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Preface to the Third Edition

In 2002, James Comey, the newly appointed U.S. attorney for the Southern District of New York who would
later become the director of the Federal Bureau of Investigation, entered a room filled with high-powered
criminal prosecutors. He asked the members of the group to raise their hands if they had never lost a case.
Proud, eager prosecutors across the room threw their hands into the air, expecting a pat on the back. Comey’s
response befuddled them. Instead of praising them, he called them chickens (that is not quite the term he
used, but close enough) and told them the only reason they had never lost is that the cases they selected to
prosecute were too easy.! The group was startled at the rebuke, but they really should not have been. Numbers
can take on various meanings and interpretations and are sometimes used in ways that conceal useful

information rather than revealing it.

1. Eisinger, J. (2017). The chickens™¢ club: Why the Justice Department fails to prosecute executives. New York:

Simon & Schuster.

This book enters its third edition at a time when the demand for an educated, knowledgeable workforce has
never been greater. This is as true in criminal justice and criminology as in any other university major and
occupational field. Education is the hallmark of a professional. Education is not just about knowing facts,
though—it is about thinking critically and treating incoming information with a healthy dose of skepticism.
All information must pass certain tests before being treated as true. Even if it passes those tests, the possibility
remains that additional information exists that, if discovered, would alter our understanding of the world.
People who critically examine the trustworthiness of information and are open to new knowledge that
challenges their preexisting notions about what is true and false are actively using their education, rather than

merely possessing it.

At first glance, statistics seems like a topic of dubious relevance to everyday life. Convincing criminology and
criminal justice students that they should care about statistics is no small task. Most students approach the
class with apprehension because math is daunting, but many also express frustration and impatience. The
thought, “But I'm going to be a [police officer, lawyer, federal agent, etc.], so what do I need #4is class for?” is
on many students’ minds as they walk through the door or log in to the learning management system on the
first day. The answer is surprisingly simple: Statistics form a fundamental part of what we know about the
world. Practitioners in the criminal justice field rely on statistics. A police chief who alters a department’s
deployment plan so as to allocate resources to crime hot spots trusts that the researchers who analyzed the
spatial distribution of crime did so correctly. A prison warden seeking to classify inmates according to the risk
they pose to staff and other inmates needs assessment instruments that accurately predict each person’s
likelihood of engaging in behavior that threatens institutional security. A chief prosecutor must recognize that
a high conviction rate might not be testament to assistant prosecutors’ skill level but, rather, evidence that they

only try simple cases and never take on challenges.

Statistics matter because what unites all practitioners in the criminology and criminal justice occupations and

14



professions is the need for valid, reliable data and the ability to critically examine numbers that are set before
them. Students with aspirations for graduate school have to understand statistical concepts because they will
be expected to produce knowledge using these techniques. Those planning to enter the workforce as
practitioners must be equipped with the background necessary to appraise incoming information and evaluate
its accuracy and usefulness. Statistics, therefore, is just as important to information consumers as it is to

producers.

The third edition of Statistics for Criminology and Criminal Justice, like its two predecessors, balances quantity
and complexity with user-friendliness. A book that skimps on information can be as confusing as one
overloaded with it. The sacrificed details frequently pertain to the underlying theory and logic that drive
statistical analyses. The pedagogical techniques employed in this text draw from the scholarship of teaching
and learning, wherein researchers have demonstrated that students learn best when they understand logical
connections within and across concepts, rather than merely memorizing key terms or steps to solving
equations. In statistics, students are at an advantage if they first understand the overarching goal of the

techniques they are learning before they begin working with formulas and numbers.

This book also emphasizes the application of new knowledge. Students can follow along in the step-by-step
instructions that illustrate plugging numbers into formulas and solving them. Additional practice examples are
embedded within the chapters, and chapter review problems allow students to test themselves (the answers to
the odd-numbered problems are located in the back of the book), as well as offering instructors convenient

homework templates using the even-numbered questions.

Real data and research also further the goal of encouraging students to apply concepts and showing them the
relevance of statistics to practical problems in the criminal justice and criminology fields. Chapters contain
Data Sources boxes that describe some common, publicly available data sets such as the Uniform Crime
Reports, National Crime Victimization Survey, General Social Survey, and others. Most in-text examples and
end-of-chapter review problems use data drawn from the sources highlighted in the book. The goal is to lend
a practical, tangible bent to this often-abstract topic. Students get to work with the data their professors use.
They get to see how elegant statistics can be at times and how messy they can be at others, how analyses can

sometimes lead to clear conclusions and other times to ambiguity.

The Research Example boxes embedded throughout the chapters illustrate criminal justice and criminology
research in action and are meant to stimulate students’ interest. They highlight that even though the math
might not be exciting, the act of scientific inquiry most definitely is, and the results have important
implications for policy and practice. In the third edition, the examples have been expanded to include
additional contemporary criminal justice and criminology studies. Most of the examples contained in the first
and second editions were retained in order to enhance diversity and allow students to see firsthand the rich
variety of research that has been taking place over time. The full texts of all articles are available on the SAGE
companion site (http://www.sagepub.com/gau) and can be downloaded online by users with institutional

access to the SAGE journals in which the articles appear.

This edition retains the Learning Check boxes. These are scattered throughout the text and function as mini-
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quizzes that test students’ comprehension of certain concepts. They are short so that students can complete
them without disrupting their learning process. Students can use each Learning Check to make sure they are on
the right track in their understanding of the material, and instructors can use them for in-class discussion. The

answer key is in the back of the book.

Where relevant to the subject matter, chapters end with a section on IBM® SPSS” Statistics? and come with
one or more shortened versions of a major data set in SPSS file format. Students can download these data sets
to answer the review questions presented at the end of the chapter. The full data sets are all available from the
Inter-University Consortium for Political and Social Research at www.icpsr.umich.edu/icpsrweb/ICPSR/ and
other websites as reported in the text. If desired, instructors can download the original data sets to create

supplementary examples and practice problems for hand calculations or SPSS analyses.
2 SPSS is a registered trademark of International Business Machines Corporation.

The third edition features the debut of Thinking Critically sections. These two-question sections appear at the
end of each chapter. The questions are open-ended and designed to inspire students to think about the
nuances of science and statistics. Instructors can assign them as homework problems or use them to initiate

class debates.

The book is presented in three parts. Part I covers descriptive statistics. It starts with the basics of levels of
measurement and moves on to frequency distributions, graphs and charts, and proportions and percentages.
Students learn how to select the correct type(s) of data display based on a variable’s level of measurement and
then construct that diagram or table. They then learn about measures of central tendency and measures of

dispersion and variability. These chapters also introduce the normal curve.

Part II focuses on probability theory and sampling distributions. This part lays out the logic that forms the
basis of hypothesis testing. It emphasizes the variability in sample statistics that precludes direct inference to
population parameters. Part II ends with confidence intervals, which is students’ first foray into inferential

statistics.

Part I11 begins with an introduction to bivariate hypothesis testing. The intention is to ease students into
inferential tests by explaining what these tests do and what they are for. This helps transition students from
the theoretical concepts covered in Part IT to the application of those logical principles. The remaining
chapters include chi-square tests, ¢ tests and tests for differences between proportions, analysis of variance
(ANOVA), correlation, and ordinary least squares (OLS) regression. The sequence is designed such that
some topics flow logically into others. Chi-square tests are presented first because they are the only
nonparametric test type covered here. Two-population # tests then segue into ANOVA. Correlation, likewise,
supplies the groundwork for regression. Bivariate regression advances from correlation and transitions into the

multivariate framework. The book ends with the fundamentals of interpreting OLS regression models.

This book provides the foundation for a successful statistics course that combines theory, research, and
practical application for a holistic, effective approach to teaching and learning. Students will exit the course

ready to put their education into action as they prepare to enter their chosen occupation, be that in academia,
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law, or the field. Learning statistics is not a painless process, but the hardest classes are the ones with the
greatest potential to leave lasting impressions. Students will meet obstacles, struggle with them, and ultimately

surmount them so that in the end, they will look back and say that the challenge was worth it.
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Learning Objectives

e Explain how data collected using scientific methods are different from anecdotes and other nonscientific information.
e List and describe the types of research in criminal justice and criminology.

e Explain the difference between the research methods and statistical analysis.

e Define samples and populations.

e Describe probability sampling.

e List and describe the three major statistics software packages.

You might be thinking, “What do statistics have to do with criminal justice or criminology?” It is reasonable
for you to question the requirement that you spend an entire term poring over a book about statistics instead
of one about policing, courts, corrections, or criminological theory. Many criminology and criminal justice
undergraduates wonder, “Why am I here?” In this context, the question is not so much existential as it is

practical. Luckily, the answer is equally practical.

You are “here” (in a statistics course) because the answer to the question of what statistics have to do with

1”

criminal justice and criminology is “Everything!” Statistical methods are the backbone of criminal justice and
criminology as fields of scientific inquiry. Statistics enable the construction and expansion of knowledge about
criminality and the criminal justice system. Research that tests theories or examines criminal justice
phenomena and is published in academic journals and books is the basis for most of what we know about
criminal offending and the system that has been designed to deal with it. The majority of this research would

not be possible without statistics.

Statistics can be abstract, so this book uses two techniques to add a realistic, pragmatic dimension to the
subject. The first technique is the use of examples of statistics in criminal justice and criminology research.
These summaries are contained in the Research Example boxes embedded in each chapter. They are meant to
give you a glimpse into the types of questions that are asked in this field of research and the ways in which
specific statistical techniques are used to answer those questions. You will see firsthand how lively and diverse
criminal justice and criminology research is. Research Example 1.1 summarizes seven studies. Take a moment

now to read through them.

The second technique to add a realistic, pragmatic dimension to the subject of this book is the use of real data
from reputable and widely used sources such as the Bureau of Justice Statistics (BJS). The BJS is housed
within the U.S. Department of Justice and is responsible for gathering, maintaining, and analyzing data on
various criminal justice topics at the county, state, and national levels. Visit http://bjs.ojp.usdoj.gov/ to
familiarize yourself with the BJS. The purpose behind the use of real data is to give you the type of hands-on
experience that you cannot get from fictional numbers. You will come away from this book having worked
with some of the same data that criminal justice and criminology researchers use. Two sources of data that will
be used in upcoming chapters are the Uniform Crime Reports (UCR) and the National Crime Victimization
Survey (NCVS). See Data Sources 1.1 and 1.2 for information about these commonly used measures of

criminal incidents and victimization, respectively. All the data sets used in this book are publicly available and
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were downloaded from governmental websites and the archive maintained by the Inter-University

Consortium for Political and Social Research at www.icpsr.umich.edu.

Research Example 1.1 What Do Criminal Justice and Criminology Researchers Study?

Researchers in the field of criminology and criminal justice examine a wide variety of issues pertaining to the criminal justice system
and theories of offending. Included are topics such as prosecutorial charging decisions, racial and gender disparities in sentencing,
police use of force, drug and domestic violence courts, and recidivism. The following are examples of studies that have been

conducted and published. You can find the full text of each of these articles and of all those presented in the following chapters at

(www.sagepub.com/gau).

1. Can an anticrime strategy that has been effective at reducing certain types of violence also be used to combat open-air drug markets?
The “pulling levers” approach involves deterring repeat offenders from crime by targeting them for enhanced prosecution
while also encouraging them to change their behavior by offering them access to social services. This strategy has been shown
to hold promise with gang members and others at risk for committing violence. The Rockford (Illinois) Police Department
(RPD) decided to find out if they could use a pulling levers approach to tackle open-air drug markets and the crime problems
caused by these nuisance areas. After the RPD implemented the pulling levers intervention, Corsaro, Brunson, and
McGarrell (2013) used official crime data from before and after the intervention to determine whether this approach had
been effective. They found that although there was no reduction in violent crime, nonviolent crime (e.g., drug offenses,
vandalism, and disorderly conduct) declined noticeably after the intervention. This indicated that the RPD’s efforts had
worked, because drug and disorder offenses were exactly what the police were trying to reduce.

2. Are prisoners with low self-control at heightened risk of victimizing, or being victimized by, other inmates? Research has
consistently shown that low self-control is related to criminal offending. Some studies have also indicated that this trait is a
risk factor for victimization, in that people with low self-control might place themselves in dangerous situations. One of the
central tenets of this theory is that self-control is stable and acts in a uniform manner regardless of context. Kerley,
Hochstetler, and Copes (2009) tested this theory by examining whether the link between self-control and both offending and
victimization held true within the prison environment. Using data gathered from surveys of prison inmates, the researchers
discovered that low self-control was only slightly related to in-prison offending and victimization. This result could challenge
the assumption that low self-control operates uniformly in all contexts. To the contrary, something about prisoners
themselves, the prison environment, or the interaction between the two might change the dynamics of low self-control.

3. Does school racial composition affect how severely schools punish black and Latino students relative to white ones? Debates about the
so-called school-to-prison pipeline emphasize the long-term effects of school disciplinary actions such as suspension,
expulsion, and arrest or court referral. Youth who experience these negative outcomes are at elevated risk for dropping out of
school and getting involved in delinquency and, eventually, crime. Hughes, Warren, Stewart, Tomaskovic-Devey, and Mears
(2017) set out to discover whether schools’ and school boards’ racial composition affects the treatment of black, Latino, and
white students. The researchers drew from two theoretical perspectives: The racial threat perspective argues that minorities
are at higher risk for punitive sanctions when minority populations are higher, because whites could perceive minority groups
as a threat to their place in society. On the other hand, the intergroup contact perspective suggests that racial and ethnic
diversity reduces the harshness of sanctions for minorities, because having contact with members of other racial and ethnic
groups diminishes prejudice. Hughes and colleagues used data from the Florida Department of Education, the U.S. Census
Bureau, and the Uniform Crime Reports. Statistical results provided support for both perspectives. Increases in the size of
the black and Hispanic student populations led to higher rates of suspension for students of these groups. On the other hand,
intergroup contact among school board members of different races reduced suspensions for all students. The researchers
concluded that interracial contact among school board members equalized disciplinary practices and reduced discriminatory
disciplinary practices.

4. What factors influence police agencies’ ability to identify and investigate human trafficking? Human trafficking has been
recognized as a transnational crisis. Frequently, local police are the first ones who encounter victims or notice signs
suggesting the presence of trafficking. In the United States, however, many local police agencies do not devote systematic
attention to methods that would enable them to detect and investigate suspected traffickers. Farrell (2014) sought to learn
more about U.S. police agencies’ antitrafficking efforts. Using data from two national surveys of medium-to-large municipal
police departments, Farrell found that 40% of departments trained their personnel on human trafficking, 17% had written

policies pertaining to this crime, and 13% dedicated personnel to it. Twenty-eight percent had investigated at least one
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trafficking incident in the previous six years. Larger departments were more likely to have formalized responses (training,
policies, and dedicated personnel), and departments that instituted these responses were more likely to have engaged in
trafficking investigations. These results show a need for departments to continue improving their antitrafficking efforts.
Departments that are more responsive to local problems and more open to change will be more effective at combating this
crime.

5. How safe and effective are conducted energy devices as used by police officers? Conducted energy devices (CEDs) have proliferated
in recent years. Their widespread use and the occasional high-profile instances of misuse have generated controversy over
whether these devices are safe for suspects and officers alike. Paoline, Terrill, and Ingram (2012) collected use-of-force data
from six police agencies nationwide and attempted to determine whether officers who deployed CEDs against suspects were
more or less likely to sustain injuries themselves. The authors’ statistical analysis suggested a lower probability of officer
injury when only CEDs were used. When CEDs were used in combination with other forms of force, however, the
probability of officer injury increased. The results suggest that CEDs can enhance officer safety, but they are not a panacea
that uniformly protects officers in all situations.

6. How prevalent is victim precipitation in intimate partner violence? A substantial number of violent crimes are initiated by the
person who ultimately becomes the victim in an incident. Mufti¢, Bouffard, and Bouffard (2007) explored the role of victim
precipitation in instances of intimate partner violence (IPV). They gleaned data from IPV arrest reports and found that
victim precipitation was present in cases of both male and female arrestees but that it was slightly more common in instances
where the woman was the one arrested. This suggests that some women (and, indeed, some men) arrested for IPV might be
responding to violence initiated by their partners rather than themselves being the original aggressors. The researchers also
discovered that victim precipitation was a large driving force behind dual arrests (cases in which both parties are arrested),
because police could either see clearly that both parties were at fault or, alternatively, were unable to determine which party
was the primary aggressor. Victim precipitation and the use of dual arrests, then, could be contributing factors behind the
recent rise in the number of women arrested for IPV against male partners.

7. What are the risk factors in a confrontational arrest that are most commonly associated with the death of the suspect? There have been
several high-profile instances of suspects dying during physical confrontations with police wherein the officers deployed
CED:s against these suspects. White and colleagues (2013) collected data on arrest-related deaths (ARDs) that involved
CED:s and gained media attention. The researchers triangulated the data using information from medical-examiner reports.
They found that in ARDs, suspects were often intoxicated and extremely physically combative with police. Officers, for their
part, had used several other types of force before or after trying to solve the situation using CEDs. Medical examiners most
frequently attributed these deaths to drugs, heart problems, and excited delirium. These results suggest that police
departments should craft policies to guide officers’ use of CEDs against suspects who are physically and mentally

incapacitated.

In this book, emphasis is placed on both the production and interpretation of statistics. Every statistical
analysis has a producer (someone who runs the analysis) and a consumer (someone to whom an analysis is
being presented). Regardless of which role you play in any given situation, it is vital for you to be sufficiently
versed in quantitative methods that you can identify the proper statistical technique and correctly interpret the
results. When you are in the consumer role, you must also be ready to question the methods used by the
producer so that you can determine for yourself how trustworthy the results are. Critical thinking skills are an
enormous component of statistics. You are not a blank slate standing idly by, waiting to be written on—you
are an active agent in your acquisition of knowledge about criminal justice, criminology, and the world in

general. Be critical, be skeptical, and never hesitate to ask for more information.

Data Sources 1.1 The Uniform Crime Reports

The Federal Bureau of Investigation (FBI) collects annual data on crimes reported to police agencies nationwide and maintains the
UCR. Crimes are sorted into eight index offenses: homicide, rape, robbery, aggravated assault, burglary, larceny-theft, motor vehicle
theft, and arson. An important aspect of this data set is that it includes only those crimes that come to the attention of police—

crimes that are not reported or otherwise detected by police are not counted. The UCR also conforms to the hierarchy rule, which
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mandates that in multiple-crime incidents only the most serious offense ends up in the UCR. If, for example, someone breaks into a
residence with intent to commit a crime inside the dwelling and while there, kills the homeowner and then sets fire to the structure
to hide the crime, he has committed burglary, murder, and arson. Because of the hierarchy rule, though, only the murder would be
reported to the FBI—it would be as if the burglary and arson had never occurred. Because of underreporting by victims and the
hierarchy rule, the UCR undercounts the amount of crime in the United States. It nonetheless offers valuable information and is

widely used. You can explore this data source at www.fbi.gov/about-us/cjis/ucr/ucr.

Data Sources 1.2 The National Crime Victimization Survey

The U.S. Census Bureau conducts the periodic NCVS under the auspices of the BJS to estimate the number of criminal incidents
that transpire each year and to collect information about crime victims. Multistage cluster sampling is used to select a random sample
of households, and each member of that household who is 12 years or older is asked to participate in an interview. Those who agree
to be interviewed are asked over the phone or in person about any and all criminal victimizations that transpired in the 6 months
prior to the interview. The survey employs a rotating panel design, so respondents are called at 6-month intervals for a total of 3
years, and then new respondents are selected (BJS, 2006). The benefit of the NCVS over the UCR is that NCVS respondents might
disclose victimizations to interviewers that they did not report to police, thus making the NCVS a better estimation of the total
volume of crime in the United States. The NCVS, though, suffers from the weakness of being based entirely on victims’ memory
and honesty about the timing and circumstances surrounding criminal incidents. The NCVS also excludes children younger than 12
years, institutionalized populations (e.g., persons in prisons, nursing homes, and hospitals), and the homeless. Despite these
problems, the NCVS is useful because it facilitates research into the characteristics of crime victims. The 2015 wave of the NCVS is

the most recent version available as of this writing.

25



http://www.fbi.gov/about-us/cjis/ucr/ucr

Science: Basic Terms and Concepts

There are a few terms and concepts that you must know before you get into the substance of the book.
Statistics are a tool in the larger enterprise of scientific inquiry. Science is the process of systematically
collecting reliable information and developing knowledge using techniques and procedures that are accepted
by other scientists in a discipline. Science is grounded in methods—research results are trustworthy only when
the procedures used to arrive at them are considered correct by experts in the scientific community.
Nonscientific information is that which is collected informally or without regard for correct methods.
Anecdotes are a form of nonscientific information. If you ask one person why he or she committed a crime,
that person’s response will be an anecdote; it cannot be assumed to be broadly true of other offenders. If you
use scientific methods to gather a large group of offenders and you survey all of them about their motivations,

you will have data that you can analyze using statistics and that can be used to draw general conclusions.

Science: The process of gathering and analyzing data in a systematic and controlled way using procedures that are generally accepted

by others in the discipline.

Methods: The procedures used to gather and analyze scientific data.

In scientific research, samples are drawn from populations using scientific techniques designed to ensure that
samples are representative of populations. For instance, if the population is 50% male, then the sample should
also be approximately 50% male. A sample that is only 15% male is not representative of the population.
Research-methods courses instruct students on the proper ways to gather representative samples. In a statistics
course, the focus is on techniques used to analyze the data to look for patterns and test for relationships.
Together, proper methods of gathering and analyzing data form the groundwork for scientific inquiry. If there
is a flaw in either the gathering or the analyzing of data, then the results might not be trustworthy. Garbage
in, garbage out (GIGO) is the mantra of statistics. Data gathered with the best of methods can be rendered
worthless if the wrong statistical analysis is applied to them; likewise, the most sophisticated, cutting-edge
statistical technique cannot salvage improperly collected data. When the data or the statistics are defective, the
results are likewise deficient and cannot be trusted. Studies using unscientific data or flawed statistical analyses
do not contribute to theory and research or to policy and practice because their findings are unreliable and

could be erroneous.

Sample: A subset pulled from a population with the goal of ultimately using the people, objects, or places in the sample as a way to

generalize to the population.

Population: The universe of people, objects, or locations that researchers wish to study. These groups are often very large.
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Learning Check 1.1

v

Identify whether each of the following is a sample or a population.

1. A group of 100 police officers pulled from a department with 300 total officers
2. Fifty prisons selected at random from all prisons nationwide
3. All persons residing in the state of Wisconsin

4. A selection of 10% of the defendants processed through a local criminal court in 1 year

Everybody who conducts a study has an obligation to be clear and open about the methods they used. You
should expect detailed reports on the procedures used so that you can evaluate whether they followed proper
scientific methods. When the methods used to collect and analyze data are sound, it is not appropriate to
question scientific results on the basis of a moral, emotional, or opinionated objection to them. On the other
hand, it is entirely correct (and is necessary, in fact) to question results when methodological or statistical

procedures are shoddy or inadequate. Remember GIGO!

A key aspect of science is the importance of replication. No single study ever proves something definitively;
quite to the contrary, much testing must be done before firm conclusions can be drawn. Replication is
important because there are times when a study is flawed and needs to be redone or when the original study is
methodologically sound but needs to be tested on new populations and samples. For example, a correctional
treatment program that reduces recidivism rates among adults might or might not have similar positive results
with juveniles. Replicating the treatment and evaluation with a sample of juvenile offenders would provide
information about whether the program is helpful to both adults and juveniles or is only appropriate for
adults. The scientific method’s requirement that all researchers divulge the steps they took to gather and
analyze data allows other researchers and members of the public to examine those steps and, when warranted,

to undertake replications.

Replication: The repetition of a particular study that is conducted for purposes of determining whether the original study’s results

hold when new samples or measures are employed.
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Types of Scientific Research in Criminal Justice and Criminology

Criminal justice and criminology research is diverse in nature and purpose. Much of it involves theory testing.
Theories are proposed explanations for certain events. Hypotheses are small “pieces” of theories that must be
true in order for the entire theory to hold up. You can think of a theory as a chain and hypotheses as the links
forming that chain. Research Example 1.1 discusses a test of the general theory of crime conducted by Kerley
et al. (2009). The general theory holds that low self-control is a static predictor of offending and
victimization, regardless of context. From this proposition, the researchers deduced the hypothesis that the
relationship between low self-control and both offending and victimization must hold true in the prison
environment. Their results showed an overall lack of support for the hypothesis that low self-control operates
uniformly in all contexts, thus calling that aspect of the general theory of crime into question. This is an

example of a study designed to test a theory.

Theory: A set of proposed and testable explanations about reality that are bound together by logic and evidence.

Hypothesis: A single proposition, deduced from a theory, that must hold true in order for the theory itself to be considered valid.

Evaluation research is also common in criminal justice and criminology. In Research Example 1.1, the article
by Corsaro et al. (2013) is an example of evaluation research. This type of study is undertaken when a new
policy, program, or intervention is put into place and researchers want to know whether the intervention
accomplished its intended purpose. In this study, the RPD implemented a pulling levers approach to combat
drug and nuisance offending. After the program had been put into place, the researchers analyzed crime data

to find out whether the approach was effective.

Evaluation research: Studies intended to assess the results of programs or interventions for purposes of discovering whether those

programs or interventions appear to be effective.

Exploratory research occurs when there is limited knowledge about a certain phenomenon; researchers
essentially embark into unfamiliar territory when they attempt to study this social event. The study by Mufti¢
et al. (2007) in Research Example 1.1 was exploratory in nature because so little is known about victim
precipitation, particularly in the realm of IPV. It is often dangerous to venture into new areas of study when
the theoretical guidance is spotty; however, exploratory studies have the potential to open new areas of
research that have been neglected but that provide rich information that expands the overall body of

knowledge.

Exploratory research: Studies that address issues that have not been examined much or at all in prior research and that therefore

might lack firm theoretical and empirical grounding.

Finally, some research is descriptive in nature. White et al.’s (2013) analysis of CED-involved deaths
illustrates a descriptive study. White and colleagues did not set out to test a theory or to explore a new area of
research—they merely offered basic descriptive information about the suspects, officers, and situations

involved in instances where CED use was associated with a suspect’s death. In descriptive research, no
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generalizations are made to larger groups; the conclusions drawn from these studies are specific to the objects,
events, or people being analyzed. This type of research can be very informative when knowledge about a

particular phenomenon is scant.

Descriptive research: Studies done solely for the purpose of describing a particular phenomenon as it occurs in a sample.

With the exception of purely descriptive research, the ultimate goal in most statistical analyses is to generalize
from a sample to a population. A population is the entire set of people, places, or objects that a researcher
wishes to study. Populations, though, are usually very large. Consider, for instance, a researcher trying to
estimate attitudes about capital punishment in the general U.S. population. That is a population of more than
300 million! It would be impossible to measure everyone directly. Researchers thus draw samples from
populations and study the samples instead. Probability sampling helps ensure that a sample mirrors the
population from which it was drawn (e.g., a sample of people should contain a breakdown of race, gender, and
age similar to that found in the population). Samples are smaller than populations, and researchers are
therefore able to measure and analyze them. The results found in the sample are then generalized to the

population.

Probability sampling: A sampling technique in which all people, objects, or areas in a population have a known chance of being

selected into the sample.
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Learning Check 1.2

v

For each of the following scenarios, identify the type of research being conducted.

1. A researcher wants to know more about female serial killers. He gathers news articles that report on female serial killers and
records information about each killer’s life history and the type of victim she preyed on.

2. A researcher wants to know whether a new in-prison treatment program is effective at reducing recidivism. She collects a sample
of inmates that participated in the program and a sample that did not go through the program. She then gathers recidivism data
for each group to see if those who participated had lower recidivism rates than those who did not.

3. The theory of collective efficacy predicts that social ties between neighbors, coupled with neighbors’ willingness to intervene when
a disorderly or criminal event occurs in the area, protect the area from violent crime. A researcher gathers a sample of
neighborhoods and records the level of collective efficacy and violent crime in each one to determine whether those with higher
collective efficacy have lower crime rates.

4. A researcher notes that relatively little research has been conducted on the possible effects of military service on later crime
commission. She collects a sample of people who served in the military and a sample of people that did not and compares them to

determine whether the military group differs from the nonmilitary group in terms of the numbers or types of crimes committed.
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Software Packages for Statistical Analysis

Hand computations are the foundation of this book because seeing the numbers and working with the
formulas facilitates an understanding of statistical analyses. In the real world, however, statistical analysis is
generally conducted using a software program. Microsoft Excel contains some rudimentary statistical
functions and is commonly used in situations requiring only basic descriptive analyses; however, this program’s
usefulness is exhausted quickly because researchers usually want far more than descriptives. Many statistical
packages are available. The most common in criminal justice and criminology research are SPSS, Stata, and
SAS. Each of these packages has strengths and weaknesses. Simplicity and ease of use makes SPSS a good
place to start for people new to statistical analysis. Stata is a powerful program excellent for regression

modeling. The SAS package is the best one for extremely large data sets.

This book incorporates SPSS into each chapter. This allows you to get a sense for what data look like when
displayed in their raw format and permits you to run particular analyses and read and interpret program
output. Where relevant, the chapters offer SPSS practice problems and accompanying data sets that are
available for download from www.sagepub.com/gau. This offers a practical, hands-on lesson about the way

that criminal justice and criminology researchers use statistics.
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Organization of the Book

This book is divided into three parts. Part I (Chapters 1 through 5) covers descriptive statistics. Chapter 2

provides a basic overview of types of variables and levels of measurement. Some of this material will be review
for students who have taken a methods course. Chapter 3 delves into charts and graphs as means of
graphically displaying data. Measures of central tendency are the topic of Chapter 4. These are descriptive
statistics that let you get a feel for where the data are clustered. Chapter 5 discusses measures of dispersion.
Measures of dispersion complement measures of central tendency by offering information about whether the

data tend to cluster tightly around the center or, conversely, whether they are very spread out.

Part IT (Chapters 6 through 8) describes the theoretical basis for statistics in criminal justice and criminology:
probability and probability distributions. Part I of the book can be thought of as the nuts-and-bolts of the

mathematical concepts used in statistics, and Part I can be seen as the theory behind the math. Chapter 6
introduces probability theory. Binomial and continuous probability distributions are discussed. In Chapter 7,
you will learn about population, sample, and sampling distributions. Chapter 8 provides the book’s first
introduction to inferential statistics with its coverage of point estimates and confidence intervals. The

introduction of inferential statistics at this juncture is designed to help ease you into Part I1I.

Part IIT (Chapters 9 through 14) of the book merges the concepts learned in Parts I and II to form the
discussion on inferential hypothesis testing. Chapter 9 offers a conceptual introduction to this framework,
including a description of the five steps of hypothesis testing that will be used in every proceeding chapter. In
Chapter 10, you will encounter your first bivariate statistical technique: chi-square. Chapter 11 describes two-
population 7 tests and tests for differences between proportions. Chapter 12 covers analysis of variance, which
is an extension of the two-population # test. In Chapter 13, you will learn about correlations. Finally, Chapter

14 wraps up the book with an introduction to bivariate and multiple regression.

The prerequisite that is indispensable to success in this course is a solid background in algebra. You absolutely
must be comfortable with basic techniques such as adding, subtracting, multiplying, and dividing. You also
need to understand the difference between positive and negative numbers. You will be required to plug
numbers into equations and solve those equations. You should not have a problem with this as long as you
remember the lessons you learned in your high school and college algebra courses. Appendix A offers an
overview of the basic mathematical techniques you will need to know, so look those over and make sure that

you are ready to take this course. If necessary, use them to brush up on your skills.

Statistics are cumulative in that many of the concepts you learn at the beginning form the building blocks for
more-complex techniques that you will learn about as the course progresses. Means, proportions, and standard

deviations, for instance, are concepts you will learn about in Part I, but they will remain relevant throughout

the remainder of the book. You must, therefore, learn these fundamental calculations well and you must

remember them.

Repetition is the key to learning statistics. Practice, practice, practice! There is no substitute for doing and
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redoing the end-of-chapter review problems and any other problems your instructor might provide. You can

also use the in-text examples as problems if you just copy down the numbers and do the calculations on your

own without looking at the book. Remember, even the most advanced statisticians started off knowing

nothing about statistics. Everyone has to go through the learning process. You will complete this process

successfully as long as you have basic algebra skills and are willing to put in the time and effort it takes to

succeed.

Thinking Critically

1.

. Suppose you tell a friend that you are taking a statistics course, and your friend reacts with surprise that a criminology or

Media outlets and other agencies frequently conduct opinion polls to try to capture information about the public’s thoughts
on contemporary events, controversies, or political candidates. Poll data are faster and easier to collect than survey data are,
because they do not require adherence to scientific sampling methods and questionnaire design. Agencies conducting polls
often do not have the time or resources to engage in full-scale survey projects. Debate the merits of poll data from a policy
standpoint. Is having low-quality information better than having none at all? Or is there no place in public discussions for

data that fall short of scientific standards? Explain your answer.

criminal justice degree program would require students to take this class. Your friend argues that although it is necessary for
people whose careers are dedicated to research to have a good understanding of statistics, this area of knowledge is not useful
for people with practitioner jobs, such as police and corrections officers. Construct a response to this assertion. Identify ways

in which people in practical settings benefit from possessing an understanding of statistical concepts and techniques.

= N B O N S

Review Problems

. Define science and explain the role of methods in the production of scientific knowledge.
. What is a population? Why are researchers usually unable to study populations directly?

. What is a sample? Why do researchers draw samples?

. Explain the role of replication in science.

. List and briefly describe the different types of research in criminal justice and criminology.

. Identify three theories that you have encountered in your criminal justice or criminology classes. For each one, write one

. Think of three types of programs or policies you have heard about or read about in your criminal justice or criminology

. If a researcher were conducting a study on a topic about which very little is known and the researcher does not have theory or

. If a researcher were solely interested in finding out more about a particular phenomenon and focused entirely on a sample

10.

hypothesis for which you could collect data in order to test that hypothesis.
classes. For each one, suggest a possible way to evaluate that program’s or policy’s effectiveness.

prior evidence to make predictions about what she will find in her study, what kind of research would she be doing? Explain

your answer.

without trying to make inference to a population, what kind of research would he be doing? Explain your answer.

‘What does GIGO stand for? What does this cautionary concept mean in the context of statistical analyses?
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Types of Variables and Levels of Measurement
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Learning Objectives

e Define variables and constants.

e Define unit of analysis and be able to identify the unit of analysis in any given study.

e Define independent and dependent variables and be able to identify each in a study.

e Explain the difference between empirical associations and causation.

e List and describe the four levels of measurement, including similarities and differences between them, and be able to identify the

level of measurement of different variables.

The first thing you must be familiar with in statistics is the concept of a variable. A variable is, quite simply,
something that varies. It is a coding scheme used to measure a particular characteristic of interest. For
instance, asking all of your statistics classmates, “How many classes are you taking this term?” would yield
many different answers. This would be a variable. Variables sit in contrast to constants, which are
characteristics that assume only one value in a sample. It would be pointless for you to ask all your classmates

whether they are taking statistics this term because of course the answer they would all provide is “yes.”

Variable: A characteristic that describes people, objects, or places and takes on multiple values in a sample or population.

Constant: A characteristic that describes people, objects, or places and takes on only one value in a sample or population.
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Units of Analysis

It seems rather self-evident, but nonetheless bears explicit mention, that every scientific study contains
something that the researcher conducting the study gathers and examines. These “somethings” can be objects
or entities such as rocks, people, molecules, or prisons. This is called the unit of analysis, and it is, essentially,
whatever the sample under study consists of. In criminal justice and criminology research, individual people
are often the units of analysis. These individuals might be probationers, police officers, criminal defendants, or
judges. Prisons, police departments, criminal incidents, or court records can also be units of analysis. Larger
units are also popular; for example, many studies focus on census tracks, block groups, cities, states, or even
countries. Research Example 2.2 describes the methodological setup of a selection of criminal justice studies,

each of which employed a different unit of analysis.

Unit of analysis: The object or target of a research study.
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Independent Variables and Dependent Variables

Researchers in criminal justice and criminology typically seek to examine relationships between two or more
variables. Observed or empirical phenomena give rise to questions about the underlying forces driving them.
Take homicide as an example. Homicide events and city-level rates are empirical phenomena. It is worthy of
note that Washington, D.C., has a higher homicide rate than Portland, Oregon. Researchers usually want to
do more than merely note empirical findings, however—they want to know why things are the way they are.
They might, then, attempt to identify the criminogenic (crime-producing) factors that are present in
Washington but absent in Portland or, conversely, the protective factors possessed by Portland and lacked by

Washington.

Empirical: Having the qualities of being measurable, observable, or tangible. Empirical phenomena are detectable with senses such as

sight, hearing, or touch.

Research Example 2.1 Choosing Variables for a Study on Police Use of Conducted Energy Devices

Conducted energy devices (CEDs) such as the Taser have garnered national—indeed, international—attention in the past few years.
Police practitioners contend that CEDs are invaluable tools that minimize injuries to both officers and suspects during contentious
confrontations, whereas critics argue that police sometimes use CEDs in situations where such a high level of force is not warranted.
Do police seem to be using CEDs appropriately? Gau, Mosher, and Pratt (2010) addressed this question. They sought to determine
whether suspects’ race or ethnicity influenced the likelihood that police officers would deploy or threaten to deploy CEDs against
those suspects. In an analysis of this sort, it is important to account for other variables that might be related to police use of CEDs or
other types of force; therefore, the researchers included suspects’ age, sex, and resistance level. They also measured officers’ age, sex,
and race. Finally, they included a variable indicating whether it was light or dark outside at the time of the encounter. The
researchers found that police use of CEDs was driven primarily by the type and intensity of suspect resistance but that even

controlling for resistance, Latino suspects faced an elevated probability of having CEDs either drawn or deployed against them.

Research Example 2.2 Units of Analysis
Each of the following studies used a different unit of analysis.

1. Do prison inmates incarcerated in facilities far from their homes commit more misconduct than those housed in facilities closer to home?
Lindsey, Mears, Cochran, Bales, and Stults (2017) used data from the Florida Department of Corrections to find out
whether distally placed inmates (i.e., those sent to facilities far from their homes) engaged in more in-prison misbehavior,
and, if so, whether this effect was particularly pronounced for younger inmates. Individual prisoners were the units of analysis
in this study. The findings revealed a curvilinear relationship between distance and misconduct: Prisoners’ misconduct
increased along with distance up to approximately 350 miles, but then the relationship inverted such that further increases in
distance were associated with less misconduct. As predicted, this pattern was strongest among younger inmates. Visitation
helped offset the negative impact of distance but did not eliminate it. The researchers concluded that family visitation might
have mixed effects on inmates. Inmates might be less inclined to commit misconduct if they fear losing visitation privileges,
but receiving visits might induce embarrassment and shame when their family sees them confined in the prison environment.
This strain, in turn, could prompt them to act out. Those who do not see their families much or at all do not experience this
unpleasant emotional reaction.

2. Is the individual choice to keep a firearm in the home affected by local levels of crime and police strength? Kleck and Kovandzic
(2009), using individual-level data from the General Social Survey (GSS) and city-level data from the FBI, set out to
determine whether city-level homicide rates and the number of police per 100,000 city residents affected GSS respondents’
likelihood of owning a firearm. There were two units of analysis in this study: individuals and cities. The statistical models
indicated that high homicide rates and low police levels both modestly increased the likelihood that a given person would

own a handgun; however, the relationship between city homicide rate and individual gun ownership decreased markedly

38



when the authors controlled for whites’ and other nonblacks’ racist attitudes toward African Americans. It thus appeared that
the homicide—gun ownership relationship was explained in part by the fact that those who harbored racist sentiments against
blacks were more likely to own firearms regardless of the local homicide rate.

3. How consistent are use-of~force policies across police agencies? The U.S. Supreme Court case Graham v. Connor (1989) requires
that police officers use only the amount of force necessary to subdue a resistant suspect; force exceeding that minimum is
considered excessive. The Court left it up to police agencies to establish force policies to guide officers’ use of physical
coercion. Terrill and Paoline (2013) sought to determine what these policies look like and how consistent they are across
agencies. The researchers mailed surveys to a sample of 1,083 municipal police departments and county sheriff offices
nationwide, making the agency the unit of analysis. Results showed that 80% of agencies used a force continuum as part of
their written use-of-force policies, suggesting some predictability in the way in which agencies organize their policies.
However, there was substantial variation in policy restrictiveness and the placement of different techniques and weapons.
Most agencies placed officer presence and verbal commands at the lowest end, and deadly force at the highest, but between
those extremes there was variability in the placement of soft and hard hand tactics, chemical sprays, impact weapons, CEDs,
and other methods commonly used to subdue noncompliant suspects. These findings show how localized force policies are,
and how inconsistent they are across agencies.

4. Does gentrification reduce gang homicide? Gentrification is the process by which distressed inner-city areas are transformed by
an influx of new businesses or higher-income residents. Gentrification advocates argue that the economic boost will revitalize
the area, provide new opportunities, and reduce crime. Is this assertion true? Smith (2014) collected data from 1994 to 2005
on all 342 neighborhoods in Chicago with the intention of determining whether gentrification over time reduces gang-
motivated homicide. Smith measured gentrification in three ways: Recent increases in neighborhood residents’
socioeconomic statuses, increases in coffee shops, and demolition of public housing. The author predicted that the first two
would suppress gang homicide and that the last one would increase it; even though public-housing demolition is supposed to
reduce crime, it can also create turmoil, residential displacement, and conflict among former public-housing residents and
residents of surrounding properties. Smith found support for all three hypotheses. Socioeconomic-status increases were
strongly related to reductions in gang-motivated homicides, coffee-shop presence was weakly related to reductions, and
public-housing demolition was robustly associated with increases. These results suggest that certain forms of gentrification
might be beneficial to troubled inner-city neighborhoods but that demolishing public housing might cause more problems

than it solves, at least in the short term.

Researchers undertaking quantitative studies must specify dependent variables (DVs) and independent
variables (IVs). Dependent variables are the empirical events that a researcher is attempting to explain.
Homicide rates, property crime rates, recidivism among recently released prisoners, and judicial sentencing
decisions are examples of DVs. Researchers seek to identify variables that help predict or explain these events.
Independent variables are factors a researcher believes might affect the DV. It might be predicted, for
instance, that prisoners released into economically and socially distressed neighborhoods and given little
support during the reentry process will recidivate more frequently than those who receive transitional housing
and employment assistance. Different variables—crime rates, for instance—can be used as both IVs and DVs
across different studies. The designation of a certain phenomenon as an IV or a DV depends on the nature of

the research study.

Dependent variable: The phenomenon that a researcher wishes to study, explain, or predict.

Independent variable: A factor or characteristic that is used to try to explain or predict a dependent variable.
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Relationships Between Variables: A Cautionary Note

It is vital to understand that independent and dependent are not synonymous with cause and ¢ffect, respectively.
A particular IV might be related to a certain DV, but this is far from definitive proof that the former is the
cause of the latter. To establish causality, researchers must demonstrate that their studies meet three criteria.
First is temporal ordering, meaning that the IV must occur prior to the DV. It would be illogical, for
instance, to predict that adolescents’ participation in delinquency will impact their gender; conversely, it does
make sense to predict that adolescents’ gender affects the likelihood they will commit delinquent acts. The
second causality requirement is that there be an empirical relationship between the IV and the DV. This is a
basic necessity—it does not make sense to try to delve into the nuances of a nonexistent connection between
two variables. For example, if a researcher predicts that people living in high-crime areas are more likely to
own handguns for self-protection, but then finds no relationship between neighborhood-level crime rates and

handgun ownership, the study cannot proceed.

Temporal ordering: The causality requirement holding that an independent variable must precede a dependent variable.

Empirical relationship: The causality requirement holding that the independent and dependent variables possess an observed

relationship with one another.

The last requirement is that the relationship between the IV and the DV be nonspurious. This third criterion
is frequently the hardest to overcome in criminology and criminal justice research (indeed, all social sciences)
because human behavior is complicated, and each action a person engages in has multiple causes.

Disentangling these causal factors can be difficult or impossible.

Nonspuriousness: The causality requirement holding that the relationship between the independent variable and dependent variable

not be the product of a third variable that has been erroneously omitted from the analysis.

The reason spuriousness is a problem is that there could be a third variable that explains the DV as well as, or
even better than, the IV does. This third variable might partially or fully account for the relationship between
the IV and DV. The inadvertent exclusion of one or more important variables can result in erroneous
conclusions because the researcher might mistakenly believe that the IV strongly predicts the DV when, in
fact, the relationship is actually partially or entirely due to intervening factors. Another term for this problem
is omitted variable bias. When omitted variable bias (i.e., spuriousness) is present in an IV-DV relationship
but erroneously goes unrecognized, people can reach the wrong conclusion about a phenomenon. Research

Example 2.3 offers examples of the problem of omitted variables.

Onmitted variable bias: An error that occurs as a result of unrecognized spuriousness and a failure to include important third variables

in an analysis, leading to incorrect conclusions about the relationship between the independent and dependent variables.

A final caution with respect to causality is that statistical analyses are examinations of aggregate trends.
Uncovering an association between an IV and a DV means only that the presence of the IV has the fendency to

be related to either an increase or a reduction in the DV in the sample as a whole—it is not an indication that
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the IV-DV link inevitably holds true for every single person or object in the sample. For example, victims of
early childhood trauma are more likely than nonvictims to develop substance abuse disorders later in life (see
Dass-Brailsford & Myrick, 2010). Does this mean that every person who was victimized as a child has
substance abuse problems as an adult? Certainly not! Many people who suffer childhood abuse do not become
addicted to alcohol or other drugs. Early trauma is a risk factor that elevates the risk of substance abuse, but it
is not a guarantee of this outcome. Associations present in a large group are not uniformly true of all members

of that group.

Research Example 2.3 The Problem of Omitted Variables

In the 1980s and 1990s a media and political frenzy propelled the “crack baby” panic to the top of the national conversation. The
allegations were that “crack mothers” were abusing the drug while pregnant and were doing irreparable damage to their unborn
children. Stories of low-birth-weight, neurologically impaired newborns abounded. What often got overlooked, though, was the fact
that women who use crack cocaine while pregnant are also likely to use drugs such as tobacco and alcohol, which are known to harm
fetuses. These women also frequently have little or no access to prenatal nutrition and medical care. Finally, if a woman abuses crack
—or any other drug—while pregnant, she could also be at risk for mistreating her child after its birth (see Logan, 1999, for a
review). She might be socially isolated, as well, and have no support from her partner or family. There are many factors that affect
fetal and neonatal development, some under mothers’” control and some not; trying to tie children’s outcomes definitively to a single

drug consumed during mothers’ pregnancies is inherently problematic.

In the 1980s, policymakers and the public became increasingly concerned about domestic violence. This type of violence had
historically been treated as a private affair, and police tended to take a hands-off approach that left victims stranded and vulnerable.
The widely publicized results of the Minneapolis Domestic Violence Experiment suggested that arrest effectively deterred abusers,
leading to lower rates of recidivism. Even though the study’s authors said that more research was needed, states scrambled to enact
mandatory arrest laws requiring officers to make arrests in all substantiated cases of domestic violence. Subsequent experiments and
more detailed analyses of the Minneapolis data, however, called the effectiveness of arrest into question. It turns out that arrest has
no effect on some offenders and even increases recidivism among certain groups. Offenders’ employment status, in particular,
emerged as an important predictor of whether arrest deterred future offending. Additionally, the initial reduction in violence
following arrest frequently wore off over time, putting victims back at risk. Pervasive problems collecting valid, reliable data also
hampered researchers’ ability to reach trustworthy conclusions about the true impact of arrest (see Schmidt & Sherman, 1993, for a

review). The causes of domestic violence are numerous and varied, so it is unwise to assume that arrest will be uniformly

advantageous.

In sum, you should always be cautious when interpreting IV-DV relationships. It is better to think of IVs as
Y Y P g p
predictors and DV's as outcomes rather than to view them as causes and effects. As the adage goes, correlation
does not mean causation. Variables of all kinds are related to each other, but it is important not to lea
p P

carelessly to causal conclusions on the basis of statistical associations.
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Levels of Measurement

Every variable possesses a level of measurement. Levels of measurement are ways of classifying or describing
variable types. There are two overarching classes of variables: categorical (also sometimes called qualitative)
and continuous (also sometimes referred to as guantitative). Categorical variables comprise groups or
classifications that are represented with labels, whereas continuous variables are made of numbers that
measure how much of a particular characteristic a person or object possesses. Each of these variable types
contains two subtypes. This two-tiered classification system is diagrammed in Figure 2.1 and discussed in the

following sections.

Level of measurement: A variable’s specific type or classification. There are four types: nominal, ordinal, interval, and ratio.
Categorical variable: A variable that classifies people or objects into groups. There are two types: nominal and ordinal.

Continuous variable: A variable that numerically measures the presence of a particular characteristic. There are two types: inferval

and ratio.
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The Categorical Level of Measurement: Nominal and Ordinal Variables

Categorical variables are made up of categories. They represent ways of divvying up people and objects
according to some characteristic. Categorical variables are subdivided into two types: nominal and ordinal. The
nominal level of measurement is the most rudimentary of all the levels. It is the least descriptive and
sometimes the least informative. Race is an example of a nominal-level variable. See Tables 2.1 and 2.2 for
examples of nominal variables (see also Data Sources 2.1 for a description of the data set used in these tables).
The variable in Table 2.1 comes from a question on the survey asking respondents whether or not they
personally know a police officer assigned to their neighborhood. This variable is nominal because respondents
said “yes” or “no” in response and so can be grouped accordingly. In Table 2.2, the variable representing the
races of stopped drivers is nominal because races are groups into which people are placed. The labels offer

descriptive information about the people or objects within each category. Data are from the Police—Public

Contact Survey (PPCS).

Nominal variable: A classification that places people or objects into different groups according to a particular characteristic that

cannot be ranked in terms of quantity.

Figure 2.1 Levels of Measurement

Categorical Continuous
Level of Level of
Measurement Measurement
Mominal Ordinal Interval Ratio
Variables Variables Variables Variables

Table 2.1 Knowledge of Police in the Neighborhood (FPCS)

Do you know any police officers that work in your
neighborfiood by name or by sight? Frequency

Yes 9,246
No 32,263
Total = 41,509

Table 2.2 Race of Stopped Drivers (PPCS)

White 416
Black 63
Asian 14
Other, including multiracial 26

Total = 519
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Data Sources 2.1 The Police—Public Contact Survey

The Bureau of Justice Statistics (BJS; see Data Sources 2.3) conducts the Police—Public Contact Survey (PPCS) periodically as a
supplement to the National Crime Victimization Survey (NCVS; see Data Sources 1.2). Interviews are conducted in English only.
NCVS respondents aged 16 and older are asked about recent experiences they might have had with police. Variables include
respondent demographics, the reason for respondents’ most recent contact with police, whether the police used or threatened force
against the respondents, the number of officers present at the scene, whether the police asked to search respondents’ vehicles, and so
on (BJS, 2011). This data set is used by BJS statisticians to estimate the number of police—citizen contacts that take place each year
and is used by researchers to study suspect, officer, and situational characteristics of police—public contacts. The 2011 wave of the

PPCS is the most current one available at this time.

Gender is another example of a nominal variable. Table 2.3 displays the gender breakdown among people who

reported that they had sought help from the police within the past year.

Table 2.3 Gender of People Who Sought Help From Police

(PPCS)
Male 1,511
Female 1,904
Total = 3,415

Much information is missing from the nominal variables in Tables 2.1 through 2.3. For instance, the question
about knowing a local police officer does not tell us how often respondents talk to the officers they know or
whether they provide these officers with information about the area. Similarly, the race variable provides fairly
basic information. This is why the nominal level of measurement is lowest in terms of descriptiveness and
utility. These classifications represent only differences; there is no way to arrange the categories in any
meaningful rank or order. Nobody in one racial group can be said to have “more race” or “less race” than
someone in another category—they are merely of different races. The same applies to gender. Most people
identify as being either female or male, but members of one gender group do not have more or less gender

relative to members of the other group.

One property that nominal variables possess (and share with other levels) is that the categories within any
given variable are mutually exclusive and exhaustive. They are mutually exclusive because each unit in the data
set (person, place, and so on) can fall into only one category. They are exhaustive because all units have a
category that applies to them. For example, a variable measuring survey respondents’ criminal histories that
asks them if they have been arrested “0-1 time” or “1-2 times” would not be mutually exclusive because a
respondent who has been arrested once could circle both answer options. This variable would also violate the
principle of exhaustiveness because someone who has been arrested three or more times cannot circle any
available option because neither is applicable. To correct these problems, the answer options could be changed
to, for instance, “no arrests,” “1-2 arrests,” and “3 or more arrests.” Everyone filling out the survey would have

one, and only one, answer option that accurately reflected their experiences.

Mutually exclusive: A property of all levels of measurement whereby there is no overlap between the categories within a variable.

Exhaustive: A property of all levels of measurement whereby the categories or range within a variable capture all possible values.
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Ordinal variables are one step up from nominal variables in terms of descriptiveness because they can be
ranked according to the quantity of a characteristic possessed by each person or object in a sample. University
students’ class level is an ordinal variable because freshmen, sophomores, juniors, and seniors can be rank-
ordered according to how many credits they have earned. Numbers can also be represented as ordinal
classifications when the numbers have been grouped into ranges like those in Table 2.3, where the income
categories of respondents to the General Social Survey (GSS; see Data Sources 2.2) are shown. Table 2.4
displays another variable from the PPCS. This survey question queried respondents about how often they

drive. Respondents were offered categories and selected the one that most accurately described them.

Ordinal variable: A classification that places people or objects into different groups according to a particular characteristic that can be

ranked in terms of quantity.

Ordinal variables are useful because they allow people or objects to be ranked in a meaningful order. Ordinal
variables are limited, though, by the fact that no algebraic techniques can be applied to them. This includes
ordinal variables made from numbers such as those in Table 2.3. It is impossible, for instance, to subtract
<$1,000 from $15,000-$19,999. This eliminates the ability to determine exactly how far apart two
respondents are in their income levels. The difference between someone in the $20,000-§24,999 group and
the 2$25,000 group might only be $1 if the former makes $24,999 and the latter makes $25,000. The
difference could be enormous, however, if the person in the 2§25,000 group has an annual family income of
$500,000 per year. There is no way to figure this out from an assortment of categories like those in Table 2.3.
The same limitation applies to the variable in Table 2.4. A glance at the table reveals general information
about the frequency of driving, but there is no way to add, subtract, multiply, or divide the categories to obtain

a specific measurement of how more or less one person in the sample drives relative to another.
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Learning Check 2.1

v

In a study of people incarcerated in prison, the variable “offense type” captures the crime that each person was convicted of and
imprisoned for. This variable could be coded as either a nominal or an ordinal variable. Explain why this is. Give an example of each type

of measurement approach.

Table 2.4 Annual Family Income (GSS)

<$1,000 40
$1,000-%2,999 32
$3,000-$3,999 19
$4,000-$4,999 14
$5,000-$5,999 20
$6,000-$6,999 18
$7,000-%7,999 16
$8,000-$9,999 50
$10,000-$14,999 150
$15,000-$19,999 114
$20,000-$24,999 157
=$25,000 1,684

Total = 2,314

Table 2.5 Driving Habits (PPCS)

Every day or almost every day 29,442
A few days a week 5,833
A few days a month 1,235
A few times a year 395
Mever 4,623

Total = 41,528

Data Sources 2.2 The General Social Survey

The National Opinion Research Center has conducted the GSS annually or every 2 years since 1972. Respondents are selected using
a multistage clustering sample design. First, cities and counties are randomly selected. Second, block groups or districts are selected
from those cities and counties. Trained researchers then canvass each block group or district on foot and interview people in person.
Interviews are offered in both English and Spanish. The GSS contains a large number of variables. Some of these variables are asked
in every wave of the survey, whereas others are asked only once. The variables include respondents’ attitudes about religion, politics,
abortion, the death penalty, gays and lesbians, persons of racial groups other than respondents’ own, free speech, marijuana
legalization, and a host of other topics (Davis & Smith, 2009). The most current wave of the GSS available at this time is the one
conducted in 2014.

Table 2.6 contains another example of an ordinal variable. This comes from the GSS and measures female

respondents’ educational attainment. You can see that this variable is categorical and ranked. Someone who
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has attended junior college has a higher educational attainment than someone who did not complete high
school. As before, though, no math is possible. Someone whose highest education level is junior college might
be in her first semester or quarter, putting her barely above someone in the high-school-only category, or she

might be on the verge of completing her associate’s degree, which places her nearly two years above.

Female R
Highest Schooling Completed
Less than High School 198
High School 673
Associate’s Degree 122
Bachelor's Degree 257
Graduate Degree 147
Total = 1,397
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The Continuous Level of Measurement: Interval and Ratio Variables

Continuous variables differ from categorical ones in that the former are represented not by categories but
rather by numbers. Interval variables are numerical scales in which there are equal distances between all
adjacent points on those scales. Ambient temperature is a classic example of an interval variable. This scale is
measured using numbers representing degrees, and every point on the scale is exactly one degree away from
the nearest points on each side. Twenty degrees Fahrenheit, for instance, is exactly 1 degree cooler than 21

degrees and exactly 4 degrees warmer than 16 degrees.

Interval variable: A quantitative variable that numerically measures the extent to which a particular characteristic is present or absent

and does not have a true zero point.

An example of an interval-level variable is the GSS’s scoring of respondents’ occupational prestige. The GSS
uses a ranking system to assign each person a number representing how prestigious his or her occupation is.
Figure 2.2 displays the results. The scores range from 16 to 80 and so are presented as a chart rather than a
table.

As can be seen in Figure 2.2, the prestige scores are numerical. This sets them apart from the categories seen
in nominal and ordinal variables. The scores can be subtracted from one another; for instance, a respondent
with a prestige score of 47 has 9 points fewer than someone whose score is 56. Importantly, however, the
scores cannot be multiplied or divided. It does not make sense to say that someone with a score of 60 has
twice the occupational prestige as someone with a 30. This is because interval data, such as this scale, do not
have a true zero point. The numbers, although useful and informative, are ultimately arbitrary. An
occupational prestige score of 30, for instance, could have been any other number if a different coding system

had been employed.

Table 2.7 contains another interval variable. This one measures GSS respondents’ political views. The scale
ranges from 1 (extremely liberal) to 7 (extremely conservative). This variable in Table 2.7 is interval because it
is a scale (as opposed to distinctly separate categories), but lacks a zero point and therefore is an arbitrary
numbering system. The 1-to-7 numbering system could be replaced by any other 7-point consecutive

sequence without affecting the meaning of the scale. These are the hallmark identifiers of interval-level data.

Figure 2.2 Respondents’ Occupational Prestige Scores (GSS)
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Table 2.7 Respondents’ Political Views (GSS)

1 (extremely liberal) 94
2 304
263
989
334
358
(extremely conservative) 107

Total = 2,449

= o > B W

Another attitudinal variable measured at the interval level is shown in Table 2.8. This is a scale tapping into
how punitive GSS respondents feel toward people convicted of crimes. The scale ranges from the lower range
of punitiveness to the upper range. The idea behind attitudinal scores being interval (as opposed to
categorical) is that attitudes are best viewed as a continuum. There is a lot of gray area that prevents attitudes
from being accurately portrayed as ordinal; chunking attitudes up into categories introduces artificial

separation between the people falling into adjacent positions on the scale.

1 (least punitive) 191
2 358
3 643
4 (most punitive) 1,002

Total = 2,194

Ratio variables are the other subtype within the continuous level of measurement. The ratio level resembles
the interval level in that ratio, too, is numerical and has equal and known distance between adjacent points.
The difference is that ratio-level scales, unlike interval ones, have meaningful zero points that represent the
absence of a given characteristic. Temperature, for instance, is not ratio level because the zeros in the various

temperature scales are just placeholders. Zero does not signify an absence of temperature. Likewise, the data
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presented in Figure 2.2 and Tables 2.7 and 2.8, as discussed previously, do not have meaningful zero points
and therefore cannot be multiplied or divided. You could not, for instance, say that someone who scores a 4
on the punitiveness scale is twice as punitive as a person with a 2 on this measure. Ratio-level data permit this

higher level of detail.

Ratio variable: A quantitative variable that numerically measures the extent to which a particular characteristic is present or absent

and has a true zero point.

Criminal justice and criminology researchers deal with many ratio-level variables. Age is one example.
Although it is strange to think of someone as having zero age, age can be traced close enough to zero to make
analytically reasonable to think of this variable as ratio. A 40-year-old person is twice as old as someone who is

20.

Table 2.9 displays the number of state prisoners who were executed in 2013. These data come from the BJS
(Snell, 2014; see Data Sources 2.3). The left-hand column of the table displays the number of people executed
per state, and the right-hand column shows the frequency with which each of those state-level numbers
occurred (note that the frequency column sums to 50 to represent all of the states in the country). Can you

explain why number of persons executed is a ratio-level variable?

In Table 2.10, the number of children GSS respondents report having is shown. Since the zero is meaningful

here, this qualifies as ratio level.
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Learning Check 2.2

v

Zip codes are five-digit sequences that numerically identify certain locations. What is the level of measurement of zip codes? Explain your

answer.

Table 2.9 Number of Persons Executed

41

3
P
1
1
1
16 1
Total = 50
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Another example of the ratio level of measurement is offered in Figure 2.3. These data come from a question
on the PPCS asking respondents who had been the subject of a traffic or pedestrian stop in the past 12
months the number of minutes the stop lasted. Time is ratio level because, in theory, it can be reduced down

to zero, even if nobody in the sample actually reported zero as their answer.

Figure 2.3 Length of Stop, in Minutes (PPCS)
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ble 2.10 Number of Children (GSS)

0 704
419
658
394
198
88
40
14
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15
Total = 2,530

Data Sources 2.3 The Bureau of Justice Statistics

The BJS is the U.S. Department of Justice’s repository for statistical information on criminal justice—related topics. The BJS offers
downloadable data and periodic reports on various topics that summarize the data and present them in a user-friendly format.
Researchers, practitioners, and students all rely on the BJS for accurate, timely information about crime, victims, sentences,

prisoners, and more. Visit http://bjs.ojp.usdoj.gov/ and explore this valuable information source.

In the real world of statistical analysis, the terms interval and ratio variables are often used interchangeably. It
is the overarching categorical-versus-continuous distinction that usually matters most when it comes to

statistical analyses. When a researcher is collecting data and has a choice about level of measurement, the best
strategy is to always use the highest level possible. A continuous variable can always be made categorical later,

but a categorical variable can never be made continuous.

Level of measurement is a very important concept. It might be difficult to grasp if this is the first time you
have been exposed to this idea; however, it is imperative that you gain a firm understanding because level of
measurement determines what analyses can and cannot be conducted. This fundamental point will form an
underlying theme of this entire book, so be sure you understand it. Do not proceed with the book until you
can readily identify a given variable’s level of measurement. Table 2.11 summarizes the basic characteristics

that define each level and distinguish it from the others.

Table 2.11 Ch

Variable Characteristic
Mutually

Level of exclusive and
Measurement exhaustive Rank-orderable Equal intervals Trite zero
MNominal ¥
Ordinal ' v
Interval ¥ v v
Ratio v v v v
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Chapter Summary

This chapter discussed the concept of a variable. You also read about units of analysis, independent variables, dependent variables,
and about the importance of not drawing strict causal conclusions about statistical relationships. It is important to consider whether
meaningful variables have been left out and to keep in mind that empirical associations do not imply that one variable causes the

other.

This chapter also described the two overarching levels of measurement: categorical and continuous. Categorical variables are
qualitative groupings or classifications into which people or objects are placed on the basis of some characteristic. The two subtypes
of categorical variables are nominal and ordinal. These two kinds of variables are quite similar in appearance, with the distinguishing
feature being that nominal variables cannot be rank-ordered, whereas ordinal variables can be. Continuous variables are quantitative
measurements of the presence or absence of a certain characteristic in a group of people or objects. Interval and ratio variables are

both continuous. The difference between them is that ratio-level variables possess true zero points and interval-level variables do not.

You must understand this concept and be able to identify the level of measurement of any given variable because, in statistics, the
level at which a variable is measured is one of the most important determinants of the graphing and analytic techniques that can be
employed. In other words, each type of graph or statistical analysis can be used with some levels of measurement and cannot be used
with others. Using the wrong statistical procedure can produce wildly inaccurate results and conclusions. You must therefore possess

an understanding of level of measurement before leaving this chapter.

Thinking Critically

1. Suppose you have been contacted by a reporter from the local newspaper who came across data showing that men tend to be
sentenced more harshly than women (e.g., more likely to be sent to prison, given longer sentence lengths). The reporter
believes this to be a clear case of discrimination and asks you for comment. What is your response? Do you agree that gender
discrimination has been demonstrated here, or do you need more information? If the latter, what additional data would you
need before you could arrive at a conclusion?

2. Many researchers have tried to determine whether capital punishment deters murder. Suppose a new study has been
published analyzing how death-sentence rates in one year relate to murder rates the following year. The researchers who
conducted this study included only the 32 states that authorize the death penalty, and excluded the remaining states. Do you
think this is a justifiable approach to studying the possible deterrent effects of the death penalty? Would you trust the results

of the analysis and the conclusions the researchers reach on the basis of those results? Explain your answer.

Review Problems

1. A researcher wishes to test the hypothesis that low education affects crime. She gathers a sample of people aged 25 and older.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?
2. A researcher wishes to test the hypothesis that arrest deters recidivism. She gathers a sample of people who have been
arrested.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?
3. A researcher wishes to test the hypothesis that poverty affects violent crime. He gathers a sample of neighborhoods.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?
4. A researcher wishes to test the hypothesis that prison architectural design affects the number of inmate-on-inmate assaults
that take place inside a facility. He gathers a sample of prisons.
1. What is the independent variable?
2. What is the dependent variable?
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10.

11.

12.

13.

3. What is the unit of analysis?

. A researcher wishes to test the hypothesis that the amount of money a country spends on education, health, and welfare

affects the level of violent crime in that country. She gathers a sample of countries.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?

. A researcher wishes to test the hypothesis that police officers’ job satisfaction affects the length of time they stay in their jobs.

He gathers a sample of police officers.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?

. A researcher wishes to test the hypothesis that the location of a police department in either a rural or an urban area affects

starting pay for entry-level police officers. She gathers a sample of police departments.
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?

. A researcher wishes to test the hypothesis that the level of urbanization in a city or town affects residents’ social cohesion.

She gathers a sample of municipal jurisdictions (cities and towns).
1. What is the independent variable?
2. What is the dependent variable?
3. What is the unit of analysis?

. Suppose that a researcher found a statistical relationship between ice cream sales and crime—during months when a lot of ice

cream is purchased, crime rates are higher. The researcher concludes that ice cream causes crime. What has the researcher
done wrong?
Suppose that in a random sample of adults a researcher found a statistical relationship between parental incarceration and a
person’s own involvement in crime. Does this mean that every person who had a parent in prison committed crime? Explain
your answer.
Identify the level of measurement of each of the following variables:
1. Suspects’ race measured as wbhite, black, Latino, and other
2. The age at which an offender was arrested for the first time
3. The sentences received by convicted defendants, measured as jail, prison, probation, fine, and other
4. The total number of status offenses that adult offenders reported having committed as juveniles
5. The amount of money, in dollars, that a police department collects annually from drug asset forfeitures
6. Prison security level, measured as minimum, medium, and maximum
7. Trial judges’ gender
Identify the level of measurement of each of the following variables:
1. The amount of resistance a suspect displays toward the police, measured as 7ot resistant, somewhat resistant, or very
resistant
. The number of times someone has shoplifted in her or his life
The number of times someone has shoplifted, measured as 0-2, 3-5, or 6 or more
The type of attorney a criminal defendant has at trial, measured as privately retained or publicly funded

. In a sample of juvenile delinquents, whether or not those juveniles have substance abuse disorders

o LA W N

. Prosecutors’ charging decisions, measured as filed charges and did not file charges

7. In a sample of offenders sentenced to prison, the number of days in their sentences
If a researcher is conducting a survey and wants to ask respondents about their self-reported involvement in shoplifting, there
are a few different ways he could phrase this question.

1. Identify the level of measurement that each type of phrasing shown below would produce.

2. Explain which of the three possible phrasings would be the best one to choose and why this is.
Possible phrasing 1: How many times have you taken small items from stores without paying for those items?
Please write in:
Possible phrasing 2: How many times have you taken small items from stores without paying for those items?

Please circle one of the following:
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Never 1-2 times 3—4 times 5+ times
Possible phrasing 3: Have you ever taken small items from stores without paying for those items? Please circle
one of the following:
Yes No
14. If a researcher is conducting a survey and wants to ask respondents about the number of times each of them has been
arrested, there are a few different ways she could phrase this question. Write down the three possible phrasing methods.
15. The following table contains BJS data on the number of prisoners under sentence of death, by region. Use the table to do the

following

MNumber of Prisoners Under
Sentence of Death at Year-End

2012 (Snell, 2014)

Region

Mortheast 211

Midwest 221

South 1,556

West 989
Total = 2,977

1. Identify the level of measurement of the variable region.
2. Identify the level of measurement of number of prisoners under sentence of death.
16. The following table contains data from the 2012 National Crime Victimization Survey showing the number of victimization
incidents and whether or not those crimes were reported to the police. The data are broken down by victims’ household

income level. Use the table to do the following:

Number of NCVS Victimizations
Reported to Pelice, by Household
Income (U.S. Department of Justice,
2012)

I N B

$12,499 399 697 1,096
or less

$12,500- 393 840 1,233
$24,999

$25,000- 680 1,206 1,886
$49,999

$50,000 1,048 1,840 2,888
Oof mon

Total 2,520 4,583 N=7,103

1. Identify the level of measurement of the variable income.
2. Identify the level of measurement of the variable wvictimization reported.

17. Haynes (2011) conducted an analysis to determine whether victim advocacy affects offender sentencing. She gathered a
sample of courts and measured victim advocacy as a yes/no variable indicating whether or not there was a victim witness
office located inside each courthouse. She measured sentencing as the number of months of incarceration imposed on
convicted offenders in the courts.

1. Identify the independent variable in this study.

2. Identify the level of measurement of the independent variable.
3. Identify the dependent variable in this study.

4. Identify the level of measurement of the dependent variable.
5. Identify the unit of analysis.

18. Bouffard and Piquero (2010) wanted to know whether arrested suspects’ perceptions of the way police treated them during
the encounter affected the likelihood that those suspects would commit more crimes in the future. Their sample consisted of

males who had been arrested at least once during their lives. They measured suspects’ perceptions of police behavior as fair or
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19.

20.

unfair. They measured recidivism as the number of times suspects came into contact with police after that initial arrest.

i,
2.
3.
4.
5.

Identify the independent variable in this study.

Identify the level of measurement of the independent variable.
Identify the dependent variable in this study.

Identify the level of measurement of the dependent variable.

Identify the unit of analysis.

Kleck and Kovandzic (2009; see Research Example 2.2) examined whether the level of homicide in a particular city affected

the likelihood that people in that city would own firearms. They measured homicide as the number of homicides that took

place in the city in 1 year divided by the total city population. They measured handgun ownership as whether survey

respondents said they did or did not own a gun.

i,
2o
3.
4.
5.

Identify the independent variable used in this study.

Identify the level of measurement of the independent variable.
Identify the dependent variable in this study.

Identify the level of measurement of the dependent variable.

Identify the unit of analysis. (Hint: This study has two!)

Gau et al. (2010; see Research Example 2.1) examined whether suspects’ race or ethnicity influenced the likelihood that

police would brandish or deploy Tasers against them. They measured race as white, Hispanic, black, or other. They measured

Taser usage as Taser used or some other type of force used.

1.

Identify the independent variable used in this study.

2. Identify the level of measurement of the independent variable.
3. Identify the dependent variable in this study.

4.
5

Identify the level of measurement of the dependent variable.

. Identify the unit of analysis.
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Organizing, Displaying, and Presenting Data

58



Learning Objectives

o Define univariate and bivariate.

o Identify the data displays available for each of the four levels of measurement.

o Identify the computations available for univariate displays, and be able to calculate each one.
e Construct univariate and bivariate numerical and graphical displays.

e Create numerical displays, charts and graphs, and rate variables in SPSS.

Data are usually stored in electronic files for use with software programs designed to conduct statistical
analyses. The program SPSS is one of the most common data software programs in criminal justice and
criminology. The SPSS layout is a data spreadsheet. You might be familiar with Microsoft Excel; if so, then
the SPSS data window should look familiar. Figure 3.1 depicts what a typical SPSS file might look like.

The data in Figure 3.1 are from the Bureau of Justice 2011 Police—Public Contact Survey (PPCS; see Data
Sources 2.1). Each row (horizontal line) in the grid represents one respondent, and each column (vertical line)
represents one variable. Where any given row and column meet is a cell containing a given person’s response

to a particular question.

Cell: The place in a table or spreadsheet where a row and a column meet.

Your thoughts as you gaze on the data screen in Figure 3.1 can probably be aptly summarized as “Huh?” That
is a very appropriate response, because there is no way to make sense of the data when they are in this raw
format. This brings us to the topic of this chapter: methods for organizing, displaying, and presenting data.
You can see from the figure that something has to be done to the data set to get it into a useful format. This

chapter will teach you how to do just that.

Chapter 2 introduced levels of measurement (nominal, ordinal, interval, and ratio). A variable’s level of
measurement determines which graphs or charts are and are not appropriate for that variable. Various data
displays exist, and many of them can be used only with variables of particular types. As you read this chapter,
take notes on two main concepts: (1) the proper construction of each type of data display and (2) the level of

measurement for which each display type is applicable.
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Data Distributions
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Univariate Displays: Frequencies, Proportions, and Percentages

Perhaps the most straightforward type of pictorial display is the univariate (one variable) frequency
distribution. A frequency is simply a raw count; it is the number of times a particular characteristic appears in
a data set. A frequency distribution is a tabular display of frequencies. Table 3.1 shows the frequency
distribution for the variable respondent gender in the 2011 PPCS. Let us pause and consider two new symbols.
The first is the f'that sits atop the right-hand column in Table 3.1. This stands for frequency. There are 25,078
males in this sample. An alternative way of phrasing this is that the characteristic male occurs 25,078 times. A
more formal way to write this would be £ .. = 25,078; for females, fz.;.1. = 27,451. The second new symbol is
the IV found in the bottom right-hand cell. This represents the total sample size; here, f;.1c + fremale = V-
Numerically, 25,078 + 27,451 = 52,529.

Univariate: Involving one variable.

Frequency: A raw count of the number of times a particular characteristic appears in a data set.

Figure 3.1 SPSS Data File

Table 3.1 Gender of PPCS Respondents
s R R

Male 25,078
Female 27,451
N=5252%

Raw frequencies are of limited use in graphical displays because it is often difficult to interpret them and they
do not offer much information about the variable being examined. What is needed is a way to standardize the
numbers to enhance interpretability. Proportions do this. Proportions are defined as the number of times a

particular characteristic appears in a sample relative to the total sample size. Formulaically,

="t Formula 3(1)
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p = proportion
f= raw frequency

N = total sample size

Proportion: A standardized form of a frequency that ranges from 0.00 to 1.00.

Proportions range from 0.00 to 1.00. A proportion of exactly 0.00 indicates a complete absence of a given

characteristic. If there were no males in the PPCS, their proportion would be

O J—
52,529

Conversely, a trait with a proportion of 1.00 would be the only characteristic present in the sample. If the

Pmale =

PPCS contained only men, then the proportion of the sample that was male would be

52,529

=" 1.9
Pmale =55 559

Another useful technique is to convert frequencies into percentages (abbreviated pcz). Percentages are a
variation on proportions and convey the same information, but percentages offer the advantage of being more
readily interpretable by the public. Percentages are computed similarly to proportions, with the added step of

multiplying by 100:

I
peL= E 100 Formula 3(Q2)

Percentage: A standardized form of a frequency that ranges from 0.00 to 100.00.

Proportions and percentages can be used in conjunction with frequencies to form a fuller, more informative
display like that in Table 3.2. Note that the two proportions (p,,1es a0d Pgemales) sum to 1.00 because the two
categories contain all respondents in the sample; the percentage column sums to 100.00 for the same reason.
The “Z” symbol in the table is the Greek letter sigrma and is a summation sign. It instructs you to add up
everything that is to the right of the symbol. The number to the right of the equal sign in “Z =” is the summed
total. As long as all cases in a sample have been counted once and only once, proportions will sum to 1.00 and
percentages to 100.00 or within rounding error of these totals. Significant deviation from 1.00 or 100.00 that

is greater than what could be explained by rounding error suggests a counting or calculation error.

Another useful technique for frequency distributions is the computation of cumulative measures. Cumulative
frequencies, cumulative proportions, and cumulative percentages can facilitate meaningful interpretation of
distributions, especially when data are continuous. Consider Table 3.3, which contains data from identity
theft victims who discovered that someone had filed a fraudulent tax return in their name. The variable in the
table reflects the dollar amount victims personally lost from the crime. The data are part of the larger National

Crime Victimization Survey (NCVS; see Data Sources 1.2) and come from a 2014 supplement tapping into

62



respondents’ experiences with various forms of identity theft. The dollar amounts reported by victims and the
frequency of each response are located in the two left-most columns, respectively. To their right is a column
labeled ¢f; which stands for cumulative frequency. The cp and cpe columns contain cumulative proportions and

percentages, respectively.

Male 25,078 .48 47.74
Female 27,451 .52 52.26
N=52529 L=1.00 L =100.00
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Learning Check 3.1

v

If you were summing proportions or percentages across the different levels of a categorical variable and you arrived at a result that was
greater than the maximum of 1.00 or 100.00, respectively, what potential errors might have occurred in the calculations? What about if

the result were less than 1.00 or 100.00?

Cumulative columns are constructed by summing the f; p, and pcz columns successively from row to row. The
arrows in the table are intended to help you visualize this process. In the second row of Table 3.3’s ¢f column,
for instance, 48 is the sum of 45 and 3. In the ¢p column, likewise, .87 is the sum of .82 + .05. Cumulatives
allow assessments of whether the data are clustered at one end of the scale or spread fairly equally throughout.
In Table 3.3, it can be readily concluded that the data cluster at the low end of the scale, because .82 (or
81.82%) of victims did not incur any personal financial costs, and .95 (or 94.55%) spent $70 or less. This
suggests that whatever profits offenders enjoy from income-tax fraud, victims themselves suffer minimal out-

of-pocket expense.

Cumulative: A frequency, proportion, or percentage obtained by adding a given number to all numbers below it.
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Learning Check 3.2

v

What is the level of measurement of the variable szaze? What is the level of measurement of the variable properzy crime rate? Refer to

Chapter 2 if needed.

of Fraudulent Tax

Dollar amount
of cost

45—45 8l.82 B81.82
2 3—148 .05 .87 5.45 87.27
30 1 49 .02 .89 1.82 89.09
50 2 51 .04 .93 3.64 92.73
70 1 52 .02 .95 1.82 94.55
200 1 53 .02 97 1.82 96.37
400 1 54 .02 .99 1.82 98.19
4,400 1 55 .02 1.01 1.82 100.01

N=55 £=1.01 L =100.01
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Univariate Displays: Rates

Suppose someone informed you that 1,579,527 burglaries were reported to the police in 2015. What would
you make of this number? Nothing, probably, because raw numbers of this sort are simply not very useful.
They lack a vital component—a denominator. The question that would leap to your mind immediately is
“1,579,527 out of whar?” You would want to know if this number was derived from a single city, from a single
state or from the United States as a whole. This is where rates come in. A rafe is a method of standardization

that involves dividing the number of events of interest (e.g., burglaries) by the total population:

rate = I Formula 3(3)
population

Table 3.4 contains data from the 2015 Uniform Crime Report (UCR; see Data Sources 1.1). The column
titled Rate displays the rate per capita that is obtained by employing Formula 3(3).

Table 2.4 UCR Index Offenses and Offense Rates, 2015

Burglary 1,679,527 49.14
Aggravated assault 764,449 .002 23.78
Motor vehicle theft 707,758 002 22.02

Note: 2012 U.S. Population = 321,418,820

Note: 2012 U.S. Population = 321,418,820
Note how tiny the numbers in the rate column are. Rates per capita do not make sense in the context of low-
frequency events like crime because they end up being so small. It is, therefore, customary to multiply rates by
a certain factor. This factor is usually 1,000, 10,000, or 100,000. You should select the multiplier that makes
the most sense with the data at hand. In Table 3.4, the 10,000 multiplier has been used to form the Rate per
10,000 column. Multiplying in this fashion lends clarity to rates because now it is no longer the number of
crimes per person but, rather, the number of crimes per 10,000 pegple. 1f you randomly selected a sample of
10,000 people from the population, you would expect 49.14 of them to have been the victim of burglary in the
past year and 23.78 to have experienced aggravated assault. These numbers and their interpretation are more

real and more tangible than those derived using Formula 3(3) without a multiplier.

Sometimes rates must be calculated using multiple denominators, in contrast to Table 3.4 where there was

only one. Table 3.5 shows a sample of states and the number of property crimes they reported in 2015.

States have different populations, so rates have to be calculated using each state’s unique denominator. Table

3.6 expands upon the counts in Table 3.5 by including the property-crime rates per 10,000.
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ble 3.5 UCR Property Crimes in Four States

T R BT

Alabama 144,746 4,858,979
California 1,024,914 39,144,818
Delaware 25,455 945,934
Michigan 187,101 9,922,576
Table 3.6 UCR Property-Cr 2 s in Four £
e

Alabama 144,746 4,858,979 297.89
California 1,024,914 39,144,818 261.83
Delaware 25,455 945,934 269.10
Michigan 187,101 9,922,576 188.56
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Learning Check 3.3

v

Rates and percentages have similar computational steps but very different meanings. Explain the differences between them, including the
additional information needed to calculate a rate that is not needed for a percentage, the reason rates do not sum to 100 the way

percentages do, and the substantive meaning of each one (i.e., the information that is provided by each type of number).
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Bivariate Displays: Contingency Tables

Researchers are often interested not just in the frequency distribution of a single variable (a univariate display)
but, rather, in the overlap between two variables. The Census of Jails (COJ; see Data Sources 3.1) collects
data from all jails in the United States that hold inmates past arraignment (i.e., excluding lockups like
stationhouse holding cells where inmates are confined for only a brief period before being transferred

elsewhere).

Data Sources 3.1 The Census of Jails

The BJS has conducted the COJ periodically since 1970. Every 5 years, the BJS sends surveys to all jails operated by federal, state,
and local governments, as well as by private corporations. The surveys capture institution-level data such as the total inmate
population, the number of correctional staff, the number of inmate assaults against staff, whether the facility offers services
(vocational, educational, or mental-health), and so on. The 2013 wave of the COJ is the most recent version available, but the 2006
version of the survey contains information on jail facilities that is not found in the 2013 version, so the examples in this book draw

from both data sets.

Researchers studying jails might be interested in knowing whether facilities of various sizes differ in terms of
whether they provide inmates with the opportunity to take secondary education courses that advance them
toward the acquisition of a GED certificate. One might predict, for example, that larger jails will be busier
and more crowded and that institutional security will therefore take precedence over the provision of services
like GED courses. A contingency table (also sometimes called crosstabs) allows us to see the overlap between
these two variables. Table 3.7 contains this display. This is a bivariate analysis, meaning it contains two
variables. You can see from Table 3.7 that 155 small jails, 315 medium-sized ones, and 518 large ones provide

inmates the opportunity to take GED classes while incarcerated.

Contingency table: A table showing the overlap between two variables.

Bivariate: An analysis containing two variables. Usually, one is designated the independent variable and the other the dependent

variable.

Raw frequencies such as those shown in Table 3.7 offer a basic picture of bivariate overlap, but are not as
informative as they could be. It is not immediately apparent from Table 3.7 whether the provision of GED
courses differs across small, medium, and large facilities, since each of these groups is a different size (i.e.,
there are 778 small jails, 786 medium ones, and 807 large ones). To organize the data into a more readily
interpretable format, proportions—or, more commonly, percentages—can be computed and entered into the

contingency table in place of frequencies.

There are two types of proportions and percentages that can be computed in a bivariate contingency table: row
and column. Row proportions and percentages are computed using the row marginals in the denominator,
whereas column proportions and percentages employ the column marginals. There is no rule about which
variable to place in the rows and which one in the columns, or whether you should compute row or column
marginal (or both). These decisions should always be made based on the variables at hand and the point the

researcher is trying to make with the data. Here, we want to discover the percentage of each facility type that
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offers GED courses. It is common (though, again, not required) to place the independent variable in the rows
and the dependent variable in the columns. Since we are predicting that facility size influences GED
offerings, size is the IV and GED course availability is the DV. Hence, we will place size in the rows and

calculate row percentages. Table 3.8 shows the percentage distribution.

Row proportions and percentages: In a contingency (crosstabs) table, the proportions and percentages that are calculated using row

marginals as the denominators. Each row sums to 1.00 and 100.00, respectively.

Column proportions and percentages: In a contingency (crosstabs) table, the proportions and percentages that are calculated using

column marginals as the denominators. Each column sums to 1.00 and 100.00, respectively.

ffered, per Faci

(Fi =]
GED Gourses Offered?

Small 185 623 778
Medium 315 471 786
Large 518 289 807
Column Total 988 1,383 N=2371

Interesting results emerge from the row percentages in Table 3.8. It appears that small jails are the least likely
to offer GED classes (19.92%) and that large ones are the most likely (64.19%), with medium-sized facilities
falling in the middle (40.08%). The prediction that larger jails would be too preoccupied with security matters
to concern themselves with providing educational services is not empirically supported. Perhaps the existence
of a GED program inside a jail is more dependent on available resources, and smaller jails might lack the

money and personnel needed to offer this type of benefit to inmates.
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Learning Check 3.4

v

Table 3.8 displays row percentages (i.c., percentages computed on the basis of row marginal). This shows the percentage of each type of
facility that offers GED classes. How would column percentages be interpreted in this instance? As practice, calculate the column

percentages for Table 3.8 and explain their meaning.

GED Courses Offered, per Facility (Row

GED Caunrses Offered?
Small
E 100 =19.92 E— 100 = 80.08 100.00
778 778
Medium
E}—q 100 = 40.08 f—:"—l- 100 = 59.92 100.00
786 786
Large 518 289
—— |100 =64.19 —— |100 = 35.81 100.00
| =
988 1,383 N=2371

Research Example 3.1 Does Sexual-Assault Victimization Differ Between Female and Male Jail Inmates?

Research has shown that criminal offenders experience victimization at higher rates than the general population. This victimization
might have predated the beginning of their criminal involvement, or it might have occurred because of the risky lifestyles that many
offenders lead. Female offenders, in particular, experience high levels of sexual abuse and assault. Lane and Fox (2013) gathered data
on a sample of jail inmates and asked them about their victimization histories and their fear of future victimization. (The numbers in
the table are averages, with higher scores indicating greater levels of fear.) The following table displays the results, broken down by
gender.

More than half of female inmates (51%) reported having been sexually assaulted; this number was 7% for men. Women were also
more worried about future victimization of all types, although their scores on the fear-of-victimization variables showed that their
fear of sexual assault outweighed their fear of other crimes. It has been argued in the past that sexual assault takes a unique physical
and psychological toll on women—even those who have never actually experienced it—because it is an ever-present threat. Lane and

Fox’s results confirm the poignant impact that sexual assault has on female offenders.

Sexual-assault victimization 51% 7%

Fear of property crime 1.73 1.55
Fear of violent crime 1.87 1.69
Fear of sexual assault 2.12 1555
Fear of gang crime 1.74 1.57
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Do Victim Impact Statements Influence Jurors’ Likelihood of
Sentencing Murder Defendants to Death?

Victim impact statements (VIS) are controversial. On the one hand, victims’ rights advocates claim that speaking out in court is
cathartic for victims and ensures they play a role in the process of punishing defendants who have hurt them or their loved ones.
Critics, however, fear that these statements bias juries by injecting emotional pleas into what should be a neutral, detached review of
the evidence presented during the sentencing phase of trial. Nufiez, Myers, Wilkowski, and Schweitzer (2017) sought a greater
understanding of the effects of VIS on juror decision making in capital sentencing trials. In particular, they wanted to find out
whether VIS that were sad in tone differed from those couched in anger. Nufiez and colleagues gathered a sample of people eligible
to serve on juries and randomly assigned them to view one of six videotaped mock trials. In two trials, the murder victim’s wife
(played by an actor) read impact statements infused with either anger or sadness. The third trial contained no VIS. Each VIS
condition was repeated across trial scenarios in which the mitigating evidence favoring the defendant was either weak or strong. The
researchers then asked the participants whether they would sentence the defendant to life or to death. The table shows the
sentencing decisions made by mock jurors in each of the three VIS conditions, broken down by whether the mitigating evidence in

the case was weak or strong.

I T T

Mo VIS
Weak Evidence 53 47
Strong Evidence 66 34
Sad VIS
Weak Evidence 57 43
Strong Evidence 60 40
Angry VIS
Weak Evidence 33 67
Strong Evidence 51 49

The table reveals several interesting findings, foremost of which is that angry VIS do indeed seem to appeal to jurors’ emotions and
lead them to hand down death sentences more often; this conclusion flows from the fact that the participants in the “angry VIS”
condition voted for death more often than those in either other VIS condition. The impact of an angry VIS is especially pronounced
when mitigating evidence is weak. The effect of sad VIS is less pronounced; the presence of a sad victim does not substantially alter
sentencing outcomes compared to having no victim present during sentencing. This study suggests that jurors making capital
sentencing decisions are emotionally swayed by angry victims and might rest their sentencing decisions partially upon this stirring up

of anger.

72




Graphs and Charts

Frequency, proportion, and percentage distributions are helpful ways of summarizing data; however, they are
rather dull to look at. It is sometimes desirable to arrange data in a more attractive format. If you were giving a
presentation to a local police department or district attorney’s office, for instance, you would not want to
throw numbers at your audience for 45 minutes. The monotony would be boring. Additionally, discerning a
table’s meaning typically requires close examination, which taxes an audience’s ability to follow along with
ease. Presentations can be diversified by the introduction of charts and graphs, of which there are many
different types. Charts and graphs inject variety, color, and interest value into written and oral presentations of
quantitative results. This chapter concentrates on five of the most common: pie charts, bar graphs, histograms,
frequency polygons, and line graphs. Some of these charts and graphs are limited to specific levels of

measurement, while others are useful with multiple types of data.
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Categorical Variables: Pie Charts

Pie charts can be used only with categorical data, and they are most appropriate for variables that have
relatively few classes (i.e., categories or groups) because pie charts get messy fast. A good general rule is to use
a pie chart only when a variable contains five or fewer classes. Pie charts are based on percentages: The entire

circle represents 100%, and the slices are sized according to the size of their contribution to that total.

Classes: The categories or groups within a nominal or ordinal variable.

The variable that will be used here to illustrate a pie chart is the race and ethnicity of stopped drivers from
Table 2.2 (see page 22). The first step is to transform the raw frequencies into percentages using Formula
3(2). Once percentages have been computed, the pie chart can be built by dividing 100% into its constituent
parts. Figure 3.2 contains the pie chart. Flip back to Table 2.2 and compare this pie chart to the raw frequency

distribution to note the dramatic difference between the two presentation methods.

Figure 3.2 Race of Stopped Drivers (Percentages)

27

12.1

80.2

White Black
m Asian m Other

A pie chart can also be used to display data from the 2013 Law Enforcement Management and
Administrative Statistics (LEMAS; see Data Sources 3.2) survey. This survey captures data on the types of
police agencies nationwide (i.e., their primary jurisdiction). Figure 3.3 contains the percentages of agencies
that are operated at the municipal (city or town police), county (sheriffs’ offices), state, and tribal level. As you

can see, the vast majority of police agencies are municipally operated.

Figure 3.3 Police Agency Type (Percentages)
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Learning Check 3.5

v

Pie charts like the one in Figures 3.2 and 3.3 are made of percentages. Rates cannot be used for pie charts. Why is this true?

Data Sources 3.2 The Law Enforcement Management and Administrative Statistics Survey

The BJS conducts the Law Enforcement Management and Administrative Statistics (LEMAS) survey every 3 to 4 years. The
sampling design involves two stages. First, all police agencies with 100 or more sworn personnel are included. Second, the BJS pulls
a random sample of agencies with fewer than 100 officers. The agencies in the sample are sent surveys to fill out. The surveys capture
agency-level data such as the number of sworn law-enforcement personnel an organization employs, the number of civilian
personnel, whether the agency participates in community policing, whether the agency has specialized units, and so on. At this time,

the 2013 LEMAS survey is the most recent wave available.

76



Categorical Variables: Bar Graphs

Like pie charts, bar graphs are meant to be used with categorical data; unlike pie charts, though, bar graphs
can accommodate variables with many classes without damage to the charts’ readability. Bar graphs are thus
more flexible than pie charts. For variables with five or fewer classes, pie charts and bar graphs might be

equally appropriate; when there are six or more classes, bar graphs should be used.

In Chapter 1, you learned that one of the reasons for the discrepancy between crime prevalence as reported by
the UCR and the NCVS is that a substantial portion of crime victims do not report the incident to police.
Truman and Morgan (2016) analyzed NCVS data and reported the percentage of people victimized by
different crime types who reported their victimization to police. Figure 3.4 contains a bar graph illustrating
the percentage of victims who contacted the police to report the crime. Bar graphs provide ease of
visualization and interpretation. It is simple to see from Figure 3.4 that substantial portions of all types of

victimizations are not reported to the police and that motor vehicle theft is the most reliably reported crime.

Figure 3.4 Percentage of Victimizations Reported to Police in 2015
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Rates can also be presented as bar graphs. Figure 3.5 is a bar graph of the rates in Table 3.6.

Figure 3.5 2015 Property Crime Rates (per 10,000) in Four States
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A useful feature of bar graphs is that they can also be used to show the overlap between two variables. Figure
3.6 draws from LEMAS and the agency-type variable used in Figure 3.3. In the figure, the bars represent the
number of agencies within each category that do and do not allow members of the public to report crimes

through email or text message. Many agencies are adopting these electronic methods in hopes of encouraging

people to report crimes by making it easier and more convenient for them to do so.

The frequencies in Figure 3.6 can also be turned into percentages and graphed like Figure 3.7. Now, instead
of representing frequencies, the bars mark the percentage of agencies of each type that allow (or do not allow)

people to report crimes through text or email.
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Continuous Variables: Histograms

Histograms are for use with continuous data. Histograms resemble bar charts, with the exception that in
histograms, the bars touch one another. In bar charts, the separation of the bars signals that each category is
distinct from the others; in histograms, the absence of space symbolizes the underlying continuous nature of
the data. Figure 3.8 contains a histogram showing the ages of Hispanic respondents to the 2011 PPCS (see
Data Sources 2.1) who reported that they had called the police for help within the past 24 months.

Figure 3.6 Police Agencies’ use of Email and Text for Crime Reporting, by Agency Type
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Figure 3.7 Police Agencies’ use of Email and Text for Crime Reporting, by Agency Type
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Figure 3.8 Age of Hispanic Respondents Who Called the Police in the Past 24 Months
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Research Example 3.2 Are Women’s Violent-Crime Commission Rates Rising?

‘Women have historically experienced a very small arrest rate, much smaller than men’s rate. Over the past few years, arrest rates for
women have risen dramatically, even as crime itself has been declining or remaining stable. Some observers believe that women
commit more crime today than they did in the past. Critics, however, argue that the change in the arrest rate is not caused by actual
increases in women’s criminality; instead, they say, it is because tough-on-crime policies have eroded the leniency that women used
to receive from police. Who is right? Has women’s violent-crime involvement truly risen? Or are women just more likely to be
arrested today? Steffensmeier, Zhong, Ackerman, Schwartz, and Agha (2006) set out to answer these questions. The researchers
used two data sources. First, they relied on the UCR to track the arrest rates for women and men across different types of violent
crime from 1980 through 2003. Second, they used the NCVS to measure violent victimizations perpetrated by women and men
during this same period. The authors knew that the UCR would show a rise in women’s arrest rates, at least for certain kinds of

offenses. The real question was whether the NCVS would also show a rise. The authors displayed their results in histograms.

The top histogram displays UCR arrest data and the bottom one shows NCVS victimization data. The shorter bars in each one
represent the percentage of arrestees and offenders, respectively, who were female. Together, these graphs show that even though
female arrests for assault have risen, their participation in criminal assaults has not; assaults perpetrated by women have remained
constant. The authors concluded that women are not committing violent crimes at higher rates now than in the past; their increasing
arrest rates are caused by criminal-justice policies that lead police to arrest women in situations where, a few decades ago, they would

have shown them leniency.
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Assault Index (NCVS)
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Histograms can also feature percentages instead of frequencies. For example, we can use a histogram to
display the average daily population of small jails using data from the COJ facilities (Data Sources 3.1). Figure
3.9 shows the results. The horizontal axis lists the numbers of inmates each jail reported containing, and the
vertical axis represents the percent of all facilities that housed each quantity. A glance at the histogram allows

us to see that while small jails are fairly diverse in size, they are somewhat clustered toward the smaller end.

Figure 3.9 Number of Inmates in Small Jails
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Continuous Variables: Frequency Polygons

Frequency polygons are an alternative to histograms. There is no right or wrong choice when it comes to
deciding whether to use a histogram or a frequency polygon with a particular continuous variable; the best
strategy is to mix it up a bit so that you are not using the same chart type repeatedly. Figure 3.10 contains the
frequency polygon for data similar to that used in Figure 3.8 except this time it includes the ages of non-
Hispanic respondents instead of Hispanic respondents. Frequency polygons are created by placing a dot in the

places where the tops of the bars would be in a histogram and then connecting those dots with a line.

Another type of continuous variable that could be graphed using a frequency polygon is the number of female
sergeants in police departments and sheriffs’ offices. Nationwide, police agencies are seeking not merely to
recruit and retain female officers but also to promote them to ranks with supervisory and management
responsibilities. Figure 3.11 shows the number of female sergeants in sheriffs’ offices, according to the
LEMAS survey (Data Sources 3.2).

Figure 3.10 Age of Non-Hispanic Respondents Who Called the Police in the Past 24 Months

4 o 8 i e G e R e e i i |

16182022 24 2628 3032 34 3638 4042 444648 5052 54 56 06 0062 04 6663 TO 72 T4 76 73 50 62 54 868890
Age

Figure 3.11 Number of Female Sergeants in Sheriffs’ Offices
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Longitudinal Variables: Line Charts

People who work with criminal justice and criminology data often encounter longitudinal variables.
Longitudinal variables are measured repeatedly over time. Crime rates are often presented longitudinally as a

means of determining trends. Line graphs can make it easy to discern trends.

Longitudinal variables: Variables measured repeatedly over time.

Trends: Patterns that indicate whether something is increasing, decreasing, or staying the same over time.

Figure 3.12 shows a line graph of data from the Uniform Crime Reports measuring the annual number of
hate-crime incidents from 1996 to 2015. Figure 3.13 shows the annual percentage of all hate crimes that are
motivated by sexual-orientation bias. Together, these two line charts show two trends. First, total hate-crime
incidents have declined slightly in recent years. Second, despite the downward trend in total incidents, the
percentage of incidents that are based on the victims’ sexual orientation has risen steadily, albeit with a small

drop from 2011 to 2012.

Figure 3.12 Annual Number of Hate-Crime Incidents, 19962015
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Line charts can employ percentages, as well. We might ask not merely the number of hate-crime incidents
that occur annually, but the percentage of these incidents motivated by sexual orientation bias. Figure 3.13

shows this graph.

Together, Figures 3.12 and 3.13 reveal that although hate crimes have declined over the past 20 years, there
has been a slight rise in the percentage of these crimes arising from prejudice against members of the gay and

lesbian individuals.

Figure 3.13 Percentage of Hate-Crime Incidents Motivated by Sexual Orientation Bias, 1996-2015

83



0 T T T T T T T T T L}
1996 1988 2000 2002 2004 2006 2008 2010 2012 2014 2016

Year

84



Grouped Data

The overarching purpose of a frequency distribution, chart, or graph is to display data in an accessible, readily
understandable format. Sometimes, though, continuous variables do not lend themselves to tidy displays.
Consider Table 3.9’s frequency distribution for the amount of money, in dollars per person, that local
governments in each state spent on criminal justice operations (Morgan, Morgan, & Boba, 2010; Data
Sources 3.3). Figure 3.14 displays a histogram of the data. You can see that neither the frequency distribution
nor the histogram is useful; there are too many values, and most of the values occur only once in the data set.

There is no way to discern patterns or draw any meaningful conclusion from these data displays.

Data Sources 3.3 CQ Press’s State Factfinder Series

The Factfinder Series’ Crime Rankings are compilations of various crime and crime-related statistics from the state and local levels.
These volumes are comprehensive reports containing data derived from the Federal Bureau of Investigation (FBI), BJS, U.S. Census

Bureau, and U.S. Drug Enforcement Administration. The data used here come from Morgan et al. (2010).

Table 3.9 itz rnment Expenditures

EI G

Capita Capifa Capita
123 1 266 1 357 2
164 1 267 2 358 1
169 1 268 1 374 1
188 1 272 L 375 1
209 1 273 1 387 1
214 1 281 1 390 1
215 2 287 L 414 1
220 1 292 L 427 1
230 1 306 2 433 1
246 1 310 1 439 1
248 1 321 1 462 1
251 1 345 1 500 1
252 1 348 1 562 1
255 1 351 1 603 1
258 1 354 1 623 1
263 1 N=50

Figure 3.14 Per Capita Local Government Expenditures on Criminal Justice, Ungrouped
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Grouping the data can provide a solution to this problem by transforming a continuous variable (either
interval or ratio) into an ordinal one. There are several steps to grouping. First, find the range in the data by
subtracting the smallest number from the highest. Second, select the number of intervals you want to use.
This step is more art than science; it might take you a bit of trial and error to determine the number of

intervals that is best for your data.

The ultimate goal is to find a middle ground between having too few and too many intervals—too few can

leave your data display flat and uninformative, whereas too many will defeat the whole purpose of grouping.

Third, determine interval width by dividing the range by the number of intervals. This step is probably best

illustrated in formulaic terms:

range
width = — 8¢
intervals

This will often produce a number with a decimal, so round up or down depending on your reasoned judgment
as to the optimum interval width for your data. Fourth, construct the stated class limits by starting with the
smallest number in the data set and creating intervals of the width determined in Step 3 until you run out of
numbers. Finally, make a new frequency (/) column by counting the number of people or objects within each

stated class interval.

Let us group the legal expenditure data in Table 3.9. First, we need the range:
Range = 623 - 123 = 500

Now we choose the number of intervals we want to use. With a range as large as 500, it is advisable to select
relatively few intervals so that each interval will encompass enough raw values to make it meaningful. We will

start with 10 intervals. The next step is to compute the interval width. Using the formula from above,

50
width = —0 =50
10

Each interval will contain 50 raw scores. Now the stated class limits can be constructed. Take a look at the
left-hand column in Table 3.10. There are three main points to keep in mind when building stated class

limits. The stated limits must be inc/usive—in this example, the first interval contains the number 123, the
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number 172, and everything in between. They also must be muzually exclusive and exhaustive. Once the stated
class limits have been determined, the frequency for each interval is calculated by summing the number of raw
data points that fall into each stated class interval. The sum of the frequency column in a grouped distribution

should equal the sum of the frequencies in the ungrouped distribution.

You can see that Table 3.10 is much neater and more concise than Table 3.9. It is more condensed and easier
to read. Where you will really see the difference, though, is in the histogram. Compare Figure 3.15 to Figure

3.14. Quite an improvement! It has a real shape now. This demonstrates the utility of data grouping.

Table 3.10 Per Capitz

minal J

Stated Class Limits

123-172 3
173-222 &
223-272 13
273-322 8
323-372 7
373-422 5
423-472 4
473-522 1
523-572 1
573-622 1
623-672 1

N =50

Figure 3.15 Per Capita Local Government Expenditures on Criminal Justice, Grouped
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Learning Check 3.6

v

The data displayed in Figure 3.14 clearly need to be grouped, for the reasons described in the text. Refer back to the age variables shown
in Figures 3.8 and 3.10. Do you think these variables should be grouped for ease of interpretation? Explain your answer.

Another variable that could benefit from grouping is the daily population of small jails. Although the
histogram in Figure 3.9 is not too bad to look at, it is rather busy. Grouping could clean the distribution up
and give it a more streamlined appearance. This would also be helpful if you were writing a report and had

space constraints.

Table 3.11 Number of Inmates Housed in Small Jails, Ungrouped

0 4 19 19

1 51 20 23
2 42 21 18
3 44 22 11
4 38 23 13
5 29 24 16
6 40 25 24
7 32 26 16
8 27 27 13
9 14 28 13
10 30 29 9
11 17 30 19
12 28 31 5
13 11 32 17
14 17 33 6
15 27 34 11
16 17 35 29
17 15 36 11
18 22 N =778

We will group the data in Table 3.11 using the three-step process described earlier. First, the range is 36 — 0 =
36. Second, with a range of 36, let us try 8 intervals. As noted, there are no specific rules guiding the selection
of intervals. Eight seems like a good number here because it will create enough intervals so that the

distribution does not lose its shape (a danger when there are too few intervals in the grouped distribution) but

will significantly reduce the complexity of the ungrouped data and make for a clean grouped histogram. Third,

é:/—}.?S,

the width is 8 which we will round to 5. Each interval will contain five numbers.

The stated class limits will start with zero and continue until the highest number (here, 36) has been included
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in an interval. The left column in Table 3.12 shows the limits. To calculate the frequency for each group, we
sum the frequencies for each of the numbers in each one. For example, the frequency for the “0 — 4” group is 4
+51 + 42 + 44 + 38 = 179. The frequency for the “5 —9” group is 29 + 40 + 32 + 27 + 14 = 142. We complete

this process until all the ungrouped data have been shrunk down into the stated class limits.

Table 2.12 MNumber of Inmates ed in Small Jails, Grouped
e | ]

0-4 179

5-0 142

10-14 103

15-19 100

20-24 a1

25-29 75

30-34 58

35-39 40

N=778

After finishing the frequency table (Table 3.12), we can display the grouped data in a histogram. Refer to
Figure 3.16. A comparison between Figures 3.16 and 3.9 reveals the benefits of grouping. The bars in Figure
3.9 jump around a lot, but the bars in Figure 3.16 show a distinct and constant decline that quickly conveys
information about inmate populations in small jails. This figure would allow an audience to easily see that

small jails tend to hold only a few inmates.

Figure 3.16 Number of Inmates Housed in Small Jails, Grouped
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SPSS

This is our first encounter with SPSS. There are a few preliminary things you should know before you start
working with data. First, GIGO alert! Recall that when garbage goes in, the output is also garbage. Using the
wrong statistical technique will produce unreliable and potentially misleading results. Statistical software
programs generally do not alert you to errors of this sort; they will give you output even if that output is wrong
and useless. It is your responsibility to ensure that you are using the program correctly. Second, pay attention
to the SPSS file extension. The .sav extension signifies an SPSS data file: Anytime you see this extension, you
know the file contains data in SPSS format. SPSS is the only program that will open a file with the .sav

extension, so make sure you are working on a computer equipped with SPSS.

To obtain a frequency distribution, click on Analyze — Descriptive Statistics — Frequencies, as shown in Figure
3.17. Select the variable you want from the list on the left side and either drag it to the right or click the arrow
to move it over. For this illustration, we will use the LEMAS data displayed in the bar chart in Figure 3.3.
This variable captures the number (and corresponding percentage) of each type of policing agency in the

United States. Following the steps depicted in Figure 3.17 will produce the table shown in Figure 3.18.

The SPSS program can also be used to produce graphs and charts. The Chart Builder (accessible from the
Graphs drop-down menu) allows you to select a chart type and then choose the variable you want to use. The
SPSS Chart Builder requires that the level of measurement for each variable be set properly. SPSS will not
permit certain charts to be used with some levels of measurement. Before constructing graphs or charts, visit
the Measure column in the Variable View and make sure that continuous variables are marked as Scale and
that nominal and ordinal variables are designated as such. To begin the chart or graph, click Graphs — Chart
Builder. This will produce the dialog boxes shown in Figure 3.19, where a pie chart has been selected from the
list on the bottom left. In the Element Properties box on the right, you can change the metric used in the
chart. Counts are the default, but for reasons we covered in this chapter percentages are often preferable to

raw counts.

Figure 3.17 Running Frequencies in SPSS

@ Frequencies

Variable(s):
—_—_KG,,s-ii-RE  E - E Slalistics...
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b

s

[ Display frequency tables

(Lox J(easte ][ Reset ] (cancel ] Hetp |

Figure 3.18 SPSS Frequency Output
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Frequencies

Statistics
Agency Type
N Valid 2826
Missing 0
Agency Type
Cumulative
Frequency | Percent | Valid Percent Percent
Valid Municipal 2036 72.0 72.0 72.0
County 7 25.4 25.4 974
State 50 18 18 89.2
Tribal 23 .8 8 100.0
Total 2826 100.0 100.0

Figure 3.19 Using the SPSS Chart Builder to Create a Pie Chart

The Chart Builder can be used for bar graphs, too. Figure 3.20 displays the dialog box you will see if you
select Bar from the list on the lower left. For this graph, we will stick with the count default. Figures 3.21 and
3.22 show the pie chart and bar graph output, respectively.

Figure 3.20 Using the SPSS Chart Builder to Create a Bar Graph

—

Figure 3.21 SPSS Pie Chart
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Agency Type

1 Municipal 1 County
Bl State B Tribal

Figure 3.22 SPSS Bar Graph
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Bivariate contingency tables are available in SPSS, too. Locate this option through Analyze — Descriptive
Statistics — Crosstabs. Select the variable that you would like to put in the rows of the table and the one you
would like to place in the column. (Recall that there are no rules governing this choice, although it is common
to put the variable you conceptualize as the independent variable or predictor in the rows and the one you
think is a dependent variable or outcome in the columns.) For this example, we will again work with the
LEMAS variable capturing police agency types. The second variable we will use comes from the same
LEMAS survey and measures whether each agency offers incentive pay (i.e., raises for educational attainment

intended to encourage officers to obtain college degrees). It makes more sense to think that agency type would
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affect the offering of education incentives than to think the offering of educational incentives would affect an
agency’s jurisdiction (an unrealistic scenario). Therefore, the agency type variable will go into the rows and the
incentive variable will form the columns. We obtain percentages by clicking the Ce//s button and selecting row
or column percentages. For present purposes, we will opt for row percentages so SPSS will display the
percentage of each type of agency that does (and does not) offer educational incentives. Figure 3.23 shows the

output.

Finally, SPSS can be used to transform raw numbers into rates. To demonstrate this, we will keep working
with LEMAS and compute the number of municipal police officers per 1,000 residents for each of the city
police departments in the sample. Clicking on the Transform button at the very top of the SPSS data screen

and then clicking Compute will produce the Compute Variable box pictured in Figure 3.24.

Figure 3.23 SPSS Contingency Table Output (With Row Percentages)

Agency Type *Agency offers incentives for educational achievement? Crosstabulation

Agency offers incentives for
educational achieverment?
Yes No Total
Agency Type  Municipal Count a44 1068 2mz2
% within Agency Type 46.9% 53.1% | 100.0%
County Count 228 481 709
% within Agency Type 32.2% B7.8% | 100.0%
State Count 19 26 45
% within Agency Type 42.2% 57.8% | 100.0%
Tribal Count 8 15 23
% within Agency Type 34.8% 65.2% | 100.0%
Total Count 189 1590 2789
% within Agency Type 43.0% 57.0% | 100.0%
Figure 3.24 Creating Rates in SPSS
#3 Compute Varisble w
Targel Vasiabie: Humeric EXpeesion
M = [|(swomipopulason)® 1000
& agency_tipe | *
BN, . Funéon group.
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Date Arinmete
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In the Target Variable box (see Figure 3.24), type the name you want to give your new variable; in the present
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example, the variable will be called po/iceper1000. In the “Numeric Expression” area, type the equation you
wish SPSS to follow to create the new variable. Here, the portion of the equation reading
“(police/population)” tells the program to begin the computation by dividing the total number of police in a
jurisdiction by that jurisdiction’s population size, and the “*1000” instructs SPSS to then multiply the results

by 1,000. Click OK, and a new variable will appear at the very end of the data set. This is your rate variable.
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Learning Check 3.7

v

There is a good reason for using rates (such as the number of officers per 1,000 residents) to determine the size of a police agency rather
than simply using the number of officers employed by that organization. Can you explain why rates are better than raw counts in this

instance?

The chapter review questions contain directions for accessing data sets that you can use to practice
constructing charts and transforming variables into rates in SPSS. Play around with the data! Familiarize
yourself with SPSS; we will be visiting it regularly throughout the book, so the more comfortable you are with
it, the better prepared you will be. You do not have to worry about ruining the data set—if you make a
mistake, just click the “Undo” button or hit “Don’t save” when you exit the program, and the file will be as

good as new.

Chapter Summary

This chapter discussed some of the most common types of graphs and charts. Frequency distributions offer basic information about
the number of times certain characteristics appear in a data set. Frequencies are informative and can convey valuable information;
however, numbers are often difficult to interpret when they are in a raw format. Proportions and percentages offer a way to
standardize frequencies and make it easy to determine which characteristics occur more often and which less often. Rates are another
option for enhancing the interpretability of frequencies. Rates are generally multiplied by a number such as 1,000, 10,000, or
100,000.

Graphs and charts portray this same information—frequencies, proportions, percentages, and rates—using pictures rather than
numbers. Pictorial representations are more engaging than their numerical counterparts and can capture audiences’ interest more
effectively. Pie charts can be used with categorical variables that have five or fewer classes and are in percentage format. Bar graphs
are useful for categorical variables with any number of classes. They can be made from frequencies, proportions, percentages, or rates.
For continuous data, histograms and frequency polygons can be used to graph frequencies, proportions, or percentages. Line graphs
are useful for longitudinal data. Finally, some continuous variables that do not have a clear shape and are difficult to interpret in their
raw form can be grouped. Grouping transforms continuous variables into ordinal ones. Histograms can be used to display data that

have been grouped.

It is good to diversify a presentation by using a mix of pie charts, bar graphs, histograms, frequency polygons, and line charts.
Simplicity and variety are the keys to a good presentation. Simplicity ensures that your audience can make sense of your data display
quickly and easily. Variety helps keep your audience engaged and interested. Good data displays are key to summarizing data so that

you and others can get a sense for what is going on in a data set.

Thinking Critically

1. Suppose that in the past year, there were 15 incidents of violence committed by inmates against correctional staff in a nearby
prison. An administrator from the prison calls you to ask for an assessment of the severity of the problem of violence within
the prison (i.e., how prevalent inmate-on-staff violence is within this facility). What additional data will you request from the
prison administrator and what calculations will you perform? Think about rates, percentages, and longitudinal trends, as well
as any additional analyses that would help you understand this issue.

2. Consider three settings in which a researcher would potentially give presentations that summarize the results of data analyses:
academic conferences, presentations to practitioners (such as administrators from police agencies or jails), and presentations
to the community (such as community-based agencies or city councils). Based on the different audiences in each of these
three settings, explain what types of data displays you would use. In other words, how would you tailor your presentation to

make sure it was appropriate for your audience? Identify the displays you would use and explain your choices.
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Review Problems

1. The following table contains data from the BJS’s State Court Processing Statistics, which includes data on felony defendants
in large urban counties in 2009 (Reaves, 2013). The variable is mosz serious arrest charge, which captures the most severe of the

offenses for which defendants were arrested.

psamoursion |

Violent Offense 13,938
Property Offense 16,241
Drug Offense 18,220
Public-Order Offense 7,504

N = 55,903

1. Construct columns for proportion, percentage, cumulative frequencies, cumulative proportions, and cumulative
percentages.
2. Identify the types of charts or graphs that could be used to display this variable.
3. Based on your answer to (b), construct a graph or chart for this variable using percentages.
2. The following table contains data from the State Court Processing Statistics showing the number of urban felony defendants

sentenced to prison time after conviction for different types of property offenses (Reaves, 2013).

e

Burglary 1,191
Larceny/Theft 901
Motor Vehicle Theft 329
Forgery 194
Fraud 256
Other Property 365
Offense
N= 3236

1. Construct columns for proportion, percentage, cumulative frequencies, cumulative proportions, and cumulative
percentages.
2. Identify the types of charts or graphs that could be used to display this variable.
3. Based on your answer to (b), construct a graph or chart for this variable using percentages.
3. The following table contains data from the COJ facilities showing the number of inmates on work release in medium-sized
facilities that offer this program for inmates.
1. Choose the appropriate graph type for this variable and construct that graph using frequencies.
2. Group this variable using 10 intervals.

3. Choose an appropriate graph type for the grouped variable and construct that graph using frequencies.
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1. Choose the appropriate graph type for this variable and construct that graph using frequencies.
2. Group this variable using six intervals.
3. Choose an appropriate graph type for the grouped variable and construct that graph using frequencies.
5. The General Social Survey (GSS) asks respondents whether they think that marijuana should be legalized. The following
table contains the percentage of respondents who supported legalization in each wave of the GSS from 1990 to 2014.
Construct a line graph of these data, and then interpret the longitudinal trend. Does support for marijuana legalization

appear to be increasing, decreasing, or staying the same over time?
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B AT AT

1990 2002

1881 12 2004 36
1993 23 2006 a7
1994 24 2008 40
1996 27 2010 48
1988 29 2012 48
2000 34 2014 55

6. The following table displays data from the official website of the U.S. courts (www.uscourts.gov) on the number of wiretap
authorizations issued by state and federal judges every year from 1997 to 2016. Construct a line graph of the data, and then

interpret the longitudinal trend. Have wiretap authorizations been increasing, decreasing, or staying the same over time?

I I T

1997 1,186 2007 2,208
1998 1,329 2008 1,891
1999 1,350 2009 2,376
2000 1,190 2010 3,194
2001 1,491 2011 2,732
2002 1,358 2012 3,395
2003 1,442 2013 3,576
2004 1,710 2014 3,554
2005 1,773 2015 4,148
20086 1,839 2016 3,168

7. The following table contains data on the number of violent crimes that occurred in six cities during 2015. The table also

displays each city’s population.

Birmingham, AL 3,707 212,291
Portland, ME 215 66,816
San Francisco, CA 6,710 863,782

Tampa, FL 2,298 364,383
Ann Arbor, MI 228 118,730
Atlanta, GA 5,203 464,710

1. Compute the rate of violent crime per 1,000 city residents in each city.
2. Select the appropriate graph type for this variable and construct that graph using rates.
8. The following table contains data on the number of property crimes that occurred in six cities during 2015. The table also

displays each city’s population.
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10.

11.

12.

13.

14.

P

Phoenix, AZ 54,456 1,559,744
Hartford, CT 5,468 124,653
Bellingham, 4,067 83,976
WA

Cincinnati, OH 16,446 258,478
Pinehurst, NC 91 15,667
St. Louis, MO 20,028 317,095

1. Compute the rate of property crime per 1,000 city residents in each city.
2. Select the appropriate graph type for this variable and construct that graph using rates.

. The website for this chapter (http://www.sagepub.com/gau) contains a data set called Work Release for Chapter 3.sav. These

are the data from Review Problem 3. Use the SPSS Chart Builder to construct a frequency histogram showing the number of
inmates on work release in facilities offering this service.

The file City Police for Chapter 3.sav contains data from the 2013 LEMAS, narrowed to municipal (town and city)
departments. This data file contains the variable forfeifure, which indicates whether each agency includes asset forfeiture
revenues as a funding source in its operating budget. Run a frequency analysis to find out the percentage of departments that
do and do not include forfeiture in their operating budgets.

In the City Police for Chapter 3.sav file, there is a variable called sworn that displays each police department’s number of full-
time sworn officers and a variable called population that records the city population served by each department. Use these two
variables and the compute function to calculate the number of officers per 1,000 population for each department.

The website (www.sagepub.com/gau) also features a data file called Hate Crimes for Chapter 3.sav. This is the same data set
used in the in-text demonstration of line graphs. Use the SPSS Chart Builder to construct a line graph mirroring the one in
the text.

The website (www.sagepub.com/gau) contains a data set called Crime Attitudes for Chapter 3.sav. This is a trimmed version
of the 2014 GSS. One of the variables contained in the data set is courts, which measures respondents’ opinions about how
well courts punish people who commit crimes. Select an appropriate graph or chart and create it using SPSS.

The Crime Attitudes for Chapter 3.sav file also contains the variable marijuana, which captures respondents’ beliefs about
whether marijuana should be made legal. Use SPSS to construct a contingency table with cour#s in the rows and marijuana in
the columns. Include row percentages in your table. Provide a brief written explanation of the percentages and apparent

overlap between these two variables.
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Measures of Central Tendency
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Learning Objectives

e Define the three types of data distribution shapes.

o Identify the shape of a distribution based on a comparison of the mean and median.

® Describe the mode, the median, and the mean.

o Explain which level(s) of measurement each measure of central tendency can be used with.

o Identify, locate, or calculate the mode, the median, and the mean for a variety of variables and variable types.

e Explain the difference between the two mean formulas and correctly use each one on the appropriate types of data.
e Explain deviation scores and their relationship to the mean.

e Use SPSS to produce the mode, the median, and the mean.

Criminal justice and criminology researchers and practitioners are often interested in averages. Averages offer
information about the centers or middles of distribution. They indicate where data points tend to cluster. This
is important to know. Consider the following questions that might be of interest to a researcher or

practitioner:

1. What is the most common level of educational attainment among police officers?

2. How does the median income for people living in a socioeconomically disadvantaged area of a certain
city compare to that for all people in the city?

3. What is the average violent crime rate across all cities and towns in a particular state?

4. Do prison inmates, in general, have a lower average reading level compared to the general population?

All of these questions make some reference to an average, a middle point, or, to use a more technical term, a
measure of central tendency. Measures of central tendency offer information about where the bulk of the
scores in a particular data set are located. A person who is computing a measure of central tendency is, in

essence, asking, “Where is the middle?”

Measures of central tendency: Descriptive statistics that offer information about where the scores in a particular data set tend to

cluster. Examples include the mode, the median, and the mean.

Averages offer information about the normal or typical person, object, or place in a sample. A group of people
with an average age of 22, for instance, probably looks different from a group averaging 70 years of age.
Group averages help us predict the score for any individual within that group. Suppose in two samples of
people, the only information you have is that one group’s average weight is 145 pounds and that the other’s is
200 pounds. If someone asked you, “How much does an individual person in the first group weigh?” your
response would be, “About 145 pounds.” If you were asked, “Who weighs more, a person randomly selected
from the first group or from the second group?” you would respond that the person from the second group is
probably the heavier of the two. Of course, you do not know for sure that you are correct; there might be
people in the first group who are heavier than some people in the second group. The average, nonetheless,
gives you predictive capability. It allows you to draw general conclusions and to form a basic level of

understanding about a set of objects, places, or people.

Measures of central tendency speak to the matter of distribution shape. Data distributions come in many
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different shapes and sizes. Figure 4.1 contains data from the Police—Public Contact Survey (PPCS; see Data
Sources 2.1) showing the ages of non-Hispanic respondents who reported having called the police for help
within the past 24 months. This is the same variable used in the frequency polygon shown in Figure 3.10 in
the previous chapter. The shape this variable assumes is called a normal distribution. The normal curve
represents an even distribution of scores. The most frequently occurring values are in the middle of the curve,
and frequencies drop off as one traces the number line to the left or right. Normal distributions are ideal in
research because the average is truly the best predictor of the scores for each case in the sample, since the

scores cluster around that value.

Normal distribution: A set of scores that clusters in the center and tapers off to the left (negative) and right (positive) sides of the

number line.

Standing in contrast to normal curves are skewed distributions. Skew can be either positive or negative. The
distribution in Figure 4.2 contains the data from the Census of Jails (COJ; see Data Sources 3.1) showing the
number of inmate-on-staff assaults each jail reported experiencing in the past year. The distribution in Figure
4.2 manifests what is called a positive skew. Positively skewed data cluster on the left-hand side of the
distribution, with extreme values in the right-hand portion that pull the tail out toward the positive side of the

number line. Positively skewed data are common in criminal justice and criminology research.

Positive skew: A clustering of scores in the left-hand side of a distribution with some relatively large scores that pull the tail toward

the positive side of the number line.

Figure 4.1 Ages of Non-Hispanic Respondents Who Called the Police in the Past 24 Months
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Learning Check 4.1

v

Skew type (positive versus negative) is determined by the location of the clongated tail of a skewed distribution. Positively skewed
distributions are those in which the tail extends toward the positive side of the number line; likewise, negative skew is signaled by a tail

extending toward negative infinity. Set aside your book and draw one of each type of distribution from memory.

Figure 4.2 Number of Inmate Assaults on Jail Staff
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Figure 4.3 shows 2014 General Social Survey (GSS; see Data Sources 2.2) respondents’ annual family
incomes. This distribution has a negative skew: Scores are sparse on the left-hand side, and they increase in

frequency on the right side of the distribution.

Negative skew: A clustering of scores in the right-hand side of a distribution with some relatively small scores that pull the tail

toward the negative side of the number line.

Knowing whether a given distribution of data points is normal or skewed is vital in criminal justice and
criminology research. The average is an excellent predictor of individual scores when the curve is normal.
When a distribution departs from normality, however, the average becomes less useful and, in extreme cases,
can be misleading. For example, the mean number of inmate-on-staff assaults is 5.5 per jail, but you can see in
Figure 4.2 that the vast majority of jails had four or fewer assaults; in fact, a full two-thirds experienced just
two, one, or even zero assaults. A statement such as “Jails had an average of 5.5 inmate-on-staff assaults in
2013” would be technically correct, but would be very misleading because the typical jail has fewer incidents,
and many have a great deal more than that as well. Because this distribution is so skewed, the mean loses its
usefulness as a description of the middle of the data. Distribution shape plays a key role in more-complicated
statistical analyses (more on this in Parts II and III) and is important in a descriptive sense so that information
conveyed to academic, practitioner, or lay audiences is fully accurate and transparent. You must always know

where the middle of your data set is located; measures of central tendency give you that information.

Figure 4.3 GSS Respondents’ Annual Family Incomes
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The Mode

The mode is the simplest of the three measures of central tendency covered in this chapter. It requires no
mathematical computations and can be employed with any level of measurement. It is the only measure of
central tendency available for use with nominal data. The mode is simply the most frequently occurring
category or value. Table 4.1 contains data from the 2011 PPCS (Data Sources 2.1). Interviewers asked PPCS
respondents whether they had been stopped by police while driving a vehicle. The people who answered yes
were then asked to report the reason for that stop. This is a nominal-level variable. Table 4.1 presents the
distribution of responses that participants gave for their stop. The mode is speeding because that is the stop
reason that occurs most frequently (i.e., 2,040 people said that this is the violation for which they were pulled

over by police).

Mode: The most frequently occurring category or value in a set of scores.

A frequency bar graph of the same data is shown in Figure 4.4. The mode is easily identifiable as the category
accompanied by the highest bar.

The mode can also be used with continuous variables. Instead of identifying the most frequently occurring
category as with nominal or ordinal data, you will identify the most common value. Figure 4.5 shows a
frequency histogram for the variable from the PPCS that asks respondents how many face-to-face contacts
they had with the police in the past 12 months. The sample has been narrowed to include only female
respondents who were 21 or younger at the time of the survey. Can you identify the modal number of

contacts? If you answered “1,” you are correct!

Table 4.1 Among Stopped Drivers, Reason for the Stop

Speeding 2,040
Vehicle Defect 599
Record Check 381
Roadside Check 66
Seatbelt Violation 202
Illegal Turn or Lane Change 257
Stop Sign or Light Violation 275
Cellphone Usage 76
Other 283
Total N=4,179
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Learning Check 4.2

v

Flip back to Table 3.7 in the previous chapter and identify the modal jail size. (Hint: Use the row totals.)

Figure 4.4 Among Stopped Drivers, Reason for the Stop
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Figure 4.5 Number of Police Contacts in Past 12 Months Among Females Age 21 and Younger
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Research Example 4.1 Are People Convicted of Homicide More Violent in Prison Than People Convicted of Other Types of
Offenses?

Sorensen and Cunningham (2010) analyzed the institutional conduct records of all inmates incarcerated in Florida state correctional
facilities in 2003, along with the records of inmates who entered prison that same year. They divided inmates into three groups. The
stock population consisted of all people incarcerated in Florida prisons during 2003, regardless of the year they were admitted into
prison. The new persons admitted into prison during 2002 and serving all of 2003 composed the admissions cohort. The close
custody group was a subset of the admissions cohort and was made of the inmates who were considered to be especially high threats
to institutional security. The table below contains descriptive information about the three samples. For each group, can you identify
the modal custody level and modal conviction offense type? (Hint: These are column percentages.) Visit www.sagepub.com/gau to

view the full article and see the results of this study.
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Demographics

Stock Popolation
(N=51.527)

Admissions Cohort
(N = 14,088)

Close Custody Sample
N=4113)

Custody level (%)

Community
Minimum
Medium
Close

Death row

Conviction offense type (%)

6.0
17.2
27.2
48,9

0.6

10.4
237
338
320

0.1

0.0
0.0
0.0
100.0
0.0

Homicide

Other violent
Property

Drugs

Public orderfweapons.

18.6
396
21.4
14.7

5.7

59
338
26.7
24.0

9.6

Source: Adapted from Table 1 in Sorensen and Cunningham (2010).

Source: Adapted from Table 1 in Sorensen and Cunningham (2010).

10.9
46.2
21.0
14.7

7.2
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Do Latino Drug Traffickers’ National Origin and Immigration Status
Affect the Sentences They Receive?

The United States is experiencing significant demographic shifts, one of the most notable being the steady increase in the percentage
of the population that is Latino. Immigration (both legal and illegal) is a significant contributor to this trend. The influx has inspired
many native-born U.S. citizens to react with a get-tough, law enforcement—oriented mind-set toward immigrants who commit
crimes in this country. Mexican immigrants, in particular, are frequently seen as a threat, and this belief could translate into harsher
treatment for those immigrants who commit crimes. Logue (2017) examined whether Latino drug traffickers’ countries of origin and
their immigration status impacted the severity of the sentences they receive in federal court. One of the variables she included in her
analysis of sentencing outcomes was the type of drug that defendants were alleged to have trafficked. The table shows the breakdown
of drug types across defendants of different origins and immigration statuses. Can you identify the modal drug type for each of the
four defendant groups? (Hint: These are column percentages.) Visit www.sagepub.com/gau to view the full article and see the results

of this study.
I
Mexican, Legal Undocumented Legal Undocumented

Drug Tyrpe (%)

Powder cocaine 27.5 21.5 44.1 53.6
Crack cocaine 0.4 0.7 3.9 4.3
Herain 3.7 4.5 28.1 25.9
Marijuana 48.9 49.4 15.4 7.5
Methamphetamine 19.2 23.8 4.5 6.6
Other 0.2 0.1 4.0 2.1

Source: Adapted from Table 1 in Logue (2017).
Source: Adapted from Table 1 in Logue (2017).
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Learning Check 4.3

v

Remember that the mode is the category or value that occurs the most frequently—it is zoz the frequency itself. Check your ability to tell
the difference between the mode and its frequency by looking back at Figure 4.2. Identify the modal number of assaults and the

approximate frequency for this number.

The previous two examples highlight the relative usefulness of the mode for categorical data as opposed to
continuous data. This measure of central tendency can be informative for the former but is usually not all that
interesting or useful for the latter. This is because there are other, more-sophisticated measures that can be

calculated with continuous data.

The strengths of the mode include the fact that this measure is simple to identify and understand. It also, as
mentioned previously, is the only measure of central tendency that can be used with nominal variables. The
mode’s major weakness is actually the flipside of its primary strength: Its simplicity means that it is usually too
superficial to be of much use. It accounts for only one category or value in the data set and ignores the rest. It
also cannot be used in more-complex computations, which greatly limits its usefulness in statistics. The mode,
then, can be an informative measure for nominal variables (and sometimes ordinal, as well) and is useful for

audiences who are not schooled in statistics, but its utility is restricted, especially with continuous variables.
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The Median

The median (Md) is another measure of central tendency. The median can be used with continuous and
ordinal data; it cannot be used with nominal data, however, because it requires that the variable under

examination be rank orderable, which nominal variables are not.

Median: The score that cuts a distribution in half such that 50% of the scores are above that value and 50% are below it.

The median is the value that splits a data set exactly in half such that 50% of the data points are below it and
50% are above it. For this reason, the median is also sometimes called the 505 percentile. The median is a
positional measure, which means that it is not so much calculated as it is located. Finding the median is a
three-step process. First, the categories or scores need to be rank ordered. Second, the median position (MP)

can be computed using the formula

N+1
MP = T Formula 4(1)

where
N = total sample size

The median position tells you where the median is located within the ranked data set. The third step is to use
the median position to identify the median. When NV is odd, the median will be a value in the data set. When

Nis even, the median will have to be computed by averaging two values.

Let us figure out the median violent crime rate among the five Colorado cities listed in Table 4.2. The
variable violent crime rate is continuous (specifically, ratio level), and the median is therefore an applicable

measure of central tendency. The numbers in Table 4.2 are derived from the 2015 Uniform Crime Reports
(UCR; see Data Sources 1.1).

Table 4.2 Viclent Crime Rates in Five Colorado Cities

Aspen 8.77
Colorado Springs 43.83
Denver 67.39
Woodland Park 15.30
Steamboat Springs 22.74
=5

The first step is to rank the rates in either ascending or descending order. Ranked in ascending order, they

look like this:

8.77115.302 22.743 43.83% 67.39°
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Superscripts have been inserted in the ranked list to help emphasize the median’s nature as a positional
measure that is dependent on the /ocation of data points rather than these points’ actual values. The

superscripts represent each number’s position in the data set now that the values have been rank ordered.

Second, the formula for the median position will tell you where to look to find the median. Here,

Mp=21_2_3
2 2

This means that the median is in position 3. Remember that the MP is nof the median; rather, it is a “map”

that tells you where to look to find the median.

Finally, use the MP to identify the median. Since the median is in position 3, we can determine that Md =

22.74. This group of five Colorado cities has a median violent crime rate of 22.74 per 10,000.

In this example, the sample had five cases. When there is an even number of cases, finding the median is
slightly more complex and requires averaging two numbers together. To demonstrate this, we will use 2015

property crime rates in six North Dakota cities (Table 4.3).
First, rank the values: 38.501 130.372 149.67% 239.09* 297.24° 325.03°.

Second, find the median position:

MP:E:Z:}s
2 2

Table 4.3 Property Crime Rates in Six North Dakota Cities

ey o O e

Bismarck 130.27
Fargo 297.24
Burlington 38.50
Minot 325.03
Valley City 239.09
Lisbon 149.67
N=6

Notice that the MP has a decimal this time—this is what happens when the number of cases is even rather
than odd. What this means is that the median is halfway between positions 3 and 4, so finding Md requires

averaging these two numbers. The median is

149.67 +239.09 388.76

This sample of six North Dakota cities has a median property crime rate of 194.38 per 10,000 residents. Of

=104.38

these cities, 50% have rates that are lower than this, and 50% have rates that are higher.

For another example of locating the median in an even-numbered sample size, we will use state-level
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homicide rates (per 100,000 population) from the 2015 UCR. Table 4.4 shows the data. To increase the

complexity a bit, we will use eight states.

Table 4.4 Homicide Rates in Eight States

Homicides per 100,000 Residents

Alabama 7.16
Arkansas 6.08
Illinois 5.79
Hawai'i 1:38
Idaho 1.93
Indiana 5.63
Kansas 4.40
Massachusetts 1.88
N=8

Following the three steps, we first rank order the values:

1.331 1.882 1.933 4.40* 5.63° 5.79% 6.087 7.16%

Next, we use the MP formula to locate the position of the median in the data:

p=""0? 4
2 2

The MP of 4.5 tells us the median is halfway between the numbers located in positions 4 and 5, so we take
these two numbers and find their average. The number in position 4 is 4.40 and the number in position 5 is

5.63. Their average is

Md = 4.40;5.63 _ 10.03

The median homicide rate (per 100,000) in this sample of eight states is 5.02.

=5.02
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Learning Check 4.4

v

Add the homicide rate for the state of Maryland (8.59) to the sample of states in Table 4.4 and locate the median using the three steps.

How much did the median change with the inclusion of this state?

Medians can also be found in ordinal-level variables, though the median of an ordinal variable is less precise
than that of a continuous variable because the former is a category rather than a number. To demonstrate, we
will use an item from the PPCS that measures the driving frequency among respondents who said that they
had been pulled over by police for a traffic stop within the past 6 months, either as a driver or as a passenger in

the stopped vehicle. Table 4.5 displays the data.

The first two steps to finding the Md of ordinal data mirror those for continuous data. First, the median
position must be calculated using Formula 4(1). For ordinal data, the total sample size (V) is found by
summing the frequencies. In Table 4.5, N = 1,544 and so the MP is calculated as

1.344+1 L1545
MP = = = =1{25

The median position in this case is a person—the person who is in position 772.5 is the median.

The second step involves identifying the category in which the MP is located. Instead of ranking the
categories according to frequencies as we did with continuous data, we are now going to arrange them in
either ascending or descending order according to the categories themselves. In other words, the internal
ranking system of the categories themselves is used to structure the sequence of the list. In Table 4.5, the
categories are arranged from the most-frequent driving habits (Every Day or Almost Every Day) to the least-
frequent ones (Never). As such, the categories are already in descending order and do not need to be

rearranged.

Table 4.5 Driving Frequency of PPCS Respondents Who
ienced Traffic Stops

Every Day or Almost Every Day 751
A Few Days a Week 217
A Few Days a Month 82
A Few Times a Year 37
Never 457

N= 1544

Next, add cumulative frequencies of the rank-ordered categories until the sum meets or exceeds the MP.
Table 4.6 illustrates this process. Here, 751 + 217 = 968, so the median is located in the 4 Few Days a Week
category. In other words, if you lined up all 1,544 people in this sample in the order in which they answered

the question, labeling the people in each group accordingly, and then counted them until you reached 772.5,
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the person in that position would be standing in the 4 Few Days a Week group. Therefore, we now know that

half the people in this sample drive a few days a week or more, and half drive a few days a week or less.

pondents Who

I R T
Every Day or Almost Every Day 751 751
A Few Days a Week 217 968
A Few Days a Month 82 1,050
A Few Times a Year 37 1,087
Newver 457 1,544
N=1,544

Note how much less informative the median is for ordinal variables as compared to continuous ones. For the
crime rates in Tables 4.2 through 4.4, we were able to identify the specific, numerical median; for the driving-
frequency variable in Table 4.5, we are able to say only that the median case is contained within the 4 Few

Days a Week category. This is a rough estimate that paints a limited picture.
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Learning Check 4.5

v

Rearrange the frequencies from Table 4.5 so that they are in descending order of driving frequency, rather than in ascending order as was

the case in the demonstration. Complete the cumulative-frequencies exercise to locate the median. What is your conclusion?

The median has advantages and disadvantages. Its advantages are that it uses more information than the mode
does, so it offers a more-descriptive, more-informative picture of the data. It can be used with ordinal

variables, which is advantageous because, as we will see, the mean cannot be.

A key advantage of the median is that it is not sensitive to extreme values or outliers. T'o understand this
concept, revisit T'able 4.3 and replace Minot’s rate of 325.03 with 600.00; then relocate the median. It did not
change, despite a near doubling of this city’s crime rate! That is because the median does not get pushed and
pulled in various directions when there are extraordinarily high or low values in the data set. As we will see,
this feature of the median gives it an edge over the mean, the latter of which is sensitive to extremely high or

extremely low values and does shift accordingly.

The median has the disadvantage of not fully using all available data points. The median offers more
information than the mode does, but it still does not account for the entire array of data. This shortfall of the
median can be seen by going back to the previous example regarding Minot’s property crime rate. The fact
that the median did not change when the endpoint of the distribution was noticeably altered demonstrates
how the median fails to offer a comprehensive picture of the entire data set. Another disadvantage of the
median is that it usually cannot be employed in further statistical computations. There are limited exceptions
to this rule, but, generally speaking, the median cannot be plugged into statistical formulas for purposes of

performing more-complex analyses.
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The Mean

This brings us to the third measure of central tendency that we will cover: the mean. The mean is the
arithmetic average of a data set. Unlike locating the median, calculating the mean requires using every raw
score in a data set. Each individual point exerts a separate and independent effect on the value of the mean.
The mean can be calculated only with continuous (interval or ratio) data; it cannot be used to describe

categorical variables.

Mean: The arithmetic average of a set of data.

There are two formulas for the computation of the mean, each of which is for use with a particular type of
data distribution. The first formula is one with which you are likely familiar from college or high school math

classes. The formula is
Formula 4(2)

X (x bar) = the sample mean,
2 (sigma) = a summation sign directing you to sum all numbers or terms to the right of it,
x = values in a given data set, and

N = the sample size.

This formula tells you that to compute the mean, you must first add all the values in the data set together and
then divide that sum by the total number of values. Division is required because, all else being equal, larger
data sets will produce larger sums, so it is vital to account for sample size when attempting to construct a

composite measure such as the mean.

For the example concerning computation of the mean, we can reuse the Colorado violent crime rate data from

Table 4.2:

8.07+4283+061239+15.304+22.7% 158.03
- -

In 2015, these five cities had a mean violent crime rate of 31.61 per 10,000 residents. Let us try one more

=31.61

X =

example using data from Table 4.4 (homicide rates in 8 states). The mean is calculated as

B 7.16+6.08+5.79+1.33+1.93+5.63+4.40+1.88 B 34.20 _498
= = = =4,

=
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Learning Check 4.6

v

Practice calculating the mean using the property crime rates in Table 4.3.

The second formula for the mean is used for large data sets that are organized in tabular format using both an
x column that contains the raw scores and a frequency (/) column that conveys information about how many
times each x value occurs in the data set. Table 4.7 shows data from the Bureau of Justice Statistics (BJS) on
the number of death-sentenced prisoners received per state in 2013 (Snell, 2014). Note that the fcolumn
sums to 36 rather than 50 because in 2013, 14 states did not authorize the death penalty and are thus excluded
from the analysis. (This number climbed to 15 that same year when Maryland abolished capital punishment
and the governor commuted the sentences of the four people remaining on death row.) Table 4.7 contains the
numbers that states reported receiving and the frequency of each number. For instance, 20 states that
authorize the death penalty did not admit any new prisoners to death row, while 5 admitted one new inmate

each.

To calculate the mean using frequencies, first add a new column to the table. This column—titled fx—is the
product of the x and fcolumns. The results of these calculations for the death row data are located in the
right-hand column of Table 4.8. The fx column saves time by using multiplication as a shortcut and thereby
avoiding cumbersome addition. Using the conventional mean formula would require extensive addition
because you would have to sum 36 numbers (i.e., 20 zeroes plus 5 ones plus 4 twos, and so on). This process is
unwieldy and impractical, particularly with very large data sets. Instead, merely multiply each value by its
frequency and then sum these products to find the total sum of all x values. You can see from Table 4.8 that,

in 2013, states received 81 new death-sentenced inmates.

Table 4.7 Number of Death-Sentenced Prisoners Received by

States, 2013

e

0 20

5 TR = B 5 TR S o S 5 R
= e = W R R

N=386

Once the fx column is complete and has been summed, the mean can be calculated using a formula slightly

different from the one presented in Formula 4(2). The mean formula for large data sets is
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N =

bl

3 e
N Formula 4(3)

where

/= the frequency associated with each raw score x and

x = the product of x and f

Table 4.8
EZZEZT I

0 20 0

1 5 5

2 2 4

3 2 6

4 3 12

5 1 5

9 1 9

15 1 15

25 1 25

N=236 =81

The process of computing this mean can be broken down into three steps: (1) Multiply each x by its £, (2) sum
the resulting fx products, and (3) divide by the sample size V. Plugging the numbers from Table 4.8 into the

formula, it can be seen that the mean is

f:ﬂ =2.25
36

In 2013, the 36 states that authorized use of the death penalty each received a mean of 2.25 new death-

sentenced prisoners.
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Learning Check 4.7

v

Anytime you need to compute a mean, you will have to choose between Formulas 4(2) and 4(3). This is a simple enough choice if you just
consider that in order to use the formula with an £in it, there must be an f'column in the table. If there is no f'column, use the formula
that does not have an . Refer back to Table 2.9 in Chapter 2. Which formula would be used to calculate the mean? Explain your answer.

As practice, use the formula and compute the mean number of prisoners executed per state.

Note that Table 2.9 contains all 50 states, including those states that have abolished capital punishment, whereas Tables 4.7 and 4.8
contain only those 36 states that allowed the death penalty at the time the data were collected. What would happen to the mean
calculated based on Table 4.8 if the 14 states that did not allow the death penalty (and thus had zero admissions) were added to the table
and to the computation of the mean? Alternatively, what would happen to the mean you calculated on Table 2.9 if the 14 states without
capital punishment (which therefore had no executions) were removed from the calculation of the mean? Think about these questions
theoretically and make a prediction about whether the mean would increase or decrease. Then make the change to each set of data and

redo the means. Were your predictions correct?

Research Example 4.2 How Do Offenders’ Criminal Trajectories Impact the Effectiveness of Incarceration?

It is well known that some offenders commit a multitude of crimes over their life and others commit only a few, but the intersection
of offense volume (offending rate) and time (the length of a criminal career) has received little attention from criminal
justice/criminology researchers. Piquero, Sullivan, and Farrington (2010) used a longitudinal data set of males in South London who
demonstrated delinquent behavior early in life and were thereafter tracked by a research team who interviewed them and looked up
their official conviction records. The researchers were interested in finding out whether males who committed a lot of crimes in a
short amount of time (the short-term, high-rate [STHR] offenders) differed significantly from those who committed crimes at a
lower rate over a longer time (the long-term, low-rate [LTLR] offenders) on criminal justice outcomes. The rescarchers gathered the
following descriptive statistics. The numbers not in parentheses are means. The numbers in parentheses are standard deviations,

which we will learn about in the next chapter.

You can see from the table that the LTLR offenders differed from the STHR offenders on a number of dimensions. They were,
overall, older at the time of their first arrest and had a longer mean career length. They committed many fewer crimes per year and

were much less likely to have been sentenced to prison.

Piquero et al.’s (2010) analysis reveals a dilemma about what should be done about these groups of offenders with respect to
sentencing; namely, it shows how complicated the question of imprisonment is. The STHR offenders might appear to be the best
candidates for incarceration based on their volume of criminal activity, but these offenders’ criminal careers are quite short. It makes
no sense from a policy and budgetary perspective to imprison people who would not be committing crimes if they were free in
society. The STHR offenders also tended to commit property offenses rather than violent ones. The LTLR offenders, by contrast,
committed a disproportionate number of violent offenses despite the fact that their overall number of lifetime offenses was lower
than that for the STHR group. Again, though, the question of the utility of imprisonment arises: Is it worth incarcerating someone
who, though he might still have many years left in his criminal career, will commit very few crimes during that career? The dilemma
of sentencing involves the balance between public safety and the need to be very careful in the allotting of scarce correctional

resources.
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Offender Type

Variable LTIR (W =44) STHR (N = 21)

Overall career length (years) 14.5 (6.50) 10.8 (4.40)
Offenses committed per year 42 (.31) 1.25(.72)
Age at first conviction 17.8 (4.70) 13.5 (2.30)
Total convictions 4.9 (2.40) 11.5 (4.10)
Percentage ever incarcerated 9.1% 61.9%

Number of times incarcerated 1.46 (.50) 1.23 (.66)
Years incarcerated 1.23(.76) 1.05 (.56)

Source: Adapted from Table 1 in Piquero et al. (2010).
Source: Adapted from Table 1 in Piquero et al. (2010).
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Can Good Parenting Practices Reduce the Criminogenic Impact of
Youths’ Time Spent in Unstructured Activities?

Youths spending time with peers, away from parents and other adults, are at elevated risk for engaging in delinquency either
individually or in a group setting. The chances of unstructured, unsupervised activities leading to antisocial acts increases in
disadvantaged urban settings, where opportunities for deviance are higher and youths who have never been in trouble before are
more likely to encounter delinquent peers. Janssen, Weerman, and Eichelsheim (2017) posited that parents can reduce the chances
that their children’s unstructured time will result in deviance or delinquency. The researchers hypothesized that strong bonds
between parents and children mitigate the criminogenic impacts of time spent in urban environments with peer groups, as does the
extent to which parents monitor their children and set boundaries. They used a longitudinal research design, wherein a random
sample of adolescents was interviewed twice over a span of two years. Data were collected on how active parents were in their
children’s lives, the quality of each parent—child relationship, time spent in unstructured activities within disorderly environments,
and the number of delinquent acts each child had committed. The table contains the means and the standard deviations for each

wave of data collection.

The authors found that all three measures of positive parenting practices significantly reduced children’s delinquency. There was no
indication that positive parenting buffers children against the deleterious impacts of criminogenic environments; however, good
parenting and strong parent—child bonds did negate the effects of increases in the amount of time adolescents spent in these
environments. These results suggest that although parenting practices alone do not fully combat the bad influence of unstructured
time spent in disorderly neighborhoods, they can offset the effects of an increase in time spent in this manner. Parents have an

important role in preventing their children from slipping into deviance and delinquency.

T e | e
Parental monitoring 17.35 2.66 16.36 4.56
Parental limit setting 16.86 2.66 16.61 2.25
Quality of relationship 23.05 3.30 22.76 3.42
Time spent in unstructured 0.73 1.93 1.22 243
activities
Delinquency 5.50 9.00 431 7.15

Source: Adapted from Table 1 in Janssen et al. (2017).
Source: Adapted from Table 1 in Janssen et al. (2017).
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Learning Check 4.8

v

Explain why the mean cannot be calculated on ordinal data. Look back at the driving frequency variable in Table 4.6 and identify the

information that is missing and prevents you from being able to calculate a mean.

The mean is sensitive to extreme values and outliers, which gives it both an advantage and a disadvantage
relative to the median. The advantage is that the mean uses the entire data set and accounts for “weird” values
that sometimes appear at the high or low ends of the distribution. The median, by contrast, ignores these
values. The disadvantage is that the mean’s sensitivity to extreme values makes this measure somewhat
unstable; it is vulnerable to the disproportionate impact that a small number of extreme values can exert on the

data set.

To illustrate this property of the mean, consider Table 4.9, which contains the 2015 homicide rates for six
cities in California. Trace the changes in the mean homicide rates from left to right. Do you notice how the
rate increases with the successive introductions of Los Angeles, Soledad, and San Bernardino? Los Angeles
pulls the mean up from 2.17 to 3.41, and Soledad tugs it to 5.11. The most dramatic increase occurs when
San Bernardino is added: The mean shoots up to 7.65. The successive addition of higher-rate cities caused, in

total, more than a threefold increase from the original mean across the three low-crime cities.

Table 4.2 Homicide Rates in California Cities

Homisides per 106,000 | Homicidas per 100,008 | Homicides per 100,000 | Homicides per 160,008
264

San Diego 264 2.64 2.64
Redlands 2.81 2.81 2.81 2.81
Santa Monica 1.07 1.07 1.07 1.07
Los Angeles - 7.12 7.12 7.12
Soledad - - 11.92 11.92
San Bernarding - - - 20.33
Sample size N=3 N=4 N=5 N=6
Hiean E=6':2=2.1? E=$=3.41 E=25;6=5.11 Eui;g=?.$5

This demonstrates how the inclusion of extreme values can cause the mean to move in the direction of those
values. A score that is noticeably greater than the others in the sample can draw the mean upward, while a
value that is markedly lower than the rest can drive the mean downward. There is a good reason why, for
example, average income in the United States is reported as a median rather than a mean—a mean would
lump extremely poor people who are barely scraping by in with multibillionaires. That would not be accurate
at all! The apparent “average” income in the United States would be huge. Finding the point at which 50% of
households sit below that particular annual income and 50% above it is more useful and accurate. Because of
its sensitivity to extreme values, the mean is most informative when a distribution is normally distributed; the
accuracy of the mean as a true measure of central tendency is reduced in distributions that are positively or
negatively skewed, and the mean can actually become not merely inaccurate but downright misleading. For

instance, a severely economically divided city could have a mean income in the hundreds of thousands of
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dollars, even if a significant portion of the local population is impoverished.

Another implication of the mean’s sensitivity to extreme values is that the mean and the median can be

compared to determine the shape of a distribution, as described in the following section.

ole 4.10 Summary of the Measures of Central Tendency
Available for Each Le Measurement

T = | = | =]

Mominal v
Ordinal v
Interval v v v
Ratio v v v
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Using the Mean and the Median to Determine Distribution Shape

Given that the median is invulnerable to extreme values but the mean is not, the best strategy is to report both
of these measures when describing data distributions. The mean and the median can, in fact, be compared to
form a judgment about whether the data are normally distributed, positively skewed, or negatively skewed. In
normal distributions, the mean and median will be approximately equal. Positively skewed distributions will
have means markedly greater than their medians. This is because extremely high values in positively skewed
distributions pull the mean up but do not affect the location of the median. Negatively skewed distributions,
on the other hand, will have medians that are noticeably larger than their means because extremely low

numbers tug the mean downward but do not alter the median’s value. Figure 4.6 illustrates this conceptually.

To give a full picture of a data distribution, then, it is best to make a habit of reporting both the mean and the

median.

The mean—unlike the mode or the median—forms the basis for further computations; in fact, the mean is an
analytical staple of many inferential hypothesis tests. The reason that the mean can be used in this manner is

that the mean is the midpoint of the magnitudes. This point is important and merits its own section.

Midpoint of the magnitudes: The property of the mean that causes all deviation scores based on the mean to sum to zero.

Figure 4.6 The Mean and Median as Indicators of Distribution Shape
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Deviation Scores and the Mean as the Midpoint of the Magnitudes

The mean possesses a vital property that enables its use in complex statistical formulas. To understand this, we
must first discuss deviation scores. A deviation score is a given data point’s distance from its group mean. The

formula for a deviation score is based on simple subtraction:

=% Formula 4(4)

Deviation score: The distance between the mean of a data set and any given raw score in that set.
where

d; = the deviation score for a given data point x;, and
x; = a given data point,

X =the sample mean.

Suppose, for instance, that a group’s mean is X = 24. If a certain raw score x;1s 22, then dy_py =22 - 24 = -2,

A raw score of 25, by contrast, would have a deviation score of d,_ys = 25 — 24 = 1.

A deviation score conveys two pieces of information. The first is the absolute value of the score or, in other
words, how far from the mean a particular raw score is. Data points that are exactly equal to the mean will
have deviation scores of 0; therefore, deviation scores with larger absolute values are farther away from the

mean, while deviation scores with smaller absolute values are closer to it.

The second piece of information that a deviation score conveys is whether the raw score associated with that
deviation score is greater than or less than the mean. A deviation score’s sign (positive or negative)
communicates this information. Positive deviation scores represent raw scores that are greater than the mean

and negative deviation scores signify raw numbers that are less than the mean. You can thus discern two
characteristics of the raw score x; that a given deviation score 4, represents: (1) the distance between x; and X
and (2) whether x; is above X or below it. Notice that you would not even need to know the actual value of x;

or X in order to effectively interpret a deviation score. Deviation scores convey information about the position
of a given data point with respect to its group mean; that is, deviation scores offer information about raw

scores’ relative, rather than absolute, positions within their group. Figure 4.7 illustrates this.

What lends the mean its title as the midpoint of the magnitudes is the fact that deviation scores computed
using the mean (as opposed to the mode or median) always sum to zero (or within rounding error of it). The
mean is the value in the data set at which all values below it balance out with all values above it. For an

example of this, try summing the deviation scores in Figure 4.7. What is the result?

To demonstrate this concept more concretely, the raw homicide counts that were used as rates in Table 4.9
are listed in Table 4.11. These cities had a mean of 87.25 homicides in 2015. The 4 column contains the

deviation score for each homicide count.
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lustrative of the mean as the fulcrum of the data set, the positive and negative deviation scores ultimately
cancel each other out, as can be seen by the sum of zero at the bottom of the deviation-score column. This
represents the mean’s property of being the midpoint of the magnitudes—it is the value that perfectly balances
all of the raw scores. This characteristic is what makes the mean a central component in more-complex

statistical analyses. You will see in later chapters that the mean features prominently in many calculations.

Figure 4.7 Deviation Scores in a Set of Data With a Mean of 24

ot s

d,=23-24=-1

-t

21 22 23 25 26 27 28

Table 4.11 Homicides in California Cities

San Diego 37 37 - 63.50 = -26.50
Redlands 2 2-63.50=-61.50
Santa Monica 13 13 - 63.50 = -50.50
Los Angeles 282 282 -63.50=218.50
Soledad 3 3 -63.50 =-60.50
San Bernardino 44 44 - 63.50 = -19.50
f.%.&ﬁﬁ £ =0.00
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Learning Check 4.9

v

To test your comprehension of the concept of the mean as the midpoint of the magnitudes, go back to Table 4.3. You calculated the

mean property-crime rate in Learning Check 4.6. Use that mean to compute each city’s deviation score, and then sum the scores.
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SPSS

Criminal justice and criminology researchers generally work with large data sets, so computing measures of
central tendency by hand is not feasible; luckily, it is not necessary, either, because statistical programs such as
SPSS can be used instead. There are two different ways to obtain central tendency output. Under the Analyze
— Descriptive Statistics menu, SPSS offers the options Descriptives and Frequencies. Both of these functions
will produce central tendency analyses, but the Freguencies option offers a broader array of descriptive statistics
and even some charts and graphs. For this reason, we will use Freguencies rather than Descriptives. Once you
have opened the Frequencies box, click on the Statistics button to open a menu of options for measures of
central tendency. Select Mean, Median, and Mode, as shown in Figure 4.8. Then click OK, and the output
displayed in Figure 4.9 will appear. The variable used in this example comes from Table 4.7, measuring the

number of prisoners received under sentence of death in 2015.

You can see from Figure 4.9 that the mean is identical to the result we arrived at by hand earlier. The mode is
zero, which you can verify by looking at Table 4.7. The median is zero, meaning half the states did not receive
any new death-row inmates and half received one or more. We can also compare the mean and the median to
determine the shape of the distribution. With a mean of 2.25 and a median of zero, do you think that this

distribution is normally distributed, positively skewed, or negatively skewed? If you said positively skewed, you

are correct!

Figure 4.8 Running Measures of Central Tendency in SPSS

Q Frequencies: Statistics - &1
Parcentile Values Central Tendency
Quartiles o Mean
Cut points for: equal groups | Wedian
Percentile(z) ¥ |Moge
e Sum

Values are group midpoints

Dispersion Distribution
Std. deviation [} Minimum Skewness
Variance Maximum Kurtosis
Range SE mesan

[cmlnue][ Cancel || Help J

—_— -

Figure 4.9 SPSS Output
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Frequencies

Statistics

Prisoners received 2013

N

Mean
Median
Mode

Valid
Missing

36

2.2500

For another example, we will use 2015 homicide rates (per 100,000) in all California cities. Figure 4.10 shows

the mean, the median, and the mode for this variable.

Follow along with this example of using SPSS to obtain measures of central tendency by downloading the file Ca/ifornia Homicides
| for Chapter 4.sav at www.sagepub.com/gau.

Figure 4.10 Homicide Rates in California Cities

Frequencies

Statistics

California homicide rates, 2015

M

Mean
Median

Mode

Valid
Missing

460

0
6.5782
1.0839
.00

The mode is zero, but because homicide rates vary so widely across this large sample of cities (V = 460), the

mode is not a useful or informative measure. More interesting are the mean and the median. The mean (6.58)

is much larger than the median (1.08), indicating significant positive skew. This can be verified by using SPSS

to produce a histogram of the data using the Chart Builder; refer back to Chapter 3 if you need a refresher on

the use of the Chart Builder. Figure 4.11 shows the histogram.

Figure 4.11 Histogram of Homicide Rates in California Cities
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Figure 4.11 confirms the severe skew in this variable: The data cluster toward the lower end so much that the

values out in the tail are barely visible in the histogram.
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Learning Check 4.10

v

Flip back a few pages to Figure 4.1. Recall that this is an example of a normal distribution. Based on the distribution’s shape, how close or
far apart do you think the mean and the median are? In other words, do you think they are close together, or do you predict that one is a

lot bigger (or smaller) than the other? Explain your answer.

There is a GIGO alert relevant here. It is your responsibility to ensure that you use the correct measure(s) of
central tendency given the level of measurement of the variable with which you are working. The SPSS
program will not produce an error message if you make a mistake by, for instance, telling it to give you the
mean of a nominal or ordinal variable. You will get a mean, just the same as you get when you correctly ask for
the mean of a continuous variable. To illustrate this, Figure 4.12 contains output from the National Crime
Victimization Survey (NCVS) showing respondents’ marital status. Although this is a nominal variable—
making the median and the mean inappropriate—SPSS went ahead with the calculations anyway and
produced results. Of course, the mean and the median of a variable measuring whether someone is married,
separated, divorced, and so on are nonsense, but SPSS does not know that. This statistical program is not a

substitute for knowing which techniques are appropriate for which data types.

Figure 4.12 Respondent Marital Status

Statistics
Marital status
N Valid 84229
Missing 544
Mean 2.07
Median 100
Mode 1

Chapter Summary

This chapter introduced you to three measures of central tendency: mode, median, and mean. These statistics offer summary
information about the middle or average score in a data set. The mode is the most frequently occurring category or value in a data
set. The mode can be used with variables of any measurement type (nominal, ordinal, interval, or ratio) and is the only measure that

can be used with nominal variables. Its main weakness is in its simplicity and superficiality—it is generally not all that useful.

The median is a better measure than the mode for data measured at the ordinal or continuous level. The median is the value that
splits a data set exactly in half. Since it is a positional measure, the median’s value is not affected by the presence of extreme values;
this makes the median a better reflection of the center of a distribution the mean is when a distribution is highly skewed. The

median, though, does not take into account all data points in a distribution, which makes it less informative than the mean.

The mean is the arithmetic average of the data and is used with continuous variables only. The mean accounts for all values in a data
set, which is good because no data are omitted; the flipside, however, is that the mean is susceptible to being pushed and pulled by

extreme values.

It is good to report both the mean and the median because they can be compared to determine the shape of a distribution. In a
normal distribution, these two statistics will be approximately equal; in a positively skewed distribution, the mean will be markedly
greater than the median; and in a negatively skewed distribution, the mean will be noticeably smaller than the median. Reporting

both of them provides your audience with much more information than they would have if you just reported one or the other.
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The mode, the median, and the mean can all be obtained in SPSS using the Analyze — Descriptive Statistics — Frequencies sequence.

As always, GIGO! When you order SPSS to produce a measure of central tendency, it is your responsibility to ensure that the

measure you choose is appropriate to the variable’s level of measurement. If you err, SPSS will probably not alert you to the mistake

—you will get output that looks fine but is actually garbage. Be careful!

Thinking Critically

1.

According to the Law Enforcement Management and Administrative Statistics (LEMAS) survey, the mean number of
officers per police agency (of all types) is 163.92. Do you trust that this mean is an accurate representation of the middle of
the distribution of police agency size? Why or why not? If not, what additional information would you need in order to gain

an accurate understanding of this distribution’s shape and central tendency?

. The COJ reports that the modal number of inmates per jail is 1. This value occurs more frequently than any other population

value (51 times among 2,371 jails). Use this example to discuss the limitations and drawbacks of using the mode to describe
the central tendency of a continuous variable. Then identify the measure(s) you would use instead of the mode, and explain

why.

Review Problems

1.

10.

A survey item asks respondents, “How many times have you shoplifted?” and allows them to fill in the appropriate number.
1. What level of measurement is this variable?

2. What measure or measures of central tendency can be computed on this variable?

. A survey item asks respondents, “How many times have you shoplifted?” and gives them the answer options: 0, 1-3, 4-6, 7 or

more.
1. What level of measurement is this variable?

2. What measure or measures of central tendency can be computed on this variable?

. A survey item asks respondents, “Have you ever shoplifted?” and tells them to circle yes or 7o.

1. What level of measurement is this variable?

2. What measure or measures of central tendency can be computed on this variable?

. Explain what an extreme value is. Include in your answer (1) the effect extreme values have on the median, if any, and (2) the

effect extreme values have on the mean, if any.

. Explain why the mean is the midpoint of the magnitudes. Include in your answer (1) what deviation scores are and how they

are calculated and (2) what deviation scores always sum to.

. In a negatively skewed distribution . . .

1. the mean is less than the median.
2. the mean is greater than the median.

3. the mean and the median are approximately equal.

. In a normal distribution . . .

1. the mean is less than the median.
2. the mean is greater than the median.

3. the mean and the median are approximately equal.

. In a positively skewed distribution . . .

1. the mean is less than the median.
2. the mean is greater than the median.

3. the mean and the median are approximately equal.

. In a positively skewed distribution, the tail extends toward ______ of the number line.
1. the positive side
2. both sides
3. the negative side
In a negatively skewed distribution, the tail extends toward _____ of the number line.

1. the positive side
2. both sides

3. the negative side
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11. The following table contains 2015 UCR data on the relationship between murder victims and their killers, among those

crimes for which the relationship status is known.

Btfender’s Relationshig o
Fictim

Family Member 1,099
Intimate Partner 1,270
Friend 365
Acquaintance 2,801
Other Nonstranger 113
Stranger 1,375

N=7,023

1. Identify this variable’s level of measurement and, based on that, state the appropriate measure or measures of central
tendency.
2. Determine or calculate the measure or measures of central tendency that you identified in part (a).
12. The frequency distribution in the following table shows rates of violent victimization, per victim racial group, in 2014

according to the NCVS (Truman & Langton, 2015). Use this table to do the tasks following the table.

Viclent Victimization Rate per 1,000

Persons
| e
Black/African American 22.5
White 20.3
Hispanic/Latino 16.2
Other 23.0
N=4

1. Identify the median victimization rate using all three steps.
2. Compute the mean victimization rate across all racial groups.
13. Morgan, Morgan, and Boba (2010) report state and local government expenditures, by state, for police protection in 2007.
The data in the following table contain a random sample of states and the dollars spent per capita in each state for police

services.

Daolla = on Police

INingis v
Arkansas 170
Alabama 211
Ohio 258
Washington State 219
Florida 345
Maine 176
Texas 220
N=8

1. Identify the median dollar amount using all three steps.
2. Calculate the mean dollar amount.
14. The following frequency distribution shows LEMAS data on the number of American Indian officers employed by state

police agencies.
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Kumber of Number of
Officers Officers

0 8 1
1 4 14 1
2 3 15 1
3 2 19 1
4 3 20 1
& 2 27 1
7 4 40 1
El 3 44 1
10 1 45 1
11 1 83 1
12 1 N=42

1. Identify the modal number of American Indian officers in this sample of agencies.
2. Compute the mean number of American Indian officers in this sample.
3. The median number of American Indian officers is 6.00. Based on this median and the mean you calculated, would
you say that this distribution is normally distributed, positively skewed, or negatively skewed? Explain your answer.
15. The following frequency distribution shows a variable from the PPCS measuring, among female respondents who had been

stopped by police while walking or riding a bike, the number of minutes those stops lasted.

Number of Minutes Stop Lasted

20

4 24
Z 30

45
15 60
120
8 1 180
10 11 N

=~ O, B W N
N

—
=N NN W

70

15 7

1. Compute the mean number of minutes per stop.
2. The median number of minutes was 5.00. Based on this median and the mean you calculated earlier, would you say
that this distribution is normally distributed, positively skewed, or negatively skewed? Explain your answer.
16. The following table shows UCR data on the number of aggravated assaults that occurred in five Wyoming cities and towns
in 2015.
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Aggravated Assaults in Wyoming

Cities and Towns

Fine Bluffs 6
Jackson 14
Laramie 3z
Afton 1
Cheyenne 95
N=5

1. Identify the median number of assaults in this sample.
2. Calculate the mean number of assaults.
3. Calculate each city’s deviation score, and sum the scores.

17. The following table displays the number of juveniles arrested for arson in select states in 2015, according to the UCR.

Juveniles Arrested for Arscon

Alaska 31
Arkansas 26
Connecticut 31
Kansas 15
Montana 13
South Carolina 27
Vermont i
N=7

1. Identify the median number of arson arrests per state.
2. Calculate the mean number of arrests in this sample.
3. Calculate each state’s deviation score and sum the scores.
18. The data set NCVS for Chapter 4.sav (www.sagepub.com/gau) contains the ages of respondents to the 2015 NCVS. Run an

SPSS analysis to determine the mode, the median, and the mean of this variable. Summarize the results in words.

Helpful Hint: When running measures of central tendency on large data sets in SPSS, deselect the “Display frequency
tables” option in the “Frequencies” dialog box. This will not alter the analyses you are running but will make your output

cleaner and simpler to examine.

19. The data set NCVS for Chapter 4.sav (www.sagepub.com/gau) also contains portions of the Identity Theft Supplement
survey. The variable “purchases” asked respondents how many times they had made online purchases in the past year. Run an
SPSS analysis to determine the mode, the median, and the mean of this variable. Summarize the results in words.

20. The data file Szaff Ratio for Chapter 4.sav (www.sagepub.com/gau) contains a variable from the 2006 COJ showing the
ratio of inmates to security staff per institution. Run an SPSS analysis to determine the mode, the median, and the mean of

this variable. Summarize the results in words.
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Measures of Dispersion
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Learning Objectives

e Explain the difference between measures of dispersion and measures of central tendency.

e Explain why measures of dispersion must be reported in addition to measures of central tendency.

e Define kurtosis, leptokurtosis, and platykurtosis.

e Explain and know the relevant formulas for variation ratio, range, variance, and standard deviation.

o Apply the correct measure(s) of dispersion to any given variable based on that variable’s level of measurement.

e Explain the normal curve and the concept behind two-thirds of cases being within one standard deviation of the mean.

e Calculate the upper and lower boundaries of the typical range of scores in a normal distribution based on the mean and the

standard deviation.

Consider this question: Do you think that there is more variability in the physical size of housecats or in that
of dogs? In other words, if I gathered a random sample of housecats and a random sample of dogs, would I
find a greater diversity of sizes and weights in the cat sample or in the dog sample? In the dog sample, of
course! Dogs range from puny things you might lose in your sofa cushions all the way up to behemoths that
might eat your sofa. Cats, on the other hand, are . . . well, pretty much just cat-sized. If I were to draw

separate size distributions for dogs and housecats, they might look something like Figure 5.1.

The dog distribution would be wider and flatter than the cat distribution, while the cat distribution would

appear somewhat tall and narrow by comparison. This is because dogs’ sizes vary more than cats’ sizes do.

Now, let us consider a situation in which two distributions have the same mean. (The dog and cat
distributions would, of course, have different means.) Consider the hypothetical raw data for variables X; and

X, in Table 5.1.

These distributions have the same mean, so if this were the only piece of information you had about them,
you might be tempted to conclude that they are similar to one another. This conclusion would be quite wrong,
though. Look at Figure 5.2, which displays a line chart for these two variables. Which series do you think
represents Sample 17 Sample 2? If you said that the stars are Sample 1 and diamonds are Sample 2, you are
correct. You can see that the raw scores of Sample 1 cluster quite tightly around the mean, while Sample 2’s

scores are scattered about in a much less cohesive manner.

The previous examples highlight the importance of the subject of this chapter: measures of dispersion.
Dispersion (sometimes called variability) is the amount of “spread” present in a set of raw scores. Dogs have
more dispersion in physical size than cats have, just as Sample 2 has more dispersion than Sample 1 has.
Measures of dispersion are vital from an informational standpoint for the reason exemplified by the thought
experiment just presented—measures of central tendency convey only so much information about a
distribution and can actually be misleading, because it is possible for two very discrepant distributions to have
similar means. It is also necessary to know the shape of a data distribution so that you can assess whether it
appears fairly normal or whether it deviates from normality. We talked about skew in Chapter 3: Skew occurs
when values cluster at one end of the distribution or the other. The dispersion analog of skew is kurtosis.

There are two types of kurtosis: Leptokurtosis happens when values cluster together very tightly, and
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platykurtosis is evident when values are markedly spread out. In Figure 5.1, the dog-size distribution is
platykurtic (representing a spread-out smattering of values), and the cat-size curve is leptokurtic (indicating

that values are highly clustered and have minimal variability).

Dispersion: The amount of spread or variability among the scores in a distribution.
Kurtosis: A measure of how much a distribution curve’s width departs from normality.
Leptokurtosis: A measure of how peaked or clustered a distribution is.

Platykurtosis: A measure of how flat or spread out a distribution is.

Figure 5.1 Hypothetical Distributions of Dog and Housecat Sizes

)

Dog Sizes Cat Sizes

Table 5.1 Hypothetical Data in Two Samp

10 0
11 15
9 20
10 5
10 10

X,=10 X,=10

For all these reasons, measures of dispersion are necessary pieces of information about any distribution. They
go hand in hand with measures of central tendency, and the two types of descriptive statistics are usually
presented alongside one another. This chapter discusses four of the most common types of measures of
dispersion: the variation ratio, the range, the variance, and the standard deviation. Like measures of central

tendency, each measure of dispersion is suitable for variables of only certain levels of measurement.

Figure 5.2 Line Chart for Variables X; and X,

25 4
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]
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The Variation Ratio

The variation ratio (V'R) is the only measure of dispersion discussed in this chapter that can be used with
categorical (nominal and ordinal) data; the remainder of the measures that will be covered are restricted to
continuous data (interval or ratio). The VR is based on the mode (see Chapter 4). It measures the proportion

of cases that are 7oz in the modal category. Recall from the discussion of proportions in Chapter 3 that the

f

proportion of cases that are in a certain category can be found using Formula 3(1): N Ttis easy to take

this formula a step farther in order to calculate the proportion that is outside any given category.

Variation ratio: A measure of dispersion for variables of any level of measurement that is calculated as the proportion of cases located

outside the modal category. Symbolized as VR.

For finding the proportion of cases outside a specific category, we rely on the bounding rule, which states that
proportions always range from 0.00 to 1.00. The bounding rule leads to the rule of the complement. This rule
states that the proportion of cases in a certain category (call this category 4) and the proportion located in
other categories (call this Noz A4) always sum to 1.00. The proportion of cases in A is written as “p(4)” and the

proportion of cases outside category A is “p(Not A).” Formally,

P(A) + p(Not A) = 1.00

Bounding rule: The rule stating that all proportions range from 0.00 to 1.00.

Rule of the complement: Based on the bounding rule, the rule stating that the proportion of cases that are not in a certain category

can be found by subtracting the proportion that are in that category from 1.00.

If p(A) is known, the formula can be reconfigured thusly in order to calculate p(Noz A):

p(NotA) =1.00-p(A) Formula 5(1)

The variation ratio is a spinoff of the rule of the complement:

VR =1.00— ﬂ’”‘—‘*
N Formula 5(2)

where

Fmode = the number of cases in the modal category and

N = the sample size.

To illustrate use of the VR, consider Table 5.2, which contains data from the 2007 Census of State Court
Prosecutors (CSCP; see Data Sources 5.1). The variable used here is the size of the population served by full-

time prosecutorial offices (as summarized by Perry & Banks, 2011).

143



Table 5.2 Population Served by Full-Time Prosecutors' Offices

1,000,000 or more 43
250,000 to 999,999 211
100,000 to 249,999 341
99,999 or fewer 1,389

N=1,984

To compute the VR, first identify the mode and its associated frequency. Here, the mode is 99,999 or fewer,

and its frequency is 1,389. Now, plug the numbers into Formula 5(2):

VR=1.00-2>* _1.00-70=30

1,984

The variation ratio is .30, which means that .30 (30%) of the cases fall outside the modal category. This is a
fairly limited amount of variation—70% of offices serve relatively small populations, and just 30% serve

midsized or large jurisdictions.

Data Sources 5.1 Census of State Court Prosecutors

Every 4 to 5 years, the Bureau of Justice Statistics (BJS) sends surveys to chief prosecutors in state courts. Some of the waves use
random samples of all offices nationwide, and some waves employ censuses (i.e., contain the total population of offices). The most
recent available wave is that for 2007, which was a census. The survey is delivered by phone, Internet, or mail to chief prosecutors,
who are asked to report on various aspects of their offices’ organization and operation. The data set contains information such as the
number of attorneys on staff, the number of felony cases closed in the prior year, and whether the office regularly makes use of DNA

analysis.

Table 5.3 displays another variable from the CSCP. This survey item asked prosecutors whether, in the past year, their offices had

pursued criminal actions against defendants suspected of elder abuse.

Table 5.3 Prosecution of Elder-Abuse Cases

e

Yes 1,092
No 887
N=1979

The mode is Yes, and the variation ratio is

1,092
VR=1.00-——=1.00—-.55= .45
1,979

This VR of .45 is close to .50, indicating that the offices were split nearly in half with respect to whether or not they had prosecuted

cases of elder abuse.

In sum, the variation ratio offers information about whether the data tend to cluster inside the modal category or whether a fair
number of the cases are in other categories. This statistic can be used with nominal and ordinal variables, which makes it unique
relative to the range, the variance, and the standard deviation. The problem with the VR is that it uses only a small portion of the

data available in a distribution. It indicates the proportion of cases not in the modal category, but it does not actually show where

those cases are located. It would be nice to know where the data are rather than merely where they are not.
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The Range

The range (R) is the simplest measure of dispersion for continuous-level variables. It measures the span of the
data or, in other words, the distance between the smallest and largest values. The range is very easy to

compute:

R=x i e Formula 5(3)

maximum minimum

Range: A measure of dispersion for continuous variables that is calculated by subtracting the smallest score from the largest.

Symbolized as R.

The first step in computing the range is identification of the maximum and minimum values. The minimum

is then subtracted from the maximum, as shown in Formula 5(3). That is all there is to it!

For an example, we can use data from the Uniform Crime Reports (UCR; Data Sources 1.1) on the number

of juveniles arrested on suspicion of homicide in 2015 in eight states. Table 5.4 shows the data.

To calculate the range, first identify the maximum and minimum values. The maximum is 20 and the

minimum is 0. The range, then, is

R=19-0=19

Table 5.4 MNumber of Juveniles Arrested for Homicide by State,

2015

Maine 2
New Hampshire 1
Vermont 0
Massachusetts 4
Rhode Island 0
Connecticut 1
New York 10
New Jersey 19
N=8

Another example of the calculation of the range can be found using another variable from the CSCP. This
variable collects information about the salary of the chief prosecutor in each office. Table 5.5 shows these data

for the eight districts in Maine.

The largest value in Table 5.5 is 98,000, and the smallest is 66,511.06, so the range is

R =98,000 - 66,511.06 = 31,488.94.
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Table 5.5 Chief Prosecutor's Salary in Maine Districts

District 1 87,573.00
District 2 91,628.60
District 3 66,511.06
District 4 97,500.00
District 5 98,000.00
District 6 96,860.33
District 7 97,572.00
District 8 97,000.00
N=8

There is a difference of nearly $32,000 between the lowest-paid and the highest-paid chief prosecutors in
Maine.

The range has advantages and disadvantages. First, it is both simple and straightforward. It offers useful
information and is easy to calculate and understand. This same feature, however, makes this measure of
dispersion too simplistic to be of much use. The range is superficial and offers minimal information about a
variable. It is silent as to the distribution of the data, such as whether they are normally distributed or whether
there is kurtosis present. The range can be misleading, too: Table 5.5 shows clearly that salaries cluster at the
upper end of the distribution (i.e., around the $90,000 mark) and that the salary of $66,511.06 is an unusually
low value. The range of $31,488.94 is mathematically correct but, in a practical sense, overstates the amount
of variation in salaries. Finally, because the range does not use all of the available data, it has no place in

further computations.
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The Variance

Like the range, the variance can be used only with continuous data; unlike the range, the variance uses every
number in a data set. The variance and its offshoot, the standard deviation (discussed next), are the
quintessential measures of dispersion. You will see them repeatedly throughout the remainder of the book.
For this reason, it is crucial that you develop a comprehensive understanding of them both formulaically and

conceptually.

Variance: A measure of dispersion calculated as the mean of the squared deviation scores. Notated as s2.

The formula for the variance can be rather intimidating, so let us work our way up to it piece by piece and
gradually construct it. We will use the juvenile homicide arrest data from Table 5.4 to illustrate the
computation as we go. First, recall the concept of deviation scores that was discussed in the last chapter. Go
back and review if necessary. A deviation score (symbolized 4,) is the difference between a raw score in a

distribution and that distribution’s mean. Recall Formula 4(4):
di’ = X — X,
where

x; = a given data point and

X = the sample mean

The variance is constructed from mean-based deviation scores. The first step in computing the variance is to

compute the mean, and the second is to find the deviation score for each raw value in a data set. The first

—X

piece of the variance formula, therefore, is xi (i.e., a deviation score for each raw value in the data).

Table 5.6a shows the original data from Table 5.4 along with a deviation score column to the right of the raw
scores. The mean of the data set has been calculated (E = 4.50). In the deviation score column, the mean has
been subtracted from each raw score to produce a variety of positive and negative deviation scores. Recall that

the sigma symbol () is a summation sign.

Deviation scores are a good first step, but what we end up with is an array of numbers. A table full of
deviation scores is no more informative than a table full of raw scores. What we need is a single number that
combines and represents all of the individual deviation scores. The most obvious measure is the sum—sums
are good ways of packaging multiple numbers into a single numerical term. The problem with this approach,
though, should be obvious: Deviation scores sum to zero. Since adding the deviation-score column will always

produce a zero (or within rounding error of it), the sum is useless as a measure of variance.
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Learning Check 5.3

v

Test your recall of the mean as the midpoint of the magnitudes by creating an x-axis (horizontal line) with numbered tick marks and
drawing a vertical line representing the mean of the data in Table 5.6a. Then plot each raw score to get a chart similar to that in Figure
4.7.

Table 5.6a MNumber of Juveniles Arrested for Homicide in Eight

States, 2015

EX R T

Maine 2 2-4.50=-2.50
Mew Hampshire 1 1-4.50=-3.50
Vermaont 0 0-4.50=-4.50
Massachusetts 3 3-4.50=-1.50
Rhode Island 0 0-4.50=-4.50
Connecticut 1 1-4.50=-3.50
Mew York 10 10 - 4.50=5.50
New Jersey 19 19 - 4.50 = 14.50
H=e ez R 0o
N 8

We need to find a way to get rid of those pesky negative signs. If all of the numbers were positive, it would be
impossible for the sum to be zero. Squaring is used to accomplish this objective. Squaring each deviation score
eliminates the negative signs (because negative numbers always become positive when squared), and, as long
as the squaring is applied to all the scores, it is not a problematic transformation of the numbers. Table 5.6b

contains a new right-hand column showing the squared version of each deviation score.

Now the numbers can be summed. We can write the sum of the right-hand column in Table 5.6b as

(-xj _E)z

, and we can compute the answer as such:

=X

2
(3{'- ) =6.25+12.25 + 20.25 + 2.25 + 20.25 + 12.25 + 30.25 + 210.25 = 314.00

This sum represents the total squared deviations from the mean. We are not quite done yet, though, because
sample size must be taken into consideration in order to control for the number of scores present in the
variance computation. You would not be able to compare the sum of squared deviation scores across two data

sets with different sample sizes. The sum of the squared deviation scores must be divided by the sample size.
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Learning Check 5.4

v

Standardizing sums by dividing them by the sample size is common in statistics, as later chapters will continue to demonstrate. To
understand the need for this type of division, imagine two samples that each sum to 100. The first sample contains 10 cases and the
second one contains 50. Calculate the mean for each of these samples, and explain why they are different even though the sums are the

same.

Table 5.6b Variance Calculation Table for the Number of
Juveniles Arrested for Homicide in Eight States,

2015

EZE R N T
Maine 2 2-4.50=-2.50 (-2.50)¢ = 6.25

1 1-450=-3.50 (-3.50)*=12.25

0 0-450=-450 (-4.50)2 = 20.25
Massachusetts 3 3-4.50=-1.50 {-1.50) = 2.25

0

1

0

New Hampshire

Vermont

Rhode Island 0-4.50=-4.50 (-4.50)% = 20.25
Connecticut 1-4.50=-3.50 (-3.50)2=12.25
MNew York 1 10 - 4.50 = 5.50 {5.50)2 = 30.25
Mew Jersey 19 19-4.50=14.50 (14.50)% = 210.25

N=8 i
E=%=§=4_50 Z(x-%)=.00  x(x-%) =314.00

There is a bit of a hiccup, however: The variance formula for samples tends to produce an estimate of the
population variance that is downwardly biased (i.e., too small) because samples are littler than populations and
therefore typically contain less variability. This problem is especially evident in very small samples, such as

when N < 50.

The way to correct for this bias in sample-based estimates of population variances is to subtract 1.00 from the
sample size in the formula for the variance. Reducing the sample size by 1.00 shrinks the denominator and
thereby slightly increases the number you get when you perform the division. The sample variance is
symbolized 5%, whereas the population variance is symbolized 02, which is a lowercase Greek sigma. The
reason for the exponent is that, as described earlier, the variance is made up of squared deviation scores. The

symbol s? communicates the squared nature of this statistic.

We can now assemble the entire s> formula and compute the variance of the juvenile homicide arrest data.
The formula for the sample variance is
-2
3 _ (xi i )
i Formula 54)
I =

Plugging in the numbers and solving yields
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v
My 4% 314.00 31400
g Zx) = = 44.86
N-1 81 7

The variance of the juvenile homicide arrest data is 44.86. This is the average squared deviation from the

mean in this data set.

Let’s try a second example of the variance. The CSCP captures the number of felony cases each office tried
before a jury in the past year. The vast majority of criminal defendants nationwide plead guilty, with a small
portion opting to exercise their right to trial by jury. Table 5.7a shows the number of felony jury trials handled
in the past year by a random sample of seven offices serving populations of 50,000 or less. (The letters in the

left column represent the offices.) Table 5.7b displays the deviation scores and squared deviation scores.

Table 5.7a Num

Table 5.7b Variance Calculation Table for the Number
Jury Trials

A
B
C
D
E 1 -13.57 184.14
F 40 25.43 646.68
G 16 1.43 2.04

N=7 z=%=¥=14,5y T(x-%)=01  ¥(x-X)=9037

Applying Formula 5(4),

2
2_ 2(x %) 90371 90371 g
N-1 7-1 6

These offices’ jury-trial variance is 150.62. In other words, the average squared deviation from the mean is

150.62 units.
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The variance is preferable to the variation ratio and range because it uses all of the raw scores in a data set and
is therefore a more informative measure of dispersion. It offers information about how far the scores are from

the mean. Every case in the sample is used when the variance is calculated. When the data are continuous, the

variance is better than either the VR or the range.
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The Standard Deviation

Despite its usefulness, the variance has an unfortunate hitch. When we squared the deviations (refer to Table

5.7b), by definition we also squared the units in which those deviations were measured. The variance of the
juvenile homicide arrest data, then, is 44.86 arrests squared, and the variance for prosecutors’ offices is 150.62
trials squared. This obviously makes no sense. The variance produces oddities such as crimes squared and years
squared. The variance is also difficult to interpret—the concept of the “average squared deviation score” is not
intuitive and does not provide a readily understandable description of the data. Something needs to be done to
correct this. Luckily, a solution is at hand. Since the problem was created by squaring, it can be solved by
doing the opposite—taking the square root. The square root of the variance (symbolized s, or sometimes sd) is

the standard deviation:

%3
§= Z(:—f) =\/s_2 Formula 5(5)

Standard deviation: Computed as the square root of the variance, a measure of dispersion that is the mean of the deviation scores.

Symbolized as s or sd.

The standard deviation of the juvenile homicide arrest data is

s=+/44.86 =6.70

And s for the prosecutors’ jury trials is
p Jury

s=+/150.62 =12.27

The square root transformation restores the original units; we are back to arrests and #rials now and have
solved the problem of impossible and nonsensical squares. Note that the standard deviation—just like the

squared deviation scores and the variance—can never be negative.

Substantively interpreted, the standard deviation is the mean of the deviation scores. In other words, it is the
average distance between the individual raw scores and the distribution mean. It indicates the general spread
of the data by conveying information as to whether the raw values cluster close to the mean (thereby
producing a relatively small standard deviation) or are more dispersed (producing a relatively large standard
deviation). The standard deviation is generally presented in conjunction with the mean in the description of a
continuous variable. We can say, then, that in 2015, the eight states considered here had a mean of 4.50
juvenile arrests for homicides, with a standard deviation of 6.70. Similarly, this sample of prosecutors’ offices

handled a mean of 14.57 felony jury trials, with a standard deviation of 12.27.

To put the entire process together (from calculating the deviation scores all the way through to computing the
standard deviation), we will use data from the Census of Jails. Table 5.8a contains a random sample of 10 jails

and shows the number of juvenile (i.e., younger than age 18) girls held in each one.
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Table 5.8a Number of Female Juveniles

Jaif Female Juveniles

A 7
B 0
c 11
D 0
E
E
G
H

60

= S W

Table 5.8b Variance Calculation Table for the Number of

Female Juveniles in Jails

7

A -1.50 2.25
B 0 -8.50 72.25
c 11 2.50 6.25
D 0 -8.50 72.25
E 1 -7.50 56.25
F 60 51.50 2652.25
G 3 -6.50 30.25
H 0 -8.50 72.25
| 2 -6.50 42.25
J 1 -7.50 56.25
N=10 x-2X_89 o5 s(x-¥)=.00  ¥(x-%)=306250

N 10
Applying Formula 5(4),

2_Z(x-%)" 306250 _3,062.50
N-1 T

Now we know the variance is 340.28. To find the standard deviation, we take the square root:

s=4540.28=18.45

The standard deviation is reported more often than the variance is, for the reasons explained earlier. It is a

=340.28

good idea to present the standard deviation alongside any mean that you report (also expect others to do the
same!). We will be using the standard deviation a lot in later chapters; it is a fundamental descriptive statistic
critical to many formulas. The standard deviation also has another useful property: It can be employed to

determine the upper and lower boundaries of the “typical” range in a normal distribution. When you know the
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mean and the standard deviation for a sample, you can find out some important information about that

distribution, as discussed in the next section.
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The Standard Deviation and the Normal Curve

Recall that the standard deviation is the mean of the deviation scores; in other words, it is the mean deviation
between each raw score and the distribution mean. Larger standard deviations represent greater variability,
whereas smaller ones suggest less dispersion. Figure 5.3 displays the relationship between the mean and the

standard deviation for populations and samples.

Figure 5.3 Mean and Standard Deviation for a Normally Distributed, Continuous Variable
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Learning Check 5.6

v

Like the mean, the standard deviation plays a key role in many statistical analyses. We will be using both the mean and the standard
deviation a lot in the following chapters; therefore, be sure that you have a solid grasp on the calculation and the interpretation of the

standard deviation. As practice, revisit Table 5.5 and try calculating the standard deviation of chief prosecutors’ salaries.

Research Example 5.1 Does the South Have a Culture of Honor That Increases Gun Violence?

Scholars have frequently noted that the South leads the nation in rates of violence and that gun violence is particularly prevalent in
this region. This has led to the formation and proposal of multiple theories attempting to explain southern states’ disproportionate
involvement in gun violence. One of these theories is the “culture of honor” thesis that predicts that white male southerners are more
likely than their counterparts in other regions of the country to react violently when they feel that they have been disrespected or that
they, their family, or their property has been threatened. Copes, Kovandzic, Miller, and Williamson (2014) tested this theory using
data from a large, nationally representative survey of adults’ reported gun ownership and defensive gun use (the use of a gun to ward
off a perceived attacker). A primary independent variable (IV) was whether respondents themselves currently lived in the South. The
main dependent variable (DV) was the number of times respondents had used a firearm (either fired or merely brandished) to defend
themselves or their property against a perceived human threat within the past 5 years. The researchers reported the descriptive

statistics shown in the table below.

The authors ran a statistical analysis to determine if living in the South or in a state where the majority of the population was born in
the South was related to defensive gun use. They found that it was not: Neither currently living in the South nor living in a state
populated primarily with southerners increased the likelihood that respondents had used a gun defensively in the past 5 years. These
findings refuted the southern culture of honor thesis by suggesting that southern white males are no more likely than white males in

other areas of the country to resort to firearms to defend themselves.

DV: Mumber of defensive gun uses in the
past 5 years

Percentage of sample currently living in the 34.0
South

Percentage of white state population born in 70.88 12.85
the South

White homicide rates in cities of 5.60 3.45
respondents’ residence

Respondents’ perceptions of crime in their 2.50 1.12
neighborhoods (5-point scale)

Source: Adapted from Table 1 in Copes et al. (2014).
Source: Adapted from Table 1 in Copes et al. (2014).
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Do Neighborhoods With Higher Immigrant Concentrations
Experience More Crime?

Many studies have examined the possible link between immigration and crime. Popular assumptions that immigrants commit crimes
at high rates have been proven false by numerous studies uncovering no relationship between immigrant concentrations and crime
rates, or even negative relationships wherein crime rates were lower in cities with larger immigrant populations than in those with
fewer immigrants. Most of the research into immigration and crime, however, has been based in the United States. Sydes (2017)
extended this empirical inquiry to Australia. She collected data on neighborhoods in two Australian cities. Means and standard
deviations for the DV and several of the IVs are shown in the table. After running sophisticated regression models, Sydes found no
relationship between immigrant concentrations and violent crime within neighborhoods in any given year, but also discovered that
increases in immigrant populations from one year to the next were associated with statistically significant reductions in violence.
These results are similar to most of the research conducted in the United States and lend support to the conclusion that immigration

does not increase crime and might even reduce it.

Standard Standard
Variable Mean Deviation Mean Deviation

DV: Violent crime counts 58.91 87.21 21.47 25.42
Percent immigrant 30.75 12.98 23.81 8.75
Language diversity 47.20 22.27 29.04 15.74
Disadvantage Al 1.06 A1 B2
Population density 29.15 21.76 14.27 10.61
Percent residential land 66.62 18.99 66.12 18.17
use

Nearby violent crime 6.42 71 5.40 1.03

Source: Adapted from Tables 1 and 2 in Sydes (2017).
Source: Adapted from Tables 1 and 2 in Sydes (2017).

A distinguishing characteristic of normal distributions is that approximately two-thirds of the scores in a

distribution are located within one standard deviation below and one standard deviation above the mean.

Figure 5.4 depicts this important property of normal distributions. This distance between one standard

deviation below and one standard deviation above the mean constitutes the “normal” or “typical” range of

values. Most of the scores fall within this range, with a smaller number being higher or lower.

To illustrate this, let us suppose we have a sample of housecats with a mean weight of 11 pounds and a

standard deviation of 2 pounds (see Figure 5.5). We can find the range of weights that fall within the “normal

zone” using subtraction and addition. Two-thirds of the cats would be between 11 — 2 = 9 pounds (i.e., one

standard deviation below the mean) and 11 + 2 = 13 pounds (one s above the mean). The remaining one-

third would weigh less than 9 pounds (i.e., they would be more than one sd below the mean) or more than 13

pounds (greater than one sd above the mean). These extreme values would indeed occur but with relatively low

frequency. People, objects, and places tend to cluster around their group means, with extreme values being

infrequent and improbable. Remember this point; we will come back to it in later chapters.

Whenever you know the mean and the standard deviation of a normally distributed, continuous variable, you
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can find the two values between which two-thirds of the cases lie (i.e., the outer boundaries of the “typical”

area). In a distribution with a mean of 100 and a standard deviation of 15, two-thirds of cases will be between

85 and 115.
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Learning Check 5.7

v

The concept regarding two-thirds of cases lying between —1 s4 and +1 sd will form a fundamental aspect of later discussions. You will need
to understand this concept both mathematically and conceptually. Practice computing the upper and lower limits using the means and the

standard deviations listed in the first table in Research Example 5.1.

Figure 5.4 In a Normal Distribution, Approximately Two-Thirds of the Scores Lie Within One Standard

Deviation of the Mean

1 5 below |1 s above
¥

Figure 5.5 Hypothetical Distribution of Housecats’ Weights

Research Example 5.2 Why Does Punishment Often Increase—Rather Than Reduce—Criminal Offending?

Deterrence is perhaps the most pervasive and ingrained punishment philosophy in the United States and, indeed, in much of the
world. It is commonly assumed that punishing someone for a criminal transgression will lessen the likelihood of that person
reoffending in the future. Several studies have noted, however, that the chance of offending actually increases after someone has been
punished. Offenders who have been caught, moreover, tend to believe that their likelihood of being caught again are very low
because they think that it is improbable that the same event would happen to them twice. This flawed probabilistic reasoning is

called the “gambler’s bias” or “gambler’s fallacy.”

Pogarsky and Piquero (2003) attempted to learn more about the way that the gambler’s bias could distort people’s perceptions of the
likelihood of getting caught for criminal wrongdoing. They distributed a survey with a drunk driving scenario to a sample of
university students and asked the respondents about two DVs: (a) On a scale of 0 to 100, how likely they would be to drive under the
influence in this hypothetical situation, and (b) on a scale of 0 to 100, how likely it is that they would be caught by police if they did
drive while intoxicated. The researchers also gathered data on several IVs, such as respondents’ criminal histories (which were used
to create a risk index scale), levels of impulsivity in decision making, and ability to correctly identify the probability of a flipped coin
landing on tails after having landed heads side up four times in a row. The coin-flip question tapped into respondents’ ability to use
probabilistic reasoning correctly; those who said that the coin is more likely to land tails up were coded as engaging in the type of

logical fallacy embodied by the gambler’s bias. The researchers obtained the means and standard deviations shown in the table on
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page 126.

Pogarsky and Piquero (2003) divided the sample into those at high risk of offending and those at low risk and then analyzed the
relationship between the gambler’s fallacy and perceived certainty of punishment within each group. They found that the high-risk
respondents’ perceptions of certainty were not affected by the gambler’s bias. Even though 26% of people in this group engaged in

flawed assessments of probabilities, this fallacious reasoning did not impact their perceptions of the certainty of punishment.

Among low-risk respondents, however, there was a tendency for those who engaged in flawed probabilistic reasoning to believe that
they stood a very low chance of detection relative to those low-risk respondents who accurately assessed the probability of a coin flip
landing tails side up. The researchers concluded that people who are at high risk of offending might not even stop to ponder their
likelihood of being caught and will proceed with a criminal act when they feel so inclined. Those at low risk, on the other hand,
attempt to employ probabilities to predict their chances of being apprehended and punished. The gambler’s bias, therefore, might
operate only among relatively naive offenders who attempt to use probabilistic reasoning when making a decision about whether or

not to commit a criminal offense.

o T

DV: Offending likelihood 3s.2g 36.14
DV: Perceived certainty of punishment 28.48 36.13
MNumber times pulled over while driving drunk .24 .63
Mumber of days in past month consumed 3+ drinks 4.69 5.00
Mumber of times shoplifted 3.69 11.74
Mumber of times vandalized property 3.78 4.46
Mumber of 10 closest friends who have driven drunk at 4.50 3.34
least once

Total risk index score 4.84 2.67

Source: Adapted from the appendix in Pogarsky and Piquero (2003).
Source: Adapted from the appendix in Pogarsky and Piquero (2003).
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SPSS

SPSS offers ranges, variances, and standard deviations. It will not provide you with variation ratios, but those
are easy to calculate by hand. The process for obtaining measures of dispersion in SPSS is very similar to that
for measures of central tendency. The juvenile homicide data set from Table 5.4 will be used to illustrate
SPSS. First, use the Analyze — Descriptive Statistics — Frequencies sequence to produce the main dialog box.
Then click the Szatistics button in the upper right to produce the box displayed in Figure 5.6. Select S#d.

deviation, Variance, and Range to obtain these three statistics.

Figure 5.6 Using SPSS to Obtain Measures of Dispersion

[— iy

== Sy

After you click Continue and OK, the output in Figure 5.7 will appear.

You can see in Figure 5.7 that all the numbers generated by SPSS match those that we obtained by hand.

Follow along with this example of using SPSS to obtain measures of central tendency by downloading the file Juvenile Arrests for
Chapter 5.sav at www.sagepub.com/gau.

Figure 5.7 SPSS Output for Measures of Dispersion

Freguencies
Statistics

Juvenile arrests, 2015
N Valid 8

Missing 0
Std. Deviation 6.698
\ariance 44 857
Range 19

Chapter Summary

This chapter introduced four measures of dispersion: variation ratio, range, variance, and standard deviation. The VR tells you the
proportion of cases not located in the modal category. VR can be computed on data of any level of measurement; however, it is the
only measure of dispersion covered in this chapter that is available for use with categorical data. The range, the variance, and the

standard deviation, conversely, can be used only with continuous variables.

The range is the distance between the lowest and highest value on a variable. The range provides useful information and so should

be reported in order to give audiences comprehensive information about a variable. This measure’s usefulness is severely limited by
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the fact that it accounts for only the two most extreme numbers in a distribution. It ignores everything that is going on between

those two endpoints.

The variance improves on the range by using all of the raw scores on a variable. The variance is based on deviation scores and is an
informative measure of dispersion. This measure, though, has a conceptual problem: Because computation of the variance requires all
of the deviation scores to be squared, the units in which the raw scores are measured also end up getting squared. The variance thus

suffers from a lack of interpretability.

The solution to the conceptual problem with the variance is to take the square root of the variance. The square root of the variance is
the standard deviation. The standard deviation is the mean of the deviation scores. Raw scores have a mean, and so do deviation

scores. The former is the distribution mean, and the latter is the standard deviation.

The mean and the standard deviation together are a staple set of descriptive statistics for continuous variables. The standard
deviation will be key to many of the concepts that we will be discussing in the next few chapters. Approximately two-thirds of the
cases in any normal distribution are located between one standard deviation below and one standard deviation above the mean.
These scores are within the normal or typical range; scores that are more than one standard deviation below or above the mean are

relatively uncommon.

Thinking Critically

1. Itis common practice to present the mean and standard deviation together (as seen in the research examples in this chapter).
Why is this? In other words, explain (1) the reasons why a measure of central tendency and a measure of dispersion would be
reported together to describe the same set of data, and (2) why the mean and standard deviation are the measures typically
selected for this. Refer back to Chapter 4 if needed.

2. Suppose you are reading a news article discussing bank-fraud victimization. The report features the story of one victim who
was 20 years old when she discovered her bank account had been compromised and her money had been stolen. Because you
are familiar with the National Crime Victimization Survey’s Identity Theft Supplement, you know that the mean age of
bank-fraud victims is 45.52 (s = 15.26). Based on this, is the victim in the report typical of bank-fraud victims in terms of
age? How do you know? Do you trust that her experiences are representative of other bank-fraud victims? Explain your

answer.

Review Problems

1. Explain the reason why measures of dispersion are necessary in addition to measures of central tendency. That is, what
information is given by measures of dispersion that is not provided by measures of central tendency?
2. A data distribution that was very narrow and peaked would be considered
1. normal.
2. platykurtic.
3. leptokurtic.
3. In anormal curve, approximately _ of values are between one standard deviation above and one standard deviation
below the mean.
4. A data distribution that was very flat and spread out would be considered
1. normal.
2. platykurtic.
3. leptokurtic.

5. The following table contains data from the Census of Jails. Compute the variation ratio.

Faclty Size |
Small 778
Medium 786
Large 807
N=2371

6. The following table contains data from the PPCS. Compute the variation ratio.

166




Less than $20,000 1,276
$20,000 - $49,999 1,057
$50,000 or more 1,948

N=4281

7. The following table contains data from the Census of Jails. Compute the variation ratio.

Race of Securily Staif in
Small Jails

White 6,036
Black 607
Hispanic 309
Other 4

N=6,956

8. The table below contains UCR data showing the 2015 rate of officer assaults (per 100 officers) in each of the four regions of
the country. Use this table to do the following:

Northeast 7.70
Midwest 8.90
South 9.60
West 12.60
N=4

1. Calculate the range.

2. Calculate the mean assault rate.
3. Calculate the variance.

4. Calculate the standard deviation.

9. The following table shows data from the BJS on the number of death-row inmates housed by states in the Midwest in 2013.
Use this table to do the following:

Louisiana 84
Mississippi 50
MNevada 81
Arizona 122
Pennsylvania 190
Oklahoma 48
N=6

1. Calculate the range.
2. Calculate the mean number of inmates per state.
3. Calculate the variance.
4. Calculate the standard deviation.
10. The following table contains UCR data on the number of hate crimes in 2015. Use this table to do the following:
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Alaska 19
Delaware 11
Maine 45
Idaho 46
Florida 83
New Hampshire 15
Alabama 12
Illincis 101
N=8

1. Calculate the range.
2. Calculate the mean number of firearm-perpetrated murders in these states.
3. Calculate the variance.
4. Calculate the standard deviation.
11. The following table shows UCR data on the percentage of burglaries cleared by arrest in 2015, as broken down by region.
Use this table to do the following:

New England 1155740
Middle Atlantic 18.70
East North Central 9.90
West North Central 12.40

South Atlantic 16.20
East South Central 14.00

West South Central 10.50
Mountain 10.40
Pacific 11.00
=

1. Calculate the range.
2. Calculate the mean clearance rate per region.
3. Calculate the variance.
4. Calculate the standard deviation.
12. For each of the following means and standard deviations, calculate the upper and lower limits of the middle two-thirds of the

distribution.
1. X =6.00, sd=1.50

2. X =14.00, sd=3.40
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13.

14.
15.
16.

17.

18.

19.

3. X =109.32, 54 = 14.98
For each of the following means and standard deviations, calculate the upper and lower limits of the middle two-thirds of the

distribution.
1. X =63.10,sd = 18.97
2. X =175, 5d= 35

3. X = 450.62, 5d = 36.48
Explain the conceptual problem with the variance that is the reason why the standard deviation is generally used instead.
Explain the concept behind the standard deviation; that is, what does the standard deviation represent substantively?
The companion website (www.sagepub.com/gau) has an SPSS file called Firearm Murders for Chapter 5.sav that contains
2015 UCR data showing the percentage of murders, per state, that were committed with firearms. (There are 49 states in
this file because Florida did not submit UCR data. In addition, murders for which no weapon data were submitted are
excluded from these counts.) Use SPSS to obtain the range, the variance, and the standard deviation for the variable percent.
There is an SPSS file called Census of State Prosecutors for Chapter 5.sav on the website (www.sagepub.com/gau) that contains
data from the 2007 CSCP. This data set contains three variables. For the variable yearsingffice, which measures the number
of years chief prosecutors have held their positions, use SPSS to obtain the range, the standard deviation, and the variance.
Using Census of State Prosecutors for Chapter 5.sav, use SPSS to obtain the range, standard deviation, and variance of the
variable assistzants, which shows the number of full-time assistant prosecutors employed by each office.
Using Census of State Prosecutors for Chapter 5.sav and the variable felclosed, which captures the number of felony cases each

office closed in 2007, use SPSS to obtain the range, the standard deviation, and the variance.
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Probability and Distributions

Chapter 6 Probabili
Chapter 7 Population, Sample, and Sampling Distributions
Chapter 8 Point Estimates and Confidence Intervals

Part I of this book introduced you to descriptive statistics. You learned the mathematical and conceptual

underpinnings of proportions, means, standard deviations, and other statistics that describe various aspects of
data distributions. Many times, though, researchers want to do more than merely describe a sample—they
want to run a statistical test to analyze relationships between two or more variables. The problem is there is a
gap between a sample and the population from which it was drawn. Sampling procedures produce a subset of
the population, and it is not correct to assume that this subset’s descriptive statistics (such as its mean) are
equivalent to those of the population. Going back to our housecat example in the previous chapter, suppose
you go door to door in your neighborhood recording the weights of all the cats, and you find a mean weight of
9.50 pounds. Would it be safe to conclude that if you weighed all housecats in the world (i.e., the entire
population), the mean would be exactly 9.50? Definitely not! In the process of pulling your sample, you might
have picked up a few cats that are atypically small or large. We saw in the previous chapter how extreme values
can pull the sample mean up or down; if you got an extremely large or extremely small cat in your sample, the
mean would be thrown off as a result. There is always a possibility that any given sample contains certain
values that cause the mean, the proportion, or other descriptive statistic to be higher or lower than that for the
entire population from which the sample was derived. For this reason, sample statistics cannot be

automatically generalized to populations. We need a way of bridging the gap.

Inferential statistics (also called hypothesis testing, the subject of Part III of this book) provide this bridge

between a descriptive statistic and the overarching population. The purpose of inferential statistics is to permit
a descriptive statistic to be used in a manner such that the researcher can draw an inference about the larger
population. This procedure is grounded in probability theory. Probability forms the theoretical foundation for

statistical tests and is therefore the subject of Part IT of this book. You can think of Part I as having

established the foundational mathematical and formulaic concepts necessary for inferential tests and of Part I1

as laying out the theory behind the strategic use of those descriptive statistics. Part III is where these two areas

of knowledge converge.

Inferential statistics: The field of statistics in which a descriptive statistic derived from a sample is employed

probabilistically to make a generalization or inference about the population from which the sample was drawn.

Probability theory: Logical premises that form a set of predictions about the likelihood of certain events or the

empirical results that one would expect to see in an infinite set of trials.

Part I1 is heavily grounded in theory. You will not see SPSS sections or much use of research examples. This
is because probability is largely concealed from view in criminal justice and criminology research; probability is

the “man behind the curtain” who is pulling the levers and making the machine run but who usually remains
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hidden. Although there will be formulas and calculations that you will need to understand, your primary task
in Part II is to form conceptual comprehension of the topics presented. When you understand the logic

behind inferential statistics, you will be ready for Part II1.
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Learning Objectives

e Explain the relationship between proportions and probabilities.

e Explain the differences between theoretical predictions and empirical outcomes.

e Define the binomial distribution and the normal distribution and explain the types of data for which each one is used.
e Construct the binomial distribution using the binomial coefficient for a given probability and sample size.

e Explain and diagram out the relationship among raw scores, z scores, and areas.

o Use the z -score formula and z table to calculate unknown raw scores, z scores, and areas.

A probability is the likelihood that a particular event will occur. We all use probabilistic reasoning every day.
If T buy a lottery ticket, what are my chances of winning? What is the likelihood that I will get a promotion if
I put in extra effort at work? What is the probability that I will get pulled over if I drive 5 miles per hour over
the speed limit? These musings involve predictions about the likelihood that a certain event will (or will not)
occur. We use past experiences and what we know (or what we assume to be true) about the world to inform

our judgments about the chance of occurrence.

Probability: The likelihood that a certain event will occur.

Probabilities are linked intricately with proportions; in fact, the probability formula is a spinoff of Formula
3(1). Flip back to this formula right now for a refresher. Let us call a particular event of interest 4. Events are
phenomena of interest that are being studied. The probability that event 4 will occur can be symbolized as p

(A) (pronounced “p of A7) and written formulaically as

The number of times event A canoccur
p(4)=

Coin flips are a classic example of probabilities. Any two-sided, fair coin will land on either heads or tails

* The total number of possible outcomes Formula 6(1)

when flipped, so the denominator in the probability formula is 2 (i.e., there are two possible outcomes of the
coin flip). There is one tails side on a coin, so the numerator is 1 (i.e., there is only one option for the coin to
land tails-side up). Probabilities, like proportions, are expressed as decimals. The probability of the coin

landing tails side up, then, is

|
At mh
p(A) :

Any time you flip a fair coin, there is a .50 probability that the coin will land on tails. Of course, the

probability that it will land heads side up is also .50. Note that the two probabilities together sum to 1.00:
pltails) + p(heads) = .50 + .50 = 1.00

The probabilities sum to 1.00 because heads and tails are the only two possible results and thus constitute an

exhaustive list of outcomes. The coin, moreover, must land (it will not hover in midair or fly around the
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room), so the probability sums to 1.00 because the landing of the coin is inevitable.

Think about rolling one fair die. A die has six sides, so any given side has

1
plany side) =— =.17
of being the one that lands faceup. If you were asked, “What is the
6 g p. ity

probability of obtaining a 3 on a single roll of a fair die?” your answer would be “.17.” There are 52 cards in a

standard deck and only one of each number and suit, so during any random draw from the deck, each card has

plany card) = i =02

52 probability of being the card that is selected. If someone asked you,
“What is the probability of selecting the two of hearts from a full deck?” you would respond, “.02.” Note, too,
that in the instance of a die and a deck of cards—just as with the flipped coin—the sum of all events’
individual probabilities is 1.00 (or within rounding error of it). This is a reflection of the bounding rule and
the rule of the complement that we discussed in Chapter 5. A die has six sides, so there are six total possible
events: The die canland on 1, 2, 3, 4, 5, or 6. The probability that it will land on a specific predicted value
(say, 5, e.g.) is .17, whereas the probability that it will land on any of its six sides is .17 + .17 + .17 + .17 + .17
+.17 = 1.02 (technically, this sum is zero, but the numbers used in the example contain rounding error).
Likewise, the probability of pulling a predetermined playing card (for instance, the four of clubs) is .02, but
the chance that you will, in fact, retrieve some card from the deck when you pull one out is .02(52) = 1.04

(exceeding 1.00 due to rounding error).

Probabilities can be used to make specific predictions about how likely it is that an event will occur. Maybe
you want to predict that you will draw any card from the diamonds suit. Decks contain four suits, each with

13 cards, meaning there are 13 diamond cards. The probability of drawing any one of them is

p(diamond) = g =I5

This is different from the previous example using the two of hearts
because here we do not care what number the card is as long as it belongs to the diamond suit. Likewise, there

are four cards of each number (one of each suit), so the probability that your random draw would produce a

p(9)=i=.08.

nine of any suit would be 52 Again, this is different from .02 because the prediction
that a draw will yield a nine of any suit opens up more options (four, to be exact) than when the suit is

restricted (resulting in just one option).
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Learning Check 6.1

v

Use probability to answer the following two questions.

1. When you predict that a die will land on 2, what is the probability that it will actually land on 3 instead?
2. When you predict that a card will be the jack of diamonds, what is the probability that you will actually pull the ace of hearts

instead?
Based on what you know about the bounding rule and the rule of the complement, answer the following questions.

1. When you predict that a die will land on 1, what is the probability that it will land on any other value exceps 1?
2. When you predict that a card will be the nine of spades, what is the probability that the card you actually pull will be anything

except the nine of spades?

Table 6.1 Gender of Police-Public Centact Survey (PPCS)

Respondents
CZE R R
Male 25,078 48
Female 27,451 52
N=52529 ¥ =1.00

The major difference between proportions and probabilities is that proportions are purely descriptive, whereas
probabilities represent predictions. Consider Table 6.1, which shows the proportion of the respondents to the
Police—Public Contact Survey (PPCS; see Data Sources 2.1) that is male and the proportion that is female. If
you threw all 52,529 people into a gigantic hat and randomly drew one, what is the probability that the person
you selected would be female? It is .52! The probability that the person would be male? The answer is .48.

This is the relationship between proportions and probabilities.

Let us try another example. Table 6.2 shows data from the Uniform Crime Reports (UCR; see Data Sources

1.1) showing the percentage of crimes cleared by arrest in 2015.

Table 6.2 Percentage of Crimes Cleared by Arrest

Homicide €1.50
Rape 37.80
Robbery 29.30
Aggravated assault 54.00
Burglary 12.90
Larceny-theft 21.90
Motor vehicle theft 13.10

We can use the percentages in Table 6.2 just as if they were proportions. (Flip back to Formulas 3[1] and 3[2]
if you need a refresher on this concept.) What is the probability that a robbery reported to police will result in

an arrest of the perpetrator? You can see that 29.30% of these crimes are cleared by arrest, which means that
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any given robbery has a .29 chance of resulting in an arrest. Try this exercise with the other crime types listed

in the table.
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Learning Check 6.2

v

In Table 6.2, the bounding rule and rule of the complement play out a little differently compared to the examples using coins, dice, and
cards. In the clearance data, these two rules must be applied separately for each individual crime type. There are two possible outcomes
anytime a crime occurs: that the police identify the perpetrator or that they do not. As such, there is a 100.00% that o7e of these two
outcomes will occur. We can use clearance rates and simple subtraction to find the chance that a particular crime will not be cleared by
arrest. For example, if 12.90% of burglaries result in arrest of the suspect, then 100.00% — 12.90% = 87.10% of burglaries are not cleared
(i.e., there is a .87 probability that any given burglary will not result in the arrest of a suspect). For each of the remaining crime types in

Table 6.2, calculate the percentage of crimes not cleared, and identify the corresponding probability.

Probability theory is grounded in assumptions about infinite trials; in other words, probabilities concern what
is expected over the long run. Think back to the coin flip example. Since p (zails) on any given flip is .50, then
over the course of a long-term flipping session, half of the flips will yield tails and the other half will land on
heads. In other words, if you spent several hours flipping one coin and recording each outcome, eventually you

would end up with a 50/50 split.

There is a distinct difference, though, between theoretical predictions and empirical outcomes. (Empirical
outcomes can also be called observed outcomes ; we will use the terms interchangeably.) Quite simply, and as
you have undoubtedly already learned in life, you do not always get what you expect. You can see this in
practice. First, imagine that you flipped a coin six times. How many of those flips would you expect to land
tails side up? Three, of course, because every flip has p (z2ils) = .50 and so you would expect half of all flips to
result in tails. Now, grab a real coin, flip it six times, and record each outcome. How many tails did you get?
Try 20 flips. Now how many tails? Transfer the following chart to a piece of paper and fill it in with your

numbers.

?

6 flips proportion tails = 6

?

20flips proportion tails = 20

Theoretical prediction: A prediction, grounded in logic, about whether or not a certain event will occur.

Empirical outcome: A numerical result from a sample, such as a mean or frequency. Also called observed outcomes.

You might have found in your six-flip exercise that the number of tails departed noticeably from three; you
might have gotten one, five, or even six or zero tails. On the other hand, the number of tails yielded in the 20-
flip exercise should be approximately 10 (with a little bit of error; it might have been 9 or 11). Why is this? It
is because you increased the number of trials and thereby allowed the underlying probability to emerge in the

empirical outcomes. The knowledge that half of coin flips will produce tails over time is a theoretical
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prediction based on the concept of infinite coin flipping (nobody has actually spent infinity flipping a coin),
whereas the flip experiment you just conducted is an empirical test and outcome. Theory guides us in
outlining what we expect to see (e.g., if you are asked how many times you would expect to see tails in a series
of six flips, your best guess would be three), but sometimes empirical results do not match expectations (e.g.,

you might see one tail, or possibly all six will be tails).

The relationship between theoretical predictions and empirical findings is at the heart of statistical analysis.
Researchers constantly compare observations to expectations to determine if empirical outcomes conform to
theory-based predictions about those outcomes. The extent of the match (or mismatch) between what we

expect (theory) and what we see (reality) is what leads us to make certain conclusions about both theory and

reality.
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Learning Check 6.3

v

If you are finding the material in this chapter to be about as clear as mud, then you are experiencing the perfectly normal learning process
for this topic. These ideas take time to sink in. A highly recommended study technique is to spend time simply thinking about these
concepts. Work them over in your mind. Take breaks as you read so that you can digest concepts before continuing. Practice additional

probability calculations or try concrete examples like drawing cards, flipping a coin, or rolling a die.

Now, let us add another layer to the discussion. We have thus far covered four examples of situations in which
probability can be used to make predictions: coin tosses, die rolls, card selections, and clearance rates. You
might have noticed that clearance rates stand apart from the other three examples—unlike coins, dice, and
cards, the probability of clearance is not equal across the different crime types. Whereas a rolled die offers
equal probability of landing on two versus six (each one is .17), a crime will vary in its clearance probability
based on the type of crime that it is. Motor vehicle theft has a .13 clearance probability, and homicide has a
.62 chance of being cleared. Unlike each of the six sides of a die, any given crime does not have an equal
probability of clearance; instead, a crime’s probability of being solved depends in large part on the type of

crime it is.

This leads us to an important point: In most cases, the different possible outcomes have unegual probabilities
of occurring. The existence of outcomes that have greater or lesser theoretical probabilities of being the one
that actually occurs forms the basis for everything else we are going to discuss in this chapter. Put simply,

some outcomes are more likely than others.
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Learning Check 6.4
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The general population is roughly 50% female, meaning that approximately 50% of newborns are female. Suppose there are two hospitals,
Hospital A and Hospital B. In Hospital A, four babies are born each day. In Hospital B, 20 babies are born per day. In which hospital
would you expect to see roughly half of the babies born each day be female? That is, in which hospital would the sex of the babies born
each day be representative of the entire population? Explain your answer. What about over the course of a year? If you tracked the sex of

babies born for a year, would there be a difference between the two hospitals’ female-baby percentages? Why or why not?

A probability distribution is a table or graph showing the full array of theoretical probabilities for any given
variable. These probabilities represent not what we aczually see (i.e., tangible empirical outcomes) but, rather,
the gamut of potential empirical outcomes and each outcome’s probability of being the one that actually
happens. Probability distributions are theoretical. A probability distribution is constructed on the basis of an
underlying parameter or statistic (such as a proportion or a mean) and represents the probability associated
with each possible outcome. Two types of probability distributions are discussed in this chapter: binomial and

continuous.

Probability distribution: A table or graph showing the entire set of probabilities associated with every possible empirical outcome.
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Discrete Probability: The Binomial Probability Distribution

A trial is a particular act with multiple different possible outcomes (e.g., rolling a die, where the die will land
on any one of its six sides). Binomials are trials that have exactly two possible outcomes; this type of trial is
also called dichotomous or binary. Coin flips are binomials because coins have two sides. Research Example 6.1
describes two types of binomials that criminal justice and criminology researchers have examined. Binomials
are used to construct binomial probability distributions. The binomial probability distribution is a list of

expected probabilities; it contains all possible results over a set of trials and lists the probability of each result.

Trial: An act that has several different possible outcomes.
Binomial: A trial with two possible outcomes. Also called a dichotomous or binary variable empirical outcome.

Binomial probability distribution: A numerical or graphical display showing the probability associated with each possible outcome of

a trial.

So, how do we go about building the binomial probability distribution? The distribution is constructed using
the binomial coefficient. The formula for this coefficient is a bit intimidating, but each component of the
coefficient will be discussed individually in the following pages so that when you are done reading, you will

understand the coefficient and how to use it. The binomial coefficient is given by the formula

NY . v
plrd=|  [#fg™ Bormilac0)

where

p (r) = the probability of 7,

r = the number of successes,

N = the number of trials or sample size,

2 = the probability that a given event will occur, and

g = the probability that a given event will not occur.

Binomial coefficient: The formula used to calculate the probability for each possible outcome of a trial and to create the binomial

probability distribution.

Research Example 6.1 Are Police Officers Less Likely to Arrest an Assault Suspect When the Suspect and the Alleged Victim Are

Intimate Partners?

Critics of the police response to intimate partner violence have accused police of being “soft” on offenders who abuse intimates.
Klinger (1995) used a variable measuring whether or not police made an arrest when responding to an assault of any type. The
variable was coded as arrest/no arrest. He then examined whether the probability of arrest was lower when the perpetrator and victim
were intimates as compared to assaults between strangers or non-intimate acquaintances. The results indicated that police were
unlikely to make arrests in a// types of assault, regardless of the victim—offender relationship and that they were not less likely to

arrest offenders who victimized intimate partners relative to those who victimized strangers or acquaintances.
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Are ex-prisoners returning to society less likely to recidivate if they are
P g y y
given reentry services?

Researchers, corrections agencies, and community groups constantly seek programming that reduces recidivism among recently
released prisoners by helping them transition back into society. The reentry process is difficult—newly released ex-prisoners struggle
to find housing, transportation, and employment. Many have ongoing problems with substance dependence. Ray, Grommon,
Buchanan, Brown, and Watson (2017) evaluated recidivism outcomes for clients of a federally funded program implemented across
five organizations in Indiana that provided reentry services to adult ex-prisoners with histories of drug or alcohol abuse. Recidivism
was coded as yes/no to indicate whether each person was returned to prison after completing the program. Approximately one-third
recidivated. There were significant differences in recidivism rates across the five agencies, suggesting that better-funded agencies
combining multiple different therapeutic and social-support services produce lower recidivism rates compared to those with fewer

resources that offer a narrow range of services.

The ultimate goal of binomials is to find the value of p(r) for every possible value of 7. The resulting list of p(r)

values is the binomial probability distribution.

Before we get into the math, let’s first consider a conceptual example using the clearance data. Table 6.2
shows that 61.50% of homicides result in arrest, meaning that any given homicide has a .62 probability of
clearance. Suppose you gathered a random sample of 10 homicide cases. Out of these 10, there are 11 separate
possible (i.e., theoretical) outcomes: Anywhere from none of them to all 10 could have been cleared by arrest.
Each of these individual outcomes has a certain probability of being the one that occurs in reality. You might
have already guessed that the most likely outcome is that 6 of them would be cleared (since 61.50% of 10 is
6.25), but what are the other possible outcomes’ probabilities of occurrence? This is what we use the binomial

probability distribution for.
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Successes and Sample Size: Vand

The binomial coefficient formula contains the variables NV and r. The NV represents sample size or the total
number of trials. As an example, we will use a hypothetical study of jail inmates who have been booked on
arrest and are awaiting word as to whether they will be released on bail or whether they will remain confined
while they await criminal-court proceedings. The Bureau of Justice Statistics (BJS) reports that 62% of felony
defendants are released from jail prior to the final disposition of their case (Reaves, 2013), so p = .62. Let’s say
we draw a random sample of five recently arrested jail inmates. This means that for the binomial coefficient

formula, V= 5.

In the binomial coefficient, r represents the number of successes or, in other words, the number of times the
outcome of interest happens over N trials. A researcher decides what “success” will mean in a given study. In
the current example, we will define success as a defendant obtaining pretrial release. There are multiple values
that r takes on in any given study, since there are multiple possible successes. If we wanted to find the
probability that three of the five defendants would be released, we would input 7 = 3 into the binomial

coefficient formula; if we wanted the probability that all five would be released, then r = 5.

Success: The outcome of interest in a trial.
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The Number of Ways » Can Occur, Given N: The Combination

In our sample of five defendants, there are a lot of possibilities for any given value of . For instance, if one
defendant was released (i.e., 7 = 1), then it could be that Defendant 1 was released and the remaining four
were detained. Alternatively, Defendant 4 might have been the one who made bail. The point is, a given value
of 7 can occur in multiple different ways. If a release is symbolized 7, then, for an illustration, let us call a
detention 4. (Remember that release and detention are binary; each defendant receives one of these two
possible outcomes.) Consider the following sets of possible arrangements of outcomes for one release and four

detentions:
{r,d,d,d,d}{d,r,d,d,d}{d,d,r,d,d}{d,d,d,r,d}{d,d,d,d,r}

What these sets tell you is that there are five different ways for » = 1 (i.e., one success) to occur over N =5
trials. The same holds true for any number of successes—there are many different ways that » = 2, r = 3, and

so on can occur in terms of which defendants are the successes and which are the failures.

The total number of ways that 7 can occur in a sample of size Vis called a combination and is calculated as
N!
TR ormula 6
rI(N =)l F 3)

where

N = the total number of trials or total sample size,
r = the number of successes, and

! = factorial.

Combination: The total number of ways that a success r can occur over NV trials.
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Learning Check 6.5
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In this and subsequent chapters, you will see various notations representing multiplication. The most popular symbol, x , will not be used;
in statistics, x represents raw data values, and so using this symbol to also represent multiplication would be confusing. Instead, we will
rely on three other indicators of multiplication. First are parentheses; numbers separated by parentheses should be multiplied together.
This could appear as 2(3) = 6, or (2)(3) = 6. Second, sometimes no operand is used, and it is merely the placement of two numbers or
symbols right next to each other that signals multiplication. An example of this is xy , where whatever numbers x and y symbolized,
respectively, would be multiplied together. If x = 2 and y = 3, then xy = 2(3) = 6. Third is the centered dot that connects the numbers

being multiplied, such as 2 - 3 = 6.
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Learning Check 6.6

v

Most calculators meant for use in math classes (which excludes the calculator that came free with that new wallet you bought) will
compute factorials and combinations for you. The factorial function is labeled as /. The combination formula is usually represented by nCr
or sometimes just C. Depending on the type of calculator you have, these functions are probably either located on the face of the calculator
and accessed using a 2nd or alpha key, or can be found in a menu accessed using the math, stat , or prob buttons, or a certain combination

of these functions. Take a few minutes right now to find these functions on your calculator.

Also, note that 1 factorial and 0 factorial both equal 1. Try this out on your calculator to see for yourself. Since 0! = 1, you do not need to

worry if you end up with a zero in the denominator of your fractions.

=1

0l=1

The factorial symbol / tells you to multiply together the series of descending whole numbers starting with the
number to the left of the symbol all the way down to 1.00. If =3, then#!=3 - 2 - 1=6.If N=5, then N! =
5-4-3-2-1=120.

Factorial: Symbolized /, the mathematical function whereby the first number in a sequence is multiplied successively by all numbers

below it down to 1.00.

There is also shorthand notation for the combination formula that saves us from having to write the whole

N

thing out. The shorthand notation is , which is pronounced “N choose r.” Be very careful—this is not

a fraction! Do not mistake it for “V divided by ».”

The combination formula can be used to replicate the previously presented longhand demonstration wherein
we were interested in the number of ways that one release and four detentions can occur. Plugging the

numbers into the combination formula yields

5y 5 120 120
L) 1(5-1) 1(4) 1(24)

When we wrote out the possible ways for 7 = 1 to occur, we concluded that there were five options; we have
now confirmed this mathematically using the combination formula. There are five different ways for one

person to be released and the remaining four to be detained.

We will do one more example calculation before moving on. Suppose that three of the five defendants were
released. How many combinations of three are there in a sample of five? Plug the numbers into the

combination formula to find out:
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5 5! 120 120 120
3) 31(5-3) 3(2) 6(2) 12

There are 10 combinations of three in a sample of five. In the context of the present example, there are 10

different ways for three defendants to be released and two to be detained. This has to be accounted for in the
computation of the probability of each possible result, which is why you see the combination formula included

in the binomial coefficient.
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The Probability of Success and the Probability of Failure: p and ¢

The probability of success (symbolized p) is at the heart of the binomial probability distribution. This number
is obtained on the basis of prior knowledge or theory. In the present example pertaining to pretrial release, we
know that 62% of felony defendants obtain pretrial release. This means that each defendant’s probability of
release is p = .62.

We know that release is not the only possible outcome, though—defendants can be detained, too. The
opposite of a success is a failure. Because we are dealing with events that have two potential outcomes, we
need to know the probability of failure in addition to that of success. The probability of failure is represented
by the letter ¢ ; to compute the value of ¢, the bound rule and the rule of the complement must be invoked. In

Chapter 5, you learned that

p (A) + p (Not A) = 1.00; therefore,

p (Not A) =1.00—p (A) .

Failure: Any outcome other than success or the event of interest.

What we are doing now is exactly the same thing, with the small change that p (4) is being changed to simply
p , and p (Not A) will now be represented by the letter ¢. So,

g=1.00-p Formula 6(4)

With ¢ = .62, the probability that a felony defendant will be detained prior to trial (i.e., will 7oz obtain pretrial

release) is

g=1.00-.62 =38
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Putting It All Together: Using the Binomial Coefficient to Construct the
Binomial Probability Distribution

Using p and ¢, the probability of various combinations of successes and failures can be computed. When there
are 7 successes over IV trials, then there are NV — r failures over that same set of trials. There is a formula called
the restricted multiplication rule for independent events that guarantees that the probability of 7 successes and
N —r failures is the product of p and ¢. In the present example, there are three successes (each with probability
p = .62) and two failures (each with probability ¢ = .38). You might also recall from prior math classes that
exponents can be used as shorthand for multiplication when a particular number is multiplied by itself many
times. Finally, we also have to account for the combination of N and . The probability of three successes is

thus

9
pl 3)= . p(success) p(success) p(success) p( failure) p( failure)

_[3
BE prPP4d9
2

d

= 2 (62°)(38%)

=10(.24)(.14)

- 34

Restricted multiplication rule for independent events: A rule of multiplication that allows the probability that two events will both

occur to be calculated as the product of each event’s probability of occurrence: That is, p (4 and B) = p (A) - p (B).

This result means that given a population probability of .62, there is a .34 probability that if we pulled a

sample of five felony defendants, three would obtain pretrial release.

To create the binomial probability distribution, repeat this procedure for all possible values of 7. The most
straightforward way to do this is to construct a table like Table 6.3. Every row in the table uses a different »

value, whereas the values of IV, p , and ¢ are fixed. The rightmost column, p(7) , is obtained by multiplying the
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N

,p% and gN_’ terms.

The values in the p(r) column tell you the probability of each possible outcome being the one that actually
occurs in any given random sample of five defendants. The probability that two of the five defendants will be
released pending trial is .19, and the probability that all five will be released is .09. Probabilities can also be
added together. The probability of four or more defendants being released is p (4) + p (5) = .29 + .09 = .38. The
chance that two or fewer would be released is p (2) + p (1) + p (0) = .19 + .06 + .01 = .26.

Our original question was, “With a population probability of .62, what is the probability that three of five
defendants would be released?” You can see from the table that the answer is .34. This, as it happens, is the
highest probability in the table, meaning that it is the outcome that we would most expect to see in any given
random sample. Another way to think of it is to imagine that someone who was conducting this study asked
you to predict—based on a population probability of .62 and N = 5 defendants—how many defendants would
be released. Your “best guess” answer would be three, because this is the outcome with the highest likelihood

of occurring.

0 [2]21 62°=1.00 .3850-5= 01 01

1 [?]=5 62! = 62 385171202 06
5

2 {2)=1o 622 =38 .38%2=3 =05 19
5

3 5|-10 623 = .24 3853-2- 14 34
5

4 [4]:5 624 =15 384-1_ 38 29
5

5 [5]=1 625=.09 3855-01.00 09

Contrast this to the conclusion we would draw if none of the five defendants in the sample had been released.
This is an extremely improbable event with only p (0) = .01 likelihood of occurring. It would be rather
surprising to find this empirical result, and it might lead us to wonder if there was something unusual about
our sample. We might investigate the possibility that the county we drew the sample from had particularly
strict policies regulating pretrial release or that we happened to draw a sample of defendants charged with

especially serious crimes.
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There are two neat and important characteristics of the binomial probability distribution. The first is that it
can be graphed using a bar chart (Figure 6.1) so as to form a visual display of the numbers in Table 6.3. The
horizontal axis contains the 7 values and the bar height (vertical axis) is determined by p(r) . The bar chart

makes it easy to determine at a glance which outcomes are most and least likely to occur.

The second important thing about the binomial probability distribution is that the p(r) column sums to 1.00.
This is because the binomial distribution is exhaustive; that is, all possible values of 7 are included in it. Any
time an exhaustive list of probabilities is summed, the result will be 1.00. In Table 6.3, we covered all of the
values that » can assume (i.e., zero to five); therefore, all possible probabilities are included, and the sum is
1.00. Memorize this point! It is applicable in the context of continuous probability distributions, too, and will

be revisited shortly.

Figure 6.1 The Binominal Probability Distribution for Pretrial Release in a Sample of Five Defendants, With
p=.62
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Continuous Probability: The Standard Normal Curve

The binomial probability distribution is applicable for trials with two potential outcomes; in other words, it is
used for dichotomous categorical variables. Criminal justice and criminology researchers, however, often use
continuous variables. The binomial probability distribution has no applicability in this context. Continuous
variables are represented by a theoretical distribution called the normal curve. Figure 6.2 shows this curve’s

familiar bell shape.

Normal curve: A distribution of raw scores from a sample or population that is symmetric and unimodal and has an area of 1.00.

Normal curves are expressed in raw units and differ from one another in metrics, means, and standard deviations.

Figure 6.2 The Normal Curve for Continuous Variables
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Learning Check 6.8

v

‘We have already visited the concept of a normal distribution and have encountered four ways that a curve can deviate from normality. Can

you remember those four deviation shapes? Revisit Chapters 4 and 3, if needed.

The normal curve is a unimodal , symmetric curve with an area of 1.00. It is unimodal because it peaks once
and only once. In other words, it has one modal value. It is symmetric because the two halves (split by the
mean) are identical to one another. Additionally, it has an area of 1.00 because it encompasses all possible
values of the variable in question. Just as the binomial probability distribution’s p (r) column always sums to
1.00 because all values that 7 could possibly take on are contained within the table, so too the normal curve’s
tails stretch out to negative and positive infinity. This might sound impossible, but remember that this is a

theoretical distribution. This curve is built on probabilities, not on actual data.

Research Example 6.2 What Predicts Correctional Officers’ Job Stress and Job Satisfaction?

Correctional officers work in high-stress environments, and their job performance has implications for the quality and safety of the
correctional institution. High stress levels can reduce these workers’ performance levels and can increase their likelihood of physical
injury; likewise, low job satisfaction can lead to constant staff turnover and to burnout, which also dampens the overall effectiveness

of the correctional institution.

Paoline, Lambert, and Hogan (2006) sought to uncover the predictors of correctional officers’ attitudes toward their jobs. They
gathered a sample of jail security staff and administered surveys that asked these respondents several questions about the levels of
stress they experience at work and the amount of satisfaction they derive from their job. There were six stress variables and five
satisfaction variables. Each set of variables was summed to form a single, overarching score on each index for each respondent. The
indexes were continuous. Jail staff members with higher scores on the stress index experienced greater work anxiety and tension;

likewise, those with lower scores on the satisfaction index had relatively poor feelings about their job.

Paoline et al. (2006) found that the most consistent predictors of both stress and satisfaction were organizational factors specific to
the jail itself; in particular, officers who felt that that the jail policies were clear and fair and who had positive views toward their
coworkers experienced significantly less stress and greater satisfaction as compared to those officers who were not happy about the
policies and their coworkers. These findings suggest that jail managers who seek to foster a positive work environment for their

employees should ensure clear, fair policies and should promote harmony and teamwork among jail staff.

The characteristics that determine a normal curve’s location on the number line and its shape are its mean and
standard deviation, respectively. When expressed in raw units, normal curves are scattered about the number
line and take on a variety of shapes. This is a product of variation in metrics, means, and standard deviations.

Figure 6.3 depicts this variation.

This inconsistency in locations and dimensions of normal curves can pose a problem in statistics. It is
impossible to determine the probability of a certain empirical result when every curve differs from the rest.
What is needed is a way to standardiz e the normal curve so that all variables can be represented by a single
curve. This widely applicable single curve is constructed by converting all of a distribution’s raw scores to z

scores. The z -score transformation is straightforward:
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z, =——, Formula 6(5)

where

2y = the z score for a given raw score «x,
x = a given raw score,
x = the distribution mean, and

s = the distribution standard deviation.

z score: A standardized version of a raw score that offers two pieces of information about the raw score: (1) how close it is to the

distribution mean and (2) whether it is greater than or less than the mean.

Figure 6.3 Variation in Normal Curves: Different Means and Standard Deviations

A z score conveys two pieces of information about the raw score on which the z score is based. First, the

absolute value of the z score reveals the location of the raw score in relation to the distribution mean. Z scores
are expressed in standard deviation units. A z score of .25, for example, tells you that the underlying raw score
is one-fourth of one standard deviation away from the mean. A z score of —=1.50, likewise, signifies a raw score

that is one-and-one-half standard deviations away from the mean.
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Learning Check 6.9
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It is very important that you understand standard deviations; z scores will not make much sense if you did not fully grasp this earlier
concept from Chapter 5. If necessary, return to that chapter for a review. What is a standard deviation, conceptually? What two pieces of

complementary information are given by the mean and the standard deviation?

The second piece of information is given by the sign of the z score. Although standard deviations are always
positive, z scores can be negative. A z score’s sign indicates whether the raw score that the z score represents is
greater than the mean (producing a positive z score) or is less than the mean (producing a negative z score). A
z score of .25 is above the mean, while a score of —1.50 is below it. Figure 6.4 shows the relationship between
raw scores and their z -score counterparts. You can see that every raw score has a corresponding z score. The z
score tells you the distance between the mean and an individual raw score, as well as whether that raw score is

greater than or less than the mean.

Figure 6.4 Raw Scores and z Scores

—Z §Core
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When all of the raw scores in a distribution have been transformed to z scores and plotted, the result is the
standard normal curve. The z -score transformation dispenses with the original, raw values of a variable and
replaces them with numbers representing their position relative fo the distribution mean. A normal curve,

then, is a curve constructed of raw scores, while the standard normal curve is composed of z scores.

Standard normal curve: A distribution of z scores. The curve is symmetric and unimodal and has a mean of zero, a standard

deviation of 1.00, and an area of 1.00.

Like ordinary normal curves, the standard normal curve is symmetric, unimodal, and has an area of 1.00.
Unlike regular normal curves, though, the standard normal curve’s mean and standard deviation are fixed at 0
and 1, respectively. They remain constant regardless of the units in which the variable is measured or the

original distribution’s mean and standard deviation. This allows probabilities to be computed.

To understand the process of using the standard normal curve to find probabilities, it is necessary to
comprehend that, in this curve, area is the same as proportion and probability. A given area of the curve (such
as the area between two raw scores) represents the proportion of scores that are between those two raw values.

Figures 6.5 and 6.6 display the relationship between z scores and areas.

In Chapter 5, you learned that approximately two-thirds of the scores in any normal distribution lie between
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one standard deviation below and one standard deviation above the mean for that set of scores. (Refer back to
Figure 5.4.) In Figure 6.5, you can see that .3413 (or 34.13%) of the scores are located between the mean and
one standard deviation. If you add the proportion of cases (i.e., area under the curve) that is one standard
deviation below the mean to the proportion or area that is one standard deviation above, you get .3413 +
.3413 = .6826, or 68.26%. This is just over two-thirds! The bulk of scores in a normal distribution cluster
fairly close to the center, and those scores that are within one standard deviation of the mean (i.e., z scores
that have absolute values of 1.00 or less) are considered the typical or normal scores. This confirms what we
saw in Chapter 5 when we talked about the “normal” range being between 1 sd above and 1 sd below the

mean.

Z scores that are greater than 1.00 or less than —1.00 are relatively rare, and they get increasingly rare as you
trace the number line away from zero in either direction. These very large z scores do happen, but they are
improbable, and some of them are incredibly unlikely. In Figure 6.6, you can see that a full 95% of scores (or
.9544, to be exact) are within two standard deviations above and below the mean. In other words, only about
5% of scores in a normal distribution will be either greater than 2 sd above the mean (i.e., have a z value

greater than 2.00) or more than 2 s4 below the mean (a z value less than —2.00).

This is all getting very abstract, so let us get an example going. According to the Census of Jails (COJ; see
Data Sources 3.1), medium-sized jails have a mean of 23.54 full-time correctional officers. The standard

deviation is 17.66.

Suppose that a facility has 19 officers. To find this jail’s z score, plug the numbers into Formula 6(5):

19-2354 -4.54
1766  17.66

This facility is approximately one-fourth of one standard deviation below the group mean on staffing.

Qo =

Substantively speaking, this facility is inside the typical zone of +1 sd .

Figure 6.5 Standard Normal Curve: Area Between the Mean and One Standard Deviation

area = 3413 area = 3413

area = .6826

Figure 6.6 Standard Normal Curve: Area Between the Mean and Two Standard Deviations
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area= 4772 area = 4772

A RN

area = 9544

Now for another one. One institution employed 55 correctional officers, so its z score is

55=23.54 31.46
4= - =1.78
17.66 17.66

This institution is roughly one-and-three-fourths standard deviations above the mean, well outside the typical

f'!"'_
<55

zZone.

One more example. Suppose a facility has 80 officers. Its z score is thus

B0=23.54 5046
= =3.20
L7566 17.66

This jail's raw score is three-and-one-fifths standard deviations greater than the sample mean, which is very

<80 =

far out in the right-hand tail of the distribution.

Let’s draw a hypothetical plot that offers a visualization of the three raw and z scores used in these examples
and each one’s relationship to the mean. You can see in Figure 6.7 each pair of x’s and z’s and how close to
or far from the mean they are, as well as whether they are above or below it. The larger the z score is, the

farther away from the mean that score is.
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The z Table and Area Under the Standard Normal Curve

It is also possible to use z scores to find the area (i.e., proportion of values) between the mean and a particular

score, or even the area that is beyond that score (i.e., the area that is in the tail of the distribution).

Figure 6.7 Raw and z Scores in Relation to the Sample Mean

To do this, the z table is used. The z table is a chart containing the area of the curve that is between the mean
and a given z score. Appendix B contains the z table. The area associated with a particular z score is found by
decomposing the score into an x.x and .Ox format such that the first half of the decomposed score contains the
digit and the number in the 10ths position, and the second half contains a zero in the 10ths place and the
number that is in the 100ths position. In the three previous examples, we calculated z scores of —.26, 1.78, and
3.20. The first z score would be broken down as —.2 + .06. Note that there are no negative numbers in the z
table, but this does not matter because the standard normal curve is symmetric, and, therefore, the z table is
used the same way irrespective of an individual score’s sign. Go to the z table and locate the .2 row and .06
column; then trace them to their intersection. The area is .1026. (Area cannot be negative, so the area
between the mean and any given z score is positive even if the score itself is negative.) This means that

approximately .10 or 10% of the scores in the distribution sit between the mean and a raw score of 19.

z table: A table containing a list of z scores and the area of the curve that is between the distribution mean and each individual z

score.

The z score of 1.78 would decompose as 1.7 + .08. Locating the 1.7 row and .08 column, we can see that the
area is .4625. This tells us that roughly .46 or 46% of scores lie between the mean and a raw score of 55.
Lastly, to find the area for a z score of 3.20, we look at the 3.2 row and .00 column. Here we hit a bump
because the z table does not have a row for 3.2; it has only 3.0 and 3.5. We will select 3.0 because 3.2 is closer
to that number than it is to 3.5. Using 3.0 and .00 yields an area of .4987. In other words, approximately .50
or 50% of scores in the distribution sit between the mean and a raw score of 80. This makes sense because
there is a very large gap between the mean (23.54) and 80, so lots of raw scores will lie within this range.
Figure 6.8 shows the areas between the mean and each of our three z scores. The area between the mean and

z = 3.20 is displayed with a bracket because this area encompasses the area between the mean and z = 1.78.
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Figure 6.8 Areas Between the Mean and z
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Finding the area between the mean and a z score is informative, but what is generally of interest to
criminology and criminal justice researchers is the area deyond that z score; that is, researchers usually want to
know how big or small a z score would have to be in order to fall into the very tip of either the positive or
negative tail of the distribution. To do this, we rely on a simple fact: Because the entire area of the standard
normal curve is 1.00, the mean splits the curve exactly in half so that 50% of scores are below it and 50% are
above it. As such, we have two pieces of information. First, we know that the total area on each side is .50.
Second, for any individual z score, we know the area between the mean and that score. We are looking for the
third, unknown number, which is the area beyond that z score. How do you think we can find that number? If

you said, “Subtraction,” you are right! We subtract the known area from .50 to figure out what’s left over.

Let us find the area beyond z for z = —.26. The area between the mean and z is .1026 and the total area on the

left-hand side is .50, so we use subtraction, as such:

.50 -.1026 = .3974

Thus, .3974 (or approximately 40%, using rounding) of the raw scores in the standard normal distribution for

staff in medium-sized jails are less than 19 (alternatively, less than z = —.26).

How about for a staff size of 55 officers (z = 1.78)?> We found that the area between the mean and z is .4625,

SO

.50 —.4625 = .0375

Approximately .04 (or 4%) of raw scores are greater than 55. This is a small proportion of scores because 55 is

so far away from the mean (nearly 2 standard deviations), which leaves very little room for scores exceeding
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that number. Figure 6.9 depicts each of these calculated z scores’ location on the standard normal curve.
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Learning Check 6.10

v

Before moving on, double-check your understanding of areas between the mean and z and of areas beyond z by finding both of these

areas for each of the following z scores:

1. 2=1.38
2. z=—065
3. 2=2.46
4. z=-3.09

Figure 6.9 Areas Between the Mean and z , Beyond z , and Total Area for Two z Scores
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Another handy feature of the standard normal curve is that just as z scores can be used to find areas, areas can
likewise be used to find z scores. Basically, you just use the z table backward. We might, for instance, want to
know the z scores that lie in the upper 5% (.05) or 1% (.01) of the distribution. These are very unlikely values
and are of interest because of their relative rarity. How large would a z score have to be such that only .05 or

.01 of scores is above it?

The process of finding these z scores employs similar logic about the area of each side of the curve. First, we
know that the z table provides the area between z and the mean; it does not tell you about the area beyond z,
so it cannot be used yet. This problem is surmounted using subtraction, as we have already seen. Let us start

with the area of .01. The area between the mean and the z score that cuts the distribution at .01 is

50-.01=.49

Thus, the area between the mean and the z score we are searching for is .49. Since we know this, we can now

use the z table.

To do this, scan the areas listed in the body of the z table to find the one that is closest 0 .49. The closest area
is .4901. Third, find the z score associated with the identified area. Instead of tracing the two elements of a z
score inward to locate the area, as you did before, now start at the area and trace outward along the row and

column. The area of .4901 is in the 2.3 row and .03 column, so the z score is

2.3+.03=2.33
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And that is the answer! We now know that .01 (or 1%) of scores in the standard normal distribution area have

z scores greater than 2.33.
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Learning Check 6.11

v

The text uses the example of finding the z scores that are in the top 1% of the standard normal distribution. What z scores are, likewise,
in the bottom 1%? Explain how you arrived at your answer. (Hint: You do not need to do any math to answer this question; the

calculations have already been done in the text.)

Now let us find the z score associated with an area of .05, but with a twist: We will place this area in the lower
(i-e., left-hand) tail of the distribution. Recall that we were working in the upper (right-hand) tail when we
did the previous example using an area of .01. The first and second steps of the process are the same no matter
which side of the distribution is being analyzed. Subtraction shows that .50 — .05 = .45 of the scores is
between the mean and z. Going to the table, you can see that there are actually two areas that are closest to
45. They are .4495 and .4505. The z score for the former is 1.64 and for the latter is 1.65; however , since we
are on the left (or negative) side of the curve, these z scores are actually —1.64 and —1.65. Be aware of the sign
of your z score! Scores on the left side of the standard normal curve are negative, so you have to add a negative

sign to the score once you locate it using the table.

Finally, since there are two z scores in this instance, they must be averaged:

-1.64+(-1.65) -3.29 LS
> .

LZarea=.05 = 5

That is the answer! In the standard normal distribution, z scores less than —1.65 have a .05 or less probability
of occurring. In other words, these extremely small scores happen 5% of the time or less. That is unlikely

indeed.
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Learning Check 6.12

v

There are two points you should be very clear on before leaving this chapter. First, although z scores can be negative, areas are always
positive. When you are working on the left side of the standard normal z curve, scores will be negative but areas will not. Second,
areas/probabilities and z scores are two ways of expressing the same idea. Large z scores are associated with small probabilities, and small
% scores represent large probabilities. The larger the absolute value of a z score is, the smaller the likelihood of observing that score will be.
Z scores near z ero (i.e., near the mean of the standard normal curve) are not unlikely or unusual, whereas scores that are very far away
from z ero are relatively rare; they are out in the far left or far right tail. Take a moment now to graph the four z values listed in Learning

Check 6.10.

Chapter Summary

Probability is the basis of inferential statistics. This chapter introduced two of the major probability distributions: binomial and
standard normal. The binomial distribution is for categorical variables that have two potential outcomes (dichotomous or binary
variables), and the standard normal curve applies to continuous variables. The binomial probability distribution is constructed using
an underlying probability derived from research or theory. This distribution shows the probability associated with each possible

outcome, given an overarching probability of success and a predetermined number of cases or trials.

The standard normal curve consists of z scores, which are scores associated with known areas or probabilities. Raw scores can be
transformed to z scores using a simple conversion formula that employs the raw score, the mean, and the standard deviation. Because
the area under the standard normal curve is a constant 1.00 (i.e., .50 on each side), areas can be added and subtracted, thus allowing

probabilities to be determined on the basis of z scores and vice versa.

Both distributions are theoretical, which means that they are constructed on the basis of logic and mathematical theory. They can be
contrasted to empirical distributions, which are distributions made from actual, observed raw scores in a sample or population.

Empirical distributions are tangible; they can be manipulated and analyzed. Theoretical distributions exist only in the abstract.

Thinking Critically

1. Suppose that in a particular state, female offenders sentenced to prison received a mean sentence length of 30 months (s = 12)
and male offenders’ mean sentence length was 40 months (s = 10). If you randomly selected a female prison inmate and
found that she had been sentenced to 24 months, would you be surprised? What about if she was serving a 45-month

sentence? If you randomly selected a male inmate who had a 60-month sentence, would you be surprised to find this result?

I
—=.02

2. Earlier in the chapter, it was shown that in a 52-card deck, any given card has a 5 2 chance of being selected

‘What about if his sentence was 31 months? Explain all your answers.

in a random draw. How would this probability change after a card was drawn and not replaced? Calculate the successive
changes in probability as one, two, three, four, and five cards are taken from the deck. Does the probability for each

remaining card increase or decrease? Why?

Review Problems

1. Eight police officers are being randomly assigned to two-person teams.
1. Identify the value of V.
2. Identify the value of 7.
3. How many combinations of 7 are possible in this scenario? Do the combination by hand first, and then check your
answer using the combination function on your calculator.

2. Correctional staff are randomly assigning nine jail inmates to three-person cells.
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1. Identify the value of V.

2. Identify the value of 7.

3. How many combinations of r are possible in this scenario? Do the combination by hand first, and then check your
answer using the combination function on your calculator.

3. Inasample of seven parolees, three are rearrested within 2 years of release.

1. Identify the value of V.

2. Identify the value of 7.

3. How many combinations of 7 are possible in this scenario? Do the combination by hand first, and then check your
answer using the combination function on your calculator.

4. Out of six persons recently convicted of felonies, five are sentenced to prison.

1. Identify the value of V.

2. Identify the value of 7.

3. How many combinations of 7 are possible in this scenario? Do the combination by hand first, and then check your
answer using the combination function on your calculator.

5. Four judges in a sample of eight do not believe that the law provides them with sufficient sanction options when sentencing
persons convicted of crimes.

1. Identify the value of V.

2. Identify the value of 7.

3. How many combinations of 7 are possible in this scenario? Do the combination by hand first, and then check your
answer using the combination function on your calculator.

6. For each of the following variables, identify the distribution—either binomial or standard normal—that would be the
appropriate theoretical probability distribution to represent that variable. Remember that this is based on the variable’s level
of measurement.

1. Defendants’ completion of a drug court program, measured as success or failure
2. The total lifetime number of times someone has been arrested
3. Crime victims’ reporting of their victimization to police, measured as reported or did not report

7. For each of the following variables, identify the distribution—either binomial or standard normal—that would be the
appropriate theoretical probability distribution to represent that variable. Remember that this is based on the variable’s level
of measurement.

1. The number of months of probation received by juveniles adjudicated guilty on delinquency charges
2. City crime rates
3. Prosecutorial charging decisions, measured as filed charges or did not file charges

8. According to the UCR, 56% of aggravated assaults reported to police are cleared by arrest. Convert this percentage to a
proportion and use it as your value of p to do the following:

1. Compute the binomial probability distribution for a random sample of five aggravated assaults, with r defined as the
number of assaults that are cleared.

2. Based on the distribution, what is the outcome (i.e., number of successes) you would mos# expect to see?

3. Based on the distribution, what is the outcome (i.e., number of successes) you would /east expect to see?

4. What is the probability that two or fewer aggravated assaults would be cleared?

5. What is the probability that three or more would be cleared?

9. According to the BJS, of all criminal charges filed against defendants for domestic violence, 62% are for aggravated assault.
Convert this percentage to a proportion and use it as your value of p to do the following:

1. Compute the binomial probability distribution for a random sample of four domestic-violence cases, with 7 defined as
the number of cases charged as aggravated assault.
2. Based on the distribution, what is the outcome (i.e., number of successes) you would mos# expect to see?
3. Based on the distribution, what is the outcome (i.e., number of successes) you would /east expect to see?
4. What is the probability that two or fewer of the charges would be for aggravated assault?
5. What is the probability that three or more of them would be for assault?
10. According to the UCR, 49% of the hate crimes that were reported to police are racially motivated. Convert this percentage to
a proportion and use it as your value of p to do the following:
1. Compute the binomial probability distribution for a random sample of six hate crimes, with 7 defined as the number

that are racially motivated.
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2. Based on the distribution, what is the outcome (i.e., number of successes) you would os# expect to see?
3. Based on the distribution, what is the outcome (i.e., number of successes) you would /easz expect to see?
4. What is the probability that two or fewer of the hate crimes were motivated by race?
5. What is the probability that three or more were racially motivated?
11. According to the UCR, 61% of murders are committed with firearms. Convert this percentage to a proportion and use it as
your value of p to do the following:
1. Compute the binomial probability distribution for a random sample of five murders, with 7 defined as the number
that are committed with firearms.
. Based on the distribution, what is the outcome (i.e., number of successes) you would os# expect to see?
. Based on the distribution, what is the outcome (i.e., number of successes) you would Zeas? expect to see?

. What is the probability that one or fewer murders were committed with firearms?

v A WLWN

. What is the probability that four or more murders were committed with firearms?

The Law Enforcement Management and Administrative Statistics (LEMAS) survey reports that the mean number
of municipal police per 1,000 local residents in U.S. cities with populations of 100,000 or more was 1.99 (s = .84).
Use this information to answer questions 12 through 15.
12. One department had 2.46 police per 1,000 residents.
1. Convert this raw score to a z score.
2. Find the area between the mean and z.
3. Find the area in the tail of the distribution beyond z.
13. One department had 4.28 police per 1,000 residents.
1. Convert this raw score to a z score.
2. Find the area between the mean and z.
3. Find the area in the tail of the distribution beyond z.
14. One department had 1.51 police per 1,000 residents.
1. Convert this raw score to a z score.
2. Find the area between the mean and z
3. Find the area in the tail of the distribution beyond z.
15. One department had 1.29 officers per 1,000 residents.
1. Convert this raw score to a z score.
2. Find the area between the mean and z.
3. Find the area in the tail of the distribution beyond z.
16. What z scores fall into the upper .15 of the distribution?
17. What z scores fall into the upper .03 of the distribution?
18. What z scores fall into the lower .02 of the distribution?
19. What z scores fall into the lower .10 of the distribution?

20. What z scores fall into the lower .015 of the distribution?
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Glossary of Symbols and Abbreviations Introduced in This Chapter

The probability of success

The total number of trials; the sample size

r The number of successes over a set of N trials
N The combination of “N choose r™; the number of ways for r successes to happen over
[ ] N trials
r
q The probability of failure
iz A score expressed in standard deviation units
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Population, Sample, and Sampling Distributions
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Learning Objectives

e Explain the difference between empirical and theoretical distributions.

e Define population, sample, and sampling distributions and identify each as either empirical or theoretical.

e Explain the difference between statistics and parameters.

e Define sampling error and explain how it affects efforts to generalize from a sample to a population.

o Define the central limit theorem.

e Describe the z and # distributions, including whether these are empirical or theoretical distributions and which one is appropriate

depending on sample size.

A population is the entire universe of objects, people, places, or other units of analysis that a researcher wishes
to study. Criminal justice and criminology researchers use all manner of populations. Bouffard (2010), for
instance, examined the relationship between men’s military service during the Vietnam era and their criminal
offending later in life. Rosenfeld and Fornango (2014) assessed how effective order maintenance policing is at
reducing robbery and burglary at the neighborhood level. Morris and Worrall (2010) investigated whether
prison architectural design influences inmate misconduct. These are three examples of populations—male

Vietnam veterans, neighborhoods, prison inmates—that can form the basis for study.

The problem is that populations are usually far too large for researchers to examine directly. There are
millions of male military veterans in the United States, thousands of communities nationwide, and
approximately 1.5 million prison inmates. Nobody can possibly study any of these populations in its entirety.
Samples are thus drawn from populations of interest. Samples are subsets of populations. Morris and Worrall
(2010), for example, drew a random sample of 2,500 inmates. This sample, unlike its overarching population,

was of manageable size and could be analyzed directly.

Populations and samples give rise to three types of distributions: population, sample, and sampling. A
population distribution contains all values in the entire population, while a sample distribution shows the
shape and form of the values in a sample pulled from a population. Population and sample distributions are
both empirical. They are made of raw scores derived from actual people or objects. Sampling distributions, by

contrast, are theoretical arrays of sample statistics. Each of these is discussed in turn in this chapter.

Population distribution: An empirical distribution made of raw scores from a population.
Sample distribution: An empirical distribution made of raw scores from a sample.

Sampling distribution: A theoretical distribution made out of infinite sample statistics.
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Empirical Distributions: Population and Sample Distributions

Population and sample distributions are both empirical because they exist in reality; every person or object in
the population or sample has a value on a given variable that can be measured and plotted on a graph. To
illustrate these two types of distributions, we can use the 2006 Census of Jails (COJ; see Data Sources 3.1).
This data set contains information on all jails that house inmates for extended periods either awaiting trial or
serving sentences (/V = 2,949). No sampling was done; every jail in the United States was asked to provide

information. This makes the COJ a population data set.

Figure 7.1 is a histogram made in SPSS showing the population distribution for the variable zozal number of
inmates , which is a measure of the number of people housed in each facility. Every facility’s inmate count was
plotted to form this histogram. You should be able to recognize immediately that this distribution has an

extreme positive skew.

What might the distribution look like for a sample pulled from this population? The SPSS program can be
commanded to select a random sample of cases from a data set, so this function will be used to simulate
sampling. A random sample of 50 facilities was pulled from the COJ and the variable zoa/ number of inmates
plotted to form Figure 7.2. The sample distribution looks somewhat similar to the population distribution in
that they are both positively skewed; however, you can see that there are clear differences between them. This

is because there are only 50 cases in this sample, and 50 is a very small subset of 2,949.

Let’s try increasing the sample size to 100. Telling SPSS to randomly select 100 jails and graph their sizes
yields the histogram in Figure 7.3. The shape is closer to that of the population, since 100 is a better

representation of the full 2,949 than 50 is. Of course, differences linger.
Figure 7.1 Population Distribution for Total Inmates per Correctional Facility (V = 2,371)
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Figure 7.2 Sample Distribution (V= 50)
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We can try the sampling exercise again and this time pull 500 cases randomly. Figure 7.3 shows the zoza/
inmates histogram for this third sample. This histogram is a close match to that for the entire population,
which is a function of the larger sample size. We have thus demonstrated a fact that will be critical to the
understanding of empirical distributions: Among samples drawn at random from populations, larger samples
are more-accurate reflections of those populations. The technical term for this is representativeness. A
representative sample matches the population on key characteristics. A random sample of adults from a
population that is 50% female should also be roughly 50% female if it is representative. A sample that was
12% or 70% female would not be representative. Sample size is not the only determinant of how

representative a sample will be of its population, but it is an important factor.

Representativeness: How closely the characteristics of a sample match those of the population from which the sample was drawn.

Before we continue, we should stop and consider some new terms and their definitions. First, although we
have encountered the word szatistic several times up to this point, it is necessary now to offer a formal
definition of this concept. A statistic is a number that describes a sample. This might be a mean, proportion,
or standard deviation. The second term is parameter. A parameter is just like a statistic except that it describes
a population. Populations, like samples, have means, proportions, standard deviations, and so on. Statistics are
estimates of parameters. Table 7.1 displays the symbols for some common statistics and their corresponding
parameters. The statistic notations for the mean and the standard deviation are familiar from previous
chapters, but this is the first time we have considered the population symbols. They are Greek letters. The
population mean is the lowercase version of the letter 7u (x ; pronounced “mew”), and the standard deviation
is a lowercase sigma (0) . The population proportion is a less exciting uppercase P. We have previously

represented sample proportions with a lowercase p , but now that we are differentiating between samples and

populations, we are going to change the letter to P , which is pronounced “p hat.”

Statistic: A number that describes a sample that has been drawn from a larger population.

Parameter: A number that describes a population from which samples might be drawn.
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Figure 7.3 Sample Distribution (2V = 100)
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Figure 7.4 Sample Distribution (2V = 500)
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Table 7.1 Symbeols for Common Statistics and Their

Corresponding Parameters

_ Sample Statistic Popufation Parameter

Mean % e
Standard deviation s o
Proportion p P
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Learning Check 7.1

v

For each of the following, identify whether, based on the information provided, you believe the sample is representative of the population.

1. In a sample of people, the mean age is XX = 5 6 and in the population, x = 41.

2. In a sample of prosecutors’ offices, the proportion of criminal cases in each office that are felonies (compared to misdemeanors and

I3

other types of offenses) is p — . In the population, felonies make up P = .20 of cases.
3. In a sample of cities, the mean violent crime rate (per 100,000) is X = 3 6 0, compared to p = 373. In this same sample, the

x =1,900

mean property crime rate (per 100,000) is * compared to y = 2,487.

Often, criminal justice and criminology researchers want to make a statement about a population, but what
they actually have in front of them to work with is a sample (because samples are typically more feasible to
collect and work with than populations are). This creates a conundrum because sample statistics cannot simply
be generalized to population parameters. Statistics are estimates of population parameters, and, moreover,
they are estimates that contain error (as demonstrated by Figures 7.1 through 7.4). Population parameters are
fixed. This means that they have only one mean and standard deviation on any given measure (e.g., people’s
ages), one percentage on other measures (e.g., the percentage that is female), and so on. Sample statistics, by
contrast, vary from sample to sample because of sampling error. Sampling error arises from the fact that
multiple (theoretically, infinite) random samples can be drawn from any population. Any given sample that a
researcher actually draws is only one of a multitude that he or she cou/d have drawn. Figure 7.5 depicts this.
Every potential sample has its own distribution and set of descriptive statistics. In any given sample, these
statistics might be exactly equal to, roughly equal to, or completely different from their corresponding

par ameters.

Sampling error: The uncertainty introduced into a sample statistic by the fact that any given sample is one of many samples that

could have been drawn from that population.

Figure 7.5 Multiple Random Samples Can Be Drawn From a Population
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The CQOJ can be used to illustrate the effects of sampling error. As described earlier, this data set is a
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population; therefore, samples can be drawn from it. We will continue using the variable zota/ number of
inmates housed. The population means is # = 269.63, and the standard deviation is 0 = 802.13. Drawing five
random samples of 500 facilities each and computing the mean and the standard deviation of each sample

produces the data in Table 7.2.

Table 7.2 Means and Standard Deviations for the Total Inmates
in the Population (N = 2,371) and Five Random

Samples of N = 500

I T e e e

Mean 269.63 282.80 250.34 200.57 237.07 236.73

Std. Dev. 802.13 910.40 702.14 372.22 652.02 693.40

Figure 7.6 The Relationship Between Samples, Sampling Error, and Populations

Sampling
Errar

Look how the means and standard deviations vary—this is sampling error! Sample 1’s mean is 282.80, while

Population |

Sample 3’s is a very different 200.57. There is a substantial amount of variation among the samples, and each
one differs from the true population mean by a smaller or larger amount. In this example, we have the benefit
of knowing the true population mean and the standard deviation, but that is usually not the case in criminal
justice and criminology research. What researchers generally have is one sample and no direct information
about the population as a whole. Imagine, for instance, that you drew Sample 1 in Table 7.2. This sample’s
mean and standard deviation are reasonable approximations of—though clearly not equivalent to—their
corresponding population values, but you would not know that. Now picture Sample 3 being the one you
pulled for a particular study. This mean and standard deviation are markedly discrepant from the population

parameters, but, again, you would be unaware of that.

This example illustrates the chasm between samples and populations that is created by sampling error and
prevents inferences from being made directly. It would be a mistake to draw a sample, compute its mean, and
automatically assume that the population mean must be equal or close to the sample mean. As displayed
pictorially in Figure 7.5, sampling error prevents direct inference from a sample to the larger population from
which it was drawn. What is needed is a bridge between samples and populations so that inferences can be

reliably drawn. This bridge is the sampling distribution.
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Theoretical Distributions: Sampling Distributions

Sampling distributions, unlike population and sample distributions, are theoretical; that is, they do not exist as
empirical realities. We have already worked with theoretical distributions in the form of the binomial and
standard normal distributions. Sampling distributions are theoretical because they are based on the notion of
multiple (even infinite) samples being drawn from a single population. What sets sampling distributions apart
from empirical distributions is that sampling distributions are created not from raw scores but, rather, from
sample statistics. These descriptors can be means, proportions, or any other statistic. Imagine plotting the

means in Table 7.2 to form a histogram, like Figure 7.7.

Figure 7.7 Histogram of the Five Sample Means in Table 7.2
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Not terribly impressive, is it? Definitely leaves something to be desired. That is because there are only five
samples. Sampling distributions start to take shape only when many samples have been drawn. If we continue
the iterative process of drawing a sample, computing and plotting mean, throwing the sample back, and
pulling a new sample, the distribution in Figure 7.7 gradually starts looking something like the curve in Figure
7.8.

Now the distribution has some shape! It looks much better. It is, moreover, not just any old shape—it is a
normal curve. What you have just seen is the central limit theorem (CLT) in action. The CLT states that any
time descriptive statistics are computed from an infinite number of large samples, the resulting sampling
distribution will be normally distributed. The sampling distribution clusters around the true population mean
(here, 269.63), and if you were to compute the mean of the sampling distribution (i.e., the mean of means),
the answer you obtained would match the true population mean. Its standard deviation (called the standard
error) is smaller than the population standard deviation because there is less dispersion, or variability, in

means than in raw scores. This produces a narrower distribution, particularly as the size of the samples

increases. The mean of the sampling distribution is symbolized as H'% and the standard error is represented as

Ox.
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Central limit theorem (CLT): The property of the sampling distribution that guarantees that this curve will be normally distributed

when infinite samples of large size have been drawn.

Standard error: The standard deviation of the sampling distribution.

The CLT is integral to statistics because of its guarantee that the sampling distribution will be normal when a
sample is large. Criminal justice and criminology researchers work with many variables that show signs of
skew or kurtosis. The CLT saves the day by ensuring that even skewed or kurtotic variables will produce
normal sampling distributions. The inmate count variable demonstrates this. Compare Figure 7.8 to Figure
7.4: Figure 7.4 is derived from a single sample (V= 500) and is highly skewed, yet the sampling distribution
in Figure 7.8 is normal. That is because even when raw values produce skew, sample statistics will still hover
around the population parameter and fall symmetrically on each side of it. Some statistics will be greater than
the parameter and some will be smaller, but the majority will be close approximations of (or even precisely

equal to) the true population value.

Figure 7.8 Distribution of Sample Means
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All descriptive statistics have sampling distributions to which the CLT applies. In Chapter 6, you learned that
nationwide, .62 (or 62%) of felony defendants are granted pretrial release. Figure 7.9 sketches what the
sampling distribution of proportions for the pretrial release variable might look like. You can see that this

curve is roughly normal in shape, too, just like the sampling distributions of means in Figure 7.8.
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Learning Check 7.2

v

In your own words, explain why the sampling distribution takes on a normal shape. That is, why do the bulk of scores cluster in one area

and taper off in each tail? Provide this explanation in simple language that someone who was not taking a statistics class could understand.

Figure 7.9 Sampling Distribution of Proportions
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Sample Size and the Sampling Distribution: The z and # Distributions

The key benefit of the sampling distribution being normally distributed is that the standard normal curve can
be used. Everything we did in Chapter 6 with respect to using raw scores to find z scores, z scores to find
areas, and areas to find z scores can be done with the sampling distribution. The applicability of z , though, is
contingent on N being large. “Large” is a vague adjective in statistics because there is no formal rule specifying
the dividing line between small and large samples. Generally speaking, large samples are those containing at
least 100 cases. When IV = 100, the sampling distribution is assumed to be normally distributed, and the
standard normal curve can be used. This requirement reduces the overall usefulness of the z distribution,; it
turns out that the standard normal curve makes somewhat rigid demands, and many real-world data sets fall

short of these expectations.

Although it is generally not advisable to work with samples smaller than 100, there are times when it is
unavoidable. In these situations, the z distribution cannot be employed and researchers turn to the #
distribution instead. The # distribution—Tlike the z curve—is symmetric, unimodal, and has a constant area of
1.00. The key difference between the two is that # is a family of several different curves rather than one fixed,
single curve like z. The # distribution changes shape depending on the size of the sample. When the sample is
small, the curve is wide and flattish; as the sample size increases, the # curve becomes more and more normal

until it looks identical to the z curve. See Figure 7.10.

¢ distribution: A family of curves whose shapes are determined by the size of the sample. All # curves are unimodal and symmetric

and have an area of 1.00.

Figure 7.10 The Family of # Curves
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This phenomenon can also be demonstrated using hypothetical examples of random samples from the Census
of State and Federal Adult Correctional Facilities (CSFACF) data set. Figures 7.11 and 7.12 demonstrate how
the # curve would change shape depending on the size of the samples being randomly selected from this
population. The curve in Figure 7.11 is based on a sample size of 75, and that in Figure 7.12 is premised on N
= 25. The first curve is taller and thinner. It is normal, but contrasting it with Figure 7.8, you can see that
Figure 7.11 does not cluster around the population mean as tightly. Scores are more spread out. This trend is
even more pronounced in Figure 7.12. This is because there is more variability in smaller samples—it is
difficult to get an accurate estimate of the true population parameter when there are only a handful of cases. A

sample of IV = 75 is not ideal, but it is an improvement over 25.
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Figure 7.11 The ¢ Distribution for Inmate Population at N = 75
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Figure 7.12 The ¢ Distribution for Inmate Population at N = 25
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The ¢ distribution’s flexibility allows it to accommodate samples of various sizes. It is an important theoretical
probability distribution because it allows researchers to do much more than they would be able to if z were
their only option. All else being equal, large samples are better than small ones, and it is always advisable to
work with large samples when possible. When a small sample must be used, though, # is a trustworthy

alternative. We will use both the z and ¢ distributions in later chapters.

Chapter Summary

Criminal justice and criminology researchers often seek information about populations. Populations, though, are usually too large to
analyze directly. Samples are therefore pulled from them and statistical analyses are applied to these samples instead. Population and

sample distributions are made of raw scores that have been plotted. These are empirical distributions.

Sampling error, though, introduces an element of uncertainty into sample statistics. Any given sample that is drawn is only one of a
multitude of samples that could have been drawn. Because of sampling error, statistics are merely estimates of their corresponding
population parameters and cannot be interpreted as matching them exactly. In this way, there is a gap between samples and

populations.

The sampling distribution links samples to populations. Sampling distributions are theoretical curves made out of infinite sample
statistics. All descriptive statistics have sampling distributions. The CLT ensures that sampling distributions are normal when
sample sizes are large (i.e., N > 100). When this is the case, the z distribution can be used. When samples are small, though, the
sampling distribution cannot be assumed to be normal. The # distribution solves this problem because # is a family of curves that
change shape depending on sample size. The # distribution is more flexible than z and must be used any time N < 99, though it can

be used with large samples as well.
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Thinking Critically

1.

Suppose you read a research article in which the study authors stated that they had collected a sample of 150 adolescents
from a single city and found that 22 of them reported being in a gang. What is the population being studied here? What
additional pieces of information would you need to know about this sample in order to decide whether to trust this finding as
being truly reflective of that population? What characteristics would the sample need to have in order for it to be

trustworthy?

. In your own words, explain (1) why sample size is important to ensuring that samples are representative of the populations

from which they are derived and (2) why the sampling distribution for any given statistic is normally distributed even when

the population and sample distributions are skewed.

Review Problems

1.

NIV RN

10.
11.

12.

13.

Population distributions are . ..
1. empirical.
2. theoretical.
. Sample distributions are . ..
1. empirical.
2. theoretical.
. Sampling distributions are . ..
1. empirical.
2. theoretical.
The distribution is made from the raw scores in a sample.
The distribution is made from statistics calculated on multiple or infinite samples.
The distribution is made from the raw scores in a population.
. The CLT guarantees that as long as certain conditions are met, a sampling distribution will be . ..

1. positively skewed.
2. normally distributed.

3. negatively skewed.

. For the CLT’s promise of distribution shape to hold true, samples must be . ..
1. large.
2. small.
. When a sample contains 100 or more cases, the correct probability distribution to use is the distribution.
‘When a sample contains 99 or fewer cases, the correct probability distribution to use is the distribution.

A researcher gathers a sample of 200 people, asks each one how many times he or she has been arrested, and then plots each
person’s response. From the list below, select the type of distribution that this researcher has created.

1. A sample distribution with a large NV

2. A population distribution with a small N

3. A sampling distribution with a large V

4. A sample distribution with a small NV
A researcher gathers a sample of 49 police departments, finds out how many officers were fired for misconduct in each
department over a 2-year time span, and plots each department’s score. From the list below, select the type of distribution
that this researcher has created.

1. A population distribution with a small V

2. A population distribution with a large V

3. A sampling distribution with a small N

4. A sample distribution with a small V
A researcher gathers a sample of 20 cities, calculates each city’s mean homicide rate, and plots that mean. Then the
researcher puts that sample back into the population and draws a new sample of 20 cities and computes and plots the mean
homicide rate. The researcher does this repeatedly. From the list below, select the type of distribution that this researcher has
created.

1. A sampling distribution with a large N
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14.

15.

2. A population distribution with a small N

3. A sampling distribution with a small N

4. A population distribution with a large V
A researcher has data on each of the nearly 2,000 adult correctional facilities in the United States and uses them to plot the
number of inmate-on-inmate assaults that took place inside each prison in a 1-year span. From the list below, select the type
of distribution that this researcher has created.

1. A sample distribution with a large N

2. A population distribution with a small N

3. A sampling distribution with a large V

4. A population distribution with a large V
A researcher gathers a sample of 132 people and computes the mean number of times the people in that sample have
shoplifted. The researcher then puts this sample back into the population and draws a new sample of 132 people, for whom
the researcher computes the mean number of times shoplifted. The researcher does this repeatedly. From the list below,
select the type of distribution that this researcher has created.

1. A sample distribution with a large NV

2. A sampling distribution with a large N

3. A sample distribution with a small N

4. A population distribution with a large IV
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Key Terms

Population distribution 163
Sample distribution 163
Sampling distribution 164
Representativeness 165
Statistic 165

Parameter 165

Sampling error 168

Central limit theorem 170
Standard error 170

¢ distribution 172

Glossary of Symbols and Abbreviations Introduced in This Chapter

i The population mean {mu)

=]

The population standard deviation (sigma)

P The population proportion

£ The sample proportion (p hat)

ry The mean of the sampling distribution

Ty The standard error

t A distribution that is a family of curves that can accommedate beth small and large sample sizes
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Point Estimates and Confidence Intervals
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Learning Objectives

e Explain the problems with point estimates and the need for confidence intervals.

e Explain the trade-off between confidence and precision.

o Identify the key elements of the # curve, and use sample size to select the correct distribution (z or #).
e Use a specified confidence level to find alpha and the critical value of z or 2.

o Identify the correct distribution and formula for a given sample statistic and sample size.

e Calculate and interpret confidence intervals for means and proportions with different confidence levels and sample sizes.

Any given sample that is drawn from a population is only one of a multitude of samples that could have been
drawn. Every sample that is drawn (and every sample that could potentially be drawn) has its own descriptive
statistics, such as a mean or proportion. This phenomenon, as you learned in Chapter 7, is called sampling
error. The inherent variation in sample statistics such as means and proportions prevents direct inference from
a sample to a population. It cannot be assumed that a mean or proportion in a sample is an exact match to the
mean or proportion in the population because sometimes sample statistics are very similar to their
corresponding population parameters and other times they are quite dissimilar. Flip back to Table 7.2 for an
illustration of this concept. Basically, there is always an element of uncertainty in a sample statistic, or what

can also be called a point estimate.

Point estimate: A sample statistic, such as a mean or proportion.

Fortunately, though, a procedure exists for calculating a range of values within which the parameter of interest
is predicted to be. This range stretches out on each side of the point estimate and is called a confidence
interval (CI) . The confidence interval acts as a sort of “bubble” that introduces flexibility into the estimate. It
is much more likely that an estimate of the value of a population parameter is accurate when the estimate is a

range of values rather than one single value.

Confidence interval: A range of values spanning a point estimate that is calculated so as to have a certain probability of containing

the population parameter.

Try thinking about it this way: Suppose I guessed that you are originally from Chicago. This is a very precise
prediction! Of all the cities and towns in the world, I narrowed my guess down to a single area. Given its
precision, though, this prediction is very likely to be wrong; there are more than 7.4 billion people in the

world, and only about 2.7 million of them live in Chicago. My point estimate (Chicago) is probably incorrect.

But what if I instead guessed that you are from the state of Illinois? There are 12.9 million people in Illinois,
so I have increased my chances of being correct because I have broadened the scope of my estimate. If I went
up another step and predicted that you are from the Midwest—without specifying a city or state—I have
turther increased my probability of being right, since this is a much larger geographic region and contains
more than 66 million residents. It is still possible that I am wrong, of course, but I am far more likely to guess
your place of origin correctly when I guess a large geographical area, such as a region, than when I guess a

much smaller one, such as a city.
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This is, conceptually, what a confidence interval does. The interval serves as a buffer zone that allows for
greater confidence in the accuracy of a prediction. It also allows us to determine the probability that the
prediction we are making is correct. Using distributions—specifically, the z and # probability curves—we can
figure out how likely it is that our confidence interval truly does contain the true population parameter. The

probability that the interval contains the parameter is called the level of confidence.

Level of confidence: The probability that a confidence interval contains the population parameter. Commonly set at 95% or 99%.
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The Level of Confidence: The Probability of Being Correct

In the construction of confidence intervals, you get to choose your level of confidence (i.e., the probability that
your confidence interval accurately estimates the population parameter). This might sound great at first blush
—why not just choose 100% confidence and be done with it, right>—but confidence is actually the classic
double-edged sword because there is a trade-off between it and precision. Think back to the
Chicago/Illinois/Midwest example. The Chicago guess has a very low probability of being correct (we could
say that there is a low level of confidence in this prediction), but it has the benefit of being a very precise
estimate because it is just one city. The Illinois guess carries an improvement in confidence because it is a
bigger geographical territory; however, because it is bigger, it is also less precise. If I guess that you are from
Illinois and I am right, I am still left with many unknown pieces of information about you. I would not know
which part of the state you are from, whether you hail from a rural farming community or a large urban

center, what the socioeconomic characteristics of your place of origin are, and so on.

The problem gets worse if all I guess is that you are from the Midwest—now I would not even know which
state you are from, much less which city! If I want to be 100% sure that I will guess your place of origin
correctly, I have to put forth “planet Earth” as my prediction. That is a terrible estimate. If you want greater
confidence in your estimate, then, you pay the price of reduced precision and, therefore, a diminished amount

of useful information.

Confidence levels are expressed in percentages. Although there is no “right” or “wrong” level of confidence in
a technical sense (i.e., there is nothing mathematically preventing you from opting for a 55% or 72%

confidence level [CT ]), 95% and 99% have become conventional in criminal justice and criminology research.
Because of the trade-off between confidence and precision, a 99% CI has a greater chance than a 95% one of
being correct, but the 99% one will be wider and less precise. A 95% CI will carry a slightly higher likelihood
of error but will yield a more informative estimate. The 99% level would be akin to the Midwest guess in the
previous example, whereas the 95% would be like the Chicago guess. You should select your level of

confidence by deciding whether it is more important that your estimate be correct or that it be precise.

Confidence levels are set a priori (in advance), which means that you must decide whether you are going to
use 95% or 99% before you begin constructing the interval. The reason for this is that the level of confidence

affects the calculation of the interval. You will see this when we get to the CI formula.

Since we are dealing with probabilities, we have to face the unpleasant reality that our prediction could be
incorrect. The flipside of the probability of being right (i.e., your confidence level) is the probability of being

wrong. Consider these statements:

100% - 95% = 5%

100% - 99% = 1%
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Each of these traditional levels of confidence carries a corresponding probability that a confidence interval
does 7ot contain the true population parameter. If the 95% level is selected, then there is a 5% chance that the

CI'will not contain the parameter; a 99% level of confidence generates a 1% chance of an inaccurate CI .

You will, in all likelihood, never know whether the sample you have in front of you is one of the 95% or 99%
that is correct, or whether it is one of the 5% or 1% that is not. There is no way to tell; you just have to
compute the confidence interval and hope for the best. This is an intractable problem in statistics because of

the reliance on probability.

Three types of confidence intervals will be discussed in this chapter: CI for means with large samples (V2
100), for means with small samples (V< 99), and for proportions and percentages. All three types of CI are
meant to improve the accuracy of point estimates by providing a range of values that most likely contains the

true population parameter.
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Confidence Intervals for Means With Large Samples

When a sample is of large size (V= 100), the z distribution (the standard normal curve) can be used to

construct a CI around a sample mean. Confidence intervals for means with large samples are computed as

Cl=x<£g, - ; Formula 8(1)
e

where

X = the sample mean,

%, = the z score associated with a given alpha level (i.e., the critical value of z) ,
o = the probability of being wrong (the alpha level),

s = the sample standard deviation, and

N = the sample size.

This formula might appear intimidating, but we can read it left to right and break down the different
elements. The starting point is the sample mean. A certain value will be added to and subtracted from the
mean to form the interval. That value is the end result of the term on the right side of the + operator. The z
score’s subscript a (this is the Greek letter a/pha) represents the probability that the CI does not contain the
true population parameter. Recall that every level of confidence carries a certain probability of inaccuracy; this

probability of inaccuracy is o or, more formally, the alpha level. Alpha is computed as

a = | — confidence level Formula 82)

Alphalevel: The opposite of the confidence level; that is, the probability that a confidence interval does not contain the true

population parameter. Symbolized o.

For 95% and 99% confidence, first convert the percentages to proportions:

Ogso4 = 1- 95 = 05

Oggo = 1-.99=.01
Alpha, itself, is not inserted into the CI formula; rather, o is used to find the critical value of z , and you enter
that critical value into the formula (this is the z, term in Formula 8[1]). The critical value of z is the z score

associated with a particular area on the curve. In other words, it is the score beyond which a certain area (this

being alpha) is out in the tail. We will see later that the # curve has critical values, too.

Critical value: The value of z or # associated with a given alpha level. Symbolized z or %y .

There is another piece of information that you need to know about CI: They are always two-tailed. This is

because the normal curve has two halves that are split by the mean, with the result being (pessimistically) that
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there are two ways to be wrong with a confidence interval. The first option is for the interval to be wholly
above the mean and miss it by being too far out in the positive tail, and the second possibility is that it lands
entirely below the mean and misses it by being too far out into the negative side. Since either error is possible
—and since we have no control over which type of error we might end up with—we must use both sides of
the curve. This is a two-tailed test. In such a test, the alpha level is split in half and placed in each of the two
tails of the distribution, as pictured in Figure 8.1. Two-tailed tests, then, actually have #wo critical values. The
absolute value of these critical values is the same because the curve is symmetric, but one value is negative and

the other is positive. Confidence intervals, by definition, use both of the critical values for any alpha level.

Two-tailed test: A statistical test in which alpha is split in half and placed into both tails of the z or # distribution.
Figure 8.1 The Alpha Level and Critical Values of z
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So, what are these critical values? For the standard normal curve, we can find them using the techniques we
learned in Chapter 6. Recall that in the z -score exercises, we figured out how to find z scores using specified
areas: Essentially, the z table (see Appendix B) is used backward. Let us begin with the 95% confidence
interval. First, we have to find a, which is 5%. Second, because this is a two-tailed test, we divide a in half, as
shown in Figure 8.1. Doing this shows that the critical value of z is going to be the value that leaves 2.5% of
cases in each tail of the distribution. Of course, we cannot work with percentages in the z table, so we have to
convert this to .025. Third, the z table is used to find the critical value of z . We have done this before, in
Chapter 6. What we are asking here is “If the area in the tail is .025, what is z ?” The tail must first be

subtracted from .50:

.50 -.025 = .4750

Next, go to the z table and locate the area that is equal to .4750 or, if there is no area that is exactly .4750, the
area that is closest. In this instance, the value we are seeking is actually located in the table. Trace away from
4750 upward along the column and to the left along the row, and record each of the numbers you arrive at.

Here,

z=1.9+.06=1.96

We are not quite done! Remember that there are wo critical values, not just one. Since the standard normal

curve is symmetric and .025 is the area in each tail, these two z scores will take on the same absolute value but
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will have opposite signs. Thus, z, - g5 = £1.96. The critical value of z for the top .025 (the positive side of the
curve) is 1.96, and the value for the bottom .025 (the negative side) is —1.96. Figure 8.2 displays the two

critical values of z for a 95% confidence level.

The same process is used to find z,, for a 99% confidence level. First, alpha is 100% — 99% = 1%. Second, 1%
divided in half is .5% and converted to a proportion is .005. Third, .50 —.005 = .4950. This exact value does
not appear in the z table, so the z scores associated with the two closest values (.4949 and .4951) must be
averaged. These scores are 2.57 and 2.58. Therefore,

2574258 5.15
5 = =2.573

Figure 8.2 Critical Values of z for a 95% Level of Confidence
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The critical value is 2.58. Again, remember that there are two values, so z is actually +2.58. This is displayed

graphically in Figure 8.3.

Figure 8.3 Critical Values of z for a 99% Level of Confidence
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The standard normal curve is handy because it is fixed; therefore, the critical values of z for 95% and 99%
confidence intervals will always be +1.96 and +2.58, respectively. Later on, you will see that this is not the case
when the # distribution is employed; in that situation, the critical value of # will have to be located each time

you calculate a confidence interval. For now, though, we can rely on these two critical values.
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Learning Check 8.1

v

Now that you have seen the formula for calculating confidence intervals and you know that the critical value of z for 95% confidence is
+1.96 and that for 99% is +2.58, which level of confidence do you think will produce a wider confidence interval (i.c., a less precise

estimate)? Write down your prediction so that when we get to the calculations, you can see if you were correct.

Now let’s consider an example from the 2013 Census of Jails (COJ; see Data Sources 3.1). This data set is
ideal for present purposes because it contains population data (i.e., it is a census, not a sample, of jails), so we
can compute the actual population mean and then pull a random sample, compute its mean and confidence
interval, and see if the computed interval contains the true population value. Remember that researchers are
not ordinarily able to access information on the population parameters (and, obviously, if you knew the
population mean, there would be no point in attempting to estimate it using a confidence interval). What we
are doing here is for demonstration purposes only and is not typical of the reality of most criminal justice and

criminology research.

For this example we will use the COJ variable in which each facility reported the number of inmates it

currently housed who had been convicted and were awaiting sentencing. The confidence level will be set at

95%.

In the population, the mean number of convicted individuals who have not yet been sentenced is 2 = 12.06 (O

= 56.04). Let us use a sample size of V= 183, which is large enough to permit use of the z distribution. The
SPSS random-sample generator produces a sample with a mean of X = 18.18 and a standard deviation

of s = 97.52. Since the confidence level is 95%, z, = +1.96. Plugging values for V, E, s, and z, into Formula
8(1) yields

L= = 1818106 — 2%
=x2 7. | ——=|=l8.1l82£1. e
"Ll =1 J183 -1
97.52

=18.18+1.96| ——
1549

=18.18 + 1.96 (7.23)
=18.18 £ 14.17.
Let’s pause for a moment and consider what we have calculated thus far. We have the sample mean (18.18) as

the midpoint of the interval, and now we know that the buffer is going to extend 14.17 units above and 14.17

units below the mean. Picture these two extensions of the mean as forming the full width of the interval.

The next step is to compute the lower limit (LL) and the upper limit (UL) of the interval, which requires the
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+ operation to be carried out, as such:

L1 =18.18-14.17=4.01

UL =18.18 + 14.17 = 32.35
Finally, the full interval can be written out:
95% CI:4.01 < <3235

The interpretation of this interval is that there is a 95% chance that the true population mean is 4.01, 32.35,
or some number in between. More formally, “There is a 95% chance that the interval 4.01 to 32.35, inclusive,
contains the true value of s.” Of course, this also means that there is a 5% chance that the true population
mean is 70¢ in this range. In the present example, we know that » = 12.06, so we can see that here the
confidence interval does indeed contain the population mean (i.e., 12.06 is greater than 4.01 and less than
32.35). This is good! This sample was one of the 95% that produces accurate confidence intervals rather than
one of the 5% that does not. Remember, though, that knowing the value of the true population mean is a
luxury that researchers generally do not have; ordinarily, there is no way to check the accuracy of a sample-

based confidence interval.

Let us repeat the previous example using a 99% confidence level. This set of calculations would proceed as

such:

Cl=% & - 18.18+2.58) 222
=X ZG’ _— = : o [ _—
N-1 J183-1

97.52
13.49

=18.18+ 2.58

=18.18 £ 2.58 (7.23)

=18.18 + 18.65.

And computing the lower and upper limits yields

LL =18.18-18.65=-.47
UL =18.18 + 18.65 = 36.83

99% CI : —.47 < u < 36.83.

235



There is a 99% chance that the interval —.47 to 36.83, inclusive, contains the population mean . (Of course,
the negative values are nonsensical because it is impossible for a facility to have fewer than zero unsentenced
inmates. From a practical standpoint, the negative values are treated as zero; this CI indicates that it is possible
the true population mean is zero.) Again, we know that 4 = 12.06, so this interval does, indeed, contain the

parameter.

Take a look at the difference in width between the 95% and 99% intervals. The 95% interval ranges from 4.01
to 32.35, and the 99% one spans —.47 to 36.83. The 99% interval is much wider than the 95% one. Can you
explain the reason for this? If you said that it is because with a 99% confidence level we sacrifice precision in
the estimate, you are correct! When we enhanced our confidence, we increased z from 1.96 to 2.58, thus

causing the interval to expand. This demonstrates the trade-off between confidence and precision.

For a third example, we will use the Police—Public Contact Survey (PPCS; see Data Sources 2.1). This is not
a population: The survey was administered to a random sample of U.S. residents. We must, therefore, use
sample statistics to estimate the true population values. Let us consider the ages of respondents who reported
having experienced multiple (i.e., more than one) contact with police officers during the past year and
construct a 99% CI to estimate the mean age for the population. The respondents with multiple contacts (V=

2,304) had a mean age of 45.23 with a standard deviation of 16.80. The CI is

16.80 16.80

=90.2338 2. 58—
2,504 ~1 47.99

Cl=493.23+£2.58

=45.23 = 2.58 (.35)

=45.23 .90

Now calculate the lower and upper limits:

LL =4523-.90 = 44.33

UL =45.23 + .90 = 46.13

Finally, construct the interval:

99% CI: 44.33 < 4 < 46.13

We can say with 99% confidence that the interval 44.33 and 46.13, inclusive, contains y. This is a very precise

interval even though we used the 99% level of confidence. The primary reason for this is the sample size. The
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larger the sample, the larger the denominator in the W N - l portion of the CI equation will be, thus
producing a very small number after the division is complete. Of course, this also depends on the size of the
standard deviation (and the quality of the estimate is predicated on the sample being representative of the

population), but, generally speaking, larger samples yield narrower confidence intervals compared with smaller

samples.
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Confidence Intervals for Means With Small Samples

The z distribution can be used to construct confidence intervals when NV = 100 because the sampling
distribution of means can be safely assumed to be normal in shape. When N < 99, though, this assumption
breaks down and a different distribution is needed. This alternative distribution is the # curve. The CI formula
for means with small samples is nearly identical to that for large samples; the only difference is that the critical

value of #is used instead of the critical value of z . The formula is

Cl=%tt, | ——e], Formula 83)
N-1

where #, = the critical value of # at a given alpha level.

Research Example 8.1 Do Criminal Trials Retraumatize Victims of Violent Crimes?

Violent crimes frequently leave victims with significant negative psychological and emotional consequences. Some victims develop
long-term problems, and many are diagnosed with posttraumatic stress disorder. There is widespread concern about the negative
impacts trials can exert on victims already suffering emotional and psychological trauma. During trials, victims have to recount their
experiences in open court and undergo cross-examination by defense attorneys. Victims might feel shame, embarrassment, and fear.
It is not known with certainty, however, whether trials do indeed have these effects; limited research has been conducted and so it is
unclear whether the concerns for victims’ wellbeing are empirically founded. Orth and Maercker (2004) addressed this gap in the
research. Using a sample of violent-crime victims in Germany, the authors calculated participants’ mean levels of posttraumatic stress
reactions prior to and then again after their attackers’ trials. The researchers subtracted the two means to obtain a measure of change

over time. The table summarizes the results.

The results revealed a slight decrease in posttraumatic stress reactions over time, as indicated by the negative difference scores. This
decline was very small and was indistinguishable from zero, as indicated by the fact that the 95% CI; contained zero (that is, it was
possible that the true population differences were zero). These results call into question the common assumption that trials

retraumatize victims, since there was no evidence in this study of victims experiencing an increase in emotional distress after trial.

More research is needed before firm conclusions can be drawn, but these findings suggest that trials are not significantly painful

85% Confidence
Iaterval

events for most victims.

Difference
Trauma Scale batween
Dimension Means | Lower Limit | Upper Limit
Intrusion -18 =51 .16
Avoidance -.19 -.45 .07
Hyperarousal -.28 -.bd .08

Source: Adapted from Table 3 in Orth and Maercker
(2004).
Source: Adapted from Table 3 in Orth and Maercker (2004).

The critical value of # (i.e., #,) is found using the # table (see Appendix C). We have not used this table yet, so
take a few minutes now to familiarize yourself with it. There are three pieces of information you need in order
to locate #,. The first is the number of tails. As described previously, confidence intervals are always two-

tailed, so this is the option that is always used with this type of test. The second determinant of the value of #,
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is the alpha level, the computation of which was shown in Formula 8(2). Finally, finding #, requires you to

first compute the degrees of freedom (4f) . With the # distribution, df are related to sample size, as such:

df=N=1 Formula 8(4)
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Learning Check 8.2

v

‘We will be using the # distribution in later chapters, so it is a good idea to memorize the three pieces of information you always need in

order to locate #y on the # table:

The number of tails

The alpha level ()

The degrees of freedom (df)

Take a moment now to practice using the # table. Find the critical value of # for each of the following:

1. A two-tailed test with o = .05 and 4f= 10
2. A two-tailed test with a = .10 and 4f= 20
3. A two-tailed test with a = .01 and 4f'= 60

The df values are located in the rows of the # table. Note that not all of the possible values that df might
assume are included on the table. When the number you are looking for is not there, it is customary to use the
table df that is closest to the sample-derived 4f . If the derived 4fis halfway between two numbers in the table,
select the smaller one. For instance, if your sample size were 36, your 4fwould be 36 — 1 = 35. Your options in
using the table would be df'= 30 and df = 40, and you would elect to use df = 30. The rationale is that using the
lower of the two makes for a more conservative estimate (i.e., a wider confidence interval). In statistics,
researchers usually err on the side of caution—if you have to choose between inflating your calculated CI and
shrinking it, you should opt for inflation because that is in line with custom in criminology and criminal

justice research. (The inflation this causes is generally miniscule and has a trivial impact on the CI .)
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Learning Check 8.3

v

You have seen now that the value of # varies depending on the sample size. This is unlike z , which remains constant across samples of all
sizes. Why is this? What is it about the # distribution that causes the critical value of # to change as the sample size changes? If you need a

hint, flip back to Chapter 7 and, in particular, Figures 7.10 through 7.12.

For an example of CI; with means and small samples, the Firearm Injury Surveillance Study (FISS; see Data
Sources 8.1) will be used. This data set contains information about a sample of patients treated in emergency
departments (EDs) for gunshot wounds between the years 1993 and 2013. We will narrow the file down to
the most recent year of data available. For the current example, we will analyze the mean age of Hispanic
female gunshot victims. There were 40 such victims, and their mean age was 26.18 (s = 11.55). We will set

confidence at 95%.

Data Sources 8.1 The Firearm Injury Surveillance Study, 1993-2013

The Centers for Disease Control and Prevention (CDC) maintain the National Electronic Injury Surveillance System, of which the
FISS is a part. The data are from a nationally representative sample of hospitals stratified by size. Detailed incident data include only
those patients who did not die in the ED in which they were treated; those who died prior to arrival are assigned dead on arrival
(DOA) status, and those who died after being transferred from the ED to some other hospital unit are coded as transfers (U.S.
Department of Health and Human Services, n.d.). This is a limitation of the FISS that circumscribes its usefulness in criminal
justice research, but this data set is nonetheless valuable as one of the few major studies that systematically tracks gun-related
injuries. Data include patient age, sex, and race, as well as incident characteristics such as whether the shooting was intentional or
unintentional and what the relationship was between the shooter and the victim. The most recent version of the FISS was collected
in 2013.

The first step we must take to construct the CI is to find #, . We know that this is a two-tailed test with o = 1
-.95 = .05 and 4f= 40 - 1 = 39. You can see that df = 39 is not located on the table, so we must use the 4f= 40

row instead. The critical value of #is +2.021.

Next, plug all the numbers into Formula 8(2):

11.55
=26.181£2.021

=l v40-1

L1355
=26.18+2.021| ——

6.24

Cl=x%i

o

=26.18 £ 2.021 (1.85)

=26.18 +3.74

Compute the lower and upper limits:
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LL=2618-3.74=22.44

UL =26.18 + 3.74 = 29.92
Finally, assemble the full confidence interval:
95% CI:22.44 < 1 <29.92

There is a 95% chance that the interval 22.44 to 29.92, inclusive, contains the population mean.

Let’s try one more example. We will again use the FISS and this time analyze the mean age of males whose
firearm injuries occurred in the course of a drug-related crime (the FISS does not contain information about
the role gunshot victims played in these transactions). In the 2013 data, there were 124 males shot during

drug-related crimes, and their mean age was 30.06 (s = 10.08). The confidence level will be 99%.

The three pieces of information needed for finding the critical value of # are (1) this is a two-tailed test, (2)
alpha is .01 (since 1 —.99 = .01), and (3) the degrees of freedom are 124 — 1 = 123. With these criteria, #, =
+2.617 (using the df = 120 line of the # table). Plugging all the numbers into Formula 8(2) yields

10.08 10.08
CI=30.06+£2.6l7| — [=30.06£2.617

V124 =1 11.09

=30.06 = 2.617 (.91)

=30.06 + 2.38
The lower and upper limits are

LL=30.06-2.38 =27.68

UL = 30.06 + 2.38 = 32.44
The interval is
99% CI: 27.68 < u < 32.44

There is a 99% probability that the interval 27.68 to 32.44, inclusive, contains 4 .

One more # example can be derived from the PPCS. Respondents who had been stopped by police while

driving or walking were asked how long that stop lasted. The 208 people who answered the question reported
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a mean stop length of 13.30 minutes (s = 21.19). We will opt for a 95% confidence interval, and the 4f = 208 —
1 =207. Looking at the # table, you can see that there is no 4f'= 207, so we will have to choose between the df
=120 and df = o (infinity) values. Sticking to our principle of always opting for the more conservative (i.e.,
wider) confidence interval, we will select 4f'= 120. This makes our critical value +1.980. Now we can plug in

the numbers:

21.19 |
Cl=13.30+1.980( 2222 |=13.30+1.080 2112

A/208 -1 14.39

=13.30 = 1.980 (1.47)

=13.30+2.91
The lower and upper limits are

LL=13.30-2.91=10.39

UL =13.30+2.91=16.21
The interval is
99% CI: 10.39 < £ < 16.21

We can be 95% confident in our prediction that the population mean is between 10.39 and 16.21, inclusive.
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Confidence Intervals With Proportions and Percentages

The principles that guide the construction of confidence intervals around means also apply to confidence
intervals around proportions and percentages. There is no difference in the procedure used for proportions
versus that for percentages—percentages simply have to be converted to proportions before they are plugged

into the CI formula. For this reason, we will speak in terms of proportions for the remainder of the discussion.

There are sampling distributions for proportions just as there are for means. Because of sampling error, a

sample proportion (symbolized p , pronounced “p hat”) cannot be assumed to equal the population proportion
(symbolized as an uppercase P) , so confidence intervals must be created in order to estimate the population

values with a certain level of probability.

Research Example 8.2 What Factors Influence Repeat Offenders’ Completion of a “Driving Under the Influence” Court Program?

Specialized courts are an increasingly popular way for dealing with low-level offenders, especially those who have drug or mental-
health problems. The rationale is that these people should not be incarcerated in jail or prison and should instead be allowed to
remain in the community and complete one or more treatment programs to help them with their problems. Judges are responsible
for supervising the defendants in these courts. Defendants typically appear before the judge every month or two, and the judge
praises them when they have done well in their program and reprimands them when they have failed to follow through on an
assignment. Usually, charges are dropped when defendants complete the program successfully, and those who drop out or are

removed for noncompliance get sentenced to a previously agreed-on penalty (such as a specified jail or probation term).

In recent years, courts dedicated to handling people convicted of driving under the influence (DUI) of drugs or alcohol have
appeared as a new incarnation of specialized courts. The success of these courts at reducing recidivism hinges on their ability to keep
defendants in the program; defendants who drop out have to be sentenced to jail or probation (which is more expensive) and will not
experience the benefits of the treatment regimen. Saum, Hiller, and Nolan (2013) sought to identify the factors associated with
treatment completion versus dropout. They gathered records on 141 third-time DUI offenders who went through a DUI court
program in Wisconsin. Most of the defendants (114) completed the program, but 27 did not. Overall, the researchers found very few
differences between the groups. Having a mental-health problem did not affect the odds of completion, as shown by the wide
confidence interval for this variable’s predictive capability (.17 to 1.6). The only variable that emerged as significant was the number
of days in the jail or work-release sentence; those who had been threatened with more-severe sentences were more likely to drop out.
This variable’s confidence interval was very small (.95 to 1.00), suggesting that is was a good predictor of program completion versus
program dropout. It would appear that more-serious DUI offenders need enhanced supervision and greater incentives to stay in and

successfully complete DUI court programs.
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How Extensively Do News Media Stories Distort Public Perceptions
About Racial Minorities’ Criminal Involvement?

Race is inextricably linked with crime in the public’s mind. Numerous stereotypes paint blacks and Latinos, in particular, as being
responsible for the majority of drug trafficking and violence that takes place in the United States. The media both reflect and fuel
these stereotypes, and have a significant influence on the impression the public forms about the “color” of crime. The media do this
by choosing which crimes to cover and how to portray the victim and offender in any given violent event. Dixon (2017) sought to
examine media (mis-)representation of offender and victim race. Dixon’s study added to the existing work on the subject by
including Spanish-language television stations, which previous studies had not done. He drew a sample of 117 news programs from
the population of programs that aired between 2008 and 2012 in Los Angeles. Each program was coded according to crime type,
victim race, perpetrator race, and the race of responding police officers. To figure out how closely news reporting matched real crime
characteristics, Dixon compared the news programs to official crime data. The tables show the results, presented as percentages,
including the 95% CI for each estimate derived from the news programs. The differentials indicate whether people of each race are

underrepresented or overrepresented as homicide perpetrators, victims, or police officers.

Race of Homicide Perpetrators

TV Perp.
Race Arrest % % Differential
27 31 11 +4

Black

White 10 19 £10 +9
Latino 59 47 12 =12
Other 3 3 +4 0

Source: Adapted from Table 2 in Dixon (2017).
Source: Adapted from Table 2 in Dixon (2017).

Race of Homicide Victims

WM
33 38 £12 +5

Black

White 13 35 £12 +22
Lating 50 10 7 -40
Other 4 18 +10 +14

Source: Adapted from Table 3 in Dixon (2017).
Source: Adapted from Table 3 in Dixon (2017).

Race of Police Offic

TV Officer
Race Officer % % 5% C1 | Differential
12 9 +4 -3

Black

White 53 73 +6 +20
Latino 30 16 +5 -14
Other 5 5 +3 0

Source: Adapted from Table 4 in Dixon (2017).
Source: Adapted from Table 4 in Dixon (2017).

Contrary to much previous research, Dixon’s (2017) analysis did not find that black perpetrators were significantly overrepresented
in news reports; in fact, white perpetrators were overrepresented more often (9 percentage points relative to actual arrest rates) than
black perpetrators were (4 points). Interestingly, Latino perpetrators were notably underrepresented (a 12-percentage point

differential). A very different pattern manifested in the analyses of victims and police officers. Black victims were slightly
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overrepresented (5 percentage points), while white victims were significantly overrepresented (22 percentage points) and Latino
victims were strikingly underrepresented (a differential of 40). The findings for police officers followed a similar trend. Black officers
were slightly underrepresented (3 percentage points) and Latino officers even more so (14 points), while white officers were
markedly overrepresented (a differential of 20 points). The main conclusions from these results is that news media do not
significantly distort perpetrators’ races, but they heavily emphasize whites in positions of sympathy (victims) or bravery (police
officers). Latinos receive less reporting in all three capacities, particularly as homicide victims. Thus, media might be feeding into

race—crime stereotypes less by emphasizing blacks and Latinos as predators than by consistently portraying whites as innocent

victims and brave police officers.

Confidence intervals for proportions employ the z distribution. The normality of the sampling distribution of
sample proportions is a bit iffy, but, generally speaking, z is a safe bet as long as the sample is large (i.e., NV 2
100) and contains at least five successes and at least five failures (more on this shortly). The formula for

confidence intervals with proportions is

Cl=pt gz, |—=, Formula 8(5)

where p = the sample proportion.

To illustrate CI for proportions with large samples, we will again use the 2013 FISS. This time, we will
examine the involvement of handguns in violent altercations. According to the FISS, handguns were the
firearm used in 91.30% of gunshots arising from fights in which the type of gun used is known (i.e., excluding
the cases in which gun type cannot be determined). The sample size is V= 173, which meets the criterion that
the sample have at least 100 cases. Now we have to consider whether the requirement that there be at least
five successes and at least five failures. Within the context of this problem, we will define “success” as the use
of a handgun and “failure” as the use of any other gun type. Handguns were used in 158 instances and other
guns in the remaining 15, so this variable meets the criteria regarding sample size being large enough and

there being more than five successes and more than five failures.
Confidence will be set at 99%, which means z, = +2.58.

First, the sample percentage needs to be converted to a proportion; dividing 91.30 by 100 and rounding to

two decimal places yields .91.

Next, plug the numbers into Formula 8(5) and solve:

Cl=p=+z, PUP) _ g} 4558 .91(173.91)

Il
\O
P—
I+
P
Ut
o9

= 9] £ 2.58+.0005

247



.91 +2.58(0.02)

91+ .05.

The calculation of the lower and upper limits and the formal statement of the confidence interval proceeds

along the same lines for proportions as for means. In the current example,

LL=.91-.05=.86

UL =.91+.05=.96

and

99%CI : .86 <=P<=.96

We can say with 99% confidence that the interval .86 to .96, inclusive, contains the true population mean P .
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Learning Check 8.5

v

Redo the confidence interval for the analysis of handgun usage in fights, this time using a 95% confidence level. What happened to the
width of the interval> Why did this happen?

For a second example, we can again use the FISS and this time analyze the relationship between shooters and
victims in arguments. Among those gunshots resulting from arguments (V= 139), 28.8% of victims were shot
by friends or acquaintances (again, excluding cases in which the victim—shooter relationship was unknown).
This variable meets the sample size requirement; since there were 40 friend/acquaintance shootings (successes)
and 99 cases involving different relationships (failures), the requirement that there be a minimum of 5
successes and failures each is also met. We can calculate a confidence interval. The proportion is 28.8/100 =
.288, which rounds to .29. The confidence level will be set at 95%, making the critical value of z +1.96. Using
Formula 8(4),

29(1-.29)
139

Cl=.290+1.96 =.2911.96

.|
=.29+1.96,|—
139 = .29 +1.96+/.002

.29 +1.96 (.04)

29 + .08.

The lower and upper limits are

LL=.29-.08=.21

UL =.29 +.08 =37

Finally, the confidence interval is

95% CI:.21<P<.37

There is a 95% chance that the interval .21 to .37, inclusive, contains the true population proportion P .

Research Example 8.3 Is There a Relationship Between Unintended Pregnancy and Intimate Partner Violence?

Intimate partner violence (IPV) perpetrated by a man against a female intimate is often associated with not just physical violence but
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also a multifaceted web of control in which the woman becomes trapped and isolated. One of the possible consequences is that
abused women might not have access to reliable birth control and might therefore be susceptible to unintended pregnancies. These
pregnancies, moreover, might worsen the IPV situation because of the emotional and financial burden of pregnancy and
childbearing. Martin and Garcia (2011) sought to explore the relationship between IPV and unintended pregnancy in a sample of
Latina women in Los Angeles. Latina immigrants might be especially vulnerable to both IPV and unintended pregnancy because of
the social isolation faced by those who have not assimilated into mainstream U.S. society. Staff at various prenatal clinics in Los
Angeles distributed surveys to their Latina patients. The surveys asked women several questions pertaining to whether their
pregnancy had been intentional, whether they had experienced emotional or physical abuse by their partner before or during
pregnancy, and their level of assimilation into the United States (as compared to feeling isolated or alienated). They used a statistic
called an odds ratio . An odds ratio measures the extent to which consideration of certain independent variables (IVs) changes the
likelihood that the dependent variable (DV) will occur. An odds ratio of 1.00 means that the IV does not change the likelihood of
the DV. Odds ratios greater than 1.00 mean that an IV increases the probability that the DV will occur, and those less than 1.00
indicate that an IV reduces the chances of the DV happening.

In Martin and Garcia’s (2011) study, the DVs in the first analysis were physical and emotional abuse and the DV in the second

analysis was physical abuse during pregnancy. The researchers found the following odds ratios and confidence intervals.

Prepregnancy physical abuse was not related to the chances that a woman would become pregnant accidentally, as indicated by the
odds ratio of .92, which is very close to 1.00. Emotional abuse, surprisingly, significantly reduced the odds of accidental pregnancy
(odds ratio = .50). This was an unexpected finding because the researchers predicted that abuse would increase the odds of

pregnancy. They theorized that perhaps some emotionally abused women try to get pregnant out of a hope that having a child will

improve the domestic situation.

OV: Change
in Odds of
Unintended
Pregnancy
IV: Prepregnancy 82 A0 =
Physical Abuse population
odds < 2.16
IV: Prepregnancy .50 26 =
Emotional population
Abuse odds < .97
DV: Change in Odds of
Physical Abuse
IV: Unintended 2.80
Pregnancy
95% C/ 1.01 < population
odds < 7.73

Turning to the second analysis, it can be seen that unintended pregnancy substantially increased women’s odds of experiencing
physical abuse during pregnancy. Contrary to expectations, women’s level of acculturation did not alter the odds of abuse or
pregnancy, once factors such as a woman’s age and level of education were accounted for. The findings indicated that the
relationship between IPV and unintended pregnancy is complex and deserving of further study in order to identify risk factors for
both.
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Why Do Suspects Confess to Police?

The Fifth Amendment to the U.S. Constitution that provides protection from compelled self-incrimination ensures that persons
suspected of having committed criminal offenses can refuse to answer questions about the crime during police interrogations.
Despite this right, a good number of suspects do talk and do provide incriminating statements. As the wry saying goes, “Everyone
has the right to remain silent, but not everyone has the a2ility to do so.” So what makes suspects confess? Deslauriers-Varin,
Beauregard, and Wong (2011) sought to identify some of the contextual factors that make suspects more likely to confess, even when
those suspects initially indicated that they wished to remain silent. The researchers obtained a sample of 211 convicted male
offenders from a Canadian prison and gathered extensive information about each participant. The researchers analyzed odds ratios.
Recall that an odds ratio of 1.00 means that the IV does not alter the odds that the DV will occur. Odds ratios less than 1.00 mean
the IV makes the DV less likely, whereas odds ratios greater than 1.00 indicate that the IV makes the DV more likely to happen.

The researchers found the following odds ratios and confidence intervals.

The numbers in the following table that are flagged with asterisks are those that are statistically significant, meaning that the IV
exerted a noteworthy impact on suspects’ decision to remain silent rather than confessing. The initial decision to not confess was the
strongest predictor of suspects’ ultimate refusal to provide a confession; those who initially resisted confessing were likely to stick to
that decision. Criminal history was also related—having only one or two priors was not related to nonconfession, but suspects with
three or more prior convictions were substantially more likely to remain silent. This might be because these suspects were concerned
about being sentenced harshly as habitual offenders. The presence of an accomplice also made nonconfession more likely, as did a
lawyer’s advice to not confess. Those accused of drug-related crimes were more likely to not confess, though crime type was not
significant for suspects accused of other types of offenses. Finally, the strength of police evidence was a factor in suspects’ decisions.
Strong police evidence was related to a significant reduction in the odds of nonconfession (i.e., strong evidence resulted in a greater

chance that the suspect would confess).

It appeared, then, that there are many factors that impact suspects’ choice regarding confession. Most of these factors appear to be
out of the control of police interrogators; however, the researchers did not include variables measuring police behavior during
interrogation, so there might well be techniques police can use to elicit confessions even from those suspects who are disinclined to
offer information. One policy implication from these results involves the importance of the initial decision in the final decision—
79% of offenders stuck with their initial decision concerning whether to confess. Police might, therefore, benefit from focusing their
efforts on influencing the initial decision rather than allowing a suspect to formulate a decision first and then applying interrogation

tactics.

DV: Suspect Did Not Confess

Independent Variable

Initial Decision: No 25.33° 10.05,63.82
Confession

Criminal History

1 or 2 Prior 3.01 .79, 11.42
Convictions

3+ Prior Convictions ~ 13.29° 3.05, 57.91
Had an Accomplice 2.58 1.02, 6.52

Palice Evidence Is 23 .10, .55
Strong

Lawyer Advised 3.29° 1.34, 8.07
Nonconfession

Crime Was Drug 3.55°  1.26, 10.02
Related

Source: Adapted from Table 2 in Deslauriers-Varin
et al. (Z2011).

*Statistically significant.
Source: Adapted from Table 2 in Deslauriers-Varin et al. (2011).
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Statistically significant.

We can also construct a confidence interval using the COJ to estimate the proportion of jail inmates being
held for felonies. In a random sample of 177 facilities, 60.7% of inmates were incarcerated for felonies (either
awaiting trial or after having been convicted). The sample size is large enough to permit the use of the z
distribution, and there are far more than five successes (people confined for felonies) and failures (people held
for misdemeanor and other types of offenses). The threshold criteria having been satisfied, we can proceed to
the calculations. We will use the 95% confidence level. Dividing 60.7 by 100 and rounding yields a proportion

of .61; the computation is

61(1-.61) 61(.39)
Cl=.61%1.96 =.61+1.96,|——=
177 177

W5
=6]1%£1.96,|—

177 = 611£1.96+.001

61 +1.96 (.03)

=.61+.06

The lower and upper limits are

LL=.61-.06=.55

UL = .61 + .06 = .67

Finally, the confidence interval is

95% CI:.55<P<.67

There is a 95% chance that the interval .55 to .67, inclusive, contains the true population proportion P . Since
this is a census, we can check to see if our interval actually does contain the population proportion. The
proportion of inmates held for felonies across the entire sample is 60.10%. Not only does the calculated
interval contain the mean; it also turns out that the sample mean is nearly identical to the population mean!

Of course, this is information researchers typically would not have at their disposal.

Chapter Summary

Confidence intervals are a way for researchers to use sample statistics to form conclusions about the probable values of population
parameters. Confidence intervals entail the construction of ranges of values predicted to contain the true population parameter. The

researcher sets the level of confidence (probability of correctness) according to her or his judgment about the relative costs of a loss of
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confidence versus compromised precision. The conventional confidence levels in criminal justice and criminology research are 95%
and 99%. The decision about level of confidence must be made with consideration to the trade-off between confidence and
precision: As confidence increases, the quality of the estimate diminishes. All confidence intervals are two-tailed, which means that
alpha is divided in half and placed in both tails of the distribution. This creates two critical values. The critical values have the same

absolute value, but one is negative and one is positive.

There are two types of CI for means: large sample and small sample. Confidence intervals for means with large samples employ the

z distribution, whereas those for means with small samples use the # curve. When the # distribution is used, it is necessary to calculate

degrees of freedom in order to locate the critical value on the # table.

Confidence intervals can be constructed on the basis of proportions, providing that two criteria are met: First, the sample must
contain at least 100 cases. Second, there must be at least five successes and five failures in the sample. These two conditions help

ensure the normality of the sampling distribution and, thus, the applicability of the z curve.

Thinking Critically

1. Two researchers are arguing about confidence intervals. One of them contends that precision is more important than the
level of confidence, and the other claims that confidence is more important than precision. What would you say to them to
help resolve this disagreement? Identify a research scenario in social science or other sciences (medicine, biology, etc.) in
which precision would be of utmost concern and one in which confidence would be researchers’ main goal. Explain your
rationale for each.

2. Suppose you read a research report that claimed to have uncovered a finding with significant implications for policy. The
researchers summarize the results of a multicity homicide reduction program that they claim was markedly effective. They
support this claim by pointing out that, during the study period, there was a mean reduction of 1.80 homicides per month
across the cities in the sample. Along with that mean, they report a 95% confidence interval of —.40 < x2 < 4 (i.e., 1.80 + 2.20).
‘What is wrong with the researchers’ claim that this program was effective? Identify the flaw in their logic and explain why

that flaw makes their claim unsupportable.

Review Problems
Answer the following questions with regard fo confidence intervals .

. How many cases must be in a sample for that sample to be considered “large”?

. “Small” samples are those that have ____ or fewer cases.

. Which distribution is used with large samples?

. Which distribution is used with small samples?

. Why can the distribution that is used with large samples not also be used with small ones?

. Explain the trade-off between confidence and precision.

N o L AW N =

. The Law Enforcement Management and Administrative Statistics (LEMAS) survey asks agencies to report the number of
sworn personnel who are designated school resource officers (SROs). In Florida municipal police departments serving
populations of 1 million or more, the agencies sampled in LEMAS (2V = 18) reported a mean of 13.00 SROs (s = 12.10).
Construct a 95% confidence interval around this sample mean, and interpret the interval in words.

8. The sheriff’s offices sampled in LEMAS (V = 827) reported that their agencies require new recruits to complete a mean of
599 hours of academy training (s = 226). Construct a 99% confidence interval around this mean and interpret the interval in
words.

9. The PPCS asks respondents who have been stopped by the police while driving a vehicle how many officers were on the
scene during the stop. Female stopped drivers (2V = 2,033) reported a mean of 1.14 (s = .36) officers. Construct a 95%
confidence interval around this sample mean, and interpret the interval in words.

10. In the PPCS, respondents who say that they have been stopped by police while driving vehicles are asked to report the reason

why they were stopped and the total length of time that the stop took. Among female drivers stopped for illegal use of

cellphones while driving (V= 42), stops lasted a mean of 9.00 minutes (s = 5.48). Construct a 95% confidence interval
around this sample mean and interpret the interval in words.

11. The General Social Survey (GSS) contains an item asking respondents about their TV habits. Female respondents (V = 707)
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12.

13.

14.

15.

16.

17.

18.

19.

20.

said they watched a mean of 3.06 (s = 2.62) hours of TV per day. Construct a 99% confidence interval around this sample
value and interpret the interval in words.

In a random sample of jails (V= 110) from the COJ, the mean number of male juveniles confined per facility was 1.17 (s =
6.21). Construct a 99% confidence interval around this sample value and interpret the interval in words.

In a random sample of prisons (V = 30) from the COJ, the mean number of inmates per security-staff member was 4.34 (s =
3.94). Construct a 95% confidence interval around this sample value and interpret the interval in words.

Respondents to the GSS (IV = 1,166) worked a mean of 40.27 hours per week (s = 15.54). Construct a 99% confidence
interval around this sample value, and interpret the interval in words.

The GSS asks respondents whether they keep a gun in their homes. In this survey, 34% of respondents (V= 1,281) said that
they have at least one firearm. Construct a 95% confidence interval around this sample value and interpret the interval in
words.

In the LEMAS survey, 45% of sampled sheriff’s offices (2V = 823) reported that their agencies’ formal mission statements do
not include a community-policing component. Construct a 95% confidence interval around this sample value, and interpret
the interval in words.

According to LEMAS, 31% of municipal law-enforcement agencies (IV = 1,967) use computerized statistics to identify high-
crime hot spots. Construct a 95% confidence interval around this sample value and interpret the interval in words.

The FISS captures information on whether drugs were involved in the altercation that led up to a shooting. In 2013, victims
were male in 87.3% of the 142 cases that involved drugs. Construct a 99% confidence interval around this sample value, and
interpret the interval in words.

The FISS reports that of the 329 female shooting victims whose relationship with their shooter was known, 28.3% were shot
by strangers. Construct a 95% confidence interval around this sample value, and interpret the interval in words.

The GSS found that 74% of male respondents (/V = 573) believe that people suffering from incurable diseases should be
permitted to die if that is their choice. Construct a 99% confidence interval around this sample value and interpret the

interval in words.
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Key Terms

Point estimate 177
Confidence interval 177
Level of confidence 178
Alpha level 180

Critical value 180
Two-tailed test 180

Glossary of Symbols and Abbreviations Introduced in This Chapter

« The probability that a C/ does not contain the population
parameter

z The z score associated with a given a level

t The t score associated with a given a level
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Hypothesis Testing

Chapter 9 Hypothesis Testing: A Conceptual Introduction

Chapter 10 Hypothesis Testing With Two Categorical Variables: Chi-Square

Chapter 11 Hypothesis Testing With Two Population Means or Proportions

Chapter 12 Hypothesis Testing With Three or More Population Means: Analysis of Variance
Chapter 13 Hypothesis Testing With Two Continuous Variables: Correlation

Chapter 14 Introduction to Regression Analysis

You have now learned about descriptive statistics (Part I) and the theories of probability and distributions that

form the foundation of statistics (Part IT). Part ITI brings all of this together to form what most criminal

justice and criminology researchers consider to be the high point of statistics: inferential analyses or what is
also called hypothesis testing. Hypothesis testing involves using a sample to arrive at a conclusion about a
population. Samples are vehicles that allow you to make generalizations or predictions about what you believe
is happening in the population as a whole. The problem, as we discussed in Chapter 7, is sampling error: It is
erroneous to conclude that a sample statistic is an accurate reflection of the population parameter, because the
sample is merely one of a multitude of samples that could have been drawn from the population and,

therefore, there is an unknown amount of error. Refer back to Figures 7.5 and 7.6 for an illustration.

Inferential analysis: The process of generalizing from a sample to a population; the use of a sample statistic to

estimate a population parameter. Also called hypothesis testing.

To account for sampling error, inferential statistics use sampling distributions to make probabilistic
predictions about the sample statistic that is being analyzed. The basic strategy is a two-step process: First, a
sample statistic is computed. Second, a probability distribution is used to find out whether this statistic has a
low or high probability of occurrence. This process should sound very familiar—we already followed these
steps when we worked with z scores and areas under the standard normal curve. Hypothesis testing is an
expansion of this underlying idea. A sample statistic (such as a mean) can be used to find out whether this
value is close to the center of the distribution (i.e., has a high probability of occurrence) or far out in the tail
(low probability of occurrence). It is this probability assessment that guides researchers in making decisions

and reaching conclusions.

Part I11 covers some of the bivariate (i.e., involving two variables) inferential tests commonly used in
criminology and criminal justice research: chi-square tests of independence, two-population tests for
differences between means and between proportions, analyses of variance, and correlations. Part III ends with

an introduction to bivariate and multiple regression.

Levels of Measurement
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Categorical Continuous
Level of Level of
Measurement Measurement

I
N S B

MNominal QOrdinal Interval Ratio ‘

Variables Variables Variables Variables

The proper test to use in a given hypothesis-testing situation is determined by the level of measurement of the
variables with which you are working. If your memory of levels of measurement has become a bit fuzzy, go
back to Chapter 2 now and review this important topic. You will not be able to select the correct analysis
unless you can identify your variables’ levels of measurement. The figure here is a reproduction of Figure 2.1
showing the levels of measurement. For purposes of hypothesis testing, the most important distinction is that
between categorical and continuous variables. Be sure you can accurately identify any given variable’s level of

measurement before you proceed.

There is no sense denying that you might find many of the concepts presented in the following chapters
confusing at first. This is normal! Remember that the process of learning statistics hinges on repetition. Read
and reread the chapters, study your lecture notes, and do the chapter review problems at least one time each—
things will start to sink in. Terms, formulas, and ideas that initially seemed incomprehensible will gradually
solidify in your mind and begin making sense. Remember that most criminology and criminal justice
researchers started off in a position just like yours! There was a point when they knew very little about
statistics and had to study hard to develop a knowledge base. Commit the time and effort and you will be

pleasantly surprised by how well you do.

Learning Check

v

Take a moment now to test your memory of levels of measurement. Identify the level of measurement of each

of the following variables:

1. The survey item that asks, “How many times have you been arrested in your life?” and has respondents
write in the answer

2. The survey item that asks, “How many times have you been arrested in your life?” and has respondents

circle never, 1-3 times, or 4 or more times

Whether a convicted defendant’s sentence was jail, probation, or drug treatment

Defendants’ annual household income, measured as $0-$9,999, $10,000-$19,999, or $20,000 or more

The method by which a defendant was convicted, measured as guilty plea, jury trial, or bench trial

A O

In a sample of people responding to a survey, attitudes about the court system ranging from “1 = too

harsh” to “5 = too lenient.”
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7. Now you try it! Create four variables, one representing each level of measurement.
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Hypothesis Testing A Conceptual Introduction
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Learning Objectives

e Explain the difference between expected and observed outcomes.

o Identify the two possible explanations for differences between observed and expected outcomes and explain how probability is used
to determine which of these potential explanations is the true explanation.

e Define the null hypothesis and the alternative hypothesis and write each out in both words and symbols.

e Summarize the logic behind the assumption that the null is true.

o Define Type I and Type II errors and explain the trade-off between them.

e List the four types of bivariate inferential tests, and identify the correct one to use for any given independent variable and

dependent variable combination depending on level of measurement.

The purpose of this chapter is to provide a clear conceptual foundation explaining the nature and purpose of
hypothesis testing. It is worth developing a solid understanding of the substance of inferential statistics before
approaching the specific types of hypothesis tests covered in the chapters that follow. This chapter will help
you grasp the overarching logic behind these sorts of tests so that you can approach the “trees” (specific tests)

with a clear picture of what the “forest” (underlying conceptual framework) looks like.

By now, you should be very familiar with the idea that researchers are usually interested in populations but,
because populations are so large, samples must suffice as substitutes. Researchers draw random samples using
a variety of methods. A researcher distributing surveys by mail might use a police department’s address
database to electronically pull the addresses of 10% of the residences in a particular city. Someone conducting
phone surveys might use random-digit dialing to contact 200 respondents. The ultimate goal in statistical
research is to generalize from the sample to the population. Hypothesis testing is the process of making this
generalization. (Note that throughout the following discussion, we are going to assume that samples are
simple and random. When either of these two criteria is not true in a given sample, adjustments sometimes
have to be made to the statistics used to analyze them. For present purposes, we are going to assume we are

working with simple, random samples.)

What we are really talking about in inferential statistics is the probability of empirical outcomes. There are
many (even infinite) random samples that can be drawn from any given population and, therefore, are
numerous possible values for sample statistics to take on. A population with a mean of 10, for instance, can
produce samples with means of 9, 11, 10, 7, and so on. When we have a sample statistic that we wish to use
inferentially, the question asked is, “Out of all the samples and sample statistics possible, what is the

probability that I would draw #his one?”
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Learning Check 9.1

v

Remember the difference between expected and observed or empirical outcomes. Expected outcomes are the results you anticipate seeing
on the basis of probability theory. In Chapter 6, you constructed a table of expected outcomes in the context of binomials. You did not use
any data; you made this table entirely on the basis of probability calculations. Observed outcomes, by contrast, are what you actually see.
These results might or might not mirror expectations. A coin-flip exercise will help refresh your memory. Write down the probability of
any given coin flip resulting in heads. Now flip a coin six times and record each outcome; then tally up the total number of heads and tails.
Did you see what you expected, on the basis of the underlying probability, or were you surprised at the outcome? Try again with 10 flips.

Did the observed outcome match the one you expected?
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Sample Statistics and Population Parameters: Sampling Error or True
Difference?

Any time a sample statistic is not equal to a population parameter, there are two potential explanations for the
difference. (Well, technically there are three, since a mismatch can result from mistakes in the sampling
process. For our purposes, though, as mentioned earlier, we are assuming correct research methods and
simple, random samples.) First, the inequality could be the product of inherent random fluctuations in sample
statistics (i.e., sampling error). In other words, the disparity might simply be a meaningless fluke. If you
flipped a fair coin six times, you would expect the coin to land tails side up three times. If, instead, you got
four tails, you would not think that there was anything weird happening; the next set of six trials might result

in two tails. This is sampling error—variation that is like white noise in the background.

The second possible explanation for the difference is that there is a genuine discrepancy between the sample
statistic and the population parameter. In other words, the disparity could represent a bona fide statistical
effect. If you flipped a coin 20 times and got 19 tails, you would suspect there was something wrong with the
coin because this is an extremely unlikely outcome. Perhaps the coin is weighted on one side, which would
mean that it is different from the ordinary quarter or dime you might have in your pocket. Large discrepancies
between observed and expected outcomes are sufficiently improbable to lead us to conclude that there is

something genuinely unique about the empirical outcome we have in front of us.

When researchers first approach an empirical finding, they do not know which of the two possible
explanations accounts for the observed or empirical result. In the earlier coin-flip example, we knew the
underlying population probability (.50), and we knew the number of trials that had been conducted (six in the
first and 20 in the second). If either of those pieces of information is omitted, then it becomes difficult to
make sense of the results. If your friend told you that he flipped a coin and it landed on tails seven times, but
he did not tell you the total number of times he flipped it, then you would not know how to interpret his
report about seven tails. Similarly, if you did not know that every flip has a .50 probability of tails (and that, by
extension, roughly half of a string of flips will be tails), then your friend might say that he flipped a coin 14

times and got seven tails and you would not have a clue as to whether this result is normal or atypical.

In the real world of criminal justice and criminology research, there are missing bits of information that
prevent us from being able to readily discriminate between sampling error and true difference. The
overarching purpose of hypothesis testing is to determine which of them appears to be the more valid of the
two, based on a calculated judgment. This is where probabilities come in. Researchers identify the probability
of observing a particular empirical result and then use that probability to make a decision about which

explanation seems to be correct.

This is pretty abstract, so an example is in order. We will use the Law Enforcement Management and
Administrative Statistics (LEMAS; see Data Sources 3.2) survey. Suppose we are investigating whether
agency type (municipal, county, tribal, or state) affects the ratio of officers to residents within a given

jurisdiction. (This is a measure of agency size relative to the size of the population served.) We might predict
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that municipal departments have a higher officer-to-resident ratio than county sheriff’s offices do. This is
because city and town police departments typically serve more-centralized populations, and the concentration
is linked with higher crime rates. By contrast, sheriffs’ offices generally cover larger territories and populations
that are more spread out, with lower crime rates. Using LEMAS, we can calculate the mean ratio of officers
per 1,000 residents for each type of agency in the sample. Municipal departments’ mean is 2.20, and sheriffs’

offices mean is 1.08.
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Learning Check 9.2

v

In the example using police agencies, we set up a hypothetical study exploring the possible effect that agency type has on officer-to-
resident ratio. Identify the two variables in this study, and state which is the independent variable (IV) and which is the dependent
variable (DV).

You can see that these means are unequal, and you might be tempted to conclude that our hypothesis has
been supported (i.e., that municipal departments are indeed larger than sheriffs’ offices, relative to the size of
the population served). However, recall that there are zwo potential reasons for this disparity. Their inequality
might be meaningless and the differences between the numbers purely the product of chance; in other words,
the finding might be a fluke. This is a random sample of agencies, so we cannot rule out the possibility that
sampling error manufactured an apparent difference where there actually is none. On the other hand, the
means might be unequal because officer-to-resident ratios really do vary across these two types of agencies. In
other words, there might be a real difference between the means. These two competing potential explanations
can be framed as hypotheses. We will use the LEMAS numbers to guide us through a discussion of these

competing hypotheses.
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Null and Alternative Hypotheses

There are two hypotheses used to state predictions about whether or not a statistic is an accurate estimate of a
parameter. The first is called the null hypothesis. The null (symbolized H)) represents the prediction that the
difference between the two samples is merely sampling error or, in other words, chance variation in the data.
You can use the word nu// as its own mnemonic device because this word means “nothing.” Something that is
null is devoid of meaning. In the context of the present example, the null predicts that agency type is not

related to officer-to-resident ratio and that the observed difference between the means is just white noise.

Null hypothesis: In an inferential test, the hypothesis predicting that there is no relationship between the independent and

dependent variables. Symbolized Hy.

The second possible explanation is that municipal departments really do have a higher ratio than sheriffs’
offices do. This prediction is spelled out in the alternative hypothesis (symbolized H;). The alternative
hypothesis is sometimes also called the research hypothesis. The alternative or research hypothesis is,
essentially, the opposite of the null: The null predicts that there is no relationship between the two variables

being examined, and the alternative predicts that they are related.

Alternative hypothesis: In an inferential test, the hypothesis predicting that there is a relationship between the independent and

dependent variables. Symbolized H7. Also referred to as a research hypothesis.

In the context of the present example, the null and alternative hypotheses can be written as

Hy: Municipal departments and sheriffs’ agencies have the same officer-to-resident ratio; that is, the two means
are equal, and there is no relationship between agency type and ratio.
H;: Municipal departments have a bhigher officer-to-resident ratio than sheriffs’ agencies do; that is, the means

are unequal and there is a relationship between agency type and ratio.

More common than writing the hypotheses in words is to use symbols to represent the ideas embodied in the

longhand versions. Transforming these concepts into such symbols turns the null and alternative hypotheses

into
Hy: p = pp
Hy: pq > po,

where 44 = the mean ratio in municipal departments, and

/15 = the mean ratio in sheriffs’ offices.

It might seem strange to write the hypotheses using the symbol for the population mean () rather than the
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sample mean (J_C ), but remember that in inferential statistics, it is the population parameter that is of interest.
We use the sample means to make a determination about the population mean(s). Basically, there are two
options: There might be one population from which the samples derive (sampling error), or each sample
might represent its own population (true difference). If the null is true and there is, in fact, no relationship
between agency type and officer-to-resident ratio, then we would conclude that all the agencies come from the
same population. If, instead, the alternative is true, then there are actually two populations at play here—

municipal and county. Figure 9.1 shows this idea pictorially.

Figure 9.1 One Population or Two?

One Population or Twa?

Under the null, all police agencies am partof a  Under the altemative, there are two populations and

single population with one mean. the population mean for municipal departmeants ()
is higher than that for sherif's offices (u.).

Another reason a researcher might conduct a hypothesis test is to determine if men and women differ in terms
of how punitive they feel toward people who have been convicted of crimes. The General Social Survey (GSS;
see Data Sources 2.2) asks people whether they favor or oppose capital punishment for people convicted of
murder. Among men, 31% oppose capital punishment; this number is 40% among women. A researcher
might want to know whether this difference represents a genuine “gender effect” or whether it is merely

chance variation. The null and alternative could be set up as such:

H: Men and women oppose the death penalty equally; the proportions are equal and there is no relationship
between gender and death penalty attitudes.
Hy: Men are less likely to oppose the death penalty than women are; the proportions are unequal and there is a

relationship between gender and death penalty attitudes.

Formally stated using symbols, the null and alternative are written as

Hoi Pl = P2

H1:P1<P2

where P; = the proportion of men who oppose capital punishment and

P, = the proportion of women who oppose capital punishment.

As with the example regarding police agency type and size, the hypotheses pertaining to gender and death
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penalty attitudes are phrased in terms of the population proportion (P) rather than the sample proportion (p )
because we are using a sample estimate to draw an inference about a population parameter. Until we conduct a
full hypothesis test, we will not know whether women and men truly do differ in their opposition to capital

punishment.

The assumption going into an inferential analysis is that the null is the true state of affairs. In other words, the
default assumption is that there is no relationship between the two variables under examination. The goal in

conducting the test is to decide whether to retain the null (concluding that there is no relationship) or to reject
the null (concluding that there is, in fact, a relationship between the variables). The null can be rejected only if

there is solid, compelling evidence that leads you to decide that this hypothesis is inaccurate.

A good analogy to the logic behind hypothesis testing is the presumption of innocence in a criminal trial. At
the outset of a trial, the jury must consider the defendant to be legally innocent of the crime of which she or
he is accused. The “null” here is innocence and the “alternative” is guilt. If the prosecutor fails to convincingly
show guilt, then the innocence assumption stands, and the defendant must be acquitted. If, however, the
prosecutor presents sufficient incriminating evidence, then the jury rejects the assumption of innocence and
renders a guilty verdict. Of course, the prosecutor does not have to leave the jury with complete certainty that
the defendant is guilty; rather, the prosecutor’s job is to overcome a reasonable doubt. In other words, the jury

can convict when the probability of the defendant’s guilt far outweighs the probability of his innocence.

There are good reasons for the null being the default in both criminal trials and scientific research. The
presumption of innocence helps prevent wrongful convictions. Likewise, in clinical trials testing new
pharmaceutical drugs, it is of utmost importance that a drug be demonstrated to be effective and safe before it
is approved and put on the market. Medical researchers err on the side of caution. If there is a .50 probability
that a drug will help the people who take it achieve better health, then this might be sufficient to send that
drug to market. On the other hand, if'a drug has a .60 probability of making people who take it feel better and

a .15 probability of killing them, researchers should not let it be released for public consumption.

In criminal justice and criminology research, important questions about theory and policy hang in the balance.
Like medical researchers, social scientists err on the side of caution. A criminologist testing a hypothesis about
a theory of crime causation must tread carefully. Failing to reject the null hypothesis could lead to erroneous
conclusions about the accuracy of the theory; however, the test can be repeated to determine whether there
was a mistake in the research design that corrupted the results. Rejecting a null hypothesis that is true,
however, could take this criminologist and others doing similar research down a completely wrong path in the
study of crime causation. Criminal justice researchers, likewise, often deal with policy questions. They handle
matters such as whether or not a particular rehabilitation program reduces recidivism, whether a given
policing strategy deters violent crime, and whether school-based prevention programs prevent drug use and
gang involvement among youth. For each of these examples, you can see that neither of the two possible
mistakes is harmless but that retaining the null (and, possibly, conducting further research into the issue) is
safer than leaping to a conclusion that might be incorrect. Erroneously concluding that a rehabilitation

program, police strategy, or school-based prevention program works could result in their widespread adoption
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across jurisdictions, even though they are ineffective.

In inferential statistics, researchers construct a probability framework based on the assumption of a true null.
The question they are trying to answer is, “What is the probability of observing the empirical result that I see
in front of me if the null hypothesis is correct ?” If the probability of the null being true is extremely low, then the
null is rejected because it strains the imagination to think that something with such a low likelihood of being
correct is the right explanation for an empirical phenomenon. The alternative would, thus, be taken as being
the more likely version of reality. If the probability of the null being true is not low, then the null is considered

to be a viable explanation for the results, and it is retained.

Think back to the study of police agency type and the ratio of officers per 1,000 local residents. Recall that
municipal departments’ mean officer-to-resident ratio is 2.20 and sheriff’s offices is 1.08. Let us say, for the
sake of example, that we determine that the probability of these two means being two parts of the same
population is .70. That is a pretty high probability! We would conclude that the null is likely correct and there
is only one population. What if we found that the probability was .20? This is a much smaller probability than
.70, but it still means that there is a 20% chance that the null is true, which is substantial. A jury in a criminal
trial should not convict a defendant if there is a 20% chance he is innocent. If, on the other hand, we found a
probability of .01, meaning that there is only a 1% chance that the two samples are from the same population,
then rejecting the null would be warranted because it is extremely unlikely to be the true state of affairs (i.e.,
there is a .99 or 99% chance that the null is false). At a probability of .01, it is highly likely that municipal

police departments and county sheriff’s agencies are two separate populations with different means.

Of course, as you have probably already figured out, there is always a chance that a researcher’s decision
regarding whether to reject or retain the null is wrong. We saw when we worked with confidence intervals
that the flipside of the probability of being right is the probability of being wrong—any time you make a
decision about the null, you are either right or wrong, so the two probabilities sum to 100% or 1.00. There are
two types of errors that can be made in this regard. A Type I error occurs when a true null is erroneously
rejected, whereas a Type Il error happens when a false null is inaccurately retained. Type I errors are like false
positives, and Type II errors are like false negatives. Wrongfully convicting an innocent defendant or
approving an ineffective drug for the market is a Type I error, while incorrectly acquitting a guilty defendant

or concluding that an effective drug does not work is a Type II error.

Type I error: The erroneous rejection of a true null hypothesis. Symbolized a.

Type II error: The erroneous retention of a false null hypothesis. Symbolized {3 .

Type I errors are often symbolized using o, which we have seen before. Recall from the confidence interval
lesson in Chapter 8 that alpha is the probability of being wrong about the interval containing the true
population mean or proportion. The interpretation of alpha in inferential statistics is a little different from
confidence intervals because of the involvement of null and alternative hypotheses; however, the underlying
logic is the same. The symbol for a Type II error is the uppercase Greek letter beta (B) . Researchers can often

minimize the probability that they are wrong about a decision, but they can never eliminate it. For this reason,
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you should always be circumspect as both a producer and a consumer of statistical information. Never rush
haphazardly to conclusions. Any time you or anyone else runs a statistical analysis and makes a decision about

the null hypothesis, there is a probability—however minute—that the decision is wrong.

Table 9.1 Type | and Type |l Errors
T [ e T

If the null is true . . . Type | Error («) Correct!

If the null is false . . . Correct! Type Il Error (8)

There is a trade-off between Type I and Type II error rates. The Type I error rate (a) is set a priori (in
advance) of the start of the hypothesis test. A researcher who is worried about making a Type I error could
help minimize the chance of this mistake occurring by setting alpha very low, which increases the difficulty of
rejecting the null hypothesis. The flipside, however, is that making it harder to reject a true null also makes it
hard to reject a false one. By reducing the chance of a Type I error, the researcher has increased the risk of

making a Type II error.

The following chapters will cover several different types of hypothesis testing procedures in the bivariate (i.e.,
two variables) context. The choice between the different tests is made on the basis of each variable’s level of
measurement. You must identify the levels of measurement of the IVs and DV's and then select the proper test
for those measurement types. This book covers four types of bivariate inferential tests. The first is chi-square,
which is the statistical procedure used to test for an association between two categorical (nominal or ordinal)
variables. If, for example, you had a sample of criminal defendants and wanted to find out whether there was a
relationship between the type of crime a defendant was charged with (violent or property) and the disposition

method that the defendant chose (guilty plea, jury trial, or bench trial), you would use a chi-square test.

The second type of analysis is a # test. The # test is used when the DV of interest is continuous (interval or
ratio) and the IV is categorical with two classes (such as gender measured as male or female). The # test is a
test for differences between two means. In the officer-to-resident ratio example, a # test would be the analysis
we select to determine whether or not to reject the null hypothesis (since we had two types of police agencies
and the ratio variable is continuous). The third type of test is the analysis of variance (ANOVA). The
ANOVA is an extension of the 7 test and is used when the DV is continuous and the IV is categorical with
three or more classes. If we added state police agencies to our ratio analysis, we would use an ANOVA instead
of a # test. The rationale behind this is that conducting multiple # tests is time consuming and cumbersome,
and creates statistical problems. The ANOVA streamlines the process by using a single analysis across all
classes of the IV.

The final bivariate inferential test we will discuss is correlation. This test is used when both the DV and the
IV are continuous. Correlations are tests for linear relationships between two variables. You might predict, for
instance, that the level of correctional officer staffing in a prison (i.e., the inmate-to-staff ratio) affects the
assault rate—it stands to reason that higher staffing results in better supervision and, thus, fewer assaults. You
would test this prediction using a correlation analysis. Table 9.2 is a handy chart that you should study closely

and refer to repeatedly throughout the next few chapters.
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Table 9.2 Choosing the Appropriate Bivariate Test Based on the

Variables' Level of Measurement

I 7

The IVis. .. Categorical Continuous

Categorical Chi-square f test
ANOVA

Continuous NIA Correlation

If you choose the wrong test, you will arrive at an incorrect answer. This is true in both hand calculations and

SPSS programming. SPSS rarely gives error messages and will usually run analyses even when they are deeply
flawed. Remember, GIGO! When garbage is entered into an analysis, the output is also garbage. You must be
knowledgeable about the proper use of these statistical techniques, or you risk becoming either a purveyor or a

consumer of erroneous results.

Before we leave this chapter and dive into inferential analyses, let’s introduce the steps of hypothesis testing. It
is useful to outline a framework you can use consistently as you learn the different types of analyses. This lends
structure to the learning process and allows you to see the similarities between various techniques. Hypothesis

testing is broken down into five steps, as follows:

Step1. State the null (/) and alternative (A7) hypotheses.

e The two competing hypotheses that will be tested are laid out.

Step2. Identify the distribution and compute the degrees of freedom (df) .

e Each type of statistical analysis uses a certain probability distribution. You have already seen the z
and # distributions, and more will be introduced in later chapters. You have encountered the
concept of degrees of freedom (df) in the context of the # distribution. Other distributions also
require the computation of af.

Step 3. Identify the critical value of the test statistic and state the decision rule.

o The critical value is based on probability. The critical value is the number that the obtained value
(which will be derived in Step 4) must exceed in order for the null to be rejected. The decision rule
is an a priori statement formally laying out the criteria that must be met for the null to be rejected.
The decision rule is useful because it makes it very clear what must happen in order for the null to
be rejected. You will return to the decision rule in Step 5 after computing the critical value in Step
4.

Step4. Compute the obtained value of the test statistic.

e This is the analytical heart of the hypothesis test. You will select the appropriate formula, plug in

the relevant numbers, and solve. The outcome is the obtained value of the test statistic.
Step 5. Make a decision about the null and state the substantive conclusion.

e You will revisit your decision rule from Step 3 and decide whether to reject or retain the null based
on the comparison between the critical and obtained values of the test statistic. Then you will
render a substantive conclusion. Researchers have the responsibility to interpret their statistical

findings and draw substantive conclusions that make sense to other researchers and to the public.
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Chapter Summary

This chapter provided an overview of the nature, purpose, and logic of hypothesis testing. The goal of statistics in criminology and
criminal justice is usually generalization from a sample to a population. This is accomplished by first finding a sample statistic and
then determining the probability that that statistic would be observed by chance alone. If the probability of the result being
attributable solely to chance is exceedingly low, then the researcher concludes that the finding is not due to chance and is, instead, a

genuine effect.

When a researcher has identified two variables that might be related, there are two possible true or correct states of affairs. The first
possibility is that the variables are actually not related. This possibility is embodied by the null hypothesis, symbolized /(. The
second possibility is that they are in fact related to one another. This is the alternative hypothesis, 1, which is sometimes also called
a research hypothesis. The null hypothesis is always assumed to be the one that is true, and formal hypothesis testing employing
probabilities and a sampling distribution is conducted to determine whether there is sufficient evidence to overrule the null and opt
for the alternative instead. A hypothesis test using the five steps outlined in this chapter will ultimately result in the null being either

rejected or retained, and the researcher concluding that the variables are, or are not, related to each other.

Thinking Critically

1. You have been summoned for jury duty and decide at the outset of the trial that you will not vote to convict unless you are
99.9% sure of the defendant’s guilt. Which type of error does this decision minimize? What does this decision do to the
probability that you will make the other type of error? If you reduce your certainty threshold to 75%, how have you altered
the chances of making each error?

2. A friend of yours is excited about the results of an evaluation of a new rehabilitation program for adult prison inmates. She
compared a sample of released prisoners who completed the program while they were incarcerated to a sample who did not,
and she found that 21% of the treatment group was rearrested within one year of release, compared to 36% of the no-
treatment group. She asserts that this is definitive proof that the program works. What should you tell your friend? Craft a
response using the relevant concepts from this chapter. If you plan to recommend a statistical test, which one in Table 9.2

will you suggest?

Review Problems

1. Suppose a researcher was studying gender differences in sentencing. She found that males sentenced to jail received a mean
of 6.45 months and females sentenced to jail received a mean of 5.82 months. Using what you learned in this chapter,
describe the two possible reasons for the differences between these two means.

2. Write the symbol for the null hypothesis, and explain what this hypothesis predicts.

3. Write the symbol for the alternative hypothesis, and explain what this hypothesis predicts.

4. You learned in this chapter that the null is assumed to be true unless very compelling evidence suggests that the alternative

hypothesis is actually the correct one. Why is this? That is, what is the rationale for the null being the default?

. Explain what a Type I error is.

. Explain what a Type II error is.

. Explain the trade-off between Type I and Type II error rates.

. Define the word bivariate.

O 0 NN o

. List and describe each of the five steps for hypothesis tests.
10. If you computed an empirical result, identified the probability of observing that result, and found that the probability was
high . ..
1. would you conclude that this is the product of sampling error, or would you think that it is a true effect?
2. would you reject or retain the null?
11. If you computed an empirical result, identified the probability of observing that result, and found that the probability was
very low . ..
1. would you conclude that this is the product of sampling error, or would you think that it is a true effect?

2. would you reject or retain the null?
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12.

13.

14.

15.

16.

17.

18.

Which inferential statistical analysis would be used if the IV was criminal defendants’ ages at sentencing (measured in years)
and the DV length of their terms of confinement (measured in months)?

1. Chi-square

2. ftest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was criminal defendants’ gender (measured as male or female)
and the DV was the length of their terms of confinement (measured in months)?

1. Chi-square

2. ftest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was criminal defendants’ gender (measured as male or female)
and the DV was whether they obtained pretrial release (measured as yes or no)?

1. Chi-square

2. ttest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was police force size (measured as the number of officers per
1,000 residents) and the DV was crime rates (measured as the number of crimes per 10,000 residents)?

1. Chi-square

2. ttest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was assault victims’ race (measured as white, black, Latino, or
other) and the DV was the length of prison terms given to their attackers (measured in months)?

1. Chi-square

2. ttest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was murder victims’ race (measured as white, black, Latino, or
other) and the DV was whether the killers were sentenced to death (measured as yes or no)?

1. Chi-square

2. ttest

3. ANOVA

4. Correlation
Which inferential statistical analysis would be used if the IV was assault victims’ gender (measured as male or female) and the
DV was the length of prison terms given to their attackers (measured in months)?

1. Chi-square

2. ttest

3. ANOVA

4. Correlation
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Hypothesis Testing With Two Categorical Variables
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Learning Objectives

o Identify the levels of measurement of variables used with a chi-square test of independence.

e Explain the difference between parametric and nonparametric statistics.

e Conduct a five-step hypothesis test for a contingency table of any size.

e Explain what statistical significance means and how it differs from practical significance.

o Identify the correct measure of association used with a particular chi-square test, and interpret those measures.
e Use SPSS to produce crosstabs tables, chi-square tests, and measures of association.

e Interpret SPSS chi-square output.

The chi-square test of independence is used when the independent variable (IV) and dependent variable (DV)
are both categorical (nominal or ordinal). The chi-square test is a member of the family of nonparametric
statistics, which are used when sampling distributions cannot be assumed to be normally distributed, as is the
case when a DV is categorical. Chi-square thus sits in contrast to parametric statistics, which are used when
DVs are continuous (interval or ratio) and sampling distributions are safely assumed to be normal. The # test,
analysis of variance, and correlation are all parametric. Because they have continuous DVs, they can rely on
normal (or at least relatively normal) sampling distributions such as the # curve. (There are exceptions to the
use of parametric statistics on continuous data, such as when the data are severely skewed, but that is beyond
our scope here. For present purposes, we will distinguish the two classes of statistics on the basis of level of
measurement.) Before going into the theory and math behind the chi-square statistic, Research Example 10.1
for an illustration of a type of situation in which a criminal justice or criminology researcher would turn to the

chi-square test.

Chi-square test of independence: The hypothesis-testing procedure appropriate when both the independent and dependent variables

are categorical.

Nonparametric statistics: The class of statistical tests used when dependent variables are categorical and the sampling distribution

cannot be assumed to approximate normality.

Parametric statistics: The class of statistical tests used when variables are continuous and normally distributed and the sampling

distribution can be assumed to approximate normality.

A researcher might be interested in finding out whether male and female offenders receive different sentences.
In a study like this, gender would be nominal (male or female) and sentence might be measured nominally as well
(such as jail, probation , or fine) . The question the researcher would be asking is, “Are these two variables
related? In other words, does knowing an offender’s gender help me predict what type of sentence he or she
receives?” Answering this question requires the use of the chi-square test of independence because both the IV

and the DV are categorical.
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Conceptual Basis of the Chi-Square Test: Statistical Independence and
Dependence

Two variables that are not related to one another are said to possess statistical independence. When two
variables are related, they have statistical dependence. Statistical independence means that knowing which
category an object falls into on the IV does not help predict its placement on the DV. Conversely, if two

variables are statistically dependent, the independent does have predictive power over the outcome variable.

Statistical independence: The condition in which two variables are not related to one another; that is, knowing what class persons or

objects fall into on the independent variable does not help predict which class they will fall into on the dependent variable.

Statistical dependence: The condition in which two variables are related to one another; that is, knowing what class persons or

objects fall into on the independent variable helps predict which class they will fall into on the dependent variable.

Research Example 10.1 How Do Criminologists’ and Criminal Justice Researchers’” Attitudes About the Criminal Justice System

Compare to the Public’s Attitudes?

Many criminal justice and criminology researchers study public opinion about crime and the justice system. What is less commonly
known, however, is how these academics themselves perceive crime and society’s response to it. Griffin, Pason, Wiecko, and Brace
(2016) compared the opinions of a sample of researchers to the opinions expressed by a sample of nonacademics from the general

population.

The table displays some of their findings. (The percentages do not sum to 100% because the people responding “I don’t know” to
each question have been omitted from the table.) Substantial differences emerge between the two groups, with strong majorities of
researchers opposing capital punishment and supporting marijuana legalization. The public was more likely to express favorable

attitudes toward the death penalty and was more split on the issue of whether marijuana should be legalized.

Favor the
death penalty?

Feel the death 32 64 2 92.6
penalty is a

deterrent?

Is the death 52 40 11 81.5
penalty

applied fairly?

Should 58 39 73 12.8

marijuana be
made legal?

Source: Adapted from Table 1 in Griffin et al. (2016).
Source: Adapted from Table 1 in Griffin et al. (2016).

The researchers ran chi-square tests to determine whether there were differences between researchers and the public. All the tests

showed that academics and nonacademics have noticeably divergent opinions about these issues.

In Research Example 10.1, the IV was whether survey respondents were either criminology or criminal justice
researchers, or members of the public. There were four DV (each coded yes/no) measuring respondents’
attitudes about the death penalty and about marijuana legalization. If these two variables are statistically
independent, the two groups (researchers and the public) will be largely similar in their attitudes. In other

words, knowing whether someone is or is not a researcher will not help us predict that person’s opinion on any
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of these four dimensions. If they are statistically dependent, then we would gain predictive power by knowing
which of the two groups a given individual is part of. When we want to know whether there is a relationship

between two categorical variables, we turn to the chi-square test of independence.
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The Chi-Square Test of Independence

Let us work slowly through an example of a chi-square hypothesis test using the five steps described in
Chapter 9 and discuss each step in detail along the way. For this example, we will turn to the 2014 General
Social Survey (GSS; see Data Sources 2.2) and the issue of gender differences in attitudes about crime and
punishment. Theory is somewhat conflicting as to whether women tend to be more forgiving of transgressions
and to prefer leniency in punishment or whether they generally prefer harsher penalties out of the belief that
offenders pose a threat to community safety. The GSS contains data on the sex of respondents and these
persons’ attitudes toward the death penalty. The joint frequency distribution is displayed in Table 10.1. We
will test for a relationship between gender (the IV) and death-penalty attitudes (the DV). Both of these
variables are nominal, so the chi-square test of independence is the correct analysis. Note that we are setting
gender as the IV and death-penalty support as the DV. There is no mathematical requirement pertaining to
the placement of the variables in the rows versus the columns, but it is customary to place the IV in the rows

of the table and the DV in the columns.

You have seen tables like 10.1 before—it is a contingency (or crosstabs) table just like the ones we worked
with in Chapter 3! Each cell of the table displays the number of people who fall into particular classes on each
variable. (Ignore the superscripts for now; we will come back to these later.) For example, 511 GSS
respondents are female and oppose the death penalty, and 752 are male and favor it. We can perform a cursory
assessment of the possible relationship between gender and death-penalty support by calculating row

percentages for each cell of the table (we use row percentages because the IV is in the rows). Approximately

8
L 100 = 60.36

1,289

60% of women favor the death penalty , and 40% oppose it

5 100=39.64

1,289

by the 8 percentage-point difference between men and women, it appears that there is a relationship between

. Among men, there is 69% favorability and 31% opposition. Judging

gender and attitudes about capital punishment, with women expressing less support for it. Recall from the
previous chapter, however, that it would be erroneous to conclude on the basis of these percentages alone that
there is a true difference between men and women in terms of their death-penalty attitudes—we have not yet
ruled out the possibility that this discrepancy is the product of chance variation (i.e., sampling error). A formal

hypothesis test is required before we reach a conclusion about whether these variables are related.
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Table 10.1 GSS Responde nd Death-Penalty Attity

Attitude Toward Death Penalty for Persons
Gonvicted of Murder

Female 7784 511¢ 1,289
Male 752¢ 338° 1,080
Column Marginal 1,530 849 N=2379

Figure 10.1 The Chi-Square Probability Distribution, a, X %, and X %o

If 42, < X% the null
is retained

If . = ¥ the null
is rejected

=

&= area beyond 32

fﬁ"

Step 1. State the null (Hy) and alternative (H ;) hypotheses .

The null hypothesis (H)) in chi-square tests is that there is no relationship between the IV and DV. The chi-

square test statistic is X (X is the Greek letter cbi and is pronounced “kye”). A X? value of zero means that the

variables are unrelated, so the null is formally written as

Hol X2 =0

The alternative hypothesis (), on the other hand, predicts that there is a relationship. The chi-square
statistic gets larger as the overlap or relationship between the IV and DV increases. The chi-square statistic
has its own sampling distribution, and the distribution contains only positive values; it is bounded at zero and
has no negative side. This is because the statistic is a squared measure and, therefore, cannot take on negative

values. As such, the alternative hypothesis is always expressed as

Hy: ¥ >0

Step 2. Identify the distribution and compute the degrees of freedom .

As mentioned, the X ? statistic has its own theoretical probability distribution—it is called the X 2 distribution.
The X ? table of critical values is located in Appendix D. Like the # curve, the X ? distribution is a family of

differently shaped curves, and each curve’s shape is determined by degrees of freedom (4f) . At small df values,
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the distribution is extremely nonnormal; as the @f increases, the distribution gradually normalizes somewhat,
but remains markedly different from a normal curve. Unlike the # curve, df for X * are based not on sample size
but, rather, on the size of the crosstabs table (i.e., the number of rows and columns). Looking at Table 10.1,
you can see that there are two rows (female and male) and two columns (favor and oppose) . The marginals (row
and column totals) are not included in the df calculation. The formula for degrees of freedom in a X ?

distribution is

df=@-1)c-1), Formula 10(1)

where

7 = the number of rows, excluding the marginal and

¢ = the number of columns, excluding the marginal.

X 2 distribution: The sampling or probability distribution for chi-square tests. This curve is nonnormal and contains only positive

values. Its shape depends on the size of the crosstabs table.

Table 10.1 has two rows and two columns. Inserting these into the formula, the result is
gf=2-1)2-1)=1@1)=1

Step 3. Identify the critical value of the test statistic and state the decision rule .

Remember in Chapter 8 when we used the a (alpha) level to find a particular value of z or # to plug into a
confidence interval formula? We talked about o being the proportion of cases in the distribution that are out
in the tail beyond a particular value of z or # You learned that the critical value is the number that cuts o off
the tail of the distribution. Alpha is the probability that a certain value will fall in the tail beyond the critical
value. If a = .05, for instance, then the values of the test statistic that are out in the tail beyond the critical
value constitute just 5% of the entire distribution. In other words, these values have a .05 or less probability of
occurring if, indeed, there is no relationship between the two variables being analyzed. These values, then,

represent observed outcomes that are extremely unlikely if the null hypothesis is true.

The process of finding the critical value of X * (symbolized X °.;,) employs the same logic as that for finding

critical values of z or £ The value of X *.;; depends on two considerations: the o level and the df: Alpha must

crit
be set a priori so that the critical value can be determined before the test is run. Alpha can technically be set at

any number, but .05 and .01 are the most commonly used o levels in criminal justice and criminology.

For the present example, we will choose a = .05. Using Appendix D and finding the number at the
= 3.841. This is the value that cuts .05 (i.e., 5%) of

the cases off the tail of the X * distribution. The obtained value of X * (symbolized X ?,) that is calculated in

intersection of o = .05 and 4f = 1, it can be seen that X >,

Step 4 must exceed the critical value in order for the null to be rejected. Figure 10.1 illustrates this concept.

Obtained value: The value of the test statistic arrived at using the mathematical formulas specific to a particular test. The obtained
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value is the final product of Step 4 of a hypothesis test.

The decision rule is the a priori statement regarding the action you will take with respect to the null
hypothesis based on the results of the statistical analysis that you are going to do in Step 4. The final product
of Step 4 will be the obtained value of the test statistic. The null hypothesis will be rejected if the obtained
value exceeds the critical value. If X %1, > X %, then the probability of obtaining this particular X 2, value by
chance alone is less than .05. Another way to think about it is that the probability of Hy being true is less than
.05. This is unlikely indeed! This would lead us to reject the null in favor of the alternative. The decision rule

for the current test is the following: IfX *oy > 3.841 , Hy will be rejected.
Step 4. Compute the obtained value of the test statistic .

Now that we know the critical value, it is time to complete the analytical portion of the hypothesis test. Step 4
will culminate in the production of the obtained value, or X *.p,. In substantive terms, X > is a2 measure of the
difference between observed frequencies (f;,) and expected frequencies (f;). Observed frequencies are the
empirical values that appear in the crosstabs table produced from the sample-derived data set. Expected
frequencies are the frequencies that would appear if the two variables under examination were unrelated to one
another. In other words, the expected frequencies are what you would see if the null hypothesis were true. The
question is whether observed equals expected (indicating that the null is true and the variables are unrelated)
or whether there is marked discrepancy between them (indicating that the null should be rejected because

there is a relationship).

Observed frequencies: The empirical results seen in a contingency table derived from sample data. Symbolized /.

Expected frequencies: The theoretical results that would be seen if the null were true, that is, if the two variables were, in fact,

unrelated. Symbolized fe.

Let’s talk about observed and expected frequencies a little more before moving on. Table 10.2 is a crosstabs
table for two hypothetical variables that are totally unrelated to one another. The 100 cases are spread evenly
across the four cells of the table. The result is that knowing which class a given case falls into on the IV offers
no information about which class that case is in on the DV. For instance, if you were faced with the question,
“Who is more likely to fall into category Y on the DV, someone in category A or in category B?” your answer
would be that both options are equally likely. The distribution in Table 10.2 illustrates the null hypothesis in a

chi-square test—the null predicts that the IV does not help us understand the DV.

Table 10.3 shows a distribution of hypothetical observed frequencies. There is a clear difference between this
distribution and that in Table 10.2. In Table 10.2, it is clear that knowing what category a person is in on the
IV does help predict their membership in a particular category on the DV. Someone in category A4 is more
likely to be in category Y than in category X , whereas someone in category B is more likely to be in X than in
Y. If you had a distribution like that in Table 10.2 and someone asked you to predict whether someone in
category 4 was in X or Y, you would have a 50/50 shot at being right; in other words, you would simply have
to guess. You would be wrong half the time (25 out of 50 guesses). On the other hand, if you were looking at

Table 10.3 and someone asked you the same question, you would predict the person to be in Y. You would
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still be wrong occasionally, but the frequency of incorrect guesses would diminish from 50% to 20% (10 out of

50 guesses).

The chi-square analysis is, therefore, premised on a comparison of the frequencies that are observed in the
data and the frequencies that would be expected, theoretically, if there were no relationship between the two
variables. If there is minimal difference between observed and expected, then the null will be retained. If the
difference is large, the null must be rejected. We already know the observed frequencies, so the first task in

Step 4 is to calculate the expected frequencies. This must be done for each cell of the crosstabs table.

Table

Bependent Variable _
25

A 25 50
B 25 25 50
Column Marginal 50 50 N=100

Table 10.3 Hypothetical Distribution of Observed Fregquencies

D R A T
A 10 50

40
B 40 10 50
Column Marginal 50 50 N=100

The formula for an expected frequency count is

o = M, Formula 102)
: N

where

f € = the expected frequency for cell 7,
rm; = the row marginal of cell 7,
¢m; = the column marginal of cell 7, and

N = the total sample size.

Since the expected frequency calculations must be done for each cell, it is a good idea to label them as a way to
keep track. This is the reason why the numbers in Table 10.1 are accompanied by superscripts. The letters 4
through D identify the cells. Using Formula 10(2) for each cell,

1,280 - 1,530 1,972,170
f, == 2T T - 828.99
I,

2,318 2,379
1,269 - 849 1,004,361

2,379 2,379

= 460.01

Il
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1,090 - 1,530 1,667,700
f. = - =701.01
c 2,379 2,379

- 1,000 849 925,410
I, = - =388.99
b 2,379 2,379

Once the expected frequencies have been calculated, X2, can be computed using the formula
2

(f o ftf[ )

fe

xzobt . Z Formula 10(3)

where

f
f

€; = the expected frequency of cell 4.

i = the observed frequency of cell 7 and

Formula 10(3) looks intimidating, but it is actually just a sequence of arithmetic. First, each cell’s expected
value will be subtracted from its observed frequency. Second, each of these new terms will be squared and
divided by the expected frequency. Finally, these terms will be summed. Recall that the uppercase sigma (Z) is

a symbol directing you to sum whatever is to the right of it.

The easiest way to complete the steps for Formula 10(3) is by using a table. We will rearrange the values from

Table 10.1 into a format allowing for calculation of X2 .. Table 10.4 shows this.

The obtained value of the test statistic is found by summing the final column of the table, as such:

Xobe = 3.14 + 5.65 + 3.71 + 6.68 = 19.18

There it is! The obtained value of the test statistic is 19.18.
Step 5. Make a decision about the null and state the substantive conclusion .

It is time to decide whether to retain or reject the null. To do this, revisit the decision rule laid out in Step 3.
It was stated that the null would be rejected if the obtained value of the test statistic exceeded 3.841. The
obtained value turned out to be 19.18, 50 X2p; > X2crie and we therefore reject the null. The alternative
hypothesis is what we take as being the true state of affairs. The technical term for this is statistical
significance. A statistically significant result is one in which the obtained value exceeds the critical value and

the variables are determined to be statistically related to one another.

Statistical significance: When the obtained value of a test statistic exceeds the critical value and the null is rejected.
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Table 10.4 Calculating

41y
A 778 8299 718-82899--5099 (-50.997-25%9.98 260008
828.99
B 511 46001  511-460.01=50.99  50.99¢= 2,599.98 2.569.98
T
c 752 70101 752-701.01=50.99  50.99%= 2,599.98 S
IV i
D 3 38899 338-38899-5099 (50.997-269998 pse9cs
388.99
N=2379 N=2,379 £=0 ¥=19.18

The final stage of hypothesis testing is to interpret the results. People who conduct statistical analyses are
responsible for communicating their findings in a manner that effectively resonates with their audience,
whether it is an audience comprising scholars, practitioners, the public, or the media. It is especially important
when discussing statistical findings with lay audiences that clear explanations be provided about what a set of
quantitative results actually means in a substantive, practical sense. This makes findings accessible to a wide

array of audiences who might find criminological results interesting and useful.

In the context of the present example, rejecting the null leads to the conclusion that the IV and the DV are
statistically related; that is, there is a statistically significant relationship between gender and death-penalty
attitudes. Another way of saying this is that there is a statistically significant difference between men and
women in their attitudes toward capital punishment. Note that the chi-square test does not tell us about the
precise nature of that difference. Nothing in X, conveys information about which gender is more supportive
or more opposed than the other. This is not a big problem with two-class IVs. Referring back to the
percentages reported earlier, we know that a higher percentage of women than men oppose capital
punishment, so we can conclude that women are significantly less supportive of the death penalty (40%
oppose) compared to men (31% oppose). We will see later, when we use IVs that have more than two classes,

that we are not able to so easily identify the location of the difference.

Note, as well, the language used in the conclusion—it is phrased as an association and there is no cause-and-
effect assertion being advanced. This is because the relationship that seems to be present in this bivariate
analysis could actually be the result of unmeasured omitted variables that are the real driving force behind the
gender differences (recall from Chapter 2 that this is the problem of spuriousness and its counterpart, the
omitted variable bias). We have not, for instance, measured age, race, political beliefs, or religiosity, all of
which might relate to people’s beliefs about the effectiveness and morality of capital punishment. If women
differ from men systematically on any of these characteristics, then the gender—attitude relationship might be
spurious, meaning it is the product of another variable that has not been accounted for in the analysis. It is

best to keep your language toned down and to use words like relationship and association rather than cause or

effect.

Research Example 10.2 Do Victim or Offender Race Influence the Probability That a Homicide Will Be Cleared and That a Case
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Will Be Tried as Death-Eligible?

A substantial amount of research has been conducted examining the impact of race on the use of the death penalty. This research
shows that among murder defendants, blacks have a higher likelihood of being charged as death-eligible (i.e., the prosecutor files
notice that he or she intends to seek the death penalty). The real impact of race, however, is not on the defendants’ part but, rather,
on the victims’: People who kill whites are more likely than people who kill blacks to be prosecuted as death-eligible. Blacks accused
of killing whites are the group most likely to face a death sentence, even controlling for relevant legal factors. There are open
questions, though, about what happens prior to prosecutors’ decisions about whether or not to seek the death penalty. In particular,
it is not clear what effect police investigations and clearance rates have in shaping the composition of cases that reach prosecutors’
desks. Petersen (2017) used data from Los Angeles County, California, to examine two stages in the justice-system response to
homicide: clearance and the decision to seek death. The table shows the racial breakdown of victims and defendants across these

categories.

Black 35 36 32
Latino 50 48 38
White 15 16 30
Black - 41 48
Latino - 46 33
White - 13 19

Source: Adapted from Table 1 in Petersen (2017).
Source: Adapted from Table 1 in Petersen (2017).

The contingency table shows no overt discrepancies for black victims (i.e., their representation in all three categories remains at
roughly one-third), but murders involving Latino victims (which make up 50% of all murders) are slightly less likely to be cleared
(48%) and much less likely to be prosecuted as death-eligible (38%). White victims, by contrast, make up only 15% of victims but
30% of victims in death-eligible trials. Looking at defendant race, blacks constitute 41% of the people arrested for homicide and 48%
of death-eligible defendants, whites likewise are somewhat overrepresented as defendants (13% versus 19%), while Latinos are
markedly underrepresented among defendants (46% compared to 33%). Of course, these relationships are bivariate and do not
account for legal factors (i.e., aggravating and mitigating circumstances) that might increase or reduce a prosecutor’s inclination to

seek the death penalty.

To thoroughly examine the relationship between race and the probability of death-eligible charges being filed, Petersen (2017)
estimated a series of predicted probabilities, which are displayed in the figure. These probabilities show the interaction between
victim and defendant race and are adjusted to control for case characteristics. The findings mirror previous research showing that
black and Latino defendants are more likely to face death-eligible charges when victims are white. White defendants are least likely

to face death when victims are Latino and most likely when they are black, but these differences were not statistically significant.
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Source: Adapted from Figure 1 in Petersen (2017).

For the second example, let’s use the GSS again and this time test for a relationship between education level
and death-penalty attitudes. To make it interesting, we will split the data by gender and analyze males and
females in two separate tests. We will start with males (see Table 10.5). Using an alpha level of .01, we will
test for a relationship between education level (the IV) and death-penalty attitudes (the DV). All five steps

will be used.

Step 1. State the null (H0) and alternative (H1) hypotheses .

HI.'X2>0

Table 105 Ma s' Education Level and Death-
Pe
Attitude Toward Death Penalty for
Persons Convicted of Murder
High school 5124 193¢ 705
diploma or less
Some college 45¢ 13° 58
Bachelor's degree 195¢ 132F 327
or higher
Column Marginal 752 338 N=1,090

Step 2. Identify the distribution and compute the degrees of freedom .
The distribution is X? and the df=(r-1D(-1)=C8-1)2-1)=(2)1) =2.
Step 3. Identify the critical value of the test statistic and state the decision rule .

With o =.01 and df = 2, X2,,;; = 9.210. The decision rule is that if X o > 9.210 , H,, will be rejected.
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Step 4. Compute the obtained value of the test statistic .

First, we need to calculate the expected frequencies using Formula 10(3). The frequencies for the first three

cells (labeled A, B, and C, left to right) are as follows:

705- 752 530,160
i, = =T = 486.39

1,090 1,090

705338 238,290
= - = 21861
21,090 1,090
58 -752 43,616

f, = o — 40.01
¢ 1,090 1,090

58338 19,604

1090 1,090

2T~ 752 245904
= - 22560
@ 1,090 1,090

327338 110,526
f, = - = 101.4
F 1,090 1,090

Next, the computational table is used to calculate X?,,, (Table 10.6). As you can see in the summation cell in

=17.99

the last column, the obtained value of the test statistic is 19.74.

Before moving to Step 5, take note of a couple points about the chi-square calculation table. Both of these
features will help you check your math as you work through the computation. First, the expected-frequency
column always sums to the sample size. This is because we have not altered the number of cases in the sample:
We have merely redistributed them throughout the table. After calculating the expected frequencies, sum
them to make sure they add up to V. Second, the column created by subtracting the expected frequencies
from the observed frequencies will always sum to zero (or within rounding error of it). The reason for this is,

again, that no cases have been added to or removed from the sample. There are some cells that have observed

fo fe

i is greater than ~ “i. In the end, these variations
cancel each other out. Always sum both of these columns as you progress through a chi-square calculation.

frequencies that are less than expected and others where -

This will help you make sure your math is correct.
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Table 10.6 Calculating

A 486.39 25.61 655.87 1.35
B 183 218.61 -25.61 655.87 3.00
C 45 40.01 4.99 24.90 .62
D 13 17.99 -4,99 24.90 1.38
E 185 225.60 -30.60 936.36 4.15
F 132 101.40 30.60 936.36 23

N=1,080 N=1,090 £=.00 £=19.74

Step 5. Make a decision about the null and state the substantive conclusion .

The decision rule stated that the null would be rejected if the obtained value exceeded 9.210. Since X2, ended
up being greater than the critical value (i.e., 19.74 > 9.210), the null is rejected. There is a statistically
significant relationship between education and death-penalty attitudes among male respondents. Calculating
row percentages from the data in Table 10.5 shows that approximately 27% of men with high school diplomas
or less oppose the death penalty, roughly 22% with some college (no degree) are in opposition, and 40% with
a bachelor’s degree or higher do not support it. It seems that men with college educations that include at least
a bachelor’s degree stand out from the other two educational groups in their level of opposition to capital
punishment. We are not able to say with certainty, however, whether all three groups are statistically
significantly different from the others or whether only one of them stands apart. You can roughly estimate
differences using row percentages, but you have to be cautious in your interpretation. The chi-square test tells

you only that at least one group is statistically significantly different from at least one other group.

Let’s repeat the same analysis for female respondents. Again, we will set alpha at .01 and proceed through the
five steps. The data are in Table 10.7.

Step 1. State the null (H0) and alternative (H1) hypotheses .

Hy:X*=0

Hy:X*>0

Step 2. Identify the distribution and compute the degrees of freedom .
The distribution is X? and df= (3 - 1)(2 - 1) = 2.
Step 3. Identify the critical value of the test statistic and state the decision rule .

With a =.01 and df = 2, X?,,;, = 9.210. The decision rule is that if X2., > 9.210 , H,y will be rejected.
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= : : . ; 2 :
Attitude Toward Death Penalty for
Persons Convicted of Murder

795

High school 4794 316"

diploma or less

Some college 85¢ 300 115
Bachelor’s degree 214¢ 165F 379
or higher

Column Marginal 778 511 N=1,289
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Learning Check 10.1

v

In the third example, the

fe

i calculations are not shown. Check your mastery of the computation of expected frequencies by doing the

calculations yourself and making sure you arrive at the same answers shown in Table 10.8.

Step 4. Compute the obtained value of the test statistic .

Table 10.8 Calculatin

A 479 479.84 -.84 J1 .001
B 316 315.16 B4 J1 002
c 85 69.41 15.59 243.05 3.50
D 30 45,59 -15.59 243.05 5.33
E 214 228,75 -14.75 217.56 .95
F 165 150.25 14.75 217.56 1.45
N=1,289 N=1,289 £=.00 £=11.23

Step 5. Make a decision about the null and state the substantive conclusion .

The decision rule stated that the null would be rejected if the obtained value exceeded 9.210. Since X2, =
11.23, the null is rejected. There is a statistically significant relationship between education and death-penalty
attitudes among female respondents; it appears that women’s likelihood of favoring or opposing capital
punishment changes with their education level. Another way to phrase this is that there are significant
differences between women of varying levels of education. As we did with male respondents, we can use row
percentages to gain a sense of the pattern. Opposition to the death penalty is approximately 40%, 26%, and
44% among women with high school diploma or less, some college, or a bachelor’s degree or higher,
respectively. This is similar to the pattern of opposition seen among men in that those with some college were
the most supportive of capital punishment and those with a college degree were the least supportive, but
among women the group with a high school diploma or less were nearly as likely as those with college degrees

to oppose this penalty.
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Learning Check 10.2

v

One criticism of the chi-square test for independence is that this statistic is sensitive to sample size. The problem lies in the way that
Xzobt is calculated. Sample size can cause a test statistic to be significant or not significant, apart from the actual distribution of observed
values. For instance, a crosstabs table with a fairly even distribution of scores might yield a statistically significant Xzobt if Nis large.
Similarly, a distribution that looks decidedly uneven (i.e., where there is an apparent relationship between the IV and the DV) can
produce nonsignificant Xzobt if Nis small. To see this for yourself, recalculate Xzobt using the death-penalty and gender data but with a
sample size of 88 instead of 2,379. Make a decision about the null hypothesis, recalling that X %cyj¢ = 3.841.

Death Penalty
Row
Sex vor | Oppose | Marginal
49

Fa
Female 308 198

Male 26°¢ 130 39

Column 56 32 N=288
Marginal

Are you surprised by the results? This demonstrates the importance of being cautious when you interpret statistical significance. Do not
leap to hasty conclusions; be aware that there are factors (such as sample size) that can impact the results of a statistical test irrespective of

the relationship between the IVs and the DVs.
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Measures of Association

The chi-square test alerts you when there is a statistically significant relationship between two variables, but it
is silent as to the strength or magnitude of that relationship. We know from the previous two examples, for
instance, that gender and education are related to attitudes toward capital punishment, but we do not know
the magnitudes of these associations: They could be strong, moderate, or weak. This question is an important
one because a trivial relationship—even if statistically significant in a technical sense—is not of much
substantive or practical importance. Robust relationships are more meaningful. To illustrate this, suppose an
evaluation of a gang-prevention program for youth was declared a success after researchers found a statistically
significant difference in gang membership rates among youth who did and did not participate in the program.
Digging deeper, however, you learn that 9% of the youth who went through the program ended up joining
gangs, compared to 12% of those who did not participate. While any program that keeps kids out of gangs is
laudable, a reduction of three percentage points can hardly be considered a resounding success. We would
probably want to continue searching for a more effective way to prevent gang involvement. Measures of
association offer insight into the magnitude of the differences between groups so that we can figure out how

strong the overlap is.

Measures of association: Procedures for determining the strength or magnitude of a relationship after a chi-square test has revealed a

statistically significant association between two variables.

There are several measures of association, and this chapter covers four of them. The level of measurement of
the IV and the DV dictate which measures are appropriate for a given analysis. Measures of association are
computed only when the null hypothesis has been rejected—if the null is not rejected and you conclude that
there is no relationship between the IV and the DV, then it makes no sense to go on and try to interpret an
association you just said does not exist. The following discussion will introduce four tests, and the next section

will show you how to use SPSS to compute X?,;, and accompanying measures of association.

Cramer’s V can be used when both of the variables are nominal or when one is ordinal and the other is
nominal. It is symmetric, meaning that it always takes on the same value regardless of which variable is
posited as the independent and which the dependent. This statistic ranges from 0.00 to 1.00, with higher
values indicative of stronger relationships and values closer to 0.00 suggestive of weaker associations. Cramer’s

Vis computed as
2

V = X obt Formula 10(4)
N-m

where

X2,4; = the obtained value of the test statistic,

N = the total sample size, and
m = the smaller of either (r— 1) or (¢ —1).
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Cramer’s V: A symmetric measure of association for X2 when the variables are nominal or one is ordinal and the other is nominal. 7
ranges from 0.00 to 1.00 and indicates the strength of the relationship. Higher values represent stronger relationships. Identical to
phi in 2 x 2 tables.

In the first example we saw in this chapter, where we found a statistically significant relationship between
gender and death-penalty attitudes, X2,;, = 19.18, N = 2,379, and there were two rows and two columns, so 7
=2-1=1. Cramer’s Vis thus

This value of 7 suggests a weak relationship. This demonstrates how statistical significance alone is not
indicative of genuine importance or meaning—a relationship might be significant in a technical sense but still
very in significant in practical terms. This is due in no small part to the chi-square test’s sensitivity to sample
size, as discussed earlier. Think back to the percentages we calculated for this table. Approximately 60% of
women and 69% of men favored the death penalty. This is a difference, to be sure, but it is not striking. If any
given respondent were randomly selected out of this sample, there would be a roughly two-thirds likelihood
that the person would support capital punishment, irrespective of her or his gender. It is wise, then, to be
cautious in interpreting statistically significant results—szatistical significance does not always translate into

practical significance.

When both variables under examination are nominal, lambda is an option. Like Cramer’s 7', lambda ranges
from 0.00 to 1.00. Unlike Cramer’s V', lambda is asymmetric, meaning that it requires that one of the
variables be clearly identified as the independent and the other as the dependent. This is because lambda is a

proportionate reduction in error measure.

Lambda: An asymmetric measure of association for X2 when the variables are nominal. Lambda ranges from 0.00 to 1.00 and is a

proportionate reduction in error measure.

Proportionate reduction in error (PRE) refers to the extent to which knowing a person’s or object’s placement
on an IV helps predict that person’s or object’s classification on the dependent measure. Referring back to
Table 10.1, if you were trying to predict a given individual’s attitude toward capital punishment and the only
piece of information you had was the frequency distribution of this DV (i.e., you knew tha