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V

Preface

The study of Soft Matter is concerned with understanding the properties of
materials which have structural length scales in the range of a few nanometers
to several micrometers, and which are strongly affected by thermal fluctations.
Several interesting properties follow immediately from these seemingly sim-
ple conditions. For example, the long length scales imply that small external
fields can lead to large perturbations, which is the origin of the name “Soft
Matter”. Similarly, long length scales and an energy scale on the order of
the thermal energy kBT imply large structural relaxation times. Therefore,
phenomena far from thermal equilibrium play a very important role.

Most soft-matter components are macromolecules which exhibit polymeric,
colloidal, or amphiphilic properties. Although these materials have been stud-
ied for a long time, it has been realized only in the last two decades that these
systems share many properties, so that a large synergy arises from a unifi-
cation of these subfields. In recent years, this unification has become more
urgent due to the fact that many biological systems and biomaterials simul-
taneously contain several components with different polymeric, amphiphilic
and colloidal character. One example, in which all these properties are united
in a single macromolecule, is provided by membrane proteins. They con-
sist of a linear chain of amino acids, and are therefore hetero-polymers, have
hydrophobic and hydrophilic parts to favor localisation in a lipid bilayer mem-
brane, and are therefore amphiphilic, and behave in some of their properties
like a cylindrical barrel, and are therefore colloidal.

The first volume of this Soft Matter series focused on system in which the
polymeric properties were dominant. In this second volume, our attention
is turned to systems in which the colloidal character prevails. In Chapter 1,
Zvonimir Dogic and Seth Fraden provide an excellent overview of the sur-
prising variety of structures which self-assemble in the apparently simple
system consisting of a mixture of colloidal spheres and rods. In addition, the
system contains non-adsorbing polymers, which serve to induce an effective
attractive interaction between the colliodal components. This “depletion in-
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teraction” arises from the change of accessible conformations of a polymer
in the vicinity of surfaces. The theoretical description of the colloid-polymer
interaction is the topic of Chapter 2 of Erich Eisenriegler, who employs the
very powerful tools developed for critical phenomena to extract the universal
properties of these systems. Finally, in Chapter 3, Jan Dhont and Wim Briels
authoritatively describe the behavior of rod-like colloids in shear flow. This
chapter addresses some of the very interesting phenomena arising in systems
far from thermal equilibrium. While such non-equilibrium dynamics play an
important role in all soft matter systems, colloids provide a nice model sys-
tem in which to study them because colloid suspensions are comparatively
simple. Thus progress in studying and understanding the new phenomena
is achieved most easily.

We anticipate that the high standards set by the authors of these initial two
volumes will inspire a similar level in those participating in subsequent ones.
For our part, we will strive to ensure that the contents of future volumes will
be as stimulating as these initial ones.

November 2005 Gerhard Gompper and Michael Schick



Soft Matter, Vol. 2: Complex Colloidal Suspensions. Edited by G. Gompper and M. Schick
Copyright c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31369-9

VII

Contents

1 Phase Behavior of Rod-Like Viruses and Virus–Sphere Mixtures 1
Zvonimir Dogic and Seth Fraden

1.1 Introduction 1

1.2 Entropy-Driven Ordering Within the Second
Virial Approximation 3

1.2.1 Isotropic–Nematic Phase Transition Within the Second
Virial Approximation 4

1.2.2 Extension of Onsager Theory to Charged Rods 7

1.2.3 Extension of Onsager Theory to Semi-Flexible Rods 9

1.2.4 Extension of Onsager Theory to Rods with Finite Aspect Ratio
Using Scaled Particle Theory 10

1.2.5 Nematic–Smectic Phase Transition Within the Second
Virial Approximation 11

1.2.6 Phase Behavior of a Binary Mixture of Hard Particles 13

1.3 Experimental Phase Diagram of an fd Virus Suspension 14

1.3.1 Properties and Preparation of Filamentous Bacteriophage 15

1.3.2 Isotropic–Cholesteric Phase Transition in fd Virus
Suspensions 18

1.3.3 Polymer-Coated fd Virus and Its Isotropic–Cholesteric
Phase Transition 22

1.3.4 Cholesteric Phase of fd Virus 24

1.3.5 Nematic Order Parameter of fd Virus Suspensions 26

1.3.6 Smectic Phase of fd Virus 29

1.4 Bulk Phase Behavior of Rod–Sphere and Rod–Polymer
Mixtures 34

1.4.1 Depletion Interaction Between Hard Spheres 34

1.4.2 Phase Diagrams of Hard Spheres and Polymers
or Isotropic Hard Rods 37

1.5 Influence of Non-Adsorbing Polymer on the
Isotropic–Nematic Phase Transition 41



VIII Contents

1.6 Entropically Driven Microphase Separation in Rod–Sphere
Mixtures 46

1.6.1 Lamellar Phase in Rod–Polymer and Rod–Sphere Mixtures 48

1.6.2 Columnar Phase and Chain-Like Structures in Mixtures of
fd Virus and Hard Spheres 51

1.7 Self-Assembled Colloidal Membranes and Twisted Ribbons 55

1.7.1 Monte Carlo Simulation of Colloidal Membranes 61

1.7.2 Crystalline Membranes 63

1.8 Surface-Induced Smectic Ordering in Rod–Polymer
Mixtures 64

1.9 Kinetics of Liquid-Crystalline Phase Transitions 67

1.9.1 Kinetics of the Isotropic–Nematic and Nematic–Smectic Phase
Transitions in Hard–Rod Suspensions 68

1.9.2 Kinetics of the Isotropic–Smectic Phase Transition 69

1.9.3 Filamentous Structures Associated with Nematic–Smectic
Phase Transitions 72

1.9.4 Multiple Pathways Observed in Melting of the Lamellar
Phase 74

1.10 Conclusions and Open Questions 78

2 Field Theory of Polymer–Colloid Interactions 87
Erich Eisenriegler

2.1 Introduction 87

2.2 Polymers and Field Theory 90

2.3 Polymers Interacting with Boundaries 96

2.4 Polymers Interacting with a Planar Wall 100

2.4.1 Ideal Polymers 100

2.4.2 Behavior Near the Wall: Density–Pressure Relation
and Boundary Operator Expansion 101

2.4.3 Slightly Deformed Planar Wall 105

2.4.4 Surface Tension 106

2.5 Spherical Particle in a Polymer Solution 108

2.5.1 Ideal Polymers 108

2.5.1.1 End Density 108

2.5.1.2 Free Energy of Immersion 108

2.5.1.3 Monomer Density Profile and the Density–Pressure Relation 111

2.5.2 Small-Sphere Expansion 112

2.5.3 Polymer Solution of Arbitrary Overlap 115

2.6 Parallel Plates and Plate–Wall Interaction 117

2.6.1 Chain Trapped Between Two Parallel Plates 117

2.6.1.1 Force on the Plates 117

2.6.1.2 Ideal Chain 118



Contents IX

2.6.1.3 Monomer Density Profile and Density–Force Relation 118

2.6.2 Plate–Wall Interaction 119

2.7 Sphere–Wall Interaction 121

2.7.1 Derjaguin Approximation for a Large Sphere 122

2.7.2 Small-Particle Expansion for a Small Sphere 123

2.7.3 Arbitrary Size Ratios 124

2.8 Interaction Between Two or More Spheres 127

2.8.1 Derjaguin Approximation for Large Spheres 127

2.8.2 Two Small Spheres 128

2.8.3 Three Small Spheres 130

2.8.4 Arbitrary Size Ratios 130

2.9 Small Anisotropic Particles 131

2.9.1 Operator Expansions for Small Anisotropic Particles 132

2.9.1.1 Dumbbells 133

2.9.1.2 Ellipsoids 137

2.9.2 Interaction Between an Anisotropic Particle and a Wall 139

2.10 Summary and Concluding Remarks 142

3 Rod-Like Brownian Particles in Shear Flow 147
Jan K.G. Dhont and Wim J. Briels

3.1 Introduction 148

3.2 The Velocity-Gradient Tensor 151

3.3 Hydrodynamics 153

3.3.1 The Continuity Equation 154

3.3.2 The Navier–Stokes Equation 155

3.3.3 The Creeping Flow Equations 159

3.3.4 The Oseen Tensor 161

3.4 Hydrodynamic Friction of a Single Rod 163

3.4.1 Translational Friction 165

3.4.2 Rotational Friction 169

3.5 Motion of Non-Brownian Rods in Shear Flow: Jeffery Orbits 173

3.5.1 Jeffery Orbits in Elongational Flow 174

3.5.2 Jeffery Orbits in Simple Shear Flow 176

3.5.3 An Experiment 179

3.6 Brownian Motion of a Free Rod (Without Shear Flow) 181

3.6.1 Newton’s Equations of Motion for a Rigid Body 181

3.6.2 The Langevin Equation for a Long and Thin Rod 184

3.6.3 Brownian Time Scale: Relaxation Rates of Translational
and Rotational Velocity 186

3.6.4 Brownian Length Scale and Brownian Angle 187

3.6.5 Calculation of Fluctuation Strengths 189



X Contents

3.6.6 Translational Brownian Motion of a Rod 192

3.6.7 Orientational Correlations 194

3.7 Equations of Motion for Interacting Rods 198

3.7.1 The N -Particle Smoluchowski Equation 199

3.7.2 Translational and Rotational Diffusion of Non-Interacting Rods
Without Shear Flow 206

3.8 The Orientational Order Parameter 208

3.9 Non-Interacting Brownian Rods in Shear Flow 210

3.9.1 Elongational Flow 212

3.9.2 Simple Shear Flow 213

3.10 The Doi–Edwards Equation of Motion and the Maier–Saupe
Potential 216

3.10.1 Equation of Motion for P (û, t) 216
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1

Phase Behavior of Rod-Like Viruses and
Virus–Sphere Mixtures

Zvonimir Dogic and Seth Fraden

Abstract

An overview is given of the experimental work on the liquid crystalline phase
behavior of semi-flexible viruses in an aqueous solution. We start by briefly
summarizing the theoretical work of Onsager which describes the isotropic-
nematic phase transitions of perfectly rigid rods. Extensions of the Onsager
theory to the case of semi-flexible and charged rods are presented. In the first
part of the review we focus on the phase behavior of a pure solution of semi-
flexible virus fd. With increasing concentration fd form isotropic, cholesteric
and smectic phase. In the limit of high ionic strength the agreement between
the Onsager theory and experiments on the isotropic-nematic phase of fd
virus is quantitative. The discrepancies at low ionic strength strongly hint at
a need to rigorously incorporate electrostatic interactions into phase behavior
of rigid rods. In the second part of the review we focus on the phase behavior
of mixtures of rods with either hard spheres or flexible polymers. Amongst
others we described a number of novel phases observed in these mixtures
such as a lamellar phase, columnar phase, colloidal membranes and surface
induced smectic phase. These structures are still very poorly understood and
there is a clear need for the theoretical work explaining their stability.

1.1
Introduction

The reasons physicists give for studying colloids are varied. Our initial mo-
tivation was that colloids can serve as model experimental systems to study
simple fluids because, with careful preparation, colloids approximate hard
particles. Numerous studies have investigated the phase behavior, structure,
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and macroscopic viscoelastic properties of suspensions of spherical colloids
(Poon and Pusey 1995). Far less studied have been colloids of anisotropic
shape, in spite of their long-recognized similarity to liquid crystals. Coun-
terintuitively, hard-rod fluids are theoretically simpler systems to understand
than hard spheres (Forsyth et al. 1978). This surprising fact was first rec-
ognized by Onsager (1949), who realized that the isotropic–nematic (I–N)
transition in the rod-like colloid tobacco mosaic virus (TMV) occurred at such
low concentrations that only two-body interactions were necessary in order
to quantitatively explain the I–N phase transition. In fact, in the limit of long
thin rods, Onsager’s theory becomes exact. This is in contrast to the theory
of phase transitions of hard spheres, for which no exact results exist (in three
dimensions).

For some years, the Complex Fluids Group at Brandeis has studied the
liquid-crystalline behavior of suspensions of TMV (Fraden et al. 1985; Hurd
et al. 1985; Wen and Meyer 1987; Oldenbourg et al. 1988; Fraden et al. 1989;
Meyer 1990; Fraden et al. 1993; Wang et al. 1994; Fraden 1995; Adams and
Fraden 1998) and filamentous phage fd (Tang and Fraden 1993; Tang and
Fraden 1995; Fraden 1995; Tang and Fraden 1996; Dogic and Fraden 1997;
Adams et al. 1998; Dogic et al. 2000; Dogic and Fraden 2001; Grelet and
Fraden 2003; Dogic 2003; Purdy et al. 2003; Purdy and Fraden 2004a; Purdy
and Fraden 2004b; Purdy et al. 2005). TMV is a beautiful colloidal rod (Kreibig
and Wetter 1980; Wetter 1985). It is completely rigid and forms isotropic,
nematic, smectic and colloidal crystalline phases. However, TMV is difficult to
work with. One must cultivate tobacco plants, infect them with virus, harvest
the crop, extract the virus – which takes months – and, in addition, all this
must be done with care to preserve the monodispersity of the virus. Physics
graduate students rebel at the thought of producing enough virus for a PhD
thesis! Without an abundant source of TMV, studies of its phase behavior are
impracticable.

So our laboratory switched from TMV to the semi-flexible bacteriophage
fd, which also forms several liquid-crystalline phases: isotropic, cholesteric,
and smectic, but not colloidal crystals. Because fd infects bacteria, growing
fd is relatively quick and easy. Furthermore, genetic engineering of fd is well
established, and we have produced mutants of varying length and charge.

This chapter describes the phase behavior of fd virus suspensions. First, we
present our results on fd alone. The results obtained up to 1995 are summa-
rized in another review article (Fraden 1995). While theory and experiment
are in agreement for the isotropic–cholesteric phase transition for suspen-
sions with high salt concentrations used to screen long-range electrostatic
repulsion, theoretical explanations of all other phases fail. We see a quantita-
tive discrepancy between theory and experiment for the nematic phase at low
ionic strength, and multiple quantitative and qualitative breakdowns of the
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theory of the smectic phase. Also, we have not even a clue of why a cholesteric
phase is observed in fd, but a nematic in a closely related species, pf1, which
has a nearly identical atomic structure (Grelet and Fraden 2003). Second, we
present results on mixtures of the viral rods with spherical colloids or spher-
ical polymers. Some of the phase behavior, such as depletion-induced phase
separation, was as anticipated. But an astounding array of unexpected results
was also observed. A laundry list includes microphase separation of rods and
spheres into columnar, cubic, and lamellar structure; isolated colloidal mem-
branes consisting of a sheet of rods and stabilized via protrusion forces; and
a quasi-two-dimensional smectic phase that exists on the isotropic–nematic
interface that plays a key role in phase separation kinetics. While originally we
were motivated to study virus suspensions because they are model systems
of simple fluids, now we are motivated by a spirit of exploration driven by
the expectation that more unexpected results will follow the ones described
below.

1.2
Entropy-Driven Ordering Within the Second Virial Approximation

In the first part of this chapter we briefly review the theoretical work describing
liquid-crystalline phase transitions in colloidal rods. This is not meant to be
exhaustive. For more detailed theoretical accounts, the reader is referred to
recent review articles (Stephen and Straley 1974; Odijk 1986; Vroege and
Lekkerkerker 1992) and the original article by Onsager (1949).

The majority of studies of the ordering transitions in hard-particle fluids
belong to a class of theories called density-functional theories (DFTs) (Hansen
and McDonald 1986). The simplest version of DFT takes into account the
interactions between particles at the level of second virial approximation. The
free energy of a hard-particle fluid is then

F

kBT
=

∫
V

dr ρ(r) ln[ρ(r)] − 1
2

∫
V

dr1

∫
V

dr2 ρ(r1)ρ(r2)β(r1, r2) (1.1)

where kB is the Boltzmann constant, T is the absolute temperature, ρ(r)
denotes the density of particles, r1 and r2 are vectors denoting the position
and/or orientation of two particular particles, and β(r1, r2) is the Meyer–
Meyer overlap function. Its value equals −1 if there is any overlap between
two hard particles located at r1 and r2; otherwise its value is equal to zero.
This expression has been used for a variety of cases to study entropy-induced
ordering in hard-particle fluids. Onsager (1949) was the first to show that
Eq. (1.1) is essentially exact for isotropic spherocylinders when L/Dsc → ∞,
where L is the length and Dsc is the diameter of the spherocylinder. As
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the aspect ratio of spherocylinders is increased, the third and higher virial
coefficients become negligible.

The second virial theory also predicts a stable smectic phase in a solution
of perfectly aligned spherocylinders as well as for spherocylinders with both
positional and orientational degrees of freedom (Hosino et al. 1979; Mulder
1987; van Roij et al. 1995; van der Schoot 1996). However, to describe the sus-
pensions quantitatively at the densities of the nematic–smectic (N–S) phase
transition, it is necessary to include higher virial coefficients in the free-energy
expression. For perfectly aligned spherocylinders, inclusion of the third and
fourth virial coefficients into the free energy results in theoretical predictions
for the N–S transitions that are in quantitative agreement with simulation
results. The calculations that consider ordering transitions using only second
virial coefficients are uncontrolled approximations, unless it can be shown
that higher virial coefficients are negligible, as is the case of the Onsager
treatment of the I–N phase transition.

In any hard-particle fluid, due to the simplicity of the interaction potential,
the energy of any allowed configuration is simply proportional to nkBT , with n

being the number density of particles. Due to this simple fact, the minimum
of the free energy of a hard-particle fluid F = E − ST = T (α − S) (α is
a constant) is equivalent to the maximum of the entropy. Furthermore, the
resulting phase diagram is temperature-independent (athermal) because both
α and S are independent of temperature. Ordering transitions in hard-particle
fluids are still possible because the expression for entropy, or equivalently
free energy, splits into two parts. The first integral in Eq. (1.1) is the ideal
part of the free energy and always attains a minimum value for the uniform
probability distribution ρ(r) = constant. Therefore, this contribution to the
total free energy always suppresses an ordering transition. The second integral
in Eq. (1.1) represents the second virial approximation for the interaction
free energy, which is proportional to the excluded volume, and under certain
circumstances is lower for an ordered state. Therefore, the interaction part of
the free energy drives the system toward ordering. The actual location of the
ordering transition is determined from the competition between the ideal and
interaction contributions to the total free energy. In this section, we briefly
review the theoretical description of phase transitions that can be described
using Eq. (1.1) for pure hard rods.

1.2.1
Isotropic–Nematic Phase Transition Within the Second Virial Approximation

The density functional of the sort shown in Eq. (1.1) was first used in a seminal
paper by Onsager (1949). He was seeking to explain the formation of the
nematic phase in solutions of rod-like tobacco mosaic virus (TMV), inorganic
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needles of vanadium pentoxide, and discs of bentonite. These transitions were
found to occur at very low volume fraction (Zocher 1925; Bawden et al. 1936).

In the Onsager theory, the system is assumed to be spatially uniform and
therefore it is assumed that ρ(r, Ω) = (N/V )f(Ω), where Ω is the solid angle
describing the orientation of the spherocylinder, N is the number of rods,
and V is the volume of the system. Since f(Ω) indicates the probability that
a rod is pointing at a solid angle Ω, it should be normalized as follows:

∫
f(Ω) dΩ = 1 (1.2)

Using this information, it is possible to recast Eq. (1.1) into an Onsager free-
energy functional for a solution of rod-like molecules:

F = log
(

N

V

)
+

∫
f(Ω) log[4πf(Ω)] dΩ

−1
2

N

V

∫ ∫
β(Ω, Ω′)f(Ω)f(Ω′) dΩ dΩ′ (1.3)

The function β(Ω, Ω′) is the excluded volume of the spherocylinder with
orientation Ω′ due to the presence of another spherocylinder with orientation
Ω. For two spherocylinders it is given by

β(Ω, Ω′) = β(γ) = −2L2Dsc sin γ − 2πD2
scL − 4

3πD3
sc (1.4)

where γ is the relative angle between the two spherocylinders. For sphero-
cylinders with a large aspect ratio, the first term in Eq. (1.4) dominates, and it
can be shown that the contribution of the other terms is of the same order as
the contribution of the third virial coefficient. Therefore, it is often assumed
that β(γ) = −2L2Dsc sin γ.

By using this approximation and variational calculus to minimize Eq. (1.3)
with respect to the distribution function f(Ω), one obtains the following in-
tegral equation:

log[4πf(θ)] = λ − 8ρ

π

∫
sin θ f(θ) dθ (1.5)

where ρ = 1
4πL2DscN/V and λ is a constant determined through normal-

ization of the constraint in Eq. (1.2). This integral equation cannot be solved
analytically. However, it has been solved using two different numerical proce-
dures, which yield almost identical results (Herzfeld et al. 1984; Lekkerkerker
et al. 1984). Once the probability distribution function is known, it is easy to
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calculate the nematic order parameter (S2) using the following relation:

S2 = 2π

∫ π

0
[ 32 cos θ − 1

2 ]f(θ) sin θ dθ (1.6)

In this equation we assume that the orientational distribution function is uni-
axial and therefore f(Ω) = f(θ), where θ is the angle between the orientation
of a specific rod and the nematic director. The value of the nematic order para-
meter varies between 0 and 1, with S2 = 0 describing a perfectly isotropic
solution and S2 = 1 describing a perfectly aligned nematic phase. Although
the numerical solution of Eq. (1.5) yields the most accurate results, it is also
possible to proceed from Eq. (1.3) by assuming a form of the orientational
distribution function, such as

f(α, cos θ) =
α cosh(α cos θ)

4π sinhα
(1.7)

Using this ansatz, first introduced by Onsager, and evaluating the integrals
for the case of hard rods, Onsager obtained an expression for the free energy
as a function of dimensionless concentration ρ and orientation parameter α:

F (α, ρ) = ρ log ρ + σ(α)ρ + ξ(α)ρ2

σ(α) = log
(

α cosh α

4π sinhα

)
− 1 +

arctan(eα) − arctan(e−α)
sinhα

(1.8)

ξ(α) =
2I2(α)
sinh2 α

The advantage of assuming the probability distribution (1.7) is the analytical
expression for the free energy (1.8). The most convenient variable to formulate
the Onsager theory is the dimensionless concentration

ρ = Biso
2

N

V
=

π

4
L2Dsc

N

V
=

L

Dsc
φ (1.9)

where φ is the volume fraction of rods and Biso
2 = (π/4)L2Dsc is the second

virial coefficient for a suspension of hard rods in an isotropic solution. By
performing a stability analysis of the Onsager equation, Kayser and Raveche
(1978) found that the isotropic phase becomes unstable toward orientational
fluctuations when ρ = 4. It follows that, within the Onsager theory, the vol-
ume fraction of hard rods at the I–N transition scales as φ = 4Dsc/L. There-
fore, for long thin rods, the volume fraction of the I–N transition is small and
the virial theory, which is an expansion of the free energy in density, becomes
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accurate at the level of the second virial coefficient. Numerical calculations
of the second and third virial coefficients indicate that the Onsager theory is
quantitatively correct for rods with L/Dsc > 100 (Frenkel 1988).

However, the second-order transition predicted by the stability analysis is
preempted by a first-order phase transition. Minimizing the Onsager free en-
ergy with respect to the orientational distribution function numerically and
subsequently solving the coexistence equations yields the following concen-
tration of the coexisting isotropic and nematic phases:

ρiso = 3.289, ρnem = 4.192, S2 = 0.7922 (1.10)

These results were obtained by Herzfeld et al. (1984), Lekkerkerker et al.
(1984), and Chen (1993). The Onsager trial function (Eq. 1.7) yields the fol-
lowing coexistence concentrations:

ρiso = 3.339, ρnem = 4.487, S2 = 0.848 (1.11)

By comparing the accurate numerical result from Eq. (1.5) with the Onsager
approximation (Eq. 1.8), we observe a difference in both the coexistence con-
centrations at the I–N phase transition and the nematic order parameter (S2)
of the nematic phase.

1.2.2
Extension of Onsager Theory to Charged Rods

The Onsager theory outlined in the previous section can be extended to the
experimentally important case of charge-stabilized rods. The first treatment
of the I–N phase transition of charged rods can be found in the original paper
by Onsager (1949) and was elaborated by Stroobants et al. (1986). Besides
the hard-core repulsive interaction, charged rods have a long-range repulsive
interaction of the following form:

Uel(x)
kBT

=
A′ e−κ(x−Dsc)

sin γ
(1.12)

where x is the closest distance between two charged rods, A′ is the pro-
portionality constant obtained by solving the Poisson–Boltzmann equation,
κ−1 is the Debye screening length, and γ is the angle between two rods. In
the case of charged rods, there are contributions to the second virial coeffi-
cient from both the hard-core excluded-volume interaction and the long-range
electrostatic repulsion interaction. These two contributions can be calculated
separately. Integrating the interaction potential over a uniform orientational
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Fig. 1.1 The effective diameter for a charged rod calculated from Eq. (1.13)
for a range of ionic strengths. The hard-rod diameter Dbare = 66 Å
is that of the fd virus. Due to the highly nonlinear nature of the
Poisson–Boltzmann equation, the value of Deff barely changes as the
surface charge varies from 1 e−/Å to 10 e−/Å. Experiments indicate that
the surface charge is about 2 e−/Å at pH 8.0 (Zimmermann et al. 1986).
(Taken from Tang and Fraden, 1996).

distribution function that describes the isotropic phase, we obtain the follow-
ing expression for the second virial coefficient of charged rods (see Fig. 1.1):

Biso
2 = 1

4πL2Deff = 1
4πDL2 + 1

4πκ−1L2(lnA′ + CE + ln 2 − 1
2 ) (1.13)

where Deff = (lnA′ + CE + ln 2 − 1
2 )/κ. It follows that the thermodynamics

of charged rods in the isotropic suspension will be equivalent to the thermo-
dynamics of thicker hard rods with effective diameter Deff .

However, if the interaction potential is integrated over an anisotropic dis-
tribution function, then the relationship given by Eq. (1.13) is no longer exact.
The reason for this is that the electrostatic energy is lower for perpendicu-
lar rods than for parallel rods. Therefore, the charge effectively destabilizes
the nematic phase by shifting the I–N transition to higher concentrations
and reducing the order parameter of the nematic phase coexisting with the
isotropic phase. However, most biopolymers (including fd virus) are highly
charged, in which case it turns out that the electrostatic “twisting” effect is
insignificant compared to the excluded-volume interactions (Stroobants et al.
1986; Tang and Fraden 1995). Therefore, from now on we approximate Deff

in the nematic phase by Deff of the isotropic phase. This is reasonable for co-
existing phases, but we expect this approximation to get progressively worse
with increasing concentration.



1.2 Entropy-Driven Ordering Within the Second Virial Approximation 9

1.2.3
Extension of Onsager Theory to Semi-Flexible Rods

Semi-flexible rods are characterized by their persistence length, which is the
length along the contour of the chain after which the local tangents become
uncorrelated. The effect of semi-flexibility on the isotropic–nematic phase
transition was first considered by Khokhlov and Semenov (1982). For semi-
flexible rods, besides orientational and translational entropy, it is also nec-
essary to take into account the internal configurations of the semi-flexible
chain. This modifies the orientational entropy term in Eq. (1.1), while the
excluded-volume term between rod-like segments is still treated as in the
Onsager theory for rigid rods. The resulting expression for the free energy
has been solved analytically in the limit of almost rigid rods (P � L) and
very flexible rods (L � P ) (Khokhlov and Semenov 1981; Khokhlov and
Semenov 1982). It is possible to interpolate empirically between these two so-
lutions and obtain a numerical approximation for the configurational entropy
of rods with arbitrary persistence length, as was done by Hentschke (1990),
Odijk (1986), and DuPre and Yang (1991). This interpolated expression can be
combined with the Onsager approximation for the orientational distribution
to obtain analytical results for the I–N phase transition of semi-flexible rods.
In Fig. 1.2 these results are compared to accurate numerical solutions of the
Khokhlov–Semenov free energy due to Chen (1993).

From Fig. 1.2a we conclude that increasing flexibility destabilizes the ne-
matic phase by displacing the I–N transition to higher volume fractions. In-
creasing the flexibility also drastically reduces the concentration difference
between the coexisting isotropic and nematic phases (figure not shown) and
the order parameter of the nematic phase (Fig. 1.2b). The Onsager approxima-
tion (Eq. 1.7) for the orientational distribution function (ODF) qualitatively
agrees with the accurate numerical results due to Chen. It is important to
note that the agreement between these approximations for the location of the
phase transition (Fig. 1.2a) is much better than for the order parameter of the
coexisting nematic phases (Fig. 1.2b). This indicates that measuring the order
parameter is a more sensitive test of the theory for the I–N phase transition.

Chen compares his numerical solution to the analytical solution of Khokh-
lov and Semenov, who also use the Onsager approximation for the ODF. This
comparison in Chen’s paper seems much better than what is shown in Fig. 1.2.
The reason for this is that Khokhlov and Semenov, besides using the Onsager
approximation for the ODF, also approximate the excluded volume ξ(α) by
expanding it in powers of α. These two approximations fortuitously cancel
each other, and the final result seemingly agrees better with the numerical
solution.
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Fig. 1.2 (a) Concentration [ρiso =
(4/π)L2Dsc(N/V )] and (b) order
parameter (S2) of the nematic phase
coexisting with the isotropic phase as a
function of the flexibility of the particle
P = L/lp. The full lines are the exact
numerical results within the second virial
approximation due to Chen (1993), while

the dashed lines are results obtained
by using the Onsager approximation for
the orientational distribution function
(Eq. 1.7). In both parts the aspect ratio
of the rods is fixed at 100 and the per-
sistence length lp varies from infinity
to 25.

1.2.4
Extension of Onsager Theory to Rods With Finite Aspect Ratio
Using Scaled Particle Theory

The scaled particle theory (SPT) of hard rods was developed by Cotter and
Wacker (1978) and Cotter (1979). The main advantage of the scaled particle
theory is that it takes into account third and all higher virial coefficients in
an approximate way. Therefore, this theory should be more adequate at de-
scribing the data at higher concentration of rods or equivalently rods with
lower L/Dsc ratios. We note that the expression for the free energy reduces
to the Onsager second virial approximation for very long rods. For spherical
particles, the SPT free energy reduces to the Percus–Yevick free energy for
hard spheres.
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Fig. 1.3 The I–N coexistence concentra-
tions as a function of the aspect ratio
(L/Dsc) as predicted by the scaled
particle theory for rigid rods (full lines)
and as predicted by a theory that only
includes the second virial coefficient
(dashed lines). The circles are the results
of computer simulations (Bolhuis and

Frenkel 1997). The filled squares at low
L/Dsc represent results from the same
work but the coexistence width was too
narrow to be measured. The coexistence
is plotted in terms of real volume fraction
φ = 1

6πD3
sc + 1

4LD2
scπ, while the total

aspect ratio including the hemispheres
is L/Dsc + 1.

The scaled particle expression accounts for higher virial coefficients in an
approximate way. Comparing the SPT prediction for the I–N phase transi-
tion with the solution obtained through the second virial approximation pro-
vides a way to establish the range of L/Dsc ratios for which the second virial
approximation is quantitatively valid. The results are shown in Fig. 1.3. At
L/Dsc = 45 the second virial approximation yields I–N coexistence concen-
trations that are 10% different from the scaled particle result. We conclude
that for rods with L/Dsc > 75 the second virial approximation quantitatively
describes the I–N transitions in hard rods. Currently available computer sim-
ulation results agree very well with the scaled particle theory (Bolhuis and
Frenkel 1997; Kramer and Herzfeld 1998).

1.2.5
Nematic–Smectic Phase Transition Within the Second Virial Approximation

Here we review the interplay between the ideal and interaction contributions
to the free energy that are responsible for the formation of the smectic phase
in parallel hard rods. From the second virial approximation (Eq. 1.1), we can
easily find the free-energy difference between a weakly ordered smectic and
a uniform nematic state (Mulder 1987):

δF = Flayered − Funiform

= F (n + a cos(kz)) − F (n) = n + 8n2j0(k) (1.14)
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A positive free-energy difference δF (n, k) > 0 implies that at volume fraction
n and wavevector k the nematic phase has the lowest free energy and therefore
is the equilibrium phase. On the other hand, at values of nc and kc that satisfy
the equation δF (nc, kc) = 0 the system becomes unstable toward smectic
fluctuations since they do not cost any energy to create. We identify nc and
kc as the critical volume fraction and critical wavevector of the second-order
nematic–smectic phase transition.

It is important to note that the first term in Eq. (1.14) originates from the
ideal part of the free energy in Eq. (1.1), while the second term in Eq. (1.14)
originates from the interaction part of the free energy in Eq. (1.1). We observe
that the difference in the ideal part of the free energy between the layered and
uniform phase is always positive and given by δF ∝ n. Therefore, the ideal
part of the free energy always suppresses the ordering transition as expected.
On the other hand, the difference in the interaction part of the free energy
between the uniform and layered phase is given by δF ∝ n2j0(k). Since
this part of the free-energy difference scales as n2, for high enough volume
fraction of rods and for specific values of wavevector k this term is negative
and large enough to drive the system toward the smectic phase. Considering
the highly approximate nature of the theory, the conditions nc = 0.575 and
kc = 2π/1.398L obtained for the nematic–smectic phase transition compare
favorably to the results of the computer simulations of parallel rods nc =
0.43 and kc = 2π/1.27L (Frenkel et al. 1988). Inclusion of the third virial
coefficient brings the theoretical prediction for the N–S transition closer to
what is observed in simulations (Mulder 1987).

The above simple model suggests a physical picture of the excluded-volume
effects responsible for the formation of a smectic phase first introduced by
Wen and Meyer (1987). A spatially uniform nematic phase results in a very
inefficient packing of rods, as shown in Fig. 1.4a. In such a state the ideal

Fig. 1.4 A schematic illustration of the excluded-volume interaction
in a dense suspension of aligned rods for the case of (a) rigid rods and
(b) semi-flexible rods. (From Tkachenko, 1996).
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part of the free energy attains its minimum value while the interaction part
does not. The reason for this is that the nematic phase is under the constraint
of uniform packing, and thus the excluded volume between any two rods is
eight times the volume of a single rod, since rods are allowed to approach
each other from any direction. One way to decrease the excluded volume is
to impose a smectic-like periodic density modulation. Then the probability
of two rods approaching each other along their axial direction will decrease,
while the probability of sideways approach will increase. For example, in an
extreme case where the probability distribution of the centers of rods consists
of very sharp delta-like functions spaced at distances slightly longer than
the rod length, rods are allowed to approach each other only sideways and
overlap between the ends of the rods is completely forbidden. Consequently,
the excluded volume between two rods will be half the value of the excluded
volume for a uniform density distribution. For this simple reason, the value
of the interaction part of the free energy decreases with increasing order
in Eq. (1.14). The actual volume fraction of the ordering transition and the
resulting density distribution ρ(r) is therefore determined by the competition
between the ideal and interaction parts of the free energy given in expression
(1.1). The treatment of the nematic–smectic phase transition of the second
virial approximation was also extended to the case of rods with orientational
freedom (van Roij et al. 1995). In this case the calculation becomes much
more involved.

It is easy to extend the above argument to consider the influence of flexibility
on the nematic–smectic phase transition (Tkachenko 1996; van der Schoot
1996). Experimentally, it is found that flexibility acts to stabilize the nematic
phase and destabilize the smectic phase (Dogic and Fraden 1997). As was
first noticed by Tkachenko (1996), in the case of perfectly aligned rigid-rod
nematics the only way to fill the space created by the end of a rod is to place
another rod above it, as shown in Fig. 1.4a. In the case of a nematic solution of
semi-flexible rods, it is possible for other molecules to occupy space around
the end of a particular molecule by deflecting around its end, as shown in
Fig. 1.4b. This results in more efficient packing of semi-flexible rods in the
nematic state, which in turn leads to the suppression of the nematic–smectic
phase transition. This picture of the effect of flexibility on the nematic–smectic
phase transition has been confirmed using computer simulations (Polson
1997).

1.2.6
Phase Behavior of a Binary Mixture of Hard Particles

Recently the second virial approximation has also been extended to study
ordering and demixing transitions in binary mixtures of hard rods (Koda and
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Kimura 1994; Cui and Cheng 1994; van Roij 1994; Sear and Jackson 1995;
Sear and Mulder 1996; van Roij 1996; van Roij and Mulder 1996; Dijkstra
and van Roij 1997; van Roij et al. 1998). In many of these cases it is not
obvious if terminating the free-energy expansions at a second virial level is
sufficient to describe the phase diagram of a binary mixture. For example, it
was recently shown that, although Onsager theory quantitatively describes the
I–N phase transitions of rods, it fails to predict even the qualitative features of
a binary mixture of rods with two different diameters (Purdy et al. 2005). In
other cases, such as a mixture of perfectly aligned spherocylinders and hard
spheres, the second virial theory predicts the right qualitative features, as has
been verified by computer simulations for the lamellar phase, but fails to
describe the columnar phase (Adams et al. 1998). Expressions for the stability
matrix for a binary mixture of parallel spherocylinders and spheres are given
in Koda et al. (1996) and Dogic et al. (2000).

1.3
Experimental Phase Diagram of an fd Virus Suspension

Theory and simulation indicate that, with increasing concentration, rod-like
particles will form isotropic, nematic, and smectic phases (Hosino et al. 1979;
Mulder 1987; Wen and Meyer 1987; Frenkel et al. 1988; Bolhuis and Frenkel
1997). The columnar phase turns out to be metastable with respect to the
smectic phase for all aspect ratios and rod concentrations (Bolhuis and Frenkel
1997). So far, the only experimental systems whose phase behavior agrees
with theoretical predictions are colloidal suspensions of the viruses fd, pf1,
and TMV, and inorganic β-FeOOH rods (Maeda and Maeda 2003). This is due
to the fact that Nature makes all viruses identical to each other. This results in
a colloidal suspension of very high monodispersity, much higher than what
can be achieved with current synthetic methods. Recently, using a combina-
tion of recombinant DNA technology and traditional chemical methods, it
has been possible to prepare monodisperse poly(benzyl l-glutamate) (PBLG)
polymers. Although these polymers are not available in large quantities, they
were reported to form a smectic phase (Yu et al. 1997). This is a potentially
powerful technique to create novel liquid crystals. While the present chap-
ter focusses on the fundamental aspects of the phase behavior of rods and
rod–sphere mixtures, individual viruses and virus assemblies might become
technologically useful materials. In this respect, the recent work by Belcher’s
group seems promising (Lee et al. 2002).

In this chapter we focus on the phase behavior of the rod-like bacterio-
phage fd and its closely related M13. The phase behavior of another class of
anisotropic colloids composed of minerals has recently been reviewed else-
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where (Gabriel and Davidson 2003). The phase behavior of polymeric liquid
crystals such as PBLG is reviewed in Sato and Teramoto (1994). Historically,
the first observation of the nematic liquid-crystalline phase of fd was reported
in the study by Lapointe and Marvin (1973). Shortly thereafter a smectic phase
was also reported in a little noticed paper (Booy and Fowler 1985).

We note that fd forms a cholesteric instead of a nematic phase. Cholesteric
and nematic phases are locally identical to each other. It often takes many days
after sample preparation for the fd solution to form a fully twisted cholesteric
phase. This indicates that the free-energy difference between these two struc-
tures is very small. Therefore, we expect that the Onsager theory equally well
describes the isotropic–nematic and isotropic–cholesteric phase transitions.
In this chapter we use the terms “nematic” and “cholesteric” interchange-
ably depending on the particular context. Often, when confined to small
droplets, such as tactoids observed at the isotropic–cholesteric coexistence,
the cholesteric phase is unable to develop and the sample remains nematic.

1.3.1
Properties and Preparation of Filamentous Bacteriophage

The structure of the bacteriophage fd is very simple, with a self-assembled
hollow cylindrical shell composed of roughly 2800 copies of a single coat
protein pVIII. A single circular strand of DNA is enclosed within this hollow
shell. The length of the whole virus is determined by the length of the DNA.
The ends of the assembly are covered with end-capping proteins, which are
different from the major coat protein pVIII. In addition, the two ends are
different from one another, which makes fd a polar colloid. This characteristic
can be used to label each end selectively (Lee et al. 2002).

The physical characteristics of the fd virus are a contour length of 880 nm,
bare diameter of 6.6 nm, and aspect ratio L/Dsc ≈ 130. The semi-flexibility
of the virus is characterized by the persistence length, lp = 2.2 µm, which
has been reported to change with temperature (Tang and Fraden 1996). The
colloidal stability of the virus is preserved due to the fact that it has a very
high negative surface charge at pH 8.0 (Zimmermann et al. 1986). For a
more comprehensive list of most of the known physical constants of fd, the
reader is referred to the review article by Fraden (1995).

There are well-established methods for growing bacteriophage fd and close-
ly related M13 (Maniatis et al. 2000; Dogic and Fraden 2001). In brief, one first
grows a large quantity of Escherichia coli host. Once the host strain reaches
log phase, it is infected with viruses at a well-defined multiplicity of infec-
tion (MOI) and the culture is grown for an additional eight hours. The bac-
terium is separated from the culture by centrifugation at low speed, and the
virus in the supernatant is concentrated by adding a neutral polymer, such
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as poly(ethylene glycol) (PEG, molecular weight Mw = 8000), which acts as
a depleting agent. In principle, it is possible to purify the virus further using
a cumbersome CsCl gradient centrifugation step. In practice, we found that
a two-step sequence of low-speed and high-speed centrifugation produces fd
virus of sufficient purity for most of our experiments. Once grown, fd should
be kept in a low-ionic-strength buffer at 4◦C. Under these conditions, the
solution should be stable for at least a year, although it is difficult to prevent
microbial growth over such a long time period even in the presence of sodium
azide. Therefore, before use of the virus, we dialyze it against fresh buffer and
spin-down aggregates and bacterial debris using a low-speed centrifugation
step. The usual yields are about 15–20 mg per liter of infected E. coli culture.

There is a tendency for all viruses to form a multimeric structure with a
contour length that is an integer multiple of the length of wild-type fd. We
have found that it is important to choose the appropriate E. coli host strain
in order to reduce the number of multimers. Although recA+ strains such
as JM101 grow faster and produce higher yields of virus, we found that these
hosts have a tendency to form dimer and multimer viruses. These can easily
be identified once the viruses are labeled and visualized using fluorescence
microscopy. Viruses purified from recA+ host form smectic phase at different
concentrations when compared to viruses purified form recA− strains such
as Xl1-Blue. In addition, many other structures, such as the lamellar phase
described in Section 1.6, are not observed in an fd virus grown in recA+

strains. This is presumably due to increased polydispersity of the virus.
It is difficult to assess the polydispersity of the virus. It has a pronounced

tendency to break or aggregate during preparation of grids for electron mi-
croscopy. It is possible to run agarose gel electrophoresis on whole viruses
that are stained with Commassie Blue protein stain (Griess et al. 1990). How-
ever, sometimes longer fd does not easily enter the gels. It is also possible to
strip the virus of its protein and run DNA gel electrophoresis, which is subse-
quently stained with ethidium bromide. Recently, we have prepared fd viruses
labeled with the fluorescent dye Alexa 488 (Molecular Probes), which appear
very bright when viewed via fluorescence microscopy. These could be used
to quantify the polydispersity of the virus. When labeled at very high fraction
with Alexa 488 (Molecular Probes) dye, we do not observe any aggregation over
a period of a year. In contrast, if the viruses are labeled with larger and more
hydrophobic dyes, such as tetramethyl rhodamine (TAMRA), they aggregate
into bundles over a period of days. With the proper use of anti-bleaching
solution, it is possible to observe Alexa 488-labeled viruses continuously for
5–10 min under full illumination with a 100 W mercury lamp. Figure 1.5
shows a fluorescent microscopy image of Alexa 488-labeled recA+ fd. It is
easy to observe a number of fd with a contour length much longer than that
of wild-type fd.
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Fig. 1.5 (a) Electron microscope image
of a bacteriophage fd. The contour length
of the virus corresponds to 0.9 µm.
(b) Image of a dilute isotropic solution of
fd confined to a chamber of approximately
1 µm thickness. The presence of fd with
much larger contour length than the wild
type is easily seen. The fd was grown in

recA+ strain (JM101) and labeled with
Alexa 488 (Molecular Probes). The image
was taken with a fluorescent microscope
equipped with a cooled charge-coupled
device (CCD) camera (CoolSnap HQ,
Roper Scientific). The scale bar indicates
10 µm. (From Model and Russel, 1988).

All the available data point to the fact that the contour length of fd is deter-
mined by the size of its DNA. Therefore, it is possible to alter the length of
the fd by simply adding additional DNA into the fd genome using standard
recombinant DNA techniques. A few decades ago fd with different contour
lengths were genetically engineered and used to study the rotational diffusion
of rod-like colloids with varying aspect ratio (Maguire et al. 1980). However,
this potentially powerful method was not pursued any further. Using similar
methods, mutants up to 5 µm long have been described in the biological lit-
erature (Herrmann et al. 1980). We have tried to reproduce this method, but
have found that, during a large-scale preparation involving many generations
of bacterial division, foreign DNA is easily expelled. The resulting culture
quickly reverts back to wild-type fd. We have had more success in creating
mutant fd using the phagemid methods, as described in detail in Sambrook
et al. (1989). The resulting fd are sufficiently monodisperse to form a smectic
phase, as shown in Fig. 1.16. For more details, the reader is referred to Dogic
and Fraden (2001).
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1.3.2
Isotropic–Cholesteric Phase Transition in fd Virus Suspensions

Due to the entropic nature of the fd suspension, the only variable that deter-
mines the phase behavior is the density of the constituent rods. Therefore,
with increasing fd concentration, an isotropic suspension of fd undergoes a
first-order phase transition to the nematic/cholesteric phase. It follows that
the density of the cholesteric phase is higher than that of the isotropic phase in
a coexisting sample. The denser cholesteric phase slowly sediments to the bot-
tom of the sample container, resulting in a macroscopically phase-separated
sample (Fig. 1.6).

Recently we compared the experimental results of the isotropic–cholesteric
(I–Ch) transition quantitatively to the predictions of the Onsager theory (Tang
and Fraden 1996; Purdy and Fraden 2004a). To accomplish this, it is necessary
to take into account both the charge and the flexibility of an fd virus. It is
possible to describe the thermodynamic behavior of a dilute suspension of
charged rods using the concept of effective diameter, Deff , as explained in
Section 1.2.2, where Deff for fd is plotted for three different surface charges
(Fig. 1.1). Due to the nonlinear nature of the Poisson–Boltzmann equation,
changing the surface charge by an order of magnitude has minimal effect

Fig. 1.6 The bulk phase separation be-
tween isotropic and nematic phases
observed in a TMV suspension. The im-
age on the left is taken with white light,
while the image on the right is taken
between crossed polarizers. Since the
difference in density between the nematic
and isotropic phases can be up to 30%
over a period of days, the nematic phase

sediments to the bottom. The phase
diagram for TMV suspension is shown in
Fraden et al. (1989). Identical bulk phase
separation is observed in fd suspension.
By measuring the concentration of the
virus in coexisting phases, it is possible
to determine a phase diagram such as
the one shown in Fig. 1.7.
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Fig. 1.7 The I–Ch coexistence concentra-
tions measured in an aqueous suspen-
sion of fd virus as a function of the ionic
strength (Tang and Fraden 1995). The full
lines are the numerical solution of Chen
(1993) for the I–Ch coexistence, which
treats excluded-volume interactions at the
second virial level while the orientational
distribution function is calculated numer-

ically. The dashed lines are the scaled
particle theory solution for the I–Ch co-
existence in which all virial coefficients
are included in an approximate way and
the orientational distribution function has
an approximate form given by Eq. (1.7).
The scale on the right-hand side indicates
the effective diameter for a given ionic
strength. (From Tang and Fraden, 1996).

on the resulting Deff . The flexibility is included according to the prescription
given by Khokhlov and Semenov, and discussed in more detail in Section 1.2.3.

Figure 1.7 shows that, with increasing ionic strength, the location of the
I–Ch phase transition shifts to higher concentrations. However, increasing
ionic strength increases L/Deff , which in Onsager theory should decrease the
volume fraction of the rods at the I–N transition. The discrepancy can easily be
understood if one looks at the condition for instability of the isotropic phase:
(4/π)L2Deff(N/V ) = 4. The concentration in Fig. 1.7 is not proportional to
the effective volume fraction, but to the number density of the virus. If Deff

is decreased with the length of the rod remaining constant, it follows that
the number density of the virus at the transition has to increase so that the
condition for the nematic/cholesteric instability is still satisfied. The experi-
mental data points are compared to the numerical solution of Chen (1993),
who approximates the excluded-volume interaction by the second virial coef-
ficient and treats the ODF in an accurate numerical way. We have also plotted
the result of a theory in which higher virial coefficients have been taken into
account within the scaled particle theory while the orientational degrees of
a semi-flexible polymer confined by the nematic field is approximated using
the approximation described in Section 1.2.3.

At first sight the agreement between the theory due to Chen and the ex-
periment as shown in Fig. 1.7 is quite good. However, there is reason to
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believe that this agreement is fortuitous at low ionic strength. For example,
at 1 mM ionic strength, Deff ≈ 60 nm, which results in the aspect ratio
L/Deff ≈ 15. Figure 1.3 clearly shows that for these small aspect ratios third
and higher virial coefficients cannot be ignored. Indeed, the results of the
scaled particle theory, which include these higher coefficients, predict that
the I–N(Ch) transition is located at significantly lower concentration than
that found by the experiments and Chen’s theory. The agreement between
the scaled particle theory, experiments, and Chen’s theory is much better at
high ionic strength where the effective aspect ratio is large (at 100 mM ionic
strength, L/Deff ≈ 83), and therefore the excluded-volume interactions are
more accurately approximated by the second virial coefficient.

We note that the results from the scaled particle theory shown in Fig. 1.7
should also be treated with a degree of skepticism. To compare the scaled
particle theory with experiments on charged rods, we use the effective di-
ameter of the rod. However, the concept of Deff introduced in Eq. (1.13) is
only rigorously justified for conditions for which the second virial coefficient
is quantitatively valid. There has been a recent theoretical attempt to extend
the scaled particle theory to charged particles (Kramer and Herzfeld 1999;
Kramer and Herzfeld 2000). Unfortunately, this theory does not extrapolate
to Onsager theory for dilute rods, in contrast to the scaled particle theory for
hard rods. We also note that the twisting factor ignored in our treatment of
Deff for fd is strongest at low ionic strength (Stroobants et al. 1986). This effect
displaces the I–N(Ch) transition to higher densities.

The effect of the contour length of M13 virus on the I–Ch phase transitions
has also been measured (Purdy and Fraden 2004a). Mutant viruses of various
contour lengths have been prepared using molecular cloning as described in
Section 1.3.1. Figure 1.8 shows the location of the I–Ch phase transition as a
function of contour length in terms of the dimensionless concentration beffci.
The Onsager theory predicts that the location of the I–Ch will occur when
beffci ≈ 4. In these units the location of the phase transition is independent
of the aspect ratio of the rods, as indicated by the dashed line. Including
finite flexibility significantly shifts the location of the I–Ch phase transition to
higher concentration, as indicated by the full line. The I–Ch phase transition
at high ionic strength, indicated by filled triangles, agrees well with these
predictions. However, as the ionic strength decreases to 10 mM, there is a
significant deviation between experiment and theory.

Another important parameter that characterizes the I–Ch phase transition
is the order parameter of the nematic/cholesteric phase at coexistence. Fig-
ure 1.9 shows the behavior of the nematic order parameter as a function of
both the contour length and the ionic strength. The order parameter can be
extracted from birefringence measurements once the birefringence per parti-
cle is measure using X-ray scattering as described in Section 1.3.5 and Purdy
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Fig. 1.8 Dimensionless concentra-
tion of the isotropic phase in co-
existence with the nematic phase as
a function of M13 contour length at
pH 8.2. The dimensionless concentration
beffci = (π/4)DeffL2Ni/V . For rigid
rods, the Onsager theory predicts that
the location of the I–N phase transition is

independent of the theory (dashed line).
The solid lines SPT110 and SPT10 are
the results of the scaled particle theory
for ionic strengths of 110 and 10 mM.
SPT agrees with experiment at high ionic
strengths, but fails for low ionic strength.
(From Purdy and Fraden, 2004a).

et al. (2003). Onsager theory predicts that for rigid rods the order parameter
of the coexisting nematic phase is approximately S2 = 0.8. For finite flexibil-
ity, the order parameter significantly decreases, as indicated by the full line
(solution due to Chen) and short-dashed lines (solutions with SPT). At high
ionic strength, the measurements of the order parameter follow the theoret-
ical predictions almost quantitatively. However, at the lowest ionic strength
of 5 mM, the order parameter is almost independent of the ratio of contour
length to persistence length and much higher than the theoretical predictions,
which account for flexibility. Surprisingly, the low-ionic-strength data agree
with the Onsager model for rigid rods. The theory of electrostatic stiffening
of a charged polymer predicts that the persistence length of fd is independent
of ionic strength because the bare persistence length of fd is very long (Purdy
and Fraden 2004a).

From these data we conclude that the Onsager theory, extended to account
for flexibility and charge, quantitatively describes the I–Ch phase transition of
wild-type fd in the limit of high ionic strength. With decreasing ionic strength,
there is a systematic disagreement between the experimental results and the-
oretical predictions. In this limit the location of the isotropic–nematic phase
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Fig. 1.9 Experiments and theory showing
the dependence of the order parameter
of coexisting nematic phase as a func-
tion of rod length for four different ionic
strengths. The horizontal long-dashed
line represents the prediction of the
Onsager theory, the full line is the the-
oretical calculation by Chen, while the

short-dashed lines are the predictions
of the scaled particle theory for 5 mM
(SPT5) and 110 mM (SPT110) ionic
strength. The theoretical curves are calcu-
lated for rods with persistence length of
2.2 µm, while the contour length varies
between 0.4 and 1.2 µm. (From Purdy
and Fraden, 2004a).

transition is at higher rod concentration than theoretical predictions, and
the nematic order parameter is also higher than predicted. This is probably
due to the approximate incorporation of the electrostatic interaction into the
theoretical free energy via Deff .

1.3.3
Polymer-Coated fd Virus and Its Isotropic–Cholesteric Phase Transition

It is possible to eliminate electrostatic interactions between viruses by prepar-
ing sterically stabilized fd suspensions. This is achieved by covalently coupling
poly(ethylene glycol) (PEG) to the amine groups that are present on the virus
surface (Dogic and Fraden 2001). Water at room temperature is a good solvent
for PEG, and therefore PEG-coated surfaces interact through purely repulsive
interactions (Kuhl et al. 1994). By measuring the increase in the index of re-
fraction of PEG-coated virus suspensions, the number of attached polymers
per virus can be determined. These measurements indicate that the density
of the deposited polymer is at the transition from isolated “mushrooms” to
an extended brush-like coverage (Grelet and Fraden 2003). It is important to
mention that polymer-stabilized rods still have a charged surface, and that the
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Fig. 1.10 The concentration of the
isotropic phase that coexists with the
nematic phase as a function of ionic
strength. The data are shown for pure fd
suspension (open squares), fd coated with
PEG-5000 (open circles), and fd coated
with PEG-20000 (open triangles). (The
dotted lines are a guide to the eye.) The
labels on the right-hand side indicate the

effective diameter at which the location
of the I–Ch transition occurs. The I–N
transition of PEG-coated virus becomes
independent of ionic strength (indicated
by arrows) when the effective diameter of
the virus is set by the polymer diameter
and not by the range of the electrostatic
repulsion. (After Dogic and Fraden, 2001).

effective interaction between two viruses will be a combination of electrostatic
and steric repulsion.

Polymer-stabilized fd undergoes an isotropic to cholesteric phase transi-
tion. Figure 1.10 shows the concentration of the coexisting isotropic phase
for a suspension of bare fd and fd coated with PEG-5000 and PEG-20000.
For fd–PEG-20000, the location of the I–Ch phase transition is completely
independent of the ionic strength. This indicates that steric repulsion has a
longer range than electrostatic repulsion for the range of ionic strengths stud-
ied. However, for fd–PEG-5000, it is possible to observe a transition from the
sterically stabilized region to the electrostatically stabilized region by mea-
suring the ionic-strength dependence of the I–Ch transition. At high ionic
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strength, the transition is independent of the ionic strength, indicating steric
repulsion. With decreasing ionic strength, the concentration of the I–Ch tran-
sition decreases and agrees with the I–Ch transition of the bare virus. In this
regime the virus is electrostatically stabilized. From Fig. 1.10 we can deduce
that the steric size of the virus–polymer complex is Deff = 45 nm, which is
approximately equal to Dbare +4Rg = 35 nm. This indicates that the density
of the grafted PEG is slightly in the “extended” brush regime. Although not
the subject of this chapter, we note that by using polymer-stabilized viruses
it is possible to study the phase behavior of a binary mixture of rods with
different diameters (Purdy et al. 2005).

1.3.4
Cholesteric Phase of fd Virus

The cholesteric phase is locally identical to the nematic phase. However, in
a cholesteric phase the nematic director twists into a helical structure. The
fd virus forms a cholesteric phase as evidenced by the typical cholesteric fin-
gerprint texture shown in Fig. 1.11. The distance that it takes for the director
to rotate by 2π is called the “cholesteric pitch”. Experimentally, it is easy to
determine the value of the pitch by simply measuring the distance between
either two dark or two bright lines in images such as Fig. 1.11. The cholesteric
pitch will also diffract light, from which the magnitude of the pitch can be
determined (Oldenbourg 1981).

Fig. 1.11 An image of a cholesteric phase
of fd taken with a polarization micro-
scope. The locations of the polarizers and
analyzer are indicated by arrows. The dark
lines correspond to regions where rods
point perpendicular to the image, while

the bright regions correspond to regions
where the rods lie in the plane. The best
way to observe the cholesteric texture
such as the one shown here is to fill a
cylindrical X-ray capillary and focus on its
midplane. (After Dogic and Fraden, 2000).
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In thermotropic liquid crystals it is conventional wisdom that chiral mol-
ecules will form a cholesteric phase while achiral molecules will form a ne-
matic phase. However, this does not seem to be true for colloidal rods, and the
molecular origin of the cholesteric phase remains poorly understood. Some
chiral polymers such as fd, PBLG, and DNA form a well-developed cholesteric
phase (DuPre and Duke 1975; Van Winkle et al. 1990; Livolant 1991; Lefor-
estier and Livolant 1993; Dogic and Fraden 2000). However, other viruses
such as TMV and pf1 form nematic structures under the same conditions in
which the cholesteric twisting is observed in fd suspension. Surprisingly, the
molecular structure of TMV and pf1 is also chiral and quite similar to fd. The
main challenge is to formulate a microscopic theory of chiral polymers and
explain why some chiral molecules such as fd form a cholesteric phase while
others like pf1 and TMV form a nematic phase.

Following the initial work of Onsager (1949), Straley (1976) was the first
to propose a microscopic theory of the cholesteric phase based on excluded
volume. He considered a nematic solution of rod-like molecules that have ad-
ditional chiral threads similar to chiral screws. Similar to Onsager, in the Stra-
ley model the formation of the cholesteric phase is driven by pure excluded-
volume effects. The excluded volume between two screw-like rods is mini-
mum not when they are parallel to each other, but when they approach each
other at a specific angle at which the chiral grooves can interpenetrate. The
initial work of Straley was extended to semi-flexible molecules (Odijk 1987;
Pelcovits 1996). More recent work indicates that the mean-field approaches
used by Straley fail to describe the cholesteric phase since rotations along the
rods’ long axis effectively average out the chiral structure of the molecules
(Harris et al. 1997). These latter authors further argue that it is the biaxial
correlations that are responsible for the formation of the cholesteric pitch.
In addition to excluded-volume interactions, it has been proposed that other
types of chiral interactions, such as van der Waals, can induce the formation
of the cholesteric phase (Issaenko et al. 1999).

As already mentioned, the origin of the cholesteric phase in fd solution is
not understood. Even when fd is coated with a thick layer of achiral PEG poly-
mer, the resulting polymer-stabilized rods still form a cholesteric structure
(Grelet and Fraden 2003). This would imply that it is not the microscopic chiral
arrangement of coat proteins that is responsible for the cholesteric structure;
rather it has been suggested that the virus twists into a mesoscopic helical
structure. However, up to now there has been no concrete experimental evi-
dence to support this hypothesis. Interestingly, the relative angle between two
neighboring molecules is very small in a cholesteric phase. The typical size of
the cholesteric pitch is roughly 20 µm, while the spatial separation between
two rods in such a sample would be of the order of 20 nm. This would indi-
cate that there are about 1000 molecules along the cholesteric pitch, which
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results in the average angle between two rods being at most a fraction of a
degree. This is much smaller than the average angle by which the rods locally
fluctuate due to the width of the orientation distribution function, which is
typically in the range of 0.6 < S2 < 0.9.

The cholesteric pitch has been measured as a function of virus concentra-
tion and ionic strength. At a high ionic strength of 100 mM, the cholesteric
pitch decreases with increasing concentration according to the power law
P ∝ c−ν , where ν = 1.65 (Dogic and Fraden 2000). As the fd concentration
approaches the smectic phase, the cholesteric pitch deviates from the above
power law and it slowly unwinds. This is presumably due to pre-smectic fluc-
tuations, since similar behavior is observed in thermotropic liquid crystals
(Pindak et al. 1974). Upon decreasing the ionic strength to 4 mM, the value
of the power-law exponent ν systematically decreases to 1.1. Interestingly the
exponent ν measured at high ionic strength agrees with the theoretical pre-
dictions of Odijk (1987). This result also agrees with previous measurements
on PBLG (DuPre and Duke 1975). Measurements of the cholesteric pitch of
DNA are inconsistent with each other (Jizuka and Yang 1978; Senechal et al.
1980). In conclusion, much still remains unanswered about the microscopic
origin of the cholesteric pitch.

1.3.5
Nematic Order Parameter of fd Virus Suspensions

As discussed in the theory section (Section 1.2.3 and Fig. 1.2b), the effect
of finite rod flexibility has a dramatic effect on the order parameter of the
nematic phase. For example, the Khokhlov–Semenov (KS) theory predicts
that the finite flexibility of fd reduces the nematic order parameter S2 of the
coexisting nematic phase from the rigid-rod limit of 0.8 down to 0.65. The fact
that the I–Ch coexistence concentrations agree with the KS theory provides
an indirect test of the KS theory. However, a more stringent test of this theory
would be to measure the nematic order parameter.

It is possible to induce the cholesteric to nematic phase transition by plac-
ing the sample in a sufficiently strong magnetic field (Meyer 1968; Meyer
1969). This fact was used to prepare uniformly aligned monodomain nemat-
ics and subsequently to measure their nematic order parameter. The applied
field is strong enough to align the sample but at the same time does not
affect the orientational distribution function. The traditional techniques for
determining the nematic order parameter are X-ray scattering and quantita-
tive measurements of the birefringence. To determine the absolute value of
the order parameter from the birefringence measurements, it is necessary
to know the birefringence per particle, which has to be determined indepen-
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Fig. 1.12 Contour plots of X-ray diffrac-
tion of a magnetically aligned fd sus-
pension at concentrations of 93, 33, and
15.5 mg ml−1, respectively, in 10 mM
ionic-strength buffer. In column (a) scat-
tering at small reciprocal angles up to
0.1 Å−1 due to inter-particle interference
is shown. In column (b) the intra-particle

scattering at higher angles reveals the
fd form factor, and the low-angle inter-
particle interference is blocked by the
beam-stop. The orientational distribution
function can be determined from the
angular spread in both the intra-particle
and inter-particle peaks. (After Purdy
et al., 2003).

dently. Both of these techniques were used to measure the nematic order
parameter of an fd suspension (Purdy et al. 2003).

X-ray scattering patterns from colloidal nematic liquid crystals are shown in
Fig. 1.12. The scattering at small angle shows a typical butterfly pattern, which
is due to the interference between neighboring rods (Ao and Meyer 1991;
Kamien et al. 1992; LeDoussal and Nelson 1991; Savenko and Dijkstra 2004).
This pattern is usually observed in polymer liquid crystals without much
internal structure, such as PBLG. The intensity along an arc of constant radius
is usually assumed to be a function of the orientational distribution function.
At low angles this is an assumption that needs to be tested. The reason for this
is that, unlike spherical particles, the structure factor of a solution of rod-like
particles does not necessarily decouple from the anisotropic form factor, and
it is the decoupling assumption that needs to be tested. Here we compare the
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order parameter obtained at low angles with that obtained at high angles to
test the decoupling assumption.

In addition to inter-particle scattering at low angles, a nematic fd solution
shows a clear scattering pattern at high angles due to the single-particle form
factor (Fig. 1.12). At these high angles the structure function is unity, and
inter-particle interference does not contribute to the scattering. Therefore, in
this region the precise shape of the orientational distribution function can be
rigorously determined from the scattering pattern. This method has previ-
ously been used to determine S for nematic TMV suspensions (Oldenbourg
et al. 1988). But up to now the decoupling approximation has not been tested
by comparing the ODF obtained from low-angle inter-particle scattering and
high-angle intra-particle scattering.

Figure 1.12 shows the scattering patterns due to both inter-particle and
intra-particle interference taken on magnetically aligned nematic monodo-
mains of fd. With increasing rod concentration, the width of the patterns
decreases, which indicates that the order parameter increases. The concen-
tration dependence of the order parameter is shown in Fig. 1.13. As can be
seen, the agreement between theory and experiment is very good at high
ionic strength. We note that at a lower ionic strength of 10 mM there is
a noticeable discrepancy between the theoretical curve and experimental
data (data not shown) consistent with the discrepancies observed for the
isotropic–cholesteric coexistence (Purdy et al. 2003).

Fig. 1.13 Nematic order parameter of the
fd phase obtained from an X-ray scattering
pattern such as those shown in Fig. 1.12.
The filled squares are the order-parameter
values obtained from inter-particle scat-
tering, while the open circles are obtained
from intra-particle scattering. The solid

line shows the prediction of the scaled
particle theory extended to semi-flexible
charged rods as described in the theory
section (Section 1.2.4). The dotted line is
the prediction of the Onsager theory for
rigid charged rods. (After Purdy et al.,
2003).
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Equally important, we find that the order parameters obtained from inter-
particle and intra-particle scattering are always almost identical. This supports
the decoupling approximation and provides validation for measurements of
the order parameter from low-angle inter-particle scattering patterns. In ad-
dition, it has been shown that the birefringence scales in the same way
as the order parameter obtained from X-ray scattering. From this compar-
ison the magnetic birefringence per single rod fd can be determined to be
∆nsat/c = 3.8 × 10−5 ml mg−1, where c is the concentration of rods. We
believe that measurement of the concentration dependence of the order para-
meter represents the most stringent test for the validity of the KS theory to
date. The breakdown of the theory at low ionic strength indicates the need
to improve the treatment of electrostatic repulsion for strongly interacting
particles.

Direct visualization of fluorescently labeled polymers dissolved in a nematic
fd background is another novel method by which it is possible to measure the
nematic order parameter. Figure 1.14 shows images of four different labeled
polymers dissolved in the invisible background of unlabeled fd nematics. The
conformation of the rods changes from coil-like to rod-like as the background
fluid undergoes an isotropic–nematic phase transition. Interestingly, this is
true for relatively rigid rods such as neurofilaments, worm-like micelles and
actin, while relatively flexible DNA demixes from the background fd suspen-
sion. Using these images, it is possible to determine the order parameter of
polymers dissolved in the background nematic. It is found that the order para-
meter significantly increases with increasing length of the dissolved polymer.
For more information, the reader is referred to Dogic et al. (2004b).

It might be possible to determine the nematic order parameter of a nematic
suspension by directly labeling fd rods. Present experiments indicate that the
exposure times necessary to acquire sufficient signal are too long to determine
the orientation of an individual fd virus accurately. During the necessary ex-
posure time, individual rods undergo significant rotational diffusion, which
blurs the signal. Using a laser as an illumination source, it might be possible
to reduce the exposure time to levels where order-parameter measurements
are possible.

1.3.6
Smectic Phase of fd Virus

At high concentration, fd forms a smectic A phase in which rods have long-
range orientational order and one-dimensional positional order. The smectic
phase in a suspension of fd was first reported in Booy and Fowler (1985). The
smectic phase is easily recognized by the bright iridescence it exhibits when it
is illuminated by white light, as shown in Fig. 1.15. Due to the large contour
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Fig. 1.14 Images of fluorescently labeled
biopolymer in isotropic (left panels)
and nematic (right panels) background
suspensions composed of fd virus.
(a)–(d) Images of actin (lp = 16 µm),
worm-like micelles (lp = 0.6 µm), neu-

rofilaments (lp = 0.2 µm), and DNA
(lp = 0.05 µm), respectively. (e) A se-
quence of images illustrating the escape
of an actin filament from a hairpin defect.
Scale bar is 5 µm. (After Dogic et al.,
2004b).

length of fd, it is also possible to observe the smectic density modulation
directly using video-enhanced optical microscopy (Figs. 1.15 and 1.16). When
488 nm light is used to scatter light from a smectic phase, it is possible to
observe up to five Bragg peaks. From the relative intensities and positions of
the peaks, it is possible to deduce the detailed structure of the smectic phase
(Dogic and Fraden 1997).

Computer simulations predict that the concentration of the nematic to
smectic phase transition is roughly a volume fraction of 0.5. Furthermore,
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Fig. 1.15 (a) A differential interference
contrast (DIC) image of the fd virus with
varying contour length. The high-contrast
lines are smectic gaps. Light scattering
indicates that the smectic spacing is
920 nm while the half-width of the gap is
90 nm. Scale bar is 10 µm.

(b) Light scattering of white light from a
uniformly aligned one-dimensional den-
sity modulation of the smectic phase of
fd. By changing the angle of the incident
light, the Bragg condition d = λ sin θ/2n
changes and the sample appears with
different colors.

Fig. 1.16 Images of the smectic phase of four different mutants of the fd
virus. The contour length varies from 0.4 to 1.2 µm. The mutant viruses
are prepared according to standard methods of molecular cloning, as
described in Section 1.3.1. (After Dogic and Fraden, 2001).

it is found that the location of this phase transition is independent of the
aspect ratio of the rods (Bolhuis and Frenkel 1997). Initial studies (Dogic
and Fraden 1997) carried out over a limited ionic-strength range indicated
that the location of the nematic–smectic phase transition scales with D2

eff .
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Fig. 1.17 Effective volume fraction of the nematic–smectic phase
transition for multiple ionic strengths and contour lengths. The data are
taken at pH 8.2. The actual volume fraction of the rods φs is rescaled
using the effective diameter with the relationship φs

eff = φs(D2
eff/D2),

where D is the hard-core diameter. (After Purdy and Fraden, 2004b).

As discussed in Section 1.3.2, the concept of Deff quantitatively describes the
isotropic–nematic phase transition at high ionic strength. Recently, the nature
of the cholesteric–smectic (Ch–S) phase transition in fd has been character-
ized in more detail (Purdy and Fraden 2004b). This new study leads to the
conclusion that the electrostatics of highly concentrated charged rods cannot
be accounted for with a simple concept such as Deff .

Figure 1.17 shows the dependences of the cholesteric–smectic phase tran-
sition on ionic strength and contour length. The data clearly show that varying
the contour length of the rods has no effect on the location of the nematic–
smectic phase transition. This is in agreement with theoretical and simulation
predictions (Tkachenko 1996; Bolhuis and Frenkel 1997). However, the data
below 60 mM ionic strength do not scale with D2

eff . Additionally, the effective
volume fraction of the nematic–smectic phase transition at low ionic strength
is much higher than the close packing of rods (φ = 0.92), which leads to the
conclusion that Deff overestimates the electrostatic interactions.

The location of the nematic–smectic phase transition for suspensions of
bacteriophages fd and M13 is shown in Fig. 1.18. The main difference between
these two bacteriophages is the point mutation in the coat protein, which con-
verts a negatively charged amino acid for the case of fd to a neutral one for
the case of M13. This results in fd having higher charge than M13 by 30%
for same conditions. The pH of the solution in Fig. 1.18 was adjusted so that
the surface charge of fd and M13 suspensions are equivalent. With increasing
ionic strength, the volume fraction φs of the nematic–smectic phase transi-
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Fig. 1.18 The ionic-strength dependence of the nematic–smectic phase
transition for suspensions of fd and M13. The pH of the suspension is
adjusted so that the linear charge density is 7 e− nm−1 for both rods.
(After Purdy and Fraden, 2004b).

tion increases until it saturates at ionic strengths higher than 100 mM. There
are two surprising conclusions that follow from the experiments described
in Fig. 1.18. First, the concentration of the nematic–smectic phase transition
saturates at ionic strengths higher than 100 mM. This leads to the conclusion
that, in the limit where the Debye screening length becomes much smaller
than the rod diameter, the phase behavior of charged rods approaches that of
hard rods. Surprisingly, the nematic–smectic phase transition saturates at vol-
ume fraction 0.24, which is much lower than the theoretical prediction of 0.75
for semi-flexible rods (Tkachenko 1996; van der Schoot 1996; Polson 1997).
Second, although the linear charge densities for fd and M13 are equal, the
concentrations of the N–S phase transition in the limit of high ionic strength
are not the same. This indicates that the electrostatic continuum model fails
and that it is necessary to take into account the molecular arrangements of
the charges on the virus.

Another colloidal system where the N–S phase transition has been carefully
characterized is the suspension of rigid TMV rods (Wen et al. 1989). There are
significant differences when the N–S phase transition in TMV is compared to
the Ch–S of fd. The ratio of layer spacing to rod contour length is 1.3 for the case
of TMV as compared to 1.03 for the case of semi-flexible fd. Significant pre-
transitional smectic fluctuations are also observed in TMV suspensions, while
no nematic–smectic pre-transitional fluctuations are observed in the case
of semi-flexible fd. For a more detailed comparison of the nematic–smectic
transition between these two systems, the reader is referred to Dogic and
Fraden (1997). We also note that, in partially dried samples of fd, a smectic C
phase is observed (Welsh et al. 1996; Lee et al. 2003).
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We conclude this section on the phase behavior of hard rods by noting
that the isotropic and nematic phases of fd suspension are well understood in
the limit of high ionic strength. In this limit the rod charge can be quantita-
tively taken into account via the effective diameter. As the rod concentration
increases to the smectic phase or the ionic strength decreases, the behavior
of fd suspensions cannot be described by current theories. The experimental
data indicate that there is a need to incorporate the electrostatic interaction at
a more fundamental level in these cases. This remains an area where further
theoretical and experimental work is needed.

1.4
Bulk Phase Behavior of Rod–Sphere and Rod–Polymer Mixtures

With the basic understanding of the phase behavior of a pure suspension
of hard rods and hard spheres established, recent experiments have shifted
toward exploring the phase behavior of more complex mixtures. As an in-
troduction, we first briefly summarize the behavior of samples where hard
spheres are mixed with depleting agents that are in an isotropic phase. These
can be either a suspension of polymers, or small-diameter hard spheres, or
an isotropic solution of rod-like molecules. After summarizing the behavior
of these mixtures, we turn our attention to less explored systems where it
is necessary to take into account orientational and/or positional ordering of
rods.

In the rest of this chapter, we review the phase behavior of mixtures of
rods with spherical polymers, such as dextran, poly(N-isopropylacrylamide)
(NIPA), and poly(ethylene oxide) (PEO), and the behavior of rods with hard
spheres, such as charge-stabilized polystyrene (PS) colloids. Many of the
phenomena described are general to both rod–hard sphere mixtures and
rod–polymer mixtures, while there are also important differences between
these two cases. In general, we use “rod–sphere” mixture to refer to a generic
mixture of rods with either hard spheres or polymers, while “rod–hard sphere”
or “rod–polymer” refers to that specific mixture.

1.4.1
Depletion Interaction Between Hard Spheres

An important concept for understanding colloid–polymer mixtures is the de-
pletion potential introduced by Asakura and Oosawa (AO) in the late 1950s
(Asakura and Oosawa 1958). A few decades later the depletion interaction was
rediscovered by Vrij (1976). In the non-additive AO model, spherical colloids
with diameter Dsp interact with each other via the hard-core excluded-volume
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Fig. 1.19 A schematic illustration of the depletion attraction in the
sphere–polymer mixture. Around each colloid of diameter Dsp there is a
shell that is inaccessible to the center of mass of a polymer. As the two
colloids approach each other, there is an overlap of the excluded-volume
shells, which leads to the effective attractive potential.

interaction, polymers behave as an ideal gas with no interaction, while col-
loids interact with polymer through the excluded-volume interaction. Conse-
quently, there is a volume shell, with radius equal to the polymer’s radius of
gyration Rg, around each colloid from which the center of mass of a poly-
mer is excluded, as illustrated in Fig. 1.19. As two colloids approach each
other, there is an overlap of the excluded-volume shells. The exclusion of the
polymer between the colloids leads to an imbalance of the osmotic pressure,
which in turns leads to an effective attractive force. The depletion force is pro-
portional to VexclΠpolymer, where Vexcl is the excluded volume and Πpolymer

is the osmotic pressure of the polymer solution. The range of the depletion
attraction is proportional to the polymer radius of gyration (Rg), while the
strength of the attraction is proportional to the polymer concentration.

An alternative explanation of the AO depletion can be gained by consider-
ing the total entropy of the sphere–polymer mixture. Bringing together two
large colloids decreases the entropy of mixing of the system. However, the
reduction of excluded volumes around large colloids results in an increase
of the accessible volume to the more numerous smaller polymers, which in
turn leads to an increase in the polymer component of the total entropy of
the system. Since the entropy gain of the dispersed polymer is larger than the
entropy loss of the clustered colloids, the net result is an effective attractive
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potential with entropic origin. Therefore the depletion interaction is often
paradoxically described as “attraction through repulsion”.

The depletion interaction is a very general phenomenon that is always rel-
evant to the phase behavior of mixtures. However, the quantitative AO theory
breaks down for a number of experimentally relevant parameters. First, with
increasing polymer size, it is easy for the polymer and the colloid to interpen-
etrate each other, which leads to a significant decrease in both the range and
the strength of the depletion potential (Tuinier et al. 2000). Second, the AO
model assumes that the polymer behaves as an ideal gas. While it is exper-
imentally possible to achieve this condition by changing the solvent quality,
frequently it is necessary to take into account the excluded-volume interaction
between polymers (Hanke et al. 1999; Tuinier et al. 2003). The extreme limit
of this case is two large colloids immersed in a suspension of colloids with
much smaller size (Mao et al. 1995; Dijkstra et al. 1999). At a low density of
the small colloids the interaction potential between the large colloids can be
approximated using the AO interaction. However, with increasing concentra-
tion of the small colloids the effective intermolecular potential between the
large colloids deviates significantly from the AO potential and exhibits signif-
icant oscillatory behavior, which is a consequence of the liquid-like structure
of the small colloids. The oscillatory nature of the depletion potential in a
binary mixture of hard colloids was measured using a scanning laser tweezer
(Crocker et al. 1999). Third, the AO depletion is quantitatively valid when
the polymer is in the dilute regime. In the semi-dilute region, the relevant
length scale is determined by the polymer correlation range. Since this length
scale is smaller than Rg, the range of the depletion attraction decreases with
a crossover from the dilute to the semi-dilute regime. Such depletion attrac-
tion was directly measured with an optical tweezer using 1 µm silica spheres
immersed in a DNA solution, which acts as a depleting agent (Verma et al.
2000). These experiments illustrate that, with a crossover from the dilute to
the semi-dilute regime, the range of the depletion attraction rapidly decreases.

It is possible to induce a depletion attraction with other colloidal solutions
besides polymers or spheres. For example, the depletion caused by a dilute
isotropic suspension of rods has been studied in detail both theoretically and
experimentally. The depletion interaction between flat plates immersed in a
solution of rods has been calculated, and using the Derjaguin approximation
the result was generalized to the interaction of spherical colloids (Mao et al.
1997). This depletion interaction was consequently obtained using the exact
solution to first order in rod concentration by Marques and coworkers (Yaman
et al. 1998). The exact calculation indicates that the Derjaguin approximation
works well when the length of the rods is much smaller than the diameter of
the spheres, but significantly overestimates the depletion potential when the
rod length approaches the sphere diameter.
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The depletion force between two spheres induced by the presence of a
semi-dilute suspension of 0.9 µm long fd rods has recently been measured
using a line tweezer (Lin et al. 2001). At short distances, there is a signifi-
cant enhancement of the depletion interaction when compared to the “exact”
theory developed for spheres immersed in a solution of rigid rods (Yaman
et al. 1998). This is probably due to additional depletion associated with the
bending degree of freedom of semi-flexible rods (Lau et al. 2003). Interest-
ingly, by fitting the experimental data to their model, the authors were able
to extract the persistence length of fd from their data. This turns out to be
1.1 µm, which differs significantly from previous measurements (Song et al.
1991). A systematic experimental study of how the depletion strength varies
as a function of the ratio of sphere diameter Dsp to rod length (L) is so far
lacking.

1.4.2
Phase Diagrams of Hard Spheres and Polymers or Isotropic Hard Rods

Once the depletion potential between two isolated spherical colloids has been
“engineered” by choosing appropriate polymer size and concentration, it is
of fundamental interest to understand how the chosen potential affects the
phase behavior of spherical colloids. Theory, computer simulation, and exper-
iments have shown that the parameter that most critically affects the phase
behavior is the range of attractive interaction (Gast et al. 1983a; Gast et al.
1983b; Gast et al. 1986; Lekkerkerker et al. 1992; Hagen and Frenkel 1994).
For potentials with very short-range attraction, there is a direct equilibrium
phase transition from a dilute colloidal gas (G) to a concentrated colloidal
crystal (C). There is an additional transition from the dilute colloidal gas to a
dense disordered colloidal liquid (L), as illustrated in Fig. 1.20a. However, this
transition is metastable with respect to the equilibrium gas–solid phase tran-
sition. Only when the range of attraction increases is a stable gas–liquid phase
transition observed with associated critical and triple points. Experimentally,
it is found that glassy states and/or gels often preempt the occurrence of the
equilibrium phase transitions. The non-equilibrium nature of these states
is poorly understood and is currently under intense study (Anderson and
Lekkerkerker 2002). We note that, for spheres with very short-range attractive
potentials, simulations predict the existence of a first-order phase transition
between two solids with different densities (Bolhuis and Frenkel 1994a). So
far this transition has not been observed in experiments.

The initial studies of Gast et al. (1983a), Gast et al. (1983b), and Gast
et al. (1986) of the sphere–polymer mixture used thermodynamic perturba-
tion theory to obtain the theoretical phase diagrams. Such theories treat the
sphere–polymer mixture as a single-component system of spheres that have



38 1 Phase Behavior of Rod-Like Viruses and Virus–Sphere Mixtures

Fig. 1.20 The phase diagram of a
colloid–polymer mixture is found to
depend critically on the range of attrac-
tion, which in turn is determined by the
polymer size (F = fluid, L = liquid, G =
gas, and C = crystal). (a) For short-range
attraction, only an equilibrium gas–solid
phase transition is observed. We note that
a gas–liquid phase transition is present

but is metastable with the respect to
the equilibrium gas–solid phase tran-
sition. (b) For colloids with long-range
attraction, gas–liquid, liquid–solid, and
direct gas–solid phase transitions are
observed. The topology of this phase dia-
gram closely resembles that of molecular
liquids interacting with a van der Waals
potential.

hard-core repulsive interactions to which the effect of attraction is considered
as a perturbation. The underlying assumption is that depletion attraction is
pairwise additive and that, in a sample where two phases coexist, the polymer
concentration is the same in both phases. Non-additivity for sphere–polymer
mixtures was treated via computer simulations and it was found that the de-
pletion attraction is pairwise additive only if the ratio Rg/Dsp is sufficiently
small (Meijer and Frenkel 1991; Meijer and Frenkel 1994). A more complete
theory that takes into account the possibility of partitioning of the polymer
across the phase boundary and accounts for the non-additive nature of the
colloid–polymer mixture was subsequently developed by Lekkerkerker et al.
(1992).

Studies of colloid–polymer mixtures show that the topology of the phase
diagram depends critically on the range of attraction. This result is very gen-
eral and is expected to hold for molecular liquids as well as for colloidal
systems. The advantage of colloids is that the shape, range, and depth of the
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intermolecular potential can be adjusted and experimentally measured. This
makes colloids an ideal system to test the statistical-mechanical theories that
predict the relationship between the macroscopic phase behavior of fluids
and the microscopic intermolecular potential.

The phase behavior of a binary mixture of hard spheres is very different
from that of a hard sphere–polymer mixture. On the theoretical side, the initial
work by Lebowitz and Rowlison (1964) showed that, within the Percus–Yevick
approximation, mixtures of hard spheres are miscible for all aspect ratios and
concentrations. For a long time this was considered to be the general case.
More recently, a more accurate liquid-state theory indicated that a binary
mixture of spheres becomes unstable and demixes at high enough asymmetry
(Biben and Hansen 1991). On the experimental side, liquid–liquid demixing
has not been observed. It seems that this transition is preempted by the liquid-
crystal phase transition where the solid composed of large spheres coexists
with a liquid rich in spheres with smaller diameter (Dinsmore et al. 1995;
Imhof and Dhont 1995; Dijkstra et al. 1998; Dijkstra 2001). In this way the
phase behavior of binary hard spheres is reminiscent of a sphere–polymer
mixture with large asymmetry (Fig. 1.20a). At even higher volume fraction,
it is possible to obtain well-ordered binary alloys with complex crystalline
structure (Bartlett et al. 1992).

As discussed previously (Section 1.4.1), isotropic rods are very effective
depletion agents, especially when the length of the rod (L) is significantly
smaller than the diameter of the hard sphere (Dsp). However, there have
been only limited studies on the phase behavior of a mixture of isotropic rods
and colloidal spheres. In the initial work by Pecora and coworkers (Tracy et al.
1993), no demixing phase transition was observed in a mixture of rod-like
PBLG and polystyrene spheres. Early simulations predicted a phase diagram
reminiscent of those found in spheres with short-range attractions (Fig. 1.20a)
when the ratio Dsp/L is smaller than 0.3 (Bolhuis and Frenkel 1994b). For
larger ratios, both gas to liquid and liquid to crystal phase transitions are sta-
ble (Fig. 1.20b). These predictions have also been confirmed in theoretical
work (Vliegenthart and Lekkerkerker 1999). Subsequently, the phase separa-
tion between crystals of silica spheres and an isotropic solution of boehmite
(γ-AlOOH) rods coated with silica was observed (Koenderink et al. 1999).
In these experiments, the ratio Dsp/L was kept constant at 0.3, exactly the
parameter at which the gas–liquid phase transition becomes stable with re-
spect to the gas–crystal phase transition. Interestingly, no gas–liquid phase
coexistence was reported. In these studies the authors observe the formation
of crystals via a two-step pathway (Vliegenthart et al. 1999). In a first step,
the mixture forms a liquid-like aggregate that subsequently crystallizes. This
point is discussed in greater detail in Section 1.9 on the kinetics of phase tran-
sitions. With increasing concentration of the rods, the suspension becomes
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Fig. 1.21 A crystalline cluster of polystyrene spheres (Dsp = 2 µm)
grows on the walls when fd rods are added. The concentration of fd rods
is roughly 2 mg ml−1. Fluctuations of the crystalline cluster are clearly
visible under the microscope. Scale bar indicates 10 µm.

highly viscous and the sample takes too long to equilibrate. In this case it is
difficult to determine the final equilibrium phase.

We have also observed demixing in a mixture of 0.9 µm long fd viruses
and large polystyrene spheres (Fig. 1.21). It is interesting that when rods at
a fixed concentration (2 mg ml−1) are mixed with small polystyrene spheres
(Dsp = 1µm), no phase separation is observed. As the sphere size is increased
(Dsp = 1.5 µm), surface crystallization is observed, but not crystallization
in the bulk. This is not surprising, since the overlap of excluded volume
between a flat wall and a sphere is twice as large as that between two spheres.
Surface crystallization has previously been observed for a binary mixture of
hard spheres (Dinsmore et al. 1997). For spheres with Dsp = 2 µm, we
observe phase separation in the bulk, but the heavy particles quickly sediment
to the bottom wall and spread out on the surface. The quantitative phase
diagram for a mixture of spheres and isotropic rods as a function of rod
and sphere concentrations and Dsp/L ratio is difficult to determine due to
turbidity and sedimentation of the large spheres. A theoretical calculation
explains why the phase separation in a sphere–rod mixture is so sensitive
to the ratio of sphere diameter to rod length (Yaman et al. 1998). As the rod
length approaches the sphere diameter, the strength of the depletion potential
decreases significantly.

So far we have discussed the phase behavior of a mixture of spheres with
depletants such as isotropic rods or polymer solutions. In the rest of this
chapter we focus on a number of surprising phenomena that are observed in
rod–polymer or rod–sphere mixtures at higher rod concentrations. In this case
it is necessary to take into account either the orientational or the positional
ordering of rods, or sometimes both.
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1.5
Influence of Non-Adsorbing Polymer on the Isotropic–Nematic Phase Transition

The Onsager theory describes the entropy-driven isotropic–nematic phase
transition in a suspension of rods that have purely repulsive hard-core inter-
actions (Onsager 1949; Vroege and Lekkerkerker 1992). As a next step, it is
important to examine how the presence of attractive interactions alters the
nature of the I–N phase transitions. For low-molecular-weight liquid crystals,
this issue has been reviewed extensively elsewhere (Gelbart and Barboy 1980).
Experimentally, one feasible way to introduce attractions into hard rods is by
adding a non-adsorbing polymer. In a similar way that the presence of poly-
mers dramatically alters the phase behavior of hard spheres, it is reasonable to
expect a significant influence of polymer on the phase behavior of hard rods.
In this section we focus on the bulk I–N phase transition in rod–polymer
mixtures, while in subsequent sections we consider the possibility of posi-
tionally ordered smectic phases. While it is tempting to connect the phase
behavior of rod–polymer mixtures to that of a solution of rods with direct at-
tractive interactions, there are also some important differences between these
two systems. Most importantly, the depletion interaction in the rod–polymer
mixture is an effective potential. Therefore, the strength of the interaction de-
pends on the local concentration of polymer, which can vary considerably in
the sample, especially if there are coexisting phases within the same sample.

In general, liquid-state theories that describe the behavior of rod-like parti-
cles are not as developed as theories for spherical particles. While the Onsager
theory accurately describes the reference state of hard-rod fluids, introducing
attractive interactions into such a theory is not as straightforward as for the
case of hard spheres. The Onsager theory is based on a density expansion,
and it is therefore valid only at low densities for solutions of rods that have a
fair degree of orientational disorder. Rods with depletion-like attractive inter-
actions attain the minimum of their intermolecular potential when they are
parallel to each other and their centers of mass are at a minimum separation
(Fig. 1.22). These are exactly the configurations that need to be avoided for
the Onsager theory to converge at the level of the second virial coefficient
(van der Schoot and Odijk 1992). To overcome this difficulty, Lekkerkerker
and Stroobants (1994) have calculated the phase diagram of rod–polymer mix-
tures (Fig. 1.23) using the scaled particle free-energy expression of hard rods,
which approximately takes into account higher virial coefficients and reduces
to the Onsager theory in the appropriate limit (Lekkerkerker and Stroobants
1994; Bolhuis et al. 1997). Such an expression reproduces remarkably well
the isotropic–nematic phase transitions for hard rods with finite size when
compared to results of computer simulations (Kramer and Herzfeld 1998).
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Fig. 1.22 The attractive interaction induced by adding polymer to a
suspension of rod-like colloids. The strength of attraction is proportional
to the overlap of the excluded volume, and it is strongest when the rods
lie parallel to each other, as illustrated in case (a), as opposed to rods
lying perpendicular to each other, as shown in case (b), or end-to-end, as
in case (c).

Fig. 1.23 The three possible phase
diagrams of a rod–polymer mixture as
predicted by Lekkerkerker and Stroo-
bants (1994). For long-range attraction,
in addition to I–N phase transition, a
stable isotropic–isotropic phase tran-
sition is predicted. Dashed lines are
tie-lines between coexisting phases.
For very short-range attraction, the

isotropic–isotropic coexistence disap-
pears but a nematic–nematic phase
appears. With both isotropic–isotropic
and nematic–nematic coexistence, there
is a triple point and an associated critical
point. Because of the binary nature of the
mixture, the triple point spans an entire
solid triangle in the phase diagram.

The topology of the phase diagrams obtained using the scaled particle
theory (SPT) bears a striking similarity to the phase diagrams of the hard
sphere–polymer mixture previously described in Section 1.4.2. For rods with
long-range attractions an isotropic–isotropic (I1–I2) phase transition is ob-
served. As a consequence, there is a critical point associated with isotropic–iso-
tropic demixing and a triple point in which two isotropic phases coexist with
a nematic phase. Since the system contains two components, the triple point
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spans an entire triangle in the phase diagram when plotted in the rod–polymer
density–density plane. For a very short-range attraction, the system exhibits
nematic–nematic phase transitions. A simpler calculation that directly ex-
tends the second virial Onsager free energy to include attractive interactions
only predicts the widening of the isotropic–nematic coexistence and fails to
predict either isotropic–isotropic or nematic–nematic coexistence (Warren
1994). In addition, Warren’s theory abruptly breaks down and predicts coex-
istence between an infinitely dense nematic phase and dilute isotropic rods as
soon as the second virial coefficient becomes negative. Because of this, War-
ren argues that the second virial theory extended to rod–polymer mixtures
is only valid for very weak attractions, but it is not clear at which point this
approximation breaks down.

There have been a few experiments that have studied the phase diagram of
rod–sphere mixtures, most notably in cellulose–dextran and boehmite–poly-
styrene mixtures (Edgar and Gray 2002; Buitenhuis et al. 1995). In the latter
work the authors observe a triple point in which two isotropic phases co-
exist with a nematic phase. In addition to these equilibrium phases, non-
equilibrium gel-like phases are also reported at fairly low rod concentra-
tions. In the former work on the cellulose–dextran mixture, only biphasic
isotopic–nematic coexistence is observed, which widens with increasing poly-
mer concentration.

Motivated by good agreement between the Onsager theory and experimen-
tal data for the I–Ch coexistence of filamentous fd rods, we have recently mea-
sured the I–Ch phase transition in the presence of a non-adsorbing polymer.
Using fluorescein-labeled dextran, it is possible to obtain macroscopically
phase-separated samples, measure the full phase diagram, and determine
the tie-lines between coexisting isotropic and cholesteric phases (Dogic and
Fraden 2001; Dogic et al. 2004a). An example of the typical phase diagram
measured is shown in Fig. 1.24. In agreement with previous studies, it is
found that adding polymer widens the coexistence between the isotropic and
cholesteric phases. Using the fd–dextran mixture, it is also possible to observe
preferential partitioning of the polymer into the isotropic phase, in qualitative
agreement with the theoretical predictions. Unfortunately, with this system,
we are not able to access the parameters for which I1–I2–N and I–N1–N2

phase coexistence is predicted in the work by Lekkerkerker and Stroobants
(1994).

There are a number of reasons why quantitative comparison between the
SPT theory and experiments is difficult (Dogic et al. 2004a). First, the theoreti-
cal work is valid for rods that interact through hard-core repulsive interaction,
while the fd viruses used in the experiments are charge-stabilized. Because
of the small diameter of fd, it is not possible to add enough salt to reduce
the double-layer repulsive interaction to negligible levels and simultaneously
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Fig. 1.24 Phase diagram of an fd virus and dextran (Rg = 176 Å)
mixture at 100 mM ionic strength. The measured points indicate the rod
and polymer concentrations of the coexisting isotropic and cholesteric
phases. The full line indicates the phase boundary between the two-phase
isotropic–cholesteric phase coexistence and stable single-phase isotropic
and cholesteric phases. Tie-lines are indicated by thin full lines.
(After Dogic et al., 2004a).

preserve the colloidal stability of the system. Therefore, repulsive double-layer
interactions have to be incorporated into the theory. At the level of the second
virial coefficient, it is possible to achieve this by replacing the hard-core di-
ameter Dr with a larger effective diameter Deff that is dependent on the ionic
strength, as described in Section 1.2.2. This procedure is rigorously valid only
for rod concentrations low enough that the Onsager second virial coefficient
accurately describes the system. When comparing our data to theory, we have
used Deff as a hard-core diameter in the SPT theory, although in principle
this is an approximation that is not well controlled. We note that there was a
recent attempt by Herzfeld and coworkers to incorporate charge into scaled
particle theory (Kramer and Herzfeld 1999; Kramer and Herzfeld 2000).

Second, the SPT theory is valid for perfectly rigid rods while fd is a semi-
flexible rod with a persistence length of 2.2 µm. This flexibility is enough to
significantly affect the nature of the isotropic–nematic phase transition, as
explained in Section 1.2.3. The SPT theory has been modified to include flex-
ibility in the same way that Khokhlov and Semenov extended Onsager theory
to treat semi-flexible rods. The competition between attractive interaction and
repulsive interaction can induce a bundling–unbundling transition (Kierfeld
and Lipowsky 2003).

Third, the Rg of the polymers used in our experiments was equal to or even
larger than the diameter of the rods. As mentioned in Section 1.4.1, for these
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parameters the AO model of depletion attraction significantly overestimates
both the range and the strength of the interaction. The reason for this is that
the open polymer structure easily interpenetrates a slender rod. Since there
is no analytical expression for the depletion potential in such a case, when
comparing our experimental results to the SPT theory we have used results
obtained from simulation.

In spite of these caveats, in the limit of high ionic strength the agreement
between experiments and theory is quite good, as shown in Fig. 1.24. It re-
mains to see if this is fortuitous. However, as the ionic strength decreases,
the discrepancy between theory and experiment becomes significant. In con-
clusion, it is fair to say that an accurate liquid-state theory for rods that have
an attractive attraction is still lacking. In Section 1.3.5 on the phase behavior
of hard rods, we argued that the measurement of the order parameter is a
more stringent test of the validity of the Onsager theory when compared to
the measurements of the I–N phase coexistence. In the same spirit, we have
attempted to measure the order parameter of the nematic phase at different
polymer concentrations.

This is an important question when viewed in the context of the van der
Waals theory of liquids, which for spherical particles states that the repulsive
part of the intermolecular potential is mainly responsible for the liquid-like
structure of fluids (Widom 1967). The attractive potential determines the den-
sity of the fluid by providing a cohesive energy that is largely independent of
the exact configuration of the fluid. It remains to be seen if this van der Waals
picture is also true for a liquid of attractive rods. If so, one would expect that
the strength of the attraction only determines the density of the liquid of
rods, while its structure, as characterized by the order parameter, would de-
pend only on the constituent rod concentration. The nematic samples of the
fd–polymer mixtures turn out to be quite viscous and it is difficult to repro-
ducibly obtain monodomain samples, which results in noisy measurements
of the order parameter. Although noisy, our results indicate that the van der
Waals picture also holds for the rod–polymer mixtures. In other words, the
nematic order parameter remains independent of the polymer concentration
in a rod–polymer mixture. For more details, the reader is referred to Dogic
et al. (2004a).

It is of interest to consider if the phase diagram for rod–polymer mixtures is
generic to other rod-like systems in which it is possible to induce attractive in-
teractions. For example, another well-studied and very effective agent for con-
densing charge-stabilized rods is multivalent counterions. Most biopolymers,
such as fd, actin, DNA, and microtubules, are negatively charge-stabilized col-
loids under physiological pH conditions. Adding multivalent cations to such
a solution induces the formation of tightly packed bundles (Tang et al. 1996;
Tang et al. 1997; Bloomfield 1991). Bundle formation is usually observed at
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a very low concentration of rods, and the effect of rod concentration has not
been studied systematically. This corresponds to the upper left corner of the
fd–dextran phase diagram shown in Fig. 1.24. Interestingly, when we prepare
a mixture of a polymer at very high concentration and fd, we observe the for-
mation of bundles that look remarkably similar to the bundles observed in
the mixture of fd and multivalent counterions.

Recently, a study of a mixture of 50 nm long DNA fragments and trivalent or
tetravalent spermidine and spermine condensing agent was published (Pelta
et al. 1996; Sikorav et al. 1994). As opposed to other studies, the authors
here use a finite concentration of DNA fragments and observe the formation
of nematic (cholesteric) phase instead of bundles. In another recent study of
actin filaments mixed with multivalent salts, the authors report the formation
of a new phase in which actin is condensed into two-dimensional rafts, which
subsequently stack on top of each other at 90◦ (Borukhov and Bruinsma 2001;
Wong et al. 2003; Lee et al. 2004). Such a phase would have no analogy in
rod–polymer mixtures. Clearly rod–counterion mixtures still remain poorly
understood. In our view it would be of interest to compare such systems to
the phase behavior of rod–polymer mixtures.

In this section we have only considered the influence of polymer on the
bulk isotropic–nematic phase transition. When these studies are extended
to account for the formation of the positionally ordered smectic phase, a
whole range of new and unexpected phenomena are observed. These will be
reviewed in the next few sections.

1.6
Entropically Driven Microphase Separation in Rod–Sphere Mixtures

The influence of polymers on the entropy-driven isotropic–nematic phase
transition is qualitatively understood with a mixture being in either a single
uniformly mixed phase or a macroscopically demixed phase. However, it has
recently become apparent that there is a third possibility of a microphase-
separated state for a wide range of polymer and/or hard-sphere sizes or con-
centrations. In microphase separation the system begins to phase-separate
into regions that are rich in either rod or sphere component. Unlike bulk
demixing, the phase-separating regions grow until they reach a critical size,
at which point they organize into a well-ordered three-dimensional structure.
The full complexity of the phase diagram of the fd–polystyrene (PS) sphere
mixture for one sphere size is shown in Fig. 1.25. Other phases are observed
for different sized spheres.

Usually microphase-separated states are found in amphiphilic molecules
such as block copolymers, lipids or surfactants (Gelbart et al. 1994). The micro-
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Fig. 1.25 Phase diagram of a mixture
of fd virus and polystyrene spheres
(Dsp = 100 nm) in 10 mM Tris buffer.
A suspension of pure fd forms isotropic,
cholesteric (nematic), and smectic phases
with increasing concentration, as de-
scribed in Section 1.3. Increasing the
volume fraction of spheres induces the
formation of a number of microphase-

separated states, most notably lamellar
and columnar phases. Images of these
structures are shown in Fig. 1.28. The
isotropic–cholesteric phase transition
for pure rods is at 18 mg ml−1 while
the nematic–smectic phase transition is
at 50 mg ml−1. Filaments are layered
structures discussed in more detail in
Section 1.9.3. (After Adams et al., 1998).

phase-separated state formed in rod–polymer mixtures is different from the
microphase-separated states formed by amphiphilic macromolecules in two
fundamental respects. First, all amphiphilic molecules and block copolymers
are characterized by a covalent bond between mutually immiscible blocks.
Microphase-separated structures have enormous surface area and the re-
sulting surface energy is very high. Consequently, in the absence of the
bond between immiscible blocks, it is commonly assumed that such ma-
terials would bulk phase-separate into two immiscible macroscopic phases.
In an fd–polystyrene mixture, the covalent bond between the immiscible
components is absent, and the mixture is free to macroscopically phase-
separate. Therefore, it is surprising that under certain conditions such a
mixture forms a stable microphase-separated state instead of a macroscopi-
cally phase-separated sample. A microphase state in a mixture implies that
the surface tension between the components of the mixture is very small.
In amphiphilic and copolymeric systems, phase separation is largely driven
by enthalpic contributions to the free energy. In rod–sphere mixtures the
interactions that dominate the phase behavior of the system are hard-core
excluded-volume interactions. All transitions in such a system are driven by a
purely entropic contribution to the free energy, and it follows that microphase
separation is a state with highest entropy, not lowest energy.
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1.6.1
Lamellar Phase in Rod–Polymer and Rod–Sphere Mixtures

In this section we review the theoretical and experimental studies of the lamel-
lar phase, which is the simplest microphase-separated state. The lamellar
phase is characterized by one-dimensional long-range order in which liquid-
like layers of rods are intercalated with layers of spheres. The existence of the
lamellar phase was first predicted using a density-functional theory where
the excluded-volume interactions are treated at the level of the second virial
coefficient (Koda et al. 1996). Because of the highly approximate nature of
the second virial approximation, the formation of the intercalated lamellar
phase was also verified using Monte Carlo simulations in the same work.
Both the theoretical model and the computer simulations made a number of
simplifying assumptions, most importantly that the rods are perfectly aligned
and that the diameters of the rods and spheres are equal. Therefore, in this
model the rods do not exhibit an isotropic–nematic phase transition. The
same model of a mixture of spheres and perfectly aligned spherocylinders
was later generalized to include spheres of arbitrary size (Dogic et al. 2000).

The theoretical prediction for the stability diagram of a typical rod–sphere
mixture is shown in Fig. 1.26. The theory predicts the stable entropy-driven
formation of a lamellar phase when a low volume fraction of spheres is added
to a nematic phase of perfectly aligned rods. At a high concentration of both
rods and spheres, the model predicts complete bulk phase separation, while
at low sphere/rod concentrations the mixture is miscible. More importantly,
it is found that the rod–sphere mixture forms a layered lamellar phase at a
lower volume fraction when compared to the formation of a layered smectic
phase in a suspension of pure hard rods. Therefore, the spheres not only
passively partition into the smectic gaps, but also actively shift the bound-
aries of the nematic–lamellar phase transition and significantly stabilize the
lamellar phase. Recent simulations have considered rod–sphere mixtures in
which the rods have full orientational degrees of freedom (Lago et al. 2004).
The existence of a stable lamellar phase was confirmed in this more realistic
model. It was also found that the spheres actively stabilize the lamellar phase
with respect to the nematic phase, in agreement with theory and simulations
on mixtures of spheres and perfectly aligned rods.

A simple intuitive picture for the formation and enhanced stability of the
lamellar phase emerges from the consideration of the total excluded volume
in a mixture. The entropy-driven transition to an ordered structure is always
driven by a decrease in the total excluded volume of the system. Therefore,
we would expect that the excluded volume of the lamellar phase is smaller
than the excluded volume of the uniform rod–sphere mixture. It is useful to
compare this quantity in two extreme cases: a spatially uniform mixture, and
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Fig. 1.26 Stability boundaries for a
rod–sphere mixture calculated using the
theory described in Section 1.2.6. For
this particular phase diagram, the aspect
ratio of the rods was L/Dsc = 20 and
the diameter of the spheres was equal to
the diameter of the rods, Dsc/Dsp = 1.
The full line indicates the theoretical
prediction for the points in the phase

diagram at which the system becomes
unstable toward lamellar fluctuations.
The dotted line indicates the instabil-
ity toward complete demixing into two
macroscopic phases. Squares indicate
the nematic–lamellar phase transition
obtained from Monte Carlo simulation.
(After Dogic et al., 2000).

a perfectly ordered one-dimensional lamellar phase. Figure 1.27 illustrates
the volume that is excluded to a spherocylinder due to the presence of either a
sphere or another spherocylinder. For spherocylinders with large asymmetry,
the excluded volume of a sphere is about half that of another spherocylinder. In
a mixture in which the concentration of spherocylinders is spatially uniform,
replacing a single spherocylinder with two spheres leaves the total excluded
volume unchanged. However, this procedure significantly decreases the total
volume fraction of the particles. Therefore, in a rod–sphere mixture we have

Fig. 1.27 The volume excluded to the center of mass of a spherocylinder
due to the presence of a sphere or another spherocylinder is indicated
by the lightly shaded region. The large excluded volume between a
spherocylinder and a sphere is the reason for the enhanced formation of
the lamellar phase. (After Dogic et al., 2000).



50 1 Phase Behavior of Rod-Like Viruses and Virus–Sphere Mixtures

packing problems similar to those encountered in a suspension of pure sphe-
rocylinders, but at a lower total volume fraction. By forming a layered lamellar
phase, the mixture can significantly reduce the total excluded volume because
the periodic one-dimensional density order associated with lamellar order sig-
nificantly reduces the probability of very unfavorable sphere–spherocylinder
contacts. For quantitative details that emerge from the analysis of the second
virial theory, the reader is referred to Dogic et al. (2000).

An alternative way to consider the enhanced stability of the lamellar phase
in the rod–sphere mixture is to focus on the effect of spherocylinder ends. In
Section 1.2.5, we discussed the formation of the smectic phase as a con-
sequence of unfavorable packing that occurs around the ends of rod-like
molecules. Adding spherical particles to the nematic phase of rods increases
the effective concentration of the “ends” without significantly changing the
total volume of the solution. The only way that the system can accommo-
date these extra “ends” is to undergo a transition to an entropy-stabilized
microphase-separated state.

Subsequent to the prediction by Koda and coworkers, a layered lamellar
phase was experimentally observed in a mixture of fd virus and polystyrene
(PS) spheres (Koda et al. 1996; Adams et al. 1998). Under the experimental
conditions, fd virus and PS spheres approximate the behavior of hard rods
and spheres, respectively. An optical micrograph of a typical lamellar phase is
shown in Fig. 1.28c. The layer periodicity of the lamellar phase is 1.1 µm while
that of a smectic phase of pure fd suspension is 0.9µm. Evidence from samples
where the spheres are fluorescently labeled and from electron microscopy on
freeze-fractured samples indicates that the structure of the lamellar phase is
that of intercalated layers of spheres and rods. It is important to note that the
experimental parameters were that the diameter of the sphere (Dsp = 0.1µm)
is roughly 10 times smaller than the rod length (L = 1 µm) and 10 times
larger than the rod diameter (Dsc ∼ 10 nm). These parameters are very
different from the parameters used in the simulation by Koda and coworkers.
The experimental results also show that spheres significantly stabilize the
formation of the lamellar phase. As can be seen from the phase diagram
shown in Fig. 1.25, the suspension of pure fd forms a layered smectic phase at
50 mg ml−1. Adding spheres at a volume fraction of 2% induces the formation
of the layered lamellar phase at 20 mg ml−1. In addition to the above described
case, the lamellar phase is consistently observed for a wide variety of PS sphere
sizes ranging from 0.02 to 0.2 µm. After filling the sample chamber, we find
that the layers will form within few minutes, and over the next few days the
defects slowly anneal and the overall order improves. We have had samples
that have remained layered for a period of a few years before drying up. This
provides a strong indication that the lamellar phase is an equilibrium state
and not a kinetically trapped structure.
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Besides fd–PS mixtures, the lamellar phase has also been observed in mix-
tures of fd virus with a wide variety of polymers, such as poly(ethylene oxide)
(PEO), dextran and poly(N-isopropylacrylamide) (NIPA). This is perhaps not
too surprising since in the second virial theory the effect of the sphere–sphere
excluded volume has negligible effects on the overall topology of the phase
diagram. It is the polymer–spherocylinder excluded volume that drives the
phase transition. The effect of the polymer size has not been systematically
studied so far.

The second virial theory also indicates that it should be possible to obtain a
lamellar phase in a binary mixture of rods with sufficiently different contour
length (Koda and Kimura 1994). Due to a paucity of well-defined monodis-
perse hard-rod systems, to our knowledge the lamellar phase has only been
observed in mixtures of fd and either colloidal spheres or polymer. As better-
defined rod systems become available, we believe it will be shown that the
lamellar phase is a generic structure found in all rod–sphere mixtures. We
do note that lamellar-like structures have been observed in a study of poly-
disperse tobacco mosaic virus (TMV) and the spherical protein bovine serum
albumin (BSA) (Adams and Fraden 1998).

While both lamellar and smectic phases have the same quasi-one-dim-
ensional long-range order, the main difference between these phases is the
spacing of the layers. Theory predicts that the lamellar layer spacing will swell
with increasing volume fraction of spheres (Koda et al. 1996; Dogic and Fraden
2001). Therefore, it should be possible to go from the smectic to the lamellar
phase without ever crossing a phase boundary. However, it is also possible
to envision a first-order transition between coexisting smectic and lamellar
phases. In such a sample there would be a coexistence between two layered
phases with different layer spacings. On the experimental side, both the con-
tinuous swelling of the smectic phase and the coexistence between a smectic
phase with periodicity of 0.9 µm and a lamellar phase with 1.1 µm periodicity
have been observed. These are described in greater detail in Sections 1.9.3
and 1.9.4.

1.6.2
Columnar Phase and Chain-Like Structures in Mixtures of fd Virus
and Hard Spheres

In addition to the lamellar phase, other more complex structures are observed
in mixtures of fd rods and hard spheres. In particular, for a mixture of fd and
0.1 µm PS spheres a columnar structure is observed. The phase diagram
(Fig. 1.25) shows that such a phase is formed when nematic rods are mixed
with a low volume fraction of spheres. In the columnar phase, 0.1 µm spheres
coalesce together until they reach a critical diameter of 0.3 µm. Subsequently
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Fig. 1.28 DIC images of microphase-
separated phases observed in a mix-
ture of fd and polystyrene spheres
(Dsp = 0.1 µm). The phase diagram
of this particular mixture is shown in
Fig. 1.25. (a) At sphere concentrations
below 1%, a stable columnar phase is
observed (see Fig. 1.29).

(b) At intermediate concentrations, the
spaces between the columns gradually
fill in and the sample continuously trans-
forms into the lamellar phase. (c) At high
sphere concentrations, a single-phase
lamellar phase is formed with a layer
spacing of 1.1 µm. Scale bar indicates
10 µm.

these clusters assemble into one-dimensional columnar structures, which are
oriented perpendicular to the nematic director. Furthermore, these columns
form a two-dimensional lattice (Figs. 1.28a and 1.29), which can have varying
lattice parameters. Unlike the lamellar phase, which occurs for both PS–fd
and polymer–fd mixtures, the columnar phase has so far only been observed
in a PS–fd mixture.

With increasing sphere volume fraction, the columnar phase will continu-
ously transform into the lamellar phase, as illustrated in Fig. 1.28b. A three-
dimensional reconstruction of such a coexisting sample is shown in Fig. 1.29.
In addition to 0.1 µm spheres, columnar phases have also been observed for
sphere sizes ranging from 0.06 to 0.12 µm in diameter. A theoretical under-
standing of the stability of the columnar phase is currently lacking. In partic-
ular, it is not known what determines the spacing of the spherical columns
in the direction perpendicular to the nematic director. Furthermore, it seems
that 0.3 µm is a “magical” size of the column because mixtures of rods with
spheres of diameters ranging from 0.06 to 0.12 µm assemble into the colum-
nar phase where individual columns always have a final diameter of 0.3 µm.
Individual spheres are observed to diffuse between columns, indicating that
these are equilibrium and not kinetically trapped structures. The robustness
of the diameter of the self-assembled columns suggests the examination of
0.3 µm spheres in a nematic background of fd rods.
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Fig. 1.29 A three-dimensional reconstruc-
tion using DIC optical microscopy of a
sample in which the lamellar phase at the
bottom coexists with the columnar phase
at the top. The mixture is composed of
0.1 µm PS spheres and fd liquid crystals.
The middle part is a schematic illustra-
tion of the arrangements of the rods and
spheres in this particular sample. The rods
in the top columnar phase are not drawn

for clarity, but they form a nematic phase
that fills the space between the columns.
(a1) Image of the XY cross-section of the
top columnar phase. (a2) Image of the
ZX cross-section. The column spacing
in the top columnar phase is twice the
spacing of the bottom lamellar phase.
Scale bars are 3 µm. (After Adams et al.,
1998).

Unlike mixtures of fd and smaller spheres, large 0.3 µm spheres do not
move easily through the nematic background and the sample is easily ar-
rested in a metastable state. When a low volume fraction of 0.3 µm spheres
are mixed with highly concentrated and well-aligned rods that are close to the
nematic–smectic phase transition, chain-like structures form (Fig. 1.30b).
These chains usually have an open structure, where the spacing between
individual spheres can be several micrometers. However, this spacing is al-
ways a multiple of the fd contour length. The open-chain structure is highly
metastable, and therefore we conclude that there is a large energetic barrier
preventing spheres from hopping. Often it is possible to observe open chains
even days after the original sample was prepared, although there is a slow ten-
dency for spheres eventually to form closed chains where adjacent spheres are
in contact. This indicates that closed-chain structures have lower free energy
than open chains.

With decreasing concentration of the background fd, the nematic order
decreases. When 0.3 µm spheres are suspended in such weakly aligned ne-
matics, they arrange themselves into body-centered cubic (bcc) crystalline-like
structures (Fig. 1.30d). At intermediate concentrations of background fd, we
sometimes observe chains that have 90◦ turns (Fig. 1.30c). Curiously, when
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Fig. 1.30 (a) Arrangement of 0.3 and
0.4 µm polystyrene spheres dispersed
in an fd nematic liquid crystal. (b) At
high rod concentrations just below the
nematic–smectic phase transition, 0.3 µm
spheres form an elongated chain. The
chain has an open structure in which
spheres can be separated by a distance
that is a multiple of the contour length

of fd. (c) With decreasing concentration
of the rods, we observe that the chains
can assume configurations in which they
come together at 90◦. (d) At a concen-
tration of fd just above the I–N phase
transition, the spheres arrange them-
selves into cubic-like crystals. Scale bars
indicate 5 µm.

we increase the size of the sphere to 0.4 µm, we no longer observe the forma-
tion of open chains, but only closed chains. Therefore, depletion stabilization
is a maximum for 0.3 µm spheres.

The formation of open and closed one-dimensional chains can be quali-
tatively understood if we look at a schematic illustration of a suspension of
spheres in a nematic background (Fig. 1.30a). The diameter of the spheres
(300 nm) is much larger than the diameter of the fd rods (7 nm); therefore, a
sphere acts as a wall that locally induces the formation of the smectic phase.
A second sphere can easily be placed right next to an existing sphere or one
rod length away along the nematic director because of the locally induced
smectic correlations. This reasoning was used to theoretically explain the for-
mation of the open-chain structures (van der Schoot 2000; van der Schoot
2002). For a sphere to hop between these two positions, there has to be a
fluctuation where all the rods move away. This is energetically very unfavor-
able, and it is rarely observed in experiments. We suspect that as the sphere
size increases beyond 0.3 µm it significantly distorts the local director. In this
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case the elastic free energy of the nematic leads to long-range interactions that
drive rearrangement of the spheres (Poulin et al. 1997). While the formation
of chains is partially understood, the formation of bcc-like structures remains
a mystery. One can only speculate that the chain-like structures are intimately
connected to the formation of the lamellar phase, while bcc-like structures
are related to the formation of the columnar phase observed in a mixture of
fd and spheres with smaller diameter. It would be of great interest to explore
the behavior of fd–sphere mixtures as a function of the contour length of fd.
We are curious to learn if the columnar phase is observed for fd with other
contour lengths. We encourage simulation and theoretical examination of the
microphase-separated structures described in Figs. 1.29 and 1.30. The sim-
ulations will be challenging, as the dynamics are slow and a large number
of particles are necessary. However, simulating a unit cell of the lamellar or
columnar phase should be readily feasible.

1.7
Self-Assembled Colloidal Membranes and Twisted Ribbons

In the previous two subsections we described the formation of the lamellar
and columnar phases that occur when a low volume fraction of spherical
particles are added to a background nematic phase of fd virus. The behavior
of rod–polymer mixtures at various conditions when a low volume fraction
of rods is added to a high background concentration of isotropic polymers
proves to be equally rich in surprising phenomena. The full phase diagram
of an fd–dextran mixture is shown in the inset of Fig. 1.31. In Section 1.5
we focussed on the part of this phase diagram where bulk I–N phase sepa-
ration is observed. Here we extend that work to take into account the posi-
tionally ordered smectic phase. At very high concentrations, the fd–polymer
mixture becomes essentially immiscible and phase-separates into a polymer-
rich isotropic phase and an essentially pure suspension of highly concen-
trated rods. According to the rules of thermodynamics, the osmotic pres-
sures in these two coexisting phases will be equal. From previously published
data, the relationship between dextran concentration and osmotic pressure is
known, and thus the osmotic pressure of a suspension of rods can be deduced
(Nordmeier 1993). In the fd–dextran mixture, the polymer osmotic pressure
is analogous to temperature in molecular systems. With decreasing osmotic
pressure (polymer concentration), the coexisting rods melt into the nematic
phase; while with increasing polymer pressure, the rods freeze into the smec-
tic phase. In the phase diagram shown in Fig. 1.31, there is the possibility
of a triple point where the isotropic, nematic, and smectic phases coexist.
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Fig. 1.31 The coexistence concentra-
tions of a highly concentrated immiscible
fd–dextran (Mw = 150 000) mixture. The
dextran concentration and corresponding
osmotic pressure are indicated on the
vertical axis, while the fd concentration is
plotted horizontally. Since the mixture is
immiscible for these high concentrations,
the osmotic pressure of the isotropic dex-
tran solution is equal to the rod osmotic

pressure. The complete phase diagram of
a dextran–fd mixture is shown in the inset
of the figure. Tie-lines along which the
mixture phase-separates into coexisting
phases are indicated with dashed lines.
The fd–dextran mixture is dissolved in
190 mM NaCl and 10 mM Tris at pH 8.15.
To obtain coexistence concentrations,
the sample was centrifuged at 4000 g for
15 min. (After Dogic, 2003).

However, this point has not been determined due to the appearance of novel
structures that will be described in the following sections.

In region 3 of the phase diagram, we observe condensation of rods into
quasi-two-dimensional colloidal membranes. These membranes consist of a
single layer of essentially parallel rods (Dogic and Fraden 2001; Dogic 2003).
An image of a mature membrane that has been equilibrating for a few weeks
is shown in Fig. 1.32. In Fig. 1.32a the rods point into the image plane and
consequently the membrane is optically isotropic and shows no birefringence
when observed with polarization microscopy. The interface between rods and
background isotropic polymer solution shows significant fluctuations that are
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Fig. 1.32 Formation of colloidal mem-
branes in mixtures of fd and dextran
(Mw = 500 000) in 20 mM Tris and
100 mM NaCl buffer. (a) DIC image of
a colloidal membrane viewed edge-on in
which the fd rods lie perpendicular to the
image plane. (b) Image of a membrane
in which the fd rods lie in the image
plane taken with polarization microscopy.

(c) A sequence of images taken 1/30th
of a second apart illustrating the lateral
growth and coalescence of a membrane.
The membranes coalesce only when they
approach edge-on with the rods in each
membrane oriented parallel to each other.
Scale bars indicate 5 µm. (After Dogic,
2003; Dogic and Fraden, 2001).

associated with the membrane line tension. In Fig. 1.32b, the rods lie in the
image plane and the thickness of the membrane is approximately equal to
the contour length of an fd virus. In this view, the membrane exhibits visible
fluctuations that are associated with its bending rigidity. In principle, both
the bending rigidity and the line tension could be measured by analyzing
the fluctuations of a sequence of images similar to those shown in Fig. 1.32.
Because of their similarity to membranes formed by amphiphilic molecules
such as lipids or block copolymers, we name these two-dimensional structures
colloidal membranes.

Besides forming planar membranes, fd–polymer mixtures can also assem-
ble into twisted ribbons (Fig. 1.33). In general we observe that ribbons form at
lower polymer concentration, while with increasing polymer concentration
flat membranes become more prevalent. The schematic illustration of the
arrangement of rods in a twisted ribbon is shown in Fig. 1.33b. Images taken
with a polarization microscope indicate alternating bright and dark regions
along an individual ribbon. The bright birefringent regions correspond to ar-
eas where the rods lie in the plane of the image, and the dark regions indicate
where the rods lie perpendicular to the image plane. It is possible for the
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Fig. 1.33 (a) A DIC image of a suspension of self-assembled ribbons in
a mixture of fd and dextran (Mw = 500 000) in 20 mM Tris and 100 mM
NaCl buffer. Scale bar indicates 5 µm. (b) A schematic illustration of
the configuration of the rods within a single ribbon.

ribbons to form branches, as shown in Fig. 1.33a. The difference in energy
between twisted ribbons and flat membranes must be very low, as it is often
possible to observe both planar membranes and twisted ribbons within the
same sample.

A sequence of images showing the transformation of a twisted ribbon into
a flat membrane is shown in Fig. 1.34. In this particular case we have applied a
flow field, which can simultaneously untwist the ribbon and stretch it to many
times its initial length. After the flow is stopped, some of the ribbons remain
under tension because they are fixed at both of their ends. Subsequently,
over a period of minutes these ribbons under tension will break and relax
toward their equilibrium state. In the same sample some structures will relax
back to a twisted ribbon and remain in that state for many hours. However,
in this particular case, after an initial fast relaxation to the state shown in
Fig. 1.34c, the twisted ribbon continued to slowly untwist until it became a
flat two-dimensional membrane shown in Fig. 1.34e.

One possible reason for the stability of twisted ribbons is the chiral nature
of fd itself. As discussed previously, a bulk solution of fd at intermediate con-



1.7 Self-Assembled Colloidal Membranes and Twisted Ribbons 59

Fig. 1.34 A sequence of images illustrat-
ing the collapse of a stretched, untwisted
ribbon into a two-dimensional membrane.
The ribbons are stretched by applying a
shear flow. In this process, by chance both
of the ends of the ribbon are fixed. After a

while the tension induces the fast collapse
of a stretched ribbon into a twisted ribbon,
which subsequently slowly untwists into
a flat membrane. The images are taken
roughly a few seconds apart.
Scale bar indicates 5 µm.

centrations forms a twisted cholesteric structure instead of a nematic phase.
This indicates that fd rods prefer to be slightly twisted with respect to each
other. A flat membrane such as the one shown in Fig. 1.32 is geometrically
incompatible with twist. However, when rods form an elongated strip, it is
possible for them to twist with respect to each other. Therefore, we expect
two contributions to the total energy, which determines the shape of a twisted
ribbon or two-dimensional membrane. The formation of a flat membrane is
favored by line tension, since this creates a structure with minimum area-to-
circumference ratio, while the formation of twisted ribbon is favored by the
chiral contribution to the free energy. It should be possible to measure the
line tension experimentally by analyzing the fluctuations of the membrane.
Preliminary experiments indicate that it is also possible to apply torque to
birefringent ribbons and either overtwist or untwist ribbons using an optical
tweezer. We hope that from these experiments the chiral contribution to the
free energy can be determined. These measurements should shed more light
on the stability of twisted ribbons and colloidal membranes.

It is important to determine whether colloidal membranes are a kinetically
trapped metastable state, or if they represent a true equilibrium structure in
region 3 of the phase diagram shown in Fig. 1.31. Their pronounced tendency
to grow, albeit very slowly, indicates that they are indeed equilibrium struc-
tures. In some samples that are a few months old, we observed membranes
that are millimeters in size. It is also possible to observe a process of coales-
cence of two membranes, as shown in a sequence of images in Fig. 1.32c. In
order for coalescence to take place, the rods in both membranes have to be
aligned along the same direction. We note that the membranes do not stack
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up on top of each other unless the polymer concentration is significantly
higher. There are additional observations with regards to the kinetics of the
underlying isotropic–smectic phase transition that suggest that membranes
are stable structures for a specific range of fd and polymer concentrations.
These are discussed in more detail in Section 1.9.2.

The formation of colloidal membranes seems a poorly explored, yet very
generic, phenomenon frequently observed in rod-like particles with attractive
interactions. It is observed when fd is mixed with a wide variety of polymers,
such as dextran, poly(ethylene oxide) (PEO) (Dogic and Fraden 2001), and
poly(N-isopropylacrylamide) (NIPA) (Alsayed et al. 2004), and ferro-fluids (Lin
2004). In addition to the fd system, membranes are also observed in mixtures
of tobacco mosaic virus (TMV) with bovine serum albumin (BSA) and PEO
(Adams et al. 1998) and in pure suspensions of inorganic rod-like colloids
made of β-FeOOH (Maeda and Maeda 2003). The latter particles have no
polymer added, but it is very likely that they have direct attractive forces of
van der Waals origin. Since the intermolecular interactions between these
components are well known, it would be of great interest to measure the
bending rigidity of the membrane and see how it depends on molecular para-
meters, such as rod length or polymer osmotic pressure.

One possible explanation for the stability of colloidal membranes are the
entropic forces associated with confining the fluctuations of the membrane
when a stack of membranes forms. If these fluctuations are associated with
wavelengths much larger than the thickness of the membrane, they can be de-
scribed within continuum theory. A stack of fluctuating membranes confined
by two walls will show strong effective repulsive interactions, first described
by Helfrich (1973) and then by Lipowsky (1995). The competition between
Helfrich repulsion and long-range attractive van der Waals interactions can
give rise to phase transitions from bound to unbound membranes (Lipowsky
1995). Because of the large thickness of the membrane, the bending rigid-
ity is very large for colloidal membranes. Consequently, one does not expect
strong repulsive interactions associated with long-wavelength fluctuations,
which can lead to stability of the colloidal membranes. However, in addition
to long-wavelength fluctuations, the surface of the membrane is roughened
at length scales comparable to the thickness of the membrane by the rela-
tive displacement of molecules with respect to each other. These fluctuation
modes are often called “protrusions” (Goetz et al. 1999). The origin of the
short-range repulsion often observed between lipid membranes has been at-
tributed to these protrusion fluctuations (Israelachvili 1991; Wennerstrom
and Israelachvilli 1992). In lipid membranes these forces have a very short
range of a few ångströms, but in colloidal membranes, due to the extreme
anisotropy of the constituent rods, they could easily reach 100 nm. It seems
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plausible that these protrusion fluctuations can lead to thermodynamic sta-
bility of colloidal membranes.

1.7.1
Monte Carlo Simulation of Colloidal Membranes

To examine this issue in more detail, we have preformed a Monte Carlo sim-
ulation on a simplified system. Instead of simulating the full rod–polymer
mixture, we have focussed on a one-component system of perfectly parallel
rods, which interact with each other via direct attractive interactions. The at-
traction potential is designed so that it mimics the depletion potential between
two rods (Fig. 1.23). If spherocylinders are pointing along the z direction, in
the xy direction the strength of the attractive potential is proportional to the
overlap area between two disks whose diameter is equal to Dsc + Dsp. The
strength of the potential also depends on the relative displacement of the
center of mass of each spherocylinder along the z direction. The depletion
potential is at a maximum value when the relative displacement along the z

direction of two spherocylinders is zero. The overlap along the z direction is
equal to L + Dsc − |z1 − z2| if this quantity is larger than zero. Subsequently,
this dimension is multiplied with the overlap area in the xy direction and
the whole value of the excluded volume is multiplied by an overall constant,
which characterizes the strength of the potential.

Initially, we place the rods so that they form a single-crystalline membrane
and find that at low temperatures the rods never escape the membrane and the
membrane remains stable for the whole duration of the simulation. At high
temperature, rods evaporate from the membrane and the membrane eventu-
ally disintegrates. For temperatures where the membrane remains stable, we
measure the effective intermolecular potential between two membranes. The
probability that the membranes are separated by distance h is determined.
Once this probability is known, it is easy to extract the effective potential
between two membranes, Ueff = −kBT ln ρ(z). To sample all energetically
unfavorable separations sufficiently, we use the technique of multiple his-
tograms as described by Frenkel and Smith (1996).

Effective potentials obtained from this simulation are shown in Fig. 1.35. At
high temperatures, the effective interaction between two membranes is com-
pletely repulsive. If mapped onto an athermal rod–polymer mixture, high
temperature corresponds to low polymer concentration or equivalently low
osmotic pressure. In this region we expect that isolated colloidal membranes
will be the equilibrium structures. As the temperature is gradually reduced,
the effective potential changes from repulsive to attractive. In a certain tem-
perature range (β = 2.50) there is both a local minimum, which favors bound
membranes, and a global minimum energy, which favors membranes that are
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Fig. 1.35 Effective potential between two
membranes obtained from Monte Carlo
simulations. The aspect ratio of the rods
is 25 (L = 50, Dsc = 2), while the range of
interaction is 0.75Dsc = 1.5. To obtain the
strength of the intermolecular attraction,
the overlap volume is multiplied by a
constant Π, which in this particular case
is –0.002. The potential was obtained for

four different temperatures (β = 1/kBT),
which are indicated in the upper right
corner. There were 144 rods within each
membrane. The order within each mem-
brane is that of a two-dimensional crystal.
However, we expect that a similar inter-
membrane potential will be found for
liquid-like membranes.

infinitely far apart. This would indicate that the swelling transition of a bound
membrane pair is a first-order phase transition. At low temperatures there
is a deep attractive minimum. We would therefore expect that under these
conditions individual colloidal membranes would not be stable, but would
stack up on top of each other, making smectic filaments. This structure is
indeed observed in experiments in region 4 of the phase diagram shown in
Fig. 1.31. These experiments are discussed in more detail in Section 1.9. Our
simulations also suggest that a smectic phase composed of highly anisotropic
attractive rods will swell with increasing temperature before they melt into
the nematic phase. This is in fact observed in a novel thermotropic mixture
of fd and NIPA polymer (Alsayed et al. 2004). The behavior of this particular
system is discussed in more detail in Section 1.9.4.

It is perhaps not entirely surprising that for highly anisotropic rods the
long-range order along the rod axis will melt at a different temperature when
compared to the order within each layer (colloidal membrane). In our sim-
ple example of perfectly aligned rods, it is always possible to decrease the
strength of attraction between layers (membranes) by increasing the length
of the spherocylinder by a factor 2 and decreasing the strength of depletion
interaction by a factor 2. While this decreases the strength of interaction be-
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tween the layers, the interaction of rods within each layer remains unchanged.
Therefore, we believe that the stability of colloidal membranes is the result
of the high aspect ratio of our system. This argument is true as long as the
average protrusion fluctuations are smaller than the range of the attractive
potential. To establish a closer connection with experiments, our simulations
will have to be repeated on a more realistic system where the rods are flexi-
ble and charged, and are allowed both translational and rotational degrees of
freedom.

1.7.2
Crystalline Membranes

The two-dimensional membranes described in the previous subsection were
formed in a mixture of fd and polymers with relatively high molecular weight.
Their fluidity and the ease with which they are deformed by an external field,
such as a shear flow, strongly suggest that the rods within each membrane
have a liquid-like structure. By decreasing the polymer size, it is possible to
obtain two-dimensional membranes with hexagonal shape (Fig. 1.36). The
shape of these membranes indicates that the fd rods within each membrane
assume a crystal-like configuration, but this would have to be confirmed by X-
ray experiments. Changing polymer concentration modifies the appearance
of the crystalline membranes dramatically. At high polymer concentration,
the polymer membrane boundary is relatively sharp. The induction time for
crystal nucleation as evidenced by the turbidity of the sample is relatively short.
Consequently, many nuclei are formed relatively quickly. Each membrane
has a specific nucleation site protruding into the third dimension. It seems
plausible that multimeric fd always present at low volume fraction forms the
initial nucleation site.

At lower polymer concentration, the induction time can be up to an hour
and the polymer membrane boundary is more fluid-like. Since there are rel-
atively few nuclei, crystals grow to a size of 30–40 µm over a period of a few
days. Unlike crystals at higher polymer concentrations, when viewed from
the side they exhibit fluctuations visible with an optical microscope. A large
number of these membranes have screw-like dislocations, which can easily
be identified when viewing a membrane side-on (Fig. 1.36b and c).

The concentration of rods within the membrane is so high (≈ 250 mg ml−1)
that the polymer is probably completely excluded. There is complete phase
separation into immiscible phases, and the osmotic pressure of the isotropic
polymer solution is identical to the pressure of the rods within the membrane.
Polymers with a small radius of gyration, such as poly(ethylene glycol) (PEG,
Mw = 8000, Rg = 4 nm), are able to induce a much higher osmotic pres-
sure in the membrane when compared to larger polymers, such as dextran
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Fig. 1.36 Two-dimensional crystalline
membranes observed in a mixture
of fd and low-molecular-weight PEO
(Mw = 8000). (a–d) Images taken at a
relatively low polymer concentration.
Under these conditions, it is possible
to observe crystalline membranes that
have screw-like dislocations. Images (b)
and (c) are side-on images of the same

membrane focussed at different z po-
sitions. (e–g) Images of nuclei (e) and
membranes (f,g) taken at high polymer
concentration. On average, the size of
the membranes under these conditions
is much smaller than for those shown in
images (a–d). Scale bars indicate 5 µm.
(After Dogic and Fraden, 2001).

(Mw = 150 000, Rg = 11 nm), for which liquid membranes are observed.
It follows that, with increasing osmotic pressure, the rods within the mem-
brane undergo a two-dimensional liquid to crystal phase transition analogous
to crystallization observed in two-dimensional disks (Bates and Frenkel 2000).
We have not yet obtained conditions for which it is possible to change experi-
mental parameters continuously so that the liquid-like membranes transform
into crystalline ones. However, this remains intriguing because of the possi-
ble existence of the hexatic phase at intermediate concentrations between the
liquid and crystal phases (Halperin and Nelson 1978).

1.8
Surface-Induced Smectic Ordering in Rod–Polymer Mixtures

So far, we have only been concerned with the behavior of rod-like particles in
bulk phases. However, we also observe unexpected phenomena at the inter-
faces between two phases, which will be summarized in this section. From
studies of materials at the molecular scale, it is well known that surfaces play
an important role in the kinetics of bulk phase transitions. Most materials,
such as ice, exhibit surface pre-melting in which a thin layer of melted liquid
forms at the gas–solid interface. This occurs at temperatures below the bulk
liquid–solid phase transition (Dash et al. 1995; Lied et al. 1994). In contrast,
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the phenomenon of surface freezing, where a thin layer of ordered phase
spontaneously appears at the liquid–gas interface above the temperature of
the bulk liquid to crystal phase transition, is observed in very few materials,
most notably alkanes, thermotropic liquid crystals, and surfactant polymers
(Wu et al. 1993; Ocko et al. 1986; Lang 1999). It has been noted that the nu-
cleation of the bulk phase transition is closely related to the behavior of the
sample at the interface. The observation that it is difficult to prepare super-
heated crystals is explained by the presence of the surface pre-melted layer,
which acts as a heterogeneous nucleation site (van der Veen 1999; Cahn 1986).
For materials that exhibit surface freezing, the opposite effect is true. Thus it
is difficult to supercool the liquid phase below the equilibrium crystallization
transition (Sloutskin et al. 2001; Sear 2002).

While most surface freezing transitions have been studied in molecular sys-
tems, we recently observed a similar phenomenon in a colloidal fd–dextran
mixture. If the mixture described in Fig. 1.31 is prepared below the bulk
isotropic–smectic coexistence (region 2 of the phase diagram shown in
Fig. 1.31), surface-induced formation of the smectic phase is observed. An
image of an isotropic–nematic surface completely covered with the surface
smectic phase is shown in Fig. 1.37e. Below the image plane is a dense nematic
suspension, while above the image plane is an isotropic dextran solution. The
layered smectic-like structure is observed only within a thin layer confined
to the isotropic–nematic interface. From optical images it is difficult to mea-
sure the exact thickness of this layer, but we can estimate that it is at most
a few hundred nanometers thick. If a bulk phase-separated sample that ex-
hibits surface freezing is mixed by vigorous shaking, small nematic tactoids
will form. The interface of these tactoids will be covered with surface-induced
smectic phase, as illustrated in Fig. 1.39b. As the tactoids coalesce, the smectic
phase always remains confined to the narrow layer next to the interface. This
provides strong support that the smectic structures in Fig. 1.37e are entirely
induced by the isotropic–nematic surface.

In molecular systems that exhibit surface freezing, it is usually found that,
with increasing temperature, the thickness of the surface frozen layer contin-
uously decreases. Surprisingly, we find that, with decreasing osmotic pressure
of the mixture, the surface-induced smectic phase swells to the point where
isolated layers are observed. Therefore, the surface-induced smectic phase
behaves very differently from the bulk phase. While the bulk smectic phase
of pure rods melts into a nematic phase, the surface-induced smectic phase
continuously swells. It is found that isolated layers exhibit large fluctuations
and the rods within a layer are always aligned along the director of the back-
ground nematic field. Therefore, it is possible to think of the background
nematic as a confining field. The tight coupling between the surface smectic
layers and the fluctuating nematic background can lead to enhanced fluctua-
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Fig. 1.37 DIC optical micrographs of
the surface-induced smectic phase.
The image lies in the plane of the
isotropic–nematic interface, with the
denser nematic phase being below the
image plane and the lighter polymer-rich
isotropic phase above the image plane.
(a) With decreasing polymer concentra-
tion, the surface-induced smectic phase

swells until individual layers are observed.
In (b), a low volume fraction of rods are
labeled with the fluorescent dye Alexa
488 and appear as black lines. Overlaying
the fluorescent image with a DIC image
indicates that the surface-induced phase
has smectic C configuration. Scale bars
indicate 5 µm.

tions similar to those encountered when a semi-flexible polymer is suspended
in a fluctuating nematic background (Dogic et al. 2004b). Quantitative analy-
sis of the fluctuations of the surface-induced smectic phase has not yet been
performed.

On a surface partially covered with smectic layers, the layers can be either
bundled together (Fig. 1.37c) or spaced far apart from each other (Fig. 1.37d).
These configurations indicate the presence of both attractive interactions,
which cause bundle formation, and repulsive interactions, which cause layer
swelling. Because of their size, the smectic layers diffuse very slowly on the
surface and it is very difficult to determine the equilibrium configuration.
Often, even weeks after the samples are prepared, the structures continue to
evolve. At present it is not yet clear what main physical forces are responsible
for the effective potential between swollen surface smectic layers. Recently we
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have been able to manipulate individual layers on the surface and are hoping
to measure the forces between individual smectic layers experimentally.

The reason for the formation of the surface-induced smectic phase can per-
haps be construed from theoretical studies of the isotropic–nematic interface
in a hard-rod suspension. After some controversy, it is now well established
that the density profile across the isotropic–nematic interface for Onsager
rods is monotonically increasing (Chen and Noolandi 1992; Shundyak and
van Roij 2001). However, if more complex mixtures of thin and thick rods are
prepared in the neighborhood of the triple point, it is found that the interface
profile can be highly non-monotonic (Shundyak and van Roij 2002). The pres-
ence of the surface induced smectic phase would be a natural consequence
of a non-monotonic density across the isotropic–nematic interface. Since the
only parameter that determines the phase behavior of hard rods is their con-
centration, and if their density is higher at the interface with the polymer-rich
isotropic phase, it would follow that at the interface the smectic phase would
form first. At present, little is known theoretically or experimentally about the
quantitative aspects of the density profiles across interfaces in rod–polymer
mixtures.

Besides fd–dextran mixtures, a surface-induced smectic phase has also been
observed in mixtures of fd and PEO. Experimentally we find that the range of
stability of the surface-induced smectic phase is very sensitive to the size of
the polymer. For a mixture of fd and dextran (Mw = 150 000), it is possible to
observe the surface-induced smectic phase at rod concentrations 3.5% below
the bulk isotropic–smectic phase transition, while this decreases to 1.5% for a
mixture of fd and larger dextran (Mw = 500 000). For mixtures of fd and even
larger dextran (Mw = 2000 000), we have not observed any surface-induced
freezing.

Much remains to be understood about the surface-induced smectic struc-
tures. For example, fluorescence images (Fig. 1.37b) and polarization mi-
croscopy indicate that the rods within each layer actually have a smectic-C-like
configuration. This again is in stark contrast to the bulk phase behavior.

1.9
Kinetics of Liquid-Crystalline Phase Transitions

While the subject of how a crystal nucleus grows out of a dense liquid com-
posed of spherical particles has been studied in great detail (Debenedetti
1996), less is known about how a smectic or nematic phase will nucleate
from isotropic rods. What is the shape of the critical nucleus of nematic rods
forming from a metastable isotropic solution? What determines the height
of the nucleation barrier of the nematic droplet? These questions remain
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mostly unanswered, and the kinetics of phase transitions in rod-like particles
remains essentially unexplored. When the possibility of both positional and
orientational order is taken into account, the complexity of kinetic pathways
increases even further. Here we summarize our recent experimental work on
the kinetics of the phase transitions in liquid crystals. We first briefly review
the behavior of pure rods, and then focus in more detail on the behavior of
rod–polymer mixtures.

It is important to mention that, because of the slow time scales and large
length scales involved, colloids are in many ways an ideal system to study
fundamental questions with regard to the kinetics of phase transitions. The
time and length scales involved make the system amenable to determining
the real spatial structure using optical microscopy. For example, in a recent
study using optical microscopy, it was possible to directly visualize the critical
nuclei of a colloidal crystal growing from a metastable liquid (Gasser et al.
2001). Experiments such as these make it possible to test the fundamental
concepts of classical nucleation theory.

1.9.1
Kinetics of the Isotropic–Nematic and Nematic–Smectic Phase Transitions
in Hard-Rod Suspensions

While the phases formed by colloidal liquid crystals are structurally identical to
those found in low-molecular-weight, single-component, thermotropic liquid
crystals, it seems that the kinetics of phase transitions in rod-like colloids can
be very different from their thermotropic counterparts.

If a sample is prepared in the isotropic–cholesteric coexistence region, it will
spontaneously form nematic droplets in the isotropic background (Fig. 1.38).
The shape of the droplet is determined by three factors: (1) surface tension,
which acts to minimize the surface area of the droplet; (2) boundary conditions
for the orientation of the rods at the I–N interface; and (3) elastic energy,
which is minimized when the rods are parallel. For the virus, the boundary
conditions are that the rods align parallel to the I–N interface. Minimizing
the surface tension creates a spherical droplet, but the high curvature leads to
a large elastic energy. The equilibrium shape is an elongated droplet, which
lowers the elastic energy at the cost of raising the surface energy. The shape of
these droplets was analyzed in a recent theoretical work (Prinsen and van der
Schoot 2003). Understanding the shape of nematic tactoids is the first step
toward understanding the nucleation of the nematic phase out of a metastable
isotropic solution. The actual shape of the critical tactoids and the height of
the barrier for the nucleation of the nematic phase of hard rods from the
isotropic phase remain open questions.
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Fig. 1.38 An optical micrograph of an anisotropic nematic tactoid
suspended in the background isotropic liquid. Scale bar indicates 5 µm.

Solutions of TMV, which closely approximate a suspension of hard rods
with infinite rigidity, exhibit a nematic–smectic transition that is either a
second-order or a very weakly first-order phase transition (Wang et al. 1994).
In contrast to these experimental findings, the latest computer simulations
of the nematic–smectic phase transition in hard rods indicates a first-order
phase transition with about a 2% discontinuity between coexisting nematic
and smectic concentrations (Polson 1997). On the other hand, the cholesteric–
smectic phase transition in semi-flexible fd virus is found to be strongly first-
order and no pre-transitional fluctuations have been observed (Dogic and
Fraden 1997). It was speculated that the finite flexibility of fd virus changes
the order of the nematic phase transition, which was confirmed theoretically
(Tkachenko 1996).

1.9.2
Kinetics of the Isotropic–Smectic Phase Transition

By adding enough dextran to a solution of fd, it is possible to widen the
isotropic–nematic coexistence to the point where direct isotropic–smectic co-
existence is obtained. Taking advantage of the size of fd viruses, it is possible
to visualize the formation of smectic layers directly using optical microscopy
as they nucleate from the metastable isotropic phase. It is not at all obvious
how the kinetics of this phase transition proceeds.

We have studied the kinetics of the isotropic–smectic phase transition in an
immiscible fd–dextran mixture whose phase diagram is shown in Fig. 1.31.
At low polymer concentrations, below 49 mg ml−1 in region 1, coexistence
between an immiscible polymer-rich isotropic phase and a rod-rich nematic
phase is observed. The shape of the nematic droplets formed in the back-
ground isotropic phase is very similar to anisotropic tactoids formed at iso-
tropic–nematic coexistence in pure virus suspensions. In region 2 the smectic
phase wets the isotropic–nematic interface as discussed in Section 1.8.
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Fig. 1.39 Multiple steps by which colloidal
membranes are created from a metastable
isotropic suspension in an fd–dextran mix-
ture. (a) In a first step, within minutes of
preparing the homogeneous mixture, a
metastable nematic tactoid forms from
the isotropic suspension. (b) As a second
step, the isotropic–nematic interface is

almost immediately covered with the
surface-induced smectic phase.
(c) Finally, in a third step, after a period
of days, colloidal ribbons such as those
discussed in Section 1.7 are formed.
This sample is prepared in region 2 of
the phase diagram shown in Fig. 1.31.
Scale bars indicate 3 µm.

In region 3 of the phase diagram there is evidence that the isolated col-
loidal membranes discussed in Section 1.7 form an equilibrium structure.
Depending on the precise location within region 3, we have observed two dif-
ferent kinetic pathways by which these membranes form from a metastable
isotropic suspension. At lower polymer concentration, the structures observed
during the multiple-step kinetics for the formation of the membranes are
shown in Fig. 1.39. In a first, fast step, we observe a very quick formation of a
metastable nematic tactoid (Fig. 1.39a). Instantaneously, in the second step,
the isotropic–nematic interface of the tactoids is covered with the surface-
induced smectic phase (Fig. 1.39b). In the third, slow step, which takes a few
days, the surface-induced smectic phase acts as a nucleation site for the for-
mation of twisted ribbons (Fig. 1.39c). These ribbons grow from the interface
and can reach many hundreds of micrometers in length. The fact that the
fd–dextran mixture is essentially immiscible indicates that the ribbons grow
due to the diffusion of rods from the metastable nematic phase through the
surface-induced smectic phase into the more stable ribbon-like structures.

If the polymer concentration is increased within region 3 of Fig. 1.31,
membranes directly nucleate from the isotropic solution as illustrated in
Fig. 1.40a. The membranes remain stable in this region, as they laterally
coalesce (Fig. 1.32) and can reach sizes of many tens of micrometers in di-
ameter. These structures were discussed at length in Section 1.7. Finally, at
higher polymer concentration, in region 4, the membranes stack up on top
of each other and form elongated filaments, which internally have a smectic-
like structure (Fig. 1.40b) (Frenkel and Schilling 2002). This transition from
isolated membranes to smectic filaments is predicted by the simulations of
parallel spherocylinders with direct attractive interactions described in more
detail in Section 1.7. It is important to mention that the boundaries between
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Fig. 1.40 (a) At higher concentrations of
polymer in region 3 of the phase diagram
shown in Fig. 1.31, we observe the nucle-
ation of colloidal membranes directly out

of metastable isotropic solution. (b) With
further increasing polymer concentration
in region 4, bulk smectic filaments are
formed. Scale bars indicate 3 µm.

different structures are not very well defined and it is often possible to observe
multiple structures within the same sample.

As discussed in Section 1.8, the bulk isotropic–smectic phase transition
is superseded by the surface-induced formation of the smectic phase at the
isotropic–nematic interface. For a long time it was thought that the state of
order at the interface regulates the kinetics of the bulk phase transition. The
kinetic pathway illustrated in Fig. 1.39 provides direct visual evidence for the
importance of the surface smectic layer to the overall kinetic pathway of the
formation of the smectic phase.

Another factor that can significantly affect the kinetics of the phase tran-
sition is the presence of a metastable phase boundary (Sirota and Herhold
1999; ten Wolde and Frenkel 1997; Olmsted et al. 1998). For example, colloids
with short-range attractions have an equilibrium phase diagram as shown
in Fig. 1.20b, where a gas–liquid phase transition is metastable with respect
to the gas–crystal phase transition. Recent simulations suggest a remarkable
enhancement of the nucleation rate of a crystal when the sample is prepared
in the vicinity of the critical point associated with the metastable gas–liquid
phase transition (ten Wolde and Frenkel 1997). The reason is because the
crystal nucleus is formed in two steps for these particular conditions. In a
first step, a dense liquid droplet associated with the metastable gas–liquid
phase separation is formed; and in a subsequent step, a crystal nucleates
within this dense droplet. This significantly reduces the nucleation barrier
when compared to nucleation of a crystal directly from a dilute gas phase.



72 1 Phase Behavior of Rod-Like Viruses and Virus–Sphere Mixtures

In a similar way, the presence of the metastable nematic phase is important
for the nucleation of the smectic phase or colloidal membranes. Figure 1.39
shows that, for slightly supersaturated rod–polymer mixtures, a metastable
nematic tactoid nucleates in a first, fast step. Subsequently, isolated colloidal
membranes are formed after two additional intermediate stages – the surface
smectic (Fig. 1.39b) and the twisted ribbon (Fig. 1.39c).

1.9.3
Filamentous Structures Associated With Nematic–Smectic Phase Transitions

In certain regions of the rod–sphere phase diagram, the whole sample forms a
single lamellar phase (Fig. 1.28). However, upon changing the concentration
of either component of the rod–sphere mixture, it is also possible to obtain
coexistence between the lamellar phase and either a nematic or a smectic
phase with a wavelength different from the lamellar phase. In contrast to
nematic tactoids in the isotropic background, the droplets associated with
lamellar–nematic or smectic–nematic coexistence assume the shape of elon-
gated filaments with a cylindrical cross-section. Often these filaments can be
many millimeters long (Fig. 1.41a). They are observed in both rod–sphere
and rod–polymer mixtures when the total rod concentration is close to the
nematic–smectic phase transition. In contrast, when polymers are added to
a nematic phase of fd rods at low concentrations close to the I–N phase tran-
sition, they will phase-separate into isotropic, polymer-rich tactoids in the
background nematic phase. These inverted tactoids (Fig. 1.39e) have the same
shape as nematic tactoids in an isotropic background (Fig. 1.38).

It is of interest to examine how the cylindrical smectic filaments transform
into polymer-rich tactoids with increasing dilution. If a sample containing
smectic filaments, such as the one shown in Fig. 1.41a, is diluted with buffer
solution, the layers within a filament will swell, as illustrated in Fig. 1.41b.
Upon continued dilution, the layers swell further and filaments decrease in
length, so it is possible to observe their ends (Fig. 1.41c). Finally, at the lowest
concentration, individual polymer-rich tactoids are observed in the nematic
background. These tactoids are often deformed by a few isolated monolayers.
While filaments observed in Fig. 1.41 are obtained by adding a low volume
fraction of polymer or spheres to a very dense nematic phase that is close to
the nematic–smectic phase transition, it is also possible to obtain very similar
filamentous structures by adding a high concentration of polymer to dilute
isotropic rods. In this case, one obtains smectic filaments that coexist with
an isotropic background suspension. The formation of such filaments was
theoretically studied by Frenkel and Schilling (2002).

The observation of nematic–lamellar phase coexistence might seem con-
tradictory to the generic phase diagram of the rod–polymer mixture shown
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Fig. 1.41 Coexistence between the lamel-
lar phase and the background nematic
phase observed in a mixture of fd and dex-
tran (Mw = 500 000). The virus–polymer
mixture is prepared in a Tris buffer at
pH 8.0 and 100 mM ionic strength. The

sequence of images illustrate the trans-
formation of layered lamellar filaments
into isotropic, polymer-rich tactoids that
occurs when polymer is added to the
mixture. Scale bars indicate 5 µm.

in Fig. 1.31. In this phase diagram, there are no indications of the lamellar
phase or tie-lines between the nematic and lamellar phases. In order to ob-
tain the bulk coexistence necessary to measure the phase diagram, we had
to centrifuge the samples in regions 3 and 4. Due to the density difference
between the lamellar layers and dextran solution, it seems plausible that the
centrifugation procedure induces the lamellar to smectic phase transition. It
seems likely that, as the volume fraction of rods within region 3 is increased,
we actually go from isolated membranes to swollen lamellar phase to smectic
phase. However, this is merely a speculation at this point. We do feel that the
phase diagram presented in Fig. 1.31 is not final and that the location of the
lamellar phase in the rod–polymer mixture should be carefully examined in
future work.

While Fig. 1.41 illustrates the behavior observed in fd–polymer mixtures,
identical filaments are also observed in mixtures of fd and polystyrene spheres
with Dsp = 0.1 µm (Fig. 1.42). There are, however, two important differences
between these two cases. First, in the polymer–fd mixture, it is possible to
prepare samples with different layer spacings, and with decreasing osmotic
pressure these layers continuously swell (see Fig. 1.44). In contrast, the fd–PS
mixture exhibits only lamellar phases with constant 1.1 µm spacing. This
might be because there is a direct phase transition from the isotropic phase
to the lamellar phase in the rod–PS mixture. Therefore, the swelling transition
might be preempted by the melting of rods into the isotropic phase. Second, in
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Fig. 1.42 Coexistence between the lamel-
lar phase and the background nematic
phase observed in a mixture of polystyrene
spheres (Dsp = 0.1 µm) and fd virus
at 5 mM ionic strength (10 mM Tris,
pH 8.15). Unlike the layered filaments

formed in fd–dextran mixtures, the spac-
ing of these filaments is always 1.1 µm.
They can be many millimeters long, but
occasionally it is possible to observe a
tapered end of a filament, as illustrated in
image (b). Scale bar is 5 µm.

the fd–PS mixture, it is also possible to obtain coexistence between a smectic
phase with 0.9 µm spacing and a lamellar phase with 1.1 µm periodicity. This
indicates a first-order phase transition between a smectic and lamellar phase.
So far we have not observed a similar discontinuous transition between two
layered structures with different periodicities in fd–polymer mixtures. In fact,
the work summarized in the next section indicates that the swelling of the
lamellar phase in fd–polymer mixtures is continuous.

1.9.4
Multiple Pathways Observed in Melting of the Lamellar Phase

Up to now we have only discussed the behavior of entropic suspensions of
rods, or rod–polymer mixtures. Athermal, excluded-volume interactions gov-
ern the phase behavior of such systems, and the only parameters that deter-
mine the phase diagram are the concentrations of the constituent compo-
nents. In athermal systems, it is possible to melt the structure using shear
flow and subsequently study the process of nucleation and growth of ordered
structures, such as the smectic phase or colloidal crystals (Dogic 2003; Gasser
et al. 2001). However, to study the reverse process of melting would require
changing the colloidal concentration in situ, which is a challenging experi-
mental task.

To overcome this difficulty and have an easily tunable experimental para-
meter with which it is possible to control the phase behavior of colloidal sys-
tems, we have recently designed a novel thermotropic–lyotropic fd–polymer
mixture (Alsayed et al. 2004). Instead of athermal polymers such as dex-
tran or poly(ethylene oxide) (PEO), we used the thermo-sensitive polymer
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poly(N-isopropylacrylamide) (NIPA). The solubility of NIPA in water is highly
temperature-dependent, and below its Θ temperature of 31◦C it assumes a
swollen coil, while above this temperature it is water-insoluble and assumes
a collapsed globule form (Wu and Wang 1998). A small increase in tem-
perature results in increasing monomer–monomer attraction, which in turn
decreases the osmotic pressure of the polymer solution. When this polymer
solution is in coexistence with an immiscible suspension of hard rods, aque-
ous solvent flows from the low-osmotic-pressure polymer-rich phase into the
higher-osmotic-pressure rod-rich phase. This subsequently dilutes the rods
and leads to a temperature-induced phase transition in a suspension of hard
rods.

At low temperatures, the fd–NIPA mixture forms a microscopically phase-
separated lamellar phase similar to those discussed in Section 1.6.1. With
increasing temperature, dislocations act as nucleation sites for the forma-
tion of the nematic tactoids (Fig. 1.43b). Interestingly, the nematic tactoids
in the smectic background have a shape very similar to those encountered
at isotropic–nematic coexistence. As discussed in Section 1.6.1 the nematic
phase is highly immiscible with spherical particles, and therefore the forma-
tion of the nematic tactoids is accompanied by the expulsion of the polymer
into lamellar layers, which results in the swelling of the layers (Fig. 1.43c).
With further increase in temperature, most of the sample melts into the ne-
matic phase, which coexists with highly swollen lamellar filaments (Fig. 1.43d).
These lamellar filaments transform into isotropic droplets (Fig. 1.43e–g) in
a similar way to filaments observed in fd–dextran mixtures and described in
Section 1.9.3.

The process of lamellar melting can also be followed with light scatter-
ing to obtain the lamellar layer spacing averaged over a large sample volume

Fig. 1.43 Melting of the lamellar phase
observed in an fd–NIPA mixtures
(50 mg ml−1 fd and 7.5 mg ml−1 NIPA).
At low temperatures, the mixture forms
a uniform lamellar phase with periodicity
of 1.3 µm. Images (a) to (f) indicate

the process by which the microphase-
separated lamellar phase melts into
bulk isotropic–nematic coexistence.
Scale bars indicate 5 µm.
(After Alsayed et al., 2004).
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Fig. 1.44 Plot of the lamellar periodicity
as a function of temperature obtained
from a light-scattering experiment. Upon
heating, it is possible to swell the sample
to 1.40 µm; while upon cooling, we only
observe the formation of a lamellar phase

of 1.31 µm, indicating the presence of
large hysteresis. Images illustrating the
appearance of the lamellar phase at each
temperature in the heating cycle are
shown in Fig. 1.43. (After Alsayed et al.,
2004).

(Fig. 1.44). The scattering pattern shows a single sharp ring, and with increas-
ing temperature it simultaneously moves to lower angles and broadens sig-
nificantly. This indicates that the lamellar phase continuously swells. Above a
temperature of 15◦C, only large forward scattering is observed. Interestingly,
when cooling the sample down from high temperatures, lamellar spacing is
only observed at temperatures below 13◦C. This indicates that the lamellar
melting is a strongly first-order phase transition with large hysteresis and a
large nucleation barrier.

It is worth looking back at the results for the effective intermolecular po-
tential between colloidal membranes obtained from computer simulations of
perfectly aligned spherocylinders with a depletion attraction potential. These
simulations indicate that the position of the minimum between two layers
continuously increases with increasing temperature until the layers become
unbound (Fig. 1.35). This is in qualitative agreement with the experiments
shown in Fig. 1.44.

The behavior of the fd–NIPA mixture in a different region of the phase
diagram, where a low volume fraction of fd is dissolved in the background
polymer, exhibits a coexistence between multilayer lamellar droplets and iso-
lated colloidal membranes, such as that shown in Fig. 1.45a. With increasing
temperature, the multilayer droplets melt around 26◦C. However, single iso-
lated layers remain stable up to temperatures of 30◦C. Once a nematic tactoid
nucleates within the membrane, the rest of the membrane is quickly trans-
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Fig. 1.45 Isolated colloidal membranes
observed when a low volume fraction of
fd rods are dissolved in the background
NIPA polymer (7.5 mg ml−1 fd and
37 mg ml−1 NIPA). Below 25◦C there
is a coexistence between isolated mem-
branes and multiple layers stacked up

on top of each other. At 26◦C multiple
layers melt into nematic tactoids, while
single-layer membranes remain stable up
to 30◦C. At this temperature, small three-
dimensional tactoids nucleate within the
two-dimensional membrane. Scale bars
indicate 5 µm. (After Alsayed et al., 2004).

formed into the nematic phase. This observation suggests that there is a
topological nucleation barrier for melting of the two-dimensional membrane
into a three-dimensional nematic tactoid. In order for the tactoid to form,
there has to be a collective protrusion of the rods into the third dimension.
By examining the behavior of isolated membranes in Fig. 1.45 and stacks of
membranes in Fig. 1.44, it is possible to conclude that there are nucleation
barriers not only to freezing into the lamellar phase, but also for melting of
the lamellar phase. This is in stark contrast to three-dimensional crystals,
which are very difficult to superheat above their melting temperature (Dash
1999).

The structures observed during the process of lamellar melting are in many
ways very similar to the structures observed in athermal fd–polymer mixtures
described in the previous two subsections. The advantage of fd–NIPA mix-
tures is that it is possible to cycle continuously between these structures by
simply changing the temperature. However, there are a few differences worth
mentioning between this study and previous studies on the isotropic–smectic
coexistence. The NIPA polymers used in these experiments have large ra-
dius of gyration (Rg = 70 nm) compared to the dextran (Mw = 150 000,
Rg = 20 nm) used for studies of the isotropic–smectic phase transition. For
this large polymer we do not observe the phenomenon of surface freezing.
In addition, fd mixtures with large polymers have a pronounced tendency
to form a lamellar phase, while smaller polymers such as dextran 150000
phase-separate directly into isotropic–smectic coexistence (Fig. 1.39).
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1.10
Conclusions and Open Questions

In this chapter we have summarized the phase behavior of colloidal rods and
mixtures of rod-like and sphere-like colloids whose interactions are domi-
nated by short-range repulsive interactions. We first reviewed the Onsager
theory of the isotropic–nematic phase transition, which treats the excluded-
volume interactions at a second virial level. The Onsager theory can be gener-
alized to include positionally ordered smectic phases. The predictions of these
very simple theories, which are confirmed by computer simulations, are that
rods form isotropic, nematic, and smectic phases with increasing concen-
tration. This agrees well with the experimentally measured phase diagram of
monodisperse virus particles. The measurements of the order parameter rep-
resent the most stringent test of the Onsager theory extended to semi-flexible
charged rods. For this particular experiment, the agreement with theory is
quantitative at high ionic strength. These experiments firmly establish fd rods
as ideal hard-rod systems.

While the phase behavior of hard rods is well understood, extending the
theory to account for long-range repulsive interactions due to surface charge
results in significant quantitative differences with experiment. These effects
become significant at either low ionic strength or high rod concentration.
Another extension of the Onsager theory has been to include attractive in-
teractions. Introducing such interactions results in a rapid breakdown of the
second virial approximation. So far there are no satisfactory theoretical solu-
tions to these problems.

A major part of this chapter has been devoted to the description of numer-
ous novel structures observed in rod–sphere mixtures. While the behavior of
the bulk suspension of pure rods is at least qualitatively understood, the ob-
servation of lamellar phases, colloidal membranes, surface-induced smectic
phases, and twisted ribbons are mostly lacking a theoretical description. We
believe that these structures are generic to the phase behavior of rod–sphere
mixtures and will be observed in other model rod-like systems as they are
developed in the future.

In many ways the phase behavior of rod–sphere mixtures encompasses the
behavior of both thermotropic liquid crystals and amphiphilic molecules. The
classic model systems of soft condensed matter physics, such as thermotropic
liquid crystals or amphiphilic molecules, are reasonably well understood. On
the one hand, thermotropic liquid crystals with increasing temperature melt
from layered smectic phases into nematics and finally into the orientation-
ally disordered isotropic phase. There are only scattered reports of a smectic
phase that can be successfully swollen by the addition of isotropic solvent
(Rieker 1995). On the other hand, amphiphilic systems, such as lipid mem-
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branes, form a layered smectic phase at high concentration. With dilution,
these systems will swell to a large degree until they form isolated vesicles. The
latter systems will almost never melt into the nematic phase. With increas-
ing dilution of rod–sphere mixtures, we observe both swelling of the smectic
layers to the point where isolated membranes are observed and their sub-
sequent melting into a nematic phase. The competition between these two
processes results in a myriad of novel colloidal structures, which are outlined
in the present chapter. The relative stability of these structures will have to be
carefully examined in future work.
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2

Field Theory of Polymer–Colloid Interactions

Erich Eisenriegler

Abstract

Methods of field theory are used to investigate the universal interactions be-
tween long flexible polymers and mesoscopic colloidal particles. Polymer-
induced immersion free energies of single particles, the pair and three-body
interactions between particles, and the interactions between a particle and
a wall are discussed for both spherical and anisotropic particles, such as
ellipsoids or dumbbells. The induced interactions of anisotropic particles
are orientation-dependent. For small particle size we use systematic “small-
particle expansions”, similar to short-distance expansions in field theory. We
also consider polymer density profiles near walls and particles and the poly-
mer pressure on their surfaces, and compare with other approaches, such as
the Asakura–Oosawa and Derjaguin approximations and Monte Carlo simu-
lations.

2.1
Introduction

In colloidal suspensions containing polymer chains, there are tunable ef-
fective interactions between the colloid particles. For entropic reasons, free
non-adsorbing polymer chains avoid the space between two particles, leading
to an unbalanced pressure, which pushes them toward each other. Figure 2.1
illustrates the corresponding mechanism leading to an attraction between a
particle and a wall. Such depletion forces for an isolated pair of immersed
particles or for a single immersed particle near a wall have been measured in
recent experiments (Ohshima et al. 1997; Verma et al. 1998; Rudhardt et al.
1998).
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Fig. 2.1 Unbalanced pressure due to polymer depletion pushes the
particle toward the wall.

Dilute systems of long flexible polymers show (de Gennes 1979; des
Cloizeaux and Jannink 1990; Schäfer 1998) the characteristic features of crit-
ical behavior – a correlation length that is large on a microscopic scale, and
mesoscopic properties that, to a large extent, are independent of the chemical
microstructure, i.e. universal and obey power and scaling laws. For example,
the mean square radius of gyration R2

g of a single isolated chain follows the
power law1)

R2
g ∝ N2ν (2.1)

as the number N of monomers or repeat units becomes large. Although the
chemical structure of the monomers may be quite different for different types
of polymer chains, the exponent ν is the same. In d = 3 dimensions and in
the case of a good solvent (effective repulsion between monomers),

ν = 0.588 (2.2)

Another example is the osmotic pressure Π of polymer chains. It obeys a
scaling law (de Gennes 1979; des Cloizeaux and Jannink 1990; Schäfer 1998)

Π = kBTnX(nRd
g) (2.3)

where n is the number density of polymer chains, and nRd
g characterizes

the degree of overlap between chains. Although it is assumed that N is large
and that the monomer density nN is much smaller than in a dense poly-
mer melt, the overlap may be either large (semidilute solution) or small (dilute

1) The same power-law exponent 2ν appears in the mean square end-to-end distance R2
ee, and

the ratio R2
g/R2

ee tends to a universal number for N → ∞.
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solution). Equation (2.3) makes two non-trivial statements. First, for a given
polymer–solvent system, Π/(kBTn) only depends upon the two variables n

and Rg via the product nRd
g. Second, the scaling function X is universal, i.e.

the same for different systems.
There is a well-known correspondence (de Gennes 1979) between the statis-

tics of long flexible polymers and critical spin systems. Thus powerful meth-
ods of field theory for spin systems are at our disposal for investigating poly-
mer problems.

In this chapter we consider the interaction of polymers with container
walls or mesoscopic colloidal particles. The focus is on purely repulsive im-
penetrable boundaries, leading to polymer depletion. Polymer adsorption will
not be considered. We shall see how the ideas and methods of field theories
with boundaries (Binder 1986; Diehl 1986; Diehl 1997) lead to considerable
progress in understanding the basic properties of polymer–colloid mixtures,
such as the universal forms of the solvation free energies of single colloidal
particles and of the polymer-induced interactions between two and more par-
ticles. We exploit various types of short-distance expansions in field theory.
Boundary operator expansions (Diehl 1986; Diehl 1997) enable us to study, in a
systematic way, the relation between the pressure exerted on a wall or colloidal
particle and the local polymer density. The recently developed small-particle op-
erator expansion (Burkhardt and Eisenriegler 1995; Eisenriegler and Ritschel
1995) allows us to obtain the quantitative distance and angle dependences of
the effective interactions induced between two and more small mesoscopic
particles of spherical or anisotropic shape. For spherical particles and dumb-
bells composed of two touching or overlapping spheres (van Blaaderen 2003;
van Blaaderen 2004; Johnson et al. 2005), the conformal invariance (Cardy
1986) of the critical field theory can be used to determine the necessary ex-
pansion coefficients by conformally mapping the particle shapes onto simpler
geometries.

Even in the case of ideal chains (de Gennes 1979), where the excluded-
volume interaction between chain monomers is neglected, integrating out
the polymer degrees of freedom is non-trivial due to the presence of the
colloidal particles, and the above-mentioned methods of field theory are very
useful.

In Section 2.2 we consider polymers in an infinite homogeneous space,
without walls or particles, and their relation to field theory. The operator-
product expansion is discussed. Boundaries are introduced in Section 2.3,
and we consider the simplest case of ideal polymers and the corresponding
Gaussian field theory. In Section 2.4 the effect of a planar wall is studied,
in particular the polymer depletion and entropy reduction near the wall. We
relate the density of polymer material near the boundary to the pressure on
the boundary, discuss the spatial dependence of the density profile near the
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boundary wall for a solution of free polymers, and derive the pressure distribu-
tion along the boundary for an end-grafted chain, pointing out the connection
with boundary operator expansions in field theory. Polymers interacting with
a single spherical particle of radius R are considered in Section 2.5. For a
large sphere in a dilute solution with R � Rg, the rigid-polymer model of
Asakura and Oosawa is a reasonable approximation. For polymers interacting
with a small mesoscopic sphere, we use the systematic small-radius operator
expansion, which is borrowed from field theory. We also present results of an
approximate treatment for the dependence on size ratio R/Rg of the solvation
free energy of a sphere in a polymer solution with inter-chain overlap.

Sections 2.6 to 2.8 are devoted to the polymer-induced interaction between a
spherical particle and a wall and between two and more particles. In addition
to the Derjaguin and small-sphere expansions for large and small sphere
radius, respectively, we discuss, in Section 2.7.3, the complete crossover in
size ratio R/Rg of the sphere–wall interaction mediated by ideal chains. Non-
pairwise interactions between three particles are considered in Section 2.8.3.
In Section 2.6.1 the predictions of the density–pressure relation and the value
of its universal amplitude in the good solvent case are compared with high-
precision simulations of a chain trapped between two parallel walls. Finally
in Section 2.9 we consider colloidal particles of anisotropic shape and the
orientation-dependent interactions with a wall that are induced by a polymer
solution. Here the main focus is on colloidal ellipsoids and dumbbells.

2.2
Polymers and Field Theory

Since microscopic details are irrelevant, there is much freedom in choosing
a model. One of the most convenient models for analytical calculations is
the “bead–spring” model (de Gennes 1979; des Cloizeaux and Jannink 1990;
Schäfer 1998), with the single-chain partition function

ZN (rA, rB) =
∫

dr1 · · ·
∫

drN−1 P (rA − r1) · · ·P (rN−1 − rB)

×
∏̂

(i,i′)
[1 − bldδ(ri − ri′)] (2.4)

Here the product of N normalized Gaussians

P (x) = (4πl2)−d/2 e−x2/(4l2) (2.5)

determines the structure of a chain with fixed end-points rA and rB and
N − 1 internal beads at r1, . . . , rN−1, and it introduces a characteristic size l
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per monomer. The product
∏̂

is over the
(
N−1

2

)
pairs (i, i′) of internal beads.

Since b > 0, configurations where the beads overlap are less probable. The hat
on

∏
means that only products of δ functions are retained, where every bead

position ri occurs no more than once. This makes the model well-defined.
First consider an ideal polymer chain with b = 0. Then ZN = Z0

N is a
convolution of the P -functions, which is easily calculated. In terms of Fourier
transforms,

∫
d(rA − rB) eip(rA−rB)Z0

N (rA, rB) = (P̃ (p))N (2.6)

where

P̃ (p) = e−p2l2 (2.7)

is the Fourier transform of P , which implies

Z0
N (rA, rB) = (4πNl2)−d/2 e−(rA−rB)2/(4Nl2) (2.8)

This particularly simple coarse-graining behavior comes from choosing the
macroscopic Gaussian shape of the ideal-chain end-to-end distance distribu-
tion at the microscopic level.

There is an important relation between the (discrete) Laplace transform

Gt(rA, rB) =
∞∑

N=1

l2 e−Nl2tZN (rA, rB) (2.9)

of the chain partition function Z and the order-parameter correlation function
or propagator 〈Φα(rA)Φβ(rB)〉 in a Ginzburg–Landau field theory. For an
ideal chain this follows from the Fourier transform

∫
d(rA − rB) eip(rA−rB)G

(0)
t (rA, rB) =

∞∑
N=1

l2 e−Nl2t e−p2Nl2

=
l2

el2(t+p2) − 1
(2.10)

For t + p2 much smaller than the squared wavevector cutoff l−2, this
reproduces the usual form 1/(t + p2) of the propagator in a Gaussian
Ginzburg–Landau field theory and tends to zero for t + p2 much larger than
l−2. Note that the Laplace variable t conjugate to the monomer number N in
the chain plays the role of the temperature deviation from the critical point
in the field theory.
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To represent a polymer chain with an excluded-volume interaction of
strength b, consider a Φ4 theory for a k-component order-parameter field
Φ = (Φ1, Φ2, . . . ,Φk) with Gaussian propagators

〈Φα(r)Φβ(r′)〉0 = δα,βG0
t (r, r′) (2.11)

as in Eq. (2.10) and a Φ4 interaction Hamiltonian

H′ = bld−4
∫

dr
1
2

k∑
α,β

1
2
Φ2

α(r)
1
2
Φ2

β(r) (2.12)

with an amplitude proportional to the excluded-volume strength b in Eq. (2.4).
With the notation

ϕ
(1)
AB ≡ Φ1(rA)Φ1(rB) (2.13)

the contribution 〈ϕ(1)
AB(−H′)M/M!〉0,conn of Mth order in b to the correlation

function 〈ϕ(1)
AB〉 decomposes by Wick factorization into two classes of terms.

Terms in the first class are independent of the component number k since all
the summation indices of the H′ interactions equal the external index 1, due
to the Kronecker δ functions in the unperturbed propagators (2.11). Taking
into account the combinatorial factors, one finds that these terms are equal to
the Laplace transform of the corresponding contributions in a perturbation
expansion of the chain partition function in (2.4). Terms in the second class
involve sums over all the component indices and are proportional to non-
vanishing integer powers of k. They vanish on formally setting k equal to
zero in the perturbation expansion, so that (des Cloizeaux and Jannink 1990;
Schäfer 1998) ∑

N

l2 e−Nl2tZN (rA, rB) = 〈ϕ(1)
AB〉∣∣

k=0 (2.14)

Other quantities besides the partition function ZN are of interest. One of
these is the fraction

Fm(r) dr =
1

N − 1

N−1∑
j=1

δ(r − rj) dr (2.15)

of beads (monomers) in a volume element dr containing a given point r in
space. Due to the simple normalization

∫
dr Fm(r) = 1 (2.16)
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the fraction density Fm is less dependent on microscopic details and conven-
tions2) than the monomer density (N − 1)Fm. A further advantage is that,
in the scaling limit of large N , the scaling dimension of Fm equals its naive
inverse-length dimension d. For a long chain with ends fixed at rA and rB,
the configurational average {Fm}A,B of Fm is given by3)

{Fm}A,B =
(Nl2)−1L〈1

2Φ
2(r) · ϕ

(1)
AB〉∣∣

k=0

L〈ϕ(1)
AB〉∣∣

k=0

(2.17)

Here the dot following the scalar product, Φ2(r) =
∑

α Φ2
α(r), denotes a

cumulant average, and L = Lt→Nl2 is the inverse of the Laplace transform
on the left-hand side of Eq. (2.14). Thus the denominator on the right-hand
side of (2.17) equals the partition function ZN (rA, rB). Equation (2.17) fol-
lows from similar arguments as (2.14) (see, for example, des Cloizeaux and
Jannink 1990; Schäfer 1998; Eisenriegler 1993; Eisenriegler 1998).

Relations such as Eqs. (2.14) and (2.17) can be used to derive universal
critical properties of a polymer chain from Landau–Ginzburg–Wilson (Φ2)2

field theory. For example, Eq. (2.14) gives an expansion of the field-theoretical
correlation function on the right-hand side in a power series in e−l2t, which
converges and is analytic for large enough t, i.e. in the “paramagnetic” region.
Decreasing the temperature t toward its critical value tc, where the correlation
function is singular, is equivalent to approaching the radius of convergence
of the series. Thus the singular behavior for t ↘ tc is related to the behavior
of the polymer partition function ZN for N → ∞.

First consider the polymer partition function

ZN (rA) =
∫

drB ZN (rA, rB) (2.18)

with one end fixed. Equation (2.14) gives

∑
N

l2 e−Nl2tZN (rA) ∝ l2[(t − tc)l2]−γ (2.19)

where γ is the susceptibility exponent, since the integral
∫

drB of the
correlation function on the right-hand side of (2.14) is the susceptibility.

2) For a real polymer chain, the value of N depends on which chemical piece is regarded as
a monomer. Note also that the dimensionless quantity N has, in accordance with Eq. (2.1),
the non-vanishing inverse-length scaling dimension −1/ν.

3) Since we are interested in the long-chain limit N � 1, we do not distinguish here between
N − 1 and N . Note that the Z-factors cancel on expressing the right-hand side of (2.17) in
terms of renormalized quantities (des Cloizeaux and Jannink 1990; Schäfer 1998; Eisenriegler
1993; Eisenriegler 1998).
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Equation (2.19) implies that

ZN (rA) ∝ eNl2tcNγ−1 (2.20)

as N → ∞. While tc and thus the exponential N dependence are non-
universal,4) the values (Zinn-Justin 1989; Cardy and Hamber 1980; Nienhuis
1982)

γ − 1 = 0, 0.161, 11
32 (2.21)

for the power-law exponent γ − 1 in spatial dimensions d = 4, 3, 2 are
universal.

In a similar way from the scaling behavior

〈Φ1(r)Φ1(0)〉∣∣
k=0 ∝ ξ−2x

FT X (r/ξFT) (2.22)

of the correlation function, which involves the correlation length ξFT ∝ (t −
tc)−ν of the field theory (FT), one obtains the mean square end-to-end distance

R2
ee =

∫
drB (rA − rB)2ZN (rA, rB)

/∫
drB ZN (rA, rB)

∝ (Lξd+2−2x
FT )/(Lξd−2x

FT ) ∝ N2ν (2.23)

(cf. footnote 1). Here x is the scaling dimension of the order parameter, related
to γ and ν via d − 2x = γ/ν. Thus the polymer exponent ν in Eq. (2.1)
coincides with the exponent of the correlation length of the field theory for
the case k = 0, and5)

ν = 1
2 , 0.588, 3

4 , 1 (2.24)

for d = 4, 3, 2, 1.
The polymer partition function for the two ends microscopically close is

proportional to (de Gennes 1979)

ZN (0, 0) ∝ eNl2tcN−νd (2.25)

4) In our model (2.4) the partition function Z
(0)
N (rA) without self-repulsion (b = 0) equals 1,

consistent with γ(0) = 1 and t
(0)
c = 0 in (2.20). On turning on the repulsion (b > 0), the

partition function ZN (rA) must decrease, and thus tc < 0.
5) For d = 3 see, for example, Zinn-Justin (1989); and for exponents of the O(k) model in two

dimensions, see Cardy and Hamber (1980) and Nienhuis (1982).
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Due to the negative exponent −νd, for large N it is much smaller than the par-
tition function (2.20) with unrestricted end-to-end distance. Equation (2.25)
is consistent with the m-fold derivative6)

∑
N

e−Nl2(t−tc)Nm e−Nl2tcZN (0, 0) ∝ dm

dtm
〈Φ2

1(0)〉∣∣
k=0 (2.26)

of (2.14), since the right-hand side is ∝ (t − tc)−(m+1−νd).
Now we consider the normalized distribution of the end-to-end distance.

For |rA − rB| and Ree large on a microscopic scale,

ZN (rA, rB)/ZN (rA) = R−d
ee Y(|rA − rB|/Ree) (2.27)

which is consistent with the scaling behavior (2.22) and with Eq. (2.14). It is
interesting to consider the distribution for distances |rA −rB| much smaller
than Ree. In this case (de Gennes 1979; des Cloizeaux and Jannink 1990)

Y(y) ∝ yθ, y 	 1 (2.28)

with the short-distance exponent

θ =
γ − 1

ν
= d − 2x − 1

ν
= xΦ2 − 2x (2.29)

where

xΦ2 = d − 1
ν

(2.30)

is the critical exponent of the energy density (cf. footnote 6). The expression
for θ follows from Eqs. (2.14), (2.23), and (2.27), and the plausible assumption
that the N → ∞ dependence of ZN (rA, rB) with finite and fixed |rA −rB| is
the same as that of ZN (0, 0) in (2.25). Using Eqs. (2.21) and (2.24), one finds

θ = 0, 0.27, 11
24 (2.31)

for d = 4, 3, 2.
The exponent θ vanishes at the upper critical dimension d = 4, where

the excluded-volume interaction is only marginally relevant, and where the
distribution is a Gaussian. For d < 4 the exponent θ is positive and leads to a

6) The differentiation in (2.26) with m = 2, 3, . . . eliminates non-asymptotic corrections to
ZN (0, 0) and analytic non-scaling corrections to the “energy density” 〈Φ2

1(0)〉, which would
contribute to (2.26) for m = 0, 1.
The scaling contribution to 〈Φ2

1(0)〉 is ∝ (t − tc)νd−1 ∝ ξ
−(d−1/ν)
FT .
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distribution that increases with increasing distance |rA −rB| for |rA −rB| 	
Ree. It decreases, of course, for |rA − rB| � Ree. This is a consequence of
the excluded-volume interaction , which suppresses configurations with close
ends.

Equation (2.28) is a special case of a general short-distance relation, which
can be written in the operator form (Zinn-Justin 1989)

Φ(rB)Φ(rA) ∝ |rA − rB|xΦ2−2x Φ2
(

rA + rB

2

)
(2.32)

for distances

l 	 |rA − rB| 	 other lengths (2.33)

Equation (2.32) holds in correlation functions if |rA − rB|, while large on
the microscopic scale l, is much smaller than the other lengths (such as the
correlation length ξFT or the distances from |rA + rB|/2 to the positions
of other operators) that appear in the correlation function. The same expo-
nent (2.29) appears in all the correlation functions, and its form follows from
the requirement that both sides of (2.32) have the same scaling dimension.
The factor of proportionality in (2.32) is also independent of the particular
correlation function.

Equation (2.32) can be generalized to higher order in the “small” distance
|rA − rB| by including contributions of higher-dimensional operators on
its right-hand side. These operator-product expansions are a basic property
of local field theories. The small-particle operator expansions that we use in
Sections 2.5.2 and 2.9.1 below are other examples where a perturbation of
“small” spatial extent is expanded in a series of point operators. The size
of the small particle plays the role of the small distance.

2.3
Polymers Interacting with Boundaries

Consider the case where the polymer chain can only move in a part of the
space due to an impenetrable boundary. One example is a half-space with a
planar boundary. Another is the exterior of a mesoscopic (colloidal) particle,
in which case the boundary is curved. In this chapter we assume inert im-
penetrable boundaries, which act on the monomers like a hard wall. Here,
too, it is possible to map (Eisenriegler 1993) the problem onto a field theory,
and relations of the form (2.14) and (2.17) also apply. In the field theory the
Dirichlet condition

Φ = 0 (2.34)
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is satisfied at the boundary (Binder 1986; Diehl 1986; Diehl 1997).
The main effect of the boundary is to generate a boundary layer that is

depleted of chain monomers, since the number of chain conformations, and
thus the entropy, is strongly reduced near the boundary. The depletion shows
up most clearly in the density profiles of chain monomers and chain ends.

Let us make this more explicit for random-walk-like “ideal” polymer chains
with vanishing excluded-volume interaction strength b in (2.4). The partition
function

Z0
N (rA, rB) = Z(L; rA, rB), L = Nl2 (2.35)

satisfies the diffusion equation

(
∂

∂L
− ∆rA

)
Z(L; rA, rB) = 0, Z(L=0; rA, rB) = δ(rA − rB) (2.36)

where L plays the role of time. In free space this is consistent with the form
(2.8) of Eq. (2.35). The meaning of L follows from the expressions

R2
ee = 2dL, R2

g = dL/3 (2.37)

for the mean square end-to-end distance R2
ee and radius of gyration R2

g
of an unconstrained ideal chain in d spatial dimensions with the ratio
R2

ee/R2
g = 6. The boundary corresponds to an external potential W acting on

each monomer. This introduces (de Gennes 1979) a term W (rA)Z(rA, rB) in
the diffusion equation, which then looks like the time-dependent Schrödinger
equation. For a hard boundary with W = 0 in the space available to the poly-
mer and W = ∞ in the forbidden space, Z satisfies Eq. (2.36) in the available
space, and the Dirichlet boundary condition

Z(L; rA, rB) → 0 for rA or rB → hard boundary (2.38)

Equation (2.38) corresponds to the Dirichlet condition (2.34) of the field
theory, and the diffusion equation (Eq. 2.36) with “initial condition” to the
“Ornstein–Zernicke equation”

(t − ∆rA)G(t; rA, rB) = δ(rA − rB) (2.39)

for the propagator

G(t; rA, rB) = 〈ϕAB〉, ϕAB ≡ Φ(rA)Φ(rB) (2.40)
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in the one-component Gaussian field theory with quadratic Hamiltonian

H =
∫

dr
[ 1

2 (∇Φ)2 + 1
2 tΦ2] +

∫
dσ 1

2cΦ2 (2.41)

which corresponds to ideal polymers. Here
∫

dr is an integration over the ac-
cessible volume, and the integral

∫
dσ extends over the boundary. The bound-

ary condition (2.34) is imposed by taking the limit c → ∞. The relationship
(2.14) between G and Z now reads

∫ ∞

0
dL e−LtZ(L; rA, rB) = G(t; rA, rB) (2.42)

and Eq. (2.39) follows from (2.36) on using the relation

∫ ∞

0
dL e−Lt ∂

∂L
Z = −δ(rA − rB) + tG (2.43)

implied by Eq. (2.42) and the “initial condition” in (2.36).

Besides Z(L; r, r′), we shall also consider the partition function7)

E(r) =
∫

dr′ Z(L; r, r′) (2.44)

of the chain with one end fixed, while the free end r′ is integrated over the
available space. This quantity is proportional to the density profile of end-
points in a dilute solution of chains in the available space bounded by the
surface. It also satisfies the diffusion equation in Eq. (2.36) and the Dirichlet
boundary condition (2.38), but the “initial condition” in (2.36) is changed to

E(r)
∣∣
L=0 = 1 (2.45)

For r far from any surface, one expects from Eq. (2.8) that

E(r → bulk) = 1, L arbitrary (2.46)

For a solution of ideal chains, the monomer density profile is proportional to
the quantity

M(r) =
1
L

∫ L

0
dL′ E(L′, r)E(L−L′, r) =

1
L

L[χ(r)]2 (2.47)

7) We shall frequently use the notation E(r), M(r), χ(r) for E(L, r), M(L, r), χ(t, r),
suppressing the L or t dependence.
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which also tends to unity in the bulk. The convolution
∫

dL′ EE is propor-
tional to the number of ideal-chain conformations (de Gennes 1979) with a
monomer at r, the propagator integral

χ(r) =
∫

dr′ G(t, r, r′) (2.48)

is the susceptibility in the Ginzburg–Landau model of a magnet, and L is the
inverse of the Laplace transform on the left-hand side of Eq. (2.42), so that
Lχ equals E . Note that

∫
drA

∫
drB 〈ϕAB · 1

2Φ2(r)〉 = [χ(r)]2 (2.49)

in the Gaussian model, due to Wick’s theorem. As in Eq. (2.17), this shows
that the operator Φ2 corresponds to the monomer density.

In the presence of excluded-volume interactions between chain monomers,
results in d = 3 spatial dimensions can only be obtained perturbatively. For
a single chain, one may start with an ideal chain and expand with respect
to the excluded-volume interaction strength b in Eq. (2.4). For polymer solu-
tions with inter-chain overlap, one may start with mean-field theory, where an
effective potential Weff = bld−2nNM(r) due to the monomer distribution
is included inside the bracket in the diffusion equation (2.36) for the single-
chain partition function, and expand with respect to fluctuations. However,
these expansions fail8) in the “critical region” of long flexible chains in high
dilution, and it is necessary first to map the polymer system from the crit-
ical to a “non-critical” region by means of the renormalization group (des
Cloizeaux and Jannink 1990; Schäfer 1998; Eisenriegler 1993). A reasonable
first approximation is the “renormalized mean-field approximation”, where
the non-critical region is described by mean-field theory (Schäfer 1998). All
this is in complete analogy to “ordinary” critical systems (Nelson 1976).

8) For example, one finds (de Gennes 1979; Eisenriegler 1993) from Eq. (2.4) that the amplitude
of the first relative correction in the expansion of the mean square end-to-end distance
R2

ee/(R2
ee)ideal = 1 + bσ + O(b2) grows for d < 4 as σ ∝ N(4−d)/2, as the number N of

monomers in the chain increases.
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2.4
Polymers Interacting with a Planar Wall

2.4.1
Ideal Polymers

For a polymer in the half-space z > 0 bounded by a planar wall, one can use
the method of images to satisfy the hard-wall boundary condition (2.38) at
the boundary z = 0. Subtracting from the solution (2.8) in free space, which
“starts” from rB = (rB‖, zB), the solution that starts from the image point
rBI = (rB‖,−zB), one obtains

Z(L; rA, rB) = (4πL)−(d−1)/2 e−|rA‖−rB‖|2/(4L)(4πL)−1/2

× [e−(zA−zB)2/(4L) − e−(zA+zB)2/(4L)] (2.50)

This satisfies the diffusion equation and initial condition (2.36) in the half-
space and the boundary condition (2.38) at z = 0.

For the partition function

E(r) = Eh(z) ≡
∫

(z′>0)
dr′ Z(L; r, r′) (2.51)

with only one end fixed, Eq. (2.50) implies

E(r) = erf(y/2) (2.52)

where

y =
z√
L

(2.53)

and

erf(x) =
2√
π

∫ x

0
dζ e−ζ2

(2.54)

is the error function. The subscript “h” in Eq. (2.51) stands for “half-space”.
The width of the depletion zone of Eh near the wall is ∝ √

L, i.e. of the order of
the root mean square end-to-end distance or radius of gyration (see Eq. 2.37).

From Eq. (2.47) the bulk-normalized monomer density profile is given by

M = 1 + 4[−2 i2erfc(y/2) + i2erfc(y)] (2.55)
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where i2erfc is the two-fold iterated complementary error function
(Abramowitz and Stegun 1972). The monomer density profile M has the
parabolic form

M → z2/L (2.56)

for z 	 √
L, has a point of inflection at z = yw

√
L = 0.72

√
L, and approaches

the bulk value of unity from below for z � √
L.

Expressions for the “magnetic analogs”, i.e. the Laplace transforms

G(t; r, r′) =
∫

dp

(2π)d−1 eip(r‖−r′
‖) 1

2w

[
e−|z−z′|w − e−(z+z′)w]

w =
√

t + p2 (2.57)

and

χ(r) = [1 − exp(−z
√

t)]/t (2.58)

of Z and E , are noted for later use.

2.4.2
Behavior Near the Wall:
Density–Pressure Relation and Boundary Operator Expansion

Here we consider both ideal polymers and real polymers in a good solvent.
For a dilute, monodisperse solution of free polymers in the half-space with a
planar boundary wall, the bulk-normalized density profiles E for ends or M
for monomers have the scaling form

P(z) = Y (z/Rg) (2.59)

with universal scaling functions Y = Ye or Ym for P = E or M. Here z, the
distance from the wall, is large on the microscopic scale, and, for z � Rg,
Y → 1. For

microscopic distances 	 z 	 Rg (2.60)

E and M have a power-law behavior in z. The power-law exponents are posi-
tive, in accordance with the depletion phenomenon, and are known as “sur-
face exponents”. In the case of E , the exponent is new (Eisenriegler 1993) and
not a simple combination of the bulk exponents ν and γ. In the case of M,
the exponent is 1/ν.



102 2 Field Theory of Polymer–Colloid Interactions

The reason for the second power law is that the monomer density near the
wall is related (de Gennes 1979) to the force that the polymers exert on the
wall. The force per unit area is given by

f

A = kBTn ≡ p0 (2.61)

with n the chain density in the bulk, since it equals the chain osmotic pressure
in the bulk, which by the ideal-gas law is kBTn. This suggests (de Gennes
1979) that the monomer density NnM(z) in the region (2.60) must also be
independent of N , implying via (2.1) that

M ≡ Ym(z/Rg) → Bg(z/Rg)1/ν (2.62)

for z 	 Rg, with Bg a universal amplitude.

As in Eq. (2.15), it is advantageous to introduce a modified monomer density

m(r) =
N∑

P=1

(R1/ν
g /N)

N∑
j=1

δ(r − rP,j) (2.63)

for a system of N chains. This quantity is less dependent on microscopic
details than the ordinary monomer density (N/R1/ν

g )m. For free chains in
the half-space (denoted “(fc,h)”)

{m(r)}(fc,h) = R1/ν
g nM(z) → Bgz

1/νp(fc,h)/(kBT ) (2.64)

where the curly brackets denote a chain ensemble average, and p(fc,h) = p0 ≡
kBTn is the polymer pressure on the wall, according to Eq. (2.61).

The relation between density and pressure close to a planar boundary wall

{m(r‖, z)}(ensemble) → Bgz
1/νp(ensemble)(r‖)/(kBT ) (2.65)

applies not only to dilute free chains in the half-space as given in (2.64), with
the pressure independent of the position r‖ in the wall, but also in other
situations. Of particular interest are (1) a single chain with one end (or the
two ends) fixed in the half-space, (2) a single chain trapped between two
parallel plates, (3) a dilute or semidilute polymer solution in the half-space,
and (4) a dilute or semidilute polymer solution in the half-space contain-
ing a mesoscopic obstacle (particle). While the densities and pressures are
quite different in these different cases, their ratio Bgz

1/ν is the same. The
density–pressure relation, with the same factor Bgz

1/ν , even applies if the
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boundary is not planar but has a non-vanishing mesoscopic radius of cur-
vature R. One example, the surface of a spherical particle of radius R in a
polymer solution, is discussed in Section 2.5. The mesoscopic distance z of r

from the point in the boundary has to be small not only compared to Rg (or
the Edwards’ correlation length ξ), but also compared to R. The amplitude Bg

is independent of microscopic details to the same extent as the exponent ν.
In particular, it depends on the spatial dimension d and is different for ideal
chains and chains with excluded-volume interaction. For ideal chains

Bg = B(ideal)
g = d/3 (2.66)

follows from Eqs. (2.37), (2.56), and (2.64).
The density–pressure relation (2.65) can be understood from a field-

theoretical analysis, which also allows one to calculate the universal and
situation-independent amplitude Bg. For example, consider the case (1) [de-
noted (A,B;h)] of a chain with ends fixed at rA and rB. Since Eq. (2.17) also
applies to a chain in the presence of a boundary (Eisenriegler 1993; Diehl
1986; Diehl 1997), one finds, on comparing Eq. (2.15) with Eq. (2.63), that

{m(r‖, z)}(A,B;h) =
L〈Ψg(r‖, z) · ϕ

(1)
AB〉h

∣∣
k=0

L〈ϕ(1)
AB〉h

∣∣
k=0

(2.67)

where

Ψg(r‖, z) = R1/ν
g (Nl2)−1 1

2Φ
2(r‖, z) (2.68)

Here 〈· · ·〉h denotes the field-theoretical half-space average with the Dirichlet
boundary condition (2.34). The behavior on approaching the wall follows from
the boundary operator expansion (Dietrich and Diehl 1981; Eisenriegler 1997)

Φ2(r‖, z) ∝ zd−xΦ2 T⊥,⊥(r‖, 0) (2.69)

which is a short-distance relation analogous to the bulk relation (2.32) in
which one operator approaches another one. The operator

T⊥,⊥(r‖, 0) = 1
2 [(∂zΦ(r‖, z))]2z=0 ≡ 1

2Φ
2
⊥(r‖) (2.70)

is the diagonal component, perpendicular to the wall, of the stress tensor
at the Dirichlet surface. It is the boundary operator of lowest inverse length
dimension that is even in Φ and non-vanishing at the Dirichlet boundary,
and it has scaling dimension d. Taking (2.30) into account, Eq. (2.69) provides
the field-theoretical explanation of the z1/ν behavior of m near the boundary.
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The scaling dimension d of the surface operator (2.70) follows from the role
of the stress tensor in generating coordinate transformations. For example,
integrating T⊥,⊥ over the planar boundary generates a shift away from the
surface,9) so that

∫
dd−1r‖〈T⊥,⊥(r‖, 0) · ϕ

(1)
AB〉h = (∂zA + ∂zB)〈ϕ(1)

AB〉h (2.71)

if zA, zB > 0.

While the factor of proportionality in (2.69) is non-universal, the correspond-
ing factor in

Ψg(r‖, z) → Bgz
1/νT⊥,⊥(r‖, 0) (2.72)

is given by the universal number Bg. On using the shift identity, Eq. (2.72)
implies (Eisenriegler 1997)
∫

dd−1r‖ {m(r‖, z)}(A,B;h) → Bgz
1/ν(∂zB + ∂zA) lnZ

(h)
N (rA, rB) (2.73)

Since the right-hand side equals Bgz
1/ν times the modulus of the force on

the wall, (2.73) is consistent with the density–pressure relation (2.65). In cases
(2) and (4), one may argue similarly (Eisenriegler 1997). The estimate

Bg ≈ 0.99, d = 3 (2.74)

for polymer chains in a good solvent in d = 3 follows from a first-order
expansion (Eisenriegler 1997; Eisenriegler 1993) in ε = 4 − d and is very
close to the ideal-chain value Bideal

g = 1.
For an ideal chain in d = 3 with two ends and one end fixed, respectively,

the forces on the wall are given by

f/kBT = R−1
g (yA + yB)/[exp(yAyB) − 1] (2.75)

and

f/kBT = ∂zA ln erf(yA/2) (2.76)

where yA = zA/Rg and yB = zB/Rg. They change from an Rg-independent
power-law behavior for small distances zA or zB to an exponential dependence

9) For the Gaussian model, the shift identity (2.71) follows directly from (2.57) and (2.70), using
Wick’s theorem to show that both sides of (2.71) equal∫

dp (2π)1−d eip(rA‖−rB‖)e−(zA+zB)w

with w from Eq. (2.57). For non-Gaussian field theories of the Φ4 type, see Diehl et al. (1983)
and Appendix 5C in Eisenriegler (1993).
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for large distances, e.g. for one end fixed from ∝ z−1
A at zA 	 Rg to ∝

R−1
g exp(−z2

A/(4R2
g)) at zA � Rg.

2.4.3
Slightly Deformed Planar Wall

Consider again the case (1) [denoted (A,B;h)] of a chain with ends fixed at rA

and rB in the half-space. In Eq. (2.73) the density–pressure relation (2.65) has
been verified only in integrated form as a relation between the local density
integrated along the wall and the total force on the wall. The latter is deter-
mined by the change in polymer free energy if the wall is shifted away from
the polymer system, from z = 0 to z = −η, with η small and independent of
the lateral position r‖ in the wall.

The local relation (2.65) predicts, via (2.67) and (2.72), the field-theoretical
expression

p(A,B;h)(r‖)
kBT

=
L〈T⊥,⊥(r‖, 0)ϕ(1)

AB〉h
∣∣
k=0

L〈ϕ(1)
AB〉h

∣∣
k=0

(2.77)

for the pressure distribution. In order to check it, one needs to relate the
left-hand side of (2.77) to the free-energy change for a wall shift η = η(r‖)
that varies with r‖, leading to a slightly deformed boundary wall. Denoting
the half-space with deformed boundary by h′, the change is

−
∫

dr‖ η(r‖)p(A,B;h)(r‖)/kBT = − ln[Z(h′)
N (rA, rB)/Z(h)

N (rA, rB)]

= −L[〈ϕ(1)
AB〉h′ − 〈ϕ(1)

AB〉h]
∣∣
k=0

L〈ϕ(1)
AB〉h]

∣∣
k=0

(2.78)

where we have used the half-space counterparts of (2.14) and expanded to
first order in η. The relation

〈ϕ(1)
AB〉h′ − 〈ϕ(1)

AB〉h =
∫

dr‖ η(r‖)〈T⊥,⊥(r‖, 0) · ϕ
(1)
AB〉h + O(η2) (2.79)

remains to be checked.

Concentrating for simplicity on ideal chains, the corresponding relation

〈ϕAB〉h′ − 〈ϕAB〉h =
∫

dr‖ η(r‖)〈Φ(rA)Φ⊥(r‖)〉h〈Φ⊥(r‖)Φ(rB)〉h (2.80)

is easy to prove: (a) Applying (t − ∆rA) to the right-hand side of
(2.80) leads to a vanishing result. Thus 〈ϕAB〉h′ does indeed satisfy
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the Ornstein–Zernicke equation (2.39) for interior points rA, rB of the
half-space. (b) For rA → (r‖, 0), the propagator 〈ϕAB〉h′ tends to
[zA + η(rA‖)]〈Φ⊥(rA‖)Φ(rB)〉h and vanishes at the deformed boundary
zA = −η. The reason is that

〈Φ(rA)Φ⊥(r‖)〉h → δ(r‖ − rA‖), zA → 0 (2.81)

as one may verify from the relation

∫
dr‖ eip(r‖−rA‖)〈Φ(rA)Φ⊥(r‖)〉h = e−zAw (2.82)

following from Eq. (2.57), which for arbitrary p in the test function exp[ip(r‖−
rA‖)] tends to unity as zA → 0.

For a chain in the half-space with only one end fixed, the pressure distri-
bution pA;h(r‖)/kBT follows from the right-hand side of (2.77) on replacing

ϕ
(1)
AB by

∫
drB ϕ

(1)
AB in the numerator and denominator. For an ideal chain in

d = 3 with the end rA = (rA‖=0, zA→0) fixed right at the wall, the pressure
formula then yields the distribution

pA;h(r‖)
kBT

= e−r2
‖/(4R2

g) 1
2πr3

‖

(
1 +

r2
‖

2R2
g

)
(2.83)

a result obtained by Breidenich et al. (2000) by slightly different methods.
Note that both the force (2.76) and the pressure distribution (2.83) are

independent of the chain length R2
g for Rg large. The reason is that the

number of contacts with the wall does not increase as the length increases,
since in the half-space enough space is available for the chain to avoid the
wall. For a chain trapped between two walls, the behavior is different, as we
discuss below in Section 2.6.

2.4.4
Surface Tension

The polymer-induced surface tension σ is the surface free energy per unit
area of the polymer system in the half-space. For a solution of ideal chains in
d = 3

σ = kBTnRg2/
√

π (2.84)

as shown below in Eq. (2.97).
In the dilute–semidilute scaling region, the surface tension for arbitrary

inter-chain overlap s = nRd
g for chains in a good solvent is given by
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(de Gennes 1979; des Cloizeaux and Jannink 1990; Schäfer 1998)

σ = kBTnRgY (s) (2.85)

which is similar to the scaling law (2.3) for the osmotic pressure in the bulk
solution.

While the universal scaling function Y for the dilute regime of small s can
be expanded in a power series

Y → Y0 + sY1 + · · · (2.86)

corresponding to a virial expansion, in the semidilute regime of large s the
leading behavior is

Y → Y∞s(1−ν)/(dν−1), s → ∞ (2.87)

since, with this exponent,

σ → kBTY∞(nR1/ν
g )(d−1)/(d−1/ν) (2.88)

depends solely on the monomer density ∝ nR1/ν
g and not on the chain den-

sity n, as expected (de Gennes 1979) for strongly overlapping chains. In the
semidilute limit σ/kBT ∝ ξ−(d−1), where the screening length ξ is related to
the monomer density by (de Gennes 1979; des Cloizeaux and Jannink 1990;
Schäfer 1998)

nR1/ν
g ∝ ξ−(d−1/ν) (2.89)

This should be compared with the osmotic pressure behavior X ∝ s1/(dν−1)

and Π/kBT ∝ ξ−d in the semidilute limit (de Gennes 1979; des Cloizeaux
and Jannink 1990; Schäfer 1998).

A quantitative estimate of the scaling function Y in d = 3 spatial dimen-
sions [where ν = 0.588, see (2.24), and (1 − ν)/(dν − 1) = 0.539] can be
obtained (Maassen et al. 2001) from the “renormalized mean-field approxima-
tion”, which is based on the field-theoretical renormalization group (Schäfer
1998). This leads to the approximate values

Y0 ≈ 2/
√

π = 1.13

Y1 ≈ 3.29 (2.90)

Y∞ ≈ 3.38
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and a complete scaling function that is in fair agreement with Monte Carlo
simulations, as shown in Fig. 3 of Louis et al. (2002).

2.5
Spherical Particle in a Polymer Solution

2.5.1
Ideal Polymers

Here we consider a spherical particle in a solution of ideal polymers in d = 3.

2.5.1.1 End Density
For the bulk-normalized end density near a spherical particle of radius R and
centered at the origin (Lipowsky 1995),

E(r) =
∫

(r′>R)
d3r′ Z(r, r′) = 1 − R

r
erfc

(
r − R√

4L

)
(2.91)

where

erfc(x) = 1 − erf(x) (2.92)

is the complementary error function. This expression satisfies the diffusion
equation in (2.36), the initial condition (2.45), and the Dirichlet boundary
condition as in (2.38) at the particle surface r = R.

Let us compare two limits of this expression. For R → ∞ with the distance
from the surface r − R ≡ z fixed, Eq. (2.91) reduces to the half-space result
of Eq. (2.52). For R and r fixed and L ≡ R2

g → ∞,

E(r) → 1 − R

r
(2.93)

Note that the width of the depletion zone is of the order of R, while the width
is of order Rg for a large particle or a planar wall. This illustrates the crucial
role of the particle-to-polymer size ratio R/Rg.

2.5.1.2 Free Energy of Immersion
On immersing a spherical particle in a dilute solution of N ideal or real
polymer chains in a large volume V , the polymer free energy changes by

F

kBT
= −N ln

∫
V \S

d3r E(r)∫
V

d3r Eb(r)
= −N ln

[
1−

∫
V

d3r (Eb(r) − E(r))∫
V

d3r Eb(r)

]
(2.94)
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since the difference F of free energies with and without the particle and per
kBT equals minus the logarithm of the ratio of the partition functions. Here
V \S denotes the outer space of the sphere, and E(r) is the bulk-normalized
partition function of the chain with one end fixed in the presence of the
sphere, while the corresponding partition function Eb(r) in the bulk is equal
to unity. Expanding the logarithm in Eq. (2.94) and using the vanishing of
E(r) for r inside the sphere, we find

F

kBT
= n

{
4
3πR3 + 4π

∫ ∞

R

dr r2[1 − E(r)]
}

, n =
N
V

(2.95)

On using the ideal-chain result (2.91) and introducing the integration variable
x = (r − R)/

√
4L, the integral in (2.95) becomes

4π

∫ ∞

R

= 4πR × 4L

∫ ∞

0
dx

(
x +

R√
4L

)
erfc(x) = 4πRL + 8

√
πR2

√
L

(2.96)
and (Jansons and Phillips 1990; Eisenriegler et al. 1996)

F = p04πR3
[
1
3

+
2√
π

√
L

R
+

L

R2

]
(2.97)

where

p0 = kBTn (2.98)

is the ideal-gas pressure of the polymer solution. Equation (2.97) applies for
arbitrary particle-to-polymer size ratio R/

√
L = R/Rg.

Compare Eq. (2.97) with the corresponding free energy in the simple model
of Asakura and Oosawa (Asakura and Oosawa 1954; Asakura and Oosawa
1958), in which polymer flexibility is neglected and a free polymer interacts
with the colloid like a hard sphere of radius R̃, which is of the order of Rg (see
Fig. 2.2). In this model (denoted by “phs”), instead of Eq. (2.91), the partition
function E(r) equals unity for r > R + R̃ and vanishes for r < R + R̃, so
that the fraction inside the square brackets in Eq. (2.94) becomes

∫
V

d3r (Eb(r) − E(r))∫
V

d3r Eb(r)
=

4
3π(R + R̃)3

V
(2.99)

and the free-energy cost is given by

Fphs = p0 4π( 1
3R3 + R2R̃ + RR̃2 + 1

3R̃3) (2.100)
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Fig. 2.2 Colloidal particle interacting with a rigid polymer sphere.

On comparing Eq. (2.100) with Eq. (2.97), one finds that the leading term is
correctly reproduced for large particle-to-polymer size ratio R/Rg � 1. Even
the leading correction, which corresponds to the surface tension (2.84), is
reproduced if we choose an Asakura–Oosawa radius of

R̃ = 2
√

L/π ≡ 2Rg/
√

π (2.101)

However, for small size ratio R/Rg 	 1, the Asakura–Oosawa model leads
to a free-energy cost ∝ R̃3 ∝ R3

g, which is much larger than the free-energy
cost ∝ RR2

g for flexible chains. This is not surprising, since a flexible polymer
chain can coil around the small particle, and the entropy loss vanishes for
R → 0, while in the case of a rigid polymer sphere there is a finite entropy
loss even in the case of a point particle with R = 0 (see Fig. 2.3).

In the expression (2.95) for the immersion free energy, the end density E
could be replaced10) by the monomer density M, both bulk-normalized. It is

Fig. 2.3 Small colloidal particle interacting with a rigid polymer (left) and
with a flexible polymer (right).

10) Instead of integrating the chain partition function with one end fixed over the normal-
ization volume, one could also integrate the partition function for a fixed position of the
mid-monomer, or of any given monomer in the chain, in order to obtain the ratio of partition
functions with and without the particle in Eq. (2.94). In the bulk, all these fixed monomer
partition functions are equal, due to translational invariance. Thus, in (2.95) one may replace
E by the average M of the bulk-normalized partition functions with one fixed monomer.
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the (positive) mean number

[−∆N ]n = n

∫
dr[Ewithout particle(r) − Ewith particle(r)]

= n

∫
dr[Mwithout particle(r) − Mwith particle(r)] (2.102)

of chains removed on immersing the particle in the solution, for a given chain
density n in the bulk, which determines

F

kBT
= [−∆N ]n (2.103)

if the solution is dilute.11)

2.5.1.3 Monomer Density Profile and the Density–Pressure Relation
In order to calculate the monomer density M near the surface of the sphere,
one may use the form

χ(t; r) =
1
t

[
1 − R

r
e−(r−R)

√
t

]
(2.104)

of the “susceptibility” in (2.48) in the presence of the sphere, which corre-
sponds to E in Eq. (2.91). Expanding about r = R and using (2.47) leads
to

M → M(as) =
1
L

(r − R)2Lt→L

[
1√
t

+
1
tR

]2

=
1
L

(r − R)2
{

1 +
4
R

√
L

π
+

L

R2

}
(2.105)

in the asymptotic (as) scaling region r → R. This is indeed proportional to
the pressure

p ≡ 1
4πR2

dF

dR
= p0

[
1 +

4
R

√
L

π
+

L

R2

]
(2.106)

11) Equations (2.103) and (2.132) are consistent with the more general expression

F =
∫ n

0
dn′ (dΠ(n′)/dn′) [−∆N ]n′/n′

for the immersion free energy of the particle, which also applies to polymer solutions with
non-vanishing inter-chain overlap and bulk pressure Π [see Louis et al. (2002) and references
cited therein]. In the dilute region, dΠ/dn′ = kBT and [−∆N ]n′/n′ are independent of
n′, and Eqs. (2.103) and (2.132) are recovered.
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that the polymer solution exerts on the sphere surface. Here F is the free
energy in Eq. (2.97), and p0 is the ideal-gas pressure in Eq. (2.98).

The factor of proportionality depends, of course, on the distance r−R from
the surface, but is independent of the surface curvature. It is consistent with
the density–pressure relation, with the form

(Rg)1/νnM(as) = Bg
p(fc,S)

kBT
(r − R)1/ν (2.107)

(Eisenriegler 1997) as in (2.64), if we use the ideal-chain expressions R2
g = L,

ν = 1/2, and Bg = 1 in d = 3. Here the subscript (fc,S) stands for “free
chains outside a sphere”.

For arbitrary distance from the surface, the monomer density follows from
Eqs. (2.47) and (2.104) as (Taniguchi et al. 1992)

M = 1 + 4[−2(R/r) i2erfc(y′/2) + (R/r)2 i2erfc(y′)] (2.108)

with y′ = (r − R)/
√

L. The planar wall expression (2.55) is contained in
(2.108) as a special case.

2.5.2
Small-Sphere Expansion

Particles with large size ratio can be investigated by means of small-curvature
expansions of the Helfrich or Derjaguin type [see e.g. Eisenriegler (1997),
Hanke et al. (1999), Bringer et al. (1999)]. Here we concentrate on the opposite
case of small spherical particles, which, while large on a microscopic scale, are
much smaller than the polymer size Rg and other characteristic mesoscopic
lengths.

The effect of the particle on the chain can be described in terms of a δ-
function potential, located at the center rS of the particle, which weakly repels
the monomers. This implies that the Boltzmann weight WS for the chain that
arises from the presence of the sphere tends, for small R, to (Eisenriegler et al.
1996)

WS[rj ] → 1 − AgR
d−1/νm(rS) (2.109)

where the [rj ]-dependent modified monomer density m(r), with a scaling di-
mension equal to its inverse length dimension d−1/ν, is defined in Eq. (2.63).
The exponent of R in (2.109) follows from comparing scaling dimensions,
and the amplitude Ag is dimensionless and universal (Hanke et al. 1999;
Eisenriegler 2000). The potential is “weak” for small R, since d − 1/ν > 0.
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For ideal chains (Eisenriegler et al. 1996; Hanke et al. 1999; Eisenriegler 2000)

Ag =
12πd/2

d Γ( 1
2 (d − 2))

(2.110)

i.e. Ag = 4π in d = 3, and for chains in a good solvent

Ag ≈ 18, d = 3 (2.111)

As an application of Eq. (2.109), consider the bulk-normalized end density
in a dilute polymer solution with an embedded sphere

E(r) =
∫

dr′ ZN,S(r, r′)∫
dr′ ZN,b(r, r′)

= {WS}(r,b) (2.112)

where the average {· · ·}(r,b) is over all configurations of a single chain with
one end fixed at the point r in the bulk. Using (2.109),

E(r) → 1 − Ag{m(rS)}(r,b) (2.113)

For an ideal chain Eq. (2.63) leads to

{m(rS)}(r,b) =
R2

g

N

∑N
j=1 Zj,b(r, rS)

∫
dr′ ZN−j,b(rS, r′)∫

dr′ ZN,b(r, r′)

=
R2

g

L

∫ L

0
dL′ Zb(L′; r, rS) (2.114)

In the regime R2
g ∝ L � (r−rS)2 considered in (2.93), we replace the upper

limit of integration L by ∞, and (2.42) yields

{m(rS)}(r,b) → R2
g

L

S̃d

|r − rS|d−2 , S̃d =
Γ( 1

2 (d − 2))
4πd/2 (2.115)

Here the second factor is the Gaussian propagator at the critical point, i.e.
the solution of (2.39) in the bulk for vanishing Laplace variable t. For d = 3,
where Ag = 4π, S̃d = 1/(4π), and R2

g/L = 1, the prediction (2.113), (2.115)
of the small-sphere expansion (2.109) is consistent with the result (2.93) of
the direct calculation.

As a second application, consider the free-energy cost F of immersing a
small spherical particle in a bulk solution. Since the change in free energy
due to a weak perturbation with a Boltzmann factor W close to unity equals,
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apart from a factor −kBT , the unperturbed average [over free chains in the
bulk, denoted “(fc,b)”] of the perturbation W − 1,

F

kBT
→ −{W − 1}(fc,b) = AgR

d−1/νR1/ν
g n (2.116)

This relation is quite general and also applies to dilute and semidilute solu-
tions in a good solvent. For a solution of ideal chains in d = 3, it reduces to
the result F → kBTn 4πRL in (2.97) for a small sphere.

The full power of small-particle expansions such as (2.109) will become ap-
parent in Sections 2.7 to 2.9, where we study the polymer-induced interaction
of the small particle with a wall or another particle.

The replacement (2.109) has a field-theoretical counterpart. To see this,
consider for a single chain the fraction

ZN,S(rA, rB)/ZN,b(rA, rB) = {WS}(rA,rB;b) (2.117)

of chain configurations with fixed ends at rA and rB that survive on immers-
ing a spherical particle, and assume that R 	 Rg, |rA − rS|, |rB − rS|,
so that (2.109) can be used. Rewriting {m}(rA,rB;b) = R1/ν

g {Fm}(rA,rB;b) by
means of (2.17) and ZN,b by (2.14) in terms of the field theory, one finds

ZN,S(rA, rB) → L
〈
[1 − AgR

d−1/νΨg(rS)] · ϕ
(1)
AB

〉
b

(2.118)

with Ψg from (2.68). This shows that the Boltzmann factor exp(−HS) for the
field Φ that arises from the presence of the sphere tends for small R to

exp(−HS[Φ]) ∝ 1 − AgR
d−1/νΨg(rS) (2.119)

Thus, as expected in the Landau–Ginzburg–Wilson field theory, a small meso-
scopic sphere with Dirichlet condition (2.34) [corresponding to a “free spin”
boundary condition in a model for magnetism (Binder 1986; Diehl 1986;
Diehl 1997)] at its surface acts, at distant points, like a temperature that is en-
hanced in a microscopic region around rS, as described by the point operator
Ψg ∝ Φ2 in Eq. (2.68).
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2.5.3
Polymer Solution of Arbitrary Overlap

On immersing a sphere in a polymer solution in a good solvent in d = 3 spatial
dimensions, the free-energy cost F depends, apart from the size ratio R/Rg,
on the degree of overlap s = nR3

g between the chains (see Fig. 2.4). While
for a large particle F = 4

3πR3Π, with Π the bulk osmotic pressure (2.3), for
a small particle the expression in (2.116) with Ag from (2.111) applies. Thus
F/kBT displays a crossover between the simple power laws ∝ R3n, ∝ (R/ξ)3,
and ∝ nR1/ν

g R3−1/ν , which apply in the lower and upper left corners, and
in the region of large Rg/R, respectively, of Fig. 2.4. The smooth crossovers
between the three power laws occur where Rg/ξ, ξ/R, or R/Rg are of order
unity (see the dashed lines in Fig. 2.4).

Applying the “renormalized mean-field approximation” of Maassen et al.
(2001) to a sphere in a polymer solution with an inter-chain overlap of
4
3πR3

gn = 1.16, i.e. where the chains just begin to overlap, leads to the depen-

Fig. 2.4 Various limits of a single spheri-
cal particle in a solution of non-adsorbing
polymers in a good solvent. The sphere
becomes a planar wall for vanishing
Rg/R (i.e. for points on the vertical axis).
It becomes a “small” sphere, with radius
much smaller than the characteristic
mesoscopic polymer lengths (such as the
radius of gyration Rg of a polymer chain
in the dilute solution or the mesh size ξ

in the semidilute solution), as Rg/R be-
comes large with the inter-chain overlap
nR3

g kept fixed. The following limits are
shown: planar wall in a dilute solution
(lower left corner); planar wall in a semi-
dilute solution (upper left corner); small
sphere in a dilute solution (lower right
corner); and small sphere in a semidilute
solution (upper right corner). The dashed
lines are crossover regions.
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Fig. 2.5 Size-ratio dependence of the free-energy cost F for an inter-chain
overlap of 4

3πR3
gn = 1.16. The “renormalized mean-field approximation”

(full line) is compared with Monte Carlo results (black dots). The dashed
line shows the asymptotic behavior for small spheres.

dence12) of F/kBT on the size ratio R/Rg shown by the full line in Fig. 2.5.
This agrees quite well with the Monte Carlo results from Fig. 8 in Louis et al.
(2002), shown as black dots. The dashed line in Fig. 2.5 shows the result of
the small-sphere expansion (2.116).

12) R. Maassen, E. Eisenriegler, and A. Bringer, unpublished. Extending the discussion in Section
III of Maassen et al. (2001) to a sphere of arbitrary mesoscopic radius R, Eqs. (3.2) to (3.5)
there are supplemented by R = µ−1Rr and Rr → R̄r(λ) = Rr e−λ, and Eq. (3.10) is
replaced by

ρ0

L̄r
+ ζ0n̄rL̄r +

R0

R̄2
r

= 1

The analogues of Eqs. (3.6) to (3.9) and (3.11) to (3.14) for the immersion free energy of the
sphere are

F/kBT = F(nr, Lr, Rr, ur) = F(n̄r, L̄r, R̄r, ur,FP)

and

F(n̄r, L̄r, R̄r, ur,FP) ≈ Ftree(n̄r, L̄r, R̄r, ur,FP)

The value R0 = 0.18 has been chosen so that, for R 	 Rg, ξ, the result

4π(ρ0/R0)1−1/νnR1/ν
g R3−1/ν

for Ftree is consistent with (2.116) and (2.111) from the small-sphere expansion.
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2.6
Parallel Plates and Plate–Wall Interaction

2.6.1
Chain Trapped Between Two Parallel Plates

2.6.1.1 Force on the Plates
Consider a single chain confined between two parallel planar walls (plates)
with separation D. On decreasing D, the partition function of the chain de-
creases, and its free energy increases. The chain exerts a disjoining force f

on each of the two plates, with

f/kBT = D−1Y (D/Rg) (2.120)

in the scaling region. For a wide slit, Y → 1, and

f/kBT → D−1, Rg 	 D (2.121)

since this limit corresponds to the half-space with a polymer density n =
1/(DA), if we confine the chain to a large but finite lateral area A � Dd−1.
For a narrow slit

Y (D/Rg) ∝ (D/Rg)−1/ν , Rg � D (2.122)

since f/kBT ∝ N (see de Gennes 1979).
Note the difference in the N → ∞ behavior of f/kBT for a chain trapped

between parallel walls and a chain fixed at a distance zA from the boundary
wall of a half-space. While the force f is ∝ N in the first case, in the half-space
the long chain can avoid the boundary wall, and f in Eq. (2.76) is independent
of N .

In terms of the ratio

U(D/Rg) = D−1
∫ D

0
dz Efilm(z) (2.123)

of the partition function of a single chain between two plates, averaged over
the distance z of its fixed end from one plate, to the partition function of the
chain with fixed end in the bulk, the force reads

f

kBT
=

∂

∂D
ln(DU) (2.124)

i.e. Y (y) equals 1 + ∂ lnU/∂ ln y.
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2.6.1.2 Ideal Chain
For an ideal chain, the function U can be calculated, e.g. via (2.44), from the
Laplace transform

Gfilm(r‖, z; r′
‖, z

′)

=
∫

dd−1p

(2π)d−1 eip(r−r′)‖ sinh[wzmin] sinh[w(D − zmax)]
w sinh(wD)

(2.125)

of the partition function Zfilm(r, r′) of a chain confined between two parallel
repulsive plates with the ends fixed at r and r′. Here w is from Eq. (2.57), and
zmin = min(z, z′), zmax = max(z, z′). This leads to

DU = L
∫

d(r − r′)‖

∫ D

0
dz

∫ D

0
dz′ Gfilm

= L
(

D

t
− 2

t3/2 +
4

t3/2

1
1 + eDt1/2

)

= D
∑

j=1,3,5,...

8
(πj)2

e−(πj)2L/D2
(2.126)

with the limits

U →
(

1,
8
π2 e−π2L/D2

)
(2.127)

for (Rg 	 D, Rg � D), which are consistent with (2.121) and (2.122).

2.6.1.3 Monomer Density Profile and Density–Force Relation
The modified density profile for the number of monomers of the trapped
chain has the scaling form

∫
dd−1r‖ {m(r‖, z)}(one chain in film)

= (R1/ν
g /D)Xg(z/Rg, D/Rg) (2.128)

valid if D, Rg, and the distance z from one of the two walls are large compared
with the microscopic lengths.

For a wide slit with Rg 	 D,

Xg → Mh(z/Rg), z ≤ D/2 (2.129)
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is determined by the bulk-normalized half-space profile M = Mh intro-
duced in Eq. (2.59). The density–force relation (2.65) is fulfilled, since, due to
Eq. (2.62), the left-hand side of (2.128) for z 	 Rg tends to Bgz

1/ν/D, which
equals Bgz

1/νf/kBT [see (2.121)].
For a narrow slit with Rg � D, consider for simplicity an ideal polymer

chain, where

Xg → 2 sin2(zπ/D), Rg � D (2.130)

As expected, the result is independent of Rg and readily follows via Eqs. (2.47)
and (2.48) from a representation of the propagator or Green’s function Gfilm

in (2.125) in terms of eigenfunctions, in which the ground state domi-
nates (de Gennes 1979). Thus the near-wall behavior of the left-hand side
of (2.128) is given by (R1/ν

g /D)2(zπ)2/D2 and again equals Bgz
1/νf/kBT ,

since f/kBT → ∂D(−π2L/D2) in this limit due to (2.124) and (2.127), and
since Bg = 1, ν = 1/2, and R1/ν

g = L for ideal chains in d = 3.
For excluded-volume interactions between chain monomers, the density

profile in a narrow slit in d = 2 (strip) and d = 3 (two parallel walls) has been
obtained and the density–force relation tested by means of Monte Carlo sim-
ulations on hypercubic lattices [see Hsu and Grassberger (2003) and Hsu and
Grassberger (2004)]. Coping with rather large corrections to scaling by choos-
ing an appropriate (“Domb–Joyce”) value for the excluded-volume strength,
and allowing (de Gennes 1979) for a small non-vanishing extrapolation length,
Hsu and Grassberger (2003) and Hsu and Grassberger (2004) find the values

B = (2.04 ± 0.04, 1.70 ± 0.08), d = (2, 3) (2.131)

in two and three spatial dimensions for the quantity
B = [R2

ee/(dR2
g)]

1/(2ν)Bg, which determines the universal amplitude Bg in
the density–pressure relation (2.65). The value for d = 2 is consistent with the
field-theoretical prediction B = 2.01 and for d = 3 not far from the estimate
B = 1.85 based on a first-order expansion in ε = 4−d [see Eisenriegler (1997)
and Eisenriegler (1998)]. The estimate (2.74) of Bg follows from B = 1.85
and the universal amplitude 6R2

g/R2
ee = 0.959 in d = 3 given by Schäfer

(1998).

2.6.2
Plate–Wall Interaction

Inserting a particle in a dilute solution of polymers (with or without excluded-
volume interaction) in the half-space bounded by a planar wall increases the
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polymer free energy by

F = p0

∫
dr [Ewithout particle(r) − Ewith particle(r)] (2.132)

where the E are the bulk-normalized end densities, the integral is over the half-
space (with Ewith particle vanishing inside the particle), and p0 is the ideal-gas
pressure in Eq. (2.98). The right-hand side of Eq. (2.132) equals, apart from a
factor kBT , the number [−∆N ]n of chains removed on inserting the particle
(cf. footnotes 10 and 11), and the derivation is similar to that of Eqs. (2.94),
(2.102), and (2.103).

The free energy of interaction

δF = F − lim
D→∞

F (2.133)

between the particle and the wall follows from F on subtracting its value for
infinite distance, i.e. the free energy it costs to immerse the particle in bulk
solution.

We now immerse a particle with the shape of an (infinitely thin) plate that
is oriented parallel to the wall, with area A and a linear dimension A1/(d−1)

that is much larger than Rg and the distance D between wall and plate. Then
one may disregard edge effects, Ewith particle(r‖, z) between the wall and the
plate is independent of r‖ and equal to Efilm of the previous subsection, and
the free-energy cost per unit area is

F/A = p0

[
D −

∫ D

0
dz Efilm(z)

]
= p0D(1 − U) (2.134)

The free-energy difference in this equation increases for increasing D, and the
force per unit area ∂DF/A = ∂DδF/A pushing the plate toward the wall is
given by (Asakura and Oosawa 1954)

p0{1 − U − D ∂U/∂D} = p0 − nDUf (2.135)

where the force f of a single chain between plates is given by (2.124). The
number of chains per unit area between the large plate and the wall equals
n

∫ ∞
0 dz Efilm = nDU , since it can be expressed by the number of chain ends

via the bulk-normalized end density E and the number density n of chains
in the bulk. Thus the force per unit area in the last expression of Eq. (2.135)
is the difference of the ideal-gas pressure p0 of the chains outside and the
disjoining force per unit area nDUf of the chains in between the wall and
the plate.
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For ideal chains, substituting Eq. (2.126) into (2.134) leads to the expression

δF/A = −pL 4
t3/2

1
1 + eDt1/2 = −4pL1/2

∫
dτ

2πi
eτ 1

τ3/2

1
1 + eθτ1/2 (2.136)

for the free energy of interaction between plate and wall per unit area. Here
the integration path in the complex τ plane encircles the cut that extends from
τ = −∞ to τ = 0 counterclockwise, and the scaling variable θ = D/L1/2

equals D/Rg in d = 3. Equation (2.136) implies the limiting behavior

δF/A = −p0{2[2(L/π)1/2] − D + · · · , 16(L/π)1/2θ−2 e−(θ/2)2} (2.137)

for {D 	 L1/2, D � L1/2}. This is consistent with the general results that
for D/Rg → 0 the force per unit area on the plate equals the bulk pressure
p0 and that δF/A equals minus twice the free energy per unit area due to a
single boundary wall. For an ideal chain, this is 2p0(L/π)1/2 (see (2.84) or the
second term on the right-hand side of (2.97)).

2.7
Sphere–Wall Interaction

Here we consider a spherical particle (S) in a polymer solution in the half-
space (h) bounded by a planar wall (w), as shown in Fig. 2.6.

Fig. 2.6 A spherical particle (S) immersed in a polymer solution near a
planar wall (w). The monomer and end densities of polymer chains
(not shown) depend on the position r = (r‖, z) in the half-space (h).
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2.7.1
Derjaguin Approximation for a Large Sphere

For a large spherical particle withR � Rg, D, one may apply the Derjaguin ap-
proximation, which replaces the sphere by a local superposition of immersed
plates with local distance

D̃ = D +
r2
‖

2R
(2.138)

from the wall and leads to the form

δF =
∫

dd−1r‖ [δFp‖w/A]D→D̃ (2.139)

of the free energy of interaction between the sphere and the wall. Here
δFp‖w/A is the free energy of interaction per unit area between the wall
and a plate considered in Section 2.6.2. For ideal chains with δFp‖w/A given
by Eq. (2.136), one finds

δF = −2p0RR2
gV(D/Rg) (2.140)

in d = 3, where

V(θ) = 4π
∫

dτ

2πi
eττ−2 ln[1 + exp(−θτ1/2)] (2.141)

implying that

V → {4π ln 2 − 4
√

π θ + (π/2)θ2 + · · · , 32
√

π θ−3 exp[−(θ/2)2]} (2.142)

for {D 	 Rg, D � Rg}.
The supposedly exact Derjaguin expressions (2.140) to (2.142) should

be compared with the Asakura–Oosawa type (Asakura and Oosawa 1954;
Asakura and Oosawa 1958) prediction δFphs = −p0v, where v is the volume
of the overlap between a layer of width R̃ around the sphere and a layer of
width 2R̃ with center on the wall. Choosing the effective sphere radius R̃ of
the polymer as in Eq. (2.101) and defining Vphs as in Eq. (2.140), one finds,
for R � Rg, D, that

Vphs = [2
√

2 −
√

(π/2) θ]2 (2.143)

provided D < 2R̃ ≡ 4Rg/
√

π, and Vphs = 0 for D ≥ 2R̃. While the linear
and quadratic terms in θ are identical to those in (2.142), Vphs(0) = 8 is about
10% smaller than V(0) = 8.71. A comparison for arbitrary D/Rg is shown
in Fig. 2.7.
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Fig. 2.7 Scaled interaction free energy δF/(2R2
gRp0) =

Y(D/(
√

2Rg), R/(
√

2Rg)) of a sphere and a wall for large particle-
to-polymer size ratio R/Rg. The lower curve Y(ϑ, ∞) = −V(D/Rg)
is the exact Derjaguin result (2.141), and the upper curve Yphs(ϑ, ∞) =
−Vphs is the Asakura–Oosawa approximation (2.143).

2.7.2
Small-Particle Expansion for a Small Sphere

Immersing a small spherical particle with R 	 D,Rg in a polymer solution
in the half-space changes the polymer free energy per kBT by

F

kBT
= −{W − 1}(fc,hs) = AgR

d−1/νR1/ν
g nMh(zS) (2.144)

where Mh is the bulk-normalized monomer density in the half-space without
the sphere, and zS = D + (R/2) is the distance of the center of the sphere
from the boundary wall. As in the derivation of (2.116), we have used here the
small-sphere expansion (2.109) and the form on the left-hand side of (2.64) of
the modified monomer density {m}(fc,hs) in the half-space. Subtracting the
free-energy change at zS = ∞, i.e. in the bulk, where Mh = 1, one finds

δF = −kBTnAgR
d−1/νR1/ν

g [1 − Mh(zS)] (2.145)

for the free energy of interaction (2.133) between sphere and wall. Equation
(2.145) applies not only to a solution of ideal chains where Mh is given by
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(2.55) but also, with the appropriate form of Mh, to dilute or semidilute
polymer solutions in a good solvent.

For illustration and later use we confirm Eq. (2.144) by a field-theoretical
calculation in the case of a dilute polymer solution, where Eq. (2.132) applies.
Substituting the form

E(rA) =
∫

drB 〈ϕ(1)
AB〉

/ ∫
drB 〈ϕ(1)

AB〉b

of the bulk-normalized end-density in (2.132) and using (2.119) to expand

〈ϕ(1)
AB〉h − 〈ϕ(1)

AB〉S,h → 〈ϕ(1)
AB · Ψg(rS)〉hAgR

d−1/ν (2.146)

for a small sphere radius R, one finds

F = p0AgR
d−1/ν{m(rS)}(fc,h)/n (2.147)

since the half-space profile is given by (Eisenriegler 1997)

{m(r)}(fc,h) = n

∫
drA

∫
drB L〈ϕ(1)

AB · Ψg(r)〉h∫
drB L〈ϕ(1)

AB〉b
(2.148)

where the limit k = 0 is understood. Equation (2.147) is in agreement with
(2.144) if the form of {m}(fc,h) on the left-hand side of (2.64) is taken into
account.

For ideal chains in d = 3, the above result simplifies, since∫
drB L〈ϕ(1)

AB〉b = 1 and Ψg = Φ2/2. One can use Eqs. (2.49) and (2.47)
to obtain F = p0AgRLMh(zS), which is consistent with Eq. (2.144).

2.7.3
Arbitrary Size Ratios

Here we consider the sphere–wall interaction mediated by a solution of ideal
chains for arbitrary size ratio R/Rg. The half-space profile Mh in Eq. (2.145)
and the function −V in Eq. (2.140) increase monotonically with increasing
distance from the surface so that the interaction is attractive for both small and
large spheres. However, the behaviors for small and large spheres are quite
different. For a small sphere, δF has a point of inflection where the mean
force ∂DδF/∂D pushing the particle toward the wall has a maximum. For a
large sphere, the force decreases monotonically with increasing distance.

Figure 2.8 shows numerical results (Bringer et al. 1999) for the end den-
sity E(r) obtained by solving the diffusion equation (2.36), and from which
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Fig. 2.8 Bulk-normalized density of chain ends E(r‖, z) for R/(
√

2Rg) =
1/4 and (a) D/R = 1, (b) D/R = 3, and (c) D/R = 5. The deviation
Eh − E from the density without the sphere, and thus the number −∆N
of chains removed on inserting the sphere, decreases as the sphere
approaches the wall.

the immersion free energy for a sphere near a wall can be calculated via
Eq. (2.132). The resulting dependence of δF/(2R2

gRp0) ≡ Y(ϑ, ρ) on the
scaled sphere–wall distance ϑ = D/(

√
2Rg) ≡ θ/

√
2 is shown for various

size ratios ρ = R/(
√

2Rg) in Fig. 2.9. Also shown is the scaling function
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Fig. 2.9 (a) Scaling function Y(ϑ, ρ)
for the interaction free energy versus
ϑ = D/(

√
2Rg) for various fixed values

of ρ = R/(
√

2Rg), ranging from ρ = ∞
(lowest curve, Derjaguin approximation
(2.140) and (2.141)) to ρ = 0 (uppermost
curve, small radius expansion (2.145)).
The squares, circles, triangles, and dia-
monds show numerical data.

For ρ < ρc ≈ 0.7 there is an inflection
point in the ϑ dependence of Y , which is
absent for ρ > ρc.
(b) Scaling function f(ϑ, ρ) of the
polymer-induced force. The points of
inflection of Y in (a) correspond to max-
ima of f . For ρ > ρc, the function f(ϑ, ρ)
has a maximum at ϑ = 0, corresponding
to a sphere that touches the wall.

f(ϑ, ρ) = ∂ϑY(ϑ, ρ) ≡ ∂DδF/(
√

2RgRp0) of the mean force ∂DδF pushing
the particle toward the wall.

Besides expressing F via Eq. (2.132) in terms of the number −∆N of re-
moved chains, which is a global quantity, one may study the polymer-induced
interaction between sphere and wall by means of the local density–pressure
relation (2.65). Since ∂DδF equals the reduction of the force on the wall due
to insertion of the sphere and must be related to the near-wall behavior of the
monomer densities M and Mh in the presence and absence of the sphere
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(Eisenriegler 1997; Bringer et al. 1999), then

∂DδF = p0

∫
dr‖ [1 − (M(r)/Mh(z))z→0] (2.149)

This result shows that the depletion M(r) < Mh(z) of the monomer density
due to the sphere leads to a positive ∂DδF , i.e. to an attractive sphere–wall
interaction. Some results for the monomer depletion are shown in Fig. 2.10.

Fig. 2.10 Depletion of the normalized monomer density
[M(r)/Mh(z)]z→0 near the wall due to the sphere as a function of
r‖/R for ρ = R/(

√
2Rg) = 1 and various values of ϑ = D/(

√
2Rg)

(see Fig. 2.6). For ρ = 1 > ρc, the depletion is more pronounced,
and hence the force increases, as the sphere moves toward the wall,
i.e. as ϑ is decreased (see Fig. 2.9).

2.8
Interaction Between Two or More Spheres

2.8.1
Derjaguin Approximation for Large Spheres

For two spheres “a” and “b” with radiiRa andRb much larger than mesoscopic
polymer lengths, such as Rg or the screening length ξ, and the smallest
surface-to-surface distance D between the spheres, one may proceed as in
Section 2.7.1. The local distance between the two spheres is
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D̃ = D +
r2
‖

2Ra
+

r2
‖

2Rb
(2.150)

Comparing with Eq. (2.138), one sees that the Derjaguin expression for the
free energy of interaction δF between the two spheres is given by Eqs. (2.139)
to (2.141) except that R is now replaced by (1/Ra + 1/Rb)−1. In particular,
for ideal chains in d = 3,

δF = −2p0
RaRb

Ra + Rb
R2

gV(D/Rg) (2.151)

where V is given in Eqs. (2.141) and (2.142).

2.8.2
Two Small Spheres

For polymer configurations with two particles “a” and “b” present, the Boltz-
mann factor contains the product WaWb of the single-particle contributions.
Each factor has the form (2.109), if the particles are spheres with radii Ra

and Rb much smaller than the center-to-center distance rab = |ra − rb| and
the mesoscopic polymer lengths. The difference F in polymer free energy in
the presence and absence of the particles is F = −kBT ln{WaWb}, where
the curly brackets denote an average over all chain configurations in the bulk
solution without particles. The free energy of interaction or potential of mean
force between the two particles,

δF = −kBT ln
( {WaWb}

{Wa}{Wb}
)

(2.152)

is the difference between F and the sum Fa + Fb of the free energies
−kBT ln{Wa} and −kBT ln{Wb} for immersing “a” without “b” and “b”
without “a”. Clearly δF depends on rab and tends to zero for rab → ∞.
On expanding δF in terms of Wa − 1 and Wb − 1 for small particles, the self-
terms of first and second order drop out, and

δF

kBT
= −[{(Wa − 1)(Wb − 1)} − {Wa − 1}{Wb − 1}]

= −A2
g(RaRb)d−1/νK(rab) , R 	 rab,Rg, ξ , (2.153)

where

K(rab) = {m(ra)m(rb)} − (nR1/ν
g )2 (2.154)

is the correlation function of modified monomer densities (2.63) in the solu-
tion without particles.
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Equations (2.153) and (2.154) allow us to relate (Eisenriegler 2000) the non-
monotonic dependence (Chatterjee and Schweizer 1998) of the second virial
coefficient of a dilute solution of small spherical colloids on the degree of inter-
chain overlap in the embedding polymer solution to the overlap dependence
of the compressibility of the polymer solution without colloids.

For a semidilute solution, it has been conjectured (Obukhov and Semenov
2005) that the correlation function K becomes negative as rab increases be-
yond a certain distance of the order of the screening length ξ, passes through
a minimum, and then increases toward zero. This conjecture implies via
Eq. (2.153) a free energy δF of interaction between the two particles that
decreases toward zero, i.e. a depletion repulsion, at large distances.

If the polymer solution is dilute, the average {· · ·} in Eq. (2.154) factors into
averages over configurations of a single chain. Contributions to m(ra)m(rb)
from different chains (P �= P ′ in the product

∑
P

∑
P ′ of two modified

monomer densities m in Eq. (2.63)) cancel the last term in (2.154), and con-
tributions from the same chain P = P ′ lead to

K(rab) → n

∫
dy {m(ra)m(rb)}y, dilute solution (2.155)

In Eq. (2.154) and above (2.155), m denotes the density of all chains in the
solution. However, in (2.155), m is the density of a single chain, and {m m}y

is the average over configurations of the single chain in the bulk with one
end fixed at the position y. In terms of the “magnetic analog” or field theory,
(2.155) reads

K(rab) → n
L ∫

drA
∫

drB 〈ϕ(1)
AB · Ψ(ra) · Ψ(rb)〉∣∣

k=0

L ∫
drB 〈ϕ(1)

AB〉∣∣
k=0

(2.156)

where 〈· · ·〉 is the k-component average in the bulk without particles. For
ideal chains, the denominator on the right-hand side of (2.156) equals unity,
Ψ → Φ2/2, and the average in the numerator can be evaluated by Wick’s
theorem, leading to

K(rab) → n 2L 1
t2

e−√
t rab

4πrab
=

2n

πrab
R2

g i2erfc
(

rab

2Rg

)
(2.157)

which is essentially the Fourier transform of the Debye scattering func-
tion (de Gennes 1979; des Cloizeaux and Jannink 1990; Schäfer 1998). Here
i2erfc is the two-fold iterated complementary error function (Abramowitz and
Stegun 1972). This is monotonically decreasing and leads to an interaction
(2.153) between the two spheres that is attractive at all distances.
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2.8.3
Three Small Spheres

A polymer solution induces not only pairwise-additive but also many-body
interactions. For example, the immersion free energy

Fabc = Fa + Fb + Fc + δFab + δFbc + δFac + δFabc (2.158)

of three spherical particles “a”, “b”, and “c” contains a three-body term δFabc.
Here Fa is the single-particle contribution of particle “a”, and δFab is the
interaction free energy of the two particles “a” and “b”, as defined in the
previous subsection.

The leading contributions for small spherical particles in a solution of ideal
chains in d = 3 are given by (Hanke et al. 1999)

Fa/p0 = 4πRaR2
g

δFab/p0 = −32πRaRb
R2

g

rab
ε2

(
rab

2Rg

)
(2.159)

δFabc/p0 = 32πRaRbRcR2
g

[
1

rbarac
ε2

(
rba + rac

2Rg

)

+
1

rabrbc
ε2

(
rab + rbc

2Rg

)
+

1
racrcb

ε2

(
rac + rcb

2Rg

)]

where

ε2(�) = i2erfc(�) (2.160)

While the one- and two-body terms in Eqs. (2.159) are from (2.116), (2.153),
and (2.157), the three-body term comes from

δFabc/p0 = A3
g(RaRbRc)d−1/ν

∫
dy {m(ra)m(rb)m(rc)}y (2.161)

for a dilute polymer solution. Its evaluation for ideal chains is similar to that
of (2.157).

Note that δFabc in Eqs. (2.159) is negligible if one of the inter-particle
distances significantly exceeds Rg.

2.8.4
Arbitrary Size Ratios

For ideal chains, the dependence of the two-sphere interaction on the colloid-
to-polymer size ratio could be investigated via the diffusion equation, as
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described in Section 2.7.3 and Bringer et al. (1999). In Tuinier et al. (2000)
explicit estimates were obtained by approximating the density profile M of
chain monomers in the presence of two spheres by the product of the profiles
of the two single spheres.

2.9
Small Anisotropic Particles

Here we consider anisotropic particles that are large on a microscopic scale
but much smaller than characteristic mesoscopic polymer lengths such as Rg,
and we concentrate on the case of ideal polymers.

For simplicity, the discussion is confined to particle shapes with a symmetry
axis of revolution and reflection symmetry about the center. This encompasses
prolate or oblate ellipsoids and the dumbbells composed of two touching or
overlapping spheres, shown in Fig. 2.11. Both types of particle shapes can
be synthesized (Snoeks et al. 2000; van Blaaderen 2003; van Blaaderen 2004;
Johnson et al. 2005).

For the dumbbell shapes, detailed predictions can easily be made (Eisen-
riegler 2004). The reason is that on large length scales a system at the critical
point is not only scale-invariant but also conformally invariant (Cardy 1986).

Fig. 2.11 Simple shapes of anisotropic colloidal particles with a symmetry
axis of revolution and reflection symmetry about the center.
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The space outside a dumbbell of two touching spheres, for example, can be
obtained from the space inside two parallel plates by means of an inversion
about the point midway between the plates, which is a conformal, angle-
preserving, transformation. Due to the high symmetry, much is known about
a critical system between parallel plates and can be taken over to the dumbbell
geometry. It is instructive to compare dumbbells with ellipsoids, which are
studied by Eisenriegler et al. (2003).

2.9.1
Operator Expansions for Small Anisotropic Particles

Here we generalize the operator approach for small spherical particles in Sec-
tion 2.5.2 to the case of anisotropic particles. In addition to isotropic operators
such as Ψ ∝ Φ2 in (2.119), we must now include anisotropic operators (Eisen-
riegler et al. 2003; Eisenriegler 2004; Eisenriegler and Bringer 2005).

For a particle P with a symmetry axis of revolution and reflection symmetry
about the center, the Boltzmann factor in the corresponding one-component
Gaussian field theory has the expansion

exp(−HP[Φ]) ∝ 1 − wI − wA (2.162)

with
wI = βIOI + · · · (2.163)

the isotropic contribution and

wA = βVIOVI + βVIIOVII + · · · (2.164)

the anisotropic contribution. Here we explicitly display only the leading terms,
with the operators13)

13) In the Gaussian model, the operators OVI and OVII are related to the second derivative
along the particle axis ∂2

‖ε of the energy density ε ∝ −Φ2 and to the diagonal component

T‖,‖ =
∑

µ,ν ρµρνTµν of the stress tensor parallel to the particle axis, at the critical point
of the Gaussian field theory, and to isotropic operators via

OVI = 1
2T‖,‖ +

d − 2
8(d − 1)

∂2
‖Φ2 +

1
8(d − 1)

∆Φ2 − 1
4Φ∆Φ

and

OVII = − 1
2T‖,‖ +

d

8(d − 1)
∂2

‖Φ2 − 1
8(d − 1)

∆Φ2 + 1
4Φ∆Φ , .

This leads to a parameterization of the small-particle expansion as in Eisenriegler (2004).
For non-Gaussian field theories, ∂2

‖ε and the appropriate stress component T‖,‖ remain
operators with a definite scaling dimension [see e.g. Brown and Collins (1980)]. Note that
the weight (βVI − βVII)/2 of T‖,‖ vanishes for the needle with βVI, βVII in (2.195).
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OI = Φ2/2, OVI = (∂‖Φ)2/2, OVII = Φ(∂2
‖Φ)/2 (2.165)

where

∂‖ =
3∑

α=1

ρα∂α (2.166)

is a derivative along the axis of revolution characterized by the unit vector
ρ. The scaling dimensions d − 2, d, and d of OI, OVI, and OVII determine
the orders βI ∝ (size)d−2, βVI ∝ βVII ∝ (size)d in the particle size (typical
particle diameter) of the three amplitudes shown in Eqs. (2.163) and (2.164).

The small-particle operator expansion can be used at and near the critical
point of the field theory as long as the particle size is much smaller than the
correlation length ξFT ∝ √

t. Since the amplitudes βI, βVI, and βVII of the
leading isotropic and anisotropic operators are independent of t, a simple
way to determine their dependence on the particle shape is to calculate the
propagator 〈Φ(r1)Φ(r2)〉(c)P ≡ 〈ϕ12〉(c)P in the Gaussian model, right at the
critical (c) point t = 0 and in the presence of the particle, and compare orders
(size)d−2 and (size)d with the small-particle expansion

〈ϕ12〉(c)P = 〈[1 − wI − wA] · ϕ12〉(c)b (2.167)

which follows from (2.162). Here ϕ12 ≡ Φ(r1)Φ(r2) is defined as in (2.40),
and the quantities 〈Oj · ϕ12〉b on the right-hand side of (2.167) denote Wick
decompositions into factors 〈ΦΦ〉b, which correspond to connected diagrams.

2.9.1.1 Dumbbells
The exterior of two tangentially touching spheres (see the dumbbell in Fig. 2.12)
is mapped onto the space (film) between two parallel planes by means of the
inversion

r̂ ≡ (r̂‖, ẑ) =
r

r2 (2R)2, r ≡ (r⊥, r‖) (2.168)

about the dumbbell center r = 0. This is a conformal, angle-preserving trans-
formation that maps the surfaces of the two spheres of radius R with centers
on the negative and positive r‖ axis onto the planar boundaries ẑ = −2R

and +2R of the film. Here r⊥ and r‖ are the components of r perpendicular
and parallel to the dumbbell axis of revolution, and r̂‖ and ẑ are the com-
ponents of r̂ parallel and perpendicular to the boundary planes of the film.
Once the propagator in the film geometry is known, the propagator outside
the dumbbell follows from the transformation (Cardy 1986)

〈Φ(r1)Φ(r2)〉(c)DB = b(r̂1)xΦb(r̂2)xΦ〈Φ(r̂1)Φ(r̂2)〉(c)film (2.169)
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Fig. 2.12 Dumbbell of two tangentially touching spheres of radius R
(full lines) and its circumscribing ellipsoid (dashed lines).

under a conformal mapping, where

b(r̂) = | det(∂r̂/∂r)|1/d = (2R)2/r2 (2.170)

is the local dilatation factor of the mapping (2.168).
For two overlapping spheres or a lens, the exterior can be conformally

mapped onto the interior of a wedge (see Fig. 2.13). The mapping is an in-
version about the point denoted by the heavy dot on the left-hand side of the
two parts of Fig. 2.13. The two boundary half-planes of the wedge and the
edge where they meet are mapped onto the two spherical boundary surfaces
of the particle and the circle of diameter D where they intersect. Since the
mapping preserves angles, the opening angle α of the wedge equals the angle
of intersection of the two spheres.

The angle α = π/2 is an interesting and simple special case. The Gaussian
wedge propagator follows from the propagator in the bulk on adding three
mirror images about the boundary planes. Adapting the transformation laws
(2.169) and (2.170) to this case yields

〈ϕ12〉(c)DB(π/2)/S̃d = r
−(d−2)
12 + Rd−2[ − (q+

1 q+
2 + R2r2

12)
−(d−2)/2

+ (q+
1 q+

2 + q−
1 q−

2 + R2r2
12)

−(d−2)/2

− (q−
1 q−

2 + R2r2
12)

−(d−2)/2] (2.171)

for the dumbbell propagator, with

q±
i = (r±

i )2 − R2, (r±
i )2 = r2

i ± ri‖
√

2R + R2/2 (2.172)
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Fig. 2.13 Conformal mapping of a dumbbell or lens onto a wedge.

for i = 1, 2, and with S̃d from (2.115). Here r+
i and r−

i are the distances of
the point ri from the centers of the two spheres of radius R that form the
dumbbell. One can easily check that the right-hand side of (2.171) vanishes
if, for example, r1 approaches the surface of the sphere with center on the
positive r‖ axis so that q+

1 vanishes. Each of the four contributions in (2.171)
satisfies the Laplace equation.
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Expanding for ri � R up to order Rd, one finds

〈ϕ12〉(c)DB(π/2) → S̃d r
−(d−2)
12 − Rd−2(2 − 2−(d−2)/2)τ I/S̃d

− Rd{τ IV(2 − 2−d/2)/(d − 2)

+ τVI[1 + (2−(d−2)/2/(d − 2))] + τVII}/S̃d (2.173)

where the

τi = 〈ϕ12 · Oi〉(c)b (2.174)

are Gaussian bulk averages at the critical point involving the operators (2.165),
and

OIV = (∇Φ)2/2 (2.175)

is a non-leading isotropic operator. Explicit expressions for τi follow from
Wick’s theorem and the form of the propagator in the bulk [the second factor
in (2.115)]. For d = 3 they can be obtained from Eqs. (3.38) to (3.44) in
Eisenriegler et al. (2003).

Dumbbells with an angle α = π/g with g = 3, 4, . . . can be treated in
a similar fashion,14) with an increasing number of images for increasing g.
For tangentially touching spheres, DB = DB(0), the ri � R expansion of the
propagator 〈ϕ12〉(c)DB(0) can be explicitly evaluated via Eq. (2.169), since the
corresponding film propagator has a simple expansion for the two points r̂i

near r̂ = 0 in the midplane of the film [see e.g. Section 3B and Appendix C
of Eisenriegler (2004)]. This result for 〈ϕ12〉(c)DB(0) and the result (2.173) for

〈ϕ12〉(c)DB(π/2) imply, in d = 3, the weights

[βI(0);βI(π/2)] = 4πR[2 ln 2; 2 − 2−1/2] = 4πR[1.386; 1.293] (2.176)

for the leading isotropic operator OI and

[βVI(0);βVI(π/2)]OVI + [βVII(0);βVII(π/2)]OVII

= 2πR3{[6.010; 3.414]OVI + [3.606; 2]OVII} (2.177)

for the leading anisotropic operators. The numbers in (2.177) follow from
the analytic expressions 5ζ(3) = 6.010 and 3ζ(3) = 3.606, where ζ is the
Riemann zeta function, and 2(1 + 2−1/2) = 3.414.

14) For a wedge of arbitrary angle, see Cardy (1983), and for dumbbells and lenses with arbitrary
α, see Eisenriegler and Bringer (2005).
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As expected intuitively, the dumbbell of two overlapping spheres with an-
gle π/2 has a smaller isotropic weight and considerably smaller anisotropic
weights than the dumbbell of touching spheres of the same radius.

2.9.1.2 Ellipsoids
Consider a particle with the shape of a prolate or oblate ellipsoid of revolution
in d = 3 dimensions as shown in Fig. 2.11. We introduce the interfocal
distance 2f , which is related to the long and short axes l and s of the ellipsoid
by

l2 − s2 = (2f)2 (2.178)

and the dimensionless parameter

ξE = (l, s)/(2f) for (prolate, oblate) (2.179)

characterizing the degree of shape anisotropy of the particle. For ξE → ∞, the
prolate or oblate ellipsoid becomes a sphere of radius l/2 = s/2; for ξE → 1,
the prolate ellipsoid becomes an infinitely thin needle of length l = 2f ; and
for ξE → 0, the oblate ellipsoid becomes an infinitely thin circular disk of
radius l/2 = f . The parameter ξE also appears on introducing spheroidal
coordinate systems (Flammer 1957).

The leading isotropic and anisotropic contributions in the expansion (2.162)
to (2.164) for the ellipsoid are determined by

βI = fBI(ξE) (2.180)

and

βVIOVI + βVIIOVII = f3[BVI(ξE)OVI + BVII(ξE)OVII] (2.181)

where (Eisenriegler et al. 2003)

BI = 4π

(
1
ap

,
1
ao

)
(2.182)

is positive and

BVI =
4π

3

([
ap− 1

ξE

]−1

+2
[
ap− ξE

ξ2
E−1

]−1

,

[
1
ξE

−ao

]−1

+2
[

ξE

1+ξ2
E

−ao

]−1)

(2.183)

BVII = 1
3 (BI,−BI) (2.184)
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for the (prolate, oblate) cases, respectively. Here

(ap, ao) =
(

1
2

ln
[
ξE + 1
ξE − 1

]
, arctan

1
ξE

)
=

(
arcosh

l

s
, arccos

s

l

)
(2.185)

A small prolate ellipsoid was considered before by Odijk (2000), where βI was
determined and denoted by 8πE.

The special cases of a weakly deformed sphere, a thin needle, and a circular
disk are discussed by Eisenriegler et al. (2003). Here we consider, for both the
dumbbells with α = 0 and α = π/2, the prolate circumscribing ellipsoid (CE)
that circumscribes the dumbbell, touches it at the highest and lowest points,
and has the same curvature at these points (see Figs. 2.12 and 2.14). For the
CE of the dumbbell with α = 0,

l = 4R, s = 2
√

2R, f =
√

2R, ξE =
√

2 (2.186)

and for α = π/2

l = (2 +
√

2)R, s = 2
√

1 + 1
2

√
2 R,

f =
√

1
2 (

√
2 + 1)R, ξE =

√√
2 + 1

(2.187)

On using (2.180) to (2.184), this yields the weights

[βI(0);βI(π/2)]CE = 4πR[1.609; 1.437] (2.188)

of the leading isotropic operator OI, and the leading anisotropic contributions

[βVI(0);βVI(π/2)]CEOVI + [βVII(0);βVII(π/2)]CEOVII

= 2πR3{[3.743; 2.038]OVI + [2.139; 1.156]OVII} (2.189)

in the operator expansions for the circumscribing ellipsoids.
Table 2.1 collects the amplitudes for the particles in Figs. 2.12 and 2.14. The

leading isotropic and anisotropic perturbations of the polymer system for the
dumbbells are weaker and stronger, respectively, than for their circumscribing
ellipsoids. The dumbbells are indeed smaller and more anisotropic than the
ellipsoids. The amplitudes of OVI and OVII reflect the greater anisotropy of
the dumbbell of tangentially touching spheres (α = 0) and its circumscribed
ellipsoid than of the corresponding particles for α = π/2. This will show up in
the polymer-induced torque on the particle due to a planar wall. The isotropic
weights that determine the immersion free energies in a bulk solution of the
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Tab. 2.1 Small mesoscopic particles interacting with ideal chains in d = 3. The
quantities βI and βVI, βVII are the amplitudes of the leading isotropic and anisotropic
contributions to the Boltzmann weight reductions wI and wA in (2.162). The
dumbbells DB(0) and DB(π/2) are composed of two spheres with radius R that touch
tangentially and intersect at an angle π/2, respectively, and CE(0) and CE(π/2) are
their circumscribing ellipsoids, shown in Figs. 2.12 and 2.14. The isotropic weights are
compared with the weight for a sphere of radius R.

DB(0) CE(0) DB(π/2) CE(π/2) Sphere

βI/(4πR) 1.386 1.609 1.293 1.437 1
βVI/(2πR3) 6.010 3.743 3.414 2.038 0
βVII/(2πR3) 3.606 2.139 2 1.156 0

Fig. 2.14 Dumbbell of two spheres of radius R intersecting at an angle
α = π/2 (full lines) and the circumscribing ellipsoid (dashed lines).

dumbbell and the ellipsoid differ less for α = π/2 (about 10%) than for α = 0
(about 15%).

2.9.2
Interaction Between an Anisotropic Particle and a Wall

The evaluation of the free energy (FP)W required to immerse a small
anisotropic particle P with its center at a distance zP from a planar wall pro-
ceeds as in Section 2.7.2. First consider the leading contribution

[(FP)W]leading/p0 = βIL[χh(zP)]2 = βIR2
gMh(zP/Rg) (2.190)

which is of first order in the particle size and comes from the isotropic operator
OI. Here Mh is the bulk-normalized monomer density in the half-space,
denoted by M in Eq. (2.55).

The free-energy cost [(FP)W]leading of immersing a small anisotropic par-
ticle in the unbounded bulk is given by Eq. (2.190) with Mh = 1. Explicit
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results for the two dumbbells and ellipsoids from Figs. 2.12 and 2.14 follow
on substituting the expressions for βI from Table 2.1.

The leading anisotropic contribution to (FP)W comes from the two
anisotropic operators OVI and OVII. Proceeding as in (2.146) with (2.119)
and (2.147), and using Wick’s theorem, one finds

[(FP)W]leading anisotropic/p0 = L{βVI[∂‖χh(z)]2 + βVIIχh(z)[∂2
‖χh(z)]}z=zP

= (cos2 ϑ)B (2.191)

where

B = (βVI + βVII) erfc
(

zP

Rg

)
− βVII erfc

(
zP

2Rg

)
(2.192)

Here ϑ is the angle between the axis of revolution of the particle and the
surface normal of the wall at z = 0, as shown for ellipsoids in Fig. 2.15. The
factor cos ϑ in the orientation-dependent interaction (2.191) comes from the
derivative ∂‖, defined in (2.166) via ∂‖ψ(z) = ρzψ

′(z), where ρz = cos ϑ is
the component of ρ perpendicular to the wall.

The quantity B is proportional to the third power of the particle size (see
Table 2.1) and has the limits

B →
{

βVI

[
1 −

(
2 +

βVII

βVI

)
zP√
πRg

]
, −βVII

2Rg√
πzP

e− 1
4 (zP/Rg)2

}
(2.193)

for {zP/Rg 	 1, zP/Rg � 1}. In the intermediate regime, B changes sign
at a scaled distance zP/Rg = y0(l/s), which depends on the shape of the

Fig. 2.15 Particles of prolate and oblate ellipsoidal shape near a planar
wall. The ellipsoid is oriented parallel to the wall for ϑ = π/2 in the
prolate case and for ϑ = 0 in the oblate case.
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Fig. 2.16 The amplitude A ∝ B/
(particle size)3, which specifies the de-
pendence (2.191) of the free energy of
immersion (δPF )W on the orientation
of the small anisotropic particle with
respect to the planar wall. The case
ADisk = B/R3

Disk of a circular disk
of radius RDisk given in Eq. (2.194) is
shown. On decreasing the distance zP
between the center of the disk and the
wall, ADisk passes through a maximum

value of 0.501 at zP/Rg = 1.55, changes
sign at zP/Rg = y0,Disk = 0.99, and
drops to the value −16/3 for zP/Rg � 1.
For zP/Rg > y0,Disk and < y0,Disk, re-
spectively, the most favorable orientation
of the disk is perpendicular and parallel to
the wall with cos ϑ = 0 and 1, respectively
(see Eq. (2.191) and Fig. 2.15). For a
general prolate or oblate small ellipsoid,
the qualitative form of B/(particle size)3

is that of −ADisk or ADisk, respectively.

particle. For the special case of a circular disk with a radius RDisk = f , one
finds βj = f3Bj(0) = −R3

Disk(16/3, 8/3) for j = (VI, VII) and

B/R3
Disk ≡ ADisk ≡ 8

[
−erfc

(
zP

Rg

)
+

1
3

erfc
(

zP

2Rg

)]
(2.194)

which is shown in Fig. 2.16.
Since βVI and βVII are both (positive, negative) for (prolate, oblate) particles,

the free energy (FP)W for larger particle–wall separations zP/Rg > y0 is
lowest if the particle is aligned perpendicular to the wall with ϑ = (0,π/2),
and for the smaller separations zP/Rg < y0, if it is aligned parallel to the wall
with ϑ = (π/2, 0).

This interesting behavior of (FP)W and the torque can be most easily un-
derstood intuitively for an ellipsoid with the shape of a thin needle of length l

and maximum width s, which for s → 0 in d = 3 is an infinitesimally small
perturbation of the polymer system with (Eisenriegler et al. 2003)

βI → 2πl

λ
, βVII → πl3

6λ
,

βVI

βVII
→ 1 +

1
λ

. (2.195)
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Here λ = ln(2l/s) tends logarithmically to infinity as the width of the needle
becomes much smaller than its length. In this limit βVI/βVII → 1, βVIOVI +
βVIIOVII → βVII ∂2

‖Φ2/4, and

B → βVII[2 erfc(yP) − erfc(yP/2)] = βVII
1
2

[
d2

dy2 Mh

]
y=yP

(2.196)

where yP = zP/Rg, is proportional to the curvature of the monomer density
Mh in the half-space without the particle. For the needle y0 equals the point
of inflection yw = 0.72 of Mh.

This is plausible, since turning the needle around its center from a parallel
to a perpendicular orientation with respect to the wall lowers the polymer
free energy if the needle is inserted at a distance from the wall where M′′

h is
negative. The reason is that the needle prefers polymer-depleted regions, and
on turning it, the half of the needle closer to the wall gains more depletion
than the farther half of the needle loses. If M′′

h is positive, the situation is
reversed.

For the other shapes, the particle is not an infinitesimal perturbation,
βVI/βVII > 1, and the yP dependence of B differs from the y dependence
of M′′

h. For example an expansion for particles with βVI/βVII slightly larger
than unity shows that y0 is larger than yw.

For the interaction with chains in a good solvent, one can expect interesting
modifications of the ideal-chain results, since the degeneracy of scaling di-
mensions of the two anisotropic operators in Eqs. (2.162) to (2.166) is lifted and
the stress-tensor component T‖,‖ mentioned in footenote 13 (see page 132)
becomes the leading anisotropic particle–operator.

2.10
Summary and Concluding Remarks

The methods of field theory are useful not only for pure polymer systems
(de Gennes 1979; des Cloizeaux and Jannink 1990; Schäfer 1998) but also for
polymers interacting with boundaries and colloidal particles.

For example, the density–pressure relation (2.65), which is based on the
field-theoretical boundary operator expansion (2.72), predicts both the power-
law exponent 1/ν for the spatial variation of the density profile of chain
monomers near a boundary (de Gennes 1979) and the amplitude Bg relating
the density to the pressure that the polymers exert on the boundary. The two
universal numbers 1/ν and Bg have been estimated with both field theory and
Monte Carlo simulations (Hsu and Grassberger 2003; Hsu and Grassberger
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2004), and there is satisfactory agreement, as we discuss in Section 2.6.1 for
a polymer chain trapped between parallel walls.

Other examples are the small-sphere expansion (2.109), based on the expan-
sion (2.119) for a spherical inclusion in the field theory, and the corresponding
expansions (2.162) to (2.166) for small anisotropic particles. These expansions
represent the particle in terms of local polymer or field-theoretical operators,
multiplied by amplitudes that depend on the size and shape of the particle.
If there are additional perturbations, such as a wall or other particles, their
distances, orientations, and shapes only affect the averages of the particle
operators, and not the amplitudes. Thus the complicated problem of deter-
mining the induced interaction between the particle and the perturbations
reduces, for small particle size, to two much simpler problems: (1) calculat-
ing the necessary correlation functions in the presence of the perturbations,
with the particle, including its shape and boundary condition, replaced by a
point operator, and (2) evaluating the corresponding amplitude by consider-
ing the particle in the absence of the perturbations. For the leading isotropic
and anisotropic amplitudes, it is sufficient to consider the corresponding field
theory right at the critical point.

At the critical point, the theory is not only scale-invariant but also con-
formally invariant (Cardy 1986). In addition to translations, rotations, and
dilatations, conformal transformations include the inversion about a sphere.
These transformations map spheres onto spheres and allow us to derive the
critical point behavior in the presence of a colloidal particle with the shape of a
sphere, a dumbbell composed of two touching spheres, and a dumbbell of two
overlapping spheres or a lens from the simpler geometries of the half-space,
the space between parallel plates, and in a wedge, respectively (see Fig. 2.13).
This considerably simplifies the calculation of small particle amplitudes.

We have applied these and other field-theoretical tools (such as the diffusion
equation for ideal polymers or the “renormalized mean-field approximation”
for polymers with inter-chain interactions) to polymer–colloid interactions
involving one or more colloidal particles.

In Sections 2.4 and 2.5, we discuss polymers interacting with a single wall
and sphere, respectively. For a solution of ideal polymer chains, the induced
density profiles are given in Eqs. (2.52), (2.55), (2.91), (2.105), and (2.108), and
the free energy F it costs to immerse the spherical particle in Eq. (2.97). The
form of the free energy F is compared with the Asakura–Oosawa expression
(2.100), which neglects chain flexibility. The result (2.116) for F for a small
sphere applies in the good solvent regime and for arbitrary inter-chain overlap.
Results for the overlap dependence of the surface tension of a large sphere
and the colloid-to-polymer size dependence of F for finite overlap are shown
in Eqs. (2.85)–(2.90) and in Fig. 2.5, respectively. The pressure distribution
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and force on a wall from an end-grafted ideal chain are given in Eqs. (2.83),
(2.75), and (2.76).

Induced interactions between a plate and a wall, between a sphere and a
wall, and between two and three spheres are discussed in Sections 2.6, 2.7,
and 2.8, respectively. The ideal-chain results for the plate–wall interaction and
the related Derjaguin expression for the interaction of a large sphere with a
wall are given in Eqs. (2.136), (2.137), and (2.140) to (2.142), respectively.
Figure 2.7 compares the Derjaguin expression with the Asakura–Oosawa ap-
proximation (2.143). The result (2.144) for a small sphere applies in both
dilute and semidilute solutions, and Fig. 2.9 shows the sphere–wall interac-
tion and force for arbitrary particle-to-polymer size ratio. The latter can be
obtained either from the number of chains removed on inserting the parti-
cle, following from Eq. (2.132) and the end density in Fig. 2.8, or from the
force on the wall, following from the density–force relation (2.149) and the
local monomer density. Figure 2.10 shows the corresponding depletion pro-
files near the wall. Results for the interaction of two large spheres are given
in Eq. (2.151). For small spheres, the small-particle expansion allows us to
evaluate the polymer-induced many-body interactions systematically, and we
give the results for two and three spheres in Eqs. (2.153), (2.154), (2.157), and
(2.159), respectively.

In Section 2.9 we consider small anisotropic colloidal particles, such as
prolate or oblate ellipsoids of revolution and dumbbells, composed of two
spheres that touch or intersect at an angle α (see Fig. 2.11). For the interaction
with ideal chains, the small-particle amplitudes of ellipsoids are given in
Eqs. (2.180) to (2.184), and of dumbbells with α = 0 (touching spheres) and
α = π/2 in (2.176) and (2.177), respectively. In Table 2.1 we compare the
two dumbbells with the smallest circumscribing ellipsoids, as shown in Figs.
2.12 and 2.14. The preferred orientation of the anisotropic particle interacting
with a planar wall (see Fig. 2.15) changes from perpendicular to parallel to
the wall as the particle–wall distance decreases (see Eqs. (2.191) to (2.194) and
Fig. 2.16). The change in preferred orientation is understood most easily for
a needle-shaped particle – see the paragraph containing Eq. (2.195).

We have only considered situations with a few colloidal particles, obtaining
the polymer-induced immersion free energies of single particles, the pair
(and three-body) interaction free energies between colloid particles, and that
between a single particle and a wall. These results are interesting in their own
right and should be experimentally observable (Verma et al. 1998; Ohshima
et al. 1997; Rudhardt et al. 1998). They are also a necessary prerequisite for
calculating the phase diagrams of polymer–colloid mixtures for finite colloid
concentrations.
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3

Rod-Like Brownian Particles in Shear Flow

Jan K.G. Dhont and Wim J. Briels

Abstract

This chapter is a self-contained treatment of various aspects concerning sus-
pensions of uniaxial rod-like colloidal particles in flow. First of all, the friction
coefficients of rods in an otherwise unbounded fluid will be calculated and
the motion of a single rod in flow will be discussed, for both a non-Brownian
and a Brownian rod. The generalized diffusion equation for interacting rods,
the so-called N -particle Smoluchowski equation, is then discussed, on the
basis of which the Doi–Edwards equation of motion for the orientational
order-parameter tensor is derived. This microscopic derivation reveals the
approximations that are involved in the Doi–Edwards theory. One of the ap-
proximations involves the neglect of dynamical correlations. Computer simu-
lations indicate that such correlations might be important. On the basis of the
Doi–Edwards equation (supplemented with an appropriate closure relation)
together with experimental results, the phase behavior of rods in simple shear
flow is addressed. A microscopic expression for the stress tensor for suspen-
sions of rigid colloidal particles is then derived, and subsequently expressed in
terms of the orientational order-parameter tensor. The viscoelastic response
of suspensions of stiff rods is discussed, and theory is compared with experi-
ments and simulations. In the last section, current research interests will be
briefly discussed, including banding transitions, the non-equilibrium phase
diagram under flow conditions, and phase separation kinetics.
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3.1
Introduction

Flow affects the microstructural order of colloidal systems in two respects:
center-to-center correlations are affected by flow, and flow can induce changes
in orientational order. For spherical colloids, flow-induced changes of macro-
scopic properties find their origin entirely in shear-induced changes of center-
to-center correlations. For non-spherical colloidal particles, there is the addi-
tional effect that flow tends to align single colloidal particles due to the torques
that the flowing solvent exerts on their cores. For very elongated colloidal
cores, single-particle alignment is dominant over shear-induced changes of
center-to-center correlations. For such systems, equations for one-particle ori-
entational distribution functions, with the neglect of flow-induced distortions
of center-to-center correlations, are sufficient to predict their macroscopic be-
havior under flow. For spherical colloidal particles, however, one-particle dis-
tribution functions are not affected by flow, so that theory for spheres should
be based on equations for correlation functions.

This chapter deals with stiff, uniaxial colloidal rods with a very large aspect
ratio in shear flow. It will be assumed throughout the chapter that the center-
to-center correlation function is not affected by flow, and is thus equal to the
corresponding correlation function in equilibrium, in the absence of flow. In
addition, the singlet function of rods surrounding a given rod is taken equal
to the singlet function of that given rod at the same instant of time. As will be
discussed, these two simplifications are equivalent to the neglect of dynamical
correlations. There are indications from computer simulations, however, that
dynamical correlations might play a role.

Examples of flow-affected macroscopic phenomena that will be discussed in
the present chapter are the shear-induced shift of the isotropic–nematic phase
transition and the shear-rate-dependent viscoelastic response. The effect of
shear flow on microstructural order, which is at the origin of shear-induced
macroscopic phenomena, will be considered in detail. In addition, shear flow
induces phenomena that do not occur in the absence of flow, such as pattern
formation (or, more specifically, shear banding) and dynamical states under
stationary applied flow. These will be addressed only briefly at the end of this
chapter.

The aim of this chapter is to set up, in a self-contained fashion, a micro-
scopic theory of the behavior of rods in flow. Some of the results presented
here are on a textbook level, some are re-derivations of well-known equations,
and some are at the edge of current research interests. Much of the introduc-
tory material on colloids is also discussed by Doi and Edwards (1986), Russel
et al. (1991) and Dhont (1996).
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First of all, the so-called velocity-gradient tensor will be defined in Section 3.2.
This tensor describes the type of flow that is applied. Two types of flow are
of particular importance: simple shear flow and elongational (or extensional)
flow. Simple shear flow is a velocity profile where the gradient in the fluid flow
velocity is constant, whereas for elongational flow the sample is compressed
in one direction and elongated in the other direction. Such flows can be either
stationary or oscillatory.

Colloidal rods tend to align in a flow field due to the interaction of the
solvent with the surface of the core of the rods. As a first step to understand
how orientational order is affected by flow, the force and torque of the solvent
on a single rod in an otherwise unbounded fluid must be calculated. Since
the linear dimensions of the rods are much larger than the size of solvent
molecules, the solvent can be described on the basis of hydrodynamics. The
rod is treated as a macroscopic object as far as its interactions with solvent
molecules is concerned. The basic knowledge of hydrodynamics relevant for
colloids is developed in Section 3.3. The main result here is that inertial effects
can be neglected on a time scale that is relevant for colloids, leading to the
so-called creeping flow equations for the solvent flow velocity. These are linear
equations of motion, for which the Green’s function, known as the Oseen
tensor, is derived in Section 3.3. Friction of rods in a flowing solvent is then
treated on the basis of these basic hydrodynamic equations in Section 3.4.
Friction coefficients can be calculated exactly for ellipsoidal rods of arbitrary
aspect ratio, which involves an exact solution of the creeping flow equations
(Happel and Brenner 1983). Alternatively, friction coefficients are derived in
Section 3.4 on the basis of the bead model for a rod, by analyzing the forces
that act on beads.

Once the hydrodynamic friction coefficients are known, the orbits of the
orientation of a non-Brownian rod in a flow field can be analyzed. These so-
called Jeffery orbits are discussed in Section 3.5. Here, interactions between
rods are not incorporated, i.e. the orbits of a single rod in an otherwise un-
bounded fluid are considered.

Brownian motion in the absence of flow is then analyzed in Section 3.6 on
the basis of Newton’s equation of motion. This equation of motion includes
a random force that describes forces originating from collisions of solvent
molecules with the surface of the colloidal particle. Such equations of motion
containing a fluctuating term are referred to as Langevin equations. Specifying
certain statistical properties of the random force allows one to distinguish
between several important time scales and the calculation of the mean square
displacement. Again, this analysis is performed for a single rod in an otherwise
unbounded solvent.

For the description of Brownian motion and diffusion of rods at higher
rod concentration, where interactions between rods are important, it is more



150 3 Rod-Like Brownian Particles in Shear Flow

convenient to employ equations of motion for probability density functions.
The fundamental equation of motion of this sort, the so-called Smoluchowski
equation, is derived in Section 3.7. In the same section it is shown that the
diffusive properties as obtained in Section 3.6 on the basis of the Langevin
equation are reproduced by the Smoluchowski equation.

At higher concentrations and when a flow field is applied, the orientational
order can be quantified by means of the orientational order-parameter tensor S.
This tensor is introduced in Section 3.8. It is shown that the largest eigenvalue
of this tensor is a measure for the degree of orientational order and that the
corresponding eigenvector defines the preferred orientation of the rods.

Orientational order for very dilute rod suspensions under flow are dis-
cussed in Section 3.9. Interactions between rods are neglected here. Solutions
of the Smoluchowski equation are shown to be in accordance with computer
simulations.

Orientational order and phase behavior of concentrated suspensions in
flow are analyzed by means of an equation of motion for the order-parameter
tensor S, which is known as the Doi–Edwards equation. In Section 3.10 this
equation of motion is derived from the Smoluchowski equation. This deriva-
tion is a microscopic basis of the Doi–Edwards equation, which reveals the
approximations that are implicit in the Doi–Edwards equation. To obtain a
closed equation of motion for the second-order tensor S, a closure relation
must be used for a fourth-order tensor. There are a number of propositions
for such a closure relation. A simple closure relation will be discussed in Sec-
tion 3.10, which is shown to be accurate to within about 10%. This particular
closure relation, however, cannot describe non-stationary states under sta-
tionary flow conditions like tumbling and wagging. To describe such states,
the Smoluchowski equation itself should be solved numerically. This will not
be discussed in the present chapter.

The isotropic–nematic phase transition is discussed in Section 3.11, both
without and with simple shear flow. The bifurcation diagram is introduced
and the paranematic-to-nematic and nematic-to-paranematic spinodals in the
shear-rate versus concentration plane are calculated. The prediction of the
shear-rate-dependent location of binodals is much more complicated, and
requires equations of motion for the orientational order-parameter tensor
and the flow field velocity, which should accurately account for strong inho-
mogeneities in concentration, orientational order parameter, and shear rate.
Such equations of motion will not be derived in this chapter, but only briefly
discussed in the last section on current research.

In the derivation of the Doi–Edwards equation of motion from the Smolu-
chowski equation, dynamical correlations are neglected. Computer simula-
tions indicate, however, that such correlations are important for the descrip-
tion of diffusion. The discrepancy between the analytically obtained effective
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collective diffusion coefficients within the Doi–Edwards theory and that found
in computer simulations is discussed in Section 3.12.

A microscopic derivation of the stress tensor in terms of the concen-
tration and the orientational order-parameter tensor is given in Section
3.13. Within certain approximations, a very similar expression as in the
Doi–Edwards–Kuzuu theory is obtained. On the basis of this expression for
the stress tensor, the (nonlinear) viscoelastic response of rod suspensions is
discussed in Section 3.14. Analytical and numerical predictions are compared
to experiments and computer simulations. A surprising finding is that the
zero-shear, zero-frequency shear viscosity is a linear function of the concen-
tration up to very high concentrations, in accordance with computer simula-
tions. Comparison with experiments indicates a sensitive dependence of the
viscoelastic behavior on the flexibility of the core of the rods. So far, no the-
ory on the dynamics and viscoelastic response is available that incorporates
flexibility.

Section 3.15 is a (certainly biased) overview of the current research interests
in the field of rod suspensions under shear flow. The possible non-equilibrium
phase diagram is addressed, together with banding transitions, non-stationary
states, and the kinetics of phase separation and band formation.

3.2
The Velocity-Gradient Tensor

A linear flow profile is characterized by means of the so-called velocity-
gradient tensor G, where the flow velocity u at position r is written as
u = G · r. For spatially varying flow profiles, velocities can be described
locally by such a linear flow profile, provided that gradients are small on the
length scale set by the size of the colloidal particles. The velocity-gradient
tensor can have several different forms. In the case of so-called simple shear
flow, the velocity-gradient tensor is usually denoted as Γ, and is equal to

Γ = γ̇


0 1 0

0 0 0
0 0 0


 , simple shear flow (3.1)

The corresponding flow profile is a flow in the x direction, with its gradient
in the y direction, as sketched in Fig. 3.1(a). The z direction is commonly
referred to as the vorticity direction. The strength of the flow is characterized
by the shear rate γ̇, which equals the spatial gradient ∂ux/∂y of the flow
velocity ux in the x direction. For so-called elongational or extensional flow,
where the velocity-gradient tensor is denoted as E, we have
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Fig. 3.1 (a) Simple shear flow, where L is the gap width; (b) elongational
flow, sometimes also referred to as extensional flow, where the extensional
and compressional axes are indicated; (c) rotational flow, with arrows
indicating the flow direction.

E = γ̇


0 1 0

1 0 0
0 0 0


 , elongational flow (3.2)

the flow of which is sketched in Fig. 3.1(b). In such an elongational flow,
deformable objects tend to elongate along the so-called extensional axis, and
suppressed along the compressional axis. These two directions are indicated
in Fig. 3.1(b). Whenever it is not specified whether simple shear flow or
elongational flow is considered, the velocity-gradient tensor will be denoted
as G.

We will encounter the symmetric part E = 1
2 [G + GT] of the velocity-

gradient tensor, where the superscript “T” stands for the transpose of the
corresponding tensor. For elongational flow, the velocity-gradient tensor is
already symmetric: this is why we denoted the velocity-gradient tensor for
elongational flow by E in Eq. (3.2). For simple shear flow we have

E = 1
2 γ̇


0 1 0

1 0 0
0 0 0


 , simple shear flow (3.3)

We will sometimes also encounter the antisymmetric part Ω = 1
2 [G − GT]

of the velocity-gradient tensor. For elongational flow the antisymmetric part
is zero, while for simple shear flow we have

Ω = 1
2 γ̇


 0 1 0

−1 0 0
0 0 0


 , simple shear flow (3.4)



3.3 Hydrodynamics 153

The flow velocities corresponding to flow with a velocity-gradient tensor equal
to E in Eq. (3.3) orΩ in Eq. (3.4) are sketched in Fig. 3.1(b) and (c), respectively.
The former case is an elongational flow, also referred to as extensional flow;
while the second is pure rotational flow. Note that

Γ = E + Ω (3.5)

so that simple shear flow can be decomposed into a linear combination of
elongational and rotational flow.

In laboratory experiments, the shear rate is either independent of time, or
the shear rate can be sinusoidally oscillating:

γ̇ = time independent, stationary flow

γ̇(t) = γ̇0 cos(ωt), oscillatory flow
(3.6)

where ω is the frequency of oscillation and γ̇0 is referred to as the shear-rate
amplitude. Oscillatory experiments can be employed to probe the dynamics
of a system of Brownian particles.

3.3
Hydrodynamics

Consider a system containing large rod-like particles immersed in a fluid.
There are three types of interactions to be distinguished in such a system:
interactions of rods with rods, solvent molecules with solvent molecules, and
rods with solvent molecules. The latter two types of interactions can be de-
scribed on the basis of phenomenological equations for fluid flow, provided
that the linear dimensions of the rods are much larger than the size of the
solvent molecules. Such solutions of large molecules are referred to as Brown-
ian or colloidal systems. The large difference in relevant length scales between
the solvent and the assembly of Brownian rods allows one to describe the sol-
vent on a phenomenological level, without losing the microscopic basis for
the assembly of Brownian particles. In such a phenomenological treatment,
only the macroscopic quantities of the fluid, such as its viscosity and mass
density, enter the equations of interest. In the present section, the friction
coefficients of rods are calculated, which will be used later in this chapter in
the microscopic equations of motion for rod-like Brownian particles.

The mechanical state of the solvent is characterized by the local velocity
u(r, t) at position r at time t, the pressure p(r, t), and the mass density
ρ(r, t). All these fields are averages over small volume elements that are lo-
cated at the various positions r. These volume elements must be so small that
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the state of the fluid hardly changes within the volume elements. At the same
time, the volume elements should contain many fluid molecules, to be able to
define such averages properly. In particular we wish to define the thermody-
namic state of volume elements, which is possible when they contain a large
number of solvent molecules, and when they are in internal equilibrium, i.e.
when there is local equilibrium. In this way the temperature field T (r, t) may
be defined. The temperature dependence of, for example, the mass density
is then described by thermodynamic relations. These thermodynamic rela-
tions are an important ingredient in a general theory of hydrodynamics. For
our purposes, however, the temperature and mass density may be considered
constant. Temperature variations due to viscous dissipation in the solvent
are assumed to be negligible. At constant temperature, the only mechanism
to change the mass density of the solvent is to vary the pressure. For flu-
ids, however, exceedingly large pressures are needed to change the density
significantly; that is, fluids are quite incompressible. Brownian motion is not
vigorous enough to induce such extreme pressure differences, so that the
density will also be assumed constant. The assumption of constant tempera-
ture and density is also a matter of time scales. The relaxation times for local
temperature and pressure differences in the solvent are much faster than
typical time scales relevant for Brownian motion.

Assuming constant temperature and mass density leaves just two variables
that describe the state of the fluid: the fluid flow velocity u(r, t) and the
pressure p(r, t). Thermodynamic relations need not be considered in this
case, simplifying the phenomenological analysis considerably.

3.3.1
The Continuity Equation

The rate of change of the mass of fluid contained in some arbitrary volume W
is equal to the mass of fluid flowing through its boundary ∂W . The local ve-
locity at surface elements on ∂W can be written as the sum of its components
parallel and perpendicular to the surface. The parallel component does not
contribute to the inward and outward fluxes of mass through the boundary
∂W . Only the component u · n̂ of the flow perpendicular to the surface gives
rise to the inward and outward fluxes of mass, where n̂ is the unit normal of
the corresponding surface element. Hence,

d
dt

∫
W

dr ρ(r, t) = −
∮

∂W
dS · [ρ(r, t)u(r, t)]

where dS = n̂ dS, with dS an infinitesimal surface area. The minus sign
on the right-hand side is added because the mass in W decreases when u

is along the outward normal. The time derivative on the left-hand side can
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be taken inside the integral, while the integral on the right-hand side can be
written as an integral over the volume W , using Gauss’s integral theorem.
This leads to

∫
W

dr

(
∂

∂t
ρ(r, t) + ∇ · [ρ(r, t)u(r, t)]

)
= 0

where ∇ is the gradient operator with respect to r. Since the volume W is an
arbitrary volume, the integrand must be equal to zero. This can be seen by
choosing W as a sphere centered at some position r, with an (infinitesimally)
small radius. Within that small sphere, the integrand in the above integral is
constant, so that the integral reduces to the product of the volume of W and
the value of the integrand at the point r. Hence,

∂

∂t
ρ(r, t) + ∇ · [ρ(r, t)u(r, t)] = 0

This equation expresses conservation of mass, and is referred to as the conti-
nuity equation.

For a fluid with a constant mass density, the continuity equation reduces to

∇ · u(r, t) = 0 (3.7)

Fluids with an essentially constant mass density are referred to as incompress-
ible fluids, and Eq. (3.7) is therefore sometimes referred to as the incompressibil-
ity equation. Being nothing more than the condition to ensure conservation of
mass, this single equation is not sufficient to calculate the fluid flow velocity.
It must be supplemented by Newton’s equation of motion to obtain a closed
set of equations.

3.3.2
The Navier–Stokes Equation

The Navier–Stokes equation is Newton’s equation of motion for a small
amount of mass contained in a volume element within a fluid. Consider
such an infinitesimally small volume element, the volume of which is de-
noted as δr. The position r of that volume element as a function of time is set
by Newton’s equation of motion. The momentum that is carried by the mass
element is equal to ρ(r, t)(δr)u(r, t), so that Newton’s equation of motion
reads

ρ(r, t)δr
du(r, t)

dt
= f
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Fig. 3.2 Definition of the stress tensor Σ.

where f is the total force that is exerted on the mass element. Since in New-
ton’s equations of motion r is the time-dependent position coordinate of the
volume element, and dr/dt = u is the velocity of the volume element, the
above equation can be written as

ρ(r, t)δr
[
∂u(r, t)

∂t
+ u(r, t) · ∇u(r, t)

]
= f

Here, ∇u is a dyadic product, i.e. a tensor whose ijth component is equal to
∇iuj , with ∇i the differentiation with respect to ri, the ith component of r.

The total force f on the volume element consists of two parts. First of all,
there may be external fields that exert forces on the fluid. These forces are
denoted by (δr)f ext(r), that is, f ext is the external force on the fluid per unit
volume. The second part arises from interactions of the volume element with
the surrounding fluid.

The forces due to interactions with the surrounding fluid are formally
expressed in terms of the stress tensor Σ(r, t), which is defined as follows.
Consider an infinitesimally small surface area in the fluid, with surface area
dS and normal unit vector n̂. The force per unit area exerted by the fluid
located on the side of the surface area to which the unit normal is directed,
onto the fluid on the opposite side of the surface area, is by definition equal
to dS · Σ, with dS = n̂ dS (see Fig. 3.2).

Hence, by definition, the force of the surrounding fluid on the volume
element δr is equal to

∮
∂δr

dS′ · Σ(r′, t) =
∫

δr

dr′ ∇′ · Σ(r′, t) = δr ∇ · Σ(r, t)

where ∂δr is the boundary of the volume element. We have used Gauss’s
integral theorem to rewrite the surface integral as a volume integral. The last
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equation is valid due to the infinitesimal size δr of the volume element at
position r. The force fh on the volume element due to the interaction with
the surrounding fluid is thus given by

fh(r, t) = (δr) ∇ · Σ(r, t) (3.8)

There are two contributions to the stress tensor: a contribution resulting
from gradients in the fluid flow velocity, and a contribution due to pressure
gradients.

Consider first the forces due to pressure gradients. Let us take the volume
element δr to be a cube, with side of length δl. The pressure p is the force per
unit area, so that the force on the volume element in the x direction is equal
to

(δl)2[p(x − 1
2δl, y, z, t) − p(x + 1

2δl, y, z, t)] = −(δl)3
∂

∂x
p(x, y, z, t)

where (δl)2 is the area of the faces of the cube. The force on the volume
element is thus −(δr)∇p(r, t). We therefore arrive at ∇ · Σ = −∇p. The
contribution of pressure gradients to the stress tensor is thus easily seen to
be equal to

Σ(r, t) = −p(r, t) Î

with Î the (3×3)-dimensional unit tensor. This contribution to the stress ten-
sor is referred to as the isotropic part of the stress tensor, since it is proportional
to the unit tensor and therefore does not have a preferred spatial direction.

Next, consider the forces on the volume element due to gradients in the fluid
flow velocity. When the fluid flow velocity is uniform, i.e. when there are no
gradients in the fluid flow velocity, the only forces on the volume element are
due to the pressure and possibly external forces. In addition, there are friction
forces only when the volume element has a velocity that differs from that of the
surrounding fluid. The contribution to the stress tensor due to friction forces
is therefore a function of the spatial derivatives of the flow velocity, not of the
velocity itself. This contribution to the stress tensor can be formally expanded
in a power series with respect to the gradients in the fluid flow velocity. For not
too large gradients (such that the fluid velocity is approximately constant over
distances of many times the molecular dimension), the leading term in such
an expansion suffices to describe friction forces. The contribution of gradients
in the fluid flow velocity to the stress tensor is thus a linear combination of
the derivatives ∇iuj(r, t), where ∇i is the derivative with respect to the ith
component of r, and uj(r, t) is the jth component of u(r, t).
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There are also no friction forces when the fluid is in uniform rotation, in
which case the flow velocity is equal to u = Ω×r, with Ω the angular velocity.
Such a fluid flow corresponds to rotation of the vessel containing the fluid,
relative to the observer. Linear combinations of the form

∇iuj(r, t) + ∇jui(r, t) (3.9)

are easily verified to vanish in the case u = Ω × r. The stress tensor is thus
proportional to such linear combinations of gradients in the fluid velocity
field.

For isotropic fluids, with no preferred spatial direction, the most general
expression for the components Σij of the stress tensor as a result of friction
is therefore

ΣD,ij = η0[∇iuj + ∇jui − 2
3δij∇ · u(r, t)] + ζ0δij ∇ · u (3.10)

where the subscript “D” stands for the deviatoric part of the stress tensor. The
terms ∼ ∇·u(r, t) on the right-hand side are due to the linear combinations
(3.9) with i = j. The term − 2

3∇·u(r, t) is introduced to make the expression
between the square brackets traceless (meaning that the sum of the diagonal
elements of that contribution is zero). It could also have been absorbed into
the last term on the right-hand side. The constants η0 and ζ0, which are scalar
quantities for isotropic fluids, are the shear viscosity and the bulk viscosity of
the fluid, respectively. Notice that all terms proportional to ∇·u(r, t) are zero
for incompressible fluids.

We thus find the following expression for the total stress tensor for an
isotropic fluid:

Σ(r, t) = η0{∇u(r, t) + [∇u(r, t)]T − 2
3 Î ∇ · u(r, t)}

+ {ζ0 ∇ · u(r, t) − p(r, t)} Î (3.11)

where the superscript “T” stands for transposition. This expression for the
stress tensor leads to the Navier–Stokes equation:

ρ
∂u(r, t)

∂t
+ ρ u(r, t) · ∇u(r, t)

= η0 ∇2u(r, t) − ∇p(r, t) + (ζ0 + 1
3η0)∇(∇ · u(r, t)) + f ext(r) (3.12)

where the mass density and the shear and bulk viscosities are now taken to be
independent of position. For incompressible fluids, for which ∇·u(r, t) = 0
(see Eq. 3.7), the Navier–Stokes equation reduces to
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ρ
∂u(r, t)

∂t
+ ρ u(r, t) · ∇u(r, t) = ∇ · Σ(r, t) + f ext(r, t)

= η0∇2u(r, t) − ∇p(r, t) + f ext(r) (3.13)

Together with the continuity equation (Eq. 3.7) for incompressible fluids, this
equation fully determines the fluid flow and pressure once the external force
and boundary conditions are specified.

3.3.3
The Creeping Flow Equations

The different terms in the Navier–Stokes equation (Eq. 3.13) can be very
different in magnitude, depending on the problem at hand. In the present case
we are interested in fluid flow around small-sized objects (colloidal particles).
Let us estimate the magnitude of the various terms in the Navier–Stokes
equation for this case. A typical value for the fluid flow velocity is the velocity
v of the colloidal objects. The fluid flow velocity decreases from a value v,
close to a Brownian particle, to a much smaller value, over a distance of the
order of a typical linear dimension a of the particles (for spherical particles,
a is the radius; for rotating rods, a is the length of the rod). Hence, typically,
|∇2u| ≈ v/a2. Similarly, |u ·∇u| ≈ v2/a. The rate of change of u is v divided
by the time it takes the colloidal particle to lose its velocity due to friction with
the fluid. This time interval is equal to a few times M/γ, with M the mass
of the colloidal particle and γ its friction coefficient (this will be discussed in
more detail later in this chapter). Introducing the rescaled variables,

u′ = u/v, r′ = r/a, t′ = t/(M/γ)

transforms the Navier–Stokes equation (Eq. 3.13) to

ργv

M

∂u′

∂t′
+

ρv2

a
u′ · ∇′u′ =

η0v

a2 ∇′ 2
u′ − 1

a
∇′p + f ext

where ∇′ is the gradient operator with respect to r′. Introducing further the
dimensionless pressure and external force,

p′ =
a

η0v
p, f ′ ext =

a2

η0v
f ext

transforms the Navier–Stokes equation further to

ρ
a2γ

Mη0

∂u′

∂t′
+ Re u′ · ∇′u′ = ∇′ 2

u′ − ∇′p′ + f ′ ext
(3.14)
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The dimensionless number Re is the so-called Reynolds number, which is
equal to

Re =
ρav

η0
(3.15)

By construction we have

|u′ · ∇′u′| ≈ |∇′ 2
u′| ≈ 1

Hence, for very small values of the Reynolds number, the term proportional to
u · ∇u on the left-hand side of Eq. (3.14) may be neglected. Furthermore, for
spherical particles we have γ = 6πη0a, so that ρa2γ/Mη0 = 9ρ/2ρp ≈ 9/2,
with ρp the mass density of the Brownian particle. The prefactor of ∂u′/∂t′ is
thus approximately equal to 9/2. The time derivative should generally be kept
as it stands, also for small Reynolds numbers. Now suppose, however, that
one is interested in a description on the diffusive time scale τD � M/γ (the
significance of the diffusive time scale will be discussed later in this chapter).
For such times, the time derivative ∂u′/∂t′ is long relaned to zero, since u

goes to zero as a result of friction during the time interval M/γ. One may
then neglect the contribution to the time derivative that is due to relaxation of
momentum of the Brownian particle as a result of friction with the solvent.
The remaining time dependence of u on the diffusive time scale is due to
the possible time dependence of the external force and to interactions with
other Brownian rods, which vary significantly only over time intervals larger
than the diffusive time scale. The value of the corresponding derivative ∂u/∂t

can now be estimated as above: the only difference is that the time should be
rescaled not with respect to the time M/γ, but with respect to the diffusive
time scale τD. We now have t′ = t/τD, u′ = u/v, and |∂u′/∂t′| ≈ 1. The
transformed Navier–Stokes equation in this case reads

9
2

ρ

ρp

M/γ

τD

∂u′

∂t′
+ Re u′ · ∇′u′ = ∇′ 2

u′ − ∇′p′ + f ′ ext

where all derivatives of the fluid flow velocity u′ are of the order 1. Since
τD � M/γ, the time derivative due to changes of the fluid flow velocity as a
result of the time-varying external force and interactions with other Brownian
particles may now be neglected in addition.

For small Reynolds numbers and on the diffusive time scale, the
Navier–Stokes equation (3.16), written in terms of the original unprimed
quantities, therefore simplifies to

∇p(r, t) − η0∇2u(r, t) = f ext(r) (3.16)
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This equation together with the incompressibility equation (Eq. 3.7) are the
creeping flow equations. “Creeping” refers to the fact that the Reynolds number
is small, which is the case when the typical fluid flow velocity v is small.

A typical value for the velocity of a Brownian particle can be estimated from
the equipartition theorem, 1

2M〈v2〉 = 3
2kBT (kB is Boltzmann’s constant and

T is temperature). Estimating v ≈ √〈v2〉, using a typical mass of 10−17 kg
for a spherical particle with a radius of 100 nm and the density and viscosity of
water, the Reynolds number is found to be equal to 10−2. The hydrodynamics
of a fluid in which colloidal particles are embedded can thus be described on
the basis of the creeping flow equations.

For small Reynolds numbers and on the Brownian time scale, inertial forces
on fluid elements are thus small in comparison to pressure and friction forces.
The neglect of inertial contributions in the Navier–Stokes equation leads to
the linear equation (Eq. 3.16), which can be solved analytically in some cases.

3.3.4
The Oseen Tensor

An external force acting only at a single point r′ in the fluid is mathematically
described by a delta distribution:

f ext(r) = f0δ(r − r′) (3.17)

The prefactor f0 is the total force
∫

dr′ f ext(r′) acting on the fluid. Since
the creeping flow equations are linear, the fluid flow velocity at some point r

in the fluid, due to the point force at r′, is directly proportional to that point
force. Hence,

u(r) = T (r − r′) · f0

The tensor T is commonly referred to as the Oseen tensor, named after the
scientist who first derived an explicit expression for this tensor (Oseen 1927).
The Oseen tensor connects the point force at a point r′ to the resulting fluid
flow velocity at a point r. Note that T is a function of only the difference
coordinate r −r′ due to the translational invariance of a homogeneous fluid.
Similarly, the pressure at a point r is linearly related to the point force,

p(r) = g(r − r′) · f0

The vector g is referred to here as the pressure vector.
Consider an external force that is continuously distributed over the entire

fluid. Due to the linearity of the creeping flow equations, the fluid flow velocity
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at some pointr is simply the superposition of the fluid flow velocities resulting
from the forces acting at each point in the fluid. Hence,

u(r) =
∫

dr′ T (r − r′) · f ext(r′) (3.18)

The same holds for the pressure,

p(r) =
∫

dr′ g(r − r′) · f ext(r′) (3.19)

In mathematical language, the Oseen tensor and the pressure vector are
Green’s functions of the creeping flow equations for the fluid flow veloc-
ity and pressure, respectively. Once these Green’s functions are known and
the external force is specified, the resulting fluid velocity and pressure can be
calculated through the evaluation of the above integrals. The calculation of the
Green’s functions is thus equivalent to solving the creeping flow equations,
provided that the external forces are known.

Let us calculate the Oseen tensor and pressure vector. To this end, substitute
Eqs. (3.18) and (3.19) into the creeping flow equations (Eqs. 3.7 and 3.16). This
leads to

∫
dr′ [∇ · T (r − r′)] · f ext(r′) = 0

∫
dr′ [∇g(r − r′) − η0∇2T (r − r′) − Îδ(r − r′)] · f ext(r′) = 0

where, as before, Î is the (3 × 3)-dimensional unit tensor. Since the external
force is arbitrary, the expressions in the square brackets must be equal to zero,
so that the Green’s functions satisfy the following differential equations:

∇ · T (r) = 0

∇g(r) − η0∇2T (r) = Îδ(r) (3.20)

A single equation for the pressure vector is obtained by taking the divergence
of the second equation, with the use of the first equation:

∇2g(r) = ∇ · Îδ(r) = ∇δ(r)

Using
1
4π

∇2 1
r

= −δ(r) (3.21)
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it follows that

g(r) = − 1
4π

∇1
r

+ G(r)

Here, G is a vector for which ∇2G = 0, while G → 0 as r → ∞. It can be
shown that such a vector is 0. Hence,

g(r) = − 1
4π

∇1
r

=
1
4π

r

r3 (3.22)

The differential equation to be satisfied by the Green’s function for the fluid
flow velocity (the Oseen tensor) is found by substitution of Eq. (3.22) into
Eq. (3.20):

∇2
[

1
4π

1
r

Î − η0T (r)
]

=
1
4π

[
3
rr

r5 − 1
r3 Î

]

An obvious choice for the term in the square brackets on the left-hand side
of the above expression is of the form

1
4π

1
r

Î − η0T (r) = α0
1
rn

Î + α1
1

rm

rr

r2

with α0,1, n, and m constants. These constants can indeed be chosen such that
this ansatz is the solution of the differential equation [with the boundary con-
dition that T (r) → 0 as r → ∞]. A somewhat lengthy, but straightforward,
calculation yields

T (r) =
1

8πη0

1
r

[
Î +

rr

r2

]
(3.23)

This concludes the determination of the Green’s functions for the creeping
flow equations.

3.4
Hydrodynamic Friction of a Single Rod

The behavior of rod-like colloids in shear flow is strongly coupled to the
friction between the solvent and the surface of the rods. In the present section,
friction coefficients for very long and thin rods will be calculated on the basis
of the creeping flow equations. This is most easily done by considering a rod
to be made up of spherical beads with diameter D (as depicted in Fig. 3.3).
For very long and thin rods, the friction coefficients for such “necklaces” are
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Fig. 3.3 The “necklace” representation of a very long and thin rod, and
the definition of the vector R on the surface of a bead, relative to the
position of that bead.

the same as for cylindrical rods with thickness D. The number of spherical
beads is equal to n + 1 = L/D (with L the length of the rod), where the bead
index number ranges from − 1

2n to + 1
2n. The position of the central bead (for

which n = 0) defines the position coordinate of the rod.
The flow velocity around a moving rod in shear flow is given, according to

Eq. (3.18), by

u(r) = G · r +
∮

∂V

dS′ T (r − r′) · f(r′) (3.24)

where the integral ranges over the surface ∂V of the rod. Here, the force
f(r′) is the force per unit area that a surface element at r′ exerts on the fluid.
The first term on the right-hand side in Eq. (3.24) is the flow that would have
existed in the absence of the rod; the second term is the contribution due to
the presence of the rod. For stick boundary conditions we have that

u(r) = vc + Ω × (r − rc), for r ∈ ∂V (3.25)

where vc is the translational velocity of the center of the rod, rc is the position
of the center of the rod, and Ω is the rod’s angular velocity relative to its center.

Within the bead model discussed above, ∂V is the sum of the surfaces ∂Vj

of the beads, with j ranging from − 1
2n to + 1

2n. The center position of the jth
bead will be denoted as rj = rc + jDû, where û is the unit vector along the
long axis of the rod, which specifies its orientation. Within the bead model,
Eq. (3.24) reads

u(R + rj) = G · (R + rj)

+

1
2 n∑

i=− 1
2 n

∮
∂V 0

dS′ T (R − R′ + rji) · f i(R
′) (3.26)



3.4 Hydrodynamic Friction of a Single Rod 165

with R = r−rj and R′ = r′ −ri the position vectors with length D/2 on the
surface ∂V 0 of a bead with its center at ri (see Fig. 3.3). The stick boundary
condition (3.25) now becomes

u(R + rj) = vc + Ω × (R + rj − rc)

= vc + Ω × (R + jDu), for R = D/2 and all j (3.27)

In the next two subsections we consider translation (without rotation) and
rotation (without translation). The motion of a translating and rotating rod
is a linear superposition of the results for these two special cases, due to the
linearity of the creeping flow equations and their boundary conditions.

3.4.1
Translational Friction

Let us first consider a translating rod in an otherwise quiescent fluid, without
shear flow. The boundary condition (3.27) reduces simply to u(R+rj) = vc.
The representation (3.26) for u thus yields

vc =

1
2 n∑

i=− 1
2 n

∮
∂V 0

dS′ T (R − R′ + rji) · f i(R
′),

for R = D/2 and all j (3.28)

Integration of both sides over the surface of the entire rod, i.e. operating on
both sides with

∑ 1
2 n

j=− 1
2 n

∮
∂V 0 dS, yields

vc =
1

πLD

1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n

×
∮

∂V 0
dS

∮
∂V 0

dS′ T (R − R′ + rji) · f i(R
′) (3.29)

Using the fact that

∮
∂V 0

dS′ T (r − R′)

=
D

4η0

{[
D

2r
+

1
3

(
D

2r

)3
]

Î +

[
D

2r
−
(

D

2r

)3
]

rr

r2

}
(3.30)
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it is found that, for i = j, the surface integrals in Eq. (3.29) are equal to

∮
∂V 0

dS T (R − R′ + rji) =
D

3η0
Î, for i = j (3.31)

For i 
= j, the Oseen tensor may be Taylor-expanded as

T (R − R′ + rji) = T (rij) + (R − R′) · ∇iT (rij) + · · · (3.32)

with ∇i the gradient operator with respect to ri. Only the leading-order term
in this Taylor expansion must be retained to obtain expressions for friction
coefficients that are valid to leading order in L/D (if you wish you may include
the next higher-order Taylor terms and convince yourself that these terms do
not contribute in leading order). Using Eqs. (3.31) and (3.32) to leading order
in Eq. (3.29) gives

vc ≈ − 1
3πη0L

1
2 n∑

i=− 1
2 n

F h
i − D

L




1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n, i �=j

T (rij)


 · F h

i (3.33)

where ∮
∂V 0

dS′ f i(R
′) = −F h

i (3.34)

is the total force of the fluid on bead i. The first term on the right-hand side
is simply the sum of the Stokes friction forces on the beads, while the second
term represents the contribution due to hydrodynamic interaction between
the beads. For very long rods, all forces F h

i may be taken equal, i.e. end-effects
may be neglected, since the majority of beads (away from the ends of the rod)
experience approximately the same force. Substituting F h

i = (D/L)F h, with
F h the total force on the rod, yields

vc = − 1
3πη0L

F h −
(

D

L

)2



1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n, i �=j

T (rij)


 · F h (3.35)

The double bead index summation can be calculated up to leading order by
replacing sums by integrals (for details, see the Appendix, Section 3.16.1). It
is thus found that

1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n, i �=j

T (rij) =
1

8πη0D
[ Î + ûû]

1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n, i �=j

1
|i − j|

≈ 1
4πη0D

[ Î + ûû]
L

D
ln
(

L

D

)
(3.36)
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We finally obtain, to leading order

vc = − 1
3πη0L

F h − 1
4πη0L

ln
(

L

D

)
[ Î + ûû] · F h

≈ − 1
4πη0L

ln
(

L

D

)
[ Î + ûû] · F h (3.37)

Notice that the Stokes friction of each bead does not contribute in leading
order: the major contribution comes from hydrodynamic fields near each
bead generated by the remaining beads. Hydrodynamic interaction between
the beads is thus essential for the friction of a translating rod.

Inversion of Eq. (3.37) yields

F h = −Γf · vc, with Γf =
4πη0L

ln(L/D)
[ Î − 1

2 ûû] (3.38)

where the tensor Γf is referred to as the friction tensor. In contrast to a spherical
particle, the friction force is generally not collinear with its velocity. When the
motion of the rod is parallel to its orientation, the friction force of the rod
with the fluid is found from Eq. (3.38) to be equal to

F h = −γ‖vc (3.39)

with γ‖ the friction coefficient for parallel motion,

γ‖ =
2πη0L

ln(L/D)
(3.40)

For motion perpendicular to the centerline it is likewise found that

F h = −γ⊥vc (3.41)

with γ⊥ the friction coefficient for perpendicular motion,

γ⊥ =
4πη0L

ln(L/D)
(3.42)

Notice that this friction constant is twice as large as for parallel motion. This
is only true for very long and thin rods. For rods with smaller aspect ratios,
corrections to the limiting expressions (3.40) and (3.42) were considered by
de la Torre and Bloomfield (1981). Also note that the friction tensor can be
written as

Γf = γ‖ûû + γ⊥[ Î − ûû] (3.43)
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where the dyadic product ûû is the projection operator parallel to the ori-
entation direction of the rod and Î − ûû is the projection operator in the
direction perpendicular to û. This expression for the friction tensor is gen-
erally also valid for shorter rods, in which case, however, correction terms
should be added to the limiting expressions (3.40) and (3.42), as discussed by
de la Torre and Bloomfield (1981).

Consider now the additional contribution of shear flow. The forces F h
i

as a function of the bead index i may be obtained directly from the above
considerations as follows. Each bead i has a velocity, relative to the externally
imposed fluid flow velocity, equal to

vc − G · ri = vc − G · rc − iDG · û

The relative change of this velocity between neighboring beads is thus ∼ 1/i,
and is small for beads away from the center. Large groups of beads therefore
experience a friction force as in the case of a uniformly translating rod in an
otherwise quiescent fluid. Beads away from the center therefore experience
a friction force parallel to the centerline equal to

F h
i,‖ = −D

L
γ‖ûû · (vc − G · rc − iDG · û)

and a friction force perpendicular to the centerline equal to

F h
i,⊥ = −D

L
γ⊥[ Î − ûû] · (vc − G · rc − iDG · û)

Here, the apparent local velocity of the fluid is decomposed into its com-
ponents parallel and perpendicular to the rod’s centerline, and the friction
coefficient on the bead is equal to that of an entire rod divided by the number
n + 1 = L/D of beads. The total force that the fluid exerts on the rod is now
simply found by summation over all beads:

F h =

1
2 n∑

i=− 1
2 n

[F h
i,‖ + F h

i,⊥]

= −(γ‖ûû + γ⊥[ Î − ûû]) · (vc − G · rc)

= − 4πη0L

ln(L/D)
[ Î − 1

2 ûû] · (vc − G · rc) (3.44)

The last equation is only valid for very long and thin rods. The first equation
is also valid for shorter rods, where the expressions for the two friction co-
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efficients were calculated by de la Torre and Bloomfield (1981). This result is
precisely Eq. (3.38) for translational motion in an otherwise quiescent fluid,
where the velocity of the rod’s center is taken relative to the local shear flow
velocity. Such a result is intuitively clear, as additional friction forces due to
the shear flow on the beads with a positive bead index simply cancel with the
same forces on beads with a negative index.

3.4.2
Rotational Friction

Consider a rod in shear flow with its center at the origin (so that vc = 0 = rc)
and with a prescribed angular velocity Ω perpendicular to its centerline. The
rotational friction coefficient may be obtained directly from the above results
on translational friction, with arguments similar to those given at the end of
the previous subsection where the effect of shearing motion of the fluid on
translational friction is considered. The velocity of bead i relative to the local
fluid flow velocity is equal to

Ω × ri − G · ri = iDΩ × û − iDG · û

The relative change of this velocity between neighboring beads is thus ∼ 1/i,
and is small for beads away from the origin. Large groups of beads therefore
experience a friction force as in the case of a uniformly translating rod in an
otherwise quiescent fluid. Beads away from the origin therefore experience a
friction force parallel to the centerline equal to

F h
i,‖ = −D

L
γ‖ûû · (iDΩ × û − iDG · û) (3.45)

and a friction force perpendicular to the centerline equal to

F h
i,⊥ = −D

L
γ⊥[ Î − ûû] · (iDΩ × û − iDG · û) (3.46)

The torque on the rod is thus equal to

T h =

1
2 n∑

i=− 1
2 n

ri × [F h
i,‖ + F h

i,⊥]

= −D3

L
γ⊥[û × (Ω × û) − û × (G · û)]

1
2 n∑

i=− 1
2 n

i2 (3.47)
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where we have used γ⊥ = 2γ‖ (see Eqs. 3.40 and 3.42). Since û ⊥ Ω, and
using the fact that

k∑
i=1

i2 = 1
6k(k + 1)(2k + 1) ≈ 1

3k3 for large k

it is thus found that,

T h = −γr[Ω − û × (G · û)] (3.48)

where

γr =
1
12

L2γ⊥ =
πη0L

3

3 ln(L/D)
(3.49)

is the rotational friction coefficient. Notice that a torque-free rod in shear flow
thus attains an angular velocity equal to û × (G · û). For rods with smaller
aspect ratios, corrections to the limiting expression (3.49) are given by de la
Torre and Bloomfield (1981).

For the special case of simple shear flow, where G = Γ as given in Eq. (3.1),
the above result predicts a zero torque on the rod when it is oriented along the
flow direction, since then û× (Γ · û) = 0. From symmetry, it follows that for
such orientations the total force F h

i of the fluid on each bead is zero, so that the
torque is indeed 0. What is neglected in Eq. (3.47) is the variation of the fluid
flow velocity over the surface of each bead, which is a good approximation for
orientations away from alignment along the flow direction. When the rod is
oriented along the flow direction, however, the fluid flow variation over the
surfaces of the beads gives rise to a small but non-zero torque (see Fig. 3.4).
The torque is only non-zero when the finite thickness of the rod is taken into
account, and its magnitude is at least an order D/L smaller than the torque
γrû × (Γ · û) for orientations not parallel to the flow direction.

As will be seen in Section 3.5 on Jeffery orbits, which are the orbits described
by û of a non-Brownian rod in shear flow, the small torque on a rod that is
oriented along the flow direction is essential to obtain the realistic periodic
motion for û: without this small contribution, û would simply end up in
the direction parallel to the flow. Let us therefore consider this small, but
essential, contribution to the torque for non-Brownian rods.

The additional contribution to the torque is due to variations of the fluid
forces over the bead surfaces. Taking these variations into account, the torque
is by definition equal to (∂V is again the surface of the rod)

T h = −
∮

∂V

dS′ r′ × f(r′)
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Fig. 3.4 A rod in simple shear flow with its centerline parallel to the
flow direction experiences a non-zero torque entirely due to its non-zero
thickness.

= −
1
2 n∑

i=− 1
2 n

∮
∂V 0

dS′ (R′ + ri) × f i(R
′)

=

1
2 n∑

i=− 1
2 n

ri × F h
i −

1
2 n∑

i=− 1
2 n

∮
∂V 0

dS′ R′ × f i(R
′) (3.50)

The last term on the right-hand side is now extra as compared to the case
where the additional torque due to variations of the hydrodynamic forces
over the rod’s surface is neglected. This is the term that is responsible for a
finite torque when the rod is oriented along the flow direction. The first term
on the right-hand side has already been considered before with the neglect
of end-effects. In calculating the additional contribution ∆T h (the last term
on the right-hand side) end-effects will also be neglected, meaning that the
variation of the hydrodynamic forces over the bead surface is taken to be the
same for all beads. The variation of the fluid flow in which a bead is embedded
is given by Γ ·R′. We are only interested in the component of this flow in the
direction along û, since the complementary perpendicular component gives
rise to rotation about the centerline, which does not affect û. This parallel
component of the flow along the surface of the rod is equal to ûû ·Γ ·R′, and
the corresponding parallel force is proportional to this flow velocity. Hence,

f i(R
′) = C ûû · Γ · R′ (3.51)

where C is an as yet unknown constant. It now follows that
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∆T h = −C

1
2 n∑

i=− 1
2 n

∮
∂V 0

dS′ R′ × (Γ · R′)

= C
L

D

πD4

12
û × (ΓT · û) (3.52)

where the superscript “T” stands for transposition. The constant C can now
be determined by comparing this result to solutions of the creeping flow equa-
tions for the simple case that the rod is oriented along the flow direction. For
the cases of a cylinder without end-effects and for a long and thin ellipsoidal
particle, it can be shown that

C = −6η0

D
for cylinders without end-effects (3.53)

= − 4η0

D ln(L/D)
for long and thin ellipsoids (3.54)

The different results are not just the result of neglect of end-effects in the case
of the cylindrical particle. The precise value of C is sensitive to the precise
shape of the surface of the rod: the torque on a rod aligned along the flow
direction depends on how the fluid is “pushed away” or “sucked in” as it flows
along its surface.

We thus finally find the following expression for the torque:

T h = −γr[Ω − û × (Γ · û) + κ2û × (ΓT · û)] (3.55)

where the dimensionless constant κ2 is equal to

κ2 =
3
2

(
D

L

)2

ln
(

L

D

)
for cylinders without end-effects (3.56)

=
(

D

L

)2

for long and thin ellipsoids (3.57)

Since for colloidal rods the precise geometry of their surface is usually not
known, and κ2 is sensitive to that geometry, the constant κ2 should be con-
sidered as a fitting parameter when performing experiments. This parameter
tends to zero with decreasing values of D/L.
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3.5
Motion of Non-Brownian Rods in Shear Flow: Jeffery Orbits

The first thing that comes to mind when beginning to study the effect of
shear flow on dilute suspensions of rods is to ask about their motion without
considering Brownian motion. The trajectory of motion of a Brownian rod will
be the smooth trajectory of a non-Brownian rod that is randomly “corrugated”
due to Brownian motion. In this section we ask for the orientational orbits that
a non-Brownian rod (a “fiber”) traverses when subjected to shear flow. These
orbits are commonly the referred to as Jeffery orbits, named after G. B. Jeffery,
who first considered this problem [a more compact formulation as compared
to the original work of Jeffery (1922) has been formulated by Hinch and Leal
(1972) and Leal and Hinch (1972)]. We shall consider Jeffery orbits of rods in
elongational flow and simple shear flow, respectively.

The expressions derived in the previous section for very long and thin rods
will be used to calculate such Jeffery orbits. Jeffery (1922) derived exact ex-
pressions for ellipsoidal rods, while Bretherton (1962) showed that the same
equations of motion can be applied to arbitrarily shaped, cylindrically sym-
metric, slender bodies, provided that the body is modelled as an equivalent
ellipsoid. The expressions obtained in the following are the asymptotic limits
for large aspect ratios of those derived by Jeffery and Bretherton. It turns out,
however, that for aspect ratios L/D larger than about 3–4, the errors that are
made in using these asymptotic expressions (but employing the correct value
for the rotational friction coefficient) are typically less than about 5% [asymp-
totic limits are obtained when, typically, 1/(1 + r2) is approximated by 1/r2,
where r = L/D]. This is confirmed by simulations (see, for example, Ingber
and Mondy 1994).

Interactions between fibers at high fiber concentration and the intrinsic
flexibility of fibers do of course have an effect on the orbits described by a
rod. Simulations on Jeffery orbits where interactions and flexibility are con-
sidered have been performed by Yamamoto and Matsuoka (1995). The theory
described here assumes rigid rods. A discussion and references on the effect
of interactions between fibers, wall effects, and rheology of fiber suspensions
can be found in the book by Papathanasiou and Guell (1997). The treatment
here describes the motion of a single fiber, which is not affected by interac-
tions with other fibers or a wall.

Jeffery orbits are most conveniently described in terms of the spherical
coordinates ϕ and Θ of the unit vector û that specifies the orientation of the
rod. These coordinates, relative to the flow and gradient direction in the case
of simple shear flow, are sketched in Fig. 3.5. In the case of elongational flow,
the elongation axis is oriented along {ϕ, Θ} = {π/4,π/2} (compare Fig. 3.1a
and b). In Fig. 3.5, ϕ for the corresponding rod is negative.
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Fig. 3.5 Definition of the spherical coordinates ϕ and Θ, relative
to the flow and gradient direction, in the case of simple shear flow.
The flow is in the x direction while the gradient is in the y direction.
In this example, ϕ < 0.

3.5.1
Jeffery Orbits in Elongational Flow

According to Eq. (3.48), the torque T h that the fluid exerts on a very long
and thin rod with an angular velocity Ω in a shear field with velocity-gradient
tensor G = E (see Eq. 3.2) is equal to

T h = −γr[Ω − û × (E · û)] (3.58)

where γr is the rotational friction coefficient. It will turn out that, for elonga-
tional flow, the torque exerted on the rod when it is oriented parallel to the
flow direction [the last term in Eq. (3.55)] is of no relevance, contrary to sim-
ple shear flow. When no external torque acts on the rod, the hydrodynamic
torque in Eq. (3.58) is 0, so that

Ω = û × (E · û) (3.59)

On the other hand, by definition,

dû

dt
= Ω × û (3.60)

Substitution of Eq. (3.59) into Eq. (3.60), using the fact that û × (û × a) =
(û · a)û − a for arbitrary vectors a, yields

dû

dt
= E · û − (û · E · û)û (3.61)
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This equation of motion for the orientation û describes the rotational orbits of
a long and thin rod, without Brownian motion, in elongational flow. Express-
ing the orientation in terms of spherical angular coordinates, and substitution
of the explicit form of E in Eq. (3.2), the following equations of motion for
these coordinates are obtained:

dΘ
dt

cos Θ cos ϕ − dϕ

dt
sin Θ sinϕ = −γ̇ sin3 Θ sinϕ cos2 ϕ +

γ̇

2
sin Θ sinϕ

dΘ
dt

cos Θ sin ϕ +
dϕ

dt
sin Θ cos ϕ = −γ̇ sin3 Θ sin2 ϕ cos ϕ

+
γ̇

2
sin Θ cos ϕ (3.62)

dΘ
dt

= γ̇ sin Θ cos Θ sin ϕ cos ϕ

It may seem that we have here three equations for two unknowns (Θ and
ϕ): however, each one of these equations may be derived from the remaining
two. Elimination of dΘ/dt from one of the first two equations, using the
third equation, yields the following seemingly simple set of two equations of
motion for the spherical angular coordinates:

dϕ

dt
= −γ̇[sin2 ϕ − 1

2 ]

dΘ
dt

= γ̇ sin Θ cos Θ sin ϕ cos ϕ (3.63)

The first of these equations is easily integrated, to yield

∫ ϕ(t)

ϕ(t=0)

dϕ′

sin2 ϕ′ − 1
2

= ln
{

[tan(ϕ(t)) − 1][tan(ϕ(t=0)) + 1]
[tan(ϕ(t)) + 1][tan(ϕ(t=0)) − 1]

}

= −γ̇t (3.64)

Solving for tan(ϕ(t)) leads to

tan(ϕ(t)) =
1 + C(t)
1 − C(t)

, with C(t) =
tan(ϕ(t=0)) − 1
tan(ϕ(t=0)) + 1

exp(−γ̇t) (3.65)

At infinite time, the spherical coordinate ϕ of û thus becomes equal to π/4
(or equivalently 5π/4). Hence, the projection of û onto the xy plane (the flow-
gradient plane) is along the direction of the extensional axis of the elongational
flow. The reason for this is easily inferred from Fig. 3.1b.
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Dividing the two equations of motion in Eq. (3.63) yields

dΘ
sin Θ cos Θ

= −dϕ sin ϕ cos ϕ

sin2 ϕ − 1
2

Integration of both sides now leads to

tan(Θ(t)) = tan(Θ(t=0))

√
sin2(ϕ(t=0)) − 1

2

sin2(ϕ(t)) − 1
2

(3.66)

where ϕ(t) can be obtained from Eq. (3.65). Since ϕ(t) tends to π/4 (or 5π/4),
the above solution predicts that tan Θ tends to infinity, and hence Θ(t) → π/2.
Hence, independent of the initial condition, a rod will end up in the velocity-
gradient plane along the extensional axis. This is verified in Fig. 3.6a, which
shows numerical results for the spherical coordinates. Here, the distance be-
tween each data point is 1/(10γ̇). Data are shown for small values of ϕ(t=0).
For larger initial values for ϕ, the orbit just starts on one of the curves shown
and then traces the same orbit. As can be seen from the uppermost left curve
in Fig. 3.6a, when the initial value of Θ is small, the rod spends a relatively long
time around the unstable stationary solution {Θ, ϕ} = {0,π/4} of the equa-
tions of motion, before reaching the final stable state {Θ, ϕ} = {π/2,π/4}.
That is, û first rotates to the extensional direction where ϕ = π/4, keeping
its angle Θ with the vorticity direction relatively small. This angle then slowly
increases, after which there is an acceleration towards the final orientation.

3.5.2
Jeffery Orbits in Simple Shear Flow

As we have seen in Section 3.3 on hydrodynamics, the torque T h that the
fluid exerts on a very long and thin rod with an angular velocity Ω in a shear
field with velocity-gradient tensor G = Γ (see Eq. 3.1) is equal to

T h = −γr[Ω − û × (Γ · û) + κ2 û × (ΓT · û)] (3.67)

where γr is the rotational friction coefficient. The parameter κ2 tends to zero
for decreasing values of D/L, and measures the torque of the rod when
aligned such that ϕ = 0, for which case û× (Γ · û) = 0. Neglecting this small
contribution results in an orientation of the rod in the flow direction for long
times, while for a rod of finite thickness, where κ2 is small but non-zero, a
periodic motion results. Contrary to the case of elongational flow, considered
in the previous subsection, the small but finite contribution ∼ κ2 is essential
for a correct description in the case of simple shear flow.
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Fig. 3.6 (a) Jeffery orbits for elongational
flow for initial values ϕ(t=0) = π/100
and various values for Θ(t=0), as indi-
cated in the figure. Data points (dots) cor-
respond to time steps equal to 1/(10γ̇).
The arrows indicate the direction of the

temporal evolution of the spherical coor-
dinates. (b) Jeffery orbits for simple shear
flow with κ = 0.1, for various values of
Θ(t=0), as indicated in the figure. The
points on the orbits mark time intervals
of T/200; ϕ(t) decreases with time.

When no other torque is acting on the rod, the hydrodynamic torque is 0,
so that

Ω = û × (Γ · û) − κ2 û × (ΓT · û) (3.68)

Precisely as for elongational flow, this implies that

dû

dt
= Γ · û − κ2 ΓT · û − (û · Γ · û)û (3.69)



178 3 Rod-Like Brownian Particles in Shear Flow

In terms of spherical coordinates, this is equivalent to

dΘ
dt

cos Θ cos ϕ − dϕ

dt
sin Θ sinϕ = −γ̇(1 − κ2) sin3 Θ sinϕ cos2 ϕ

+γ̇ sin Θ sinϕ

dΘ
dt

cos Θ sin ϕ +
dϕ

dt
sin Θ cos ϕ = −γ̇(1 − κ2) sin3 Θ sin2 ϕ cos ϕ

−γ̇κ2 sin Θ cos ϕ

dΘ
dt

= γ̇(1 − κ2) sin Θ cos Θ sin ϕ cos ϕ (3.70)

Precisely as in the previous case of elongational flow, we thus arrive at the
following equations of motion for the spherical angular coordinates:

dϕ

dt
= −γ̇[sin2 ϕ + κ2 cos2 ϕ]

dΘ
dt

= γ̇(1 − κ2) sin Θ cos Θ sin ϕ cos ϕ (3.71)

The first of these equations is easily integrated to yield

∫ ϕ(t)

ϕ(t=0)

dϕ′

sin2 ϕ′ + κ2 cos2 ϕ′ =
1
κ

{
arctan

[
1
κ

tan(ϕ(t))
]

− C ′
}

= −γ̇t (3.72)

where C ′ is an integration constant, equal to

C ′ = arctan
[

1
κ

tan(ϕ(t=0))
]

(3.73)

Hence,

tan(ϕ(t)) = κ tan(C ′ − γ̇κt) (3.74)

Since ϕ(t) is periodic, trajectories of û do not depend on ϕ(t=0), so that,
without loss of generality, we may take ϕ(t=0) = 0. For this choice, according
to Eq. (3.73), C ′ = 0. The solution (3.74) thus simplifies to

tan(ϕ(t)) = −κ tan(γ̇κt) (3.75)
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It follows that ϕ(t) is a periodic function of time, with period T that is inde-
pendent of the initial value of û, and is equal to

T =
2π

γ̇κ
(3.76)

It should be noted that terms of order (D/L)2 are neglected in the equation of
motion (3.69) for the orientation (except for the important contribution ∼ κ2

to the torque), so that the expression for the period T here is valid to within
terms of that order.

Division of the two equations of motion in Eq. (3.71) yields

dΘ
sin Θ cos Θ

= (κ2 − 1)
dϕ sin ϕ cos ϕ

sin2 ϕ + κ2 cos2 ϕ

Integration of both sides leads to

tan(Θ(t)) = tan(Θ(t=0))

√
1 + (κ2 − 1) cos2(ϕ(t=0))
1 + (κ2 − 1) cos2(ϕ(t))

(3.77)

where ϕ(t) follows from Eq. (3.75). Jeffery orbits are plotted in Fig. 3.6b
for various values of Θ(t=0) and for κ = 0.1. As already mentioned above,
the parameter κ is a measure of the torque on the rod when aligned in the
velocity-gradient plane, and tends to 0 for D/L → 0. For long and thin rods,
for which κ is small, this torque is small, and the rod spends a relatively long
time around this particular orientation. For κ = 0, that is, in the unrealistic
case of zero thickness of the rod, the above result predicts that the rod ends
up at an orientation where ϕ = 0 (or a multiple of π). The small, but finite,
value of κ, however, results in periodic motion of the rod. In the present case
of simple shear flow, the small torque as a result of the finite thickness of
the rod in the equation of motion (3.69) is thus essential, since this small
contribution will lead to a continuing motion of the rod, not ending in an
orientation in the flow direction at infinite time. As can be seen from Fig. 3.6,
the rod spends a relatively long time at orientations where ϕ is a multiple of
π. For smaller values of κ, this would be even more pronounced.

3.5.3
An Experiment

Experimental results for the angle χ between the director in the velocity-
gradient plane and the flow direction as obtained from dichroism measure-
ments on hematite suspensions are shown in Fig. 3.7 (data are taken from
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Vermant et al., 2001). The laser beam is along the vorticity direction, so that
dichroism in the velocity-gradient plane is probed. The flow is imposed at
time t = 0, from an initially isotropic dispersion. The geometrical aspect ra-
tio of the hematite rods is 2.5 with a polydispersity of about 25%. For small
times, rods are preferentially oriented with an angle of 45◦ with the flow di-
rection, due to the orientational effect of the elongational part of the simple
shear flow. For a single rod, the angle χ is equal to ϕ in Eq. (3.75). Hence,
according to Eq. (3.75), χ should scale with the strain γ̇t, which is indeed
confirmed by these experiments. The temporal oscillations of χ are damped
because of the polydispersity in aspect ratio. The shear rates are chosen large
enough so that, during the time interval where damping occurs, orientational
Brownian motion of the rods does not play a role. According to Eqs. (3.76)
and (3.56), each different aspect ratio leads to a different period T of oscilla-
tion of ϕ(t), so that after some time different rods are “out of phase”, which
gives rise to damping of the oscillations of the measured angle χ. Since the
dispersions are very dilute, so that the rods do not interact with each other,
the angle χ can be calculated taking polydispersity into account [details can
be found in Vermant et al. (2001)]. Using the equations derived in the present
section and properly averaging with respect to polydispersity in aspect ratio
fits the experimental master curve in Fig. 3.7. The effective aspect ratio as
obtained from this fit is 1.75 (instead of the geometrical aspect ratio of 2.5)

Fig. 3.7 The angle χ between the pro-
jection of the director onto the velocity-
gradient plane and the flow direction as
a function of strain γ̇t, for five different
shear rates, γ̇ = 1 (filled circles), 1.7
(filled squares), 3 (open circles), 5 (open
squares) and 7 s−1 (open triangles), as
obtained from dichroism measurements
by Vermant et al. (2001). The sample

consists of ellipsoidal hematite rods with
an aspect ratio of 2.5 with a polydispersity
of about 25%, dissolved in a slightly acidic
water/glycerin 5/95 mixture. The average
length of the rods is 430 nm and their
thickness is 170 nm. The vertical line
indicates the period of time T as obtained
from Eq. (3.76).
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and a polydispersity of 65% (instead of 25%). These differences between the
effective and geometrical values are due to the deviation of the rods from an
ideal ellipsoidal shape. The period of oscillation as given by Eq. (3.76) is seen
to be of the right magnitude (despite the fact that Eq. (3.76) is only valid for
long and thin rods, while the present hematite rods are quite short and thick).

3.6
Brownian Motion of a Free Rod (Without Shear Flow)

Before going to Brownian rods in shear flow, we shall consider translational
and rotational Brownian motion of a long and thin rod in the absence of flow.
Brownian motion can be studied on the basis of Newton’s equation of motion,
supplemented with fluctuating forces and torques resulting from collisions
of solvent molecules with the rod. Such equations of motion with a fluctu-
ating component are referred to as Langevin equations. We shall first review
Newton’s equations of motion before formulating the Langevin equations for
a long and thin rod. On the basis of these equations, important time scales
can be defined. Due to the very large size and mass of the rod in comparison
to the solvent molecules, the rod moves on a time scale that is much larger
than the typical relaxation times of solvent molecules. In addition, it will turn
out that velocities relax quite fast due to friction with the solvent. This enables
us to coarse-grain equations of motion to the so-called Brownian time scale,
on which velocities and angular momenta have long relaxed to equilibrium
with the heat bath of solvent molecules.

In an experiment, the time scale is set by the time interval over which
observables are averaged during a measurement. For example, taking pho-
tographs of a Brownian particle is an experiment on a time scale that is set by
the shutter time of the camera. Subsequent photographs reveal the motion of
the Brownian particle averaged over a time interval equal to the shutter time.
Any theory considering the motion of the Brownian particle obtained in such
a way should of course be aimed at the calculation of observables, averaged
over that time interval. A time scale is thus the minimum time resolution of
an experiment or theory.

3.6.1
Newton’s Equations of Motion for a Rigid Body

Let us first recall Newton’s equations of motion for non-spherical rigid par-
ticles. The rigid body contains a large number of molecules, with positions
rn, momenta pn, and masses mn, where n = 1, 2, 3, . . .. The positions of the
molecules are fixed relative to each other; that is, the body is rigid as a result
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Fig. 3.8 Motion of a rigid body: Ω is the angular velocity and vc
is the translational velocity of the reference point rc.

of intermolecular interactions. The velocity vn of molecule n is composed
of two parts: the rigid body can rotate and translate. To make the distinction
between the two contributions, the velocities are written as

vn = Ω × (rn − rc) + vc (3.78)

where rc is an arbitrary point inside the rigid body with a translational velocity
vc, and Ω is the angular velocity with respect to the point rc (see Fig. 3.8).

Newton’s equation of motion for the total momentum p reads

dp

dt
≡ d

dt

∑
n

pn = Ω ×
∑

n

mn[vn − vc] +
dΩ
dt

×
∑

n

mn[rn − rc] + M
dvc

dt
= F (3.79)

where F is the total external force on the particle, and M =
∑

n mn is the total
mass of the particle. With the following choice for the point rc,

rc =
∑

n

mnrn

/∑
n

mn (3.80)

which is the center of mass of the rigid body, Eq. (3.79) becomes similar to
Newton’s equation of motion for a spherical particle:

dpc

dt
= F (3.81)

where pc = Mvc. The rotational motion of the particle is characterized by
the angular momentum J ,

J ≡
∑

n

rc
n × pc

n (3.82)
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where the superscript “c” refers to coordinates relative to the center-of-mass
coordinate (rc

n = rn − rc and pc
n = pn − pc). The equation of motion of the

angular momentum J follows simply by differentiating the defining equation
(3.82), and using Newton’s equation of motion for each molecule separately:

dJ

dt
=
∑

n

rc
n × F n ≡ T (3.83)

with F n the force on the nth molecule. The last equality in this equation
defines the torque T on the particle. Equations (3.81) and (3.83) are Newton’s
equations of motion for translational and rotational motion, respectively.

Note that the angular momentum is a linear function of the angular velocity
Ω, since, according to Eqs. (3.78), (3.80), and (3.82),

J =
∑

n

mnrc
n × (Ω × rc

n) (3.84)

The right-hand side can be written as a tensor multiplication of Ω,

J = Ic · Ω (3.85)

with Ic the inertia tensor, the ijth component of which is

Ic
ij ≡

∑
n

mn[(rc
n)2δij − (rc

n)i(rc
n)j ] (3.86)

with δij the Kronecker delta (δij = 0 for i 
= j, and δij = 1 for i = j).
The torque, angular momentum, angular velocity, and inertia tensor may be
considered as the rotational counterparts of force, momentum, translational
velocity, and mass, respectively.

For the analysis of time scales, we shall need the expression for the kinetic
energy Ekin of a rotating rod. Using Eqs. (3.78), (3.80), and (3.86), one finds

Ekin =
∑

n

1
2mnvn · vn

=
∑

n

1
2mn[Ω × rc

n + vc] · [Ω × rc
n + vc]

=
∑

n

1
2mnv2

c +
∑

n

1
2mn(Ω × rc

n) · (Ω × rc
n)

= 1
2Mv2

c +
∑

n

1
2
mn[Ω2(rc

n)2 − (Ω · rc
n)2]

≡ 1
2Mv2

c + 1
2Ω · Ic · Ω (3.87)
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The first term on the right-hand side in the last line is the translational kinetic
energy, and the second term is the kinetic energy associated with rotation
about the center of mass.

3.6.2
The Langevin Equation for a Long and Thin Rod

Clearly, thermal collisions of solvent molecules with the Brownian particle
result in stochastic motion of both the position of its center of mass as well
as its orientation. The Langevin equations are Newton’s equations of motion
(3.81) for translational motion and (3.83) for rotational motion supplemented
with a fluctuating force and torque, respectively, which account for collisions
of the rod with solvent molecules.

In the following, we specialize to a long and thin cylindrically symmetric
rod. For such a long and thin rod, the rotational motion around the cylinder
axis of symmetry need not be considered. The components of the inertia ten-
sor related to rotational motion around the long cylinder axis are very small
in comparison to its remaining components, and may be disregarded. The
angular velocity Ω is therefore understood to denote the component of the
angular velocity perpendicular to the cylinder axis of symmetry (see Fig. 3.9).

Fig. 3.9 For a long and thin rod, the angular velocity may be thought of
as being perpendicular to its orientation.

The component Ω of the angular velocity that changes the orientation of the
rod is equal to

Ω = û × dû

dt
(3.88)

This can be seen as follows. By definition we have

dû

dt
= Ω × û (3.89)
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Operating on both sides with û ×, using the fact that û × (Ω × û) =
(û · û)Ω − (û · Ω)û, and noting that û · û = 1 and û · Ω = 0, Eq. (3.88)
is recovered.

The force and torque of the solvent on the rod consists of two parts. Once
the rods have attained a finite translational and rotational velocity, there is a
systematic force equal to −Γf · p/M (see Eq. 3.38) and a systematic torque
equal to −γrΩ (see Eq. 3.48) on the rod due to friction. The second part is the
fluctuating force and torque discussed before. Denoting the fluctuating force
by f and the fluctuating torque by T , the complete set of Langevin equations
reads (we omit the superscripts “c” in the following):

dp/dt = −(Γf/M) · p + f(t)

dr/dt = p/M

dJ/dt = −γrΩ + T (t) (3.90)

I · Ω = J

Since systematic interactions with the solvent molecules are made explicit
through friction contributions, the ensemble average of the fluctuating force
and torque are zero:

〈f(t)〉 = 0

〈T (t)〉 = 0 (3.91)

Due to the aforementioned large separation in time scales on which the sol-
vent molecules relax and the rod moves, it is sufficient for the calculation
of the thermal movement of the Brownian particle to use a delta correlated
fluctuating force and torque in time, that is

〈f(t)f(t′)〉 = Gtransδ(t − t′)

〈T (t)T (t′)〉 = Grotδ(t − t′) (3.92)

where δ is the delta distribution and Gtrans and Grot are constant (3 × 3)-
dimensional tensors (where the subscripts stand for “translation” and “rota-
tion”), which may be regarded as a measure for the strength of the fluctuating
force and torque. They are referred to as the translational and rotational fluc-
tuation strength, respectively. Such delta correlations limit the description to a
time resolution that is large with respect to the solvent time scale of 10−13 s.
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Note that for the rods with a large aspect ratio L/D considered here, the in-
ertia tensor in Eq. (3.86) is easily calculated, replacing the sum over molecules
by an integral. For a constant local mass density ρ of the rod material, the in-
ertia tensor becomes

I =
∫

dr′ ρ[r′ 2
Î − r′r′] ≈ π

(
D

2

)2

ρ

∫ 1
2 L

− 1
2 L

dl l2[ Î − ûû]

= 1
12ML2[ Î − ûû] (3.93)

The typical magnitude for the inertia tensor is thus 1
12ML2. Note that, since

Ω is perpendicular to û (see Eq. 3.88), it follows from Eq. (3.93) that

I · Ω = 1
12ML2Ω (3.94)

This result will be convenient in our further analysis of the Langevin equation.

3.6.3
Brownian Time Scale: Relaxation Rates of Translational and Rotational Velocity

The Langevin equation (3.90) can be used to estimate the time scale on which
the translational and rotational velocity decay to equilibrium with the heat
bath of solvent molecules. First consider the translational velocity. Ensemble
averaging the first equation in (3.90), using Eq. (3.92), gives

d〈p〉
dt

= −
〈

Γf

M
· p

〉
(3.95)

Remember that the friction tensor Γf depends on the orientation of the rod,
and therefore cannot be taken outside the ensemble averaging brackets 〈. . .〉.
However, the interest here is in an estimate of the relaxation time of the
translational velocity. Since the magnitude of the friction coefficient of a rod
varies only by a factor of 2 depending on its orientation, one can use the
typical magnitude of the elements of Γf in Eq. (3.95). This typical magnitude
follows from the expression in Eq. (3.38) as 2πη0L/ ln(L/D). The time scale
on which the translational velocity relaxes can thus be estimated from

d〈p〉
dt

≈ − 2πη0L

M ln(L/D)
〈p〉 (3.96)

It follows that (with p(0) the initial translational momentum)

〈p〉(t) ≈ p(0) exp(−t/τtrans), with τtrans =
M ln(L/D)

2πη0L
≈ 1 ns (3.97)
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Thus a typical value for the relaxation time τtrans of the translational velocity
of a rod is found to be of the order of a nanosecond.

The time scale on which rotational velocities relax can be estimated from the
last two of the equations in (3.90). Ensemble averaging gives, using Eq. (3.91),

d〈J〉
dt

= −γr〈Ω〉

〈I · Ω〉 = 〈J〉 (3.98)

Using Eq. (3.94) in the second equation, and substitution of the result into
the first equation, leads to

d〈Ω〉
dt

= − 12γr

ML2 〈Ω〉 (3.99)

and hence [with Ω(0) the initial angular velocity]

〈Ω〉(t) = Ω(0) exp(−t/τrot)

with τrot =
12ML2

γr
=

M ln(L/D)
4πη0L

≈ 1 ns (3.100)

where the expression (3.49) for the rotational friction coefficient has been
used. Thus the relaxation times for translational and rotational velocities are
both of the order of a nanosecond.

Within a description where time is coarse-grained to a time much larger
than τtrans and τrot, inertial forces and torques on the rod can be neglected. This
will turn out to be an important fact in further theoretical developments
discussed later in this chapter. The corresponding coarsening in length scale
and orientational angle will be discussed in the following section. The time
scale that is much larger than τtrans and τrot, but still small enough to resolve
position and orientation in sufficient detail, is referred to as the Brownian or
diffusive time scale.

3.6.4
Brownian Length Scale and Brownian Angle

As discussed at the beginning of this section, a coarsening in time implies a
coarsening of position and angular orientation. On the Brownian time scale,
the spatial and angular resolution is no better than the distance over which
the Brownian particle moves and the angle over which a rod typically rotates,
respectively, during a time interval equal to the Brownian time scale.
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Consider first the length ∆l that the rod traverses during a time τ �
τtrans. This so-called Brownian length scale is easily obtained by integration of
Eq. (3.97):

∆l =
∫ τ

0
dt

|〈p(t)〉|
M

=
|p(0)|

M
τtrans

[
1 − exp

(
− τ

τtrans

)]

≈ |p(0)|
M

τtrans (3.101)

A typical value for |p(0)| is obtained from the equipartition theorem:

|p(0)| ≈
√

〈|p|2〉 =
√

3MkBT (3.102)

The Brownian length scale is thus estimated as

∆l ≈
√

3MkBT
ln(L/D)
2πη0L

(3.103)

Using typical numerical values for the quantities involved gives

∆l

L
≈ 10−4–10−3 (3.104)

The conclusion is that displacements that are very small in comparison to the
length of the rod are still resolved on the Brownian time scale. If ∆L/L had
been a large number, it would have made no sense to coarsen to the Brownian
time scale, since then it would not have been possible to describe the motion
of the rod accurately.

Next consider the typical angle ∆Θ over which a rod rotates during a time
τ � τrot. This is the so-called Brownian angle. Integration of Eq. (3.100) gives

∆Θ =
∫ τ

0
dt |〈Ω(t)〉| = |Ω(0)| τrot[1 − exp(−τ/τrot)]

≈ |Ω(0)| τrot (3.105)

According to Eq. (3.94), the rotational contribution to the kinetic energy
in Eq. (3.87) is equal to 1

24ML2|Ω|2. Hence, according to the equipartition
theorem, a typical value for |Ω0| can be estimated as

|Ω(0)| ≈
√

〈|Ω|2〉 = 6

√
kBT

ML2 (3.106)
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The Brownian angle is thus of the order

∆Θ ≈ 6
√

MkBT
ln(L/D)
4πη0L2 (3.107)

For typical numerical values we have [note that, according to Eq. (3.103), the
right-hand side is equal to

√
3 ∆L/L]

∆Θ
π

≈ 10−4–10−3 (3.108)

Thus very small angular displacements can still be resolved on the Brownian
time scale.

For the study of processes where significant translational and rotational
displacements of the Brownian particle are essential, a statistical description
on the Brownian time scale is therefore sufficient.

3.6.5
Calculation of Fluctuation Strengths

Analyzing the Langevin equation requires the determination of the fluctua-
tion strengths in Eq. (3.92). This can be done using the equipartition theorem
for translational and rotational motion, after having solved the Langevin equa-
tion for p(t) and Ω(t).

First consider the translational velocity. Integration of the first equation of
motion in (3.90) yields

p(t) = exp
(

−Γf

M
t

)
· p(0) +

∫ t

0
dt′ exp

[
−Γf

M
(t − t′)

]
· f(t′) (3.109)

The exponent of a tensor, A say, is defined through the Taylor expansion

exp(A) ≡
∞∑

n=0

1
n!

An (3.110)

where An is A · A · · ·A (n times), and A0 ≡ Î , the identity tensor. Now,
from Eq. (3.43) it is easily shown by induction that

Γn
f = γn

‖ ûû + γn
⊥[ Î − ûû] (3.111)
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and hence, from the defining expression (3.110) for the tensor exponential,

exp
[
−Γf

M
(t − t′)

]
= exp

[
− γ‖

M
(t − t′)

]
ûû

+ exp
[
−γ⊥

M
(t − t′)

]
[ Î − ûû] (3.112)

Equation (3.109) can thus be written as

p(t) = p‖(t) + p⊥(t), with p‖ ≡ ûû · p and p⊥ ≡ [ Î − ûû] · p (3.113)

with

p‖(t) ≡ exp
(
− γ‖

M
t
)

p‖(0) +
∫ t

0
dt′ exp

[
− γ‖

M
(t − t′)

]
f‖(t

′)

p⊥(t) ≡ exp
(
−γ⊥

M
t
)

p⊥(0) +
∫ t

0
dt′ exp

[
−γ⊥

M
(t − t′)

]
f⊥(t′) (3.114)

where the components of the random force parallel and perpendicular to the
orientation of the rods are respectively defined as

f‖(t) ≡ û(t)û(t) · f(t) and f⊥(t) ≡ [ Î − û(t)û(t)] · f(t) (3.115)

Instead of using the full tensor form in Eq. (3.95) for the fluctuating force, we
shall only need correlation functions of inner products of its two components
f‖ and f⊥. Since f(t) varies with time much faster than û(t), the latter
is virtually constant over time intervals equal to many times the correlation
time of the former. The conditional ensemble averages of f‖ and f⊥, with
a prescribed û, are therefore still 0, and their correlation functions are still
delta-correlated on a time scale much larger than the solvent time scale. For
the same reason,

〈f‖(t) · f⊥(t′)〉 = 0 (3.116)

We shall therefore define two independent fluctuation strengths for the fluc-
tuating force parallel and perpendicular to the orientation of the rods:
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〈f‖(t) · f‖(t
′)〉 = G‖δ(t − t′)

〈f⊥(t) · f⊥(t′)〉 = G⊥δ(t − t′) (3.117)

Notice that we are working here with inner products instead of dyadic products
as for the spherical particle, so that both G‖ and G⊥ are scalars. Since 〈p‖(t) ·
p⊥(t)〉 = 0, the kinetic energy corresponding to translational motion of the
Brownian rod is the sum of two quadratic terms related to the perpendicular
velocity and a single quadratic term related to the parallel velocity. From the
equipartition theorem it is thus found that

lim
t→∞〈p‖(t) · p‖(t)〉 = M/β

lim
t→∞〈p⊥(t) · p⊥(t)〉 = 2M/β (3.118)

On substitution of Eq. (3.114) into the above expressions, using Eqs. (3.116)
and (3.117), it is readily found that

G‖ = 2γ‖/β

G⊥ = 4γ⊥/β (3.119)

This concludes the determination of the translational fluctuation strengths,
which will be used to investigate the translational Brownian motion of the
rod in the following section.

Next consider the fluctuation strength for the correlation function in
Eq. (3.92) of the torque. Using Eq. (3.94) in the last equation in (3.90), substi-
tuting the result into the third equation and integrating yields

Ω(t) = Ω(0) exp
(

− 12γr

ML2 t

)

+
12

ML2

∫ t

0
dt′ T (t′) exp

[
− 12γr

ML2 (t − t′)
]

(3.120)

Using the second equation in (3.92) thus leads to

lim
t→∞〈Ω(t)Ω(t)〉 =

6
γrML2 Gr (3.121)

From Eq. (3.87) for the kinetic energy together with Eq. (3.94), one finds
that the kinetic energy due to rotational motion is equal to 1

24ML2Ω2(t).
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The equipartition theorem implies that 1
24ML2Ω2(t) = 3

2kBT . Hence,

lim
t→∞〈Ω(t)Ω(t)〉 = 12 Î

kBT

ML2 (3.122)

Combining this with Eq. (3.121) identifies the rotational fluctuation strength

Gr = Î
2γr

β
(3.123)

This expression allows for the analysis of the rotational part of the Langevin
equation.

3.6.6
Translational Brownian Motion of a Rod

The simplest quantity that characterizes translational Brownian motion is the
mean square displacement, defined as

W (t) ≡ 〈|r(t) − r(t=0)|2〉 (3.124)

where the angle brackets denote ensemble averaging. This quantity can be
calculated from the Langevin equation as follows.

We shall calculate the mean square displacement on the Brownian time
scale. As mentioned before, inertial forces can be neglected on the Brownian
time scale. Neglecting the inertial force dp/dt on the left-hand side of the
first equation in (3.90) gives

dr/dt = Γ−1
f · f(t) (3.125)

where Γ−1
f is the inverse of Γf . The reason for neglecting the inertial force

can be made more explicit as follows. Let t′ = t/τ be the dimensionless time
in units of the Brownian time scale τ . Rescaling the first equation in Eq. (3.90)
gives

τtrans

τ

dp

dt′
= −τtrans

Γf

M
· p + τtransf(τ t′) (3.126)

Since the typical magnitude of the elements of the tensorΓf/M is 1/τtrans (see
Eqs. 3.38 and 3.97), so that τtransΓf/M is of order unity, and τ � τtrans on the
Brownian time scale, this is a singularly perturbed differential equation. That
is, the inertial term is important only over a very small time interval in t′, which
is the mathematical boundary layer connected to the singular perturbation.
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During this time interval, the momentum coordinate relaxes to equilibrium
with the solvent. Beyond this small time interval, where dp/dt′ is no longer
very large, the inertial contribution can be neglected. This immediately leads
to Eq. (3.125).

The inverse of the friction tensor appearing in Eq. (3.125) is easily calcu-
lated:

Γ−1
f =

1
γ‖

ûû +
1

γ⊥
[ Î − ûû] (3.127)

The Langevin equation can thus be written in terms of the parallel and per-
pendicular components of the random force (see Eq. 3.115)

dr

dt
=

1
γ‖

f‖(t) +
1

γ⊥
f⊥(t) (3.128)

hence

r(t) = r(t=0) +
∫ t

0
dt′
[

1
γ‖

f‖(t
′) +

1
γ⊥

f⊥(t′)
]

(3.129)

Using the fact that the fluctuating forces are delta-correlated with fluctuation
strengths given in Eq. (3.119), one readily finds that

W (t) = 6D̄t (3.130)

where

D̄ = 1
3 (D‖ + 2D⊥) (3.131)

Here we have introduced the Einstein translational diffusion coefficients for
parallel and perpendicular motion:

D‖ = kBT/γ‖

D⊥ = kBT/γ⊥ (3.132)

For times t � τtrans, where friction with the solvent is not effective, the veloc-
ity of the center of mass of a rod is constant. The mean square displacement
then varies like ∼ t2. On the Brownian time scale, that is for times t � τtrans,
many independent collisions of the rod with solvent molecules have occurred.
This apparently leads to a linear variation of W (t) with time. Such dynamic
behavior is called diffusive.
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3.6.7
Orientational Correlations

The simplest quantity that characterizes rotational Brownian motion is the
rotational mean square displacement

Wrot(t) ≡ 〈|û(t) − û(t=0)|2〉 = 2[1 − 〈û(t)〉 · û(t=0)] (3.133)

This rotational displacement is calculated on the Brownian time scale. For the
same reason as for translational motion, the inertial term for the rotational
Langevin equation of motion can be neglected on the Brownian time scale.
The third of the equations of motion in (3.90) thus reduces to

Ω = û × dû

dt
=

1
γr

T (t) (3.134)

where Eqs. (3.88) and (3.94) have been used. As a first step to obtain an ex-
pression for the rotational mean square displacement (3.133), the differential
equation (Eq. 3.134) should be solved for û(t) in terms of the fluctuating
torque T . To this end, Eq. (3.134) is rewritten as

dû

dt
=

1
γr

T (t) × û (3.135)

To integrate this equation, the right-hand side is written as a tensor multipli-
cation

dû/dt = A(t) · û (3.136)

with

A(t) ≡ 1
γr




0 −T3(t) T2(t)

T3(t) 0 −T1(t)

−T2(t) T1(t) 0


 (3.137)

where Tj is the jth component of T . The differential equation (Eq. 3.136) is
equivalent to the integral equation

û(t) = û(0) +
∫ t

0
dt′ A(t′) · û(t′) (3.138)

which is solved by iteration:
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û(t) = û(0) +
∞∑

n=1

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · · ·

∫ tn−2

0
dtn−1

∫ tn−1

0
dtn

× A(t1) · A(t2) · · ·A(tn) · û(0) (3.139)

For the calculation of the ensemble average of û(t), the ensemble averages
of the multiple integrals over products of the A tensors must be evaluated
explicitly. From the definition of the tensor A, it follows immediately that

A(t) · û(0) =
1
γr

T (t) × û(0) (3.140)

A2(t) · û(0) =
1
γ2
r

T (t) × [T (t) × û(0)]

=
1
γ2
r
[−T 2(t) Î + T (t)T (t)] · û(0) (3.141)

Since the ensemble average of the random torque, and hence of A, is zero,
and its correlation function is delta-correlated in time, the first two terms
in the ensemble-averaged iterated solution are found from Eqs. (3.123) and
(3.137),

∫ t

0
dt1 〈A(t1)〉 · û(0) = 0 (3.142)

∫ t

0
dt1

∫ t1

0
dt2 〈A(t1) · A(t2)〉 · û(0) = −2

kBT

γr
tû(0) (3.143)

Here we have used the fact that

∫ t1

0
dt2 δ(t1 − t2) = 1

2

Since t1 is not in the interior of the integration range here, this integral is not
equal to 1. That its value is equal to 1

2 can be seen as follows.
On the smallest time scale, the correlation function 〈T (t1)T (t2)〉 of the

random torque, and hence of A, is a symmetric function of the difference
t1 − t2. The integral with respect to t2 in Eq. (3.139) ranges over half of
the symmetric correlation function (see Fig. 3.10), and is thus equal to 1

2 ×
the integral ranging over the entire range of the argument. To evaluate the
ensemble averages over higher-order products of A in the iterated solution
(3.139), we use the fact that, on the Brownian time scale, T and hence also A

are Gaussian variables. On the Brownian time scale,T is an average over many
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Fig. 3.10 Integration of the correlation function of the torque over half
the domain of its argument.

independent realizations, so that, according to the central limit theorem, it is
a Gaussian variable. All the ensemble averages of products of an odd number
of A tensors are thus zero. The ensemble averages of products of an even
number of A tensors can be written as a sum of products of averages of only
two A tensors. Consider, for example, the ensemble average of the n = 4
term in the iterated solution [summation over the repeated indices p, q, r, s

is understood here, Aij is the ijth component of A, and ûs(0) is the sth
component of û(0)],

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 〈Aip(t1)Apq(t2)Aqr(t3)Ars(t4)〉ûs(0)

=
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 [〈Aip(t1)Apq(t2)〉〈Aqr(t3)Ars(t4)〉ûs(0)

+ 〈Aip(t1)Aqr(t3)〉〈Apq(t2)Ars(t4)〉ûs(0)

+ 〈Aip(t1)Ars(t4)〉〈Apq(t2)Aqr(t3)〉ûs(0)]

For the respective products of ensemble averages in the above equation, we
need to evaluate the following three integrations over delta distributions:

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 δ(t1 − t2)δ(t3 − t4)

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 δ(t1 − t3)δ(t2 − t4)

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 δ(t1 − t4)δ(t2 − t3)
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The first of these four-fold integrals is equal to

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 δ(t1 − t2)δ(t3 − t4) =

(
1
2

)2 1
2

t2

where the factor (1/2)2 originates from integration of delta functions ranging
over half the domain of their arguments, as explained above. By inspection,
the other two four-fold integrals turn out to be zero, because the arguments of
the delta functions are non-zero in the entire integration range. Only products
with the consecutive time ordering t1 → t2 → t3 → · · · → tn contribute.
Using the expression (3.123) for the rotational fluctuation strength, we thus
arrive at the following result:

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 〈A(t1) · A(t2) · A(t3) · A(t4)〉 · û(0)

=
(

− 4
βγr

)2(1
2

)2 1
2

t2û(0)

In the next higher-order terms in the ensemble average of the iterative solution
(3.139), the product with the consecutive time ordering is likewise the only
surviving one. Along similar lines, one shows that, for even n,

∫ t

0
dt1 · · ·

∫ tn−1

0
dtn〈A(t1) · · ·A(tn)〉 =

(
− 4

βγr

)n/2(1
2

)n/2 1
(n/2)!

tn/2 Î

The iterative solution is thus

〈û(t)〉 =

[ ∞∑
n=0

1
n!

(−2Dr)ntn

]
û(0) = exp(−2Drt)û(0) (3.144)

where the rotational diffusion coefficient Dr is defined by the Einstein relation

Dr = kBT/γr (3.145)

The rotational mean square displacement is thus equal to

Wrot(t) = 2[1 − exp(−2Drt)] (3.146)

For small times, this result is quite similar to Eq. (3.130) for the mean square
displacement of the center of mass of a rod,

Wrot(t) = 〈|û(t) − û(t=0)|2〉 = 4Drt, Drt � 1 (3.147)
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Fig. 3.11 (a) Rotational diffusion visualized as diffusion of a point on the
unit sphere. (b) For small times, this is equivalent to diffusion of a point
on a two-dimensional surface.

This corresponds to diffusion of a point in two dimensions. Rotational Brow-
nian motion may be visualized as a point on the unit spherical surface, rep-
resenting the tip of the unit vector û, which exerts Brownian motion (see
Fig. 3.11a). For small times, this is Brownian motion on a two-dimensional
flat surface (see Fig. 3.11b). For larger times, the tip experiences the curvature
of the unit spherical surface, leading to more complex behavior as described
by Eq. (3.146).

3.7
Equations of Motion for Interacting Rods

So far, we have considered rods that do not interact with other rods. For sys-
tems of interacting rods, properties are most easily studied by means of prob-
ability density functions (PDFs) of positions and orientations. In this section
we shall derive the fundamental equation of motion for the probability den-
sity function of the positions and orientations of an assembly of N interacting
rods. This equation of motion is commonly referred to as the Smoluchowski
equation. An essential ingredient in the derivation of this equation of motion
is the neglect of inertia on the Brownian time scale, as discussed before. The
Smoluchowski equation also describes the dynamics of non-interacting rods,
and is shown to reproduce the results obtained in previous sections. In ad-
dition, the behavior of non-interacting rods in shear flow is discussed at the
end of this section.
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3.7.1
The N -Particle Smoluchowski Equation

Consider a single cylindrically symmetric, rigid rod embedded in solvent. The
position coordinate of the rod will be denoted by r, while its orientation is
characterized by the unit vector û, which is directed along the long axis of
the rod. The “micro-state” of the rod is thus set by a point in �3 (the position
vector r) and a point on the unit spherical surface (the tip of the vector û), as
depicted in Fig. 3.12.

Fig. 3.12 (a) Definition of the position coordinate r and the orientation
û of a rod. (b) The micro-state of a single rod is set by a point in �3

(the position coordinate) and a point on the unit spherical surface
(the orientation).

The points in �3 and on the unit spherical surface exhibit chaotic motion
due to translational and rotational Brownian motion, respectively. Consider
now an ensemble of N containers, where each container is filled with solvent
and contains just a single Brownian rod. The micro-state of this ensemble
(as far as the colloidal rod is concerned) is set by N points in �3 (for the
positions) and N points on the unit spherical surface (for the orientations).
Let W denote an arbitrary volume in �3, and A an arbitrary surface area on
the unit spherical surface (see Fig. 3.13). The density of points at a certain
position and orientation is proportional to the probability of finding a rod in
that micro-state. To find an equation of motion for that probability, we shall
require the time rate of change of the number of points inside W and A. The
time-dependent “number of points” N(t) is related to the probability density
function P (r, û, t) for the position r and orientation û, as

N(t) =
∫

W
dr

∫
A

dû P (r, û, t) (3.148)
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Fig. 3.13 The micro-state of the ensemble is given by a point distribution
in �3 and on the unit spherical surface. W and A are arbitrary subspaces
in �3 and on the unit spherical surface, respectively.

where dû denotes an infinitesimally small surface element on the unit
spherical surface (in spherical coordinates, this surface element is equal to
sin Θ dΘ dϕ). The time rate of change of the number of points in W and A
is thus given by

dN(t)
dt

=
∫

W
dr

∫
A

dû
∂

∂t
P (r, û, t) (3.149)

The rate of change of the number of points is related to the inward and
outward fluxes of points through the boundaries ∂W and ∂A of W and A,
respectively.

Consider first the flux through ∂W . Let v denote the translational velocity
of the center of mass of the rod. The only component of v that contributes to
inward or outward flux through ∂W is the component that is perpendicular
to W : when v is locally parallel to ∂W , there is no local inward or outward flux
contribution. The component of v that is perpendicular to ∂W is equal to n̂·v,
where n̂ is the unit normal (which is chosen to be directed outward of W).
The local contribution to the rate of change of the number of points in W is
equal to the local density of points P (r, û, t), multiplied by the perpendicular
component n̂ · v of v. The total rate of change dNW(t)/dt of the number
of points due to the inward and outward fluxes through ∂W is thus equal to
(with dS = n̂ dS, where dS is an infinitesimally small surface element on
∂W ; see Fig. 3.14a)

dNW(t)
dt

= −
∮

∂W
dS ·

∫
A

dû [vP (r, û, t)] (3.150)

The minus sign here is due to the fact that the direction of n̂ is pointing
outward of W : when v ∼ n̂, so that n̂ · v > 0, the number of points in W
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Fig. 3.14 (a) Part of the boundary ∂W and (b) part of the boundary ∂A.
For an explanation of the symbols in this figure, see the main text.

decreases in time. Applying Gauss’s integral theorem it is found that

dNW(t)
dt

= −
∫

W
dr

∫
A

dû ∇ · [vP (r, û, t)] (3.151)

Next consider the contribution dNA(t)/dt of the rate of change due to
inward and outward fluxes through the boundary ∂A of A. This boundary is
a closed curve on the unit spherical surface. Since û is always perpendicular
to the unit spherical surface, the vector that is locally perpendicular to ∂A
is equal to dl × û, where dl is the infinitesimally small vector that is locally
tangential to the curve ∂A (see Fig. 3.14b). The component of the velocity
dû/dt that is perpendicular to ∂A is thus equal to (dl × û) · dû/dt, which is
the component that determines the inward and outward fluxes. Since this is
equal to dl · (û × dû/dt), the total rate of change dNA(t)/dt of the number
of points in A is thus equal to

dNA(t)
dt

= −
∫

W
dr

∮
∂A

dl ·
(

û × dû

dt

)
P (r, û, t) (3.152)

Applying Stokes’s integral theorem, it is found that

dNA(t)
dt

= −
∫

W
dr

∫
A

dû û ·
[
∇û ×

(
û × dû

dt

)
P (r, û, t)

]
(3.153)

where ∇û is the gradient operator with respect to the Cartesian components
of û. Using Eq. (3.88) for the angular velocity, and using the fact that û ·∇û×
(· · ·) = (û × ∇û) · (· · ·), Eq. (3.153) can be rewritten as

dNA(t)
dt

= −
∫

W

∫
A

dû (û × ∇û) · [ΩP (r, û, t)] (3.154)
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Combining Eqs. (3.151) and (3.154) we thus find that

dN(t)
dt

=
dNA(t)

dt
+

dNW(t)
dt

= −
∫

W
dr

∫
A

dû {∇ · [vP (r, û, t)] + R̂ · [ΩP (r, û, t)]} (3.155)

where the rotation operator R̂ is introduced for convenience as

R̂(· · ·) = û × ∇û(· · ·) (3.156)

The differentiation with respect to û should be taken at constant length of
û. Fortunately, the outer product with û eliminates the component along û

of ∇û. Hence, the differentiation in Eq. (3.156) can be done with respect to
the unconstrained Cartesian coordinates of û. Note the similarity between
the translational and rotational contributions to the rate of change: instead of
the translational velocity v, the angular velocity Ω appears in the rotational
contribution; and instead of the gradient operator ∇, the rotation operator R̂
appears. From Eqs. (3.149) and (3.155) it is now found that

∫
W

dr

∫
A

dû

{
∂

∂t
P (r, û, t) + ∇ · [vP (r, û, t)] + R̂ · [ΩP (r, û, t)]

}
= 0

(3.157)

Since this holds for arbitrary volumes W and surface areas A, the integrand
must be equal to 0. Hence,

∂

∂t
P (r, û, t) = −∇ · [vP (r, û, t)] − R̂ · [ΩP (r, û, t)] (3.158)

Here, we have considered a system that contained just a single rod. For a
suspension that contains N rods, instead of just {r, û}, the relevant phase-
space coordinates are

{r1, r2, . . . , rN , û1, û2, . . . , ûN}

where rj is the position of the jth rod, and ûj its orientation. The equation of
motion for the probability density function P of these phase-space coordinates
is found from Eq. (3.158) by simply adding the inward and outward fluxes
over all rods:

∂

∂t
P (r1, . . . , rN , û1, . . . , ûN , t) = −

N∑
j=1

{∇j · [vjP ] + R̂j · [ΩjP ]} (3.159)
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The full phase-space coordinate dependence of P is not denoted here on the
right-hand side for brevity. Here, R̂j is defined as in Eq. (3.156), with û re-
placed by ûj . This is an exact result, since it merely expresses the conservation
of the number of rods.

As a last step, the translational and rotational velocities have to be expressed
in terms of functions of the phase-space coordinates. In doing so, we shall
neglect hydrodynamic interactions between the rods. The reason for this ne-
glect is two-fold. First of all, as will be seen later, the volume fractions of
interest scale as D/L (with D the thickness and L the length of the rods).
That is, the volume fraction where the isotropic–nematic phase transition oc-
curs scales as D/L. For the study of dynamics in the isotropic phase and the
isotropic–nematic phase transition, the volume fractions are thus very low.
This implies that on average two arbitrary surface elements of distinct rods
are very far apart. Therefore, hydrodynamic interactions are probably much
less important than for suspensions of spherical particles. Secondly, the pre-
cise form of the hydrodynamic interaction functions for rods is unknown,
even on the two-body level.

The key relation to express the velocities in terms of phase functions is
the force balance equation. As seen above, the translational and angular mo-
mentum coordinates are relaxed to equilibrium with the heat bath of solvent
molecules on the Brownian time scale, so that the total force (and torque)
on each Brownian particle is zero. There are three non-inertial forces (and
torques) working on each rod: the hydrodynamic force F h

j (torque T h
j ) that

the solvent exerts on the rod, the direct interaction force F I
j (torque T I

j), and
the Brownian force F Br

j (torque T Br
j ), which will be discussed and specified

later. Hence,
total force = 0 = F h

j + F I
j + F Br

j

total torque = 0 = T h
j + T I

j + T Br
j (3.160)

The direct force is minus the gradient of the total potential energy Φ of the
assembly of Brownian particles,

F I
j = −∇jΦ(r1, . . . , rN , û1, . . . , ûN ) (3.161)

while the direct torque is related to Φ as

T I
j = −R̂jΦ (3.162)

With the neglect of hydrodynamic interactions, the hydrodynamic torque and
force are just the friction forces of a single rod with the solvent. This friction
force is equal to (see Eq. 3.44)
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F h
j = (γ‖ûû + γ⊥[ Î − ûû]) · (vc − G · rc) (3.163)

The torque due to friction with the solvent is equal to (see Eq. 3.48)

T h
j = −γr[Ωj − ûj × G · ûj ] (3.164)

As discussed before, in the case of simple shear flow, the second term in the
square brackets is 0 when the rod’s orientation is along the flow direction. To
describe the Jeffery orbits of non-Brownian rods correctly, we therefore had to
add the small torque that acts on rods with such an orientation (see Eq. 3.55).
For Brownian rods this small torque is irrelevant, since rods oriented parallel
to the flow direction will attain other orientations due to Brownian motion
before the mentioned small torque becomes active.

The translational velocity can be found from Eqs. (3.160) and (3.163) as

vj = (D‖ûjûj + D⊥[ Î − ûjûj ]) · (−β∇jΦ + βF Br
j ) + γ̇Ĝ · rj (3.165)

while the rotational velocity is found from Eqs. (3.160) and (3.164) as

Ωj = Dr(−βR̂jΦ + βT Br
j ) + γ̇ûj × (Ĝ · ûj) (3.166)

Here, Ĝ = G/γ̇ is the “normalized” velocity-gradient tensor,

D‖ = kBT/γ‖ and D⊥ = kBT/γ⊥ (3.167)

are the translational diffusion coefficients for motion parallel and perpendic-
ular to the long axis of the rods, respectively, and

Dr = kBT/γr (3.168)

is the rotational diffusion coefficient. These diffusion coefficients depend on the
length L and thickness D of the rod, and the shear viscosity η0 of the solvent
(see Eqs. 3.40, 3.42, and 3.49):

Dr =
3kBT ln(L/D)

πη0L3

D‖ =
kBT ln(L/D)

2πη0L
(3.169)

D⊥ = 1
2D‖
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Note that, due to the last two equations here, Eq. (3.165) can be rewritten as

vj = 3
4D̄[ Î + ûjûj ] · {−β∇jΦ + βF Br

j } + γ̇Ĝ · rj (3.170)

where the translational diffusion coefficient D̄ is equal to

D̄ = 1
3 [D‖ + 2D⊥] = 4

3D⊥ = 2
3D‖ =

kBT ln(L/D)
3πη0L

(3.171)

The reason for referring to Dr and D̄ as “diffusion coefficients” will become
clear in the following section, where diffusion of non-interacting rods is con-
sidered. The above expressions for diffusion coefficients are valid for very
long and thin rods. For shorter rods, corrections to these limiting expressions
are given by de la Torre and Bloomfield (1981).

We still have to express the Brownian contributions to the total force and
torque in terms of phase functions. This is achieved as follows. In the absence
of flow, for infinite time t → ∞, when the suspension attains equilibrium, the
probability density function P is proportional to the Boltzmann exponential
exp(−βΦ), and ∂P/∂t = 0. From the long-time limit of Eq. (3.159), together
with Eqs. (3.166) and (3.170) in the absence of shear flow, it follows that

F Br
j = −kBT∇j ln(P )

T Br
j = −kBT R̂j ln(P ) (3.172)

These Brownian contributions to the total force and torque are the result of the
fact that the force balance equations (3.160) are only valid on the diffusive time
scale. On such a coarsened time scale, not only the purely microscopic forces
F h

j and F I
j (and the corresponding torques) act on the colloidal particles.

The additional Brownian force (and torque) arises from interactions of the
colloidal particle with the solvent molecules, averaged with respect to the
equilibrium probability density function for the phase-space coordinates of
the fluid molecules in the external field imposed by the colloidal particles with
prescribed positions and orientations. Even in a very dilute system of colloidal
particles (an “ideal gas”), where interactions between the colloidal particles
can be neglected, the equilibrium state is one where the macroscopic density
is constant, independent of position. The forces that drive such an ideal gas
to the homogeneous state are the Brownian forces.

In this way the following equation of motion for the probability density
function P of the phase-space coordinates {r1, . . . , rN , û1, . . . , ûN} is ob-
tained:
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∂P

∂t
=

N∑
j=1

{ 3
4D̄∇j · ( Î + ûjûj) · [∇jP + βP∇jΦ] − γ̇∇j · [P Ĝ · rj ]

+ DrR̂j · [R̂jP + βP R̂jΦ] − γ̇R̂j · [P ûj × (Ĝ · ûj)]
}

(3.173)

This is the Smoluchowski equation for very long and thin, rigid rods, where
hydrodynamic interactions are neglected.

An alternative, perhaps more satisfying, derivation of the Smoluchowski
equation is to start from the Liouville equation for a binary mixture: solvent
molecules and colloidal particles. The Smoluchowski equation is then found
after integrating over the fast phase-space variables (the phase-space coordi-
nates of the solvent molecules and the momentum coordinates of the colloidal
particles). Such an approach has been taken, for spherical colloids, by Deutch
and Oppenheim (1971) and Murphy and Aquirre (1972). The Smoluchowski
equation for spherical particles has been used as a starting point to derive the
Smoluchowski equation for rods by Erpenbeck and Kirkwood (1963).

3.7.2
Translational and Rotational Diffusion of Non-Interacting Rods
Without Shear Flow

Consider the mean square center-of-mass displacement of a freely diffusing
rod. Its position at time t = 0 will be chosen at the origin: r(t=0) = 0. Free
diffusion occurs in suspensions where the concentration of colloidal particles
is so small that, on average, rods do not notice each other. In that case, the
interaction potential in the Smoluchowski equation (3.173) may be neglected
(Φ = 0), and N can be taken equal to 1, resulting in

∂

∂t
P (r, û, t) = 3

4D̄∇ · [ Î + ûû] · ∇P + DrR̂2
P (3.174)

where R̂2
= R̂ · R̂. For the highly dilute systems under consideration, each

orientation has equal probability, P (r, û, t) is independent of û, and is simply
proportional to P (r, t). Equation (3.174) thus reduces to

∂

∂t
P (r, t) = 3

4D̄∇ · [ Î + ûû] · ∇P (r, t) (3.175)

Integration of both sides with respect to û, using the fact that1)

∮
dû [ Î + ûû] = 4

3 Î

1) The integral
∮

dû (· · ·) stands for integration over the unit spherical surface. In terms of the

angular spherical coordinates Θ and ϕ of û, this integral is
∫ π
0 dΘ

∫ 2π
0 dϕ sinΘ (· · ·).
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thus leads to

∂

∂t
P (r, t) = D̄∇2P (r, t) (3.176)

The equation of motion for the dyadic product 〈r(t)r(t)〉 is obtained by mul-
tiplying both sides with r r and integrating:

d
dt

∫
dr rr P (r, t) ≡ d

dt
〈r(t)r(t)〉 = D̄

∫
dr rr ∇2P (r, t)

= D̄

∫
dr P (r, t)∇2rr = 2D̄ Î

where Gauss’s integral theorem has been used twice in the second line. Since
〈r(t=0)r(t=0)〉 = 0, time integration immediately leads to

〈r(t)r(t)〉 = 2D̄t Î

and hence

W (t) ≡ 〈r2(t)〉 = 6D̄t (3.177)

in accordance with the result (3.130) as obtained from the Langevin equation.
Note that, on taking the trace of the dyadic product, each spatial dimension
(three in this case) gives rise to a factor 2 on the right-hand side in the mean
square displacement in Eq. (3.177). Diffusion in two dimensions gives a pref-
actor of4 instead of6, in accordance with the result in Eq. (3.147) for short-time
rotational diffusion.

Let us now consider the time dependence of the orientation 〈û(t)〉, given
that û(t=0) = û(0). For a homogeneous system, P (r, û, t) is independent
of r, so that Eq. (3.174) reduces to

∂

∂t
P (û, t) = DrR̂2

P (û, t) (3.178)

Multiplying both sides with û and integrating over the unit spherical surface
gives

d
dt

〈û(t)〉 = Dr

∮
dû ûR̂2P (û, t)

From Stokes’s integral theorem it follows that, for any two (well-behaved)
functions f and g of û,

∮
dû f(û)R̂g(û) = −

∮
dû g(û)R̂f(û) (3.179)
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Applying this result twice leads to

∮
dû ûR̂2P (û, t) =

∮
dû P (û, t)R̂2û = −2〈û(t)〉

where it is used that R̂2û = −2û. The equation of motion we were after thus
reads

d
dt

〈û(t)〉 = −2Dr〈û(t)〉

the solution of which is

〈û(t)〉 = exp(−2Drt)û(0) (3.180)

in accordance with Eqs. (3.133) and (3.146) as obtained from the Langevin
equation. As discussed in Section 3.6.2 on the Langevin-equation approach,
for small times where Drt � 1, this result can be interpreted as translational
diffusion of the tip of û on a two-dimensional surface.

3.8
The Orientational Order Parameter

At higher concentrations, where interactions between rods are important, a
transition from an isotropic distribution of orientations to an orientationally
ordered nematic state can occur (as will be discussed in more detail later).
Orientational order is also induced by shear flow in otherwise isotropic sus-
pensions. For such ordered states the degree of orientational order varies,
depending on the concentration of rods and the shear rate. In the present
section the so-called orientational order parameter will be defined, which mea-
sures the degree of orientational order.

The preferred orientation n̂ of the rods is referred to as the director.
The simplest measure for the degree of orientation that comes to mind is
〈cos Θ〉 = 〈û〉 · n̂, where Θ is the angle between the orientation û of a given
rod and the director n̂ (see Fig. 3.15). However, due to symmetry, orienta-
tion +û is as equally likely to occur as orientation −û, so that 〈û〉 = 0.
The next simplest measure2) would then be 〈cos2 Θ〉 = 〈ûû〉 : n̂n̂. Hence,
the simplest quantity that characterizes the orientational state is the so-called
orientational order-parameter tensor,

2) Here the contraction symbol “:” stands for summation over two adjacent indices; that is, for
two tensors A and B, by definition, A : B =

∑
n,m AnmBmn.



3.8 The Orientational Order Parameter 209

Fig. 3.15 Definition of the angle Θ between the orientation û of a rod
and the director n̂.

S ≡ 〈ûû〉 ≡
∮

dû ûû P (û) (3.181)

where the integration ranges over the unit spherical surface (see footnote 1).
Furthermore, P (û) is the probability density function (PDF) for the orienta-
tion û of a rod, which can in principle be obtained from the solution of the
N -particle Smoluchowski equation (Eq. 3.173), noting that

P (û) =
∫

dr1 · · ·
∫

drN

∮
dû2

· · ·
∮

dûN P (r1, . . . , rN , û, û2, . . . , ûN ) (3.182)

The PDF of û can be time-dependent, in which case orientational dynamics
can be studied.

What information can be distilled from a specified S? To answer this ques-
tion, let ê be a unit vector, and let ϕ denote the angle between the orientation
û of a given rod and ê. Consider the function

f ≡ 〈cos2 ϕ〉 = S : êê =
∑
m,n

Smnêmên (3.183)

where Snm is the nmth component of S, and ên is the nth component of ê.
Since the maximum value of cos2 ϕ is attained when ϕ = 0, and the most
likely direction of û is along the director, it is evident that the unit vector ê that
maximizes f is the director. Maximization of f has to be performed under
the constraint that ê is a unit vector, i.e. ê · ê = 1. According to Lagrange’s
principle, we therefore have to maximize the function

f∗ = f − λê · ê =
∑
mn

(Smn − λδmn)êmên (3.184)

where λ is the Lagrange multiplier, and δnm is the Kronecker delta (δmn = 0
when m 
= n, and δmn = 1 when m = n). From ∂f/∂êm = 0 it is easily
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found that

S · ê = λê maximizes or minimizes f∗ (3.185)

By taking the inner product on both sides it follows that

λ = S : êê when ê maximizes or minimizes f∗ (3.186)

We thus find that the eigenvector of S with the largest eigenvalue is the director n̂

and the largest eigenvalue is equal to 〈cos2 Θ〉 = S : n̂n̂.
According to Eqs. (3.183) and (3.186), the largest eigenvalue of S character-

izes the degree of alignment, and is referred to as the scalar orientational order
parameter. Note that the largest eigenvalue of S is equal to 1

3 in the isotropic
state (since then S = 1

3 Î), and is equal to 1 for a perfectly aligned state (since
then S = n̂n̂). A commonly used equivalent measure is the so-called P2

order parameter, which is defined as

P2 ≡ 〈P2(cos Θ)〉 = 1
2 [3〈cos2 Θ〉 − 1] = 1

2 [3λ − 1] (3.187)

where P2(x) is the second-order Legendre polynomial. The reason for intro-
ducing this “rescaled” scalar order parameter P2 is that it is equal to 0 for an
isotropic state and equal to 1 for a perfectly aligned state.

When, for a particular nematic suspension, the remaining two smaller
eigenvalues are equal, the nematic is referred to as “uniaxial”. When they
are unequal, the nematic is referred to as “biaxial”. For a uniaxial nematic,
the projections of the rods onto the plane perpendicular to the director are
isotropically distributed, while for a biaxial nematic the orientations of the
rods in this projection have a second preferred direction, n̂′ (see Fig. 3.16).

Biaxiality of nematic ordering is found, for example, when a suspension of
rigid rods is subjected to simple shear flow. A nematic state of cylindrically
shaped rods, in the absence of an external field, is expected to be uniaxial.

The procedure to find the order parameter is to calculate the tensor S

and determine its eigenvalues. The largest eigenvalue measures the degree
of orientational order and the corresponding eigenvector gives the preferred
direction of alignment. We shall derive an equation of motion for S from the
Smoluchowski equation later in this chapter.

3.9
Non-Interacting Brownian Rods in Shear Flow

In the present section we shall discuss probability density functions (PDFs)
and orientational order-parameter matrices for a single Brownian rod sub-



3.9 Non-Interacting Brownian Rods in Shear Flow 211

Fig. 3.16 For a biaxial nematic, the projections of the rods onto the plane
perpendicular to the director n̂ have a preferred orientation n̂′ as well.
For a uniaxial nematic, the order in this plane is isotropic.

jected to flow. On applying a stationary flow, the orientational PDF of a single
rod attains a stationary form. This stationary, time-independent PDF is deter-
mined by the interplay of the aligning effect of the flow and isotropy-restoring
rotational diffusion.

The stationary form of the Smoluchowski equation (Eq. 3.173) for a single
rod reads

0 = R̂2
P (û) − Per R̂ · [P (û)û × (Ĝ · û)] (3.188)

where the dimensionless parameter Per is commonly referred to as the rota-
tional Peclet number, which is defined as

Per = γ̇/Dr (3.189)

This Peclet number is a measure of the effect of the shear flow relative to
isotropy-restoring rotational diffusion. For small Peclet numbers, rotational
diffusion is relatively fast, so that the PDF is only slightly anisotropic.

As explained below Eq. (3.156), the differentiation in R̂ is with respect to
the Cartesian coordinates of û, without the constraint that û is a unit vector.

The stationary equation of motion can be solved in closed analytical form
when the velocity-gradient tensor G is symmetric (as for elongational flow).
This solution is discussed in the next subsection. When the velocity-gradient
tensor is not symmetric (as for simple shear flow), the solution cannot be
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obtained in a simple closed analytical form, but must be obtained by numer-
ical methods. However, expansion of the orientational PDF for small Peclet
numbers is feasible.

3.9.1
Elongational Flow

For pure straining motion, the velocity-gradient tensor Ĝ is equal to the sym-
metric tensor Ê in Eq. (3.2). A symmetric velocity-gradient tensor admits a
solution of the simpler equation

0 = R̂P (û) − Per[P (û)û × (Ê · û)] (3.190)

where one of the R̂ operators in Eq. (3.188) is removed. Division by P (û)
thus yields

0 = R̂ ln[P (û)] − Perû × (Ê · û) (3.191)

From one of the relations in the Appendix (Section 3.16.2), it follows imme-
diately that the solution is given by

P (û) =
1

C(Per)
exp[12Per(û · Ê · û)] (3.192)

where C is the Per-dependent normalization constant,

C(Per) =
∮

dû exp[12Per(û · Ê · û)] (3.193)

=
∫ 2π

0
dϕ

∫ π

0
dΘ sin Θ exp[Per sin2 Θ sinϕ cos ϕ]

This normalization constant may be determined as a function of Per by nu-
merical integration. Alternatively, C(Per) may be expanded for small Per in
a power series in Per, or its asymptotic form for large Per may be calculated.
Taylor expansion of the exponential in Eq. (3.193) with respect to Per readily
gives

C(Per) = 4π +
2π

15
Pe2

r +
π

630
Pe4

r + O(Pe6
r ) (3.194)

For large (positive) Peclet numbers, asymptotic forms for C(Per) can be
obtained by a saddle-point analysis, which we shall not discuss here. For
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intermediate values of Per, the integral in Eq. (3.193) for C(Per) must be
evaluated numerically.

The orientational order-parameter tensor can be calculated from the above
given forms for the PDF P (û) and Eq. (3.181), and from that the scalar orien-
tational order parameter P2 as defined in Eq. (3.187) and the angle χ between
the director and the flow direction may be obtained. These are plotted as
functions of Per in Fig. 3.17. The solid lines are obtained from numerical
integration of Eq. (3.193), while the dotted lines correspond to the limiting
analytical results in Eq. (3.194) for small Peclet numbers [including the cor-
responding expansion of the exponential in Eq. (3.192) for the PDF]. For
elongational flow, χ is always equal to 45◦, which is obvious from the flow
field as sketched in Fig. 3.1: rods will orient along the extensional axis.

3.9.2
Simple Shear Flow

In the case of pure shearing motion, the velocity-gradient tensor Ĝ is equal
to the tensor Γ̂ in Eq. (3.1). For such a non-symmetric velocity-gradient ten-
sor, the above method of solution cannot be copied, since the corresponding
Eq. (3.190) has no solutions for a non-symmetric tensor G.

For small rotational Peclet numbers, the deviation of the PDF from isotropy
is small, so that the solution of the stationary equation of motion (3.188) can
be expanded as

P (û) =
1
4π

+ PerP1(û) + Pe2
rP2(û) + · · · (3.195)

Substitution of this expansion into Eq. (3.188) and equating coefficients of
equal powers of Per, one readily finds the following recursive set of differen-
tial equations for the as yet unknown functions Pj :

R̂2
Pj(û) = R̂ · [Pj−1(û)û × (Γ̂ · û)], j ≥ 1 (3.196)

where P0(û) = 1/4π is the isotropic PDF without shear flow. Normalization
requires that

∮
dû Pj(û) = 0, j ≥ 1 (3.197)

Let us consider the first two corrections from isotropy in the expansion (3.195).

For j = 1, using the fact that P0(û) = 1/4π, Eq. (3.196) reads

R̂2
P1(û) =

1
4π

R̂ · [û × (Γ̂ · û)] = − 3
4π

(û · Ê · û) (3.198)
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Fig. 3.17 (a) The scalar orientational or-
der parameter P2 = 1

2 [3λ − 1], with λ the
largest eigenvalue of S (see Eq. 3.187) as
a function of the rotational Peclet number
Per = γ̇/Dr for elongational flow and
simple shear flow. The solid lines are
numerical results, the dotted lines corre-
spond to the limiting analytical solutions
(3.194) and (3.202) for elongational and

simple shear, respectively, and the data
points are computer simulation results
by Winkler et al. (2004) and Winkler and
Gompper (2004).
(b) The angle χ between the director and
the flow direction. The dotted line is the
angle that follows from the limiting form
(3.202) of the PDF for simple shear flow.

where Ê is the symmetric part of the velocity-gradient tensor Γ̂, that is,
Ê = 1

2 (Γ̂ + Γ̂
T
). The above equation follows from the relations given in the

Appendix (Section 3.16.2).3) Using these relations once more immediately
leads to

P1(û) =
1
8π

(û · Ê · û) =
1
8π

sin2 Θ sinϕ cos ϕ (3.199)

3) Note that in the combination û · M · û, one can replace the tensor M by its symmetric part
1
2 (M + MT), since û · (M − MT) · û = 0.
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Substitution of this solution for P1 into Eq. (3.196) for j = 2 yields

R̂2
P2(û) =

1
8π

R̂ · [(û · Ê · û)(û × Γ̂ · û)]

=
1
8π

[û2
2 − 5(û · Ê · û)2] (3.200)

From the relations in Section 3.16.2, one readily verifies that

R̂2
(û · Ê · û)2 = 2û2

1 + 2û2
2 − 20(û · Ê · û)2

The third equation in Section 3.16.2 now shows that the solution to Eq. (3.200)
is given by

P2(û) =
1

32π
[(û · Ê · û)2 + 1

3 (û2
1 − û2

2) − 1
15 ] (3.201)

=
1

32π
[sin4 Θ sin2 ϕ cos2 ϕ + 1

3 sin2 Θ(cos2 ϕ − sin2 ϕ) − 1
15 ]

The constant 1
15 in the square brackets has been subtracted in order that P2

satisfies the normalization constraint (3.197).
Collecting results, we thus obtain the following small Peclet number ex-

pansion (valid up to O(Pe3
r )):

P (û) =
1
4π

+ Per
1
8π

(û · Ê · û)

+Pe2
r

1
32π

[(û · Ê · û)2 + 1
3 (û2

1 − û2
2) − 1

15 ] (3.202)

The corresponding scalar orientational order parameter P2 and the angle χ

between the director and the flow direction are plotted in Fig. 3.17, together
with the numerical solution of Eq. (3.188). The dotted lines in Fig. 3.17 cor-
respond to asymptotic solutions for small Peclet numbers. The solid lines
correspond to numerical solutions of Eqs. (3.188), while the data points are
simulation results by Winkler et al. (2004) and Winkler and Gompper (2004).
In these simulations, the aspect ratio of the rods is L/D = 15, and there
is a finite flexibility (the average end-to-end distance is 98% of the contour
length). This may be the reason for the small deviations at higher Peclet num-
bers. For short rods the order parameter is expected to be smaller than for
long rods. In Fig. 3.17a, however, the simulation results for the order param-
eter are slightly above those corresponding to the numerical solution of the
Smoluchowski equation. This is an indication of a sensitive dependence of
orientational order induced by shear flow on the flexibility of rods.
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In contrast to elongational flow, rods subjected to simple shear flow will
rotate in the velocity-gradient plane. The orientational order parameter for
elongational flow is therefore large compared to that for simple shear flow.
For small Peclet numbers, rods in simple shear flow spend most of their time
during rotation in a direction where χ = 45◦. This is the result of an interplay
between the Brownian torque on the rod and the torque that the fluid exerts
on the rod. A preferred alignment along the flow direction implies a strongly
peaked orientational PDF. In that case the Brownian torque, being equal to
−kBT R̂ ln[P (û)], would be very large. The Brownian torque thus tends to
diminish the strongly peaked PDF in the flow direction. This competition
leads, according to the above analysis, to a preferred alignment along the
extensional axis of the shear flow at very small shear rates. For larger Peclet
numbers, where the torque that the fluid exerts on the rod is dominant, the
angle χ tends to 0, that is, rods are on average aligned along the flow direction.

3.10
The Doi–Edwards Equation of Motion and the Maier–Saupe Potential

In this section we shall derive an equation of motion for the orientational
order-parameter tensor S for homogeneous systems of long and thin rods
with short-range repulsive interactions subjected to shear flow. This equation
of motion is known as the Doi–Edwards equation (Doi and Edwards 1986),
and is derived here from the Smoluchowski equation (Eq. 3.173). In such
a microscopic derivation, the assumptions under which the Doi–Edwards
equation holds will become clear. For the very long and thin rods under con-
sideration here, the stationary equation of motion for the PDF P (û) for the
orientation û of a rod, as obtained from the Smoluchowski equation, com-
plies with Onsager’s free-energy functional (Onsager 1933; Onsager 1942;
Onsager 1949). Expanding the interaction term in the equation of motion
with respect to the orientational order parameter leads in a natural way to the
Maier–Saupe potential (Maier and Saupe 1958; Maier and Saupe 1959; Maier
and Saupe 1960).

3.10.1
Equation of Motion for P (û, t)

Let us first derive the equation of motion for P (û, t). According to Eqs. (3.182)
(where P is now time-dependent), such an equation of motion can be obtained
from the Smoluchowski equation (Eq. 3.173) by integration with respect to
r1, . . . , rN , û2, . . . , ûN .
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Analytical progress can be made by assuming a pairwise additive total po-
tential, that is

Φ(r1, . . . , rN , û1, . . . , ûN ) =
∑
i<j

V (ri−rj , ûi, ûj) (3.203)

with V the pair-interaction potential. This is exact for the rods with hard-core
interactions (or rods with very short-range repulsive interactions) that we shall
consider. According to the integral theorems of Gauss and Stokes, we have,
respectively,

∫
drj ∇j · (· · ·) = 0 and

∮
dûj R̂j · (· · ·) = 0 (3.204)

Using the above relations, integration of both sides of the Smoluchowski
equation (Eq. 3.173) with respect to r1, . . . , rN and û2, . . . , ûN leads to (with
û = û1)

∂

∂t
P (û, t) = DrR̂ · [R̂P (û, t) − βP (û, t)T̄ (û, t)]

−R̂ · [P (û, t)û × (Γ · û)] (3.205)

The torque T̄ is defined as (with R = r1 − r2 and û′ = û2)

T̄ (û, t) = −ρ̄

∫
dR

∮
dû′ P (û′, t)g(R, û, û′, t)R̂V (R, û, û′) (3.206)

where ρ̄ = N/V is the number density of rods, and where the pair correlation
function g is defined as (with r = r1 and r′ = r2)

P (r, r′, û, û′, t)

≡
∫

dr3· · ·
∫

drN

∮
dû3· · ·

∮
dûN P (r, r′, r3, . . . , rN , û, û′, û3, . . . , ûN , t)

≡ 1
V 2 P (û, t)P (û′, t)g(r, r′, û, û′, t) (3.207)

with P (r, r′, û, û′, t) the PDF for the positions and orientations of two rods.
Since the product (1/V )P (û′, t)g(r, r′, û, û′) is the conditional PDF for the
position r′ and orientation û′ of a rod, given the orientation û and position r of
the other rod, the torque in Eq. (3.206) is the torque on a rod, with prescribed
orientation û and position r, averaged over the orientations and positions
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of the other rods. In fact, Eq. (3.205) is nothing other than the one-particle
Smoluchowski equation with the addition of an “external torque” T̄ .

A closed equation of motion for P (û, t) is obtained when g is known.
For equilibrium suspensions of very long and thin, rigid and repulsive rods,
similar arguments as used by Onsager (1933) lead to (see Section 3.10.3 for
details)

g(r−r′, û, û′, t) = exp[−βV (r−r′, û, û′)] (3.208)

where V is the pair-interaction potential. This expression is valid in the
isotropic and nematic states (provided the degree of alignment is not too
high). That Eq. (3.208) is a good approximation for suspensions of very long
and thin rods in equilibrium even at high concentrations is shown in Sec-
tion 3.10.3. What is neglected in using Eq. (3.208) are dynamic contributions
to correlations and the influence of shear flow. So far, nothing is known about
dynamic correlations, and we shall assume here that these contributions can
be neglected. Furthermore, the effect of shear flow is to align rods, that is,
shear flow strongly affects the singlet PDF P (û, t). Correlations between the
centers of mass of the very long and thin rods, measured by the pair correla-
tion function g, are much less affected by flow.

In the case of hard-core interactions, we have the identity

exp[−βV (r−r′, û, û′)]R̂V (r−r′, û, û′)

= −β−1R̂{exp[−βV (r−r′, û, û′)] − 1}

= β−1R̂X (r−r′, û, û′) (3.209)

with X the characteristic function of the excluded volume for two rods: X = 1
when the cores of the two rods overlap and X = 0 otherwise. The torque
(3.206) can now be written as

T̄ (û, t) = −R̂V eff(û, t) (3.210)

where the effective potential V eff is equal to (with R = r′ − r)

V eff(û, t) = β−1ρ̄

∫
dR

∮
dû′ P (û′, t)X (R, û, û′)

= 2DL2β−1ρ̄

∮
dû′ P (û′, t)|û × û′| (3.211)

where in the last equation we have used the fact that
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∫
dR X (R, û, û′) = 2DL2|û × û′| (3.212)

for very long and thin rods. The effective potential V eff is commonly referred
to as the Doi–Edwards potential. We thus find the following closed equation
of motion for P (û, t):

∂

∂t
P (û, t) = DrR̂ ·

[
R̂P (û, t) + 2DL2ρ̄P (û, t)R̂

∮
dû′ P (û′, t)|û × û′|

]

− γ̇R̂ · [P (û, t)û × (Γ̂ · û)] (3.213)

Note that this equation is nonlinear in P (û, t).
We note here, for those who are familiar with Onsager’s work (Onsager

1933; Onsager 1942; Onsager 1949), that the stationary solution P (û) of the
equation of motion (3.213) without shear flow satisfies

ln[P (û)] + 2DL2ρ̄

∮
dû′ P (û′, t)|û × û′| = C (3.214)

where C is an integration constant. This is precisely the Euler–Lagrange
equation that complies with the Onsager free-energy functional for very long
and thin rods with excluded-volume interactions.

An important thing to notice is that the outer product û × (Γ · û) in
Eq. (3.213) cannot be written in the form R̂f , with f a scalar field. There-
fore, the simple shear contribution to the equation of motion (3.213) for
P (û, t) cannot be incorporated as a potential. Simple shear flow is thus a
non-conservative external field. Since no potential for shear flow can be de-
fined, one cannot define a free energy. Thermodynamic considerations for
systems under shear flow are therefore questionable. It has yet to be seen
how accurate thermodynamic approaches for systems under shear flow are.
To describe coexistence under shear flow conditions, one must in principle
resort to equations of motion, and time-integrate these up to the stationary
state. Since sharp interfaces may exist in such stationary states, the equations
of motion should accurately describe situations where strong gradients in
concentration and orientational order parameter are present.

3.10.2
Equation of Motion for S(t)

Following Doi and Edwards (1986), an equation of motion for S can be ob-
tained by operating on both sides of Eq. (3.213) with

∮
dû (ûû)(· · ·) (see

Eq. (3.181), where P is now time-dependent). The first term on the right-
hand side of Eq. (3.213) is easily found to render
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∮
dû (ûû)R̂2

P (û, t) =
∮

dû P (û, t)R̂2
(ûû) = 2 Î − 6S (3.215)

where in the first equation two partial integrations have been done, and in
the second equation the fact that R̂2

(ûû) = 2 Î − 6ûû has been used.
To make further analytical progress, we shall expand the second term in
the equation of motion (3.213) up to third order in the orientational order
parameter. That is, we shall expand with respect to the eigenvalues of matrices
like q = ûû− 1

3 Î , whose eigenvalues are in between − 1
3 and 2

3 . Such a third-
order Ginzburg–Landau expansion complies with a fourth-order expansion
of the free energy in the absence of flow. Since the outer product in Eq. (3.213)
for the effective potential can be written as (with q′ = û′û′ − 1

3 Î)

|û × û′| =
√

1 − ûû : û′û′ =
√

2
3 − q : q′

we can Taylor-expand up to leading order with respect to q and q′,

|û × û′| ≈
√

2
3 [1 − 3

4q : q′] (3.216)

Since the next higher-order term in this Taylor expansion is of fourth order,
this truncation leads to a Ginzburg–Landau expansion up to third order of

the equation of motion for S. Since
√

2
3 differs by only 3.8% from the ex-

act value π/4 for the isotropic average value of |û×û′|, we shall replace
√

2
3 in

Eq. (3.216) by π/4. Errors due to the truncation of the Taylor expansion in
Eq. (3.216) are probably larger. Resubstitution of the definition of the q in
terms of bilinear products of the û then leads to

|û × û′| ≈ 5
16π[1 − 3

5 ûû : û′û′] (3.217)

The effective potential (3.211) within this Ginzburg–Landau expansion can
be written as

V eff(û, t) = 5
8πβ−1DL2ρ̄[1 − 3

5S : ûû] (3.218)

which is known as the Maier–Saupe potential (Maier and Saupe 1958; Maier
and Saupe 1959; Maier and Saupe 1960). Using the Ginzburg–Landau expan-
sion (3.218) in the Smoluchowksi equation (Eq. 3.213), and operating on both
sides with

∮
dû (ûû)(· · ·), leads to the Doi–Edwards equation of motion,

d
dt

S = −6Dr[S − 1
3 Î − (L/D)ϕ(S · S − S(4) : S)]

+ γ̇[Γ̂ · S + S · Γ̂T − 2S(4) : Ê] (3.219)
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where the concentration is now expressed in terms of the volume fraction
ϕ = 1

4πD2Lρ̄, and, as before, Γ̂ = Γ/γ̇ is the normalized velocity-gradient
tensor, which is introduced to make the shear-rate dependence more explicit.
Furthermore, S(4) is a fourth-order polyadic tensor, defined as

S(4) ≡ 〈ûûûû〉 (3.220)

In order to obtain a closed equation of motion for S, the fourth-order tensor
S(4) should be expressed in terms of S. Such a closure relation is discussed
below.

3.10.3
Density Expansion of the Pair Correlation Function

Before deriving an orientational closure relation, we will discuss the reason
why Eq. (3.208) is a good approximation in equilibrium for very long and thin
rods with short-range repulsive interactions, even for high concentrations.

The first two terms in the density expansion of the equilibrium pair corre-
lation function are

g(r1−r2, û1, û2) = exp[−βV (r1−r2, û1, û2)] (3.221)

×
[
1 + ρ̄

∫
dr3

∮
dû3 X (r1−r3, û1, û3)X (r3−r2, û3, û3) + · · ·

]

Since the characteristic functions in the integrand are only non-zero when
the core of rod 3 overlaps with both the cores of rods 1 and 2, the integration
with respect to û3 effectively extends over an angular range of the order
D/L (see Fig. 3.18). The integration with respect to r3 contributes at most
∼ DL2. Hence, the second term in the above expression is at most of order
(D/L)DL2ρ̄ ∼ ϕ. Since the volume fractions of interest scale like D/L (see
Onsager 1933, 1942, 1949, and later in this chapter), the first order in density
contribution to the pair correlation function is negligibly small for very long
and thin rods. Higher-order terms are similarly very small.

The above arguments as far as the û3 integration is concerned only hold
when the angle between û1 and û2 is much larger than ∼ D/L, as is clear
from Fig. 3.18. Otherwise, the û3 integration extends over a much larger
angular range than just ∼ D/L. Hence, the expression (3.208) for the pair
correlation function is valid for high concentrations, provided that the degree
of alignment is not very high. Scaling of the angular integration range with
D/L does not hold for all configurations of the three rods. A more careful
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Fig. 3.18 The effective angular integration range corresponding
to the orientation of rod 3.

analysis shows that the second term in Eq. (3.221) is of order (D/L) ln(L/D)
instead of D/L.

3.10.4
Orientational Closure Relation

There are a number of orientational closure relations for the contraction in
Eq. (3.220) that can be used in Eq. (3.219) to obtain a closed equation of motion
for S(t) [ for an overview, see Forest and Wang (2003)]. Here we will derive a
simple closure relation that is shown to be reasonably accurate. It turns out
that the various tumbling and wagging phenomena where rods coherently
rotate under stationary shear flow (not to be confused with the Jeffery or-
bits discussed before) cannot be accurately described by most of the existing
closure relations. Such periodic solutions for the orientational order should
be analyzed on the basis of Eq. (3.213) without using a Ginzburg–Landau
expansion for |û × û′|.

The fourth-order average in Eq. (3.220) occurs in the form of a double
contraction,

A ≡ S(4) : M (3.222)

where M is equal to S. As pointed out by Hinch and Leal (1976), orientational
order increases monotonically with increasing shear rate, so that interpolation
between the known forms for S(4) in the isotropic state and in the perfectly
aligned state will probably lead to quite accurate closures. The four-point
average S(4) is known exactly for the two extreme cases of perfect alignment
(along the director n̂) and the isotropic state,
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〈ûûûû〉ijkl =




n̂in̂jn̂kn̂l, perfect alignment

1
15 [δijδkl + δikδjl + δikδjl], isotropic

(3.223)

with δij the Kronecker delta (δij = 1 when i = j, and δij = 0 when i 
= j).
Furthermore, we have the following trivial identities:

Aij ≡
∑
n,m

〈ûiûjûnûm〉Mmn = Aji

∑
i

Aii =
∑

i

∑
n,m

〈ûiûiûnûm〉Mmn =
∑
n,m

SnmMmn ≡ S : M (3.224)

The last identity is especially important in order to ensure that the trace of
S remains equal to 1 on time integration of the equation of motion (3.219).
Using closures that do not satisfy (3.224) violates the time invariance of the
trace of the order parameter. Furthermore,

A = 〈ûûûû〉 : M (3.225)

with

M ≡ 1
2 [M + MT] (3.226)

the symmetric part of M , where the superscript “T” stands for “transposi-
tion”. This equation implies that the closure relation must be a function of
M .

Since order parameters tend to increase monotonically with shear rate, an
accurate closure relation can be found by constructing an interpolation form
between the exact results (3.223) such that the conditions (3.224) and (3.225)
are satisfied. Substitution of the most general form of linear combinations
of first- and second-order terms in S (insisting that no isotropic terms ∼ Î

contribute), i.e.

A = c1S · M + c2M · S + c3S Î : M + c4S · S · M + c5S · M · S

+ c6M · S · S + c7S S : M + c8M S : S

into Eqs. (3.223) to (3.226) renders algebraic equations for the coefficients cj ,
leading to

〈ûûûû〉 : M = 1
5 [S · M + M · S − S · S · M − M · S · S

+ 2S · M · S + 3S S : M ] (3.227)
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Substitution of the closure relation (3.227) into the equation of motion (3.219)
finally leads to a closed equation of motion for the orientational order-
parameter tensor.

The accuracy of the closure relation (3.227) is discussed in the Appendix
(Section 3.16.3). Comparison with exact numerical solutions of the Smolu-
chowski equation (3.205) for non-interacting rods shows that the closure ap-
proximation (3.227) with M = S and with M = E are accurate to within 1%
and 10%, respectively. Computer simulations show that this accuracy extends
to interacting rods.

3.11
Paranematic–Nematic Spinodals and the Binodal Under Shear Flow

Since shear flow tends to align rods, it will affect the location of iso-
tropic–nematic phase transition lines. The shear-induced shift of spinodals
is theoretically more easily calculated than the shift of binodals. For the pre-
diction of the location of binodals as a function of shear rate, the equations
of motion must be time-integrated up to the stationary state where two bulk
phases coexist. These equations of motion must account accurately for the
usually sharp interface between the two bulk phases. Equations of this sort
have been derived in Dhont and Briels (2002) and Dhont and Briels (2003)
(see also Section 3.12 as far as the stress tensor is concerned), but remain to
be analyzed. On the basis of approaches that partly rely on thermodynamic
arguments, similar equations of motion can be derived to predict the phase
behavior of rods under shear flow (Olmsted and Lu 1999; Olmsted 1999; Olm-
sted et al. 2000; Lu et al. 2000; Fielding and Olmsted 2003). These equations
of motion are in principle valid for small gradients in concentration and ori-
entational order parameter, and are therefore probably not able to predict the
location of the binodal accurately. Nevertheless, the analysis of such equations
of motion reveals interesting behavior, such as gradient banding, which will
be discussed later in this chapter.

In the absence of flow, computer simulations where free energies are calcu-
lated can be used to obtain binodal concentrations for arbitrary aspect ratios
(Bolhuis and Frenkel 1997).

The experimental situation is different. Here it is much more difficult to
measure the location of spinodals as compared to binodals. In the follow-
ing we shall first discuss how the shear-rate dependence of spinodals can
be calculated, and an experiment is discussed where a line in between the
paranematic–nematic and nematic–paranematic spinodals is probed. As far
as the binodal is concerned, there are no theoretical (or simulation) results
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available yet. We shall discuss an experiment where the location of the binodal
is measured by means of time-resolved rheology experiments.

3.11.1
Spinodals

A spinodal point is defined as a point in the shear rate versus concentration
diagram (the so-called non-equilibrium phase diagram), where a stable station-
ary solution of the equation of motion (3.219) for the orientational order
parameter turns into an unstable solution. In the absence of shear flow, such
spinodal points can also be found by means of thermodynamics. Once a so-
lution becomes unstable, the system will start to phase-separate without any
time delay. In order to describe such spinodal decomposition kinetics, one
needs to consider the extension of the equation of motion (3.213) or (3.219) to
inhomogeneous systems, where gradient contributions stabilize the system
against the formation of very large gradients. In the absence of shear flow,
such equations of motion are analyzed by Doi et al. (1988), Shimada et al.
(1988) and Winters et al. (2000). For spinodal decomposition kinetics under
shear flow, these equations of motion must be supplemented by an effective
Navier–Stokes equation beyond the initial stage of demixing. Spinodal de-
composition of rod-like systems will be strongly affected by flow, since flow
affects orientational order. Analyzing such coupled equations of motion as de-
rived by Dhont and Briels (2002) and Dhont and Briels (2003) is in progress.
In the present section we shall limit the discussion to the shear-induced shift
of spinodals.

As far as the location of spinodals is concerned, the non-equilibrium phase
diagram can most conveniently be understood on the basis of so-called bi-
furcation diagrams. A bifurcation diagram is a plot in the orientational order
parameter versus concentration plane, where, for a given shear rate, the or-
der parameter for the stationary solutions of the equation of motion (3.219)
is indicated. There are two possible stationary solutions: stable and unstable
ones. Let S0 denote a stationary solution of Eq. (3.219), that is, the right-hand
side of Eq. (3.219) vanishes for S = S0. Let δS be a small perturbation. The
stationary solution S0 is referred to as stable when an initial state S0 + δS re-
laxes back to S0 in time, provided δS is small enough. The state S0 is referred
to as unstable when δS does not relax to 0, no matter how small this pertur-
bation is chosen. A linear stability analysis is required to decide whether a
stationary solution is either stable or unstable. Such a stability analysis for
the stationary isotropic state S0 = 1

3 Î in the absence of shear flow can be
performed analytically. Using the closure relation (3.227) in Eq. (3.219) with
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γ̇ = 0, substitution of

S(t) = 1
3 Î + δS(t) (3.228)

and linearization with respect to δS(t) readily leads to

d
dt

δS = −6Deff
r δS (3.229)

where

Deff
r = Dr[1 − 1

5 (L/D)ϕ] (3.230)

is an effective rotational diffusion coefficient. The solution of Eq. (3.229) reads

δS(t) = exp[−6Deff
r t]δS(t=0) (3.231)

The perturbation δS thus grows exponentially in time when Deff
r < 0, i.e.

when (L/D)ϕ > 5. For (L/D)ϕ > 5, the isotropic phase becomes unstable,
and the new stable state is the nematic state with a relatively large value for λ.
On subsequently lowering the concentration, the nematic state becomes un-
stable at (L/D)ϕ < 40/9 = 4.44 . . . , and the system returns to the isotropic
state.

A stability analysis can in principle be done once S0 is known, and hence
an effective rotational diffusion coefficient can be defined also for non-zero
shear rates. For non-zero shear rates this effective diffusion coefficient is
generally a tensor rather than a scalar. An important thing to note is that
the largest eigenvalue of this diffusion tensor becomes 0 at a spinodal point.
Rotational diffusion therefore becomes very slow in the neighborhood of a
spinodal point, which is reminiscent of critical slowing down.

The isotropic-to-nematic spinodal concentration (L/D)ϕ = 5 should be
compared to the exact value 4 found by Onsager (1933), or, equivalently, from a
linear stability analysis of Eq. (3.213), without performing a Ginzburg–Landau
expansion on |û× û′|. The difference between our result and the exact result
for the location of the isotropic-to-nematic spinodal point in the absence of
shear flow is mainly due to the Ginzburg–Landau expansion (3.217), and to
a lesser extent to the closure relation (3.227) (which is accurate to within 1%
for M = S).

Note that Deff
r is a collective diffusion coefficient since it describes the col-

lective relaxation (or growth) of an initially misaligned state, where each rod
contributes to the misalignment relative to the isotropic state. This diffusion
coefficient is only weakly concentration-dependent because such a relaxation
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Fig. 3.19 (a) Bifurcation diagrams, where only stable stationary solutions
S0 of Eq. (3.219) [together with the closure relation (3.227)] are shown.
Here, λ is the largest eigenvalue of S0 and ϕ is the volume fraction
of rods. The numbers in the plot refer to Pe0

r ≡ γ̇/Dr.
(b) Spinodal points as found from the bifurcation diagrams.

(or initial growth) requires very small, collective reorientations of the rods.
The concentration dependence of the tracer rotational diffusion coefficient
considered by Doi and Edwards (1986), on the contrary, is much more pro-
nounced due to “entanglements”, since now large reorientations of the rods
are important. As will be shown in Section 3.12, the effective rotational dif-
fusion coefficient does not depend in a linear fashion on concentration. This
is due to the neglect of dynamic correlations.

Spinodals will be shifted to lower concentrations on applying simple shear
flow, since shear flow tends to align the rods, and therefore stabilizes the
nematic state over the paranematic state. These spinodal points must be ob-
tained numerically from Eqs. (3.219) and (3.227), since generally the station-
ary solution S0 is not known analytically. In Fig. 3.19a, bifurcation diagrams
are given for various values of the bare Peclet number Pe0

r ≡ γ̇/Dr.
We note here that an otherwise isotropic stable state is aligned by shear

flow. Such an aligned state is referred to as a paranematic state. Similarly, an
otherwise stable nematic state is more strongly aligned by shear flow.

The shear-rate-dependent paranematic-to-nematic spinodal (where the
paranematic phase becomes unstable on increasing the concentration) and
nematic-to-paranematic spinodal (where the nematic phase becomes unsta-
ble on lowering the concentration), as obtained from the bifurcation diagram



228 3 Rod-Like Brownian Particles in Shear Flow

in Fig. 3.19a, are plotted in Fig. 3.19b. In the absence of shear flow, as dis-
cussed above, the isotropic-to-nematic spinodal concentration is located at
(L/D)ϕ = 5, while the nematic-to-isotropic spinodal concentration is found
to be equal to (L/D)ϕ = 40/9 = 4.44 . . . .

For a critical rotational Peclet number Pe0
r = 0.159 . . . , the two spin-

odals meet in a non-equilibrium critical point. For larger shear rates, where
Pe0

r > 0.159 . . . , there is a continuous and reversible transition between the
paranematic and nematic states: here, shear forces are so large that rod–rod
interactions are no longer able to induce a discontinuous transition.

An important thing to note is that the concentration always enters through
the combination (L/D)ϕ. For long and thin rods, the volume fractions of
interest thus scale as ∼ L/D � 1. This is the reason why hydrodynamic
interactions become less important for very long and thin rods, as mentioned
before. The strength of direct interactions, on the contrary, is not small, since,
at (L/D)ϕ = O(1), these interactions are sufficiently strong to induce a phase
transition.

Recent time-resolved birefringence experiments by Lenstra et al. (2001)
confirm a shear-induced shift of paranematic–nematic phase boundary lines
(see Fig. 3.20). Here, the shear rate is gradually changed from a high shear

Fig. 3.20 The shear-induced shift of spinodal concentrations as probed
with time-resolved birefringence measurements by Lenstra et al. (2001).
The sloping line is located in between the two spinodal concentrations.
The circles below indicate the binodal concentrations in the absence
of shear flow.
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rate (where the one-phase state is stable) to a lower shear rate (possibly in the
two-phase region), followed by the reverse. During such a shear-rate sweep,
the birefringence is probed. Due to the slowing down of the orientational
dynamics close to a spinodal line, the birefringence will exhibit hysteresis,
the magnitude of which depends on the sweep rate. Such time-resolved bire-
fringence measurements probe a line in the non-equilibrium phase diagram
that is in between the two spinodal concentrations (Lenstra et al. 2001). The
system that is used here consists of dispersions of the fd virus, which was
used for the first time for systematic studies on phase behavior and phase
separation kinetics by Fraden et al. (1989), Tang and Fraden (1993), Tang and
Fraden (1995) and Grelet and Fraden (2003), including suspensions of to-
bacco mosaic virus (see also Chapter 5 by Dogic and Fraden in this book).
Paranematic–nematic phase separation for this system is slow enough to per-
form a shear-rate sweep during a time interval where phase separation does
not play a role for the measured birefringence. The fd virus is a semi-flexible
rod rather than a perfectly rigid rod, and the potential between the rods is
not a perfect hard-core potential. The contour length of an fd virus particle
is 880 nm, while its persistence length is 2200 nm. This is the reason why,
in the absence of shear flow, the experimental binodal concentrations (indi-
cated by the two dots in Fig. 3.20) are found not to agree quantitatively with
those predicted by Onsager. As can be seen in Fig. 3.20, the shear-induced
shift of spinodals is much more pronounced as compared to the prediction
in Fig. 3.19b. The origin of this discrepancy is most probably the flexibility of
the fd virus. The critical shear rate, however, is in reasonable agreement with
the predicted critical shear rate Pe0

r ≈ 0.159 (the bare rotational diffusion
coefficient of the fd virus is known to be 10–20 s−1). So far, there is no theory
dealing with the dynamics of semi-flexible Brownian particles on the same
level as the Smoluchowski approach for stiff rods outlined above.

3.11.2
The Binodal

An experimental binodal of an fd virus suspension is given in Fig. 3.21. Bin-
odal points are determined from time-dependent viscosity measurements
after a shear-rate quench from a high shear rate, where the one-phase
state is stable, to a lower shear rate, γ̇− say. Whenever γ̇− is within the
paranematic–nematic two-phase region, demixing will occur after the quench
into a paranematic and a nematic phase. Developing inhomogeneities give
rise to a temporal change of the viscosity, the amplitude of which increases
with the depth of the quench. The amplitude of the time-dependent response
of the viscosity vanishes on the binodal. A point on the binodal can thus be
obtained by interpolation of the amplitude as a function of γ̇− to zero. For
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Fig. 3.21 The paranematic–nematic bin-
odal of an fd virus suspension, where
dextran is added to induce attractions
between the rods, leading to faster phase
separation. Here, ϕnem is the fraction of
coexisting nematic that is mixed with the
corresponding isotropic bulk phase

(at zero shear rate). The lower figures
show (from left to right) the isotropic
state, a polarization microscopy image of
tactoids that form during phase separa-
tion (courtesy of Kyongok Kang), and the
nematic state. The vertical line indicates a
possible shear-rate quench.

more details, see Lettinga and Dhont (2004). Contrary to the experiments on
the location of the spinodal as described in the previous subsection, here dex-
tran is added to the fd virus suspension in order to enhance phase separation,
which renders these experiments feasible.

3.11.3
A Remark on Pattern Formation and Time-Periodic States

There are two regions in the non-equilibrium phase diagram to be distin-
guished that are related to pattern formation and time-periodic states. As will
be seen later, shear flow can induce pattern formation within the two-phase
region, i.e. the region bounded by the paranematic–nematic binodal. Here
“bands” are alternately stacked in the vorticity direction, where the average
orientational order within the bands differs. This type of shear-induced pat-
tern formation is referred to as vorticity banding. In addition, coherent rotation
of rods in the otherwise nematic state leads to oscillations of the director un-
der stationary shear flow. Such tumbling and wagging states have been analyzed
in great detail by Marrucci and Maffettone (1990a), Marrucci and Maffettone
(1990b), Rienäcker and Hess (1999), Forest and Wang (2003) and Hess and



3.12 How Important Are Dynamic Correlations? 231

Kröger (2004). As stated before, the closure relation that is employed for
the fourth-order tensor in Eq. (3.220) in terms of S sensitively determines
whether these periodic states are correctly described. Our closure relation
(3.227), although accurate to within about 10%, does not give rise to tumbling
and wagging at all, like many other closures. Instead, it is more appropriate to
analyze Eq. (3.213) as such. A numerical analysis of this equation of motion
indeed predicts tumbling and wagging regimes in the non-equilibrium phase
diagram, although the time-periodic states as predicted by Eq. (3.213) are not
yet fully explored. In all of these equations of motion, however, dynamic cor-
relations are neglected. As will be discussed in Section 3.12, such correlations
might play some role of importance.

3.12
How Important Are Dynamic Correlations?

Dynamic correlations find their origin in the finite time that it takes for the
surroundings of a given particle to adjust to the changing position and orien-
tation of that particle. Consider, for example, an assembly of rods as depicted
in Fig. 3.22(a). For convenience, the orientations of all the rods in this figure
are taken to be the same in the initial state. Suppose that one is interested
in the orientational dynamics of the shaded rod in Fig. 3.22. During a small
time interval, the shaded rod moves to a new orientation due to rotational
Brownian motion, as depicted in Fig. 3.22(b). If one then freezes the ori-
entation of the shaded rod, the surrounding rods will change their average
orientation to adjust to the field imposed by the frozen shaded rod, as depicted
in Fig. 3.22(c). This adjustment takes a finite time. The shaded rod thus ex-
periences a surrounding configuration of other rods that is always “lagging
behind” the configuration that would have existed in the case of “coexistence”
with the shaded rod. The surrounding rods therefore act with a finite torque
on the shaded rod, even in an isotropic suspension, due to such dynamic cor-
relations. This is not what is found from Eq. (3.206), when the PDF P (û′, t)
of the surrounding rods is taken equal to its isotropic form 1/4π, and g is
approximated by the Boltzmann exponential (3.208). In order to describe self-
rotational diffusion of a rod on the basis of Eq. (3.206), dynamic correlations
are essential.

The neglect of dynamic correlations in the derivation of the Doi–Edwards
equation (3.219) becomes clearer on calculating the correlation function
〈û(t) · û(0)〉 for an isotropic dispersion. Thus, consider a rod (the dashed
rod in Fig. 3.22) with a specified orientation û(0) at time t = 0. Noting that

d
dt

〈û(t) · û(0)〉 = û(0) ·
∮

dû û
∂P (û, t)

∂t
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Fig. 3.22 A sketch to explain the origin of
“dynamic correlations”.
(a) An initial configuration of rods, which
for simplicity is taken to be the perfectly
aligned state. The orientational dynamics
of the shaded rod is considered in the
main text.

(b) After a small time, the shaded
rod has moved to a different orientation
due to Brownian motion. For clarity, the
corresponding movements of the other
rods is not depicted here.
(c) The surrounding rods need a finite
time to adjust to the new orientation of
the shaded rod.

multiplying both sides of the Smoluchowski equation (3.206) with û · û(0),
and integrating with respect to û readily leads to

d
dt

〈û(t) · û(0)〉 = −2Deff
s (t)〈û(t) · û(0)〉 (3.232)

where the effective self-rotational diffusion coefficient is equal to

Deff
s (t) ≡ Dr

[
1 − 1

2β
〈T̄ (û(t)) · [û(t) × û(0)]〉

〈û(t) · û(0)〉
]

(3.233)

where the torque T̄ (û(t)) is given by Eq. (3.206) with an obvious change
of notation. The PDF P (û′, t) in expression (3.206) for the torque is that of
the other rods (the non-shaded rods in Fig. 3.22). When the PDF P (û′, t)
of the other rods is taken to be equal to 1/4π, and approximating the pair
correlation function with the Boltzmann exponential (3.208), one finds that
T̄ (û(t)) = 0. Hence, Deff

s (t) = Dr, which is obviously wrong, since rotational
motion of the shaded rod is certainly hindered by the presence of other rods.
A non-zero torque results from dynamic correlations: P (û′, t) of rods in the
neighborhood of the shaded rod differs from 1/4π due to the presence of
the moving shaded rod, and the pair correlation function is not equal to the
equilibrium Boltzmann exponential for the same reason.

The linear concentration dependence of the effective diffusion coefficient
(3.230), which is a collective diffusion coefficient, is entirely due to the neglect
of dynamic correlations. Molecular dynamics computer simulations, where
the tail of the orientational correlation function is fitted to obtain the effective
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Fig. 3.23 The effective diffusion coefficient as defined in the previous
section from the theory (Eq. 3.230), where dynamic correlations are
neglected and from simulations by Tao et al. (2005) (the solid line through
the simulation data points are merely a guide to the eye).

diffusion coefficient, show a strong nonlinear concentration dependence (Tao
et al. 2005), as shown in Fig. 3.23. This indicates that dynamic correlations are
important. As yet, no attempt has been made to incorporate dynamic corre-
lations in the analysis of the Smoluchowski equation (3.206). As will be seen
later, computer simulations do predict a linear concentration dependence
of the shear viscosity. It thus seems that dynamic correlations are of minor
importance for the viscoelastic response of suspensions of rods, contrary to
diffusive behavior.

3.13
The Stress Tensor for Rod Suspensions

In addition to the orientational order of rods in shear flow, the viscous behavior
of these systems is of interest. In this section we shall derive a microscopic
expression for the stress tensor and express it in terms of the orientational
order-parameter tensor (see also Dhont and Briels (2002) and Dhont and
Briels (2003)). Viscoelastic response functions can then be calculated once
the equation of motion (3.219) for S(t) is solved.

3.13.1
The Basic Idea

Let U(r, t) and ρm(r, t) denote the suspension velocity and mass density, re-
spectively. The velocity satisfies the Navier–Stokes equation (Eq. 3.13), where
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the divergence of the stress tensor is averaged over the phase-space coordi-
nates Γ of the colloidal rods,

ρm(r, t)
[
∂U(r, t)

∂t
+ U(r, t) · ∇U(r, t)

]
= 〈∇ · σ(r|Γ(t))〉 (3.234)

Here, σ is the stress tensor of the solvent in which the rods are embedded, or
of the core material of the rods, depending on whether r is within the solvent
or inside the core of a rod. Clearly, σ depends on the phase-space coordinates
Γ of all the rods.

The fundamental quantity in hydrodynamics is the momentum density ρv,
with ρ and v the microscopic density and velocity, respectively. Therefore, the
appropriate definition of the macroscopic velocity U is

ρm(r, t)U = 〈ρv〉 (3.235)

It can be shown (Dhont and Briels 2002) that, if the mass density difference
between the fluid and the core material of which the rods consist is small
and/or if the volume fraction of colloidal material is very small, the definition
in Eq. (3.235) reduces simply to

U(r, t) = 〈v(r|Γ(t))〉 (3.236)

where u is equal to the fluid velocity or the velocity of a piece of colloidal
material, depending on whether r is within the solvent or inside the core of
a colloidal rod.

Let P (Γ, t) denote the probability density function of Γ, which is the solu-
tion of the Smoluchowski equation (3.173). By definition we then have

U(r, t) =
∫

dΓP (Γ, t)v(r|Γ) (3.237)

In the derivation of the general expression for the divergence of the stress
tensor, we shall encounter the ensemble average

〈∇2v(r)〉 =
∫

dΓP (Γ, t)∇2v(r|Γ)

Since the Laplace operator can be taken in front of the phase-space integral,
and the suspension flow velocity is given by Eq. (3.236), it trivially follows that

〈∇2v(r)〉 = ∇2U(r, t) (3.238)
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This result will be of importance later in this section.
In order to obtain an explicit Navier–Stokes equation, the ensemble average

of the body force ∇ · σ(r|Γ) should be expressed in terms of suspension
properties. To this end, consider a rectangular volume element δV located
at r, with linear dimensions δx, δy , and δz in the x, y, and z directions,
respectively. In the formal limit that the size of the volume element vanishes,
the ensemble-averaged total force per unit volume of the surrounding material
on the volume element is nothing other than the divergence of the stress
tensor that should be used in the Navier–Stokes equation (3.234). This force
consists of three parts: forces that arise (1) from interactions between colloidal
particles outside on those within the rectangular volume element, (2) from
interactions between solvent molecules and colloidal particles, and (3) from
interactions between solvent molecules on either side of the boundary of the
volume element. The corresponding stress tensors will be referred to as the
“particle–particle stress tensor” Σpp, the “particle–solvent stress tensor” Σps,
and the “solvent–solvent stress tensor” Σss, respectively. The divergence of
the suspension stress tensor Σ is the sum of these three body forces:

∇ · Σ ≡ 〈∇ · σ(r|Γ(t))〉 = ∇ · Σpp + ∇ · Σps + ∇ · Σss (3.239)

These three contributions will be calculated explicitly in the next subsections.
First of all, a general expression for the ensemble-averaged body force ∇ · Σ
will be derived, after which this expression will be expressed in terms of a prob-
ability density function. Finally, this expression will be simplified by means of
the same Ginzburg–Landau expansion used to derive the Doi–Edwards equa-
tion (Eq. 3.219), which leads to an expression for the stress tensor involving
the concentration and the orientational order-parameter tensor S.

3.13.1.1 Particle–Particle Stress Tensor Σpp

The force that colloidal particles outside the volume element exert on those
within the volume element is equal to

∑
j

∗
F j

where F j is the force that all colloidal particles exert on colloidal particle j,
and the asterisk on the summation is used to indicate that the summation
ranges only over those colloidal particles that are inside the volume element,
i.e. those for which rj ∈ δV . Note that mutual interactions between colloidal
particles within the volume element cannot give rise to a net force on that
volume element. The force per unit volume, for formally vanishing size of
the volume element, is thus equal to
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∇ · Σpp = lim
δx,δy,δz→0

1
δxδyδz

N∑
j=1

〈Xr(rj)F j〉 (3.240)

where N is the total number of colloidal particles in the system under con-
sideration, rj is the position coordinate of a colloidal particle, and Xr is the
characteristic function of the rectangular volume element, which was intro-
duced in the previous section. The characteristic function is defined as

Xr(R) =




1, when R ∈ δV

0, otherwise
(3.241)

The subscript “r” on the characteristic function is used to indicate that the
volume element δV is located at position r. The characteristic function effec-
tively limits the summation to colloidal particles that are inside δV , i.e. those
for which rj ∈ δV . Furthermore, as discussed before, the total force F j on
the jth colloidal particle due to interactions with all other colloidal particles
is equal to

F j = −∇jΦ − kBT∇j lnP (3.242)

where Ψ is the total potential energy of the assembly of N rods in the suspen-
sion, and P is the probability density function of the phase-space coordinates
of all the colloidal rods: −∇jΦ is the force due to potential interactions, and
−kBT∇j lnP is the Brownian force, where ∇j is the gradient operator with
respect to rj . Since [with δ(r − rj) the three-dimensional delta distribution]

lim
δx,δy,δz→0

Xr(rj)/δxδyδz = δ(r − rj) (3.243)

as is easily verified by integration of both sides with respect to rj , this imme-
diately leads to

∇ · Σpp =
N∑

j=1

〈δ(r − rj)F j〉 (3.244)

Together with Eq. (3.242) for the forces, this is the microscopic expression
for the contribution to the divergence of the stress tensor which is due to
inter-colloidal particle forces.

3.13.1.2 Particle–Solvent Stress Tensor Σps

The particle–solvent stress arises from forces on the volume element due to
interactions between colloidal particles and solvent molecules. These forces
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Fig. 3.24 The rectangular volume element δV at position r intersects
with the core of colloidal rod j with its position coordinate rj outside the
volume element. Thus ∂V (out) is that part of the surface area ∂Vj of the
rod that is outside the volume element, and ∂V

(in)
j is that part inside.

are mediated to the volume element by colloidal particles that intersect with
the surface enclosing the rectangular volume element. Consider first the force
that is mediated to the solvent within the volume element by a colloidal particle
with its position coordinate outside the volume element (see Fig. 3.24). The
instantaneous force that the colloidal particle exerts on the solvent inside the
volume element is equal to

−
∫

∂V
(in)

j (rj ,ûj)
dS′ · σ(r′)

Here, the surface area ∂V
(in)
j is that part of the surface area of the colloidal

particle that is inside the volume element (see Fig. 3.24). This range of in-
tegration depends on both the position rj of the colloidal particle j and its
orientation ûj . Furthermore, dS′ is the normal surface element on the sur-
face area of the colloidal particle, and σ is the stress tensor of the solvent.
The minus sign in Eq. (3.245) arises from the fact that dS′ · σ(r′) is equal
to dS′ fh(r′), with fh(r′) the force per unit area that the fluid exerts on
the surface element dS′, which is minus the force that this surface element
exerts on the fluid. In terms of this hydrodynamic force, Eq. (3.245) is more
conveniently written as

−
∫

∂V
(in)

j (rj ,ûj)
dS′ fh(r′)
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The ensemble-averaged force F out of all the colloidal particles outside the
volume element on the solvent inside the element is thus equal to

F out = −
〈

N∑
j=1

[1 − Xr(rj)]
∮

∂Vj(rj ,ûj)
dS′ fh(r′)Xr(r′)

〉
(3.245)

where, as before, Xr is the characteristic function of the volume element. The
characteristic function 1−Xr(rj) for the volume outside the volume element
assures that, in the summation over all colloidal particles, only those which
are outside the volume element are counted. Furthermore, the characteristic
function Xr(r′) assures that only points r′ on the surface of the colloidal
particle inside the volume element are taken into account. Including the
characteristic function in the integrand in Eq. (3.245) allows for the extension
of the integration range to the entire surface area ∂Vj(rj , ûj) of the jth
colloidal particle.

Similarly, in the case of a colloidal particle located inside the volume ele-
ment, i.e. when rj ∈ δV , the instantaneous force that the colloidal particle
exerts on the solvent outside the volume element is equal to

−
∫

∂V
(out)

j (rj ,ûj)
dS′ fh(r′)

with ∂V
(out)
j the part of the surface area of the colloidal particle located outside

the volume element (see Fig. 3.24). This is minus the force that is exerted
on the colloidal particle by the solvent outside the volume element. Hence,
similarly as before, the ensemble-averaged force F in on the volume element
due to interactions between solvent molecules outside and colloidal particles
inside the volume element is found to be equal to

F in =

〈
N∑

j=1

Xr(rj)
∮

∂Vj(rj ,ûj)
dS′ fh(r′)[1 − Xr(r′)]

〉
(3.246)

where again we have used the fact that 1−Xr(r′) is the characteristic function
for the volume outside the volume element. From the representation (3.243)
of the delta distribution, it is thus found that

∇ · Σps = lim
δx,δy,δz→0

[F out + F in]/δxδyδz (3.247)

=

〈
N∑

j=1

δ(r − rj)F h
j

〉
−
〈

N∑
j=1

∮
∂Vj(rj ,ûj)

dS′ δ(r − r′)fh(r′)

〉
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where

F h
j =
∮

∂Vj(rj ,ûj)
dS′ fh(r′) (3.248)

is the total force that the solvent exerts on the jth colloidal particle.

3.13.1.3 Solvent–Solvent Stress Tensor Σss

The force per unit volume that the solvent outside the volume element δV

exerts on the solvent inside, for formally vanishing size of the volume element,
is equal to

∇ · Σss = lim
δx,δy,δz→0

1
δxδyδz

〈∫
As

dS′ · σ(r′)
〉

(3.249)

where As is the part of the surface area of the volume element that is occupied
by solvent, which is the surface area of the volume element minus the part
that is cut by cores of colloidal particles (see Fig. 3.25). Here, dS′ points
outward of δV . The subscript “s” on the integration As refers to “solvent”.
For an incompressible solvent, we have

σ(r′) = η0{∇′v(r′) + [∇′v(r′)]T} − p(r′) Î (3.250)

withη0 the solvent shear viscosity andv the solvent flow velocity. Furthermore,
p is the mechanical pressure in the solvent, and Î is the identity tensor. The
superscript “T” stands for transposition. Note that, since ∇2p(r) = 0 within
the incompressible solvent, p is entirely determined by the boundary condi-
tions for the solvent flow imposed by the surfaces of the colloidal particles
and the container walls. Hence, p(r′) depends implicitly on the positions and
orientations of all the rods. Substitution of Eq. (3.250) into Eq. (3.249) leads
to

∇ · Σss = M (1) + M (2) (3.251)

where

M (1) ≡ lim
δx,δy,δz→0

η0

δxδyδz

〈∫
As

dS′ · {∇′v(r′) + [∇′v(r′)]T}
〉

(3.252)

and

M (2) ≡ − lim
δx,δy,δz→0

1
δxδyδz

〈∫
As

dS′ p(r′)
〉

(3.253)
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Fig. 3.25 The part of the surface area ∂δV of the volume element that is
occupied by solvent is denoted as As. This is ∂δV minus the areas Aj

of intersection of ∂δV with the core of colloidal rod j. The part of As
on the upper z side of the volume is denoted as Az,+

s , and on the lower
side as Az,−

s .

Consider first the contribution M (1). We can rewrite the integral as

〈∫
As

dS′ · {∇′v(r′) + [∇′v(r′)]T}
〉

=

〈
∮

∂δV

−
N∑

j=1

∫
Aj


dS′ · {∇′v(r′) + [∇′v(r′)]T}

〉
(3.254)

where Aj is the area of intersection of the surface area ∂δV of the volume
element and the core of the colloidal particle j (see Fig. 3.25). For a rigid
colloidal particle, the velocity inside the core is given by

v(r′) = vj + Ωj × (r′ − rj), r′ ∈ core of particle j (3.255)

where vj is the translational velocity and Ωj is the rotational velocity of col-
loidal particle j. Hence (with ε the Levi-Civita tensor, and Ωj,p the pth com-
ponent of Ωj)

∇′
mvn = ∇m[Ωj × (r′ − rj)]n = ∇′

mεnpqΩj,pr
′
q = εnpmΩj,p
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where summation over repeated indices is assumed. From the antisymmetry
of the Levi-Civita tensor, it is thus found that

∫
Aj

dS′ · {∇′v(r′) + [∇′v(r′)]T} = 0 (3.256)

Using Gauss’s integral theorem, we thus find from Eqs. (3.254) and (3.256),
for incompressible solvents,

〈∫
As

dS′ · {∇′v(r′) + [∇′v(r′)]T}
〉

=
〈∫

δV

dr′ ∇′ 2
v(r′)

〉

Hence, Eq. (3.252) reduces to

M (1) = lim
δx,δy,δz→0

η0

δxδyδz

〈∫
δV

dr′ ∇′ 2
v(r′)

〉
= η0〈∇2v(r)〉

From Eq. (3.238), it is thus finally found that

M (1) = η0∇2U(r, t) (3.257)

The contribution M (2) can be expressed in terms of suspension properties
as follows. Let Az,+

s denote the upper side of As, and similarly Az,−
s the lower

side, as indicated in Fig. 3.25. Furthermore, let êz denote the unit vector along
the positive z axis. Since the unit normal on Az,+

s is êz while the unit normal
on Az,−

s is −êz , the contribution M (2)
z from the upper and lower sides of As

to M (2) is equal to

M (2)
z = −êz lim

δx,δy,δz→0

1
δxδyδz

〈[∫
Az,+

s

−
∫

Az,−
s

]
dS′ p(r′)

〉

For small sizes of the volume element, the scalar

P ss(r+ 1
2δzêz, t) ≡ 1

δxδy

〈∫
Az,+

s

dS′ p(r′)
〉

(3.258)

defines the contribution to the suspension pressure due to solvent–solvent
interactions at the position of the upper side of the volume element. A similar
expression can be written down for P ss at the lower side. It thus follows that

M (2)
z = −êz lim

δz→0

1
δz

[P ss(r+ 1
2δzêz, t) − P ss(r− 1

2δzêz, t)]

= −êz
∂P ss(r, t)

∂z
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In the same way, the contributions to M (2) from the left and right sides, and
from the front and back sides, of the volume element are obtained. Adding
these contributions leads to

M (2) = −∇P ss(r, t) (3.259)

Thus from Eqs. (3.251), (3.257), and (3.259) we find the following expres-
sion for the divergence of the stress tensor that arises from solvent–solvent
interactions:

∇ · Σss = η0∇2U(r, t) − ∇P ss(r, t) (3.260)

Note that P ss is not just determined by boundary conditions when the sus-
pension is inhomogeneous.

3.13.2
Total Stress Tensor

On the Smoluchowski time scale, as discussed before, the interaction force
F j in Eq. (3.242) balances with the hydrodynamic force in Eq. (3.248), i.e.

F j + F h
j = 0 (3.261)

The first term in Eq. (3.247) for the particle–solvent stress thus cancels with
the particle–particle stress in Eq. (3.244). Adding Eqs. (3.244), (3.247), and
(3.260) therefore leads to the following expression for the divergence of the
total stress tensor:

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t)

−
N∑

j=1

〈∮
∂Vj(rj ,ûj)

dS′ δ(r − r′)fh(r′)

〉
(3.262)

This seemingly simple expression is valid for homogeneous suspensions as
well as systems with large gradients in shear rate, concentration, and orien-
tational order parameter. Suspension properties should not vary significantly
over distances equal to the thickness of the rods, but may vary significantly
over distances equal to the length of the rods.
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3.13.3
Stress Tensor for Homogeneous Suspensions

Since r′ ∈ ∂Vj in the integrand in Eq. (3.262), the magnitude of r′ − rj is
never larger than the linear dimension of the rigid colloidal particles. Hence,
for not too large gradients of suspension properties, the delta distribution
δ(r − r′) can be Taylor-expanded around r′ = rj ,

δ(r − r′) = δ(r − rj) +
∞∑

n=1

1
n!

(rj − r′)n � ∇nδ(r − rj)

where (rj −r′)n and ∇n are polyadic products, and � is the n-fold contraction
of these two products. Substitution of this expansion into Eq. (3.262) gives

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t) −
N∑

j=1

〈δ(r − rj)F h
j 〉 (3.263)

−
∞∑

n=1

1
n!

∇n
N∑

j=1

〈
δ(r − rj) �

∮
∂Vj(rj ,ûj)

dS′ (rj − r′)nfh(r′)

〉

Consider a flow in the x direction with its gradient in the y direction. Since
all suspension properties do not vary on the xz plane, the stress tensor is a
function of y only. Hence,

∇ · ∆Σ(r) = ê2 · d∆Σ(y)
dy

= − ∂

∂y

N∑
j=1

〈H(y − yj) δ(x − xj) δ(z − zj) F h
j 〉

where ê2 is the unit vector in the y-direction and where H is the Heaviside
unit step function. Here it is used that δ(y − yj) = ∂H(y − yj)/∂y. For a
homogeneous system, volume averaging thus leads to,

ê2 · ∆Σ(y) = − 1
V

∫
dr

N∑
j=1

〈H(y − yj) δ(x − xj) δ(z − zj) F h
j 〉

= − 1
V

N∑
j=1

〈(h − yj) F h
j 〉 = ê2 · 1

V

N∑
j=1

〈rj F h
j 〉,
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where h is the height of the box in the gradient direction. For the other
components the same analysis can be repeated, thus leading to,

∆Σ =
1
V

N∑
j=1

〈
rj F h

j

〉
(3.264)

In the last term in Eq. (3.263), only the leading order gradient contribution is
non-zero for homogeneous suspensions, so that,

∞∑
n=1

1
n!

∇n
N∑

j=1

〈
δ(r − rj) �

∮
∂Vj(rj ,ûj)

dS′ (rj − r′)n fh(r′)

〉

= − ∇ ·
N∑

j=1

〈
δ(r − rj)

∮
∂Vj(rj ,ûj)

dS′ (r′ − rj) fh(r′)

〉
(3.265)

From Eqs. (3.263), (3.264), and (3.265), the volume averaged stress tensor for
a homogeneous system is found to be equal to

Σ = η0

[
∇U + (∇U)T

]
− P ss Î

+
1
V

N∑
j=1

〈
rj F h

j

〉
+

1
V

N∑
j=1

〈∮
∂Vj(rj ,ûj)

dS′ (r′ − rj) fh(r′)

〉
(3.266)

which reproduces the expression for the stress tensor as derived by Batchelor
(1970) and later by Strating (1995) in different ways.

3.13.4
Explicit Evaluation of Stress Tensor for Very Long and Thin Rods

Within the bead model for the rods (see Fig. 3.3), the surface integral that
appears in Eq. (3.262) for the stress tensor can be written as a sum over beads
as (with ∂Vα the surface area of bead α)

∮
∂Vj(rj ,ûj)

dS′ δ(r − r′)fh(r′) =
∑
α

δ(r − rj − αDûj)F h
j,α

where F h
j,α is the force that the fluid exerts on the αth bead of rod j. Hence,

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t)

−
N∑

j=1

∑
α

〈δ(r − rj − αDûj)F h
j,α〉 (3.267)



3.13 The Stress Tensor for Rod Suspensions 245

In order to evaluate the summation over beads, an explicit expression for F h
j,α

must be found. Consider the flow velocity u0,α of the fluid that would have
existed in the absence of bead α. According to Eq. (3.18), this velocity is equal
to

u0,α = U�
α −
∑
β �=α

∫
∂Vβ

dS′ T (rα − r′) · fh,�
β (r′) (3.268)

where the star is used to indicate the absence of bead α. Here, U� is the
fluid flow velocity at the position of bead α that is due to the presence of the
remaining rods and the externally imposed flow field, in the absence of bead
α. The force fh,�

β (r′) is the force per unit area that the fluid exerts on the
surface element at r′ on the surface ∂Vβ of bead β, again in the absence of
bead α. For very long and thin rods, the majority of beads β experience a flow
and force that are only a little different from those in the absence of bead α.
We shall therefore set fh,�

β equal to the actual force fh
β in the presence of

bead α. Within the bead model for the rod, Eq. (3.268) then reads

u0,α = U�
α −
∑
β �=α

T (rα − rβ) · F h
β (3.269)

where, as before, F h
β is the total force that the fluid exerts on bead β. When

the gradients in the fluid flow velocity U�
α, stemming from other rods and

an externally imposed field, are negligible on the length scale equal to the
thickness D of the rod, the force on bead α is simply equal to F h

α = −γ[vα −
u0,α], where γ = 3πη0D is the Stokes friction coefficient of a single bead and
vα is the translational velocity of bead α. Hence, from Eqs. (3.269) and (3.23)
for the Oseen tensor,

F h
j,α = −γ[vj,α − U�

j,α] − 3
8 [ Î + ûjûj ] ·

∑
β �=α

1
|α − β|F

h
j,β (3.270)

Now consider summations of the form

∑
α

G(α)F h
j,α (3.271)

Multiplying both sides of Eq. (3.270) by G(α) and summing over α leads to

∑
α

G(α)F h
j,α = −γ

∑
α

G(α)[vj,α − U�
j,α]

− 3
8 [ Î + ûjûj ] ·

∑
α

∑
β �=α

G(α)
|α − β|F

h
j,β (3.272)
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In the Appendix (see Section 3.16.4) it is shown that for specific functions
G(α) it follows from the above relation that

∑
α

G(α)F h
j,α = −4

3
γ

ln(L/D)
[ Î − 1

2 ûjûj ] ·
∑
α

G(α)[vj,α − U�
j,α] (3.273)

For the sum in Eq. (3.267), the function G(α) is identified in Section 3.16.4,
and the validity of Eq. (3.272) for that particular G(α) is proven. Using this
result in Eq. (3.267) immediately leads to

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t) (3.274)

+
4
3

γ

ln(L/D)

〈
N∑

j=1

[ Î − 1
2 ûjûj ] ·

∑
α

δ(r − rj − αDûj)[vj,α − U�
j,α]

〉

For each j, the ensemble average that involves the solvent velocity U� can be
written as

〈
[ Î − 1

2 ûjûj ] ·
∑
α

δ(r − rj − αDûj)U�
j,α

〉

=
∫

drj

∮
dûj P (rj , ûj , t)[ Î − 1

2 ûjûj ] ·
∑
α

δ(r − rj − αDûj)〈U�
j,α〉(c)

where 〈· · ·〉(c) denotes ensemble averaging with respect to the conditional
PDF P (c) of {r1, . . . , rj−1, rj+1, . . . , rN , û2, . . . , ûj−1, ûj+1, . . . , ûN} for
prescribed rj and ûj , which is equal to

P (c)(r1, . . . , rj−1, rj+1, . . . , rN , û1, . . . , ûj−1, ûj+1, . . . , ûN | rj , ûj , t)

≡ P (r1, . . . , rN , û1, . . . , ûN , t)/P (r1, û1, t)

We can thus rewrite Eq. (3.267) for the divergence of the stress tensor as

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t)

+
4
3

γ

ln(L/D)
1
N

N∑
j=1

∫
drj

∮
dûj ρ(rj , ûj , t) (3.275)

× [ Î − 1
2 ûjûj ] ·

∑
α

δ(r − rj − αDûj)[vj,α − 〈U�
j,α〉(c)]



3.13 The Stress Tensor for Rod Suspensions 247

where ρ(r, û, t) is the density of rods with orientation û at position r,

ρ(r, û, t) = NP (r, û, t) (3.276)

The conditional ensemble average 〈U�
j,α〉(c) is the contribution to the solvent

flow velocity at the position of bead α of rod j, in the absence of that bead,
which originates from the presence of other rods and the externally imposed
flow, averaged over the positions and orientations of all other rods with a
prescribed position and orientation of rod j. This average is to a good approx-
imation equal to the suspension flow velocity U j,α at the position of bead α

of rod j, i.e.

〈U�
j,α〉(c) = U j,α (3.277)

Using the fact that the bead velocity is given by

vj,α = vj + αDΩj × ûj (3.278)

together with Eqs. (3.170) and (3.166) for the translational and rotational
velocity of a rod, Eq. (3.275) for the divergence of the stress tensor thus leads
to (mathematical details are given in the Appendix, Section 3.16.5)

∇ · Σ(r, t)

= η0∇2U(r, t) − ∇P ss(r, t) +
kBT

L2

∮
dû

×
∫ L/2

−L/2
dx

{
12

x

L
û ×
[
R̂ρ(r−xû0, û, t)

]
û0=û

− L∇ρ(r−xû, û, t)
}

+
2DkBT

L2

∮
dû

∮
dû′
∫ L/2

−L/2
dx

∫ L/2

−L/2
dl

∫ L/2

−L/2
dl′ ρ(r−xû, û, t)

×
{

12
x

L
û ×
[
R̂|û × û′| ρ(r−xû0−lû−l′û′, û′, t)

]
û0=û

− |û × û′|L∇ρ(r−(x+l)û−l′û′, û′, t)
}

+
4πη0

L ln(L/D)

∮
dû

∫ L/2

−L/2
dx

∫ L/2

−L/2
dx′ ρ(r−xû, û, t)
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× [ Î − 1
2 ûû] ·

{
U(r+(x′−x)û, t) − U(r, t)

− 12
xx′

L2 û × [û × U(r+(x′−x)û, t)]
}

(3.279)

Here, summations over bead indices α and β are replaced by integrals with
respect to x and x′, respectively (see Eqs. (3.321) and (3.324) in Section 3.16.5).
The notation [R̂(· · ·)]û0=û is used to indicate that the differentiation with
respect to û should be performed first, after which û0 should be taken equal
to û.

The first two contributions to the stress tensor are solvent contributions,
the third term stems from Brownian forces, the fourth term from direct in-
teractions, while the last term accounts for the suspension flow.

Contrary to commonly used expressions for the stress tensor for inho-
mogeneous suspensions, Eq. (3.279) contains convolution-type integrals. An
expression that is similar to commonly used expressions for the stress tensor
is obtained by gradient-expanding the convolution-type integrals and truncat-
ing this expansion after the fourth order in ∇ contributions. Such a truncation
is expected to work only when the gradients are not very large. Our expression
(3.279) for the divergence of the stress tensor, however, is valid even in the
presence of large gradients.

3.13.5
Stress Tensor for a Homogeneous System Expressed
in Terms of Order Parameter

For a homogeneous system, where the concentration, orientational order pa-
rameter and shear rate are independent of position, the probability density
function ρ in the integrals in Eq. (3.279) can be gradient-expanded up to
leading order in gradients that survives the convolution type of integrals. For
example,

ρ(r−xû, û, t) = ρ(r, û, t) − xû · ∇ρ(r, û, t)

+ 1
2x2ûû : ∇∇ ρ(r, û, t) + O(∇3) (3.280)

Using the same Ginzburg–Landau expansion (3.217) as before, a lengthy but
straightforward calculation leads to the following expression for the stress
tensor [where the fourth-order tensor S(4) is defined in Eq. (3.220)]

Σ = −P Î + ΣD (3.281)
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with ΣD the deviatoric part of the stress tensor,

ΣD = 2η0γ̇ Ê + 3ρ̄kBT
[
S − 1

3 Î + (L/D)ϕ(S(4) : S − S · S)

+ 1
6Per(S(4) : Ê − 1

3 Î S : Ê)
]

(3.282)

where Eq. (3.169) for Dr has been used. Here, ρ̄ = N/V is the number density
of the homogeneous system, ϕ = 1

4πD2Lρ̄ is the volume fraction of rods, and
Per = γ̇/Dr is the same bare rotational Peclet number that we encountered
before. The tensor Ê is, as before, equal to E/γ̇. Furthermore,

P = P ss + ρ̄kBT [1 + 5
4 (L/D)ϕ(1 − 3

5S : S) − 1
6PerS : Ê] (3.283)

is the pressure.
The first term S− 1

3 Î stems from the Brownian contribution in Eq. (3.279),
the second term ∼ L/D from the direct interaction terms, and the term ∼ Per

from the suspension flow terms.
Note that from Eq. (3.219), using the expression (3.169) for Dr, the devia-

toric stress tensor can be rewritten more elegantly as

ΣD =

2η0γ̇

[
Ê +

(L/D)2

3 ln(L/D)
ϕ

(
Γ̂ · S + S · Γ̂T− S(4) : Ê − 1

3 Î S : Ê − 1
γ̇

dS

dt

)]

(3.284)

This form makes the proportionality of the stress tensor with the shear rate
more explicit.

A similar expression for the stress tensor has been derived by Doi and
Edwards (1978a), Doi and Edwards (1978b), Doi (1981), Kuzuu and Doi
(1983) and Marrucci and Maffettone (1989). For non-interacting rods, i.e.
for (L/D)ϕ = 0, Hinch and Leal (1976) found a constitutive relation similar
to Eq. (3.284) by interpolating between known expressions for low and high
shear rates.

3.14
Viscoelastic Response Functions

In the present section we shall analyze the viscous behavior of rod suspensions
on the basis of the equation of motion (3.219) for S(t) and the Navier–Stokes
equation with Eq. (3.284) for the stress tensor [together with the closure rela-
tion (3.227)]. Equations (3.219) and (3.284) are quite similar to those derived
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on the basis of phenomenological arguments by Doi and Edwards (1978a),
Doi and Edwards (1978b), Doi (1981), Kuzuu and Doi (1983), and Doi and
Edwards (1986). We shall refer to this latter theory as the DEK theory, where
DEK stands for “Doi–Edwards–Kuzuu”. Our predictions will be compared to
those of the DEK theory.

The DEK theory appears in the literature in various forms. Sometimes an
effective rotational diffusion coefficient is used in the Smoluchowski equa-
tion and the equation of motion (3.219) instead of the bare diffusion coef-
ficient Dr. This effective diffusion coefficient is calculated independently as
a function of the order parameter and concentration. The present approach
shows that this is not correct: the bare diffusion coefficient should be used
in the equation of motion (3.219) and expressions (3.282) and (3.284) for the
stress tensor. Interactions between rods are explicitly accounted for in these
expressions. Sometimes the interaction contributions are omitted, and the
above-mentioned effective diffusion coefficient is used. The effective diffu-
sion coefficient is then assumed to account for interactions between rods.
Either the interaction contributions are kept as they stand and the bare diffu-
sion coefficient is used, or the interaction contributions are omitted and an
effective diffusion coefficient should be used.

Viscoelastic response functions will be discussed for both low shear rates,
where analytic expressions can be derived, and high shear rates, where nu-
merical results will be given. For higher shear rates, shear thinning curves
and nonlinear oscillatory response functions will be discussed. These results
will be compared to other theories, computer simulations, and experiments.
A remarkable feature is that the shear viscosity is predicted to vary linearly
with concentration up to the isotropic–nematic phase transition, which is
confirmed by computer simulations. Comparing theory with experimental
data on fd virus suspensions, it turns out that a slight degree of flexibility has
a large effect on the viscoelastic response functions.

3.14.1
Shear Viscosity and Normal Stresses for Low Shear Rates

In order to obtain analytic results for the leading-order shear-rate dependence
of the zero-frequency shear viscosity and normal stress differences, the ori-
entational order-parameter tensor is expanded up to third power in the shear
rate,

S = 1
3 Î + γ̇∆S1 + γ̇2∆S2 + γ̇3∆S3 + · · · (3.285)

Substitution of this expansion into the stationary form of the equation of
motion (3.219) and noting that Î : ∆Sj = 0, a straightforward but somewhat
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lengthy calculation leads to the following expressions for the ∆Sj :

γ̇ ∆S1 =
1
15

γ̇

Deff
r

Ê

γ̇2∆S2 =
1

450

(
γ̇

Deff
r

)2







3 0 0

0 −2 0

0 0 −1


+

1
10

Dr

Deff
r

L

D
ϕ




1 0 0

0 1 0

0 0 −2







γ̇3∆S3 =
1

1125

(
γ̇

Deff
r

)3
[
−7

3
+

3
10

Dr

Deff
r

L

D
ϕ +

1
50

(
Dr

Deff
r

L

D
ϕ

)2
]

Ê

(3.286)

The concentration-dependent, effective rotational diffusion coefficient Deff
r

is given in Eq. (3.230).
As can be seen from the above expressions, the actual expansion parameter

is the dressed rotational Peclet number,

Peeff
r = γ̇/Deff

r (3.287)

The expansion (3.285) is therefore valid only when γ̇/Deff
r is small. For con-

centrations close to the spinodal line, where Deff
r is much smaller than the free

rotational diffusion coefficient Dr, the shear rate should be equally smaller
in order for the expansion (3.285) to be valid. Substitution of Eqs. (3.286) into
Eq. (3.284) for the deviatoric part of the stress tensor leads to

ΣD = 2ηeff γ̇ Ê + η0
1

120
γ̇2

Deff
r

αϕ




19 0 0

0 −11 0

0 0 −8


 (3.288)

where the coefficient α is equal to

α =
8
45

(L/D)2

ln(L/D)
(3.289)

and the suspension shear viscosity ηeff is found to be equal to

ηeff = η0

{
1 +
[
1 − 1

50

(
γ̇

Deff
r

)2]
αϕ +

1
1500

γ̇2Dr

(Deff
r )3

α
L

D
ϕ2
}

(3.290)
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up to second order in the shear rate. Expanding the dressed Peclet number
with respect to the concentration yields, up to second order in concentration,

ηeff = η0

{
1 +
[
1 − 1

50

(
γ̇

Dr

)2]
αϕ − 11

1500

(
γ̇

Dr

)2

α
L

D
ϕ2
}

(3.291)

Note that the Huggins coefficient (the coefficient for the ϕ2-contribution) van-
ishes at zero shear rate. There is a non-zero Huggins coefficient at zero shear
rate when hydrodynamic interactions would have been taken into account.
As discussed before, hydrodynamic interactions are not so important for the
very long and thin rods under consideration here.

For zero shear rate, Eq. (3.291) for the effective viscosity is the rigid-rod
analog of Einstein’s equation ηeff = η0(1 + 5

2ϕ) for the viscosity of very
dilute suspensions of spheres. Note, however, that Eq. (3.291) is valid also for
larger concentrations. That is, higher-order concentration contributions to the
zero-shear viscosity are absent. This linear concentration dependence of the
zero-shear suspension viscosity is the result of the use of the form (3.208) for
the pair correlation function and the neglect of hydrodynamic interactions.
As will be seen later in this section, such a linear concentration dependence
is also seen in computer simulations for very long and thin rods.

Normal stress differences due to a weak shear flow follow immediately
from Eq. (3.288) as

N1 ≡ Σ11 − Σ22 = η0
1
4

γ̇2

Deff
r

αϕ

N2 ≡ Σ22 − Σ33 = −η0
1
40

γ̇2

Deff
r

αϕ

(3.292)

Note that α and ϕ can be large for very long and thin rods, even at low
volume fractions ϕ, so that normal stress differences are predicted to be quite
significant.

Expressions for linear response functions to oscillatory shear flow can be
obtained by substitution of

S(t) = 1
3 Î + γ̇0[∆Sc cos(ωt) + ∆Ss sin(ωt)] (3.293)

into the equation of motion (3.219). Linearization with respect to the in- and
out-of-phase response functions ∆Sc and ∆Ss, respectively, keeping only
linear terms in γ̇0, and using Eq. (3.6) for the shear rate γ̇, one readily finds,
in dimensionless form,

S(t) = 1
3 Î + 2

5 (γ̇0/ω)F (Ωeff/6)[cos(ωt) + 1
6Ωeff sin(ωt)]Ê (3.294)
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where

F (x) ≡ x

1 + x2 and Ωeff = ω/Deff
r (3.295)

The dimensionless frequency Ωeff is a dressed, concentration-dependent rota-
tional Deborah number. Substitution of Eqs. (3.294) and (3.295) into Eq. (3.284)
for the stress tensor gives

ΣD = 2γ̇0 Ê[η′ cos(ωt) + η′′ sin(ωt)] (3.296)

where the dissipative and storage shear viscosity, respectively, are equal to

η′ = η0

[
1 +
(

1
4

+
9
2

F (Ωeff/6)
Ωeff

)
αϕ

]

η′′ = η0
3
4 F (Ωeff/6)αϕ

(3.297)

To leading order in shear rate, we thus find a Maxwellian behavior of the vis-
coelastic response function, with a concentration-dependent relaxation time
that is set by the effective rotational diffusion coefficient. Note that

ηeff − ηeff
∞

η0
= 3

4αϕ = 6 lim
Ω→∞

η′′

Ωeff (3.298)

where ηeff = η0(1 + αϕ) is the shear viscosity (3.291) at zero shear rate, and
ηeff

∞ ≡ η′(Ωeff→∞) is the high-frequency, zero-shear-rate viscosity. These are
relationships that could be tested experimentally. As before, the predicted
linear concentration dependence in Eq. (3.297) should hold over the entire
concentration regime (up to the isotropic–nematic phase transition concen-
tration), and could serve as an experimental test for the validity of the approx-
imation (3.208) for the pair correlation function.

3.14.2
Viscoelastic Response at High Shear Rates

For larger shear rates, no analytical results can be obtained in view of the
complexity of the equation of motion (3.219). Instead, Eq. (3.219) must be
time-integrated numerically, with either a stationary or an oscillating shear
rate, until transients have relaxed. The resulting solution is substituted into
Eq. (3.284) for the stress tensor, from which viscoelastic response functions
can be deduced.

The dimensionless numbers on which the stress response functions under
stationary shear flow conditions depend are L/D, (L/D)ϕ, and the bare rota-
tional Peclet number (3.189) for dilute systems or the dressed Peclet number
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(3.287) for strongly interacting systems. As will be seen, the same Peclet num-
bers are of interest under oscillatory shear flow, except that the shear rate is
replaced by the shear amplitude γ̇0 in Eq. (3.6). The frequency dependence is
expressed in terms of the dressed Deborah number in Eq. (3.295) or the bare
Deborah number

Ω = ω/Dr (3.299)

Numerical results are shown here for L/D = 50 as functions of the other
dimensionless numbers: the essential features of the viscoelastic response
functions do not depend on the aspect ratio for aspect ratios larger than about
10.

In Fig. 3.26 the suspension viscosity is plotted as a function of the squared
rotational Peclet number for various concentrations, in both the otherwise
isotropic phase (Fig. 3.26a) and the nematic state (Fig. 3.26b). The dashed lines
in Fig. 3.26(a) correspond to the small Peclet number expansion (3.290). The
range of validity of this expansion is seen to decrease for larger concentrations.
The reason for this is that Eq. (3.290) is actually an expansion with respect
to the dressed rotational Peclet number (3.287), while the effective rotational
diffusion coefficient (3.230) becomes smaller on approaching the isotropic-to-

Fig. 3.26 (a) The suspension viscosity
ηeff for the otherwise isotropic state,
normalized by the solvent shear viscosity
η0, as a function of the squared Peclet
number for several concentrations, as
indicated in the figure. The dashed lines
correspond to the low-shear-rate expan-
sion (3.290). Here, and in the other two

parts, L/D = 50. (b) The same as (a) for
the nematic state. (c) The shear viscosity
as a function of concentration for various
shear rates, as indicated in the figure.
The isotropic-to-nematic and nematic-
to-isotropic spinodal concentrations are
also indicated.
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nematic spinodal point. Note that for a nematic there seems to be no regime
at small shear rates where the viscosity varies linearly with γ̇2, contrary to a
paranematic. Furthermore, the suspension viscosity of a nematic decreases
with increasing concentration: the rise in stress on adding rods is smaller
than its decrease due to the increase of the degree of orientational order.
In Fig. 3.26(c), the dependence of the viscosity on concentration is shown
for various shear rates. For shear rates close to the critical shear rate Per =
0.159 . . . , the viscosity decreases sharply with increasing concentration due to
the sharp increase of the degree of alignment as the corresponding branch in
the bifurcation diagram (Fig. 3.19a) is traced. For shear rates below the critical
shear rate, the curves in Fig. 3.26(c) develop discontinuous jumps. Such jumps
are probably of no experimental relevance, since phase separation will occur
during an experiment. In the limit of zero shear rate, the viscosity depends
linearly on concentration (see Eq. 3.290 with γ̇ = 0).

The normal stress differences N1 and N2 (normalized by η0γ̇) are plotted
as functions of the shear rate for various concentrations in Fig. 3.27(a) and
(b), respectively, for the paranematic state and in Fig. 3.27(c) and (d) for the
nematic state. The dashed lines in Fig. 3.27(a) and (b) correspond to the low-
shear-rate expansions (3.292). Note the strong shear-rate dependences in the
otherwise isotropic state. As for the suspension viscosity, the absolute values
of the normal stress differences for the nematic decrease on increasing the
concentration. In Fig. 3.27(e) and (f), the normal stress differences are given
as functions of the concentrations for various shear rates. The dashed lines
correspond, as before, to the low-shear-rate expansions (3.292). For the same
reason as with the suspension viscosity discussed above, there is a very strong
concentration dependence for shear rates close to the critical shear rate.

3.14.3
Nonlinear Viscoelastic Response

Dynamic response functions can be obtained from a Fourier analysis of the
time dependence of Eq. (3.284) for the stress tensor after substitution of the
solutions of Eq. (3.219) under oscillatory shear flow, when transients have
relaxed. The frequency dependence of η′ and η′′ for the otherwise isotropic
state are given in Fig. 3.28(a) and (b), respectively, for various values of the
Peclet number

Per,0 = γ̇0/Dr (3.300)

where γ̇0 is the shear amplitude as defined in Eq. (3.6). Response functions are
plotted as functions of the dimensionless bare Deborah number (3.299). The
dashed curves correspond to the leading Peclet number expansions (3.297).
As soon as Per,0 > 1 (or, rather, Peeff

r,0 = γ̇0/Deff
r > 1), there are deviations
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Fig. 3.27 (a) The normal stress difference
N1 for the otherwise isotropic state, nor-
malized by η0γ̇ as a function of shear rate
for various concentrations, as indicated
in the figure. The dashed lines corre-
spond to the low-shear-rate expansion
(3.292). Here, and in the other five parts,
L/D = 50. (b) The same as (a) for the
normal stress difference N2. The dashed
lines correspond to the expansion (3.292).

(c) The same as (a) for the nematic state.
(d) The same as (b) for the nematic state.
(e) The normal stress difference N1 as
a function of concentration for various
shear rates, as indicated in the figure. The
dashed lines correspond to the low-shear-
rate expansion (3.292). (f) The same
as (e) for the normal stress difference
N2. The dashed lines correspond to the
low-shear-rate expansion (3.292).
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from the leading-order expansions (3.297). Higher-order, nonlinear response
functions now come into play as well. For these higher shear amplitudes, the
time-dependent stress tensor can be Fourier-expanded as

ΣD = 2γ̇0 Ê

∞∑
n=0

[η′
n cos(nωt) + η′′

n sin(nωt)] (3.301)

where η′
0 and η′′

0 are henceforth simply denoted as η′ and η′′, respectively.
The nonlinear dissipative and elasticity response functions η′

n and η′′
n are

plotted for n = 3 and 5 in Fig. 3.28(c–f), for the paranematic state. The
response functions for even n are zero. The nonlinear response functions
exhibit oscillatory behavior as functions of the frequency. Note the very differ-
ent frequency dependences of the third- and fifth-order functions. Except for
the maximum in η′′

3 , the third-order response functions behave qualitatively
similarly to those for near-critical systems of spherical colloids (Dhont and
Nägele 1998). The corresponding response functions for the nematic state
are given in Fig. 3.29(a–f). There are pronounced differences between the
viscoelastic responses of the paranematic and nematic states. First of all, the
response functions for the nematic state are only non-zero in a much smaller
frequency range. The response functions for the nematic state are strongly
varying functions of frequency in this small frequency range. Furthermore,
the frequency dependence of, for example, η′′ changes with Per,0 in a quite
different fashion as compared to the paranematic state. In a paranematic, η′′

decreases on increasing Per,0 without changing the location of its maximum
too much, contrary to the nematic state, where the predominant effect of in-
creasing Per,0 is to shift the location of the maximum value of η′′, while the
maximum value itself does not change that drastically.

The present approach allows for the straightforward (numerical) calcula-
tion of response functions for superimposed oscillatory shear flow as well.
We shall not discuss such response functions here.

3.14.4
Comparison with Other Theories, Simulations, and Experiments

An expression for the effective viscosity ηeff
ellips at zero shear rate for non-

interacting ellipsoidally shaped rods is due to Kuhn and Kuhn (1945) and
Simha (1940) [see Larson (1999) for an extensive overview]. They found

ηeff
ellips = η0

{
1 +
[
8
5

+
p2
e

5

(
1

3[ln(2pe) − 3/2]
+

1
ln(2pe) − 1/2

)]
ϕ

}

(3.302)
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Fig. 3.28 Nonlinear response functions
for the otherwise isotropic state.
(a) The dissipative response function η′

as a function of the Deborah number
(3.299) for various values of the Peclet
number (3.300), as indicated in the fig-
ure. The dashed line corresponds to the
leading-order expansion (3.297). Here,
and in the other five parts, L/D = 50.

(b) The same as (a) for the elasticity
response function η′′, where the dashed
line corresponds to Eq. (3.297).
(c) The same for the leading-order non-
linear dissipative response function η′

3.
(d) The leading-order nonlinear elasticity
response function η′′

3 .
(e, f) The same as (c) and (d) for the re-
sponse functions η′

5 and η′′
5 , respectively.
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Fig. 3.29 The same as Fig. 3.28, but for the nematic state.
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where pe = Le/De is the total length (Le) over total thickness (De) ratio of
the ellipsoidal rod. Expanding to leading order in pe gives

ηeff
ellips = η0

[
1 +

3
2

8
45

p2
e

ln pe
ϕ

]
(3.303)

In order to compare this result with Eq. (3.291) for γ̇ = 0, note that for
cylindrical rods (with ρ̄ = N/V the number density of rods)

(
L

D

)2

ϕ =
(

L

D

)2
π

4
D2Lρ̄ =

π

4
L3ρ̄

while for ellipsoidal rods

(
Le

De

)2

ϕ =
(

Le

De

)2
π

6
D2

eLeρ̄ =
π

6
L3

e ρ̄

When we choose the lengths of the cylindrical and ellipsoidal rods to be equal,
i.e.

L = Le (3.304)

it follows, for equal volume fractions, that our result (3.291) is identical to
Eq. (3.303) [note that ln pe = ln(L/D) + O(1)]. This identification also ap-
plies to the rotational and translational diffusion coefficients of free, non-
interacting cylinders and ellipsoids: the leading-order expressions for these
diffusion coefficients are identical for very long and thin cylinders and ellip-
soids, when their lengths are taken equal. In the above we have chosen equal
volume fractions and number densities of the cylindrical and ellipsoidal rods.
This implies equal volumes of rods, from which a relation between the thick-
ness of the rods follows as

De/D =
√

3/2 (3.305)

Other choices for mapping results for ellipsoidal rods onto those for cylindri-
cal rods can be used. The above mapping is simple, and correctly compares
not only viscosity coefficients but also diffusion coefficients.

The leading shear-thinning behavior of the zero-frequency shear viscosity
as found in Eq. (3.291) may be compared to the result obtained by Berry and
Russel (1987), which reads, in our notation,

ηeff = η0

{
1+
[
1− 1

50

(
γ̇

Dr

)2]
αϕ+

2
5

[
1−0.0342

(
γ̇

Dr

)2]
α2ϕ2

}
(3.306)
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up to second order in concentration and shear rate. This result is valid in the
dilute regime, where (L/D)2ϕ � 1. To first order in volume fraction, this
agrees with our result (3.291). There are serious differences, however, for the
ϕ2 contribution. First of all, as discussed in the previous section, we predict
a linear volume fraction dependence of the shear viscosity at zero shear rate.
From Eq. (3.290), and from Eq. (3.297) at infinite frequency, we obtain

ηeff = η0[1 + αϕ] and ηeff
∞ = η0[1 + 1

4αϕ] (3.307)

where, as before, ηeff is the zero-frequency and ηeff
∞ the high-frequency vis-

cosity.
On the other hand, Berry and Russel’s above result (3.306) for zero fre-

quency predicts that at zero shear rate and up to second order in concentra-
tion

ηeff = η0[1 + αϕ + 2
5α2ϕ2] (3.308)

On the basis of this latter prediction, a pronounced ϕ2 dependence for long
and thin rods is expected, since αϕ ∼ (L/D)/ ln(L/D) → ∞ as L/D → ∞,
for a given value of (L/D)ϕ. For zero shear rate, we may compare the above
predictions with computer simulations by Claeys and Brady (1993) on ellip-
soidal rods. In Fig. 3.30a, simulation data from Claeys and Brady for effective
zero-shear-rate viscosities at infinite frequencies are plotted for three aspect
ratios pe of the ellipsoidal rods: pe = 50, 20 and 10. There is a remarkable
linear concentration dependence over a large concentration range, especially
for the longer rods. In fact, Claeys and Brady (1993) remark that: “Some-
what surprisingly, the dispersion containing 1% rods of aspect ratio 50 still
responds hydrodynamically as if it were dilute, even though nφ

4
3πa3 = 25”

(in their notation, nφ is the number density of rods and a = L/2). Such a
linear concentration dependence is also found in computer simulations on
non-Brownian rods by Yamane et al. (1994) (see Fig. 3.30b). They state that:
“. . . the excess viscosity is proportional to the number density n even in the
region nL3 ≈ 40, . . . ”. The magnitude of the second-order volume fraction
contribution in the Berry–Russel equation (3.306) relative to the first-order
contribution is 2

5αϕ ≈ 50% for the highest concentration shown in Fig. 3.30
for both pe = 20 and 50. The large second-order concentration contributions
predicted by Berry and Russel (1987) are thus in disagreement with the linear
relationship found in Fig. 3.30. A decrease of the Huggins coefficient with
increasing aspect ratio is confirmed in experiments on spindle-type colloidal
hematite rods by Solomon and boger (1998; see Fig. 2 and Table III therein).

The slope of the simulation results for the high-frequency viscosity ηeff
∞

versus the volume fraction in Fig. 3.30, taken from Claeys and Brady (1993),
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Fig. 3.30 (a) Brownian dynamics simulation data from Claeys and Brady
(1993) for the suspension shear viscosity (at zero shear rate and infinite
frequency) of ellipsoidal rods as a function of their volume fraction for
various aspect ratios pe, as indicated in the figure. (b) Linear concentration
dependence of the shear viscosity as found in simulations by Yamane
et al. (1994).

may be compared to the slope α/4 as predicted in Eq. (3.307). Noting that the
volume fraction of ellipsoids in Fig. 3.30(a) is equal to (π/6)DL2ρ̄, while for
the cylindrical particles under consideration here the volume fraction is equal
to (π/4)DL2ρ̄, a slope of 36 is found from the simulation data for L/D = 50,
whereas from Eq. (3.289) we find a slope of 29. For L/D = 20 one finds a
slope of 9 from Fig. 3.30, while α/4 = 6, and for L/D = 10 one finds 3.8 and
α/4 = 1.9. The slope found from simulations thus seems to converge to the
asymptotic result in Eq. (3.307) when the aspect ratio is large enough.

The linear concentration dependence of the zero-shear viscosity is not
found within the DEK theory (Doi and Edwards 1986), where the concen-
tration dependence originates from the assumed state dependence of the
rotational tracer diffusion coefficient.

The experiments by Graf et al. (1993) and Schmidt et al. (2000) on fd virus
suspensions do not show a linear concentration dependence of the zero-shear
and zero-frequency viscosity (except maybe for the salt-free case in Fig. 3 of
Graf et al., which should not be taken as proof of the present theory in view of
the not well understood behavior of the fd virus at very low ionic strength). The
higher-order concentration dependence as found for the fd virus, however, is
much weaker than for hard spheres, indicating that, in accordance with our
findings, elongated objects tend to diminish nonlinear concentration depen-
dence. Similarly, a considerable second-order concentration dependence of
the shear viscosity is found experimentally for xanthan gum by Chauveteau
(1982). It is known that the fd virus is relatively stiff (contour length is 880 nm,
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intrinsic persistence length is 2200 nm), but nevertheless behaves quite non-
Onsager-like, in the sense that the relative isotropic–nematic biphasic gap
width in the absence of shear flow is much narrower than the width for very
long and thin, truly rigid rods (Tang and Fraden 1995). Hence, even for rela-
tively stiff rod-like particles, the approximation (3.208) for the pair correlation
function is not very good. Xanthan and “stiff” polymers like PBLG (Yang 1987;
Mead and Larson 1990) are even more flexible than the fd virus. The non-zero
Huggins coefficients at zero shear rate found experimentally for the fd virus
by Graf et al. (1993), for xanthan gum by Chauveteau (1982), and for PBLG
by Yang (1987) and Mead and Larson (1990) are probably due to flexibility.
In view of this sensitivity to flexibility, it would be very interesting to include
flexibility (even up to leading order in the inverse persistence length) in stress
calculations. The sensitivity to slight flexibility obscures the comparison of
theories with experiments for truly stiff rods.

The difference between the experimental rods mentioned above and the
model rods in computer simulations is their degree of stiffness. The advantage
of computer simulations is that the persistence length of rods can be made
infinite. In the computer simulations mentioned above, hydrodynamics are
taken into account. The different concentration dependences of the zero-shear
viscosity (at least for long and thin rods) found in experiments as compared
to simulations, as far as the Huggins coefficient is concerned, is therefore
most likely due to flexibility.

Despite the sensitivity of viscoelastic response functions to flexibility, we
shall nevertheless compare experimental data with our theoretical predic-
tions. This comparison should be taken seriously only on a qualitative level.
Figure 3.31 shows experimental data for the shear-rate dependence of the
shear viscosity of xanthan with two different molecular weights (Chauveteau
1982), PBLG (Yang 1987), and a salt-free fd virus suspension (Graf et al. 1993).
The intrinsic viscosity [η] = η/η0 − 1, with η0 the solvent shear viscosity, is
plotted relative to its value [η]0 at zero shear rate. For xanthan we took Dr =133
and 103 s−1 for low and high molecular weights, respectively, as reported by
Berry and Russel (1987); for PBLG we took Dr = 167 s−1, as reported by
Larson (1999); and for the salt-free fd virus we took Dr = 11 s−1 from Graf
et al. (1993). The solid lines refer to the present theory with L/D = 50 (the
precise form of these curves is insensitive to the aspect ratio). The xanthan
and PBLG suspensions are dilute, and are seen to be in reasonable agreement
with theory. The concentration of the salt-free fd virus suspension is equal to
6c∗, where c∗ is the overlap concentration. There is some deviation from the
fd virus data in comparison to theory, which may be due to either flexibility
or aggregation at low ionic strength.

The linear concentration dependence in Eq. (3.307) holds up to the
isotropic–nematic phase transition. Within the nematic state, this result is no
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Fig. 3.31 The intrinsic viscosity
[η] = η/η0 − 1, relative to its value
[η]0 at zero shear rate, as a function of
the bare rotational Peclet number. The
solid lines are theoretical predictions for
various values of (L/D)ϕ, as indicated in
the figure, for L/D = 50 (the theoretical

curves are insensitive to the precise value
of the aspect ratio). The symbols relate to
experimental data for xanthan by Chau-
veteau (1982) at low (circles) and high
(triangles) molecular weight, for PBLG by
Yang (1987) (squares), and for salt-free
fd virus by Graf et al. (1993) (diamonds).

longer valid, since in deriving Eq. (3.307) we linearized around the isotropic
state (see Eq. 3.285). As can be seen from Fig. 3.26(b), the viscosity decreases
with increasing concentration for a nematic. As was mentioned before, this is
the result of an increase in alignment on increasing the concentration. Such
a decrease of the shear viscosity with increasing concentration is indeed ob-
served experimentally (see for example Fig. 10.5 in Doi and Edwards, 1986
and Fig. 1 in Kiss and Porter, 1978). Furthermore, the type of concentration
dependence of the shear viscosity at higher shear rates as found in Fig. 3.26(c)
is also seen in experiments (see for example Fig. 10.9 in Doi and Edwards,
1986).

To leading order in concentration, the low-shear limiting expressions
(3.292) for normal stress differences are also found by Hinch and Leal (1972),
except that instead of the prefactor −1/40 they find −1/28. Within the DEK
theory, it is found that, to leading order in shear rate,

N1 = η0
1
30

ρ̄kBT
γ̇2

D̃2
r

N2 = −η0
1

105
ρ̄kBT

γ̇2

D̃2
r

where ρ̄ is the number concentration of rods and D̃r is their state-
dependent rotational tracer diffusion coefficient. Using the fact that Dr =
3kBT ln(L/D)/πη0L

3 in expression (3.289) for α, we find from Eq. (3.292)
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that

N1 = η0
1
30

ρ̄kBT
γ̇2

DrDeff
r

N2 = −η0
1

300
ρ̄kBT

γ̇2

DrDeff
r

where the effective rotational, collective diffusion coefficient Deff is given in
Eq. (3.230). The prefactor for N2 is almost a factor of 3 smaller than in the DEK
theory, and in both expressions we find the combination DrD

eff
r instead of

D̃2
r . Experimental results for normal stress differences on fibers are reported

by Zirnsak et al. (1994). Here, Brownian motion is very weak compared to
shear forces, so that one should compare with the high-shear-rate results as
plotted in Fig. 3.27. One should be careful in the comparison, since inertial
effects in fiber suspensions may play a role. As can be seen from Fig. 3.27(a)
and (b), both normal stress differences become linear functions of the shear
rate for high shear rates (since N1/γ̇ and N2/γ̇ tend to constant, shear-rate-
independent values). This remarkable linear shear-rate dependence is indeed
typically found in experiments on fibers [see, for example, Fig. 11 in Zirnsak
et al. (1994)]. In addition, in Figs. 16 and 17 of Zirnsak et al., it is found that
the first normal stress difference varies linearly with concentration. This is
also found in our Fig. 3.27(e) for high shear rates, for concentrations where
(L/D)ϕ is less than about 3. The concentrations in the experiments on fibers
are indeed well within this range.

Normal stress differences that change from being positive to negative on
increasing the shear rate, and for larger shear rates from negative to positive
again, were reported by Iizuka (1978),4) Kiss and Porter (1978), Kiss (1996) and
Larson (1996) for PBLG solutions in m-cresol, and later for the same polymer
by Magda et al. (1991). On the basis of a two-dimensional DEK-like approach
for a homogeneous nematic, Marrucci and Maffettone (1989) predict that the
normal stress difference N1 is negative at low shear rates and becomes posi-
tive at higher shear rates (see their Fig. 10). This behavior is found for shear
rates that are large enough to assure that stationary solutions of equations of
motion exist, i.e. where tumbling or wagging are absent. Larson (1990) ana-
lyzed the full three-dimensional DEK theory (using closures as obtained by
Hinch and Leal (1976)), and suggests that the experimentally observed sign
changes of normal stress differences are due to the existence of tumbling or
wagging nematic domains. By time averaging of stresses generated by tum-
bling domains over a number of oscillations, he indeed finds the kind of
sign changes for normal stress differences that are observed experimentally.

4) Kiss and Porter (1978) refer to a personal communication with Iizuka, who apparently found
negative normal stress differences before or at the same time as Kiss and Porter, but never
published these data.
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This kind of behavior is essentially also found within the two-dimensional
DEK-like approach by Marrucci and Maffettone (1990a) and Marrucci and
Maffettone (1990b). Magda et al. (1991) suggested that polydomain nematics
may exhibit apparent steady flow behavior, even though each individual do-
main exhibits tumbling or wagging, since in a rheometer averages over many
independent tumbling domains are probed. Tumbling and wagging can be
observed in experiments by flow reversal, which renders the various domains
coherently tumbling/wagging for some time. As mentioned before, whether a
theory predicts tumbling and wagging is very sensitive to the closure relation
that is used. Our closure relation (3.227) is not suited to describe tumbling
and wagging. Other closure relations can be used to study these time-periodic
states (Marrucci and Maffettone 1989; Larson 1990; Marrucci and Maffettone
1990a; Marrucci and Maffettone 1990b; Forest and Wang 2003). Due to the
sensitivity for the prediction of time-periodic states on the closure relation,
the most sensible thing to do seems to be to employ the original equation of
motion (3.213), before introducing a Ginzburg–Landau expansion.

3.15
Current Research Topics

Some of the current research interests related to what has been discussed
in the present chapter will be briefly described in this last section. Current
research interests include:

1. shear-banding transitions,
2. non-equilibrium phase behavior under shear flow,
3. phase separation kinetics under flow conditions.

3.15.1
Shear-Banding Transitions

There are essentially two types of banding transitions observed experimentally
in various types of systems containing mesoscopic entities: vorticity banding
and gradient banding. Here, “bands” refer to coexisting regions under station-
ary flow which have different microstructural order and can sustain different
shear rates and/or stresses. In the case of vorticity banding, regularly stacked
bands in the vorticity direction are observed, which differ in their average ori-
entational order. For gradient banding, two regions coexist, extending along
the gradient direction, each with a different shear rate.
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Fig. 3.32 A photograph from the side of an optical couette cell between
two crossed polarizers. The couette cell contains an fd virus suspension
in a vorticity-banded state. The width of the shear cell is about 5 cm,
while the height of the bands is about 1 mm.

3.15.1.1 Vorticity Banding
Within part of the two-phase region (the region enclosed by the binodal),
fd virus suspensions exhibit vorticity banding, where regularly stacked bands
are formed along the vorticity direction. The height of these bands can be
up to millimeters. A photograph of such a banded state in an optical couette
cell between two crossed polarizers is given in Fig. 3.32. The difference in
contrast of the two types of bands between crossed polarizers is due to the
different orientational order in the bands. The director has different orien-
tations in the two bands. The concentration difference in the two bands has
been shown to be zero to within experimental error. The region in the phase
diagram where vorticity banding is found is indicated in Fig. 3.33. At lower

Fig. 3.33 Experimental phase diagram of the fd virus (with added dextran)
including the vorticity-banding region.
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concentrations, the boundary of the region where vorticity banding occurs
coincides exactly with the binodal. It thus seems that inhomogeneities that
are formed right after a shear-rate quench into the two-phase region (the re-
gion bounded by the paranematic–nematic binodal) are necessary to render
normal stresses such that they induce an instability along the vorticity direc-
tion leading to banding. If this is indeed the case, equations of motion need
to be analyzed that account for large gradients in concentration, orientational
order parameter, and/or shear rate. For stiff colloidal rods, such equations of
motion have been derived by Dhont and Briels (2002) and Dhont and Briels
(2003). The particular normal stress behavior that leads to vorticity banding
and the role of inhomogeneities leading to that behavior is not yet understood
[however, see Olmsted and Lu (1999), where vorticity banding is assumed to
occur whenever the velocity-gradient stress versus the shear rate relation is
multi-valued]. At higher concentrations, there are indications that banding
ceases to occur when tumbling/wagging sets in.

3.15.1.2 Gradient Banding
On the basis of the stationary forms of the equation of motion (3.219) and
the expression (3.284) for the deviatoric stress tensor (where Dr is the bare,
state-independent rotational diffusion coefficient), a non-monotonic behav-
ior of the shear stress as a function of shear rate is found. Such a “van der
Waals loop-like” behavior is only found for concentrations very close to the
critical concentration (L/D)ϕ = 4.281 . . . , as can be seen in Fig. 3.34, where
the dimensionless flow-gradient component σ12 = Σ12/η0Dr of the stress
tensor is plotted as a function of shear rate. Such a decrease of the stress
in a certain shear-rate interval implies that the usual linear flow profile as
depicted in Fig. 3.1(a) is unstable. The stable flow profile is now a banded
flow, where two regions with different shear rates are in coexistence. Within
these two regions (the “bands”), the shear rate is constant, independent of
position. The shear rates within the two bands can be found from a modified
equal-area construction on the van der Waals loop in Fig. 3.34 (Olmsted and
Lu 1999; Olmsted 1999; Olmsted et al. 2000; Lu et al. 2000; Fielding and Olm-
sted 2003; Dhont 1999). As can be seen, the difference between these shear
rates is very small. Since the concentration range where gradient banding is
expected to occur and the difference in shear rates as sustained in the two
bands are very small, gradient banding in suspensions of stiff rods will be
difficult to detect experimentally. In addition, passing the critical point at a
fixed concentration by increasing the shear rate, the two-phase region is also
probed (see Figs. 3.19b and 3.21), as a result of which phase separation will
occur during a rheological experiment. It is possible, however, that gradient
banding also occurs within the two-phase region (the region bounded by the
paranematic–nematic binodal), which has not yet been studied experimen-
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Fig. 3.34 The dimensionless flow-gradient component σ12 ≡ Σ12/η0Dr
of the stress tensor as a function of the shear rate for concentrations
close to the critical concentration (L/D)ϕ = 4.281 . . . (see Fig. 3.19b).
The smaller figure on the right-hand side is a blow-up of the van der
Waals loop.

tally. The situation for worm-like micellar systems is different. Here strong
gradient banding has been observed outside the two-phase region. The reason
for such pronounced gradient banding is probably that shear flow enhances
alignment, which enhances head-to-tail collisions, leading to longer worms,
leading in turn to a higher degree of alignment. This mechanism probably
renders worm-like micellar systems much more strongly shear thinning as
compared to, for example, fd virus suspensions, giving rise to a more pro-
nounced van der Waals loop-like behavior of the stress versus shear rate.

Although gradient banding of suspensions of stiff rods is experimentally
possibly less relevant, these systems do allow one to gain an understanding
of the microscopic origin of the van der Waals loop-like behavior of the stress
tensor. The reason for the strong shear-thinning behavior on passing the
critical point is that rotational motion is very slow at the critical point (since
there Deff

r = 0, as discussed in Section 3.11.1), so that shear-aligning forces
are no longer counterbalanced by rotational diffusion. A small increase in
shear rate near the critical point therefore results in an appreciable increase
of the degree of alignment, leading to strong shear thinning, giving rise to
the van der Waals loop-like behavior of the stress tensor. It may be a general
feature for the origin of gradient banding that the dynamics of a variable, that
strongly couples to the stress, becomes very slow on increasing the shear rate.
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Fig. 3.35 A sketch of the possible non-equilibrium phase diagram of stiff rods.

3.15.2
Non-Equilibrium Phase Diagram Under Shear Flow

A sketch of a possible complete phase diagram of rods subjected to sim-
ple shear flow, for concentrations below the nematic-to-smectic transition, is
given in Fig. 3.35. As discussed before, the location of the binodal and the re-
gion within the two-phase region (as enclosed by the binodal) where vorticity
banding occurs have been obtained experimentally for an fd virus suspen-
sion with added dextran that induced slight attractions between the rods.
At lower concentrations, the region where vorticity banding ceases to occur
coincides with the binodal. There are indications that the vorticity banding
ceases to occur at higher concentrations where non-stationary, time-periodic
states become stable. Gradient banding is expected to occur in a very small
concentration interval close to the critical point (as discussed above), but has
so far not been observed experimentally.

The characteristic features of vorticity bands have not been investigated yet.
It is not known how the band height varies with shear rate and concentration,
the internal orientational order within the bands has not been investigated,
and it is not known whether or not there is a dependence on the gap width of
the shear cell.

The various types of non-stationary states as described in detail by
Rienäcker and Hess (1999) and Hess and Kröger (2004). These various types
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of time-periodic states are difficult to distinguish experimentally. So far, only
tumbling and wagging states have been seen in fd virus suspensions by Let-
tinga and Dhont (2004). The phase diagram in Fig. 3.35 may, however, be
more complicated as far as these time-periodic states are concerned.

3.15.3
Phase Separation Kinetics Under Flow Conditions

No experimental results for demixing kinetics of colloidal systems consisting
of either spherical or rod-like colloids under shear flow have been published
so far. An analysis of a simplified Smoluchowski equation in the initial stage
of spinodal demixing of suspensions of rods in the absence of flow has been
discussed by Winters et al. (2000). Initial spinodal decomposition of suspen-
sions of spheres in the presence of shear flow has been analyzed by Dhont (1996),
which reproduces features that were seen experimentally for fluid mixtures
by Baumberger et al. (1991). There are as yet no theories on spinodal decom-
position of suspensions of rod-like colloids under shear flow, although much
work has been done on polymer blend demixing under flow conditions.

There are regions in the phase diagram where decomposition proceeds
through spinodal demixing or by nucleation and growth, depending on the
degree of orientational order of the initial state. These regions are most con-
veniently identified by means of the bifurcation diagrams as discussed in
Section 3.11.

The kinetics of vorticity-band formation has not been studied so far. Ex-
periments indicate that these bands are formed from an unstable state, i.e.
by means of a spinodal type of demixing, with a time constant that varies
with shear rate and concentration. The same experiments show a remarkably
strong dependence of the height of the bands and the rate with which bands
are formed on the gap width of the shear cell (Kang et al. 2004).

3.16
Appendix

3.16.1
Bead Index Summations

This appendix deals with the mathematical details of how bead index sum-
mations can be calculated by means of integration.
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Consider the function appearing in Eq. (3.35):

f(L/D) =

1
2 n∑

j=− 1
2 n

1
2 n∑

i=− 1
2 n,i �=j

1
|i − j|

Let us first evaluate the sum

1
2 n∑

i=− 1
2 n,i �=j

1
|i − j|

This sum equals the surface area of all the rectangles in Fig. 3.36. It can be
replaced by an integral, when the summation range (− 1

2n, 1
2n) is large,

1
2 n∑

i=− 1
2 n,i �=j

1
|i − j| ≈

[∫ j− 1
2

− 1
2 (n+1)

+
∫ 1

2 (n+1)

j+ 1
2

]
di

1
|i − j| (3.309)

The difference between the sum and the integral is the sum of the hatched
surface areas in Fig. 3.36 (with their proper signs). For increasing L/D ratios,
this difference tends to a constant, while the sum itself goes to infinity. The
relative error that is made by replacing the sum by an integral thus tends to
zero as L/D tends to infinity. The leading terms in the above integral are

ln[j + 1
2 (n + 1)] + ln[12 (n + 1) − j]

This expression is substituted into Eq. (3.309), where the sum over j is again
replaced by an integral. Using the standard integral

∫
dz zm ln z = zm+1

[
ln z

m + 1
− 1

(m + 1)2

]

Fig. 3.36 The sum in Eq. (3.309) equals the surface area of all rectangles,
and the integral is the surface area under the solid curve.
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one ends up, to leading order in D/L, with the result given in Eq. (3.36). The
two values of j = ±n/2 do not contribute to leading order, so that, in the
evaluation of summations, j may always be assumed in the interior of the
summation range.

3.16.2
Useful Mathematical Identities

Useful mathematical identities that are frequently used in the present chapter
are:

R̂2
(· · ·) = −2û · ∇u(· · ·) − ûû : ∇u∇u(· · ·) + ∇2

u(· · ·)

R̂2
(a · û)2 = 2[a2 − 3(a · û)2]

R̂2
(û · M · û) = −6(û · M · û) + 2 Tr{M}

R̂2
(ûû) = −6ûû + 2 Î

(û × M · û) · R̂(· · ·) = [∇u(· · ·)] · (M · û) − {û · [∇u(· · ·)]}(û · M · û)

R̂ · [û × (M · û)] = −3(û · M · û) + Tr{M}
R̂ · [(· · ·)(û · M · û)] = [Tr{M} − 3(û · M · û)](· · ·)

+(M · û) · [ Î − ûû] · ∇u(· · ·)
R̂ · (û × a) = −2(û · a)

R̂(û · M · û) = û × [M · û + MT · û]

a · R̂û = a × û

Here, M and a denote û-independent tensor and vector, respectively, and
(· · ·) denotes an arbitrary, but differentiable, scalar or vector field. The above
identities are easily verified by explicit differentiation.

3.16.3
On the Accuracy of the Closure Relation (3.227)

In order to assess the accuracy of the closure relation (Eq. 3.227), we numer-
ically solve the Smoluchowski equation (Eq. 3.213) for a single rod in shear
flow, i.e. without the interaction term. From the stationary numerical solution
P (û, t→∞), both S and S(4) can be obtained by numerical integration. This
allows one to compare the approximation (3.227) with the exact form of S(4).
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Fig. 3.37 A test of the accuracy of the closure relation (3.227) for
(a) M = Ŝ and (b) M = Ê. Solid lines are obtained from numerical
solution of the Smoluchowski equation (3.213), and dotted lines are
obtained from S using the closure relation (3.227). The numbers indicate
the tensor elements. Tensor elements that are not shown are 0.

Note that the stationary solution of Eq. (3.213) is a function of the shear rate
through the dimensionless rotational Peclet number Per = γ̇/Dr.

A comparison between the exact values (solid lines) and values obtained
from the closure relation (3.227) (dotted lines) for the non-zero components of
the tensors S(4) : S and S(4) : Ê are given in Fig. 3.37(a) and (b), respectively.
As can be seen, the shear-rate dependence of the various components is well
reproduced by the closure relation. Moreover, the accuracy of the closure
relation (3.227) is seen to be accurate to within 1% for M = S, and about
10% in the case M = Ê. Computer simulations indicate the same accuracy
for larger concentrations.

3.16.4
Evaluation of Sums Over Bead Index Numbers

Consider the evaluation of Eq. (3.272) to obtain an explicit expression for the
sum in Eq. (3.271). As a first step, the double summation in Eq. (3.272) is
rewritten as

∑
α

∑
β �=α

G(α)
|α − β|F

h
j,β =

∑
α

∑
β �=α

G(β)
|α − β|F

h
j,β +

∑
α

∑
β �=α

G(α) − G(β)
|α − β| F h

j,β

(3.310)
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The last term in this equation can be rewritten, by first interchanging the
summation indices α and β, and subsequently interchanging the order of
summations, as

∑
α

∑
β �=α

G(α) − G(β)
|α − β| F h

j,β =
∑

β

∑
α�=β

G(β) − G(α)
|α − β| F h

j,α

=
∑
α

F h
j,α

∑
β �=α

G(β) − G(α)
|β − α| (3.311)

After a similar interchange of the order of summation in the first term on
the right-hand side of Eq. (3.310), substitution of Eqs. (3.310) and (3.311) into
Eq. (3.272) gives

∑
α

G(α)F h
j,α = −γ

∑
α

G(α)[vj,α − U j,α] (3.312)

− 3
8 [ Î + ûjûj ] ·


∑

α

G(α)F h
j,α

∑
β �=α

1
|α − β| + ∆




where

∆ =
∑
α

F h
j,α

∑
β �=α

G(β) − G(α)
|β − α| (3.313)

Consider the first contribution in the square brackets in Eq. (3.312):

∑
α

G(α)F h
α

∑
β �=α

1
|α − β| (3.314)

The sum S(α) ≡ ∑β �=α 1/|α − β| can be approximated by an integral. To
leading order one finds

S(α) ≡
∑
β �=α

1
|α − β| =

[∫ α− 1
2

− 1
2 (L/D−1)

+
∫ 1

2 (L/D−1)

α+ 1
2

]
dx

1
|x − β|

The integrals are easily evaluated to yield

S(α) = 2 ln 2 + ln[12 (L/D − 1) + α] + ln[12 (L/D − 1) − α]

Except for α values close to the ends of the rod, this gives, to leading order,

S(α) ≈ 2 ln(L/D) (3.315)
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Fig. 3.38 (a) Plot of S(α)/2 ln(L/D) as a function of α/m with 2m + 1
the total number of beads [where S(α) ≡ ∑

β �=α 1/|α − β|]. The lower
curve is for L/D = 20, the upper curve for L/D = 201. (b) The sums∑

α S(α) and
∑

α 2 ln(L/D) = 2(L/D − 1) ln(L/D) as functions
of L/D. The relative error between the two sums never exceeds 8%,
and very slowly converges to 0 with increasing L/D.

In Fig. 3.38(a), S(α)/2 ln(L/D) is plotted as a function of α/m, with 2m + 1
the number of beads (so that α/m ranges from −1 to +1). As can be seen, the
approximation (3.315) is good to within about 10%, except at the very ends of
the rod. In fact, the width of the region at the tips of the rod where Eq. (3.315) is
not a good approximation asymptotically vanishes in the limit where L/D →
∞. Hence, except when G(α)F h

j,α in Eq. (3.314) peaks at the ends of rod j,
Eq. (3.315) can be used as a good approximation. For our purpose, there is
no reason for the function G(α)F h

j,α to peak at the very ends of the rod. A
quantitative estimate for the error made in using Eq. (3.315) is the difference
between the sums

∑
α S(α) and

∑
α 2 ln(L/D) = 2(L/D − 1) ln(L/D).

These sums are plotted as functions of L/D in Fig. 3.38b. The relative error
does not exceed 8% (for L/D ≤ 5), and very slowly converges to 0 with
increasing aspect ratio. Hence, to within about 10% error, we can approximate
the expression in Eq. (3.314) by

∑
α

G(α)F h
α

∑
β �=α

1
|α − β| = 2 ln(L/D)

∑
α

G(α)F h
j,α (3.316)

The term on the left-hand side in Eq. (3.312) can be neglected compared with
this contribution, which is logarithmically larger.
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For the divergence of the stress tensor in Eq. (3.267), we need to evaluate
the sum

S ≡
∑
α

〈δ(r − r1 − αDû1)F h
1,α〉

where j is taken equal to 1 for convenience. Writing the ensemble average
in terms of an integral with respect to the probability density function (PDF),
P , of all phase-space coordinates of the colloidal rods, the integration with
respect to r1 can be done immediately due to the delta distribution, leading
to

S =
∮

dû1

∫
dΓ
∑
α

P (r1=r−αDû1, û1,Γ, t) F h
1,α(r1=r−α Dû1, û1,Γ)

where Γ stands for the phase-space coordinates r2, . . . , rN , û2, . . . , ûN . The
integrand is of the form of the left-hand side of Eq. (3.272), except that in
F h

1,α the position r1 is taken equal to r − αDû1, which does not affect the
present analysis leading to Eq. (3.273). The function G(α) is now equal to

G(α) = P (r1=r−αDû1, û1,Γ, t)

Since the PDF is a continuous differentiable function of r1, there is a scalar
z between α and β, such that

G(β) − G(α)
β − α

=
dG(z)

dz
≡ dP (r1=r−zDû1, û1,Γ, t)

dz

The latter derivative is just the change of P on changing the position of rod
number 1 by Dû1, i.e. its center is shifted over a distance D in the direction
of its orientation. Since, for the very large aspect ratios under consideration,
suspension properties are essentially constant over distances of the order D,
this is a very small number. The number R = (L/D) d ln[G(z)]/dz measures
the change of the “entropy” lnP over distances of the order of the length of
the rods. In terms of this number, we have the order-of-magnitude estimate

∆ ∼ R
∑
α

G(α)F h
1,α

Hence, according to Eq. (3.316), as long as the relative changes of suspension
properties over the contour of the rods are much smaller than ln(L/D), ∆ can
be neglected compared with the first term in the square brackets in Eq. (3.312).
This justifies the step from Eqs. (3.267) to Eqs. (3.273) and (3.274).
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3.16.5
Derivation of Eq. (3.279)

After substitution of Eqs. (3.278), (3.170), (3.166), (3.172), and (3.277) into
Eq. (3.275), it is immediately found that

∇ · Σ = η0∇2U(r, t) − ∇P ss(r, t) + Ir + It + Iu (3.317)

where

Ir = − γD̄Dr

ln(L/D)

〈
N∑

j=1

∑
α

αδ(r−rj−αDûj)[βR̂jΨ + R̂j lnP ] × ûj

〉

(3.318)

It = − γD̄

ln(L/D)

〈
N∑

j=1

∑
α

δ(r−rj−αDûj)[β∇jΨ + ∇j lnP ]

〉
(3.319)

and

Iu =
4
3

γ

ln(L/D)

〈
N∑

j=1

[ Î − 1
2 ûjûj ] ·

∑
α

δ(r−rj−αDûj)

×
[

D

L

∑
β

U j,β − U j,α − 12α

(
D

L

)3

ûj ×
(

ûj ×
∑

β

βU j,β

)]〉
(3.320)

First, consider the relatively simple contribution

I ≡
〈

N∑
j=1

∑
α

αδ(r−rj−αDûj)ûj × R̂j lnP

〉

=
N∑

j=1

∑
α

α

∫
dr1 · · ·

∫
drN

∮
dû1 · · ·

∮
dûN δ(r−rj−αDûj)ûj × R̂jP

that appears in Eq. (3.318) for Ir. In the second line the fact that P R̂j lnP =
R̂jP is used, where, P ≡ P (r1, . . . , ûN , t) is the N -particle PDF. For each
j, the integrations with respect to rm and ûm with m 
= j can be done
immediately. Assuming identical rods gives

I = N
∑
α

α

∫
dr1

∮
dû1 δ(r−r1−αDû1)û1 × R̂1P (r1, û1, t)
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It is to be noted that the differentiation with respect to û1 must be performed,
after which r1 can be replaced by r − αDû1 upon integration with respect to
r1. Hence,

I = N
∑
α

α

∮
dû1 û1 × [R̂1P (r−αDû0, û1, t)

]
û0=û1

The corresponding contribution to the divergence of the stress tensor in
Eq. (3.279) follows by replacing the summation over the bead index num-
ber α by an integral as

∑
α

f(· · · − αDû1) = D−1
∫ L/2

−L/2
dx f(· · · − xû1) (3.321)

Next consider the somewhat more complicated contribution:

I ≡ β

〈
N∑

j=1

∑
α

αδ(r−rj−αDûj)ûj × R̂jΨ

〉

= β

N∑
j=1

∑
α

α

∫
dr1 · · ·

∫
drN

∮
dû1

. . .

∮
dûN δ(r−rj−αDûj)P ûj × R̂jΨ

which appears in Eq. (3.318) for Ir. Using pairwise additivity (see Eq. 3.203),
substitution of Eq. (3.207) together with Eq. (3.209), and assuming identical
rods, it is readily found that

I =
∑
α

α

∫
dr1

∮
dû1

∮
dû2 δ(r−r1−αDû1)ρ(r1, û1, t)û1 × R̂1

×
∫

dr2 ρ(r2, û2, t)X (r1−r2, û1, û2) (3.322)

The integration with respect to r2 can be performed after transforming to the
integration variable R = r1 − r2:

∫
dr2 ρ(r2, û2, t)X (r1−r2, û1, û2)

=
∫

dR ρ(r1−R, û2, t)X (R, û1, û2)
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= 2D|û1 × û2|
∫ L/2

−L/2
dl

∫ L/2

−L/2
dl′ ρ(r1−lû1−l′û2, û2, t)

In the second equation, the integration with respect to R is transformed to
integration with respect to {l, l′, l′′}, which are defined as

R = lû1 + l′û2 + l′′
û1 × û2

|û1 × û2| with − 1
2L ≤ l, l′ ≤ 1

2L

and − D ≤ l′′ ≤ D (3.323)

The Jacobian of this transformation is equal to |û1×û2|. Since the suspension
properties do not change significantly over distances of the order of the thick-
ness D of the rods, the integration with respect to l′′ gives rise to a prefactor
2D. Hence,

I = 2D
∑
α

α

∫
dr1

∮
dû1

∮
dû2

∫ L/2

−L/2
dl

∫ L/2

−L/2
dl′ δ(r−r1−αDû1)

× ρ(r1, û1, t)û1 × R̂1|û1 × û2|ρ(r1−lû1−l′û2, û2, t)

As before, it should be noted that, upon integration with respect to r1, the delta
distribution renders r1 = r − αDû1 after the differentiation with respect to
û1 has been performed. Hence,

I = 2D
∑
α

α

∮
dû1

∮
dû2

∫ L/2

−L/2
dl

∫ L/2

−L/2
dl′

× ρ(r−αDû1, û1, t)û1 × [R̂1|û1

× û2|ρ(r−αDû0−lû1−l′û2, û2, t)
]
û0=û

The bead index summation is replaced by an integral similarly as in
Eq. (3.321), leading to (with û = û1 and û′ = û2)

I =
2
D

∮
dû

∮
dû′
∫ L/2

−L/2
dx

∫ L/2

−L/2
dl

∫ l/2

−L/2
dl′ x

× ρ(r−x, û, t)û × [R̂|û × û′|ρ(r−xû0−lû−l′û′, û, t)
]
û0=û

This expression can be found in Eq. (3.279).
The contribution It to the stress tensor in Eq. (3.319) is evaluated similarly.
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The β summations in the contribution Iu in Eq. (3.320) are replaced by
integrals, similar to Eq. (3.321), as

∑
β

βU j,β = D−2
∫

dx′ x′U(rj + x′ûj) (3.324)

The prefactors in Eqs. (3.318) to (3.320) are found from Eqs. (3.169) and
(3.171) to be equal to

γD̄

ln(L/D)
=

D

L
kBT and

4
3

γDDr

ln(L/D)
= 12

D2

L3 kBT

This concludes the mathematical details leading to Eq. (3.279).
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