 = h(A)} where h is
a function defined on Rk°. When the parameters (and the constraints)
are independent, we have

r = k — ko.

In the mixed form, the initial parameter 0 is related to some auxiliary
parameters as well. The constraints are of the type

H0 = {3 3ieRkl :g(0,a) = O}, (13.5)

where the function g is of size T\ < k and a is a vector of size k\ <r\.
When the parameters (and the constraints) are functionally indepen-
dent, the dimensions are related by

r = r1-k1. (13.6)

Note that the mixed form is the most general one, in that either an
explicit form is a special case (with r\ = k, k\ = ko = k — r) or an
implicit form can be obtained for the case without auxiliary parameters
(k\ = 0 and r\ — r). The various testing procedures described before
can be suitable for these new formulations of the null hypotheses. In
particular it proves interesting for the top-down approach to describe
the extension of the Wald procedure to the mixed forms. We can show
that a test statistic which is asymptotically equivalent to the likelihood
ratio test is given by

; ^ ^ ) g ( ^ ' a ) ' (13-7)

where

with 8LT a consistent estimator of a. Such an estimator may be obtained
by minimizing g'(0T,a)<7(0T,a). The critical region for this test is

{€T ^ X2i-a(ri ~ ki)}- (13-8)
The solution to (13.7) gives an estimator a^, called asymptotic least
squares estimator, which can be shown to be asymptotically equivalent
to the maximum likelihood estimator of a under the null hypothesis.
Note that if g is linear in a, the minimization is very simple, since it
reduces to the computation of ordinary linear least squares or generalized
least squares. Note also that in the explicit form case 0 = h(a) which is
a special case of the previous one, the computation of ^ simplifies to

&M - min T(0T - h(a))'J(0T - h(a)), (13.9)
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where it is not necessary to compute an intermediate estimator a^ of a.

The Framework of a VAR Model Let us assume that the process
(vt) of size v of the variables of interest is autoregressive stationary of
order p

*(L)vt = c + et , (13.10)

where £t is a normal white noise with a variance-covariance matrix 5]
and where ^(0) = I. Since the parameters intervening in *(L) are
unconstrained, we know (cf. chapter 9) that they can be estimated
by the least squares method equation by equation, which, in this case,
is equivalent to the maximum likelihood method. It is however clear
that in order to estimate the parameters, we need to fix the order of
the maximum lag p. A possible choice comes from fixing a sufficiently
high order Pmax and then testing a smaller order by one. It is a top-
down procedure based on nested hypotheses. Here the estimation is
particularly easy under any hypothesis. We can then use the likelihood
ratio test which has a particularly simple expression. To test the null
hypothesis for the order of the model equal to i — 1 in the general model
of order z, the likelihood ratio statistic is

#*Wlog^%i, (13.11)
det Xii

where S^ is the estimated variance-covariance matrix from the OLS
residuals in a model with i lags for each variable. The test has a critical
region

for an asymptotic significance level a. This result is a direct consequence
of the following lemma which will be used often in what follows.

Lemma: Let zt = Awf + u$, £ = 1, . . . , T a multivariate linear regres-
sion model where zt is a vector of size s, wt is a vector of size k, A is a
(s x k) matrix of unknown parameters and Ut a normal white noise with
unknown variance-covariance matrix ft. Let HQ be a hypothesis on A.
The likelihood ratio statistic is

ir(i) _ T w d e t ^°
det fl

where QQ and Cl are the constrained, respectively, unconstrained maxi-
mum likelihood estimators of ft.
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PROOF: The log-likelihood is

Ts T i ^
-—- Iog2?r - — logdet(n) - - 2^ (z* ~ A w * ) ' ft * (zt - Aw()

or
Ts T 1

—— Iog2?r - - logdet(fl) - - t r (ft'1 (zt - Awt) (zt - Awt)') .
Taking the derivatives with respect to the elements of SI"1 we get

T

Til = ̂ 2 (z* ~ Aw*) (z* ~ A w t ) r •
t=i

The concentrated log-likelihood with respect to ft is

( T \

1 \ 1

^ Yl (Zt ~ Aw^ (Zt ~ A w *) 7 ) ~ 2Ts'
The likelihood ratio statistic can be written as

( / T \

- - logdet I - Y2 (zt ~ A w ' ) (zt ~ Aw*) )
* \ , / " i ^ / A \f A ^ '^^

+ - logdet I - 2^ \*t ~ A o w t J \zt - AowtJ I I

= T log

detO

13.2 Causality Tests

13.2.1 Hypothesis Formulation

The first class of tests which can be implemented in an autoregressive
model are the causality tests. Let us assume that the vector wt is formed
of two subvectors

of dimension n, respectively m. The autoregressive model (13.10) can
then be written as
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with

(eyt\ ( ^v E ^ \ ^var 1 = = £.
\extj \^xy ^x J

We know that an equivalent expression is the block-recursive form pre-
sented in (10.25)

with

= *y(L) -

with

var = y

\ e x t ) V O X
and

We have seen (cf. theorem 10.5) that y does not cause x instantaneously
if and only if Y,yx = 0 or, which is the same, &xy0 — 0. Moreover, y
does not cause x if and only if $xy(L) = 0 and x does not cause y if
and only if $yx(L) = 0. We can then test these various hypotheses.
Let us start by examining the expression of the likelihood. The density
function of yt conditional on y t - i , . . . , y*-p, xt, x t _ i , . . . , x*_p is normal
with mean

v v

i = l i=0

and variance-covariance matrix S+. This density can be denoted by
ft \yt',<t>y), where <$>+ collects the parameters of the distribution. By
the same token, the distribution of x^ conditional on y t_ i , . . . ,y*-p,
Xt- i , . . . , Xf_p is normal with mean

and the density of which is denoted by ff (x*; <px). The likelihood (con-
ditional on p initial observations) can then be written as

T

Hf?lx(yt;<t>t)f?(xu<t>x) (13.14)
t=l
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and the log-likelihood is
T T

LT(8) = J2 log f?x{yf,<t>t) + £ log /tx(xt;4>*), (13-15)
t=l t=l

where 0 is the set of parameters of the model (i.e., 0+ and <f)x). The
log-likelihood is then formed of the sum of the two terms

LT{0) = if\<j>+) + LU<f>x). (13.16)

13.2.2 The Instantaneous Noncausality Test

The instantaneous noncausality between y and x (hypothesis H\) is
defined by the constraint &*x0 = 0. This condition involves a subset of
parameters of </>+. From decomposition (13.16) the maximum likelihood
estimator of <f>x under the null hypothesis of instantaneous noncausality
is identical to the unconstrained maximum likelihood estimator <fix. The
likelihood ratio statistic is then

= 2

= 2 (Lf{4>+) + LX
T(4>X) - Lf{4>+°) - LU4>X)) (13.17)

The estimator 0+ is obtained by regressing each component of yt on the
elements of y*_i, . . . , yt-p, x^- i , . . . , x^_p plus a constant. In particular
the estimator of £+ is the empirical variance-covariance matrix X1+
of the residuals in this regression. Analogously, the estimator <f>+° is
obtained by excluding the elements of x* from the list of regressors. Also
in this case, the estimator of S+° is the empirical variance-covariance
matrix Ŝ ~° of the residuals in this regression. From lemma 13.1, the
likelihood ratio statistic (13.17) is equal to

m detS+°
#>=riog—^p (13.18)

det Zjy

In 10.2.4 we have shown that a measure of instantaneous causality is

C l £Cx«v l o g £ ,
det zly

so that

#> = TCX»y,

where
detX3+°

X^y = lOg
detEj
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is the empirical measure of instantaneous causality. The number of con-
straints implied by the noncausality hypothesis is equal to the number
of elements in ^J x 0 ' ^na^ lsi nm" Therefore, the critical region at the
asymptotic significance level a is

Ur} > Xi-a(nm)}. (13.19)

13.2.3 The Noncausality Tests of y to x and of x to y

The noncausality of y to x (hypothesis H2) is characterized by the poly-
nomial $>xy(L) being equal to 0, that is by the fact that a subset of
parameters in <f)x is equal to 0. By analogy to the previous section,
we can use the decomposition (13.16) to show that the maximum likeli-
hood estimator of (/>+ under a noncausality hypothesis is identical to the
unconstrained maximum likelihood estimator. Therefore, the likelihood
ratio statistic is

£<?> = 2 (L£(0X) - LU4>°xj) , (13.20)

where 4>x and <f)x are the unconstrained, respectively, constrained max-
imum likelihood estimators of <f>x. From the lemma above we get

(13.21)

where Ex (respectively, E!J) is the empirical variance-covariance matrix
from the residuals in the regressions of the elements of xt on the elements
of y t _ i , . . . ,yt-P, x t _ i , . . . ,xt_p, respectively, x t _ i , . . . ,xt_p. The num-
ber of parameters in &xy(L) is nmp, so that the critical region at the
asymptotic level a is

ttr2) > Xi-a(nmp)} (13.22)
From the results in section 10.2.4 we can also write

Z;T — 1 O^-^x ,

where Cy^x is the natural estimator of

Obviously, we can invert the role of x and y so as to derive the expression
for the likelihood ratio test for the null hypothesis of noncausality of x
to y (hypothesis i/3)

4 3 ) ^ S (13.23)

where t,y (respectively, Ej) is the empirical variance-covariance matrix
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from the residuals in the regressions of the elements of yt on the elements
of y t _ i , . . . ,yt-p, x t - i , . . . ,xt_p, respectively, y t _ i , . . . ,yt_p. Also

£•(3) T1/^

The critical region at the asymptotic level a is

4 3 ) ? (13.24)

13.2.4 Test of Independence

The independence between the processes y and x (conditional on the p
initial values) is denoted by H4 and is characterized by

that is, the intersection of the three noncausality hypotheses. By anal-
ogy, again, the statistic for the likelihood ratio test is

(4) det£°detE°
#) = Tlog * \ (13.25)

det ZJ

where £ is the empirical variance-covariance matrix of the residuals
from the regression of the elements of y* and x̂  on the elements of
yt-i, • • • ,y*-P, x^_i,... ,Xt-p. The critical region at the asymptotic
level a is

{^ 4 ) >X?_>m(2p+l ) )} . (13.26)
Note that

and that
xr(4) _ ^(i) , A2) A3)

13.2.5 The Order of Testing

The tests proposed in the previous sections refer to hypotheses Hi, i =
1,.. . , 4 in the general unconstrained VAR model. In order to get back
to a top-down procedure of the kind proposed in section 13.1, we can,
for example, define the hypotheses

H\2 = Hi n H2

H123 — Hi n H2 n H% = H\

and examine the sequence of nested hypotheses

H\ D H12 D H123 = H4.

Let us denote £^ the likelihood ratio statistic to test Hi in the general
(12^

model, £j, the likelihood ratio statistic to test H12 in Hi, and
the likelihood ratio statistic to test H123 in Hi2.
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We have the following:

Theorem 13.1:

.(12) _ J2)

^(123) _ .(3)

PROOF: The decomposition (13.16) shows that the imposition of a
constraint on 0+, namely, &y~x0 — 0 does not change either the un-
constrained estimation of <f)x or the constrained estimation under H2-
Therefore f̂  = £^ . By the same token, if we impose Hi and H2, the
constrained log-likelihood can be written as

where (f)x contains the elements of (f)x different from the coefficients of
$>xy(L). The likelihood ratio statistic to test H% in this constrained
model is therefore

£<123> = 2 (L* (0y) - L* (0°)) .

Inverting the role of x and y, expression (13.20) shows that £^ — ^T •
•

The general results recalled in section 13.1.3 show that, under if 12, the
statistics £^ and £^ are asymptotically independent. From theorem
13.1, %T and £^ a r e a l s o asymptotically independent under Hi2. More-
over, we see that under # i 2 3 = HA the statistics $ \ £^!2), and £̂
and thus the statistics £^ , £f\ and £^/ are asymptotically indepen-
dent. This remark allow us to test the hypothesis H4 of independence
by taking

(41 } > Xi -«>m)} U { # > x\-^nmp)} U {^3) > Xi-a3(nmp)}
as the critical region.

The asymptotic significance level of this test isl — (1 — ai)(l — a2)(l —
as). The advantage of following this procedure relative to a test based
on %!£' is that once the hypothesis is rejected, one can trace back the
origin of this rejection. The order chosen, that is, Hi D i/12 D #123,
is not the only one which supplies test statistics suited to verify the
validity of the unconstrained VAR model, i.e. f̂  , £^ , £^ . In fact,
we can verify that the only two cases where this is not true correspond
to testing Hi as the last one. This is a consequence of the fact that,
if Ytyx is not 0, the constraint $>xy(L) — 0 modifies the estimation of
&y(L) and of &yx(L) (and conversely, if we invert the role of x and y
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- cf. exercise 13.3). Therefore, one should avoid testing instantaneous
causality last.

13.3 Tests for Predeterminedness and Exogeneity
and of Existence of a Structural Form

The concepts of predeterminedness and exogeneity are strictly related
to the structural form (cf. chapter 10). Let us then consider a structural
form expressed as

Aoyt + .. . + Apy t_p + Box t + .. . + Bpx t_p + /x = eu (13.27)
where AQ is nonsingular and where (et) is a white noise with variance-
covariance matrix Q, uncorrelated with past values of yt. Let us denote

r = (Ao,Ai, . . . ,Ap ,Bo ,Bi , . . . ,Bp,/ i )

ro = (Ao ,Bo).
These parameters are constrained by the relationship

RvecT = r (13.28)

where R is a known matrix of rank q and of size (qxn((n+m)(p+l) + l))
and r is a known vector of size q. Some of the constraints involve the
parameter matrices AQ and Bo- We will assume that (Ao,Bo) only
appear in the go constraints

RovecTo = r0. (13.29)
Finally, we will assume that the identifiability conditions of T (theorem
10.11) and of contemporaneous identifiability (10.34) are satisfied.

13.3.1 Test of Predeterminedness

We have previously seen (cf. definition 10.7) that the process x is pre-
determined for a structural form satisfying the simultaneity structure
(13.29) if and only if there exists To = (Ao, Bo) such that

Rovec To = r0

The hypothesis of predeterminedness is of the mixed type presented
in the previous section. Here the initial parameter 0 is made of the
components of &^XQ and the auxiliary parameter is equal to vec IV The
system of constraints defining the null hypothesis of predeterminedness
{HP) can be written as

Rovec To = r0
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The procedure to obtain the test statistic here is very simple because of
the linearity of the system in the auxiliary parameter a = vec To. The
statistic £t

p is obtained as follows:

(i) We estimate the auxiliary parameter vec To by OLS in the model

((*+;0 Im)®In)vecr0 = u

subject to the constraints

RovecTo = r0,

where &yx0 is the OLS estimator of &y~XQ. Let u s denote the esti-

mator thus obtained as To = (Ao, Bo J.
(ii) We apply generalized least squares to the same model taking as

the variance-covariance matrix of the error u

(u) = var (Vec ( A o * ^ + B0J Jvar

var (vec&yx0) \Im 0 AoJ

where var (vec &^XQ) 1S the estimated asymptotic variance-covari-
ance matrix of

(iii) The test statistic £p is equal to T times the minimized value of
the loss function used at the second stage

f£ = Tminu' (var (u))"1 u.
To

The test has a critical region defined as

since in this case the number of constraints is r\ — nm + go>
the number of auxiliary parameters is k\ — nm + n2, and thus
n — k\ = qo — n2. It corresponds to the degree of contempora-
neous overidentification. Note that the previous test procedure,
based on asymptotic least squares, needs some regularity condi-
tions which are verified since the matrix Ao is nonsingular, and the
contemporaneous identifiability condition is satisfied (cf. Monfort
and Rabemananjara, 1990).

13.3.2 Tests of Strict Exogeneity

We have seen in definition 10.8 that the hypothesis of strict exogeneity
of x corresponds to the intersection of the hypothesis Hp of predeter-
minedness and of the hypothesis H2 of noncausality of y to x. It can be
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characterized as
Rovecro = r0,

A0*+x0 +
 Bo = 0,

&xyi = 0, i = l , . . . ,p .

First of all, it can be easily shown that the maximum likelihood estima-
tors of the contemporaneous coefficient &*x0, on the one hand, and of
the lagged coefficients &xyi, i — 1,... ,p, on the other, are asymptoti-
cally independent. In fact, the elements of the matrix $>^x0 belong to
</>+, those of the matrices &Xyi belong to <j)x. On the basis of (13.16) we
know that the corresponding Hessian matrix

d2LT

dOdO'

is block-diagonal relative to <£+ and <j)x. The statistic £|? for the test
of strict exogeneity based on the asymptotic least squares (13.7) can be
decomposed as

$ = £ + $\ (13-30)

where Q' is the noncausality test from y to x. Moreover, the two
statistics £*£ and £^ are independent under the hypothesis of strict
exogeneity. Therefore, to test the strict exogeneity hypothesis of x in
the general model, there are two possibilities. First, it is possible to use
the statistic £|? directly. The critical region at the asymptotic level a is
then

Second, it is possible to use a critical region of the type

{£ > Xl-ai («b - n2)} U (4 2 ) > x2i-a2(nmp)}.

Making use of the asymptotic independence just shown, we see that
the asymptotic significance level of this test is 1 — (1 — «i)(l — 0̂ 2) =
ot\ + a2 - aia2. The latter approach traces back the rejection of the
null of strict exogeneity whether this is to be attributed to the rejection
of predeterminedness and/or of noncausality.

13.3.3 Test of a Weak or Strong Structural Form

By definition, there exists a weak structural form (13.27) satisfying the
constraints (13.28), if there exist some auxiliary parameters
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such that

A0*+xi + Bi = 0, i = 0,. . . ,p

Ao*Ji + Ai = O, i = l , . . . ,p

Aoc+ + M = 0,

RvecF = 0.
This is still a mixed-type hypothesis, linear in veer. We can then use
the same kind of procedure as for the test of predeterminedness, based
on OLS and GLS. The conditions of validity of the test are satisfied given
the nonsingularity of the matrix AQ and the identification condition. If
we denote the obtained statistic as ($ the test has a critical region at
the asymptotic significance level a

{& > Xl-a(q - n2)}
since in this case ri = nm(p+l)+n2p + n-\-q, k\ = (p+l)(nra + n2)-hn
and hence r\ — k\ = q — n2; this is the order of overidentification. We also
know that (cf. theorem 10.10) that the hypothesis of the existence of a
strong structural form is identical to the intersection of the hypothesis
of existence of a weak structural form and of noncausality from y to x.
If we denote ^ the corresponding test statistic of a strong structural
form we have, for the same reasons as in the previous section

since ($ and $' are asymptotically independent under the null hypoth-
esis Hs of the existence of a strong structural form. We can therefore
test the hypothesis Hs in two ways: the critical regions are, respectively

and

with a = OL\ + Q!2 — ot\ot2' Recall (cf. section 13.1.4) that, as a by-
product, the previous testing procedures provide an estimator of F which
is asymptotically equivalent to the full information maximum likelihood
estimator and which can be obtained just using ordinary and generalized
least squares.

13.3.4 Order of Testing

Summarizing, we have six hypotheses:

Hy General VAR hypothesis
Hp Hypothesis of predeterminedness of x
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Figure 13.2 Ordering of the Tests

Table 13.1 Vafces o/ Test Statistics

Null Hypothesis H2

Test Statistic 1.3 72.7 39.8
Degrees of Freedom 4 60 44
Asymptotic p-value 0.86 0.13 0.64

HE Hypothesis of strict exogeneity of x
H2 Hypothesis of noncausality from y to x
Hw Hypothesis of a weak structural form
Hs Hypothesis of a strong structural form

In order to go from the less restrictive Hv to the most restrictive
if5 there are three possible descending procedures. These paths are
summarized in figure 13.2 where the test statistics are reported with the
related degrees of freedom.

The three statistics ££, £ p , ($ — ££, used for no matter what path
from Hy to Hs are asymptotically independent under Hs and
therefore we can control the asymptotic significance level of such a
top-down procedure.

13.3.5 An Example

Let us consider a model of the type wage-price loop in which the endoge-
nous variables are the hourly wage W, the producer price PP and the
consumer price CP. The potentially exogenous variables are IP import
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Table 13.2 Sequence
Hy D Hp D H\y D

Null Hypothesis HP Hw Hs

Test Statistic 1.3 38.8 75.4

Degrees of Freedom 4 40 60

Asymptotic p-value 0.86 0.52 0.09

prices, EP energy prices, AP agricultural prices, Q productivity, and U
a measure of the excess labor supply (cf. Monfort and Rabemananjara,
1990). The series are seasonally adjusted quarterly series for the French
economy between 1962Q2 and 1983Q4. After various tests on the num-
ber of lags, a block-recursive VAR model of order 4 was retained for the
variables expressed in growth rates (approximated by a first difference
on the variables in logs - denoted in small letters) except for the variable
U. Constant terms and dummy variables (Dl for 1968Q2 and D2 for
1968Q3) have been added. The retained structural form is

4 4 4

2=1 2=0 2 = 0

4

4 2J 7i8iAUt-i 4 a\D\ 4 a2D2 4 u\t,
2=0

i=0 i=0

4 4

^ 7 t _ i -h ̂  726zAapt_i + ^ 7
i=0 i=0 i=0

a3Dl + a4D2 + u2t,
4 4 4

63 + ̂ 2<y33iAcpt-i + Yj31iAppt-i + ^
i= l 2=0 2=0

7 t_i 4- a 5 D l 4 a6l>2 4 iX3t-
2=0

The three statistics to test predeterminedness, strict exogeneity, and
noncausality, the weak or strong structural form are ££, f̂  , ̂ , using
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Table 13.3 Sequence
HVDHPDHED HS

Null Hypothesis HP HE Hs

Test Statistic 1.3 67.6 43.1

Degrees of Freedom 4 60 40

Asymptotic p-value 0.86 0.23 0.34

Table 13.4 Sequence
HVDH2DHED HS

Null Hypothesis H2 HE Hs

Test Statistic 72.7 1.7 43.1

Degrees of Freedom 60 4 40
Asymptotic p-value 0.13 0.79 0.34

the notation of the previous section. These statistics are given in table
13.1, using the correction by Anderson (1958) to obtain a statistic with
a finite sample distribution closer to the asymptotic distribution.

These statistics allow us to construct the three sequences of tests going
from the most general Hv to the most restrictive Hs.

These tables show that the hypotheses of predeterminedness and of
weak structural form are largely accepted by the data. On the contrary,
the hypothesis of strict exogeneity and thus of strong structural form is
much more uncertain. In particular the sequence Hy D Hp D H\y 3
Hs shows an asymptotic p-value for the last test of 9%.

13.4 Tests on the Lag Structure

13.4.1 Common Factor Tests

The Hypothesis Let us consider an equation of the type
p

i(L)zit = €U (13.32)
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where ct is a white noise and the ipi(L) are polynomials in the lag opera-
tor L of degree fa. Let us suppose that ipi(L) is normalized by imposing
T/>I(0) = 1. Equation (13.32) might correspond to one of the equations
of a VAR model or of a structural form. The variables zit are then
endogenous, lagged endogenous, or exogenous variables. Let us exam-
ine now the null hypothesis HR according to which the lag polynomials
^i(L), i = 1,... ,p have a common root. If this hypothesis is true, and
if 1 + pL indicates the common factor to the various polynomials, we
can simplify the lag structure and write the dynamic relationship

ai(L)z«=»7t, (13.33)
2 = 1

where OLI{V) is now the polynomial of degree fa — I defined as ipi(L) —
Qi(L)(l -f- pL) and where r\t is the autoregressive process of order 1
defined as (1 + pL)r]t = £t- We say that a part of the dynamic structure
of the model is driven by the disturbance r\t.

In order to understand the problems posed by the test of such hy-
pothesis, let us start by examining the case of two polynomials of de-
gree 2 and 1, that is, p = 2, f\ = 2, f2 — 1. These polynomials are
ipi(L) = 1 + I/JUL + 1P12L2 and ip2(L) — ^20 + ^21 £ and if they admit a
common root, we have

2 = (1 + pL){\ + j3nL)

^20 + 1P21L = (1 + pL){32o.

We can write the hypothesis under an explicit form, that is, write the
initial parameters as a function of p, /?n, $20

^11 = P + £11 ^12 = pPn ^20 = #20 ^21 = p/?20-
In this expression, though, the relationships are nonlinear in the param-
eters p, ̂ 20 and /?n. An alternative would be to show the relationship
in an implicit form, obtaining a nonlinear relationship among the initial
parameters

, ^21 .

^11 = 7— +
A last possibility is to write this hypothesis in a mixed form, using
Bezout's Theorem as in Gourieroux, Monfort, and Renault (1989)

3/?ii, /fco : (1 + ^nL + </>i2£
2)/?20 = (V>20 + ^2ii)(l 4- /JnL).

Distributing the product we obtain

{ /?20 = ^ 2 0 ,

020^11 =011^20 + ^21, (13.34)

020^12 =011^21-
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This expression is linear in the auxiliary parameters /?n, #20 and in this
case the test based on the asymptotic least squares (13.7) can be con-
structed from OLS and GLS.

The Test Procedure The details of the procedure are as follows: the
constraints (13.34) are linear both in the original parameters i\) and the
auxiliary parameters j3. They can then be written in two different ways

0 1

0

or /i(<0) = H(</>)/3, and

^20
(13.36)

W21/

or a(/3) = A(/3)i/>. Let us denote a consistent estimator of i\) as i/? which
is asymptotically normal VT(ij) — tj>) —» A/*(0, V) and a consistent
estimator of the matrix V as V. In this autoregressive case these esti-
mators are obtained by OLS. The test procedure is articulated in three
steps:

(i) We estimate /3n, /?2o by OLS in the system (13.35) by replacing
ipij by their estimates ipij. Let us denote the result /3n, ^20-

(ii) We estimate fin and /?20 by GLS in the same system using as a
variance-covariance matrix of the disturbances A(^)VA r(^).

(iii) The test statistic ($ is equal to T times the value of the objective
function used in the second step. The critical region of the test at
the asymptotic level a is then {^ > Xi-

General Case The procedure just described can be extended to the
general case considered at the beginning of this section (Gourieroux,
Monfort and Renault, 1989). Bezout's Theorem can be written as:

Theorem 13.2: / / the polynomials ipi(L), i = 1,. . . ,p have at most s
roots in common, a necessary and sufficient condition for having exactly
s of them, is that there exist p polynomials Pi(L) of degree fa — s verifying
Pi (0) = 1 and such that
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It is necessary to note, though, that the matrix A(/3), obtained by writ-
ing the constraints as in (13.36), is not always a full row rank matrix.
In fact, it can be shown that this matrix has

2 = 1

columns, and

rows and that its rank is q — s < k. In the case just examined, we had
q — 4, k = 3, s — 1, so that q — s = k and A(/3) was of full row rank.
If we take the case of three polynomials of degree 2, though, having a
common root (cf. exercise 13.5), we have p = 3, / i = f2 — fo = 2,
g = 8, fc = 8, s = l, and therefore q — s — 7. If A(/3) is not of full row
rank, the test statistic is obtained as

$ = Trnin

where the superscript + denotes the Moore-Penrose generalized inverse.
In either case the critical region of asymptotic size a is

13.4.2 Rational Distributed Lags

Hypothesis and Test Procedure In the previous sections we showed
an easy testing procedure for the case of a mixed-type hypothesis

when the g function is bilinear in 0 and a (cf. Gourieroux, Monfort,
and Renault, 1990, for further details). The hypothesis of a rational
distributed lag is also of this form. Indeed, let us consider a polynomial
in the lag operator of degree /

2 = 0

We want to test the hypothesis HRE> according to which ip(L) corre-
sponds to the first / + 1 terms of the integer series expansion of a rational
fraction of the type

C(L)
B(LY
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where

B(L) = I + &1L + ...bqL
q,

with 5 and q integers such that s + q < f. This condition can be written
as

(1 + 61L + . . . bqL
q) (ipo + *PiL + ...

By equating the terms with the same exponent we get

3 Co,..., cs, b\,..., bq, such that

0 =

0 = ̂ / + 61V/-I + • • • 4- bqipf-q,

with the convention ^ = 0 if i < 0. Let us assume that for any poly-
nomial satisfying these constraints, the last f — s equations determine
b\,..., bq uniquely. The s + 1 first equations are automatically verified
and can be omitted. Finally, the constraints are

3 61 , . . . , bq such that

0 = Jpi + bli/ji-l + . . . + bqipi-q

for i = s + 1 , . . . , / , with the convention ipi = 0 if i < 0. The constraints
are bilinear with respect to the initial parameters i/jj, j = 0 , . . . , / and
to the auxiliary parameters 6̂ , i = 1 , . . . , q. If we have available consis-
tent and asymptotically normal estimators ^-, we can easily apply the
test based on the asymptotic least squares. Denoting by £J?D the test
statistic, the critical region at the asymptotic level a is

{^D>xi-a(f- s-q)}.
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Examples Let us examine some special cases:

(i) s = 0, q = 1 The constraints can be written as

3 b such that

0 = tpi -

0 = 0/ -&V/-1-
Solving these various relationships, we can express the initial pa-
rameters as a function of b and a = ipo/(l — b). We get

0O = a(l - 6), 0i = a(l ~ b)b,..., 0/ = a(l - 6)1/.

Such a lag structure is called exponential or Koyck distributed lags.
It appears in the models implying adaptive expectation variables
(cf. chapter 12). The asymptotic distribution of $D under the
null hypothesis is x2( / — !)•

(ii) s = q = 1 The constraints can be written as

3 b such that

0 = -0/ -

The expression for the initial parameters is once again of an expo-
nential type fa = a(l — b)ti, but only starting from the index i = 1.
The asymptotic distribution of ^D under the null hypothesis is
X 2 ( / - 2 ) .

(iii) s = l,q = 2 The constraints can be written as

3 b\, 62 such that

0 = 02 -&101

The asymptotic distribution of ^ D under the null hypothesis is
X2(/ ~ 3). Note that the structure of this type associated to the
values b\ = —2 and 62 = 1 corresponds to the Almon specification
of order 1. The initial values of the parameters satisfy the recur-
sive equation xjjj — 2^-_i + 0j-2 — 0- They can be written as a
polynomial of degree 1, that is, 0j = a j + /3. A test for these
constraints allows for the test of the Almon specification.
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13.5 Tests of Rational Expectations

The hypothesis about the expectation formation by economic agents can
be examined following two routes.

(i) Sometimes we have data on the realizations of a variable yt, t =
1,...,T and on the expectations (one step-ahead, for example)
yt that are formed on them. We can then examine these data
directly in order to link the expectations to the current and past
realizations in order to derive the underlying prediction function.
Such tests are called direct

(ii) Often the expectations are unobservable. However, we can try and
obtain some information about them, if they affect other variables
which, in turn, are observable. Then we need to resort to a model
containing some expectation terms, for example of the type

Vt = ayt

where yt and x̂  are observable, while yt and ut are not. The next
step is to analyze whether a given expectation formation scheme
leads to a good fit of the model or not on the basis of the empir-
ical evidence. Such an approach, which considers simultaneously
the expectation formation scheme and the structural model link-
ing the endogenous variable to the exogenous variables and to the
expectation is called indirect test.

The two approaches, direct and indirect can be followed in order to
test a number of expectation schemes: naive, perfect, adaptive, and
rational. In this section we will examine mainly the rational scheme (cf.
exercises 13.6 and 13.7 for the adaptive case). We will be led to test the
hypothesis of optimal determination of the forecasts, and to examine the
question of the information sets on the basis of which expectations are
formed.

13.5.1 Direct Tests

Let us assume that the available information concerns the realizations
yt, t = 1,. . . , T of a variable and the measurements of the related expec-
tations yl, t = 1,. . . , T. In what follows we will consider a measurement
error scheme such as

Vt = Vt + Vu
where yt is the expectation and r]t is the measurement error. To simplify
matters, we will assume that the measurement error process 77 is inde-
pendent of the processes y and y, that 77 is a white noise and that y and
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y are stationary, but not necessarily with zero mean. The null hypothe-
sis is for example one of rational expectations based on the information
contained in the past values of the variable

Ho : y t = E (yt\ytl) , (13.36)

with yt__1 = (2/t-i,3/t-2,...)-

Test of Unbiasedness A first approach can be one of not testing the
hypothesis itself, but its consequences. Thus, under the hypothesis of
rationality we know that the forecasts are unbiased, that is

E(yt) = E(yt)

and that the forecast error is uncorrelated with the forecast itself

cov (yt -yuyt) = 0.

Let us consider then the regression model

yt = ayl+b + ut. (13.37)

The theoretical regression coefficients are given by
^ = cov (yt,yf) = cov (yuyt)

var (yjf) var (yt) + var (77)
and

b = E(yt) - aE(y*t) = E(yt) - aE(yt).

We can then distinguish between two cases:

(i) If the measurement error is not present, we have under the ratio-
nality hypothesis

a =
= = 1

var (y?) vax(2/t)
and

b = E(yt) - aE(yt) = 0.
Since the error term ut = yt — yt is orthogonal to the explana-
tory variable yt, serially uncorrelated and homoskedastic, we can
directly test the consequence of the rationality hypothesis HQ :
a = 1, b = 0 by estimating by OLS a and 6, and then building a
Fisher-type test on the joint hypothesis HQ . This is a test called in
the literature unbiasedness test It is clear that it relates not only
to the unbiasedness condition, but also to the one of orthogonality,

(ii) If a measurement error is present, then under the hypothesis of
rational expectations we have

var(yt)
a = —— —- < 1

() + ()
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and b = (1 — a)E(yt). The equalities are lost, and we would be
tempted to think of analyzing whether the OLS estimator of a is
less than 1 and whether the estimator of b has the same sign as the
mean of the realizations. However such a procedure is incorrect
since we have

ut=yt- ayl - b = yt - ayt - b - ar]t

and this error term is correlated to the explanatory variable y^ —
yt + r]t. The OLS estimators are then inconsistent. Thus we see
that the unbiasedness test is simple to implement, but not so robust
with respect to measurement errors in the expectations.

Optimality Test Another approach was proposed by Pesando (1975)
and is based on a VAR representation of the bivariate process {y,y*}-
Under the rational expectation hypothesis, we have

Moreover, since y and r\ are independent
E(yt\yt_vi£_1) = E(yt\yt_1) =

Analogously

= E(yt\yt_vvt_1) + E(vt\yt_vvt_1) = yt.

Thus yt and y\ share the same forecast as a function of the information
Vt_1- We can then write an autoregressive representation

v v

3 = 1 3 = 1

then test the hypothesis Ho : cij = Cj, j = 0,... ,p, bj = dj = 0, j =
1,... ,p using one of the classical test statistics.

13.5.2 Indirect Tests

Muth's Model The approach is similar to the one described for testing
the existence of a structural form. Here the problem relates to the
existence of a structural form involving rational expectation terms. Let
us assume that the model contains an expectation term related to the
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current endogenous variables and that it can be written as
v v

yt = AE(yt\It-i) + J2 AkYt-k + J2 B^t-k + u*, (13.38)
k=\ k=l

where yt and X* are of size n, respectively, m and the error ut is assumed
independent of y and xt. We focus on the information set It-\ as the
one based on the past values of the various processes and the current
value of the exogenous It-i = {y _1^t}- The structural coefficients

r = (A,Ai , . . . ,Ap,Bo, . . . ,Bp )

are subject to a number of linear constraints of the type RvecF = r
and the structural form is assumed to be identified. If the series under
analysis are compatible with an autoregressive representation, we can
consider the regression of yt on y f l and xt. It is given by

p v

k=l k=l

If the rational expectation model (13.38) is valid, the reduced form co-
efficients are restricted by

(13.39)
- A , , fc=l,...,p

which are the constraints in a mixed form, where the auxiliary parame-
ters are the structural parameters of the model (13.38). We could then
apply directly a test procedure based on an estimation of the auxiliary
parameters by OLS and then apply GLS from (13.39). As a by-product
we would get estimators of A, A ,̂ and B^.

Generalization When the rational expectation model involves expec-
tation terms with an horizon greater than 1 or expectations made at the
current date, it is not possible to study the hypothesis on the basis of
the model for yt given y _ and xt. A joint study of the two processes
y and x is needed. Moreover, the implied constraints for the parameters
do not have a similarly simple form. They might involve nonlinearities
and lead to a joint process without a VAR representation.

In fact, in order to illustrate what kind of difficulties arise, let us
consider the following model

yt = aE(yt+i\It) + xtb + uu

xt = pxt-i +e t ,



522 Chapter 13

where e and u are two independent white noises and where \a\ > 1 and
\p\ < 1. The stationary solutions admitting an infinite moving average
representation are such that

yt = a(yt+i - cet+i - dixt+i) + xtb + ut

xt = pxt-i + et

1 6 1
Vt = -Vt-i xt-i ut-i + cet + dut

a a a
xt = pxt-i + et

1 6 1 c
a a ad ad

xt = pxt_i + et

with c e R, d e R, and r/t =-cet + d^t- Thus the rational expectation
model leads to an ARMA representation which cannot be converted into
a VAR expression. Using one of the classical procedures (Lagrange mul-
tiplier, Wald, likelihood ratio) we could test this ARMA representation
versus a more general one involving higher orders. Note that if such
a hypothesis is accepted, we can estimate the various parameters by
maximum likelihood, namely, p describing the evolution of the exoge-
nous variable, and a and b appearing in the structural equation, but
also the additional parameters c and d which characterize the solution
corresponding to the data in the set of possible solutions.
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13.6 Exercises

Exercise 13.1: Let us consider the multivariate regression model
ylt = +

y2t =

ynt =
where xt is a vector of exogenous variables and ut — (u\t,... ,unt) is
a Gaussian white noise with any instantaneous variance-covariance ma-
trix. Show that the maximum likelihood estimators of the a '̂s are the
same as the OLS.

Exercise 13.2: Let us consider the multivariate regression model

ylt = +

y2t =

Vnt = anxn t +u

where x^ are vectors of exogenous variables and ut = (uit, • • •, unt) is a
Gaussian white noise with a diagonal instantaneous variance-covariance
matrix. Show that the maximum likelihood estimators of the a '̂s are
the same as the OLS.

Exercise 13.3: Let us consider the regression model

V\t — aii^it + a12x2t + uu,

V2t = CL21XU + a22X2t + U2U

where

,u2t ,

(i) Show that we can write

V2t — CtOVlt + &iXit + «2^2t + V2t

with
<Ji2 CTi2

° ~ a\ ' : ~ 21 a? U '
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and
2

= 0 var(t;2t) = s\ = G\ ^ .
ai

(ii) We impose the constraint an = 0. Show that the maximum like-
lihood estimators of ao,ai,Q2, and s | remain unchanged. Show
that the constrained estimator of a2\ is equal to the estimator of
OL\ and that it is different from the unconstrained estimator, that
is the OLS estimator.

Exercise 13.4: Let us consider a regression model

yit =

V2t = <

where

and xt,Zt are two vectors of exogenous variables. Show that if the
elements of x$ are included among those of zt, the maximum likelihood
estimator of ai is equal to the ordinary least squares and that that is
not the same for R2- (Hint: follow the same approach as for exercise
13.3.)

Exercise 13.5: In the case of three polynomials of degree 2, i.e., ipi (L),
-02(L),V>3(L), with ^i(O) = 1 write the matrices h(t/?), H(i/>), a(/3) and
A(/3) given in section 4.1. Verify that A(/3) is a matrix (8 x 8) of rank
7.

Exercise 13.6: The adaptive expectation scheme links expectations
and realizations through the expression

yt - yt-i =
Let us assume that we have available joint observations on yt and y% —
Vt + Vt, where r] denotes a measurement error independent of y and y.
Let us consider also the regression by ordinary least squares of y% on the
lagged values yt-\ and y\_x

y* =ayt-i + by*_x + ut

and the Fisher test of the hypothesis Ho : a + b = 1. Discuss the validity
of this procedure as a test of the adaptive scheme.
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Exercise 13.7: Let us consider a bivariate process (xt,yt) admitting
a VAR representation. Find the relationship among the reduced-form
coefficients of such a representation, when the series can be represented
by a structural model with expectations

v v
yt = ayt + ] P akyt-k + ] P bkxt-k + ut,

k=i k=i

where the expectation is assumed adaptive (cf. exercise 13.6) truncated
at p lags. Study an indirect test procedure of the adaptive expecta-
tion hypothesis, which involves the linear constraints appearing in the
structural model.

Exercise 13.8: Let us assume that we have available joint observations
on realizations yt and expectations yt. The expectation is assumed ra-
tional yt = E(yt\It) and we would like to determine whether a variable
Xt can be considered as part of the information set.

(i) Verify that, if Xt belongs to It

E((yt-Vt)xt) = 0.
(ii) We regress yt on yt and on xt. What should the value of the

theoretical regression coefficients be? Derive a test procedure for
the hypothesis HQ : Xt 6 It-



14

Statistical Properties of
Nonstationary Processes

14.1 Introduction

Econometricians have limited their analysis just to stationary processes
for a long time, adopting some transformation of the data such as the
deviation around a deterministic trend or first- (or higher-) order differ-
encing. This practice can be justified on the basis of the fact that the
classic econometric methods (built for a stationary framework) show
bizarre properties when they are applied to nonstationary series. In this
introduction we will show some of these unexpected properties using
some simulations. In what follows we will suggest some of the mathe-
matical tools which allow for the theoretical analysis of these properties.

14.1.1 The Spurious Regressions

It is well known that a regression applied to nonstationary variables
can result in strange outcomes called spurious regressions (Granger and
Newbold, 1974; Phillips, 1986).

To introduce the problem, let us consider two independent random
walks {yt} and {xt}, that is two processes defined as

Vt = Vt-\ + et
(14.1)

Xt =Xt-l -\-Tft,

where {ê } and {rjt} are independent white noises with the same var-
iance. Since the process {xt} is independent of {yt}, we would expect
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Figure 14.1 Simulated Spurious Regression
Comparison between a Af(O, 1) (— - —) and the Simulated Density of r (-

that, in the regression of {yt} on {xt}

yt = a + /3xt +wu (14.2)

the ordinary least squares estimator /3 converges to 0 when T tends to
infinity, and the probability of the critical region W = {\r\ > 1.96}
where r is the Student's t-ratio associated to /? tends to 0.05. On the
contrary, it can be shown (Phillips, 1986) that /? has a nontrivial limit
distribution, and that T~l/2r has a nontrivial limit distribution, which
implies that the limit probability of i f is 1. These results imply, for
example, that the mechanical application of the testing procedures built
for the stationary case often lead to rejecting the hypothesis of the (3
coefficient being equal to 0, with the implication that {xt} influences
{yt}i whereas the two processes are independent.

To measure the order of magnitude of this phenomenon, we have de-
rived the distribution of r by simulation when T is equal to 100 and
we have compared it with the standard normal distribution (which the
usual test is based on - cf. also Granger and Newbold, 1974). Figure
14.1 shows that these two distributions are very different. In partic-
ular, the distribution of r is much more dispersed than the .A/"(0,1)
and gives for the region W a probability equal to 0.76. In this ex-
ample we would conclude that {xt} influences {yt} three out of four
times.
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14.1.2 Disappearing Biases

As a second example, let us consider the estimation by ordinary least
squares (OLS) of the coefficient p in the autoregressive model

yt = pyt-i + Q, (14.3)

where {e^} is a stationary process.
Let us consider first the case where ct is a white noise. Assuming that

the true value of p is 1, that is {yt} is a random walk, it can be shown
(cf. section 14.2) that the OLS estimator p is such that p—\ converges
to 0 as Y a n d not as -4= as in the stationary case. We say that if p = 1,
p is superconsistent. This superconsistency implies in particular that p
stays consistent even if et is an autocorrelated stationary process, which
is not the case when \p\ < 1. Figure 14.2 shows the evolution of the mean
bias of the OLS estimator in the regression of yt on yt-i as a function
of the number of observations. The comparison is between two models

yt = 2/t-i + et *t = 0.7et_i + ut,

and

yt = 0.9yt-i + et et = 0.7e*-i + ut,

ut being in both cases a Gaussian white noise.
In the first case (nonstationary) the bias tends to 0 rapidly whereas

in the second (stationary) case this bias tends to 0.082.

14.1.3 Unusual Asymptotic Distributions

The kind of consistency just examined coexists in the nonstationary
case with other nonstandard, but less appealing properties. Thus the
Student's test statistic r associated with the test of p = 1 does not
converge to a A/"(0,1), so that the usual test procedures must be changed.
Although the asymptotic distribution of r will be studied in section
14.3 from a theoretical point of view, it will suffice here to show some
simulations of its behavior.

Figure 14.3 shows the density of r for T = 100 and p = 1 obtained
by 3000 replications with a normal white noise. We can see that this
density is shifted to the left with respect to a A/"(0,1). In particular,
if we refer to the standard critical region {r < —1.64} to test p = 1
versus p < 1 at the 5% significance level we reject twice too often the
null hypothesis when it is true, since the probability of this region is
about 10% when p = 1.
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Figure 14.2 Regression of yt on yt-i with Autocorrelated Disturbances
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Figure 14.3 Regression of yt on yt-i (Random Walk)
Comparison between a A/̂ O, 1) (— — —) and the

Simulated Density of r (100 Observations, 3000 Replications) (
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14.1.4 Reappearing Biases

Let us consider now a multivariate regression problem. Let us assume
that the data generating process is the bivariate process

Yt = yt-i + eu with yt = ( U ) (14.4)
\y2tJ

and

is a moving average defined as

(-°* °A)(Ult1) (14.5)
J \u2tJ V 0.2 -0.6J W , t -

is a standard normal white noise.
u2tj

Since the process {y^} is nonstationary, one may be tempted to extend
the results for the univariate case, concluding that the OLS estimator of
the regression of yt on yt-i is going to converge to the identity matrix,
which is not the case. For example, figure 14.4 shows the density of the
estimator of the coefficient of yij-i in a regression of yu on yij-i and
2 /2 , t - l -

Since the first equation of (14.4) is yu — 2/1,t-i + Q> we might con-
jecture that, in spite of the time correlation of the eu, this estimator
is going to be close to 1. Now, from figure 14.4 we can see that this
estimator is, in general, much smaller than 1. In particular the mode of
its distribution is close to 0.4.

An intuitive explanation for this phenomenon can be obtained by ver-
ifying that, in spite of the nonstationarity of the process yt, there exists
a linear combination of the two component processes yu and y^t which is
stationary. In such a case we say that the processes are cointegrated (cf.
section 14.5). It is not surprising, therefore, to find the same problems
as in a regression when the variables are stationary and the errors are
autocorrelated. To verify that yu and y2t are cointegrated we can write

( l - L ) y t = (I + 0L)ut, (14.6)

with
-0.8 0.4
0.2 -0.6,

In fact, premultiplying both expressions of (14.6) by the vector (1, -1),
and posing zt = yu - V2t, we get

(1 - L)zt = (1 - L, - 1 + L)ut = (1 - L)(ult - u2t),
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0.2 0.3 0.4 0.5
Figure 14.4 Density Estimation of the OLS Coefficient of yij-i

in a Regression of y\t on yij-i and y2,t-l
Cointegrated Case - 500 Observations, 500 Replications

and

Another way to write (14.6) is

U2t-

= (1 - L)ut + (0.2wi|t_i +0.4u2,t-i).

= ut+ fu

Taking ft such that (1 - L)ft = (0.2tii,t_i + 0.4w2,t-i) we get

or

yit = u\t + ft

2/2t =U2t + ft-

Thus, yit and y^t are decomposed as sums of two independent white
noises u\t and u^t and of a common nonstationary factor ft (random
walk). Evidently, this common factor is eliminated when taking differ-
ences.

From model (14.6) we can also investigate whether the practice of
writing a stationary VAR model for (1 — L)yt is an appropriate one. We
see that in the case of model (14.6) this procedure is not valid because
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Figure 14.5 Density Estimation of the OLS Coefficient of y\,t-\
in a Regression of y\t on yi,t-i and 2/2,*-1

Noncointegrated Case - 500 Observations, 500 Replications

the determinant of (I + 0 L ) admits a unit root, so that it is not possible
to invert this matrix to obtain an autoregressive representation. We will
show in what follows that a VAR model on first differences will not be
a valid one if there exists a cointegration relationship.

Finally, we can show that if 0 is modified as to have —0.8 replaced
by —0.4, we do not have a cointegration relationship, and that, in such
a case, the estimator of the coefficient of yi,t-i in a regression of y\t on
yi,t-i and 2/2,t-i takes values close to 1 (figure 14.5).

This list of unexpected properties cannot be considered exhaustive.
We could, for example, add that if a constant is present in (14.3), the
Student's test statistic for the null hypothesis p = 1 has again a normal
distribution (cf. section 14.3) under the null. We could also note that if
we regress a process like (14.3) with p — 1 on time to eliminate the trend,
the residuals could exhibit some spurious cyclical properties (Nelson and
Kang, 1981).

14.2 Limit Properties of Some Relevant Statistics
Let us consider now a fractional process defined as

yt = (1 - L)-d${L)-le{L)iu t > 0, (14.7)

where {e*} is an independent white noise with variance cr2, where e* — et
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if t > 0 and e* = 0 if t < 0, and where the exponent d is greater than
1/2 so that yt is nonstationary. Recall that in chapter 11 we have shown
that the transformed process

= yd-1/2

converges in distribution to

where B indicates a Brownian motion on [0,1] such that var (£(1)) = 1.
The constant cr9(l)/$(l) in the previous expression will be noted uo.

We can see that the square of this constant

is equal to 2TT/(0), where /(•) is the spectral density of the stationary
process $(L)~1@(L)et asymptotically equal to (1 — L)dyt. The constant
uS2 can be written also as

h=—oo

where 7(/i) is the autocovariance function of the same process.
We will often make reference to the case of an integrated process of

order 1, that is d = 1. In this case we have

ifrlr) = -jf

Taking <&(L) = 6(L) = 1 we get the random walk (1 — L)yt = et

obtaining yoo(r) = crB(r).

14.2.1 Sample Mean

Theorem 14.1: Let {yt, t > 0} be a fractional process. The sample
mean yT = ̂  Ylf=i Vt ^s such that

T>d-l/2yi

with

T - i / yoo(r)dr,
Jo
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SKETCH OF THE PROOF: We have

t=i

-, T

This Riemann sum can then be approximated by the corresponding in-
tegral

VT - i / Voo{r)dr.
JoTd-l/2

n

Since d > | , we see right away that the sample mean tends to be-
come infinite and in particular that it does not converge toward the
corresponding theoretical mean, that is, 0. Although consistency is not
satisfied, the asymptotic normality is preserved after an appropriate nor-
malization. In fact, the limit is a linear transformation of the Brownian
motion B, which is Gaussian.

In the special case of an integrated process of order 1, we get the
following result

Corollary: Let {yt, t > 0} be an integrated process of order 1, the
sample mean is such that

T -^ u I B(r)dr,

with UJ = a in the case of a random walk.

Note that the rate of divergence y/T of the sample mean coincides with
the one of the series yt itself.

14.2.2 Sample Second-order Moments

A similar approach allows immediately to derive the limit behavior of
the second-order moment.
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Theorem 14.2: Let {yt, t > 0} be a fractional process. Then

1 v ^ 2 d

In the special case d = 1 we get
T

with a;2 = cr2 in the case of a random walk. Also in this case there is
divergence of the sample moment

1 T
1

14.2.3 First-order Autocovariances

The analysis of the cross-moments of order 1 is easy to carry out by
considering the cross-moment

T

t=i

It is clear that a number of cases should be analyzed according to the
value of the exponent d. In fact, the differenced series can be stationary
or nonstationary, which modifies the limit behavior. In particular, we
have the following results.

Theorem 14.

(i)

(n)

(Hi)

Ifd

Ifd

Ifd

> 1

= 1

1
T

< 1

,3: Let {y

1
T2d-

T

t=l

t-1

T

-1 / v^(
t=l

-2/t-i)

m(yt-yt

be a

yt y

d l

~* 2

fractional process. Then:

Vood)"

!> 1 2 ,
22/oc

1
2

i -var(2/t-2/t_i).
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PROOF: Cf. the appendix. •

It is useful to examine how this result is modified if we focus our
attention on

t = i

Theorem 14

(1)

(a)

(Hi)

Ifd

Ifd

Ifd

PROOF:
T

> 1

= 1

1

< 1

We

.4: Let

T2

T

t=l

t=i

have

{yu

1

,yt-.

*>0}

T

t=l

— 2/t-i)

v{yt-yt

T

be a fractional

( \ d

yt yt-i ->

-i l 2 a)
2 °°

-1) - 5 ^

process.

V (r

2var(y«

r(yt-»t

T

Then:

-yt-i

-1 ) .

The result follows from the fact that in the case d > 1, 2 t = i ( ^ ~2/t-i)2

has a rate of divergence always smaller than 2d — 1 (in fact, equal to
2d - 2 if d > 3/2 and 1 if d < 3/2).

Moreover, if d < 1, ^ St=i(2/t "" Vt-i)2 tends to var (yt — yt-i)- Q

Note that in any case

t=l \t=0

is equivalent to
T

1
— Vi;2
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14.2.4 Behavior of the Periodogram at Low Frequencies

In spite of the fact that the nonstationary process y does not admit
spectral density, we can define the periodogram

where

t=i

Theorem 14.5: When the number of observations tends to infinity, we
have

/ exp(za;r)2/oo(r)dr.

SKETCH OF THE PROOF: We have

I yt exp(i^w) = ^ ^ - 2 J y[Tt/T] exp(i^) ^ (

TT 1
yZ(t/T)xp(i-Lu) -i / exp(za;r)i/oo(r)dr.

T Jo

14.2.5 Empirical Autocorrelations

In the Box-Jenkins approach, it is common to compute the empirical
autocorrelation of order 1, for example through the formula

This formula coincides with the one of the regression coefficient of the
yt on the yt-\. We have seen that a value of pr close to 1 can be used
as an indicator of nonstationarity of the series (cf. section 6.3). This
concept is going to be expanded in this section, analyzing the asymptotic
behavior of pr first.

Theorem 14.6: Let {yu t > 0} be a fractional process. We have:

(i) Ifd>l

T(l-M 4 £M—
2JlU)d
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(ii) Ifd=l

d l /
T(l-pT) -i

with v2 = var (yt — yt-i)-
(in) If\<d<\

T2d-\l-pT)

PROOF: We have

1 - ^ = 1 - — ^ — = — ,
2-^t-i Vt-i 2^t=i Vt-i

so that the result follows from theorem 14.4 and from theorem 14.2. •

We note that the support of the limit distribution of T(l — pr) is M
if d > 1, R+ if 1/2 < d < 1 and contains positive and negative values
if d = 1. Thus in the case of a random walk, we have v2 — UJ2 and the
probability of R~ for the limit distribution is

P(B2(1) > 1) = F(X
2(1) > 1) = P(|W(0,1)| > 1) = 0.32.

We can verify as well that if we had taken the quantity

EtL
Et=i Vt

as empirical autocorrelation of order 1, instead of p?, the asymptotic
behavior would have stayed unchanged for 1/2 < d < 1. By the same
token, for d = 1 the limit distribution of T(l - pr) would be

/o B2(r)dr '
the support of which does not include negative values and for d > 1 the
limit distribution would be

the support of which is also i?+ .

14.3 Unit Root Tests

14.3.1 Dickey-Fuller Tests

Let us assume that yt is a first-order autoregressive process

yt = pyt-i +e t ,
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with \p\ < 1, and et is a white noise of variance a2. We want to test the
null hypothesis of a random walk Ho : (p = 1). We know that pr is
a consistent estimator of p and theorem 14.6 (with v2 — uo2) gives the
limit distribution of T(l - pT) under iJ0

Therefore, we can propose a test of asymptotic size a and with critical
region {T(l — pr) > ca}, where ca is determined on the basis of the limit
distribution. This test was first proposed by Dickey and Fuller (1979,
1981) and the distribution of T(l — p^) has been tabulated by Fuller
(1976, p. 371). Thus for a = 1%, 5%, and 10% the values of ca are,
respectively, 13.8, 8.1, 5.7. Other values of ca, as well as critical values
when T is finite and et is Gaussian are given in table 7 at the end of the
book.

Another procedure is based on a Student's t-ratio

t = T77T

with a2 = \ Ylt=i(yt - 2/t-i)2, or ^ Ylt=i(yt ~ Pryt-i)2 which under
HQ converges to a2 (= v2 = UJ2 in this case). This statistic i is the
opposite of the usual Student statistic to test the significance of the
parameter a in the model Ayt = ayt-i with Ayt = yt — 2/t-i; also note
that this opposite statistic was used in section 14.1.3. This other way
of computing i is interesting because it is done automatically in the
regression programs of Ayt on yt-\. Theorem 14.2 shows immediately
that i converges in distribution to

This distribution has been studied by Fuller (1976). We can therefore
propose a test with asymptotic size a with critical region (i > ta). We
have for a = 1%, 5%, 10%, ta = 2.58,1.95,1.62. These values are to
be compared with the values of a standard normal distribution in the
univariate case, that is 2.32, 1.64. 1.28. A test based on the usual values
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would tend to reject Ho too often. Other values of £a, as well as critical
values when T is finite and et is Gaussian are given in table 8 at the end
of the book.

Fuller (1976) has studied the asymptotic behavior of similar statistics
under the same null hypothesis Ho : yt = yt-i + h using a different
estimated model. Thus, we have

Regression Model : yt = \x + pyt-i + et,

Statistics: T(l-p'T), i',

Regression Model : yt = /ii + /12* + PVt-i + et,

Statistics: T(l - p£), £",

where p'T and p^ are the OLS estimators of p for the two regression
models, and i', t" are the associated Student's ^-ratios. The correspond-
ing asymptotic distributions for T(l — pj.) and i" are fixed under a
generic family of hypotheses yt = p- + yt-i -h ?t, for any )U.

The asymptotic tests at the level a = 1%, 5%, 10% are then the tests
with critical regions

^ 4 <4 = 20.7, 14.1, 11.3,

t;Q = 3.43, 2.86, 2.57,

c£ = 29.5, 21.8, 18.3,

^ = 3.96, 3.41, 3.12.

Other values of <4,c^,£^,^, as well as critical values when T is finite
and et is Gaussian are given in Tables 7 and 8 at the end of the book.

Note now that if we want to test the null hypothesis HQ : p = 1 in the
model

yt = n + pyt-i +et

(with 11 / 0 and et a white noise of variance a2) against the alternative
|p| < 1 we can use the usual unilateral Student's procedure because,
under HQ , the limit distribution of the Student's ratio is AT(0,1). Indeed,
under the hypothesis HQ : yt = [i 4- 2/t-i + h called random walk with
drift we have

yt = ^t + yo + yt,

where yt = Yll=i €i ls a random walk without drift. As a consequence,

mi-

mi-

h) > cc

{i' > t'o

PT) > <

if" > t':

,} with

,} with

[} with

') with
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letting y = ^Ylt=iVt-i

Et=i

ET / (2t-l-

t=i €t [v^—r
v^T / (2t-l-T) . ~

The term | X^̂ =i et(2^ — 1 — T) of the numerator is of the same order of
magnitude as T3/2 and the order of magnitude of the other terms is equal

rp

to T. Therefore the numerator is equivalent to ^ Y^t=i Q(2£ — 1 — T). By
2 T 9

the same token the denominator is equivalent to ^- 2jt_1(2t — 1 — T) .
Thus we have

It can be easily verified that the numerator converges in distribution to
a J\f (0,cr2/3) while the denominator converges to | . Finally

The Student's ratio can be written as
l-pT

The denominator tends to ae\fl2//j, so that the Student's ratio converges
in distribution to a A/^(0,1). Thus if we use the critical values t'a given
above instead of the standard normal values, we will accept Ho too often.

By the same token, if we want to test p = 1 in yt = /xi + ii2t+PVt-i H~̂ t
(or a = 0 in Ayt = \i\ + //2 t + a^ - i + et) for any /ii and /i2 ^ 0 we can
use the usual one-sided Student's procedure.

14.3.2 Generalizations of the Dickey-Fuller Tests

In the previous section we have seen that under the null hypothesis of
random walk yt — yt_1 = et the asymptotic distribution of T(l — pr) is

(14.9)
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and that of the Student's i

(14.10)

Let us assume now that the process yt is such that yt — yt-\ = f]t, where
fjt is equal for t > 0 to an ARM A process r\t defined as $(L)rjt = 0(L)e^,
with et a white noise of variance o\, which is the same as saying that yt

is an ARIMA process, integrated of order 1. Theorem 14.6 shows that
the limit distribution of T(l — pr) is then

(14.11)
Jo B*(r)dr,

where

= 2TT/(0) =
h= — oo

z/2 =vai(yt -yt-i) =7(0).

By the same reasoning we find that the limit distribution of i is

(14.12)

These limit distributions depend on an unknown nuisance parameter V/UJ
and cannot be used as such. This problem can be solved in two different
manners: by the first method we are looking for a transformation of the
statistics T(l — pT) and i still having (14.9) and (14.10) respectively as
limit distributions (Phillips, 1987; Phillips and Perron, 1988). By the
second approach we consider the coefficients of yt-\ and the associated
Student's t in a larger regression than the simple one of yt on yt-i so
that, again, the limit distributions are (14.9) and (14.10), and we obtain
the so-called Augmented Dickey-Fuller tests.

Transformation of the Statistics The limit distribution (14.11) of
T(l — PT) can be written as

so that the variable

T(l - pr) - - f ^

converges in distribution to the Dickey-Fuller distribution (14.9) for
which we know the quantiles. An asymptotically equivalent variable
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is (cf. theorem 14.2)

T(l-pr)-

This variable depends upon two unknown parameters, v2 and uJ1. The
parameter v2 is consistently estimated by

1 T

t=l

For this estimator one does not need the order of the polynomials
and 6(L).

To estimate
2 ^@2(1)

we can use either some estimators of a2, O, and $, once the orders of
O and 3> are given, or use some nonparametric methods (cf. Phillips,
1987; Phillips and Perron, 1988); in particular a consistent and always
positive estimator of a;2 was proposed by Newey and West (1987) as

1 T 2 K T

t=l k=l t=k+l

where Wk = 1 - ^+1' ^2/* — Vt ~ 2/t-i, and K is of a smaller order of
magnitude than T1/4.

We will use then the transformed statistic

S T(l o)Sp = T(l-pr)-

where CJ\ is a consistent estimator of a;2 (for instance, &\K) and compare
its values against the critical values ca mentioned above.

By the same line of reasoning we can show that the statistic
vTt T (y\ — CJ2^)

&T 2 ( V T v2 V / 2

converges in distribution to (14.10), the critical values of which, tai were
presented above.

These two statistics (denoted as — Za and — Zt in Phillips, 1987) can
be replaced by the statistics Sp and ST derived from the former ones by
replacing Ayt by yt — pyt-i in the computation of i>\ and CJ^K. The
latter statistic seems preferable to the former on the basis of test power
considerations.

Note also that by analogy to what was discussed before, if the null
hypothesis is an ARIMA process, integrated of order 1 with a constant
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yt — yt-i = // + £*, / i ^O , the Student ratio of the coefficient of yt-i in
the regression of yt on a constant and yt-i converges asymptotically to
a normal distribution with mean 0. However, the variance is not unity,
but UJ2 /v2. Therefore, multiplying the Student ratio by OT/LJT we can
go back to the standard case.

Augmented Dickey—Fuller Tests Let us consider an ARIMA
(p, 1,0), that is yt — yt-i follows (asymptotically) an autoregressive pro-
cess of order p. We have

p

yt -yt-i = ^2,di{yt-i -yt-i-i) + et

2 = 1

V

yt = yt-i +^2,ai{yt-i - yt-z-i) + e*.
2 = 1

An AR(p + 1) can always be written as
p

yt = aoyt-i + ̂ 2,ai(yt-i - yt-i-i) + et; (14.13)
2 = 1

this process has a unit root if and only if a0 = 1.
Fuller (1976) has shown that, under the hypothesis that yt follows an

ARIMA(p, 1,0) the Student's ratio associated with the estimator of a0

in the regression (14.13) converges in distribution to (14.10). We can
perform the unit root test using the estimated ratio and comparing it
to the critical values ta seen above. As for the plain Dickey-Fuller test,
this statistic is the opposite to the Student's statistic associated with
the test a = 0 in the regression A ^ = ayt-\ + Y^=i ai^Ut-i + £t a n d
this statistic is a standard output of any regression routine.

When we introduce a constant term (or a constant and a trend) in the
regression, the test of the null hypothesis Ayt = X f̂=i ai^Vt-i + h can
be performed starting from the opposite of the Student's statistic asso-
ciated with the coefficient of yt-i in the regression using the asymptotic
critical values tf

a (respectively t'^) mentioned before.
Note also that Dickey and Fuller (1981) have suggested other tests of

the Fisher-type to test joint hypotheses on the coefficients. Thus we can
use the Fisher's statistic to test the null hypothesis /x2 = 0 and p = 1 in
the model

yt = fJLi + /i2* + PVt-i +et-

The critical values at the asymptotic level 1%, 5%, and 10% are, re-
spectively, 8.27,6.25, and 5.34. The latter test allows one to suggest a
simple testing strategy. If this test results in the acceptance of the null
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hypothesis ^2 = 0 and p = 1, we can then test [i\ = 0 by the classical
procedure, that is the usual two-sided Student's test in Ayt = \i\ + ê .
If the null hypothesis /i2 = 0 and p = 1 is rejected, we can test /i2 = 0
(and, therefore, |p| < 1) by the usual two-sided Student's test and p = 1
(and, therefore, //2 7̂  0) by the usual one-sided Student's test.

When {yt} follows an ARIMA(p, l,g) with q ^ 0 we can go back to
the previous case approximating the process {yt} by an ARIMA(;/, 1,0)
with p' large enough.

Schmidt-Phillips Tests The tests by Dickey and Fuller are simple,
but they present some disadvantages. First of all, they are not asymp-
totically similar, that is, their asymptotic distribution under the null
hypothesis depends on the value taken by some parameters. We have
seen for example that the Student's statistic to test a = 0 in Ayt =
fi + ayt-1 + ct does not have the same asymptotic distribution whether
fi is 0 or not. Moreover, a model of the type yt = [i\ + fi2 t + pyt-i + £t
has a polynomial deterministic trend the degree of which depends on
the coefficient of the random variable yt-i, that is, degree 1 if \p\ < 1,
degree 2 if p = 1.

These problems are addressed by Schmidt and Phillips (1992) who
have suggested another reference model, that is

Vt = 4>i
(14.14)

zt = pzt-i +e t ,

where et is a white noise with variance of.
In this type of model the deterministic trend is linear for any p. More-

over, the test for p = 1 is based on asymptotically similar statistics. The
method, inspired by the Lagrange Multiplier procedure, is the following:

(i) Compute ^2 = (yr - 2/i)/(T - 1), ^ 1 = 2 / 1 - ^2-
(ii) Compute the "residuals" st-i — yt-i - 4>i - $2(1 ~ !)•
(iii) Perform the regression

Ayt = a + bst-i +ut.

(iv) Derive the OLS estimator b of b and i the opposite of the Student's
statistic corresponding to the test b = 0.

The critical regions of the tests of p = 1 are {—Tb > ba} or {i > ta}
where the values of ba and ta for a — 1%, 5%, 10% are, respectively

ba : 25.2, 18.1, 15.0,

tn : 3.56, 3.02, 2.75.
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If we do not assume that {et} is a white noise but just a stationary
process, it is enough to replace Tb by Tb/X2 and i by i/X with

\2 = S-

1 t=l

1 ^ 2 2 v ^

t=i fc=i x - ' -/ t = f c + 1

where the e* are the residuals in the regression of yt on a constant, a
time trend, and yt-i-

14.4 Regression with
Nonstationary Explanatory Variables

14.4.1 Description of the Model

In this section, we want to analyze whether the classical results about
the OLS estimator, usually shown assuming the stationarity of the ob-
servations remain valid when the variables are nonstationary. As an
example, let us consider a model with a single explanatory variable and
a single lag on this variable. This model can be written as

yt = axt + bxt-i +rfU

where {xt} is a fractional process defined as

xt = (1 - L)-d${L)-lQ{L)iu

where {r]t} is a white noise with variance a2 assumed independent of the
white noise et associated with the explanatory variable, and d > 1/2.

We can reparameterize the initial dynamic equation as an error cor-
rection model so as to express a long-run coefficient a\. A possibility
is

yt = aixt + a2{xt - xt-i) + f]u (14.15)

with a2 = —b and a\ — a + b. Let us now consider the static model
associated with (14.15), that is the model

yt = axt + ut. (14.16)

The OLS estimator of a from such a static model is
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The question then becomes whether such an estimator is consistent for
a\ — a + b and then, if so, whether it has the same asymptotic distribu-
tion as the OLS estimator of a\ computed from equation (14.15), that
is taking into account the dynamics of the system. The latter estimator
is

- 1 m

£t=i

14.4.2 Limit Properties of the OLS Estimator
Computed on the Static Model

By expanding the expression for the estimator aT we obtain

Ylt=l Xt (alXt + Q2Axt + 7]t)
T 2 v^T 2
t=l XT 2^t=l Xt

The limit properties of the difference between the estimator and the long
term coefficient ar — «i can be deduced from those of the various em-
pirical moments. In fact, the properties of ^2t=1 xtAxt and of Ylt=i x<t
are given in theorems 14.2 and 14.3. Those of ^2T xtr\t are established
in the appendix. By denoting W(r), r G [0,1] the Brownian motion
associated with

1 T

t=i

I

Let us distinguish among the following cases according to the value of
d:

(i) d > 1

1x^(1) Td a 1

+aT wai + a 2 +
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(ii) d=\

T \x1jl) + Ivar(a; t-a; t-i) T an So

T \ f^ 2 z' \/-7 r̂ " 2 Z' \y-7

\ Jo XocAHar Jo XooVrJar

(iii) d < 1

. _ T ^var(xi-x^i) Td aJ^oofr^W

(xt - xt-i)

In summary we have:

Theorem 14.7: The OLS estimator C\T computed on the static model
is a consistent estimator of the long-run coefficient a\ = a + b. Its
convergence rate is \/T2d~l if d < 1 and is 1/T if d > 1.

Thus not taking the dynamics into account does not affect the consis-
tency of the estimator.

14.4.3 Comparison with the OLS Estimator
Computed on the Dynamic Model

The same kind of approach can be pursued to determine the asymptotic
properties of a\T> The details of the computations are left to the reader
as an exercise (exercise 14.4). There are two cases according to whether
the exponent is bigger or smaller than | :

(i) H | < d < §

(ii) If d > §

air « ai + —̂

/o XooWd^W /o Ax^(r)dr - J 1 Axoo(r)dW(r) / ' XooA
X 7

J»l rl f r\ \ 4

rpZ (v\rjT I /xT1^ (T*\/I'P I I 1* I T" i A T I T*WT I0 x o o \ ' / ( X ' Jo ^-^^CXJV' ) a r I Jo °°v ./^-^^oov' y a / j
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Convergence
rate

1/2 1

Figure 14.6 Convergence Rate of a? and of

The behavior of the convergence of the two estimators C\T and CL\T is
described graphically in figure 14.6.

We can see that the estimator based on the dynamic model converges
infinitely faster than the estimator based on the static model, except
in the limit case d — 1. In the latter case, taking into consideration
the expansions of 6LT and d\T we see that they do not have the same
asymptotic distribution. In summary we have:

Theorem 14.8: Although the estimator QLT is always consistent, the
estimator d\T is always preferable. It is infinitely preferable in the sense
that

var (CLIT ~ ai) nlim
T->+OO var — CL\)

whenever d ^ 1.

14.5 Cointegration

14.5.1 Analysis Based on the Empirical Covariance Matrix

Let us consider a nonstationary series y integrated of order 1. This series
admits the expression

( l - L ) y t = H(L)et, (14.19)

where e indicates an n-dimensional white noise (and et = et if t > 0
and et = 0 if t < 0). We want to establish whether the components
of this series are cointegrated, and, if so, determine the cointegrating
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vectors. Let us consider the case where the order of the subspace of the
cointegrating vectors is r. Then, by definition, there exist r independent-
vectors of size n noted a i , . . . , otr such that

and the vectors (3 in Rn which do not belong to the subspace of cointe-
grating vectors are such that /3'H(1) ^ 0.

The cointegrating vectors can be derived directly from the analysis of
the asymptotic properties of the empirical covariance matrix. Let us in-
troduce the n-dimensional nonstandardized Brownian motion associated
with the noise e. This process, denoted by W, is denned as

-, [Tr]

^ e t -i W(r) (14.20)
t=i

for r G [0,1]. Applying to any combination of the components of the
process y the results in theorem 14.2, we get immediately the limit
behavior of the variance-covariance matrix of y.

Theorem 14.9: We have

t=i

where H(l) is the long-run coefficient matrix.

If we move to consider the empirical variance of a combination of the
components we must distinguish two cases:

(i) If this combination /3'y is such that the vector /3 does not lie in
the subspace spanned by the cointegrating vectors we have

1
 T . . / ri

T2 2-^
1 t=l

The empirical variance ^ Ylt=i (P'yt) is of the same order as T.
(ii) If this combination corresponds to a cointegrating vector a we have

a'H(l) ( f W(r)W'(r)dir H(l)'a = 0.
t=l

In fact, since the process oc'y is stationary, we know that the em-
pirical variance converges to the corresponding moment

T

i j ^aVt ) 2 -i E{cx'yt)
2.

Thus the empirical variance is Op(l).
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1 i I
1 2 3 n-r k

Figure 14.7 Graphical Detection of the Order of Cointegration

The modification of the rate of convergence for the cointegrating vec-
tors allows us to examine the problem in a complete fashion:
(i) As a first step we can compute the empirical covariance matrix

divided by T, that is,

1 T

(iii)

t= l

This symmetric positive semidefinite matrix admits real eigenval-
ues, which can be presented in a decreasing order

AIT > X2T > • • • > KT > 0.

We know also that the k-th eigenvalue XkT is such that

x'MTx
max

X ' X

= max mm
Sk x€£k X'X

where £k (respectively £n_fc+i) denotes all subspaces of dimension
k (respectively n — k + 1). We conclude that AIT, • • •, ̂ n-r,T are
of order 1 and that An_r+i5T, • • •, AnT tend to 0.
We can then examine the eigenvalues of MT . Plotting them on
a diagram, if the dimension of the subspace of the cointegrating
vectors is r, we should see r eigenvalues close to 0, that is a break
after the (n — r)-th largest eigenvalue. This gives an empirical tool
to determine the order r and, in particular, to know whether r is
different from 0, that is, if there is cointegration.
Finally, we can analyze the eigenvectors associated with the eigen-
values close to 0. These eigenvectors converge to the eigenvectors
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of the limit matrix
pi

H(l)( / W(r)W'(r)dr)H(l)',
Jo

associated with the zero eigenvalues, that is to the cointegrating
vectors.

This very simple approach is essentially descriptive. However, these
three steps can be set up in an inference framework. We would need
then:
(i) to derive the limit distributions of the eigenvalues of the matrix Mj-

and to derive the critical threshold under which they are considered
insignificant;

(ii) by the same token, we could examine not only the consistency of
the cointegrating vectors, but also determine their rate of conver-
gence and their limit distributions.

Such an analysis is a difficult one and has been only partially examined
in the literature.

14.5.2 A Two-step Procedure

Engle and Granger (1987) have derived an estimation procedure in two
steps for the coefficients of an error correction representation. Let us
assume, for example, that y^ satisfies not only equation (14.19) (see also
11.12), but also an autoregressive relationship &(L)yt = et and that
the subspace of the cointegrating vectors is of order 1 (cf. exercise 14.1).
The corresponding error correction model (cf. theorem 11.8) can be
written as

D a ; y t - i + 4 ( L ) A y t = C t ,

with 3>(0) = I and a! — (-1,0:2, • • •, otn). One equation of such a system
(for instance the first one) can be written as

Aj/i* = (1 -0n(L) ) Ayu- .. .-(f)in(L)Aynt- Dicx'yt-x+cu, (14.21)

where 0IJ (L) , i = 1, . . . , n are the elements of the first row of &(L) and
D\ is the first element of the vector D.

The first step of the Engle and Granger procedure consists of estimat-
ing a by minimizing

T

that is, regressing by ordinary least squares yu on y2t, • • • ,2/nt- This
regression is called a cointegrating regression.
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The minimization problem can be also written as
T

a T t=i

or

The limit problem is (cf. theorem 14.9)

a1 \
W(r)W'{r)dr

/
the solution to which is a0, the normalized cointegrating vector. The
estimation procedure of a 0 is thus consistent and a slight modification
to theorem 14.7 shows that the rate of convergence is ^.

The second step consists of replacing in (14.21) a with the estimator
dtT obtained in the first step, in order to estimate the parameters in
0ii (L),. . . , </>in(L), and D\ by OLS. Since the rate of convergence of 6LT
is high, this second-step estimator has the same asymptotic properties as
the "pseudo-estimator" obtained by taking a equal to its true value a0,
and the usual testing procedures are still valid (however, cf. Gourieroux,
Maurel, and Monfort, 1987, for a limitation of this two-step procedure).

Another estimation procedure of equation (14.21) consists of applying
nonlinear least squares (Stock, 1987). The estimator of a 0 thus obtained
is also superconsistent. The estimators of the other parameters have the
usual asymptotic properties and are asymptotically equivalent to the
estimators of the second step in the Engle-Granger procedure. Note
that, among the parameters having the usual behavior, there is also the
coefficient D\ of yij-i- If we change the normalization for a, we can
see that the coefficients D\cii of yi,t-i-> i = 2, . . . ,n also belong to the
same category. We can then perform the usual inference procedures on
the coefficients of y^t-i, i = 1,. . . , n taken individually.

We may also want to test whether there exists a cointegrating rela-
tionship. Such a test can be based on the residual ut of the cointegrating
regression, that is, the regression of y\t on y2t, • • • ,ynt- Under the null
hypothesis of no cointegration, cxf

oyt = ut is nonstationary and there-
fore it is natural to test such a null hypothesis with a unit root test
on ut. Such a test has been proposed by Engle and Yoo (1987) and
Phillips and Ouliaris (1988). In particular we can propose the aug-
mented Dickey-Fuller tests and the statistics SP,ST,SP, ST described in
14.3 (by replacing yt with ut). However note that these statistics do not
have the same asymptotic distribution as when they are computed on
directly observable variables (and not on regression residuals). The tests
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Table 14.1 Critical Values for Sp with or
without Constant Term

n

2

3

4

5

6

NC

22.83

29.27

36.16

42.87

48.52

)

C

28.32

34.17

41.13

47.51

52.17

a = 5%

NC

15.63

21.48

27.86

33.48

38.09

C

20.49

26.09

32.06

37.15

41.94

a = 10%

NC

12.54

18.18

23.92

28.85

33.80

C

17.04

22.19

27.58

32.74

37.01

based on Sp and ST should be avoided because they are not consistent
(cf. Phillips and Ouliaris, 1988). Under the null hypothesis of no coin-
tegration of yt and Ayt stationary with zero mean (thus not necessarily
VAR), the ADF statistic of Dickey-Fuller and ST have the same asymp-
totic distribution. For the Augmented Dickey-Fuller test, though, we
need to make the hypothesis that the number p of lags included in the
regression tends to infinity with the number of observations, in such a
way that p = o{T1^). Under the alternative hypothesis of cointegration
we have Sp = OP{T), ST = Ov{Tll2), ADF = OP(T^2). Therefore Sp

seems preferable to the other statistics; since it diverges more rapidly
under the alternative, the power for finite samples is probably higher.
The critical values for the tests based on Sp on the one hand, and for ST

and ADF on the other, correspond to the values beyond which the null
hypothesis of no cointegration is rejected. Tables 14.1 and 14.2 are taken
from Phillips and Ouliaris (1988) and distinguish between the two cases
when ut is obtained in a regression of yu on y2t, - - -, ynt with (columns
C) or without (NC) the constant term. In the former case the values
can be found also in Engle and Yoo (1987).

14.5.3 Likelihood Ratio Test

We can easily perform a test about the dimension of the subspace of the
cointegrating vectors. Let us consider a series {y^} the components of
which are nonstationary integrated of order 1 and which admit a finite
autoregressive expression
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Table 14.2 Critical Values for ST and ADF
with or without Constant Term

n

2

3

4

5

6

NC

3.386

3.839
4.304

4.672

4.990

>

C

3.962

4.308
4.732

5.073

5.281

a = 5%
NC

2.762

3.267

3.737

4.126

4.400

C

3.365
3.767
4.112

4.454

4.710

a = 10%
NC

2.450

2.987

3.445

3.807
4.142

C

3.066

3.449

3.833

4.156

4.431

for t > 0, and where e is a white noise with variance-covariance matrix
ft.

Let us consider the null hypothesis

Ho : the dimension of the subspace of the cointegrating vectors is r.
(14.22)

Constrained Maximum Likelihood Estimators Let us start by
constructing the parameter estimators constrained by the cointegration
hypothesis. In order to make this constraint apparent, let us start by
rewriting the model in an error correction form. A suitable expression
for the problem at hand, which can be derived from the theorem 11.7,
is

Ayt - I \ Ayt-i + . . . + Tp_! Ayt_p+1 - Da'yt-P + eu (14.23)
where F i , . . . , Fp_i are square matrices n x n, D is an n x r matrix and
a a matrix n x r, the columns of which are independent cointegrating
vectors (cf. exercise 14.3).

Under the assumption of normality of the errors, the conditional log-
likelihood can be written as

T T
log L = —n— log 2TT - — log det ft

1 T

- - ]T (Ay, - Fx Ay,-! - ... + Da'yt-P)' V1

t=\

(Ayt - FiAyt_i - . . . + Da;yt-P) •
Concentrated Log-likelihood Let us start by concentrating the log-like-
lihood with respect to the parameters F i , . . . , F p _ i . This is equivalent
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to considering the regression of Rot on Rpt, where Rot indicates the
residual in the regression of Ayt on Ayt- i , . . . , Ayt-p+i, and Rpt the
residual from the regression of yt-P on Ayt_i, . . . , Ayt-p+i- The con-
centrated model is

Rot - - D a R p t + e* (14.24)

with var(e£) = ft. Taking a as fixed, we can concentrate the log-
likelihood with respect to D and ft. Since the model appears in the
Seemingly Unrelated Regression form with the same set of explanatory
variables a'Rpt, we know that the generalized least squares estimator
of D is the same as the OLS estimator. Then the solutions for D and
ft are

D(a) = -SoPcx (a'Sppa)"1,

fl(ct) = Soo — SOpa (c/Sppa) a'Spo,

with

1 T

Si^-^RitR^, M=0, p. (14.25)

t=i

The concentrated log-likelihood is

logLc(a) = - | logdet (fi(a)) - ̂  - ̂  lOg27r. (14.26)

Constrained Maximum Likelihood Estimator of the Cointegrating Vectors
The problem to be solved is then

mindet (sOo - SOpa (a'Sppa)"1 a 'S

On the basis of the formulas for the determinant of a block-partitioned
matrix we have

det Soo det (GL'SPPGL — o/SpoS^

= det (a'Sppa) det (s 0 0 - SOpa (

The problem to be solved then is the same as

. det (O!SVVOL - a '
mm

det (a'Sppa)

Moreover, the cointegrating vectors a being denned up to a change in
basis, we can always choose a normalization corresponding to a partic-
ular basis. For example, we can normalize a so that a'SpPa = I. The



Nonstationary Processes 557

problem is then

mindet (I - a'SpoSj^Sopa) ,
(14.27)

s.t. a'SppOt = I.

The solution to the latter problem is a standard one (cf. Anderson,
1984), and it reduces to a problem of eigenvalues and eigenvectors.
More precisely, let us denote by Ai > . . . > An the solutions to the
equation

det (ASPP - SpoS^Sop) = 0, (14.28)

and by e*, k = 1 , . . . , n the associated eigenvectors

SpoS^Sopefc - XkSppek (14.29)

for k = 1 , . . . , n, normalized as

{l ! f"; :: ( i 4 3 o »
It can be shown that the eigenvalues Aj are between 0 and 1, and that
we have the following result:

Theorem 14.10: The constrained maximum likelihood estimators of
the cointegrating vectors are the eigenvectors e i , . . . , e r associated with
the r largest eigenvalues solution to the equation

det (XSPP - SpoS^Sop) - 0

with efcSppdj = 6kj (Kronecker delta).

This result is clearly close to the descriptive procedure described be-
fore, based on the empirical variance-covariance matrix. However, note
that in order to estimate the cointegrating vectors, it looks advisable
not to take into consideration just the static relationships, but also the
dynamics of adjustment. This result is in line with theorem 14.8 where
we have seen that the estimator of the long-run parameter based on the
dynamic relationship was preferable to the one computed on the basis
of the static model.

The maximum likelihood estimators of r i , . . . , r p _ i and of D are
obtained by ordinary least squares applied to the equations (14.23) where
a has been replaced by the estimator a just derived.
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Likelihood Ratio Test We can now derive the Likelihood Ratio statis-
tic. The maximum of the log-likelihood under the null hypothesis is

logLc(a) = ~ logdet (n(a)) - ^ - ^-\og2ir

_ _T /det SQQ det (a'Sppa - a'
~ ~2 °g ^̂ det(d'Sppa)

nT nT,

T , o T , / V r , c A nT n T ,
= - - logde tSoo - - l o g I [[(1 - Afc) I - — — Iog2?r.

Under the general hypothesis, where the coefficient of yt-P in the re-
gression is unconstrained, we have Ct = Soo — SopSp^Spo an<^ ^ n u s ^ n e

maximum value of the unconstrained log-likelihood is

T T / A , ^ A nT n T ,
logL = -—logdet Soo - — log I I 1(1 - Afe) I - — — Iog27r.

1 l \k=i J l l

The form of the test statistic is derived then from theorem 14.11.

Theorem 14.11: The Likelihood Ratio statistic of the null hypothesis
Ho: the subspace of the cointegrating vectors is of size r, is

n

£ = 2(logL-logLc(a)) = -T £ log(l - Afc),
k=r+l

where the Xk, fc = r + 1 , . . . , n are the n — r smallest eigenvalues, roots
of the equation

In order to apply the test, we need to know the distribution of the test
statistic under the null hypothesis, derived by Johansen (1988).

Theorem 14.12: Under the null hypothesis HQ: the subspace of the
cointegrating vectors is of order r, the Likelihood Ratio statistic con-
verges in distribution to the distribution ofa I / ,1 x - 1 ,1 \

W(r)dW'(r) / W{r)W(r)dr / dW(r)W'(r) ,
\Jo / Jo J

where W z s o Brownian motion of size n—r with the variance-covariance
matrix equal to the identity matrix.
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Table 14.3 Likelihood Ratio Test:
Critical Values

n — r 1

99% 6.51 16.31 29.75 45.58 66.52

95% 3.84 12.53 24.31 39.89 59.46

90% 2.86 10.47 21.63 36.58 55.44

Table 14.4 Test: Order r vs. Order
r + 1. Critical Values

n-r 1 2 3 4 5

99% 6.51 15.69 22.99 28.82 35.17

95% 3.84 11.44 17.89 23.80 30.04

90% 2.86 9.52 15.59 21.58 27.62

The 99%, 95%, and 90% quantiles of this distribution can be computed
by simulation. These quantiles correspond respectively to the critical
values of the tests at the levels 1%, 5%, and 10%. They are given in
table 14.3.

Another interesting test is formulated for a null hypothesis formulated
as the cointegration subspace is of order r versus order r + 1. The
likelihood ratio statistic is then

-Tlog( l -A r +i )

which, under the null hypothesis has an asymptotic distribution the
quantiles of which are given in table 14.4.

Let us assume now that we introduce a constant term in model (14.23).
The model becomes

Ay* = /x + r iAyt _i + ... + rp_iAyt_p +i - Da 'yt-P + et. (14.31)

If we want to test whether the order of the cointegration subspace is r
against the general model we can again use the likelihood ratio statistic
given by theorem 14.13.
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Table 14.5 Model with a Constant
(Case A): Critical Values

n — r 1

99% 6.65 20.04 35.65 54.46 76.07

95% 3.76 15.41 29.68 47.21 68.52

90% 2.69 13.33 26.79 43.95 64.84

Theorem 14.13: The Likelihood Ratio statistic of the null hypothesis
Ho: the subspace of cointegration is of order r versus the general model,
is

n

C = -T £ log(l - X*k),
k=r+l

where the A£, /c = r + l , . . . , n are the n — r smallest eigenvalues, roots

of the equation

the matrices S*̂ -, (z, j = 0,p) being constructed as the S^ from the resid-
uals R* • of the regressions of the components of Ay^ on the components
of Ayt_i , . . . , Ay^-p+i and a constant (for Rotj and °f the components
of yt-p on the same variables f/or RJJ .

The problem with this new statistic £* is that it is not asymptotically
similar under the null hypothesis. In fact, its asymptotic distribution is
not the same according to whether the constant \x belongs to the image
of D or not. If it does not, the quantiles of the asymptotic distribution
under the null hypothesis are given in the table 14.5. If /x belongs to
the image of D we can write /LA = —Da*, where a* is a vector of size r,
and the model (14.31) can be written as

Ayt - TiAyt_i + . . . + Tp_iAyt_p + 1 - D (a* + a'y«-P) + et. (14.32)

In the latter case the asymptotic quantiles are given in table 14.6.
As in the case without a constant, we may also want to test the null

hypothesis according to which the subspace of cointegration is of order
r versus an alternative of it being of order r + 1. The likelihood ratio
statistic is then —Tlog(l — A*+1) and the quantiles of this statistic under
the null hypothesis are given in table 14.7 when the constant does not
belong to the cointegration subspace, and in table 14.8 for the case in
which it does.
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Table 14.6 Model with a Constant
(Case B): Critical Values

n-r 1

99% 12.97 24.60 41.07 60.16 84.15

95% 9.24 19.96 34.91 53.12 76.07

90% 7.52 17.85 32.00 49.65 71.86

Table 14.7 Test: Order r vs. Order
r + 1 (Case A): Critical Values

n-r 1 2 3 4 5

99% 6.65 18.63 25.52 32.24 38.77

95% 3.76 14.07 20.97 27.07 33.46

90% 2.69 12.07 18.60 24.73 30.90

Table 14.8 Test: Order r vs. Order
r + 1 (Case B): Critical Values

n-r 1 2 3 4 5

99% 12.97 20.20 26.81 33.24 39.79

95% 9.24 15.67 22.00 28.14 34.40

90% 7.52 13.75 19.77 25.56 31.66

Note, in particular, that for the two types of tests, the quantiles of
the statistics corresponding to the case where the constant belongs to
the cointegration subspace are greater than in the opposite case. As a
consequence if we do not want to make any assumptions on the con-
stant, and we want a test with a smaller asymptotic size than a (a =
1%,5% or 10%), we must use either table 14.6 or table 14.8.

For r chosen, the maximum likelihood estimator of the matrix a ap-
pearing in (14.31) can be obtained by taking as an estimator of the z-th
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column of ot the eigenvector e* defined as

S;o(SSo)-1SSpe*=A*S;pe*, i = l , . . . , r .

These vectors correspond to the normalization e^S^e* — 8kj (Kro-
necker delta).

The estimators of the other parameters of (14.31) are obtained by
replacing a by its estimated matrix a and by applying ordinary least
squares. The usual tests can be applied for these parameters.

/ OL \
If we want to estimate the matrix a. — [ , I of order (n + 1) x r

\€X* J
under the assumption of model (14.32) we can take the eigenvectors ê
defined as

SpoS^Sopei = XiSpp&i, i = 1, . . . , r,

and where the matrices Spo and Spp are computed as in (14.25) once
the vectors of the residuals Kpt are replaced by the vectors obtained by

regressing I on the components of Ayt_i , . . . , Ay^-p+i. Also,

the Aj, for z = 1, . . . , r are the r largest eigenvalues. Note that the new
vectors of residuals Hpt are of order n + 1 (not n), and that the smallest
eigenvalue is An+i = 0 given that the matrix SpoS^Sop is singular.

Once r is given, if we want to test whether the constant is of the form
—Dao, we can use the likelihood ratio test

and this statistic is asymptotically distributed under the null hypothesis

as a, x2(n ~ r)-
Finally, we can use different likelihood ratio tests on the matrix a

appearing in (14.31), without questioning the dimension r, and apply
the classical asymptotic theory. Thus we may test whether the subspace
of cointegration belongs to a given subspace of dimension s > r, i.e.,
that we have ct — H7, where H is a matrix n x s known and of rank s,
and 7 is an s x r matrix of parameters. The likelihood ratio statistic is
then

where the Â , i = 1, . . . , r are the r largest eigenvalues given by

det (AH'S;pH - H'SJoS^'SSpH) = 0.

Such a statistic is asymptotically distributed as a x2(r(n — s)) under the
null hypothesis a = H7.
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14.6 Determination of the Order of Integration

One of the most important problems in the theory of nonstationary
processes (ARIMA or fractional) is the determination of the order of
integration d. Until now there does not exist an estimation method
for this order with satisfactory asymptotic properties (distribution and
possible optimality). However, we can suggest several approaches which
intuitively lead to consistent results.

14.6.1 Estimation Based on the Empirical Mean

We have seen that if the process y is fractional

yt = (1 - L)-d$(L)-

for t > 0, the empirical mean is such that
1

We have then
Jo

\og\yT\ ~ (d - 1/2) log T + log
Jo

Voo(r)dr

Since the second term on the right-hand side is negligible with respect
to the first, we can immediately propose as consistent estimator

*i) _ loglgrl 1
dT - l o I r ~ + 2-

Since

i(D A „ lQg I Jo V°odr

we know the limit distribution of this estimator, and the rate of conver-
gence (I/log T) which is fairly slow.

14.6.2 Estimation Based on the Periodogram

A fractional process admits as its pseudo-spectrum the expression

2TT |1 - exp(iuj)\2d\$(exp(iu;))\2'
At low frequencies, that is for u tending toward 0, this pseudo-spectrum
is equivalent to

Thus the exponent d gives the rate of divergence of the pseudo-spec-
trum at the origin. Taking the logarithm we see that for UJ small, we
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have approximately a linear relationship between the logarithm of the
pseudo-spectrum and the logarithm of the frequency

log f(u) « -2dlog(o;) + constant.

The estimation of the parameter d by this approach consists of replacing
the pseudo-spectrum with the periodogram IT{W) and then regressing
\og(lT(w)) on log(o;) for some small values of a;.

Let us consider some values of the periodogram associated with fre-
quencies tending to 0 such as / (^). We know then that JT(W), linked
to IT(U) by IT{W) = 2^T\JT(U)\2, verifies (cf. theorem 14.5)

1 uo\ f1

^ J ~ /

exp(zct;r)t/oo(r)dr I .
/

We have, then

log \2ITTIT yfj) = log^T (™J + log JT (—J

/ exp{iuj)yoo{r)di
Jo

with E(u(<j,d)) = 0. The function

m{<jj,d) = 2E I log / exp(z(x;)7/oo(r)dr
V Jo

might be computed by using the expression for y^r), allowing us to
derive a consistent estimator of d, d^ by minimizing

J 2

^( log(27r / T [jr)) ~ (2d+ 1) log T -m(uJ3,d)} .

14.6.3 Analysis of the Variance—covariance Matrix

In the Box and Jenkins approach, the empirical variance-covariance ma-
trix of the observations is usually computed. The question is whether
such a matrix can help in identifying the order d of integration. To sim-
plify matters, let us consider the case d = 1. Let the process be defined
as
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with vt = &{L) 1Q(L)et. Let us pose j(h) = cov (yt, Vt-h)- We know
that

t=l

In the appendix it is shown that
1 T h

J. Zt

Thus the various coefficients of the covariance matrix

are of order T. Normalizing the coefficient differently, we can compute

__ . t-H\

1

i \

* z2t=i
This matrix admits as a limit

UJ'
f1

7 {rfdr

... ly
At this stage we have simply used the same approach as the one based
on the empirical mean in order to obtain a limit. However, since we
have here various statistics, i.e., elements of the matrix, we can exploit
the particular structure of the limiting matrix.

Theorem 14.14: In the case d — 1 the matrix ^tT{H) admits H
eigenvalues \H,T ^ • • • ^ M,T such that A2,T> • • • ? ^H,T tend to 0 and
AI,T tends in distribution to a nondegenerate random variable.

In the general case of an ARIMA(p, c/, q) with d integer, d > 1, we could
follow the same approach. We get theorem 14.15.

Theorem 14.15: If d > 1, the matrix ^f(if) admits H eigenvalues
^H,T < • • • < AI,T such that A<2+I,T, . . . , XH,T tend to 0 and A^,T tends in
distribution to a nondegenerate random variable, and the others diverge.
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Thus it seems possible to determine d by using a descriptive approach
similar to the correlogram, which would consist in plotting on a diagram
the eigenvalues AI,T, • •, ^H,T and to detecting which is the index from
which these eigenvalues can be considered equal to 0.

14.7 Appendix
Asymptotic Approximation of Cross Moments

Let us denote by yt the fractional process (1 - L)~d&(L)~1Q(L)et of
order d and by

r
Jo ^ " S)"°°v ' *(i)r(d) JO

the limit in distribution of the associated transformed process

Behavior of Ylt=i VtiVt ~ Vt-i) Let us write
T T T

t=i t=i t=i

t=i \t=i t=i t=i

1 T 1 / T T \

t=i \t=i t=i /

T
1 ^ . x2 ! / 2 2\

= 2 2 ^ ^ * ~ yt~^ + 2 ^ T ~ ^°^ '

Thus the cross moment can be expressed as a function of the two values
of the process y\ and y% and of the second moment of the differenced
process.

We know that
1
 7 . 2 ^ 2 / i \

rp2d \*JT yoo \ ) '

On the other hand, if the differenced series (yt — yt-i) is stationary, that
is if

we have

^ Z ^ ( ^ -Vt-i
1 t=i

2
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If it is nonstationary, we know that J2t=i(yt — yt-i)2 is of order T2d~2

smaller than that of y\. Putting these results together, we can distin-
guish among three cases:

(i) If d > 1
T

1

t=l

(ii) If d = 1

1 T 1
^ i y t - i ) -^ -2/^(1)+var(y t-2/ t_i).

zt=l z

(iii) If d < 1
T

Behavior of ̂  St=i 2/t7/* when y and 77 are independent and 77
is a white noise We have

with WT(r) = -^j- Z[l1 Vt-

t=l t=l

/
JO

since, in this special case, y^t/T) can be replaced by yoc{(t — ^)/T) in
the sum over £, giving a Stieltjes interpretation of the Ito integral.

Behavior of YlJ=i Vtiyt—yt-h) when d = 1 Let us reason by induction.
We have

f f T
t=l t=l t=l

By the same token, noting that
yt = yt-h-i + ^t-h + J't-h+i + • • • + t̂
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we have
1 T x T h x T

f XI vM-h = f^2 yt-h
t=l t=l

t=l

T

Ylyt-h(
t=i

h l T

j=0 t=l

\

-h T- 2^ rp
3=0

h

1 T

t=l

t=l

T

t=l
Vt-jVt-h

-yt-h-if

Noting that 2/^(1) = uo2B2{\) we have then by induction

^ £ > ( j / t - Ifc-fc) - ^(u;2
JB

2(l) + ^
t=i
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14.8 Exercises

Exercise 14.1: Let us consider a nonstationary series yt integrated of
order 1

Let also
1

MT = Tv

Let us assume that the series is cointegrated, that the subspace of the
cointegrating vectors is of order 1, and that it is spanned by a vector of
the form (—1, a2, • • •, ctn)

f = a.
Let us define the solution 6LT of the problem

a2
min (-1,0:2,-..,otn)'MT

(i) Show that this problem is equivalent to performing ordinary least
squares on the static model

V\t = OL2V2t + . . . + anynt + ut.

(ii) Verify that the estimator OLT is a consistent estimator of the coin-
tegrating vector, in which the first component is equal to —1.

(iii) Using the result of section 14.5, discuss its asymptotic distribution.

Exercise 14.2: Let us assume now that the series defined in exercise
14.1 is cointegrated, that the subspace of the cointegrating vectors is of
order r and that it is spanned by vectors of the form

( l ,0 , . . . , 0 ) a ; + 1 , . . . , a i ) ; ,

(0,l,...,0,a2
r+1,...,a

2
nY,

( 0 , 0 , • • • , ! , < + ! , • • • , < ) ' •

Let A be an r x n matrix

A = (i, A) .

Let us define the solution A^ of the problem

mintr (AMTA').
A

Verify that the rows of A T converge to cointegrating vectors.
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Exercise 14.3: Verify that the error correction system (cf. theorem
11.7)

Da ;yt- i

with <£(0) = 1 can also be written as

Ayt = TiAyt_i + ... + r p_ i y t_ p + 1 - Da'yt-p + et,

and express the matrices F i , . . . , Fp_i as a function of the coefficients of

the autoregressive operator

Exercise 14.4: Let us consider the regression model (14.15) and the
ordinary least squares estimator GL\T of a\. Show that the estimator CL\T
is equal to

_ Ef=i xtVt ~ Ef=i

Show that:

(i) If \ < d < §

1 (TV f£ XooWdWjr)

(ii) If d > §

/o1 A x ^ ^ d r - ( /

rrpo(r)dW(r) /^ ^
Td<Jri 1 1 / 1 \ 2 'i 1

/o

Exercise 14.5: Let us consider again the regression model (14.15) and
the ordinary least squares estimator a^r of a<i. Show that the estimator
CL2T is always consistent. Show that:

a) if 1 < d < 1

Vf(a2T-a2) -̂
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(ii) If d > |

Td-l{a2T-a2)

So x2oo(r)drIo Ax2o(r)dr - (/Q1 xoo(r)Axoo(r)drJ

2

Jo x^i^dr /o Ax2o(r)dr - ( j ^ xoo(r)Axoo(r)dr)
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State-space Models and the Kalman Filter

15.1 State-space Models

In chapter 8, we have seen that some multivariate processes {yt,t > 0}
have a state-space representation, that is, verify equation systems of the
type

zt+i = Azt +Bu f ,
(15.1)

yt = Cz* + Du t, t>0,
where {ut} is a white noise, zt a random vector called a state vector and
A, B, C, D are nonrandom matrices.

In this chapter we will generalize this type of representation and will
analyze state-space models.

Definition 15.1: A state-space model is defined by the equation system
(a) zt+i = Atzt + e t ,

(b) yt

where < I ] > , t > 0 is a Gaussian white noise, the At
 7s (resp. C* 7s)

[\VtJ J
are nonrandom matrices of order (K x K) (resp. (n x K)), and Zo is a

random vector distributed N(m,P), independent of [ ) , t > 0.
\VtJ

The equation system in the definition is more general than the system
(15.1), as long as the matrices A t and Q may depend on time. On
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the other hand, we have imposed normality on the noise ( ) and the
\VtJ

initial state z$. Nevertheless, note that this assumption can be weakened
and replaced by an existence condition of the second-order moments, as
long as the conditional expectation is replaced by the affine regression.

The variance-covariance matrix of [ ) is written as
Js

R,
To simplify matters, this matrix is assumed to be independent of time;
nevertheless the following results can easily be generalized in the case
where ft is time-dependent. The partition of ft was conformable to

so that Q = var (et),H = var (rjt) and S = cov (et,r)t). In order

to introduce some terminology, the random vector zt, of size K, is called
the state (of the system) at time t; generally, it is partially or completely
unobservable.

The random vector yt, of size n, is the vector of observations, of
measurements, or of outputs (of the system) at time t and it is observable.

The random vector et, of size K, is the vector of innovations, or of
perturbations, or of inputs at time t; it is not observable.

The random vector rjt, of size n, is the measurement error or noise
vector at time t; it is not observable.

The matrices At and C* are respectively the transition and measure-
ment matrices, at time t. The vector G^t is called the signal at time
t.

Finally, the equations in (15.1) are called state, respectively, measure-
ment equations.

The assumptions in the definition provide the distribution of the pro-

cess K ) , t > 0 >; in particular note that this process is Gaussian.
YtJ J

Then the normality of the process < ( ) , t > 0 > allows one to com-
l V y t J J

pute the various conditional expectations by theoretical linear regression.
In the following sections we will be interested in recursive derivations of
conditional expectations.

First of all, we can look for the best approximation to the state zt

of the system at time t, knowing the present and past observations
yo,yi,.--,yt- This approximation is given by E(zt | yo,---,y*) and
the corresponding problem is called the filtering problem.

Of course this approximation can be improved if we consider more
observations. This brings us to introduce the optimal approximation of
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zt given yo,.. . ,ys, where s is an index greater than t. It is given by
E(zo I Yo, • • • , Ys), s > t. The problem is called the smoothing problem.

In the same way we can look at the forecasts of future variables. It
is the same as computing E(zt | y 0 , . . . , ys), E(yt | yo, • • •, y8) for s < £
and the problems are called forecast problems.

15.2 Kalman Covariance Filter

We want to compute recursively

tzt = E(zt | y o , . . . , y t ) , (15.3)

by means of an algorithm based on simple operations: this simplicity
is reached by updating not only tzt but also the variance-covariance
matrices of some other quantities which are interpreted as forecasts or
errors. These quantities are:

the mean square filtering error on zt at time t

t E t = E ((zt - tzt) (zt - fit)') = var (zt - tzt), (15.4)

the forecast zt at time t — 1

t-izt = E(zt | y0, • • •, y t - i ) , (15.5)

the corresponding mean square forecast error

t_i£t = E ((zt - t-izt) (zt - t-iz t)
;) = v a r (zt - t-iit) • (15.6)

15.2.1 Definition of the Filter when S = 0

Let us first assume that the innovation e and the measurement error r)
are not correlated cov(e$>f7t) = S = 0. The computation algorithm is
given by the Kalman Covariance Filter.

Theorem 15.1: Covariance Filter For t > 0 we have the following
relationships

(a) tzt = t-iit + Kt (yt - Ct t-iit)

with Kt = t-iVtOt (Ct t-iStC{ + R)"1;

(a') t S t = (I-K tC t) t_iE t ;

(b) tit+i = At tzt]

(bf) tE1 + 1=A t tE tA; + Q.

T/ie matrix Kt is called the filter gain at time t.
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PROOF: Let us introduce the forecast error at horizon 1 on yt

yt = yt- t-ift = yt-E(yt\ y o , . . . ,y t - i ) = y* -Ctt-\it

= Ct(zt - t-i

Formula (a) We have

tit = E(zt | y o , - . - , y

= E(zt\ y o , . . . , y

since yt is not correlated with yo, . . . , yt-i-
Moreover the forecast E1 (z$ | yt) c a n De written as
£(z* | yt) - E(zt) =cov(zt,yt)var(yt)"1yt

= cov (zt, Q(zt - i_izt) + 7ft)

zt - t_izt) H- rjt}~1(yt - Ct t-izt)

; (Q t _ i S t c ; + R)"1 (yt - Ct t-iz

By substituting in the expression of tit, we get formula (a)

tit = t-\it + Kt (yt - Ct t-iit) -

Formula (ar) The corresponding error is

zt - tit = zt - t-iit ~ K*yt.
Since ẑ  — tit is not correlated with yo,yi, • • •, yt? it is not correlated
with yt. Then

tJlt = var(zt - tzt)

= var (zt - t-iit) - var (Ktyt)

t + R) Kt

-i^t^'t + R)

Formula (b) We have Zt+i = Atzt + et-
Computing the conditional expectation for each element with respect to
yo, . . . , yt and using the fact that the innovation and the measurement
errors are uncorrelated, we get

= At tit-
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Formula (bf) The corresponding error is

zt+i - tZt+i = At(zt - tZt) + et-

We can derive

*£*+! = var (zt+i - tzt+i) = var (At (zt - tzt) + e*)

The equations (a) and (a') are called the measurement updating equa-
tions. They allow one to modify the approximation of zt and the corre-
sponding precision for any new observation yt.

The equations (b) and (b') are called time updating equations: they
explain how to compute the forecast of z$+i from the filtering of zt and
provide the associated modifications to the variance-covariance matrices
of the errors.

We can notice that the formulae {a') and (6') relative to the variance-
covariance matrices tSt? t^t+i do not use the observations yo • • • yt —
Therefore they can be used independently of the two other formulae (a)
and (b) and before having access to the observations (or off line).

Some formulae for the computation of forecasts at horizon 1 can be
derived from the covariance filter.

Corollary:

and

We get

Let us

(c)

(c')

write

t-iyt = E(yt
I

t-iMt = var(yt - t_

*yt+i =

tMt +i =

= C*+i tz
(15.7)

() t t + i t + i t t + i ; + 1 + R .

PROOF:

(i) From the measurement equation y*+i = Ci+iZt+i + i7t+i, taking
the forecast of each element given yo • • • yt, we derive

which is formula (c).
(ii) The associated forecast error is

= ct+i(zt+i -
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Taking the variance of each element, we get the formula (c7)

tMt+i = Q+i t5^+iCt + 1 + R.

n

Example 15.1: As an example, let us consider a regression model
having one independent variable

yt =xtb + r)t,t > 0.

This model can also be written as

6t+i = bt, yt = xtbt + rjt, t> 0.

It has thus a state-space form with n = K = 1, C$ = xt,At = 1, Q =
0,zt = 6t-

The recursive formulae for the variances give

t E t = (I - KtCt) t_ iEt , withKt = t_iStC{(Ct t - i E t C ; + R)"1

Taking into account the last equality and the univariate nature of yt
and of Ct = xt, we get

- 1

•r-0

On the other hand, t%t is the best linear forecast of the parameter b
when the observations yo,.--,y* are known and for a given a priori
distribution of 60- We know that when this distribution is a priori chosen
"diffuse on Ft", that is when -iS^"1 = P " 1 = 0, tzt is equal to the OLS
estimator of b (see exercise 15.6 and section 16.1.1). We have the same
result for the mean square errors. When _iSlJ = _i E^"1 = 0, we

ft \~l

get tSf = var (r]t) ( S r = o x r ) > which is the variance of the ordinary
least square estimator of b. The Kalman filter is interpreted here as a
recursive computation of the OLS estimator (for tzt) and of its precision
(for t E t ) .
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On the other hand, the filter can be written in a simpler form if we up-
date the inverse of the matrices t^t rather than the matrices themselves;
this idea will be exploited later on (see section 15.4).

15.2.2 The Stationary Case

A particular case of the state-space model is when the matrices At and
Ct are time independent

yt = Czt+ilt, t>Q.

Moreover, if the matrix A has all its eigenvalues strictly smaller than 1 in
modulus, we know that the process {z} is asymptotically stationary, with
a first-order autoregressive representation. The process {y} obtained as
a linear combination of (z, rj) with time independent coefficients, is also
asymptotically stationary. Therefore for t large enough (t —> oo), we
can approximate the mean square errors with the ones of the associated
stationary processes. More precisely, if (z£,y£) represents the stationary
process which (z^y*) tends to, we have

t £ t = var (zt - E{zt \ yt • • • yo))

This last expression is independent of the index t. The various matri-
ces tEt» tSt+i, tMt+i converge to the limits 5] ,E ,M when t goes to
infinity.

This convergence can be used in practice to simplify the Kalman algo-
rithm. If T is large enough, we can replace the initial filter (cf. theorem
15.1) by the limit filter.

a) tzt = t-iit + K(yt - C t_izt),

b)
where the limit gain is the limit of Kt

K = EC; (CSC7 + R) "1 (15.9)

which can be used after the distance between K^ and its limit can be
considered numerically small.

15.2.3 Initialization of the Filter

In order to apply the covariance filter of theorem 15.1, we need the initial
values _iz0 and _iSo-
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Intuitively, we can think that _iZo is the best approximation of Zo
when no information is given, i.e., _iZo = EZQ = m. We would have
then -iDo — var(z0) = P. We can formally prove this result by com-
puting oZo and o^o directly, and by verifying their equality with the
values obtained from the formulae (a) and {a') using _iZo = m and

Theorem 15.2: We have

ozo = m + K0(y0 - Com), with Ko = PC0 ( C O P C O + R ) " 1 ,

PROOF:

= ( I -

The

K 0 Q

pair

D)P-

/

[
' zo^

\ - ( Z o
1 VCoZo-

P PC0

is Gaussian with mean

and variance-covariance matrix

C0PC0

We have then

ozo = £(z0 I y0) = £;z0-hcov(z0,yo)(var yo)"1(yo -

ozo = m + Ko(yo - Com).

By the same token

oSo = var (z0 - ^(z0 | y0))

= var z0 -cov(z0,y0)(var yo)"1cov(y0,z0)

= (I-KoCo)P.
Obviously, these results are only valid if the matrix C0PC0 + R is non-
singular. •

The mechanism of the filter for t = 0, . . . , T (theorem 15.1 and corollary)
is summarized in figure 15.1.

15.2.4 Direct Updating of the Filters
(Respectively of the Forecasts)

The algorithmic formulae given in theorem 15.1 update simultaneously
the filters t2.t and the forecasts t%t+i- K w e a r e only interested in the
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Initialization: t = 0

-I
Formulae (a) and (af)

f = f + 1
Observation

Formulae (b) and (b')
and possibly (c) and (c1)

no T _
• t= T

yes

Stop

Figure 15.1 Flowchart for the Filter

filters (respectively in the forecasts), we can derive just the updating for-
mulae which do not need the intermediate computations of the forecasts
(respectively of the filters).

Filter Updating We have to eliminate

t7*t+\ a n d £$j£_|_i

in the equations of theorem 15.1. From formula (bf) we have

Therefore the filter gain is

t

\Ct(At-xt-\Zt-\K-\ + Q) c t + R ] ~ •
The formulae (a) and (a') can be rewritten as

tzt = At-i t-iit-i + Kt (y* — CtAt_i t-iit-i) ?
(15.11)

tSt = (I - KtCt) (At_i t . iE t - i A;_! + Q) .

Forecast Updating In the same way we get a direct updating of the
forecasts. It is given by

tit+i — At t-iit + AtKt(y* — Ct t-iZt),
(15.12)

t S t + 1 = At(I - KtCt) t-iStA;
f + Q,

with Kt = t _ iE t CJ(Qt- iS t CJ H- R)"1. In the stationary case (At

and Ct are time independent, A has eigenvalues strictly smaller than 1
in modulus) we have seen that t£t+i converges to a limit S. It results
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from (15.12) that this limit satisfies the Riccati equation

5 - A (T, - EC' (CSC' + R)" 1 CS) A' + Q. (15.13)

15.2.5 Generalizations of the Filter

Introduction of an Input in the Transition Equation or in the
Measurement Equation

(i) Let us assume that the initial model is replaced by

zt+i = A*zt + Gtvt + eu

yt = Ctzt + rjti

where G* is a nonrandom matrix of size {K x m) and wt is a vector
of size TO, which is either nonrandom, or a function of y0 .. . y*. If
we still assume that et and rjt are not correlated, we see that vt is
predetermined, in the sense that it is independent of et,£t+i —
All the formulae of the filter remain valid with the exception of
formula (b) of theorem 15.1

which should be replaced by

tzt+i = At tit + Gtvt. (15.14)

(ii) Similarly let us consider the introduction of an input in the mea-
surement equation. The model is now

zt+i = Atzt + et,

yt =
where ¥Lt is a nonrandom matrix of size (n x p) and wt is a vector
of size p that is either nonrandom or a function of (yo, yi ... yt-i).
The only modified equations of the filter correspond to the equa-
tions where the vector yt is explicit. It should be replaced by
yt — HtWj. The formula (a) in theorem 15.1 is replaced by

tit = t-iit + Kt (yt - Ct t-iit - Htwt).

The equation (15.6c) is replaced by

tyt+i = Ct +i tzt+i + Ht+i^t+1. (15.15)

Note that under the normality assumption for the noises £t,TJti a nd
of the initial value zo, the processes yt, Zt remain Gaussian only if
vt (respectively wt) is a linear function of (yo,..., yt) (respectively
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Case where the Noises are Correlated When the innovation et

and the measurement error rjt are correlated cov (et,T]t) = S / 0, we
can easily go back to the previous cases. For example, we can introduce
the residual of the regression of et on r\t

We have then E(e\r)'t) = cov (e*, rjt) = 0, and var e\ = Q -
The transition equation is written as

zt+i = Atzt + et = Atzt + S R " 1 ^ + e*
or

= Atzt + SR-^yt - Ctzt) + e*t

= (At -
In this new equation e$ is not correlated with r)t, At has been replaced
by At - SR-1Ct and the inputs SR~1yt have been added. The result
of the previous section shows that the filter remains valid replacing At

by At — SR-1Ct in formulae (b) and (&') of theorem 15.1, and adding
SR-1yt to the second term of formula (b) and rewriting Q as Q —
SR^S7 in formula (&')•

Since the input SR- 1yt is a linear function of yt, the normality is
preserved.

Cases where the Transition and Measurement Matrices are
Random Let us assume that the matrix A* is a function of the ob-
servations yo,.. •, yt or that the matrix C* is a function of yo .. . yt-i-
Under the normality assumption, we can prove by induction (exercise
15.1) that the conditional distribution of the triplet Zt,zt+i,yt+i given
yo ... yt is Gaussian and we can show (exercise 15.2) that the covariance
filter (theorem 15.1) remains valid if the various variance-covariance ma-
trices of the errors are interpreted as variance matrices conditional on
the information used for the computation of the approximation.

Note also that, in spite of the existence of conditional Gaussian dis-

tributions, the process [ is not Gaussian anymore. Indeed, the
\ytJ

conditional expectation of zt given yo.. .yt, for example, is a nonlin-
ear function of yo .. . yt and the conditional variance-covariance matrix
depends on y o . . .y t .

15.3 Forecast
Let us assume once again the uncorrelation between et and rjt, S =
0. We are interested in the forecasts of the variables
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1,. . . , H conditional on yo . . . y*. Therefore we have to compute

tyt+h = E(yt+h | y 0 , . . . , yt), t*t+h = E(zt+h | y0 . . . yt),

and the variance-covariance matrices of the associated errors

tMt+h = var (yt+h ~ iyt+h), t^t+h = v a r i^t+h ~t Vt+h)-

The covariance filters in theorem 15.1 and in the corollary following it
provide the answer for ft = 1. It is therefore sufficient to provide a
recursive algorithm in the index ft of these quantities.

Theorem 15.3: If S — 0, we have the recursive formulae

t^t+h — ̂ t+h-i tZt+h-i,

tYt+h — Cf+fc t%t+h,

and
t^t+h = At_|_^_i t^t+h-l Aj+^_1 + Q,

for all values of ft > 1.

PROOF:

(i) The space-state model provides the relations

A i + et+h-i,

+ Wt+h-
Taking the conditional expectation given yo, . . . , yt, we get

t%t+h = At+h-l tZt+h-1,

tYt+h = C

(ii) Subtracting, we get
zt+h — ^ A

so that

•

The formulae in theorem 15.3 show that several forecasts and the corre-
sponding variance-covariance matrices can be easily obtained from the
Kalman filter of theorem 15.1. After a first pass at time t on the filter
formulae, we just have to go back to the stage of formula (b) and make
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Observation

Initialization
t = 0, h = 1

_xz0 = m, _!£() = P

-1
Formulae (a) and (a')

-1
Formulae (b) and (b1)

h=h+\ I

Formulae (c) and (c1)

„ I
I yes

no tJT?

I yes

Stop

Figure 15.2 Use of the Filter for Forecasting

H — 1 iterations following the formulae in theorem 15.3, that is, iterat-
ing formulae (6), (&'), (c), (c'). Of course, in order to be able to use the
filter at time t + 1 the values t%t+i and t^t+i have to be saved. This
procedure is summarized in figure 15.2.

In the case of a nonzero matrix S, let us remark that each formula
of theorem 15.3 remains valid, except those providing tz*+i and t^t+i
which have to be modified, as mentioned in 15.2.5.

When At depends on (yo,..., y*) or C* depends on (yo,..., yt-i), the
formulae for the forecast at the horizon 1 remain valid, as we have al-
ready seen, if the variance-covariance matrices have a conditional mean-
ing. On the other hand, as soon as h > 2, the formulae are not valid
anymore. This is apparent in the transition equation for t + 2, for ex-
ample

In this equation, At+i depends on (y0,.. . ,yt+i), so that if we condi-
tion on (yo,... ,yt) this matrix remains stochastic and the conditional
expectation of At+iz*+i is not anymore A$+i t%t+i-
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15.4 Information Filter

In the first example of this chapter we have seen that sometimes the
recursive relationships forming the Kalman filter can be expressed in
a simpler form, when we consider the evolution of the inverse of the
variance-covariance matrices rather than the matrices themselves. In
such a case the relevant matrices are interpreted as information matrices,
which explains the use of the term information filter. To obtain the
information filter we need to express the Kalman filter as a function of
the new quantities jSjT1, t S ^ . We also need to introduce the variables
tUt = *St t%t, *U*+i = tE

Theorem 15.4: Information Filter // S = 0, we get

(a) t U t = t_iUt + C;R-xyt;

(a') tSt-
x= t-iSr'+CjR-1^;

(/?) t u t + 1 = (i - M ^ A ; - 1
 tut ,

with

(/?') tEr+\ = (I - Mt)Nt.
(In these formulae we assume that At and Q are invertible.)

PROOF: We will use several times the following lemma on matrix
inversion (see exercise 15.3).

Lemma:

(D - CA^B)1 = D"1 + D1C(A - BD^Cj^BD1.

Formula (af) The formula (af) of theorem 15.1 can be written as

t^t = t-i^t — t-i^tC't(Ct t-i^tCt + ft) Ct t-i^t-

The lemma implies (with D" 1 = t-i^u c = -CJ, A = R, and B = Ct)

t^t = (t-i^T + CjR~ Ct)~ ,
or

Formula (ft) The formula (br) of theorem 15.1 can be written as

tEt +i = A, t E t A ; + Q = N"1 + Q,
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therefore

t E ^ = (Nr1 + Q)- 1

= (I + N tQ)"1N t .

Using the lemma (with D = I, B = I, C = - N t , A = Q"1), we get

(I + NtQJ-^I-Mt,

with: Mt = N t(N t + Q"1)"1 . The required formula is

Formula (/?)

= ( I - M t ) N t t z t + i

Formula (a) The formula (a) in theorem 15.1 is written as

tzt= t.iEtt-iUt+t-iStC^Ctt-iSt

Using the expression of t S t , we get

or

We have then to verify that

t- iEtC t(Ctt_i£$C t + R)~ = t£$C tR~ •

Multiplying formula (a') on the right by CJR"1, we get

— t-iStC t(Ct t_iS^C t -f R) C t t - iS tC t R

= t - iStC t (R — (Ct t_iStC t 4- R) Ct t_iStC tR )

= t - i S t C t ( C t t - i S t C t + R)~

((Q t- iEtC; + R)R~X - Q . - iStCjR- 1 )

= i S C j ( C i S C j + R)~
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Remark 15.1: The formulae of the information filter require the non-
singularity of Q. Nevertheless, we can verify that, in the case Q = 0,
the formulae (a), (a') still hold while the formulae (/?), ((3') are replaced
by jUt+i = A^"1 ttit and t^t+i ~ ^t which correspond to the limit
case M* = 0 implied by Q = 0.

Remark 15.2: When little information is available on the initial vari-
able z0, we have to consider a variance-covariance matrix P = _iSo>
which is "large" in all directions, that is a matrix with large eigenvalues.
The matrix P " 1 is then close to 0. In the information filter, we can
consider the limit case of the diffuse prior, where the initial values are
- I E ^ " 1 = 0 and _iU0 = -iD^"1 _izo = 0. The notation t-iD^T1 is
misleading since it seems to imply that this matrix admits an inverse,
which is impossible, at least for the first values of £, if - I E Q = 0. The
equivalence with the covariance filter works only when ^ - IS^" 1 and tSj"1

are invertible.

15.5 Fixed Interval Smoothing

We consider the general state-space model

riu t>0.

The matrix S = E(et r)f
t) is in particular not constrained to be 0. Let

us assume that yo, . . . , yr have been observed and the optimal approx-
imation of zt is to be computed, that is

Tzt = E(zt | VO,- . - ,VT)

and

T^t = var(zt - Tzt)

fo r*6{0 , . . . , r} .
This is called a smoothing problem on a fixed time interval {0,. . . , X1}.

As for the filtering and forecast aspects we can proceed recursively.

Theorem 15.5: Smoothing We have for t — 1, . . . , T — 1

(d) T%t = *zt + F

with F t = t S t A j t S ^
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PROOF:

Formula (d):

(i) We have to compute T%t — E(zt | yo, . . . , yr)- To this purpose let
us consider the set of variables

h = {yo,-">yt,

with wt = f 1. We can easily see that the variables y t + 1 , . . . , yT
\VtJ

are functions of the variables in It (i.e., belong to It). Indeed, we
have

and, by repeated substitution

-I-
for i > 1.
Therefore the variables zt+i, i > 0 belong to /^. Since

we have the same property for y ^ , i > 1.
From iterated projections, we get

Tzt = E(zt | yo, . . . ,yr) = E(E(zt \ It

(ii) We start by computing E(zt \ It). First note that the three sub-
spaces of L2 spanned respectively by

{ l , y o , . . . , y j , {z t+i- tz t+i}, and {w t + i , . . . ,wT }
are orthogonal to each other since (z$+i — t%t+i) a nd w^+i,i =
1, . . . , JT are zero-mean, have zero cross correlation and are also
uncorrelated with yj7 j — 0, . . . , t. We can decompose the orthog-
onal projection on the subspace spanned by It, that is E(zt \ It),
in three components corresponding to the orthogonal projections
on these three orthogonal subspaces. These three components are

tzuE(zt I zt+i - tz*+i) - Ezt,E(zt I w t + i , . . . ,w T ) - Ezt.
The last component is zero and the second one is equal to

E(zt I zt+1 - t z t +i) - Ezt

= cov(z t ,At (z t -

Finally, we get
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and, taking conditional expectation with respect to yo, . . . , y r

Formula (df): The formula (d) implies

zt - Tzt + F t rzt+i = zt ~ tZt +
zt — T%t is uncorrelated with yo,yi,. • •, y r an<3 therefore with
for the same reason, z$ — ^zt and t%t+i a r e uncorrelated, so that

= *St 4- F£[var (tzt+i) - var (Tzt+i)]Fj.
Moreover, taking the noncorrelation into account, the equality

Zt+l — tZt+l + t%t+l = Zt+i — T^t+l +

implies that
tEt+i + var (tzt+i) = rEt+i + var

var(tzt+i) - var(Tzt+i) = r^ t+ i - r S
Finally we have

The smoothing formulae of theorem 15.5 can be used in the following
way. We first apply the covariance or information filter until the final
time T. This gives T%T and T E T . The formulae (d) and (d') of the
smoothing algorithm use these quantities as initial conditions (for t =
T — 1) and provide recursively with t decreasing the quantities T%t and
T^t, t = T — 1, . . . , 0. Note that, in order to apply this procedure, the
values tit, t^t and, possibly,

tz t + i = At tzt and £Et + i = At tSt Aj + Q

should be stored from the filtering stage. This process is summarized in
the figure 15.3.

15.6 Estimation

15.6.1 Computation of the Log-Likelihood Function

The computations in the previous section assume that the various matri-
ces m, P, Q, R, S, A^ Ct are known. In practice, some of these matrices
are often unknown and have therefore to be estimated from the observa-
tions y0, y i , . . . , yr- In this section, we intend to consider the maximum



State-space Models and Kalman Filter 593

Initialization

t - t + \ Formulae (a) and (a')
Observation 1

Formulae (b) and (b1)

I
no

• 1 yes

t-\

Formulae (d) and (d1)

no
= 0

lyes

Stop

Figure 15.3 Smoothing Algorithm

likelihood method and to examine how the Kalman filter can be used for
the numerical computation of this likelihood function.

Let 9 be the vector of the unknown parameters, which various matri-
ces depend on; the parameter 6 is assumed identifiable. The likelihood
function of the state-space model is given from the density of the obser-
vations yo,. . . ,yr- The density function is decomposed in a product of
conditional density functions

Kv\ 0) = /(y0; 0)/(yi I yo; 0)... f(yT I yo, . . . , y r - u 0). (15.16)

Under the assumption that (ej, r)'t)
f is Gaussian these conditional density

functions are Gaussian. The general term f(yt \ yo • • -yt-i',6) is the
density function of the Gaussian distribution with mean t-\yt(O) (i-e.,
the value of t-iyt associated with 0, the value of the parameter) and
the variance—covariance matrix *_iMt(0).

For each fixed value of 0, we can find t-iyt(O) and t-\Mt{6) from the
Kalman filter (formulae (c) and (c') of (15.7)).

Therefore we can use the filter to compute the log-likelihood function
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for a fixed 6. This log-likelihood function is expressed as
T

n ( r + 1 ) ^

t=0

z t=o
(15.17)

with _iyo(0) = Eey0,-i Mo(<9) = var^(yo).
The value of the likelihood function computed with the Kalman filter

can be used in an optimization algorithm of LT in order to provide the
maximum likelihood estimator.

Remark 15.3: Note that the quantities

-iyo = Com and _iM0 = CoPCo -h R

are given by the Kalman filter provided that the formulae (c) and (cf)
in (15.7) start at t = — 1 with the usual initial values _iZo = m, and
-iEo = P-

We just have discussed the computation from the Kalman filter of
the log-likelihood function associated with yo .. . yr- Similarly, we can
derive other marginal or conditional log-likelihood functions. We just
have to modify the initialization of the filter accordingly.
(i) Conditional Log-likelihood Function
If in the formula (15.17), the sum does not start at t = 0 but at a time
r > 0, we get the conditional log-likelihood function given yo,. . . ,yT-i
up to a change in the constant term. In particular if we start the Kalman
filter with the formula (a) of theorem 15.1 at t = 0, with the initial values
_iZo = m and _iSo = P, we can compute the sum only starting from
t = 1 and therefore we derive the conditional log-likelihood function of
yi • • • y r given the initial value yo.
(ii) Marginal Log-likelihood Function of y i , . . . , yr
If we start the Kalman filter with the equation (b) of theorem 15.1 at

t = 0 with

ozo = m, o^o = P

we get

oyi = CiAom = Eyi andoMi = C ^ A Q P A ^ + Q)Ci + R = var (y i)
in (c) and {c') of (15.7). As a consequence, the formula (15.17) with the
sums starting at t = 1 provides, up to an additive constant, the marginal
log-likelihood of y i , . . . , yr-
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(iii) Log-likelihood Function of yi .. .yr Conditional on ZQ = ZQ
It is obtained when the filter is started with the formula (b) of theorem
15.1, for t — 0 with ozo = Zg, O^O = 0, and when the sums in (15.17)
start at t = 1.

Example 15.2: Let us consider a first-order moving average model

yt = ut + ctut-i,

where (ut) is a Gaussian white noise, of variance a2.

1st Method It is possible to put this model in the state-space form
using the state vector

\OLUtJ

Indeed, we have
1\ / u t +i \

= (l,0)z t.

Here the vector 9 of the unknown parameters is I ) and we can use

the Kalman filter to compute the model likelihood function.
In this case, the initial values m = -IZQ = Ezo and P = _iSo =

var (ZQ) are

m = -E(zo) =
0 / V

Moreover, y0 = y0 - E(y0) = y0 and _iM0 = var (y0) = cr2(l + a2).
The formula of direct forecast updating (15.12) allows one to write

0 1 \ / 0 1\
N ^ L K ( ( l 0 ) ) (15.18)

with

( yt \
From the particular form of zt = I I, we derive that

\<xutj

( t-iVt\ . (Vt- t-iVt

V 0Therefore we have
f . v /yt - t-i2/t\ / t-\Mt aa2 \

= var (zt - t_izt) = var = 2 2 *
V o ^ / V Qjcr a2a2 J
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The filter gain is equal to

1 t^Mt V aa2 ) \aG2/{t^Mt)
Considering the various results obtained, it is seen that the forecast
updating formula is

9
CtCT

tVt+i = rr(yt - t-idt)- (15.19)
t-l-Mt

Similarly, the formula of direct updating of the corresponding variance-
covariance matrices (15.11) becomes

Considering the first diagonal element of the matrix *£t+i, we then
derive the updating formula for the variance t_iMt. We have

The formulae (15.19) and (15.20) allow one to compute recursively

tfe+i =E(yt+i | 2/o...2/t)

and the associated error variance in a simple way.
The convenience of the recursive computation is apparent from the

example. Indeed, the explicit computation of tVt-\-i and of tMt+\ would
have been difficult, even though equation (15.20) can be fully solved in
this example (see exercise 15.4).

2nd Method The representation of state that we have considered is not
minimal; indeed for a process MA(1) the minimal size of the state vector
is 1. We can then start again the analysis from another representation
satisfying the minimality condition. We have retained the one in which
the state vector is

*t = (t-iVt) = cxut-i

and the corresponding state-space representation is

zt+i =0 zt

yt = zt +
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The two error terms et — aut and r\t — ut are correlated. First we have
to eliminate this correlation (cf. 15.2.5). This is equivalent to writing
the model under the form

zt+1 = -azt + ayt,

yt = zt + ut.
Taking into account the existence of an input in the state equation, the
updating formulae of the Kalman filter are:

(a) tzt = t-\zt + Ktiyt - t-iVt)

with Kt = t-iE*/ (t-iEt + ^2),

(a') t£ t = ( l -X t ) t - i£ t ,

(6) t5t+i = - a tzt + ayt,

(bf) tEt+i = a2
 tEt,

(c) tVt+i = tzt+u
(c') tAff +i= tS t + i+cr 2

from which the recursive formulae (15.19) and (15.20) can be derived
(see exercise 15.5).
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15.7 Exercises

Exercise 15.1: Let us consider the case (discussed in section 15.2.5)
where the transition and the measurement matrices are stochastic.

(i) Assuming Co nonrandom, prove that the conditional distribution
of ZQ given yo is normal,

(ii) Verify that the conditional distribution of

is the distribution

•A/"(Atzt,Q)
and that the conditional distribution of

is the distribution

(iii) Using the results in (ii), prove that if the conditional distribution
of

zt I yo,.-.,y*

is a normal distribution written as

then the conditional distribution of

is a normal distribution and the conditional distribution of
given y0 , . . . , y^+i is a normal distribution as well.

Exercise 15.2: Let us consider the same hypotheses as in the previous
exercise.

(i) Derive the conditional distribution of

given (yo,...,yt) as a function of tit and $S$. Show that the
equations (6) and (bf) of the covariance filter are valid for the con-
ditional expectations and for the conditional variance-covariance
matrices.

(ii) Make explicit the conditional distribution of the triplet
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given y0 , . . . ,yt as a function of tz t , tz t+i, *£*, t£*+i. Deduce
that the equations (a) and (a') of the covariance filter (taken at t +
1) are satisfied by the conditional expectations and the conditional
variance-covariance matrices.

Exercise 15.3: (Lemma of Matrix Inversion) Let us consider the
/ A B \

nonsingular square matrix I 1, where A and D are nonsingular
\ C D /

square matrices.
/ P Q \

Let us write the inverse matrix as I ). Prove that

S=(D-CA"1B)-1 ,

S = D 1 + D 1 C ( A -
Derive the matrix inversion lemma used in the proof of theorem 15.4.

Exercise 15.4: Let us write

^*+l = "17 2 ^ 2?1 2\'

Prove that the equation (15.19) can be written as

Nt+1 = ±Nt

then show that

Exercise 15.5: Let us consider the same hypotheses as in the second
method of estimation of example 15.2. Prove that

ti)t+i = &{yt — t-i2/t)(l — Kt)i

and

Prove the formulae (15.18) and (15.19).

Exercise 15.6: Let us consider the model

Vt — x tk + Vty t = 0,. . . , T,

where x.'t is a row vector and b follows a normal distribution A/"(0, P),
and where the errors rjtt = 0,. . . , T are independent, with the same
distribution A/*(0, a2);
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(i) How is the vector (6, yo,..., yrY distributed?
(ii) Derive the expression of the best linear forecast of b

E(b | yo,...,yT).

Verify that this forecast admits a simple expression as a function
of the ordinary least squares estimator

and that this expression appears as a "convex combination" of this
estimator and zero.

(iii) How can this forecast be written when the matrix P " 1 tends to
the zero matrix? Give an interpretation of this hypothesis about
the matrix P in terms of available a priori information on the
parameter b.
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Applications of the State-space Model

16.1 Application to Linear Models

16.1.1 The Standard Linear Model

The Model The standard linear model is written as

yt = xt0 + rjt

with t = 0 , . . . , T, and where xt is a nonrandom row vector of size K,
0 is a column vector of K unknown parameters, and {rjt} is a Gaussian
white noise of variance a2. This model has for state-space representation

= 0t(= fa = 0) t>0,

where 0 is independent of the 77*'s.
Thus we have

The information filter with Q = 0 (see remark 15.1) is written as:

(a) tut = t-iiif
(a') t E t - 1 = t-i
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Using formulae (/?) and (/?'), the notation can be simplified by letting
ut = tut = tiit+i and S^1 = ^S^"1 = t^T+i'i w e n a v e t n e n

(16.1)

Diffuse Prior and OLS Updating Formula If we use the diffuse
prior XI j = 0 and u~\ = 0, we get

(16.2)
1

t=o

where X^ is the matrix whose rows are xj, t = 0, . . . , T and yT is the
vector of components yt, t — 0,. . . , T. If the matrix X ^ X T is nonsingu-
lar, by noting J3t = t%t = t%t+i = S tu t we have

which is the ordinary least squares formula.
We also know that the Kalman covariance filter is equivalent to the

information filter when S^"1 is nonsingular. In the information filter
with a diffuse prior

i=0

and generally this matrix is nonsingular for t greater or equal to K —
1. The information filter with a diffuse prior is then equivalent to
the covariance filter initialized at t = K with initial values XJ^-i =
(j2(X^:_1Xx_i)~1 and (3K-i, the OLS estimator based on the obser-
vations t — 0, . . . , K — 1 (we will show that a2 does not occur in the
computation of f3t).

Note that the updating formulae (a) and {a1) of the covariance filter
in theorem 15.1 are written as

A = A-i + Ktyt = Pt-i + Kt(yt - xtA-i),

Et = (I - K t x t )£ t - i
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with, using (a')

Kt = £ t_ l X ' t (x t5Vix; + a2)'1 = ^ .

These equations allow one to find the standard updating of ordinary least
squares formulae

^ (yt - t-i

or

A = A_i + ( X j X t ) - 1 ^ ^ - XtA_!). (16.3)

Note that (a') provides an updating formula for (XjX^)"1

Recursive Residuals The recursive residual at time t is the quantity

for t > K - 1.
By construction, the distribution of wt conditional on (3 is A/"(0, cr2)

which corresponds to its nonconditional distribution as well. Note that
the covariance between wt and ws, r < 5, is zero

r- l s-1

E(r,r -

= o.
The recursive residuals are independent of each other and have the same
distribution Af(0,cr2). The usual estimator of the variance

converges to this variance cr2. We derive the asymptotic distribution of
the sum of the standardized recursive residuals
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Figure 16.1 CUSUM Test

Using this result, Brown, Durbin, and Evans (1975) have proposed a
stability test of the coefficients of the model called CUSUM test, with a
critical region of asymptotic size a

{3t, K<t<T,
, , ! (16.4)

Wt | > a y / T - K + l + 2 a ( t - K l ) / / T K l j

with a = 0.95, if a = 5% and a = 1.14 if a = 1%.
We accept the hypothesis of coefficient stability if for t £ {K,..., T}

the points in the plane (£, Wt) remain between the lines going through
the points {K-l, ±ay/T - K + 1} and {T, ±3ay/T - K + 1} (cf. figure
16.1).

16.1.2 Linear Model with Time-varying Coefficients

Let us consider the linear model

j / t = x t A + ^ ,* = 0,. . . ,T, (16.5)

where the coefficients (3t follow the equation

A + i = A A + / i + ct. (16.6)

The processes {7ft },{£«} are independent white noises with var(7ft) =
cr2, var(e£) = Q. Equations (16.5) and (16.6) form a particular state-
space model, in which the transition matrix is fixed and the correlation
between rjt and et is zero. The methods described previously apply
directly, making use of the provisos introduced in section 15.2.5 when a
constant /x is present.

The model depends on the unknown parameters 0 in A, //, a2, Q. As-
suming that the process (3t is stationary (i.e., the eigenvalues of A are
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smaller than 1 in modulus) corresponds to imposing the initial condi-
tions

= E(0o) = (I - A)" V

and

The estimation of 0 can be done by maximum likelihood using the
Kalman filter to compute the value of the log-likelihood function for
a given 0.

When the estimation phase has been performed we can replace 0 by the
estimated 0 in A, /LA, cr2, Q and use the smoothing algorithm to compute
rht = E(/3t | 2/o, • • •, VT) and T E t = var (/3t - rPt)- Thus we get an
estimation of the path of the time-varying coefficients (3t.

16.2 Applications to the ARMA and ARIMA Models

16.2.1 Stationary Case

To simplify the notation, we only consider the univariate case, but the
following results can be immediately generalized to the multivariate case.
We have seen in chapter 8 that the ARMA process defined by

Vt + ViVt-i + • • • + VpVt-p = €t + 0iet-i + . . . + Oqtt-q (16.7)

with var(et) = a2 can be written as a state-space model. Denoting

K = max(p, q), we have a minimal representation provided by

0 1 . . . 0 \ / hi \

(16.8)

\hK/

where ipi = 0, if i > p and where the hi are Markov coefficients.
In this representation the state vector is

zt = (16.9)
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Another possible representation is

Zt+1 =

1
0

0

0

0

V o

with

0
1

0

0

\o/

€ t + l ,

0

0

1

0

0

0

0

0

0

0

0 ...

0 .. .

0 . . .

0 . . .

1 0

0 1

0 0 0

fy-1

;;

0

0

0

0

0

0

0

0

0 /

(16.10)

V e t _ 9 +
This representation is not in general minimal (except in the cases of
a pure AR or a pure MA). Note that there is no measurement error



Applications of the State-space Model 607

and therefore there is no correlation between the measurement error
and the transition equation disturbance, which is not the case for the
representation (16.8). Nevertheless, (16.8) can be slightly modified to
avoid this correlation. For example, taking K = max(p,q + 1) and the
state vector

' Vt \
tZ/t+i

we have

/ 0 o \ / 1 \

\hK-i/

(16.11)
This representation is not minimal if q + 1 > p. Of course there exist
other representations (cf. exercises 16.3 and 16.4).

The computation of the log-likelihood function proceeds as presented
in chapter 15. One just needs to find out the starting values. We have

m = E(z0) = 0

for the above representations. Moreover, since the process is stationary
we can compute the quantity P = var (ZQ), as a known function of the
parameters ipi,..., (pp,8i,..., 8q, a

2.
Another possibility is to compute the log-likelihood function of the

observations t/ i , . . . , yr knowing z0 = Co, where Co is a fixed value; this
method avoids the computation of var (zo) since the initial values of the
filter are

OZQ = Co a nd o^o = 0-

If, for example, we use the representation (16.10), one possibility is to
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index the observations yt starting from t = —p + 1 and to use
yo \

Co = 2/-P+1

0

For practical purposes, one could use the information filter with a diffuse
prior or the covariance filter with m = 0, P = AI (where A is a large
scalar) and compute the likelihood function starting from the index after
which the computation of *z$+i, tS$+i tVt+i and tMt+i is possible.

When these parameters have been estimated we can use the forecast-
ing algorithm to compute the tVt+h and tM.t+h.

16.2.2 Nonstationary Case

Let us consider an ARIMA process defined by

for t > 1, and where

are polynomials with roots bigger than 1 in modulus, where the ini-
tial conditions (yo,...,y-p-d+i, eo,.. •, e-9+i) are not correlated with
e i , . . . , et, • •., and where the process e = (e$, £ > — q 4-1) is a white noise
of variance a2.

The representation (16.10) remains valid provided that </>i,..., <j)p are
replaced by the p + d coefficients of $(L) = <t>(L)(l — L)d. The vector
z0 is

yo \

zo=

V e_g
Contrary to the stationary case the quantities E(zo) and var (zo) cannot
be computed from the parameters 0 i , . . . , 0P, 0\,..., 0q, a

2, and we can
compute the likelihood function of the model only if we introduce more
hypotheses on E(z0) and var (zo). On the other hand, it is always possi-
ble to compute the log-likelihood function of y\,..., yr knowing z0 = Co-



Applications of the State-space Model 609

Upon appropriate indexing of the observations, a possible value of Co is
/ vn \

z0 =

\ u

If we write wt = (1 — L)dyt, this log-likelihood is also the conditional
log-likelihood function of w\,..., WT conditional on

that is the log-likelihood function of an asymptotically stationary pro-
cess. To compute this likelihood function, an alternative would be
to work directly with the (asymptotically) ARMA series WI,...,WT

and to use the described methods for the ARMA models. However
this method does not allow to use the same representation for the fur-
ther computation of the forecasts rVr+h and it cannot be used for
a model with unobserved components, the components of which are
ARIMA.

16.3 Unobserved Components Models

The state-space representation is often more suited to the analysis of the
aggregation problems. The observed series (yt) is then defined as the
sum of various components {u\)i = 1. . . / , generally unobserved. The
model appears in the form

(16.12)

and is called an unobserved components model.
We usually assume that the subprocesses {u\)i = 1 , . . . , / are inde-

pendent of each other and we specify their marginal distributions or at
least the two first moments of these distributions.

16.3.1 Seasonal Adjustment in ARIMA Components Models

ARMA or ARIMA Components When the components u1 admit
ARMA or ARIMA representations, they can also be put in state-space



610 Chapter 16

form of the type

where the errors el are independent.
We derive a state-space representation of the observed process by tak-

ing the set of state variables associated to various components as state
variable

/zt+i

yt = (1,0, . . . ,0,1,0, . . . ,1,0, . . . ,0)zt .
We can use this form for estimation. Once we specify the way the
matrices A* and var(ej) depend on the underlying parameters 0, we
can use the Kalman filter to compute the likelihood function. When
the components are all stationary, the initialization of the filter is easily
done; if some components are ARIMA we can compute the conditional
likelihood function for an initial value of the state vector or we can use
the information algorithm with a diffuse prior.

Another approach is a priori possible. Since a sum of independent
ARMA processes is still an ARMA process, we could derive the ARMA
form of the observed process directly. Unfortunately the latter form
depends in a complex way on the parameters A*, var (ej), which makes
its use for the computation of the likelihood function difficult in prac-
tice. Moreover, note that the Kalman smoothing applied to the model
(16.14) provides also some approximations of the state variables such
as, for example, E(zt | yt-> • • •, yr), t = 1, . . . , T. Since the unobserved
components are coordinates of this state vector, the smoothing provides
some approximation of the various components

vJr = E(i4 | y i , . . . , y T ) .

We can therefore obtain a disaggregation of the initial series at each date

Application to Seasonal Adjustment The approach of the seasonal
adjustment problem by regression (recall Buys-Ballot's model in chapter
2) is based on a decomposition of the original series into three compo-
nents: trend, seasonal, and noise. The first one is often described by
a polynomial while the second one by a strictly periodical series. We
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already noted that this type of decomposition is in fact not very sim-
ple to use since the way the trend and seasonal components are mod-
eled is restrictive. Starting from the original idea of the decomposition,
we can follow a more symmetrical approach for the various components
(Nerlove, Grether, Carvalho, and Diebold, 1994, Hillmer and Tiao, 1982,
Maravall, 1985), decomposing the series into three independent random
terms

yt = ul +uf + uf. (16.15)
for t > 0, which represent respectively the trend, the seasonal, and the
irregular part. Moreover, each component is assumed to admit a suitable
ARIMA representation.

To model the trend we can take a representation with a unit root in
the autoregressive part

(1 - L)du[ = §47Te"' (16'16)
where OT and <j>T have roots outside of the unit circle and where the
noise is of variance a2 .

In order to model the seasonal component of period 5, we can take
an autoregressive part divisible by S(L) = 1 + L + .. . Ls~x = \^L

= ^ ^ i s
t , var(e*) = ^2. (16.17)

Finally the irregular part can be modeled by a stationary ARMA

The overall model relative to the initial series is

f * ( 1 6 1 9>
The ARIMA representation of the series y is deduced from the pseudo-
spectrum

o*o 1 eT(exp(zu;)) [
Jy{ ' 2TT | 1 - exp(iu) \2d\ct>T exp(iw) |2

"• o2?r I S(exp(iu))

*2 I e7(exp(iw)) |2

2TT I 0/(exp(icj)) |2 '
This can always be written as

a2 | G(exp iu) |2

y 2TT I H(exp IUJ) | 2 '

but the derivation of the variance of the noise a2 and of the moving
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average polynomial G is difficult; their expressions depend in a complex
way on the initial parameters o"̂ , of, cr|,©r, 6S , 0 j , <£T, 0S, </>/. This ex-
plains why the use of the state-space representation for the estimation
simplifies this process.

This representation is particularly well-suited for the estimation of the
components, i.e., of the trend, the seasonal, and the irregular part. For
instance, the Kalman smoother provides right away the SA (seasonally
adjusted) series

yt-E(us
t \yi...yT) = E(ul \ V l . . .yT) + E (u[ \yi...yT). (16.21)

Optimal Moving Average We can analyze the issue of seasonal ad-
justment in more detail. Assuming that the initial series satisfies an
unobserved component model with stationary components, the best es-
timator of yt — us

t is a linear function of the observations because of
model linearity

T-t

yfA = E (yt - u$ 13/i,..., yT) = ^2 a3^Tyt+j'
j=l-t

An approximate solution can be obtained by replacing (yi .. .yr) by
(j /t , * = - 0 0 , . . . , - h o o )

+00

where this time the coefficients are independent of the indexes t and
T. Thus the optimal determination of the seasonal adjustment is done
through the application of a moving average Ylj^-oo aj^ • The way to
compute the coefficients aj is given by the following theorem.

Theorem 16.1: Let

be a multivariate zero-mean stationary process admitting an infinite mov-

ing average representation. Let

f f

f f
be its spectral density matrix with det(f3/2) 7̂  0. Then the optimal forecast
ofyu conditional ony2,t+j,j integer, is of the form

+00

E (yi I Y2,t+jJ = -00, • • •, +00) = Yl
j=-oo
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with
+00

A(exp(-iu;)) = ^ Ajexp(-icjj) - f ^ M ^ M " 1 -
j = — oo

PROOF: The conditional expectation is characterized by the orthogo-
nality between the forecast error and the conditioning variables.

We have

E f ( y» ~ Y, A j y 2 , t + j J y'2<t+h j - 0, V h

+00

(yiy£>t+fc) - Y, AiE (y^+jV'it+h) = 0, V h.
j=-oo

Introducing the autocovariances, we get
+00

yi,y2~ 2^ AJly2 ~ u ' v n

j=-oo

y,y2 = " ^ ^ -̂  i / 2 '

where • indicates the convolution product. It is sufficient then to trans-
pose this equality to the frequency domain. •

We can show that this property remains valid in the cases of ARIMA and
SARIMA processes (Cleveland and Tiao, 1976; Pierce, 1979b). Applying
this property to unobserved components, we have

yfA w E « | yt+jj = -oo , . . . , +oo) + E (u£ I Vt+j)

j=-oo

with j = — oo,.. . , +oo and where the coefficients cij are such that

where
| QT(exp(iuj))

= af | 8 f
1 2TT I 0

=

2TT I 0/(exp(iw)) |2 '

es(exp(iu))) |2
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Note that the optimal moving average has some properties that were
found desirable for seasonal adjustment.

(i) We have

A(exp(—iuj)) = A(exp(itu))

which means that the moving average is symmetric: a_j = aj.
(ii) If the frequency tends to 0, we have

lim A(exp(—iuj)) = 1.

In coefficient terms this can be written as J^ji^-oo aj — 1 a nd corre-
sponds to the conservation of constant sequences (and polynomials
of degree 1, cf. theorem 3.5).

(iii) If UJ goes to one of the seasonal frequencies ^ , I = 1, . . . , 5 — 1,
we see that A(exp (—iou)) goes to 0. This implies that

E 2irijl
a j - e x p — = 0 ,

that is, strictly periodic series of period S become 0.

16.3.2 "Structural" Models

Harrison and Stevens's Models Harrison and Stevens (1976) have
proposed forecast methods based on unobserved components models in
which each component has an intuitive interpretation. This allows us
to use "subjective" information in order to modify the automatic proce-
dure for the forecast of each component; hence the name of "Bayesian"
forecast for these methods.

The most standard model among those proposed by Harrison and
Stevens, is the stochastic linear growth model defined by

Vt = Vt + *?t,

= / i t + 0 t + ut, (16.23)

with

= cr2
v.

In this model {r^}, {v>t}, {vt} are independent Gaussian white noises.
The variable jit is interpreted as a "random level" and the variable 0t as
a "random slope"; when fit and 0t have nonzero initial values and when
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a^ = a2 = 0^ fit and 6t become deterministic and the model is reduced
to the deterministic linear trend yt — at + b + \it-

The model can be written in the state-space form, by posing

We have
1 M

z« +
,0 1/ \vtj- (16.24)

2/t = (l,0)zt + Tft.
The general techniques of filtering, estimation, and smoothing previously
described can then be used.

Note that the process {y} is the sum of the various independent com-
ponents. Indeed, we have

L „ L

and

Therefore

Vt= Vt+ Vt

L , L
l^LUt

The first two components correspond to independent explosive (at dif-
ferent rates) terms.

Hence the initial process admits an ARIMA(0, 2, 2) representation.
In fact, we have

A2yt = L2vt + L(l - L)ut + (1 - L)2
Vt

= Vt-2 + Ut-l ~ Ut-2 +Vt- 2Vt-l + Tft-2'

We obtain

therefore A2yt is an MA(2) process.

The other autocovariances of the process A2yt are

7(0) = a2
v + 2a2

u + 6a$,

= - a 2
u -

7(2) =
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Note that yt is not any ARIMA(0, 2, 2) process since the signs of
7(1),7(2) are constrained. The equations providing 7(0), 7(1), 7(2)
can be used to compute consistent estimators of the noise variances,
since

a\ = 7(2), o\ = -7(1) - 47(2), o\ = 7(0) + 27(1) - 27(2).

We just have to replace in these relations the theorical autocovariances
by their empirical counterpart. These estimators can be used as the
initial values of parameters in the likelihood function maximization.

Harvey's Models Harvey (1984, 1989) has proposed an extension
of the Harrison and Stevens models allowing to consider the case of
seasonal series (see also Harvey and Todd, 1983). These models have
been dubbed "structural," although there is no explicative aspect as in
the usual macroeconomic models.

The simplest model of this type is the following

Vt = A*t +7t +*7«,

+ vu (16.25)

5-1

where (r^), (i/t), (vt), (wt) a r e independent Gaussian white noise and

var (r/t) = a2^

The new term appearing in the decomposition of yt is the component
7t = Wt/S(L) which can be interpreted as a seasonal component. The
first component can be interpreted as a trend term and decomposed
according to its dominating components of various orders.

This model provides a simple example of decomposition for the sea-
sonal analysis of the type given in (16.19). We have

Vt = Jlh^Vt + l^LUt + J(L)Wt + Vt' (16"26)

where the first two terms on the right-hand side represent the trend, the
third represents the seasonal component, and the last the irregular part.

As an example, let us consider the case S = 4 (quarterly series) and
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a state-space representation by taking as the state vector

We have
<

/ I

1-1 =

0

0

0

\ 0

Vt = { 1

1

1

0

0

0

0

0

0

- 1

1

0

1 0

0

0

- 1

0

1

0)

7t-i,

0

0

- 1

0

0

Zt +

7 t-2).

\

Zt +

/

Vt>

/

V

V*

0

0 )

Model (16.26) depends only on the various noise variances a^a^a^,
and a^ only. It is therefore of interest to derive the estimators of these
variances. We can generalize the approach of the previous section.

Let us write A = (1 - L), As = 1 - Ls = (1 - L)S(L), so that

The second term is a moving average of order 5 + 1 and the initial
process has therefore a SARIMA form. We verify also that for S = 4
the autocovariance function of AAs yt is

2 O O

= o o , , — 4<7O11 — z a ^ ,

7(4) = -al - 2a%

7 ( 5 ) = ^ ,

7(/i) = 0, V ft > 5.

We have six equations linking the four parameters a\, a^, a^, and
a2. From the empirical autocovariances we can derive various con-
sistent estimators of these parameters, the optimal estimation being
achieved through asymptotic least squares (see Gourieroux, Monfort,
and Trognon, 1985). These estimators can be used as initial values of
the parameters in the likelihood function maximization.

16.3.3 Linear Models with Stochastic Trend

Another possible domain of application of the techniques of this chapter
are linear models with stochastic trend

yt =
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where x̂  is a row vector of K observed deterministic variables, (3 an
unknown parameter vector, rjt a white noise of variance <72, and \it a
stochastic trend which can be modeled, for example, as in Harrison and
Stevens

0t+i =Ot + vt.
This model can be written in state-space form by letting, for instance

z m = | 0 1 0 \ zt +
(16.27)

\ w /

yt = (l,O,xt)zt + rft.

The methods described in the previous chapter allow for the estimation
of the parameters, but also the extraction of a stochastic trend jit using
the smoothing technique (cf. Harvey et a/., 1985) for an application.

16-4 Missing Data

16.4.1 The Example of an AR(1) Process

Complete Data Let us consider an autoregressive process of order 1

yt = pyt-i +eu

with var (et) = a2, | p |< 1.
When the available observations refer to T + 1 successive values of the

process y0,2/i, • • •, 2/T, the log-likelihood function conditional on the first
observation yo is

T

T T 1 x A

LT(P,CF2) = log 27r logcr2 > ( V t — PVt-i)2-
t = l

The maximum likelihood estimators of the parameters can be easily
derived. For example, the estimator of p is

which is consistent and has an approximate variance

va r (p ) «
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16.4.2 Systematically Missing Data

Now let us assume that only one out of two data on the process are
available. The observed process corresponds for example to (yt = y2t)
and the observations are

2 / 0 = 2 / 0 , 2 / 1 = 2 / 2 , . . . , 2/[T/2] = 2/2[T/2],

where [.] designates the integer part.
The new process admits again an autoregressive expression since

Vt = pyt-i + €t = p2Vt-2 + e* + pe*_i, V £ integer,
which leads to

2/t = p2Vt-i + e$,

where

var(e,) = <72(l + p2).

The maximum likelihood estimator of p2 is now given by

with an approximate variance
,_2, 1-/34 2(1 -

var (^ ) « = ^
Assuming, for example a positive p, we can derive an estimator of p,
P~T = \/1>T t n e asymptotic variance of which is

2(1-/) 1 1-p4

The asymptotic variance ratio between px and p^ is therefore
1-p4 T _ 1 + p2 _ 1 1
27>2 1 -p 2 " 2p2 ~ 2 + 2 ^

which is, not surprisingly, always greater than 1.

16.4.3 Irregularly Missing Data

In practice, however, the data are often missing in an irregular fashion.
Let us assume for illustration purposes that the missing data are those
indexed by 1, 3, and 4. The autoregressive representation written on
the available data is

2/2 = P2yo + t2 +pei,

2/5 = P3yi + e5 + pe4 + p2e3,

y t = pyt-i + ett > 6.
It is apparent that the stationarity of the observed process is lost in
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this case. The regression coefficients depend on time, since they are
p2 ,p3 ,p, . . . ,p. By the same token the variance of the innovations is
equal to a2(l + p2), a2(l + p2 + p4), a2,... ,a2. The log-likelihood
function can be written as

A direct maximization of this log-likelihood function does not give first-
order conditions leading to a closed expression for the estimator of p.
Therefore, we must resort to an estimation algorithm exploiting the
model linearity.

An intuitive way to solve this problem is to treat the missing data
as unknown parameters which should be estimated along with the co-
efficients p and a. According to this approach we would maximize the
log-likelihood function on the complete set of data with respect to p,
0"2> V\, 2/35 and y^. Let us start with the missing datum y\. We should
maximize with respect to y\ the quantity

((

The first-order condition gives

Hence

~ _ — PU2 — 93 Vo _ 9 / _ 2 \

and

1 / 2 \ yi - 9yo
2/2 - PJ/i = , , 2 U/2 - 9 yo) = •1 + p2 p

The value of the log-likelihood function after concentrating out is there-
fore obtained by replacing
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with

-Av2-2<r2 V(l + p 2 ) 2 ^ r yuy (1 + P2)2

~ 2a2 1 + p2 '
Thus we find again one of the terms of the log-likelihood function asso-
ciated to the model with missing data. The same type of result is valid
for the second term provided that the optimization is performed with
respect to y% and 2/4. Therefore up to the terms

- ^ l0g<72 - \ log(l + p2) ~ \ log(l +P
2 + p4)

the log-likelihood function L™ can be derived from the log-likelihood
function LT by concentrating out the missing data. Let us remark that
such an approach leads not only to the estimation of p and cr2, but
also to the missing data forecast. Since the process is autoregressive of
order 1, we can see that the best forecast of y\ based on 2/0,2/2,2/5 J 2/6, • • •
coincides with the best forecast of y\ based on 2/0,2/2- This one is given

by

E(yi I 2/0,2/2) = (cov(2/i,2/o),cov(2/i,2/2)) ( var ( ° ) )
V \y2JJ

= (P,P)\ o

= (p,p)

P2 1 ) V2/2

1 / 1 ~P

1-P4 V V

C1 ~ P2) 1 , . \

-7-2(2/0 + 2/2)-

The optimal forecast formula coincides with the one obtained for y\ after
the concentration.

16.4.4 Use of the Kalman Filter

The results just presented as examples can be generalized, provided that
the data are missing in an exogenous way, that is, provided that the dis-
tribution of the observed data conditional on the fact that data are
missing is identical to the unconditional distribution. They are implic-
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itly obtained by applying the Kalman filter appropriately, which allows
to simultaneously estimate the unknown parameters and forecast the
missing data. The idea is the following: we use the filter as usual until
the first missing data are encountered; at this stage we have available
future data forecasts and variance-covariance matrices of forecast errors.
These forecasts can be used for the evaluation of the missing data. The
filter is considered again when the next data are available, taking as
initial values the previously derived forecasts.

Let us assume that the datum at time s — 1 is the only one missing.
If we have developed the filter equations up to the time 5 — 2 and if we
start the filter equations in expression (b) of theorem 15.1 for the time
5 — 1, the properties of forecasting show that the filter is computing

If at time 5, we consider again the filter in expression (a) of theorem
15.1 with S-2ZS, s-2^s as values of s_iz s , s _ i S 5 , the formula of the
filter provides similar quantities as the ones of the complete filter, the
main difference being that the information implicitly used at time s is
now (t/o? Z/i • • • ys-2-iVs)' The same results hold for the following time
periods, since ys-i does not appear anymore in the information set and
the equations (c) and (c') in (15.6) give the expressions

| 2/0, • • • > 2/fl-2,2/a, • • •, Vt),

t M t + i = v a r ( s / t + i \ y 0 , . . . , y s - 2 , y s , . . . , Vt), V t > s .
Having access to these various forecasts, we can derive directly the nu-
merical value of the log-likelihood function associated with y$,..., ys-2,

ys,- • ,yr-
When several subsequent observations are missing, it is enough to

apply several times the equations (6), (6'), (c), and (c') of the filter
which allows to obtain a_2zs+/l,a_2 ^>s+h, where h — 1 is the number of
consecutive missing data.

16.5 Rational Expectations Models

16.5.1 State-space Representation of a R.E. Model

Some rational expectations models can easily be written in the state-
space form. The standard idea is to choose the unobserved expectations
as state variables and, for symmetry reasons, to introduce expectations
about the endogenous variables as well as about the exogenous variables.
For example, let us consider the model with future variable expectation

yt = AE{yt+l \ It) + Bxt, (16.28)
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where It contains the present and past values of x and y and where the
exogenous variables are assumed to satisfy an autoregressive model of
order 1

x, = * x t _ i + e £ . (16.29)

Introducing the innovation e\ of y, we can write the relationship between
realizations and forecasts

yt = E(yt | / t - i ) + e?,
(16.30)

Jt-i) + < .
On the other hand, by replacing in the structural equations (16.28)
and (16.29) the realizations as a function of the expectations, we get a
dynamical model for the expectations

E(yt | Jt_x) + e\ = AE{yt+l \ It) + B(E(xt | It-i) + ef),
(16.31)

E(xt | It-i) = $ ( S ( x t _ i | J t_2) + ef_x).
If the matrix A is nonsingular, this last system is equivalent to

E(yt+1 | It) = A-'Eiyt \ 1^) - A^BE^t \ It.x)

+ A~1ey
t-A-1Bex

t, (16.32)

This is a system describing the expectation updating mechanism. We
can then choose as state variables

= /E(yt\It.i)\
Zt \EiXt\It-!))

The system for expectation updating provides the state equations
A"1 -A-^BX / A " 1 - A - X B \

)*t+\ n ~ )et- (16.33)0 <I>
Then the system (16.30) provides the measurement equations

( Yt ) = z t + ct (16.34)
\xt/

with ej = (erf, e f ) .
Note that the practical usefulness for the state-space representation

needs the introduction of new parameters through the innovation e\.
This one is zero mean, temporally uncorrelated with e\ and e%, (r ^ t).
However, it can be instantaneously correlated with ef and moreover its
variance is a priori unconstrained. Limiting ourselves to the case of a
linear stationary relationship between the innovations, we have

ef = Tre? + u( ,

with

cov (e^, Uj) = 0 , var (u^) = ft.
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yt

I !
E/ xt+\

Figure 16.2 Determination of the Transition Equation

If we constrain the solutions yt to depend only on present and past values
of the exogenous x, we have fi = 0 and we are left with a multiplicity of
solutions deriving from the arbitrary choice of TT. When this restriction
is not imposed, there can be effects on yt from variables not taking part
explicitly in the initial structural form; these "sunspots" are summarized
here by the residual term ut.

The state-space form can be also interesting for the estimation of
parameters stressing the existence of an underlying linear model with
respect to some of these parameters. Suitable parameters for the prob-
lem are C = A - 1 , D = —A-1B so that the underlying model is linear
in C,D,#.

16.5.2 Learning

Preliminary Result While studying the state-space models we have
introduced autoregressive equations in which coefficients could be time
dependent. The type of the transition equation is

where Ut is white noise.
Often this time dependence is achieved through a function ct(t — 1)

of observations prior to time t — 1. We have a double recurrence. At
time t — 1, we determine ct(t — 1), which leads to the derivation of the
coefficients At_i,Bt_i , then we determine zt. We can then update the
value of a and so on (see figure 16.2).

Moreover there exist many cases where the series cx(t) converges to
a limit, say, a*. If the coefficients At, Bt are continuous functions of
&(t), they will also tend toward limit values A*, B*. The process behind
the observations (zt), in general nonstationary, will normally converge
to the stationary solution of the equation

z* = A*z*-i+B*Ut-i
whenever the eigenvalues of A* are strictly less than 1 in modulus.

Several conditions have to be satisfied in order for a process with
time dependent transition equation to get closer to a stationary model.
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Hereafter, we describe a result by Ljung (1977) and we apply it to the
learning problem in rational expectation models.

Let us consider a system of two difference equations
zt = A (a(t - 1)) z t- i + B (a(* - 1)) u t - i ,

I (16.35)
a(t) = a ( t - l ) + - 0 ( a ( t - l ) , z t ) .

zt and ot{t) are vectors of size n and m respectively, ut is a white noise,
possibly multivariate.

The existence of the factor j in the second equation foreshadows the
consistency of the series a(£), since the successive growth ot(i) — ct(t — 1)
is affected by a term going to 0.

To study the asymptotic behavior of the previous system, we should
first associate it with the corresponding stationary system in replacing
ct(t) by its possible limit a*, zt by its stationary approximation z* and
the function g by its certain equivalent, that is by its expectation

This limit stationary model is written as

This system provides the possible limits c** looking for the roots of
/(a*) = 0.

If we want to refine this study we have to know how the series ct(t)
will approach these possible limits. For that, we can introduce the de-
terministic differential equation associated with the updating formula of
ct(t). It is given by

^ = / ( « ) • (16-37)

Ljung's result (1977) can be summarized in the following way:

Theorem 16.2: Let a* be a solution to /(a*) = 0 for which A(a*)
has eigenvalues less than one in modulus. Let Da* be the attraction
domain of a* for the differential equation (16.37). Then if the series
ot{i) belongs to this attraction domain, this series converges to a*? and
oc(t) tends to a deterministic path solution of the differential equation.

Several other regularity conditions are also necessary, but they need not
be introduced for the sake of understanding the results. They relate to
some continuity conditions for the various functions which are generally
satisfied in practice.
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Figure 16.3 Expectation Computation Process by the Agents

Learning in Muth's Model Let us consider a model where the real-
ization yt of the variable is a function of the expectation of this variable
done at the previous date t-iVt, of an exogenous xt, and of a white
noise et. In order to simplify matters, let us assume that the exoge-
nous variable satisfies an autoregressive process of order 1, we get a
model

yt = at-iyt+xtb + eu
(16.38)

xt = pxt-i +Vt,

where \ p \< 1.
The noises are such that var (et) = of, var (77*) = <7̂ , cov (e ,̂ ffc) = 0.
We still have to specify the way the agents compute their expecta-

tion. We do not assume here the hypothesis of rational expectation,
but we suppose that their forecast rule is regression based using past
observed correlation between the variables x and y. More precisely their
expectation is given by

t-iVt = Ct-iXt

with

r _
* X2

Therefore at the beginning of the period t, the agents have computed
their expectation t-iVt, which, in turn, will affect the realization yt of
the endogenous variable. In the next period they will have one more
observation xt+i,yt which allows them to update the regression coeffi-
cient, that is to compute Q, and then the new expectation tVt+i (see
figure 16.3).

The continuous modification of the coefficient ct implies that the
series (yt) is nonstationary. Nevertheless, we can think that under some
conditions, the series ct will converge to a limit c*, the series (yt) will
get closer to a stationary process path, and in the limit this way of
computing the expectation term will correspond to rationality.
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Theorem 16.3: If a < 1, the learning by regression is consistent and
in the limit the expectation is the rational expectation based on the in-
formation It-i = {xt}>

PROOF:

(i) Expression for the Double Recursion Let us introduce the
quantities

1 t 1 t

1
T—\ T—\

and let us write cx{t) = I I. We have
o{t) )

= I I.
\ o{t) )

$-8(t-l

On the other hand, the observations xt,yt are such that

yt = act-ixt +xtb + et

Let us write zt = 1; we have
,ytJ

P

ytj \p(a>y(t-l)/6(t-l) + b) Oj\yt-i,
(16.40)

1 0 \ fyt\
a7(t-l)/6(t-l) + b) l) \et)'

The equations (16.39) and (16.40) provide the double recursion,
(ii) Derivation of the function / Let 7*, 8* be possible limits of

and of 8(t). We have

7*yf = a—xt+xtb + eu
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The function / is given by

V vai(xt)-8* )

(iii) Derivation of the Stationary Points The solution of the system
/(a*) = 0 is unique and given by

7
_^^L « = £
l-al-p21 1-p2'

For this solution, the eigenvalues of A(a*), that is p and 0, are
actually less than 1 in modulus. We conclude that c* = ^ = j ^ ,
and we verify that this value corresponds to the rational expecta-
tion case.

Indeed, if we solve the rational expectation model, we have

yt = aE(yt | xt) + xtb + ut

with E(yt | xt) = cxt.
By taking the linear forecast of the two members involving Xt, we have

E(yt | xt) = aE(yt \ xt) + xtb

and E(yt \ xt) = xt- .
1 — a

Therefore we find

= c " .
1-a

(iv) Analysis of the Associated Differential Equation The asso-
ciated differential equation is written as

We deduce from the second part of the system that

with K real.
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Substituting in the first equation, we have
aj

dt \6* + K exp(-t)

dt ' V «* + tfexp(-i)
For any initial condition, the solution for the component 6 converges to
<5* so that the attraction domain is Ft. For the other component the
attraction domain is Ft as well, if for t large enough, the coefficient

is strictly negative. This provides the condition a— I <Q <& a< 1. •

Learning in the Hyperinflation Model A similar approach can
be used when the model has an expectation of a future variable. This
example is interesting, since the consistency condition implies a different
constraint on the structural parameters. The model is now given by

yt = ati)t+i

xt = pxt-i +77*.
The expectations are computed by regression taking into consideration
the lag between the expectation date and the date of the variable to
forecast

tVt+l = Q-l#t>

with

Ct ~
Letting 7(t) = J E U I ^ T - I and 6(t) = iEUi^r - i . w e Set t h e

system of difference equations

J - 7(* - 1)),

0 p(ay(t-l)/S{t-l)

(o7(t - l)/6(t - 1) + 6)
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The function / is given here by

_!-7*

There exists a unique stationary point solution of /(a*) = 0. It is given
by

It corresponds to an expectation of the type c*xt = bpxt/(l — ap). We
can directly verify that this expectation scheme corresponds to the ra-
tional expectation model

yt = aE(yt+i \ xt) + xtb + eu E(yt+i \ xt) = cxt.

Indeed, we have yt = (ac + b)xt + et. We deduce that

E(yt | xt-i) = (ac + b)E(xt \ xt-i) = (ac + b)pxt-i = cxt-\.

Therefore

(ac + 6)/? = c ̂ > c = = c*.
1 — ap

Finally, the associated system of differential equations is
dy
dt

= (a— + 6) p6* — 7,
9 /

dt
In the second relation, we get 6 = 6* + if exp(—t), which, substituted in
the first one, produces

The attraction domain is the entire space if the coefficient of 7 in the
previous equation is strictly negative for t large enough, that is if ap < 1.

Theorem 16.4: In the model with a future expectation variable, the
learning process converges to a rational scheme based on the information
h = {%t}, if the structural parameters are such that ap < 1.

Since a priori the value of p is unknown and can be equal to any value
less than 1 in modulus, the consistency is ensured uniformly in p, if the
parameter a is such that | a \< 1. This condition on a is more restrictive
than the one for Muth's model.
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Muth's Model with Forecast Based on Lagged Endogenous
Variable

(i) Let us consider Muth's model

where e is a white noise.
Let us refer to the information contained in the last observed value
yt-i and forecast by the empirical formula

with

r _ E t= l VrVr-l
Ct " ypt 2

We denote 7(*) = \ E L i VTVT-1, «(*) = \ £<r=i vl
It can be seen that we obtain the system of difference equations

( - i - 7(* " 1).)

' t
t-i 0

(ii) The function / is then given by

a2/(I - a2c*2) - <5*
withe* =7*/<5*.

We deduce that the equilibrium values can only be 7* = 0, <5* = a2 or
7* = 0, <5* = 0. The first couple corresponds to a rational expectation
solution t-iyt = E(yt | yt-i).
(iii) The associated differential system is

1/6 - , ,
dt 1 - a272/<52

d6 a2

6.
dt 1 - a272/(

Moreover, let u = c2, with c = 7/6; we notice that the previous
system implies the system in u, 6

du _ 2(a - l)u a2

dt 1 — a2w S

^ 1 — a2w
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(iv) We know that 8{t) is always positive and | a |< 1. Hence du/dt is
negative; the function u is therefore decreasing. Since it is positive,
it converges to a limit. This one can only be 0. We conclude that
every point (c, 6) of (—1,1) x i?+* is attracted by the semi-line
c = 0.

(v) We have now to look at the second component 8. Let 0 = 1 — 8/a2,
we have

dt 1 — alu
where the function f(t) converges to 0 when t goes to infinity. The
resolution of this equation by the method of the variation of the
constant gives

0{t) = Kexp(-t) - ( f(u)exp(u)duj exp(-t).

Thus we have

| 0(t) \<\ K | exp(-t) + sup | f{u) | (exp(t) - exp(to))exp(-t),
[t0joo]

and so

limsup | 0(t) | < sup | f(u) | .
[to,oo]

Since the inequality is valid for every value £o and since the function
/ tends to 0 as t goes to infinity, we conclude that 0 goes to 0, that
is 8 tends to a2.
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16.6 Exercises

Exercise 16.1: Prove directly the updating formula of the ordinary
least squares (16.3), starting from the equality (XjXt)/3t = Xjyt, where
yt is the vector of the observations yQ,..., yt.

Exercise 16.2: Let the linear system be

Vt = xt/3
with t = 0, . . . , K — 1 and where (3 is an unknown vector of size K.

Show that the Kalman covariance filter can be used to solve this sys-
tem. Interpret geometrically the filter mechanism when

-iA) — 0 a nd -iEo = I.

Exercise 16.3: Show that the ARMA process given in (16.7) admits
the minimal state-space representation (called the "innovation" repre-
sentation)

zt+i = Azt + bet,

yt = czt + et

with

A =

-02 0 1

- 0 K - I 0 0
-6K 0 0

0\
0

1
0

?1"01

<0K ~ <\>K s

and

K = max(p
zt+i being

4+1 = -

c = ( l , 0 , . . . , 0 ) ,

, <?), fa = 0, if i > p, 9i = 0, if i > q, the j - t h component of

~ •"- (t>KVt-K+j + 0j€t + . . . + 8K£t-K+j>

Exercise 16.4: Show that the ARMA process given in (16.7) admits
the following state-space representation

= Azt + bct+i,

yt = cz t
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with

A =

-02

1 0
0 1

.. 0 \

.. 0

.. 1-<I>K-I 0 0

-4>K 0 0 ... o ) \OK-\J

and

K = max(p, 9 + 1), (pi = 0, if i > p, 0i = 0, if i > q, the ,7-th component
of zt+i being

(with the convention 0O = 1)-

Exercise 16.5: Let us consider a series ?/t which can be decomposed
as yt = nt + St, where (nt) and («t) are two independent stationary
processes and where (5*) is supposed to satisfy st = ast-12 + t̂? with
0 < a < 1 and where {et} is a white noise.

(i) Find the spectral density fss of the process (st). Verify that
fss(w) > 0 for any value of (u) and find the frequencies for which
this density is maximal.

(ii) Derive that the spectral densities fyy and fnn of yt and nt are
such that fyy(uj) > fnn(w) a n d that the gap between these two
functions is greatest for u) — ^f, k = . . . , —1,0,4-1, —

Exercise 16.6: Let (yt) be a time series and (yfA) be a seasonally
adjusted series. Give your opinion on the following statements about
the relationship which should exist between these two series if the initial
series has been adequately adjusted.

(i) "The pseudo-coherence between the two series should be high at
all frequencies, except perhaps at seasonal frequencies."

(ii) "The seasonal adjustment method should flatten the maxima of the
spectral density of y corresponding to the seasonal frequencies and,
when possible, leave unchanged this density for other frequencies."
[Hint: these statements are wrong to a large extent; to show it,
one could, for example, use the exercise 16.5 or an unobserved
components model.]
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Exercise 16.7: Let us consider the rational expectation model
r - l p

tVt+r = ^2^i tVt+r-i + 5Z Vj+rVt-j + Xtj3 + Uu
i=l j=0

where x̂  is a row vector and yt is an unidimensional endogenous variable

tyt+r = E(yt+r | Jt),

and where the information set contains the current and past values of
the various variables.

Moreover, we assume the explanatory variables are generated by a
first-order autoregressive process

\utj V*21 *22/W*-J
(i) Verify that the model can be written as

tVt+k =t- i Vt+k + et,k, k = 0 , . . . , r - 1,

=t-i ut + e",

= ( * n * 1 2

tUt+iJ V*21 *22/ \t-lUt

r+p

^2 Pi t-lVt+r-i + t-lXt/3 -h
2 = 1

(ii) Derive a state-space representation of this rational expectation
model.

Exercise 16.8: We consider a multivariate model with future variable
expectation

yt =
with u t = $ut_i + e t , (ct) white noise.

Discuss the existence of a state-space form, when the matrix A is
nonzero, but singular.
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Exercise 16.9: Let us consider the process

yt = 3t + ut,

where St is an autoregressive process St = (j>st-\ + e* and where e and w
are independent noises.

(i) Verify that the process y satisfies an ARM A (1,1) model

(1 - <t>L)yt = (1 - 0L)TH

and explain how to find /3 and V(rjt) = cr%-
(ii) Prove that the best forecast of St based on the values y*, Ut-i, • • •

is given by st = jz^yt- Derive the variance of the corresponding
forecast error,

(iii) The previous model is directly in a state-space form when taking
st as state variable, St = <f>St-i +€t as the transition equation, and
yt ~ St + Ut as the measurement equation.

Prom the updating formula of the variance of the forecast error for st

derive a second-degree equation satisfied asymptotically by this variance.
Then show that the expectation updating is

where P = var(st).
(iv) Compare the results obtained by the two approaches.

Exercise 16.10: Let us consider the structural model introduced in
(16.26)

(i) Find the best forecast of the seasonal component Lw(t)/S(L) based
on (yu t = -ex),..., -1,0, + 1 , . . . , +oo).

(ii) Write the coefficients of the corresponding moving average and
discuss this representation.
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0.97778
0.98257
0.98645
0.98956
0.99202
0.99396
0.99547
0.99664
0.99752
0.998 19

0.50798
0.54776
0.58706
0.62552
0.662 76
0.69847
0.73237
0.76424
0.79389
0.82121

0.846 14
0.86864
0.888 77
0.90658
0.922 20
0.935 74
0.94738
0.95728
0.96562
0.97257

0.97831
0.98300
0.986 79
0.98983
0.992 24
0.994 13
0.99560
0.99674
0.99760
0.99825

0.51197
0.551 72
0.59095
0.62930
0.66640
0.70194
0.73565
0.76731
0.79673
0.82381

0.84850
0.87076
0.89065
0.90824
0.92364
0.93699
0.94845
0.95819
0.96638
0.973 20

0.97882
0.98341
0.98713
0.99010
0.99245
0.99430
0.995 73
0.99683
0.99767
0.99831

0.51595
0.55567
0.59484
0.63307
0.67003
0.70540
0.73891
0.77035
0.79955
0.82639

0.85083
0.87286
0.89251
0.90988
0.92507
0.93822
0.949 50
0.95907
0.96712
0.97381

0.97932
0.98382
0.98745
0.99036
0.99266
0.99446
0.99585
0.99693
0.99774
0.99836

0.51994
0.55962
0.59871
0.63683
0.673 65
0.70884
0.74215
0.77337
0.80211
0.82894

0.853 14
0.874 93
0.89235
0.91149
0.92647
0.93943
0.95053
0.95994
0.96784
0.974 41

0.97982
0.98422
0.98778
0.99086
0.99286
0.99461
0.99598
0.99702
0.99781
0.99841

0.52392
0.56356
0.60257
0.64058
0.67724
0.71226
0.74537
0.77637
0.80511
0.83147

0.85543
0.876 98
0.896 17
0.91309
0.92786
0.94062
0.95154
0.96080
0.96856
0.97500

0.98030
0.984 61
0.98809
0.99111
0.99305
0.99477
0.99609
0.99711
0.99788
0.99846

0.52790
0.56750
0.60642
0.64431
0.68082
0.71566
0.74857
0.77935
0.80785
0.83398

0.85769
0.87900
0.89796
0.91466
0.92922
0.94179
0.95254
0.96164
0.96926
0.97558

0.98077
0.98500
0.98840
0.99111
0.99324
0.99492
0.99621
0.99720
0.99795
0.99851

0.53188
0.57142
0.61026
0.64803
0.68439
0.71904
0.751 75
0.78230
0.81057
0.83646

0.85993
0.88100
0.89973
0.91621
0.93056
0.94295
0.95352
0.96246
0.96995
0.976 15

0.98124
0.98537
0.98870
0.99134
0.99343
0.99506
0.99632
0.99728
0.99801
0.99856

0.53586
0.57535
0.614 09
0.651 73
0.68793
0.72240
0.754 90
0.78524
0.81327
0.83891

0.862 14
0.88298
0.90147
0.91774
0.93189
0.94408
0.95449
0.96327
0.97062
0.97670

0.98169
0.98574
0.98899
0.991 58
0.99361
0.99520
0.99643
0.99736
0.99807
0.99861



Table 2 Normal distribution - B

a

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00

oo
1.6449
1.2816
1.0364
0.8416
0.6745
0.5244
0.3853
0.2533
0.1257

0.01

2.5758
1.5982
1.2536
1.0152
0.8239
0.6588
0.5101
0.3719
0.2404
0.1130

— 00

0.02

2.3263
1.5548
1.2566
0.9945
0.7892
0.6433
0.4959
0.3585
0.2275
0.1004

—U

0.03

2.1701
1.5141
1.2004
0.9741
0.8064
0.6280
0.4817
0.3451
0.2147
0.0878

0

0.04

2.0537
1.4758
1.1750
0.9542
0.7722
0.6128
0.4677
0.3319
0.2019
0.0753

+U

0.05

1.9600
1.4395
1.1503
0.9346
0.7554
0.5978
0.4538
0.3186
0.1819
0.0627

+ oo

0.06

1.8808
1.4051
1.1264
0.9154
0.7388
0.5828
0.4399
0.3000
0.1764
0.0502

0.07

1.8119
1.3722
1.1031
0.8965
0.7255
0.5681
0.4261
0.2924
0.1637
0.0376

0.08

1.7507
1.3408
1.0803
0.8779
0.7063
0.5534
0.4125
0.2793
0.1510
0.0251

0.09

1.6954
1.3106
1.0581
0.8596
0.6903
0.5388
0.3989
0.2663
0.1383
0.0125



Table 3 \2 distribution

+ 0 0

0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.001

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

0.0002
0.02
0.12
0.30
0.55
0.87
1.24
1.65
2.09
2.56

3.05
3.57
4.11
4.66
5 .23
5.81
6.41
7.01
7.63
8.26

8.90
9.54

10.20
10.86
11.52
12.20
12.88
13.57
14.26
14.95

0.0010
0.05
0.22
0.48
0.83
1.24
1.69
2.18
2.70
3.25

3.82
4.40
5.01
5.63
6.26
6.91
7.56
8.23
8.91
9.59

10.28
10.98
11.69
12.40
13 12
13.84
14.57
15.31
16.05
16.79

0.0039
0.10
0.35
0.71
1.15
1.64
2.17
2.73
3.33
3.94

4.57
5.23
5.89
6.57
7.26
7.96
8.67
9.39

10.12
10.85

11.59
12.34
13.09
13.85
14.61
15.38
16.15
16.93
17.71
18.49

0.0158
0.21
0.58
1.06
1.61
2.20
2.83
3.49
4.17
4.87

5.58
6.30
7.04
7.79
8.55
9.31

10.08
10.86
11.65
12.44

13.24
14.04
14.85
15.66
16.47
17.29
18.11
18.94
19.77
20.60

2.71
4.61
6.25
7.78
9.24

10.64
12.02
13.36
14.68
15.99

17.27
18.55
19.81
21.06
22.31
23.54
24.77
25.99
27.20
28.41

29.61
30.81
32.01
33.20
34.38
35.56
36.74
37.92
39.09
40.26

3.84
5.99
7.81
9.94

11.07
12.59
14.07
15.51
16.92
18.31

19.67
21.03
22.36
23.68
25.00
26.30
27.59
28.87
30.14
31.41

32.67
33.92
35.17
36.41
37.65
38.88
40.11
41.34
42.56
43.77

5.02
7.38
9.35

.14

.83
14.45
16.01
17.53
19.02
20.48

21.92
23.34

.74
26.12
27.49

.84

.19
31.53

.85

.17

35.48
36.78

.08
39.37
40.65
41.92
43.19
44.46
45.72
46.98

6.63
9.21

11.34
13.28
15.09
16.81
18.47
20.09
21.67
23.21

24.72
26.22
27.69
29.14
30.58
32.00
33.41
34.80
36.19
37.57

38.93
40.29
41.64
42.98
44.31
45.64
46.96
48.28
49.59
50.89

10.83
13.82
16.27
18.47
20.52
22.46
24.32
26.13
27.88
29.59

31.26
32.91
34.53
36.12
37.70
39.25
40.79
42.31
43.82
45.32

46.80
4027
49.73
51.18
52.62
54.05
55.48
56.89
58.30
59.70

when v > 30. then 2f - 1 is approximately Af(O.l).



Table 4 Student's t distribution

+ 00

0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
80

120
oo

0.158
0.142
0.137
0.134
0.132
0.131
0.130
0.130
0.129
0.129
0.129
0.128
0.128
0.128
0.128
0.128
0.128
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.137
0.127
0.127
0.127
0.127
0.126
0.126
0.126

0.325
0.289
0.277
0.271
0.267
0.265
0.263
0.262
0.261
0.260
0.260
0.259
0.259
0.258
0.258
0.258
0.257
0.257
0.257
0.257
0.257
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.255
0.254
0.254
0.253.

0.510
0.445
0.424
0.414
0.408
0.404
0.402
0.399
0.398
0.397
0.396
0.395
0.394
0.393
0.393
0.392
0.392
0.392
0.391
0.391
0.391
0.390
0.390
0.390
0.390
0.390
0.389
0.389
0.389
0.389
0.388
0.387
0.386
0.385

0.727
0.617
0.584
0.569
0.559
0.533
0.549
0.546
0.543
0.542
0.540
0.539
0.538
0.537
0.536
0.535
0.534
0.534
0.533
0.533
0.532
0.532
0.532
0.531
0.531
0.531
0.531
0.530
0.530
0.530
0.529
0.527
0.526
0.524

1.000
0.816
0.765
0.741
0.727
0.718
0.711
0.706
0.703
0.700
0.697
0.695
0.694
0.692
0.691
0.690
0.689
0.688
0.688
0.687
0.686
0.686
0.685
0.685
0.684
0.684
0.684
0.683
0.683
0.683
0.681
0.679
0.677
0.674

1.376
1.061
0.978
0.941
0.920
0.906
0.896
0.889
0.883
0.879
0.876
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860
0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854
0.851
0.848
0.845
0.842

1.963 .
1.386
1.250
1.190
1.156
1.134
1.119
1.108
1.100
1.093
1.088
1.083
1.079
1.076
1.074
1.071
1.069
1.067
1.066
1.064
1.063
1.061
1.060
1.059
1.058
1.058
1.057
1.056
1.055
1.055
1.050
1.046
1.041
1.036

i.078
.886
.638
.533
.476
.440

L.415
L.397
1.383
L.372
.363

1.356
1.350
.345
.341

1.377
1.333
L.330
.328

1.325
1.323
1.321
1.319
.318

L.316
L.315
1.314
1.313
.311
.310
.303

1.296
1.289
1.282

6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.684
1.671
1.658
1.645

12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.021
2.000
1.980
1.960

31.821
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.423
2.390
2.358
2.326

63.657
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.704
2.660
2.617
2.576

636.619
31.598
12.929
8.610
6.869
5.959
5.408
5.041
4.781
4.587
4.437
4.318
4.221
4.140
4.073
4.015
3.965
3.922
3.883
3.850
3.819
3.792
3.767
3.745
3.725
3.707
3.690
3.674
3.649
3.656
3.551
3.460
3.373
3.291



Table 5 F distribution

i / i = 2 i/i=3

i/2 P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
60

120
oo

161.4
18.51
10.13
7.71
6.61
5.99
5.59
5.32
5.12
4.96
4.84
4.75
4.67
4.60
4.54
4.49
4.45
4.41
4.38
4.35
4.32
4.30
4.28
4.26
4.24
4.22
4.21
4.20
4.18
4.17
4.08
4.00
3.92
3.84

4052
98.49
34.12
21.20
16.26
13.74
12.15
11.26
10.56
10.04
9.65
9.33
9.07
8.86
8.86
8.53
8.40
8.28
8.18
8.10
8.02
7.94
7.88
7.82
7.77
7.72
7.68
7.64
7.60
7.56
7.31
7.08
6.85
6.64

199.5
19.00
9.55
6.94
5.79
5.14
4.74
4.46
4.26
4.10
3.98
3.88
3.80
3.74
3.68
3.63
3.59
3.55
3.52
3.49
3.47
3.44
3.42
3.40
3.38
3.37
3.35
3.34
3.33
3.32
3.23
3.15
3.07
2.99

4 999
99.00
30.81
18.00
13.27
10.91
9.55
8.65
8.02
7.56
7.20
6.93
6.70
6.51
6.36
6.23
6.11
6.01
5.93
5.85
5.78
5.72
5.66
5.61
5.57
5.53
5.49
5.45
5.42
5.39
5.18
4.98
4.79
4.60

215.7
19.16
9.28
6.59
5.41
4.76
4.35
4.07
3.86
3.71
3.59
3.49
3.41
3.34
3.29
3.24
3.20
3.16
3.13
3.10
3.07
3.05
3.03
3.01
2.09
2.98
2.96
2.95
2.93
2.92
2.84
2.76
2.68
2.60

5403
99.17
29.46
16.69
12.06
9.78
8.45
7.59
6.99
6.55
6.22
5.95
5.74
5.56
5.42
5.29
5.18
5.09
5.01
4.94
4.87
4.82
4.76
4.72
4.68
4.64
4.60
4.57
4.54
4.51
4.31
4.13
3.95
3.78

224.6
19.25
9.12
6.39
5.19
4.53
4.12
3.84
3.63
3.48
3.36
3.26
3.18
3.11
3.06
3.01
2.96
2.93
2.90
2.87
2.84
2.82
2.80
2.78
2.76
2.74
2.73
2.71
2.70
2.69
2.61
2.52
2.45
2.37

5625
99.25
28.71
15.98
11.39
9.15
7.85
7.01
6.42
5.99
5.67
5.41
5.20
5.03
4.89
4.77
4.67
4.58
4.50
4.43
4.37
4.31
4.26
4.22
4.18
4.14
4.11
4.07
4.04
4.02
3.83
3.65
3.48
3.32

230.2
19.30
9.01
6.26
5.05
4.39
3.97
3.69
3.48
3.33
3.20
3.11
3.02
2.96
2.90
2.85
2.81
2.77
2.74
2.71
2.68
2.66
2.64
2.62
2.60
2.59
2.57
2.56
2.54
2.53
2.45
2.37
2.29
2.21

5764
99.30
28.24
15.52
10.97
8.75
7.45
6.63
6.06
5.64
5.32
5.06
4.86
4.69
4.56
4.44
4.43
4.25
4.17
4.10
4.04
3.99
3.94
3.90
3.86
3.82
3.70
3.75
3.73
3.70
3.51
3.34
3.17
3.02



Table 5 Continued

v\ = 6 1/1 = ! 1/1 = 12 =24
P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01 P = 0.05 P = 0.01

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
60

120
oo

234.0
19.33
8.94
6.61
4.95
4.28
3.87
3.58
3.37
3.22
3.09
3.00
2.92
2.85
2.79
2.74
2.70
2.66
2.63
2.60
2.57
2.55
2.53
2.51
2.49
2.47
2.46
2.44
2.43
2.42
2.34
2.25
2.17
2.09

5859
99.33
27.91
15.21
10.67
8.47
7.19
6.37
5.80
5.39
5.07
4.82
4.62
4.46
4.32
4.20
4.10
4.01
3.94
3.87
3.81
3.76
3.71
3.67
3.63
3.59
3.56
3.53
3.50
3.47
3.29
3.12
2.96
2.80

238.9
19.37
8.84
6.04
4.82
4.15
3.73
3.44
3.23
3.07
2.95
2.85
2.77
2.70
2.64
2.59
2.55
2.51
2.48
2.45
2.42
2.40
2.38
2.36
2.34
2.32
2.30
2.29
2.28
2.27
2.18
2.10
2.01
1.94

5981
99.36
27.49
14.80
10.27
8.10
6.84
6.03
5.47
5.06
4.74
4.50
4.30
4.14
4.00
3.89
3.79
3.71
3.63
3.56
3.51
3.45
3.41
3.36
3.32
3.29
3.26
3.23
3.20
3.17
2.99
2.82
2.66
2.51

243.9
19.41
8.74
5.91
4.68
4.00
3.57
3.28
3.07
2.91
2.79
2.69
2.60
2.53
2.48
2.42
2.35
2.34
2.31
2.28
2.25
2.23
2.20
2.18
2.16
2.15
2.13
2.12
2.10
2.09
2.00
1.92
1.83
1.75

6106
99.42
27.05
14.37
9.89
7.72
6.47
5.67
5.11
4.71
4.40
4.16
3.96
3.80
3.67
3.55
3.45
3.37
3.30
3.23
3.17
3.12
3.07
1.03
2.99
2.96
2.93
2.90
2.87
2.84
2.66
2.50
2.34
2.18

249.0
19.45
8.64
5.77
4.53
3.84
3.41
3.12
2.90
2.74
2.61
2.50
2.42
2.35
2.29
2.24
2.19
2.15
2.11
2.68
2.05
2.03
2.00
1.98
1.96
1.95
1.93
1.91
1.90
1.89
1.79
1.70
1.61
1.52

6234
99.46
26.60
13.93
9.47
7.31
6.07
5.28
4.73
4.33
4.02
3.78
3.59
3.43
3.29
3.18
3.08
3.00
2.92
2.86
2.80
2.75
2.70
2.66
2.62
2.58
2.55
2.52
2.49
2.47
2.29
2.12
1.95
1.79

254.3
19.50
8.53
5.63
4.36
3.67
3.23
2.93
2.71
2.54
2.40
2.30
2.21
2.13
2.07
2.01
1.96
1.92
1.88
1.84
1.81
1.78
1.76
1.73
1.71
1.69
1.67
1.65
1.64
1.62
1.51
1.39
1.25
1.09

6366
99.50
26.12
13.46
9.02
6.88
5.65
4.86
4.31
3.91
3.60
3.36
3.16
3.00
2.87
2.75
2.65
2.57
2.49
2.42
2.36
2.31
2.26
2.21
2.17
2.13
2.10
2.06
2.03
2.01
1.80
1.60
1.38
1.00



Table 6 Durbin-Watson test: critical values (a = 5%)

T

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
45
50
55
60
65
70
75
80
85
90
95
100

k1

di

1.08
1.10
1.13
1.16
1.18
1.20
1.22
1.24
1.26
1.27
1.29
1.30
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.43
1.44
1.48
1.50
1.53
1.55
1.57
1.58
1.60
1.61
1.62
1.63
1.64
1.65

= 1

du

1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.45
1.46
1.47
1.48
1.48
1.49
1.50
1.50
1.51
1.51
1.52
1.52
1.53
1.54
1.54
1.54
1.57
1.59
1.60
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.69

kf

di

0.95
0.98
1.02
1.05
1.08
1.10
1.13
1.15
1.17
1.19
1.21
1.22
1.24
1.26
1.27
1.28
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.43
1.46
1.49
1.51
1.54
1.55
1.57
1.59
1.60
1.61
1.62
1.63

= 2

du

1.54
1.54
1.54
1.53
1.53
1.54
1.54
1.54
1.54
1.55
1.55
1.55
1.56
1.56
1.56
1.57
1.57
1.57
1.58
1.58
1.58
1.59
1.59
1.56
1.60
1.60
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.70
1.71
1.72

kf

di

0.82
0.86
0.90
0.93
0.97
1.00
1.03
1.05
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.21
1.23
1.24
1.26
1.27
1.28
1.29
1.31
1.32
1.33
1.34
1.38
1.42
1.45
1.48
1.50
1.52
1.54
1.56
1.57
1.59
1.60
1.61

= 3

du

1.75
1.73
1.71
1.69
1.68
1.68
1.67
1.66
1.66
1.66
1.66
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.66
1.66
1.66
1.66
1.67
1.67
1.68
1.69
1.70
1.70
1.71
1.72
1.72
1.73
1.73
1.74

k'

di

0.69
0.74
0.78
0.82
0.86
0.90
0.93
0.96
0.99
1.01
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.19
1.21
1.22
1.22
1.25
1.26
1.27
1.29
1.34
1.38
1.41
1.44
1.47
1.49
1.51
1.53
1.55
1.57
1.58
1.59

= 4

du

1.97
1.93
1.90
1.87
1.85
1.83
1.81
1.80
1.79
1.78
1.77
1.76
1.76
1.75
1.74
1.74
1.74
1.73
1.73
1.73
1.73
1.73
1.72
1.72
1.72
1.72
1.72
1.72
1.72
1.73
1.73
1.74
1.74
1.74
1.75
1.75
1.75
1.76

kf

di

0.56
0.62
0.67
0.71
0.75
0.79
0.83
0.86
0.90
0.93
0.95
0.98
1.01
1.03
1.05
1.07
1.09
1.11
1.13
1.15
1.16
1.18
1.19
1.21
1.22
1.23
1.29
1.34
1.38
1.41
1.44
1.46
1.49
1.51
1.52
1.54
1.56
1.57

= 5

du

2.21
2.15
2.10
2.06
2.02
1.99
1.96
1.94
1.92
1.90
1.89
1.88
1.86
1.85
1.84
1.83
1.83
1.82
1.81
1.81
1.80
1.80
1.80
1.79
1.79
1.79
1.78
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.78
1.78
1.78

Note: T is the number of observations, k' is the number of regressors excluding
the constant.



Table 7 Distribution ofT(l - pT) for p = l

Sample Size

T

25
50

100
250
500

oo

25
50

100
250
500

oo

25
50

100
250
500

oo

0.01

11.9
12.9
13.3
13.6
13.7
13.8

17.2
18.9
19.8
20.3
20.5
20.7

22.5
25.7
27.4
28.4
28.9
29.5

0.025

9.3
9.9

10.2
10.3
10.4
10.5

14.6
15.7
16.3
16.6
16.8
16.9

19.9
22.4
23.6
24.4
24.8
25.1

Probability

0.05

7.3
7.7
7.9
8.0
8.0
8.1

12.5
13.3
13.7
14.0
14.0
14.1

17.9
19.8
20.7
21.3
21.5
21.8

0.10

5.3
5.5
5.6
5.7
5.7
5.7

10.2
10.7
11.0
11.2
11.2
11.3

15.6
16.8
17.5
18.0
18.1
18.3

a of larger value

0.90

ca

-1.01
-0.97
-0.95
-0.93
-0.93
-0.93

0.76
0.81
0.83
0.84
0.84
0.85

3.66
3.71
3.74
3.75
3.76
3.77

0.95

-1.40
-1.35
-1.31
-1.28
-1.28
-1.28

-0.01
0.07
0.10
0.12
0.13
0.13

2.51
2.60
2.62
2.64
2.65
2.66

0.975

-1.79
-1.70
-1.65
-1.62
-1.61
-1.60

-0.65
-0.53
-0.47
-0.43
-0.42
-0.41

1.53
1.66
1.73
1.78
1.78
1.79

0.99

-2.28
-2.16
-2.09
-2.04
-2.04
-2.03

-1.40
-1.22
-1.14
-1.09
-1.06
-1.04

0.43
0.65
0.75
0.82
0.84
0.87

Source: Puller (1976) p. 371



Table 8 Distribution of i for p = 1

Sample Size

T

25
50

100
250
500

oo

25
50

100
250
500

oo

25
50

100
250
500

oo

0.01

2.66
2.62
2.60
2.58
2.58
2.58

3.75
3.58
3.51
3.46
3.44
3.43

4.38
4.15
4.04
3.99
3.98
3.96

0.025

2.26
2.25
2.24
2.23
2.23
2.23

3.33
3.22
3.17
3.14
3.13
3.12

3.95
3.80
3.73
3.69
3.68
3.66

Probability

0.05

1.95
1.95
1.95
1.95
1.95
1.95

3.00
2.93
2.89
2.88
2.87
2.86

3.60
3.50
3.45
3.43
3.42
3.41

0.10

1.60
1.61
1.61
1.62
1.62
1.62

2.63
2.60
2.58
250
2.57
2.57

3.24
3.18
3.15
3.13
3.13
3.12

a of larger value

0.90

t*

-0.92
-0.91
-0.90
-0.89
-0.89
-0.89

0.37
0.40
0.42
0.42
0.43
0.44

t'L
1.14
1.19
1.22
1.23
1.24
1.25

0.95

-1.33
-1.31

1 9Q

-1.29
-1.28
-1.28

-0.00
0.03
0.05
0.06
0.07
0.07

0.80
0.87
0.90
0.92
0.93
0.94

0.975

-1.70
-1.66
-1.64
-1.63
-1.62
-1.62

-0.34
-0.29
-0.26
-0.24
-0.24
-0.23

0.50
0.58
0.62
0.64
0.65
0.66

0.99

-2.16
-2.08
-2.03
-2.01
-2.00
-2.00

-0.72
-0.66
-0.63
-0.62
-0.61
-0.60

0.15
0.24
0.28
0.31
0.32
0.33

Source: Fuller (1976) p. 373





Index

Accounting identity, 357
Adaptive expectation, 457, 466
Adjusted value, 7
Adjustment

costs, 427
global, 12
local, 12
models, 11

Affine regressions, 120
Aggregation, 442

effects, 444
AIC, 197
Almon method, 517
ARIMA process, 167, 179, 261, 605
Arithmetic average, 64
ARMA process, 144, 158, 250, 287,

609
Asymptotically stationary, 234
Asymptotic Least Squares, 498
Autocovariance generating function,

227
Autocorrelation

function, 125, 130
matrix, 126

Autocorrelated disturbances, 34
Autocovariance function, 122, 161,

224, 256, 306,
Autoprojective model, 13
Autoregressive

coefficient, 231
model, 144
representation, 231

Backforecasting, 185
Backward solution, 470
Backward difference, 52
Behavioral equation, 357
Block-recursive, 360, 383
Bottom-up approach, 494

, Box-Cox transformation, 205
Box-Jenkins method, 180

Break, 7
Brownian motion, 448
Buys-Ballot's model, 23, 26

Canonical decomposition, 414
Canonical

correlations, 163
representation of an ARMA

process, 146, 155
Causal chain, 360
Causality

definitions, 364
instantaneous, 365, 406
measures of, 371
tests, 500

Cochrane-Orcutt method, 37
Coefficients

seasonal, 21
structural, 385

Coherence, 292
Cointegration, 417, 549

degree of, 418
dynamic, 419
in the frequency domain, 421
test, 554

Cointegrating vector, 418
Cointegrated series, 418
Common factors tests, 512
Conditional log-likelihood function,

314, 341
Control

deterministic, 392
stochastic, 396
variables, 359

Controllability matrix, 275
Controllable representation, 275
Convolution product, 239, 246
Corner method, 166, 191
Correlogram, 61, 125
Covariance stationary process, 121
CUSUM test, 604



666 Index

Data transformation, 203
Decision variables, 359
Decomposable model, 335
Dependence, measure of, 373
Dickey-Puller test, 538

Augmented, 544
Donsker's Theorem, 447
Doubly smoothed series, 103
Durbin's algorithm, 129
Durbin-Watson test, 37

Economic policy, 360, 398
Endogenous variables, 356
Engle-Granger

procedure, 552
representation theorem, 430

Environment variables, 359
Equilibrium relationship, 427
Equilibrium condition, 357
Equivalent representation 278
Error correction model, 426
Estimation, 181, 212
Exact log-likelihood, 313
Exogeneity, 382

strict, 387, 390, 506
Exogenous variables, 356
Expectations, 455

naive, 458
rational, 456, 463
schemes, 456, 465

Explanatory model, 14
Exponential smoothing, 98

Double, 103, 216
Generalized, 107
Simple, 98

Extrapolative form, 457

Filter gain, 577
Filtering problem, 576
Final form, 364
First-order conditions, 443
Fisher's information, 321, 351
Forecast, 7, 196, 197, 214, 235, 577,

585
error, 202, 232, 456
function, 200
horizon, 7, 98
intervals, 202

updating, 582
Forward

difference, 52
operator, 137
solution, 468

Forward representation of an
ARMA process, 146, 155

Fractional process, 336
Frequency domain, 288, 342
Frisch-Waugh theorem, 399

Granger causality, 365

Hankel matrix, 236, 247, 264, 276
Henderson averages, 80
Holt-Winter method, 111
Homoskedasticity, 122

Identifiability, 319
Identification, 189, 208, 390

a priori, 189, 208
first-order 464

Information criteria, 196
Information filter, 588
Initial condition, 232
Innovation, 157, 232, 576
Input, 271, 576
Integrated series 494
Intervention analysis, 206
Invariants (of a moving average) 71
Inverse

autocorrelation, 135, 152, 187
model, 336

Invertible process, 141, 231
Iterated regressions theorem, 399

Kalman
filter, 577
smoother, 590

Keynesian model, 356, 392
Koyck Distributed Lags, 99, 517
Kolmogorov

equality, 293
theorem, 122

Kullback contrast, 317
Kurtosis, 305

Lag operator, 137, 230



Index 667

Lagrange multiplier test, 330
Lead operator, 137
Learning, 624
Least squares, 25, 602
Likelihood ratio test, 330

for cointegration, 554
Limit distribution, 303
Limit filter, 581
Linear

approximate solutions, 471
filter, 230
model, 601

Local polynomial, 72
Locally equivalent alternatives, 334
Logarithmic transformation, 203
Logistic model, 24
Long division, 243
Long term model, 435

Macroeconometric models, 356
Markov coefficients, 226, 263, 273
Martingale difference sequence, 459
Maximum likelihood estimator, 312,

316
Mean lag, 115, 395
Measurement

equation, 271, 576
matrix, 576

Memory
short, 439
long, 439, 445

Minimal orders, 285
Minimal representation, 158, 164,

273, 279, 282, 285
Missing data, 618
Model selection, 196, 213
Moving average

centered, 52
definition, 50, 226
gain, 59
infinite, 132
nullspace, 56
optimal, 612
process, 153
representation, 225
symmetric, 52
transformation, 230

Moving regressions, 72
Multipliers, 394

dynamic, 394
impact, 394
lagged, 394

Muth's model, 520

Naive expectations, 458
Nested hypotheses, 496
Nonstationarity (degree of) 262,

316, 412
Normal equations, 26

Observability matrix, 275
Observable representation, 275
Optimality test, 520
Order condition, 390
Order of integration, 563
Orthogonal increments, 291
Outlier, 31
Output, 271, 576
Overidentification, 391

Partial autocorrelation, 127, 148
Partial correlogram, 131
Partial uncorrelation, 400
Perfect foresight, 463
Periodogram, 304, 537, 563
Perturbations, 576
Pierce-Haugh approach, 368, 402
Pivotal values, 200
Policy instruments, 359
Polynomial trend, 411
Portmanteau test, 195
Power series, 227, 240
Predeterminedness, 385, 389, 506
Predictive power, 196
Predictor space, 267
Process, 121
Pseudo

coherence, 235, 422
spectrum, 235, 421
transfer function, 235

Random walk, 168, 234
Rank condition, 390
Rational distributed lags, 515
Rational expectations, 458, 518, 622



668 Index

Realization theory, 275
Recursive residuals, 603
Reduced form, 364

parameter, 364
Residual variance reduction ratio, 77
Residuals, 33
Riccati equation, 584

Scenarios, 389
Schmidt-Phillips tests, 545
Score

approximated, 320, 321
exact, 320
test, 321

Seasonal
adjustment, 7
models, 205
processes, 232

Seasonally adjusted series, 7, 33
Seemingly unrelated regression

model, 346
Shock, 393, 395, 427

permanent, 394
sustained, 394
transitory, 394, 424

Signal, 576
Sims's approach, 369, 401
Simultaneity, 363, 385, 389
Singular value decomposition, 297
Slutsky-Yule effect 69
Smoothing, 577, 590

parameter, 98, 100
Smoothed series, 104
Spectral representation, 289
Spectral density function, 132, 163,

228, 256
Spencer averages, 70
Spurious regressions, 526
State equation, 271, 576
State-space, 271
State variable, 271, 576
Steady growth path, 424
Stochastic integral, 289, 448

measure, 289
trend, 617

Structural change, 90, 206

Structural form, 363, 506
weak, 385, 389
strong, 387, 508

Structural models, 614
Sunspots, 476
System representation, 271

Taylor formula, 412
Time domain, 288
Time lags, 9
Time reversal, 146
Time series, 1
Time unit change, 445
Time-varying coefficients, 604
Toeplitz matrix, 236, 247
Top-down approach, 494
Transfer function, 228, 235
Transition matrix, 106, 576
Trend, 7

polynomial, 411

Unbiasedness (test), 519
Unit root tests, 538
Univariate

autoregressive moving average,
158

integrated autoregressive, 168
Unobserved components model, 609
Updating, 198, 457, 579, 582

Validation phase, 194, 212
a posteriori, 195

VAR model, 499

Wald test, 329
Walrasian equilibrium model, 460
Weak stationarity, 122, 224
White noise, 123, 225

test, 338
Wold

decomposition, 164
representation, 225

XI1 method, 82

Yule-Walker equations, 147, 187


