Journal of Pure and Applied Algebra 24 (1982) 235-244 235
North-Holland Publishing Company

STABLE TORSION RADICALS OVER FBN RINGS

John A. BEACHY
Northern [llinois University, DeKalb, IL 60115, USA

To Goro Azumaya on his sixtieth birthday

Communicated by A. Heller
Received 22 April 1981

Gabriel [9] called a localizing subcategory stable if it is closed under injective
envelopes. (In this case, the associated torsion radical or torsion theory is also said
to be stable.) He showed that over a commutative Noetherian ring R every localizing
subcategory of R-Mod is stable. He noted the connections between stability and the
Artin—Rees property for ideals, and considered the stability of the localizing
subcategory generated by the class of simple modules. Papp [18] studied Noetherian
rings for which every localizing subcategory is stable, and Louden [16] utilized
stable torsion radicals to define a sheaf over the spectrum of an FBN ring.

This paper gives a characterization of stable torsion radicals over left FBN rings.
The equivalent conditions stated in Theorem 1.2 exhibit the connections with the
Artin—Rees property and with the notion of ideal invariance introduced by
Robson [19]. Over an FBN ring, there is a natural correspondence between torsion
radicals in R-Mod and those in Mod-R. In Theorem 1.6 it is shown that correspond-
ing torsion radicals are both stable if and only if they are both ideal invariant, and
that such torsion radicals correspond to the biradicals defined by Jategaonkar [12],
and thus to the link-closed hereditary sets of prime ideals in the sense of Miiller [17].
Finally, it is shown that every torsion radical over an FBN ring is stable if and only if
every prime ideal is localizable.

In the second section of the paper, applications are given to the study of certain
specific torsion radicals. For a left FBN ring, necessary and sufficient conditions are
given under which any finitely generated essential extension of a module of Krull
dimension at most a again has Krull dimension at most . These conditions can be
checked easily for an FBN ring or for a left Noetherian ring integral over its center,
yielding a unified approach to certain results of Jategaonkar [13] and Chamarie and
Hudry [5]. Finally, the results in the first section are applied to determine several
conditions under which finitely generated essential extensions of Artinian modules
are again Artinian, extending a result of Ginn and Moss [10].
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Throughout the paper, R will be assumed to be an associative ring with identity
element, and all modules will be assumed to be unital R-modules. The categories of
unital left R-modules and unital right R-modules will be denoted by R-Mod and
Mod-R, respectively. The injective envelope of a module zM will be denoted by
EM).

1. Stable torsion radicals

The ring R is said to be left FBN if it is left Noetherian and fully left bounded
(modulo any prime ideal every essential left ideal contains a nonzero two-sided
ideal). Cauchon [4] has shown that a left Noetherian ring R is left FBN if and only if
for each finitely generated module RM there exists a finite set of elements
X1,X3,...,X,€ M such that Ann(x,,...,x,)=Ann(M). A module M will be called
finitely annihilated if this property holds, that is, if there exist x;, x5, ..., X, € M with
Ann(xy,...,x,)=Ann(M). It is clear that M is finitely annihilated if and only if for
some integer n>0 there exists an embedding 0—R/Ann(M)—M", where M"
denotes the direct sum of 7 isomorphic copies of M.

The book by Stenstrdm {20} will be used as a basic reference for facts regarding
torsion radicals. If ¢ is a torsion radical (equivalently, o is the torsion functor
defined by an hereditary torsion theory), then a module 4z M is said to be g-torsion if
o(M) =M and o-torsionfree if (M) =(0); a submodule N C A7 is said to be g-dense
is M/N is g-torsion, and o-closed if M/N is o-torsionfree. The associated filter of
o-dense left ideals determines o, since o(M)={me M| Dm=(0) for some g-dense
left ideal D}. Using this characterization of g, it is easy to see that a prime ideal of R
must be either g-closed or g-dense. The following facts will also be used: any left
ideal which contains a og-dense left ideal must be o-dense; the product of two
ag-dense left ideals is o-dense.

An essential extension of a g-torsionfree module is o-torsionfree; the torsion
radical o is said to be stable if the corresponding statement holds for o-torsion
modules. A submodule N ¢ M is said to be essentially closed in M if N has no proper
essential extension in M. Equivalently, N is a complement submodule of M. Then
the torsion radical o is stable if and only if for each module gAM the submodule
a(M) is essentially closed in M [20, Chapter VI, Proposition 7.1].

Theorem 1.1, Let R be a left Noetherian ring, let o be a torsion radical, and let pM
be a module for which every finitely generated submodule is finitely annihilated.
Then (M) is essentially closed in M if the following condition is satisfied: if P is a
o-closed prime ideal and Q is a g-dense prime ideal, then there exists a g-dense ideal
D with PD ¢ QP.

Proof. Without loss of generality, assume that M is cyclic and that there exists an
essential extension N of o(M) in M such that N is not g-torsion. Then Ann(V) is not
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o-dense, and so there exists an ideal / maximal in the set {Ann(X)|zXCN and
Ann(X) is not g-dense}, say /=Ann(X).

Suppose that I is not a prime ideal. Then since R satisfies the ascending chain
condition on ideals, there must exist a maximal right annihilator ideal P of R/I, say
P=r(A/I), where A is an ideal strictly containing /. A standard argument shows
that P must be a prime ideal. Now APX ¢ IX =(0), with PX'#(0) since P21, so it
can be assumed that 4 = Ann(PX). By the choice of I, A must be g-dense, and so
PX is og-torsion. If P is also o-dense, then AP is g-dense, and hence /2 AP is o-
dense, a contradiction. Thus P is not o-dense, and so since it is a prime ideal it must
be g-closed.

By assumption, the submodule PX is finitely annihilated, so there exists an
embedding 0— R/Ann(PX)—(PX)", which shows that Ann(PX) is o-dense since
PX is o-torsion. Since Ann(PX) is an ideal of a left Noetherian ring, it contains a
product of prime ideals, each of which contains Ann(P.X). Thus there exist o-dense
prime ideals Q;,Q,,..., Q. with Q,0>-- @,PX =(0), and so by assumption there
exist o-dense ideals D; with PD; ¢ Q;P, for 1 =i <n. Therefore

P(D\D;+- D) G QP(DD3+-Dp) S-S Q1Q2-+- QP C L.

Thus PD ¢ AP for the g-dense ideal D=DD;--- D,. If DX=(0), then D¢ /and /
must be o-dense, a contradiction. Thus C=Ann(DX) is a proper ideal with
C2 P21, since PDXCAPX=(0), and so C must be g-dense. But then CD is
o-dense, which implies that 72 CD is o-dense. This contradiction shows that /is a
prime ideal.

Since every submodule of M is finitely annihilated, there exists an embedding
Sf:R/I-X", for some positive integer n. Since o(M) is essential in N,
o(X)=oc(M)NX is essential in X, so g(X") is essential in X7, which shows that
S(R/T) has a nonzero o-torsion submodule. Thus 7/ is not g-closed, and this
contradicts the choice of /, since / is a prime ideal. O

Theorem 1.2. Let R be a left FBN ring and let ¢ be a torsion radical of R-Mod. The
Sollowing conditions are equivalent:

(1) The torsion radical o is stable;

(2) For any finitely generated module yxM, any submodule xN M, and any
g-dense ideal I, there exists a o-dense ideal D with DMNN ¢ IN;

(3) For any ideal T and any o-dense ideal I, there exists a o-dense ideal D with
TDCIT;

(4) For any o-closed prime ideal P and any c-dense prime ideal Q, there exists a
o-dense ideal D with PD ¢ QP.

Proof. (2)=(3)=(4)=(1). Proofs of the first two implications are obvious, and the
last follows immediately from Theorem 1.1.

(1)=(2). Let gX be a submodule maximal with respect to the property that
XNN=IN. Then (N+ X)/X is o-torsion since (N+ X)/X=N/(XNN)=N/IN and
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I is o-dense. Since M/X is an essential extension of (N+ X)/X, it follows by
assumption that M/X is o-torsion, and then D =Ann(M/X) is g-dense since M/ X is
finitely annihilated. Thus DMNNGCXNN=IN, O

Note that since R is a left FBN ring, an ideal D is o-dense if and only if D contains
a product Q,0,---Q, of og-dense prime ideals Q,, 1=i<n [20, Chapter VII,
Theorem 3.4}. Thus condition (4) of the previous theorem can be stated in the
following form, using oniy prime ideals: for any g-closed prime ideal P and any
o-dense prime ideal Q, there exist o-dense prime ideals Q;,Qs,...,Q, with
PQ,Q;-- Q,C QP. Condition (3) can be restated as follows: for any ideal T and any
o-dense ideal I, T~!(IT)={reR|TrgIT} is o-dense.

An ideal [ is said to have the Artin—Rees property if for each left ideal A there
exists a positive integer n such that /"N.A CIA. If R is left Noetherian, then the
powers of [ generate a torsion radical ¢ by defining o(M)={meM |I"m=(0) for
some n>0}, for any module gM. As observed by Gabriel [9], the ideal 7 has the
Artin—Rees property if and only if the associated torsion radical ¢ is stable.
Condition (2) of Theorem 1.2 shows the similarity between the Artin—Rees property
and stability in general. The theorem can be applied to show that an ideal 7 of a left
FBN ring has the Artin—Rees property if and only if for each prime ideal P with
I'Z P there exists a positive integer n such that P/" ¢ IP.

Example 1. Let R be a left FBN ring, let P be a prime ideal of R, and let o be the
torsion radical cogenerated by E(R/P). Then an ideal D is o-dense if and only if
D& P, and so it follows from Theorem 1.2 that ¢ is stable if and only if for each pair
of prime ideals PyC P and Q& P there exists an element r¢ P with Pyr C QP,.

Let R be the ring of lower triangular matrices of the form

b )

where aeZ and b,ce Q. Let
pZ 0
P= R
[‘D ‘Q]

for a prime number p,

0 O Z 0
P0=[(D Q]’ and Q=[® 0].

Then Pys% QP, for any element s¢ P and so the torsion radicals of R-Mod
determined by P and P, are not stable. On the other hand, for any prime number p,

Qr¢ PyQ ¢ PQ for

-9

and so the torsion radical determined by Q is stable.
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Definition 1.3. A torsion radical ¢ of R-Mod is called a biradical if there exists a
torsion radical T of Mod-R such that for all ideals IC JC R, a(J/I)=1(J/I).

This definition was introduced by Jategaonkar [12], who noted that if 2 is a
multiplicatively closed subset of a left and right Noetherian ring, and 2 satisfies
both the left and right Ore conditions, then 2 defines a biradical. (This follows from
the fact that if  is an Ore set, then modulo any ideal it is still an Ore set, and hence
a denominator set [20, Chapter II, Proposition 1.5].) In particular, any multiplica-
tively closed set of central elements defines a biradical.

Proposition 1.4. Let R be a left Noetherian ring, and let (g, 1) be a biradical. Then
JSor any idea! T and any o-dense ideal I, there exists a -dense ideal D with TD ¢ IT.

Proof. Since 7 is o-dense, the left R/I-module 7/IT is o-torsion, and hence
t(T/ITYy=0(T/IT)=T/IT. Since R is left Noetherian, (7/IT)y is (finitely
annihilated, so the existence of an embedding 0—R/T-Y(IT)—(T/IT)" of right
R-modules shows that T-(IT) is t-dense. By assumption D=T"{(IT) is o-dense,
and TDCIT. O

The previous proposition shows that over a left FBN ring, any biradical is stable.
In particular, if R is a left FBN ring and C is a subring of the center of R, then for
any torsion radical r of C-Mod, o =#t is a biradical, where : R-Mod— C-Mod is
the forgetful functor. This yields Proposition 1.6 of Chamarie and Hudry [5].

Definition 1.5. Let 7 be an ideal of R. The torsion radical ¢ of R-Mod is said to be
invariant under I if for each o-dense left ideal D, the ideal ID is o-dense in I. If ¢ is
invariant under every ideal of R, then ¢ is said to be ideal invariant.

It can be shown that a torsion radical ¢ is invariant under the ideal / if and only if
I deflates o, in the terminology of Jategaonkar [14]. In [19], Robson gave the
definition of ideal invariance in the following (equivalent) form: o is ideal invariant
if for each o-torsion module xM and each ideal 7, the module /®; M is g-torsion. If
R is a left FBN ring, then since the filter of g-dense left ideals has a basis of two-
sided ideals, ¢ is invariant under an ideal 7 if and only if ID is o-dense in I for all
two-sided g-dense ideals D. With this terminology, Theorem 2.3 of [7] implies that a
semiprime ideal S is left localizable if and only if the torsion radical ¢ cogenerated
by E(R/S) is invariant under S, provided R is left Noetherian.

If R is an FBN ring, then any torsion radical ¢ of R-Mod is completely determined
by the set of o-dense prime ideals, since a left ideal is o-dense if and only if it
contains a product of g-dense prime ideals. This implies that there is a natural
correspondence between the torsion radicals of R-Mod and those of Mod-R.
Furthermore, if (g, 1) is a biradical of R, then ¢ and  must correspond to each other
in this correspondence, since for any prime ideal P of R, ¢(R/P)=1(R/P).
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Theorem 1.6. Let R be an FBN ring, and let ¢ be a torsion radical of R-Mod, with
corresponding torsion radical T of Mod-R. Then the following conditions are
equivalent:

(1) o and t are stable;

(2) o and t are ideal invariant;

(3) (o,7) is a biradical.

Proof. (1)=(2). This follows from Theorem 1.2, since an ideal of R is g-dense if
and only if it is 7-dense.

(2)=(3). Let Ic Jbeideals of R. It suffices to show that gx(J/I)is g-torsion if and
only if (J/I)g is z-torsion. If J/I is o-torsion, then DJCI for the ideal
D= Ann(gJ/I), which is g-dense since g(J/I) is finitely annihilated. Since ¢ and 7
are corresponding torsion radicals, D is 7-dense, and it follows that DJ is t-dense in
J, since 7 is ideal invariant. Thus / is r-dense in J, that is, (J/[)g is t-torsion.
Similarly, if (J/I)g is 7-torsion, then it must be g-torsion.

(3)=(1). This follows from Proposition 1.4 and Theorem 1.2. [J

Corollary 1.7. Let R be an FBN ring. Then the following conditions are equivalent:
(1) Every torsion radical of R-Mod and Mod-R is stable;
(2) Every torsion radical of R-Mod and Mod-R is ideal invariant;
(3) Every prime ideal of R is localizable.

Proof. (1) (2). This is clear.
(2)=(3). This follows from [7, Theorem 2.3}, since the torsion radicals determined
by any prime ideal P are by assumption ideal invariant, and hence invariant under P.
(3)=(1). If every prime ideal P of R is left and right localizable, then the torsion
radicals of R-Mod and Mod-R cogenerated by E(gx(R/P)) and E((R/P)g), respec-
tively, define a biradical and hence are stable. Since Risan FBN ring, [18, Theorem 1]
then implies that every torsion radical over R is stable. O

2. Krull dimension of essential extensions

The Krull dimension of a module M (see [11]) will be denoted by |M|, and is
defined by transfinite recursion, as follows: if M is Artinian, then |M|=0; if @ is an
ordinal and |M|<«ea, then |[M|=¢ if there is no infinite descending chain
M =M,2 M; 2 - of submodules M; such that |M;_,/M;| «afori=1,2,.... Itcan be
shown that any Noetherian module has Krull dimension. For a given ordinal a, the
set of left ideals D¢ R such that |R/D|<a defines a filter, and the associated
torsion radical of R-Mod will be denoted by 7,. Applying Theorem 1.2 to 7, gives
the following result.

Theorem 2.1. Let R be a left FBN ring. Then the following conditions are
equivalent for the ordinal a:
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(1) If gM is a finitely generated, essential extension of zN and |N|<a, then
M| <a;

(2) For any ideals I, T with |gR/I| <a, there exists an ideal D with |gR/D|<a
and TDCIT;

(3) For any prime ideals P,Q with |gR/P|=za and |gR/Q| <a, there exists an
ideal D with |gxR/D| <a and PD ¢ QP.

Let R be an FBN ring, and let /¢ J be ideals of R. It is a direct consequence of
[13, Lemma 2.2] that |gJ/I| can be measured as the Krull dimension of the set of
ideals between 7 and J. Thus |gJ/I| = |J/I|, which shows that for each ordinal a,
the torsion radical 7, is a biradical. It then follows from Proposition 1.4 that the
equivalent conditions of Theorem 2.1 hold for any FBN ring. This in turn can be
used to give another proof of Jategaonkar’s result that over an FBN ring an
essential extension of an a-smooth module is a-smooth (see [13] for the relevant
definitions).

The ring R is said to be integral over its center if each element re R satisfies a
monic polynomial equation whose coefficients are elements of the center of R. It is
well known that a left Noetherian ring integral over its center is a left FBN ring.
Theorem 2.1 can be used to simplify the proof of the following result of Chamarie
and Hudry.

Corollary 2.2 [5]. Let R be a left Noetherian ring integral over its center, If fkM is a
finitely generated, essential extension of gk N and |N|<a, then |M|<a.

Proof. Let T be any ideal of R, and let Q be a prime ideal of R with {fR/Q| <a. By
[5, Corollary 1.8], |gR/Q]=|gR/R(QNC)|, where C is the center of R. Thus
TRENCH=T(ONC)Y=(QNC)Tc QT and condition (3) of Theorem 2.1 is
satisfied. []

Example 2. If R is a left FBN ring which satisfies the conditions of Theorem 2.1,
then the ring

R 0
=& &
of lower triangular 2 x 2 matrices over R also satisfies the same conditions. The
prime ideals of A are of two types:

P 0 R 0
”z[R R] or ‘”[R Q}’

where P and Q are prime ideals of R. Condition (3) of Theorem 2.2 is easy to check
if both prime ideals are of the same type. If /7 and 2 are as given above and
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A/l za and |A/2| <a, then |A/4]| <« for the ideal

R _ P+Q O
a=IT ‘(Qn)_[P+Q QJ'

If |A/Q|=a and |A/I1] < a, then the desired conclusion follows from the fact that
Q-\I1Q)=11.

Example 3. If R is an integral domain not equal to its quotient field F, then the ring
R 0
2=[r 7]
does not satisfy the conditions of Theorem 2.1. Let

0 0 R O
17—[1__ F] and Q—[F O]'

Then A/8 is Artinian, but /7-1(Q/T)=(0), and A is not left Artinian.

If R is a commutative, Noetherian ring, it is well known that any finitely
generated essential extension of an Artinian module is Artinian. As shown by
Jategaonkar {13, Theorem 3.7], this property has among its consequences that the
intersection of powers of the Jacobson radical of R must be zero. The commutative
result has been extended to FBN rings by Jategaonkar [13], and then to bimodules
over Noetherian rings by Ginn and Moss [10]. This condition is equivalent to the
stability of the torsion radical 7, generated by the class of Artinian modules, and this
connection with stability will be exploited in the following results.

Corollary 2.3. Let R be a left FBN ring such that for each maximal ideal Q and each
non-maximal prime ideal P there exists an ideal D such that R/D is left Artinian and
PDC QP. Then (7., J"=(0), where J is the Jacobson radical of R.

Proof. By Theorem 2.1, the torsion radical t, is stable, since the 7,-dense prime
ideals of R are the maximal ideals of R. The result follows from the above remarks.
(See [6, Lemma 7.4] for a proof that ﬂ;';, J"=(0) if finitely generated essential
extensions of Artinian modules are Artinian. A short proof can also be given by
using condition (2) of Theorem 1.2.) O

Theorem 2.4. Let R be a left and right Noetherian ring, and let gk M be a finitely
generated module which contains an essential Artinian submodule. If every
submodule of M is finitely annihilated, then M is Artinian.

Proof. Lenagan [15] has shown that in a left and right Noetherian ring, an ideal is
Artinian on the left if and only if it is Artinian on the right. This is equivalent to the
condition that the torsion radical r; of R-Mod is a biradical, and so the theorem
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follows from Proposition 1.4 and Theorem 1.1. [

Theorem 2.5. Let R be a left and right Noetherian ring which is K-symmetric. Then
Sfor any ordinal a, the ideal t,(R) is a complement left ideal and a complement right
ideal, and is both a right annihilator and a left annihilator in R.

Proof. A ring is said to be K-symmetric if for any ordinal e, the torsion radical 7, is
a biradical. It follows from Theorem 1.1 that 7,(R) is essentially closed in gR and in
Ry, since every left or right ideal of R is finitely annihilated. Since R//(7,(R)) can be
embedded in a finite direct sum of copies of 74(R), it follows that |R/I(t(R))| < a,
and therefore jr(l(t,(R)))| <a, which implies that r(/(r,(R)))=1,(R). Similarly,
(r(te(R) =14(R). U

Fisher [8] has shown that if M is a Noetherian, injective module over a
commutative ring, then M must in fact be Artinian. The following theorem shows
that this result can be extended to any left FBN ring which satisfies the conditions of
Theorem 2.1 for a=1. In [6], Chatters and Hajarnavis have shown that an injective
left ideal of a left and right Noetherian ring must be Artinian, and this result is also
a corollary of the following theorem.

Theorem 2.6. Let R be a left Noetherian ring such that for any ideal T and any
maximal ideal Q such that R/Q is Artinian, there exists an ideal D with R/D left
Artinian and TD C QT. If R M is a finitely generated injective module such that every
submodule of M is finitely annihilated, then M is Artinian.

Proof. Without loss of generality, M may be assumed to be indecomposable. By
Theorem 1.1, to show that r;(M)=M it suffices to show that A has a nonzero
Artinian submodule. Since every submodule of M is finitely annihilated, a standard
argument shows that M is isomorphic to a direct summand of E(R/P) for a prime
ideal P of R. Since E(R/P) is finitely generated, it follows that the classical ring of
quotients of R/P coincides with R/P by [6, Lemma 1.29], and thus R/P is Artinian
as a left R-module. [
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