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PREFACE

In the mid 1960°s Stephen Hawking and Roger Penrose each published a series of
papers.in which were proved the now famous "Singularity Theorems” of general rela-
tivity. The theorems are remarkable in that, barring quantum effects, they assert that any
“reasonable” model of the universe in which we live must be "singular”, that is, contain
regions in which the laws of physics as we know them must break down. The theorems of
Penrose deal w1th singularities that arise from gravitational collapse (black holes), ‘while
those of Hawkmg are concerned with the existence of cosmological smgulannes (the big
bang). The intention of this monograph is quite limited and specific: We wish to provide
students of mathematics and physics who may have had no previous exposure to relativity
and/or different_ial geometry with a brief, reasonably self-contained and elementary intro-
duction to the ideas required for a rigorous understanding of the simplest of these
theorems (essentially that proved by Hawking in [H]). Along the way some of the most
fundamental ideas of special and general relatmty and modern differential geometry must
be introduced and used, but we are quite single-minded in our objective. With the excep~
tion of the Problem sets at the end of each chapter there is nothing extraneous to the ulti-
mate goal. In every instance we opt for the most elementary presentation of each idea and
we are more than willing to sacnﬁce generality for clanty The most obvmus example is
our decision to consider only manifolds which are explicitly embedded in- Euclidean
space. One thereby loses rnuch of the elegance of modern dxfferentlal geometry and even
to some extent violates its splnt and that of relat1v1ty Nevertheless, we feel that the
geometncal intuition of the begnnner is much more easﬂy cultxvated w1th1n this context.
The definitions and arguments very often sxmphfy con51derably and so rmmmlze the ten—
dency of the trees to obscure the forest. We can only hope that this brief taste of two com- -
plex and beautiful subjects will entlce the reader to pursue them to greater depths.

The book is divided into four chapters each of which can be regarded as a reasonable
temunauan point for those whose interests. may not extend to.a detailed proof of
Hawking’s Theorem. Chapter 1 is a mathematically sound discussion of the basic
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kinematical facts of special relativity. The definitions are gotten out of the way in section
1.1 which is followed by a brief discussion of their origins in physics. There follow four
sections of linear algebra in which the concepts of section 1.1 are studied in considerable
detail and all of the well-known kinematic effects of special relativity (length contraction,
time dilation, etc.) are proved as theorems about the geometry of Minkowski spacetime
and its group of orthogonal transformations (the Lorentz group).

Chapter 2 contains a very brief introduction to some of the ideas of relativistic
mechanics. We introduce only those concepts that are crucial to understanding the nature
and purpose of the generalization of special relativity discussed in Chapter 3. The
emphasis is decidedly mathematical. No detailed experimental procedures are discussed
and only a few representative examples are considered.

The background required of the reader in Chapters 1 and 2 is minimal: calculus, a
serious course in linear algebra and (for Chapter 2) a nodding acquaintance with some
basic Newtonian physics. For Chapter 3 we must ask more. A solid foundation in real
analysis (topology of IR", Implicit and Inverse Function Theorems, etc.) as one might
find, for example, in [Sp1] will be indispensible. Here we introduce the basic theory of
smooth manifolds and the fundamental ideas of general relativity (the telativistic theory
of gravitation). QOur goal is to prdceed far enough for the reader to understand the srate-
ment of Hawking’s Theorem in section 3.8. '

Chapter 4 is rather more technical than those which precede it. Itis here that we col-
lect all of the concepts and techniques required to prove Hawkin g’s Theorem. The proof
we offer, incidentally, is not Hawking’s original proof, but rather one analogous to the
proof of Myer’s Theorem in Riemannian geometry (see [CE]) and which first appeared in
[SW1¥ Our decision to restrict attention to cosmologlcal singularities rather than the col-
lapse theorems of Penrose is based primarily on our belief that this proof is more readily
made accessible to the audience we have in mind. Sections 4.1 through 4.4 assume the
same background as Chaptcr 3, but will ‘require somewhat more persistence. In the final
section we increment Sur demands upon the reader one last time. This section sketches an
argument that establishes the existence of length maximizing geodcsms in globally hyper-
bolic spacetimes. In its usual guise this argument makes use of the C'° topology on a cer-
tain set of curves. However, one can avoid asking the reader to learn general topology
between sections 4.4 and 4.5 by observing that this C'° topology is metrizable and, in fact,
arises from a rather natural metric. A brief exposure to the theory of metric spaces, avail-
able in most point-set topology texts as well as [BG] will suffice for our purposes.

We have no need for general tensor analysis, but do, of course, Tun across a tensor
_every now and then. When this happens we go to some lengths to make it clear why the
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"object" is called a tensor both by reference to its transformation law and its character as a
multilinear functional.

A great many more or less routine Exercises are incorporated into the body of the
text. These are absolutely essential to the development and must be worked conscien-
tiously. Each chapter is followed by a set of Problems which is intended to expand upon
the basic text material. At least read these and work any that strike your fancy. We shall
make rather extensive use of the Einstein summation convention according to which a
repeated index (one subscript and one superscript) indicates a sum over the range of
values that index can assume. For example, if @ and b are indices that range from 1 to 4,
then

4
x%,=Y x%,=xle) +x%ey +x3e; +xtey,
a=]

Aé b . 4Aa b,_,Aa 1. Aa2 a.3 Aa4
X _Z ax? =Afx" + ASx” + Agx” + Agx”
b=1

etc.

This text evolved from courses taught at Swarthmore College and the California
State University at Chico. Special thanks are due to the faculty and students at these two
schools who attended my lectures and contributed much to the completion of this project.
To Jim England, Jim Jones and Tom McCready go very special thanks for the support and
encouragement they provided. It is also a pleasure to thank Andrea Bowman and Sandy
Jones for the patient and cheerful typing of the manuscript. And finally, my thanks to
Debora for the artwork, the encouragement, the critical eye and the quiet way in which
she relieved me of a thousand small burdens so that I could write instead.

Gregory L. Naber
1987
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CHAPTER 1

THE GEOMETRY OF MINKOWSKI SPACETIME

1.1 The Definitions

Minkowski spacetime is a 4-dimensional real vector space M on which is defined a
nondegenerate symmetric bilinear form g of .index one; elements of M will be called
events. We shall assume that the term "4-dimensional real vector space” is familiar. A
bilinear form on a vector space V is a map g: V x V — R which is linear in each variable,
that is, g(aixi+axz, y)=a;g8(xy,y)+azg(xs,y) and g, a1y1 +a2y2)=
a1g(x, y1) +asg(x, yy) forall a;, a; € R and x,x},X2,%.Y1.Y2 eV g is symmetric if
g (x,y) =g (y,x) for all x,y € V and nondegenerate if g (x,y)=0 for all y € V implies
x=0. A nondegenerate, symmetric bilinear form g is generally called an inner product:
and the image of (x,y) under g is oftén written x « y or <x,y > rather than g (x,y) (provided
there is only one inner product under consideration so that no ambiguity will result). The
standard example is, of course, the usual inner product on R”, i.e., if x = x!,.,x®) and
y=(L,..p"), then g(,y)=x+y=<xy> =x!y! + .. +x"y". This particular inner
product is positive definite, i.e., has the property that x =0 implies g (x,x) > 0. Not all
inner products share this property, however. '

Exercise 1.11. Define by gi(ty)=x'y! +x%y? + .. +x"1y"! —x"y" the map
g1: R" x R" — R. Show that g; is an inner product on R”, but that there exist nonzero
vcctorsxandyin]R” with g 1(x,x) =0and g 1 (»y) <0. ' | '

An inner product which is not positive definite is said to be indefinite. The following fun-
damental result is proved in most standard texts in linear algebra, e.g., [H], as well as in

[(BG].

Theorem 1.1.1. Let V be a finite dimensional real vector space on which is defined an
inner product g:V xV — RR. Then there exists a basis {e1,.r€n}, n =dim V, such that if
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x =xlel +..+x"%,andy éylel + ... +y"e, are any two elements of V, then

g (.y) =xiyl + ..+ xn—ryn-r _xnﬁri—lyn—r-l-l i

where 7 is a non-negative integer (called the index of g) that depends only on g.

Thus, Minkowski spacetime M is a 4-dimensional real vector space with an inner
product g (called a Lorentz inner product) for which there exists a basis {e,e4,23,¢4}
for M with the property that if x=x'e;+x%e;+x3¢3+x%, and
y=yle; +y2e, +y3es + ytey, then

gy)=xlyl +x%y? 4 233 x4

Two vectors x and y in M are said to be orthogonal if g (x,y)=0. An x in M which
satisfies g (x,x) =+ 1 is called a unit vector. Any basis for M such as {e 1,€2,€3,€4) 18
called an orthonormal basis because it consists of mutually orthogonal unit vectors;
specifically,

Ih the interest of ecbnofny we shall introduce adx4 maﬁix 1N defined by

P -

1 0 0 0
0 1 0 0

p =10 0 1 o
0 0 0 -1

whose enmes will be denoted either Mg or %, the choice in any partwular s1tuanon
being d1ctated by the requirements of the summatlon conventlon (see Preface), Thus, |

1 if a=b=123
Ny =NP=4-1 if a=b=4
s 0 . if  a#b -

Thus, for example, we may write g (e,,€5) =Nz =N or, using the summation conven-
tion, x =x%, and g (x,y) =N5x%y?, etc.

Given an inner product g on any vector space V we define the associated quadratic



- The Geometry of Minkowski Spacetime 3

form Q:V = R by O (x) =g (x,x) =x *x (often denoted x2). We ask the reader to show
that distinct inner products on V cannot give rise to the same quadratic form:

Exercise 1.1.2. Show that if g, and g, are two inner products on V which satisfy
g106x)=g,(x,x) for all x in V, then g (x,y)=g2(x,y) for all x and y in V. Hint: The
map g1 -g2: VXV — R defined by (g1 —g2) &t.y)=g1(x,y) —g2(,y) is bilinear and
symmetric. Evaluate (g1 —g2)(x +yx +Y). ' |

On M the associated quadratic form is Q (x) = G2+ %)% + (x3)2 - (x*)? relative to
any orthonormal basis. | o

If {e1,e9.e3,e4) and {€1,€9,€3,€4) are two orthonormal bases for ‘M, then there is
a unique linear transformation L: M — M such that L(e,) =g, for each @ =1,2,3,4.
Such a map obviously "preserves the inner product” on M, i.e., is of the following type:
A linear transformation L: M — M is said to be an orthogonal transformation of M if
Lx «Ly=x+y for all x,y € M. Since the inner product is nondegenerate such a map is
necessarily one-to-one and therefore an isomorphism.

Lemma 1.1.2, Let L: M — M be a linear transformation. Then the following are
equivalent:
(a) L is an orthogonal transformation.

(b) L preserves the quadratic form of M, ie., Q(Lx)=0Q (x)forall x in M‘ :

(¢) L carries any orthonormal basis for ¢ onto another orthonormal basis for M.

Exercise 1.1.3. Prove Lemma 1.1.2. Hinr: To prove that (b) implies (a) compute
Lx+y)sLx+y)-Lx-y)eLx-y)

Now let L: M — M be an orthogonal transformation of M and {e1,e3,23,€4) an
orthonormal basis for M. By Lemma 1.1.2, €y =Le,,e5 =Ley,e3=Les and e4 =Ley
also form an brthonormal basis for M. In particular, each e,, u =1,2,3,4, can ‘be
expressed as a linear combination of the g,: -

ea=Aley + A2z, + A2y + Ajey=A%2,, u=1234, (1)

where the A% are constants. Now the orthogonality  conditions
€. * ¢4 ="MNea» C.d = 1,2,3,4, can be written
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AGAG + AZAT + AZAT - AAS =ny, c,d = 1,2,3,4 | )
or, with the summatioh convention,

A2A M ey =Meay €,d=1,2,3,4. )

Exercise 1.1.4. Show that (3) is equivalent to
AgAg,ncd =nab’ ab=1,23,4. (4)

We define the matrix A =[A}] associated with L by
ab=1,234
™ . 7

A

-3
s T
o
[F T
-
FoN

>

>
i
et T T s s R
-3

P

> >
SCEN I TN
-
Ll
-3
FAR

>

L. -

Observe that A is actually the matrix of L™! relative to the basis {e,}. Heuristically, the
conditions (3) assert that "the columns of A are orthogonal unit vectors" while (4) makes
the same statement about the rows.

We regard the matrix A associated with an orthogonal transformation L as a coordi-
nate transformation matrix in the usual way. Specifically, if the event x in M has coordi-
2 4e4 relative to {e,}, then its coordinates relative to

(€s)={Le,) arex =X'2| + %22, + X223 + X*24, where

nates x =xle; +x € +Xxe3 +x

r i (1]
=2 . %2
-3 = [Ab] 3] - 6)
X
, 74 x|

In more detail,
l=Alx! + Ale? + Ale3 + Alx?
2= Afl + A% + AJx3 + A2
P =Alxl 4+ A3x? + Ag'x3 +Adx4

F=all + Adx? + A%x3 + Adx?

7
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which we generally write more concisely as

P =Afx?, a=1,23,4. | (8)

Exercise 1.1.5. By performing the indicated matrix multiplications show that (3) (and
therefore (4)) is equivalent to

AmA=n , | ©)

where "7 means "transpose”.

Any 4x4 matrix A which satisfies (9) is called a general (homogeneous) Lorentz
transformation; at times we indulge in a traditional abuse of terminology and refer to the
coordinate transformation (7) as a Lorentz transformation. |

Exercise 1.1.6. Show that the set of all 4 x 4 matrices A which satisfy (9) forms a group
under matrix multiplication, i.e., that it is closed under the formation of products and
inverses. This group is called the general (homogeneous) Lorentz group and denoted

Len-

1.2. The Physical Interpretation

Let us begin by uncercmbniously laying down the law concerning the physical
interpretation of A This done we will attempt to provide something in the way of
motivation. The elements of M are called "events" and they are to be thought of as actual
physical events (occurrences), although we use the term in the idealized sense of a
"point-event”, i.e., one which has no spatial extension and no duration. One might pic-
ture, for example, an instantaneous collision or explosion or an "instant” in the history of

some (point) material particle or photon (to be thought of as a “particle of light"). The
entire history of a particle (material or photon) is then represented by a continuous
sequence of events called the particle’s "wordline”. -An orthonormal basis {ea} 5= for M
we think of as defining a "frame of reference" established by some "admissible observer”
(essentially an inertial observer of classical physics, but specific requirements will be set
out below). If x is an event and x =x%¢,, then (xl,xz,x?’) are the three Cartesian coordi-
nates by which the spatial location of x is speciﬁed in this frame of reference and x* is the
time recorded in this frame for the occurrence of x. The frame of reference corresponding
to another admissible observer will be identified with anothcr orthonormal basis {€,} 4.1

and if x =%%,, then (x 1 32 %3 x*) are again the spatial and time coordinates by which
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the event x is identified in the new frame. These two sets of coordinates for x are related
by the Lorentz transformation {A$] corresponding to the orthogonal transformation of M
which carries e, onto ¢, fora = 1,2,3,4. |

Thus, M is a model of the "event world" and how it is seen and described by inertial
observers. A great many assumptions about the universe in which we live go into the
construction of this model. We shall list a few that lie closest to the surface and, along the
way, attempt to clarify the meaning of some of the terms we have used and "justify” the
interpretation we have described. Lest you be too easily convinced, however, we shall
also pose a few parenthetical questions to ponder.

Assumption #1. Each admissible observer presides over a 3-dimensional, right-handed
Cartesian spatial coordinate system based on an agreed unit of length and relative to
which photons (light signals) propagate along straight lines in any direction.

(Reasonable enough, but are these coordinate systems expected to cover the entire
universe? Can they do that? What are they supposed to be made of? How are spatial
coordinates determined in this way related by those actually used by astronomers? What
about the small scale world of the atomic nucleus where the uncertainty principle casts
doubt upon the very notion of length?)

Incidentally, the expression “presides over” in Assumption #1 is not to be taken too
literally. An observer is in no sense ubiquitous. Picture him stationed at the origin of his
coordinate system. Any information regarding events that occur at other locations must
be communicated to him by means we shall consider shortly.

Assumiption #2. Each admissible observer is provided with an ideal standard clock based
upon an agreed unit of time with which to provide a quantitative temporal order to the
events on his worldline.

(Wha:f is a "clock" and what does "ideal" mean? Does it mean that the clock can be
moved around at will “without effecting its "rate"? That it has the same "rate" on Jupiter
that it has on earth? Come to think of it what does "its rate” mean? How can we know for
even one clock at one location that it is always ticking off "equal time intervals"? (Com-
pare it with another "clock"?))

'So now our observer can assign times to the events on his worldline. To do the same
for events that are not in his immediate vicinity he will require a system of synchronized
clocks throughout his spatial coordinate system (and either assistants or recording devices
with each to make the necessary observations and measurements). For the construction of
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this system of clocks we require some properties of light signals which we collect in our
next assumption. First, however, a little experiment: From his location at the origin 0 our
observer O emits a light signal at the instant his elock reads ty. The signal is reflected
back to him at a point P and arrives again at 0 at the instant £,. Assuming there is no
delay at P when the signal is bounced back O will calculate the speed of the signal to be

dist (O,P)/ _;-(tl —tg). This technique for measuring the speed of light we call the Fizeau

procedure in honor of the gentleman who first carried it out with care (notice that we must
bounce the signal back since we do not yet have a set of synchronized clocks).

Assumption #3. For each admissible observer the speed of light in vacuo as determined
by the Fizeau procedure is independent of when the experiment if performed, the arrange-
ment of the apparatus (i.e., the choice of P) and, moreover, has the same numcncal value

010

¢ (approximately 3.0 x 10*” meters per second) for all such observers.

Here we have the conclusions of two famous experiments first performed by
Michelson-Morley and Kennedy-Thorndike. The results may seem odd (why is a photon
so unlike an electron whose speed certainly does not have the same numerical value for
two observers in relative motion?). Nevertheless, we shall exploit this remarkable pro-
perty of light signals immediately by asking all of our observers to multiply each of their
time readings by ¢ and thereby measure time in units of distance (light travel time, e.g.,
"one meter of time" is the amount of time required by a light signal to travel one meter in
vacuo). With x4,J?4,... all measured in units of distance all speeds are dimensionless and
c=1.

Now ‘we provide each of our admissible observers with a system of synchronized
clocks in the following way: at each point P of his spatial coordinate system place a clock
identical to that at the origin. At some time x§ at O emit a spherical electromagnetic wave
(photons in all directions). As the wavefront encounters P set the clock placed there at
time x§ + dist(0,P) and set it ticking, thus synchronized with the clock at the origin.
(Why, you may ask, all this fuss about synchronizing clocks? Why not simply synchron-
ize them at the origin and then move them to the desired locations? We shall see.)

At this point each of our admissiblé observers 0,0 ,... has established a frame of
reference Sl x2x3 3, SE R R 4),... relative to which he identifies events (we
shall ‘'denote the spatial coordinate systems of these frames by
Txlx2,x%), E(il,iz,i3),...). How are the §-coordinates of an event related to its S-
coordinates, i.e., what can be said about the mapping F: R* — IR* defined by

F (x L 2xiaxhy=alzt w5 ) ? 10)
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Certainly, it must be one-to-one and onto. Indeed, F~1: R* > IR* must be the coordinate
transformation from barred to unbarred coordinates. To say more we require a seemingly
rather weak "causality assumption”.

Assumption #4 (Causality). Any two admissible observers agree on the temporal order
of any two events on the worldline of a photon, ie., if x =x%,=Xx%, and
xo =x8e, =X€, are two such events, then x4 —x$ and 5;'4 —~ig have the same sign.
Notice that we do not assume that Ax* and A% are equal, but only that they have the
same sign, i.e., that the observers agree as to which of the events occurred first. Thus, F
preservcs order in the fourth coordinate, at least for events which lie on the worldline of -
some photon. How are two such events related? Since photons propagate rectilinearly
(Assumption #1) with épecd 1 (Assumption #2 and our choice of units) two events on the

worldline of a photon must have coordinates which satisfy
| C xioxh =viet - xd), i=1,2,3 ~oan
for some constants v!,v?2 and v3 with whH? + (vz)_2 + (v_3_ ¥ =1and éon_sequently
ol -xd)? + 2 —xf)? + & - a3 -t —x3)* =0 . (12)

Geometrically, we think of (12) as the equation of a “cone” in R* with vertex at
(xé,x%,x%,xﬁ) (compare (z _—zO)2 =(x -—xg)2 + (y _yo)z in R*) and (11) as a straight
line on this cone. But all of this is true in any admissible frame so our mapping F must
preserve the cone (12) We summanze the coordinate transformation mapping
F:R*»RY o |

A. Carries the cone (12) onto the cone

Glozl? + G272 + @ —F0)2 - @ -73)?=0 , and - (13)

¥

4> xﬁ and (12) is satisfied.

B. satisfiesx? > ig vﬁieneverx

Being simply the coordinate transformation from barred to unbarred coordinates the
mapping F~1: R* = R* has the obvious analogous properties. In 1964 Zeeman [Z1]
called such a mapping F a "causal automorphism" and proved the remarkable fact that any

causal automorphism is a composition of the following three basic types:
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1. - Translations: X% =x? + A%, for some constanis A%, @ =1,2,3,4,
2. Positive scalar multiplications: X“ = kx?, for some positive constant &,

3. Linear transformations

El

% =Afxt, ab=1234, (14)

where the matrix A =[Af], ; - 1‘25,4 | satisfies |
AMA=n and (15)
Ad=1. | | 16)

Notice that it was not even assumed at the outset that F: R* —» R* is-continuous (much
iess, linear).

Since two frames of reference related by a mapping of Type 2 differonly by a t;'iviai
and unnecessary change of scale we shall banish them from eoi;§:1|c1ergtiqn. ‘Since the
composition of any mimber of mappings of Type 1 is obviously aga-iri of Type 1 and since
we shall prove in section 1,3 that the same is true for mappings of Type 3 we shall restnct
our attention to maps of the form

=AP + A%, a,b=172734 . _‘ - amn

Observe that the constants A? in (17) can be regarded as the barred coordinates of §s
spacetime origin. We should like to assume that the event world is in ;sdme‘ sen$e "homo-
~geneous” so that an observer is free to select any event as his origin (any sPai;iaI point as
the origin of his Cartesian coordinate system and any instant as his iﬁi-t'iaili_ns_tant). ’I"hus,
we may request that all admissible observers select the same one.

Assumption #5 (Homogenelty) All admissible observers agree on the spacetime origin,
ie., if Sl x2.x3,x% and S (x x2 XX ) are two admissible frames of reference, then
the (nccessanly affine) coordmate transformamn (17) is, in fact, linear and SO assumes
the form

=AMt ab=1234, . (18)

where the matrix A =[Af], p =1 2 3 4 satisfies (15) and (16).

Our next assumption contains, in effect, our definition of "free matenal particle”, the
identification of our admissible observers thh the inertial observers of Newtonian
mechanics, our version of Newton’s First Law ("inertial observers ‘exist'") and the
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experimental fact that material particles cannot attain the speed of light relative to an
admissible frame.

Assumption #6. Relative to an admissible frame of reference S(x 1 ,x2,x3,x4) each point

2

on the worldline of a free material particle has coordinates (x 1 x2,x3,x*) which satisfy

xt—xh =vigt-x§), i=123, (19)

where (x(l),x%,x%,xﬁ) are the coordinates of some fixed, but arbitrary point on the world-
line and v1,v2 and v3 are constants which satisfy

o2 + v+ (w32 <1 . (20)

Conversely, any straight line of the form (19) subject to the condition (20) is the worldline
of a free material particle.

(Convince yourself that this assumption is consistent with those that precede it, i.e., that
all admissible observers agree on which curves are worldlines of free material particles.)
We will show somewhat later (Theorem 1.3.3) that our Causality Assumption #4 (whose
mathematical expression is (16)) actually forces admissible observers to agree on the tem-
poral order of any two events on the worldline of a free material particle (but not on the
temporal order of any given pair of events).

With this we hope that the mathematical constructs of section 1.1 are sufficiently
well motivated. Nevertheless, we have one more assumption to record. It is the corner-
stone upon which the special theory of relativity is built.

Assﬁmption #7 (The Relativity Principle). All admissible frames of reference are com-
pletely equivalent for the formulation of the laws of physics.

Thé Relati\}ity Principle is a powerful tool in building the physics of special relativity, but
that is not our task here. For us Assumption #7 is primarily an heuristic principle assert-
ing that there are no "distinguished" admissible observers, i.e., that none can claim to have
a privileged view of the universe. In particular, no such observer can claim to be "at rest”
while the others are moving; they are all simply in relative motion. We shall see that
admissible observers can disagree about some rather startling things (e.g., whether or not
two given events are "simultaneous”) and the relativity principle will prohibit us from
preferring the judgement of one to any of the others.
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1.3. The Lorentz Group

A vector x in M is said to be spacelike, timelike or null (lightlike) if
Q&) >0, Qx)<0orQ(x)=0respectively.

Exercise 1.3.1. Use an orthonormal basis for M to construct a number of examples of
each type of vector. '

Theorem 1.3.1. Suppose x is timelike and y is either timelike or null and nonzero. Let
{e,} be an orthonormal basis for M with x = x%e, and y =y%e,. Then either (a) x*y* >0,
in whichcasex *y < 0, or (b) x4y4 < 0, in whichcasex «y > 0.

Proof. By assumption we have x »x =x'x' - (x*)? < Oandy » y = y/y/ — H? <0 (sum-
mation overi,j =1,2,3) so (x4y4)2 > x"x"yjyj and therefore
l x4y4| > (x‘.,\c"yJ")ﬂ")“2 . (21)

Now, for any real number 0% (tyI +x}*)2 + (ty2 +x2)2 + (z‘y3 +x3)2 =
(yjyf )t2 + 2(xiyi)t + (x"x") so, regarded as a quadratic in 2, this last expression cannot
have distinct real roots and therefore must have discriminant less than or equal to 0, i.e.,
4(x'y")? — 4(xx*yTyl) <0. Thus, xx'yiy? > (x'y*)? and we find that

Combining (21) and (22) yields
, x4y4 ‘ >_| xiyfl ____:l xlyl +x2y2 +x3y3 l : (23)

50, in particular, x*y4 # 0 and, moreover, x *y # (. Suppose, in addition, that x4yt >o0.
4,4
Y

<0 ie., x*y <0. On the other

Then x4y4==| x”'y"’] >l xiyil 2x'y? so xiyf—x
hand, if x*y% < 0, thenx » () <0sox »y >0. Q.ED.

Corollary 1.3.2. If a nonzero vector in M is orthogbnal to a timelike vector, then it must
be spacelike.

Another consequence of Theorem 1.3.1 is that, for vectors of the type described
there, the product x*y* (which cannot be zero) has the same sign relative to all orthonor-
mal bases for M. If x is timelike and y is either timelike or null and nonzero we shall say
the x and y have the same time orientation if x + y < 0 and have opposite.time orientation
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if x «y > 0. The analogue of Theorem 1.3.1 for two vectors x and y which are both null,
but are not parallel is proved in section 1.5.

Since the orthogonal transformations of M are isomorphisms and therefore inverti-
ble it follows that the matrix A associated with such an orthogonal transformation is also
invertible (also see (33)). From (9) we then find that A’ nA =1 implies A ='nA"1 50
that A~ =n~'Af 1 of, sincen™! =1,

Alt=nAm. . (24)

To describe the inverse of the coordinate transformation (8) we introduce the following
notation: Write each e, as a linear combination of the e,:

€y =1_\f,el + Kﬁez + K3e3 + K2e4 =A%,, u=1273,4. (25)
Then it is clear that the inverse of the coordinate transformation (8) is
| b_ Ab=a — .
x?=Ax" b=1234. (26)
With this notation the orthogonality condition e, * &, =T, can be written

ASAMMg =N, ab=1,23,4 . @n

Exercise 1.3.2. Shov{k that (27 ) is equivalentto
ASAIn® =0 ¢ d=1,2,3,4 . R )

Mogeover, from (24) we obtain [Ac] = [A§]™" =n[AZ] 1 and so

-

|Al A} A} Aj Al A1 A7 -t
(A2 A3 A3 A3 | AL A3 A A |
| LIRIA3AIAD| T | A} A3 AR A G0)
AY A4 A4 A4 ~AL A2 —A3 AS

- Exéi‘cisé 1.3.3. Show tha't. |

AL =mnPiAg o (31)
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and similarly
A% =n*nNpAS . (32)

Note that by taking determinants on both sides of (9) and observing that det 1} =—
and det A’ = det A, we obtain (det A)?> = 1 and so

detA=%1 . (33)

Putting ¢ =d =4 in (3) we obtain (A$)?2 =1 + (A4)2 + (A4)2 + (A3)? and, in particular,
AH?=1. Consequently,

Af21 or A< . (34)

An element A of Ly is said to be properifdet A=1 and improper ifdetA=-1. AAin
Loy is orthochronous if A3 > 1 and nonorthochronous if A} <-1.

Improper Lorentz transformations reverse spatial orientation. We now show that
nonorthochronous Lorentz transformations reverse time order and therefore violate our
basic causality Assumptlon #4,

Theorem 1.3.3. Let A=[A§],5=1234bea gencral Lorentz transformatlon and {ez} an
orthonormal basis for #. Then the foﬂowmg are equivalent:

(a) A isorthochronous,

(b) A preserves the time orientation of all nonzero null vectors, i.e., for every
-4 ] |
nonzero null vector x =x%e, the numbers x* and ¥ .= A$x? have the same sign.

(c) A preserves the time orientation of all timelike vectors.

Proof. Let x =x%, be any vector which is either timelike or null and nonzero. By the
Schwartz Inequality for R we have.

(Adx! + A2 + A532 < (WD + (A2 + AP + 622 + D) . (35)
Now, by (4) with a =b =4 we have
(AD? + AD* + A - AD* =AAM =M =-1. (36)

Thus, (Ai)2 > (A“f)2 + (AD? + (A$)%. Moreover, since x is either timelike or null,
(x“‘)2 b (xl)2 + (.7c2)2 + (x3)2. Thus, since xz0, (35) yields
(Afx! + Adx? + Adx?)? < (A3xh?, which we may write as |
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Adxl + Adx? + AP A AR+ A2 + A3 + Al <0 . (3D

Define yin M by y=Afe; + Ae, + Afes + Adey. By (36), y is timelike. Moreover,
(37) can now be written

ex)E <0 (38)

Consequently, y »x and J'c4 have opposite signs.

We now show that A > 1iff x* and 24 have the same sign. First suppose Al=1 1
%% >0, then x +y <0 (by Theorem 1.3.1) s0 X~ >0 by (38). Similarly, if x* < 0, then
x*y>0s0 5c'4 < 0 by (38). Thus, A% 21 implies that x* and 34 have the same sign. In
the same way, A4 <—1 implies that x* ::mdf4 have opposite signs. . Q.E.D.

Remark., We have actually shown that if A is nonorthochronous, then it necessarily rev-
erses the time orientation of all timelike and nonzero null vectors. '

For these reasons we shall restrict our attention to the set L of proper, orthochronous
Lorentz transformations. From Theorem 1.3.3 it is obvious that the inverse of an ortho-
chronous Lorentz transformation is orthochronous and that the product of two such
transformations is again orthochronous. Since the corresponding statements for proper
Lorentz transformations are trivial we have proved that L is closed under the formation of
products and inverses, i.., that Lis a subgroup of Lgy. Generally we will refer to L sim-
ply as the Lorentz group with the understanding that its elements are proper and ortho-
chronous. The elements of L are referred to simply as Lorentz transformations. Coordi-
nate transformations between admissible frames of reference are all accomplished by ele-
ments of L. Henceforth we shall fix some arbitrary orthonormal basis for M to refer to as
the standard basis and shall refer to any other orthonormal basis as an admissible basis if
the coordinate transformation matrix relating it to the standard basis is an element of L.

Remark. One can enlarge the group of coordinate transformations (12) by adding space-
time translations, thereby obtaining the so-called inkomogeneous Lorentz group or Poin-
caré group. Physically, this amounts to allowing "admissible” observers to use different
spacetime origins.

L has an important subgroup R consisting of those R = [R}] of the form

0
R 0

k= 0
0 0 01
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where [R}]; =123 is a unimodular orthogonal matrix, i.e., satisfies R =[RiT! and
det[R%]1=1. Observe that the conditions (3) are obviously satisfied for such an R and,
moreover, R§ =1 and detR = det[Rj-] =1 so R is indeed in L. The coordinate transforma-
tion associated with R corresponds physically to a rotation of the spatial coordinate axes
within a given frame of reference. For this reason K is called the rotation subgroup of L
and its elements are called rotations in L.

Lemma 1.3.4. Let A=[Af], =123 4 be a proper, orthochronous Lorentz transformation,
Then the following are equivalent:

{a) A is a rotation,

(b) Al=A2=A3=0.
) Af=A3=A%=0.
) Aj=1.

Proof. Setc =d =4 in (4) to obtain

(AD? + (AD? + (AD? — (AP =1 . (39)
Similarly, with a = b =4, (3) becomes

ADH? + (A + WD -AD?=-1 . - (40)

The equivalence of (b), (¢) and (d) now follows immediately from (39), (40) and the fact
that A is assumed orthochronous. Since a rotation in A obviously satisfies (b), (c) and (d),
all that remains is to show that if [A§], =12 34 satisfies one (and therefore all) of these -
conditions, then [Aj-] i,j=1,2,3 is a unimodular orthogonal matrix.

Exercise 1.3.4. Complete the proof. _ Q.E.D.

There are 16 parameters in every Lorentz transformation A =[Af];5=1234,
although only 6 of these are independent by virtue of the relations (3). We now derive
simple physical interpretations for each of these parameters. We consider two admissible
bases.{e,} and {€,} and the corresponding frames of reference § and 3— . Any two events
on the worldline of a point which can be interpreted physically as being at rest in S have
coordinates in § which satisfy AF =A% =A% =0and A% = time separation of the
two events as measured in .S. From (8) we find that the corresponding coordinate differ-
encesin Sare
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CAxP=AbAFA=AIARY . @D

From (41) and the fact that, by (3) and (30), A4 and A} are non-zero, it follows that the
ratios
Axi Ay A}
Axt A} A%

i=123

are constant and independent of the particular point at rest in S we choose to examine.
Physically, these ratios are interpreted as the components of the ordinary velocity 3-vector
of § relative to S

1 2 3 . Ay A}
W=ule; +u?e, + ue;, where ' =—=-—, =123 (42)
NG

(we use the term "3-vector" and the familiar vector notation to distinguish such highly
observer-dependent spatial vectors, which are not invariant under Lorentz transforma-
tions, but are familiar from physics). Similarly, the velocity 3-vector of S relative to S is

' i 4

Yz 7%, +0i8 _i_As A
€y +u“ey+uey, where u ..-——.__F’
4

7
ry
Aj

=0 i=1,2,3. (43)

Next observe that

3 i 3
= ( v } =AD? 2AH? =D -11 .
i=1 | Ax =l _

o 3 i . :
Similarly, X (-i‘-—f—a-} = (A 2[(A%)? - 1]. Physically, we interpret these equalities as
1= X

saying the velocity of § relative to § and the velocity of S relative to S have the same
constant magnitude which we shall denote by B,. Thus, pZ=1- (A2 so in particular,
0<PB? <1 and B, =0 if and only if A is a rotation (Lemma 1.3.4). Solving for A] (and
taking the positive square root since A is assumed orthochronous) yields

Af=a-BH™? (=XH @)
The quantity (1 —B2)~"2 is often designated y. Assuming that A is not a rotation we may
write 7 as ' o o N

. .7%[3;3; Br(diel +d%e; +d3e3), d =u‘;/I3r - (45)
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where ?is called the direction 3-vector of S relative to S and the d* are interpreted as the
direction cosines of the directed line segment in T along which the observer in S sees §
moving. Similarly.

-ﬁ - - V - _: B
W=P, d=P(d & +d ey +d e, d =0 1B, . (46)

Exercise 1.3.5. Show that the d* are the components of the normalized projection of 2,
onto the subspace [e1,e4,e3] of M spanned by e,e, and e3, i.e., that

: e4%e;
dim ety 121,23 @
(.=1(E4.ej)zJ
and similarly,
- e .E. . .
d'=——— g, i=123 (48)
L)—:l(e" " )2}

Exercise 1.3.6. Show thate, =7y (B,? + e 4) and, similarly,
. -
es=YP,d +e4) .
Comparing (42) and (45) and using (44) we obtain
Riy=-Af=B,(1 P2 di , i=12,3 (49)
and similarly
Ay=-Af=p,a-pDH23 , i=1,23. (50)

Equations (44), (49) and (50) give the last row and column of A in terms of physi-
cally measurable quantities. Even at this stage a number of interesting kinematic conse-
quenes become apparent. From (8) we obtain

AT =By Ax! +d?Ax% + d3AXY) +yAxt - (51)

for any two events. Let us consider the special case of two events on the worldline of a
point atrestin 5. ThenAx! =Ax*=Ax*=0s0
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= Ax* . (52)

In particular, A" =Ax* if and only if A is a rotation. Any relative motion of § and §
gives rise to a time dilation effect according to which A 24 > Ax*. Since our two events
can be interpreted as two readings on one of the clocks in S, will conclude that the
clocks in § are running slow (even though they are, by assumption, identical).

Exercise 1.3.7. Show that the time dilation effect is entirely symmetrical, i.e., that for
. -1 -2 -3
twoeventswithAx =AX =Ax =0,

Ax*=yAEt = —L— Azt (53)

V1-pB7

This time dilation effect is in no sense an illusion; it is quite "real” and can manifest
itself in observable phenomena. One such instance occurs in the study of cosmic rays
("showers" of various kinds of elementary particles from outer space which impact the
earth). Certain types of mesons which are encountered in cosmic radiation are so short-
lived (at rest) that, even if they could travel at the speed of light (which they cannot, of
course) the time required to traverse our atmosphere would be some ten times their nor-
mal life span. They should not be able to reach the earth. But they do! Time dilation in a
sense "keeps them young”. The meson’s notion of time is not the same as ours. What
seems a normal lifetime to the meson appears much longer to us. It is well to keep in
mind also that we have been rather vague about what we mean by a "clock”. Essentially
any phenomenon involving observable change (successive readings on a Timex, vibra-
tions of ad" atom, the lifetime of a meson, or a human being) is a "clock” and is therefore
subject to the effects of time dilation. Of course, these effects will be negligibly small
unless 3, is quite close to 1 (the speed of light).

Anofher special case_of (51) is of interest. Let us suppose that our two events are
judged sirmultaneous in §, i.e., that A x*=0so0

=—B,y@Ax! + d*Ax? + d3Ax%) . BN 7

Again assuming that B, # 0 we find that, in general, Ax * will not be zero, i.e., that the two
events will not be judged simultaneous in S. Indeed, S and S will agree on the simul-
taneity of these two events if and only if the spatial locations of the events in X bear a very
special relation to the direction in T along which Z is moving, namely,

d'Ax' +d?Ax? +d*Ax*=0 55
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(the displacement vector in I between the locations of the two events is perpendicular to
. . = .. \ -4 .

the direction of £’s motion in X). Otherwise AX 0 and we have an instance of the rela-

tivity of simultaneity to which we referred in section 1.2,

It will be useful at this point to isolate a certain subgroup of the Lorentz group L
which contains all of the physically significant information about Lorentz transforma-
tions, but has much of the unimportant detail pruned away. We do this in the obvious way
by assuming that the spatial axes of .S and S have a particularly simple relative orienta-
tion. Specifically, we consider the special case in which the direction cosines d° and
d',i=1,23,are given by d! = 1,d'=-1andd?=d*=a*>=4°=0. Thus, the direction

=
vectors are d = e and d =—e;. Physically, this corresponds to the situation in which an

I axis and an observerin §

observer in S sees .S moving in the direction of the positive x
sees S moving in the direction of the negative %!l-axis. Since the origins of the spatial
coordinate systems of .S and .S coincided at x* =x* =0, we picture the motion of these
two systems as being along their common x -, %! axis. Now, from (44), (49) and (50)

we find that the transformation matrix A must have the form

Al A3 A} By
A2 A3 AZ O

A=A A3 4% o G0
By 0 0 ¥

Exercise 1.3.8. Use the orthogonality conditions (3) and (4) to show that A must take the
form -

Y 0 0 By
0 A3 A} O

A=l 0 AI A 0 7
By 0 0 v

where [Aj',-]i, j=2,3 18 2 2 X 2 unimodular orthogonal matrix, i.c., a rotation of the plane R2.

To discover the differences between these various elements of £ we consider first the sim-
plest possible choice for the 2 x 2 unimodular orthogonal matrix, i.e., the identity matrix.,
The corresponding Lorentz transformation is
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[y 00 By
0 10 0
0 01 0 - (58)
$¥00 v |

and its associated coordinate transformation is

£ =(1-BH2 1l - B0 - B2 x4
(59)

-4 :
=B xt + 1-BH2 2"

. Y - . . .
By virtue of the equalities X =x2 and x3 =x the physical relationship between the spa-
tial axes in S and 3 is as shown below: -

Figure 1.1
x3 ‘i3
L | F
D ——i
"
Ve ~
d il
— x2, %2
| |
| |
, i |
x! %!

Remark. These spatial axes are said to be in standard configuration.

Now it is clear that any Lorentz transformation of the form (57) will correspond to

the physical situation in which the %2- and ¥>-axes of 3 are rotated in their own plane
from the position shown in Figure 1.5.

By (30) the inverse of the Lorentz transformation A defined by (58) is
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[ ¥ 00 B,
0100
0010 - (60)

“BﬂOO T |

and the corresponding inverse coordinate transformation is

= -pH 25! 4 B(1-pZy V25

x2

il
. a;

2 | S | 61)

3 3

X

|
1

12 =1 12 =
2t =B, -pH 7% + (1 -pH 2 E*

Any Lorentz transformation A of the form (58) or (60), ie., with
Af=A3=A3=A%=0and [Al]; ;3 = idys is called a special Lorentz transformation.
Since A and A™! differ only in the signs of the (1,4) and (4,1) entries it is customary, when
discussing special Lorentz transformations, to allow —1 < B, < 1. By choosing B, >0
when A} < 0 and B, < 0 when Al >0al special Lorentz transformations can be written
in the form (58) and we shall henceforth adopt this convention. For each real number 3
with -1 < B < 1 we define y=7 (B) = (1 — p?)"2 and

Y 00 Py
| 010 0
AB=109 01 o

_-—BTOO Y

Exercise 1.3.9, Show thatif -1 < B; £By < 1, then

, B1 + B2
ABIAB) =A (m] (62)

By referring the three special Lorentz transformations A(B;), A(B,) and A(B;) A(B;) to
the corresponding admissible frames of reference one arrives at the following physical

interpretation of (62): If the speed of .S relative to Sis B; and the speed of S relative to 3
is By , then the speed of § relative to .S is not B; + Py as one might expect, but rather

B + B2

—_— 63
1+ BB (63)
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which is always Jess than By + B, provided B> #0. (62)is generally known as the rela-
tivistic addition of velocities formula.

Exercise 1.3.10. Show thatif IP;! < 1and iBs1 < 1, then

Bi + B2 ‘<1
1+ B2 '

The non-additivity of velocities in relativity is to be expected, of course, since addi-
tivity would imply that arbitrarily large speeds could be attained relative to an admissible
frame. Nevertheless, it is often convenient to measure speeds with an alternative "velo-
city parameter” @ that is additive. An analogous situation occurs in plane Euclidean
geometry where one has the option of describing the relative orientation of two Cartesian
coordinate systems by means of angles (which are additive) or slopes (which are not).
What we would like then is a measure 8 of relative velocities with the property that if 0,
is the velocity parameter of S relative to S and 0, is the velocity parameter of S relative
to S, then the velocity parameter of .5‘ relative to Sis 6y + 8,. Since © measures relatwe
velocity, B will be some one-to-one function f () of 6. Additivity and (62) require that Vi
satisfy the functional equation

F©1)+ 1)
0 +96,)= - . (64)
SO 0= T enrey
Being suggestive of the sum formula for the hyperbolic tangent (64) suggests the change
of variable
- B=tanh® or O=tanh !B . (65)

Observe that tanh™! is a one-to-one differentiable function of (~1,1) onto IR with the pro-
perty that B — * 1 implies 6 — =+ oo, i.e., the speed of light has infinite velocity parameter.

H

Exercise 1.3.11. Show that there is a unique differentiable function B=f(8) on R
(namely, tanh0) which satisfies (64) and

im L& -4
90 0O

(for small speeds, B and © are nearly equal). Hint. Show that such an f necessarily
satisfies the initial value problem f'(6)=1—(f (0))2, f (0) =0 and appeal to the Unique-
ness Theorem for solutions to such problems (see [Har]).



The Geometry of Minkowski Spacetime 23

Exercise 1.3.12. Show that if B = tanh, then the hyperbolic form of the Lorentz transfor-
mation A(B) is

cosh® 0 O —sinh©
0O 10 O
0 01 O
—sinh® 0 0 cosh©

L®)=

Earlier we suggested that all of the physically interesting behavior of proper, ortho-
chronous Lorentz transformations is exhibited by the special Lorentz transformations.
What we had in mind was the following theorem which asserts that any element of L
differs from some L (0) only by at most two (physically uninteresting) rotations.

Theorem 1.3.5. Let A be a proper, orthochronous Lorentz transformation. Then there
exists a real number 6 and two rotations R; and R, in K such that A=R 1LO)R .

Since we shall make no use of this result we simply refer the reader to the proof in [Nail].

From the point-of-view of physics it is therefore sufficient to limit one’s attention to
frames whose spatial coordinate axes are in standard configuration. We shall now discuss
the phenomenon of length contraction within this context. Thus, we consider two frames
Sand § whose spatial axes are as shown in Figure 1.5. Consider also a "rigid" rod at rest
relative to .S and lying along the X ' -axis between ié and ii Thﬁs, Ax! =f% — X0 is the
measured length of the rod in S. The worldline of the rod’s left-(resp., right-) hand end-
point has S -coordinates .(2(1),0,0,)?4) (resp., (ﬁ ,0,0,x%)), 0 < ¥* < 00, S will measure
the length of this same rod by locating its two endpoints "simultaneously”, i.e., by finding
one event on each of these worldlines with the same x* (not%*). But for any fixed x*, the
transformation  equations .= (59) give f(l) =(1-B2y "2 x} -Bx*  and J'Ei =
(1=B2 2l _B.x*sothat Ax! =(1 —P2)V2 Ax! and therefore o

Axl=-pH2 AR . [ ()

Since (1 - B2)!"2 < 1 we find that the measured length of the rod in Sis less than its meas-
ured length in § by a factor of (1 —p?)2. By reversing the roles of S and S we again
find that this effect is entirely symmetrical. “

Time dilation and length contraction are mathematically trivial, of course, but their

physical interpretation is very often subtle and quite delicate.. We recommend to the
reader’s- attention the following well-known example of the sort of "paradox” to which
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one can be led by a superficial grasp of the phenomena.

Imagine a barn which, at rest, measures 8 meters in length. A (very fast) runner car-
ries a pole of rest length 16 meters toward the barn at such a high speed that, for an
observer at rest in the barn, it appears Lorentz contracted to 8 meters and therefore fits
inside the barn. This observer slams the front door shut at the instant the back of the pole
enters the front of the barn and so contains the pole entirely within the barn. But is it not
trae that, by symmetry, the runner sees the barn Lorentz contracted to 4 meters so that the
16 meter pole could never fit entirely within it?

Exercise 1.3.13. Resolve the difficulty. Hint. Let Sand S respectively denote the rest
frames of the:-barn and the pole and assume these frames are related by (59) and (61).
Calculate B,. Suppose that the front of the pole enters the front of the barn at (0,0,0,0).
Now consider the two events at which the front of the pole hits the back of the barn and
the back of the pole enters the front of the barn. Finally, think about the maximum speed
at which the signal to stop can be communicated from the front to the back of the pole.

1.4. Null Ve_ct_drs and Photons

Consider two distinct events x¢ and x for which the displacement vector x — x o from
xg toxisnull,ie., Q (x -xq) =0. Relative to any admissible basis, -

o xh)? @By e P —xB ) - e )2 =0 @D

* ~x§ #0 and, by Theorem 1.3.3, the sign of Ax* is the same in all

Clearly, Ax*=x
admissible coordinate systems. We shall say that x — xg is future-directed if A x* > 0 and
past-djrected if Ax* <0. We now define a binary relation < on M as follows: xg < x if
and only if x —x¢ is null and. future-directed. We have already seen that; since (67)
implies that the spatial separation of x; and x is equal to the distance light would travel
during the time lapse between x and x, the physical interpretation of x¢ < x is that a pho-
ton "can get from x¢ to x", i.e., that x¢ and x respectively can be regarded as the emission
and subsequent reception of some light signal. For any two distinct events Xx¢ and x with

Qx—x0)=0we define the light ray R, , through X and x by
Reyx={xo+t(x—x0): te R} .

Since, relative to Cartesian coordinates in IR?, (67) is the equation of a right-circular cone
with vertex x g, we shall refer to the set

Cn(xo)=(x € M: Q(x —xp)=0) |
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as the null cone (or light cone) at x and picture it by suppressing the third spatial dimen-

sion x°:

Figure 1.2
Ax?

Lemma 1.4.1. Two nonzero null vectors x and y in' M érc orthogonal if and ohly if they
are parallel, i.e., iff there is a ¢ in R such that x = zy.

Exercise 1.4.1. Prove Lemma 1.4.1. Hint. For the necessity recall when equality holds
in the Schwartz Inequality for R>.

Cn(xg) is just the union of all the light rays through x¢. Indeed,

Proposition 1.4.2. Let x and x be two distinct events with Q (x —=x) =0. Then

Rypix =Cn®) N Cy (o) - (68)

Proof. First let z=xg + t(x —xo) be an element of R, ,. Then z-xo=r(x —Xq) SO
0@ -x0)=12Q(x —xg)=0 so z is in Cy(xg). Similarly, z € Cy(x). To prove the
reverse containment we assume z is in Cy(x) N Cy(xg). Then each of the vectors
z-x,z-xg and Xxp-X is  null But z-xpg=(E-x)-(xo—x) so
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0=0(z-x0)= (@ -x)2=2(z—x) * (X0 —x) + (g —x)> =—2(z ~x) » (ko ~x).  Thus,
(z-x)+(xg~x)=0. If z=x we are done. If z #x, then, since x¢ #x, we may apply
Lemma 1.4.1 to the orthogonal null vectors z —x and x¢ —x to obtain a ¢ in IR such that
z-x=t(xo~—x). Thusz € R, , asrequired. Q.E.D.

For any x in M we define the future (or upper) null cone at Xxg by
Chxo)={xe M: xy<x}
and the past (or lower) null cone at x ¢ by

Cnixo)={xe M: x <xq) .

Thus, x is in Cxi(x) iff a light signal emitted at x can be received atx. xisin Cn(xg) iff
x¢ is in CF(x). Observe that Cx(xp) can be thought of as the history in spacetime of a
spherical electromagnetic wave (photons in all directions) whose emission event is Xo:

Figure 1.3

C§ (Xo)

Events at the wavefront
(“illuminations’’)

Ax?

Spatial location of the
wavefront at some instant
in %

Ax! .
Exercise 1.4.2. Construct an example to show that '.th'e relation < is not transitive (i.e.,
thatx <yandy < zdoes not imply x < z) and interpret this non-transitivity physically.
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1.5. Timelike Vectors and Material Particles

Next we consider two events x and x¢ for which Q (x —xg) <0, i.e., x —xg is time-
like. Relative to any admissible basis {eg} we have
(Axl)2 + (sz)2 +(AxH? < (flt.x“)2 Obviously, Ax*#0 and we can assume without
loss of generality that Ax* > 0 Thus, we obtain

(AxH* + Ax?)? + A xHH"

e <1. )

Phys1ca11y 1t is therefore clear (remember that the speed of light is 1!) that if one were to

i ((Ax))? + (Ax2)? + (Ax3H)V2
Ax?

to {es} along the line in X from (xo,xo,xo) to (x X ,x3) and if one were present at xg,

move with spee relative to the frame § correspondmg

then one would also experience X, i.e., there is an admissible frame of reference 5 in
which x¢ and x occur at the same spatial point, one after the other. Spemﬁcally, we w111
show that if we choose B, = (Ax1)? + (Ax?)? + (Ax*))¥? / Ax* and let ', 4% and 4°
be the direction cosines in X of the directed line segment from (x},x3,x3) to xelx?,x3),
then the basis {e,} for M obtained from {e,} by performing a Lorentz transformation
whose fourth row is A =—B,(1 - 132)-1’2 d’, i-1 2,3, Af=Q1-BH 2=y (see the |
Remark below) has the property that Ax = Ax = Ax3 =0. To prove this we compute
Ax*=A%2Ax?. To simplify the computations, let - A®=((Ax!)?+

+ (Ax2)? + (Ax3)H)2, Then B2 =AF2/ (Ax*)?, y=Ax*N-Q (x —xq),
B, y=AZN-Q(x—xg) and d’ =Ax* /AR for i =1,2,3 (we may clearly assume that

_..9.
A x #0 for otherwise there is nothing to prove). ’I'hus,

-Ai'4 =AdAx! + AdAx? + ASAX3 + AL AX?
C=-By@!Ax! +d?Ax? + BPAxP) +yAX!

AT AT) + (Ax*H?

- _ QG0 .
V-0 (x —xp) V-0 (x —xp)

Consequently, O (x —x¢) =—(A1'c4)2. But, by computing Q (x —x) relative to the basis
{2} we find that Q(x —xg)=(AF ) + (AF)? + (AX ) — (A% )? so we must have
AFN + AF + AT )2 =0,ie, AT =AF =A% =0.

For any two events x and xo for which x —xg is timelike we define the duration
T{x —~xg)of x —xg by

T(x —x0) = V-0 (x —x¢)
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If the vector x =x —0 is timelike we generally write T(x — 0) = t(x) = V-0 (x). We have
just seen that T(x ~ x¢) is to be interpreted physically as the time separation of x and x¢ in
any admissible frame of reference in which both events occur at the same spatial poinz.

Remark. Given B,,d!,d? and d3 there will, in general, be many Lorentz transformations
whose fourth row is A} =—B,(1-B2) 2 &', i =1,2,3, A} = (1 - B2)"V2 = as required
in the previous argument. One specific choice for the remaining entries which is often
fond to be convenient is as  follows: A} ——B,'yd i=1,2, 3
As=(@-1d'dl + 8, 4,j =1,2,3, where 8: is the Kronecker delta.

Exercise 1.5.1. Show that the matrix [A$lap=1,23 4 thus defined is indeed an element of
£ and describe the physical relationship between the spatlai coordmate axes of two adxms-
sible frames of reference related by it.

A subset of M of the form {xo + ¢ (x - xo) te 1R} where Q(x xg) < 0, is called
a timelike straight line.

Exercise 1.5.2. Show that for any timelike straight line, there is an admissible frame of
reference in which all the events on the line occur at the same spatial point.

A timelike straight line which passes through the origin is called a time .axis. We
claim that any time axis T can be ldentzﬁed with the set of events in the history of some
admtsszble observer, i.e., with the x* axis of some admissible coordinatization of M. To
see this we select an event 4 on T with ¢4 » 4 =~1 and let [¢ 4] be the linear span of 24
in M. As point-sets, [e4]=T. Next let [¢4]1 = {x € M: x »e4=0) be the orthogonal
complement of [€4] in M. [£4]" is clearly also a linear subspace of M. We claim that
M=[e4] ®[e4]", Indeed, let x be an element of M and consider the vector
V=x+ (xeey) 24mi'n M Since veeg=x+64+ (x+24)(6424)=0, we find that v is
~in [e4]*. Thus, the expression x =—(x *€4)¢4 + v implies that M=[e4] + [24]1. The
sum 1is direct since every nonzero vector in [e4] is timelike, while, by Corollary 1.3.2,
every nonzero vector in [e4]' is 'spacelike.' Thus, M=[e,] ®[e4]" as required. Now,
the restriction of the M-inner product to [ 4]  is positive definite so, by Theorem 1.1.1,
we may select three vectors €,,¢, and e3 in [¢4]" such that &; » €;=08;,i,j=1,2,3.
Thus, {€1,84,¢3,€4)} is an orthonormal basis for M.
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Exercise 1.5.3. Fix an admissible basis {e,;} for #. Show that if the Lorentz transforma-
tion which carries {e,} onto {¢,) is improper, or nonorthochronous, or both, then one can
multiply selected e,’s by -1 to obtain an admissible basis {&,} with [¢4] =T.

Observe also that if x¢ and x are two events and T is a time axis, then x —x ¢ is orthogonal

to T iff x and x¢ are simultaneous in any reference frame whose xtaxixis TG T = [e4),
- -4 . -4 . - . e . .

then (x—xg)*eq4=—xX + xg =AX ). An arbitrary timelike straight line is identified

with the set of events in the history an "assistant” to some admissible observer.

Exercise 1.5.4. Show that if x —x is timelike and s is an arbitrary non-negative real
number, then there is an admissible frame in which the spatial separation of x and x is s.
Show also that the time separation of xy and x can assume any real value greater than or
equal to T(x —xg). Hint. Begin with a basis {e,} in which Ax! =Ax?=Ax?=0and
Ax*= T(x ~x0). Now pcrfoﬁn' the special Lorentz transformation (59), ‘where
-1 < B, < 1is arbitrary. |

Since t(x —~xg) is a lower bound for the temporal scparatioh of xg and x it is often called
their proper time separation; when no reference to the specific events under consideration
is required T(x —x) will generally be denoted A T. | _ _'

If x —x is timelike, then (Ax1)? + (Ax?)? + (Ax>)? < (Ax*)? in each admissible
coordinatization, i.e., X —Xg i8S inside the null cone at xy. We define the time cone at x
by Crixg)={xe M: Q(x —xp) <0}. Clearly- Ax*#0 for such a vector and, by
Theorem 1.3.3, all admissible observers agreé on the sign of Ax*. We shall say the x —xg
is future-directed if Ax* >0 and past-directed if Ax* <0. We define another binary
relation < on M as follows: x¢ < x if and only if the displacement vector x —x¢ from x
to x is timelike and future-directed. Now.the future (or upper) time cone at xg is
Ci(xg)={xe M: xo<«x}. The past (or lower) time cone at xg is
Cr)={xe M: x «xp}. A

Lemma 1.5.1. The sum of any finite number of vectors in A all of which are timelike or
null and all future-directed, is timelike and future-directed except when all of the vectors
are null and parallel, in which case the sum is null and future-directed.

Proof. Sums of future-directed vectors are obviously future-directed. The remaining
assertions are proved by combining three special cases.
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First suppose xi,...x, are all timelike and future-directed. We claim that
X1 + .. +X, is timelike. By induction, it suffices to consider the case n =2. Then
(X1 +X2) (] +x9)=x1 X +2x] *Xp + X9 * x2 which is less than zero since x; and
x are timelike and have the same time orientation (Theorem 1.3.1).

Exercise 1.5.5. Show that if x; is timelike and x is null and both are future-directed,
then x1 + x is timelike.

Finally, suppose x1,...,x, are null and future-directed. We show that X1+ ..+ X, is time-
like except when all of the x; are parallel (in which case the sum is obviously null).
Induction and Exercise 1.5.5 reduce the problem to proving this when n =2. Then
(3 +x2)* (X1 +x2)=2x1 *x2. By Lemma 1.4.1,x; *x, =0 iff x; and x, are parallél.
Suppose then that x; and x, are not parallel. Foreachr =1,2,3,... we define a y, in M as
follows: Choose an admissible basis {e,} for M and let x, =xe, and x5 =x%e,. Set

1 e e .
¥Yn =x}e1 +x%ez +x€’eg + ()c‘ll + —)es. Each y, is timelike and future-directed. By
n

1 1
Thorem 1.3.1, 0>y, sxy=x1 *x3——=x3 so X1*Xy<—2x5 for each n. Thus,

X1 °x9<0. But  x;+x2#0 by assumption so xjex,<0. Thus,
(x1 +x2)*(x1 +x,) <0asrequired. ) g Q.E.D.

- By conmdenng X 1rees—Xp rather than x,...,x, it follows that Lemma 1.5.1 remains
true if "future-directed" is replaced everywhere by "past-directed”

Exercise 1.5.6. Show that, unlike <, the relation < is transitive.

Another 31mple consequence of Lemma 1.5.1 is the analogue of Theorem 1. 3 1 for
nonzero, nonparallel null vectors.: '

Theorem 1.5.2. Let x and y be nonzero, nonparallel null vectors. Then x and y have the
same time orientation (i.e. are both future-directed or both past-directed) iff x ey < 0.

Proof Suppose first that x and y have the same time orientation. Then by Lemma 1.5.1
(and the remark immediately following its proof), x+y is timelike so
0>@+y)+(x +y)=2x «yand therefore x *y < 0. Conversely, if x and y have oppos:te

time orientations, then x and —y have the same time orientation so x » (—y) < 0 and
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therefore x «y > Q. Q.E.D.

If two events are such that either x <y or x <y, then (physically) x is capable of
influencing y either through the propagation of some electromagnetic effect (if x <y) or
by virtue of some material phenomenon which is initiated at x (if x < y). For this reason
these two relations are called causality relations. It is interesting to observe that each of
these relations can be defined in terms of the other:

Exercise 1.5.7 Show that
(a) x <yiff x < yandy < zimply x < z, and

(b) x <yiffx <yandx <z < y for some z in M.

A onc—to-onc'ma'pping F of M onto itself is called a causal automorphism if both F and
F~1 preserve the relation <, i.e., if x <y iff F(x) < F(y) for all x and y in M. It follows
from Exercise 1.5.7 that F is causal automorphism iff it preserves the relation <. A few
examples of causal automorphisms are obv1ous Translatzons i.e., maps of the form
X = x + xq for some fixed x¢ in M. Dilations, i.e., maps x — kx for some positive con-
stant k. Orthochronous orthogonal transformations, i.e., orthogonal transformations
L: M — M which satisfy x « Lx < 0 for all timelike x in M. Any composition of such
maps is another example. Since there is nothing in the definition of a causal automor-
phism to suggest that such a map is neccséarily affine (or even continuous!) one might
expect to find a great many more examples. Nevertheless, Zeeman [Z1] has shown that
we have just enumerated them all.

Theorem 1.5.3. The set of causal automorphisms of M coincides with the set of all com-
positions of translations, dilations and orthoc_:hronous orthogonal transformations.

The deeper geometrical properties of M (and the corresponding physical effeéts)
depend in a crucial way upon the following two "indefinite" analogues of the Schwartz
and Triangle Inequalities. | -

Theorem 1.5.4 (Reversed Schwartz. Inequality). If x and y are timelike vectors in M,
then

(x * )2 2x%y? (70)
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and equality holds only when x and y are linearly dependent.

Proof. Consxder the vector u =ax ~ by, where a =x *yand b =x »x =x2. Observe that
uex=ax?-bx ey=x2(xey)-x2(x *y)=0. Since x is timelike, Corollary 1.3.2
implies that u is either zero or spacelike. Thus, 0<u? =a%x? + b2y? — 2abx ¥, with
equality holding only if # =0. Consequently, 2abx *y <a?x? + b%y2, ie.,

2% (x o y)? <xP(x o y)? + (x2)?y?
20 o y) 2 (x * y)? + x2y? (since x2 < )
x y)? 2x%y?

- and equality holds only if 4 =0. But # =0 implies ax — by =0 which, since @ = x + y#0
by Theorem 1.3.1 or b =x »x <0, implies that x and y are linearly dependent. Con-
versely, if x and y are linearly dependent then one 1s a multlple of the other and equality
0bv1ously holds in (70) ' : Q E.D.

Theorem 1.5.5 (Reifersed Triangle Inequality). Let xandy be timelike vectors with the
same time orientation (i.e.,x *y <0).

Then
WDz ) D

and equality holds only when x and y are linearly dependent.-

-
Proof. By Theorem 154 (x-y)2>x 2= (- x2)(-y2) so Ix» yi >\.’-—x2 \/— . But

¢y <0Oso we must have Xy < */—- 2 \]my and therefore

; S | —2x-._y22\/——x2\/—y o (72)

i

Now, —(x+y)%=—(x + y) o (x +y)=— 2 “oxey—ylaoa?y NxZVy2-y2 by
_(72). Thus, '

—(x +9)2 > (VxZ + 322

\f—(x Ty evx? 4 \/—-jz
V-0 +3)2V-0(x) + V0 )

T(x +y)21(x) + T(y)
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as required. If equality holds in (71), then, by reversing the preceding steps, we obtain
—2x ey =22 \f—-yz and therefore (x »y)? -~x2y2 so, by Theorem 1.5.4., x and y are
linearly dependent. Q.ED.

The reason that the sense of the inequality in Theorem 1.5.5 is "reversed” becomes
particularly transparent by choosing a coordinate system relative to which
x=hxtx3xh, y=(@ ,yz,y3,y4) and x +y (0,0,0,x* +y4) (this simply amounts
to taking the time axis through x+y as the x*-axis. For then
1) = (@ -2~ - 6HH2 <xt and 1) <y?, but Tl +y)=xt 4yt
Observe alse that, by Lemma 1.5.1, the Reversed Triangle Inequality extends to afbitrary
finite sums of timelike vectors with the same time orientation.

In order to discuss worldlines of material ‘paniclés’ we shall require a few prelim-
inary definitions. Let / ¢ R be an interval. A map o: I — M is called a curve in M
Relative to any admissible coordinate system for M we can write
o) = (x 1 (0),x2(2),x3 (1),x*(¢)) for each ¢ in 1. 'We shall assume that o is smooth, i.e., that
each x%(@) is infinitely = differentiable (C™) and that the velocity vector
de! dx* ax® dx*
dat’ dt’ dr’ dt

-a b

ke Ab-%x»-—- so this dcﬁmtzon of smoothness docs not depend on our choice of

admissible coordmates (recali the [A£] is nonsingular). « is said to be timelike if o ‘(2) is
a b
timelike for each rin [, ie., if & (t) « () = nabd; -4-5;— < 0, ‘and future-directed if
” L
%T > 0 for every t. A smooth, future—dlrected timelike curve in M w111 be called a

worldline of a material particle. If ‘o has the form o(t)=xg + t(x —xg), where xg «:x,

o'(t) = Jis nonzero for each ¢ in I. Observc that if x*° =Ai.',x” .

then

then o is the worldline of a free material particle (if, in this definition, we replace x¢ <x
by xo <x we obtain a worldline of a photon). If J R is another interval and
h:J—=1I t=h(s),isaC™ function with #'(s) > 0 foreach sin J, then =o-h:J > M
is called a reparamemzatton of a.

Exercise 1.5.8. Show that B’(s) =A(s) ’(h(s)) and conclude that the definitions of
"smooth", "timelike” and "future-directed" curves are all independent of parametrization.

If o: [a,b] — M is the worldline of some material particle in #,. then we define the
proper time length of o, by '
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b . b a b
L(oy=[ 1o/() » o/()1 Y2 gt = | J_nab d;‘ d;‘— dt

Exercise 1.5.9. Show that the definition of L (ct) is independent of parametrization.

As the appropriate physical interpretation of L(0r) we take

Assumption #8 (The Clock Hypothesis): If o [a,b] — M is the worldline of some
material particle in M, then L(ar) is interpreted as the time lapse between aua) and o(b)
as measured by an ideal standard clock which is carried along by the particle.

The motivation for Assumption #8 is at the same time "obvious" and subtle. For it we

shall require a special case of a result proved in a much more general context later (see
Lemma 4.5.3).

Theorem 1.5.6. Let p,g € M. Then p < q if and only if there exists a smooth, future-
directed timelike curve «: [2,b] — M such that o) =p and o) =¢.

Now, in order to motivate the Clock Hypot'hesis let us partitioh [a,b] into subintervals by
a=1p<t; <..<t,j<t,=b. ‘Then, by Theorem  1.5.6,

a(a) altp) <« Ot]) € ... € 0ty_y) € Oft,) = a(b) so each of the displacement vectors

= o(t;) ~ out;_p) is timelike and future-directed. T(x;) is then interpreted as the time
lapse between ot;) and o(z;_1) as measured by an admissible observer who is present at
both events. If the "material particle" whose worldline is represented by o has constant
velocity between the events a(#;_;) and alz;), then t(x;) would be the time lapse between
these events as measured by a clock carried along by the particle. Relative to any admis-
sible frame,

i

Axf Axb
Ay At

T V= V- A xfA x? —‘/ —MNap——

By choosing A 1; sufficiently small, Ax} can be made small (by continuity of &) and, .
since the velocity of the particle relative to our frame of reference is nearly constant over
small x*-time intervals, T(x;) should be a good approximation to the time lapse between
ou(#;.1) and ou;) measured by the material particle. Consequently, the sum

" Ax, Ax,
Nt At At

At | (73)
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approximates the time lapse between o(a) and ob) that this particle measures. The
approximations become better as the A¢; approach O and, in the limit, the sum (73)
approaches the integral in the definition of L (o).

The argument seems persuasive enough, but it clearly rests on an assumption about
the behavior of ideal clocks that we did not make in section 1.2, namely, that acceleration
as such has no effect on their rates, i.e., that the "instantaneous rate" of such a clock
depends only on its instantaneous speed and not the rate at which this speed is changing.
Justifying such an assumption is a nontrivial matter. One must perform experiments with
various types of "clocks” subjected to real accelerations and, in the end, will probably be
forced to a more modest proposal ("The Clock Hypothesis is valid for such and such a
clock over such and such a range of accelerations."). Indeed, one need only ponder the
effects of the rapid deceleration experienced by a wrist watch when it is dropped to the
floor. '

Proper time length along the worldline of a material particle leads us to the most
useful reparametrization of such a curve. First let us appeal to Exercise 1.5.9 and translate.
the domain of our curve ¢ in the real line. if necessary and assume 0 € . Now define the
proper time function ©(t) on I by ’

t
'tzt(t)f—-f lo(s) e a'(2)1 2 dr .
nel o

Thus, %— = la’(t) » /()| Y2 which is positive and C* since o/(z) is timelike. The

inverse t =h (%) thc_:;efore satisfies %h%— = (dt/dr)"l >0 and we conclude that T is an

acceptable parameter for o. (we are simply parametrizing the worldline o by the time
readings actually recorded along o). We shall abuse our notation somewhat and use the
same names for the coordinate functions of ¢ relative to an admissible basis:

() = (&' @220 .14 (@) | (79

The reparametrization (74) of o will be called its proper time parametrization and is
entirely anaiogous to the arc length parametrization of a curve in R3 except that it is
defined bnly for timelike curves. In particular, when parametrized by T, o has "unit
specd": o

Exercise 1.5.10. Show that if o= 0(1) is a smooth, timelike curve parametrized by
proper time, then o'(t) * o (t) =—1.
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Exercise 1.5.11. Let o= ot) =xg +1(x~xg), where Q (x —x¢) <0 and ¢ € I, be the
worldline of a free material particle. Show that 1= T(x — X)L

~ The Riemann sum argument by which we motivated Assumption #8 has another use
as well. Given a smooth, future-directed timelike curve o [2,b] > M from oa) =g to
ob) =p, the integral defining L (o) can be arbitrarily well approximated by a sum of the
form (73), i.e., by

W0 ) — Ot} + T(OE2) = E 1)) + o+ T(OUE) — Ot _y))
But, by the Reversed Triangle Inequality, this sum is at most -
TOE1) — Ur0) + OF2) = Ot 1) + . + OUlEy) — Ut 1)) = TP — ) .

Thus, in the limit one would expect to conclude that TP —q)=L(w), i.e., that the time
lapse between p and ¢ is longest for the observer at rest (in an admissible frame) who
experiences both (again, "moving clocks run slow”). Thus, we are led to conjecture the
following result which will be proved in a much more general context later (Lemma
4.5.8).

Theorem 1.5.7. Let o: [a,b] > Mbe a Smo‘oth, future-directed timelike curve in M
from oa) =q to aub) =p. Then

Lstwp-q) (74)

and equality holds if and only if o is the worl&linc of a free material paﬁiclc.

1.6. Spacelike Vectors

Now we turn to spaécliké separatiéné, ie., we consider two events x :ind x for
which 0@ —Xg) > 0. Relative ~ to: any - admissible basis we  have
(Axl)2 + (sz)2 + (A3 > (A.vc“)2 so that x —x¢ lies outside the null cone at xg and
there is obviously no admissible basis in which the spatial separation of the two events is
zero, i:e;, there is fio admissible observer who can experience both events (to do so he
would have to travel faster than the speed of light). However, an argument analogous to
that given at the beginning of section 1.5 will show that there is a frame in which Xxoandx

are simultaneous.



The Geometry of Minkowski Spacetime 37

Exercise 1.6.1. Show that if Q (x —x) > 0, then there is an admissible bas_is (e,)} for M
relative to which Ai4 =0. Hint. With {e,} arbitrary, take B, = Ax* /AR and
d'=Ax'/ A%

Exercise 1.6.2. Show that if Q (x —x¢) >0 and s is an arbitrary real number (positive,
negative or zero), then there is an admissible basis for M relative to which the temporal
separation of x and x is s (so that admissible observers will, in general, not even agree on
the temporal order of x ¢ and x).

Since (Ax1)? + (Ax2)? + A x> =V(Ax*)? + Q (x —x¢) in any admissible frame
and since (A x*)? can assume any non-negative real value, the spatial separation of x and,\
x can assume any value greater than or equal to Vm; there is no frame in which
the spatial separation is less than this value. For any two events xo and x for which
0 (x —x¢) > 0 we define the proper spatial separation of xg and x by “

S (x —xg) =V0 (x —xp)

and regard it as the spatial separation of x¢ and x in any frame in which xo and x are
simultaneous. | o

Let T be an arbitrary timelike straight line containing xp (we have seen that T canbe
identified with the worldline of some observer at rest in an admissible frame of reference,
but not neccssanly stationed at the origin of the spatial coordinate system of this frame -
we consider the spec1al casc of a time axis shortly). Let x € M be such that x —xy is
spacelike and let x and X9 be the pomts of intersection of T with Cy(x) as shown in Fig-
ure 1.8. We claim that |

52(x —x0)=T(xo—x1) Xz —Xg) - (75)

Figure 1-.4
£ T
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To prove (75) we observer that, since x —Xx1is null,
0=Qx-x1)=Q((xg~x1)+ (x —xp))
0=-12(rg—x1) + 2(xg ~x1) * (x - xg) + S2(x —x¢) . (76)
Similarly, since x, -~Vx is null,
0=-12(x; —Xg) —2(X3 —xg) {(x ~xg) + S%(x ~xg) . W)

Now, there exists a constant % >0 such that Xo—Xg=k(Xxp—-x7) so
2 (x2—x9)= k22 (xp —x1). Multiplying (76) by & and adding the result to (77) therefore
yields '

~k + k2t o —x1) + (k + DS%(x —x0) =0 .
Since k + 1 #0 this can be written
S2(x —x0) =ktxg —x1)
- =two —x 1 )kT(xo—X1))

=1(xg —%1)T(x, ~xq)

as required.

Remarks. Suppose the spacelike displacement vector x ~ X is orthogonal to the timelike

straight line T. ~ ‘Then (with the notation  as above),

(Ko —x1)* (X—x0)=(p—Xg)*+ (x-X¢)=0 so (76) and  (77) yield
S(x m’j'?g) =T(xg ~—X1)=T(xg —xq) which we prefer to write as

S =) = @00 —x1) + T ~x0)) - (78)
- In particular, this is tfue if T is a time axis. We have seen that, in this case, T can be
identified with the worldline of an admissible observer O and the events Xg and x are
simultaneous in this observer’s reference frame. But then S (x —xg) is the O-distance
between xo and x. Since xg lies on T we find that (78) admits the following physical
interpretation: the O-distance of an event x JSrom an admissible observer O'is one-half the
time lapse measured by O between the emission and reception of light signals connecting
O with x.
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Exercise 1.6.3 Let x, x and x; be events for which x —x¢ and X1 —Xx are spacelike and
orthogonal. Show that

S2(t1 —x0) =820ty —x) + S2(x - x¢)

and interpret the result physically by considering a time axis T which is orthogonal to
bothx —xg and x| —x.

PROBLEMS

LA. Geometrical Representation of the Special Lorentz Transformations

- The special Lorentz transformation (59) corresponds to a physical situation in which
the mouon is one-dimensional so that two spatial coordinates can be suppressed and
spacetlme is essenually two-dimensional. We construct a geometrical representation for
such a Lorentz transformanon in the plane as follows: Label two orthogonal Cartesian
coordlnate axes in the plane x! and x*. The ¥'-axis co1nc1dcs with the set of events with
= 0, I.e., Wlth_the straight line x4 = B,x . Similarly, the x 4_axis is identified w1th the
line _x4 =(1/B,)x!. Since (59) preserves the Lorentz quadratic form, the h_yperbblas
(x1)? - (x4)2 =1 and (x1)? - (qc‘l)2 =-1 coincide with the curves (:El)2 - (i'j')2 =] and‘

;(561)'2 - (24)2 . respectively. Thus, the length scales on the barred axes must differ
from those on the unbarred axes. |

Figure 1.5

(x1)? —~(x*)? = —1 -~

(X1)2 _(x4)2 =1
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1. -Show that one unit of length on the %! - and ¥*-axes has Euclidean length
(1 + BAHY2 (1 - B2)™V2 in the picture.

2. Show that each of the hyperbolas 1?2 - (x*)? =+ k(k > 0) intersect the %! - and
%%.axes at points which are Euclidean distance (1 + B})Y2 (1 -B2)~V2k from the
origin. ' ' '

3. Show that, with these calibrations of the barred axes, both sets of coordinates for any
event can be obtained geometrically by projecting parallel to the opposite axes. '

4. Describe geometrical representations of the relativity of simultaneity, time dilation
and length contraction.

1.B. The Twin "Pafadox"

Spec1a1 relativity is plagued (biessed") with dozens of thought expenments" which
purport to uncover inconsistencies in the thcory Some are instructive (like Exerc1se
1.3.13); some are just stupid. Here’s an example of the latter variety. Suppose that, at
(O 0,0,0), two identical twins part company One remains at rest in the admissible frame
in which he was born. The other is transported away at some constant speed to a dlstant
point in space where he turns around and returns at the same constant speed to rejoin his
brother. At the reunion the stanonary twin finds that he is considerably older than his
more adventurous brother. Not surpnsmg, after all, "moving clocks run slow”. However,
is it not true that, from the point- -of-view of the "rocket twin" it is the ' statlonm-y" brother
who has been moving and must therefore be the younger of the two?

F

Resolve the difficulty. Hint. Draw the worldlin’eé of the two brothers. Which is appropri-
ate, Theorem 1.5.5 or Theorem 1.5.67

Remark. Although the supposed "paradox" is easily disposed of, there is actually more
to this (see [Per]).

1.C. Orthogonahty “

Suppose x and y are nonzero vectors in M withx ey = -0.. Thus far we have shown
the following: If x is timelike, then y must be spacelike (Corollary 1.3.2). If x and y are
null, then they must be parallel (Lemma 1.4.1). If x and y are spacelike, then their proper
spatial lengths satisfy the Pythagorean Theorem § 2x +y)=S8 2(x) + S2(y) (Exercise
1.6.3).
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1. Can a spacelike vector be orthogonal to a nonzero null vector?

2, Show that if x is timelike and y is spacelike, then their spacetime directions are "con-
jugate with respect to the null cone” in the sense of the following diagram. Hint.
Assume without loss of generality that T(x) = S ().

Figure 1.6

Cn(O)

1.D. Image of a Spherical Electromagnetic Wavefront

Let (x!,x%,x3 x%) and G1,5%,%>,%%) be two admissible coordinate systems for M
related by the special Lorentz transformation (59). The upper null cone Cy(0) is
described in these two coordinate systems by x*=p and = p, where
p= ((xl)Z + (x2)2 3)2)1/2

x* = a positive constant and show that in the unbarred coordinate syéte‘m, the points on

+ (x and similarly for p.. Intersect C{(0) with a hyperplane

this intersection satisfy
p=p/ (cosh 6, —sinh 8, cos )

where cos ¢ =x 1/‘p. Conclude that the projection of this intersection onto a hyperplane of
constant x? is an ellipsoid of revolution with major axis along the x ! -axis and eccentricity
B, =tanh 8,. Interpret this fact physically.

LE. The Distance Between Timelike Straight Lines.

Let xo and X’y be two events and. A and A’ two timelike unit vectors
(A+A=A"+A"=-1). We consider the two timelike straight lines L = {x( + T4: T € IR}
and L' = (x'y + TA": 7 € R}, each parametrized by proper time. F1x an arbitrary point
g =xp+TAon L and let p =x’y + T'A” be the unique point on L’ which is simultaneous
with ¢ in an admissible frame whose time axis is parallel to L. Finally let N =p — g be the
displacement vector from q to p.
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1. Nisorthogonalto Asot =(4 *A) (T + A « (p —Xo)).

A*(p-x0) |,
oo,

2. N=-uA+(@A+A)"A) +C, where C = (X —x0) - {

3. The distance D between L and L’ measured at ¢ is defined by D =S (N). Show that

D =01 -(A+A)2)-2tC+(A+ (A A)V1AY+C - C .

4. Land L’ are parallel if and only if D? is constant.

Hint. Use the Reversed Schwartz Inequality (Theorem 1.5.4).

Remark. A generalization of these ideas to arbitrary timelike curves was used by Born in
his relativistic theory of the rigid body; see [Sy1] for more details.

1.F. Invariant Null Directions

Show that the orthogonal transformation corresponding to any proper, orthochro-
nous Lorentz transformation leaves invariant at least one light ray. Hint. .Use the
Brouwer Fixed Point Theorem: Any continuous map of a closed ball in R? into itself
leaves at least one point fixed.-

1.G. Infinitesimal Matrices and Commutation Relations
Let R(¢) be the rotation in £ defined by |

cost —sint O 01
‘ sint cost 0 0
i Ri®=| 6 o 10

0 0 01

1.0 Expand cos ¢ and sin ¢ into power series about ¢ =0 and show that, for small t, R3(t)
can be approﬁmated by 44 + R3t, where I 44 is the 4 X 4 identity matrix and R is
the infinitesimal matrix corresponding to rotation about the x3-axis defined by

0-100]

‘ 11000

Rs=lo o000
0000
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dR 3(1)
dt t=0
an "infinitely small rotation" about the x> -axis.

Observe that R3 = . Heuristically, one thinks of 7444 + Rt as the matrix of

2. Define analogous rotations R () and R,(t) about the x!- and x2-axes and
corresponding infinitesimal matrices R ; and R 5.

3. Let[A,B]=AB —BA be the commutator of the two matrices A and B. Prove the fol-
lowing commutation relations:

[R1,R2]=R;
[R2.R31=R,

[R3,R1]=R2 .

4. Show that, for small ,, the specnal Lorentz transfonnauon L(B ) can be approxi-
mated by 1 4.4 + L 0,, where '

(0 00 -1
dL 8,) 0000
~7de, le-0 |0000
100 0

is the infinitesimal matrix correspondmg toa Lorentz "boost" in the x -dzrectzon
5. Prove thc followm g commutatxon rclatlons
| [R1,L]1=0
[Ry,L]= - the infinitesimal matrix for the Lorentz boost in the x3-
direction o

[R3,L]= - the infinitesimal matrix for the Lorentz boost in the x2-
direction.

1.H. The Spinor Map o _ ,

We let. SL (2,C) denote the group of complex 2 x 2 matrices with determinant 1.
Complex conjugation will be indicated by * and the conjugate transpose of a matrix 4
will be denoted A*. A Hermitian matrix is one which equals its conjugate transpose.

ab _ .
1. Fixan 4= [c d:’ in SL(2,C). Show that A gives rise to a determinant preserving

map of the set-of 2 x 2 Hermitian matrices to itself defined by Q - Q A Q At for
every Hermitian Q. : i
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| o o fxt+xd xteix?
2. Evety 2 x 2 Hermitian Q can be written in the form R x4 _ 53 where

the x%, a - 1,2.3,4, are real, i.e., every such Q is a real linear combination of o,
a=1,2,3,4, where | '

01 0 i ‘ 10
S1=110|> C25|0|" 9T|0 -1

are the Pauli spm matrices and 6, is the 2 x 2 identity matrix.
3. Let Q= x"(‘)‘a‘ as in #2 and, similarly, 0 =AQ 4" =% ©,. Write out the map
Q-0 explu‘:ttly to show that .

- 1 TRefad* +bc*) -Im(ad*-bc*) Re(ac*—bd¥) Re(ac*+bd*) |
1Xx Im(ad* +bc*) Re(ad*-bc*) Im(ac*-bd*) Im(ac* +bd*) x!
172 Re(ab*—cd*) _Tm(ab*—cd*) 1/2(aa*—bb*— 1/2(aa* +bb*— | | x2
12217 cc* +dd*) cc* —dd*) 3
5 Re(ab* +cd*) —Im(ab* +cd*) 1/2(aa*-bb* + 1/2(aa* +bb* + | | x4
NEN L et cc* +dd*) -

4.  Show that Miz% %"= 'r]abxffxf 50 that the matrix in #3isa general Lorentz transfor-
mation. Shoiw' also that this Lorentz transformation is orthochronous and proper.
Hint. To show that the transformatlon is proper use the fact that SL (2,C) is a con-
'nected subspace of C*=R3 and that tho determinant of the mamx in #3 is a con-
tinuotis function of a,b,c and d. This argumcnt requires some farmhartty with
point-set topology '

5.7 Denotmg the miatrix in #3 by [AZ] show that

Af=—tr (o, Ao, A*) .

- h - -b
Hint. First show that, for any real numbersxa, a=1,23,4,x 7= ;tr (6,0 ).

6. The map from SL(2,C) to L defined by A —> L g, where L 7 is the matrix in #3 is
" calléd the spinor map. Show that, for any Hermitian ¢ and atiy two elements Ay
and A, of SL(2,C), (A Ar) O (A A))* = (A @ Af) A3 and conclude that the

- spinor tap isa group homomorphism, i.e., preserves matrix prodticts; o

7. The spinor map carries both 4 and —4 onto the same Lorentz transformation.
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8. The spinor map is precisely. two-to-one, i.e., L a2, =L g, implies 4; =1+4,. Hint.
Consider 4= 4, 45!.

9.  The spinor map carries the unitary elements of SL (2,C) onto rotations in L. Hint,
Ais unitary if 21 = 2",

10. Prove that the converse of #9 is also true, i.e., that every rotation in L is the image
under the spinor map of some unitary element of SL (2,C). |

11. Let 6, be a real number and L(6,) the corresponding special Lorentz transformation.
Show that L. (8,) is the image under the spinor map of £ L (8,) € SL (2,C), where

7 cosh(6,/2)  —sinh(0,/2)
LO)=] _Ghne,2)  cosh®,/2)

Hint. Use the following  identities: cosh?x — sinh_zx =1, cosh2x = cosh®x + sinhzx,
sinh2x = 2sinhx coshx.

12. Show that the spinor map is surjectwe Hint. Use Theorem 1.3.5 and the results of
#6 and #11.

Summary. The spinor map A4 — L g is a two-to-one homomorphism of SL (2,C) onto £
which carries £+ onto L g for every A4 in SL (2,C) and which, when restricted to the uni-
tary subgroup of SL (Z,C ), maps onto the rotation subgroup of L.

LL The Zeeman Topology for M | » |

This problem requires some familiarity with elementary point-set topology. We let
ME denote Minkowski spacetime with the usual Euclidean topology of R*. The (sub-
space) topology induced by ME 6:1 .any' spacelike hyperplane or timelike straight line is
obviously the Euclidean topology. . The Zeeman topology for M is the finest topology
with this property, i.e., it is the topology .in which a subset U of M is open if and only if
UnNA is a Euclidean open subset of A for every spacehkc hyperplane and timelike
straight line A. Endowed with this topology we denote by M.

1. Every fME open set is 0pen in Mz, but the converse is not true. Hint. For each
£>0, let NE (x) be the usual Euclidean open ‘¢-ball about x. Deﬁne the Z-oper ball
NZ(x) by N2(x)=(NE@)—Cy(x) U {x} (throw away the null cone at x and
replace the pomt x). NZ (x)is Z—opcn but not E—open
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2. The subspace topology induced by MZ on any light ray is discrete.

3. MZ is Hausdorff, but not normal. Hint. To prove non-normality use the Baire
Category Theorem.

4. A sequence X = {x,} 5 of distinct points in M which converges to a point x in
in the Euclidean topology, but does not converge in. MZ is called a Zeno sequence.
(a) A Zeno sequence is closed and discrete in M-

L==3

(b) Fix an x in M Let {L,}p=1 be a sequencé of (not necessarily distinct)
light rays through x. Select x,, in L, — {x} such that d (x,x,) = 0 as n — oo,

o0

where d is the Euclidean metric. Then {x,},-; is a Zeno sequence in M.

(c) Fix an x in M. Let {L,},=; be a sequence of distinct timelike straight
lines through x. Construct a sequence as in (b) and prove that it is a Zeno
sequence. Hint. Show that any spacelike hyperplane or timelike straight line
contains at most finitely many terms of the sequence. '

(d) Repeat the construction in (b) and (c) with a sequence of distinct space-
like straight lines such that at most finitely many lie in any given spacelike
- hyperplane. .
The Z-open balls Nf-(x), £ > 0, do not form a local base at x. - -

6. M isnot locally compact; indeed, no point of MZ has a compact neighborhood.

7. Let f:10,1]— M be a continuous map of the unit interval into MZ which is
strictly order preserving, i.e., t; <#, in [0,1] implies f (t1) < f (Ig) in M. Let
x= f (0)- '

(a) There exists an € > 0 such that £ [0,€] lies along a timelike straxght line
through x. Hint. Suppose not and inductively construct a sequence {Xx,} =1
of points lying on distinct timelike straight linés through x and with f~ L)

- in (0, 1/n). Now use #4(c) and #4(a). '

(b) fI0, i] iS pzccewme linear, con51st1ng of a finite number of intervals
along timelike straight lines. '

(c) There exists a homeomorphlsm g of [0,1] onto 1tse1f such that
f-g:00,11— MZ is ap1ecew1se linear embeddmg |

Remarks. Problem #7 indicates a rather close _connection between the linear structure of
M and the topological structure of M (the corresponding results for ME are obviously
false). Zeeman {Z2] pursued these matters in more detail and proved the quite remarkable
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fact that any homeomorphism of M onto itself is either an orthogonal transformation of
M, a translation, a (nonzero) scalar multiplication or a composition of these (and there-
fore is, in particular, linear). The ideas have been generalized by Gébel [G] and Hawking,
King and McCarthy [HKM].



CHAPTER 2

SOME CONCEPTS FROM RELATIVISTIC MECHANICS

2.1. Material Particles and Photons

A material particle in M is a pair (a,m), where o: ] — M is the worldline of a
material particle and m is a positive real number called the particle’s proper mass. A free
material particle is defined in the same way, but with o the worldline of a free material
particle. If o is parametrized by proper time 7, then o(t) » o'(t) =—1 and we shall refer
to a'(t) as the particle’s 4-velocity (generally denoted U). Itis sometimes convenient to
include the particle’s proper mass m in the parametrization by defining 6 =1t/m. Then
o/'(0) * 0(0) = —m? and we shall call o/(c) =mo/(t) the particle’s 4-momentum (desig-
nated P). Indeed, one could define a material particle as a smooth, future-directed, time-
like curve o = auz) for which o/(z) » o/(?) is constant then take T(0/(¢)) to be the mass of
the particle.

2

Relative to any admissible coordinate system (JC—I X ,x3,x4) the 4-velocity o(T) is

de! dx? dx® ax? ai! ax? & @t -
iven b , , , I =, . , th ts of
given by T de g e e g go | ¢ the components o
" 74 b
o’(t) in another system, related to (x%) by iamAgxb, then 6?1: =Aj %, ie.,

v’ =AU b ,a=1,234 The components of (,m)s 4-momentum satisfy the same
transformation law. In general, any "object" which is described in each admissible coor-
dinatization of M by-four numbers (components) i vz v3vh, a’?l,W,W,f}‘*),
related by the transformation law '

Ve=A%V? a=1,2,3,4, )

is called a (contravariant) 4-vector on M. Since these objects "transform like points” they
constitute a natural generalization to M of the familiar notion of a "vector" in IR>.
Another important example is the 4-acceleration o”(t) of (¢«,m) defined by

d2xl d%x? d*3 @%4
Cl,”(‘t) —

2 Rl i Jand designated A.



- Some Concepts from Relativistic Mechanics 49

Exercise 2.1.1. Show that U » A =0 so that the 4-acceleration of (o,m) is either zero or
spacelike. Hint. o/(t) » o/(t) =1 forall 1.

An admissible observer is more likely to parametrize a worldline by his own time
dxl dx2 dx3

dx4 ’ dx4 ’ dx4 ’
where B =B(x*) = ((dx ldx*)? + (dx2dx)? + (dx3/dx4)2)1’2 is the usual magnitude of
the particle’s instantaneous velocity 3-vector in the given frame, i.e., its speed in that

coordinate x_4. Then ' xH = 1] so a’(x4)-q'(x4)=1-~[32(x4),

frame. Thus
x A ——
=V _pZax?® .
O .
Moreover, the particle’s 4-veloc1ty and 4- momentum are now given by

! ax? & act | (a! o ad at )@t
U= dt’ dt dt’ dr ot et et @t | ar

: 1 2 3 '7
. o o172 | dx dx® dx ‘
and
o (gl g2 3 N B
= av-12 | dx” dx” dx . | |
. .__Pwm(l—ﬁ,) [dx“'dx“’dx“’lJ' _ (3)
Letting y=(1-pH) V2 yi=, '/dx4 and denoting the velocity 3-vcctor of the parncle in

thzs frame by? (v ,v2,v3) onc can wnte | _ _
v=y®@1n = IO @
and | L
P=my@, 1) . A )
Writin.gr out the corhpo_nents ;of the particle’s 4-momentum in more detail and cxpanding
Y= (1 - B*)"1'2 by the Binomial Theorem leads to

- vi =y + }-mv"Bz'+..., i=123 | (6)

Vi-p? 2

"p"zm,'yv":
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and

ptamy=— =t LB 4 . Q)

V1-p? 2

Identifying m with the classical "inertial mass" of Newtonian mechanics, the expansions
in (6) and (7) contain some familiar terms. The mv' in (6) make it clear that, for small
relative speeds, the pi reduce to the components of the Newtonian momentum of the par-

ticle. The quantity is sometimes referred to as the "relativistic mass" of our par-

V1-p?

ticle since it permits one to maintain a formal similarity between the Newtoman and rela-
tivistic definitions of momentum. Inertial mass was regarded in classical physics as a
measure of a particle’s resistance to acceleration. From the relativistic point of view this
resistence must become unbounded as f — 1 and m 7y certainly has t}}is property. We
prefer, however, to avoid the quite misleading attitude that "mass increases with velocity”
and simply abandon the Newtonian view that momentum is a linear funcuon of speed.

Turning now to (7) we recognize the term -;?m [32 as the Newtonian kinetic energy of

(o,m). For this reason we shall call P 4 the total relativistic energy of (0,,m) and often
denote it E.

Remark. The concept of energy in classical physics is a rather subtle one. Many dif-
ferent types of energy are deﬁned in different situations, but each is in one way or another
intuitively related to a system s "ability to do work”. Now, simply calling P* the total
relativistic energy of (c,m) does not insure that this intuitive mterprctauon is still valid in
the new situation. Whether or not the name is appropnate can only be deterrmned experi-
mentally. In particular, one should determine whether or not the presence of the term "m"

- in the expansion of P* is consistent with this interpretation. Observe that, when B=0
(i.e., in the "instantaneous rest frame" of the particle), PY=E=m(= mc? in traditional
units), which we interpr& as saying that, even when the particle is at rest relative to an
admissible frame, it still has "energy"” in this frame, the amount being numerically equal
to m. If this is really "energy” in the classical sense, it should be capable of doing work,
ie., it should be possible to "liberate” (and use) it. That this is indeed possible has, of
course, been rather convincingly demonstrated. | '

We now ask the reader to show that, if one believes that ' 'relativistic momentum"
should be a 4-vector and that the spatial components defined by (6) are "right”, then one
has no choice about the fourth component.
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Exercise 2.1.2. Show that two 4-vectors whose first three (spatial) components are the
same in every admissible frame must, in fact, be equal.

Next we observe that not only material particles, but also photons possess "momen-
tum” and."energy" and therefore should have "4-momentum". Witness, for example, the
"photoelectric effect” in which photons collide with and eject electrons from their orbits
in an atom. Since they propagate rectilinearly with constant speed (1) in any admissible
frame, photons are in many ways analogous to free material particles. Unlike material
particles, however, the photon’s characteristic feature is not mass but energy (frequency,
wavelength) and this feature is highly observer dependent (c .., wavelengths of photons
emitted from the atoms of a star are "red-shifted” relative to those measured on earth
because the stars are receding from us due to the expansion of the universe). Moreover,
there is no "proper wavelength” of a photon analogous to the "proper mass" of a free
material particle since there is no admissible frame in which the photon is at rest (the term

proper wavelength" is often used to designate the wavelength measured in the rest frame
of the photon’s source, but unless the source is itself at rest in some admissible frame this
varies from point to point along the source’s worldline). Consequently, a "photon" in M
must be defined somewhat differently than a free material particle. Let us consider the
worldline o= 0(z)=xg + tn, ¢t € I, of a photon, where | g:]R 1s an mtcrval contammg
zero, x ¢ is in M and n is a future-directed null vector.

Exe'rcise‘ 2.1.3. Show that, relative to any admissible basis {e,} for fM;"

n=eld+ey) ,

where E=-—ne .é4 and 2= ((n-e el')2 + (h . 32)2 + (r.zr- e3)2)‘1/2((n seq)e; +
(n '62)82 +(nee 3)e 3) is the dzrecnon 3 vector of the photon in the corresponding
frame,

Now, by analogy with material particles (for which —P » ¢4 =P*=E) we shall call n the
4-momentum of the photon whose worldline is o and € the energy of the photon as meas-
ured in the frame (e,}. The frequency v and wavelength A of the photon in this frame are
given by v=g¢/h and A = 1/v, where h is a constant (called Planck’s constant).

To compare photon energies in two adm1s31ble frames we consider a second admxsm-
; —)

ble basis {ea] for A Then n = &(d + €4), where € E=—n-éy.
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Exercise 2.1.4. Show that £ =ye(1 - B, ( » d)). Hint. Exercise 1.3.5.

But_rzand‘:?lie in the subspace [e1,e,,e3] spanned by e,e, and e3 and the restriction c;f
the Lorentz inner product g to [e,€4,e3] is just the usual positive definite inner product
on R3. Thus, ? -7: cos 0, where 0 is the angle in § between the direction of the photon
and the direction of 3.- We therefore obtain

A A i | (8)

which is the relativistic formuia for the Doppler Effect. Usmg the b1nom1a1 expansmn for
¥ yields

BV _ o loow o o
e_“v—(l B,cos(-))+2B,(1 ﬂ,cose).f... 9

The first order term 1 — B, cos © is the familiar classical formula for the Doppler effect,
while the remammg terms constltute thc rclauvzstlc correctlon contnbuted by time dila-
tion. ' ' ’

2.2. Contact Interactions |

We shall henceforth use the term free particle to refer to either a free material parti-
cle or a photon. If Ais a finite set of free particles, then each element of A has a unique
4-momentum. The sum of these 4-vectors is called the total 4-momentum of'ﬂ. A con-
tact interaction (between free particles) in M is a triple (4,x, 4), where 4 and A are two
finite set§’of free particles in M neither of which contains a pan‘ of partlcles with hnearly
dependcnt 4-rnomenta and x is an event such that '

? (a) x is the termmal pomt of all the parncles in 4, ie., x =o(b) for all
o [a,b]l— M in 4.
(b) x is the m1t1al point of all the particles in /‘?L’ and

(c) the total 4-momentun of A equals the total 4—momentum of ﬁl

. Remarks. x _shoiﬁd be regarded as the “"collision” of all the particles in 4, from which
emerge all the particles in . The requirement that neither A nor A contain a pair of par-
ticles with linea_ﬂy dependent 4-momenta is included because the particles in such a pair
would presumably be physically indistinguishable. Property (c) is called the conservation

i

of 4-momentum and contains the appropriate relativistic generalizations of two classical
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conservation principles: the conservation of momentum and the conservation of energy.

Several conclusions regarding contact interactions can be drawn directly from the
results we have available. Let us consider, for example, an interaction (4,x, A’) for which
A consists of a single photon. Then the total 4-momentum of 4’ is null so the total 4-
momentum of 4 must be null as well. Since the 4-momenta of the individual particles in
A are all either timelike or null and future-directed, Lemma 1.5.1 implies that all of these
4-momenta must be null and parallel. Since 4 cannot contain two distinct photons with
parallel 4-momenta we find that 4 must also consist of a single photon which, by (c),
must have the same 4-momentum as the photon in 4. In essence, "nothing happened at
x". Our conclusmn then is that no nontrivial physical interaction of the type modelled by
our deﬁmnon can result i in a single photon and nothing else.

A contact interaction (A,x,4) is called a disintegration or decay if A is a singleton.
Suppose, for example, that 4 consists of a single material particle of proper mass m and
A consists of two material particles of proper masses m 1 and m, (such disintegration do,
in fact, occur in nature, e.g., in alpha-emission). Let Py,P; and P, be the 4-momenta of
the particles with proper masses mg,m; and m, respectively. Then Py=Pq + P,.
Appealing to the Reversed Triangle Inequality (Theorem 1.5.5) and the fact that P 1 and
P, are linearly independent we find that

mo>mip+msy .. . . | (10)

The excess mass mg — (m 1 + ms) of the initial particle is regarded as a measure of the
amount of energy required to split m¢ into two pieces. Stated somewhat differently, when
the two particles in /4" were held together to form the single particle in 4 the "binding
energy" contributes to the mass of this latter particle, while, after the decay, this difference
in mass appears in the form of kinetic energy of the generated particles and released radi-
ant energy. - ': \

Exercise 2.2.1. Analyze a disintegration interaction (4,x,.4) in which 4 consists of a
single photon,

@);ercise 2.2.2. Show that a free electron cannot emit or absorb a photon. Remark.
Electrons can emit and absorb photons (e.g., in the photoelectric effect), but in order to do
so they must be bound in an atom. A sansfactory description of this phenomenon requires
quantum mechanics.
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Problems 2.B and 2.C at the end of this chapter deal with two rather more complicated
contact interactions, each of which is of great importance in elementary particle physics.

2.3. Energy-Momentum Tensors

Let us consider, informally, a "stream" of free material particles, all with the same
proper mass m and parallel worldlines (i.e., traveling in the same direction with the same
speed relative to an admissible frame). Each particle in the stream then has the same 4-
velocity U .so that one can identify a unique 4-momentum P =mU associated with the
stream itself. However, it is clear that this 4-vector alone does not provide all of the
relevant information about the stream since, for example, it contains no clue as to the
"energy density" of the stream determined by the number of particles "per unit volume".
Of course, "energy density" alone is not a relativisitically meaningful (i.e., observer-
independent) notion since "unit volume" is not. Indeed, what is energy density in one
frame will be some combination of energy density, "energy density flux" and "momentum
density flux" when viewed from another. As it happens it is quite easy to construct an
"object" which contains all of this information. Denote by ng the number of particles per
unit volume in the stream as measured in an admissible frame in which all of the particles
are at rest (ng is called the proper particle density of the stream and we assume, for the
present, that it is constant). Now define a 4 X 4 matrix [T a5, p=1,23,4 in each admissible
frame by

T% = nomU°U®, a,b =1,2,3,4, | oAy

where (U,U%,U3,U?) are the components of the 4-velocity vector U in this frame. In
another frame with coordinates X% = A§ x? we have U% = AZU? and so ‘

T® = AS AL T gb=1,2,3,4. 12

Any, "object” which is described in each admissible frame by a 4 x4 matrix [T%] and
with the property that these matrices corresponding to different frames are related by the
transformation law (12) is called a ( contravariant) 4-tensor of rank 2; the entries of each
matrix are the compbnents of the 4-tensor in the corresponding frame. The components
of the particular 4-tensor defined by (11) admit simple physical interpretations: Usmg the

ﬁ2 -1/2

- notation of (4) and (5) and letting n =ng Y=no(l — we obtain:

Y=mym

Tid4 = T4 _ T4 (13)
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=(m yvi)n

Tij =Tﬁ — Ti4vj

Exercise 2.3.1. Derive the equalities in (13).

The physical interpretation of n is clear: The proper particle density ng is determined by
an observer for whom the stream is at rest by counting the number of particles in what he
measures to be a unit volume. If another observer measures the volume occupied by this
same set of particles he will find it contracted by a factor of (1 ~ B#)¥2 so he will attribute
to the stream the particle density no(1 — B2)"V2 = n. Observing next that m 7 is the energy
per particle measured in S (see (7)) and m yvi, i =1,2,3, are the spatial components of
the particle’s 4-momentum in S, we arrive at the following physical interpretations:

T = energy density

T4 = T4 = j—component of energy density flux
= i-—componerit of 4-momentum density
T% = T# = {j—momentum density flux (14)
= amount of x’~momentum that flows in the

xJdirection per unit volume per unit time

(all as measured in the frame S (x 1 ,xz,x3,x4)).
Exercise 2.3.2. Convince yourself,

The 4-tensor [T?] defined by (11) is called the energy-momentum 4-tensor for the given
particle flow. Observe that it is symmetric, ie., Th =T for all a,b=1,2,3,4. A
"smoothed out"” version of these ideas is presented in Problem 2.F on pressure free perfect
fluids.

The situation we have been considering suggests a pattern that seems to persist
throughout physics. By virtue of the local presence of matter, photons, electromagnetic
fields, etc. a certain region of spacetime is, in some sense, "endowed with” energy and
momentum which can be described at each point by a symmetric 4-tensor of rank two. In
each admissible frame the entries (components) are constructed according to the
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prescription laid down in (14). Of course, the form of this energy-momentum 4-tensor
will depend on the specific set of physical circumstances one is trying to model (a stream
of material particles, a perfect fluid, a rotating mass, an electromagnetic field, etc.). The
total energy-momentem 4-tensor for a given region of spacetime (which essentially
describes everything there is to know about the mass-energy content of that region) will
generally be a sum T =T + ... + T,,, where each T}, corresponds to a particular physical
field.

In order to formulate a general definition it will be convenient at this point to intro-
duce some new terminology and notation. If V is any 4-vector with components
V4, a=1,2,3,4, relative to an admissible basis {e,}, then the numbers

V=1 V?

are called the covariant components of V relative to {e,}.

Exercise 2.3.3. Show that Vl,Vz,Vg and V4 are actually the components of V relative to
the basis {e?} for M which is dual to {e,}, defined by e? =n%e;,. Observe also that
{e®} is not an admissible basis for M since its time orientation is reversed.

With this one can write, for example, V « W = V4W,. In addition, we can now regard a
rank two 4-tensor as a real-valued, bilinear function on 4-vectors in the following way:

TV, W)=T®V,W, .

Exercise 2.3.4. Show that this definition is independent of coordinates, i.e., that, relative
to twp admissible bases {e,} and {¢,}, T% V.Wp = T “bt_/af’i_/b‘

Alternatively, one can define the covariant components of T by T, =Tgaq Nop ToB
(transformation law T‘ab = K,‘;‘KET“B) sothat T(V,W) =T, V?Wb .
Such a 4-tensor T is therefore not unlike an inner product, although it need not be either

symmetric or nondegenerate. In the particular case of the energy-momentum 4-tensor
defined by (11) we find that

TWV,W)=nom(U « V) (U « W) ' (15)
and so

T(V,V)=ngmU + V)? . T (16)
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If {e,) is any admissible basis for M, then (4) and (16) yield
T(eq.e4)=n0my)=T* =energy density in {eq) . a7

In general we define an energy-momentum 4-tensor on M to be a symmetric, rank to 4-
tensor T which satisfies |

TV,v)=20 | (18)

for every timelike vector V ((18) is called the weak energy condition), for every unit time-
like vector V, T (V,V) is called the energy density measured in any admissible frame with
V= €4

Exercise 2.3.5. Show that if T satisfies the weak energy condition, then (18) is also
satisfied for any null vector V.

Exercise 2.3.6. An energy-momentum 4-tensor T is said to satisfy the strong energy con-
ditionif .

TV, V)2 -%-(trace TY(V V),

for every timelike vector V. Show that this is true of the 4-tensor defined by (11). Hint.
The trace of T is defined by trace T = T% =1,,T in each admissible coordinatization of

M. Show that T'(V,V) -~ —%— (trace TYV s V) =nom[(U » V)2_ —U-U )V(V'.- V)] and then
use the Reversed Schwartz Inequality (Theorem 1.5.4).

Exercise 2.3.7. Show that if T satisfies the strong energy condition, then (19) is also
satisfied by any null vector V.

24, Electromagneﬁc Fields

We begin with a rather formidable sequence of definitions and then attempt some
motivation. A 4-tensor F of rank 2 is said to be skew-symmetric if F ba - _Fab for all
a,b, =1,2,3,4 (and so, in particular, F %% = 0).

Exercise 2.4.1. Show that this definition is independent of the admissible basis relative to
which the components of F are calculated.
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Now let R be a region in M. A (contravariant) 4-tensor field of rank 2 on R is a function
which  assigns to every x in R a  (contravariant) 4-tensor
F=F x)=[F ab (xl,xz,x3,x4)];,,b=1_2,3,4 of rank 2; the field is said to be smooth if each
Fab (xl,xz,x3,x4) is C™ on R (i.e., has continuous partial derivatives of all orders and
types with respect to x1,x2,x> and x* on R).

Exercise 2.4.2. Show that this definition of smoothness is independent of admissible
coordinates. |

d

Foreacha,b,c =1,2,3,4, we let F "b, c= 3° F%_ 1t follows from the chain rule that, in
X

another admissible coordinate system (%),

F® c=AL AJALFB  y | (20)
Remark. The transformation law (20) is characteristic of a "mixed 4-tensor of contra-
variant rank 2 and covariant rank 1". Such a 4-tensor can be identified in the obvious way
with a trilinear real-valued function on 4-vectors (T(U,V,W)=T%U,V,W°). Indeed,
with the examples considered thus far the reader should have no difficulty formulating a
general definition of a "4-tensor of contravariant rank r and covariant rank s" for any
non-negative integers r and s and identifying such an object with an (r + §) - linear real-
valued :fun.ction on 4—vectors, €.8., a 4-tensor of contravariant rank 1 and covariant rank 3
has components Tj3.; in each admissible frame which transform according to
TS . =A3KEKZKST§Y5 and operates on four 4-vectors V,W,X and Y to give the real
number .
-
T(V,W,X,Y)=TL V., Wox°y4

Now, an electromagnetic field on R is a smooth, skew-symmetric, contravariant 4-
tensor field F of rank 2 on R whose components F? relative to any admissible basis for
M satisfy Maxwell’s equations

F% =0, b=1,2,34, v3))
 F% + F% + FE=0, ab=1,2,3,4 (22)

on R.

As to the motivation we ask the reader to recall that, in classical physics, an elec-
tromagnetic field was described in every admissible frame by two 3-vector fields
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E)= Eiey + Eqeq + Ezes (the "electric field vector") and?-eB 181 + Baeo + Baes (the
"magnetic field vector”). The components E; and B; are measured by well-defined and
agreed upon experimental procedures and are found to satisfy the differential equations

E E E
divE=EL , 9E2  OE;

x| @
curl B- g—g— =0 (24)
divE = ?;;11 ¥ gf; + gf; = 25)
curl E + —g—’; =0 : _ (26)

in any charge-free region. Now, while one could seek a natural relativistic generalization
of E) and 735) separately, such an approach is clearly not recommended by the facts since
how much of an "electromagnetic field" is electric and how much magnetic depends
entirely upon the particular admissible frame in which the measurements are made. For
instance, a single point charge at rest in frame S will give rise to a purely electrostatic
field in S, but, when viewed from another frame 3 will be judged "moving” and conse-
quently will generate a nonzero magnetic as well as an electric field (this is the familiar
phenomenon of “"electromagnetic induction”). A consistent relativistic view must there-
fore regard electric and magnetic fields as different manifestations of the same basic
phenomenon. One therefore seeks a single "object” to act as the relativistic model of an
electromagnetic field. The choice of a skew-symmetric 4-tensor of rank 2 is suggested by
the fact that such a 4-tensor has precisely six indépendent componénts (just enough to
accomodate E{,E,,E43,B1,B; and .B3). One possible arrangeinent of these six com-
ponents in a 4 x 4 skew-symmetric matrix is

0 By By —Ei]
-B4 0 B, -E,

Fl1=\p, B, 0  -E @7)
B, B, E; 0 |

Reversing this point of view we formulate the following definitions. Given an elec-
tromagnetic field F on R ¢ M we define, in each admissible frame, the real-valued func-
tions E;, B; i =1,2,3,on R by
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E{=-F% E,=-F¥ E,=_F3%

By=F® B,=F%  By=F2 (28)

The electric and magnetic 3—vectér fields associated with F in this frame are then defined
by E):Elel + Eqey + Ege5 and .B-)=Blel + Byey + B3es respectively. With this
notation, Maxwell’s equations (21) and (22) reduce to (23) - (26).

Exercise 2.4.3. As sample verifications show that, when b =3, (21) is just the third com-
ponent of (24) and that (22) reduces to (25) whena =1, b =2, and ¢ =3. Also observe
that, whenever two indices in (22) are equal, the equation is satisfied snnply by virtue of
the skew-symmetry of [F?°].

Remark. It is all very well to arrange the six components E; and B; in a skew-symmetric
matrix such as (27), but it is not within our power to insist that these be the components of
a 4-tensor which "represents” the electromagnetic field. In each admissible frame the
electric and magnetic field components are measured so that whether or not the com-
ponents in different frames are related by the transformation law (12) can only be deter-
mined by experiment. One can make such an experimental determination directly (based,
for example, on (30) below) or one can assume the 4-tensor character of F% and judge
the validity of this assumption by the success of the resulting theory

It will be convenient to have the transformation law F AﬁF B written out
explicitly in terms of the E; and B;, at least for the special Lorentz transformatzon (58) of
Chapter 1. We ask the reader to perform the manual labor.

E_'xsercise 2.4.4. Show that if A is the special Lcjrentz tran_sfo;mation (58) of Chapter 1,
then, in terms of the notation established in (28), the transformation law (12) becomes

it

E;, E,=Y(E,-B,B3) Ej =Y(E3 + B,B2)
By By=YB,+B,E3) Bi=vB;-B,E)

1 S
(29)

T Y

1

The most important feature of (29) is the "mixing" of the field components. For example,
when § measures a purely electric field (B| =By = B3 =0), 3 measures the components

tl'.!l

=E; Ey=YE;  E3=YE;

| — 4 (30)
=0 By=13,E3 B3“—YBrE2 |

so that an observer in 3 will, in general, experience a nonzero magnetic field. Similarly, if
E|=Ey,=FE5=0,then '
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0 EQ =-3,B3 EB =vB,B,
1=B; By=1B, B3 =7B1

i s:ll

(31)

Exercise 2.4.5. Show that %—FabF @ B .B-F+Fin any admissible frame of refer-

ence and deduce that B_} Eﬁ is invariant under arbltrary Lorentz transformations. In
particular, if IE1 = 1B in one frame, then the same must be true in any other frame.

Here F a5 = NaaNpsF B i5 the * 'purely covariant form" of F ab,

We turn now to a description of the energy-momentum content of an electromag-
netic field. Even in the classical theory of Maxwell an electromagnetic field was regarded
as containing energy. By virtue of the mass-energy equivalence in relativity and the obvi-
ous intuitive analogy between an electromagnetic field and a "continuous distribution of
mass-energy” one would eXpect this feature of the electromagnetic field to be modelled in
relativity by an associated energy-momentum 4-tensor. The definition of the components
of this 4-tensor in each admissible coordinatization of M will, of course, be based on the
prescription laid down in (14). Moreover, since special relativity makes no changes in the
mathematical details of electromagnetic theory in each admissible frame of reference
(form invariance of Maxwell’s equations under Lorentz transformations), all of the
appropriate quantities ("energy density", "energy density flux”, "stress”, etc.) should be
the same as the classical theory. In terms of the 3-vectors Eand B these are

Energy Density
L (E,Ti + 53)
8n

Energy Density Flux (Poynting 3-Vector)

1 —
E(’E’xm

Maxwell’s Stress .3-Tensor

--—(.-(EE +BB)+— S‘J(Ea+ B%y)
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Thus, we need only define, for each electromagnetic field 2, an associated symmetric
4-tensor field 7% whose components in each admissible coordinatization of M are given
by (with the notation (28))

sm_1 23 3
T =5 (B* +B%)

Tt L BBy, =123
47
TH =TH = Zl}'c' (~(E:E; + B;B)) + % zs*'f(z?i + 153)), i,j=1,2,3.

We will show that ‘this is accomplished by the following definition: Let F be an elec-
tromagnetic field on a region R of M. Then the energy-momentum 4-tensor T of F has
components in each admissible coordinatization of M defined by

pab _ 1 radpbe  1oab 23 3
T = Tn (MeaF “F ST B-E%) . (32)

Observe that T% is indeed a 4-tensor of the indicated type. In order to justify_ the
definition we compute the components of T°® in terms of the notation established in (28).

ART* = FYFe 4 -;—(53 —153)

=(FUFY 4 FRFY L pBRaS _plpisy _;_B—}_;_Eﬁ
—E BB -0+ L LR P, 15 1p
2 2 2 2
-
1

_ 1 = -
so T = W (E? + Bi).

Next
: - o
47CT‘4 =T]chidF4c _ "‘%'T]M'(BZ ___EZ)
— idpde _ pil 41 i2 42 i3p43  pidpda
=NegF “F™ =F'"F* 4 FP2F% 4 2R _FYF

=F\E, + FI2E, + F3E, |



Some Concepts from Relativistic Mechanics 63

For i =1 this becomes
ArTY¥ =FUE, + F?E, + FBE;=F2E, + F13E,

=B3E2—32E37“—"E233 —E3Bg = (?X?) * 21

and, in general,

- =

TH=14%= (B Byse;, =123

Exercise 2.4.6. Show that, foralli,j=1,2,3,

— -
TV =T = 217; (~(E:E; + B;B)) + %3‘7 (E* + BY) .

Exercise 2.4.7. Show that an energy-momentum 4-tensor T for an electromagnetic field F
has each of the following properties:

() trace T=T2%=muT% =0.
(b) T satisfies the strong energy condition.
{c) T satisfies the conservation equations Tf‘ab =Q, b = 1,2,3,4.

Hint. Part (¢) will require Maxwell’s equations.

2.5. Charged Particles

Having introduced the appropriate mathematical device for modelling an elec-
tromagnetic field in M we now seek to model the physical agencies which produce such
fields, i.e., electric charges. The definition is simple enough: A charged particle in Mis
a triple (o.,m,e), where (o,m), o.: I — M, is a material particle and e is a nonzero real
number called the charge of the _particle. A free charged particle is defined in the same
way, but with (o,m) a free material particle in M. Charges do two things of interest to us.
By their very presence they create electromagnetic fields and they also respond to the
fields created by other charges. We shall conclude our study of relativistic mechanics by
describing two examples of fundamental importance.

Consider first a free charged particle (o,m,e). Physically, such a charge creates an
electromagnetic field and we must define a 4-tensor field F b on some region of M which
models this field. Naturally, the precise form of this 4-tensor field must be postulated on
the basis of experimental evidence. Qur procedure will be as follows: W= al)is a
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timelike straight line in M. For convenience we assume (without loss of generality) that
W is a time axis. We may then select an admissible basis {e,} for M with [e4]=W. Phy-
sically we view the chargé as at rest in the corresponding reference frame .S. In order to
specify the form of the electromagnetic field 4-tensor associated with (o, m,e) we postu-
late the form of the components in the rest frame . of the particle and decree that its com-
ponents in any other admissible frame are to be computed from the 4-tensor transforma-
tion law (12). Explicitly, our definition is as follows: The electromagnetic field deter-
mined by the free charged particle (o, m,e), where W = o) is assumed a time axis, is the
unique 4-tensor ficld on MW whose contravariant components relative to a basis {eg)
for which {e 4] = W are given by Coulomb’s Law:

1 2 3
X X X
Ey=e(Z3) Ey=e(=) Ez=e (%) (33)
r r r
Bl mBz =B3 =0 N

] _—
L1
0 0 0 -5
2
0 0 0 -
r
[FP1=¢ 3 (34)
0 0 0 Sy
r
xl x2 x3 0
3 3 3
r r ¥

»

Remarks. Observe that the field F is singular on W. Also note that this definition does
not depend on the choice of the basis {e,} with [e4] =W since any two bases with this
property are related Dy a rotation in L (bemma 1.3. 4) and the definition (33) is invariant
under rotations. ‘

Exercise 2.5.1. Show that the 4-tensor field deﬁned by (34) satisfies Maxwell’s equanons
(21) and (22)

The definition (34), togethér with the 4-tensor character of the electro'magnetié‘ﬁcld
and Maxwell’s equations, lie at the very foundations of eléctromagnetic theory and can be
used to solve a great variety of problems. Let us, for example, descrtbe the
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electromagnetic field of a point charge e moving with uniform velocity B, relative to
some admissible frame J at the instant the charge passes through the origin of this frame’s
spatial coordinate system. We may clearly assume without loss of generality that the
Charge moves along the il-axi_s of 3 in the negative direction. We can therefore accom-
plish bur purpose by simply writing down the components of the field F for a free charge
(o,m,e) in a reference frame related to the rest frame S of the charge by the special
Lorentz transformatlon(SS) of Chapter 1 and evaluating at xt=x -0 Now, from (30)
and (33) we obtam

3

(—) Ey= ev(w-—) EaFeY(%)

' &l
n

(35)

>~

_ - 3 2
1=0 Bz'—'eﬁ’ﬁr(%) By =—ep, (%)

2

.3
Now set x4~0 in (61) of Chapter I to obtain x —-'yx1 X -*Jc2 and x? =% so that

2.2 &)+ G 22 @y =4 "2, Thus, (35) becomes

_ ii _ _2 _ -3
Ey=ey— Ey=eY—= 3=eY—— 5
) (@% %
Bi=0 b i %)
(= - -
By=eWy,—— Biz=-eYp,—
2 ’Yﬁr (r,)3 3 Ypr ( r,)3

We find then that the electric and magnetic 3-vectors in 3 are

*(—g(— (x. gy +3 2, +5353) (—r;)Y3— (37)
(—“)% 021 + B i %y Bies)= —(""—';’3— @ x5 . - (38)
3)=— _

Observe that, in the non-relativistic limit (y~ 1), 37 and (38) reduce to

E==5% (39)
.
(r~1)
B=% (ax%) | . (40)
: r

The first equation shows thatthe electric field of a slowly moving charge is essentially
that given by Coulomb’s Law for a stationary charge, while (40) is the well-known Bior-
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Savart Law,

Remark. It is interesting to observe that, according to (37), the electric field of a uni-
formly moving charge acts in a line with the point the charge occupies at the instant of
measurement despite the fact that there is a nonzero time interval preceding that instant
during which the behavior of the charge can no longer effect that measurement,

A charged particle in an electromagnetic field responds to the presence of that field
by experiencing changes in 4-momentum. The precise quantitative nature of this
response is expressed by an equation relating the proper time derivative of the particle’s
4-momentum and the electromagnetic field 4-tensor (called the equation of motion of the
charge). Such an equation of motion must, of course, be regarded as an addition to our
basic Assumptions and is in no way a consequence of the princ'iples of speciai relativity.
That particular equation which is in closest accord with the experimental facts is the
"Lorentz 4-force law" defined as follows: Let F be aﬁ"electromagnetic field on a région_R
of M and let (o,,m,e) be a charged particle with W = ol) cR. Then (o,m,e) is said to
satisfy the Lorentz 4-Force Law with respect to F if

dP?
dt

=eFU®, a=1,2,34, (41)

b
where U% = % and P =mU? are the 4-velocity and 4-momentum of (o,m,e) and

F§=Mp.F%. As motivation for this definition we offer the following observations.

Exercise 2.5.2. Show that the spatial part (g = 1,2,3) of (41) can be written in each frame
in terms’of the particle’s velocity 3-vector vV and momentum 3-vector P = m YV and the
electric and magnetic 3-vectors Eand B as follows:

' dP . =
. | -c-i-x-yze(f+7><3) . (42)
Now, in reference frames relative to which the velocity of the particle is small (so that
Y~ 1 and the relative momentum 3-vector ?is essentially the Newtonian momentum)
equation (42) reduces to the classical equation of motion of a charge e under the influence

of the "Lorentz force" e (E? +Vx ff)) due to an electromagnetic field. Observe also that
4 - |
dPt =e 7(E1v1 + E2V2 + E3v3) =e 7?-7. Since

when a=4, (41) vyields

dP*/dt = YdP*/dx* and P? is the total relativistic energy E of (a,m,e) this may be writ-
ten '
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- dE ,
L= EV. (43)

Note that the particle’s energy change in each frame depends only on the electric com-
ponents of F in that frame (the magnetic components do no work on the particle).

Remarks. Not every charged particle in an electromagnetic field satisfies the Lorentz 4-
force law with respect to that field since other factors can influence the shape of the
particle’s worldline (e.g., it may be undergoing collisions). The equation of motion (41)
is an appropriate model for charges whose motion is influenced only by the given elec-
tromagnetic field. Another proviso: (41) contains no term which reflects the contribution
to the total electromagnetic field in R due to the particle (o,m,e) itself. In this context,
(o, m,e) is regarded as a "test charge" whose own field must be negligible compared to F.

As an example we consider a charged particle («,m,e) with ¢ >0 and an elec-
tromagncuc field Fon M for which there exists an admissible basis {e,) relative to whxch
E 6) and B Bies, w1th B4 a positive constant (a constant magnetic field in the x3-
direction of some frame). Thus,

0 By 0 0
B 0 0 0
F@1=10 0O o0 0
0 0O 0 0

We assume that (o,m,e) satisfies the Lorentz 4-force law with respect to F. Thus, the
d*x® e P dx®

—_—

d'r,z m b drt

component equations , a=1,2,3,4, relative to the basis {e,]} are

(letting — B3 = ®)
m

d?x! dx?
0)—

dt? dt

d2x? dx1
=

dz? dz

dx3

dt? =0

dZx?t

dt?
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Exercise 2.5 3 By solving this system of differential equations show that there exist real
numbersy .y ,y ,a,b,c and ¢ such that

@At ahH=! +asm(m+¢),y + a cos (Wt + ), y° + b7, y* + ¢1). (44)
Since (44) is the proper time parametrization of o we can compute the 4-velocity of the
particle by differentiating conipon_ent«-wisc with respect to T ,

WLU%U3U* = (aw cos (0t + ¢), ~aw sin (@1 + §),b,¢) - (45)
Since N, UU? = -1 we have -1 =a20? + b2 —c? and therefore c2 =1 + a2@? + b2.
Since dx*/dt =y > 0 we find that
.

UL U%U3,U* = (a0 cos (0t + ¢), —aw sin (@1 + §), b, (1 + a20? + b2)?) .(46)

We consider the case in which & =0 so that (44) describes a worldline whosc trajectory in
Sisa c1rcie of radius la| in the x 1x2 -plane. In this case (46) becomes ‘

. 1
WL U%U3U? = (aw cos (01 + 0), —aw sin (@t + ), 0, (1 + a20?) 2) @7)

=W 1) .

._9
Exercise 2.5.4. Compute | v |2 =B from (47) and show that

—— g ]
azezB%

Now solve for < to obtain the basic formula from which one computcs the charge-to-
m

mass ratio for particles in known uniform magnetic fields, e.g., in a bubble chamber:
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PROBLEMS

2.A Aberration
A photon is observed in two admissible frames § and S, reIated by (59) of Chapter
1. The direction 3-vectors of the photon in § and 3 are 3and d, while the direction 3-

vectors of S relative to 5 and of § relative to S are?and d respectively. Define angles
- 2
) andB'bycosE):?-d, cos@=d +dand & =7 —6.

1. Showthatd =—yB, B,es +7).
2.  Show that % cos 8 =7 (B, — cos 0).

3.  Use (8) to conclude that y (1 — B, cos 0) cos 0= Y(B, —cos 0).

4. Derive the relativistic aberration formula:

cos 0B,

cos 0’ = —smm————
1-B,cos@

2.B The Compton Effect

The physical situation we propose to model is the following: A photon collides with
an electron and rebounds from it (generally with a different fre@ucncy), while the electron
recoils from the collision. Thus, we consider a contact interaction (A,x, A", where A con-
sists of a photon with 4-momentum » and a material particle with proper mass m, and 4-
velocity U and & consists of a photon with 4-momentum " and a material particle with
mass m, and 4-velocity U’. We analyze the interaction in a frame of reference in which
the material particle in A is at rest. |

‘ Figure 2.1
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Show that, in this frame, the conservation of 4-momentum can be expressed in com-
ponents as

mY WY + VY =hvli, i =1,2,3 (48)

meY +hV =m, + hv, (49)

where U =y (v!,v2,v3,1), U’ = y((v1Y, 02, (v3),1), e=hv, & = bV and I and (I*Y are
the components of jand ? respectively.

2.

Let & = Vv, k = hvim, and denote by ¢ the angle between the direction 3_-vectors?
and & of the incident and rebounded photons, ie.,
cos o =11(11Y + 12 (12 + 1* (13). Show that (48) and (49) can now be written

YO =kl &Yy, i=1,2,3 (50)
Y-1=k(1-§) . (51)

Let (B =IYOlY + oY) + (3YO3Y, and show  that ) )2 =

=k2(1 -2E cos ¢ + &%) = (¥)2 — 1 so that (51) becomes

2 2 2 '
Y+1=k(1—2$ciof¢+§)=k(1—2§1(if)z¢+§) . | (52)

Subtract (51) from (52) to obtain

1 .
T 1+ 2k sin? (02)

Show that the change in wavelength A A = ;1-,- - -%— of the photon as a function of the

ﬁ
angle ¢ through which it is deflected (in the frame under consideration) is

| Ad= 2R G2 (¢/2)
[ me

and observe that it does not depend on the wavelength A of the incident photon. The
maximum value

2h
Adpax = ——

me
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-of AX occurs when ¢ == and is a characteristic feature of the electron called its
Compton wavelength.

2.C Inelastic Collision of Two Material Particles

We consider a contact interaction which is intended to model the following physical
situation: Two material particles with masses mj and m4 collide and coalesce to form a
third material particle with mass m. Classically it is assumed that m3 =m, + m5 and on
the basis of this assumption (and the conservation of Newtonian momentum) one finds
that kinetic energy is lost during the collision. In Newtonian mechanics this lost kinetic
energy 'djsappears'entircly from the mechanical picture in the sense that it is viewed as
having taken the form of heat in the combined particle and therefore cannot be discussed
further by the methods of mechanics. We shall see that this rather unsatisfactory feature
of classical mechanics is avoided in relativistic mechanics by observmg that the conserva-
tion of 4-momentum (which includes the conservation of energy) requires that the "hot"
combined particle have a proper mass which is greater than the sum of the two masses
from which it is formed, the difference m4 — (my +my) being a measure of the energy
required to bind the two particles together; this energy "acts like mass” in the combined
particle. Let us then consider a contact interaction (4,x, '), where 4 consists of two free
material particles with proper masses m and m4 and 4-velocities U 1 and U5 and 4’ con-
sists of one free material particle with proper mass m3 and 4-velocity U3. Conservation
of 4-momentum then requires that msU 3=miU; +myU, and the Reversed Triangle
Inequality immediately gives m3 > m; + ms.

1. Show that, in any admissible frame,

m3 =m? + m3 + 2m1m2‘ T Y2(1-vivh) 53)

(summation overi = 1,2,3)

2. Inany frame in which B; and B, are small one may approximate each y; by 1 + -%-B,-.

Then, retaining only second order terms, y; 7, ~ 1 + %B% + —;—B% Derive the fol-

lowing approximate formula for m:
m3 ~ (m1 +m2)? +mymy®F + B3 - 211 5 vivh) (54)

3. Now takey; ¥ ~ 1 in (54) and derive

mimy
ms~my +my + : V12 (55)
my) +my+my
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- = ) . . : -
where V=u —t,. Assuming on the right-hand side that mgs ~my +m3 deduce

that
1 mny
mi~mi+mo+ - I712
2 my+my
1 myma 3.9 . . .
The term e [¥12 is the approximate gain in proper mass as a result of
my +mz

the collision and agrees with the Newtoman figure for the lossi in klnetlc energy.
2.D Uniqueness of the Energy-Momentum Tensor

Show that an energy-momentum 4-tensor is uniquely determined by its mass-energy
density, i.e., that if S and T are two symmetric, second rank 4-tensors which satisfy
§* = T4 in every admissible coordinate systems, then § =T.

. Hint. Show that, for any future-directed, timelike vectors X and Y, S®X Y, = TX,7,
and use the fact that X + uY is future timelike for all u in some interval about u =0.

2.E Timelike Eigenvectors

Show that an energy-momentum 4-tensor [T%] has a timelike eigenvector if and
only if there is an admissible observer who sees no net energy flux in any direction, i.e.,
T4 12 T8 =g '
2.F Pressure Free Perfect Fluids

In this problem we describe a "smoothed out" generalization of the particle stream
which introduced section 2.3. We consider a region R in M. A family of smooth curves
with the property that every point of R is on one and only one curve in the family is called
a congrygnce of curves in R. Let C denote a congruence of curves in R each of which is
the worldline of a material particle. Let p: R — [0,c0) be a smooth function R. If the
cncrgy -momentum 4-tensor for this system is defined at each point of R to be
T% = pU arrb where U is the 4-velocity vector field of the congruence, then the pair
(Cp)i is called a pressureg free perfect fluid (or dust) with energy denszty p. Show that T
satisfies the strong energy condition at each pomt of R.

- 2.G Motion in a Constant E-Field

Consider a free charged particle of mass m and charge e moving with constant speed

B along the negative x!-axis of some admissible frame. At T=0 the particle is at this
frame’s origin (x? =x2 =x3 =x* =0) and there encounters a constant E-field in the x3-

direction (E) = Ees, B =_6)). Show tht the trajectory of the particle is given by

3_|my el 1 1.0,
o-{eEfeml e




- Some Concepts from Relativistic Mechanics 73

~where y= (1 —p2)712,

2.H Hyperbolic Motion

In this problem we analyze the worldline of a material particle which experiences a

constant "3-acceleration” relative to its "instantaneous rest frames". Consider then the

worldline of a material particle parametrized by proper time T with 4-velocity U = U (1)
and 4-acceleration A = A(t). For each T we let {¢,(t)) be an admissible basis with e 4(7)

parallel to U (1), i.e., an instantaneous rest frame for the particle at 1.

1.

Show that, relative to its instantaneous rest frames, U4 = 1, Al =0, V= dxtldx?
and A* =d%x'/(dx*)? for i =1,2,3 and conclude that the squared magnitude of the
acceleration 3-vector A = (dx Litde*y?, a2 21(dax®y?, d*31(dx*)2)is A  A:

123 @@ =44
i=1
Assume that the magnitude of the particle’s acceleration 3-vector in its rest frames is
the constant g and that its motion is along the x!-directions of these frames (ie.,
U2=U3=A%2=43 =0)., Write out the three conditions U U =~1, U « A =0 and
A + A = g? in coordinates and solve to obtain

dul

A1=——&?= Ut (56)
dau?
A“:-ET—= Ut (57)
a2yt

=g2U" and that the general
dt?

Show that U satisfies the differential equation

solution to this equation is Ul =/ 1('t:) =q sinh (gT) + b cosh (g1). Assuming that
the particle accelerates fromrestat t=0(U! =0 and Al = g at T=0), show that

U =sinh (g7) . (58)
Deduce that

U* =cosh (g1) . (59)

Integrate (58) and (59) and assume that x%2 =x> =x%=0 and xy=1/gatt=0to

1

obtainx"* = -ﬁ-— cosh (g7) and x* = ;1;—- sinh (g1).
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6. Show that, on the pai‘ticle’s worldline, (x1)% - (xz)2 = llg_2 so that this wordline is a

hyperbola in the x 'x*-plane.



CHAPTER 3

MORE GENERAL SPACETIMES: GRAVITY

3.1. Introduction

An 'electromagnetic. field is a skew-symmetric, second rank 4-tensor field on M
which satisfies Maxwell’s equations (section 2.4). A charged ﬁaniclc responds to the
presence of such a field by experiencing the changes in 44moménfum specified by the
Lorentz 4-force law (section 2.5). This is how particle mechanics works. A physical
agency which effects the Shapc of a particle’s wordline is isolated and described
mathematlcaliy and then cquatxons of motion are postulated which quantlfy this effect. It
would seem then that the next logical step in our program would be 1o carry out an analo-
gous procedure for the gravitational field. In the early days of relauv1ty theory many
attcmpts_ to do so were made (by Einstein and others), some of great ingenuity, but they all
came to nought. Whatever type of 4-tensor one selected to represent the gravitational
field and however the corresponding field equations were chosen, the numbers simply did
not come out right; theoretical predictions did not agree with the experimental facts (an
account of some of these early attempts is available in Chapter 2 of [MTW]). Einstein
soon turned away from the technician’s task of formulating ever more refined variations
in the hope of accomodatlng the observational data and sought instead an underlym g phy-
sical reason for the failure of such apparently natural ideas. As always, the answer was |
there for anyone to see, but only Einstein saw it. An electromagnetlc field is somethlng

"external” to the structure of spacetime, an additional field defined on and not influencing
the mathematical structure of M. Einstein realized that a gravitational field has a very
special property which makes it unnatural to regard it as something external to the nature
of the'event world. Since Galileo it had been known that all objects with the same initial
position and velocity respond to a given gravitational field in the same way (ie., have
identi¢31 worldlines) regardless of their material constitution (mass, charge, etc.). This is
essentially what was verified at the Leaning Tower of Pisa and contrasts rather sharply -
with the behavior of electrbmagnetic fields. These worldlines (of particles with given ini-
tial conditions of motion) seem almost to be natural "grooves" in spacetime which



- More General Spacetimes: Gravity 76

anything will slide along if once placed there. But these "grooves" depend on the particu-
lar gravitational field being modeled and, in any case, M simply is not "grooved" (its
structure does not distinguish any collection of curved worldlines). One suspects then
that M itself is somehow lacking, that the appropriate mathematical structure for the event
world may be more complex when gravitational effects are nonnegligible.

To see how the structure of M might be generalized to accomodate the presence of
gravitational fields let us begin again as in section 1.2 with a structureless set M whose
elements we call "events". One thing at least is clear: In regions that are distant from the
source of any gravitational field, no accomodation is necessary and M must locally "look
like" M. But a great deal more is true. In his now famous "Elevator Experiment” Ein-
stein observed that any event has about it a sufficiently small region of M which "looks
lzkc“ M. To see this we reason as follows: Imagine an elcvator containing an observer
and various other objects whxch is under the 1nﬂuence of some uniform external gravita-
tional field. The cable snaps. The contents of the elevator are now in free fall. Since all
of the objects inside respond to the gravuauonal field in the same way they will remain at
relative rest throughout the fall. Indecd if our observer lifts an apple from the ﬁoor and
releases it in mid-air 1t will remam there. You have w1tnessed these facts for yourself
While it is unhkely you have ever had the rmsfonune of seeing a falling elevator you have
seen astronauts at play 1ns1de their space capsules while in orbit (i.e., free fall) about the
carth. The objects inside the elevator (capsule) seem then to constitute an archetypical
memal frame (they satlsfy Newton’s First Law) By establlshmg spatial and temporal
coordinate systcms in the usual way our observer thereby becomes an admissible
observer, at least within the spatial and temporal constraints 1mposed by his cir-
cumfgtances Now plcture an arbltrary event. There are any number of vantage points
from which the event can be observed. One is from a freely fallmg elevator in the
immediate Spaual and temporal vicinity o_f the event and from this vantage point the event
receives admissible coordinates. There is then a local admissible frame near any event in
The operative word is "local". The "spatial and temporal constraints” to which we
alluded in the preceding paragraph arise from the nonuniformity of any gravxtatlonal field
in the real world. For example, in an elevator which falls freely in the earth’s gravita-
tional field, all of the objects inside are pulled toward the earth’s center so that these
objects do experience some shght relative motion (toward each other). Such motion, of
course, goes unnoticed if the elevator falls neither too far nor too long. Indeed, by res-
tricting our observer.to a sufﬁmently small region in space and time these effects become
negligible and the observer is indeed inertial. But then, what is "negligible" is in the eye
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of the beholder. The availability of more sensitive measuring devices will require further
restrictions on the size of the spacetime region which "looks like” A Turn of the century
mathematical terminology expressed this fact by saying that any point in M has about it an
“infinitely small" neighborhood which is identical to M, although in any "finite" region of
M the deviations due to nonuniformity are (at least in principle) measurable. While this
sort of terminology no doubt grates on the nerves of anyone trained in modern mathemat-
ics it should at least ring a bell. Indeed, it sounds very much like the terminology used in
the 19th and early 20th centuries to describe smooth surfaces in IR> (any point on, for
example, the sphere x2 +y2 +22=1 was said to have about it an "infinitely small"
region which is-identical to the plane R?). Spacetime is "locally like M" in the same
sense that the sphere is "locally like R?". Today we prefer to describe the situation in
terms of local parameterization and the existence of tangent planes but the idea is the
same. -What seems to be emerging then as the appropriate mathematical structure for M is
something analogous to a smooth surface, albeit a 4-dimensional one. As it happens there
is in mathematics a notion (that of a "smooth manifold") which gencrahzes the definition
of a smooth surface to higher dimensions. With each point in such a manifold is associ-
ated a flat "tangent space” and, just as for surfaces, the “curvature” of the manifold
describes quantltanvely the extent to which the manifold locally deviates from its tangent
spaces, i.e., from flatness. In the pamcular manifolds of interest in relanwty (called
"Lorentz 4-manifolds” or "spacetimes") these deviations are taken to represent the effects
of non-negligible gravitational fields. An object in free fall in such a field is represented
by a curve that is "locally straight" since it would indeed appear straight in a nearby fre'e"ly'
falling elevator (local inertial frame). On a surface in R> the curves that are "locally
straight” are its geodesics (e.g., the great circles on a sphere). ‘In a spacetime manifold the
analogous notion corresponds to the "grooves" to which we referred earlier.

3.2, Spacetimes

In this section we introduce the basic definitions from the theory of smooth mani-
folds. Here and throughout the chaptcr we present only that material that is 1nd1spen51blc
to our study of relativity and opt always for the most elementary prescntanon of each con-
cept.

~ We begin by rcmmdmg the reader of a fcw definitions from analysm A subset U of
R"”, n>1, is said to be open if each p in U is contained in some open ball
{xeR": llp-xll <€}, € >0, which i is itself contained in U. An open set containing p
is called a neighborhood of p. A subset K of R" is closed if its complement R” - K is
open. A map F:U — R™, m2>1, has coordinate function.i Fp:U-R,i=12,.,m
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defined by F (p) = (F1(P),....Fs(p)). The map F is smooth (or C*) if each F; has con- -
tinuous (partial) derivatives of all orders with respect to the variables x1,...,x" in U ¢ R",
If X is an arbitrary (not necessarily open) subset of R”, then a map F: X — R™ is smooth
if for each x in X there is an open subset U of R” containing x and a C* map F:U—>R"
such that FIU "X =F IU A X. A subset of X of the form U N X, where U is open in
R”, is said to be open in X. A subset K of X is closed in X if X —K is open in X. If
XcR"and Y cR™, then amap F: X — Y is a diffeomorphism if F is smooth, one-to-
one and onto and the inverse map Fl:Y > X is also smooth (if F and F™! are only
required to be continuous, then F is a homeomorphism). If a diffeomorphism of X onto Y
exists we say that X and Y are diffeomorphic (homeomorphic in the continuous case).
Finally, a subset X of R" is connected if it cannot be written as X = Uy L U, where U
and U are open in X and disjoint. |

Exercise 3.2.1. Suppose X cR", Z cX and F: X — IR™ is smooth., Show that the res-
triction F' | Z of F to Z is smooth as a map from Z into R™.

Exercise 3.2.2, Suppose XcR:, YR, ZcR! and F X—-)Y and G: Y—-)Z are
smooth. Show that the composmon G -F:X — Zis smooth. '

Exercise 3.2.3. Show that F: R — R defined by F(x)=x? is smooth one-to-one and
onto, but is not a diffeqmorphism. Is it a homeomorphism? '

Exercise 3.2.4. Show that every open ball in IR is diffeomorphic to IR”. In particular,
every open interval in R is diffeomorphic to R. Hint. IfU(0)={p € R*: ipll <1} is
the open unit ‘ball at the origin, then consider F:U;(0) »R" defined by
Fp)=@1-liplity2p,

Exermse 3. 25. letU “R? be the open unit disc {(x ,x2) e R%: (xl)2 + (x"")2 < 1} and
define F: U - R® by F(x Lx?y= (! x2,(1 - e 1) - x2)?)V2). Show that F is a dif-
fcomorph1sm onto its image and describe F (U).

A connccted subset M of some R” is called a &- dzmens:onal smooth mamfold (or
Smooth k- mamfold) if it is locally diffeomorphic to ]R"c ie., if for each p in M there exists
a connected open subset D of ﬂ_{"‘ and a map ¥: D — M such that p € (D), x(D) is open
in M and %, isa diffeomorphism of D Qnto x(D). |
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Exercise 3.2.6. Show that every point in a smooth k-manifold is contained in some open
subset of M that is diffeomorphic to all of R,

Such a local diffeomorphism ¥ is called a coordinate patch for M, The prototypes for this
definition are the smooth 2-dimensional surfaces in R3. For example, each point on the
2-sphere S2 = {(x ,x2,x3) e R )% + (x2)2 + (3= 1} is contained in some open
hemisphere which is the diffeomorphic image of a connected open subset of R?, e.g., the
"upper hemisphere” x3 >0 is the image of the disc (x!)? + (x2)2 < 1 under the dif-
feomorphism y(x!,x?) = ochx?, (1 - 12 - (x2)M)12) (see Exercise 3.2.5).

Exercise 3.2.7. Let D be a connected open subset of R? and f: D — R a C* real-valued
function on D. Show that the graph of f, ie., {(c!,x2,f (x1,x2): (x!.x®) e D}, is a
smooth 2-manifold. A 2-manifold such as this which is the image of a single coordinate
patch is called a szmple surface in R>. |

The example of 2 is easy to generalize: Let f: R¥*! — R beaC”™ function. A pomt D
in R¥*! is a regular point of f if at least one of the partial derivatives
ofiox’, i =1,...,k +1, is nonzero at p. Areal number r is a regular value of fif f~ 1(r) con-
sists entirely of regular points.

Exercise 3.2.8. Show that if r is a regular value of f: R¥*! — R, then f~1(r) is either
empty or a k-dimensional smooth manifold in R**!. Hint. You will need either the
Inverse or Implicit Function Theorem. |

A k-manifold in R**! of the form f~1(r), where r is a regular value of f: R¥*! - R, is
called a level hypersurface of J. In partticular, the k-sphere S k= {(p e R¥+1;) plil=1}is
a level hypersurface of the function f (p) = lip I,

Obviously, any open subset of R¥ is a smooth k-manifold (take % to be the identity
map). In general, if M and N are smooth manifolds in IR” and N < M, then N is called a
subm&nifold'of M. In particular, M itself is a submanifold of its ambient Euclidean space
R". ' | '

One often produces new manifolds from old by forming products. Specifically, if M
is a k-dimensional submanifold of IR” and N is an 1-dimensional submanifold of IR™, then
the Cartesian product M X N is a subset of R” x R™ = =-R" ™. We show now that it is, in
fact, a (k + 1)-dimensional submanifold of IR" *”, sz a point (p,q) in Mx N. Then there
exists a connected open subset D of R* and a diffeomorphism x; of D onto an open
subset.X;(D 1) of M containing p. Similarly, there exists a connected open subset D 5 of
R! and a diffeomorphismrm of D, onto an open subset %3(D ;) of N containing q. We
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define amap X1 X ¥X2: Dy XDy - R xR™ =R"™ by 11 X %2 (x,y) = (1), X20))- -

Exercise 3.2.9. Show that D x D, is a connected open subset of R**! =R¥ x R! and
that %y X %2 is a diffeomorphism of D{ XD, onto %1(D 1) X %2(D2), which is open in
M xN.- ' -

We call the m‘anifoid_ M x N the product of M and N.

Exercise 3.2.10. Suppose F: M — M’ and G: N — N’ are smooth maps. Show that the
productmap F X G: M xN — M’ x N’ defined by FxG (p,q) = (F(p),G (g)) is smooth.

Exercise 3.2.11. Show that each of the projection maps Ty M ><N —> M and
Ty: M X N — N defined by Ty (p,g) =p and Ty (p,q) = q is smooth.

Some typical examples of product manifolds are the torus S'xS! and the cylinder
St xR inIR3. Since all of our definitions and results extend immediately to products of
any finite number of manifolds one can generahze and deﬁne for example, hlgher dimen-
sional tori $! x §! xSl etc.

Each point on a smooth surface in R3 has associated with it a 2-dimensional
"tangent plane” consisting of the velocity vectors to all smooth curves on the surface
through that point. The analogous construction on a smooth k-manifold M in R”
pr'oceeds' as follows: If I ¢ R is an interval, then a continuous map o: I — M (S ]R")
o) =&le),...x"@), is a curve in M .o is smooth if each coordmate function

. dxl dxn
X (t) i=1,..,n,is C* and if a s velocity vector o (t) =( T g ) is nonzero for

eachzjn L. Uscful examples of smooth curves can be constructed from coordinate patches

on M. Let x: D — M be a coordinate patch on M, wherc Di isa connected open subset of

R¥. Denotmg the standard coordmates on R¥ by u! u" we obtain the i coordmate

curve for X from X @!,...u"* by holding all uf (= z) ﬁxed its velocity vector is denoted
X and is given by ;.

. Xi —l- (x (u LR '9uk)9.':"’xn(.uI;""uk))
o ou! Bu S |

ot a)
u' " aut |

The coordinate curves-of ¥ cover y (D) with a "coordinate system" so that each piny (D)

is uniquely specified by ¥ coordinates (the Cartesian coordinates of x‘l @)



More General Spacetimes: Gravity 81

- Figure 3.1

- x"! (p)

In particular, any smooth real-valued function deﬁne& (at least) on (D) can be reéarded
as a function of these & coordinates by composing with %: f (u!,..,u®) =f-x

Exercise 3.2.12. Write down a coordinate patch for the 4-sphere $* and calculate its
coordinate velocity vectors ¥;, { =1,2,3,4.

Using the definition alone it can be quité difficult to determine whether or not a
glven smooth map of IR¥ into M is a coordinate patch. Fortunately, there is a remarkable
theorem in advanced calculus to which we can appeal for assistance. Inits usual form the
Inverse Function Theorem asserts that 1f F is a smooth map between open subsets of R*
and if the Jacob_lan of F is nonsingular at some point p, then F carries some open ne1g_h—
borhood of p in the domain diffeomorphically onto some open neighborhood of F{p)in
the range (see, e.g., [Sp1]). We leave it to the reader to persuade himself that the version

we require follows directly from this:

Theorem 3.2.1. Let y: D —» M be smooth, where D is a connected open subset of R* and
M cR" is a smooth k-manifold. Define %j,...Xx at each point of D by

= Jy/ou’ = (x /0u’,...,0x™/ou’) and let p be a point of D. Then ¥ is a diffeomorphism
of some open subset U of D containing p onto some open subset V of M containing F (p)
if and only if %1 (p), ... Xk (p) are linehﬂy independent, i.e., if and only if the Jacobian
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ol !
oul ouk
ox” ax”

| ou! ou® |

of F has rank k at p.

Now consider a smooth curve o: / —» M and assume that the image of o is contained
in %, (D) for some coordinate patch %: D — M (note thaf, by continuity, each ¢ in [ is con-
tained in some subinterval J of I which maps entirely into some coordinate patch). Then
x_l" al?) is a smooth curve £ — (u! (t),...,uk(t)) in D so o can be written

a(t) =y @),..uk@) .

By the Chain Rule, o/(f) = — x(u @)t @)=Y _BL

, 1.e., (using the summa-
i=1 du' dt .

tion convention),
o () = (' (O xi(odt)) = @'Y x; - o

At each point p in M the tangent spdce to M at p, denoted T}, (M), is the set of all velocity
vectors at p to smooth curves in M through p (together with the zero vector).’ The ele-
ments of T}, (M) are called tangent vectors to M at p and each is a linear combination of
the coordinate velocity'vectofs {x:()} % for any coordinate patch ) withp D). -

Exercise 3.2.13. Show that, conversely, any nontrivial linear combination of
X1(@)s.... Xk () is the velocity vector to some smooth curve in M through p.

=i

Smce % is a diffeomorphism the ;, being columns of the Jacob:an, are linearly indepen-
dent. Consequently, any coordinate patch at p gives rise to a basis for T, (M) consisting of
the coordinate velocity vectors at p. In parucular T,(M) is a k-dimensional vector space
(or affine space if you prefer to picture T,(M) at p rather than at Q in R™).

Since we have determined that the event world is "locally like M" at each of its
points we elect to model it by a smooth 4-manifold whose tangent spaces are all provided
with the structure of Minkowski spacetime, ie., a Lorentz inner product. A smooth
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assignment of an inner product to each tangent space of a manifold M is called a "metric"
on M (not to be confused with the term used in point-set topology for a "distance func-
tion", although there are some connections; see Problem 4.C). More precisely, a metric
(or metric tensor) g on the smooth k-manifold M is an assignment to each tangent space
T, (M) of an inner product 8p = <,>p such that the component functions

2/ 0) = 8, (PPN = <G @I P)>

are C* on x(D) for each coordinate patch i at p. If each inner product 8p is of index one,
then the metric g is called a Lorentz metric; if each gp has index zero (i.e., is positive
definite), then g is a Riemannian metric. A spacetime is a smooth 4-manifold on which is
defined a Lorentz metric.

Remark. We shall often abuse our notation by omitting references to "p". Thus,
g (vw) = <v,w>, =g (v,w) = <v,w> and on occasion we may use v » w for variety. For
the sake of economy we shall also refer to any manifold on which is defined either a
Lorentz or a Riemannian metric as a "manifold with metric",

The assumption that the metric g of a spacetime has index one means that each T,(M) has
a basis {e1,e9,e3,e4) such that g (¢;,e i) =";;. On the other hand, relative to a coordinate
basis {x;(p)} corresponding to some coordinate patch, g (Xi-X;j) = g;j so that if v =vix;
and w = wjxj, then

g (v,w) =g (v'y;, ijj') =gv'w! .

Examples of Riemannian manifolds are easy to write down by simply restricting the usual
dot product of IR" to each T, (M). |

Exercise 3.2.14. Let D ={(u',u?)e R*: —-m <u' <7, 0 <u? <} and suppose R is a
positive  constant. Define a map ¥ from D into R?® by

1 gin uz, R sinu! sin uz, R cos uz).

v @l u?)=(R cosu
(a) Show that the image of ¥ is a portion of the sphere of radius R about the origin in

R®. What portion? Hint. u! and u? are spherical coordinates.

(b) Show  that the coordinate velocity vectors ¥, i=1,2, are

¥1= (R sinu!
1

sin u2, R cos u! sin u?, 0) | and

1

%2 = (R cosu’ cos uz, R sinu' cos uz, —R sin uz).
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(c) - Show that % is a coordinate patch for the sphere and describe the u!- and u?-
coordinate curves.

(d) Define a Riemannian metric on }(D) by restricting the usual dot product of R> to
each tangent space and show that

g1 g12| |R?sin? u? 0
gn gnl 0 - R%

Exercise 3.2.15. LetD = {@',u*) e R%: - <u! <m, —o < u? < oo} (the reason for the

peculiar numbering will become clear in Exercise 3.2.18). Define x:D — R by

v(u!l,u*)=(cosh u* cos ul, cosh u* sin u!, sinh u*).

(a) Show that the image of % is a portion of the hyperboloid of one sheet
xH? + 2% - x3)?2 =1. What portion? '

(b) Show that ¥, is a coordinate patch and describe the #'- and u*-coordinate curves.

(¢c) Define a Riemannian metric on (D) by re_stricting the IR® dot product to each
tangent space and show that

g1 814 cosh?y* 0]
841 gas| {0 -1

Remark. We wish to make the reader aware of a notational device which we have chosen
not to employ, but which is popular in the literature of our sﬁbject In a surface such as
the sphere a smooth curve o/ —-M with a()cy (D) has velocny vector
o () = (u’“’(t)) % (o). The squared speed" of o is then

g (o (), o (1) = gy W’y WY = g %— %‘t— One then defines the "arc length” s = s (f)
along o as usual by (%}2 = gij d; d;t and this is often wntten in "differential form"

by suppressing all references to the parameter ¢;

ds? = 8ij du’ du’ .
This last expression is often referred to as "the metric" of M. For example, using the more
familiar notation u! =0 and u* = @ one would regard

ds*=R%sin? @d 0> +R2d ?
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as the metric of the sphere of radius R. We prefer to regard such expressions as simply a
convenient way of displaying the matrix (g;;) on a single line and of remembering how to
compute arc lengths.

At this point we begin to develop a basic stock of examples of spacetimes to which
we shall return repeatedly throughout the text. Along the way we will need to introduce
some of the most fundamental notions of modern differential geometry. First though, the
obvious definitions: If M is a spacetime, then a tangent vector v is spacelike, timelike or
null according as g (v,v) is >0, <0 or =0 respectively. The null cone at p in M is the
subset { v € T,(M): g (v,v) =0} of T,(M). _

The most obvious example is, of course, M itself. Specifically, we let D = R* and
take pa o be the identity map on R?, ie.,
4 (ul,uz,u3,u4) = (u*,uz,u3,u4) (xi (ul,uz,u3,u4) =u', i= 1,2,3,4). Denoting ¥ (D)
by M we have 1 = (1,0,0,0), %2 = (0,1,0,0), %3 =(0,0,1,0) and %4 = (0,0,0,1) so that, in
effect, each T, (M) can be identified in the obvious way with IR*. We define a metric gon
M by specifying its component functions gij(p) relative to (L. As expected we
take

gii@)=80u ) % @N=m;; .

Of course, the g;; (p) are, in this case, constant, i.e., independent of p.

Just as Cartesian coordinates are not always the most convenient choice in R3 5o this
standard coordinate patch for M is often replaced by one more naturally adapted to the
problem at hand. Before describing one such we discuss, in general, the relationship

between two overlapping coordinate systems on an arbitrary manifold M. Thus, we con-
sier two coordinate patches %: D — M and ¥: D — M and assume that ¥ D)NXD)=D.
Figure 3.2

x"‘(p)—-—(u‘,..‘,_u‘_‘) %71 (p) = (@, ..., k)
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A given p in. % (D) m;'Z(B-). now. has two sets of coordinates-_x‘1 )= (u 1 ...u®) and
— =1 -k . ——1 .
X @)=@ ,.,u) Observe that the composition % -% 1is smooth on
v (¢ (D) N %(D)),ie. the i are C* functions of the u’:

-

a=u @,..ub, i=1,.k.

Moreover,

KL u®y =% @ @), it @l,u*))

Exercise 3.2.16. Show that at each pointof y (D) Y 75 ),

_j
;= ea)_zi Tjr i=1,0k @)

/
.’/

and that, for each tangent vector v at a point in the intersection, if v= vy and v = v x s
then

FJ“-E-)——-V J=1..k . 3)

ou'
Finally, show that the metric component functions g;; and g;; in the two coordinate sys-'
tems are related by
- dul ou™ . '
gii=—r — &wms Li=1,...k . 4)
Yot aw "
Now let us define a new coordmatc patch for (a pan of) M by employing spherical
spatlal coordinates (u =p, U T o, u =0,u = uh, ie., we let
-1.2_3_ —
== {(ul,u ,u3,u )e IR“:u1 >0,O<u2 <7, —n<u3 <1t,—°°<u4 < oo} and define
%:D - Mby

-2 _3..4 -3 . .2 .1 -3 . 21 -2
x(u U LU U )= (u cosi sin# ,u sinu sinu ,u cosu u)

Exercise 3.2.17. Show that ¥ is a coordinate patch for a portion of . What portion?
Show, in two ways, that on this portion of M, the metric components are given by

r = -1 - ~19 . 2 -2
fu=1, =@ )% gxu=0 Ysin?a”,

Laa=-1 §,-j=0 ifij.
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Our second example is called deSitter spacetime, is denoted D and will be identified
as a manifold with a level hypersurface in R3. Indeed, the metric on D will be the restric-
tion to D of the "Minkowski inner product” on R’ Specifically, let us denote by IR3 the
linear space R> with the inner product g ; defined by

g10.y)=xtyl + x2y? 1+ x3y3 4 x4y% —x5y3

where x = (x1,x2,x3,x% x%) and y= @l,yz,y3,y4,y5) (see Exercise 1.1.1). The associ-

ated quadratic form Q ¢: R — R is defined, as usual, by
Q10 =GN+ 62 + (P + @ - )2

and is obviously smooth on all of R>. Since 90Q/0x‘=2x' for i=1,2,3,4 and
o0 1/Bx5 =-2x% it is clear that r=1 is a regular value of (@ so that
Q“fl D={xe R: &H? + x2)? + (3)? + (x4 - (xs)2 = 1} is a 4-dimensional smooth
submanifold of R3 (Exercise 3.2.8). Weset D= Q'{l (1) and picture D as a "hyperboloid
of one sheet" in R> by suppressing x> and x* as in Figure 3.3.

Figure 3.3

XS

Mentally re-inserting the missing dimensions it becomes clear that the cross-sectional
"circles" in Figure 3.3 are actually 3-spheres S 3 sothat D,asa manifold, is $3 x R.
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Theorem 3.2.2. deSitter spacetime D is diffeomorphic to §> x IR.

Proof: SPxR={0 23540 : 0D+ 02 + 032 + 9N =1, 0 < 1 < o0},
Define a map F:S?xR-RS by Fely2ydyhn=+:H2y1,
A +:H252 1+ 2293 (1 + Y294 1), Then Fis clearly smooth and one-to-one
and, moreover, Q1(F(',y%y3,y%))=1 so F maps into D Since the map
G:D->S3xR | deﬁned by G(lx?x3 x4 x%) =
=((1+ @HH2 %1 (1 + @522, (1 + G52 43, (1 + @2 x4, x5) is smooth
on all Dand is easily seen to be an inverse for F, F is a diffeomorphism. Q.E.D.

Now we shall define a Lorentz metric g on D by restricting the IR3-inner product g ¢
to each T, (D).

Exercise 3.2.18. Let D={w'u?uduHe R n<ul <x 0<u? <7,

n<ud <nm —o<ut< oo} define y: D - R’ by % (u L u?, 3,u4) & 1 x2.x3 x4,
where

x! =cosh u* cos u!

x2=cosh u? sin u? cos u?2

x3=coshu®sinu! sinu? cosu3

x4 =coshu?sinu! sin u? sin‘u3

x> =sinh u?

-

(a) Show that ¥ maps into D,
(b) Show tht 7y is a coordinate patch for D.

,(c) Show that the metric components relative to  are

g11 =cosh?® u*

g2 =cosh? u? sin® 11

g3z =cosh? u* sin? u! sin? u?

g44=-1

g,-j=0 if i#j.
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Tf u',u® and u are confined to the closed intervals [-x, %], [0,7] and [-7, 7] respec-
tively, then the map % in Exercise 3.2.18 maps onto D. Thus, by employing the same map
x, but with u!,u? and u? restricted to sufficiently small open intervals about —m,0 and 7
one obtains finitely many coordinate patches which cover 9. Our next example is even
more manageable in that, like A4 it is the image of a single coordinate patch. The
Einstein-deSitter spacetime ‘E is the simplest of all the "cosmological models” to emerge
from general relativity and is defined as follows: Let D = R? X (0,00) = IR?, take % to be
the identity map on D and let E=%xD)=R>x(0,0). Then
X1 =(1,0,0,0), %2 =(0,1,0,0), etc. at each point p in . We describe the Lorentz metric g

2

on ‘E by giving its components relative to the basis {);(p)} at each p = (u,u%,u3,u*) in

‘E. Specifically, we set

0 ifiej
gi@) =gt utuduty=1@hH*  ifi=j=1,23
| ~1 ifi=j=4

2.2 33)

Thus for v,we T,(E), gp(v,_w)*—"gp(vix;, wjx,')=(u4)4’3 (vlwl +VWe + viw

vAw?, where u? is the "height" of p. Note that this is a Lorentz metric since smoothness
is obvious on u* > 0 and, for each p e , one can define a new basis {eg}:-‘;l for T,(E) by
e; = (u4)“2’3- ¥ for i=1,2,3 and e4l= X43 _fhen g(e,v';ef) ='n,-j. Next observe that fqr
pe E thenull cone at pis { v —v‘.x; e T,(E): @hH*3 ((vl)‘2 + (v2)2 + (v3)2)= (v4)2}
which one might interpret geometncaliy as saying that the null cones in E" gct steeper” as
p "gets hlgher '

Figure 3.4
u4 .
0 ——————————————————————— u2
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A very useful procedure for producing new spacetimes from old is to observe that
any connected open subset M’ of a spacetime M is again a spacetime with the obvious
Lorentz metric it inherits from M (note that 7,(M") = T,(M) for each p in M’). Many use-
ful examples can be constructed from known spacetimes by deleting judiciously selected
closed subsets. Such an open submanifold of P was used by Bondi and Gold [BoG] and
Hoyle [Ho] as a model of their "steady state" universe and we shall find in section 3.5 that
M = M- {(0,0,0,0)} is the simplest example of a spacetime which fails to be "globaily
hyperbolic".

Different spacetimes are intended to model different physical situations. In classical
general relativity the manifold of interest was constructed from specific assumptions
about the nature of the gravitational field being modeled by solving Einstein’s "field equa-
tions" which relate the Lorentz metric to the total energy-momentum tensor (see section
3.6). Minkowski spacetime emerges as the solution appropriate for modeling the event
world when all gravitational fields are negligible. The deSitter spacetime can be regarded
either as the solution corresponding to a (physically unrealistic) hegativc energy density
or as the "empty universe" solution to a certain modified version of the field equations
(with "nonzero cosmological constant"). Einstein-deSitter spacetime is the simplest of all
the cosmological models in relativity and represents (to a first approximation) the event
world in the presence of a gravitational field due to a uniform ("homogeneous™ and "iso-
trop1c") "dust” of galaxies in our universe (see Problem 2.F). '

The Einstein field equations constitute a very complex system of partial differential
equations which can be solved explicitly only by making a great niany physically unreal-
istic symmetry assumptions. As a result any physical implications drawn from such solu-
tions are, at least to this extent, suspect. "Topological” results in general relativity are
thBse which do not depend on the specific form of the field equations, but essentially only
on the fact that the event world is modeled by a 4-dimensional Lorentz manifold. Rather
than the local coordinate expressions for the metric it is the global structure of the mani-
fold that is of i interest. It is indeed remarkable that such results (divorced as they are from
the details of the metric structure) can have important physical content, but they do and
we shall devote the remainder of this chapter and the next to uncovering some of them.
Our investigation will culminate in a proof of the simplest of the famous "Singularity
Theorems™ of Stephen Hawking.
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3.3. Time Orientability, Geodesics and the Chronology Relation

The most serious obstacle to a general, global study of spacetime manifolds is their
overwhelming number and diversity. Smooth 4-manifolds are, to say the least, plentiful
and "almost" all of them admit Lorentz metrics.* Most of these are, however, physically
meaningless so we must begin by trying to narrow the field of view somewhat. We shall
impose certain additional restrictions on our Lorentz 4-manifolds which any "reasonable”
model of the event world should satisfy.

A smooth curve o: I — M in a spacetime M is spacelike, timelike or null if its velo-
city vector o(¢) is spacelike, timelike or null respectively for each ¢ in I. As in special
relativity, a timelike curve is identified with the worldline of a material particle, but in the
context of an arbitrary spacetime we face a problem which, in M, was rendered trivial by
the existence of a global coordinate system. A material particle’s worldline is, after all,
more than just a curve. It is a curve traversed in a specific "direction" (from "past” to
"future") determined by what has been called the "arrow of time”. Now at any fixed point
p of M the distinction between "past-directed" and "future-directed" timelike tangent vec-
tors is as easy to make as it is in M. Indeed, if {¢;} 4 1 is any orthonormal basis for T, (M)
and v =vie; and w =wie; are both timelike, then v*w? >0 iff g (v,w) <0 (Theorem
1.3.1). Consequently, the relation v ~ w iff g (v,w) < 0 is an equivalence relation on the
set of timelike vectors in T, (M) with precisely two equivalence classes (the two "time
cones” at p). One can then designate the elements in one of these two classes as "future-
directed" and those in the other "past-directed” (the choice is quite arbitrary, of course,
just as the choice of a "standard" basis for M is arbitrary). To provide an orientation in
time along the entire length of a curve, however, this local distinction between past and
future at each point is not enough. The choices made must be consistent, i.e., they should
vary smoothly from point to point along the curve and, should the curve be closed, we
must insist that upon traversing it and returning to our point of departure we do not find
ourvelves in a different equivalence class. The situation here is not unlike that of the
Mobius strip in R? which has the property that there is no consistent, smooth choice of a
normal vector over the entire surface even though normal vectors are easily selected at
each point (see Figure 3.5). One can equally well imagine a spacetime in which any
smooth selection of equivalence classes to designate future-directed must "turn upon
itself" and be inconsistent.

* A Lorentz mefric can be defined on any noncompact 4-manifold; a compact 4-manifold admits
a Lorentz metric if and only if its Euler characteristic is zero (see [02]).
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Figure 3.5

To prohibit such anomolous behavior we shall insist that our spacetimes all satisfy
an "orientability” condition which we arrive at as follows: First observe that selecting one
of the two equivalence classes of timelike vectors at each p in M to designate future-
directed is equivalent to selecting, at each p, just one timelike vector V (p) and stipulating
that another timelike v in T,,(M) is futurc—difectcd iff g (V(p),v) <0. Thus we define a
vector field on an arbitrary manifold M to be a function V which associates with each p in
M a unique tangent vector V (p) in T,(M). V is said to be smooth if, for any coordinate
patch ¥, the component functions V', i =1,...,k defined by V (p) = V(p) x;(p) are C* on
xB). |

Exercise 3.3.1. Show that, despite appearances, this definition of smoothness does not
depend on the choice of ¥, i.e., that if ¥ D — M is another coordinate patch with
V)= i7‘(p) @) onf(f)“) and if y(D) N 2(5 ) # &, then, on this intersection the V* are
C™ if and only if the V; are C. Hint. Use Exercise 3.2.16.

Now we shall say that a spacetime M is time orientable if one can define on it a
smooth vector field V which is everywhere timelike. Henceforth we will assume that our
spacetimes are time oriented, i.e., time orientable with a specific choice of some smooth
timelike vector field V (on M, D and ‘E we take V =74, where Y is the standard coordi-
nate patch). One then says that a timelike tangent vector v at some point p of M is future-
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directed if g(V(p), v) <0 and past-directed otherwise. A timelike curve oz ] — M is
Suture-directed if g (V (o(t)), o/(¢)) < O for all rin I and past-directed otherwise. Future-
directed timelike curves are identified with worldlines of material particles in M.

Let o: I — M be a continuous curve in the manifold M and seta =inf/and b =sup /
(perhaps a =0 and / or b =o0). A point p € M is called an endpoint of o if either

lim ot)=p or Iir;} o(t) =p. A curve with no endpoints is said to be endless. If otisa
t—a*t t-3b" ' :

future-directed timelike curve in a spacetime and lim «afz) =p, then p is a past endpoint
t—a*

of o; future endpoint is defined similarly. Such an o is future (resp., past) endless if it has
no future (resp., past) endpoint. Whether or not a curve has endpoints depends on the
manifold it is thought of as living in, e.g., in M the curve a(t) = (0,0,0,t), 0 <t <oohas
the origin as its past endpoint, but in M = M- {(0,0,0,0)} the same curve is past endless.
As a matter of convenience we will insist that a smooth timelike curve contain any end-
points it might have (and so, in particular, must be smooth and timelike at these end-
points). We thereby eliminate from consideration timelike curves which do various phy-
sically unreasonable things (e.g., "wiggle" so violently that they fail to have a well-
defined tangent at some point, "become null" at an endpoint, etc.)

Let us think for a moment about the sort of curve in a spacetime M which should
model the worldline of a material particle which is "free", i.e., influenced only by the
gravitational field being modeled by M ("free" = "in free fall"). At each point on such a
worldline there exists a local inertial frame as described in Section 3.1 (a nearby freely
falling elevator) and relative to such a frame the particle’s worldline will appear "straight"
since it too is in free fall. The worldline is "locally straight", 1.e., it bends only as much as
it must to respond to the given gravitational field. In a sense, it bends only as much as it
must to "remain in M". Curves on the 2-sphere with this property are the (constant speed)
great circles. In an arbitrary Lorentz (or Riemannian) manifold they are called "geo-

desics”. We formulate a definition directly analogous to that for surfaces such as § 2 in
R>. |

Exercise 3.3.2. Consider a smooth surface (i.., 2-manifold) M in R® with Riemannian
metric g obtained by restricting the R>-inner product to each tangent plane. Let
X: D — M be a coordinate patch for M and o= o(¢) a smooth curve in M whose image is
contained in (D). Then o’s acceleration o will, in general, resolve into both tangential
and normal bomponents 0 =0y + 0 por,  Where  0"pp € Toy (M) and
O an ¢ &'por = 0in R,
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(a) Write o(z) =y (' (¢), #2(¢)) and show that
o = @Y+ @Y @Yy

9%x ! 9%x? 0%x3
oulou'’ ouwidu'’ uloul |’

(b) Resolve y;; into tangential and normal components to show that

where y;; = —Q— X =

Xij =T % + LU,

where U=y Xya/llgy X211 is. the unit normal to M; Ly ='x,-j U and
Xij * % =T gne.
(¢) Define I, ;; =g, I'}; and show that

dgii
"é‘j,fc—mrf.jk + T . | (5)
(d) Show that
1 dgik  Ogjx  Og;j
T=—g| e ¢ =& 24 6
=28 [auf ou'  ouk ©)

Hint. Permute the indices ijk in (5) to obtain expressions for each of the derivatives in
(6) and combine using the symmetries I'; k=L g
(€) Conclude that O/por =Lij@'Y (@YU and oy = (") + T5@’Y @) %,
where the "Christoffel symbols" I'}; are given by (6). '

Rem;i'ks. If, in Exercise 3.3.2, 1 =5 is the arc length parameter for o, then o = &(s) is
the curvature vector of o. One regards 0", as that part of o’s curvature which it must
possess simply because it is constrained to lie in M and 0", the part which o contributes
on its own by curving "in M". Curves for which o, =0, ie., curves
o =0us) = y(u 1 (), uz(s )) parametrized by arc length that satisfy

@")” + T Y@y =0, r=1.2,

are thought to cuﬁe only as much as they must to remain in M. They are the closest thing
in M to a straight line and are called the "geodesics" of the surface, e.g., if M is a sphere,
they are the constant speed parametrizations of the great circles (see Problem 3.A).

Now we let M be an arbitrary manifold with metric and define, for each coordinate
patch y on M, the Christoffel symbols (of the second kind) T}; by
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1 dgiy  98j1 98
== gl o 22U im0k,
Y Zg (auf out  ou! ¢

where g, are the metric components relative to %, (g by is the matrix inverse of

(gab)’ u 1 9"-9uk
vention applies over 1 = 1,....k. A smooth curve p=(t)issaidtobea geodesic of M if,

are the Cartesian coordinates in the domain of  and the summation con-

for each ¥,

@Y +Thw Y@y =0,r=1,..k o
where u(t) = x @ (), ... u @),

Exercise 3.3.3. Let ;: D — M and 2:5 — M be two coordinate patches for M with
¥(D) Ny (D)= D. Prove that, where the two coordinate systems overlap,

—, ou ou™ ou' ., ou ou’

= +

ij= s ~i -] +ml PR
ou® 9ou ou ou® ou o

and use this to show that the defining equations (7) for a geodesic are satisfied in ¥ iff they
are satisfied in ¥.

Remark. Henceforth we shall leave it as a STANDING EXERCISE to verify that
definitions which appear to depend on the choice of coordinate system, in fact, do not.

Exercise 3.3.4. Show that the only nonzero Christoffel symbols for the standard coordi-
nate patch on E are

Remark. Observe that (7) is trivially satisfied by any "constant curve” (U(r) =p for each
1). While such a curve has zero velocity vector and therefore technically does not qualify
as a smooth curve according to our definition, it will be convenient to bend our chosen
terminology somewhat and refer to such constant curves as degenerate geodesics.

If one is confronted with a manifold and assigned the task of finding its geodesics,
the usual procedure is to fix a coordinate patch, calculate the metric components g;; and
the Christoffel symbols 1"}:,-, substitute into '(7) and solve the resulting system of (second
order, nonlinear) ordinary differential equations for the component functions

-
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u’(t), r=1,..,k. With few exceptions this is an arduous task. One of the exceptions, of
course, is Minkowski spacetime where, relative to the usual coordinate patch, the metric
components are constant so that the Christoffel symbols are all zero. The geodesic equa-
tions (7) therefore become (u")’ =0, r =1,2,3,4 so that u”(¢) =A,t + B,, where A, and
B, are constants. The geodesics of M are, as expected, linearly parametrized straight
lines.

We shall exhibit some geodesics of D and ‘E shortly, but first we must develop some
tools. We focus our attention on a fixed point p in some manifold M with metric and a
fixed tangent vector v in T,(M). We shall say that a smooth curve o in M defined on
some interval about zero fits v at p if it goes through p with velocity vat ¢ =0, i.e., if

a0)=p and odCO)=v . 8)

Appealing to the standard Existence and Uniqueness Theorem for solutions to initial
value problems for systems such as (7) (see [Har]) we find that for every p in M and every
v in T, (M) there exists a geodesic of M that fits v at p and, assuming that its domain has
been extended to the largest possible interval about zero, that there will be only one such
(all of this is, of course, obvious.in ). More precisely we have

Theorem 3.3.1. Let p be a point in the (Riemannian or Lorentzian) manifold M and v a
tangent vector to M to p. Then there exists a ﬁnique maximal geodesic u defined on some
interval I about zero which fits v at p ("maximal" means that if A: J — M is another geo-
desic that fits v at p, thenJ < /and A = p|J). ’

Remapk. If v =0 we take | to be the degenerate geodesic W(t) =p for —o <t < oo,

The uniqueness assertion in Theorem 3.3.1 is often useful for finding the geodesics
in a given manifold since it assures us that if we have somehow managed to conjure up
geodesics in every "direction" v at p, then we will, in fact, have all of the geodesics
through p. We apply this procedure to the deSitter spacetime D, We will show that,
because D is a level hypérsﬂfface in RY and its metric is the restriction of the "Min-
kowski inner product” on IR3, Exercise 3.3.2 for surfaces in R :goes through essentially
verbatim for D. First, hovﬁrever, we must define a "normal vector” to Din IR} and for this
we introduce a few new ideas that will be required in other contexts as well.

We consider an arbitrary smooth real-valued function f on some manifold M. For
each p in M and every v in T, (M) we let v[f ] denote the derivative of fin the direction v
atp,ie., |
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vif1= 2 £ (o) ©)
at =0

where o= Qi(¢) is any smooth curve in M which fits v at p. Observe that if ) is any coor-
dinate patch at p in M with out) = y(u l(t),...,u"‘(t)) and v=v* X, then

i d .
Vif)=+ f o) &=Ly (10)
ou
so that the definition clearly does not depend on the choice of o (we shall permit our-
selves such minor and obvious abuses of notation as writing —]:- (p) for
(f - %) -1 ' .
o (¥~ (p))). Next we define a smpoth vector field on M called the gradient of f
and denoted Vf: Near each point p of M select a coordinate patch ) and set
9
Vf= g‘f af;

(Don’t forget your "Standing Exercise” from page 95). For example, ifQ: MR is
defined as usual Dby Q(u utul u“) (ul)2 + (uz)2 + (u3)2 (u“)2 then

o 0
vQ =g¥ aQ‘ % =nY aQ,
gradient of the "squared length" function in M is radial. i.e., a multiple of the "position

€ =2u! e +2u? e2+2u e3 +2utey = =2u’ €. Thus, the
vector” u'e;
lo

Exercise 3.3.5. Let T: £ — R be the fourth coordinate function of the usual coordinate
patch on Einstein-deSitter spacetime, i.e., Tr(ul_,uz,u3,u4)=u4. Show that (gij ) is a
diagonal matrix with g% = 1/g; fori =1,2,3,4, and then that VT =—¢,.

The gradient has all of the properties familiar from vector calculus, e.g., the derivative of
fin the direction v at p can be computed by "dotting” v and Vf (p):

Lemma 33'2 Let M be a smooth manifold with metnc, peMveT, (M) and
f:M- ]R a smooth function. Then

vIf1=<Vf (@), v> . (11)

Proof: Choose a smooth curve o which fits v at p. Then, for any coordinate patch

, b ) b
% <VF ), v> = <Vf (p), o/(0)> = gap (g‘“ o (py & (0)]=8i> U ) & ()=
, Co T ou' ~ dt ") " ou da
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v[£1by (10). | o  QED.

Exercise 3.3.6. Show that Vf (p) =0 if and only if -égf-‘- @®)=0, i=1,..,k, for every
U

coordinate patch i at p.

In section 5 of this chapter we will generalize Exercise 3.2.8 and show that if M is a
smooth k-manifold, f: M — R is a smooth map and r € R is one its values, then
S={pef Liry: V£ (p)#0} is a smooth (% — 1)-dimensional submanifold of M. Smce f
is constant along any smooth curve in S it will follow from Lemma 3.3.2 that Vf is
orthogonal in M to every T,(S). Here we will require only the following special case:
Let 0: R’ - R be defined by Q1 (x) =g, (5,x) = (x)? + (¢2)? + (x3)? + x4 = (x)2.
Then VQ(x) =2x. Now, we know that D= Q7! (1) is a smooth 4-dimensional submani-
fold of IR’. Since every tangent vector to D is the velocity vector of some smooth curve
in D and since @ is constant along any such curve, Lemma 3.3.2 implies that the ]R?f
inner product of VQ, with any tangent vector to D is zero, i.e., VQ is "normal” to Din
IR3. Moreover, for each x in D, <VQ,(x), VO;(x)>=<2x,2x> = 4<x,x> 4 so0

Ux)= --VQ 1(x) defines a unit normal vector field to Din IR1

Exercise 3.3.7. Repeat the arguments in Exercise 3.2.8 (using U = 'AITVQ‘i as the unit

normal to Din R}) to show that the acceleration o of any smooth curve in Dis given by
4y o= @Y+ T W) %+ QY@ . 1)

We conclude then that a smooth curve in D is a geodesic of D iff its acceleration is nor-
mal to Q) in IR? . Since the normal direction to D_in-lR? is "radial” (VQ_; x) :2x)_ it is
rather easy to geometrically "guess” the images of these geodesics. We also,"gues's“ the
appi'opriate parametrizations by anticipating a result proved later (Corollary 3.3.5)
according to which any geodcsic is a constant speed curve, i.e., has g (W' @), W) con-

~ Stant,
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Figure 3.6

9 CR?

Now fix a P in D and a nonzero v in T,(D). We determine the unique geodesic of D
that fits v at p. Since the normal to D is radial the vectors pandvin R} are orthogonal.
These vectors determine a unique 2-d1mensxona1 plane Pin R>. Sincep is spacehke" in
R there are three possibilities: ' '

1. v is spacelike so that ¢; = v/<v,y>12

an orthonormal basis for . In this case a point aeq + bp of Pis in D iff a? + b2 =1.

is a unit spacelike vector in ]Rf and {eq,p} is
P D

Thus, P Dis the unit circle in Pwhich can be parametrized as
W) =(sinkt)ey + (cos kt)p, —o <t < oo,
where k = <v,v>Y2. Then p”(t) = ~k2(2) so W is everywhere normal to Din RJ, i.e., 51

is a geodesic of D. Moreover, W({0)=p and p'(0)=ke;=v. Observe that
gW®, W)= k%=<v,v>so W is everywhere spacelike.

2. v is timelike. Let e; =v/(—<v,v>)Y2, Then {e,,p]} is an orthonormal basis for P
with g (¢2,¢2) =-1. Now a point ag, + bp of Pis in Diff a2 + b2 =1s0 P D con-
sists of two branches of a hyperbola in . The branch through p can be parametrized as

M) = (sinh kt)eo + (cosh kt)p, ~o0 <t < 0o,
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where k = (~<v,v>)V2,

Exercise 3.3.8. Show that | is a geodesic which fits v at p and is, moreover, everywhere
timelike. i

3. vis null (and nonzero). Thus, {v,p} is a basis for Pand a point av + bp of Pisin D
iffa?2+e0+b2e1= 1,ie.,b2=1s0b =+1. Consequently, P D consists of two paral-
lel straight lines, the one through p having parametrization

HE)=p + 1V, o< <o ,

W is then a null geodesic which fits v at p.

The geodesics of Einstein-deSitter spacetime are not so casily identified, but here are
some examples (everything we say, but do not verify for E is proved in detail in [SW2];
nevertheless, it would be an instructive exercise to write out the geodesic equations for the
usual coordinate patch on E and verify that the following curves are solutions). For con-
vemence we shall omit reference to X = idgs and denote the coordinates in Ebyu ,u2 3
and u*. The vertical straight lines u(z) = (ul(t), 2(1‘) u3(t), 4(t)) (uo uo, ug, 1),
—o0 < | < oo, ATE mnehke geodesws in E.

Remark. These vertical geodesics are identified with the worldlines of the galaxies (or
galaxy clusters) of our universe. The "displacement vector" between two events with the
same u4 on two different vemcal gcodesms is spacelike and satisfies
HVIl = (g (V, V))I’ 2=k (u4)2’3, where K is a positive constant (here we have in mind two -
"nearby" galaxies so that the vector V, which actually lies in a tangent space to ‘E, can be
thought of as joining the galaxles) Observe that [1V 11, which is regarded as the distance

between the two galaxies at the "instant" u? in the given global coordinate system,
g gi g y

. 2
satisfies —_-% Nvil = —%-K(u4)”1’3 >0 and —%—— 1V || ———K(u4)‘4J3 <0 so that, in
-3 d 4)2

du
this particular cosmological model, the galaxies are receding from each other (i.e., the

universe is expanding), but at a decreasing rate.

The cubic curve A(f) =(0, 3t5, 0, 13%), o <1 < oo, is a null geodesic in Z. Indeed,
one can show (see pages 133-135 and 161-162 of [SW2]) that any null geodesic in E can
be obtained from this "standard photon" by reparametrizing affinely (i.e., introducing a
new parameter s defined by t =ms + b, wherc m and b are constants) and/or composmg '

with some map H: E — E of the form H ( w,t)=(h( w D), whcre h is an isometry. of;IR% R
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regarded as a linear system of first order ordinary differential equations for the V7(¢). It
therefore follows from the basic Existence and Uniqueness Theorem for such systems
(see, e.g., [Har]) that if the value of Vis specified arbitrarily at some initial ¢4, then (13
uniquely determines the values of the vector field V (¢) along the entire length of o, We
shall call V (¢) the parallel translation of V (1) along o. Finally, if V is any smooth vec-
tor field along a, then the covariant derivative of V along o is another vector field along o
denoted D oV and defined at each ¢ by

av’ dul
Da,vx{7+r{j—;‘t— *}x,, (14)

where ¢ is again restricted to some subinterval J of / which maps into a coordinate patch.
Thus, a vector field along o is parallel along « if its covariant derivative along o is zero
and the geodesic equations (7) can be written

Dyw=0. 15)

TN

When V =o, D o is a measure of &0’s non-geodesy".

Lemma 3.3.3. (Product Rule): Let a: 7 — M, o= o), be a smooth curve in the mani-
fold M with metric and V and W smooth vector fields along a. Then

-j—t(V-W)zV-Da-W-l-W-DdrV. (16)

Proof: It will clearly suffice to focus our attention on s in a subinterval J of J whicl_;“ o

maps * into %(@D) for some coordinate patch X Writing
o(r) =3 (1), u® @), V = V7 (), (0r)) and W = W' (£)y, (o)) for tin J we have
| aw' ., dul avl aul
, Ve Da'W+Wh: DgV=g,V" (7 + I“,-j —dt—W‘J + g W’ (udT + Fij*-gt—"V‘
aw! - avt ) ; dul : -
8 [V’T, Hw 7J+ sy G (vt e wv)

We simplify the second term as follows:

98im . 0Lim agfjJ

ou’ ou'  ou™

=l8”‘ 0Zim + 08 jm B 9g;;
277 owl L owt aum |

1
gnlli= > eng ’”‘(
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Consequently,
; 1| ogi agjr agq
1". V"Wl "V = e ‘ — rygzi rysi
8ril ij d ( WVt Z(Buf '*'au; S’ (VW + W'V
1 ag:r du (V,W, WrVi)+
2 oul dt
dg;r O :
T L (V”W‘ wrvi)
du' ou’
agtr du ivxrr
=S i V'W" since the first term is symmetric and the second
u
is skew symmetric in i and r
dgtr dgri
Viw’ = vrw! .
Tdr dr
Thus we find that

1 ! .
V.Du,mw.pa,‘/:g,{vriﬂz_+Wrdv J -

dt dt dt
dw" 1 dav’ dgn !
— r ——— r
=guV o + guyW o + = Viw

d rusl d
—— = (Ve W
3 BV W =—o(V e W)
Q.ED.

Theorem 3.3.4. Parallel translation along a smooth curve o 7 — M preserves dof pro-
ducts, i.e. if V and W are parallel along o, then g (V (t), W (¢)) is constant,



»
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d d
P f:"'_" s TZ — L4 = L ’ . ’ = - - — .
roo dtg(V(t) W) dt-(V W=VeD W +WeDV=Ve0+W-0 %ED

From this it follows at once that if a geodesic is spacelike, timelike or null at one point it
must have that same character at every point. Indeed, we have

Corollary 3.3.5. If u:/ — M is a geodesic of M, then g ('(z), () is constant.

Whether or not a curve is a geodesic depends as much on its parametﬁzation as on
its image. If o: 7 — M is an arbitrary smooth curve and h:J — I, t =h(s), is smooth
function on the interval J with #°(s) > 0 on J, then B=ooh:J — M is a smooth curve
called a reparametrization of .

Theorem 3.3.6. Let u:/ — M be a nondegenerate geodesic. A reparametrization
poh: J — M of pis a geodesic iff & has the form 4 (s) =ms + b for some constants m and
b.

2.r i j
Proof: By assumption, ddL; + I"{J d;t d:t =0, r=1,.,k&. From the chain rule,
{4 : ' :
d , r d2 r d2 r " r
- -h() = ((5))? (h()) . Thus,
d .
du’ du’ du o dZu” du' du
—_— l—‘r e —— Fs ]"" hl‘f
o TG (h())[ § = d} (
: du’
n = ’”
(h"(s)) »

r

dt

reparametrized curve can satisfy the geodesic equations iff #”(s) =0, i.e., A (s) msQ+ EbD

must be nonzero at cach t. Thus, the

Since W is nondegenerate |’ is nonzero so some

If M is a spacetime and o: ] — M is an arbitrary smooth timelike curve (o0 = 0(t))
and if one fixes some tq in I, then a proper time parameter T along o. is defined in the
usual way by

4
t=1() = | lg(o@), @)1 dr . (17

o



More General Spacetimes: Gravity 105

. dt . N
Since e lg(a,a’)1 2 and g (o', o) is never zero, 0. can be reparametrized in terms of

T. We prefer to use the same name for this proper time parametrization of o and simply
write o= 0(t). Observe that if 1 is a timelike geodesic, then Corollary 3.3.5 implies that
the proper time parameter T along | satisfies T=K (s — tp) for some positive constant K
and so, by Theorem 3.3.6, K= L(T) is also a geodesic.

Remark. We again point out that, just as for surfaces in R> (see the Remark following
Exercise 3.2.15), one often sees (17) abbreviated in "differential form"

d"CZ = »gfjduiduf .

Before putting all of this information to use in our study of time orientability and
chronology we shall introduce one last technical device by which we can make precise
our contention that every event can be viewed from a nearby "local inertial frame", Let M
be an arbitrary manifold with metric. Fix ap € M and let D, be the set of all vectors v in
T, (M) for which the maximal geodesic | that fits v at p'is defined at least on [0 1]. The
exponennal map at p is then the function :

expp: Dy > M

defined by exp, (V) =p(1) forallve D,. Thus, exp,(v) is the pomt in M which is param-
eter distance 1 along the unique geodesw which fits v at p. Observe that expp(0) =p
(degenerate geodesic) and also that Dy, is star-shaped i.e., tv € D, whenever v e D, and
0<t<1. ’ '

Exercise 3.3.9. letpe Mandve D,. Show that for every ¢ in the domain of (1n par-
ticular, for 0 <7 < 1), exp, (rv) is defined and a

expp(tv)_=u_(t) : . - (1“8).

One therefore pictures exp, as takmg the stralght line tv, r € domain (), along v in
T,(M) and smoothing it out along the i 1mage of u m M.

Exercise 3.3. 10. Describe D,, exp, and expp (T, (M)) for each p in M.

exp,, is really qulte a nice mapping. That it is C* on some open nelghborhood of 0
in T,(M) follows from the basic theory of ordinary differential equations (C*= depen-
dence of solutions to (7) on initial conditions; see [Har]) By calculating its derivative

(Jacobian) and appealing to the Inverse Functio_n_ ‘Theorem one finds that, in fact, it'is a
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diffeomorphism on some neighborhood of 0, i.e., exp, is a coordinate patch at p in M.
Cutting down its domain a bit more, this coordinate patch acquires the very useful pro-
perty of "geodesic convexity":

Theorem 3.3.7. For each p in the manifold M with metric there exists an open, star-
shaped neighborhood N of 0 in T, (M) and an open neighborhood N, of p in M such that

~ (a) exp, is a diffeomorphism of N onto N, (such an N, is called a normal neighbor-
hood of p),

(b) N,is geodesically convex, i.e., it is a normal neighborhood of each of its points

(for each g € N, there exists an open, star-shaped neighborhood of 0 in T,(M)

which exp, maps diffeomorphically onto Ny).
The proof (especially of (b), which is due to J.H.C. Whitehead) is rather involved and we
shall simply direct the readers attention to the treatments in [Hil, section 9.3 and 9.4 and
[02], pages 70-72 and 129-130. Observe that it follows from Theorem 3.3.7 that for any
p € M the geodesically convex normal neighborhoods of p form a local base at p, i.e., any
open set V containing p also contains such a neighborhood of p. To see this observe that
we may clearly assume V is connected and therefore a spacetime in its own right. More-
over, T,(V)=T,(M) for any g € V and geodesic segments of V are also geodesic seg-
ments of M (Why?). Thus, applying Theorem 3.3.7 to 'V ylelds a geodesmaﬂy convex
normal nc:ghborhood of p in M which is contamed inV,

Exercise 3.3.11. Show that any two points in a geodesicaily convex normal neighbor-
hood N, in M can be connected by one and only one geodesic segment contained in N,.

”
Remarks. Two given points in a manifold M need not be connectible by a geodesic seg-
ment, e.g., (0,0,0,—1) and (0,0,0,1) in M- {(0,0,0,0)} and, even if they are, that geodesic
sé€gment need not be unique, e.g., any two points on the sphere S2 can be joined by two
arcs of a great circﬁe (find a similar example in deSitter spacetime D). Even two points
inside a givén normal neighborhood N, might be connectible by a number of geodesic
segments, but only one of them can remain entirely in N, (Example?).

Now fix a basis {¢1,.. ,ek} for T,(M). Each point v in T,(M) thereby acquires coor-
dinates: v=v' ‘e As does any coordinate patch, exp, transfers this coordmate system to
its image N,, i.e., for each v in T, » (M), expp(v) is assigned coordinates (v I ") Any
such coordinate system on M is called a normal coordinate system atp. If M is"é space-
time and {e,es,¢3,€4} is an orthonormal basis for T,(M) with e4' future-directed

[% &
] 3
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timelike, then the corresponding coordinate system at p is called a Minkowski normal
coordinate system at p and it is these we have in mind when we refer to a "local inertial
frame" at p.

At this point we have (finally) assembled enough machinery to return to our study of
chronology. Our first objective is to generalize the chronology relation << on M to an
arbitrary spacetime M. Guided by Theorem 1.5.6 one might say that p in M chronologi-
cally precedes g in M if there is a smooth, future-directed timelike curve in M from ptogq.
We formulate our definition in equivalent, but somewhat more convenient terms. A trip
in M is a continuous curve ¥: I — M which is piecewise a future-directed timelike geo-
desic, i.e., for which there is a partition of / into subintervals such that the restriction of Y
to each subinterval is a future-directed timelike geodesic. As with smooth timelike curves
we will require that a trip contain any endpoints it might have. Trips in M are, of course,
just future-directed timelike polygons. A trip with past endpoint p and future endpoint g
is a trip from p 1o q and if such a trip exists we shall say that p chronologically precedes q
and write p < q. Geodesics are very special, but in some sense, trips are quite general.

Theorem 3.3.8. Let M be a spacetime with p and ¢ in M. Then P < ¢q if and only if there
exists a smooth, future-directed timelike curve in M from p to gq.

If there is a smooth, future-directed timelike curve in M from p to g, then its image is
compact and can therefore be covered by a finite "chain” of geodesically convex normal
neighborhoods. By convexity one can "hook up” points on the curve in consecutive nor-
mal neighborhoodé with timelike geodesics and thereby build a trip from p to g. Con-
versely, if there is a trip from p to ¢ the "joints" can be smoothed to give a timelike curve
from p to g by lifting each pair of joined segments to T,(M) via exp;! (7 is the joint),
observing that there is enough room between the lifted timelike straight lines and the null
cone in 7,(M) to round them off and remain timelike and then pushing back into M via
exp,. The details are available in Proposition 2.23 of [Pen].

Trips are somewhat easier to deal with than smooth timelike curves. For example,
the following basic property of the relation < is an immediate consequence of our
definition. '

Lemma 3.3.9. The relation < on M is _transitiv_é, ie,ifp «gandg <rthenp <«r.

For any p in M we define the chronological future of p, denoted I*(p), by
I"(p)={q € M:p <q). The chronological past of pis I"(p)={q e M: q «<p}. For
any § C M we let Ii(S)-:pgS I* (). In M, of course, I (p) (resp., I~(p)) is just the
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interior of the upper (resp., lower) null cone at p. Similar statements are true in D and %,
but there is no analogous statement for an arbitrary spacetime. The most that can be said
in general is that locally (inside a geodesically convex normal neighborhood) a timelike
curve cannot escape the null cone (see Lemma 4.5.3). Indeed, chronological past and
future sets can be quite pathological and have rather unexpected properties. It can even
happen that p € I7(p) for some p € M, ie., that M contains closed timelike curves
(1ndecd if one constructs a Spaceume M from the portxon of M between x* =-1 and
xt=1 by "identifying" _(x X203, -1) and clx?x ,1), then [ (p) =M for every p in
M). The existence of closed timelike curves in M is, from the point-of-view of physics, a
most unfortunate state of affairs since it does violence to our most basic notions of causal-
ity. An observer whose worldline is closed might conceivably set off on a journey, return
before his departure and decide not to go after all. While perhaps not beyond the realm of
possibility such a situation at very least would leave physics in some disarray and we shall
eventually formulate a condition ("stable causality”) which, when imposed upon all of our
models of the event world, will prohibit this and other such anomolous behavior. For the
present we simply say that a spacetime M satisfies the chronology condition if p ¢ 1 *(p)
for each p € M and regard an M which does not satlsfy this condition as physwally
unrealistic.

Our final objective in this section is to record our first indication of the influence of
topology on physics by proving that any compact spacetime must fail the chronology con-
dition (and 50, in our view, be unworthy of serious consideration as a modoi of the event
world). The proof of this, and a great many other resuits in our subject, depends upon the
following crucial fact.

o
Lemma 3.3.10. Foreach pin M, I (p) and I~ (p) are open subsets of M..

Proof: Let g be in I (p) (for I (p) simply reverse the time orientation). We must show
that there is a smill open neighborhood of ¢ in M contained entirely in / “"(p ). By
assumption, there is a trip Y from p to q. Th_é idea of the proof is as follows: Near each of
its points M is "essentially identical to" its tangent space at that point. Choose a point 7 on
the image of v which is "sufficiently close” to ¢ (in a geodesically convex norma} neigh-
borhood of g). Since the interior of the upper null cone in Minkowski space is open we
can find a small ne1ghborhood of g (thought of as lying in 7, (M) via exp;!) contained i in
the future of r and therefore, by transitivity, of p as well. Here are the details:
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Figure 3.8

Let N, be a geodesically convex normal neighborhood of g in M and select a point r other
than g on the image of the termmal segment of v and in N,. By inserting one additional
segment 1f necessary we can assume that the termmal segment of Y begms at r and there-
fore must be contained in N, (since N, is the i 1mage of a star—shaped nelghborhood of Oin
T4(M) under equ) Smce N, 1s geodeswally convex it is the diffeomorphic 1mage of
some star—shaped open set Uin T, (M ) under exp,. Thus exp;l(g) exists and is that
tangent vector v in T,(M) with the property that the unique geodesic in M that fits v at 7
reaches q in parameter distance one. This geodesic segment is contained in N,. As a
point set it must coincide with the terminal segment of ¥ (again by geodesic convcx1ty)
Since q is the future endpomt of v, both of these geodesics reach g in positive parameter
distance so their respective parameters are related by an equation of the form ¢ =ms + b
w1th m >0 (Theorem 3.3.6). Their tangent vectors are therefore parallel and have the
same dlrectlon Since the termmal segment of Yy is t1mehke and future directed, exp ,1 (q)
is lLkewzsc tlmehke and future dzrected Consequently, exp;. ;1 {q@) is in the interior V of the
upper null cone at 7 in T, ~(M). Since exp, is a homeomorphism on U, exp, UnV)is
open in N, and therefore also in M. Furthermore, since the image of any point in V under
exp, is on a future dxrected txmehkc geodcsw from r, exp,(U N V) is contained in I* (r)
and therefore, by transmvuy of <, in J +(p) Thus exp,(U N V) is the requlred open
neighborhood of g contained in / ). Q.E.D.
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Theorem 3.3.11. Any compact spacetime M contains closed timelike curves, i.e., fails the
chronology condition.

Proof: {I*(p):p € M} is an open cover for M since any element p of M is in the future
of something in M (let v be any future-directed timelike tangent vector at
P, =), —€ < t <&, a geodesic which fits v at p and consider a point p () on p with
to <0). Let {I"(@1), I"(P2),.... I"(p,)} be a finite subcover. We may assume that
I'*(py) is not contained in any I * (p;) for j 2 2 for otherwise we could delete /™ (p 1) from
the subcover. But then p; € I™(p;) for any j 22 by transitivity of <. Consequently,
p1 € I7(p1) and the proof is complete. Q.E.D.

3.4. Stable Causality

We concluded the last section with the failure of the chronology condition in com-
pact spacetimes. Any such spacetime is then, in our view, causally badly behaved and we
shall grant it no credibility as a model of the event world. There are, however, noncom-
paét spacetimes which also contain closed timelike curves (see Chapter 5 of [HE]) so that
restricting our attention to noncompact manifolds will not solve all of our problems.
Indeed, the existence of closed timelike curves itself is not the only way in which a space?
time can be causally misbehaved. Closed null curves can exist even when the chronology
condition is satisfied (e.g., in the M constructed from that portion of M between x4=0
and x* =1 by "identifying" points represented by (x!,x2,x3,0)and (x! + 1, x2,x3,1)). It
is possible for M to possess neither closed timelike nor closed null curves, but neverthe-
less toshave timelike curves which continually enter, leave and re-enter arbitrarily sinall
neighborhoods of some point. Many such possibilities exist and we would like to impose
somme condition on our spacetimes which will prohibit all of them. Fortunately, the insight
of Stephen Hawking has provided us with just such a condition and one which is, more-
over, physically quite natural. We shall formulate a definition which, although most con-
venient for our purposes, is rather far removed from physical intuition and then describe
an equivalent formulation which we hope to convince the reader should be satisfied by an
"reasonable"” model of the event world. o |

We sh_ail say that a spacetime M is stably causal if it admits a global time ﬁm&ion, '
i.e., if there exists a smooth, real-valued function T: M — R whose gradient VT is every-
where timelike (g (VT (p), VT (p)) < O for each p). |
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Exercise 3.4.1. Show that on M and ‘E the fourth coordinate function for the standard
coordinate patch is a global time function, Find one for D.

Observe that stable causality obviously implies time orientability. Also, if = cu(r) is any
smooth timelike curve in M, then, by Lemma 3.3.2, the derivative of T along o is
o' ()[T]=g (VT,a/(t)) and this is nonzero since VT and o are both timelike (Corollary
1.3.2). Thus, T is monotone along any timelike curve. Moreover, by choosing the time
orientation appropriately (V =—VT) we can assume that T increases along future-directed
timelike curves. In particular, of course, M can contain no closed timelike curves,

At first glance the existence of a global time function on M is intuitively very
appealing. One has visions of a "cosmic" notion of time and perhaps a relativistic version
of the long since abandoned "absolute time" of Newton. In fact, however, the physical
interpretation of these global time functions is not so clear. In particular, care must be
taken not to confuse such a T with the timelike coordinate function of some global coordi-
nate patch. No such global coordinate system need exist in a given stably causal space-
time (again, .‘M and T are quite special). The real physical significance of stable causality
comes to light in a remarkable theorem of Hawking which we pause now to discuss
briefly (we return to the interpretation of T in the next section).

In addition to the causality violations we have already mentioned Hawking observed
that certain spacetimes which do not have closed timelike curves are nevertheless "on the
verge" of having them in the sense that an arbitrarily small perturbation of the metric can
produce a new spacetime which fails the chronology condition. Now, from the point-of—
view of physics, the metric is an(object constructed by making measurements (of space
and time intervals) and no measurement is infinitely accurate. Indeed, quanturn mechan-
ics imposes a positive lower bound on the uncertainty of any such measurement. We do
not, and cannot, know the metric of the event world with absolute certainty. It follows
that any physically meanin gful assumption about a spacetime must be insensitive to small
perturbations of the metric. Thus, it seems that assumptions such as the chronology con-
dition are inherently weak; more appropriate would be the stipulation that there are no
closed timelike curves in any Lorentz metric for M which is "close" to g. This is
Hawking’s original notion of stable causality, with "close" defined in terms of an
appropriate topology on the set of all Lorentz metrics for M. We prefer the approach
taken in [SW2]: Let M be a spacetime with metric g (since we shall be dealing with dif-
ferent metrics on the same manifold M we shall temporarily employ such expressions as
"the spacetime (M,g)"). Another Lorentz metric . on M is said to be wider than g if, for
every nonzero tangent vector v with g (v,v) £0, it is also true that 2 (v,v) <0, i.e., if A-
null cones are "opened out" relative to g-null cones:
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Figure 3.9

\ 4 h-null cone

g-null cone

Observe that & has more timelike vectors than g so that the likelihood of finding closed
timelike curves in (M;h) is g_reatér than that of finding them in (M,g). More precisely, if
(M., h) satisfies the chronology condition, then so does (#,g), but the converse is false.
Indeed, if (M,h) satisfies the chronology condition, then (M,g)'canﬁc;t even be "on the
vérge" of having closed timelike curves since g can be "perturbed” ("widened") slightly
without producing such curves. | |

Exei'cise 3.4.2. Let (M,g) be a (time orientable) spacetime and V a smooth timelik,e \frec,—
tor ﬁ%d on (M,g). At each point p of M define a real-valued function % on
T, (M) X T,(M) by (cartesian product)

h(v,w)=g (v,w)-g v,V (p))g (WV(@)) (19)

for all v and w in T,(M). Show that 4 is a Lorentz metric on M and is, in fact, wider than
g.

Hawking’s theorem now takes the following form:

Theorem 3.4.1. A spacetime (M, g) is stably causal if and only if there exists a Lorentz
metric & on M such that /4 is wider than g and (M, h) satisfies the chronology condition.

One direction is easy:

T : =
- N : 4"-( )\_‘
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Exercise 3.4.3, Let T: M — R be a global time function of (M,gj and take V =~VT in
the construction in Exercise 3.4.2. Show that T is also a global time function for M, h),
i.e., that the h-gradient of T is h-timelike, and conclude that (M, k) satisfies the chronology
condition.

The reverse implication is quite‘ a bit more difficult; the argument is sketched on pages
199-201 of [HE]. We shall take Theorem 3.4.1 as sufficient motivation for assuming hen-
ceforth that all of our spacetimes are stably causal.

3.5. Global Hyperbolicity

The assumptions‘we have made of our spacetimes thus far (time orientability and
stable causality) have, from the physical point-of-view been rather easy to live with. The
next condition we propose is quite a bit stronger and not so easy to justify physically.
Historically, Hawking’s first general singularity theorem included this éonditiqn as one of
its hypotheses, but subsequent refinements of this theorem substituted less cdntrovcrsi_al
assumptions. We shall be content with the earliest version and direct those interested in
the much more subtle variants to [HE], [02] or [Pen] for detailed treatments.

We begin by considering an arbitrary global time function T on M (if there is one,
there will be many). The level set 7 (r), r € R, have a number of properties which will
interest us. Some are obvious. By continuity each such set is closed. Since T increases
along future-directed timelike curves, no two points in 7-1(r) can be "chronologically
related”, i.e., given p and ¢ in T1(r) neither P < g nor g < p can be true; we say that
T-1 (r) is achronal. It follows from our next theorem that any nonempty T-1 (r)is a 3-
dimensional smooth submanifold of M. |

Theorem 3.5.1. Let M be a smooth k-manifold with metric g and let f: M — R be a
smooth real-valued function on M. Then S={p e f'i (r): Vf(p) is nonzcro} is either
empty or a smooth (¢ — 1)-dimensional submanifold of M.

Proof: Assume S #( and fix a point p in S. We show that p has an open neighborhood
in § that is diffeomorphic to an open set in IR*"!. Choose an orthonormal basis
{e1,...,ex} for T,(M) and an open, star-shaped neighborhood N of 0 in T, (M) which exp,
maps diffeomorphically onto the geodesically convex normal neighborhobd Npof pin M.
Finally, let the coordinate patch exp, establish a normal coordinate system ul,...u* at D.

Then g;;(p)=n;; = nv wg‘f(p) so that Vf (p) =n¥ aaf, (p) e;. Since Vf (p) is nonzero,
of of

some -5—7 (p) is nonzero. Assume without loss of generality that E—E- (p)#0. Now
u u



More General Spacetimes: Gravity 114

consider the map F: N — RF defined by

Fal, a1 uby =@l ufl, f@l,. . u*tu®) .

F is obviously smooth and the Jacobian of F at (0,...,0) in T,(M) ~ R¥ is Ea% (p) which
U

is nonzero. According to the Inverse Function Theorem (Theorem 3.2.1) there exists an
open set U in N such that FiU is a diffeomorphism onto some open neighborhood of
©0,...,0,f (p)) in IRF. Thus, expp - (F %U)“I: F(U)~-> M is a coordinate patch at p in M
whose image is exp,(U) (an open neighborhood of p in M). Thus, exp,(U)N S is an
open neighborhood of p in § which consists precisely of those points in exp,(U) whose
kth coordinate relative to exp, - (F | U )"'1 e, f(u 1 ,...,u"‘), is fixed at .

Exercise 3.5.1, Complete the argument. ' Q.ED.

Lemma 3.5.2. If M is a k-dimensional manifold with metric and f : M — R is smooth,
then Vf is normal to the level hypersurfaces of f, ie., if ve T,(S), where
S ={p e fl(ry Vf (p) is nonzero}, then <Vf (p), v> =0.

Proof: Since ve T,(S) implies ve T,(M) we may use Lemma 3.3.2 to compute
<Vf@p),v>=vfl= %f (o)) o where o is any curve which fits v at p. But, by
=

assumption, there is curve o in S which fits v at p and fis constant along any curve in S so
;o

d | ,
o D 1 " | _ Q.ED.

Now let us return to our global time function T: M — IR on the spacetime M and
consider-a nonempty level set S =T~ (r). Since VT is everywhere timelike it is, is partic-
ular, never zero so Theorem 3.5.1 guarantees that S is a smooth 3-dimensional submani-
fold of M. Moreover, Lemma 3.5.2 and Corollary 1.3.2 imply that each 7,($) must con-
sist éntirely of spacelike vectors (and zero). A 3-dimensional submanifold S of a space-
time M every tangent space of which consists of zero and spacelike vectors in M is caIIed
a spacelike submanifold of M. To summarize then we have found that any nonempty level
set for a global time function must be a closed, achronal, spacelike, 3-dimensional smooth
submanifold of M. Despite the difficulties one encounters in attempting to supply glot_gal'
time functions with a direct physical significance these properties are essentially f_?he/
closest one can come in an abstract setting to the intuitive notion of an "instantanepus 3-

i e
I !
’ s
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space” (all space at some "instant"). For this reason we shall hencefore refer to any
nonempty level set for a globél time function on M as a spacelike slice of M. The most
obvious examples, of course, are the u* = constant hypersurfaces in M, D and E (dif-
feomorphic to R? in M and £ and S? in D). Two more useful examples are obtained as
follows: Let N* = {u!,..,.u®)e M:u® > (")? + @H? + @>)%)2) (the interior of
the upper null cone in M, regarded as a spacetime in its own right). Define T:N* - R
by T@lu®)=*? - @)? - @*? - @??Y2, Then T is smooth on N* and

ul u? u? ut

VT:———T—eleez- T €3 + T

_ @+ @+ Py - @t
T2

tion on N*. A typical spacelike slice for T is the upper branch (u* > 0) of the hyper-

boloid

€4 SO <VT, VT> =

which is negative on N*. Thus, T is a global time func-

(ul)z +(u2)2 +(u3)2_(u4)2____1 )

The same function T defined on the interior of the lower null cone in
MN~={@!,...ut)e M:u* <—()? + @)% + @3} is a global time function
whose spacelike slices are the lower branches (u* < 0) of these same hyperboloids.

Thinking of a spacelike slice S intuitively as "all space at some instant" we now wish
to address the question of $’s "domain of influence", i.e., how much of M is in some sense
"determined" by data on S. The definition we propose suggests that what happens at an |
event p in M is "determined” on § if every past endless smooth timelike curve from p
meets S so that any effect which could influence p is "registered” on S. Again we prefer to
phrase the definition in terms of trips: Let S be a spacelike slice in M. The future Cauchy
development of S, denoted D *(S), is the set of all p € M such that every past endless trip
(timelike curve) from p meets S. The past Cauchy development of S, denoted D ~(S), is
defined by replacing "past" with "future". The Cauchy development (domain of depen-
dence) of S is

DES)=D*S)uD(S) .

In M each u’=uf (constant) is a spacelike .slice S with D*)=
={!,..utye M:u*>u}) and D (S)= M Analogous statements are true in D and E,
In N*, the slice § = {(u',...u*): @H)? + @)% + @32 - @w"?=-1, u* >0} has D *(S)
equal to S and everything "above":
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Figure 3.10

On the other hand, in N~ the slice S={@l,...u*:@hH?+w??+
+ u3)? - (1,44)2 =-1,u< 0} has D *(S) as shown in Figure 3.11.
Figure 3.11

-t

Our last example is instructive in that it indicates the effect on D T(S) of cutting a "hole"
in our spac'etime. We let M =M-((0,0,0,0)) and S ={@,...u*):u*=0}. Then
D*(S)is as shown in Figure 3.12. ' 3

e
W
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‘Figure 3.12
CN ()

o'.: N

, S o
The "shadow" in D *(S) corresponds physically to the fact that information could, at least

in principle, be emitted from the hole, influencing the physics in the shadow region
without that information begin registered on S.

Exercise 3.5.2. Let 5S be a spacelike slice in the spacetime M. Show that (a) S D *(S),
and (b) D*(S) is closed in M. Hint for (b): Letp e D*(S) and consider N, nI*(g),
where N, is a geodesically convex normal neighborhood of p which misses S and g is
pointin N, to the past of p on some past endless trip that misses S.

Remarks. The physical interpretation of D ¥(S) is somewhat tenuous since we have
intentionally ignored the fact that causal effects can be propagated along null as well as
timelike curves. Allowing such curves in the definition complicates the mathematics
somewhat and gives a smaller D*(S) whose closure in M is our D*(S). This is the
approach taken in [HE] which may be consulted for more details.

From the causal point-of-view one would be most interested in a spacelike slice
§=7"1 (r) for which D(S)=M (intuitivcly, anything that happened "before" T =r is
recorded on § and determines everything that happens "after” T =r). Such slices exist in
some spacetimes (e.g.," u* = constant in M D and ), but not in others (e.g.,
M~ {(0,0,0,0)}). Traditionally, a “"Cauchy surface” in a spacetime M is defined to be"a
closed, achronal, spacelike, 3-dimensional submanifold S of M for which D (§) =M. M is
then said to be "globally hyperbolic" if it contains such a Cauchy surface. One can then
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prove that any such M must be stably causal and, indeed, must have a global time function
T all of whose level sets T~ (r) are diffeomorphic "Cauchy surfaces”. We prefer to evade
the issue of proving all of this by incorporating the results into our definitions: A Cauchy
surface in a spacetime M is a spacelike slice S in M with D (§) =M. M is said to be glo-
bally hyperbolic if there is defined on M a global time function T all of whose nonempty
level sets T-1(r) are diffeomorphic Cauchy surfaces (such a T is called a Cauchy time
function). M, D and E are all globally hyperbolic.

Exercise 3.5.3. Show that any globally hyperbolic spacetime M is diffeomorphic to a
product S X R, where S is a 3-dimensional manifold. Hint. Let T be a Cauchy time func-
tion. Show that the image of T is an open interval and compose with a diffeomorphism of
that interval onto IR (Exercise 3.2.4).

We regard global hyperbolicity as a very strong form of the principle of determinism and
henceforth assume that this condition is satisfied by all of our models of the even world.

3.6. Curvature and the Einstein Field Equations

Let D= {(ul,uz,uz’,u“) e RY: —o<ul, u? <o, 0< ul<m n<ud < nt} and
suppose we are told that a certain map ¢ on D is a coordinate patch for some spacetime M
relative to which the nonzero metric components are given by

4N2 22 .2 1
)~ sin u,814—-841—-“'2‘-

g£22 ='“i'(u1 ~ut?, gz = -i—(ul ~U
Observe that these metric components change from point to point in M. In general non-
cons}‘gncy of metric components can be traced to one of two possible sources. E1thcr the
geometry of the event world is really changing from point to point because M mcdels a
nontrivial gravitational field (this is the case, for example, in 2 and %), or we are being
deceived into believing that such is the case by an unfortunate choice of coordinates (see
Exercise 3.2.17 or, better yet, think about the range of possibilities Exercise 3.2.16 .
presents for the coordinate representation of the metric on Minkowski spacetime). How
are we to know? In this particular case at least the answer is not difficult.

Exercise 3.6.1 Define a new coordinate systcm for the spacetime M above by Setting
wl L4 -2 w3 wd .
ul=i +i ,u?=0",ud=0" and u*=i —u .. Use (4) of Exercise 3.2.16 to calcu-

late the metric components in the barred coordinate system and observe that these are pre-
cisely the metric components for Minkowski spacetime relative to spherical spatial coor-

dinates (Exercise 3.2.17). ¢ . ’




More General Spacetimes: Gravity 119

We conclude then that M is just a disguised version of M and no gravitational field is
involved. In general, finding a coordinate transformation which carries given metric com-
ponents to more familiar ones is a highly nontrivial task requiring considerable ingenuity.
On the other hand, there is a more or less routine (albeit quite tedious) calculation one can
perform to decide whether or not a coordinate transformation exists which converts a
given set of metric components into the standard metric components on 2, i.e., whether
or not a given M is locally "flat” (indistinguishablc from M). In order to trace the origins
of this "test" for local flatness we shall sketch an argument that is carried out in detail on
pages 183-188 and 200-204 of Volume III of [Sp2].

Begin with an arbitrary coordinate patch y: D — M on the spacetime M (obvious
alterations in the argument yield the same result of any Riemannian or Lorentzian mani-
fold). ‘Let g;; be the metric components relative to j. We ask whether or not there exists
another coordinate patch 2:5 — M with (D) ni(ﬁ )# & and relative to which the
metric components g;; are given by g;;=m;; throughout X(D) N %(D) (observe that, at
each fixed point p of M, this condition is automatically satisfies at p by any set of Min-
kowski normal coordinates at p). If such a coordinate patch exists, then the coordinate
transformation u fe u '(u l,uz,u3,u4), i=1,2,3,4, must,'by Exercise 3.2.16 satisfy

% i’ 1j=1,2,34, (20)
gl_]"' au; auf ’n(},Bs oJ = 1,4,3,4, :
throughout (D) N %(D). Rewrite (20) as
| | a’ am” .
L - €q, ij =1,2,3,4 @21
8 ot ow ! _

where

1 ife=1,2,3
fa=11 ifa=4.
Observe that, since the g;; are known, (21) can be regarded as a set of partial differential
equations for the sought after coordinate transformation = ﬁu (u 1 u? 43 ,u4),
o =1,2,3,4. Differentiation of (20) with respect to ¥ and a few algebraic maneouvers
give ' '

1| 9g; Ogx Ogx | ?ua” awm” L |
— + — - — | = - — Eo, LJ,k=1,2,3,4. (22)
2 [au" u  out | owout awt >
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~A
Multiplying (22) by g°Y —?—,}- and summing as indicated yields
| u
3 [am" i
- =T} — Ajk=1,234, 23)
ou* | ou’ e g | !

which is a system of partial differential equations for the L"i?L to which standard existence
theorems apply. Indeed, the "integrability conditions” which must be satisfied in order
that (23) admit a smooth solution # - ﬁ,x(u L u3.u*), A=1,2,3,4, are

oary; ory;
oul ou*

+ O T -TH T =07k 1=1,2,3,4 . (24)

We find then that necessary conditions for the existence of our coordinate patch 7 are that
the functions on the left-hand side of (24) vanish throughout the image of ). That these
are also sufficient conditions is not obvious, but is true (see pages 200-204, Volume III of
[Sp2)).

It goes without saying that calculating the 4* = 256 functions on the left-hand side of
(24) from the metric components g;; and the definition of the Christoffel symbols is an
arduous task (although not quite as bad as it might seem since there are actually,only 20
independent functions). Nevertheless, these functions reappear again and again in.dif-
ferential geometry and relativity whenever one must contend with questions of "curva-
ture” versus "flatness”. They were first singled out for consideration by Riemann in his
generalization to dimension n of Gauss’ differential geometry of surfaces in R? and are
named in his honor. If M is any k-dimensional smooth manifold with metric g and if
x: D — M is a coordinate patch for M, then we define the components relative to pf the
Riemann curvature tensor R for M by 2

arg; drg.
ou® out

Rgcd == + (rg'd rgu: - rgc &d)s asbscsd = 1,-"”': - (25)

-z

Remarks. We have not defined the unmodified word "tensor” and will have no need to do
SO. HoWever, our experience with "4-tensors” in Chapter 2 should leave little room for
doubt as to the proper definition. Recall that a 4-tensor of contravariant rank 1 and
covariant rank 3 is an "object” which is described in each admissible frame of reference
by 4* =256 numbers T%cq, a,b,c,d =1,2,3,4, with the propcrty that if two admissible
frames are related by the Lorentz transformation ¥ =A%x?, a=1,2,3,4, then the

numbers which describe the 4-tensor in the two frames are related by

4
e /

*
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Toea = AAAPATAS TS 5 (26)

for a,b,c,d =1,2,3,4. Altematively, it is a real-valued, 4-linear operator on 4-vectors
whose value at (U,V,W,X) is

TU,V.W.X)=TE.,U, VWX .

o B
Observing that A = -g—f—a-, AE %T etc. one can write the transformation law (26) as

ax” oxP ox? ox®
ox% 3% o ox”

Tgcd = Tgfyﬁ .

The transformation law for the Christoffel symbols given in Exercise 3.3.3 and a hezilthy
supply of persistence show that if X is another coordinate patch for the k-manifold M
which overlaps %, then the quantities RS bed defined by (25) with barred coordinates are
related to the R%.4 by

Egd= on" ouP ou? oud
“7 w® am” ant on”

R gyﬁ

and it is this transformation law which entitles the Riemann curvature functions defined
by (25) to the name "tensor".

Exercise 3.6.2. Define "contravariant” and "covariant” components of a tangent vector v
in T,,(M) relative to each coordinate patch ) at p and interpret the Riemann curvature ten-
sor R as an operator on tangent vectors. Hint. Look at the corresponding deﬁmtzons for
4-vectors in Chapter 2 and keep in mind that 1;; is the metric for M.

Observe that the transformation law (27) makes it clear that if R =0 for all
a, B,"y,ﬁz 1,....k, in one coordinate system, then ﬁﬁcd =0 for all a,b,c,d = 1,....,k, in any
other coordinate system as well. Thus, "the Riemann curvature of M is zero" is an invari-
ant statement, not effected by a change in coordinates. In particular, if one calculated the
components of the curvature tensor for the spherical coordinate patch for M (Exercise
3.2.16) the result must be identically zero since it is obviously zero for the standard coor-
dinate patch (where all Christoffe] symbols are zero). Intuitively, the local "flatness” of a
manifold is not a matter of perspective, i.e., of one’s coordinate system.

_ We will have no occasion to deal with the detailed calculation of components for the
Riemann tensor of specific manifolds so we shall content ourselves with quoting the
results of these calculations for 2 and Z. If g;; are the metric components for deSitter
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spacetime D relative to some coordinate patch (for éxample, that described in Exercise
3.2.18), then

Rgcd = Sggbc - Sggbd (in D) : (28)

(this is most often proved by showing that 2 has constant "sectional curvature” K = 1; see
[02]). The most efficient method of calculating the curvature tensor for Einstein-deSitter
spacetime Z is by way of the so-called "curvature forms" of Cartan (see pages 32-33 of
[SW2]). The result is as follows: Fori,j=1,2,3,

i i 4 .
Rjij = ——Rj'ﬁ ] 3(114) 2
(in ) . (29)

' . 2
Rhyig =—Riy=REq =R}y = —9—(u4) 2

and all remaining R%.; are zero (here u* is the fourth coordinate of the point'in E at
which R is being calculated).

Our primary concern will be with three "tensors” derivable from the Riemann curva-
ture tensor (we shall leave it to the reader to define the appropriate type of tensor and ver-
ify that the objects we describe are of these types). The Ricci tensor Ric has componénts
in each coordinate patch that are obtained by "contracting" the corresponding components
of R. Specifically, the components R, of Ric are defined in each coordinate system by

Rap =Raop - : (30)
, -
In M, of course Ric is identically zero. In deSitter spacetime we calculate from (28) that
Ry =083 Saa - 00:8ab = 8ab —48ap» 1.€.,

Rap =—38ap (in D) . : 3D

i

)

Exercise 3.6.3. Use (29) to show that the Ricci tensor for Einstein-deSitter spacetime has
nonzero components relative to the standard coordinate patch given by

'R‘;L,:%(u“)f?, a=1234 @BH. g (32
The scalar curvature S is obtained by "cohtra’ctihg"’ Ric, i.e.,

S.ng =g“bRab .
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Thus, in D, § = g®(-3g,) =-38% = -3(4) =12, i.e., D has constant scalar curvature.
Exercise 3.6.4. Show that the scalar curvature in Zis givenby S = g-(u4)“2.

Remarks. The scalar curvature of M is a real-valued function on M which is often
regarded as a gross'nurlnerical measure of the extent to which M is "curved” at each point.
M isn’t curved anywhere, D has the same degree of curvature everywhere and E’s curva-
ture becomes unbounded as u* — 0, i.€., as one recedes into the past. This last example is
particularly interesting in that it indicates that our cosmological model becomes "singu-
lar" in the past (as one approaches the "big bang"). /

—l—Sg, ie.,

The Einstein tensor G of M is now defined by G = Ric - >

Gdb =Rab "Sgab .

For M,G is zero of course. For D,G is a multiple of the metric (G =3g). For
" 4 _ : . . . .
EGu= ~§—(u4) 2 and the remaining G,y are zero. Our interest in the Einstein tensor

stems from the the role it plays in Einstein’s field equations, to which we now turn our
attention.

Mueh of the early work in general relanvxty focused on the construction of specific
spaceumes which modeled various grav:tational fields of interest to physicists (that of the
large scale distribution of gaiames in our universe, that of a static, sphencally symmetric
star, a rotating star, etc.). The constructions were carried out by solving a system of par-
tial d1fferent_1a1 equations proposed by Einstein as the link between the matter and energy
which give rise to the gravitational field (represented by the total energy-momenturri ten-
sor T of the system) and the metric g which models it. With the notation we have lntro-
duced these Emstem ﬁeld equations take the form

G =8xrT : (34
or, in somewhat more detail,
Ra'b - %Sgab; = SnTa.bs a_,b =1,2,3,4 . (35)

Remark. Einstein (briefly) considered a variant of these equations which one often still
encounters in the literature. Specifically, the field equations with cosmological constant
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have the form
G—-Ag =8nT , (36)

where A is a (generally positive and very small) constant. For the history and significance
of A we refer to [Pa].

Observe that the left-hand side of (35) is a purely geometrical object, defined for any
manifold with metric, while the right-hand side is fundamentally a physically measured
quantity. In order to gain some sense of the enormous complexity of these equations we
recommend the following:

Exercise 3.6.5. Write out the left-hand side of the Einstein equations (35) entirely in
terms of the metric components g, and their derivatives.

The result of Exercise 3.6.5 is a system of nonlinear partial differential equations for the
unknown metric components g,,. The nonlinearity has its origin in the fact that, while
T, contains a contribution from each of the relevant electromagnetic and matter fields, it
does not contain a term which reflects the fact that the gravitational field itself contains
energy which, being equivalent to an additional mass contribution, must "gravitate”. In
relativity a gravitational field "feeds upon itself" and this is reflected mathematically in
the nonlinearity of the field equations.

The reader may have noticed another, rather disconcerting, aspect of the Einstein
- equations. All of the quantities which appear in (35), whether geometrical or physical, are
expressed in terms of some coordinate system on the manifold M. What coordinate sys-
tem" Indeed, what manifold? The equations seem to be expressed in terms of gf\e very
thmg they are being used to construct and, in a sense, this is true. To solve (35) one must
begin with a "guess" (based upon one’s physical intuition concerning the field being
modeled) as to what at least one coordinate patch on the sought after manifold might look
like (e.g., spherical symmetry would suggest one guess, homogeneity and isotropy
another, etc.). Mo;éover, such a guess is possible only if the field is assumed to possess
exact symmetries which, of course, are never found in nature. We shall not pursue these
matters here since our results will not require the full strength of the field equations.
Indeed, the work of Hawking and Penrose on "global” results in relativity was ng‘etivated
principally by the desire to know whether or not some rather remarkable properties of
exact solutions to the field equations were a consequence only of physically unrealistic
symmetry assumptions. Any standard text on general relativity will contain seg_:tibns on
solving the field equations; we particularly recommend [ABS]. A brief survey of many of

t ¥

the known exact solutions is available in [HE].

,
fu o
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Remark. Strictly speaking any Lorentz metric g on a spacetime M can be regarded as a
solution to the field equations. One need only construct from g the Einstein tensor G and

1 - . .
then define the energy-momentum tensor by T = EEG This is cheating, of course, since

such a T will not in general correspond to any realistic distribution of mass/energy.
Indeed, this is the case for deSitter spacetime D where G = 3g so T = (3/8n)g and, for any
timelike V, T, V2V? = (3/8n)g,,V?V? = (3/8m)g (V,V) <0 and so corresponds to a
negative energy density (alternatively, one can regard deSitter spacetime as the empty
space, i.e., T =0, solution to the equations (36) with cosmological constant A = 3).

The road which led Einstein from his earliest thoughts on a relativistic theory of
gravitation to his field equations was extraordinarily long and difficult as certainly befits
what has been called the greatest achievement of any single human mind. We will not
presume to "summarize" the route. A marvelous glimpse into the history of the equations
is available in [Pa], while a detailed synopsis of Einstein’s "derivation" can be found, for
example, in [ABS]. '

~ An alternate version of the field equations will be useful. Beginning with (35) we
multiply by g%, sum as indicated and define the trace of T by trace T =g“”Ta , thus
yielding

. 1
8% Rap - = Sga) =87 o

S- -;—S (4) = 8n(trace T)
=—-8n(trace T)
so that (35) can be written

Rop =87l — S (uace T ga), ab=1234 . G

Exercise 3.6.6. Show that the empty space field equations G =0 are equivalent to
‘Ric=0. A solution to these equations is called either a vacuum solution or Ricci flat.

As in Chapter 2 we shall say that an energy-momentum tensor T satisfies the strong
energy condition if, for every timelike vector V,

T,,Vavh > -;—-(trace T)gas V7 . (38)
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This is regarded as a physically reasonable requirement on the energy-momentum tensor
and is, in fact, satisfied by all normal matter and energy fields (see [HE]). Combined with
the field equations the strong energy condition implies that for all timelike V,

R, VoVP 20 , (39
i.c.;
Ric (V,V) 20 . (40)

The requirement that (40) be satisfied for all timelike V is called the timelike convergence
condition and is all that we shall retain of the field equations. It is one of the hypotheses
of Hawking’s singularity theorem and is often conceived of as a mathematical statement
of the assumption that gravity is always attractive (see page 122-123 of [SW2]).

Exercise 3.6.7. An énergy-momentum tensor T is said to satisfy the weak energy condi-
tion if T;V2V? 20 for all timelike V. Show that if this condition is satisfied, then
T, WeW? >0 for all null w. Combmcd with the field equations this then 1mphcs the null
convergence condition ' ‘ '

/

Ric (W,W)>0 (41)

for all null W.

3.7. Mean Curvature and the Expansion of the Universe

In its early years general relativity had many great successes. The unaccoﬁntﬁble
exces{'in the advance of the perihelion of Mercury observed by LeVemer sixty years ear-
lier was handled immediately and with remarkable accuracy (sec [ABS]). Eddmgton S
dramatic confirmation of the bending of light in a gravitational field precipitated what
today could only be called a "media event” and overnight transformed Einstein from a
physicist into a legenff' (see [Pa] for the history and [ABS] for the mathematical détai'ls)
But perhaps the most awe inspiring was one which, in a sense, never happened. We have
already observed (see the Remark on page 100) that in our comological model E the
galaxies of our universe are recedmg from one another and this i is by no means a pecghar—
ity of Z alone. Einstein was the first to apply general relat1v1ty to the study of the 1arge
scale structure of the universe and was well aware of the dynamlc evolutlonary nature of

the cosmological solutions to his field equations Ric — %Sg = 8n7T. Now, one must under—

stant that at this time (1915-1917) such a notion was absolutely beyond comprehéﬁg.ién.
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Throughout all of human history the universe was regarded as fixed and immutable and
the idea that it might actually be changing was inconceivable. And so, for perhaps the
only time in his life, Einstein lost faith. Despite his profound belief in the validity of his
field equations he simply could not reconcile himself with their prediction of a non-static
universe and so he introduced, albeit very reluctantly, the modified field equations

Ric — %—Sg — Ag =8nT which do admit a static cosmological solution. Thirteen years

later Hubble discovered that the universe is, in fact, expanding and Einstein repented,
withdrawing the cosmological constant A and calling its introduction "the greatest
blunder of my life". Einstein was thus denied what would certainly have been the greatest
achievement of his (and arguably any other) scientific theory: predicting, before any evi-
dence was available, the expansion of the universe.

Nevertheless, the universe is expanding and this expansion is one of the hypotheses
of Hawking’s theorem. To get at a precise mathematical statement of this hypothesis we
will require a generalization of the familiar notion of "divergence" from vector calculus.
~ Thus, we consider a smooth vector field W on the manifold M with metric. If o J — M is
any smooth curve in M we define the restriction of W to « to be the vector field along o
denoted W | o and defined by

Wia) (1) =W ()

foreach tin 1.
Remark. In a sense this process can be "reversed" also:

Exercise 3.7.1. Let o: / — M be a smooth curve in the manifold M, V a smooth vector
field along o and 79 € 1. Show that there exists an open nelghborhood of auty) in M and
a smooth vector field W on this open set such that (Wla) (¢) =V (¢) forall rin some inter-
val about ¢y.

Now let p be a point of M and v € T,,(M). We define the covariant derivative of Watpin
the direction v, denoted D , W, by selecting a smooth curve o which fits v at p and setting

D, W=Dg(Wlm) (42)

(see (14) of section 3.3). Thus, in any coordinate patch,

i ' . .
DW= {‘3’:’ ry; Wi ]x,., 43)
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where a(t) =y (u 1 (t),...,u"(t)). Observe that, at each p,

.oy | OWT du r wi du’
DvW(P)—[auj @) 7 O+I';w (P)—dt (0)])&(19)
so that
D awr r.owi
y W= +I"'UW vfx,. (44)
o’

and therefore the definition is independent of o.. If V and W are both smooth vector fields
we define the vector field Dy W by

DyW(p)=DypnW .

Exercise 3.7.2. Prove each of the following:
1. D,Wis linear in W,ie,Dy(c1W1 +caW3)=c1D Wy + ¢2D W for any real
numbers cy and c4.

. If fis any smooth real-valued function, then D, (fW) =v[f W (p) + f (p)D W.

The quantity in brackets in (44) is called the covariant derivative of W and is denoted W’;’ iy
ie.,

W’ :
W= + TG W 45)

in eaclcoordinate system. , ?

Exercise 3.7.3. Show that the quantities ﬁ;'} defined by (45) with barred coordinates are
-related to the W!; by

/ ’

-~ o auﬁ
W;f .auo: a-—J W:%

so that the covariant derivative of W has the transformation law of what one would call a
"tensor of contravariant rank 1 and covariant rank 1".

Exercise 3.7.4. Show that W’J = Wf, (summation over j). A ”

According to Exercise 3.7.4 we may define the (covariant) divergence of W, denoted div

L

£ /, '
A
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——

div W = Wi; | (@6

in any coordinate patch, Observe that whenever the Christoffel symbols are zero (e.g., in
R”*, M, etc.) this reduces to the usual definition of divergence.

Exercise 3.7.5. Show thatif {e,...,e;} is any orthonormal basis for 7, (M), then at p

k
dGvW=Y g <D, W, ¢;> ,

i=1

where g; = <e;,¢;>.

The special case of interest to us is described as follows: Let M be a (globally
hyperbolic) spacetime with Cauchy time function T and let $ =T~} (r) be one of the
corresponding Cauchy surfaces. We know that the gradient of T is a smooth vector field
on M which at each point of S is normal to § (Lemma 3.3.16). Moreover, VT is always
timelike (and can be assumed past-directed) so that, in particular, g(VT,VT) is never zero.
Thus, we may define a future-directed unit timelike vector field N on M by

N=-lg(VI,VD)I-12vT .

Observe that, on S, N is a unit normal field. We intend to measure the expansion of the
~ universe by the extent to which this unit normal field on § is "diverging”. Specifically, we
define the mean curvature Hg of S in M by

Hg=(divN)lg .

Exercise 3.7.6. Let W be a smooth vector field on Einstein-deSitter spacetime E.” Show
that, relative to the usual coordinate patch on Z, '
owl ow? ow3 2

div W = =—— + + + = w* .
ou! ou’ ou’ ut

Using T (u Vu?ud u*y=u* as the global time function and denoting by S one of its Cau-
chy surfaces, say, ut=ul a positive constant) show that

He(p)=Hg@!',u?u’,ul) =2/} .

Thus, the mean curvature of each #*% = u§ spacelike slice of ‘E is a positive constant which
becomes infinite as u$ — 0, i.¢., as one approaches the "big bang"..
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The hypothesis of Hawking’s theorem which corresponds to the physical assertion that
the universe is expanding is the assumption that our given (globally hyperbolic) spacetime
M contains at least one Cauchy surface on which the mean curvature is bounded below by
some positive real number.

3.8. Singular Spacetimes and the Statement of Hawking’s Theorem

' The theorem of Hawking [H] to which we refer says, in effect, that any mathemati-
cal model of the event world (spacetime) which contains no causal anomalies (stably
causal) and is deterministic (globally hyperbolic) and which models an expanding
universe (positive lower bound on the mean curvature of one of its spatial cross-sections)
in which gravity is always attractive (Ric (V,V) 20 for all timelike V) must be "singular”.
All we lack for a careful statement of the theorem is the precise sense in which a space-
time can be "singular’. Ordinarily, of course, a "singularity" is a "point where something
goes wrong". For example, in Chapter 2 an electromagnetic field (e.g., the Coulomb field)
on M was taken to be singular at some point if one or more of its components relative to
admissible coordinates became infinite there. In our present circumstances, however, we
have no collection of distinguished coordinate systems to use as a benchmark and jt is
often very difficult to decide whether a g'iven "singularity” is "real" or only due to an
unfortunate choice of coordinates.

Exercise 3.8.1. Let D= {(u l,uz,u3,u4) e RY:ut > 0} and suppose that for some
spacetime M there is a coordinate patch %: D — M relative to which the nonzero metric

components are g1 =g =g33 =1 and g4y =— Observe that g44 — —d a%

@y
ut — 0. ’ghow that, nevertheless, M is just a disguised version of M. |

Therc 1S an even more fundamental difficulty, however, since the "field" we have in rmnd
here is the metric g itself and, by definition, the metric on a spacetime must be well-
behaved (smooth) at each point of the underlying manifold. If the object before usis
indeed a spacetime, then any potential "singular points” must already have been cut out.
The questions then is "How does one detect the ‘holes’ that remain after the bad points
were removed?" The answer is, at least.on the surface, aimost childishly snnple One
knows there is a hole if something falls through it! Somewhat more precisely, we shill
take as an indication that a region has been excised from our spacetime M the existence of
a timelike geodesic (freely fallmg material particle) whose domain of definition cannot be
extended to all of R. The motivation is as follows By Theorem 333 an 1nextend1ble
geodesic cannot have endpoints since, at each of its pomts, it has a well-defined veloelty
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vector which can be used to extend the geodesic to slightly larger (or smaller) values of its
parameter. If one proceeds in this way to extend the geodesic to larger and larger (or
smaller and smaller) values of its parameter one cannot fail to succeed unless the exten-
sions become "shorter and shorter” and run out of the manifold. Thus, a timelike geodesic
on M which is not defined on all of R is either extendible or "falls out" of the manifold in
some finite amount of proper time. From the physical point of view this last possiblity is
as "singular” as anything one might imagine since it indicates the presence of a freely fal-
ling material particle which simply ceases to exist after some finite lapse of its own proper
time. The precise definitions follow. ' '

A manifold M with metric is said to be geodesically complete if each of its inexten-
dible geodesics is defined on all of R. |

Exercise-3.8.2. Show that M is geodesically complete if and only if for every p € M the
exponential map exp, is defined on all of T,(M ).

A spacetime M is timelike (resp., null, spacelike) geodesically complete if each of its inex-
tendible timelike (resp_., null, spacelike) geodesics is defined on all of R; otherwise, M is
timelike (resp., null, spacelike) geodesically incomplete.

Remarks. For our purposes here a spacetime is "singular” if and only if it is timelike
geodesically incomplete. Nevertheléss, one must recognize that there are other ways,
equally objectionable from the physical point of view, for a spacetime to deserve the
appellation "singular”. Null geodesic incompleteness is certainly one. On the other hand,
the physical interpretation of spacelike geodesic incompleteness is not so clear. However,
since accelerated observers seem to have as much right as free observers to object to their
existence being abruptly curtailed one might attempt to generalize our notion of incom-
pleteness to include a wider class of timelike curves. More information on these various
possibilities is availabe in [HE]. One final remark. Questions concerning geodesic com-
pleteness in Lorentzian manifolds can be quite delicate and subtle, but for Riemannian
manifolds the situation is well understood. Indeed, there is a classical thcor_em of Hopf
and Rinow (see [O2]) which asserts that a Riemannian manifold is geodesically complete
if and only if it is complete as a metric space (Cauchy sequences converge). Here the
metric is the natural distance function derivable from the Riemannian metric (the distance
between two points is the infimum of the arc lengths of all curves joining them in the
manifold); see Problem 4.C. '

M and D are, of course, geodesically complete, but E is not since the "vertical”
timelike geodesics p(t) = (ué,u%,u%,t), 0 <t < oo, cannot be extended to values of 1 <0
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(the scalar curvature S of E becomes infinite along such a geodesic as £ — 0 and so would
have to take the value < at any point on the geodesic corresponding to z =0). Einstein-
deSitter spacetime is "singular” in our sense. Intuitively, the situation is something like
this: In Z the universe is expanding, i.e., distances between galaxies increase as u4 ~ oo,
Consequently, as one proceeds backward in time, i.e., lets u* — 0, the universe contracts
toward the situation in which all of its mass is concentrated at a single "point" at which
our ability to make measurements breaks down completely (the scalar and mean curva-
tures become infinite there). Note, however, that the "singularity" is not really a point in
, but rather corresponds to the entire "missing" hyperplace u* = 0. It was the occurrence
of such singular behavior in many of the exact solutions to the field equations which first
suggested that this might be a characteristic feature of general relativity. The singularity
theorems of Hawking and Penrose are generally regarded as confirmation of this suspi-
cion.

The reader may have noticed an apparent weakness in our use of timelike geodesic
incompleteness as the criterion for "singularity”. It would seem that even the most inno-
cuous of spacetimes (e.g., M) can be made "singular” according to our definition by sim-
ply deleting a single point. In fact, this is true and one surely would not, on physical
grounds want to regard, say, M~ {(0,0,0,0)} as singular in any sense. How does one dis-
. tinguish between "holes" which must be there because the spacetime is "really singular” /
and those which are capriciously plucked out of a perfectly respectable manifold? We
propose that the difference between M = M- {(0,0,0,0)} and E is that M is a submani-
fold of a larger spacetime in which the hole is filled in, but E is not (again because the
scalar curvature of ‘E blows up as u* — 0). More precisely, we say that a spacetime is
maximal if it is not a proper submanifold of any other spacetime. ‘£ is maximal (see Eyfccr#—
cise 5'2°Z¢°f [SW2]), but M- {(0,0,0,0)} is not. Geodesic incompleteness is of geomegf-
ical and physical significance only for maximal spacetimes.

Finally then we are in a position to state the theorem to which all of our efforts have

——

been directed. The proof will be given in Chapter 4.

.{d‘

ok

Theorem 3.8.1. (Haw_king [H]): Let M be a (time orientable, stably causal, globally
hyperbolic)spacetime which satisfies :

1. Ric (V,V)20 for all timelike tangent vectors V, and 5

2. There exists a Cauchy surface S in M on which the mean curvature Hg is bounded
below by some positive constant £, i.e., Hs(p) 2 k for each p in S.
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Then M is timelike geodesically incomplete. More precisely, if p: (19, 0] — M is any
future-directed timelike geodesic such that g (W,)) =—1, u(0) € S and p’(0) is normal to
S in M, then —ug 2 -3/k.

PROBLEMS

3.A. Geodesics of the Sphere
Give an argument analogous to that we employed in section 3.3 for calculating the
geodesics of deSitter spacetime to show that the geodesics of the 2-spheres § 2 are the

constant speed parametrizations of its great circles (intersections with § 2 of planes in R3
through the origin). Generalize to §”.

3.B. Curvesin R3

We denote by <,> the usual Riemannian metric (dot product) on IR® and by x,y and
z the standard coordinates. For any smooth curve o: [l — R3, a)=x @), y@), z(2)),
one defines an arc length parameter s = s (1) by

I
s=s@) =] <o), ' (0)>"2 dr

t
=[O + ) + O dt

(this arc length parameter is said to be based at a in I). We will assume that all of our
curves ¢ have been reparametrized in terms of arc length so that o = a(s).

1. Describe the smooth curve a(t) = (cosh ¢, sinh ¢, 1), f € R, in IR3 and show that its
arc length reparametrization (based at 0) is ofs)=((1 +s%2)!2,
sA2, sinh™! (s A2)). |

2. Show that any curve o.=0(s) parametrized by arc length has unit speed, ie.,
<o(s), o’(s)> =1 forall s.

Henceforth we denote o'(s) by T(s) and refer to it as the unit tangent field to o.

T'(s)=o(s) is the curvature vector field along o and its magnitude
k(s)= NT' ()1l = <T'(s), T'(s)>"? is called the curvature of o.
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Show that 7" is orthogonal to T, i.e. <T,T"> =0. Hint. Differentiate T(s)* T (s)=1.

Observe that k(s) 20 ahd show that if k (s) = 0 for some interval of s values, then o
is a linearly parametrized straight line on that interval.

Henceforth we assume that k{(s) #0 on the interval of s values under consideration.

Define that principal normal vector field along o by N (s) = —— T"(s) and the binormal

k()

field by B (s) =T (s) x N(s). The 2-dimensional affine plane at c(s) spanned by T (s) and

N (s) is the osculating plane at o(s).

Figure 3.13

B (s)

The triple {T (s), N(s), B (s)} of vector fields along o is called the Frenet frame of
o,and gives an orthonormal basis for T ) (IR ) at each a(s). }-

Prove the Frenet formulas:
T's)=k(s)N(s)
v N(s)=—k(s) T(s) + 1(s) B(s)

B(s)=-1(s) N (5)

where t(s) =—<B (s), N (s)> is the torsion of o. P

'Calculate the Frenet _I_f_rame _for the unit speed helix ous) = (a cos (s/c),

a sin (s/c), bs/c), where ¢ =(a® + b2)"? and a > 0 and show that k (s) = ,.._5..9.._5_5_
a” -+,

and 1(s) = —5——-. ¢
a’ +b? ¢
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7. Let o(s) be a unit speed curve in R> with k(s) > 0. Show that ot is a plane curve
(i.e., lies entirely in some plane in IR?) if and only if ©(s) =0 for all 5. Hint. Show
that if o is a plane curve, then B (s) is constant. Conversely, assume T(s) =0 and

compute <-(@(s) ~ o0)) * B s) to show (i) ~ o0)) + B =0.

8. Show that if afs) is a unit speed curve with constant positive curvature % and .
T(s) =0 for all s, then o is part of a circle of radius 1/k. Hint. Show that the curve
Y(s)=0o{s) + 1 N (s) is actually constant, i.e., Yy (s) =p for every s. p is the center

k
of the circle.

Remark. Many more such applications of the Frenet formulas to the theory of curves in
R? are available in [O1].

3.C. Algebraic Symmetries of the Curvature Tensor

We define the covariant components of the Riemann curvature tensor RZ.; by
Rabcd =gaoc Rgcd: a,b,C,d = i-,--.,k .

1.  Prove that

1 ': azgac | angc azgad angd ]

R = e — — +
abed = ouou® oudou® Suoub  outou®

+ Zop [F:?a by -T I‘Bc]

2. Derive the following symmetries of the curvature tensor:

Rapea = Regap
Rabea = _"";R bacd = —Radpe = Rpadc

Rabed + Radpe + Racra =0

3.D. Some Surface Theory

Throughout this problem % : D — M will be a coordinate patch for the smooth sur-
face (2-manifold) M in R? with D a connected open subset of the plane IR?2. The Rieman-
nian metric on M is the restriction of the R3-inner product to each tangent plane. All
curves in M will be parametrized by arc length (see Problem 3.B) and the unit normal
vector field on y (D) istakentobe U =y xx2 / Hyxy X211 .
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Let g =det(g;) be the determinant of the meiric tensor for M. Show that
gy xx2 12 =g.

As in Exercise 3.3.2 we resolve the acceleration (curvature) o of an arbitrary
smooth unit speed curve o in M into tangential and normal components:'
o = 0o + O nors where O nor = Lij W'Y @YU, Lij =y * U, and
O"an = (@7 + T 'Y @))%, The matrix (L;;) is called the second fundamen-
tal form of M ((g;;) is often called the first fundamental form of M). For any unit
tangent vector v = v Xi in T, (M) the normal curvature of M at p in the direction v is

ky (V) = L'/

Let M be the graph of z =f (x,y) = %0}2 —x2) (a saddle). More precisely, define

x: RZ > R3 by % u,v)=(u, \?/ %—(vz - uz)) and set M =7y (R?). Calculate
(Lij (4, v));, j=1,2 and show thy,/at the origin, (£;;(0,0)) is

e -1 0
0 1}

Observe that T gy (M) is just the xy-plane so that any unit vector v in T g) (M) can
be written v = (cos 8) %1 + (sin ) ¥, where 0 is the usual polar angle. Show that

ky(v)=-cos 20 .

Show that for an arbitrary M and unit vector v in T, (M),

hW)=o"U , ff
" :
where ¢ is any unit speed curve in M that fits v at p. ‘
We gain some intuitive appreciation of normal curvature by applying the result of #3
1o certain specific curves in M. Fix a p in M and a unit vector v in 7, (M). The plane
through p spanned:by v and U (p) intersects M in a curve whose unit speed pararnetr-
ization is denoted o, = 0., (s) and called the normal section of M at p in the direction
v. Show that ky(v) =% lla”, Il (+ if o, is in the direction of U/ and — if o, is in
the direction of —U). Thus, ky keeps track of both the magnitude and direction of
M’s curvature in every direction (see Problem 3.B). ¥
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5. Show that there exist unit vectors v; and v, in T, (M) (called the principal directions
of M at p) such that k; = ky(vy) and k4 = ky(v,) are respectively the maximum and
minimum values of ky(v) at p (ky and k- are called the principal curvatures of M at
p). Hint. Regard ky as a real-valued function on the unit circle in 7, »(M).

The Gaussian curvature K =K (p) of M at p is defined by K (p) =k 1k, where k; and &, |
are the principal curvatures of M atp.

6. Let M be the saddle in #2 and p = (0,0). Show that the Gaussian curvature of M at p
is ~-1.
7. Use the algebraic symmetries of the curvature tensor from Problem 3.C to show that,

for a surface, the only nonzero components of Rp.q are R 1212, Ro121, R 1221, and
R 5112 and that these satisfy R 1912 = Rap1 =—Ra112 ==R 1901

Thus, in dimension two, the curvature tensor has essentially only one independent com-
ponent. Gauss® famous Theorema Egregium states that, in fact, R 55 =K ¢ and implies,
in particular, that the Gaussian curvature can be defined entirely in terms of the metric
(g;;) of the surface. Remarkably, the function K which seems to be telling us how M

3"

“curves in R™" can be computed from measurements made entirely in M without any

reference to the ambient Euclidean space IR>. There is an elementary and very readable
proof of this in [Fa].

3.E. Derivatives of Smooth Maps

Let M and N be smooth manifolds of dimension m and » respectively and f: M — N
a smooth map. For each p in M we define a map

f*p : TP(M) - Tf(p)(N)

as follows: For each v in T,(M) select a smooth curve o which fits v at p. Then f-atisa
smooth curve in N which goes through f (p) at ¢t =0. We set

o) =(f-a) (0) .

Sy 18 called the derivative (or differential or tangent map) of f at p.

1. Lety:D — M be a coordinate patch for M at p and let = f - (which need not be a
coordinate patch for N at f(p)). Define 9] as usual by 9 =0%/ou’, where

u i,...,u'" are the coordinates in D ¢ R™, Show that

(fe @) @)= @ @) %' ©),.u™ 1)) .
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2. Show that the definition of fx; does not depend on the choice of .-
Show that’ Jep 1 Ty (M) — Trpy (V) is a linear transformation.

4, Choose a coordinate patch ¥ for M near p and a coordinate patch Z for N near f (p)
and express fin terms of these coordinates, i.e., consider the map Z™1- f-y:

izl 2™ =@l .u™, ..., ffwl,...u™) .

Show that the matrix of fxp relative to the coordinate bases for % and Zis the Jaco-

bian
s o'
ou'’ ou™
of" of"
| ou! ou™ |

5. Show that if f:M —N and g:N — P are smooth and p is in M, then

/

(g - )*p = g*f (p) * J+» and explain why this fact is called the Chain Rule.

6.  Suppose that f : M — N has the property that fx, is a linear isomorphism. Show that
f1is alocal diffeomorphism at p, i.e., that f maps some open neighborhood of p in M
diffeomorphically onto an open neighborhood of f (p) in N.

7. Prove that the converse of #6 is also true.

8. Provethatif Mis diffeornorphié to N, then m = n. g
Remark. The corresponding topological result (i.e., that IR™ homeomorphic fo R”

implies m = n) is much deeper and requires considerable machinery to prove; see [Nab].
3.F. Fermi-Walker Transport

* Parallel trans}atlon along a smooth curve o preserves dot products (Theorem 3.3.4).
Consequently, if one is given an orthonormal basis for the tangent space at one point
0u(to) it can be parallel translated to give orthonormal bases at each point along o Such
an ensemble of vector fields along o which give orthonormal bases for each T o) (M) is
called a moving frame along o and is somewhat analogous to the Frenet frameg con-
sidered in problem 3.B. The major defect of such frames is that even if the velocity vec-
tor o'(fo) is a member of the initial basis at ot(to) the velocity vector o/(z) will generally
not be in any of the translated bases (unless o is a geodesic). In this problem we consider
another method of transporting vectors along smooth timelike curves in a sp?cet;imc

R4
’l

s
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which always preserves velocity vectors. Thus, we consider a smooth timelike curve

0. = 0t) parametrized by proper time in a spacetime M. o/(t) is its unit tangent vector

and A =D o its covariant acceleration. If V is any smooth vector field along o we

define its Fermi-Walker derivative along o by

FoV=DgV+<V,o/>A-<AV>a .

We say that V is Fermi-Walker transported along a.if F » V =0.

1.
2,
3.

3.G

Show that if o is geodesic, then F oV =D oV for any V.
Show that o” is Fermi-Walker transported along ct.

Iet V.and W be smooth vector fields along «o. Show that

% <V,W>=<FyV,W> + <V,Fy+W> and conclude that Fermi-Walker transport

preserves dot products.

Show that if V is orthogonal to o, then F 'V is the projection of D oV onto the
orthogonal complement of .

Conformally Equivalent Spacetimes

Two spacetimes (M,g) and (M,g") with the same underlying manifold M are said to

be conformally equivalent if g =Qg’, where Q: M — (0,00) is some positive smooth

function on M.

1.

Show that Einstein-deSitter spacetime ‘E is conformally equivalent to the open sub-
manifold R3 x (0,0) of Minkowski spacetime M, Hint. Introduce a new time coor-

4)1/3

dinate u =3(u on E and show that the metric components relative to

@tu?,u3,u)are
0 if i
gi; whuuduy= @3 if i=j=123
i}
—u/3)* ifi=j=4

| Supi)ose that (M, g) and (M,g") are conformally equivalent. Show that they have the

same null curves and the same causal structure (i.e., p < qis and only if p <<’ q).
Must they have the same geodesics?

Show that any spacetime conformally equivalent to a time orientable spacetime is
itself time orientable. Is stable causality also a conformal invariant? Global hyper-
bolicity?




~ CHAPTER 4

THE PROOF OF HAWKING’S THEOREM

4.1. A Sketch of the Argument

In a globally hyperbolic spacetime M with Cauchy surface S any point p in M-S is
connectible to S by (in general, many) smooth timelike curves. Each such curve has a
proper time "distance" from S. Hawking’s Theorem depends in a crucial way upon the
fact that among these curves there is a least one geodesic that "maximizes" the proper
time distance from p to S. _ ,

Theorem 4.1.1. Let M be a (globally hyperbolic) spacetime, S a Cauchy surface in M and
p a point in M—S. Then there exists at least one smooth timelike curve A:[0,1] — M such

1
that A(0) =p, A(1) € S and the proper time length jig (), M) 1 Y2 dr of A is at least as
. 0 ‘

large as the proper time length of any other smooth timelike curve from p to (a point¢in) S.
Mor®over, this curve is a geodesic which hits S orthogonally (g (A’(1),v) =0 for evegi'y vin

Ty (5)).

Theorem 4.1.1 is quite deep and we shall defer any discussion of its proof until somewhat
later. With it and ;1 bit more technical machinery, however, the proof of Hawking’s
Theorem is within reach. Roughly, the argument goes something like this (we shall
employ the notation established in Theorem 3.8.1): p: (1,01 = M is a future-directed
timelike geodesic such that g (W,u") =-1, u(0) € S and p’(0) is normal to S. Fix an arbi-
trary —vg in (- ,0]. We show that —vo = -3/k and conclude that —u¢ 2-3/k. We shall
denote by p the point L(-vg). |
g

Exercise 4.1.1. Use Theorem 4.1.1 to show that there exists a future-directed timljke geo-

desic y: [-a,0] —» M (a positive real number).such that y.(—a)=p, Y(0) € §, Y (0)is .

o //?
P L s
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orthogonal to S, g (y’, ¥') =—1 and such that the proper time length a of ¥ is greater than
or equal to the proper time length of any other smooth timelike curve in M from p to a
point in S.
Since a is the proper time length of y from p to § and vy is that of i, maximality implies
that vg < a and it will suffice to show that —a = —3/%.

Figure 4.1

10y

p=u(—vo)=7v(-2)

Now we forget about L and concentrate on Y. Maximality implies that any timelike "vari-
ation" of ¥ which connects p and S must be "shorter". Somewhat more precisely, we con-
sider a 1-parameter family of smooth timelike curves 1': [-a, 0] = M, -8 < v < 3, such
that, for each v, 7" (—a) =p, 7°(0) € Sand 1° = Y. S

Figure 4.2

v(0)
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Define a real-valued function L on (-5,8) by setting L (v) equal to the proper time length
of ¥ between p and S, i.e.,

0
L= | 1g@y, @012t .

o,

Thus, L (0) is the length of y and, by assumption, is a maximum value for L: (-9,d) = R.
Consequently, the second derivative L”(v) of L with respect to v must non-positive at 0,
ie.,

L"(0)<0 . (1)

As it happens there is a well-known formula from the calculus of variations (which we
derive in section 4.2) that expresses L”(0) for such a variation of y in terms of v, the so-
called "variation vector field" along 7y (which essentially points in the direction in which y
is being "varied") and the Riemann curvature tensor of M. Writing down the inequality
(1) for three carefully selected variations of y (one in each of three orthogonal spacelike
directions along ), using this formula, adding and algebraically manuvering a bit eventu-
ally yields the inequality ‘

/

o[ ' -
05%-! [a;uTRiC(Y',”I')du-Hs (y(0)) . 2)

One of the hypotheses of Hawking’s Theorem 3.8.1 is that Ric (V,V)2 0 for all timelike
V. Since v is timelike the integral in (2) is non-negative so

. ] . ’ I F
. - .Os%m.HS(y(O)). 3)

Another hypothesis of our theorem is that the mean curvature Hg of § in M is bounded

below, by some k >0 so that Hg(y(0))=k and therefore (3) gives us 0< % —k, ie.,

o,

—a =2 —3/k as required.-

In the next few sections we develop more carefully the notion of a "variation" of the
curve v, derive the variational formula referred to above and then give a detailed proof of
Theorem 3.8.1. 5
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4.2. Two-Parameter Maps and the Variational Formulas

We consider a smooth k-manifold M with metric. A two-parameter map in M is a
smooth mapping T of some rectangle [a,b]x (-~0,d) into M. The u- and v-parameter
curves of T are respectively the curves u — t(u, v) (v fixed) and v — T, v) (u fixed). A
vector field on T is a mapping Z which assigns to each (u,v) in [a,b] X (-6,0) a tangent
vector Z(u,v) in Ty, vy (M). Z is smooth if for every coordinate patch ) on M the com-
ponent functions Z i (i, v) defined by Z(u,v)=2Z g (1, v) x; (t(u, v)) are C™. The rhost obvi-
ous examples of smooth vector fields on © are the coordinate velocity vector fields T, and
1, which assign to every (u,v) the velocity vector of the u-(respectively, v-) parametef

curve through T(u,v). For each y we write x‘l «T(1, V) =(u1(u,v),...,u"(u,v)) so that
i : . .

T, = v %i and similarly for 7,. Restricting any smooth vector field Z on 7T to a parame-

ter curve (i.e., holding either u or v fixed) gives a smooth vector field along that curve.

If y:{la,b]—>M is a smooth curve in M, then the two-parameter map
t:[a,b1x (=8,8) — M is a variation of vy if 1y is the u-parameter curve corresponding to
v=0,1i.e.,if v (u)=1(y, 0) for each u in [d,b 1.

Figure 4.3

Longitudinal

Transverse curves

In this case the u-parameter curves are called the longitudinal curves of T and are regarded
as small variations (deformations) of y. The v-parameter curves are the transverse curves
of T and are thought of as connecting "nearby” variations of . The vector field along v
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obtained by attaching to each point in the image of ¥ the velocity vector of the transverse
v-parameter curve through that point, i.e., by setting

Vw)=1, (u,0)

is called the variation vector field of t and is thought of as "pointing toward nearby" vari-
ations of .

Exercise 4.2.1. Show that every smooth vector field V along 7y is the variation vector field
for some variation of ¥. Hint. Consider expyc) (VV ().

Now we return to an arbitrary smooth vector field Z on the two-parameter map 7.
We define the partial covariant derivatives Z,, and Z, to be the covariant derivatives of Z
along the u- and v-parameter curves. More precisely, at each (ug,vg),

Z,(ug,vg) = covariant derivative of u — Z (4, vg) at u =uy

and similarly for Z,. Thus, if Z = Z° y;, then

oZ’ , O /
zu-.{ = + T a”; z‘}x

and similarly for Z,. Two special cases are of particular interest. If Z =1,, then
Z, =1T,, = covariant acceleration of the u-parameter curves and if Z =1,, then Z, =1, =
covariant acceleration of the v-parameter curves. If T is a variation of some curve v, then

e

w A@)="1Ty (,0)

is called the transverse acceleration of 1. Observe thatif Z =1, thenZ, =1,, and

. c *u’ L o ou’ ou' o )
= S USvon Y v ow ‘fu |

since I'j; is symmetric in { and j and mixed second order partial denvatlves are equal.
Thus, we have proved

Lemma 4.2.1. If Tis a two-parameter map in M, then T,y = Ty,.

_For an arbitrary smooth vector field Z on 1, however, Z,, — Z,, will, in general,not
be zero. Indeed, we now calculate Z,,, — Z,, relative to an arbitrary coordinate patcg}, X as

follows: Z, = (Z,)" %y, where R S
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b A oul _;
+T —2Z' .
ou Y du

Z.) =

Exercise 4.2.2. Calculate Z,, = (Z,), and show that its r*# component is

ez o ] oz aun

(Zuv) "{avau +rmn avau Z ]+an av au + (4)
owu® _,, e . owf 0zZ8 ., oul ouwt .,
et iy o im0

Observe that the term in brackets in (4) is symmetric in % and v so that the rih component
Of Zuv — Z Vi is

My ou” mn Ou” . ou/ ou" |
Gy = Zw)" = [ >  on  om ov T T Tonn ov  ou ©)
;. ouw ou"
~ T B v ]Z”’
: . aul 1 au” n .
In order to save some space we introduce the notation — =1y, =Ty, €tc. With

ov ou
this and the Chain Rule applied to the derivatives of the Christoffel symbols (5) becomes

ol oI, C
au";" - Wau";" il + T T,

(Zuy "'Zvu)r = [

T} Ty 1:3] z"

Wt W + T Ty 10 Tl

_ ol j oy,
ou” du’

— T T Ty 1:{‘] zm

_ ) SR )
ou” ou’

~—= + 5 Thy — T r;n] R A

r nof 7m
=Rpnj U Z™ .
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Before stating our result as a Theorem we introduce some standard notation and terminol-
ogy. If X, Y and Z are tangent vectors at p in M, then R(X,Y) Z = Rxy Z is the tangent -
vector at p defined relative to any coordinate patch ¢ by

REYZ=RyyZ=R%a Z°X°YH y, . (6)

If X, Y and Z are vector fields on M, then R(X,Y) Z = Rxy Z is a vector field on M defined
at each point p by (6). For fixed X and Y the operator R (X,Y) = Ryy which takes Z to
R(X,Y)Z = RyyZ is called the curvature operator of M. The result of our computation
above now takes the following form. | -

Theorem 4.2.2, If Z is a smooth vector field on the two-parameter map T on M, then

Zyw—2Zyy =Ry, 1,)2 =R1:,,’t, Z . )

Exercise 4.2.3. ‘Show that if {e,...,e;} is any orthonormal basis for 7,,(M), then, at p,

k
Ric (X,Y)= Z £;8 (Re,-Xys e

i=1
where €; = g (¢;,¢;).
- Now we restrict our attention to the special case in which M is a spacetime,
Y: [a,b] — M is a smooth future-directed timelike curve (parametrized by proper time so
thatg (', v)=-1andt:[a,b] X (-5,0) - Misa variation of y.
. g
)
Exercis€ 4.2.4. Show that by taking d sufficiently small we can insure that all of the long-
itudinal curves ¥ — T(u,vy) are also timelike and future-directed. Hinr. Restrict T to a
compact set of the form [a,b] X [-81,0;], where 8; < 0 and argue by contradiction.
Now define a length function L: (—9,8) — M associated with 1T by taking L (v) to be the
proper time length of the longitudinal curve u — t(u,v), a <u <b (notice that u will, in
general, be a proper time parameter only for the v = 0 longitudinal curve, i.e., ¥ ), i.e.,

b
L) =] 1g(tu@,v), T V)12 du £8)

for each v in ;8 <v< d. Thus, L (0) = length of y=5 —a. Since the longitudinal curves
are all timelike, g (1,,T,) is never zero so that the integrand in (8) is differentiabl€” at
v=0, . i

[ s

_’/
y /
A
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Theorem 4.2.3. If y:[a,b] > M is a smooth, future-directed timelike curve in M
parametrized by proper time and 1 : [a,b] X (—0,8) — M is a future-directed timelike vari-
ation of ¥ (see Exercise 4.2.4), then

b
L0 =—f g (y’@), VW) du

where V(1) =1y (u, 0) is the variation vector field and V'(u) = 1,, (1, 0) is the covariant
- derivative of V along Y.

Proof. For this proof (and the next) we set H (4, v) = (-g (T,,7,))2. From (8) we find
that '

b 9 ‘
Lo=J = H(uv) l . ©)

But

d

< 1. =12
aV H(M,V) - 2 [ g(TuaTu)]

0
v [~g(ty,7y)]
1 -12
=—E[—g (Ty, T 28 (1,,%,y) by Lemma 3.3.3

172 g (t,,7y,) by Lemma 4.2.1.

= ‘“‘[“‘“g (Tus'cu)
Setting v=0 we get 7,(u, 0)=7'() and [g (T, T,)I""% = [-g (v (), ¥ @) 2 =1 so
that

J L
w (“’l") =W, V) .

Integrating from a to b gives the result. _ Q.ED.

As we pointed out in section 4.1 we are primarily interested in the second derivative
L”(0) and that only when yis a geodesic and V is orthogonal to y”. Next we shall derive a
formula general enough for our purposes.

Theorem 4.2.4. Let y: [a,b ] — M be a future-directed timelike geodesic in M. Suppose
1:[a,b] % (-,8) = M is a future-directed timelike variation of y whose variation vector
field V is orthogonal to v, i.e,, g (y",V)=0. If L : (-3,8) > R is the length function of T,
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then
b ’ b
L' =] ®Rvy v\ V) -g V. V)} du-g(r',4)|
where A is the transverse acceleration of 1.

Proof: As in the proof of Theorem 4.2.4 we let H (4, v) = [-g (T, T)1Y2 and obscrvc that

2
L"(0)= I oH _du.
We have already shown that
oH _  8(%uTuy)
ov H
Thus,

o’H 1 [a oH
avz ="H2 [H v 8 (TusTuv) ~ 8 (Tus Tuy) _é'v—]

1 1
= "'"ﬁ' |:8 (TuvsTuy) + 8 (T4, Tuyy) + "E'i" 8 (Tu’Tuv)z:I .

But, T,y =Ty, and Tyyy = Tyyy = Tyvu + R 1,7, Tv SO

1 |
ov: H [8('cvu,'cvu) + 8 (Tus Rer, T) + 8 (T Tyva) r b

1 2
+ = g (Ty,T
i’ g (T, vu)]

Setv=0togetH =1, 1, =7, &y =V, 1, =V, T,y = A and 1y, = A" and therefore
oH l -..=m|:g (V,V) + g Ryy VoY) + g (Y, A) + g(’y’,V’)z:I .
ov iv=0 . Y _

From the fact that R2_, =—R%., we conclude that g Ryy V,Y)=-gRyy ¥',V). Mare-
over, since ¥ is a geodesic, D.}.r'y’ =0 so that differentiating g (V,y") =0 with respect to u

gives g (V',v) =0. In addition, -‘% g(y",A)=g(y’,A"). Thus, we find that

2 .
’ d ’ .
| =Ry YV -g (Vi) - (ra) =
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Now integrate from a to b to obtain the required formula. Q.E.D.

We conclude with another bit of notation we shall use in the proof of Hawking’s
Theorem. Let us consider a globally hyperbolic spacetime M with Cauchy surface S and a
future-directed timelike geodesic v: [-a, 0] — M, a >0, which satisfies g (y",y) =-1,
¥(0)e Sand g (y'(0),v)=0forallvin T w0y (8). Denote by 1% (7) the vector space of all
smooth vector fields V along vy which satisfy g (V (&), v (#)) =0 for each u in [—a, 0] and
V{(—a)=0. Every member V of V@L (Y) obviously has the property that V (4) is spacelike
or zero for each u and, moreover, V(0) € T o) (5). The elements of Va'" (y) are the varia-
tion vector fields for orthogonal variations of y which connect y(-a) with . More pre-
cisely, a variation T : [-a,0] x (-8,8) — M of vis said to induce the member V of V(‘)L (y)if
its longitudinal curves are future-directed and timelike, begin at y(—a), end at a point on S
and if the variation vector field of T is V. Any element of Vi (7) is induced by some such
variation of 'y (either construct your own or have a look at Lemma 49, page 297, of [O2]).

4.3. Covariant Differentiation in Submanifolds

The last section concluded with the observation that every element of Vg (y) is
induced by a variation of y. Notice that the final transverse curve in such a variation is
contained in the hypersurface S. Since S is itself a manifold with metric (the restriction of
M’s metric to each T,,(S) € T,(M)) a vector field along such a curve that is everywhere
"tangent to S” will have covariant derivatives along the curve in both M in S. Of course,
these two covariant derivatives will not be the same in general (consider, for example, a
great circle on S2 cR?). The last bit of preparation we require for the proof of
Hawking’s Theorem is a discussion of the famous "Gauss-Weingarten equations" which |
express several important relationships between these two derivatives.

Let us set the stage. We restrict our attention to a spacetime M, one of its Cauchy
surface S and a point p in S. Then T},(S) is a 3-dimensional linear subspace of T,,(M) all
the nonzero elements of which are spacelike. Consequently, we can write

T,(M)=T,(S) ®T,(S)*

where T,(S)" is the orthogonal complement of T,(S) in T,(M). T,(S)' is therefore a
one-dimensional linear subspace of Tp (M) spanned by a timelike vector. We denote by
P :T,(M)—T,(S) and P+ : T,(M) — T,(S)" the projection maps. Now fix a v in 7,(S)
and let W be a smooth vector field of M that is tangent to S, i.e., that has the property that
W(g) € T,(S) for every q in S. We denote the covariant derivative in M of W in the
direction v as usual by D,W. Thought of as a vector field on S,W also has covariant
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derivative in $ in the direction v and this we denote DSW. The relationship between these
two derivatives couldn’t be simpler: '

DSW=P(D W) . | (10)

The proof of (10) is not difficult, but since we will be concerned primarily with the nor-
mal rather than the tangential component of D ,W we simply refer the reader to Theorem
1 in Chapter 1, Volume 3, of [Sp2]. To get at this normal component we introduce a bit of
notation. Define a map |

SIS X T,(8) = T,($)*
as follows: For any v and w in T,,(S) we set

s(v,w)=PL+D W) , (11)

where W is any smooth vector field on a neighborhood of p in M that is tangent to S on
this neighborhood and extends w (i.e., W (p) =w). Of course, we must verify that this
definition does not depend on the choice of the extension W of w. |

Lemma 4.3.1. Letv and w be in T,(§). If W1 and W, are two smooth vector fields on a
nelghborhood of p in M that are tangent to S and satisfy Wi(p)=Wy(p)=w, then
P, Wl) pt (D Wz) '

Proof. We define an operator K which takes a smooth vector field W defined on some

ne1ghborhood of pin M to the tangent vector
1 g~ ‘

" | KW)=PDW) . |

Observe that, by Exercise 3.7.2, K is linear in W, ie, K(ciW;+cWp)=
c1K(Wy)+cqoK (Wz). Also observe that if W is tangent to S and fis any smooth real-
valued function on some neighborhood of p in M, then” S

KGEW)=F @)K W) (W tangent to S)

because K(fW)= Pi(ov(f W) =PL([f IW (p) +f(p)D W)= P“L(f(p)D W) =
f @PLO W) =f @K W). -

- By linearity it will suffice to show that if W is tangent to .S and Wp)= 0 then
K (W) =0, Choose a coordinate patch y at p in M such that X1, X2 and )3 are tangentto S
on some neighborhood U of p in M. Then W = fi X;» where fi, i=1,2,3,4, are C . re;al-
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valued functions on a neighborhood of p in M, f(p) = fz(p) = f3(p) = ( and, moreover,
f4 =0 everywhere on SNU. It follows that K (f“ X4) =0 and therefore
KW) =K' 1) + K¢ %) + K (P %) = @)K (1) + 2 0)K (x2) +f3cp)K<xé)E-—-§.

Consequently, s (v,w) is well-defined. We now let N denote the unit normal field to S
defined in section 3.7.

Exercise 4.3.1. Show that if visin T »(S), then DN is in T,(S) also. Hint. N is a unit
vector field.

The following result is true in a much more general context, but we shall record only
that special case that is of interest to us (see Chapter 1, Volume 3 of [Sp2)).

Theorem 4.3.2. Let M be a spacetime, S a Cauchy surface in M, N the corresponding unit
normal field, p a point in S and ve T,($). Then for any smooth vector field W on a
neighborhood of p in M that is tangent to S we have

D W=D5W +s(v,W({p)) (the Gauss formula) (12)

and

§MDNW)=—g(N,D ,W)=-gN,s(v.W(p))) (the Weingarten equations) . (13)

Proof: The Gauss formula is just a restatément of (10) and (11). To prove the equalities
in (13) we begin with gN,W)=0 on S to obtain
O=vigW,W)]=g WN,D,W) + g (D,N,W) which gives the first equality. The second is
just the definition of 5 (v, W (p)) as the normal component of D, W. Q.ED.

4.4. Proof of the Singularity Theorem
For convenience we shall restate our major result (Theorem 3.8.1).

Hawking’s Theorem: Let M be a (time orientable, stably causal, globally hyperbolic)
spacetime which satisfies '
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1. Ric (V,V) 20 for all timelike tangent vectors V, and

2.  There exists a Cauchy surface § in M on which the mean curvature is bounded below
by some positive constant £, i.e., Hg(p) 2 k for each p in S.

Then M is timelike geodesically incomplete. More precisely, if i : (—u,0] = M is any
future-directed timelike geodesic such that g W1y =-1, w0) € S and p’'(0) is normal to
S, then —u g 2 ~3/k.

Proof. Let —vg € (—u(,0] be arbitrary. We will show that —vg 2 —3/k and conclude there-
fore that —ug = -3/k. Letp = p(-vp).
Figure 44 S

#(0)

p=p(—vg)=7v(-a)

a

.By Exercise 4.1.1 there exists a future-directed timelike geodesic Y:[-a,0] > M@ >0)
| such that y(—a) =p, ¥(0) € S, Y(0) is orthogonal to S, g(¥,Y)=-1 and such that the
proper time length z of v is greater than or equal to the proper time length of aﬁy other
smooth timelike curve in M from p to a pointin S. Since p and 7y are both unit speed geo-
desics they are both parametrized by proper time so, in particular, the maximality of y

implies that vy < g and it will therefore suffice to show that
¥

- —a=-3/k . B ¢ 1)

Select an orthonormal basis {W(-a), Wa(—a), Wi(—a), Y(-a)} at p and let
{W 1), Wau), Wa(u), Y(u)} be the vector fields along y obtained by parallel transla-

tion (see section 3.3 and observe that smce Y is a geodeszc 1ts ve1001ty vector YUS parallel

‘;/ //y
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along 7). By Theorem 3.3.4 these vectors form an orthonormal basis for Ty (M) for
each u in [-a,0]. Moreover, the W; satisfy all the requirements for elements of V§ (y)
except that they do not vanish at u =—a. To obtain elements of Vé (V) we define vector
fields V; along v by

Vi(u)=a+u

W;, i=1,2,3,

for each u in [—a, 0]. Each V; is in Vi (y). Consequently, each of the V; is induced by a
variation T; of y and each T; in turn gives rise to a length function L;: (-5;,5;) = R. By

. . Frs 3 ”
maximality of y each of these length functions must satisfy L; (0) 0 so L;=0.
i=1
According to Theorem 4.2.4 we therefore have

3 0
<3 | e V-2 Ruy ¥, V) du + g (4:0), Y(O)) (15)

i=l | —a

(note that A;(—a) = 0 since the transverse curve at —a is constant).

Exercise 4.4.1. Let o : ] — M be a smooth curve, f (4) a smooth real-valued function on
I and W a smooth vector field on o.. Show thatD o (f W)=f'W + fD, W.

Since each W; is parallel along 7 it follows from Exercise 4.4.1 that V'; = -‘-11- W;. Conse-

: 0
quently, g (V';,V') = —-1-2— g (W, W) =1/a?so j g (V';,V'}) du = 1/a and therefore
_ a

—-a

zfﬂ%ygm—i. e

i=]-a

To handle the second term in (15) we observe first that from the definition of the curvature
' ' a-+u

operator it is clear that Ryy Y= Ryy Y SO that

Z £ Ry, y’y’ W;). But we claim that this last sum is actually
=1

Rm (Y ,Y). To see this we observe that the obvious symmetry R =—R}4 of the
Riemann tensor implies that RyyZ =—RyxZ so, in particular, RyxX =0. Consequently,
our assertion follows from Exercise 4.2.3. Thus,

a+u

5 fg(va V)du—!( 2 Ric (Y, V) du . (17)

ul—a
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The last term in (15) is % g (A;(0), Y(0)). Since Y(0) is a future-directed unit timelike
i=1

normal to S it must coincide with N (y(0)), where N is the unit normal field defined in sec-
tion 3.7. Now, {W(0), W5(0), W3(0), N(¥(0))} is an orthnormal basis for Ty (M)
with {W1(0), W,(0), W3(0)} spanning Ty (8). N is a smooth vector field on all of M.
Extend {W{(0), W»(0), W3(0)} to vector fields (W, W,, W3} on some neighborhood
U of y(0) in M such that, for each p in U N S, {W,(), W1(p), W3(p)} is an orthonor-
mal basis for T,(S). Now we compute '

Z 8 Dw, Wi, N) (Y©0)) = Z 8 Dwcron Wi, N (Y(0)))
i=1

w

=3 g Dvie Wi, Ny (0)))

3 ) B
=3, e @) Wi + 5 (V0), W 0))N (v ©))
i=1

3
=¥ g (Vi(0). ViO).N Y O)
i=1

. 3 |
Exercise 4.4.2. Show that the last sum above is equal to Y, g (4;(0), N(y(0))) and con-
. i=1

clude that

3 - 3 — :
Y, 8A:0), Y (0)= Y, gD, W;, N) (Y (0)) . . (18)
i=1 i=1 y
»* ;
On the other hand, we claim that the right-hand side of (18) is just —Hy (v (0)). To see this
we write

i

Z g (DW W;, N) (Y (0)) = Z 8 Dw iy Wi, N (v (0)))
=1

3 o
==Y, 8 Dw,op N, Wi(y(0))) by (13)
i=1 -

=-div N (Y (0))

by Exercise 3.7.5 and the fact that g Dniyoy N, Ny (0))) =0 by the Hint in Exer01se
4.3.1. Butdiv N (y(0)) = Hg (v (0)) by definition so we conclude that { ¢ ,
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3 : ‘
Zig(A; ©0), YO)=-Hs (y(©O)) . (19)

To conclude the proof we substitute (16), (17) and (18) into (15) and obtain

a+

0
3
0<2 [ AUy Ricy, vy du-Hs (rO)) . (20)
a _
Since ¥ is timelike assumption #1 of the theorem implies that the integral in (20) is non-
negative so that

0<2 —Hg (Y O) . Q1)

Moreover, since ¥ (0) is the S, assumption #2 gives Hg (v (0)) 2 k'so that

3

0s=—k, 22)

which is equivalent to (14) | ' QED.

4.5. The Existence of Geodesics

And so we have, at last, a proof of Hawking’s Theorem. Well, not quite. We still
must deal with the as yet unproved Theorem 4.1.1 and this is no simple matter. Indeed,
the proof of this crucial lemma is long, difficult and at times rather technical. In this final
section we shall attempt to provide something of the flavor of the argument while at the
same time evading most of the technicalities. We sketch a proof based on a number of
preliminary lemmas. For each of these lemmas we shall be content with either a sketch of
the proof or simply a reference where the proof can be found. Even this requires some
work however and we must begin with a few definitions. |

If M is a spacetime and p is in M, then a geodesically convex normal ncighborhood
N of p is called a simple region if its closure in M is compact and contained in another
geodesically convex normal n'eighborhood of p. Every p in M has a local base consisting
entirely of simple regions. We denote by U, the maximal open subset of T, »(M) on which
expp : Up — N is a diffeomorphism onto N. A map Q:N xN — R called the world
Junction (in [Pen] and [Sy2]) or the geomemc energy function (in [SW2]) i is defined by

Q@,q) =g (exp;! @), exp;! () .
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Thus, Q(p,q) is the squared Lorentzian length of the unique geodesic segment
i : {0,1] = N such that u” (0) :expgl (g). Indeed,

1 1
Jew o, weyde=fg @), wo) a
0 0
i
=g (WO), WO [ ar
)

=g (exp;! (@), exp;! (@) .

Observe that Q (p,q)=Q (g,p) and that Q (p,q) is >0, <0 or =0 according as Y as
spacelike, timelike or null. Moreover Q is C™ on the product manifold N X N. For each
fixed p in N we define Q, : N — R by Q,, (¢) =Q (p,q). For each k in R we let

H,;={qeN:q#p and Q,(q)=k]}

and observe that Hy, i is a smooth 3-dimensional submanifold of N (and therefore of M).
" This is most easily seen by choosing Minkowski normal coordinates for N and using the
fact that exp, : U, — N is a diffeomorphism. We denote by CT () cT,(M) the open
solid cone of future-directed timelike vectors in T,(M); C7 (p) is defined dually by
replacing "future” with "past”. Finally, we set .

NF 0)=exp, CF )N Up &N

an(}‘f observe that NF (p) and Nt (p) are open and disjoint and that, mpreover
g € NF (p) W N7 (p)if and only if W is timelike. :

We show next that inside a simple region radial geodesws from p are orthogonal to
Ievel hypersurfaces of €, i.e., we establish

B v '
ok :

Lemma 4.5.1 (The Gauss Lemma). Let N be a simple region containing p, k a real
number and q a point in Hp, Then the umque gcodesm T [0 1] >N with
W (0)=exp pl (@)is orthogonal to H & at q
5
Exerclse 4.5.1. Lett:[a,b]X (—8 8) —~Mbea vanatlon of the curve p.(u) (u, 0) and
assume that each longitudinal curve u — T(u,vyp) is a gcodesw with g (Ty,Ty) the same
constant value on each. Show that g(t,,%,) is constant along y. Hint. (Ca}culatc

.d% g (Ty, 'cv') from the product rule and use Ty, =Tyy. R T
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The Gauss Lemma follows easily from Exercise 4.5.1 in the following way: Let
0. : (0,8) — H,, ;. be an arbitrary smooth curve in H,, ; with a(0) =q. We must show that
g (0/(0), w'(1))=0.

Figure 4.5

Intuitively, the idea is that by allowing g to vary along o the corresponding gcodesms
through p generate a variation of | which satisfies the hypotheses of Exercise 4.5.1, is
constant at p and so is orthogonal to 1'(0). By the Exercise this orthogonality propagates
to g along W.

Exercise  4.5.2. Fill in the details. Hint. Define 1:[0,1]1x(-8,8)—M by
T, v)=exp, (u - expp (o(v))) and show that g (z, (1,0), T, (1,0))=0. '

We have already observed (section 3.3) that in M the gradient of the squared Iength
function is "radial”. The corresponding result for an arbitrary simple region is

Lemma 4.5.2. Let N be a simple region containing p, ¢in N — {p} and u : [0, 11— N the
unique geodesic in N with '(0) =exp;' (g). Then

“V Q, (@)=2' (1) . (23)

This is proved by first observing that V&, (g) =0 only if ¢ = p so that VQ,, is nonzero on
N—{p}. Setting k=Q, (g) we have g € 'Hp,k. By the Gauss Lemma, 1(1) is a nonzero
normal vector to Hp . But, by Lemma 3.5.13, VQ, (g) is also a nonzero normal vector to
H, . Since T, (Hp ;) is 3-dimensional and T,(M) is 4-dimensional we find that VQ,(q)
and u’(1) must be linearly dependent, ie., . .
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VQ,(g)=ap'(l) ,

where a is a nonzero real number which could a priori depend (continuously) on g. We
show that, in fact, a = 2 for any ¢. First we compute, for any tin [0,1],

Q, (W()) = g (exp;' (@), expp’ (1))
=g(re exppl (@) t- eprl(q)) (by Exercise 3.27)
=12k .

Thus,

£ 0, 1) =2, 05251 .

But, by Lemma 3.3.2,
2kt = g (VE, (), W) .

Evaluating at r = 1 gives 2k = g (VQ,(g), W' (1)) =g (@p’(1), w'(1)) = ak so 2k = ak. Now,
if k #0, i.e., if W is not a null geodesic, this implies @ = 2. On the other hand, if W'is null
a=2 by contmuity In any case, (23) is proved "

From this one obtains the long-promised gencrahzauon of Theorem 1.5.6.

Lemma 4.5.3. Let N be a simple region with p and ¢ in N. Suppose there exists a
smooth, future-directed timelike curve (equivalently, trip) o : [0,1] —» N with q(Og)lz P
and g(1) =¢. Then the unique geodesic segment in N from p to g must also be timelike
and future-directed.

The proo'f. goes something like this: We let B:[0,11 -T,(M) be the curve in T,(M)
obtained by "lifting" o, i.e.,

g

[3=exp;1.,0t :

Identifying the velocity vector to 3 at 0 with an element of T,(M) in the usual way we
have B’(0) = o’(0) so B'(0) is inside the upper time cone CF(p) at 0 in T, o {(M). ﬁ-,Since
C#(p) is open and convex in T,(M), B must at least initially remain in CF(p), i.e., there
exists ‘an € > 0 such that B[0,e] < CF (p). Thus, a[0,e} = N7 (p). Now we show that,
having once entered N§ (p), o cannot éscape, i.e., that ai(1) is also in NF (p). To see this
we suppose ofl)¢ NF (p) and argue by contradiction. If ofl) ¢ N}' (p?, then

B(1) ¢ CF (p). In order to exit CF (p),p must either pass through O in F,(M) or

o
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encounter the upper null cone in T, (M) so there exists a rg in (g,1] at which
Qp (ozg)) =0. Moreover, B(fg) # 0 since then a (¢g) =exp, (0) =p = a(0), but M con-
tains no closed timelike curves (stable causality). Thus, B (¢¢) is on the upper null cone in
T,(M) so that if ¢ = & (¢9) and U : [0,1] — N is the unique geodesic segment in N from p
to g, then p’(1) is null and future-directed. By Lemma 4.5.2, V Q, (g) is also future null.
Since o'(tg) is future timelike, Theorem 1.3.1 implies that g (VQP (atg)), o'(to)) <0 so
that

% QR((X(I)) =2, <0 .

i.e., £, (0(t)) is decreasing on some interval about ¢y, Since Q, (azg)) =0, Q, (o))
must be positive immediately to the left of 75. We find then that whenever o hits the
upper boundary of Nf (p), i.e., whenever P hits the upper null cone at 0 in T, (M),
Q, (o)) must be positive immediately to the left. Now consider the set
{te [0,1]: 0 (t) e NF (p)). Tt is nonempty and bounded above so its supremum ¢,
exists. However, #; must obviously be on the upper boundary of NF (p) so Qp(a(t)) is
positive immediately to the left of ;. But then o(z) cannot be in Nf (p) immediately to
the left of #; and this contradicts the definition of ¢1.

These preliminary results will now be used to exhibit a vital characteristic of glo-
bally hyperbolic spacetimes, indeed, one that is often taken as their defining characteristic.
Again, we must begin with some definitions. A smooth curve ¢.: 1 — M is said to be
causal if its velocity vector o'(z) is either timelike or null for each 7 in I. We shall use the
term causal geodesic for a geodesic which is either timelike or null (possibly degenerate).
A causal trip is defined in the same way as a trip except that causal geodesics replace
timelike geodesics. Lemma 4.5.3 easily generalizes to the case in which there is a causal
trip from p to ¢ that is not a null geodesic. |

Lemma 4.5.4. Let N be a simple region with p and g in N. Suppose there exists a
smooth, future-directed causal curve (equivalently, causal trip) from p to ¢ that is not a
null geodesic. Then the unique geodesic segment in N from p to q is timelike and future-
directed.

We say that p causally precedes q and write p < ¢ if and only if there exists a causal trip
(equivalently, causal curve, possibly degenerate) from p to q. The causal future of any p
in M is denoted J * (p) and defined by J* (p)={g € M :p <gq). J- (p) is defined dually
and forany S c M, J* (S)-=pgs J* (o).
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Exercise 4.5.3. Describe JT (p) for an arbitrary p in M, Dand E.

One routine fact we shall require is the following “transitivity” relation between < and <
p<q and g <r implies p «r . (24)
Similarly,
p«:q.and g <r implies p «r . (25)

These are, of coutse, obvious in M, D and Z, but true in any spacetime. Either construct
your own proof or consult Proposition 2.18 of [Pen].

Exercise 4.5.4. Prove each of the following:

(a) Foranypin Mtheclosureof I* p)inMisI*(p)={ge M: 1Y (@) cI* (p)}.
(®) p<qimplies/* (9) <I* (). |
© J*@)=I"({).

(d) J* (p) need not be closed. Hint. Your example will have to be in a spacetime that

is not globally hyperbolic.

Our first major step toward Theorem 4.1.1. asserts in effect that a globally hyper—
bohc spacetime is "causally compact” between any Cauchy surface S and any p not in S.

Lemma 4.5.5. Let S be any Cauchy surface in- M. Then for any p in the interior of
DY), J - (p)NJT(S)is compact Similarly, for any p € intD~ (S),J* (p )n,]—é(S)
iscompact. - . L | Y

Remark. For a Cauchy surface S, the boundaries of D *(S) and D ~(§) are both S so any
p ¢ S is in the interior of one of these sets.

One argues by contradiction. Thus, we assume p € intD* (§), but ncvcrtf;clcss
K =J~ (p) nJ*(S) is not compact. We shall indicate how from this assumption one can
actually build a past inextendible trip through some point of D *(§) which fails to meet §
and this, of course, is a contradiction (here we must begin to rely on some of the theory of
metric spaces).- ' ’

Begm by observing that, even if not compact K is paracompact and Lindelsf (i.e.,
for any open cover {U ) of K there exists a countable open cover {V 1,V2,V3, } with
each V; contained in some U, and which is locally finite, i.e., has the property that each

pomt in K has a ncxghborhood which intersects only ﬁnltcly many of the V;). $1ncé thc

/7
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*simple regions of M form a base for the open sets in M one can therefore construct a
countable cover {N;}{Z; of K by simple regions in M which is locally finite, but has no
finite subcover of K. For each i =1,2,3,... select a; in N; " K with aj#a; if j#i. By
local finiteness the sequence {a;};>; has no accumulation point in K. We construct our
trip inductively as follows: Let xg=p. _Then xp is in some N; . Choose yg in
N;, NI7 (xg) "D ™ (S) (remember that xg € int D+ (S)).

Figure 4.6

.

’
/7 D*(8)

Since each a; is in J~ (x) there exist causal trips in M from each q; to x(. Since each I-\?,-
is compact, infinitely many of the q; must lie outside of N;,. Thus, infinitely many of the
causal trips from the g; to x¢ must meet the boundary @ N;, of N; . Since 9 N;, is com-
pact these intersection points must have an accumulation point zg in BN,-O. Since ]'\7,-0 is
contained in some larger geodesically convex normal neighborhood, continuity of the
world function gives zg <xg. Together with xg < yg this yields

Zgp <§y0 .

By Lemma 4.5.3 the unique geodesic in I_V:;‘ , Joining z¢ and yg (which we shall here
denote zyyg) is future-timelike.
Now, z is not in N;,. However, zg isinJ~ (xy). Moreover, if z¢ were not in J*(S),

then no past inextendible causal (in particular, timelike) trip from zg could hit S. One
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such trip together with zgyo would be a past inextendible;trip from yg € D™ (S) which
misses S and we are done. Thus, we may assume zq isinJ ™ (S) so zp € K. Consequently,
there is an N; (#N; ) with zg € N;,. Selectx; and y; on the portion of zgy in N;, such
that |

Zp KX KYy1 <Y .

Figure 4.7
/h ~ .

s Y
7 DR®) T~

;b
Now, I"rfx ) is an open neighborhood of z( (Lemma 3.3.10) so infinitely many of tfle
causal trips from g; to x enter it. Select a point on each inside 7~ (x). Then g; < this
point < x; implies a; € I” (x;). If all but finitely many of these a; were on a single
causal trip to x they would have to- accumulate. Thus, infinitely many of the a; must lie
in I~ (xl) Infinitely maity of these must lie ou£s1de N;, so again there exists a z; in BN
which is an accumulation pomt of the set of intersections with N oN;, of trips from g; to x;.
Again we find that z; <x s0.z; «y; and so the geodesic z,y is future-timelike. z; is
not in N;, sothereis an N;, with z; € N; . As before we select x; and y, on the portiﬁgn

ofz;y; in Ni2 such that

21 KX ) KYy Xyt .
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Figure 4.8
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Continuing in this way we obtain a sequence y ¢,y 1,¥2,... wWith

'"«yZ_«yl <YYo eD? ) .

We consider the trip whose segments are ...,y2y1,Y1Yo. This trip has future endpoint
yo € DT (S). Itis past inextendible (i.e., has no past endpoint) since if g were a past end-
point it would be an accumulation point of the y;’s and this is inconsistent with the local
finiteness of {N;}. Finally, we show that this trip cannot intersect S by assuming that it
does. Thus, suppose there is an sin § which is on the image of our trip.

| Figure 4.9
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Then some y; is in I~ (5). But there exists an g; such that a; <x; <y; s0 it follows that
a; <s. However, there also exists an sg in S such that 5o <a; (because a; e J ().
Now, 5¢ < a; and g; < s imply s < s and this is impossible since § is a Cauchy surface
and therefore achronal.

Theorem 4.1.1 is, in a sense we shall explain, analogous to the familiar theorem from
the calculus which asserts that any continuous, real-valued function on a closed, bounded
interval [a,b] in IR achieves a maximum value. Observe that similar assertions for the
intervals [a,b), [@,00), (—e0,b], etc. are obviously false. Indeed, in real analysis it
becomes clear that the property of [a,b] upon which the result depends is its "compact-
ness" and that the same theorem can be proved for any compact subset of any Euclidean
space (see, €.g., [Sp1]). In fact, one can show that a continuous, real-valued function on
any compact metric space achieves maximum and minimum values. This suggests a pro-
cedure for proving Theorem 4.1.1 that may (very roughly) be summarized as follows:
Consider the collection C of all causal curves which join a point in S with the fixed point p
in, say, int D~ (§). Define a metric on the set C in such a way that (1) the metric space C
is compact, and (2) the real-valued function on C which assigns to every element of C its
Lorentzian length is continuous. Then this length function would have to achieve a max-
imum value on some causal curve in C which we might then try to show is necessarily a
geodesic (as it certainly is in, say, M ). Needless to say, this isn’t quite as easy as it
sounds. Indeed, we shall find that it is not possible to achieve all that we ask. There is no
reasonable way to define a compact metric on the set of all smooth causal curves from p
to S since limits of smooth curves (functions) are generally not smooth. This will necessi-
tate extending the notion of "causal” to curves that are continuous, but not necessgri%y
smooth. On this larger set of curves we shall find that there is a natural compact metric
(compactness depends in a crucial way upon the compactness of J* (p)NJ~ (S)). Of
course, we must also extend the notion of "Lorentzian length" to this new set of curves
(for which a velocity vector need not exist) and hope that, having done so, the length
function is continuous relative to our metric. Unfortunately, it turns out not to be continu-
ous, but is upper semicontinuous so that, although it will not achieve a minimum in gen-
eral, it will achieve a maximum as we require. We now set about filling in some of the -
details.

We shall say that a continuous curve o : (a,b) — M is future causal if for each thin
(a,b) there exists an € > 0 and a geodesically convex normal heighborhood Uoftg)) of
o(tp) such that oftg—¢€, tg +€) c U (o (tg)) and such that for all t; and t5 with
to—€ < tj <1y <1y + € the unique geodesic segment in U (¢ (¢9)) from a (1) to o (t2)
is future causal. If o is defined on a closed interval we make the obvious one-sided

y
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modifications of the definition at each endpoint. ‘Henceforth, "future causal” will refer to
a continuous curve of this sort and we will explicitly specify "smooth" when it is
intended.

Now we consider a Cauchy surface S in M and a point p in, say, int D~ (§). We set
K=7"@)nJ (),
recall that K is compact (Lemma 4.5.5) and denote by Cx(p,S) the set of all future Causal
curves in K from p to a point in §. Letting d denote the natural metric on M (i.e., the res-

triction to M of the usual metric on the ambient Euclidean space) we recall that for any
E ¢ M and any pomt p the d1stance from p to E is defined by

d(pE)-—mf{d(pe) eeE}
'Foreach am Ck (@, S)andeache>0weiet
Ve(a)“{yeM d(y Im (1)) < €}

berthe "g-band" about o
Figure 4.10
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Finally, if ot; and o are both in Cg{p,S) we define
plon, o) =inf (€:€ >0, oy © Ve(t), 0z € Veloyy)} -

p is then the restriction to Cg(p,S) (i.., the restriction to the set of images of the a’s in
Cx(,S)) of the Hausdorff metric on the closed subsets of M. Intuitively, p (01,02) is the
radius of the "smallest” band which when put around either curve encloses the other as
well.
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Exercise 4.5.5. Let 0,0,... be elements of Cx(p,S) and reparametrize each by an affine
change of parameter so that they are all defined on [0,1]. The sequence {o.,} converges
to o in the metric space (Cx(,S), p) if and only if p(o,,) — 0 as n — oo, Show that
this is the case if and only if {c,(0)} — «(0), {¢,(1)} — a(1) and for each open set V
containing Im (o) there exists an N such that Im (or,,)) c V forall n 2 N.

In the language of [BE] we may rephrase Exercise 4.13 by saying that {o,,} converges to
ain (Cx(,S), p) if and only if {c,} "converges to o in the C° topology on curves" (also
see Section 6 of [Pen]). Corollary 2.19 and Proposition 2.21 of [BE] now combine with
this observation to yield the following conclusion: Any sequence in (Cx(p,S), p) has a
convergent sﬁbsequencei The proof relies heavily on the compactness of K and on the
Arzela-Ascoli Theorem from general topology. Less rigorous sketches for constructive
proofs of the existence of such limit curves may be found in Theorem 6.5 of [Pen] and
Lemma 6.2.1 of [HE]. We shall not give any further details here, but will simply rephrase
the result by recalling that a metric space is compact if and only if each of its sequences
has a convergent subsequence. |

Lemma 4.5.6. If M is a (globally hyperbolic) spacetime, S is a Cauchy surface in M pis
inint D~ (S)and K =J* (p) NJ~ (S), then the metric space (Cx(p,S), p) is compact

Of course, the same is true if p € intD* (S)and K =J~ (p) N J* (S).

Having supplied Cg(p,S) with a compact metric structure it remains to define the
Lorentzian length functional on Ck(p,S) and hope for enough continuity to insure the
existence of a maximum value. Consider then a future causal curve ¢, : [0,11> M in
Ck(.S8). If o.is smooth its Lorentzian length is defined as usual by 'y

n‘" 1 !
L) =] (g (@), w@) 2 dr . ' (26)
0 .

If o is not smooth its velocity vector o'(¢) need not exist for all ¢ and so definition (}6)
seems to require modification. The quickest way out of this difficulty is to appeal to a
result from real analysis. Any future causal curve satisfies a local Lipschitz condition and

so is differentiable almost everywhere (i.e., except on a set of Lebesgue measure zero).
Consequently, the integral in (26) is defined for any such curve and we may again takc
this as the definition of its Lorentzian length.

Remark. If these concepts are unfamiliar to you or if you simply prefer a more construc-
i
tive deﬁnition_, consult Section 7 of [Pen] where L (&) is defined in the obvious wa):;fo;

g
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causal trips (sum of the lengths of the geodesic segments) and extended to causal curves
by approximating them by causal trips. In either case we have defined the length func-
tional

L:Cxk@S)->R

Unfortunately, it is clear that this function is not continuous on Ck(p,S) even in the best
of all possible worlds, namely, Minkowski spacetime. The reason is that a sequence {0, }
of null curves in Cg(p,S) (which have zero length) can converge in (Cx(p,S), p) to a
timelike curve o (which has positive length) so that g)n L (or,) # L (o0); see Figure 4.11.

Figure 4.11
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But all is not lost. Alghough, as our example shows, lim inf L(¢,) need not be greater
than or equal to L (ov), it is always true that lim sup L (¢t,,) < L(o) whenever o, — ¢, i.c.,
we have '

Lemma 4.5.7. The Lorentzian length functional L : Cx(p,S) — IR is upper semicontinu-
ous on Ck(p,S). |

The proof of Lemma 4.5.7 depends on what seems to be a trivial observation. In
Minkowski spacetime the "longest" causal trip joining two points p and g with p < g is the
straight line (geodesic).' Since geodesically convex normal neighborhoods are "essentially
identical to" M and form a base for the open sets in any spacetime it should at least be
true that locally causal geodésics maximize the Lorentzian length. Indeed, we have
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Lemma 4.5.8. Let N be a simple region in M, p and ¢ in N and suppose the unique geo-
desic segment i : [0,1] = N from p to q is future causal. If o is any other causal trip in N
~ from p to q, then L () > L (o).

The argument given in Section 7 of [Pen] for Lemma 4.5.8 is a useful reminder of how
efficacious the proper choice of a coordinate system can be. One first observes that if . is
null, then the conclusion is vacuously satisfied since the inequalities (24) and (25) imply
that there are no other causal trips in N from p to g. Thu_s, we assume that p is timelike.

Choose a point r € N to the past of p on the extension of L.
Figure 4.12

In T,(M) select an orthonormal basis {e1,e3,€3,¢4} with ¢, future timelike and }et#x be
the ,corresponding Minkowski normal coordinate patch on N. g On
NF (r)= {(xl,xz,x3,x4) x4 s ((xl)2 + (x?')2 + )12} we introduce a new coordi-

nate patch ¥ with coordinates (X ! ,iz,is,f4) defined by

i .
' ¥ =xi/x% i=123

24 - ((x4)2 ___ (xkl)z _ (x2)2 _ (x3)2)1/2 ]

Observe that those curves of the form

Ttex,
WL

_i‘ =X (constant), i=1,2,3
_4 "
X - varying
e e g o . . _a”
which lie in N7 (r) are the timelike radial geodesics from r and the parameter x  meas-
¥ :

ures proper time along these geodesics. Thus, g (¥4,X4) =—1. Moreover, sincethe Gauss

¥
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Lemma implies that these radial geodesics are orthogonal to the 24 = constant hypersur-
faces, g (X4.%;) =0 fori = 1,2,3. |

Exercise 4.5, 6 Describe geometrically and interpret physwally the synchronous coordi-

-2 .3 _4
nate system (x X X% )

If one now calculates the metric components g, = g (X,.Xp) relative to ¥ the result is of
the form

[Bap]=| - . -

where [g;;]; j=1,2,3 must be positive definite since the 3?4 = constant hypersurfaces are
spacelike. We use these metric components to calculate the Iength of o (using i4 as
parameter and deleting the set of measure zero on which o can fail to be differentiable :
If i: and Eg are the ¥ -coordinates of P and g respectively, then

S e

(_ dz’ dfb 2 4
L=} |8 dx
(& zf]
4 ’ i 2
;]’ 1-F dx'  dx’ Idfzt
AT S

Since [g;] is positive deﬁmtc this will clearly be a maxlmum precisely when the

ii, i =1,2,3, are constant and this gives the geodesic .

With Lemma 4.5.8 in hand, 4.5.7 follows with relative ease. One considers a
sequence {o, ) in Cx(p,$) which converges to o in Cg(p,S). It must be shown that

- lim sup L (or,)) <L (o) . - R 27
- Toward this end we select a subsequence and relabel so that L(o,) — lim sup L (o).

Observe next that by piecing together segments, itis cnough to prove our result (27) when
o is a geodesic which, together w1_;_h_ ;:_11_1 the Ol lie i in some _sunple region N,
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Figure 4,13

Let y,y1,¥2,¥3,... be the points in S joined to p by the curves o, 0,0, 0i3,... resf)ectively.
Then {o,} — o in Cg(p,S) implies that {y,} — . Let U, be the unique geodesic in N
fromp to y,. Then

Ly, =(- Qp(vn»m -

and L (o) = (- Q,(y))2. Since Q, is continuous on N, lim L (1,,) = L(c). But, by the
local maxxmahty of geodesics (Lemma 4.5.8), L(o,,) < L (,) for every n. Thus, ;;

lim sup L (o,) £lim L (W,,) = L)

as required.

i

Lemmas 4.5.6-and 4.5.7 now combine to give the existence of a causal éurve in
Ck(p,S) which maximizes the Lorentzian length of all causal curves from p to S.

Theorem 4.5.9. Let M be a spacenme with Cauchy surface S and p a pomt in :ntD ).

Then there exists a future causal curve A in Cx(®,S), where K =J (@) nJ~ (S ), whose
Lorentzian length L (1) is at least as large as the Lorentzian length of any other element of
Cx(®,S). Moreover, A is a timelike geodesic which intersects S orthogonally. ya
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It is only the last sentence of Theorem 4.5.9 that we have not proved. That A must be a
timelike geodesic which intersects S orthogonally is the obvious Lorentzian analogue of
the fact that, in }R3, the minimal distance from a point to a (complete, boundaryless) sur-
face not containing the point is realized by a straight line through the point and perpendic-
ular to the surface. The proof takes a bit of work, but the underlying ideas are clear
enough from the analogy with surfaces. Being maximal, A must be a smooth curve since
otherwise the corners could be rounded off to produce a longer curve. The maximal dis-
tance from p and § cannot be achieved along a null geodesic (the length of which is zero).
However, A must be a geodesic since a maximal curve must also locally maximize the
Lorentzian distance between any two of its (nearby) points and, by Lemma 4.5.8, this is
accomplished by timelike geodesic segments. Finally, a variational argument based on an
alternate version of our Theorem 4.2.3 (the First Variational Formula) shows that if A
does not meet S orthogonally it can be perturbed slightly near S to produce a ldn'ger time-
like curve from p to S. For the details we refer to Proposition 11.25 of [BE].

Theorem 4.5.9 together with its obvious time reversed version
(peintD* (), K=J"(p)nJT (5), etc.) complete the proof of Theorem 4.1.1 and our
work is at an end.

PROBLEMS

4.A. Geodesic Deviation, Jacobi Fields and Conjugate Points

Let T: [a,b] X (-8,8) — M be a two-parameter map all of whose longitudinal curves
are geodesics. Then tT'is called a one-parameter family of geodesics. Let | denote the
geodesic u — T (4, 0), V the variation vector field of t© along W, D,V its covariant
deriavtive along y and ng V=D, D p V) its second covariant derivative along L.

1.  Show that |
D% V=RW, V) . | (28)

If p alone is given, (28) is a differential equation, called the Jacobi equation or
equation of geodesic deviation, the solutions V of which are called Jacobi fields
along p. If the longitudinal curves are all timelike, then (28) can be regarded as an
analogue of Newton’s Second Law in that it describes the relative accelerations of
nearby freely falling material particles (D ﬁ V) in terms of the geometry of the gravi-
tational field (R).
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Show that a Jacobi field along p is uniquely determined by prescribing Vand D, V
at some point.

Show that if p:[a,b]1—M is a geodesic and V is a Jacobi field along p, then
gV, W@)=mt +b for some constants m and b. Hinz. Differentiate
g(V (1), W () twice with respect to 7 and use (28).

* Show that if the Jacobi field V along the geodesic u vanishes at two distinct values of

tin [a b1, then Vis everywhere orthogonal to .

Two pomts p and q on the geodesic | are said to be conjugate along . if there is a
nontrivial Jacobi field aiong K which vanishes at p and q. Intuitively, the existence
of conjugate points along (i indicates that some family of nearby geodesics can
“cross" at these points. Such behavior has important gcometnca} and physzcal impli-
catlons (see Section 7 of {Pen]). Itis, however strictly a global phenomenon

Show that if p lies inside a simple reg1on N, then a Jacobi field along W is umquely
determined by its values at any two points. Conclude that p has no conjugate points

in N.

Strongly Causal Spacetimes

{

An open set U in the spacetime M is causally convex if and only if for all p and ¢ in

U,p<r<qgimpliesr e U.

1.  Give a number of examples in M of open sets that are (are not) causally convex. In
particular, find a local base at any p in M consisting of open sets that are (are not)
causally convex. | a

Mis strongly causal if each p in M has a local base of neighborhoods whi}chg.are all
causally convex.

2.  Show that a strongly causal spacetime satisfies the chronology condition. -

3. Show that M is strongly causal if and only if every point in M has a local ‘base of

.- neighborhoods of the form ™ (p) "1™ (g), where p < q.

4.  Show that a stably causal spacetime is strongly causal.

All of th1s and more can be found in Sectxon 4 of [Pen] 3

4C Distance: Riema'nnian and'L(-)'_réntz_i’an -

If M | is..a. manifold with metrié g (either. R'iemann.i_an or Lbrcntziz;ri) and

o : [a,b] — M is a smooth curve, then the length of o is defined as usual by i
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b
L) =] 1g@®), ') V2 dr .

The length of a piecewise smooth curve is defined by adding the lengths of its smooth

segments. Let p and g be two points of M. Using the connectedness of M one can show
that p and g can always be joined by some smooth curve in M (see [BG]). Now, if g is
Riemannian we define the Riemannian distance dp(p,q) from p to q by dgp(p,q) =inf

{L(y) : yis a piecewise smooth curve in M from p to q}.

1.

Show that dp(p.q)20, dr(p.p)=0, dr(q,p)=dr(p.q) and dR(P:Q)<dR(P ry+
+ dp(r,q) forallp, gand rin M.

It is also true, although more difficult to prove, that dg (p,q) =0 implies p =g so that
dp is'a "metric" in the sense of point-set topology. Moreover, a subset of M is open
in M if and only if i 1t is open in the metric space (M dr). See Section 9, Volume 1,
of [Sp2].

If M is Lorentzian we define the Lorentzian distance df, (p,q') from p to g by setting

di{p,q)=0if g ¢ J* (p) and, if g € J*(p), dr(p,q) =sup {L(y): Y is a piecewise

4.D.

smooth causal curve (or causal trip) from p to g}.

Show that if M does not satisfy the chronology condition, then there exists a p in M
such that dy (p,p) = co.

Show that dy (¢,p) is generally not equal to dy,(p,9).
Show that, forall p, g and rin M, di.(p,q) 2 dy(p,r) + dL(.q).

We must conclude then that d;, is nothing at all like a "metric”. It is, nevertheless, a
very useful device. Indeed, {BE] bases much of its study of Lorentzian geometry on
properties of 4y,

Isometries

Let M and M be manifolds with metircs g and gz (both Riemannian or both

Lorentzian)and let f : M — Mbea diffeomorphism of M onto M. Ateach pointpin M, f

induces an isomorphism fx, : T,(M) —> Ty () (ﬂ ) (see Problem 3.E). For each pin M we
let p = f~1(5) and define a real valued function denoted f g on e T; (ﬁ ) X Tﬁ(ﬁ ) by

peM

Fe@w) =g (fip @, f3p ()
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for all ¥ and  in T5(M).
Show that f*g is a metric for M of the same type as g (and g). f g is called the
metric on M induced by f.

The map fis called an isometry if f g =3, ie., if it preserves inner products in the
sense that

gv,w)=g(fa, (V), frp(W))

for all p in M and all v and w in T,(M).

Show that an isometry f: M —» M preserves lengths of curves and therefore
preserves distance (see Problem 4.C). In the Riemannian case the converse is also
true, i.e., a distance preserving map is an isometry (see Volume 3 of [Sp2]). In the
Lorentzian case, however, a distance preserving map need not even be continuous.
One can show, however, that a distance preserving map of a strongly causal space-
time onto itself is an isometry (see [BE]).

Let fand F be two isometries of M onto itself. Show that if there exists a p in M at
which f (p) = F (p) and fs, = Fx,, then f = F everywhere on M.

/

:;\
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